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Abstract

This thesis covers two separate but complimentary themes. Firstly, work on the spinel composition of 
the ultramafic rocks o f has provided evidence that they formed as Alaskan-type intrusions. This has 
implications both for prospectivity and for the understanding of neoproterozoic plate movements. 
Additionally, the study o f the rock and soil geochemistry has been used to identify exploration targets 
and evaluate the prospectivity o f the major complexes.

It is proposed here that the ultramafic complexes Tulu Dimtu, Kingy, Daleti, Ankori and Yubdo, in the 
Western Ethiopian Shield are Alaskan type intrusions. Alaskan-type intrusions are concentrically zoned 
ultramafic intrusions thought to be the feeder pipes o f volcanoes. They have dunite at the core and 
grade outwards to clinopyroxenite and sometimes hornblendite. These intrusions typically occur in 
continental arc settings such as Alaska, British Colombia and the Urals. This compares with ophiolite 
complexes which are thought to be obducted oceanic upper mantle and crust. The two types of complex 
may be difficult to distinguish because if ophiolites are dismembered and deformed fragments, they 
may resemble Alaskan-type intrusions.

This thesis documents several features o f these Ethiopian complexes that are typical of Alaskan type 
intrusions. Mapping o f the Yubdo complex has shown a circular out crop pattern with concentric zones 
of clinopyroxenite at the edge to dunite at the centre. New mapping of the Tulu Dimtu area has shown 
a similar zoned circular body. Both the Yubdo and Tulu Dimtu complexes show concentric zones of Cr 
values, where the greatest values occur at the edge and the lowest in the centre.

These mafic and ultramafic intrusions are very altered by surface weathering but contain chrome- 
spinels which have a geochemistry which is unlike ophiolites and similar to Alaskan-type intrusions. 
The analysis o f these spinels demonstrates how the compositions o f spinel Fe2+# and Cr# values may 
be used to distinguish between an Alaskan type or ophiolite complexes. In Alaskan-type intrusions, 
spinels with Fe2+# values greater than 0.85 frequently have Cr# values which are lower than 0.5. Such 
low Cr# values in spinels with high Fe2+# values are rare in ophiolite complexes.

The variations in Ni, Cu, Cr and A1 contents of highly altered ultramafics and fresher ultramafics have 
been used to investigate the magmatic and post-magmatic ore forming processes that have influenced 
the Pt and Pd content o f the complexes. It is expected that medium to low temperature hydrothermal 
activity may have had a significant impact on the geochemistry of even the fresher rocks. The 
discovery o f high Pd values and low Pt in lithologies such as talc-schists and quartzite support the idea 
that Pd is more mobile than Pt in medium to low temperature conditions. Furthermore, in the Tulu 
Dimtu Main Intrusion, the altered rocks indicate that Pd has been removed from the magmatic sites of 
concentration. In a few places it is possible to see through the extensive alteration and potential 
magmatic processes can be considered. Within the Tulu Dimtu Main Intrusion and the Main Yubdo 
Intrusion, the most primitive rocks occur at the flanks. Furthermore, it is indicated that sulphide 
segregation may have occurred in the Tulu Dimtu Main Intrusion and Daleti Ultramafic. In the Daleti 
Ultramafic, regardless o f the presence o f sulphides, the Pt and Pd values remain low -  it is therefore 
unlikely that the complex hosts economic grades. However, at Tulu Dimtu and Yubdo, it is 
recommended that any future exploration be targeted at the flanks o f the complexes, where magmatic 
and post-magmatic processes may potentially co-incide to elevate the grade.

Much work has been published to document the nature of platinum-group minerals (PGM) in the 
alluvial and eluvial placers around the Yubdo area and some PGM have been discovered in the 
serpentinsed dunites o f the main Yubdo intrusion. In this thesis further discoveries of PGM have been 
made in the serpentinised dunites and chromites from the Yubdo area.

In the course o f this work new base maps covering the ultramafic complexes and the surrounding 
basement have been produced. These have revealed many smaller ultramafic bodies which are referred 
to here as the Lensoid Ultramafics. Both spinel and whole rock geochemistry supports the hypothesis 
that these are slivers o f rock “sheared-off’ the outside of larger complexes.

The conclusion that these complexes have an Alaskan-type origin has consequences for the 
understanding o f plate movements in this part of the Neoproterozoic Western Ethiopian Shield. 
Additionally, the identification of exploration targets will help focus efforts to uncover any potential 
economic mineralisation.
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Chapter 1: Introduction

1. Introduction

1.1. Introduction

The Western Ethiopian Shield (WES) is 500 km west of the capital Addis 

Ababa (see figure 1.2). It is a Neoproterozoic ancient mining district (United Nations, 

1971; Jelenc, 1966) and the alluvial and eluvial deposits around the Yubdo ultramafic 

complex have been mined for Pt-Fe alloys and Au since 1926 (Mogessie and Belete, 

2000). Yubdo forms part of a line of ultramafic complexes located along a NNE-SSW 

trending structure. The ultramafic complexes from the WES are (from north to south) 

Tulu Dimtu, Kingy, Daleti, Ankori and Yubdo (see figure 1.2). None of these bodies 

are mined on a commercial scale but Pt-Fe alloys are known in the surrounding 

placers. Most of the WES is only accessible on foot. The rocks are covered by a thick 

laterite which is frequently over 15m in thickness and exposure is generally less than 

5%.

Ethiopia is covered by extensive Quaternary and Tertiary flood basalts. In 

some areas, the older rocks can be observed as inliers between these sequences 

(Mohr, 1983). The WES is one of such inliers and has been correlated northwards to 

join the Arabian Nubian Shield and southwards to the Mozambique belt, all of which 

form part of the East African Orogen. Johnson et al. (2004) believe that the WES 

records a history of crustal formation and deformation of around 500Ma in duration, 

this may have begun with a rifting event starting at around 900Ma (Stem, 1994). The 

eastern and western flanks of the WES are orthogneissic and they surround a central 

zone of volcano-sediments and ultramafics (Johnson et al., 2004). These ultramafic 

bodies are the subject of this thesis (see figure 1.2).
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Figure 1.1: A geological map of the WES. (Johnson et al., 2004).

The southernmost ultramafic body (Yubdo) has been the subject of several 

publications (for a review see Mogessie et al., 1999). It is concentrically zoned with 

dunite at the core and clinopyroxenite on the outside (Kazmin and Demessie, 1971). 

The northernmost complex is also the subject of several petrological investigations 

(see Tadesse and Allen, 2005 and Sighinolfi et al., 1993). There are three additional, 

smaller, complexes which occur between Yubdo and Tulu Dimtu, these are Kingy, 

Daleti and Ankori which have been studied very little. All five bodies are highly 

altered and serpentinisation is greater than 50% in each case.

It is estimated that over 2700 kg of Pt has been mined from the laterites of the 

Yubdo area and an inferred resource of 20tons at a grade of 0.4g/m has been 

calculated (Mogessie and Belete, 2000). Although Pt-Fe nuggets are found in the 

rivers around the other five complexes, the origin of these grains is uncertain.
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Figure 1.2: A map of the four field areas of this thesis, showing the largest ultramafic 
complexes and major roads and settlements. The map at the top of the figure is the outline of 

Ethiopia showing the location of the field area.

This thesis is intended to address two issues concerning the ultramafics in the 

WES. Firstly, there is a dispute over the tectonic setting of the complexes, many 

authors regard them to ophiolite complexes but others consider them to be Alaskan- 

type intrusions. Secondly, platinum group minerals (PGM) are extensively 

documented in the placers of the WES. However, little is known about the 

prospectivity of the primary mineralisation. The next two sections (1.2 and 1.3)
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introduce the two issues. The final sections (1.6 and 1.7) outline the way in which 

these issues will be addressed.

1.2. The tectonic setting o f  the ultramafic complexes

There is a dispute about the origin of the ultramafic bodies in the WES. The 

complexes have been spatially linked with intrusions of a similar petrology 

northwards in the Arabian Nubian Shield and southwards in the Mozambique belt 

(Berhe and Rothery, 1986). These have been collectively interpreted as the mantle 

sequences of ophiolites using the criteria specified by Penrose, (1972) and structural 

observations (Berhe and Rothery, 1986). Berhe (1990) further considered these to 

mark a suture zone between east and west Gondwanaland.

However, Mogessie et al. (2000) state that the PGE and chromite chemistry of 

the Yubdo and Tulu Dimtu ultramafics infer the geochemical signature of an Alaskan- 

type intrusion. Thought to mark the feeder pipes of volcanoes (Murray, 1972), these 

concentrically zoned ultramafic complexes have been studied principally in Alaska 

and British Columbia (Nixon et al., 1997; St Louis et al., 1986; Taylor, 1967; Johan, 

2002). They are known in many parts of the world including Northwest Columbia 

(Tistl, 1994, Tistl et al., 1994), Kamchatka and the Russian Far East (Tolstykh et al., 

2000; Tolstykh et al., 2002) and Central Australia (Andrew et al., 1995). Alaskan-type 

complexes commonly occur in lines of discrete intrusions in mobile belt settings 

which also contain ophiolite complexes, for example the Urals, E Russia (Garuti et 

al., 1997; Garuti et al., 2003) and southeastern Alaska (Taylor, 1967).

Mogessie et al. (2000) suggested that an Alaskan-type intrusion origin for 

these bodies indicates that the Mozambique belt and Arabian Nubian Shield are not 

spatially linked and may only have an inter-fingering relationship.

This thesis includes an extensive study of the spinel geochemistry from the 

ultramafic samples throughout the WES (chapter 7). The results are compared with 

published spinel analyses from Alaskan-type intrusions and ophiolites worldwide.
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1.3. The development o f  Pt and Pd

Research into Pt and Pd in the area has focused on studies of placer platinum 

group minerals (PGM) from the Yubdo area (see Belete et al., 2000 and Mogessie et 

al., 1999). Further mineralogical studies have characterized some PGM from 

serpentinised dunite within drill core (Mogessie et al., 1999). The only published 

geochemical work on the area is that of Mogessie et al. (1999) and Signolfi et al. 

(1993). Both studies discuss the likely effect of serpentinisation and comment only 

briefly on the mechanisms by which Pt and Pd may have become concentrated into 

the primary rocks before alteration.

An assessment of the geochemistry of altered ultramafic rocks with fresher 

rocks is included in this thesis (chapter 6). This may uncover some of the ore forming 

processes by which Pt and Pd may have been concentrated and hence develop future 

targets for exploration.

1.4. The mining history o f  the WES

Although it has been speculated that platinum grains from Yubdo were used to 

decorate objects in Egypt in the 7th century BC (Mogessie and Belete, 2000), the 

platinum deposit at Yubdo is generally regarded to have been discovered by a Russian
thmissionary sometime in the early 20 century. In their account of the mining history 

of the area, Mogessie and Belete (2000) state that large scale extraction did not begin 

until 1926. Mining was conducted initially under a French company, which was then 

taken over by and Italian firm and by 1941 the mine was in the hands of the 

government. During the 1960’s some mining and exploration was carried out by the 

Duval corporation. At the time of writing mining licences for the Yubdo and Sodu 

areas are held by Golden Prospect Mining (Ethiopia) Ltd, a wholly owned subsidiary 

of Golden Prospect Pic.
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Y ubdo v illa g e

Figure 1.3: An aerial photograph of the opencast workings of the laterite in the Yubdo area 
(within the black lines) in 1957. The bright line is the course of the Birbir river.

The mining was conducted in two large open pits (see figure 1.3). In 2001, 

mining was conducted by pumping water into reservoirs high up in the soil profile. 

This water is then released and allowed to flow through the laterite where the soil 

particles are then taken into suspension. These waters then flow through a sluice 

system whereby selected fractions are panned to produce a concentrate. A study of the 

effectiveness of these systems was performed by Childs (2001). In the past these 

methods have been assisted by the use of monitors and also shaker tables (Mogessie 

and Belete, 2000).

Artisanal mining of both platinum group minerals and Au grains from stream 

sediments is common throughout the WES. It is not possible to determine when this 

practice started, the skill of panning has been past down through several generations 

of the local people. During the course of the fieldwork conducted for this project, Tan 

Range Exploration Corporation owned exploration licences for the area around Tulu 

Kapi and the eastern half of the Tulu Dimtu Main Intrusion.
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1.5. The conduct o f  the study

This project was conducted in co-operation with and partially sponsored by 

Golden Prospect Mining Co Ltd (£)PM)- As a result these circumstances, there were 

certain constraints on the way in v/hich the work could be performed. As detailed in 

chapters 7 and 8, many samples were collected and analysed for a suite of chemical 

elements. Although the author participated in the exploration programme which 

collected the samples, the geochemical analysis was conducted without his 

involvement.

Three bore-holes were Sunk into the Yubdo Main Intrusion by the Duval 

corporation in 1969 (for a review See section 2.3.5). Studies of these cores were 

performed by Mogessie et al. (199^) afld Belete et al. (2000). The rock retrieved by 

this method has been kept in archive by the Ethiopian Ministry of Mines and was 

available for study by members of the OPM team. Some geochemical analyses were 

performed on a few grab samples fjroia within the core. A description of the core itself 

was not included within this study as this work had already been performed by other 

workers (see above). Furthermore, the manner in which samples had been taken from 

the drill-core meant that a scientific analysis of the geochemical variations was not 

possible.

1.6. Aims and methods used in the thesis

This thesis aims to use Ni, Cu, Cr> Al and Mg to investigate the differences in 

geochemistry between altered and fresher ultramafic rocks and hence suggest the 

mechanisms by which Pt and pd havs been concentrated. Furthermore, it aims to use 

spinel geochemistry investigate the tectonic origin of the ultramafic complexes of the 

WES with particular reference to Alaskan'type intrusions and ophiolites. The methods 

used for each theme are summarised as follows.

In chapter 8, the distribution of pJi, Cu, Cr, Al, Pt and Pd in the ultramafics is 

examined. The rocks are classified as fresher or altered (see section 8.3.1). The 

distribution of these elements has lead *o the development of ideas about potential 

magamtic and post-magmatic ore forming processes. These allow an assessment of
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the prospectivity of the ultramafic bodies of the WES and the identification of 

possible exploration targets. To compliment this, a discussion of the possible factors 

affecting the distribution of Pt and Pd in the overburden of the WES is also included 

(see chapter 7).

To evaluate the tectonic origin of the ultramafic complexes, the geochemistry 

of spinels is studied (see chapter 7). The results of this analysis are compared with 

published spinel analyses from Alaskan-type intrusions and ophiolites. Furthermore, 

the relative influence of alteration and magmatic processes is evaluated using core and 

rim analyses and comparison with published work.

/. 7. Layout o f  the thesis

In order to fulfill the above aims, chapter 2 describes the geological 

background to the area, introduces Alaskan-type intrusions and ophiolites, and 

discusses the key differences between them. Subsequently, chapter three describes the 

alteration to which the rocks have been exposed and the key minerals of interest to the 

thesis. Chapters 4 and 5 show the production of geological base-maps for the 

subsequent chapters using the analysis of terrain and geological observations. To 

support an understanding of the alteration processes in the Main Yubdo Intrusion, a 

magnetic survey was carried out, this is described in chapter 6. As a way of 

understanding the redistribution of the pathfinder elements in the overburden, chapter 

7 describes the geochemistry of the soils. Chapter 8 describes an attempt to use rock 

geochemistry to ascertain the prospectivity of the complexes. Following this, the 

geochemistry of spinels is described in chapter 9 in order to investigate the tectonic 

origin of the complexes.

Each results chapter (4, 5, 6, 7, 8 and 9) considers each of the four geographic 

areas shown in figure 1.2 in turn. At the end of each results chapter the conclusions 

from all four areas is compared. Finally, in chapter 9 the conclusions for each method 

are summarized for each geographic area.
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2. Literature Review

2.1. Introduction

Due to its position within the large Precambrian shield that extends from Egypt to 

Mozambique there have been several studies of the structural aspects of the WES. These 

are used in section 2.2 to set this thesis into context within East Africa. Studies of the 

ultramafic rocks in the area are less common, although there is an abundance of 

petrological studies which have been undertaken and these are reviewed in section 2.3. 

Two preliminary geochemical studies have been published and section 2.3 describes 

these along with a review of the research published on the famous Pt-Fe nuggets from 

Yubdo (see section 2.3.5)

An important theme of this thesis is the question of the tectonic origin of the ultramafic 

complexes. Section 2.4 introduces the structure, petrology, mineralogy and geochemistry 

of the Alaskan-type intrusions and ophiolite complexes and proposes several differences 

that may be used to distinguish the two.

2.2. Geological Setting

Most of Ethiopia is covered by Tertiary or Quaternary volcanic flood basalt sequences. 

The area of western Ethiopia examined in this thesis occurs within a window through this 

basalt plateau which allows the underlying Precambrian basement to be observed (United 

Nations, 1971). This 100 by 300 kilometer inlier is a N-S trending mobile belt hosting: 

metavolcano-sedimentary sequences, zones of gneiss and migmatite and the ultramafic 

complexes that are the subject of this study.

Using remote sensing, Berhe and Rothery (1986) linked the ultramafic complexes in 

western Ethiopia with those further north and south in East Africa and identified the 

position of five N-S trending sutures in this part of East Africa. In his discussion of the 

tectonic consequences, Berhe (1990) considers that these sutures with remnant ophiolites
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represent the remnants of back arc basins, supra-subduction zones and sutures between 
two continental blocks. Berhe (1990) identified the Baraka -  Yubdo - Sekerr suture 
(which includes the ultramafic complexes in this study) as being juxtaposed against a 

similar suture from Eastern Sudan that may continue southward into Tanzania. Satellite 
interpretation has shown that the structure continues northwards to Baraka in NE Sudan 
and Eritrea (Berhe and Rothery, 1986).

Figure 2.1: The “ophiolite belts” of northeast Africa (modified after Berhe, 1990).

The ultramafic complexes covered by this study are located within the the Western 
Ethiopian Shield (WES) which itself forms part of the greater East African Orogen 
(EAO). The deformational history of the EAO is divided into two phases: structures 
associated with collision and post accretionary structures (Abdelsalam and Stern, 1996). 

Of the collisional structures, two suture types are identified: arc-arc and arc-continentaL

SAUDI ARABIA
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The Baraka -  Yubdo -  Sekerr suture is the result of the accretion of two arc terranes 

(Abdelsalam and Stem, 1996). The deformation within this suture is characterized by 

north trending sinistral transpression. Arc-arc sutures in the EAO typically have nappes 

containing ophiolitic material associated with them, and these were steepened by upright 

folding during the final stages of collision (Abdelsalam and Stem, 1996). Another aspect 

of the post accretionary deformation is the development of northwest trending strike slip 

faults and shear zones (Belete et al., 2000; Abelsalam and Stem, 1996).

The Western Ethiopian Shield (WES) records a history of crustal formation and 

deformation within the EAO lasting around 500Ma (Johnson et al., 2004). The shield is 

divided into three lithotectonic domains: the Baro, Geba and Birbir domains (Johnson et 

al., 2004; Ayalew et al., 1990; Allen and Tadesse, 2003). These domains strike NNE- 

SSW with the Birbir domain in the centre, this trend is parallel to the trend of the EAO. 

The Birbir domain hosts the ultramafic complexes.

The Birbir domain comprises mainly either schistose metaclastic or metavolcanic 

sequences. The metaclastics are typically pelites or greywackes with intercalated 

metavolcanics. The metavolcanic sequences are typically metamorphosed to greenschist 

facies and sometimes contain actinolitic hornblende. The protoliths for such 

metavolcanics are believed to be andesitic tuffs and felsic sediments which are commonly 

associated with arc settings (Johnson et al., 2004). Some authors refer to the domain 

hosting the ultramafics as the Kemashi domain (Allen and Tadesse, 2003; Tadesse and 

Allen, 2005). These rocks of the Birbir or Kemashi domain are pervasively deformed by 

NNE-SSW trending structures with the strain taken up by folding and westerly directed 

thrusting. Post accretionary tectonics mark the WES by the imprint of NNE-SSW 

transcurrent shearing and strike-slip faulting on top of the earlier N-S directed folds 

(Johnson et al., 2004). The shear zones related to this late stage of deformation appear to 

have been the conduits for hydrothermal fluids and further north in Baruda these deform 

the flanks of the mafic-ultramafic complexes (Braathen et al., 2001).
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2.3. Previous Work on the Ultramafics o f the WES

2.3.1. Introduction

Studies of the ultramafic rocks in the WES fall into two categories. Some authors 

consider the ultramafic complexes together and relate them to the other lithological and 

structural domains in the region. Other studies have focused on the individual bodies. In 

the following sections, the regional studies including the ultramafics are described and 

then an account of the work on individual ultramafic complexes is summarised.

2.3.2. Regional Studies of the Ultramafic bodies

The Yubdo complex is considered to be the southernmost ultramafic body in the WES. 

There are several more bodies north of Tulu Dimtu (these are not covered in this study). 

These additional bodies include: Jaja Kubsa (Alemu and Abebe 1998), Korka Meti 

(Alemu and Abebe, 1999; Tadesse and Allen, 2005) and Baruda (Braathen et al., 2001; 

Allen and Tadesse, 2003). The publications summarized in this section treat all 

complexes together and therefore some observations described may have originated from 

outside the coverage area of this study.

There is a general consensus that the ultramafic complexes studied here are elongate and 

occur in a zone associated with metavolcanics and metasediments (Johnson et al., 2004; 

Allen and Tadesse, 2003; Alemu and Abebe, 1998; Warden et al., 1982). The bodies are 

orientated parallel to the regional tectonic fabric (NNE-SSW). Allen and Tadesse (2003) 

report the presence of associated gabbros, diorites and plagiogranites. One publication 

states that the terrain associated with the ultramafic units is low-lying with some elevated 

areas where the rocks are less altered (Tadesse and Allen, 2005) but another reports that 

the ultramafics form prominent ridges almost devoid of vegetation (Alemu and Abebe,

1998).

Altered dunites and pyroxenites have been observed in all studies of petrology. Several 

publications report that the dunites are completely serpentinised, however, Alemu and
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Abebe (1998) also report that fresh olivine is present at up to 20% in some samples. 

Furthermore, Tadesse and Allen (2005) describe metre-scale blocks of harzburgite, 

lherzolite and wehrlite within ultramafic schists. Warden et al. (1982) observed a relict 

cumulate texture in some samples from the WES. Tadesse and Allen (2005) also report 

only partial replacement towards the centre of the ultramafic masses. Alteration minerals 

such as talc and carbonate are found along thrust faults and shear-zones and also in rims 

around massive serpentinite blocks (Alemu and Abebe, 1998; Warden et al., 1982). 

Pyroxenite samples show variable alteration to chlorite, albite, epidote and sometimes 

actinolite (Johnson et al., 2004). Furthermore, pyroxene psedomorphs containing 

secondary hornblende suggests lower amphibolite facies metamorphism (Warden et al. 

1982). In most publications, the strongest alteration is reported closest to fault or shear- 

zones. All descriptions of petrology report the presence of magnetite and chromite.

An account of the whole-rock geochemistry of the ultramafic rocks in the WES is 

provided by Warden et al. (1982) and is accompanied by a comprehensive study of 

alteration petrology. Chondrite normalized REE analyses show that the intrusive 

ultramafic rocks of the area have a very strong LREE enrichment and HREE depletion.

2.3.3. Tulu Dimtu and Kingy

This section covers Tulu Dimtu and Kingy together. This is because the publications 

summarized here do not distinguish between the two and they are jointly referred to as 

“Tulu Dimtu”. Later in this thesis these two areas are described separately.

The Tulu Dimtu area was mapped at a scale of 1:50,000 by de Wit and Aguma (1977), 

they identified a large mass of partially serpentinised dunites surrounded by serpentinite 

schists. They also identified a zone of other more elongate bodies which extend 

southwards into the Kingy area. Many accounts comment on the fact that the largest 

ultramafic body in the area stands out as a conspicuous hill which is barren of vegetation. 

The rocks forming this large hill are referred to in this study as the Tulu Dimtu Main 

Intrusion.

13



Chapter 2: Literature Review

The most comprehensive study of the petrology of the Tulu Dimtu area is that of de Wit 

and Aguma (1977), but further descriptions are given by Sighinolfi et al. (1993) and 

Alemu and Abebe (1998). The lithologies discovered in the Tulu Dimtu and Kingy areas 

include dunite, olivine-clinopyroxenite and homblendite. Serpentinisation is never 

reported at less than 80% and it is often over 95% (de Wit and Aguma, 1977; Signolfi et 

al., 1993). The relict outlines of forsteritic olivine crystals with diameters of 0.2-0.5mm 

are observable and olivines can be observed now as chrysotile mesh and window 

structures. Fine grained magnetite occurs along silicate grain boundaries and Cr-spinel 

and chromite are also present. Furthermore, de Wit and Aguma (1977) describe original 

“magmatic” (sic, see chapter 3) galena and barite crystals within dunite. The olivine- 

clinopyroxenites include clinopyroxene crystals of up 0.5mm which all have tremolitic 

rims. There are believed to have been at least two phases of alteration which include one 

of serpentinisation and a separate silicification phase (de Wit and Aguma, 1977; Alemu 

and Abebe, 1998).

A study of the geochemistry of the rocks in the Tulu Dimtu complex was undertaken by 

Sighinolfi et al. (1993). The PGE analysed from serpentinised dunites were depleted with 

respect to chondrite, but Pt was found to be more enriched than the other elements. 

Furthermore, Sighinolfi et al. (1993) only found significant PGE values in serpentinised 

dunites and the silicified equivalents were almost barren. Although Ni is reported to 

increase with serpentinisation, the distribution in the altered lithotypes is similar to that of 

the less altered rocks suggesting that Ni remobilization is a local effect (Sighinolfi et al,

1993). A depletion in Cu values with serpentinisation led Sighinolfi et al. (1993) to 

suggest that serpentinisation had removed sulphides and chalcophile elements from the 

complex.
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Figure 2.2: The average chondrite normalized Ru, Rh, Pt and Pd analyses for dunite from the Tulu

Dimtu area (Sighinolfi, 1993).

2.3.4. Daleti, Ankori, Tulu Kapi and Keley

The ultramafics at Daleti (refered to in this study as the Daleti Ultramafic) occur in two 
parts, firstly a prominent ridge trending NE-SW and secondly a lower-lying area to the 
northeast (United Nations, 1971). The ridge is barren of vegetation. A report by the 
United Nations (1971) suggests that these two areas are offset by intersection faults and 
at least partially surrounded by diorites and gabbros. Athough the limited exposure only 
shows serpentinised dunite, a drill-hole has revealed an alternation of dunite and 
peridotite bands (Mogessie and Hoinkes, 1998). These bands are believed to be 
“concentric zoning” (United Nations, 1971).

The petrology of the ultramafic samples often reveals completely serpentinised rocks 
(United Nations, 1971; Mogessie and Hoinkes, 1998). However relict olivine grains can 
sometimes be observed with a mesh of chrysotile and antigorite. Fine grained magnetite 
and chromite is sometimes observed (Mogessie and Hoinkes, 1998). The faulted eastern 
contact of the intrusion is rich in hydrous alteration minerals such as talc, talc-serpentine, 
chlorite and chlorite-serpentine (United Nations, 1971). Birbirite can be found on the 
crest of the ridge (see chapter 3 for a definition of birbirite).

The United Nations report (1971) briefly mentions the Ankori Ultramafics near the road 
from Tulu Kapi to Genji. No fresh rocks were observed by the team of the United
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Nations (1971) and most samples were serpentinite or talc-serpentine. The complex is 

reported to host lenses of chlorite and actinolite schists. Mogessie and Hoinkes (1998) 

also report the presence of smaller serpentine bodies in the area.

2.3.5. Yubdo, Andu and Sodu

The maps of the Main Yubdo Intrusion generally show a “pear” shaped intrusion 

(Kazmin and Demessie, 1971). The elongate northeast end of the intrusion forms a NNE- 

SSW trending prominent ridge which is barren of vegetation. The United Nations (1971) 

report that the eastern contact of the intrusion dips gently to the east and that further 

ultramafics to the north are caps of the same intrusion. The western contact is reported to 

be a steeply dipping thrust fault associated with shearing (United Nations, 1971). A 

system of NNE-SSW trending “en-echelon” shear-zones is said to cross-cut the centre of 

the complex. Furthermore, a set of WNW-ENE transcurrent faults are recorded that are 

frequently associated with both shearing and quartz-veins. The ultramafics are found to 

be zoned having dunite at the core, with peridotite then pyroxenite surrounding it (United 

Nations, 1971; Mogessie and Hoinkes, 1998). Some peridotites are found to be 

intercalated with dunite in the eastern and southern parts of the intrusion (Mogessie et al., 

1999). Several cross-cutting diorite dykes are reported (United Nations, 1971). Most of 

the geological features recorded in the literature are also mentioned in a drilling report by 

the Duval Corporation (Howell, 1969). All the drill holes were sunk into the dunite zone 

and they only intersected dunite and peridotite layers. The drill core also intersected 

hairline magnetite veinlets which extend along fault zones and talc-chlorite dykelets.

There are two large studies of the petrology (United Nations, 1971 and Mogessie and 

Hoinkes, 1998) and these are supplemented by the work of Belete et al. (2000) and 

Mogessie et al. (1999). All studies report that the central dunites are serpentinised to a 

large degree and a relict cumulate texture can be observed (Mogessie and Hoinkes, 1998; 

Mogessie et al., 1999). The olivines have a forsterite content of 81-84% (Mogessie et al.,

1999) and are typically rimmed by talc, carbonate and opaque minerals. Pyroxene is 

mainly diopside and is associated with chlorite. The United Nations report (1971)
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commented that pyroxenes tend to be coarser than olivine minerals and are often found 

with tremolite and chlorite. Euhedral and subhedral chromites with altered rims can be 

observed in all the ultramafic host rocks. The United Nations (1971) report the 

occurrence of pyrite and arsenopyrite in the shear-zone on the northeastern contact of the 

intrusion.

Platinum-group minerals (PGM) have been found in both the rocks and placers around 

Yubdo. The two largest petrological studies report sperrylite (PtAs2 ) in both dunite and 

pyroxenite (United Nations, 1971; Mogessie and Hoinkes, 1998). Furthermore, 

Augustithis (1965) discovered sperrylite in birbirite samples. The more systematic 

accounts of primary PGM in the area are of Pt-Fe nuggets in both chromite and 

serpentinite (Belete et al., 1999; Belete et al., 2002). These were discovered in the 

boreholes sunk by the Duval Corporation (Howell, 1969). The Pt-Fe alloys in the 

chromite appear to be rounded in shape and contain minor Ir (Mogessie et al., 1999). The 

Pt-Fe alloys (with minor Rh and Cu) found in the serpentinites are reported to be elongate 

and between 20pm and 30pm (Mogessie et al., 1999).

The placer Pt-Fe nuggets from Yubdo historically generated controversy over the 

formation of Pt-nuggets (Bowles, (1986); Hattori and Cabri, 1992). All nuggets reported 

from Yubdo are Pt-Fe (isoferroplatinum and tetraferroplatinum) in composition and 

Belete et al. (2000) analysed a wide variety of inclusions from these nuggets. The most 

abundant inclusions found were hollingworthite (RhAsS), genkinite ((Pt,Pd)4Pb3), 

irarsite (IrAsS), platarsite (PtAsS) and native Os.

2.4. Alaskan-type intrusions versus ophiolites

2.4.1. Introduction

Alaskan-type complexes and ophiolites represent different tectonic settings and have 

differing implications for mineralisation. Ophiolites are fragments of ancient oceanic 

lithosphere now emplaced on land at fossil subduction zones (eg Gass, 1990). The setting 

of Alaskan-type complexes is less well defined. There have been many attempts to
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explain the characteristics of Alaskan-type intrusions (see Johan, 2002). The generally 

accepted model is that they originate as the feeder pipes of volcanoes in continental 

subduction zones (Murray, 1972).

Both comprise mafic and ultramafic sequences and considering the two genetic models, it 

may at first glance be hard to understand why the two may be confused. However the 

various modifications and complications of the models result in some overlap in 

structure, petrology, mineralogy and geochemistry. The ophiolite descriptions given here 

focus on the Troodos massif of Cyprus and the Semail nappe in eastern Arabia, as these 

provide the best exposed and studied complexes.

2.4.2. Scale of Alaskan-type intrusions and ophiolites

Complete ophiolite complexes typically consist of a basaltic unit predominantly 

composed of up to 0.5 to 1 km thickness of pillow lavas and sheeted dykes. This in turn 

is underlain by plutonic gabbro and ultramafic crustal units which in the Oman ophiolite 

make up a total of 3.6 km in thickness (Nicolas et al., 1996) and lie on top of mantle 

lherzolite or harzburgite which may also be several km thick. These sequences extend 

along strike for 450km (Lippard et al., 1986). Ophiolites are often truncated at the base 

by a thrust, below which is a metamorphic aureole that continues into lower grades of 

metamorphism away from the contact with the ophiolite (Gass, 1990).

In contrast, Alaskan-type intrusions are concentrically zoned with dunite in the centre 

grading outwards to clinopyroxenite and homblendite, they are often associated with an 

outer gabbro zone. In many cases, one or more of these zones may be missing from the 

complex. The two largest Alaskan-type intrusions include Nizini Tagil (70km2) and 

Tulameen (80km2), but most range between 12km2 and 40km2 (Johan, 2002).

Both ophiolites and Alaskan-type intrusions are commonly highly fragmented. The 

Troodos and Oman complexes display the full lithological sequence and both are exposed 

over several hundreds of square kilometers. However, most ophiolites are much smaller,
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are frequently highly deformed and occur in fault bounded blocks. The primary igneous 

textures of ophiolites are offset and juxtaposed against country rocks by thrust faulting 

related to their emplacement onto continental crust. Similarly, Alaskan-type complexes 

such as the Hickman and Polaris, British Columbia (Nixon et al., 1997) are highly 

disrupted by faulting and other types of deformation. There are further complications in 

that the proportions and sizes of primary igneous lithologies in Alaskan-type complexes 

may vary. The complete zonal structure of Alaskan-type intrusions is only seen in a few 

localities such as the Konder and Inagli intrusions of the Aldan shield, Eastern Siberia 

(Malitch, 1991) and Alto Condoto complex in NW Columbia (Tistl et al., 1994; Tistl,

1994). Konder and Inagli show central dunite cores comprising 60% of the total volume 

whereas in the Alto Condoto complex the dunite occupies around 20% of the intrusion. 

As with ophiolites, Alaskan-type complexes may either have one or more zones missing 

and/or the zonal structure could be disrupted by deformation. In some cases the central 

dunite core is missing, such as in the Duke Island western body (Taylor, 1967), Gnat 

Lakes and Menard Creek (Nixon, 1997). In others, there is no clinopyroxenite zone as in 

Duke Island East, Annette Island and Blashke Island (Taylor, 1967).

2.4.3. Structure of Alaskan-type intrusions and ophiolites

The large components of ophiolites (described above) cover much larger areas than those 

of Alaskan-type complexes. However, smaller features of fragmented ophiolites may 

resemble Alaskan-type intrusions (see figure 2.3). Lippard et al. (1986) and Robertson 

and Xenophontos (1993) describe how the ultramafic rocks of ophiolites within smaller 

features occur as three distinct lithological associations:

• The Mantle sequence: a residual suite of massive lherzolite or harzburgite 

frequently containing dunite pods.

• The Crustal layered sequence: a rhythmically layered series of dunite, 

wherlite and pyroxenite.

• The Late intrusive complexes: usually composed of wehrlite, peridotite or 

gabbro; these plutonic bodies intrude the crustal sequence.
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Dunite Olivine-clinopyroxenite Gabbro

The Geology o f the Josephine 
ophiolite, NW  California — 
(Harper, 1984)

4 km

The Geology o f the Tulameen 
Alaskan-type complex, S British 
Columbia (Findlay, 1969)

Dunite Olivine-clinopyroxenite Gabbro

Figure 2.3: Schematic diagrams of the mafic and ultramafic units of the Josephiene Ophiolite and 
Tulameen Alaskan-type intrusion showing similar zoned outcrop patterns (modified from Findlay,

1969 and Harper, 1984).

Dunite bodies are common in the uppermost parts of the mantle sequence (Roberts and 
Neary, 1993; Gass, 1990). These bodies have relatively sharp interfmgering contact 
relationships with the enclosing harzburgite (Gass, 1990). They are irregular with 

anastomosing offshoots. The more tectonised bodies, closer to the paleo Moho, are more 
elongate (Lippard et al., 1986). In the Oman ophiolite, dunites are generally under 100m 
in length but extremely tectonised and elongate bodies can be up to 14km in length 
Lippard et al., 1986). The dunites themselves envelop nodular, massive and schlieren
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chromitite deposits, these display a gradational relationship with their host (Roberts and 

Neary, 1993).

A gabbroic complex is an essential component of a complete ophiolite as defined at the 

Penrose Conference in 1972 (Penrose, 1972). In the Semail ophiolite this is represented 

by the layered series consisting of a complex association of 0.5cm to 2m rhythmic layers 

of interbedded gabbro, dunite and wehrlite. Contacts are gradational or sharp and the 

layers are traceable up to 100m. A number of bodies cross-cut the Oman layered series 

including wehrlite, gabbro and pegmatitic gabbros (Lippard et al., 1986). Showing a 

remarkable similarity with the gabbros in Oman, the layered series in the Troodos 

ophiolite consists of gabbros with dunite and wehrlite displaying rhythmic layering 

ranging from 0.5cm to 2m in width (Gass, 1990).

The Late Intrusive Complexes in the Oman ophiolite vary in size from around 1km up to 

5km in diameter, although some peridotite-gabbro complexes cover less than 1km2 

(Lippard et al., 1986). The structures of these intrusions vary considerably, they are 

generally crudely layered and irregular with sharp cross-cutting contacts with the upper 

crustal rocks. One complex is a large plutonic body, but others are regarded as dykes or 

sills. The layers often consist of coarse grained wehrlites with subordinate gabbro 

sometimes grading into lherzolites (Lippard et al., 1986).

In contrast to the layering in ophiolites, Alaskan-type intrusions exhibit a pipe-like 

concentrically zoned structure with a dunite core (Taylor, 1967; Johan, 2002). The 

idealized sequence displays dunite surrounded successively by clinopyroxenite, 

homblendite and monzonite-gabbro rims. The contacts at the rim of the dunite core of 

and Alaskan-type complex are typically gradational and it is common to find olivine- 

bearing clinopyroxenite rafts. However, dunite to clinopyroxenite contacts in ophiolites 

can be either sharp or gradational. The contact between Alaskan-type gabbro zones and 

the associated ultramafics is normally sharp (Johan, 2002; Taylor, 1967), however, the 

gabbros of ophiolites have either sharp or gradational contacts. Massive chromitite lenses 

and pods occur at the rims of some Alaskan-type intrusions (Nizini Tagil, Garuti et al.,
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1997). In ophiolites, chromitites also form in dunite pods in the mantle sequence, 

however, they are more abundant towards the centre of each dunite body (Roberts and 

Neary, 1993).

Both ophiolites and Alaskan-type intrusions are often disrupted and deformed to the point 

at which they are indistinguishable on the basis of structure. Therefore, based on structure 

or proportions of lithotypes alone, it is difficult to distinguish between an Alaskan-type 

intrusion and a dismembered ophiolite.

2.4.4. Petrology and Mineralogy

The mantle sequences of the Semail and Troodos ophiolites consist of variably 

serpentinised peridotites (85%) with associated lherzolites and dunites (5 to 15%) (Gass, 

1990; Lippard et al., 1986). The harzburgites are medium to coarse-grained and are 

composed of 75 to 85% olivine and 15 to 20% orthopyroxene. Within these, 

clinopyroxene forms an average <1% abundance and a maximum of 5% of the mode and 

chrome spinel forms 0.5 to 2%. Chromite is a ubiquitous and accessory phase. The 

dunites typically comprise >98% olivine and <2% chromite and are largely massive 

dunite with chromite segregations (Gass, 1990; Lippard et al., 1986).

The dominant lithology in the Layered Series is gabbro with dunites (including minor 

chromite) and wehrlite as the other main rock types (Gass, 1990). The primary minerals 

of the Semail and Troodos ophiolites are plagioclase, clinopyroxene, olivine, chrome 

spinel, orthopyroxene, hornblende and titanomagnetite (Lippard et al., 1986; Gass, 1990). 

Within each cyclic unit of the Semail Nappe the most common crystallization sequence 

shows that olivine and chromite form the earliest phases, followed by pyroxene and 

plagioclase as intercumulus phases, then titanomagnetite and hornblende as minor phases 

(Lippard et al., 1986). This means that the most common rock sequence is: dunite —*■ 

wehrlite —► olivine-gabbro —> gabbro (Gass, 1990). Other ophiolites can display differing 

orders of crystallization including olivine —► plagioclase —► clinopyoxene (eg the Lizard 

ophiolite).
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The Late Intrusive Complexes of the Semail are divided into two broad groups: gabbro- 

diorite-plagiogranite bodies and peridotite-gabbro complexes (Lippard et al., 1986; 

Browning and Smewing, 1981). The former composed mainly of layered gabbros, 

diorites and subordinate plagiogranite (Lippard et al. 1986). These gabbros are typically 

medium grained with plagioclase and interstitial clinopyroxene grading upwards into 

coarser diorites. The Mashin intrusion is a typical peridotite-gabbro complex in the 

Semail. Lippard et al. (1986) describes this as wehrlite grading upwards into coarse 

grained gabbros and diorites. The wehrlites are typically coarse grained poikilitically 

enclosed by clinopyroxenes and orthopyroxenes. Smaller peridotite-gabbro intrusions 

sometimes grade from wehrlite into lherzolite (Lippard et al., 1986).

Alaskan-type intrusions are composed of dunite, olivine-clinopyroxenite, 

clinopyroxenite, homblendite and gabbro zones (Taylor, 1967). This compares with the 

more orthopyroxene-rich lherzolites and harzburgites which dominate ophiolite mantle 

sequences. Alaskan-type intrusions are noted for the absence of orthopyroxene. 

Considered on their own, the petrologies of the ophiolitic crustal sequence are similar to 

the zones of Alaskan-type intrusions. However, in Alaskan-type intrusions the contact 

between clinopyroxenites and gabbros is generally sharp whereas gabbro contacts in 

ophiolites may be either sharp or gradational. Additionally, plagioclase in Alaskan-type 

complexes is only observed in the peripheral homblendite zone whereas it is ubiquitous 

in the typical ophiolite crustal sequence. Accessory chromite in Alaskan-type intrusions 

occurs exclusively and throughout the dunite zones (Johan, 2002). Alaskan-type 

intrusions show the crystalisation sequence olivine —► clinopyroxene —► plagioclase 

(Murray, 1972). The same crystallization sequence is observed in the Semail and Troodos 

ophiolites although some complexes show plagioclase crystalising before clinopyroxene. 

In both Alaskan-type intrusions and ophiolites, olivine generally crystallizes first.
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2.4.5. Rare Earth Elements (REE)

Godard et al. (2000) showed that mantle sequence dunite pods from the Semail Nappe are 
highly depleted in REEs with respect to chondrite. The patterns show a smooth positive 
slope from La to Lu (Figure 2.4).

Light REEs from the Layered Series in the Semail Nappe are slightly enriched compared 
to chondrite (Lippard et al., 1986), however, analysis of the CY-4 drill core from the 
Troodos ophiolite shows considerable depletion in LREE. These wide ranging values 
converge for the heavier elements.

The Late Intrusive Complexes of the Semail Nappe display an enrichment of REE with 
respect to chondrite (figure 2.4). A slightly positive slope is observed with a pronounced 
negative Eu anomaly (Lippard et al., 1986).

Alaskan-type intrusions,
100 Johan

The Oman Ophiolite
Lippard et al. (1986)

Figure 2.4: The typical REE geochemistry of Alaskan-type intrusions compared to Oman ophiolite
(Johan, 2002; Lippard et al., 1986).
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Alaskan-type intrusions are generally enriched in REE with respect to chondrites and the 

Late Intrusives complexes of the Semail Nappe are enriched to the same extent. These 

late Intrusive Complexes show a similar degree of enrichment, however, they have 

positive slopes. In general, the REE patterns from the Alaskan-type intrusions of 

Owendale and the Urals display gentle negative slopes with only slight Eu anomalies 

(Fershtater et al., 1997; Johan, 2002). This also contrasts with the mantle sequence 

dunites which display severe depletion and positive slopes. Commonly, the REE 

abundances in ophiolites show pronounced anomalies such as Ce, Eu and Gd - only broad 

anomalies are observed in Alaskan-type intrusions (figure 2.4).

2.4.6. Platinum-Group Elements

Platinum-group elements (PGE) in ophiolites are depleted in comparison with chondrite, 

they show a generally neutral slope with Os, Ir and Ru enrichment, however, some 

samples are slightly enriched in Rh, Pt and Pd (figure 2.5). Table 2.1 compares Pt and Pd 

values, it is observed that Pt/Pd ratios for dunite pods in ophiolite complexes worldwide 

are generally below 7.

PGE abundances for the Troodos Layered Series show significant depletion with respect 

to chondrite, however, they are slightly enriched in Rh, Pt and Pd. In ophiolites Pd 

typically predominates over Pt and a negative Ru anomaly is rarely observed (Prichard 

and Lord, 1990).
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Alaskan-type 
intrusions,

Johan (2002)

The Troodos 
oph
icnara
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Prichard and Lord (1990)

Os Ir Ru Rh Pt Pd

Figure 2.5: A comparison of the chrondrite normalized PGE abundances for Alaskan Type 
intrusions and the Troodos ophiolite. The Alaskan-type intrusions show strong negative Ru 

anomalies and a high Pt/Pd ratios when compared to ophiolites (After Johan, 2002 and Prichard
and Lord, 1990).

Alaskan-type intrusions frequently display a negative Ru anomaly when displayed on a 
chrondrite normalised PGE diagram (Johan, 2002). The PGE patterns in the Troodos 

ophiolite rarely have negative Ru anomalies (Prichard and Lord, 1990). The elemental 
abundances of the mantle sequences of ophiolites are generally depleted in all the PGE 

whereas in Alaskan-type intrusions Ir and Pt are often enriched with respect to chondrite 
(Johan, 2002).

A significant difference between the dunites of ophiolites and Alaskan-type intrusions is 

in the Pt and Pd ratio. Table 2.1 shows Pt/Pt ratios for dunites from 7 ophiolite bodies and 
6 Alaskan-type intrusions. The Pt/Pd ratios in ophiolites are normally less than Pt/Pd = 2 
although the Pt/Pd ratio of the New Caledonia ophiolite is Pt/Pd = 6.67. The Pt/Pd ratio 

of Alaskan-type intrusions is normally significantly higher with values of Pt/Pd = 21-27 

being recorded. The Pt/Pd ratio of the Nizhni Tagil and Wrede Creek Alaskan-type 
intrusions are, however, lower (Pt/Pd = 2.45 and >1).
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Complex and Location Pt
(PPb)

Pd
(PPb)

Pt/Pd Reference

&
Nizhni Tagil, Urals, Russia 93 38 2.45 Fominykh and Khvostova 

(1970)
£* c  • o Alto Condoto, Colombia 38 2 21.11 Tistl (1994)
s / 3 Lunar Complex, British Columbia (8) 214 8 26.75 Nixon et al., 1997
wj £

.2 c Wrede Complex, British Columbia (8) 7 BD >1 Nixon et al., 1997
< Polaris Complex, British Columbia (18) 1 BD >7 Nixon et al., 1997

Chad, Eastern Siberia 24 BD >24 Malitch (1996)
Troodos Ophiolite, Cyprus (5) BD 1 <1 Becker and Agiorgtis (1978)
Newfoundland Ophiolite(4) 3 5 0.69 Page and Talkington (1984)

(/> Troodos Ophiolite, Cyprus (1) 3 4 0.71 Prichard and Lord (1990)
g Zambales Ophiolite, Philippines (2) 25 32 0.78 Zhou et al. (2000)
o Northern Oman Ophiolite(63) 14 16 0.88 Ahmed and Arai (2002)
O.
o Northern Oman Ophiolite (40) 2 2 1.00 Ahmed and Arai (2002)w Leka Ophioilite, Norway (7) 8 6 1.33 Pedersen et al. (1993)

Semail Ophiolite, Oman (1) 10 6 1.67 Prichard et al. (1996)
New Caledonia Ophiolite, South Pacific (8) 20 3 6.67 Augd and Maurizot (1995)

Table 2.1: Pt/Pd ratios for dunites in Alaskan-type intrusions and dunite pods in ophiolite complexes.
Abundances are averages, numbers o f samples in brackets. BD: Below Detection Limits

2.4.7. Fractionation of Nickel, Copper and Chromium

In the Layered Series in the Semail Nappe, the compatible elements Ni and Cr are most 

abundant in the early formed olivine- and pyroxene-rich lithologies. Their abundances 

decrease in the more mafic lithotypes (Lippard et al. 1986). The same is seen in 

ultramafics of Alaskan-type intrusions. Ni is concentrated and Cu depleted in the early 

dunites in the Urals. These abundances fall and rise respectively in the mafic lithotypes 

(Garuti et al., 1997). Similar patterns are observed in the Tulameen and Condoto 

complexes of British Columbia and Columbia (Findlay 1969; Tistl, 1994).

2.4.8. Summary

Alaskan-type intrusions are pipe-like concentrically zoned ultramafic-mafic intrusions 

(Taylor, 1967; Johan, 2002), in some cases this may be sufficient to distinguish them 

from the layering of ophiolites. However, due to the dynamic setting into which Alaskan- 

type complexes are intruded and ophiolites are obducted, both may be deformed so that 

the layering or zoning cannot always be observed.
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In such geological situations, the following criteria are suggested to distinguish the type 

of mafic-ultramafic complex:

• In ophiolite sequences, gabbros can display both gradational and sharp 

contacts with ultramafic rocks, whereas, in Alaskan-type complexes such 

contacts are typically sharp.

• The mantle sequences of ophiolites are dominated by orthopyroxene-rich 

lithotypes. Conversely, Alaskan-type intrusions are noted for the absence 

of orthopyroxene.

• The ratio Pt/Pd for ophiolitic dunites is typically <7 whereas Alaskan-type 

dunites are generally >2 (Table 2.1)

• Alaskan-type intrusions frequently display negative Ru anomalies on 

chrondrite normalized PGE diagrams (see figure 2.5), whereas ophiolites 

rearely show negative Ru anomalies.

• Ophiolitic mafic and ultramafic rocks show neutral to positive gradients 

on REE abundance diagrams, whereas, similar mafic-ultramafics in 

Alaskan-type intrusions display negative gradients (figure 2.4)

• Ophiolite REE patterns can include pronounced positive or negative Ce, 

Eu and Gd anomalies. Whereas, all lithologies in Alaskan-type intrusions 

only display a slight rise in Sm, Eu and Gd abundances (figure 2.4).
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3. Petrology and Mineralogy
3.1. Introduction

Samples of ultramafic rocks from the each of the four geographic areas of study within 

the WES were cut and mounted as either thin sections or polished blocks. These samples 

were then observed using transmitted light microscopy and scanning electron 

microscopy. The sulphide minerals were analysed using an energy dispersive X-ray 

analyzer attached to a Scanning Electron Microscope (SEM).

This chapter is divided into four sections. The first section describes the study of thin 

sections to define the rock-types and to document the degree of alteration present in the 

WES. The second section describes the texture of oxide minerals in order to support a 

study of their geochemistry. Another section describes typical sulphide minerals and 

lastly three PGM are described.

3.2. Methods

3.2.1. Scanning Electron Microscopy

Polished blocks were analysed using a Carl Zeiss SMT (Cambridge) S360 scanning 

electron microscope (SEM). The search for PGM and photographs of spinels and 

sulphides were performed using a 4-quadrant back-scattered electron detector. 

Photographs of PGM were taken using a Veeco FEI (Philips) XL30 environmental SEM.

3.2.2. Energy Dispersive X-Ray analyzer

Both quantitative and qualitative analyses were obtained using an Oxford Instruments 

INCA ENERGY (EDX) X-ray analyzer. Quantitative analyses were undertaken using an 

accelerating voltage of 20kV, a probe current of InA and a working distance of 25mm. 

During petrological studies, mineral identification was confirmed by qualitative analyses 

the SEM.
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3.3. Petrology

3.3.1. Introduction

The petrology of the rocks from the WES was investigated using both transmitted light 

microscopy and electron microscopy. This section describes the typical petrology of the 

ultramafic rocks and is illustrated by photographs of thin sections taken under transmitted 

light. The degree of alteration is described and subsequently a definition and description 

of rock-types is described.

The petrology of each of the ultramafic complexes covered in this thesis has been 

documented by other workers (see chapter 2). Furthermore, many studies comment on the 

significant degree of alteration to which each complex has been subjected (eg Mogessie 

and Hoinkes, 1998). This section aims to describe the variation in alteration through the 

two key rock types: dunite and clinopyroxenite. Additionally, some rocks may be 

classified as olivine-clinopyroxenite, as this is composed of two minerals it is not 

described here because it is easier to describe the alteration of olivine and clinopyroxene 

separately. In order to demonstrate the degrees of alteration present, this study focuses 

only on the two mono-mineralic lithotypes. For both rock types, a number of thin sections 

are described from the least to most altered. In addition to this, a description of the little 

known lithotype known as birbirite is included. Birbirite is an alteration product and is 

widely distributed in the soils of the area. It is named after the Birbir river which flows 

around the Main Yubdo Intrusion.
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3.3.2. Dunite

The following images illustrate the range of serpent in isat ion within the ultramafic rocks 
of the WES. The Mg values are quoted for reference with the geochemical assessment of 
alteration as described in chapter 8.

Figure 3.1: A photograph of a dunite sample 
under crossed polars. The lower edge of the 
image is 120pm in length.

This sample is composed of approximately 
50% serpentine. The high birefringence marks 
relict olivine minerals. The olivine crystal in 
the centre of the image has been pulled-apart 
and partially replaced by serpentine. Fine 
anhedral Fe-rich spinels decorate the original 
edge of the olivine mineral.

This sample has 25.8% Mg

Figure 3.2: A photograph of a dunite sample 
under crossed polars. The lower edge of the 
image is 120pm in length.

This sample is composed of approximately 
60% serpentine with a typical mesh texture. 
Some relict olivine minerals show high 
birefringence colours and slightly wavy 
extinction but are otherwise they are 
undeformed. The arrangement of the relict 
crystal edges indicates that the protolith had 
an adcumulate texture.

This sample has 22.0% Mg
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Figure 3.3: A photograph of a dunite sample 
under crossed polars. The lower edge of the 
image is 120pm in length.

This sample is composed of approximately 
85% serpentine. Unaltered olivine grains have 
a high birefringence and they are surrounded a 
serpentine mesh.

This sample has 20.4 % Mg

Figure 3.4: A photograph of a dunite sample 
under crossed polars. The lower edge of the 
image is 120pm in length.

This sample is composed of approximately 
90% serpentine. Grains with a high 
birefringence indicates the presence of a few 
remaining fresh olivine minerals. This sample 
shows intense alteration along cracks and 
patchy alteration in places (not shown). Some 
minor pyroxene (<5%) is observed.

This sample has 16.4% Mg

Figure 3.5: A photograph of a dunite sample 
under crossed polars. The lower edge of the 
image is 120pm in length.

This sample is completely serpentinised (not 
including the oxide minerals). This sample 
shows a relict olivine texture within the 
serpentine mesh which is decorated with fine 
anhedral spinels. Additionally, the sample 
contains subhedral spinels such as the one 
shown in the centre of the image.

This sample has 7.0% Mg
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3.3.3. Clinopyroxenite

Figure 3.6: A photograph of a clinopyroxenite 
sample from Kingy area under crossed polars. 
The lower edge of the image is 120pm in 
length.

This sample is 100% replaced by fibrous 
amphibole. The clinopyroxene has a poikilitic 
texture enclosing minor olivine and can form 
up to lcm in length.

Figure 3.7: A photograph of a clinopyroxenite 
sample from the Kingy area under crossed 
polars. The lower edge of the image is 120pm 
in length.

This sample is 100% by fibrous amphibole 
minerals. The field of view is occupied by one 
large clinopyroxene and it is recognised by 
closely spaced which would be expected for 
orthopyroxene. The clinopyroxene minerals 
frequently occur in sizes over 1.5cm.

3.3.4. Birbirite
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Figure 3.8: A photograph o f a birbirite sample from the Tulu Dimtu Main Intrusion area. The lower edge of 
the image is 120pm in length. Left: Plane polarized light. Right: Crossed polars

This sample contains a fine silica network with highly altered spinels (hematite) 

sometimes disseminated and sometimes in veins (see figure 3.8).

3.3.5. Summary

The dunites show a gradual change in texture with serpentinisation (from 50% to 100%).

The least altered samples (50%) show serpentine forming around fresh olivine grains and 

the edges of the original minerals are decorated with fine anhedral spinels. With further 

alteration serpentine becomes more abundant and the mesh texture more extensive. 

Although the most altered samples have no fresh olivine, a relict olivine texture remains 

visible within the serpentine mesh and fine spinels are visible. Regardless of the degree 

of alteration, euhedral to subhedral spinels can be observed in most samples in addition to 

the fine grained anhedral spinels found at the edges of the olivine grains. Furthermore 

throughout all samples, olivines show pull-apart textures and some show slightly wavy 

extinction.

No fresh clinopyroxene has been observed in this study of the WES. Some minor olivine 

(<10%) is observed. The clinopyroxene is recognized by a closely spaced relict cleavage 

which does not occur in the olivines or spinels. In one sample the clinopyroxene shows a 

poikilitic texture around olivine. The clinopyroxene has been replaced by fibrous 

amphibole and cleavage can continue as far as 1.5cm, indicating that the original crystals 

were large. Furthermore, no relict or fresh orthopyroxene has been identified.

3.3.6. Classification of Rock Types

This study uses the recommendations made by the IUGS subcommission on the 

Sytematics of Igneous Rocks (Streckeisen, 1976). The rock types used here are defined as 

follows:

34



Chapter 3: Mineralogy and Petrology

• Dunite: greater than 90% olivine and less than 10% pyroxene

• Clinopyroxenite: greater than 90% clinopyroxene and less than 10% olivine.

• Olivine-olinopyroxenite: Greater than 60% clinopyroxene and less than 40% 

olivine.

Given the high degree of alteration observed in the WES (a minimum of 50%) minerals 

are often completely replaced. However, even in the most altered dunites (figure 3.5) and 

clinopyroxenites (figures 3.6 and 3.7) relict features of the key minerals can be observed. 

Therefore, in this study the identification of the primary magmatic minerals is made 

either using observations of fresh minerals (eg high birefringence for olivines) or by the 

identification of relict features. The following relict features have been used to identify 

olivine and clinopyroxene:

• Olivine: A relict olivine texture preserved within a serpentine mesh with or 

without fine anhedral spinels decorating the relict mineral edge.

• Clinopyroxene: A closely spaced cleavage which does not occur in spinels or 

olivines.

An ultramafic rock as classified here may not actually contain any of the igneous 

minerals specified by Streckeisen (1976). For example the term dunite as used in this 

thesis may refer to a rock entirely composed of serpentine, so long as pseudomorphed 

olivines can be recognized using a mesh texture. A further account of the degrees of 

alteration within each area is undertaken in chapter 6 which attempts to quantify the 

alteration using geochemical data.

In a situation where no relict features are observed the sample is classified as 

“unidentified”.
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3.4. Oxide Minerals

3.4.1. Introduction

Spinels often resist alteration and, therefore, a study of their morphology and 
geochemistry can help us understand the magmatic processes. The crustal cumulates and 
mantle tectonites of ophiolite complexes can host chromitite layers. Further down the 
crustal sequences of ophiolites, podiform chromitite bodies can form (eg Lippard et al., 
1986). Disseminated spinels are common in many parts of ophiolite mantle sequences. 
Similarly, in Alaskan-type intrusions disseminated spinels are common but they can also 

form into schlieren and in some complexes podiform ore-bodies have been observed 
(Johan, 2002). In the WES, the only descriptions concerning spinels are those of Belete et 

al. (2000) who describe both magmatic and metamorphic forms.

In this section, photomicrographs of spinels and their host minerals were taken using the 
Cardiff S360 SEM (see section 3.2.1). This section presents an account of the typical 
textures of spinels from the WES in order to accompany a study of the geochemistry of 
the spinels described in chapter 7.

3.4.2. Tulu Dimtu

Figure 3.9: SEM photomicrographs of a disseminated spinel (white colour, high mean atomic 
number) in a clinopyroxenite sample (DTR-019-02). The spinel shows a pull apart tecture and is 

hosted by a gangue of fibrous amphibole. Left: back-scattered electron image, Right: secondary
electron image.
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Figure 3.10: SEM photomicrographs of disseminated spinels (white colour, high mean atomic 
number) hosted by olivine in sample DTR-057-02. Some spinels are subhedral and zoned. Left: 

back-scattered electron image, Right: secondary electron image.

3.4.4. Daleti, Ankori, Tulu Kapi and Keley

Figure 3.11: SEM photomicrographs of disseminated spinels (white colour, high mean atomic number) 
hosted by partially serpentinised olvines from sample D19. Many spinels show pull-apart textures. Left: 

back-scattered electron image, Right: secondary electron image.
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3.4.5. Yubdo, Andu and Sodu
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Figure 3.12: SEM photomicrographs of anhedral spinels (white colour, high mean atomic number) from 
sample Y28. The spinels occur in serpentine filled cracks between fresh clinopyroxenes minerals (large 

grey coloured minerals. Left: back-scattered electron image, Right: secondary electron image.

Figure 3.13: SEM photomicrographs of disseminated spinels (white colour, high mean atomic number) 
partially serpentinised olivines from sample Y30. Left: back-scattered electron image, Right:

secondary electron image.

3.4.6. Summary

In all areas, two distinct groups o f spinels are found, fine anhedral minerals and coarser 

subhedral to euhedral ones. In some samples anhedral spinels up to 100pm across occur 

(see figures 3.1 and 3.12). These form at the edges of silicate phases in association with 

serpentine. In contrast, it is common to find more regular disseminated spinels which are 

hosted by olivine, serpentine or fibrous amphibole. These minerals commonly show pull- 

apart textures and are often well over 500pm in length.
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3.4.7. Discussion

The observation that there are two types of spinel textures is common in ultramafic rocks 

(Sack and Giorso, 1995). The serpentinisation of olivine minerals releases Fe from the 

crystal lattice to form Fe-oxides. The irregular shapes, formation at the edges of olivines 

and association with serpentine support this hypothesis. Furthermore, preliminary 

analysis of the geochemistry of these minerals show a high Fe content.

The euhdral to subhedral form of the second spinel group and their association with host 

minerals which include fresh olivine suggests that they formed before alteration. These 

may be cumulus spinels and therefore their geochemistry may reflect magmatic processes 

(see chapter 7).

3.5. Sulphide Minerals

3.5.1. Introduction

PGE are known to form a close association with sulphide minerals and many models 

have been developed whereby the behaviour of sulphur is used to help explain the 

development of PGE deposits. In magmas where sulphur is present, geochemical models 

suggest that PGE are likely to be taken into solution within sulphide melts (Naldrett and 

Duke, 1980). Furthermore, Pt and Pd are most likely to partiton into Cu-rich sulphides 

(Barnes et al., 1997). Such geochemical models are complimented by mineralogical 

studies. Prichard et al. (2004) have observed the expression of such geochemical models 

in sulphide blebs from a mafic dyke in Uruguay. After the crystallization of the magma, it 

is believed that the same hydrothermal fluids which remobilize sulphur also remobilize 

PGE (Wood, 2002)

This section provides a description of sulphide minerals from the WES and the 

subsequent discussion may provide a further insight into the processes which influence 

the PGE distribution.
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3.5.2. Tulu Dimtu

Figure 3.14: SEM photomicrographs of an altered bomite (white colour, high mean atomic number in the 
centre of image) in the altered rim of a Cr-spinel (grey colour), hosted by serpentine (black). This image 
has been taken from sample TDR19/01 which is located on the southern flank of the Tulu Dimtu Main 

Intrusion. Left: back-scattered electron image, Right: secondary electron image.

Cu S Fe 0 Total
59.41 24.47 12.24 2.64 98.76

This analysis can be quoted as Cu4 .88F e u 4 S3.98 -  ignoring oxygen - which is close 

to bomite (CusFeS4). The oxygen indicates that the mineral has been altered. As bomite 

is an alteration product o f chalcopyrite, this mineral infers that at least two phases of 

alteration have occurred.
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Figure 3.15: SEM photomicrographs of an anhedral glaucodot split into three parts (white colour, high 
mean atomic number) hosted by serpentine. The sulphide mineral on the left hosts a Ni- As-bearing 

magnetite inclusion. This image has been taken from sample DTR-019-02 from the Tulu Dimtu Lensoid 
Ultramafics. Left: back-scattered electron image, Right: secondary electron image.

As S Co Ni Fe O Total
44.88 17.77 15.77 13.74 4.44 3.7 100.3

If the oxygen is ignored then this analysis may be quoted as (Co,Ni,Fe)i.oiAsi.o4 So.96 

which is close to glaucodot and is represented by the formula (Co,Fe)AsS. This assumes 

that the Ni has substituted for Co. The oxygen could indicate that the mineral has been 

altered.

3.5.3. Kingy

Figure 3.16: SEM photomicrographs of an anhedral chalcopyrite mineral (white colour, high mean atomic 
number) hosted by quartz in an extremely altered olivine-clinopyroxenite sample. This image has been 

taken from sample KTR-049-02 from the Kingy Ridge Ultramafic. Left: back-scattered electron image,
Right: secondary electron image.
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s Cu Fe Total
34.3 32.69 29.9 96.89

This mineral can be quoted as C u 0 . 9 7 F e 1 . 0 1 S 2 . 0 2  which is close to chalcopyrite (CuFeS2).

3.5.4. Daleti, Ankori, Tulu Kapi and Keley

500pm

Figure 3.17: SEM photomicrographs of several anhedral barite crystals (white specs, high mean atomic 
number) on the edge of larger partially serpentinised olivine minerals. There are many anhedral Fe-rich 

spinels. This image has been taken from sample DR22/01 from the Daleti Ultramafic. Left: back- 
scattered electron image, Right: secondary electron image.

Ba S Fe Si Al Mg O Total
55.16 12.19 0.66 0.29 0.25 0.18 24.21 92.94

This analysis can be quoted as Ba1 0 3 S0 .98O3.89 which is close to barite (BaS0 4 )
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3.5.5. Yubdo, Andu and Sodu

Figure 3.18: SEM photomicrographs of a Ni-sulphide mineral (white spec, high mean atomic number) in 
the altered rim of a zoned spinel hosted by serpentine (black). In addition to the subhedral spinels (centre 
of image) there are many fine anhedral Fe-rich spinels which sometimes form schlieren. This image has 
been taken from sample AYR-016-01 from the northwestern flank of the Main Yubdo Intrusion. Left: 

back-scattered electron image, Right: secondary electron image.

s Ni Fe Co Total
33.19 25.96 22.8 18.93 100.88

This analysis could be quoted as Fei.3o(Ni,€ 0 )2 .4 2 8 3 .2 8- The most similar mineral found is 

violarite (FeNi2 S4), unfortunately the fit for this mineral is poor and attempts to fit the 

analysis to the following minerals less successful: bravoite, (Fe,Ni,Co)S2 ; pentlandite, 

(Fe,Ni)9S6 ; siegenite, (Co,Ni)3S4.

3.5.6. Summary

Most sulphides are hosted by serpentine but some by quartz or altered spinel. Those 

sulphides sufficiently large to be resolved by the SEM, they appear to be anhedral in 

shape.

It is observed that Ni-barren, Cu-sulphides occur in both the southern flank of the Tulu 

Dimtu Main Intrusion and the Kingy Ridge Ultramafic. However, in the Tulu Dimtu 

Lensoid Ultramafics, several Ni-sulpharsenides have been discovered. In the Main Yubdo 

Intrusion only Cu barren, Ni-sulphide minerals are observed.
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3.5.7. Discussion

Most sulphides described here are hosted by minerals such as serpentine and quartz 

which are often associated with the action of medium and low temperature fluids. A 

highly irregular shape is observed for the base-metal sulphides in most cases and this is 

unlike the euhedral or rounded shapes expected if these minerals crystallised from a 

magma. Furthermore, the presence of magnetite inclusions within the sulphides from the 

Tulu Dimtu Lensoid Ultramafics suggests that they formed after the magma cooled and 

possibly after at least one phase of alteration.

Given the affinity of these sulphides with high temperature fluids (as discussed above), 

the division between the Cu-bearing sulphides (Tulu Dimtu Main Intrusion and Kingy 

Ridge Ultramafic) and the Ni bearing-sulphides (Tulu Dimtu Lensoid Ultramafics and the 

Main Yubdo Intrusion) could have two interpretations. Firstly, the Cu and Ni could have 

formed in the same magmatic site and then been remobilized different degrees by 

alteration -  maybe one Ni-rich phase and another Cu-rich. Alternatively, the Ni and Cu 

could have been driven apart at a magmatic stage (as proposed by Barnes et al., 1997 and 

Prichard et al., 2004).

Two sulphide minerals are observed in the altered rims of spinels, one Cu-rich and the 

other Ni-rich (figures 3.9 and 3.19 respectively). Although their presence in the alteration 

rim of a spinel suggests that alteration fluids have affected their host, there is no direct 

evidence for large amounts of fluid transport through the spinel itself. Furthermore, as 

spinels resist alteration to a greater degree than silicate phases, it is possible that little 

transport of fluid has been made into the mineral. Even if the sulphide phases have 

recrystallised in situ, these two minerals may infer the possibility that Ni and Cu formed 

at different sites during magmatic processes.

The low number of sulphide minerals studied here means that this study does not provide 

a comprehensive account of the behaviour of S, Cu and Ni in the WES. However it is one 

of the first accounts of sulphide minerals in these igneous complexes in the WES.
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3.6. Platinum Group Minerals

3.6.1. Introduction

A search for PGM was performed in the 10 rock samples with the highest Pt and Pd 

values which included two samples from the Tulu Dimtu Main Intrusion (see chapter 6). 

Three PGM were discovered in rock samples from the Main Yubdo Intrusion and none 

from the Tulu Dimtu Main Intrusion. In the following section the geochemistry and 

association o f each PGM is described.

3.6.2. Sample AYR-016-01

Figure 3.19: An SEM back-scattered electron image photomicrographs of a subhedral 
Pt-Fe alloy (white colour, high mean atomic number) in a Cr-spinel hosted by 

serpentine. This image has been taken from sample AYR-016-01 from the northwestern 
edge of the Main Yubdo Intrusion.

Pt Fe Cr 0 Total
92.29 11.86 1.12 2.27 107.55
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It is possible that all Cr and Fe in this analysis originated from chromite and hematite as a 

result of fluorescence. If chromite and hematite are removed (resulting in a total of 

99.87), then the analysis can be quoted as Pt3.10Fe0.89 which is close to Pt3Fe. Although 

both Cr and Fe are common in the host rock, the poor total raises suspicion about the 

quality o f original analysis.

3.6.3. Sample KYR-019-02

Figure 3.20: An SEM back-scattered electron image photomicrographs of an 
anhedral Os-Ir alloy (white colour, high mean atomic number) hosted by 

serpentine. This image has been taken from sample KYR-019-01 located the 
northwestern flank of the Main Yubdo Intrusion.

Qualitative analysis shows that this mineral contains major Os and Ir, lesser amounts of 

Ru, Fe and 0 , and traces o f Si and Mg.
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3.6.4. Sample Y30

Figure 3.21: An SEM back-scattered electron image photomicrographs of a subhedral Ir- 
Os alloy (white colour, high mean atomic number) within a Cr-spinel hosted by partially 

serpentinised olivine. This image has been taken from sample AYR-016-01 located on the 
far western flank of Main Yubdo Intrusion.

Ir Os Zr Ru Fe Rh Cr S 0 Total
79.11 9.25 6.33 2.76 2.18 2.55 1.71 0.45 1.14 105.48
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It is possible that all Cr and Fe in this analysis originated from chromite and hematite as a 

result of fluorescence. If chromite and hematite are removed (resulting in a total of 

101.50), then the analysis can be quoted as Ir0 .6 7 Os0 .0 8Ru0 .0 4Rh0 .0 4Zr0 .11Fe0 .0 3 S0 .0 2 . 
Although both Cr and Fe are common in the host rock, the poor total raises suspicion 

about the quality of original analysis.

3.6.5. Discussion

The only other account of PGM in the rocks from the Yubdo area is a description of Pt- 

Fe alloys (Mogessie et al., 1999). These contain minor Ir and are hosted by either 

chromite or serpentine. The Zr found in the Ir-Os alloy from sample Y30 is unusual for a 

platinum group mineral. The Pt-Fe alloy described here (sample AYR-016-01) has a 

similar chemistry and shape to those found by Mogessie et al. (1999) however it is 

considerably smaller. The Pt-Fe alloys which are hosted by serpentine are typically 20- 

30pm in diameter.

There are many studies of placer PGM from the rivers and laterites around Yubdo (as 

reviewed in chaper 2). Most of the placer PGM described are Pt-Fe nuggets and a recent 

study documents 3 grains which contain Os-Ir inclusions (Belete et al., 2000). It is 

possible that the Os and Ir bearing PGM described here could be magmatic or 

postmagmatic minerals around which further PGE-bearing phases will nucleate. This 

preliminary study is one of the few accounts of PGM in the WES and may prompt further 

work to understand the genesis of placer Pt-Fe alloys.
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4. Terrain Mapping
4.1. Introduction

This chapter details the use o f terrain mapping from aerial photographs to identify the 

characteristic terrain for the larger ultramafic complexes in the WES (Yubdo and Tulu 

Dimtu) and to map these features elsewhere in the WES. In this area terrain mapping is 

more appropriate than normal geological mapping as there is little exposure (<5% in 

some areas), the rocks are very weathered and access is often difficult. Preliminary 

studies around the Yubdo and Daleti areas have indicated that the ultramafic complexes 

form high ridges on which vegetation is sparse and no cultivation is being undertaken. By 

contrast, the surrounding terrain is densely vegetated and subsistence farming is common.

Figure 4.1: A photograph of a barren ridge above the Daleti Ultramafic. The ridge is almost devoid 
of vegetation when compared to the foreground. Furthermore, the houses to the right indicate the

presence of fertile subsistence farmland.

The lack o f vegetation and agriculture may result from high Ni or low Ca values in the 

soil, which is characteristic of lateritic soils above ultramafic rocks. As detailed in 

chapter 2, the ultramafics o f the WES are commonly surrounded by volcano-sedimentary 

sequences. These units are less resistant to weathering and therefore the harder ultramafic 

complexes are likely to stand out from the softer sedimentary sequences and therefore 

form ridges. Hence it is thought likely that the “barren-ridge” terrain will be characteristic 

of the ultramafic complexes.
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A set of aerial photographs were procured from the Ministry of Mines (Addis Ababa). In 

section 4.2, the method of acquisition of these images and their compilation into map 

form is described. Subsequently, a description of the use of terrain elements to describe 

the terrain in the WES is provided (see section 4.3). The results are recorded as a set of 

maps containing photomorphic regions covering four geographic areas (as described in 

chapter 5), the boundaries of which were confirmed by field observations (see section 

4.4).

4.2. Aerial Photography

4.2.1. Introduction

When aerial photographs are used for mapping, the user must consider the method by 

which the photograph was acquired, as the equipment used will create distortions of the 

scene being recorded. Before maps are created, these distortions must be corrected. This 

section describes the acquisition and processing of the aerial photographs from the WES. 

Finally an account of the specifications of the aerial photographs is provided.

4.2.2. The Aerial Photographs of the WES

The aerial photographs (from the Ministry of Mines, Addis Ababa) used in this study can 

be divided into two groups: those acquired during 1957/58 and those taken in 1980. The 

images taken in 1957/58 covered the Yubdo and Daleti areas however the 1980 set 

covered Tulu Dimtu and Daleti.
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1957/58 1980
Camera Type Single Lens Frame Single Lens Frame
Camera Focal Length 53.046mm 53.66
Film Format 230mm 233mm

Dates o f acquisition
19-Dec-1957
20-Dec-1957 
l-Jan-1958

15-Jan-1980 
18-Jan-1980 
22-Jan-1980 
24-Jan-1980 
31-Jan-1980

Time o f acquisition Between 9:45AM and 11:49AM *
Lens Serial Number XF6751 UAGII 3119
Orientation o f Flight North - South East - West
Average Scale 1:55715 1:53063
Mean distance between Aerial photographs (m) 5,233 4,667
Average distance to Terrain (m) 9,370 *
Apparent Stereoscopic Viewing Distance (cm) 24 *
Stereoscopic Vertical Exaggeration 1.97 *
Digital resolution 10m 10m

Table 4.1: The details o f  the aerial photographs. *: Data obscured during development.

To demonstrate the degree of distortion present in the images, figures for the relief 

displacement of two prominent features have been calculated. This is done using an 

equation based on the distance from the feature to the centre of the image image and the 

altitude (see table 4.2). Sodu ridge is the highest point in the image and is close to the 

edge and therefore is likely to have the largest relief displacement. However, this figure is 

only 3mm which equates to around 150m on the ground. These figures show that relief 

displacements are negligible for these images.

Feature Distance from photograph centre Altitude of Relief Displacement
to top o f  feature (m) feature (m) (m)

Yubdo Village 0.02 1670 0.00059
Sodu Ridge 0.102 1668 0.00300

Table 4.2: Relief Displacements of Yubdo Village and Sodu Ridge.
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Figure 4.2: A typical aerial photograph with the data block enlarged.

4.2.3. The Acquisition of Aerial Photographs

This section covers the physics o f the acquisition of aerial photography. Typical cameras 

used in aerial photography are described, followed by an account of the properties of 

photographic film. The characteristics of photographic films and cameras cause several 

distortions and displacements which are described at the end of this section.

There are several types o f camera used on aircraft; panoramic, multilens, strip (for a 

review see Wolf, 1983). However in this study, airphotos were aquired using a single lens 

frame mapping camera. Single lens frame cameras are the simplest type of aerial camera. 

The setup of the camera is based around the focal length, which is selected according to 

the intended application for the resulting images. The focal length of a camera is of

V 8NR8 M 53 
I E G 1 9 D E C  5 7  1

7808

Clock
Focal Length 
Counter 
Lens Serial

Yubdo

Altimeter
it

52



Chapter 4: Terrain Mapping

importance as it determines the angular field of view of the photographs. As the camera is 

always set up with the image distance as the focal length of the lens, the shorter the focal 

length the wider the field of view (Wolf, 1983; Paine, 1981). Figure 4.3 shows the three 

main sections of the single lens frame mapping camera: magazine, body and lens cone 

assembly (Lillesand and Kiefer, 2000). The “data block” is shown on figures 4.3 and 4.2. 

In this feature several measurements are displayed so that the photograph includes a 

number of key readings including: altitude, time of day, focal length, exposure number, 

lens serial number and date.

Supply res! Tafct-uprwl

> Magazine

Diaphragm

Figure 4.3: Principle components o f  a single-lens mapping camera (Lillesand and Kiefer, 2000)

Within the camera, light rays traveling from the scene are focused through a lens onto a 

film creating an invisible “latent” image. As a result the image acquired in the camera is 

negative (black and white exchanged) and reversed both left for right and top for bottom 

through the camera lens. Printing then produces a visible image on print paper and the
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image is positive with axes corrected. Although many types of film are available such as 

colour and infra-red, the film used in this study is panchromatic. Such films are not the 

same as a “black and white” films. Panchromatic films produce an image based on the 

total light intensity, so a bright scene at any wavelength appears as white on the image 

(Lillesand and Kiefer, 2000).

A vertical aerial photograph is not a map. It is the product of a perspective projection and 

as such there are displacements and distortions which affect the image which are as 

follows:

• Exposure fall-off. The image appears brighter in the centre than at the 

edges of the scene. This is because the light collected from the further 

points has traveled further through the dust in the air and the scene is 

viewed from a more oblique angle. This is more obvious when using wide 

angle lenses.

• Vignetting. These are shadowing effects as a result of lens imperfections 

and parts of the camera.

• Relief displacement. This has the strongest effect in mountainous or 

urban scenes. The top of a vertical object is observed as being further 

away from the centre of the image than the bottom of the object (Wolf, 

1983).

• Tilt displacement. An aerial photograph is never truly vertical and as 

such, relief displacement (see above) is exaggerated in particular 

directions.

• Lens distortion. This is the effect of imperfections in the grinding and 

production of the lens causing the image to be blurred or distorted mainly 

on the outside of the image and depends on the f-stop used in the aperture.

Some of these problems, such as exposure fall-off, vignetting and lens distortion are 

normally corrected through calibration. A scene of known and uniform brightness is 

imaged and the systematic variations in image tone recorded on the film are used to
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create a filter, or recalibrate parts of the camera apparatus (Lillesand and Kiefer, 2000). 

However, the problems associated with relief and tilt displacement need to be addressed 

by image processing.

4.2.4. Image Processing

An aerial photograph does not exactly match the scene it represents due to a number of 

factors (see section 4.2.3). The process of orthocorrection reduces the impact of relief and 

tilt displacement. Furthermore the images must be associated with a map projection to 

allow other spatial data to be compared with it, a process known as georeferencing. The 

aerial photography used in this study was orthocorrected and georeferenced 

simultaneously, using PCI Geomatica Orthoengine (version 8.3).

Geomatica is a suite of programs used to create Geographic Information System (GIS) 

databases. Within this software package, Orthoengine is an image processing tool which 

can be used to allow aerial photographs to be used with GIS applications. In this study it 

is used to correct geometric distortions and to georeference the aerial photographs. The 

method used to correct the photographs is called polynomial correction. The aerial 

photograph is scanned at a resolution of 600dpi and saved in TIFF file format. The user 

defines 5 to 10 points on the image and these are known as Ground Control Points 

(GCPs). Each point is then located on a map and each GCP is assigned to a location 

based on the grid system used on the map. Each image has a number of defined points 

with a grid reference assigned, the program uses an iteration technique to determine a 

polynomial function (unique to each image) which describes the translation and rotation 

necessary to distort those image points to fit the grid defined by the grid references. It 

then uses this polynomial to distort the entire image to fit the grid. This process is 

completed for all images. These corrected images were then combined as a mosaic and 

saved as one image.

The cartographic system chosen for this study is the Universal Transverse Mercator 

which matches the Ethiopian national grid. It was chosen to allow an easy comparison 

between this study and other work in the area and provides a smaller degree of distortion
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than latitude and longitude grids. The aerial photographs of this study were georeferenced 

to the following grid:

Grid UTM Zone 36
Projection Transverse Mercator
Spheroid Clarke 1880 (modified)
Unit o f measurement Metre
Meridian o f origin 33°E
Latitude at origin Equator

Table 4.3: The mapping parameters used in the study.

4.3. Terrain Analysis

4.3.1. Introduction

In this study, the technique of Terrain Analysis is used to evaluate the landforms in the

WES with the aim of producing a map of photomorphic regions which the reflect the 

underlying geology and the soil geochemistry. The term “Terrain Analysis” has been 

used to describe a variety of activities which evaluate landforms (for example see Wilson 

and Gallant, 2000 or Townshend, 1981). The method used here is the form of Terrain 

Analysis which is reviewed by Lillesand and Kiefer (2000). For a more detailed account 

of the method see Way (1973).

The aerial photographs described in section 4.2 were viewed using a mirror stereoscope 

(see section 4.3.2) and the landforms in each stereo-pair were analysed using five “terrain 

elements” which are explained in section 4.3.3. These landform properties were then 

used to delineate “photomorphic regions” (see section 4.3.9) and the boundaries of such 

regions were then tested by field work (see section 4.3.10).

4.3.2. Stereoscopy

A stereoscope was used to aid in the analysis of the landforms which have been 

photographed. This enables an operator to view two images simultaneously and thereby 

observe the landforms in 3-dimensions. The two photographs are referred to as a stereo- 

pair. The aerial photographs used here have an overlap at least 50% with of the
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4.3.4. Terrain Elements: Drainage pattern

Figure 4.4: A section from an aerial photograph showing the boundary between a coarse dendritic 
(top left) and fine dendritic (bottom right) drainage patterns. This image is uncorrected and

therefore the scale is approximate.

The drainage pattern o f an area is the pattern made by the network of waterways. 

Drainage patterns are classified according both pattern and texture. The pattern is 

determined according to the direction and shape of the waterways (see figure 4.5). The 

texture is the density o f waterways in an area, ranging from fine to coarse (see figure 

4.6). In this study drainage pattern textures are classified as follows:

• Coarse. Less than or equal to 3 waterway intersections per km2

• Medium. Between 3 and 6 waterway intersections per km2

• Fine. Greater than 6 waterway intersections per km2
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There are many factors which affect the drainage pattern. Some factors are equal over 

areas the size of the WES, these include: rainfall, temperature and evaporation rate. 

However over a few kilometers, the relative proportions of overland flow to groundwater 

flow determine the texture of drainage pattern. In a situation where rain falls onto ground 

which is entirely impermeable, all runoff must be overland, and therefore due to the large 

flux of water over the surface, many waterways will be formed. Where most runoff 

passes through the groundwater, few waterways will form and the drainage texture will 

be coarser. Thus drainage pattern directly reflects underlying rock and soil type 

Furthermore, the strike of geological layering will affect the direction in which water runs 

off the land surface and therefore drainage pattern can reflect the underlying structure. 

For example trellis drainage patterns typically form over inclined sedimentary beds 

whereas dendritic may form over homogenous igneous bodies. For further discussion of 

the interpretation of drainage patterns see Way (1973).

Dendritic Rectangular

Radial

Centripetal

Figure 4.5: The six basic drainage patterns, after Lillesand and Keifer (2000)
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Figure 4.6: Illustrations of drainage texture. A: coarse-textured and B: fine-textured, after
Lillesand and Keifer (2000).

4.3.5. Terrain Elements: Erosion

Figure 4.7: A section from an aerial photograph showing the boundary between areas with round- 
bottomed gullies (left) and v-shaped gullies (right). This image is uncorrected and therefore the

scale is approximate.
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The form of gullies in an area is assessed in order to determine the way in which erosion 

has been controlled by the substratum. Gullies are small scale waterways (sometimes as 

small as lm in width) which form during sheet flow as a result of intense precipitation 

which changes into channelised flow. The cross-sectional gully form is controlled 

partially by the texture and cohesiveness of the substratum it erodes.

Although the shape of a gully is related to the texture of the soil, these textures may be 

controlled by the underlying bedrock. Since the way in which a rock weathers is 

controlled in part by its hardness, the underlying lithotype may exert some control over 

the texture of the overlying soils and thereby the gully shape. Table 4.4 shows the three 

cross-sectional forms and the substratum textures associated with them.

Name Cross-section Related textures (Way, 1973; Lillesand and 
Kiefer, 2000)

Round bottomed
Cohesive clays and silty clays. Usually found 
in lake beds, marine terraces and clay-shale 
areas.

Flat bottomed Moderately cohesive silt. Often loess and 
alluvial silt deposits.

V-Shaped Noncohesive granular materials. Sand and 
Gravel. Often terraces and outwash plains.

Table 4.4: Gully cross-sections and their related textures.
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4.3.6. Terrain Elements: Topography

Figure 4.8: A section from an aerial photograph showing a ridge (center) and smaller hills around 
the outside. This image is uncorrected and therefore the scale is approximate.

There are numerous ways in which topography can be characterized (see Way, 1973) and 

modem landform analysis uses slope measurements from digital terrain models (Wilson 

and Gallant, 2000). In this study, the assessment of topography is used to record only 

whether or not the terrain forms a ridge (as shown in figure 4.1). Hard lithotypes are 

eroded less than softer rocks and hence hard formations form ridges.
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4.3.7. Terrain Elements: Relative image tone and texture

Figure 4.9: A section from an aerial photograph showing the boundaries between bright and dark 
image tones. The darkest mottled texture is tree cover, however the dark tone of the soil can be 

observed between trees. This image is uncorrected and therefore the scale is approximate.

The brightness o f a land-form (tone) can vary widely (see figure 4.9). Within areas of 

bare soil or thin vegetation, changes in image tone reflect the moisture content of that 

soil, this can vary according the texture of that soil and the parent rock material. Within 

areas of bare soil, the tone may vary and create a tonal texture. This texture can be a 

useful indicator o f soil conditions and soil textures themselves. Within areas of 

apparently homogenous tone, very fine changes in tone may occur, showing the 

differences in moisture content.

The images used in this study are panchromatic, which means that they record the total 

light exposure o f all colour bands (including some near-infrared). Due to the exposure 

fall-off (see section 4.2.3) it is only possible to determine differences in relative image 

tone. Absolute values for image tone cannot be determined using these images.
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4.3.8. Terrain Elements: Land use

Figure 4.10: A section from an aerial photograph showing the boundary between cultivated land 
(bottom and top) and non-cultivated land (center). Subsistence farms in Ethiopia typically 
cultivate fields of no larger than 500m in width. These appear on aerial photographs as a 
“patchwork” texture. This image is uncorrected and therefore the scale is approximate.

This categorory is an assessment o f land use either as vegetation, cultivation or neither. 

The type and origin o f vegetation can indicate important changes in soil geochemistry 

which are closely related to the parent rock type. Areas of dense cultivation tend to 

follow water-courses and can also indicate a fertile soil and areas of dense vegetation 

may indicate other properties such as a high moisture content.

4.3.9. Photomorphic Regions

In order to combine and illustrate the information recorded from the analysis of the air 

photo stereopairs, a number o f photomorphic regions are delineated. A photomorphic
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region is defined as a discrete geographic unit within which at least one terrain element is 

uniform (Lillesand and Kiefer, 2000). In some cases more than one terrain element may 

be uniform within the photomorphic region. The concept of photomorphic regions is used 

in many remote sensing mapping applications, not only geological investigations 

(Lillesand and Kiefer, 2000).

Using the ArcView 3.2 software package, the photomorphic regions were overlain onto 

the orthocorrected and georeferenced aerial photographs (see section 4.2.4). The 

information has been presented as a set of four maps (see section 4.4).

4.3.10. Ground Truth

In order to validate the relationship between the land-forms and the underlying geology, 

each of the suspected ultramafic complexes was studied in the field and samples were 

collected. The petrology and geochemistry of these samples was investigated and the 

results are discussed in the subsequent chapters. Chapter 5 describes the full results of 

geological mapping in the WES. In some areas, there are landforms which have been 

mapped as ultramafic but no exposure has been found, these are defined as “suspected 

ultramafics” in chapter 5.

4.4. The Terrain in the WES

4.4.1. The photomorphic regions

A total of 25 photomorphic regions have been defined in this study but not all occur in 

any one of the four geographic maps. A description of the terrain for each region is 

contained in table 4.5. The ground truth study established that four formations can be 

effectively mapped by using terrain analysis, these are Basement, Graphitic Schist, Basalt 

and Ultramafic. In addition to this, the ground truth investigation discovered that the 

geological terrain information in some areas is obscured by the practice of burning 

savanna grass.
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Photomorphic
region

Drainage
Pattern

Erosion Topography Relative Image 
Tone and Texture

Land use

Basalt A
coarse
dendritic

flat
bottomed

plateau rolling 
hills

bright polygonal 
texture.

Highly cultivated. 
Vegetation along 
roads and bottoms 
o f valleys.

Basalt B coarse
dendritic v-shaped

non-orientated 
hills and 
ridges

heterogenous

Sparse vegetation 
everywhere 
(individual trees) 
small fields 
everywhere.

Basalt C medium to 
fine dendritic

v-shaped 
and fiat in 
places

non-orientated 
hills and 
ridges

dark in most 
places

Dense vegetation 
covering most 
parts. Small 
patches of  
cultivation.

Basalt D
medium to 
fine dendritic v-shaped

non-orientated 
hills and 
ridges

mainly
heterogenous.
One patch o f dark 
tone

Cultivation in 
many places. 
Dense veg at the 
bottom of gullies.

Ultramafic A very fine 
parallel v-shaped single big hill

mostly very dark 
some light 
swathes

No cultivation very 
little vegetation

Ultramafic B coarse
dendritic v-shaped large distinct 

hills

medium to light 
(dep on exp. 
cond.)

V. sparse veg, v. 
little cultivation 
although some.

Ultramafic C fine dendritic v-shaped incline dark tone
No cultivation, 
sparse vegetation 
in most places.

Ultramafic D medium trellis rounded ridges, one 
elongate light homogenous

Vegetation strictly 
at bottoms o f  
valleys. No 
cultivation.

Basement A fine trellis v-shaped
steep sided, 
ridges NNE- 
SSW.

homogenous light 
tone on valley 
sides

Only ridge tops 
cultivated. Natural 
vegetation at 
bottom of valleys 
only.

Basement B fine dendritic v shaped small hills and 
ridges

medium to dark 
tone, homogenous

Some vegetation 
out o f gullies, very 
little cultivation.

Basement C v fine 
dendritic v-shaped non-orientated

ridges
generally dark 
tone

Vegetation in most 
areas. Very little 
cultivation

Basement D medium to 
fine dendritic rounded

non-orientated 
hills and 
ridges

mainly dark tone

Mostly covered by 
dense veg. 
Cultivation at the 
top o f the 
ridges/hills.

Basement E fine dendritic non-oriented
hills dark Dense vegetation 

and no cultivation.

Basement F
medium
dendritic rounded non-orientated

hills heterogenous
Generally barren 
but some areas of 
cultivation
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Basement G medium to 
fine dendritic

non-orientated 
hills and 
ridges

heterogenous
Veg in bottom o f  
gullies. Cultivation 
in most places

Basement H fine dendritic v-shaped
non-oreintated 
hills and 
ridges

heterogenous

Cultivated in most 
places some 
vegetataion out o f  
gullies

Basement I
v fine 
dendritic v-shaped large ridge, 

high elevation heterogenous
Veg in bottom of  
gullies. Cultivation 
in most places

Basement J medium trellis rounded ridge

bright near the top 
o f the ridge. 
Darker tone 
generally towards 
the bottoms o f  
slopes

Cultivtaion at the 
top o f the ridge. 
Spare cult in most 
places.

Basement K

fine parralell 
on the west, 
fine dendritic 
on the east

v-shaped large ridge, 
high elevation medium tone No cultivation very 

little vegetation.

Basement L N/A ?coarse? rounded ridge light tone Cultivated in most 
places.

Basement M medium to 
fine dendritic v-shaped

variably 
oriented large 
ridges

generally light 
tone

Cultivation 
widespread but 
sparse. Little dense 
vegetation.

Basement N v coarse 
dendritic rounded

low gradient 
rounded hills

homogenous 
medium tone

Completely 
uncultivated, some 
large patches o f  
dense vegetation.

Basement 0 medium radial v-shaped large hill medium tone No cultivation very 
little vegetation.

Graphitic
Schist trellis v-shaped

small
distinctive
ridges

mostly dark 
altough some 
lighter

Dense vegetation 
no cultivation.

Burnt Grass fine dendritic v-shaped variable very dark no cultivation or 
vegetation

Table 4.5: A table o f the photomorphic regions o f the WES.
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4.4.2. Tulu Dimtu
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Figure 4.11: A map of photomorphic regions for the Tulu Dimtu area. White lines indicate the
course of the major rivers. Inset is a representative aerial photograph showing the main ultramafic

formation.
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Figure 4.12: A map of photmorphic regions for the Kingy area. White lines indicate the course of
the major rivers. Inset is a representative aerial photograph showing the main ultramafic

formation.
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Daleti, Ankori, Tulu Kapi and Keley
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Figure 4.13: A map of photmorphic regions for the Daleti, Ankori, Tulu Kapi and Keley areas.
White lines indicate the course of the Birbir river. Inset is a representative aerial photograph

showing the main ultramafic formation.
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4.4.5. Yubdo, Sodu and Andu
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Figure 4.14: A map of photmorphic regions for the Yubdo, Andu and Sodu areas. White lines
indicate the course of the major rivers. Inset is a representative aerial photograph showing the

main ultramafic formation.
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4.4.6. Summary

In order to locate ultramafic intrusions, the terrain of the WES was mapped using aerial 

photographs and the results plotted as maps of photomorphic regions which are 

considered to reflect the geology (see sections 4.2 and 4.3). The four maps included in 

this chapter are composed of a selection of 25 photomorphic regions which each have 

different terrain features.

During fieldwork, the changes in the geology over the boundaries between photomorphic 

regions was investigated. The results of such fieldwork is covered in chapter 5. Although 

several terrain units are identified as basement, in this study, it was not possible to 

demonstrate a change in geology over these boundaries. However, geological 

investigations have suggested that three major formations can be mapped using this 

method:

• Ultramafic units. These are identified as areas of sparse vegetation and 

no cultivation and almost always form ridges.

• Tertiary Basalt units. These form a plateau of round rolling hills with no 

particular orientation and always form a dendritic drainage pattern. They 

are frequently cultivated.

• Basement units. These have a wide variation in drainage pattern however 

the drainage texture is always fine or medium. Basement units typically 

form a topography which is lower than both ultramafic and basalt units. 

Within the basement units, graphitic schists are sometimes observed as 

small ridges with no cultivation.
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5. Geological Mapping
5.1. Introduction

Small scale maps of the WES have been published by various authors. Additionally, 

large scale maps of the Main Yubdo Intrusion and the Tulu Dimtu Main Intrusion 

have been produced (Kazmin and Demessie, 1971; de Wit and Aguma, 1977). Of 

these maps, it is only those of the Main Yubdo Intrusion that provides details of the 

internal structure of the ultramafic complexes. It is for this reason that new maps have 

been produced during this study for Tulu Dimtu, Kingy and Daleti and the Kazmin 

and Demessie (1971) map of the Yubdo area has been modified in light of the 

observations made during this study.

These new maps have been created for use as a base for the presentation of 

geochemical data (see chapter 6) They are the result of a combination of field 

observations and terrain mapping. The Ethologies identified here are those defined in 

chapter 3. Although the ultramafic formations are given names based on their fresh 

protoliths many of the rocks they represent may be completely replaced by 

metamorphic minerals (see chapters 2 and 3). Furthermore, the poor exposure and 

high degree of weathering makes the collection of structural measurements difficult. 

Although some geological structures (such as shear tension indicators) are visible in 

the basement, such information is not clear in the ultramafic units.

5.2. Method

The geological maps were compiled using several methods which were combined 

using a GIS database (ArcView 3.2). Fieldwork was carried out in four trips between 

September 2001 and June 2002. As a result, lithological descriptions of samples and 

field observations were combined with the terrain mapping information as described 

in chapter 4. Therefore on the maps, the basalt and basement units were mapped 

mainly using the terrain but verified geologically at the locations indicated on each 

map. The next four sections show the geological map of each of the geographic areas 

followed by a description of the geology.
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5.3. Geological Maps o f the WES

5.3.1. Tulu Dimtu
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Figure 5.1: The geological map of the Tulu Dimtu area. Black lines indicate the course of the

major rivers.
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There are three groups of ultramafic rocks in the Tulu Dimtu area: The Main 

Intrusion, Sheared Ultramafic and the Lensoid Ultramafics.

The lithologies of the Main Intrusion at Tulu Dimtu include dunite, olivine-
  • •

clinopyroxenite and clinopyroxenite zones covering 17km (figure 5.1). The intrusion 

is zoned with dunite at the centre, comprising 70% of the intrusion. Flanking the 

dunite body to the NW and SE are two zones of olivine-clinopyroxenite, these are on 

the edge of and are partially surrounded by dunite. A small exposure of 

clinopyroxenite was found on the west of the dunite and a large gabbro body occurs 

south of the Main Intrusion. The dunites are cross-cut by later dolerite and diorite 

dykes.

The Sheared Ultramafic is a zone of highly deformed ultramafic rocks on the southern 

edge of the Main Intrusion. This unit consists mainly of dunite and minor 

clinopyroxenite. These rocks are bounded to the south by a shear zone.

Away from the Tulu Dimtu Main Intrusion are a further 9 discrete ultramafic bodies 

varying in size from 3km to 700m in length, these are referred to here as the Lensoid 

Ultramafics. Five of these nine bodies are associated with shear zones. The petrology 

of individual bodies varies considerably, but as a group they consist mainly of dunite 

and smaller amounts of olivine-clinopyroxenite and clinopyroxenite.

The southern and western flanks of the Main Intrusion are sheared. These zones of 

sheared rocks can be traced to the southwest as mylonitised and more weathered 

schistose rocks. The map of Tulu Dimtu shows that two further shear zones can be 

indentified: one trending NE-SW, 2km to the west of the Main Intrusion and another 

trending NNW-SSE, 2km to the southwest. The shearing is associated with talc and 

chlorite. To the south and west of the Main Intrusion the shear zones envelop 

quartzite bodies, two further quartzite bodies were observed which are associated with 

the shear zone to the southwest.
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5.3.2. Kingy
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Figure 5.2: The geological map of the Kingy area. Black lines indicate the course of the major
rivers.

The ultramafic complexes o f  the Kingy area have been allocated to three groups: The 

Kingy Ridge Ultramafic, the Extra Ultramafic and the Lensoid Ultramafics.
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The Kingy Ridge Ultramafic is an NE-SW trending elongate body composed mainly 

of dunite and olivine-clinopyroxenite with a small amount of clinopyroxenite. These
a

ultramafic Ethologies cover a total area of 6km and although three lithotypes have 

been identified, no particular spatial organisation is observed within the complex. 

Birbirite is common in the soils above the southwestern end of the complex. The 

Kingy Ridge Ultramafic is bounded to the north and west by shear-zones consisting of 

talc and chlorite schists.

At the northern end of the Kingy Ridge Ultramafic, the Extra Ultramafic also consists 

of a range of lithotypes from dunite to clinopyroxenite. It covers an area much smaller 

than the Kingy Ridge Ultramafic at less than 1km2. It is bounded to the north and west 

by basement.

Five smaller ultramafic bodies (the Lensoid Ultramafics) occur elsewhere in the 

Kingy area. Two of which are associated with shear-zones and large (>200m2) 

quartzite bodies. As with the other ultramafic complexes in the area, the lithotypes 

here range from dunites to clinopyroxenites.

Other units in the area include several small gabbro bodies and three large quartzite 

bodies to the south west of the Kingy Ridge Ultramafic.
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of the Ankori Ultramafic have been located using terrain mapping (see chapter 4). 

However, no exposure could be found at these locations and therefore they are named 

“suspected ultramafics”.

The largest complex is the Daleti Ultramafic which covers an area of around 5km2. 

The complex is a large dunite body with several pods of a mafic monomineralic rock 

around 6m in length and 2m in width and consisting mainly of spinel (MgALO^. To 

the northwest, the complex is bounded by a shear-zone consisting of talc-schists and a 

small gabbro body occurs close to the southern contact with the basement.

The Ankori Ultramafic is an elongate body of around 5km in length and up to 800m 

in width. It is composed mainly of dunite, but some minor clinopyroxene was 

observed near the northern tip. The complex is associated with some small quartzite 

bodies and is mostly surrounded by basement.

The five Lensoid Ultramafics occur throughout the area covered in this section. Only 

one locality has been found for each complex and as a result structural control on their 

association is very poor. Two of these bodies, in the Keley area, are closely associated 

with extensive shear-zones. Furthermore, a troctolite body has been located at Gudeya 

Guji associated with an elongate zone of talc and chlorite-schists. One Lensoid 

Ultramafic was located in the southern basement and a further ultramafic body was 

located close to a Tertiary Basalt and a quartzite in the northwest of the area.

Shear-zones are common within the basement units and they are often associated with 

ultramafics and quartzite bodies. The shear-zones at Gudeya Guji form in a distinctive 

straight NE-SW trending ridge in line with several smaller shear-zones to the 

southwest. Some gabbro units have been observed within the basement.
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5.3.3. Daleti, Ankori, Tulu Kapi and Keley

Figure 5.3: The geological map of the Daleti, Ankori, Tulu Kapi and Keley areas. Black lines
indicate the course of the major rivers.

There are two large ultramafic complexes in this area, the Daleti Ultramafic and the 

Ankori Ultramafic. Additionally, there are five smaller complexes described here as 

the Lensoid Ultramafics. Several more possible ultramafic bodies to the east and west

i rim
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Figure 5.4: The geological map of the Yubdo. Andu and Sodu areas. Black lines indicate the
course of the major rivers.

The Main Yubdo Intrusion covers an area of around 30km2 and consists of three 

concentric zones with dunite in the core continuing outwards to olivine- 

clinopyroxenite and then clinopyroxenite. The clinopyroxenite zone is widest on the
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eastern flank and only a few thin remnants are observed on the northwestern edge. 

Diorite dykes have been located in both the eastern and northwestern clinopyroxenite 

zones. Shear-zones have been observed both within the complex and on the eastern 

and western flanks.

Five smaller ultramafic bodies have been located within both the basement and as 

inliers within the Basalt formations. The northernmost of these bodies is associated 

with a shear-zone.

Several more ultramafic bodies have been located using terrain mapping (see chapter 

4) these occur to the west of the Main Yubdo Intrusion and in the Andu area. 

However, no exposure was found over these bodes and therefore these are classed as 

“suspected ultramafics”.

5.3.5. Summary

There are five large ultramafic complexes in the WES and numerous smaller bodies 

referred to as the Lensoid Ultramafics. The two largest, the Main Yubdo Intrusion 

(30km2 in area) and the Tulu Dimtu Main Intrusion (17km2 in area) show specific 

zones of different ultramafic lithologies. The other large complexes, the Kingy Ridge 

Ultramafic, the Daleti Ultramafic and the Ankori Ultramafic all show no particular 

zonation. All complexes show an association with shear-zone lithologies such as talc- 

schists and quartzites.

The Lensoid Ultramafics are described on the basis of up to a maximum of three 

outcrops per body and therefore structural control on their formation is lacking. 

However most of these complexes show a strong association with shear-zones and 

quartzites. Individual bodies can show a range of lithotypes from dunite to 

clinopyroxenite.
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6. Ground Magnetics
6.1. Introduction

During the period from 25/5/2002 to 7/6/2002 a ground magnetic survey was 

conducted over the Main Yubdo Intrusion. This chapter examines the features of the 

magnetic field in the area and proposes a model to explain them.

The magnetic survey was conducted using two proton precession magnetometers. 

To allow for a high sensitivity, fluctuations in the magnetic field were eliminated by 

using one magnetometer as a base station. The results are displayed as 3 dimensional 

maps of the magnetic field in the 3rd dimension. Different colours are used to highlight 

high and low anomalies in the data.

In general a magnetic survey records the distribution of magnetic minerals 

including magnetite. Such variations may distinguish between different igneous 

lithologies such as pyroxenite and dunite or different degrees of alteration. In the Yubdo 

area there is field evidence for secondary alteration episodes such as shearing and 

silicification. Belete et al. (2000) suggest that hydrothermal processes are an important 

part of the PGE concentration mechanism. It is possible that alteration occurs either along 

zones of weakness related to shearing or it may be related to zoning of the igneous 

lithologies due to magmatic processes.

The aim of the survey described here was to understand the geometry of the 

alteration and therefore was carried out almost entirely within the dunitic core of the 

Main Yubdo Intrusion. The following sections describe the collection and description of 

the data and the results are displayed in several pull-out pages.
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6.2. Methods

6.2.1. Data collection

Two Geometries G856AX portable proton precession magnetometers were used, one set 

as the base station and one used to measure the magnetic field strength at the survey 

points. To allow for the greatest possible radiometric resolution, the base station was used 

to correct for diurnal fluctuations (see section 6.2.2). The base station was also run 

overnight in order to detect disturbances in the magnetic field caused by magnetic storms.

The base station magnetometer was powered using a car battery. The sensor was 

aligned to north and attached to a strong tree to prevent movement (figure 6.1). The 

strength of the magnetic field was recorded every 60 seconds and stored within a memory 

on the magnetometer. Each field strength reading was recorded against the day and time 

so that temporal fluctuations in the earth’s magnetic field could be reconstructed. The 

sensor of the base station remained in the same place throughout the duration of the 

survey. The location of the base station was located at grid reference (769657,990747). 

The sensor was mounted 2.5m above the ground and the magnetometer was tuned to 

34,400nT and the sensor coil mounted vertically. The coil orientation was decided by a 

test at the beginning of the survey (the results are described in section 6.3.1). Before and 

after the ground survey was carried out the base-station data was analysed with the aid of 

the Magmap program to detect the signs of any magnetic storms.
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Figure 6.1:

The survey was carried out using a second G856AX magnetometer mounted on a 
harness. The sensor was mounted on a staff 2.5m high and oriented vertically. At each 
survey location, the sensor was aligned to north. For each reading stored in the 
magnetometer, a number of other items of data were also stored, including day, time, line 
number and mark number.

The two types of survey that were carried out were: wide and close grid spacing. 
During the wide grid spacing survey, the location of each survey point was determined 
using a handheld GPS receiver and stored as a waypoint. The GPS location data was 
combined with the magnetic field strength data using a spreadsheet. During a close grid 
spacing survey (<10m between survey points), the spacing between subsequent points 

was too small to be accurately determined using a handheld GPS, therefore the location 
of each point was surveyed using canvas based measuring tape. The location of the origin 
was determined using a GPS, the x-axis co-ordinate was recorded within the 
magnetometer as the line number. The Y co-ordinate was determined using pacing.

The magnetometer sensor set up aligned to N and attached to a tree.
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During the wide spacing survey the aim was to cover the largest possible area 
with 100m between each point. In open ground, a 100m spacing was achieved. However, 

figure 6.2 shows that large areas have no coverage at all. This is because areas of human 

influence should not be covered due to false readings from metal objects. Furthermore, 
there are two large open-cast pits which cannot be entered as they are unsafe and in 
places dense vegetation makes access unavailable. The location of the tight grid spacing 
survey is shown on figure 6.2.

2 K ilom eters

Survey Locations

The Geology of Yubdo 
Basalt

Shear zone

Diorite

Yubdo
Village

Duoite

Lensoid Ultramafics

Opencast
Workings

Opencast
Workings

Basement 3

Basement 4

Basement 5

Basement 6

Basement 7

Tight Spacing 
Survey

Figure 6.2: The survey point locations for the ground magnetic survey of the Main Yubdo 
Intrusion overlaid onto the geological map (see chapter 5).

During the coil orientation test a 4m grid spacing survey was carried out twice 
using two different methods: 1st with both sensors oriented vertically and 2nd with both 
sensor coils fixed horizontally. In both cases the origin of the grid was at grid reference 
(769950,990211) and the X-axis was oriented on a bearing of 196°. The aim of this test
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was to assess which sensor orientation was the most radiometrically sensitive at the 

survey site.

6.2.2. Diurnal correction

The magnetic field at a location depends on a number of factors including the 

underlying geology. Diurnal variation is where the magnetic field varies with time over a 

24 hour period, as illustrated in figure 6.3. At Yubdo this variation is frequently over 

150gammas. Furthermore the field may vary by a number of other mechanisms such as 

micropulsations and magnetic storms. All variations -  except magnetic storms -  have the 

same effect over several square kilometers. Therefore to allow for the greatest possible 

radiometric sensitivity, a base station was used to correct for diurnal fluctuations in the 

Earths magnetic field.

3 3 8 0 0

3 3 7 5 0

O  3 3 7 0 0

3 3 6 5 0

3 3 6 0 0

3 3 5 5 0

3 3 5 0 0

12:00 16:00 20:008:00 0:00 4 :00 8:00

Time of Day

Figure 6.3: The magnetic field strength at the base station over a 24 hour period (30th to the 31st of May
2002)

Magnetic storms disrupt the magnetic field on a scale of several hundreds of 

metres and therefore a base station cannot cancel out this effect. No magnetic storms 

were detected during the period of this investigation.
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As described in section 6.2.1, the base station automatically recorded the 

magnetic field every 60 seconds. The nearest base-station reading is subtracted from each 

reading taken with the portable magnetometer. Ideally, the readings at the portable 

magnetometer and the base station will have been taken at exactly the same time, but in 

reality this is unlikely to have been the case. Where no reading at the base station has 

been taken at the same time as the portable magnetometer, the MagMap software uses a 

linear time interpolation procedure to calculate an appropriate value.

6.2.3. Data presentation

The results of the survey at Yubdo are displayed as a three dimensional surface 

where the height of the surface is determined by the difference in the magnetic field 

strength at that point. The values for the locations between survey points have been 

interpolated using a kriging function. The magnetic field strength is diumally corrected 

(see section 6.2.2) and displayed as a Logio scale. Both negative and positive values for 

the corrected field strength occur in the dataset. These were processed separately so that 

the negative values remain negative on the Logio scale. There are, in effect, two 

logarithmic scales used simultaneously: negative and positive.

The 3D maps are plotted with three different colour scales in order to emphasize 

key features. Figure 6.6 shows that map A uses the simplest set of colours, grading from 

blue at the lowest to red at the highest. Map B is the same as A except that a blue stripe is 

added at 0 and everything immediately lower than 0 is yellow grading to blue and 

everything immediately above 0 is green grading to red. Map C is the same as B except 

the blue stripe is just above Logio = 3.

In order to demonstrate the variation in the field strength, Figure 6.7 shows the 

same area in 4 different orientations in 3D maps where the height represents the Logio 

magnetic field strength with the same colour schemes as figure 6.6.
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6.2.4. Limitations and accuracy

Two inaccuracies are involved with the method used for the collection of the data 

in this study and these must be considered during interpretation. One limitation is the 

accuracy of the handheld GPS. Although the location of each survey point is quoted to 12 

figures -  implying an accuracy of lm -  the location is only accurate to 10m. This does 

not have a direct effect on the nature of the conclusions, however any detailed work 

targeted by this survey should consider this inaccuracy.

The use of an interpolation function to calculate expected total field values away 

from survey points is necessary for the estimation of the shape of the magnetic field and 

the easy analysis of results. However it is possible that these estimated values are entirely 

incorrect. The varied results contained in this survey indicate that it is not only possible 

but quite likely that some estimated values are incorrect, however the use of this 

interpolation function is necessary for ease of analysis. The images of 3D surfaces 

(figures 6.6 and 6.7) show interpolated values for some areas over 1km away from the 

survey points. Interpolated values at large distances away from survey points are 

meaningless and are marked as white on figure 6.11.

The nature of the ground has meant that there were some areas where it was not 

possible to collect magnetic field data. As figure 6.2 shows, the size and shape of the 

survey means that there is barely 1km square of unbroken survey area. The areas shown 

in white in figure 6.11 are those areas where it is not possible to make interpretations due 

to lack of data. All areas delineated in figures 6.8 and 6.11 are only marked in areas 

where there is sufficient data to distinguish between two different patterns.

Given the use of a base station to correct for temporal changes and the use of 

proton precession magnetometers, the radiometric accuracy of the survey is considered to 

be 1 gamma which is a greater degree of accuracy than required for a geological 

investigation of this type.
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6.3. Results

6.3.1. Sensor orientation test

The results of the sensor orientation test survey are demonstrated using the 

following two figures.

\

\

Figure 6.4: A 3D surface to illustrate the diumally corrected magnetic field strength for the 
horizontal sensor orientation test. The scale on both the x and y axes is metres. The z axis is

magnetic field strength in gammas
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Figure 6.5: A 3D surface to illustrate the diumally corrected magnetic field strength for the
vertical sensor orientation test. The scale on both the x and y axes is metres. The z axis is magnetic

field strength in gammas

The range of values for the diurnally corrected field strength for the same survey 
locations were 2504 gammas and 2033gammas for the vertical and horizontal 
orientations respectively. This is a difference in the range of readings of 471 gammas 
between the two types of sensor set-ups. The larger range measured by the vertical 
method indicated a greater radiometric sensitivity and it therefore was adopted for the 
survey.

6.3.2. Wide spacing survey

The results o f  the w id e spacing survey is presented in two “pull-out” pages at 

the back o f  this section. T h ese pages include figure 6.6 which show s the m aps with  

different colour schem es and figure 6.7 w hich shows 3D  views o f  these maps. T hese  

figures are referred to throughout the following text. Additionally, figure 6.2 (see 
section 6.2.1) shows the location of each survey point on a base map.
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The three colour schemes applied to the same data show two different groups of 

anomaly in the magnetic field of the Main Yubdo Intrusion (see figures 6.6 and 6.7). Map 

A in figure 6.6 shows that there are two large zones of negative anomalies in northern 

and southern parts of the survey area. However, the colour scheme used on map C shows 

that in addition to the wide anomalies (covering >200m in width), there are many smaller 

anomalies with widths of less than 100m. The wide anomalies cover two discrete zones 

in the north and south whereas the shorter anomalies occur over the whole area. The 

farthest northern and southern parts of the survey have a magnetic field which is 

relatively uniform and neither of the anomalies described above are observed.
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Figure 6.6: Maps of the diurnally corrected magnetic field strength (Logi0). The different colour schemes are used to highlight different 
aspects of the data, A: Illustrates the overall field values, B: Shows wide zones of low magnetic field strength and C: Short wavelength 

changes in areas of high field strength. The outline of the interpretation map is overlaid, for a further explanation see figure dkmaginimap.
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• Area 2 (red dots): Covering a total of « 2.5km2, the magnetic field 

strength in this area ranges from 3.2 to 3.5 Logio units. It covers two large 

tracts in the north and south of the area shown in figure 6.8.

• Area 3 (pink dots): This isolated area located at the centre of the the 

Main Yubdo Intrusion is characterized by an uneven magnetic field 

strength of around 3 Logio units with small negative anomalies which can 

fall to 2.3 Logio units.

• Area 4 (yellow dots): This zone in the southern part of the survey area is 

entirely surrounded by area 2. The field strength is 2.5 Logio units.

• Area 5 (orange dots): Numerous small parts of the survey are covered by 

this form of non-uniform magnetic field ranging from 2.5 to 3.5 Logio 

units.
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6.3.3. Tight spacing survey
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Figure 6.9: Maps of the diumally corrected magnetic field strength (gammas) over an area near to 
Yubdo School. Bottom Left: facing north-east, Bottom Right: Facing south-east.
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Figure 6.9 shows the results of the tight grid spacing survey at Yubdo. Two 

distinct negative magnetic anomalies are observed. Both anomalies have a linear sinuous 

shape. The depth of the anomaly is approximately 2000 gammas. The shoulders of the 

anomaly are symmetrical. The very deep anomaly in the NW of the survey, corresponds 

to a small hut with a tin roof. Slight N-S trending offsets in the northernmost anomaly 

have been caused by slight inaccuracy in the pacing method of measuring the Y- 

coordinate.

6.4. Discussion

It is expected that the nature of the magnetic field can be explained by a 

heterogeneous distribution of magnetic minerals throughout the intrusion. These 

magnetic minerals are largely magnetite but possibly also maghemite, ulvfispinel and 

titanomagnetite. There are a number of models which could be used to explain all of or 

some of the features of the field, they are listed below.

• Quartz Veining: Siliceous veining can dilute the abundance of magnetite 

in parts of the ultramafic body. Variations in the density of veining will 

cause differences in patterns of magnetic field strength.

• Serpentine Distribution: During the alteration of olivine to serpentine Fe 

is released to form magnetite. Therefore different stages of alteration of 

the igneous rocks to serpentinite will produce different quantities of 

magnetite.

• Chromitite Lenses: Magnetite is less abundant in some areas due to the 

presence of fresh chromitite lenses. However, where chromite is altered to 

ferrichromite a greater magnetic susceptibility can occur.

• Juxtaposition of magnetite bearing units: Fault action causes 

preferential concentration of magnetite formed due to the alteration and 

focused along fault planes.

The magnetic field surveyed above the Main Yubdo Intrusion shows generally 

high values with 2 zones of large negative anomalies and numerous smaller negative
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anomalies. The generally high values observed here are likely to be ultramafic rocks as 

they have some of the highest magnetic susceptibilities known (see table 6.1). Therefore 

the origin of the negative anomalies could be explained by the presence of some less 

magnetically susceptible units. It is unlikely that the presence of magnetite or chromite 

could have caused such a decrease in magnetic field strength as alteration would have 

created a high magnetic susceptibility. As seen in table 6.1 both quartzite and serpentinite 

have significantly lower magnetic susceptibilities than olivine or pyroxene-bearing rocks. 

However, the presence of Fe-rich spinels at the rims of olivine minerals in the Main 

Yubdo Intrusion (see chapter 3) suggests a role for serpentinisation in the formation of 

ferrichromite. Hence, it is likely that this ferrichromite would increase the magnetic field 

strength as a result of sepentinisation.

Rock Average Magnetic 
Susceptibility (xlO6 emu)

Andesite 13,500
Peridotite 13,000
Pyroxenite 10,500
Diorite 7,000
Basalt 6,000
Gabbro 6,000
Serpentinite* 1,000
Quartzite 350
Amphibolite 60
Sandstone 30

Table 6.1: A table o f magnetic susceptibility values in order o f decreasing susceptibility (after 
Robinson and Coruh, 1988). *: This value is for pure serpentinite with very little magnetite.

Of the possible explanations covered above, the most likely cause of the variation 

in magnetic field strength over the Main Yubdo Intrusion is different degrees of quartz 

veining through the ultramafic lithotypes. Quartz veins can frequently be observed in the 

rocks of the Main Yubdo Intrusion and the remnants of such veins can also be seen in the 

laterites exposed in the quarry faces. Furthermore, Kazmin and Demessie (1971) have 

mapped a shear-zone which intersects with a zone of very low magnetic field strength 

observed here (see figure 6.8). It is feasible that the one of the major conduits of silica- 

rich fluids could have been a shear-zone. Smaller siliceous fluids could well have 

permeated through the rest of the complex to precipitate silica and create the lower 

magnetic anomalies. The value quoted for the magnetitic susceptibility of serpentinite in
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table 6.1 is that of pure serpentinite with very little magnetite. When olivine is 

serpentinised, magnetite is formed as a result and hence a serpentinised dunite (as is 

observed at Yubdo, see chapter 3) will have a magnetitic susceptibility comparable to 

peridotite.

The negative anomalies mapped in the tight grid spacing survey may also be 

caused by siliceous veining. In the wide spacing survey, such anomalies appear to be 

circular due to the kriging interpolation function. However the tight spacing survey may 

have uncovered the geometry of these smaller veins. E-W trending quartz-veins can be 

observed in a quarry cutting 300m east of the tight spacing survey.

There are two zones in the farthest north and south (classified as area 2, see figure 

6.8) where the magnetic field is relatively uniform and strong negative anomalies are not 

seen. The northernmost of these zones is over the area mapped as basement by terrain 

mapping and Kazmin and Demessie (1971). A possible explanation for this is that either 

the ultramafics or the basalts extend further than expected from geological mapping. 

Alternatively, this magnetic field could have been caused by ultramafic rocks which have 

not been silicified.

6.5. Conclusions

The results of the wide grid spacing survey are summarized by figure magintmap. 

Figure magmodel is a schematic diagram to illustrate the model suggested here to explain 

the anomalies observed in the total field during the magnetic survey. The features of this 

model are as follows:

• High Frequency Siliceous Veining: These are thin (around 10m wide) 

elongate zones of silicification. There are likely to be large slivers of 

ultramafics surrounded by quartz veining within the zone. The frequency 

of veins within the zone is likely to be greater than anywhere else in the 

survey. This results in some very low magnetic field readings directly over
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veins and some higher readings -  even within the zone -  over slivers of 

trapped ultramafic. This vein morphology could be the result of 

hydrothermal fluids passing through a zone of structural weakness perhaps 

associated with shear deformation.

• Low Frequency Siliceous Veining: This zone generally has a greater 

proportion of ultramafic than the high frequency zone described above, 

but the veining is thinner and distributed more pervasively throughout the 

host rock. The result is a generally low and variable magnetic field (see 

section 6.3.2).

• Non-silicified Ultramafic rocks: These rocks contain very little variation 

in composition and must be either ultramafic rock or basalt. The two zones 

(figure 6.11) may be different rock types but both must be generally 

homogenous and of a high magnetic susceptibility. This results in a high 

magnetic field strength which varies very little.

• Unidentified Anomalous rock: This small zone to the south, is 

completely covered by a non-silicified ultramafic rock but shows 

anomalously low total field readings. This may be related to silicification, 

but the size and restricted shape does not support this idea.

The explanation of the anomaly patterns described above is supported by the 

results of the of the close spaced grid survey (figure 6.9). The characteristics of the 

anomalies observed can be explained by the presence of a steeply dipping planar feature 

having a lower magnetic susceptibility than its surroundings. This fits well with the idea 

of a quartz vein. The location of this anomaly is in the Low frequency Siliceous Veining 

zone identified in the wide spaced survey.
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7. Soil Geochemical Data

7.1. Introduction

The Precambrian volcano-sediments and ultramafics of the WES are overlain 

by a thick and extensive laterite. As part of the exploration program in the WES, a 

total of 930 soil samples were collected from the four areas of study in this thesis. 

The samples were analysed for major and trace elements by OMAC laboratories with 

the aim of gaining an understanding of the economic value of the prospects being 

studied.

This chapter contains several sections within which the soils of the WES are 

described and observations of several key elements are made. After the sampling 

strategy and methods used to analyze the samples has been considered, a number of 

interpretation techniques have been applied to the data. As exploration data frequently 

displays gaussian distributions it was considered valuable to examine the dataset by 

using univariate statistical methods (Sinclair, 1983; Moon, 1995). This has allowed an 

understanding of the populations and modes present within the dataset, which in turn 

can be of use in evaluating PGE prospects. To compliment the statistical methods 

used, maps of the elemental distribution of Ni, Cu, Cr, Al, Pt and Pd are included and 

these are used to evaluate the use of overburden geochemistry to exploration within 

the WES.

Observations are made within this chapter which indicate a control on the 

geochemistry of the laterites in question not only by the underlying bedrock but also 

by hydromorphic dispersion.

7.2. The overburden o f  the WES

As a result of the important PGE placer deposits they contain, accounts of the 

structure and morphology of the lateritic soils in the WES occur in several 

publications the most recent of which is an MSc thesis (Childs, 2001). Other 

important documents include Augustithis (1965), Molly (1959) and Jelenc (1966), 

who all give extensive accounts of the nature of these bodies.
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Figure 7.1: A schematic diagram of the stucture of the lateritic soils in the WES.

The laterite profile o f  the WES includes three principle layers (see figure 

7.1), these are: weathered bedrock, saprolite and laterite. These are referred to locally 

as Kuha, Bondo and Chirecha respectively. Although no duricrust or hardpan layer 

exists at the top o f  the profile, in several places, patches o f  a silicifed rock known as 

the birbirite occur. Each o f  the four principle components o f  the overburden are now 

considered in turn from the bottom to the top.

Figure 7.2: The interface between the pristine (top left) and weathered bedrock (bottom right) 
in the opencast workings near Yubdo. The left of the photograph shows a quartz stock work 

which resists weathering to a greater degree than the surrounding serpentinite.
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The weathered bedrock layer (Kuha) consists o f  a green clay-rich rock 

containing fragments o f  serpentinite in various states o f  weathering, ranging from one 

centimeter to several meters in size. The thickness o f this horizon varies from around 

20cm to several meters. Quartz veins (also seen in the underlying bedrock) can be 

traced through this layer into the overlying units (figure 7.2).

Figure 7.3: A photograph indicating the position of the saprolite layer (white arrow).
Variations in the thickness of the laterite as seen in the quany near the summit at Daleti. The 

light coloured rock at the base is the pristine serpentinite, the red material at the top is the 
laterite layer and between these is the yellow saprolite layer.

Directly overlying the weathered bedrock is the saprolite layer (Bondo). In his 

extensive study o f  the soil horizons at Yubdo, Childs (2001) describes this layer as an 

extremely clay-rich yellow material. In comparison to  the other soil horizons, the 

saprolite layer is thin at around 40cm in thickness.
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The soils o f the WES are 

capped by a laterite layer which is 

well over 15m thickness in most 

places (see figure 7.4). The United 

Nations (1971) considered that this 

layer reaches at over 30m in depth 

in some parts o f  western Ethiopia. 

However, in a few instances this 

horizon may be less than 1 meter 

in thickness. It consists o f  a deep 

red, Fe-rich friable laterite. 

Resistant quartz veins are 

frequently found to be preserved 

within this horizon. The laterite is 

homogenous from the base to the 

top and no specific layers or 

barriers have been observed within 

the unit.

Figure 7.4: The extensive laterite layer in the workings 
at Yubdo. The laterite seen here is over 15m in 

thickness and the base of the horizon (the saprolite) is 
indicated by the arrow.

Large patches o f  birbirite can be found on the surface over the ultramafic 

bodies at Yubdo, Sodu, Daleti and Tulu Dimtu. These patches are generally found at 

the summits o f  these ridges. They are believed to be highly silicified and altered 

dunite (Jelenc, 1966; M olly, 1959; Augustithis, 1965). An account o f  the petrology o f 

the birbirite (including thin sections) is given in chapter 3. Although the origin o f 

these rocks is not well understood, they have only ever been found at the top o f  the 

laterite (chirecha) horizon and never in contact with pristine bedrock. Therefore, in 

this study the birbirite is considered to be part o f  the overburden.
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7.3. Sampling strategy

Soils samples were taken in traverses across open ground and in areas where 

access was not possible, the samples were taken parallel to roads but away from areas 

of human influence. They were taken within the bounds of the licence areas stated by 

the Ethiopian government. Furthermore, under the terms of their agreement with the 

government, GPM were required to take over 900 samples covering the whole licence 

area. The spatial constraints on sampling areas are described at the start of each 

section.

For the best geological use, the soil samples collected should be as close to the 

weathered bedrock as possible. However, given the depth of the laterite (often greater 

than 15m) it was impractical to collect samples close to the bedrock. In this study, the 

samples were taken from a depth of 10-20cm below the surface, within the laterite 

horizon (see section 7.2). In the poor agricultural conditions of Western Ethiopia, this 

was considered to be low enough not be influenced by humic acids from plant roots or 

human influence.

Noting the soil profile described in section 7.2, this sampling depth was 

considered to be appropriate for comparison with other samples from the same dataset 

for a number of reasons. Studies of the soil horizons in the Yubdo area (Childs, 2001) 

found no significant barriers or weathered horizons within the soil profile and 

similarly no such horizons were found in the road cutting at Daleti or Kingy. The 

laterite horizon (Chirecha) is a homogenous mass of friable soils and therefore the 

material at the top of the layer is considered to be comparable in geochemistry to that 

of the bottom.

Given the arguments made above and the absence of slump and mass wasting 

features around the laterites in the WES (United Nations, 1971) this thesis suggests 

that these soil samples are likely to reflect the in-situ geochemistry and therefore are 

suitable for exploration activities. However given that the studies of soil profiles can 

only be performed in the road cuttings or open cast workings, it was always intended 

that anomalous values would be followed up by a pitting program. Such a system of 

sampling from high in the lateritic profile and validation with samples from lower in
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the stratigraphy has been recommended through work in Australia (Smith et al., 

2000). Furthermore, some degree of hydromorphic remobilization (as described by 

Smith et al., 2000) of metals is to be expected and therefore, this needs to be 

considered when interpreting the data. The factors affecting the geochemistry of the 

soils studied are described further in section 7.5).

7.4. Method o f  Analysis

A total of 981 soil samples were analysed by OMAC Laboratories (Co 

Galway, Ireland) by two different procedures: one for Pt and Pd and another for 47 

additional elements. Considerably more detail about this method is given in the 

analytic methods section of chapter 8. For Pt and Pd analyses, each sample was 

ground to 100pm and split to 30g. Subsequently, the powders were analysed using a 

30g lead fire assay with an inductively coupled plasma finish, resulting in detection 

limits of 2ppb for both Pt, Pd and Au. For other elements, the samples were also 

ground to 100pm but they were subjected to an Aqua Regia digestion with 

Inductively Coupled Plasma -  Optical Emission Spectroscopy finish. It is necessary to 

point out that an aqua regia digestion will not be total, some of the more refractory 

minerals will not have been digested (see chapter 8).

7.5. Soil Forming processes and geochemical dispersion

7.5.1. Ni, Cu, Cr and Al

A high degree of Ni concentration in laterites is common over ultramafic units 

(Schellmann, 1989). The increase in Ni values is caused by a removal of Si and Mg 

which are both highly mobile in soils. The Ni concentration can be further facilitated 

by remobilisation to form gossans. Studies of the behaviour of Ni and Cu in the 

surficial environment are summarized by Smith et al. (2000). Ni and Cu (amongst 

other elements) are frequently used to determine the location of primary ore deposits 

covered by laterites in Australia by identifying dispersion haloes. Ni and Cu can be 

taken into solution by meteoric water, which then forms part of the aquifer system 

within the laterite body. The elements are then dispersed through the laterite in the 

direction of groundwater flow, in the same way as As groundwater contamination 

(Nickson et al., 2000).
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When partitioned into spinel minerals, Cr is known to be highly immobile. 

Unlike sulphide minerals, Cr-spinels in the WES remain intact throughout severe 

alteration (chapter 3) and weathering. Aluminium is also known to be immobile in 

soils. The immobility o f A1 means that small amounts of it will be concentrated by 

volume loss during soil formation (Schellmann, 1989). It can be expected that 

immobile elements will become concentrated in soils compared with the underlying 

rocks. This is owing to the mobile components of the rock being removed and hence a 

soil will have originated from a rock volume larger than that of the soil.

7.5.2. P tandPd

The fluids involved with the remobilisation of Pt and Pd in soils could be 

regarded as the lower temperature equivalents (~85°C according to Tarkian et al. 

1996) of those fluids involved in the high-temperature alteration (see chapter 8). In 

addition to the Cl-complexes thought to occur at high temperatures, it is possible that 

hydroxide, thiosulphate and organic complexes may be the dominant forms of 

dissolved Pt and Pd. Such situations may form from natural humic and fulvic acids 

(Bowles et al., 1995). For example, Wood (1990) reacted with aqueous solutions of 

K^PtCL* to discover that such acids can hold over 140ppm Pt in solution.

In addition to the Cl-rich fluid and hydrothermal fluid models, many studies 

have shown that PGE can be oxidised in the surficial environment (see papers in 

Bowles and Gize, 2005). For example, studies of the mineralogy of the Massive 

Sulphide Zone of the Great Dyke of Zimbabwe have shown that with progressive 

alteration, the PGM become oxidised with concomitant destruction of the sulphide 

minerals present in the fresher rock (Oberthur et al., 2003). Oberthur et al. (2003) also 

remark that -  as in hydrothermal fluids -  Pd is more mobile than Pt and is dispersed 

in the surficial environment. The preferential mobility of Pd over Pt is also observed 

by many other authors including Wood and Vlassopoulos (1990) and Bowles et al. 

(1994).

108



Chapter 7: Soil Geochemical Data

7.6. Tulu Dimtu: Selected Major and Trace elements

7.6.1. Introduction

There are 262 soil samples from the Tulu Dimtu area. Over the Tulu Dimtu 

Main Intrusion sample sites are located at intervals o f 50 to 100m in traverses across 

the western flank. The eastern flank o f  the Tulu Dimtu Main Intrusion was not studied 

due to the terms o f  the licence agreement between Golden Prospect Mining Co Ltd 

and the Ethiopian governm ent. Over the remaining areas samples were taken where 

access was available close footpaths and roads.

Geology o f Tulu Dimtu 

i  S h e a r  Z r w c
Shewed T UtrwMBlk

M a i n  I n t r u s i o n  C ' l i n o y n  r o v e w t e  
M a i n  I n t r u s i o n  O t i * i n c  I n * .  > p \  r o v e  r u l e  
M a i n  I n t r u s i o n  D u i u t c

(fchhro

Lensoid U ttram aik

UndilTeftrnlialed Rasement
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Figure 7.5: The distribution of soil samples in the Tulu Dimtu area. 

7.6.2. Summary o f  Analytical Results
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

58 1 261 100.0 Mean 6.5
55.1 0 260 99.6 Standard 8.3
52.2 0 260 99.6 Deviation
49.3 0 260 99.6 Minimum 0
46.4 0 260 99.6 Lower 0
43.5 0 260 99.6 Quartile
40.6 3 260 99.6 Median 4
37.7 0 257 98.5 Upper 9
34.8 1 257 98.5 Quartile
31.9 0 256 98.1 Maximum 58

29 1 256 98.1 Mode 0
26.1 6 255 97.7 Number o f 261
23.2 9 249 95.4 samples
20.3 8 240 92.0
17.4 11 232 88.9
14.5 10 221 84.7
11.6 19 211 80.8

8.7 28 192 73.6
5.8 63 164 62.8
2.9 20 101 38.7

0 81 81 31.0
Table 7.1: A  summary o f  the Pt values in the soil samples from Tulu Dimtu

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

31 1 261 100.0 Mean 3.0
29 0 260 99.6 Standard 3.9
28 0 260 99.6 Deviation
26 0 260 99.6 Minimum 0
25 1 260 99.6 Lower 0
23 0 259 99.2 Quartile
22 0 259 99.2 Median 2
20 0 259 99.2 Upper 4
19 0 259 99.2 Quartile
17 2 259 99.2 Maximum 31
16 2 257 98.5 Mode 0
14 4 255 97.7 Number o f 261
12 2 251 96.2 samples
11 1 249 95.4
9 2 248 95.0
8 13 246 94.3
6 33 233 89.3
5 38 200 76.6
3 53 162 62.1
2 0 109 41.8
0 109 109 41.8

Table 7.2: A  summary o f  the Pd values in the soil samples from Tulu Dimtu
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Class Upper 
Limitc Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

4869 1 261 100.0 Mean 24
4626 0 260 99.6 Standard 301
4382 0 260 99.6 Deviation
4139 0 260 99.6 Minimum 0
3895 0 260 99.6 Lower 0
3652 0 260 99.6 Quartile
3408 0 260 99.6 Median 2
3165 0 260 99.6 Upper 5
2921 0 260 99.6 Quartile
2678 0 260 99.6 Maximum 4869
2435 0 260 99.6 Mode 0
2191 0 260 99.6 Number o f 261
1948 0 260 99.6 samples
1704 0 260 99.6
1461 0 260 99.6
1217 0 260 99.6
974 0 260 99.6
730 0 260 99.6
487 0 260 99.6
243 164 260 99.6

0 96 96 36.8
Table 7.3: A  summary o f  the Au values in the soil samples from Tulu Dimtu.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

10648 1 261 100.0 Mean 2406
10116 1 260 99.6 Standard 3001
9584 1 259 99.2 Deviation
9053 5 258 98.9 Minimum 12
8521 3 253 96.9 Lower 130
7989 6 250 95.8 Quartile
7457 9 244 93.5 Median 336
6925 12 235 90.0 Upper 5288
6394 18 223 85.4 Quartile
5862 9 205 78.5 Maximum 10648
5330 12 196 75.1 Mode 103
4798 6 184 70.5 Number o f 261
4266 6 178 68.2 samples
3735 4 172 65.9
3203 1 168 64.4
2671 2 167 64.0
2139 3 165 63.2
1607 3 162 62.1
1076 7 159 60.9
544 152 152 58.2

0 0 0 0.0
Table 7.4: A summary o f  the N i values in the soil samples from Tulu Dimtu.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

146 4 261 100.0 Mean 54
139 3 257 98.5 Standard 42
132 7 254 97.3 Deviation
125 4 247 94.6 Minimum 3
117 16 243 93.1 Lower 10
110 5 227 87.0 Quartile
103 16 222 85.1 Median 50
96 10 206 78.9 Upper 88
89 12 196 75.1 Quartile
82 12 184 70.5 Maximum 146
75 11 172 65.9 Mode 6
67 12 161 61.7 Number o f 261
60 12 149 57.1 samples
53 18 137 52.5
46 12 119 45.6
39 5 107 41.0
32 12 102 39.1
24 9 90 34.5
17 13 81 31.0
10 68 68 26.1
0 0 0 0.0

Table 7.5: A  summary o f  the Cu values in the soil samples from Tulu Dimtu

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

3098 2 261 100.0 Mean 428
2944 1 259 99.2 Standard 438
2790 0 258 98.9 Deviation
2636 0 258 98.9 Minimum 18
2482 0 258 98.9 Lower 158
2328 0 258 98.9 Quartile
2174 0 258 98.9 Median 304
2020 0 258 98.9 Upper 575
1866 3 258 98.9 Quartile
1712 3 255 97.7 Maximum 3098
1558 0 252 96.6 Mode 218
1404 2 252 96.6 Number o f 261
1250 4 250 95.8 samples
1096 4 246 94.3
942 13 242 92.7
788 20 229 87.7
634 28 209 80.1
480 46 181 69.3
326 61 135 51.7
172 74 74 28.4

0 0 0 0.0
Table 7.6: A  summary o f  the Cr values in the soil samples from Tulu Dimtu.
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Class Upper 
Limit (%)

Cumulative 
Frequency Frequency

Cumulative 
Frequency (%)

7.3 1 261 100.0 Mean 3.62
7.0 7 260 99.6 Standard 1.91
6.6 8 253 96.9 Deviation
6.3 6 245 93.9 Minimum 0.4
5.9 20 239 91.6 Lower 1.4
5.6 15 219 83.9 Quartile
5.2 26 204 78.2 Median 4.0
4.9 17 178 68.2 Upper 5.1
4.5 26 161 61.7 Quartile
4.2 19 135 51.7 Maximum 7.3
3.9 7 116 44.4 Mode 1
3.5 16 109 41.8 Number o f 261
3.2 4 93 35.6 samples
2.8 8 89 34.1
2.5 6 81 31.0
2.1 4 75 28.7
1.8 4 71 27.2
1.4 23 67 25.7
1.1 30 44 16.9
0.7 14 14 5.4
0.0 0 0 0.0

Table 7.7: A summary o f  the Al values in the soil samples from Tulu Dimtu.

The following sections describe the distribution of Ni, Cu, Cr and Al in the 

soils covering the Tulu Dimtu area. It is important to remember that it is unlikely that 

complete digestion has been acheieved during the aqua regia leach of these samples. 

Each section describes one element and its distribution in the soils in turn. These 

sections are accompanied by two fold-out pages (page 123) of maps showing the 

distribution of all elements which the reader should refer to as each section is read.
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7.6.3. Nickel
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Figure 7.6: Arithmetic and Log!0 transformed histograms of Ni in the soils of the Tulu Dimtu 
area. The grey lines indicate the class-boundaries used in figure 7.12A.

Nickel is enriched only over the Tulu Dimtu M ain Intrusion and Sheared 

Ultramafic (see figure 7.12A). Two regions o f high values are observed in the soils 

overlying the M ain Intrusion. These are firstly on the flanks o f  the intrusion and 

additionally forming a N -S trending feature 1km east o f the western flank; here values 

rise to over 8000ppm (figure 7.12A). The highest value o f  Ni in the Tulu Dimtu area 

is found in the soils above the southwestern flank o f the intrusion.

There are two populations o f  Ni values in the Tulu Dimtu area. Figure 7.6 

shows that above 3000ppm (found over the Tulu Dimtu Main Intrusion and Sheared 

Ultramafic), the Ni values have an approximately normal distribution. However, the 

samples with Ni values o f  lower than 3000ppm (generally found over the basement 

units have an approxim nately log normal distribution.
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7.6.4. Copper

80

70

60
>» 50

40

u. 30

20

10

0

1 1 i  r  .............
«...1---------------
1..... • ___

1 1
.

1 1 
1 1

1 1

h l . l l l l l l i t i L L i . .

40

35

30

|  25
I 20£  15 

10 

5 

0
n .9  9 1 *  4V 3 * 0 2  M l  M l  U 1  WT.4 B i t  M t

ppm

0 * 3  0  81 0  98 M S  1.92 1.48 1 8 8  1 * 3

Log,, ppm

160

140

120

100

£  80 (L
60

40

20
0

100.0 9 0 0  8 0 *  704) 8 0 0  9 0 0  40.0 30.0 2 0 0  100  0 0

Cum ulative (%)

2.5 

2

1.5 

1

0.5

0
iooo 900 aoo to o  eojo wjo ao.q m o  20.0 to o  0.0

Cumulative (%)

Figure 7.7: Arithmetic and Log|0 transformed histograms of Cu the soils of the Tulu Dimtu 
area. The grey lines indicate the class-boundaries used in figure 7.12B.

Within the Tulu Dimtu Main Intrusion, only one soil sample -  located on the 

western flank - contains a Cu value which is above 70ppm. All remaining samples 

from soils above the Tulu Dimtu Main Intrusion have Cu values below 50ppm. 

However, over the rest of the area, Cu rises to above 90ppm in soils overlying many 

different rock formations. Although some values of less than 500ppm are found in 

soils over the basement units.

There are two populations of Cu values in the Tulu Dimtu area. Above 25ppm 

there is an approximately even distribution of Cu values (not normally distributed, see 

figure 7.7). However, an additional population of Cu values below 25ppm show a 

roughly Log normal distribution.
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7.6.5. Chromium
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Figure 7.8: Arithmetic and Logi0 transformed histograms of Cr the soils of the Tulu Dimtu 
area. The grey lines indicate the class-boundaries used in figure 7.12C.

The highest Cr values in soil (900ppm to 3098ppm) occur on the western and 

southeastern flank of the Main Intrusion and these zones also correspond to some high 

values of Cr in olivine-clinopyroxenites and clinopyroxenites (900ppm to 2728ppm, 

see figure 7.12C). Additionally, some high Cr values are found in the soils above the 

basement (several above 900ppm).

Cr values in the Tulu Dimtu area are log normally distributed and with a mode 

at around 216ppm (see figure 7.8 and table 7.12C).
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7.6.6. Aluminium
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Figure 7.9: A rithm etic and L og10 transformed histograms o f  Al the so ils o f  the Tulu Dimtu 
area. T he grey lines indicate the class-boundaries used in figure 7.12D .

Inside the Main Intrusion, the highest values of Al in soil are above the dunites 

on the west and olivine-clinopyroxenites of the southeastern flank (figure 7.12D). 

Outside the Main Intrusion, Al shows values above 4% in almost every sample.

The distribution of Al values in the Tulu Dimtu areas is erratic. It is not 

possible to determine from this study whether the values represent a multi modal 

distribution or simply an uneven distribution.

7.6.7. Summary of Ni, Cu, Cr and Al values

High Ni values are only found in the soils above the Main Intrusion and 

Sheared Ultramafics and not the basement. Conversely and unlike the basement, Cu 

values are negligible in the soils over the Main Intrusion. However, high values of Al 

occur on the same flanks of the Main Intrusion and low values in the centre.
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Al values in the soils of Tulu Dimtu show a unimodal distribution, whereas Ni 

and Cu show bimodal distributions. The distribution of Al is difficult to describe, it 

either consists of several populations or an erratic -  non normal - distribution.
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Figure 7.10: Arithmetic and Logio transformed histograms of Pt the soils of the Tulu Dimtu 
area. The grey lines indicate the class-boundaries used in figure 7.12E.
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Figure 7.11: Arithmetic and Log)0 transformed histograms of Pd the soils of the Tulu Dimtu 
area. The grey lines indicate the class-boundaries used in figure 7.12F.

In soils, Pt and Pd are enriched almost exclusively over the Main Intrusion and 

the Sheared Ultramafic (figures 7.12E and 7.12F). The highest Pt value (58ppb) in the 

Tulu Dimtu area occurs in a soil above the Sheared Ultramafic and it coincides with 

the highest Pd value, which is 31 ppb. Pd anomalies occur only in two other places 

(13ppb and 15ppb) within the centre of the Main Intrusion, most other samples have 

values below detection limits. Figure 7.12E shows that the samples where Pt>20ppb 

form a pattern trending along the northwest flank of the Main Intrusion. These high Pt 

assays (>20ppb) found on the northwestern flank drop steadily towards the centre of 

the complex -  forming a crude zonation of Pt values. None of the soil samples above 

the Lensoid Ultramafics are enriched in Pt or Pd. Furthermore, the soils above the 

Shear Zones do not contain Pt or Pd.

An area with slightly anomalous Pd values in soil occurs over the basement 

4km southwest of the Main Intrusion. In this area four samples show Pt below 

detection limits and Pd in the range 13ppb to 16ppb.
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When displayed on an arithmetic scale (see figure 7.10 and 7.11) the Pt and Pd 

distributions appear to be Log normal. However a logarithmic scale reveals that the Pt 

and Pd values in the soils of the Tulu Dimtu area show an erratic distribution.

7.6.9. Discussion

7.6.10. Ni, Cu, Cr, and Al distribution in soils

It is observed that the distribution of Ni over the Tulu Dimtu area is the 

opposite of the Cu distribution. The highest values of Ni and lowest values of Cu 

occur only over the ultramafic lithologies as defined by geological mapping (chapter 

5) and by the interpretation of aerial photography (chapter 4). Additionally, a zone of 

high Cr values is seen in the soils over the western and southern flanks of the Main 

Intrusion. Al also shows anomalously high values over the same areas, in addition to 

the high values seen over the basement.

There are two possible explanations for the marked change in Ni and Cu 

values across the boundary between the Main Intrusion and the basement. Firstly, the 

change could be reflecting the change in rock-type below and secondly, the Cu may 

have been remobilized from the soils above the ultramafic rocks and redeposited at 

the base of the slope.

If the high increase in Cu values at the contact of the Tulu Dimtu Main 

Intrusion with the basement were solely due to hydromorphic dispersion then those 

high values would only be expected at the base of the slope. However, analysis of the 

aerial photographs (chapter 4) shows that high Cu values are also found in soils above 

the basement many of which are located at ridge summits. However, given the porous 

nature of the laterite and frequent rains in the area it is likely that hydromorphic 

dispersion will have had some effect on the Cu distribution, in combination with the 

effect from the relict rocks. This combined effect is discussed further in section 7.10.

The poor exposure means that the western boundary of the Tulu Dimtu Main 

Intrusion has been defined principally by the change in vegetation (chapter 4). The 

change in Ni and Cu concentrations across the same boundary supports the validity of
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this method of geological mapping and suggests that some form of biogeochemical 

change has occurred. A high degree of Ni concentration in laterites is common over 

ultramafic units (Schellmann, 1989).

When partitioned into spinel minerals, Cr is known to be highly immobile. 

Unlike sulphide minerals, in the WES, Cr-spinels often remain intact throughout 

severe alteration (chapter 3) and also weathering. Therefore the locations of high Cr 

values in soils can be considered as being in-situ -  given that soil transport is likely to 

have been minimal. Given that the high Cr values in soils show the same patterns and 

locations as those seen in altered and fresher rocks (see chapter 8), the distances by 

which these soils have moved are considered to be low (~<10m).

Aluminium is also known to be immobile in soils and therefore it is to be 

expected that Al may be present in the soils above the basement, given the high 

proportion of alumino-silicates in the underlying rocks. The zone of high Al at the 

flanks of the Main Intrusion is less easy to explain. The immobility of Al means that 

small amounts of it will be concentrated by volume loss during soil formation. The 

fresher ultramafics of Tulu Dimtu contain 1% Al at most and these values could 

potentially be increased to 4% if the volume loss effect of hydrothermal alteration 

acting at the flanks of the intrusion is also taken into account (see chapter 8).

7.6.11. Genesis o f Pt and Pd in soils

In the Tulu Dimtu area, Pt is enriched over the soils of the Main Intrusion but 

not over the Lensoid Ultramafics. Also, a greater proportion of soil samples compared 

to rock samples are enriched in Pt to greater than 20ppb (see figures 7.12E and 

7.12F). Theoretically, it is known that the high Eh, acid and chloride-rich conditions 

in lateritic soil covers can mobilise the PGE (see section 7.5.2). The predominance of 

Pt over Pd in the soils above the Tulu Dimtu Main Intrusion may be attributed to 

prefential leaching of Pd during the soil-formation. The Pt acts as a less mobile 

element and is retained within the soil. The increased proportion of Pt-bearing soil 

samples compared to rock samples over the Main Intrusion may be attributed to either 

the loss in volume from rock to soil or to the reconcentration of Pt within the lateritic 

conditions (as proposed by Bowles, 1995; see section 7.5.2). It is not possible to
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assess the behaviour of Pt and Pd in the soils overlying the Lensoid Ultramafics 

because the rock samples are located far from the soil samples.

7.6.12. Conclusion

The distribution of Ni and Cu in the Tulu Dimtu area is likely to have been 

partially influenced by the geochemistry of the underlying rocks. However, it is likely 

that hydromorphic dispersion will have had an additional influence. Cr and Al have 

both acted as immobile elements and may reflect the same patterns seen in primary 

rocks (see chapter 8).

Redistribution of Pt and Pd is observed in the soils above the Tulu Dimtu 

Main Intrusion (see chapter 8). It is likely that Pt acted as a less mobile element and 

Pd was taken into solution. Consequently, Pd will have been leached out and some Pt 

may remain. The increase in Pt values from rock to soil may be accounted for by 

either by the volume change from rock to soil or by the reconcentration of Pt within 

the lateritic conditions as first suggested by Ottemann and Augustithis (1967).
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7. 7. Kingy: Selected Major and Trace Elements

7.7.1. Introduction

There are 201 soil samples from the Kingy area. Rock samples were taken 

where possible along roads and tracks (see figure 7.13). Due to dense vegetation, soil 

samples from the Kingy Ridge Ultramafic were only taken along the flanks, where the 

tracks occur. These samples were taken at 100 to 300m intervals parallel to roads and 

then only away from human influence.

L o c a t i o n  o f  a o t l  s a m p l e s
Geology o f  Kingy

I  S h e a r  Z o n e

|  K i n g y  R j t l g c  U l r r a n n t i c  
P H I  E x t r a  T J l t r a m a & c

Gnbbro

L c o s o u l  I J l t r a m a t i c
U m l i f l c r c n f i a t c d  B a s e m e n t

Figure 7.13: The distribution of soil samples in the Kingy area.
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7.7.2. Summary of Analytical Results

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

69 1 201 100.0
66 0 200 99.5 Mean 4.4
62 0 200 99.5 Standard 7.1
59 0 200 99.5 Deviation
55 0 200 99.5 Minimum 0
52 0 200 99.5 Lower 0
48 0 200 99.5 Quartile
45 0 200 99.5 Median 3
41 0 200 99.5 Upper 5
38 0 200 99.5 Quartile
35 1 200 99.5 Maximum 69
31 1 199 99.0 Mode 0
28 0 198 98.5 Number of 201
24 1 198 98.5 samples
21 3 197 98.0
17 11 194 96.5
14 5 183 91.0
10 17 178 88.6
7 39 161 80.1
3 43 122 60.7
0 79 79 39.3

Table 7.8: A summary o f the Pt values in the soil samples from the Kingy area.

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

71 1 201 100.0
67 0 200 99.5
64 0 200 99.5 Mean 5.1
60 0 200 99.5 Standard 7.1
57 0 200 99.5 Deviation
53 0 200 99.5 Minimum 0
50 0 200 99.5 Lower 0
46 0 200 99.5 Quartile
43 0 200 99.5 Median 4
39 0 200 99.5 Upper 7
36 1 200 99.5 Quartile
32 1 199 99.0 Maximum 71
28 1 198 98.5 Mode 0
25 0 197 98.0 Number of 201
21 1 197 98.0 samples
18 6 196 97.5
14 11 190 94.5
11 25 179 89.1
7 59 154 76.6
4 32 95 47.3
0 63 63 31.3

Table 7.9: A summary ojfthe Pd values in the soil samples from the Kingy area.
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Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

304 1 201 100.0
289 0 200 99.5
274 0 200 99.5 Mean 10
258 0 200 99.5 Standard 26
243 0 200 99.5 Deviation
228 0 200 99.5 Minimum 0
213 0 200 99.5 Lower 2
198 0 200 99.5 Quartile
182 0 200 99.5 Median 4
167 0 200 99.5 Upper 9
152 0 200 99.5 Quartile
137 1 200 99.5 Maximum 304
122 1 199 99.0 Mode 2
106 0 198 98.5 Number of 201
91 0 198 98.5 samples
76 2 198 98.5
61 1 196 97.5
46 3 195 97.0
30 18 192 95.5
15 148 174 86.6
0 26 26 12.9

Table 7.10: A summary o f the Au values in the soil samples from the Kingy area.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

6976 1 201 100.0
6627 1 200 99.5
6279 0 199 99.0 Mean 460.9
5930 0 199 99.0 Standard 999.8
5581 0 199 99.0 Deviation
5232 0 199 99.0 Minimum 1
4884 0 199 99.0 Lower 29
4535 2 199 99.0 Quartile
4186 1 197 98.0 Median 86
3837 0 196 97.5 Upper 345
3489 2 196 97.5 Quartile
3140 2 194 96.5 Maximum 6976
2791 3 192 95.5 Mode 29
2442 2 189 94.0 Number of 201
2094 2 187 93.0 samples
1745 4 185 92.0
1396 5 181 90.0
1047 5 176 87.6
699 20 171 85.1
350 151 151 75.1

0 0 0 0.0
Table 7.11: A summary of the Ni values in the soil samples from the Kingy area.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

188 2 201 100.0
179 2 199 99.0
170 4 197 98.0 Mean 80.0
160 2 193 96.0 Standard 41.3
151 2 191 95.0 Deviation
142 5 189 94.0 Minimum 4
133 11 184 91.5 Lower 49
124 15 173 86.1 Quartile
114 13 158 78.6 Median 80
105 19 145 72.1 Upper 108
96 16 126 62.7 Quartile
87 13 110 54.7 Maximum 188
78 18 97 48.3 Mode 90
68 18 79 39.3 Number of 201
59 7 61 30.3 samples
50 17 54 26.9
41 8 37 18.4
32 6 29 14.4
22 12 23 11.4
13 11 11 5.5
0 0 0 0.0

Table 7.12: A summary of the Cu values in the soil samples from the Kingy area.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

3861 1 201 100.0
3668 0 200 99.5
3475 0 200 99.5 Mean 481
3282 0 200 99.5 Standard 601
3089 0 200 99.5 Deviation
2896 0 200 99.5 Minimum 0
2703 1 200 99.5 Lower 83
2510 3 199 99.0 Quartile
2317 2 196 97.5 Median 258
2124 1 194 96.5 Upper 635
1931 3 193 96.0 Quartile
1737 2 190 94.5 Maximum 3861
1544 4 188 93.5 Mode 55
1351 7 184 91.5 Number of 201
1158 9 177 88.1 samples
965 8 168 83.6
772 13 160 79.6
579 19 147 73.1
386 43 128 63.7
193 84 85 42.3

0 1 1 0.5
Table 7.13: A summary of the Cr values in the soil samples from the Kingy area.
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Class Upper 
Limit (%) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

8.4 1 201 100.0
8.0 3 200 99.5
7.6 4 197 98.0 Mean 4.2
7.2 4 193 96.0 Standard 1.6
6.9 4 189 94.0 Deviation
6.5 11 185 92.0 Minimum 0.7
6.1 11 174 86.6 Lower 3.1
5.7 10 163 81.1 Quartile
5.3 13 153 76.1 Median 4.1
4.9 19 140 69.7 Upper 5.2
4.6 17 121 60.2 Quartile
4.2 25 104 51.7 Maximum 8.4
3.8 19 79 39.3 Mode 3.6
3.4 12 60 29.9 Number of 201
3.0 10 48 23.9 samples
2.6 12 38 18.9
2.2 13 26 12.9
1.9 8 13 6.5
1.5 3 5 2.5
1.1 2 2 1.0
0.0 0 0 0.0

Table 7.14: A summary o f the Al values in the soil samples from the Kingy area.

The following sections cover the distribution of Ni, Cu, Cr and Al in the 

Kingy area. It is important to remember that it is unlikely that complete digestion has 

been acheieved during the aqua regia leach of these samples. Each section covers one 

element and describes its distribution in turn.
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7.7.3. Nickel
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Figure 7.14: Arithmetic and Log10 transformed histograms of Ni the soils of the Kingy area. 
The grey lines indicate the class-boundaries used in figure 7.20A.

The highest Ni value in the soil samples was found over the large northeastern 

Lensoid Ultramafic. Another sample containing high Ni in soil (3395ppm) occurs 

over the shear-zone between the extra-ultramafic and Kingy Ridge Ultramafic. An 

isolated Ni-rich soil (4408ppm) occurs 500m west o f the northeastern Lensoid 

Ultramafic. Any other Ni values above lOOppm are located close to or over ultramafic 

complexes.

The Ni values in the Kingy area show an approximately unimodal Log normal 

distribution with a mode at around 29ppm.
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7.7.4. Copper
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Figure 7.15: Arithmetic and Logi0 transformed histograms of Cu the soils of the Kingy area. 
The grey lines indicate the class-boundaries used in figure 7.20B.

Cu values in soils are frequently over 150ppm above both the ultramafics and 

basement, this value may also fall to below 60ppm over all rock formations. The 

highest Cu value in a soil sample occurs above a shear zone near the Extra Ultramafic 

and may fall as low as 7ppm in soils overlying the basement.

The Cu values in the Kingy area are distributed in an erratic manner. It is not 

possible here to determine if  this distribution is an erratic normal distribution or 

whether there is actually more than one population. Analysis o f  the logarithmic scale 

histogram (figure 7.15) raises the possibility that there may be two normally 

distributed populations. However, this is not shown on the arithmetic scaled 

histogram.
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Chromium
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Figure 7.16: Arithmetic and LogI0 transformed histograms of Cr the soils of the Kingy area. 
The grey lines indicate the class-boundaries used in figure 7.20C.

Soils with greater than 200ppm Cr only occur over the ultramafic complexes 

or in soils close to ultramafic complexes (see figure 7.20C). However, the highest Cr 

values in soil occur close to an isolated gabbro in the southeast at up to 3861 ppm.

The Cr values in the Kingy area show a log normal distribution with a mode at 

around 400ppm with a slight negative skew.
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Aluminium
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Figure 7.17: Arithmetic and Log)0 transformed histograms of Al the soils of the Kingy area. 
The grey lines indicate the class-boundaries used in figure 7.20D.

The soil samples from near the quartzites to the southwest o f the Kingy Ridge 

Ultramafics display the highest Al abundance from 4.5% up to 8.4%. However the Al 

abundance elsewhere is more erratically distributed and high values (>6.0%) are 

found over both the ultramafic units and the basement.

The Al values in the Kingy area are approximately normally distributed with a 

mode at around 4.0%. It is possible that an additional population exists with a mode at 

around 2.5%.

7.7.7. Summary o f Ni, Cu, Cr and Al values

In the Kingy Ridge Ultramafic and the Extra Ultramafic -  and notably not the 

isolated gabbro - high Cr and Ni values in soils are located solely over the ultramafic 

units and soils close by. Unlike Ni and Cr, Cu can rise to above 1 lOppm over all units, 

similarly Al can rise to over 6% over most formations. The soils around the isolated 

gabbro body are also elevated to over 3000ppm in Cr (figure 7.20C).
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All four elements have distributions which are dominantly unimodal, although 

more detailed analysis may reveal additional populations for Ni and Al. Al shows a 

arithmetic normal distribution whereas Ni, Cu, and Cr all show log normal 

distributions.

7.7.8. Platinum and Palladium
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Figure 7.18: Arithmetic and LogI0 transformed histograms of Pt the soils of the Kingy area. 
The grey lines indicate the class-boundaries used in figure 7.20E.
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Figure 7.19: Arithmetic and Logio transformed histograms of Pd the soils of the Kingy area. 
The grey lines indicate the class-boundaries used in figure 7.20F.

The highest values for Pt and Pd in soil samples (69ppb and 71ppb 

respectively) occur in the same sample close to an isolated gabbro body in the 

southeast o f the Kingy area. Two samples close by also assay for Pt and Pd at values 

>12ppb (see figures 7.20E and 7.20F). Elsewhere, the highest Pt value in soil is 34ppb 

which occurs above the large northeastern Lensoid Ultramafic. Pt values in the soils 

o f the Kingy Ridge Ultramafic range from 27ppb at the northeastern end to below 

detection limits in the southwestern end.

Figures 7.20E amd 7.20F shows a clear divide in Pt and Pd values between the 

soils o f the northeastern and southwestern areas around Kingy. The northwestern 

basement is characterized by Pd values frequently over 12ppb and no samples show 

Pt at above 7ppb. The Extra Ultramafic and the large northeastern Lensoid Ultramafic 

also show Pd values frequently above 12 ppb however Pt also assays above 12ppb in 

many samples. However, towards the northeastern end o f the ridge, the soils become 

richer in Pt (up to 29ppb) but still without significant Pd values (all below lOppb).

Pt dominates soils over the Kingy Ridge Ultramafic, unlike the northwestern 

basement where Pd dominates. Pt rises above 12ppb 13 times over the Kingy Ridge
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Ultramafic but does not rise above 9ppb over the northeastern basement (figure 

7.20E). Additionally, high Pt and Pd values are more common in soils than rocks.

The highest grades of both Pt and Pd in the whole Kingy area are in a soil 

sample above the isolated gabbro in the southeastern comer of the area. However, the 

soils elsewhere in the Kingy area, show Pt and Pd anomalies in very different areas 

(see figure 7.20E and 7.20F).

On the arithmetic scale (figure 7.18 and 7.19) both Pt and Pd seem to have 

approximately log normal distributions. However on a log scale, only Pd shows a 

roughly log normal distribution and Pt seems much more uneven.

7.7.9. Discussion

7.7.10. Trace Element distribution in soils

Except for the isolated gabbro (see chapter 5) all high Cr and Ni values in soils 

of the Kingy area only occur over the ultramafic units. However, high Cu and A1 

values are observed over all formations. The high Cr, Cu and Ni values observed 

above the ultramafic units are to be expected and these reflect the geochemistry of the 

underlying rocks. Additionally the elevated A1 content of the soils is to be expected as 

this immobile element will be concentrated even from the low amounts seen in the 

rocks from the Kingy Ridge Ultramafic.

7.7.11. Genesis of Pt and Pd in soils

The distribution of Pt and Pd values in the soils from the Kingy area show a 

distinct geographical split between the two elements (see figures 7.20E and 7.20F). Pd 

is concentrated mainly in the soils over the basement of the northwest and the Pt is 

concentrated over the Kingy Ridge area -  although a few anomalous Pd values also 

occur.

As discussed in section 7.5.2, Pt and Pd are likely to be concentrated in the 

soils above PGE-bearing ultramafic complexes and some Pd may also be lost between 

the rocks and soils. It appears that Pt is more extensively mineralised in soils than in
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the rocks over the Kingy Ridge Ultramafic. It is possible that due to the large volume 

of rock from which a thick laterite is formed (several times greater than the thickness 

of the laterite itself) small amounts of the immobile Pt may have become 

concentrated. At the same time as the immobile Pt particles are concentrated, the 

mobile Pd is leached out. In the soils above the Kingy Ridge Ultramafic, the relative 

distributions of Pt and Pd in soils versus rock support the hypothesis that Pd is more 

mobile than Pt in lateritic soils.

Given the mobility differences described above, it is hard to understand the 

origins of the Pd concentration observed over the basement in the northwest where the 

laterites are known to be of a similar thickness to those from the Kingy Ridge areas. If 

Pd is mobile in the fluids of lateritic covers from the Kingy Ridge why is it retained in 

the soils seen here? It is possible that there are some different aqueous conditions 

occurring in these laterites due to a different protolith (metavolcanic and meta 

sedments as opposed to ultramafic) whereby Pd becomes immobile. However, there is 

also a difference in vegetation type seen from aerial photography (chapter 4) between 

this area and the Kingy Ridge Ultramafic and it is conceivable that biochemical 

factors may have caused Pd to complex with humic or fulvic acid as a locked 

molecule.

The primary source of the Pd in the soils from the northwest of the Kingy area 

could be attributed to some Pd-bearing (9 or lOppb) Shear Zones and gabbros (see 

figure 7.20F). However, the Pd distribution in the soils covers a wider area than the 

known extent of these exposures and therefore hints towards a larger system of Pd- 

bearing rocks not yet exposed.

The highest Pt and Pd values in soils occur above the isolated gabbro exposure 

in the southeast. Lack of further geological information about this area precludes 

precludes a definite conclusion however the presence of a high Cu value in soil hints 

towards either magmatic or hydrothermal origin. This area merits further 

investigation.

7.7.12. Conclusions
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The distribution of Ni and Cr over the ultramafic complexes in the Kingy area 

suggests that their distribution is connected to the underlying lithotypes. However Cu 

and A1 show no particular pattern with lithotype.

The extent of Pt mineralisation in the soils overlying the Kingy Ridge 

Ultramafic is wider than seen in the fresher rocks, which may be attributed to either 

volume loss from rock to soil or by in-situ remobilisation of Pt and Pd. The most 

striking feature of the Pt and Pd distribution in soils from the Kingy area is the 

division between northwest and southeast, the origin of this pattern cannot be 

ascertained here.
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7.8. Daleti, Ankori, Tulu Kapi and Keley: Selected Major and Trace Elements

7.8.1. Introduction

There are 240 soil samples from the area in question. Over the Daleti 

Ultramafic samples were taken at a spacing of 300m where access was possible. 

Elsewhere, samples were taken along roads and tracks at 300m intervals (see figure 
7.21).

A  Locations of soil samples

G eology o fD a le l i .  Keley and Ankori 

Basalt

Shear zone
: -k1
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Figure 7.21: The distribution of soil samples in the Daleti, Ankori, Tulu Kapi and Keley areas.
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7.8.2. Summary of Analytical Results

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

34 2 240 100.0
32 0 238 99.2
31 0 238 99.2 Mean 1.8
29 0 238 99.2 Standard 4.5
27 0 238 99.2 Deviation
26 0 238 99.2 Minimum 0
24 0 238 99.2 Lower 0
22 1 238 99.2 Quartile
20 0 237 98.8 Median 0
19 1 237 98.8 Upper 2
17 1 236 98.3 Quartile
15 3 235 97.9 Maximum 34
14 2 232 96.7 Mode 0
12 1 230 95.8 Number of 240
10 5 229 95.4 samples
9 2 224 93.3
7 3 222 92.5
5 15 219 91.3
3 35 204 85.0
2 0 169 70.4
0 169 169 70.4

Table 7.15: A summary o f the Pt values in the soil samples from the Daleti, Ankori,
Kapi areas.

Class Upper Cumulative Cumulative
Limit (ppb) Frequency Frequency Frequency (%)

48 1 240 100.0
46 1 239 99.6 Mean 2.0
43 0 238 99.2 Standard 5.6
41 0 238 99.2 Deviation
38 0 238 99.2 Minimum 0
36 0 238 99.2 Lower 0
34 0 238 99.2 Quartile
31 0 238 99.2 Median 0
29 1 238 99.2 Upper 3
26 0 237 98.8 Quartile
24 0 237 98.8 Maximum 48
22 1 237 98.8 Mode 0
19 3 236 98.3 Number of 240
17 0 233 97.1 samples
14 2 233 97.1
12 3 231 96.3
10 5 228 95.0
7 14 223 92.9
5 30 209 87.1
2 11 179 74.6
0 168 168 70.0

Table 7.16: A summary of the Pd values in the soil samples from the Daleti, Ankori, and Tulu
Kapi areas.
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Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

17639 1 240 100.0
16757 0 239 99.6 Mean 99
15875 0 239 99.6 Standard 1145
14993 0 239 99.6 Deviation
14111 0 239 99.6 Minimum 0
13229 0 239 99.6 Lower 2
12347 0 239 99.6 Quartile
11465 0 239 99.6 Median 4
10583 0 239 99.6 Upper 10.25
9701 0 239 99.6 Quartile
8820 0 239 99.6 Maximum 17639
7938 0 239 99.6 Mode 2
7056 0 239 99.6 Number of 240
6174 0 239 99.6 samples
5292 0 239 99.6
4410 0 239 99.6
3528 0 239 99.6
2646 1 239 99.6
1764 1 238 99.2
882 202 237 98.8

0 35 35 14.6
Table 7.17: A summary o f the Au values in the soil samples from the Daleti, Ankori, and Tulu

Kapi areas.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

19266 1 240 100.0
18303 0 239 99.6
17340 1 239 99.6 Mean 459
16378 1 238 99.2 Standard 2161
15415 0 237 98.8 Deviation
14452 0 237 98.8 Minimum 10
13489 0 237 98.8 Lower 29
12526 0 237 98.8 Quartile
11564 0 237 98.8 Median 38
10601 0 237 98.8 Upper 57
9638 1 237 98.8 Quartile
8675 2 236 98.3 Maximum 19266
7712 0 234 97.5 Mode 41
6750 1 234 97.5 Number of 240
5787 0 233 97.1 samples
4824 0 233 97.1
3861 1 233 97.1
2898 0 232 96.7
1936 6 232 96.7
973 226 226 94.2

0 0 0 0.0
Table 7.18: A summary of the Ni values in the soil samples from the Daleti, Ankori, and Tulu

Kapi areas.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

366 1 240 100.0
348 0 239 99.6
330 0 239 99.6 Mean 50.4
311 0 239 99.6 Standard 35.6
293 0 239 99.6 Deviation
275 0 239 99.6 Minimum 2
257 0 239 99.6 Lower 32
239 0 239 99.6 Quartile
220 0 239 99.6 Median 42
202 0 239 99.6 Upper 60
184 1 239 99.6 Quartile
166 1 238 99.2 Maximum 366
148 4 237 98.8 Mode 39
129 5 233 97.1 Number of 240
111 10 228 95.0 samples
93 17 218 90.8
75 23 201 83.8
57 82 178 74.2
38 70 96 40.0
20 26 26 10.8

0 0 0 0.0
Table 7.19: A summary o f the Cu values in the soil samples from the Daleti, Ankori,

Kapi areas.

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

3056 1 240 100.0
2904 1 239 99.6
2752 1 238 99.2 Mean 243
2599 0 237 98.8 Standard 432
2447 0 237 98.8 Deviation
2295 1 237 98.8 Minimum 12
2143 0 236 98.3 Lower 76
1991 0 236 98.3 Quartile
1838 1 236 98.3 Median 104
1686 1 235 97.9 Upper 154
1534 3 234 97.5 Quartile
1382 3 231 96.3 Maximum 3056
1230 0 228 95.0 Mode 103
1077 1 228 95.0 Number of 240
925 2 227 94.6 samples
773 8 225 93.8
621 8 217 90.4
469 6 209 87.1
316 20 203 84.6
164 183 183 76.3

0 0 0 0.0
Table 7.20: A summary o f the Cr values in the soil samples from the Daleti, Ankori, and Tulu

Kapi areas.
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Class Upper 
Limit (%) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

7.4 1 240 100.0
7.0 1 239 99.6
6.7 2 238 99.2 Mean 3.82
6.3 5 236 98.3 Standard 1.24
6.0 10 231 96.3 Deviation
5.6 17 221 92.1 Minimum 0.2
5.2 15 204 85.0 Lower 3.0
4.9 21 189 78.8 Quartile
4.5 19 168 70.0 Median 3.7
4.2 27 149 62.1 Upper 4.7
3.8 32 122 50.8 Quartile
3.4 28 90 37.5 Maximum 7.4
3.1 15 62 25.8 Mode 3.6
2.7 23 47 19.6 Number of 240
2.4 12 24 10.0 samples
2.0 2 12 5.0
1.6 3 10 4.2
1.3 4 7 2.9
0.9 1 3 1.3
0.6 2 2 0.8
0.0 0 0 0.0

Table 7.21: A summary o f the A1 values in the soil samples from the Daleti, Ankori, and Tulu
Kapi areas.

The following sections cover the distribution of Ni, Cu, Cr and A1 in the 

Daleti, Ankori, Tulu Kapi and Keley areas. It is important to remember that it is 

unlikely that complete digestion has been acheieved during the aqua regia leach of 

these samples. Each section covers one element and describes its distribution in the 

soils.
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7.8.3. Nickel
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Figure 7.22: Arithmetic and Logio transformed histograms of Ni the soils o f the Daleti,
Ankori, Tulu Kapi and Keley areas. The grey lines indicate the class-boundaries used in figure

7.28A.

High values of Ni in soil (over 1120ppm) are only seen in two areas, over the 

Daleti Ultramafic and the Ankori Ultramafic. The highest value of Ni in soil 

(19,266ppm) is seen over the Daleti Ultramafic. As with the fresher rocks, a high 

degree of local variation (within 250m) in Ni values is seen in soils (see figure 

7.28A).

The Ni values in the soils of the Daleti, Ankori, Tulu Kapi and Keley areas 

show a positively skewed log normal distribution with a mode at around 41 ppm.
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7.8.4. Copper
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Figure 7.23: Arithmetic and Log|0 transformed histograms of Cu the soils of the Daleti, 
Ankori, Tulu Kapi and Keley areas. The grey lines indicate the class-boundaries used in figure

7.28B.

Cu values in soil above the Daleti, Ankori and Keley ultramafic complexes are 

all below 120ppm and some Cu analyses fall below detection limits. The highest 

value o f  Cu in soil (366ppm) occurs above the Lensoid Ultramafic bearing the highest 

value o f  Cu in rock, near Keley. The two other high values o f  Cu in soil occur above 

basement rocks to the north and south o f the Ankori complex (<183ppm).

The Cu values in the Daleti, Ankori, Tulu Kapi and Keley areas show a near 

symmetrical, log normal distribution with a mode at 1.6%.
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7.8.5. Chromium
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Figure 7.24: Arithm etic and L og]0 transformed histograms o f  Cr the soils o f  the Daleti, 
Ankori, Tulu Kapi and K eley areas. The grey lines indicate the class-boundaries used in figure

7.28C.

All Cr values in soil o f above lOOOppm are only found above the ultramafic 

complexes. As with the rock samples (see chapter 8), the highest Cr values in soil 

above the Daleti Ultramafic (3,056ppm) are found in the centre o f the complex and 

the lowest occur over the contact with the shear zones to the north (308ppm).

The distribution o f the Cr values in the Daleti, Ankori, Tulu Kapi and Keley 

areas is log normal and near symmetrical, the mode lies at around lOOppm.
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Figure 7.25: Arithmetic and Logi0 transformed histograms of A1 the soils of the Daleti, 
Ankori, Tulu Kapi and Keley areas. The grey lines indicate the class-boundaries used in figure

7.28D.

A1 contents in soils are broadly similar over all formations of the Daleti area 

and A1 values below detection occurr throughout the area. The highest A1 values in 

soils above the Daleti Ultramafic (5.0%) are found in the centre o f the intrusion, 

closely associated with some analyses which are as low as 0.2%.

There is a slightly uneven unimodal normal distribution o f A1 values in the 

soils o f the Daleti, Ankori, Tulu Kapi and Keley areas. The mode lies at around 3.6%.

7.8.7. Summary o f Ni, Cu, Cr and A1 values

High Ni values in soil are only seen above the Daleti and Ankori complexes. 

Unlike Ni, Cu values in soils from the Daleti Ultramafic do not rise to the same high 

values which can be seen over the basement. The one exception to this is that the 

highest Cu value from the area (366ppm) occurs in a soil sample from above the 

Lensoid Ultramafic. The highest Cr values occur above the ultramafic complexes, 

whereas A1 can occur at high values over all formations.
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Ni, Cu, and Cr values in the soils o f the Daleti, Ankori, Tulu Kapi and Keley 

areas all show clear log normal distributions. However, A1 shows an arithmetic 

normal distribution. In all three cases, there only one population has been found.

7.8.8. Platinum and Palladium
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Figure 7.26: Arithmetic and Log10 transformed histograms of Pt the soils of the Daleti, 
Ankori, Tulu Kapi and Keley areas. The grey lines indicate the class-boundaries used in figure

7.28E.
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Figure 7.27: Arithmetic and Logi0 transformed histograms of Pd the soils of the Daleti, 
Ankori, Tulu Kapi and Keley areas. The grey lines indicate the class-boundaries used in figure

7.28F.

Pt and Pd are present above detection limits in the soils from only two 

locations in the Daleti area. The highest values in the soils o f the Daleti area occur in 

two soil samples above the centre of the Ankori complex, these have both returned 

assays o f 34ppb for Pt and 45ppb and 48ppb for Pd. One soil sample in the southwest 

of the area returned values o f 22ppb for Pt and 27ppb for Pd (see figures 7.28E and 

7.28F). There are 9 soil samples where both Pt and Pd return assay results between 10 

and 30ppb, these are all located above the Ankori complex. All soils above the Daleti 

Ultramafic have returned assays for Pt and Pd which are below detection limits.

Figures 7.26 and 7.27 show that the distribution o f Pt an Pd values within the 

Daleti and Ankori areas is erratic and does not show typical normal or log normal 

distributions.
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7.8.9. Discussion

7.8.10. Trace element distribution in soils

With one exception, the highest Ni values in soil occur over the ultramafic

bodies whereas the highest Cu values occur over the basement. The exception occurs 

at Keley where the highest Cu value in soil occurs over a dunite body. The high Cu 

value at Keley can be explained as it reflects the high Cu value found in rock (see 

chapter 8). It is common to find Ni-rich lateritic bodies over ultramafic complexes 

(Schellmann, 1989; Schellmann, 1971). It is notable that, high Cu values occur in 

soils at ridge summits and hence it appears that the element acts as an immobile 

element in the soils above the basement but also in the ultramafics where it exists in 

the underlying rocks. The Cu values found in the soils above the basement may have 

originated from Cu-bearing veins which have scavenged the element from the 

ultramafic intrusions. The clear-boundaries between Ni and Cu distribution co-incide 

with the contacts mapped in this study and therefore these elements validate the 

mapping technique.

7.8.11. Genesis of Pt and Pd in soils

Soil samples at only two locations studied in this section contain Pt or Pd 

values of above 20ppb, one at the southwestern basement and one above the Ankori 

complex. The soils above the Daleti Ultramafic are entirely barren of both elements. 

As expected, both of the soil anomalies lie close to high Pt and Pd values in rock (see 

figures 7.28E, 8.10E, 7.28F and 8.1 OF). These soils probably represent the weathered 

equivalent of the PGE-bearing rocks.

There is an absence of PGE-bearing soils over many other Pt and Pd bearing 

complexes. Furthermore, the highest value PGE-bearing soils from the Ankori 

complex does not co-coincide with the locations of highest Pt and Pd values in rock. 

This difference in location of the rock and soil anomalies in the Ankori Ultramafic 

may be due to soil transport. However the lack of Pt and Pd over the other complexes 

cannot be explained here.
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7.8.12. Conclusions

Both Ni and Cr show high values solely over the ultramafic intrusions whereas 

A1 and Cu show high values over many formations, including the basement. Some 

notably high (>19,000ppm) Ni values occur in the laterites covering the Daleti 

Ultramafic. Significant Pt and Pt values are only found in two places, the Ankori 

complex and the soils around a system of shear zones to the southwest of Gudeya 

Guji (see figures 7.28E and 7.28F).
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7.9. Yubdo, Andu and Sodu: Selected Major and Trace Elements

7.9.1. Introduction

A total of 227 soil samples were taken along road traverses. The samples were 

taken at 100 to 300m intervals parallel to roads and away from human influence (see 

figure 7.29). Large tracts of the Main Yubdo Ultramafic were not sampled under the 

exploration licence agreement with the ministry of mines.

▲  T . o e a l k w t s o f s o i l  s a m p l e s  [
The Cicolog} of Y ubdo 

I Basalt

C l i n o p v i o x c t u t c
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D u i K t c
L c o a o i d  U l t r a n u j f i c s

CD S u s p e c t e d  1 1

□ B a s e m e n t  1
CD B a s e m e n t  2
□ B a s e m e n t  3
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B a s e m e n t  5
□ B a s e m e n t  6
□ B a s e m e n t  7
□ B a s e m e n t  8
m B a s e m e n t  9

Figure 7.29: The distribution of soil samples in the Yubdo, Andu and Sodu areas.
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7.9.2. Summary of Analytical Results

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

232 1 227 100.0
220 0 226 99.6
209 0 226 99.6 Mean 4.7
197 1 226 99.6 Standard 25.0
186 0 225 99.1 Deviation
174 0 225 99.1 Minimum 0
162 1 225 99.1 Lower 0
151 0 224 98.7 Quartile
139 0 224 98.7 Median 0
128 1 224 98.7 Upper 0
116 0 223 98.2 Quartile
104 1 223 98.2 Maximum 232
93 0 222 97.8 Mode 0
81 0 222 97.8 Number o f 227
70 0 222 97.8 samples
58 1 222 97.8
46 1 221 97.4
35 0 220 96.9
23 3 220 96.9
12 32 217 95.6
0 185 185 81.5

Table 7.22: A summary o f the Pt values in the soil samples from the Yubdo, Andu and Sodu
areas.

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

31 1 227 100.0
29 0 226 99.6
28 0 226 99.6
26 0 226 99.6 Mean 1.2
25 0 226 99.6 Standard 3.7
23 1 226 99.6 Deviation
22 0 225 99.1 Minimum 0
20 2 225 99.1 Lower 0
19 0 223 98.2 Quartile
17 1 223 98.2 Median 0
16 1 222 97.8 Upper 0
14 0 221 97.4 Quartile
12 1 221 97.4 Maximum 31
11 0 220 96.9 Mode 0
9 2 220 96.9 Number of 227
8 2 218 96.0 samples
6 3 216 95.2
5 3 213 93.8
3 39 210 92.5
2 0 171 75.3
o 171 171 75.3

Table 7.23: A summary o f the Pd values in the soil samples from the Yubdo, Andu and Sodu
areas.
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Class Upper Cumulative Cumulative
Limit (ppb) Frequency Frequency Frequency (%)

102 1 227 100.0
97 0 226 99.6
92 0 226 99.6 Mean 4.2
87 0 226 99.6 Standard 11.4
82 1 226 99.6 Deviation
77 0 225 99.1 Minimum 0
71 0 225 99.1 Lower 0
66 2 225 99.1 Quartile
61 0 223 98.2 Median 2
56 0 223 98.2 Upper 3
51 0 223 98.2 Quartile
46 0 223 98.2 Maximum 102
41 2 223 98.2 Mode 0
36 2 221 97.4 Number of 227
31 1 219 96.5 samples
26 0 218 96.0
20 3 218 96.0
15 5 215 94.7
10 15 210 92.5
5 89 195 85.9
0 106 106 46.7

Table 7.24: A summary o f the Au values in the soil samples from the Yubdo, Andu an
areas.

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

10454 1 227 100.0
9932 0 226 99.6 Mean 504
9410 0 226 99.6 Standard 1168
8888 0 226 99.6 Deviation
8366 0 226 99.6 Minimum 14
7844 0 226 99.6 Lower 52
7322 0 226 99.6 Quartile
6800 0 226 99.6 Median 70
6278 1 226 99.6 Upper 416
5756 1 225 99.1 Quartile
5234 2 224 98.7 Maximum 10,454
4712 0 222 97.8 Mode 72
4190 1 222 97.8 Number of 227
3668 2 221 97.4 samples
3146 6 219 96.5
2624 1 213 93.8
2102 2 212 93.4
1580 12 210 92.5
1058 20 198 87.2
536 178 178 78.4

0 0 0 0.0
Table 7.25: A summary o f the Ni values in the soil samples from the Yubdo, Andu and Sodu

areas.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

409 2 227 100.0
389 0 225 99.1
369 0 225 99.1 Mean 61
349 0 225 99.1 Standard 48
329 0 225 99.1 Deviation
309 1 225 99.1 Minimum 8
289 0 224 98.7 Lower 40
269 0 224 98.7 Quartile
249 1 224 98.7 Median 48
229 2 223 98.2 Upper 64
209 0 221 97.4 Quartile
188 0 221 97.4 Maximum 409
168 2 221 97.4 Mode 40
148 3 219 96.5 Number of 227
128 6 216 95.2 samples
108 9 210 92.5
88 21 201 88.5
68 66 180 79.3
48 102 114 50.2
28 12 12 5.3

0 0 0 0.0
Table 7.26: A summary o f the Cu values in the soil samples from the Yubdo, Andu a

areas.

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

6504 1 227 100.0
6180 0 226 99.6
5855 0 226 99.6 Mean 649.7
5531 0 226 99.6 Standard 942.1
5206 0 226 99.6 Deviation
4882 0 226 99.6 Minimum 16
4558 1 226 99.6 Lower 122.5
4233 1 225 99.1 Quartile
3909 0 224 98.7 Median 187
3584 2 224 98.7 Upper 869
3260 4 222 97.8 Quartile
2936 2 218 96.0 Maximum 6504
2611 3 216 95.2 Mode 238
2287 12 213 93.8 Number of 227
1962 8 201 88.5 samples
1638 9 193 85.0
1314 12 184 81.1
989 6 172 75.8
665 12 166 73.1
340 154 154 67.8

0 0 0 0.0
Table 7.27: A summary o f the Cr values in the soil samples from the Yubdo, Andu and Sodu

areas.
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Class Upper 
Limit (%) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

8.7 3 227 100.0
8.3 3 224 98.7
7.9 4 221 97.4 Mean 5.39
7.5 15 217 95.6 Standard 1.60
7.1 17 202 89.0 Deviation
6.8 35 185 81.5 Minimum 0.9
6.4 18 150 66.1 Lower 4.2
6.0 28 132 58.1 Quartile
5.6 18 104 45.8 Median 5.7
5.2 10 86 37.9 Upper 6.6
4.8 10 76 33.5 Quartile
4.4 14 66 29.1 Maximum 8.7
4.0 8 52 22.9 Mode 6.6
3.6 15 44 19.4 Number of 227
3.2 9 29 12.8 samples
2.9 12 20 8.8
2.5 5 8 3.5
2.1 0 3 1.3
1.7 1 3 1.3
1.3 2 2 0.9
0.0 0 0 0.0

Table 7.28: A summary o f the A1 values in the soil samples from the Yubdo, Andu and Sodu
areas.

The spatial and statistical distribution of each element is considered in turn in 

the next sections. It is important to remember that it is unlikely that complete 

digestion has been acheieved during the aqua regia leach of these samples. The maps 

which accompany the section are included at the rear.
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7.9.3. Nickel
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Figure 7.30: Arithmetic and L o g )0 transformed histograms of Ni the soils of the Yubdo, Andu 
and Sodu areas. The grey lines indicate the class-boundaries used in figure 7.36A.

All Ni concentrations o f  over 390ppm in soil occur over the Main Yubdo 

Ultramafic (figure 7.36A). As with the rocks, the highest values o f Ni in soil 

(<10,454ppm) also occur in soils away from the edges o f the intrusion, but 

additionally at the farthest northern tip o f the Main Intrusion, close to the contact with 

the basement. The lowest Ni value in the soils o f the Main Yubdo Ultramafic 

(183ppm) occur above the clinopyroxenite zone close to the northern contact with the 

basement.

On a logarithmic scale, the Ni values in the Yubdo, Andu and Sodu areas 

display two populations. One population (<160ppm) shows a distinct log normal 

distribution with a mode at around 70ppm. The population at higher values does not 

show a normal distribution (see figure 7.37).
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7.9.4. Copper
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Figure 7.31: Arithmetic and Logi0 transformed histograms of Cu the soils of the Yubdo, Andu 
and Sodu areas. The grey lines indicate the class-boundaries used in figure 7.36B.

The highest Cu values in soil occur outside o f the Yubdo M ain Intrusion. 

Within the M ain Yubdo Ultramaflc the soil samples show a slight increase in Cu 

values - from a minimum o f  45ppm to a maximum o f 86ppm - towards the eastern 

flank o f  the clinopyroxenite zone.

The Cu values in the Yubdo, Andu and Sodu areas show a slightly positively 

skewed log normal distribution with a mode at 40ppm.
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7.9.5 • Chromium
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Figure 7.32: Arithmetic and Logi0 transformed histograms of Cr the soils of the Yubdo, Andu 
and Sodu areas. The grey lines indicate the class-boundaries used in figure 7.36C.

High Cr contents in soils (>1000ppm) are restricted to the Yubdo Main 

Intrusion. Within the Yubdo Main Intrusion, elevated Cr levels (<6504ppm) are 

generally located away from the flanks of the intrusion. As with the altered rock 

samples, the lowest Cr values (108ppm) are frequently located within 100m of the 

highest Cr values.

There are two populations o f log normal Cr values in the Yubdo, Andu and 

Sodu areas. These occur with modes at around 125ppm and 2511 ppm.
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7.9.6. Aluminium
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Figure 7.33: Arithmetic and Logio transformed histograms of A1 the soils of the Yubdo, Andu 
and Sodu areas. The grey lines indicate the class-boundaries used in figure 7.36D.

In soil, A1 is enriched above 4% in samples covering most o f  the Yubdo, Andu 

and Sodu study areas (see figure 7.36D).

The A1 distribution in the soils o f this study area is erratic but may be a crude 

negatively skewed arithmetic normal distribution with a mode at around 6.8%.

7.9.7. Summary o f  Ni, Cu, Cr, Al, Pt and Pd values

The highest Ni values in soil occur over the centre or northern tip o f the 

intrusion but the highest Cr value for the Yubdo area is found in a hard pan over the 

clinopyroxenite zone on the western flank o f the intrusion. Additionally, the highest 

Cr values are found in soils over much o f the intrusion, but not over the basement

Ni, Cu and Cr all show log normal distributions whereas Al shows an 

approximately normal distribution. Two populations o f analyses are observed in Ni 

and Cr but Cu and Al show unimodal patterns.
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7.9.8. Platinum and Palladium
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Figure 7.34: Arithmetic and Logi0 transformed histograms of Pt the soils of the Yubdo, Andu 
and Sodu areas. The grey lines indicate the class-boundaries used in figure 7.36E.
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and Sodu areas. The grey lines indicate the class-boundaries used in figure 7.36F.
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Within the Main Yubdo Ultramafic, Pd is enriched (up to 31 ppb) in soils over 

the southeastern clinopyroxenite zone and Pt enriched (up to 232ppb) above the 

northern tip of the dunite and talc-schist zones. In addition to this, a sample from 

above an associated diorite dyke (north of Yubdo) has returned assay results of 13ppb 

for Pt and 8ppb for Pd. Many samples of soil overlying the Main Yubdo Intrusion 

return analyses of Pt and Pd below detection limits (see figures 7.36E and 7.36F). One 

kilometre south of the Main Yubdo Ultramafic, a soil sample above a shear zone gave 

5ppb for Pt and 19ppb for Pd. Similarly, a soil sample above a talc-schist in the 

southeast of the study area returned Pt values of 5ppb and Pd a value of 19ppb.

A significant Pt value occurs in a hard-pan and other soil samples contain Pt 

and Pd anomalies in soil occur in different locations. At the northern tip of the Yubdo 

main complex Pd is low and Pt is elevated above lOOppb in several places. This 

contrasts with the soils above the eastern clinopyroxenite zone where both Pt and Pd 

both rise to similar values.

Additionally, the soils in the southeast of the study area are enriched in Pd and 

Pt around a talc-schist. And Pd returned higher values than Pt in both cases

Neither Pt nor Pd show normal distributions on arithmetic or logarithmic scales.

7.9.9. Discussion

7.9.10. Ni and Cr values in soils above the Main Yubdo Ultramafic

The highest Cr value occurs in a hard-pan found above the western 

clinopyroxenite zone of Main Yubdo Ultramafic. Furthermore, high Cr contents are 

restricted to the soils above the Main Yubdo Ultramafic. The highest Ni values in soil 

occur either over the northern tip of the complex or in the centre of the intrusion.

Elevation in the Cr content of the hard-pan found above the clinopyroxenite 

zone from the Main Yubdo Ultramafic supports the evidence for high Cr-spinel 

concentration at the flanks of the intrusion. The high value could be attributed to the 

extreme volume change from rock to soil and further during the compaction into a
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hard-pan lithotype. The presence of Cr in the soils overlying the flanks of the 

intrusion together with the known resistance of spinels to weathering indicates that the 

most primitive rocks occur at the flanks of the intrusion. However, surprisingly high 

Cr values occur in soils at the centre of the intrusion. The concentration of Cr in these 

samples may possibly be accounted for by a higher degree of concentration due to 

deeper weathering over the top of the Yubdo hill. Similarly, the variations in Ni 

content in the soils over the Yubdo Main Intrusion may be understood in terms of the 

relative degrees of weathering.

7.9.11. Genesis of Pt and Pd in soils

A hard pan of the western flank of the intrusion contains the highest Pt value 

in this study of the WES at 143ppb and a corresponding Pd value of 3ppb. 

Furthermore, the maximum Pt value in the soils collected here is over lOOppb higher 

than that seen in rock. Additionally, it is observed here that in the soils above the 

Main Yubdo Ultramafic that Pt is only enriched in soils above the northern tip and Pd 

is only enriched over the eastern clinopyroxenite zone.

As described in section 7.5.2 the increase in Pt grade between the rocks and 

soils from the Main Yubdo Ultramafic could be explained either by the element being 

immobile within the soil, or alternatively the element might have been reconcentrated 

into the soils. The hard-pan sample perhaps represents an extreme case of volume loss 

from rock to soil as it shows an increased Pt value from the equivalent rocks nearby 

(see figure 8.13E). This sample may also be the product of a longer time-period of the 

action of aqueous fluids in laterites. Furthermore, the hardpan may also have been 

cemented by circulating Si-rich fluids which could have redeposited the Pt. The 

difference in locations of Pt and Pd highs indicates that Pd has become immobile in 

the soils over the eastern clinopyroxenite zone. This may possibly be due to Pd being 

complexed with a different organic compound to Pt. The data presented here cannot 

be used to determine the aqueous conditions of these laterites and therefore we cannot 

determine the solution to this anomalous distribution.
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7.9.12. Conclusions

Although high Ni and Cr values only occur in the soils over the Main Yubdo 

Ultramafic, high Cu values are only found in the basement and high Al values are 

found throughout the area. This indicates a relationship between the underlying 

lithotype and the the geochemistry of the soils. However, it is likely that both Ni and 

Cr will have become concentrated partially by volume loss from rock to soil.

Similarly, the immobile nature of Pt is likely to have increased the content in 

soils when compared to rock samples. The difference in location of the highest Pt and 

Pd concentrations is distinct in the soils of the Main Yubdo Intrusion, and from this 

study it is not possible to determine the mechanism which causes this feature.
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7.9.13. Maps of the elemental distribution in the soils of the Yubdo, Andu 
and Sodu areas
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Figure 7.36: Six geological maps of the Yubdo, Andu and 
Sodu areas with symbols representing Ni, Cu, Cr, Al, Pt and
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7.10. Discussion o f the distribution ofNi, Cu, Cr, Al, Pt and Pd in the soils o f 
the WES

Some notable differences in the distribution of the elements in question can be 

seen between the four areas studied, as described with the following figures. For ease 

of comparison between the four areas studied, graphs using cumulative % are used. 

Histograms showing the same data can be found in the respective sections earlier in 

this chapter.
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Figure 7.37: A graph comparing the distribution of Ni in each of the four areas studied. For 
histograms further illustrating the data see individual sections.

There are several differences in the distribution of Ni in the four areas studied 

in this chapter. Tulu Dimtu is the only area where an arithmetic normal distribution 

occurs however there is an additional population which is log normal. In the 

remaining three areas, all Ni distributions are log normal. The only unimodal 

distribution occurs in the area containing the Daleti, Ankori, Tulu Kapi and Keley 

complexes.

Such distributions are difficult to understand in terms of the number of 

ultramafic complexes within the area, given that the only area with one population is 

the area with four discrete complexes (Daleti, Ankori, Tulu Kapi and Keley). It is 

possible that one population in each area could be created by hydromorphic dispersion 

in additional to the original population which reflects the bedrock values.
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Figure 7.38: A graph comparing the distribution of Cu in each of the four areas studied. For 
histograms further illustrating the data see individual sections.

The Cu distribution in each area of the WES is log normal, however the 

distributution of the Tulu Dimtu area has two modes (see figure 7.7).

As discussed in section 7.6.4, it is possible that the Cu distribution in the Tulu 

Dimtu area may be influenced partially by the underlying bedrock and partially by 

hydromorphic dispersion. In a situation where the Cu was remobilized by 

groundwater, a lower value population could occur due to dilution. These lower 

values (<25ppm) would represent the remobilized values, and the higher population 

would be related to the original composition of the protolith.
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Figure 7.39: A graph comparing the distribution of Cr in each o f the four areas studied. For 
histograms further illustrating the data see individual sections.

All Cr populations in the WES are log normal and unimodal, except the 

Yubdo area where two populations occur (see figure 7.32).

Unlike Ni and Cu, this additional population is difficult to explain in terms of 

hydromorphic dispersion as Cr typically remains intact within Cr-spinels (see chapter 

3). It is possible that such an observation could be the result of two magmatic phases
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of Cr-spinel precipitation. Such an interpretation would need to be supported by 

petrological investigation.
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Figure 7.40: A graph comparing the distribution of Al in each o f the four areas studied. For 
histograms further illustrating the data see individual sections.

Unlike Ni, Cu and Cr the Al values in the soils of the WES are the only ones 

which are normally distributed. However, in the Tulu Dimtu area, the distribution is 

sufficiently erratic that it cannot be regarded as being normally distributed.
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Figure 7.41: A graph comparing the distribution of Pt in each of the four areas studied. For 
histograms further illustrating the data see individual sections.
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Figure 7.42: A graph comparing the distribution of Pd in each of the four areas studied. For 
histograms further illustrating the data see individual sections.
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The distribution of both Pt and Pd in the WES is generally erratic. However, in 

all areas but Yubdo, this erratic nature is tends slightly towards a log normal 

distribution.

The erratic nature of of Pt and Pd distributions is well known given their 

tendency to form nuggets. However the slightly log normal patterns observed suggest 

that there is a more statistically uniform mechanism operating. This mechanism may 

be the underlying magmatic dissolution process, however given the severe degree of 

the alteration and weathering it is unlikely. However, the log normal patterns may 

reflect the dissolution of the elements the fluids within the laterite (see section 7.5.2).

7.11. Summary o f the Soil development in the WES

7.11.1. Ni, Cu, Cr and Al

Distinct changes in the proportions of Ni and Cu are seen in the soils over the 

different lithologies of the WES. Ni is typically higher over the ultramafic units than 

the basement, whereas Cu tends to show higher values over the basement units, in 

particular the shear-zone related lithologies. Although such trends indicate a 

relationship between Ni and Cu distribution with lithotype, univariate statistical 

methods show that at Tulu Dimtu a second population exists. Such lower value 

populations may be the result of the hydromorphic dispersion of Ni and Cu. Although 

Al shows no particular relationship with the underlying lithotype, Cr is present in the 

highest values in soils over ultramafic units. Given the resistance of Cr-spinels to 

alteration and weathering (chapter 3) it is unlikely that it has undergone 

remobilization within the soil.

These geochemical differences are important to this study as in some places 

they are considered to validate the mapping technique. Large scale changes in the 

value of Ni (at values >1000ppm) and Cu (at values >25ppm) are likely to have been 

controlled by the underlying lithotype. However Ni and Cu values below those stated 

are likely to have been influenced strongly by hydromorphic dispersion. For example 

clear changes in Ni and Cu value can be seen at the contact between the Tulu Dimtu 

Main Intrusion and the basement (see figures 7.12A and 7.12B). This contact was
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mapped using a change in vegetation seen from aerial photography (chapter 4). 

However, additional populations can be seen in figures 7.6 and 7.7 which are likely to 

have been the result of hydromorphic dispersion.

7.11.2. Pt and Pd

Area Formation Soil samples 
Pt (ppb) Pd (ppb)

Yubdo Main Yubdo Ultramafic 232 31
Tulu Dimtu Tulu Dimtu Main Intrusion 58 31
Daleti Ankori 34 48
Kingy Kingy Ridge Ultramafic 29 29
Daleti Daleti Ultramafic <2 < 2
Daleti Keley <2 < 2

Table 7.29: The maximum Pt and Pd values found in the soils above the ultramafic complexes
of the WES.

A full understanding of the mechanisms controlling the development of Pt and 

Pd in the soils above the ultramafic bodies in the WES is difficult. However, this 

chapter gives an account of the salient features of the distribution and proposes some 

mechanisms which may have caused them

The distribution of the elements is nuggety, but some evidence is present for 

remobilization within the laterites. Figures 7.41 and 7.42 show an erratic distribution 

of values which may have formed through the presence of nuggets. However there is 

a division in the distribution of Pt and Pd in the soils above the Kingy area (figures 

7.20E and 7.20F). The soils above the basement in the northwest havce greater 

amounts of Pd and the soils above the Kingy Ridge Ultramafic contain much more Pt. 

There is a similar division between Pt and Pd in the soils above the Yubdo Main 

Intrusion. These differences in distribution could possibly be explained by a 

difference in lateritic conditions as a result of the different basement lithotype. 

However, it is not possible to determine these conditions in this study. An alternative 

hypothesis is that Pd has become immobile instead of Pt in certain areas perhaps by 

being complexed with a different type of vegetation (see chapter 4).
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8. Rock Geochemical Data

8.1. Introduction

Samples of rocks were collected from the 4 complexes: Tulu Dimtu, Kingy, 

Daleti and Yubdo. With the aim of assessing the prospectivity of each of the ultramafic 

complexes, these samples were analysed for major and trace elements including Pt, Pd 

and Au by the OMAC laboratories as part of an exploration program for Golden Prospect 

Mining Co Ltd (GPM). In order to identify targets for detailed exploration, this chapter 

examines this dataset describing the distribution of key elements that characterise: each 

rock type, fresher and altered rocks, pathfinders for PGE and the Pt and Pd distribution 

itself.

The dataset used in this chapter is the result of samples collected during the 2001- 

2002 field season by the author and several GPM geologists. The grids and traverses used 

are typical of those used in geological exploration, where geochemical anomalies are 

sought. Samples were collected in order to both characterise known ultramafics and also 

to discover unknown deposits.

These complexes are examined using two types of sample: fresher rocks which 

are used to interpret magmatic ore formation processes and altered rocks, which display 

magmatic features that have been overprinted by the effects of alteration.

The elements analysed include Au, Pd, Pt, Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, 

Co, Cr, Cu, Fe, Ga, Ge, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, 

Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. This chapter focuses on Ni, Cu, Cr, 

Al, Pt and Pd. Each of these elements - except Al - are chosen as they characterize, and 

are affected by, the processes which concentrate Pt and Pd. Pt and Pd are considered to be 

concentrated in magmas with sulphur as immiscible sulphide liquids in a silicate magma 

(Naldrett et al., 1979). After sulphide segregation of a magma, Pt and Pd crystallise with 

Ni- and Cu-rich sulphides in ultramafic or mafic complexes (Barnes et al., 1997). Sulphur
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saturation in a magma is often associated with chromite crystallisation as removal of Fe 

and Cr from a magma will cause sulphides to segregate (Naldrett and von Gruenewaldt, 

1989). Alaskan-type complexes such as those studied here, are traditionally S-poor 

(Nixon et al., 1997). Ophiolite complexes such as the Shetland ophiolite complex do 

contain small percentages (1-2%) of sulphides which are Pt and Pd enriched in the 

ultramafic parts of the complex (Prichard et al., 1996). Thus if base-metal sulphides are 

Pt and Pd collectors in these complexes in the WES then Ni, Cu and Cr should be path

finders for Pt and Pd. Hence their distribution is studied here to attempt to understand 

their inter-relationships during magmatic and secondary alteration processes.

The Al content of a magma should increase with fractionation, therefore if PGE 

content is controlled by the evolution of a magma then Al should correlate with Pt and 

Pd. Furthermore, the surrounding basement rocks should have a greater proportion of 

alumino-silicate minerals and therefore Al will help to validate the mapping technique.

Graphs of base metals and other elements against Pt and Pd show no clear trends 

or correlations and it was therefore decided that a different method of interpretation was 

required. The results were compiled to produce element concentrations on maps showing 

the geology. The geological sketch maps were produced using a combination of 

published maps (at Yubdo) and field observations made in this study (chapters 4 and 5). 

The GIS application ArcView 3.2 was used display these maps.

This chapter is divided into four sections covering each of the four geographic 

areas. At the end of each section there is a “pull-out” page which contain the maps which 

are referred to throughout the chapter.

8.2. Analytical Techniques

8.2.1. Introduction

A total of 481 rock samples were analysed by OMAC Laboratories (Co Galway, 

Ireland) by two different procedures: one for Pt, Pd, Au and another for 47 additional
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elements. After crushing, each sample was ground to 100pm, split to 30g and then 

prepared and analysed by the two different methods. For Pt and Pd analyses, the powders 

were analysed using a 30g Pb fire assay with an inductively coupled plasma analysis, 

resulting in detection limits of 2ppb for both Pt and Pd. For other elements, the samples 

were subjected to an Aqua Regia digestion with Inductively Coupled Plasma -  Optical 

Emission Spectroscopy finish.

The next sections describe the methods and validation for each stage for each of 

of each analytical process.

8.2.2. Pb Fire Assay

Au
(PPb)

Pd
(ppb)

Pt
(PPb)

min 212 1381 3624
max 986.00 1636.88 3883.36
range 774.00 255.53 259.37
Recomended Value 310 1530 3740
Standard SARM-7b
Precision (range as % 249.68 16.70 6.94
of recomended value)

Table 8.1: Summary statistics o f 41 analyses of the standard sample SARM7b.

The standard sample SARM 7b was analysed for Pt, Pd and Au a total of 41 times 

through 9 batches of samples processed by OMAC laboratories. The full listing of results 

is included in table 12.3 in section 12.2 and a summary of the ranges of values obtained is 

included in table 8.1. For all three elements the range encompassed the recommended 

value for the standard, which can be regarded as a reasonable accuracy. Given the relative 

inhomogeneity of Pt, and Pd standards, both Pt and Pd varied only slightly from the 

recommended values (16.7% and 7.0%) in each case. The variation in measured Au 

values was significantly larger (see table 8.1). This indicates an acceptable degree of 

accuracy and precision for both Pt and Pd and a slightly lesser degree for Au analyses.

The analysis of blank samples returned values which were at or below detection 

limits in each case.
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In order to assess the accuracy of the Pb fire assay method performed at the 

OMAC laboratories, four samples were analysed at a different laboratory (Genalysis). 

Table 12.1 (section 12.1) shows that the biggest difference in Pt values between the two 

laboratories was 64.7% which corresponds to a difference of 36ppb versus 102ppb. The 

biggest difference between the analyses of Pd was 5ppb versus below detection limts and 

other results are comparable. The accuracy of the analyses performed at the OMAC 

laboratories have been accepted for this investigation.

To test the precision of the analyses, repeat analyses were also carried by the 

OMAC laboratories. Within each batch, repeats were performed in every sample which 

produced anomalous results. If no significantly anomalous results are produced from a 

batch then every 10th sample was repeated. In some batches, repeats were carried out at a 

greater frequency, in order to assure confidence in the procedure. In a some cases, two 

repeat analyses were performed on the same sample, this was done in situations where 

either the first repeat showed an unacceptable variance or where particularly unusual 

results were obtained at first.

Repeat analyses were performed for 48 rock samples from the WES, for three 

samples two repeat analyses were performed (see table 12.2 in section 12.1). For all three 

precious metals, there was no measurable variation in the results between each repeat for 

slightly less than half the samples. High repeatability was only present in analyses of low 

values (<5ppb). The least precise analysis is of Au, where the greatest variation between 

repeats is between 22ppb and below detection limits. For Pd the highest variation is 

between 2ppb and 33ppb (93.9% difference). The greatest degree of precision is found 

for Pt where the highest variance is between 7ppb and 16ppb (56.3%). Although poor 

repeatability occurs in some individual samples, there is an acceptable variation between 

analyses in most cases. It is therefore considered that this dataset is sufficiently accurate 

for this investigation; however, a degree of natural variation is to be expected due to 
nugget effect.
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8.2.3. Aqua Regia Digestion

Aqua regia constitutes a 3:1 ratio of HC1:HN0 3 . The effectiveness of this 

technique is due to the complexing power of the chloride ion acting in the presence of Cfe 

and NOC1 as catalysts. An aqua regia leach is frequently used in exploration applications 

to selectively dissolve certain minerals of interest to the geologist (Snail and Liljefors, 

2000; Chao, 1984). When a sample is subjected to an aqua regia leach some minerals are 

taken into solution and other, more resistant minerals, remain undissolved. When 

interpreting the results of a partial leach, it is nessecary to consider which minerals have 

been taken into solution. Furthermore, when a mineral is dissolved, some elements are 

taken into solution easier than others (Church et al., 1987).

Mineral

Minerals 
dissolved (wt 

%)
lower upper 
limit limit

olivine 70 80
pyroxenes 30 40
amphiboles 20 40
quartz 10 10
plagioclaise 10 60
spinel 10 100
disulphides 50 100
monosulphides 40 100
bisulphides 40 100
arsenides 80 80

Table 8.2: The weight percent of minerals dissolved by aqua regia (Chruch et al., 1987).

Mineral Metal Leachability
(%)

Cr 60
Cu 35

Olivine Ni 98
Al 30
Mg 99
Cr 2
Cu 70

Spinel Ni 75
Al 20
Mg 60

Table 8.3: Percentages of various metals leached by aqua regia from olivine and spinel relative to 
total recovery calculated from an HF-HN03-NC104 digestion (Chruch et al., 1987).
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Although a quantitative dataset of the leachability of all minerals and metals by 
aqua regia is not available, a study of the leachability of some minerals was performed by 

Church et al. (1987). The most reliably dissolved minerals were sulphides, where 

complete digestion was possible. Additionally, table 8.2 shows that 70 to 80 wt% of the 

olivine minerals were dissolved. Furthermore, Church et al. (1987) (see table 8.3) showed 

that of the minerals tested almost all Mg and Ni could be extracted from olivine. 

Similarly, a large amount of Ni and Cu could leached from spinel minerals almost no Cr 

could be extracted.

The study by Church et al. (2000) showed that an Aqua Regia leach will attack 

the secondary minerals as well as the sulphides. Mafic chain silicates and the 

phyllosilicates (such as the serpentine minerals) are attacked and leached. With such 

silicates the study concluded that the method will leach many of elements attached to 

octahedrally coordinated lattice sites (including Mg and in some cases Al). However it 

will not attack the tetrahedrally coordinated sites, occupied by ions such as Si and Al 

(Klein and Hurlbut, 1993). Further to the studies performed by Church et al. (2000), 

information provided by the OMAC laboratories states that the dissolution is partial for a 

number of elements including Al and Cr.

8.2.4. Inductively Coupled Plasma -  Optical Emmission Spectroscopy

Mg Ni Cu Cr Al
(%) (ppm) (ppm) (ppm) (%)

Min 2.80 657.83 2556.53 112.38 0.99
Max 3.01 685.98 2707.82 132.05 1.60
Range 0.21 28.15 151.29 19.67 0.62
Assigned Value 2.90 683 2650 N/A N/A
Precision (variation 
as % of assigned 
value)

7.26 4.12 5.71 N/A N/A

Table 8.4: A table of 48 analyses of the OMAC laboratories in-house standard with a summary of 
the ranges o f values obtained and a measurement of precision.

An in house standard was used by the OMAC laboratories to assess accuracy and 

precision during elemental analysis using aqua regia, ICP-OES. A total of 48 analyses 

were performed throught the 9 batches processed at the laboratory. The full dataset is
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included in section 12.2 (table 12.4) and a summary of the range of values is included in 

table 8.4. The elements Mg, Ni and Cu show a variation of around 7.26, 4.12 and 5.71% 

respectively. Although no assigned values are available for the analysis of Cr and Al, it is 

possible to see that the precision for these elements is significantly poorer. These results 

are as expected given that Ni and Cu will be easily leached by aqua regia and Mg can be 

leached from its silicate octahedral lattice sites (see section 8.2.3).

All blanks analysed showed results which were at or below detection limits.

8.3. Methods

8.3.1. Definition of a fresher sample

The rock samples from the WES lie along a spectrum of alteration from “nearly- 

soil” to completely fresh (see chapter 3), therefore for comparison it was necessary to 

divide them on that basis. This was done principally by a combination of methods 

including the identification of weathering and alteration minerals in hand specimen and 

using transmitted light microscopy.

However, the samples analysed petrologically were one half of the same sample 

sent for analysis. Therefore, it was necessary to make a geochemical determination of the 

degree of weathering and alteration on the half of the sample which was sent for analysis. 

As this analysis could be compared with the half analysed petrologically. This 

geochemical analysis was intended to support the petrological determination which is the 

main method for determining the degree of alteration.

The geochemical assesement of alteration was performed using the Mg value. 

Although Church et al. (1987) suggest that Mg ions can be leached from olivine minerals 

(see section 8.2.3) in practice it is known that often silicate minerals are not dissolved. As 

no data is available on the degree of dissolution in the samples from the WES it must be 

considered that the Mg values in this dataset could originate from either olivine or 

serpentine. Hence this method is intended simply to support petrological determination.
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Ultramafic rocks are characteristically Mg-rich. Dunites and pyroxenites have a 

range of Mg values which are shown in table 8.6. The ranges of Mg-values for fresher 

ultramafic rocks can be calculated using published Mg values of fresher olivine and 

clinopyroxene combined with the mineral proportions of dunite, olivine-clinopyroxenite 

and pyroxenite as set out by Streckeisen (1976). Examples of Mg values for fresher 

ultramafic minerals are shown by the analyses shown in table 8.5.

Mineral Min
MgO
(%)

Max
MgO
(%)

Min
Mg
(%)

Max
Mg
(%)

Number
of
samples

Reference

olivine 47.46 47.58 28.6 28.7 2 R6villon (2000)
olivine 46.46 46.46 28.0 28.0 1 Morishita (2001)
olivine 35.97 45.68 21.7 27.5 10 Neumann(2000)
olivine 38.24 44.13 23.1 26.6 12 Mattioli (2003)
olivine 30.4 41.8 18.3 25.2 2 Fodor(2001)
olivine 34.44 39.18 20.8 23.6 2 Upton (2000)
olivine 37.26 38.03 22.5 22.9 3 Renzulli (2001)
olivine 37.47 37.47 22.6 22.6 1 Leonard (2002)
olivine 36.58 37.1 22.1 22.4 2 Muller (2001)
olivine 33.41 36.49 20.1 22.0 6 Gibson (2000)
clinopyroxene 14.42 27.84 8.7 16.8 6 Spandler (2003)
clinopyroxene 14.6 17.6 8.8 10.6 4 Cole (2001)
clinopyroxene 9.27 16.96 5.6 10.2 25 Neumann (2000)
clinopyroxene 16.02 16.02 9.7 9.7 1 Leonard (2002)
clinopyroxene 15.71 15.86 9.5 9.6 2 Morishita (2001)
clinopyroxene 14.28 15.72 8.6 9.5 9 Mattioli (2003)
clinopyroxene 13.4 15.7 8.1 9.5 7 Fodor (2001)
clinopyroxene 14.54 15.53 8.8 9.4 2 Muller (2001)
clinopyroxene 13.1 13.86 7.9 8.4 2 Turner (2003)

Table 8.5: Typical values o f Mg for selected fresher ultramafic lithotypes. This data was compiled
using the GEOROC database (2005).

The minimum and maximum Mg values for olivine and clinopyroxene were 

determined from table 8.5 and combined with the proportions of minerals for each 

lithotype according to Streckeisen (1976). As such, the likely maximum and minimum 

Mg values for ideal ultramafic rocks can be calculated, as shown in table 8.6.

Rock
Min or 
Max

olivine
value

clinopyroxene
value

olivine
proportion

clinopyroxene
proportion boundary

Dunite MIN 20.1 7.9 90% 10% 18.88
Dunite MAX 28.7 16.8 100% 0% 28.7
Olivine - 
Clinopyroxenite MIN 20.1 7.9 60% 40% 15.22
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Olivine - 
Clinopyroxenite MAX 28.7 16.8 10% 90% 17.99
Clinopyroxenite MIN 20.1 7.9 10% 90% 9.12
Clinopyroxenite MAX 28.7 16.8 0% 100% 16.8

Table 8.6: The ranges of Mg values used to define the fresher rock samples. The proportions of 
olivine and clinopyroxene are defined by Streckeisen (1976). These values represent the range of 
Mg values which are likely to occur in a hypothetical fresher dunite, olivine-clinopyroxenite or

clinopyroxenite.

This method of selection of fresher samples is validated by virtue of a break seen 

in the unclassified samples at around the boundaries calculated (see table 8.7). This break 

is seen in all four areas. For example, the analyses of the dunite samples from the Tulu 

Dimtu area show a range of Mg values from 24.8% to 1.1%. In table 8.7 these are 

ordered with the highest Mg values at the top and the break can be seen below 18.8% 

where the next value is 17.0%. This is a difference of 1.8%; the differences further up the 

table are all lower than 1%. A break at approximately the same level is seen in all four 

geographic areas (particularly at Daleti, see 8.15.2) and also with pyroxenite samples, 

however the lower numbers of these lithologies mean that this arguement is illustrated 

more effectively with dunite samples.

Sample Mg Al Cr Cu Ni Petrological
(%) (%) (ppm) (ppm) (ppm) description

DTR-035-02 25.8 0.0 16 3 2327 Figure 3.1
TD12 24.8 0.0 102 16 1456
ATR-051-02 24.4 0.0 19 4 3380
DTR-005-02 23.6 0.0 40 3 2691
TDR 20/01 23.2 0.0 97 0 2617
DTR-009-02 22.8 0.0 13 2 2945
ATR-053-02 22.8 0.1 131 6 2037
ATR-057-02 22.7 0.0 55 3 2574
KTR-035-02 22.4 0.1 61 9 2182
DTR-026-02 22.4 0.2 72 5 2340
DTR-001-02 22.3 0.1 18 5 2942
TDR 12/01 22.1 0.0 46 0 2856
TDR 24/01 22.0 0.0 42 0 2312
TD11 22.0 0.1 366 2 1846
DTR-007-02 22.0 0.4 33 3 2091 Figure 3.2
DTR-004-02 21.9 0.1 61 4 2686
TD3 21.8 0.0 70 0 3575
TD10 21.5 0.1 634 4 1909
TDR 08/01 21.0 1.0 25 0 4543
TDR 07/01 21.0 0.0 76 0 5860
ATR-044-02 20.6 0.1 304 4 3880
TDR 05/01 20.5 0.1 651 0 2155
TTR-018A-02 20.4 0.1 119 3 2824 Figure 3.3
KTR-002B-02 20.4 0.1 379 3 3285
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TD14 20.3 0.0 64 0 3062
TD4 19.9 0.1 292 0 1802
TDR 19/01 19.5 0.1 436 16 2872
ATR-056-02 19.5 0.1 196 4 2154
DTR-034-02 19.4 0.0 27 0 3469
TD9 18.8 0.5 2728 8 2992

NATURALBREAK

TDR 06/01 17.0 0.0 187 0 7695
TDR 11/01 16.4 0.1 223 2 2894
TDR 22/01 16.1 0.0 91 3 1962
TDR 09/01 16.0 0.3 383 0 2129
DTR-050-0 9.4 0.1 139 2 2190
TDR 25/01 7.0 0.1 48 0 586
TD17 4.6 3.7 705 22 527
KTR-004-0 4.2 5.5 1517 95 887
TD13 4.1 2.5 43 70 113
TDR 10/01 3.2 3.3 88 3 1447
TDR 27/01 2.6 3.1 1022 12 453
DTR-029-0 1.2 2.2 64 89 75
ATR-045-0 1.1 0.8 20 25 154
ATR-034-0 1.1 0.9 118 180 107
DTR-040-0 0.5 0.1 32 6 72
DTR-039-0 0.5 2.4 21 8 87
TDR 26/01 0.3 1.0 28 169 30
TDR 01/01 0.0 0.0 11 3 5
DTR-033-0 0.0 0.1 42 9 55

Figure 3.4

Figure 3.5

Table 8.7: The Mg values for the dunite samples in the Tulu Dimtu area before classification into 
fresher and altered. Ordered with the highest Mg value at the top and lowest at the bottom. For 

validation o f the method, selected samples are referred to the petrological descriptions contained
in chapter 3.

100.00

50.00

0.00

18.88%Mg (%)

Figure 8.1: A graph of the cumulative percent (by rank) of the Mg values of the dunite samples from the 
Tulu Dimtu area. The value o f 18.88% is marked onto the graph as it is the lowest possible Mg 

value for an ideal fresher dunite (see figure 8.6).
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Figure 8.1 shows a clear difference between two populations of Mg values in the 

dunite samples from Tulu Dimtu. One population has values which are greater than 

18.88% and another population has values which are less 18.88%. The two populations 

can be summarised with two linear lines of best fit which intercept very close to 18.88% 

(as calculated above). This suggests that there are two distinct groups of dunite samples 

from Tulu Dimtu separated at 18.88% which was calculated as the minimum Mg value 

for a fresh dunite.

Furthermore, figure 8.1 shows that although there is a break just below 18.8%, 

there are four samples which have Mg values between 16.0% and 17.0%. Below these 

values there is another, larger, break which may infer that the break should be below 

16.0%. However, these values are still significantly lower than the ideal Mg values 

calculated in table 8.6. Furthermore, these values could be explained as being due to 

serpentinisation with very little silicification. Although alteration generally decreases the 

Mg content of a rock, the alteration of olivine to serpentine can retain high Mg values. 

For example Lecuyer et al. (1994) analysed serpentine minerals which have Mg 

compositions as high as 22.6%. However the action of sepentinisation also introduces 

some OH' which would reduce the Mg value in some cases.

Given the fact that serpentine can contain Mg at up to 22.6% (Lecuyer et al., 

1994). With the classification system described above, a 100% serpentinised dunite could 

be classed as “fresher”. It is therefore this method using Mg is intended simply to support 

petrological analysis (see chapter 3). The samples classified as “fresher” in this manner 

are only expected simply to be more likely to retain magmatic features than the samples 

regarded as being altered.

8.3.2. The samples

Samples were taken from both the ultramafic complexes of the WES and also the 

surrounding basement. Of the ultramafic complexes, the following numbers of samples 

were taken:
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Ultramafic Complex Number of 
Samples

Tulu Dimtu Main Intrusion 59
Kingy Ridge Ultramafic 30
(including the extra ultramafic)
Daleti Intrusion 21
Ankori Complex 13
Main Yubdo Intrusion 34
Lensoid Ultramafics (from all 68
four geographic areas)

Table 8.8: The numbers of samples from the ultramafic complexes of the WES. A summary of
entire dataset is provided in table 8.9.

When considering the ultramafic complexes, the greatest number of samples were 

taken from the Lensoid Ultramafics from over the entire study area. Of the main 

complexes, the greatest samples were taken from the Tulu Dimtu Main Intrusion, 

followed by the Main Yubdo Intrusion

After classification as fresher and altered rocks (see section 8.3.1), the following 

numbers of samples were used for the analysis of geochemical processes in the WES.

Area Total Altered
ultramafic
rocks

Fresher
ultramafic
rocks

Non-
ultramafic
rocks

Birbirite
samples

Tulu Dimtu 116 35 31 47 3
Kingy 110 33 6 67 4
Daleti, Ankori, 
Keley and Tulu 
Kapi

155 14 13 115 13

Yubdo, Andu and 
Sodu

100 18 6 68 8

TOTAL 481 100 56 297 28
Table 8.9: A summary of the numbers and types of samples used in the four geographic areas in 

this study. A further breakdown of these is provided in each respective section.

8.4. Tulu Dimtu: Selected Major and Trace Elements

8.4.1. Introduction

There are 115 rock samples from the Tulu Dimtu area. Using the classification 

method shown in section 8.3.1, thirty-one are samples are fresher ultramafics, 43 are 

altered ultramafics and 6 are from the surrounding basement. The numbers and types of
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samples from the various formations are summarized in table 8.10. The samples were 
taken where exposure was found. The eastern flank of the Tulu Dimtu Main Intrusion 
was not studied due to the terms of the licence agreement between Golden Prospect 
Mining Co Ltd and the Ethiopian government. Only three samples of fresher ultramafic 
rocks are found in the samples from the Lensoid Ultramafic formations, one of these is 
approximately 500m south of the Sheared Ultramafic.

o T  . n c a t i n r s  o f  f r e d i e r  r o c k  s a m p l e s
o 1  o c s l i o n s  o f  a l i e n e d  r o c k  s a m p l e s

Geology o f  Tulu DimUi

■ i S h e a r  Z o n e
S h e a r e d  T U t n u n a l k

-
M a m  I n t r u s i o n  C l i n o j > s n » \ e n i t e

M a i n  I n t r u s i o n  ( . H i v i n e  C l i n c * p \ T o x c n i t c
M a i n  I n t r u s i o n  D u n i i e
-

G a h h r o
Q u a r t z i t c

wts T e n s o i t l  T U l r a m a l i c
U n d i f f e r e n t i a t e d  B a s e m e n t

>, (p C D J)  O

i ' 6 a ? P  O O O ' O  .. o l

l9  I f  °

2 Kilometers

Figure 8.2: The distribution of rock samples within the Tulu Dimtu area.

Formation # Sub-unit Altered
ultramafic
rocks

Fresher
ultramafic
rocks

Non-
ultramafic
rocks

Birbirite
samples

Shear Zones 14 0 0 14 0
Sheared
Ultramafic 10 9 1 0 0

Tulu Dimtu
Main
Intrusion 51

Clinopyroxenite 2 6 0 0 0
Olivine-
Clinopyroxenite 9 4 0 4 1
Dunite 40 5 28 6 1

Gabbro 3 0 0 3 0
Quartzite 7 0 0 7 0
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Lensoid
Ultramafics 25 14 2 7 1

Basement 6 0 0 6 0

TOTAL 115 34 31 47 3
Table 8.10: A summary of the samples from the Tulu Dimtu area. The classification of fresher and 

altered rocks is covered in section 8.3.1 and the classification of ultramafic lithotypes including
birbirite is covered in chapter 3.

8.4.2. Data

Form ation D escr ip tio n M g N i C u Cr A l Pt Pd Pt/Pd A u S am ple

( % ) (p p m ) (p pm ) (ppm ) ( % ) (ppb) (Ppb) (PPb)

D u n 2 4 .4 33 8 0 4 19 <0.1 3 < 2 - 3 A T R -0 5 1 -0 2

D u n 2 2 .8 2 0 3 7 6 131 0.1 8 3 2 .7 2 A T R -0 5 3 -0 2

D u n 2 2 .8 2 9 4 5 2 13 <0.1 5 4 1.3 2 D T R -009-02

D u n 2 2 .7 2 5 7 4 3 55 <0.1 4 5 0 .8 35 A T R -0 5 7 -0 2

D u n 19.5 2 1 5 4 4 196 0.1 5 7 0 .7 < 2 A T R -0 5 6 -0 2

D u n 19.4 3 4 6 9 < 2 27 <0.1 <2 <2 - 70 D T R -034-02

D un 18.8 2 9 9 2 8 272 8 0.5 27 37 0 .7 <2 T D 9

D u n 2 5 .8 2 3 2 7 3 16 <0.1 4 < 2 - < 2 D T R -035-02

D u n 2 4 .8 1456 16 102 <0.1 <2 < 2 - < 2 T D 12

D u n 2 3 .6 2691 3 4 0 <0.1 3 < 2 - < 2 D T R -005-02

D u n 2 3 .2 2 6 1 7 < 2 97 <0.1 4 < 2 - 2 T D R  20 /01

D u n 2 2 .4 2 3 4 0 5 72 0.2 7 < 2 - < 2 D T R -026-02

D un 2 2 .4 2 1 8 2 9 61 0.1 9 < 2 - < 2 K T R -035-02

D u n 2 2 .3 2 9 4 2 5 18 0.1 5 5 1.0 < 2 D T R -001-02

D un 22 .1 2 8 5 6 < 2 46 <0.1 4 < 2 - 2 T D R  12/01

D un 2 2 .0 2091 3 33 0 .4 5 < 2 - < 2 D T R -007-02

D un 2 2 .0 1846 2 3 66 0.1 2 2 1.0 < 2 TD 11

D un 2 2 .0 2 3 1 2 < 2 42 <0.1 4 < 2 - < 2 T D R  24/01

c D un 2 1 .9 2 6 8 6 4 61 0.1 6 < 2 - < 2 D T R -004-02
. 2
C/3 D un 2 1 .8 3 5 7 5 < 2 70 <0.1 < 2 < 2 - < 2 TD 3

£ D un 2 1 .5 1909 4 6 3 4 0.1 4 0 2 2 0 .0 < 2 T D 10
c

D un 2 1 .0 5 8 6 0 < 2 76 <0.1 <2 < 2 - < 2 T D R  07/01
c
c3 D un 2 1 .0 4 5 4 3 < 2 25 1.0 4 < 2 - < 2 T D R  08/01

s D un 2 0 .6 3 8 8 0 4 304 0.1 8 5 1.6 < 2 A T R -044-02
3
e D u n 2 0 .4 3 2 8 5 3 3 7 9 0.1 7 < 2 - < 2 K T R -002B -02
S

Q D u n 2 0 .3 3 0 6 2 < 2 64 <0.1 < 2 < 2 - <2 T D 14
a D u n 19.9 1802 < 2 2 9 2 0.1 4 < 2 - < 2 T D 4

3
H D un 19.5 2 8 7 2 16 4 3 6 0.1 30 37 0 .8 2 T D R  19/01

Sheared
U ltram afic

D u n 2 0 .5 2 1 5 5 < 2 651 0.1 7 8 0 .9 2 T D R  05/01

L en soid  C p xite  7 .3  1644  9 2 9 4  0.
U ltram afics D u n  2 0 .4  2 8 2 4  3 119 0.

Table 8.11: Mg, Ni, Cu, Cr, Al, Pt and Pd values 
8.3.1) collected from the Tulu Dimtu area.

1 3 < 2  4  D T R -0 16-02
1 9  < 2  - 0  T T R -018A -02

for the fresher samples (as defined in section 
Dun: Dunite. Cpxite: Clinopyroxenite.

Form ation D escrip tion M g N i C u C r A l Pt Pd Pt/Pd A u Sam ple

(% ) (PP m ) (p p m ) (PPm ) (% ) (PPb) (PPb) (PPb)
D un 9 .4 2 1 9 0 2 139 0.1 6 <2 - 5 D T R -050-0

.2 D un 16.1 1962 3 91 <0.1 5 <2 - 2 7 T D R  22 /01
3
•to D un 7 .0 5 8 6 < 2 4 8 0.1 24 <2 - < 2 T D R  25 /01
c D un 1.1 154 25 2 0 0.8 <2 <2 - 2 A T R -0 4 5 -0

3 D un <0.1 55 9 42 0.1 <2 < 2 - <2 D T R -033-0

l O l-cp x ite 1.9 150 112 2 16 2 .0 2 2 1.0 2 A T R -0 4 7 -0

3 O l-cp x ite 9 .4 7 0 5 4 2 2 0 0.1 24 < 2 - <2 A T R -0 5 2 -0
.§ O l-cp x ite 4 .8 8 1 6 18 502 1.9 5 <2 - <2 T D 7
Oa O l-cp x ite 2 .2 3 5 0 116 60 2.5 4 15 0 .3 <2 T D 8
3 C pxite 0 .6 3 7 51 12 1.0 <2 < 2 - < 2 A T R -0 4 6 -0
H

C pxite 0 .7 139 41 47 4 0.5 3 < 2 - < 2 D T R -0 3 2 -0
oT3 IS D un 4.1 113 70 43 2.5 <2 < 2 - < 2 T D 13

U 3  
c3 E D un 4 .6 5 2 7 2 2 705 3 .7 4 4 1.0 <2 T D 17
u  53H D un 17.0 7 6 9 5 < 2 187 <0.1 5 < 2 - 4 T D R  06 /01

“ 5 D un 16.0 2 1 2 9 < 2 383 0.3 6 < 2 - < 2 T D R  09 /01
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D un 3 .2 1447 3 88 3.3 6 13 0 .5 2 T D R  10/01

D un 16.4 2 8 9 4 2 223 0.1 6 < 2 - < 2 T D R  11/01

C pxite 1.9 2 3 2 14 17 6.3 < 2 < 2 - 2 K T R -034-0

C p xite 1.3 30 0 5 5 2.5 < 2 < 2 - 2 T D 15

C pxite 0 .8 100 4 34 3.6 < 2 < 2 - < 2 T D 16

D un 1.1 107 180 118 0 .9 3 2 1.5 3 A T R -034-0

D un 4 .2 8 8 7 95 1517 5.5 4 4 1.0 2 K T R -004-0

D un 2 .6 4 5 3 12 1022 3.1 6 6 1.0 8 T D R  27 /01
t/i D un <0.1 5 3 11 <0.1 < 2 < 2 - 3 T D R  01/01
o
*a D u n 0 .3 30 169 28 1.0 3 3 1.0 < 2 T D R  26 /01

D u n 1.2 75 89 6 4 2 .2 < 2 2 0 .0 4 D T R -029-0
I D u n 0 .5 87 8 21 2 .4 <2 < 2 - 8 D T R -039-0
D D u n 0 .5 72 6 32 0.1 < 2 < 2 - <2 D T R -0 4 0 -0
-a
o O l-cp x ite 3.1 4 6 7 75 708 3.4 14 3 4 .7 6 D T R -0 1 4 -0
i/ic4/ O l-cp x ite 1.8 80 4 7 143 2.5 <2 3 0 .0 3 D T R -041-0

_1 O l-cp x ite 1.6 31 104 33 2 .0 2 10 0 .2 4 K T R -006-0

O l-cp x ite 0 .7 138 4 6 2.5 < 2 < 2 - < 2 T T R -020-0

C p x ite 1.6 2 1 0 34 42 8 1.6 21 < 2 - < 2 A T R -0 3 6 -0

C p x ite 0 .4 109 3 9 21 0 0 .2 3 < 2 - 2 D T R -0 1 5 -0

B a sa 0 .6 122 3 0 30 9 0 .2 5 <2 - <2 D T R -0 17-0
B a sa 1.1 2 1 5 155 20 9 5 0 .9 19 2 6 0 .7 3 T T R -007A -

B a sa <0.1 7 6 29 0.1 <2 <2 - <2 T T R -010-0
B irb 0.1 1364 12 387 0.1 3 <2 - < 2 A T R -0 5 0 -0
Birb 1.9 1437 5 2 8 0 0 .2 4 <2 - <2 K T R -002-0

Birb 0 .2 38 2 29 0.1 < 2 < 2 - 2 T D 23

C h S ch i 0 .2 16 55 17 1.8 2 3 0 .7 < 2 T D R  18/01
C h S ch i 19 .0 6 8 9 9 22 4 5 9 0 .4 9 41 0 .2 13 T T R -057 -0
D ior 1.2 13 6 0 3 1.9 < 2 < 2 - 3 A T R -035-0
D ior 2 .6 6 3 7 58 2 3 6 1.8 4 5 0 .8 <2 TD 5
D o le 0 .6 13 53 14 1.3 <2 < 2 - 2 K T R -010-0
D o le 2 4 .7 2 1 9 5 < 2 2 6 <0.1 4 12 0 .3 < 2 T T R -025-0

F e ls 1.2 16 28 8 1.6 <2 6 0 .0 < 2 A T R -043-0
F els 1.3 3 7 110 6 5 1.7 <2 10 0 .0 2 D T R -042-0
G abb 1.1 2 7 4 3 32 4 .5 <2 < 2 - < 2 D T R -025-0
G abb 0 .9 29 105 23 1.5 4 4 1.0 2 T T R -050 -0
G abb 2 .5 3 5 6 41 4 8 6 2 .4 8 5 1.6 <2 T T R -052-0
G ranD i 0.1 19 19 44 0 .3 4 15 0 .3 4 D T R -0 12-0
G ranD i 1.5 173 16 23 1.2 <2 < 2 - < 2 D T R -038-0
HardP 19.6 2 0 5 6 6 53 < 0.1 4 < 2 - 8 T T R -030-0
M etaB as 18.9 414 1 4 6 7 <0.1 7 < 2 - <2 T T R -027-0
M etaB as 2 3 .2 2 5 2 7 2 7 <0.1 4 < 2 - 2 T T R -028-0
M ylo 3.5 5 3 0 32 92 4 3 .5 7 < 2 - <2 A T R -048-0
M ylo 0 .2 14 6 22 0 .2 < 2 < 2 - <2 D T R -030-0

I—
M ylo 2 .0 160 148 193 2 .0 7 4 1.8 <2 K T R -0 1 1-0

•So M ylo 2 0 .3 5 0 7 9 5 150 0.1 25 38 0 .7 < 2 T T R -018-0
Quar 0 .2 3 6 15 22 0.1 < 2 < 2 - <2 D T R -0 11-0
Quar 1.5 3 1 2 12 141 0 .5 <2 <2 - < 2 K T R -003-0
Quar 0.1 2 5 9 22 0 .2 < 2 < 2 - <2 K T R -005-0
Quar 0 .2 32 3 19 0.1 < 2 2 0 .0 <2 T D R  13/01
Quar 0.1 18 3 25 0.1 <2 < 2 - <2 T D R  14/01
Quar 0.1 15 < 2 17 <0.1 <2 < 2 - 3 T D R  15/01
Quar 0.1 15 41 2 9 0 .2 31 3 7 0 .8 3 T D R  17/01
S ch i 15.3 1 1 0 4 4 2 84 2 0.1 <2 < 2 - <2 TD1
S ch i 7.8 1975 <2 1127 0.1 36 < 2 - < 2 T D 2
S ch i 0 .2 15 3 33 1.1 <2 <2 - <2 T D R  16/01
S ch i 0 .2 2 9 14 4 3 0 .3 <2 <2 - < 2 T T R -014-0
Sed 0.1 16 3 6 2 2 0.2 <2 4 0 .0 <2 D T R -0 3 1 -0
T aS ch i 1.7 3 9 6 10 21 5 0 .2 3 3 1.0 < 2 D T R -0 10-0
T aS ch i 10.6 9 5 4 4 58 0 6 .0 15 16 0 .9 2 D T R -0 2 7 -0
T aS ch i 4 .4 57 3 71 983 4 .3 7 4 1.8 19 T T R -051 -0
T C Schi 1.6 20 5 59 2 28 1.5 <2 4 0 .0 8 T D 18
U nid 1.0 6 8 7 4 23 0.1 <2 < 2 - 2 A T R -0 5 4 -0
U nid 0 .2 2 9 2 2 19 1.5 <2 < 2 - < 2 D T R -024-0
U nid 4 .9 1262 68 2 8 7 2 .5 <2 < 2 - < 2 T D R  21/01
V Q uar 21.1 2 5 9 5 < 2 169 <0.1 5 < 2 - < 2 T D 6
V Q uar <0.1 3 < 2 5 <0.1 7 9 0 .8 <2 T D R  02/01
V Q uar <0.1 13 < 2 7 0.1 <2 < 2 - < 2 T D R  03 /01
V Q uar < 0.1 2 0 8 12 0.1 <2 < 2 - < 2 T D R  04/01
V Q uar 12.1 2 6 5 6 4 465 0.1 16 < 2 - < 2 T D R  23/01
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Table 8.12: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Tulu 
Dimtu area. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: Chlorite-Schist. ChSchi: 
Chlorite-Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite. Dun: Dunite. Fels: 

Felsite. Gabb: Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: Metabasalt. MetaSed:
Metasediment. Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: Quartzite. Schi: Schist.

Sed: Sediment. TaSchi: Talc-Schist. TCSchi: Talc-Chlorite-Schist. Troc: Troctolite. Unid:
Unidentified. VQuar: Vein Quartz.

The following sections describe the distribution of Ni, Cu, Cr and Al in the Tulu 

Dimtu area. Each section describes one element and its distribution in fresher ultramafics 

and then altered rocks (as defined in section 8.3.1). These sections are accompanied by a 

fold-out page (page 213) of maps showing the distribution of all elements which the 

reader should refer to as each section is read.

8.4.3. Nickel

The fresher rocks on the flanks of the Tulu Dimtu Main Intrusion are enriched in 

Ni to a much greater degree than those in the centre. In fresher rocks nickel rises above 

3000ppm (and up to 5860ppm) only within 500m of the contact of the Main Intrusion 

with the surrounding basement. Figure 8.4A shows that throughout the centre of the 

intrusion and in two places near the flanks, Ni is below 3000ppm but not lower than 

1456ppm. The two fresher samples from the Lensoid Ultramafics contain significant Ni 

(2824ppm and 1644ppm), the remaining samples from Lensoid Ultramafics show 

negligible amounts (31 to 467ppm). The highest Ni content in fresher rocks (5860ppm) is 

found within 150m of the southern flank of the Sheared Ultramafic.

In samples classified as altered, Ni is enriched almost exclusively in the Main 

Intrusion and the Sheared Ultramafic (figure 8.4A). Although most samples outside of the 

Main Intrusion and Sheared Ultramafic do not host significant Ni, three samples do 

contain significant amounts. These come from two Shear Zones (containing 11,044ppm 

and 6899ppm) and one Lensoid Ultramafic (5079ppm). Indeed, the highest Ni content in 

the samples of the Tulu Dimtu area (11044ppm) is contained in a schistose rock from a 

shear-zone bounding the southeast flank of the Main Intrusion.

187



Chapter 8: Rock Geochemical Data

At one location in the northwestern Lensoid Ultramafic both altered and fresher 

rocks show Ni enrichment. A fresher dunite has 2824ppm Ni and this value rises to 

5079ppm in a mylonitised rock.

8.4.4. Copper

In fresher rocks Cu reaches a maximum of 16ppm in two samples of the Sheared 

Ultramafic. Everywhere else - including the Lensoid Ultramafics - Cu never rises above 

5ppm in fresher rocks.

Cu values of greater than 70ppm in altered rock are almost entirely situated over 

the basement and units other than the Main Intrusion and Sheared Ultramafic (figure 

8.4A). Within the Main Intrusion, the highest values of Cu occur close to the western and 

southern flanks. The highest Cu analysis within the altered samples of the Main Intrusion 

(116ppm) occurs close to the samples with the highest values in the fresher rocks.

Analyses of Cu in samples from the Lensoid Ultramafics and Shear Zones frequently rise

above 70ppm, however some samples show negligible amounts (<5ppm).

8.4.5. Chromium

The highest Cr value in the Tulu Dimtu area (2728ppm) occurs in a fresher dunite 

on the southern flank of the Main Intrusion, close to the Sheared Ultramafic. Of the other 

fresher rocks, all other Cr values above lOOppm in the Main Intrusion are found in a zone 

close to the western flank of the formation. None of the three fresher ultramafics of the 

Lensoid Ultramafics show Cr values which rise above 500ppm, however all are higher 

than lOOppm.

In altered rocks, the dunites and olivine-clinopyroxenites at the centre of the 

intrusion are depleted in Cr. As seen in the fresher rocks, some higher Cr values 

(<100ppm) are found towards the outside of the formation. A schistose rock in a shear- 

zone bounding the southeastern parts of the Main Intrusion has a Cr value of 1127ppm.
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Outside the Main Intrusion high Cr values (<900ppm) can be found in Lensoid 

Ultramafics and Shear Zones.

8.4.6. Aluminium

In all of the fresher rocks (except two) of the Tulu Dimtu area, Al is below 

detection limits. Two dunites from the Sheared Ultramafic returned values of 1% for Al.

The altered dunites in the centre of the Main Intrusion are almost entirely depleted 

in Al. The flanks of the Main Intrusion and Sheared Ultramafic are slightly elevated in 

Al. A high Al value (4.5%) occurs in a gabbro on the western flank of the intrusion and a 

zone of slightly elevated Al values occurs on the southern flank of the formation. Several 

pyroxenites and dunites in the Sheared Ultramafic show Al elevated above 2%. Several 

high values of Al (>4%) occur in the Shear Zones and Lensoid Ultramafics.

8.4.7. Summary of the Ni, Cu, Cr and Al values in the Main Intrusion and 
Sheared Ultramafic

Of the fresher rocks of the Main Intrusion (including the Sheared Ultramafic) the 

highest Ni values in the complex are close to the edge. As such, the highest Ni 

(5860ppm) is found within 150m of the southern flank of the Sheared Ultramafic. 

Similarly, the highest Cr values are found close to the flanks. Although these high Cr 

values are found in five samples within the Main Intrusion, only two fresher samples 

contain both high Ni and high Cr. At the southern edge and near the junction between the 

Main Intrusion, the Sheared Ultramafic and the southern shear-zone, both Cr and Cu rise 

to their highest values in two separate fresher dunites. Figure 8.3 shows the relative 

proportions of Cu and Cr in these samples (TDR 19/01 and TD9).

As seen in the fresher rocks, the altered samples also show the largest values of Cr 

at the flanks of the Main Intrusion. Additionally, Cu and Al show their highest values in 

the same samples located near the southern flank. As with Cu, Cr and Al the altered 

ultramafics show the highest values of Ni close to the flanks of the Main Intrusion,
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similar to those values seen in the fresher rocks. However, unlike the other elements, Ni 

is enriched in two samples in the centre of the intrusion (4141 and 2527ppm).

8.4.8. Summary of the Ni, Cu, Cr and Al values in the Lensoid Ultramafics

When compared to the Main Intrusion the three fresher samples of the Lensoid 

Ultramafics (two dunites and one pyroxenite) display elevated Cr and intermediate Ni 

values.

The altered ultramafics show similar patterns to those seen in the Shear Zones 

(see section 8.4.9). One altered dunite sample is enriched in Ni but two different dunites 

are enriched in Cu. Elsewhere in the Lensoid Ultramafics, one altered olivine- 

clinopyroxenite is enriched in both Cr and Al (700ppm and 3% respectively).

8.4.9. Summary of the Ni, Cu, Cr and Al values in the Shear Zones

Two samples within Shear Zones (a mylonite and a talc-schist) have high values 

of both Cr and Al. High Ni and Cu values occur in different samples, two schistose rocks 

show high Ni values and a mylonite shows Cu enriched above 130ppm.

8.5. Tulu Dimtu: Pt and Pd Distribution

8.5.1. Rock

The highest Pt and Pd grades of fresher rocks in the Tulu Dimtu area occur at the 

south of the Main Intrusion. Pt is present from below detection to 40ppb and Pd from 

below detection to 37ppb in the three samples. These samples are located at the junction 

between the Tulu Dimtu Main Intrusion, the Sheared Ultramafic and the southern shear 

zone. Elsewhere, neither Pt nor Pd rise above 9ppb and drop to below detection limits 
(<2ppb).
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Within the Tulu Dimtu Main Intrusion, the three highest Pt analyses (36ppb, 

24ppb and 24ppb) in the altered rocks occur at the edge of the complex and these all 

coincide with Pd below detection limits (<2ppb). All other altered ultramafics show Pt 

assays between 7ppb and 3ppb. The maximum Pd value within the altered rocks of the 

Main Intrusion is 15ppb found near the southern flank. A dolerite dyke cross-cutting the 

intrusion near the western flank has a Pt at a value of 4ppb and a Pd value of 12ppb. The 

two Pt- and Pd-bearing samples from the Lensoid Ultramafic units are an altered 

ultramafic with a Pt value of 21ppb and a Pd value below detection and a mylonitised 

sample with a Pt value of 25ppb and a Pd value of 38ppb. These are found in two 

separate ultramafic units to the northwest of the Main Intrusion (figure 8.4E and 8.4F).

Other Pt- and Pd-bearing samples include a chlorite schist in a zone cross-cutting 

the gabbro and this shows results of 9ppb Pt and 41 ppb Pd. A talc schist occurs close to 

the sheared western contact of the Tulu Dimtu Main Intrusion and this has returned 

results of 15ppb and 16ppb for Pt and Pd respectively. A fine-grained volcanic sample 

close to the isolated shear zone west of the Main Intrusion has Pt and Pd concentrations 

of 26ppb and 19ppb respectively.

8.5.2. Summary of Pt and Pd distribution in the Main Intrusion and Sheared 
Ultramafic

The highest Pt and Pd grades of the Tulu Dimtu area occur in a fresher rock on 

the southern flank of the intrusion. This occurs with two other fresher samples which are 

also relatively high in both Pt and Pd (see table 8.13). These samples occur at the junction 

between the Main Intrusion, Sheared Ultramafic and Shear Zones.

Within the altered rocks of the Main Intrusion all Pt grades above 20ppb also 

occur in the flanks of the intrusion -  which may suggest a zonation in Pt values. As seen 

with Pt, all Pd values in altered rocks are 15ppb or below and occur within 400m of the 

flanks of the intrusion. However - unlike the fresher rocks -  Pt reaches the highest values 

in different altered samples from those of Pd (figure 8.4E).
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The comparison between PGE and Ni, Cu, Cr and Al in the highest samples is 

summarised as follows:

Sample Pt Pd Ni Cu Cr Al

TDR 19/01 37 30 2872 16 436 0.1

TD9 37 27 2992 8 2728 0.5

TD10 2 40 1909 4 634 0.1

TD12* < 2 <2 1456 16 102 <0.1

Table 8.13: A summary o f Ni, Cu, Cr and Al values in the dunite samples of highest Pt and Pd 
grade of the fresher rocks. A graphical representation of this data is provided in figure 8.3. *: 

Sample TD12 is included regardless of low Pt and Pd values as it contains a high Cu value and is 
located close to the Pt- and Pd-bearing samples.
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8.5.3. Summary of Pt and Pd distribution in the Lensoid Ultramafics

The highest Pt and Pd values in fresher rocks are 9 and 8ppb respectively. 

Whereas the highest Pt and Pd values in altered Lensoid Ultramafics are 25 and 38ppb. 

There are three altered samples from the Lensoid Ultramafics which contain Pt or Pd. An 

altered pyroxenite and an olivine-clinopyroxenite sample are more enriched in Pt rather 

than Pd and one mylonite sample contains both Pt and Pd.

8.5.4. Summary of Pt and Pd distribution in the Shear Zones

Two samples within the Shear Zones are Pt- and Pd-bearing. These are a talc- 

schist close to the western contact of the Main Intrusion and a chlorite-schist in the 

southwestern comer of the area. In the chlorite-schist Pd predominates over Pt, but in the 

talc-schist Pt shows similar values to Pd.

8.5.5. Summary of Pt and Pd distribution in the basement

Two basement rocks are Pt- or Pd-bearing. These are a quartzite (with a Pt value 

of 31 ppb and Pd value of 37ppb) and a fine-grained volcanic rock (with a Pt value of 

19ppb and Pd value of 26ppb).

8.5.6. Comparison of the geochemistry of the soil versus rock samples

Ni and Cu anomalies in soil occur in different places from those of the rocks 

(when compared to chapter 8). As with the rock samples (see chapter 8), the highest Cr 

values in soil are found above the western and southern flanks of the Main Intrusion and 

the lowest values are in the centre of the intrusion.

There are a greater number of soil samples enriched to above 20ppb Pt compared 

to the number of rock samples. In fresher and altered rocks 7% of the samples (3/42) 

contain more than 20ppb Pt whereas in soils 33% (23/70) contain more than 20ppb. Pd 

anomalies (13 and 15ppb) only occur in the centre of the intrusion.
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8.6. Review o f processes concentrating Pt and Pd

8.6.1. Introduction

There are several mechanisms cited to explain the distribution of PGE within 

mafic and ultramafic complexes. Much research has been directed towards the role of 

sulphur in magmas but alternatively some authors advocate a role for hydrothermal 

fluids. Furthermore, some models have been developed whereby PGE are concentrated 

without sulphur or hydrothermal fluids.

The proponents of the role of sulphur argue that PGE-rich droplets of liquid 

sulphide segregate out of a silicate magma and then concentrate the PGE into a horizon 
(for a review see Naldrett, 1998). Alternatively, the study of polyphase silicate inclusions 

within Pt-Fe alloys from sulphur-poor complexes suggests that the magma involved in 

the precipitation of PGM is highly water-rich (Johan, 2002). Studies of /O 2 and fluid 

inclusions can also be used to support the role of high temperature fluids in concentrating 

PGE. Some recent work has begun to reveal an additional view on PGE concentration. 

Macambria and Filho (2005) cite a correlation between Al and PGE to suggest that 

neither sulphur nor high temperature fluids are required to create a PGE “reef’.

In order to aid the subsequent discussion this section reviews the igneous 

processes believed to have a role in the concentration of Ni, Cu, Cr, Al and PGE. This is 

followed by an account of the study of PGE solubility in medium to low temperature 

fluids.

8.6.2. The fractionation of Ni

The partitioning behaviour of Ni can vary with magmatic conditions of formation 

such as /O 2 and /S 2 (Kinzler et al., 1990; Gaetani and Grove, 1997). Table 8.14 shows 

the range of partition co-effcient (D Nj) values determined from in-situ measurements of 

natural examples and from experimental systems. The lowest partition cocoefficient of Ni
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(DNi) seen in the literature is 1.35 with most experiments and measurements returning 

values of over 4. It can therefore be expected that -  regardless of variations in magmatic 

conditions - Ni will partition into the most primitive rocks of the complex. As 

fractionation continues the Ni content of the melt will decrease and therefore any 

subsequent olivine crystals to precipitate will have proportionately less Ni. The highest 

known D™ values are for sulphide phases (ranging 150 to 4300, see Pedersen et al. 1979). 

Therefore it is reasonable to assume that if there is any sulphide present in a melt then 

almost all Ni will partition into those phases.

Rock Type

Basalt-Andesite 
Basalt-Andesite 
Andesite 
Andesite 
Andesite 
Basalt 
Basalt-Andesite 
Andesite 
Andesite 
Basalt-Andesite 
Andesite 
Basalt 
Andesite 
Basalt-Andesite 
Andesite 
Basalt 
Basalt-Andesite 
Andesite 
Komatiite 
Basalt-Andesite 
Andesite 
Basalt-Andesite 
Andesite 
Basalt 
Basalt
Basalt-Andesite

 Dm_____
Value Low High
58.00
34.00 
24.90
22.00 
15.50 
12.20

28.0036.40
15.4020.70 Experimental
15.00 Experimental
10.70 12.20 Experimental
9.4024.00
9.3012.80

4.36
4.30
4.30 
4.00 
2.86 
1.35

5.05
6.20
7.20
7.46
13.6
1.73
4.50

DNi Type Reference

Phenocrysts-Matrix Luhr & Carmichael, 1980 
Phenocrysts-Matrix Villemant et al., 1981 
Phenocrysts-Matrix Ewart & Griffin, 1994 
Phenocrysts-Matrix Dostal etal., 1983 
Experimental My sen, 1978
Phenocrysts-Matrix Bougault & Hekinian, 1974 
Phenocrysts-Matrix Villemant, 1988

Model
Experimental

Drake & Holloway, 1981 
Kloeck & Palme, 1988 
Pedersen, 1979 
Nielsen, 1988 
Nabelek, 1980

8.63 18.54 Phenocrysts-Matrix Dale & Henderson, 1972
8.2523.50
7.60 11.00 Experimental
7.60 48.00 Experimental 
7.1515.10 
6.1024.80
4.50 7.10

Phenocrysts-Matrix Leeman & Scheidegger, 1977 
Kennedy et al., 1993 
Duke, 1976 

Experimental Kinzler et al., 1990
Experimental Mysen, 1979
Experimental Gaetani & Grove, 1997
Experimental Seifert et al., 1988
Experimental Drake & Holloway, 1981
Experimental Mysen & Virgo, 1980
Experimental Gaetani & Grove, 1997
Experimental Takahashi, 1978

Irvine & Kushiro, 1976i  Experimental
I Phenocrysts-Matrix Ewart & Griffin, 1994 

Table 8.14: Partition co-efficients ofNi between olivine and melt or host rock type (as stated), 
where DNi = Olivine / Melt or Host Rock. This data was compiled using the GEOROC database

(2005).
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8.6.3. The fractionation of Cr

The partitioning behaviour of Cr into olivine is less certain - Dcr can vary from 0 

to 34 (table 8.15). Situations have been described in nature whereby Cr can partition 

entirely into the basaltic or andesitic host-rock or almost entirely into the olivine 

minerals. Although Cr partitioning into olivine is variable, Cr has a strong affinity with 

spinels where Dcr can vary from 30 up to 340 (table 8.16).

Rock Type DCr Dcr Type Reference
Value Low High

Basalt-Andesite 34.00 Phenocrysts-Matrix Luhr & Carmichael, 1980
Andesite 5.00 Phenocrysts-Matrix Mahood & Stimac, 1990
Basalt-Andesite 2.80 Phenocrysts-Matrix Villemant et al., 1981
Basalt-Andesite 1.20 Experimental McKay & Weill, 1976
Basalt 1.18 Experimental Kloeck & Palme, 1988
Basalt-Andesite 1.10 Phenocrysts-Matrix Bougault & Hekinian, 1974
Basalt-Andesite 1.08 Experimental McKay & Weill, 1977
Basalt-Andesite 0.90 Experimental Ringwood, 1970
Basalt 0.73 Experimental Nikogosian & Sobolev, 1997
Basalt-Andesite 0.70 Phenocrysts-Matrix Dostal etal., 1983
Andesite 0.00 Phenocrysts-Matrix Michael, 1988
Andesite 5.14 5.50 Phenocrysts-Matrix Villemant, 1988
Andesite 1.10 5.20 Experimental Duke, 1976
Basalt-Andesite 1.06 3.06 Phenocrysts-Matrix Leeman & Scheidegger, 1977
Andesite 1.00 1.20 Experimental Pedersen, 1979
Andesite 0.63 1.85 Experimental Beattie, 1994
Komatiite 0.58 0.66 Experimental Gaetani & Grove, 1997
Basalt-Andesite 0.58 0.78 Experimental Akella etal., 1976
Basalt-Andesite 0.45 1.30 Experimental Kennedy et al., 1993

Table 8.15: Partition co-efficients o f Cr between olivine and melt or host rock type (as stated), 
where DCr = Olivine / Melt or Host Rock. This data was compiled using the GEOROC database

(2005).

Rock Type lS/finrr-il -̂ Cr DCr Type ReferenceValue Low High
Basalt
B asalt-Andesite-Dacite
Basalt-Andesite
Andesite-Basalt
Andesite
Rhyolite

Spinel 77.00 
Magnetite 166.00 
Magnetite 153.00 
Magnetite 30.00 
Magnetite 93.00 340.00 
Magnetite 54.00164.00

Experimental Ringwood, 1970 
Phenocrysts-Matrix Sisson, 1991 
Phenocrysts-Matrix Esperanfa et al., 1997 
Phenocrysts-Matrix Bacon & Druitt, 1988 
Phenocrysts-Matrix Beattie, 1993 
Phenocrysts-Matrix Schwandt & McKay, 1998

Table 8.16: Partition co-efficients of Cr between spinel or magnetite and melt or host rock type (as 
stated), where DCr = Olivine / Melt or Host Rock. This data was compiled using the GEOROC

database (2005).
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8.6.4. Sulphide immiscibility and solubility

As the primitive magma rises through the Earth’s crust, a small amount of 

precipitation of silicate or oxide minerals occurs and then sulphur may become saturated 

in the magma. At this point S comes out of solution in the silicate melt and a situation 

occurs where both silicate and sulphide melts exist together as immiscible liquids -  an 

event called sulphide segregation. Ni, Cu, Pt and Pd are known to be concentrated into 

the sulphide melt within a magma by sulphide segregation (Naldrett and von 

Gruenewaldt, 1989) which may be triggered by several different changes in conditions.

Sulphur saturation in a magma can be achieved in a situation where sulphur 

becomes insoluble. The most common explanation for this is through the precipitation of 

silicate minerals, or a fall in temperature, or an increase in / O2 or by a decrease in the 

amount of Fe2+ in the magma. However, there are several other factors which affect 

sulphide solubility (for a review see Robb, 2005) including the injection of a new magma 

(see section 8.6.7).

8.6.5. Sulphide fractionation

As an immiscible mixture of silicate and sulphide liquids rise through the crust 

crystallisation occurs in each melt. The sulphides fractionate to produce a Ni-bearing 

monosulphide solid solution (MSS) which is precipitated leaving a Cu-rich residual 

sulphide liquid (Fleet and Pan, 1994; Barnes et al., 1997). Partition coefficients 

confirmed by geological studies have demonstrated that during sulphide fractionation, Pt 

and Pd are compatible with the Cu-rich residual sulphide liquid (Bames et al. 1997; Fleet 

et al., 1993). The residual sulphide liquid may then crystallise as a Pt-, Pd- and Cu-rich 

Intermediate Solid Solution (ISS). Alternatively, the Cu-rich liquids could be driven 

away from the MSS, through filter-pressing (see section 8.6.6). The products of sulphide 

fractionation are seen in-situ in the sulphide blebs described by Prichard et al. (2004).
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It has been argued that the concentration of PGE by the action of sulphides is only 

valid in magmas of large bulk-S content such as the Bushveld or Sudury Intrusive 

complexes. Furthermore, a sulphur solubility assessment has suggested that the Bushveld 

complex does not contain sufficient sulphur to explain the amount of PGE present (see 

Cawthom, 2005). These arguments suggest that alternative models (not involving 

sulphur) should also be explored. However, Peregoedova and Ohnenstetter (2002) argue 

that a high / S2 can be obtained in low-S magmas through fractionation of the silicate 

melt and immiscibility of the sulphides. Furthermore, Tolskykh et al. (2000) have shown 

that in Alaskan-type intrusions -  which are commonly low-S - it is common to find 

cooperite (PtS) rimming Pt-Fe alloys. This presence of cooperite suggests that the / S2 of 

the magma must have risen high enough to allow the sulphuration of Pt (Peregoedova and 

Ohnenstetter, 2002).

8.6.6. Filter-pressing

After and during sulphide fractionation, the Cu-rich residual sulphide liquid can 

migrate away from the MSS crystals and precipitate. This is proposed by the “filter- 

pressing” model of Andersen et al. (1998) to explain the zonation of Au and PGE in the 

Skaergaard Intrusion (East Greenland). As sulphide fractionation occurs, cumulus silicate 

crystals precipitate, and the residual sulphide liquid will be interstitial. As further 

accumulation of cumulus material occurs, the volume of interstitial space will drop and 

the residual sulphide material will be entrained along with the other interstitial fluids and 

migrate towards the more evolved portions of the system. The MSS, however, will have 

already crystallised will therefore be trapped within the cumulate pile thereby allowing 
ISS to crystallise away from MSS.

In a situation where bulk sulphur content is very low, it may be hard to understand 

how a residual sulphide liquid can migrate. However, the validity of this model is 

dependant on the potential for the residual sulphide liquid to be entrained in the bulk 

interstitial liquids. Smaller amounts of liquid are more likely to become entrained than 

larger amounts and hence the model becomes more feasible with smaller amounts of
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fluid. Additionally, when the residual sulphide liquid is moving away from the MSS, a 
“tail” will form behind the bulk of the entrained liquid. The more entrained the liquid, the 

larger the tail and, therefore, the less likely that ISS will be split apart from MSS. So the 

smaller the proportion of residual sulphide liquid, the greater the potential for filter- 

pressing to occur and the more likely Cu-rich sulphides (ISS) will be split apart from Ni- 

rich sulphides (MSS).

It may be argued that the residual sulphide liquid is unlikely to travel distances 

larger than 1cm. However the evolved Cu-rich liquid can behave in a number of ways. 

Prichard et al. (2004) describe a situation in a mafic dyke whereby both MSS and ISS 

crystallise together as sulphide blebs less than 1cm in diameter. In contrast, Naldrett et al. 

(1992) describe how the ores of the “Copper” and “Deep Copper” zones of the Strathcona 

mine are the end product of fractionation of the Main Zone Sulphides over 200m away. 

Furthermore, Andersen et al. (1998) document the effect of filter pressing in separating 

Au and PGE reefs over several 100s of metres in the relatively sulphur-poor Skaergaard 

complex. And as such, it is expected that under the appropriate conditions, the evolved 

residual sulphide liquid can travel up to 200m away from the location of the MSS.

8.6.7. Magma mixing

Magma mixing may result in the precipitation of large amounts of chromite which 

may be accompanied by sulphide immiscibility The mechanism of chromitite formation 

is dealt with first. Chromite saturation can be reached in a situation where a slightly 

evolved melt (precipitating olivine) is mixed with a primitive melt (Naldrett et al., 1990; 

Naldrett and von Gruenewaldt, 1989). The precipitation of chromite by the mixing of two 

magmas was proposed by Irvine (1977) to explain the formation of massive chromitites 

in the Muskox intrusion in NW Canada. His model is consistent with observations of 

chromitites from the Bushveld and Stillwater complexes where chromitites form at the 

base of well-defined cyclic units (Naldrett et al., 1990). Naldrett et al. (1990) suggest that 

if a magma on the olivine-chromite cotectic (point A) is mixed with a magma in the 

orthopyroxene field (point D) the resulting melt (AD) may fall within the chromite field
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and as cooling occurs, chromite will be precipitated followed by olivine. This will then be 

followed by the typical fractionation sequence. This only occurs in a situation where the 

fresher magma intrudes the evolved melt well before plagioclase is precipitated.

Where an advanced differentiate (precipitating plagioclase) mixes with a 

primitive melt, sulphides may become immiscible with the silicate melt (Naldrett and von 

Gruenewaldt, 1989). Subsequently, suitable conditions for the crystallisation of these 

sulphides may then allow Ni, Cu and the PGE to become concentrated. In order for 

chromite to be precipitated only a slightly evolved melt is required, but for chromites to 

be precipitated and sulphides to become immiscible the influx of a more advanced melt is 

necessary. This raises the possibility within this model of the existence of sulphide-barren 

and sulphide-poor chromitites.

8.6.8. Hydrothermal remobilisation

When associated with primary sulphides of a small grain size, Ni and Cu are both 

known to be highly soluble in hydrothermal fluids. This behaviour is indicated from 

precipitates of hydrothermal fluids (Marshall and Gilligan, 1987; Keays, 1987; Canals et 

al., 1992). Furthermore, the presence of Cu in hydrothermal fluid inclusions has been 

noted by Vanko et al. (2001) and Baker et al., (2004) -  for a synopsis of previous studies 

see Kesler (2005). Fluids in such systems are regarded to be of nearly neutral pH, with 

temperatures from 200-300°C and salinities of less than 3wt% NaCl (Kesler, 2005) all of 

which are obtainable in a mobile belt such as the WES. Therefore the presence of Ni and 

Cu in highly sheared rocks (at values much higher than in fresher rocks) may be the result 

of shear-zone hosted high-temperature fluids.

In comparison to sulphide-associated elements, Cr-bearing spinels are highly 

resistant to hydrothermal alteration. It is therefore likely that a fresher rock with high Cr 

will retain a high Cr value in the subsequent altered rock. Aluminium is also immobile in 

hydrothermal fluids and, therefore, if present it may indicate the presence of 
aluminosilicates in the protolith.
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The evidence for the stability of Pd- and Pt-chloride complexes in fluids at 

equilibrium with typical alteration minerals at temperatures up to 300°C is well 

established (Wood, 2002; Wood 1987; Gammons et al., 1992). At higher temperatures, it 

is expected that the solubility of these elements in alteration fluids will increase and 

lower salinities and pH will be required. Solutions in equilibrium with clay minerals 

and/or hematite are thought to take more Pt and Pd into solution than those fluids which 

precipitate pyrite, pyrrhotite and other alteration minerals (Tarkian et al., 1996). The 

solubility of Pt- and Pd-bisulphide complexes is not well understood, but may be capable 

of transporting far more of the elements under less extreme conditions. Additionally, the 

case for preferential dissolution and transport of Pd over Pt has been made clearly by 

experimental studies of several conditions (see numerous references in Wood, 2002).

8.7. Tulu Dimtu: Discussion

Here the processes likely to have affected the distribution of Ni, Cu, Cr Al, Pt and 

Pd in the Tulu Dimtu area are discussed. The processes involved with the distribution of 

Ni, Cu, Cr and Al in fresher ultramafics are considered from 8.7.1 to 8.7.3, followed by 

those processes which affect altered rocks in 8.7.4 and 8.7.5. The mechanisms which 

distribute Pt and Pd are considered from section 8.7.6 to section 8.7.7.

8.7.1. Zonation of nickel and chromium in fresher rocks

The highest Ni value in the fresher rocks (5960ppm) occurs within 150m of the 

southern flank of the Sheared Ultramafic. Ni values then drop steadily towards the centre 

of the Tulu Dimtu Main Intrusion and as such, all Ni values above 3000ppm occur within 

500m of the edges (figure 8.4A). Similarly, the highest Cr value (2728ppm) occurs at the 

edge of the Main Intrusion and all Cr values above lOOppm occur within 700m of the 

flanks of the complex (figure 8.4C). Although both elements show a gradual variation in 

values with distance away from the edge of the intrusion there are only two samples 

which contain both elevated Cr and elevated Ni. Additionally, the highest Cr values occur 

in a different location to the highest Ni values.
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As Ni is compatible in olivine, the fresher rocks at the edge of the complex could 

be considered to be the most primitive rocks of the dunite zone and the drop in Ni values 

can be regarded as the product of further evolution of the melt. The geochemistry of the 

host-rock will affect the Dni value and all relevant studies show Dni between olivine and 

melt values of greater than 1.35 (table 8.14). The most relevant study -  using a komatiite 

host rock -  returned a DNi range of 4.5 to 7.1 (Gaetani and Grove, 1997).

Although fractionation could explain the trends in Ni values, the absolute figures 

are higher than expected for the Ni content of olivine. Typical Ni values in olivine 

minerals range from 1280ppm to 3293ppm (table 8.17) whereas four samples of fresher 

dunite contain greater than 3500ppm, it can therefore be expected that the excess Ni is 

contained in an additional phase or phases. It is likely that the additional phase hosting Ni 

is a sulphide mineral (as observed in chapter 3) and to a lesser degree oxide minerals. 

Although olivine will have been dissolved, sulphides are more likely to have been 

leached extensively by the aqua regia process.

Number o f Min Max
Reference Location Rock Name Method analyses (ppm) (ppm)

Kerguelen / lie De Dunite ICPMS
Moine et al. (2001) LAOuest / Indian Ocean xenolith (LA) 1 2695 2695

Ontong Java / Solomon
Schuth et al. (2004) Islands / Pacific Ocean 

Canary Islands /
Picrite EMP 19 2200 3293

Neumann et al. Fuerteventura / Atlantic Harzburgite
(2002) Ocean xenolith ICPMS 9 2180 3150
Gregoire et al. Kerguelen / lie De Harzburgite
(2000) LAOuest / Indian Ocean xenolith ICPMS 12 2125 3275

Iceland / Iceland /
Hansen and Bardarbunga / Atlantic
Gronvold (2000) Ocean

Canary Islands / Gran 
Canaria / Basalt Series

Basalt ICPMS 2 1311 1405

Burton et al (2002) Iv / Atlantic Ocean Picrite EMP 4 1280 2890
Table 8.17: The range of Ni values in analyses of olivine minerals. ICPMS; Inductively Coupled 

Plasma Mass-Spectrometry; LA: Laser ablation; EMP: Electron microprobe. This data was 
compiled using the GEOROC database (2005).

As spinel minerals have been observed in these rocks (chapter 3), it is thought 

likely that the Cr has partitioned into these phases. In a situation where Cr has partitioned
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into olivine, it would be expected that the higher Cr values would form uniform zones. 

However, in the Tulu Dimtu Main Intrusion (figure 8.4C) several isolated samples with 

high Cr values occur -  an observation which is consistent with the concentration of Cr 

within discrete spinel minerals. In most spinel-bearing complexes, Cr-spinels precipitate 

with olivine early during fractional crystallization and/or relate to an increase in /O 2 

(Barnes and Roeder, 2001). The refractory nature of the spinels mean that they will not 

go into solution easily in aqua regia. It is likely that the Cr values found in the analyses 

presented here represent Cr partitioned mainly into olivine and to a small degree into 

spinel. With this in mind, a rock with a high Cr value remains a relatively primitive rock.

It is proposed here that as a partial melt rose through the Earth’s crust, olivine 

precipitated and took Cr and some Ni into its crystal structure. As silicates continued to 

crystallise from the melt a point came whereby the dissolved sulphides became 

immiscible (Naldrett and von Gruenewaldt, 1989). When this occurred, Ni was 

scavenged from the silicate melt into the immiscible sulphide liquid. Subsequently 

sulphur saturation of the magma occurred and Ni-bearing (and possibly Cu-bearing) 

sulphides crystallised. After these immiscible sulphides had precipitated, Ni continued to 

be partitioned to a lesser degree into the olivine and oxides in the more evolved rocks. 

Simultaneously as olivine crystallised, discrete spinel minerals precipitated into which Cr 

partitioned. It can be suggested that the rocks of the western and southern flanks of the 

Tulu Dimtu Main Intrusion are the most primitive and that progressive fractionation was 

directed towards the centre of the intrusion.

It could be argued that the action of sulphur in concentrating Ni is not relevent 

due to the low sulphur content. Only one fresher ultramafic rock returned S values above 

detection limits (0.02% found in DTR-007-02). However, Peregoedova and Ohnenstetter 

(2002) argue that a high / S2 can be obtained in low-S magmas through fractionation of 
the silicate melt and immiscibility of the sulphides (8.6.5).

It is not possible to rule out the effects of re-mobilisation of Ni by late or post 

magmatic hydrothermal fluids. It is likely that hydrothermal fluids have remobilised Ni in
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these rocks to some degree. However, as shown in section 8.3.1 the rocks classed as 

“fresher” in this study all retain Mg values which are as high as can be expected for a 

typical fresher dunite or clinopyroxenite. Therefore, these samples cannot have been 

subjected to pervasive alteration, however it is still possible that some limited action of 

hot fluids may have affected the Ni values (in the order of 100’s of ppm) without a 

significant difference in Mg values. Narrow veinlets containing Ni-bearing phases may 

cross-cut an otherwise fresher sample and this is documented in chapter 3. However, 

unlike Ni, Cr is not known to be remobilised by hydrothermal fluids -  even from olivine - 

and shows similar zoning to Ni and this therefore, supports the fractionation hypothesis.

8.7.2. Locations of highest copper and chromium values in fresher rocks

The highest values of Cu in the fresher rocks (16ppb in two samples) occur 200m 

from the southern flank of the intrusion. The highest Cr values occur in a different sample 

located close by (<100m). The highest values of Cu and Cr do not occur with the highest 

Ni values -  which are located over 1km away.

Although crystal fractionation and the immiscibility of sulphides can explain the 

Ni values and some of the Cr values, this model (section 8.7.1) cannot explain why the 

highest Cu values are located in a different location from Ni. Furthermore, it cannot 

explain why the highest Cr values occur close to the highest Cu but not Ni. In a situation 

where sulphide minerals crystallise at the same time Cr partitions into olivine, the highest 

Ni and Cu values would initially occur close to the highest Cr values. Subsequently, the 

Cu may be moved away from the highest Ni and Cr by either filter-pressing or high 

temperature fluids (see below). Here, the close proximity of the highest Cu and Cr values 

and their dislocation from the highest Ni values suggests that a different or more complex 

model is required. In this section two possible explanations are discussed, firstly a 

combination of filter-pressing and magma-mixing and secondly the remobilisation of Cu.

During filter-pressing, the Ni-rich MSS precipitates and then the Cu-rich residual 

sulphide liquid migrates away from the MSS by the compaction of the cumulus olivines.
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8.7.3. Trace element distribution in fresher rocks of the Lensoid Ultramafics

Ni values in the limited number of fresher samples from the Lensoid Ultramafics 

are above lOOOppm but lower than 3000ppm and Cr values are higher than lOOppm. 

These values are similar to those seen close to the edge of the Tulu Dimtu Main 

Intrusion. The Ni values are low enough for this element to be taken into the crystal 

structure of olivine without the involving other phases. The Cr values are comparable to 

those seen on the western flank of the Tulu Dimtu Main Intrusion. By comparison with 

the Tulu Dimtu Main Intrusion, it is inferred that these rocks crystallised before sulphide 

saturation. It is plausible that these smaller ultramafic bodies could be considered as 

slivers of “sheared-off’ material from the flanks of a larger intrusion. Although with only 

three samples of fresher rocks from the Lensoid Ultramafics these interpretations are 

preliminary.

8.7.4. Trace element distribution in Shear Zones

The highest value of Ni in the rocks of Tulu Dimtu (ll,044ppm) occurs in a 

sheared rock at the southeastern flank of the Tulu Dimtu Main Intrusion , this is almost 

twice the highest value seen in fresher rocks (5860ppm). Additionally, a mylonite sample 

shows Cu values of 148ppm which is much higher than the amount of Cu in fresher rocks 

which is 16ppm. Two samples within Shear Zones (a mylonite and a talc-schist) show 

high Cr and Al at over 900ppm and 4% respectively.

The necessary aqueous conditions for the remobilisation of Ni and Cu are 

obtainable in a mobile belt such as the WES (section 8.6.8). Therefore the presence of Ni 

and Cu in highly sheared rocks - at values much higher than in fresher rocks - may be the 

result of the redeposition by hot aqueous fluids transported along Shear Zones.

This leaves the question of how both Al and Cr are concentrated into the samples 

since Al is to be expected in a felsic protolith and Cr is expected in primitive ultramafics. 

Given that some altered rocks may more resemble soils it is possible that the Al has been
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concentrated by soil-forming processes occurring above a Cr bearing ultramafic protolith 

or alternatively that two different protoliths have been juxtaposed in the shear-zone.

8.7.5. Zonation of trace elements in altered rocks

The altered rocks of the Tulu Dimtu Main Intrusion show a zonation in Ni and Cr 

similar to that seen in the zones of the fresher rocks (>3000ppm and >lOOppm 

respectively). Patterns seen in altered rocks but not seen in the fresher samples are that 

Cu and Al also have high values at the edge of the intrusion (>30ppm and 0.7% 

respectively). Individual samples from the Lensoid Ultramafics also show elevated values 

for all four elements in question. Chapter 3 shows that the principle mineral in these 

samples is serpentine and as a phyllosilicates is likely to be affectively digested by aqua 

regia along with the sulphides (see section 8.2.3).

The altered samples studied here represent a magmatic signature overprinted by 

alteration. It has been seen (chapter 2) that the WES has been subjected to considerable 

deformation and the movement of hydrothermal fluids. This deformation has been 

observed at Tulu Dimtu by De Wit and Chewaka (1977) who described alteration in 

Shear Zones flanking the intrusion resulting in a talc-carbonate and serpentine-talc 

assemblage. It is therefore likely that the same hydrous fluids could have penetrated the 

flanks of the Tulu Dimtu intrusion to remobilise and precipitate both Ni and Cu. Hence 

the elevated Ni and Cu values could be the result of either or both hydrothermal 

remobilisation or magmatic concentration. Cr is unlikely to have been remobilised from 

its primary position and, therefore, the zonation in high Cr values at the flanks of the 

intrusion supports similar zones seen in fresher rocks. The values of Cr in an altered rock 

may be elevated slightly from the equivalent in the protolith, due to changes in volume 

between fresher and altered rocks (Giggenbach, 1984). Slightly elevated Al values at the 

flanks of the intrusion may be attributed to the concentration of the element -  seen in 

trace amounts in fresher rocks - during soil-forming. However, the original source of the 

Al is unknown. For this study, an “altered” rock may be partially affected by soil-forming 

processes at the start of the transformation from rock to soil.
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As with the Tulu Dimtu Main Intrusion, hydrothermal fluids can be invoked to 

explain the distribution Ni and Cu in the Lensoid Ultramafics. If the Lensoid Ultramafics 

are considered as deformed slivers of the Tulu Dimtu Main Intrusion (as suggested in 

section 8.7.3) it is to be expected that they have been subjected to similar and possibly 

more intense alteration systems due to the deformation required to dismember them from 

the Tulu Dimtu Main Intrusion. Both Ni and Cu are observed in concentrations much 

higher than those seen in the fresher samples of the Lensoid Ultramafics and also higher 

than the altered samples of the Main Intrusion. It is to be expected that the deformation 

required to dismember the lensoid bodies from the Main Intrusion is greater than that 

seen at the flanks of the Main Intrusion itself. It is possible that the subsequent alteration 

will have been more intense and the potential for concentration of Ni and Cu greater as a 

result. However, hydrothermal fluids may also act to disperse the elements which are 

soluble within them.

8.7.6. Genesis of Pt and Pd in fresher rocks

Three fresher dunites from the Tulu Dimtu Main Intrusion contain significant Pt 

and/or Pd values (TD10, TD9 and TDR 19/01). Each of these three samples contains 

significant amounts of either Ni, Cu and/or Cr and the variations of these elements are 

summarised in table 8.13 and figure 8.3. The three Pt- and Pd-bearing samples are 

located close to another fresher dunite (TD12) which is barren of both elements but 

contains the highest Cu value.

A model to explain the origin of the high Cr value found in sample TD9 by the 

mixing of a fresher primitive magma is outlined in section 8.7.2 and this can also explain 

the high Ni value as it will concentrate strongly into the early crystallised olivines. 

Naldrett and von Gruenewaldt (1989) have determined that magma mixing may account 

for sulphide segregation where an advanced differentiate (precipitating plagioclase) 

mixes with a primitive melt (see section 8.6.7). However plagioclase is not observed in 

the ultramafics from the Tulu Dimtu Main Intrusion and therefore this is seen as unlikely.
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The model used to explain the dislocation of Cr and Cu anomalies from Ni (see section 
8.7.2) can be used to explain the Pt and Pd distribution. In this model the Pt and Pd was 

filter pressed into the fresher cumulate pile along with the Cu-rich residual sulphide 

liquid.

As with Cu, the locations of the highest Pt and Pd values can be explained on the 

basis of either magmatic processes (filter-pressing) or alteration. The Pt and Pd of sample 

TDR 19/01 (see table 8.13) could be explained as being partitioned into a Cu-bearing 

residual sulphide liquid which was subsequently filter-pressed through the pile of 

cumulate olivines so that it is separated from the crystallised Ni-rich MSS (as described 

in section 8.6.6). A similar explanation may be given for the Pt- and Pd-barren sample 

TD12, however in this case the ISS crystals precipitated from the sulphide liquid after the 

precious metals had already partitioned out of this melt.

Alternatively, both Pt and Pd in each sample could have been remobilised along 

with Cu. The origin of high Pd in sample TD10 is hard to explain by magmatic processes 

as Pt should behave similarly in a magma. The absence of Pt indicates that a Pd mineral 

was present in this sample. The Cu value is too low to conceive the presence of residual 

sulphides and the Ni value is low enough to be partitioned into olivine alone. It is 

possible that the anomalous Pd value may have been transported in by aqueous fluids, as 

this is seen frequently in other deposits (section 8.6.8). The reason for the dislocation of 

Pt and Pd from the areas of the highest Ni can only be determined through the analysis of 

the morphology of the PGM.

8.7.7. Genesis of Pt and Pd in altered rocks

Pt- and Pd-bearing altered rocks occur at different locations in the Main Intrusion 

(figures 8.4E and 8.4F). The dislocation of Pt and Pd anomalies at the flanks of the Tulu 

Dimtu Main Intrusion could be explained by the preferential transport of Pd away from 

the sites of magmatic concentration (see section 8.6.8). The preferential remobilisation of 

Pd over Pt has been documented by many other authors (for example Oberthur et al.,
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2003; Prichard et al., 1996). The sites of magmatic PGE concentration are likely to occur 

at the flanks of the intrusion which is also where hydrothermal fluids are likely to act. So 

the two modes of transport are likely to have been superimposed.

There are seven Pt- and Pd-bearing rocks outside of the Tulu Dimtu Main 

Intrusion and these are from the Shear Zones, Lensoid Ultramafics and basement units 

(see section 8.5.2). Five of these samples contain higher Pd values than Pt. Of particular 

note is a chlorite schist which returned values of 9ppb for Pt and 41ppb for Pd. This 

further suggests that Pd has been preferentially reconcentrated by hydrothermal fluids in 

the area. The higher Pd values than Pt in the Lensoid Ultramafics may indicate the 

redeposition of Pd in these complexes as the chlorite schist is likely to contain 

precipitates from the alteration fluids.

8.8. Tulu Dimtu: Conclusions

Throughout the Tulu Dimtu area, distinguishing the effects of hydrothermal 

alteration from magmatic processes is difficult. The geochemical analyses discussed in 

this chapter suggest that both hydrothermal and magmatic processes are likely influence 

Pt and Pd grade at the flanks of the intrusion. Consequently, it is recommended that any 

further exploration activities are focussed in these areas.

Some preliminary ideas have been proposed to explain the development of Pt and 

Pd in the fresher rocks of the Tulu Dimtu Main Intrusion. A large variation Cr values 

between the centre and the edges of the intrusion indicate that the most primitve rocks 

occur at the edge of the complex. Further variations in Cr value may indicate the presence 

of a second melt influx. A series of processes may then have occurred to concetrate Pt 

and Pd from the magma. High Ni values and significant vairaitions in Cu values indicate 

that sulphide immiscibility and fractionation may have occurred, in such a situation the Pt 

and Pd would be associated with the Cu-rich residual sulphide.
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Although sulphide fractionation may explain the dislocation of Cu and Ni values, 

it is also possible that the Cu -  along with Pt and Pd - could have become remobilised by 

hot aqueous fluids and then redeposited close to magmatic Cr-spinels. Analysis of PGM 

and sulphide mineralogy is required to test the filter-pressing and hydrothermal models. 

Furthermore, there is no direct evidence for the influx of a fresher batch of melt, it is 

nessecary for this to be validated using spinel geochemistry (see chapter 9).

A limited number of fresher ultramafic samples from the Lensoid Ultramafics 

have been described, these indicate that the samples formed after chromite precipitation 

but before sulphur saturation. These complexes may be slivers from the edges of larger 

intrusions, such as the Tulu Dimtu Main Intrusion.

From the presence of Ni and Cu in shear-zone related lithotypes it can be inferred 

that either during or after the deformation of the Lensoid Ultramafics hydrothermal fluids 

have been directed along Shear Zones. Furthermore, these fluids may have permeated and 

circulated around the flanks of the Tulu Dimtu Main Intrusion thereby remobilising and 

re-precipitating Ni and Cu. Both Pt and Pd are also likely to have been taken into 

solution, but Pd to a much greater extent. Hence, the locations of Pt and Pd anomalies 

have become separated (figure 8.4E and 8.4F).
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8.10. Kingy: Selected Major and Trace Elements

8.10.1. Introduction

A total o f 110 rock samples o f the Kingy area were examined. According to the 

classification method set out in section 8.3.1, six of the samples are classed as fresher 

ultramafic rocks and 33 are classed as altered ultramafic rocks. The remaining 67 are 

samples of either basement rocks. There are no fresher ultramafic samples from the 

Kingy Ridge Ultramafic, but 2 from the Extra Ultramafic and 4 from two of the Lensoid 

Ultramafics. Due to dense vegetation, rock samples from the Kingy Ridge Ultramafic 

were only taken along the flanks, where the tracks occur.

o Location o f frcslvcr rock samples

o T.ocation of altered rock snnplcft

Geology o f Kingy

■ ■Shear Zone

H I Kingy Ridge Ultra mafic

H i Extra Ultramafic

H Gabbro

QuarUilc

H i Tcitfoid Ultramafic

Undifferentiated Basement

Figure 8.5: The distribution of rock samples within the Kingy area.

Formation # Altered Fresher Non- Birbirite
ultramafic ultramafic ultramafic samples
rocks rocks rocks
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Shear Zones
15 0 0 15 0

Kingy Ridge 
Ultramafic

24 16 0 4 4

Extra
Ultramafic 7 5 2 0 0

Gabbro 4 0 0 4 0
Quartzite 115 0 0 15 0
Lensoid
Ultramafics 21 12 4 5 0

Basement 24 0 0 24 0

TOTAL 110 33 6 67 4
Table 8.18: A summary o f the samples from the Kingy area. The classification o f fresher and 

altered rocks is covered in section 8.3.1 and the classification of ultramafic lithotypes is covered in
chapter 3.

8.10.2. Data

Form ation D escr ip tio n M g N i Cu Cr A l Pt Pd Pt/Pd A u Sam ple

(% ) (p p m ) (p p m ) (p pm ) (% ) (p p b ) (p pb ) (PPb)

Extra O l-cp x ite 11 .2 1615 13 833 0.4 3 < 2  - < 2 K T R -052-0

U ltram afic O l-cp x ite 11 .7 9 9 5 5 198 0.2 < 2 < 2  - 2 K T R -061-0

C p xite 12 .0 4 8 5 2 100 <0.1 < 2 < 2  - < 2 A T R -130-0

L ensoid C pxite 12 .6 54 8 2 107 0.1 3 < 2  - <2 A T R -132-0

U ltram afics C pxite 15 .0 2131 5 2 0 0 0.1 < 2 < 2  - < 2 K T R -069-0

D un 18.3 4 6 4 6 <2 5 9 <0.1 <2 <2  - <2 K T R -072-0

Table 8.19: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the fresher samples (as defined in section 
8.3.1) collected from the Kingy area. Some samples were identified as fresher by petrology. Dun: 

Dunite. Ol-cpxite: Olivine-clinopyroxenite. Cpxite: Clinopyroxenite.

Form ation D escrip tion M g N i C u Cr A l Pt Pd Pt/Pd A u Sam ple

(% ) (p p m ) (p p m ) (p pm ) (% ) (PPb) (Ppb) (PPb)
D un < 0.1 16 168 43 8 14.6 7 < 2 - 3 A T R -0 7 8 -0 2

D un 9 .8 100  4 179 8.2 < 2 < 2 - <2 A T R -0 8 5 -0 2

D un 11.8 147  6 45 7 .7 < 2 < 2 - < 2 A T R -0 9 0 -0 2

o
IK

D un < 0.1 1 10 8 <0.1 < 2 < 2 - 8 A T R -0 9 4 -0 2

D un < 0.1 4 7  139 273 0 .4 2 3 0 .7 < 2 K T R -057-02

i D u n 10.3 1665  < 2 7 78 0.2 7 4 1.8 2 T D R  31/01

D un 0 .3 7 8  100 50 0.8 <2 10 0 .0 2 A T R -0 8 1 -0 2
5 D un < 0.1 3 5  2 1 6 13 0.1 <2 < 2 - 16 A T R -0 9 4 A -0 2
00T3

5
D u n < 0 .1 12 4 12 0 .2 < 2 < 2 - 19 T D R  33/01

D un < 0.1 2  3 6 0.1 <2 <2 - 21 T D R  34/01

00 O l-cp x ite 11 .4 1 5 1 2  8 79 0 0.2 5 < 2 - 2 A T R -0 8 3 -0 2
c

2
O l-cp x ite 10 .2 1718  9 6 9 2 0 .2 5 < 2 - < 2 A T R -0 8 4 -0 2

O l-cp x ite 7 .7 4 2  4 24 4 .6 <2 < 2 - < 2 A T R -1 3 1 -0 2

O l-cp x ite 1.5 4 2  81 66 2.8 5 13 0 .4 3 K T R -049-02

O l-cp x ite 2 .1 20 1  136 178 2.5 <2 <2 - 3 K T R -058-02

C p xite 8 .8 1201 21 1993 8.8 <2 < 2 - < 2 K T R -047-02

o D un 10.2 5 8 5  71 652 0.5 4 2 2 .0 <2 A T R -0 8 9 -0 2

cs *3 D un 5.3 9 6 3  2 4 747 1.0 4 < 2 - <2 K T R -0 5 1 -02

£  i D un 0 .2 2 4  7 7 28 0.6 <2 9 0 .0 13 K T R -053-02
W J3 D un 1.1 171 183 50 1.7 <2 2 8 0 .0 825 K T R -062-02

D C pxite 9 .4 6 9 7  13 44 9 4 .7 3 < 2 - 2 D T R -0 5 7 -0 2

D un 3.3 4 4 6  65 384 4.0 < 2 < 2 - 2 A T R -126-02
(A

^  «K o
D un 0.1 8 53 13 0.3 <2 3 0 .0 2 K T R -055-02
D un 1.5 2 4  2 7 12 2.3 < 2 6 0 .0 2 T T R -040 -02

c  i<u S O l-C p x 5 .6 6 0 6  7 798 5.7 8 4 2 .0 < 2 A T R -0 6 3 -0 2
►j  5  

D O l-C p x 3.5 3 0 4  6 4 702 4.5 3 6 0 .5 2 A T R -0 6 4 -0 2
O l-C p x 4 .0 3 2 4  32 997 3.3 6 6 1.0 <2 A T R -0 7 1 -0 2
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O l-C p x 0 .6 81 36 101 1.2 <2 < 2 - < 2 A T R -0 8 0 -0 2

O l-C p x 0 .7 13 41 22 1.8 < 2 < 2 - < 2 D T R -0 6 3 -0 2

O l-C p x 2 .3 2 4 6 3 285 2.1 3 3 1.0 2 T T R -0 4 1 -0 2

C p x ite 2 .2 2 2 4 26 139 2 .4 <2 <2 - 2 A T R -125-02

C p x ite 3 .8 65 6 174 468 4.1 3 < 2 - < 2 A T R -127-02

C p x ite 11.5 4 6 5 5 11 6.9 < 2 < 2 - < 2 K T R -066-02

A n or <0.1 5 13 3 0 .4 < 2 < 2 - < 2 A T R -0 6 7 -0 2

B a sa < 0 .1 5 15 18 0.3 5 4 1.3 4 A T R -0 9 8 -0 2

B a sa 0 .9 12 39 15 1.5 5 15 0 .3 2 A T R -105-02

B a sa 2 .2 82 187 30 3.2 5 8 0 .6 4 T T R -0 3 1 -02

B a sa 0 .4 78 14 7 0.3 < 2 < 2 - < 2 T T R -0 3 3 -0 2

B irb 0.1 1178 145 329 0.3 2 < 2 - < 2 A T R -0 8 7 -0 2

B irb < 0 .1 48 152 43 1.6 4 11 0 .4 3 2 K T R -0 4 3 -0 2

B irb 15 .7 1999 2 1733 0.3 6 < 2 - 8 T D 2 2

B irb 0 .3 7 6 0 8 43 6 <0.1 < 2 < 2 - 2 T D R  32/01

D ior 0 .2 28 125 55 2.8 < 2 < 2 - < 2 D T R -0 6 2 -0 2

D io r 1.9 35 2 23 18 3.6 4 15 0 .3 < 2 K T R -0 6 5 -0 2

D ior 0 .4 5 9 3 7 0.8 < 2 < 2 - < 2 K T R -0 7 4 -0 2

D o le 0 .6 51 6 7 154 1.4 10 11 0 .9 5 A T R -0 6 6 -0 2

D o le 1.3 56 14 4 0 1.7 6 7 0 .9 < 2 A T R -0 6 9 -0 2

D o le 0 .8 80 86 77 2 .4 < 2 < 2 - 3 A T R -0 8 7 A -0 2

D o le 0 .9 3 23 4 1.3 <2 < 2 - 2 A T R -107 A -0 2

D o le 0 .2 8 2 0 75 6 .0 5 10 0 .5 < 2 A T R -1 11-02

D o le 2 .2 103 78 22 5 2 .8 < 2 < 2 - 3 T T R -0 4 2 -0 2

F els 1.2 30 19 4 1.9 <2 < 2 - < 2 A T R -0 6 2 -0 2

G abb 2 .4 5 7 43 12 3.2 < 2 5 0 .0 2 A T R -0 5 9 -0 2

G abb 1.0 2 6 72 2 7 1.3 <2 < 2 - 2 A T R -0 9 3 -0 2

G abb 1.1 50 2 63 35 1.2 < 2 < 2 - < 2 A T R -109-02

G abb 0 .7 8 66 16 1.2 2 10 0 .2 3 A T R -118-02
G ranD i 1.1 13 4 16 1.6 < 2 < 2 - < 2 A T R -100-02
G ranD i 0.1 3 5 4 0 .4 < 2 < 2 - < 2 A T R -1 12-02
G ranD i 0 .2 3 3 3 1.0 < 2 < 2 - < 2 A T R -1 13-02
G ranD i < 0 .1 2 2 9 15 0 .6 < 2 3 0 .0 < 2 A T R -114-02
G ranD i < 0 .1 < 2 11 5 0.5 < 2 < 2 - < 2 A T R -1 15-02
G ranD i < 0 .1 21 34 14 0.1 < 2 < 2 - 5 K T R -0 39-02

HardP < 0 .1 17 112 66 1.7 < 2 < 2 - 2 A T R -0 7 9 -0 2

H ardP 0 .2 7 5 5 149 1099 0 .8 6 < 2 - 2 A T R -0 8 6 -0 2

H ardP < 0.1 80 126 363 2 .0 < 2 < 2 - < 2 A T R -104-02

HardP 0.1 3 0 6 82 2 6 6 1.2 < 2 < 2 - 5 A T R -122-02

HardP 0 .4 16 2 2 159 0 .7 <2 < 2 - < 2 T T R -045-02
M etaB as 3 .0 3 7 8 3 0 4 2 2 2 .7 2 < 2 - 2 T T R -043-02

M etaB as 1.4 3 7 155 31 2 .0 <2 < 2 - 3 T T R -044-02

M etaS ed 0 .2 21 32 9 0.3 <2 2 0 .0 < 2 A T R -134-02

M y lo 1.1 4 3 80 115 1.4 3 10 0 .3 3 A T R -0 7 2 -0 2

M ylo < 0 .1 6 111 5 0 .7 2 10 0 .2 < 2 A T R -1 17-02

M ylo 1.4 36 4 6 152 1.7 18 19 0 .9 4 T T R -03  5 -02
Quar 0.1 < 2 4 4 0.1 < 2 < 2 - < 2 A T R -103-02
Quar < 0 .1 1 4 12 0.1 < 2 < 2 - 13 A T R -107-02
Quar < 0 .1 7 5 6 <0.1 < 2 <2 - < 2 A T R -123-02
Q uar 4 .6 < 2 < 2 6 <0.1 < 2 < 2 - < 2 A T R -124-02

Quar 0.1 3 7 12 39 0.1 < 2 < 2 - < 2 A T R -128-02
Q uar < 0 .1 4 3 4 0.1 <2 < 2 - 2 D T R -0 5 4 -0 2
Quar 0 .2 21 2 2 7 0.2 <2 < 2 - < 2 D T R -0 6 1 -0 2
Quar <0.1 6 32 3 0.1 < 2 < 2 - 3 D T R -0 6 4 -0 2
Q uar 0 .2 2 0 7 12 0.1 < 2 < 2 - 2 K T R -0 3 7 -0 2
Q uar < 0 .1 9 7 8 0.1 < 2 < 2 - 19 K T R -0 3 8 -0 2
Q uar < 0 .1 5 9 8 0.1 < 2 < 2 - < 2 K T R -0 4 0 -0 2
Q uar 0 .3 5 5 5 2 42 <0.1 <2 <2 - 8 K T R -0 5 4 -0 2
Quar < 0 .1 4 9 5 0.1 < 2 <2 - < 2 K T R -0 5 6 -0 2
Quar 9 .7 38 10 3 <0.1 < 2 <2 - < 2 K T R -0 7 0 -0 2
Q uar < 0 .1 8 5 11 <0.1 < 2 < 2 - 2 T D R  29 /01
Sch i 1.5 25 4 9 14 2.1 <2 5 0 .0 < 2 T D 1 9
S ch i 0.1 6 2 <2 0.8 <2 <2 - 2 T T R -0 3 4 -0 2
Sed 0 .2 144 83 7 7 2.5 3 4 0 .8 6 A T R -0 8 8 -0 2
T aS ch i 0 .6 84 68 698 0.3 8 8 1.0 < 2 A T R -0 9 2 -0 2
T aS ch i 0 .2 8 4 2 0.8 < 2 < 2 - < 2 D T R -0 5 3 -0 2
T aS ch i 0 .3 5 3 2 16 538 0.2 5 3 1.7 < 2 K T R -0 4 4 -0 2
T aS ch i 0 .4 88 87 180 0.1 9 10 0 .9 5 K T R -0 6 3 -0 2
U nid < 0.1 7 3 72 28 0.5 < 2 < 2 - 2 K T R -0 4 3 B -0 2
U nid 7 .4 31 8 2 1626 0.7 6 < 2 - < 2 K T R -0 4 8 -0 2
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U nid 0.1 9 72 11 347 0.2 4 < 2 - <2 K T R -050-02
V Q uar 0.1 10 <2 8 0.1 <2 < 2 - <2 D T R -0 5 9 -0 2
V Q uar 0.1 34 8 10 0.1 <2 < 2 - 2 K T R -064-02
V Q uar 0.1 11 7 11 0.1 < 2 <2 - 5 T D 20
V Q uar < 0.1 4 4 10 0.1 < 2 < 2 - 1262 T D 21
V Q uar 0.1 11 < 2 28 0.1 < 2 < 2 - < 2 T D R  28 /01
V Q uar < 0.1 2 7 11 0.1 < 2 < 2 - 3 T D R  30/01

Table 8.20: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Kingy 
area. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: Chlorite-Schist. ChSchi: Chlorite- 
Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite. Dun: Dunite. Fels: Felsite. Gabb: 
Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: Metabasalt. MetaSed: Metasediment. 

Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: Quartzite. Schi: Schist. Sed: Sediment. 
TaSchi: Talc-Schist. TCSchi: Talc-Chlorite-Schist. Troc: Troctolite. Unid: Unidentified. VQuar:

Vein Quartz.

The following sections cover the distribution of Ni, Cu, Cr and Al in the Kingy 

area. Each section covers one element and describes its distribution in fresher ultramafics 

and altered rocks. These sections are accompanied by a fold-out page (page 229) of maps 

showing the distribution of all elements which the reader should refer to as each section 

is read.

8.10.3. Nickel

The highest Ni value in the fresher ultramafic samples is 4646ppm in a dunite 

located within the large Lensoid Ultramafic in north-eastern side of the Kingy area. 

Another sample in the same body shows Ni at 2131ppm all other Ni values are below 

2000ppm but not lower than 485ppm.

The altered rocks from the Kingy Ridge Ultramafic show that the highest Ni 

abundances (1718ppm) occur in the centre and decrease to below detection limits towards 

the southwest and northeast (figure 8.7A). Elsewhere, the Ni contents in the altered 

ultramafics rise to a maximum of 963ppm in the Extra Ultramafic but 5 samples fall to as 

low as 8ppm in a Lensoid Ultramafic body. Within the basement units and quartzites, Ni 

remains below lOOppm and frequently falls below detection limits.
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8.10.4. Copper

All Cu values in the samples of fresher ultramafics from the Kingy ridge are 

lower than or equal to 13ppm. The highest value of Cu (13ppm) occurs in a pyroxenite 

from the Extra Ultramafic all other Cu values are lower than 5ppm.

In altered rocks, the highest Cu value in the area (263ppm) occurs in an isolated

gabbro body to the south-east of the study area (figure 8.7B). Of the ultramafic

complexes, the highest Cu occurrences (up to 216ppm) lie in the altered dunites from the 

Kingy Ridge Ultramafic but some samples of the same rock formation contain Cu values 

below detection limits. The highest value occurs in a dunite on the farthest western point 

of the complex, Similarly, within the Extra Ultramafic the highest value (183ppm) occurs 

close to the bounding shear-zone.

8.10.5. Chromium

The highest Cr value in fresher rocks (833ppm) occurs in a pyroxenite from the 

Extra Ultramafic. All other Cr values in fresher rocks lie below 200ppm, the lowest of 

which is 59ppm in a dunite of the large northwestern Lensoid Ultramafic.

High Cr values (>200ppm) in altered rocks only occur in the ultramafic 

complexes and related shear-zones. The highest Cr values in altered rocks (up to 

1993ppm in an olivine-clinopyroxenite occur close to the centre of the Kingy Ridge 

Ultramafic (figure 8.7C). The values drop to below 200ppm on the southwestern end of 

Kingy Ridge Ultramafic forming a crude zonation from northwest to southeast, where the 

lowest value is 6ppm in a dunite. Samples from the Lensoid Ultramafics contain 

intermediate Cr values, from 200ppm to 1 OOOppm.
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8.10.6. Aluminium

The fresher rocks at Kingy contain up to 0.4% Al, this figure is obtained from an 

olivine-clinopyroxenite from the Extra Ultramafic. All other fresher ultramafics contain 

less than 0.2% Al.

The four largest Al values (>7%) in the altered rocks occur in samples from the 

Kingy Ridge Ultramafic. The highest Al value (14.6%) occurs in an altered dunite within 

the south western part of the Kingy Ridge Ultramafic. Al is enriched (over 5%) in some 

rocks from the Kingy Ridge Ultramafic and the Extra Ultramafic (figure 8.7D). Values of 

Al can drop below detection limits in rocks from both the Basement and the Kingy Ridge 

Ultramafic. The altered Lensoid Ultramafics display Al contents between 0.6% and 5% 
(see figure 8.7D).

8.10.7. Summary of Ni, Cu, Cr and Al distribution in the Kingy Ridge 
Ultramafic and Extra Ultramafic

No fresher samples are available from the Kingy Ridge Ultramafic but a sample 

from the Extra Ultramafic contains the highest values of Cu, Cr and Al of the fresher 

samples (see figure 8.6). This sample is located on the northernmost comer of the Extra 
Ultramafic complex.

Some spatial trends in Ni and Cr are observed in the altered dunites from the 

Kingy Ridge Ultramafic. The highest values of Ni and Cr occur in the central and 

northeastern end of the intrusion. These values drop to low values towards the 

southwestern end of the ridge. Unlike Ni and Cr, both Cu and Al are distributed unevenly 

in the Kingy Ridge Ultramafic. The four highest Al values come from samples located in 

the Kingy Ridge Ultramafic. A different sample contains the largest Cu value in the 
complex.
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8.10.8. Summary of Ni, Cu, Cr and Al distribution in the Lensoid Ultramafics

The two highest Ni values in the Kingy area (4646ppm and 2131ppm) occur in 

the fresher rocks from the large northwestern Lensoid Ultramafic. Ni values in the altered 

Lensoid Ultramafics are much lower. Cu values are high, sometimes over 120ppm. Cr 

and Al values are intermediate compared to the Kingy Ridge Ultramafic.

8.10.9. Summary of Ni, Cu, Cr and Al distribution in the Isolated Gabbro

The highest Cu values (263ppm) occur in an altered gabbro sample in the 

southeastern quadrant of the Kingy area.

8.11. Kingy: Pt and Pd distribution

Aall Pt and Pd values from the fresher rocks of the Kingy area are almost below 

detection. Two fresher rocks resulted in assays of Pt at 3ppb each. One was an olivine- 

clinopyroxenite from a Lensoid Ultramafic (KTR-052-02) and the other was a pyroxenite 

from the small northeastern Lensoid Ultramafic (ATR-132-02). No Pd was found above 

detection limits in the fresher rocks from the Kingy area.

In altered rocks, assays for Pt and Pd in the samples from the Kingy area are 

dominated by Pd where 14 of 104 samples have >8ppb Pd and only 3 samples returned a 

Pt assay of >8ppb (see figures 8.7E and 8.7F). The highest Pd grade (28ppb) occurs in an 

altered dunite from the Extra Ultramafic and the highest Pt grade (18ppb) occurs in a 

clinopyroxenite from the Lensoid Ultramafics (figure 8.7E). In the Kingy Ridge 

Ultramafic the highest Pt value is 7ppb and occurs twice in two dunite samples. An 

olivine-clinopyroxenite showed the largest Pd assay of 13ppb. The three highest Pd 

assays occur at the periphery of the complex. The highest Pt and Pd values in the altered 

samples of the Lensoid Ultramafics occur in an olivine-clinopyroxenite which assays at 

6ppb for Pd and 8ppb for Pt. In all ultramafic complexes of the area, both Pt and Pd can 

be below detection limits.
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Of the lithologies associated with Shear Zones, the highest Pt and Pd values occur 

in the same mylonite sample showing Pt values of 18ppb and Pd values of 19ppb. The 

next highest Pt value is 9ppb in a talc-schist and the second highest Pd assay is 1 Oppb and 

occurs 3 times in two mylonitised samples and one talc-schist. Of the basement units, two 

dolerite dykes, one diorite and a basalt returned analyses of <10ppb for Pt and <15ppb for 

Pd and ranging to below detection for both elements. The highest Pt value in the 

basement (lOppb) occurs in the dolerite and highest Pd values (15ppb) occurring in the 

basalt and diorite samples.

A comparison between PGE and Ni, Cu, Cr and Al in the highest samples is 

summarised as follows:

Sample Description

s
2

cr

Pd

W>)

Ni
ppm

Cu
ppm

Cr
ppm

Al
%

KTR-052-02 Olivine-
clinopyroxenite 3 <2 1615 13 833 0.4

ATR-132-02 Pyroxenite 3 <2 548 2 107 0.1

Table 8.21: A summary o f Ni, Cu, Cr and Al values in the dunite samples with the highest Pt and 
Pd grade from the fresher rocks. A graphical representation of this data is provided in figure 8.6.
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Figure 8.6: Graphs o f Ni, Cu, Cr and Al versus Pt in the fresher rocks from the Kingy area. No Pd
has been detected in the Kingy area.

222



Chapter 8: Rock Geochemical Data

8.11.1. Comparison of the geochemistry of the soil versus rock samples

Other than the isolated gabbro body, the largest Pd value in soil occurs above the 

Extra Ultramafic. Additionally, high Pt and Pd values are more common in soils than 

rocks. 7% (7 of 104) rock samples returned assays at >12ppb for either Pt or Pd whereas 

18% (36 of 202) soil samples assayed above that figure.

8.12. Kingy: Discussion

The processes that involve the distribution of Ni, Cu, Cr and Al in fresher 

ultramafics are considered in 8.12.1 and 8.12.2, followed by those processes which affect 

altered rocks in 8.12.3 and 8.12.5. The mechanisms which distribute Pt and Pd are 

considered from section 8.12.6 to section 8.12.7.

8.12.1. The locations of the highest Ni and Cu values in fresher rocks

The difference in location of the highest Cu values and the highest Ni could be 

explained by the process of filter-pressing (see section 8.6.6). This is where an 

immiscible sulphide liquid fractionates then the Cu-rich liquids migrate through 

interstitial space to become located with more evolved rocks. Alternatively, hot aqueous 

fluids could have remobilised the Cu and reconcentrated it away from the site of 

magmatic concentration. The study of mineral morphology is required in order to 

understand the degree of influence of high temperature fluids on Cu mineralisation.

Although it appears that the Cu and Ni highs occur in two separate complexes, the 

ultramafic complexes of the Kingy area could have become dismembered from one 

conformable unit. Johnson et al. (2004) discuss the tectonic evolution of the WES and 

transcurrent movement along a NE-SW striking faults (D 3). A reconstruction of this 

deformation may bring the highest Ni and Cu values to within 500m of each other.

8.12.2. Locations of highest Cu and Cr values in fresher rocks
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Sample KTR-052-02 from the Extra Ultramafic, contains the highest Cu and Cr 

values of the fresher rocks from the Kingy area (13ppb and 833ppb respectively). As 

discussed for a similar situation in the Tulu Dimtu Main Intrusion (see section 8.7.2), if 

the Cu-rich residual sulphide is filter-pressed away from the MSS then it will be forced 

into the more evolved cumulate pile, with less Cr. However, if a new primitive magma is 

mixed with a slightly evolved melt then chromite will precipitate and consequently, the 

residual sulphide could be filter-pressed against primitive chromite grains. Unlike the 

same observations made at the Tulu Dimtu Main Intrusion, the Cu analyses made here 

are sufficiently low that it is difficult conlude that sulphide segregation has occurred.

An alternate explanation for the location of the highest Cu values is that both Ni 

and Cu were located in the same location by sulphides and subsequently, later 

hydrothermal fluids have brought Cu into contact areas of high Cr. This assumes the 

preferential remobilisation of Cu over Ni. Furthermore, the small amount of Cu may have 

been deposited in it’s position by hydrothermal fluids themselves.

8.12.3. Zonation of Ni and Cr in altered rocks from the Kingy Ridge 
Ultramafic

In the Kingy Ridge Ultramafic the Ni and Cr values in altered rocks drop steadily 

towards the southwestern end of the intrusion (see figure 8.6A and 8.6C). It is likely that 

the Cr has been partitioned into the spinels which have been observed in these rocks (see 

chapter 3). However, given the refractory nature of spinels, it is likely that the Cr 

analysed here was partitioned into the olivine lattice. Hence it is likely that the highest Cr 

values in altered rocks mark the most primitive part of the complex with apparent 

fractionation directed towards the south-western end of the intrusion. As Ni is compatible 

in olivine (see section 8.6.2) the trend seen in its concentration could also be attributed to 

fractionation. However due to the mobility of the element under hydrothermal conditions 

(see section 8.6.8), the role of alteration on the control of this distribution cannot be 

eliminated.
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8.12.4. Uneven Cu and Al distribution in the altered rocks from the Kingy 
Ridge Ultramafic

The distribution of Cu and Al shows no distinct spatial pattern (see figures 8.6B 

and 8.6D). As Cu is known to be easily taken into solution in hydrothermal fluids of 

various conditions (see section 8.6.8) it is expected that the Cu has been remobilised and 

precipitated in association with hydrous phases throughout the complex. As Ni is soluble 

in similar fluids, it would be expected that it would show a similar distribution to Cu -  

however this is not the case. There are two possible explanations for this. Firstly, the two 

elements may have been remobilised by different alteration episodes under slightly 

different conditions or acting on different areas. Or secondly, that Ni has not been 

remobilised which would mean that the distribution observed (section 8.12.3) is 

magmatic in origin as suggested by its similarity to the Cr distribution.

Slightly elevated Al values in places throughout the intrusion may be attributed to 

the concentration of the element -  seen in low amounts in fresher rocks - during soil 

forming. A study of the degree of alteration is out of the scope of this study and therefore 

an “altered” rock -  as classified here - may be partially affected by soil forming 

processes.

8.12.5. Trace element distribution in the altered rocks from the Lensoid 
Ultramafics

Nickel values in the altered Lensoid Ultramafics are typically low and Cu values 

are high. Cr and Al values are intermediate when compared to the Kingy Ridge 

Ultramafic. The elevation of Cu values above those found in fresher rocks (<13ppm) 

could be attributed to alteration as hydrothermal fluids can take large amounts of Cu into 

solution (see section 8.6.8). The Ni values are low enough that the element could be 

completely contained within the olivine crystal structure, without the presence of 

sulphide or alteration phases although the effect of both cannot be ruled out. The low 

mobility of Cr-spinels means that the intermediate Cr values indicate that the fresher 

protoliths could have been primitive or slightly evolved -  as Cr value could be increased
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slightly due to volume loss from fresher rocks (see section 8.6.8). The relatively minor 

degree of fractionation show by the Cr values in these rocks means that they could 

represent slivers of rock “shaved” off from the flanks of a larger complex such as the 

Tulu Dimtu Main Intrusion.

8.12.6. Genesis of Pt and Pd in fresher rocks

Almost no Pt or Pd has been detected in the fresher rocks of the Kingy area. Two 

fresher samples are Pt-bearing (3ppb each) and no Pd has been detected in the Kingy 

area.

Section 8.7.2 discusses the origin of the high Cu and Cr values in sample KTR- 

052-02 and it is possible that sulphide segregation and fractionation has occurred - yet the 

Pt value is very low. If the conditions have been set for the concentration of the PGE in 

the magma and it remains that very little has been found then it is possible that the 

magma was not Pt enriched before sulphide segregation. However, the Cu value in such 

samples is very low and it is therefore considered difficult to demonstrate that sulphide 

segregaton has occurred.

An alternative hypothesis for concentration of the Cu in the Extra Ultramafic is 

that the magmatic Cu has been remobilised by hydrothermal fluids and redeposited near 

to Cr-bearing spinels (see section 8.12.2). It is, therefore, also possible that the Pt values 

seen are either magmatic in origin or have been redeposited by hydrothermal fluids. The 

determination of the origin of the Pt values seen here can only be ascertained by the 

analysis of PGM and associated minerals. Unfortunately, given the low values of Pt at 

Kingy (3ppb) it is highly unlikely that any PGM can be found.

8.12.7. Genesis of Pt and Pd in altered rocks

Pd is more common and reaches higher values than Pt in the Kingy area. Figures 

8.6E and 8.6F clearly show predominance of Pd over Pt in altered rocks. This is in stark 

contrast to fresher rocks where Pt and Pd were barely detected. Pd is more mobile than Pt
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in hydrothermal systems. The preferential mobility of Pd over Pt in chloride-rich high- 

temperature fluids is discussed in section 8.7.7. The increase in Pd values and the 

movement of Pd away from the locations of magmatic Pt concentration could be 

attributed to hydrothermal fluids. From the data currently available, the distribution of Pt 

and Pd in the altered rocks from the Kingy area can only be explained by the preferential 

movement of Pd by high-temperature fluids. However, it is difficult to imagine a 

situation where such a low and spatially restricted Pt content in the fresher rocks from a 

complex (3ppb) could give rise to the extent of Pd mineralisation seen in the altered 

lithologies. Therefore it is reasonable to believe that further and richer magmatic sources 

of Pt and Pd exist which have not been uncovered by this study. Further sampling around 

the Extra Ultramafic or investigation of the area around the isolated gabbro may give an 

insight into this distribution.

8.13. Kingy: Conclusions

As Pt and Pd has barely been detected in the fresher rocks of the Kingy area it is 

not possible to recommend a strategy to discover or evaluate a “magmatic” ore deposit. 

However, there is much evidence for the remobilisation of Pd along shear-zones in the 

area and an improved understanding of the structure and fluids involved with these 

features may point to a richer source material.

There is little evidence in the Kingy area to construct a magmatic model of the 

events. However, a fractionation trend in Cr values can be observed in altered rocks and 

soil samples (see chapter 7) of the Kingy Ridge Ultramafic (see figure 8.6C).

The erratic distribution of Cu-values in altered rocks indicates that the element 

has been remobilised. Unlike Cu, the distribution of Ni mirrors the fractionation trend 

seen in Cr, this suggests that Ni has been remobilised by a different alteration episode or 

has not been remobilised at all. The intermediate Cr values from the altered Lensoid 

Ultramafics raise the possibility that they may represent slivers of rock “shaved” off a
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larger complex. Detailed study of the structure and geochemistry of these bodies is 

required to test this hypothesis.

Pd dominates Pt in the altered rocks and is distributed over a much wider extent 

than the Pt in fresher rocks. This suggests firstly that the PGE distribution in the altered 

rocks is controlled largely by hydrothermal fluids. Additionally, it is inferred that further 

sites of magmatic Pt and Pd exist which have not been discovered here.
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8-14. Maps of elemental distribution in the Kingy areas
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8.15. Daleti, Ankori, Tulu Kapi and Keley: Selected Major and Trace Elements

8.15.1. Introduction

There are 155 samples from the area around Daleti, Ankori, Tulu Kapi and Keley. 

According to the classification method outlined in section 8.3.1 only 13 samples are 

considered to be fresher ultramafics and a further 14 are altered ultramafics. The 

remaining 128 are basement lithologies. The fresher ultramafics are all dunites from the 

quarry and road-cuttings at Daleti. The altered ultramafic rocks are from the Ankori 

Ultramafic, Daleti Ultramafic and Lensoid Ultramafics. Samples were taken along roads 

and tracks where exposure was found (see figure 8.8).

230



Chapter 8: Rock Geochemical Data

1  ■ Suspected Ultramafic

o Locations of fresher rock samples
■ ■ Gabbro

o Locations of tillered rock samples
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Figure 8.8: The distribution of rock samples within the Daleti area, with a map of the Daleti 
Ultramafic inset. The classification of fresher and altered rocks is covered in section 8.3.1.

Formation # Altered
ultramafic
rocks

Fresher
ultramafic
rocks

Non-
ultramafic
rocks

Birbirite
samples

Basalt 1 0 0 1 0
Shear Zones 46 0 0 46 0
Daleti
Ultramafic 21 4 13 0 4

Ankori
Ultramafic 13 5 0 3 5

Lensoid
Ultramafics 11 5 0 4 2
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Gabbro 4 0 0 3 1
Quartzite 7 0 0 7 0
Basement 52 0 0 51 1

TOTAL 155 14 13 115 13
Table 8.22: A summary o f  the samples from the Daleti, Ankori, Tulu Kapi and Keley areas. The 

classification o f fresher and altered rocks is covered in section 8.3.1 and the classification of 
ultramafic lithotypes including birbirite is covered in chapter 3.

8.15.2. Data

Form ation D escr ip tio n M g

(% )

N i
(p p m )

C u
(p pm )

Cr
(ppm )

A l
(% )

Pt
(ppb)

Pd Pt/Pd  

(PPb)

A u

(PPb)

S am ple

D u n 2 5 .2 2 6 2 9 < 2 60 <0.1 < 2 < 2 < 2 D l l

D u n 2 0 .0 2 2 9 5 2 < 2 804 0.1 < 2 < 2 < 2 D 1 2

D u n 2 1 .7 2 4 2 6 < 2 455 <0.1 < 2 < 2 < 2 D 1 3

D un 2 2 .2 1876 < 2 604 <0.1 <2 < 2 < 2 D 1 4

D u n 2 0 .3 7 8 6 4 < 2 174 <0.1 < 2 < 2 < 2 D 1 9

D un 2 1 .7 2 5 9 5 2 40 <0.1 <2 < 2 < 2 D 2 0

D u n 22.1 2 4 0 3 5 3 73 <0.1 < 2 < 2 < 2 D 6
o

*5 D u n 2 3 .5 2 4 3 6 < 2 34 <0.1 2 < 2 < 2 D R  01/01
&

D un 17.0 7 7 2 6 < 2 157 0.2 4 < 2 2 D R  02/01
to D un 17.9 7 7 1 3 < 2 58 <0.1 7 < 2 < 2 D R  07/01
D D u n 2 0 .8 5 1 7 3 < 2 2 4 <0.1 7 < 2 < 2 D R  08/01

D un 2 0 .0 6 7 4 8 < 2 2 7 <0.1 5 < 2 < 2 D R  09/01
"3
Q D un 18.9 4 8 0 9 < 2 130 0.1 8 < 2 < 2 D R  22/01

Table 8.23: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the fresher samples (as defined in section
8.3.1) collected from the Daleti, Ankori, Tulu Kapi and Keley areas. Dun: Dunite. Ol-cpxite: 

Olivine-clinopyroxenite. Cpxite: Clinopyroxenite.

Form ation D escrip tion M g

(% )

N i
(p p m )

C u
(p pm )

Cr
(p pm )

A l

(% )

Pt
(PPb)

Pd
(ppb)

Pt/Pd A u

_(PPb)

S am ple

S pin 0 .8 123 < 2 38 5.3 < 2 < 2 - < 2 D 15
D aleti S pin 1.7 142 3 7 2 2 5.8 < 2 < 2 - < 2 D 1 6
U ltram afic S pin 3 .7 3 0 8 0 65 16 3.2 < 2 <2 - < 2 D 1 7

C pxite 0 .9 5 3 9 5 7 0 .4 < 2 < 2 - < 2 D 18

D un 6 .4 113 4 6 45 3.9 <2 < 2 - 4 K Y C -007-01

A nkori
U ltram afic

D un 9.1 1248 3 1045 0 .4 5 < 2 - 2 K Y R -021-01
D un 0 .6 7 8 6 9 4 05 0 .2 11 13 0 .8 3 A N R  01/01
D un 0.1 9 7 9 3 1063 0.1 <2 < 2 - < 2 A 2
O l-cp x 1.6 95 25 128 2.2 <2 < 2 - < 2 D Y R -0 0 5 -0 1

D un <0.1 33 5 3 22 0.1 <2 < 2 - 3 K Y R -032-01

L ensoid
U ltram afics

D un 0 .5 1 13 2 1.2 <2 < 2 - 2 T Y R -024-01
D un 0 .3 21 6 0 8 0 .6 3 33 0.1 12 D R  21 /01
D un 0 .7 111 2 9 8 4 7 1.2 < 2 < 2 - < 2 D 3
Troc <0.1 138 101 26 0.2 <2 <2 - < 2 K Y R -005-01

A nor < 0.1 2 3 4 0 .6 <2 < 2 - 3 D Y R -0 3 6 -0 1
B irb 0.1 9 5 2 2 71 9 0.1 <2 < 2 - < 2 A l
B irb 0.1 6 9 4 7 2 1 3 0.1 <2 < 2 - < 2 A N R  02/01
B irb < 0.1 7 0 0 4 2 69 9 0.1 <2 < 2 - < 2 A N R  03/01
B irb 0.1 1783 4 985 0.1 3 < 2 - 3 A N R  05/01
Birb <0.1 2 6 1 0 16 347 0 .2 9 2 4 .5 4 A Y C -0 19-01
Birb <0.1 9 8 2 13 4 2 0 <0.1 <2 < 2 - 5 A Y R -0 4 3 -0 1
Birb 0.1 1325 4 799 0.1 <2 < 2 - < 2 D 1 0
B irb 0.1 1084 12 1033 0.5 < 2 < 2 - < 2 D 5
B irb 0 .7 2 5 2 5 3 838 0 .3 8 < 2 - 2 D R  03 /01
Birb 0.1 6 5 4 2 425 0.1 < 2 < 2 - < 2 D R  05/01
Birb 0.1 2 3 9 4 7 2 8 0 <0.1 < 2 < 2 - < 2 D R  10/01
B irb 0.3 1177 6 57 6 0.1 15 16 0 .9 5 K Y R -022-01
B irb <0.1 2 4 7 0 .2 < 2 < 2 - < 2 T Y R -004-01
C hS ch i 0 .9 2 4 9 < 2 164 <0.1 < 2 < 2 - < 2 D 8
D o le 0.1 2 5 39 121 10.3 < 2 < 2 - 2 A Y C -0 0 6 -0 1

o D o le <0.1 124 144 1402 2.1 3 5 0 .6 3 D Y C -001-01
•S
O D o le 0 .2 2 0 35 79 1.1 < 2 < 2 - < 2 D Y C -004-01
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D o le 2 .2 34 2 2 20 2 .6 < 2 < 2 - 2 D Y R -006-01

D o le <0.1 17 4 9 21 0.1 < 2 7 0 .0 5 D Y R -0 10-01

D o le 0.1 50 71 187 1.6 2 5 0 .4 4 K Y C -009-01

D o le <0.1 150 88 119 0 .6 < 2 < 2 - 3 K Y R -004-01

D o le 0 .9 12 89 6 1.8 3 8 0 .4 4 K Y R -0 14-01

D o le 0 .7 19 39 29 0 .9 < 2 < 2 - 2 T Y R -028-01

D o le 0 .4 2 0 2 4 18 1.1 4 9 0 .4 < 2 T Y R -033-01

D o le 0 .4 16 86 14 1.8 < 2 < 2 - < 2 T Y R -034-01

F els 0 .5 16 15 25 1.1 < 2 3 0 .0 6 A Y R -004-01

F els 0.1 14 8 13 1.2 < 2 < 2 - < 2 A Y R -008-01

F els 0 .2 2 4 4 1.6 < 2 < 2 - < 2 D Y R -034-01

F els 0.1 2 3 4 0 .6 < 2 < 2 - 2 D Y R -035-01

F els < 0 .1 < 2 4 2 0 .2 < 2 < 2 - 2 D Y R -037-01

F els < 0 .1 8 16 14 0.1 < 2 < 2 - < 2 D Y R -038-01

F els 0 .2 104 21 317 0 .2 4 5 0 .8 2 K Y R -009-01

G abb 0.1 187 65 335 1.1 4 3 1.3 < 2 A Y R -022-01

G abb 3 .9 1061 10 1650 5.3 11 13 0 .8 2 A Y R -0 2 3 -0 1

G abb <0.1 12 68 301 23 .3 2 < 2 - < 2 A Y R -0 2 5 -0 1

G abb 1.2 21 81 71 1.8 < 2 < 2 - 3 A Y R -0 2 6 -0 1

G abb 1.3 17 14 2 9 1.9 < 2 < 2 - 3 A Y R -037-01

G abb 1.9 24 17 23 2 .4 < 2 < 2 - < 2 D 4

G abb <0.1 18 7 14 0.1 < 2 < 2 - <2 D R  06/01

G abb 0 .2 19 4 0 30 1.1 < 2 < 2 - < 2 D Y R -001-01

G abb 1.2 41 19 68 1.8 <2 < 2 - 8 D Y R -004-01

G abb 7 .9 6 5 6 4 854 0 .2 5 < 2 - < 2 K Y C -008-01

G abb 0.1 2 7 9 0 .4 < 2 < 2 - 2 K Y R -0 11-01

Gabb 0.2 2 1 5 8 66 2 5 1 0 0 .6 3 < 2 - 4 K Y R -025-01

G abb 1.3 13 37 37 1.8 < 2 < 2 - 3 T Y R -002-01

G abb 3.1 104 5 2 7 9 0 .4 19 3 6 .3 2 T Y R -006-01

G abb 0 .6 6 22 10 1.2 < 2 < 2 - 2 T Y R -027-01

Gran 0 .2 2 4 3 0 .6 < 2 < 2 - <2 A Y R -042-01

Gran 0 .5 8 8 12 1.0 < 2 < 2 - < 2 K Y R -026-01

Gran <0.1 5 3 5 0 .3 < 2 < 2 - <2 T Y C -003-01

Gran 0 .2 2 4 < 2 0 .8 < 2 < 2 - <2 T Y R -030-01

G ranD i 0 .5 2 4 14 22 0 .9 < 2 < 2 - <2 A Y R -046-01

G ranD i 0 .4 1 7 4 1.0 < 2 < 2 - < 2 D Y R -0 18-01

G ranD i 0 .7 11 2 5 12 1.7 < 2 < 2 - 3 D Y R -040-01

G ranD i 0.1 2 16 4 1.1 < 2 < 2 - < 2 K Y R -0 15-01

G ranD i < 0.1 2 2 2 0 .3 < 2 < 2 - < 2 T Y R -005-01

H ardP 0 .5 2 3 2 5 9 33 1.5 < 2 3 0 .0 5 T Y R -032-01

M etaS ed 0.1 12 2 14 0 .2 < 2 < 2 - < 2 T Y R -003-01

M ylo <0.1 8 14 8 0 .4 < 2 < 2 - 2 4 A Y R -0 4 1-01

M ylo <0.1 2 6 7 16 0 .3 < 2 < 2 • <2 D Y C -002-01

M ylo 0 .5 14 9 9 1.1 < 2 < 2 - <2 D Y C -005-01

M ylo <0.1 3 2 4 5 0.1 < 2 < 2 - 21 4 D Y R -003-01

M ylo 3 .4 186 19 401 6 .8 <2 < 2 - < 2 D Y R -030-01

M ylo 1.4 95 14 81 2 .0 < 2 <2 - 3 D Y R -041-01

M ylo 0.1 105 70 16 0.3 < 2 < 2 - 3 K Y R -006-01

M ylo 0.1 5 4 21 0 .7 < 2 <2 - < 2 T Y R -029-01

Quar <0.1 29 70 33 0 .4 10 13 0 .8 4 A N R  06/01

Quar 0 .2 4 8 5 8 0.3 < 2 < 2 - 28 D R  04/01

Quar 0.1 7 5 9 5 273 <0.1 5 < 2 - < 2 D R  14/01

Quar <0.1 21 7 14 <0.1 <2 < 2 - 2 D R  15/01

Quar <0.1 2 4 143 39 0.1 2 9 0 .2 12 D R  16/01

Quar <0.1 17 101 15 0.2 2 < 2 - 132 D R  17/01

Quar 0.1 2 6 19 16 0.1 4 33 0.1 11 D R  18/01

Quar <0.1 5 20 18 0.2 < 2 8 0 .0 15 D R  20/01

Quar <0.1 2 3 3 <0.1 < 2 < 2 - 3 D Y R -0 3 2 -0 1

Quar <0.1 5 7 26 0.1 < 2 < 2 - <2 K Y R -0 10-01

Sch i <0.1 45 77 95 0.4 < 2 < 2 - <2 A 3

Sch i 2 .4 63 4 6 38 1.6 < 2 < 2 - 20 A Y R -005-01

Sch i 10.6 373 5 162 9.3 < 2 < 2 - 2 A Y R -044-01

Sch i 11.0 34 9 17 265 6 .6 < 2 < 2 - <2 D1

S ch i <0.1 7 < 2 9 0.1 < 2 < 2 - <2 D Y C -003-01

Sch i <0.1 4 2 4 14 0.2 3 8 0 .4 2 D Y C -007-01

Sch i 0 .3 6 2 9 18 1.3 < 2 < 2 - 2 D Y R -031-01

Sch i <0.1 15 88 14 0 .2 2 < 2 - 2 D Y R -039-01

S ch i 0.1 54 4 43 0 .4 < 2 < 2 - 2 K Y R -008-01

Sch i < 0.1 1 < 2 22 0 .2 < 2 <2 - < 2 T Y R -001-01

S ch i 0 .7 15 19 27 1.9 < 2 < 2 - < 2 T Y R -0 16-01
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S ch i 8 .6 4 8 9 19 1123 6 .7 < 2 < 2 - 45 T Y R -0 18-01
S ed <0.1 8 21 47 2.1 4 3 1.3 3 A Y C -007-01
S ed <0.1 15 7 19 2.1 < 2 < 2 - 2 A Y C -008-01
Sed <0.1 7 90 32 0.5 6 7 0 .9 4 A Y C -009-01
Sed 0.3 7 179 35 0.8 4 5 0 .8 24 A Y C -0 1 1-01
Sed 0.1 2 45 20 0.4 3 5 0 .6 5 A Y R -009-01
Sed < 0 .1 104 140 340 1.4 < 2 < 2 - 3 K Y R -024-01
T aS ch i 0 .4 64 32 531 0.1 3 < 2 - 2 A Y R -007-01
T aS ch i 0.1 2 0 22 32 1.8 < 2 3 0 .0 2 A Y R -0 2 1-01
T aS ch i 3 .2 4 2 2 2 987 2.8 4 6 0 .7 < 2 A Y R -024-01
T aS ch i 0 .3 8 20 12 1.0 < 2 < 2 - < 2 A Y R -038-01
T aS ch i 0 .6 129 19 64 7 0 .2 < 2 < 2 - < 2 D 2
T aS ch i 9 .7 159 7 49 9.3 < 2 < 2 - <2 D 21
T aS ch i 0 .3 110 < 2 158 0.3 < 2 < 2 - <2 D 7
T aS ch i 0 .8 22 3 < 2 563 0 .2 < 2 < 2 - <2 D 9
T aS ch i 0 .2 2 3 8 184 205 4.8 <2 <2 - 109 D Y R -002-01
T aS ch i 0.1 24 10 14 0 .4 < 2 < 2 - < 2 D Y R -009-01
T aS ch i < 0.1 39 9 59 0.3 < 2 < 2 - 2 K Y R -003-01
T aS ch i 0.1 21 6 9 21 0 .9 < 2 < 2 - 10 T Y R -0 17-01
T C S ch i 0 .7 355 8 4 92 0 .2 5 < 2 - < 2 D R  11/01
T C S ch i 9 .4 941 11 138 11.7 2 7 0 .3 4 .51 D R  19/01
U n id <0.1 34 8 9 87 0.2 < 2 < 2 - 25 A Y C -020-01
U n id <0.1 17 159 24 0 .4 6 9 0 .7 13 D Y C -008-01
U n id 0 .9 149 35 63 4 0 .4 < 2 < 2 - 4 A F Y C -004-01
V Q uar <0.1 1406 3 742 0 .2 < 2 < 2 - <2 A N R  04/01
V Q uar <0.1 2 < 2 4 0.1 < 2 < 2 - < 2 A Y C -0 1 8-01
V Q uar 8.6 4 7 5 17 5.7 <2 < 2 - <2 A Y R -006-01
V Q uar 0 .2 1413 19 388 0.2 4 < 2 - 2 D R  13/01
V Q uar <0.1 2 < 2 8 0.1 < 2 < 2 - < 2 D Y C -006-01
V Q uar <0.1 2 3 6 0.1 <2 < 2 - < 2 D Y R -007-01
V Q uar <0.1 1 2 3 0.1 2 < 2 - 2 D Y R -008-01
V Q uar 1.2 2 8 15 15 1.6 < 2 < 2 - 2 D Y R -033-01
V Q uar <0.1 13 12 10 0.1 <2 < 2 - < 2 K Y R -001-01
V Q uar <0.1 19 37 8 0.1 < 2 < 2 - 3 K Y R -002-01
V Q uar <0.1 6 6 50 9 0.1 < 2 < 2 - 9 K Y R -007-01
V Q uar <0.1 9 3 52 0.1 < 2 < 2 - <2 K Y R -0 12-01
V Q uar <0.1 3 < 2 7 <0.1 <2 < 2 - 72 K Y R -0 13-01
V Q uar 0.1 25 2 102 0.1 < 2 <2 - <2 K Y R -023-01
V Q uar < 0.1 3 < 2 11 <0.1 <2 < 2 - < 2 K Y R -033-01
V Q uar <0.1 11 28 16 0 .3 < 2 < 2 - <2 TK1

Table 8.24: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Daleti, 
Ankori, Tulu Kapi and Keley areas. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: 

Chlorite-Schist. ChSchi: Chlorite-Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite.
Dun: Dunite. Fels: Felsite. Gabb: Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: 

Metabasalt. MetaSed: Metasediment. Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: 
Quartzite. Schi: Schist. Sed: Sediment. Spin: spinel-like rocks (see chapter 3) TaSchi: Talc-Schist.

TCSchi: Talc-Chlorite-Schist. Troc: Troctolite. Unid: Unidentified. VQuar: Vein Quartz.

The following sections cover the distribution of Ni, Cu, Cr and Al in the Daleti, 

Ankori, Tulu Kapi and Keley areas. Each section covers one element and describes its 

distribution in fresher ultramafics and then altered rocks. These sections are accompanied 

by a fold-out page (on page 247) of maps showing the distribution of all elements which 

the reader should refer to as each section is read.
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8.15.3. Nickel

The fresher dunites from the Daleti Ultramafic show the highest Ni value in the 

WES at 24,035ppm from the northern tip of the complex. At the centre of the Daleti 

Ultramafic local variations are large, of 8 samples of fresher dunite located within 250m 

of each other Ni content varies from l,876ppm to above 22,952ppm.

All Ni analyses above 2,100ppm in altered rock are located in samples from the 

ultramafic bodies. The altered rocks from the Ankori Ultramafic and the Lensoid 

Ultramafics have less Ni than the samples from the Daleti Ultramafic, with maximas of 

l,248ppm and 138ppm respectively (figure 8.10A). The 5 samples of ultramafic rocks 

from the Ankori complex show no distinct pattern in Ni content and the lowest Ni value 

is 95ppm in an olivine-clinopyroxenite. Ni values in the dunites of the Lensoid 

Ultramafics vary from lppm to 11 lppm and no particular spatial pattern can be observed. 

Shear-zone related rocks show no more than 94 lppm of Ni, this value occurring in a talc- 

chlorite-schist near Keley.

8.15.4. Copper

Only two fresher rocks returned positive results slightly above detection for Cu. 

These are located at the northernmost tip of the Daleti Ultramafic (3ppm) and on the 

western flank of the intrusion (2ppm)

Within the altered ultramafics only 2 of 31 samples contain Cu above 65ppm, 

these are a dunite (298ppm) and a troctolite (10lppm) from the Lensoid Ultramafics. The 

highest Cu value from the Daleti, Ankori, Tulu Kapi and Keley areas (298ppm) occurs in 

a dunite from the Lensoid Ultramafics near Keley. The maximum Cu value in the Daleti 

Ultramafic is 65ppm -  from spinel-like rocks (see chapter 3) in the centre of the 

formation, some dunites have Cu values below detection limits. In the Ankori Ultramafic 

the maximum is 46ppm from a dunite and some values fall below detection limits. No 

spatial trends in Cu content can be observed within any of the ultramafic complexes. Two 

of 15 shear-zone related samples display high Cu values the highest of which is a talc-

235



Chapter 8: Rock Geochemical Data

schist 3km south of the Keley complex (184ppm), the next highest is a schistose-rock 
from Gudeya Guji (88ppm). Some shear-zone related rocks returned Cu analyses which 

are below detection limits.

8.15.5. Chromium

The three highest Cr values (above 500ppm) in fresher rocks occur in dunites of 

the centre of the Daleti Ultramafic. The maximum Cr value in the fresher rocks from 

Daleti is 804ppm. Most of the Cr values below lOOppm occur close to the edge of the 

intrusion near to the contact with the shear zones, however the lowest Cr value (24ppm) 

occurs in a dunite in the centre within 200m of the highest Cr value.

Chromium values above 300ppm in rock are restricted to the ultramafic 

complexes and related shear zones. Of all the Daleti, Ankori, Tulu Kapi and Keley areas 

the highest Cr value (2510ppm) occurs in a gabbro from the basement north of the 

Ankori complex. The lowest Cr values occur in an altered pyroxenite also in the centre of 

the intrusion. In the Ankori complex the highest Cr composition is 1063ppm in the 

southern end of the intrusion and the lowest values are 45ppm in a dunite from the centre 

of the intrusion. The highest Cr composition in the Lensoid Ultramafics (322ppm) is 

found in a dunite of the body farthest to the southwest. In addition to this the talc-schists 

and gabbros from the basement in the south-western part of the study area contain Cr 

(<1650ppm in gabbro).

8.15.6. Aluminium

Three fresher dunites from the Daleti Ultramafic contain 0.2% of A1 and for 10 of 

13 samples A1 was not detected. All three of these rocks occur close to the centre of the 
complex.

With the exception of the spinel-like rocks (see chapter 3) of the Daleti 

Ultramafic all A1 analyses above 4.1% are found in the basement or shear-zone related 

rocks. The highest A1 content of the study area (23.3.%) is found in a gabbro from the
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basement in the south-western quadrant of the study area. The three highest A1 values 

(<5.8%) in the Daleti Ultramafic are found in the spinel-like rocks (see chapter 3) from 

the centre of the intrusion. Seven samples from the Daleti Ultramafic show A1 which is 

below detection limits, they occur throughout the complex. The highest A1 analysis for 
the Ankori area is 3.9%, found in a dunite close to the centre. Seven samples from the 

Ankori Ultramafic show A1 values of 0.1% - the lowest amount; they occur throughout 

the complex. Within the Lensoid Ultramafics the largest A1 value (1.2%) is also found in 

an altered dunite. Figure 8.10D shows that in the Daleti and Ankori complexes, the 

highest A1 contents are found in the centre of the intrusions.

8.15.7. Summary of Ni, Cu, Cr and A1 values in the Daleti Ultramafic

A dunite sample at the northern tip of the Daleti Ultramafic shows the highest Ni 

values from the entire Daleti, Ankori, Tulu Kapi and Keley areas. It also contains the 

highest Cu values of fresher rocks which is only just above the detection level. The 

highest Cr values occur in a different location and three fresher dunites at the centre of 

the formation contain high Cr values. This compares starkly to the samples at the 

northern edge of complex which contain much lower values.

8.15.8. Summary of Ni, Cu, Cr and A1 values at Ankori and the Lensoid 
Ultramafics

All high Ni analyses in altered rock are located in samples from the ultramafic 

bodies. The highest value of Cu in the Daleti, Ankori, Tulu Kapi and Keley area 

(298ppm) occurs in an altered dunite near Keley. However, this is the only ultramafic 

sample from the area which contains high Cu, all other significant Cu are located away 
from the ultramafic complexes.

8.15.9. Summary of Ni, Cu, Cr and A1 values in the Shear Zones
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Of the talc-schists samples taken from Shear Zones, Ni and Cu rise to high values 

in different samples, no spatial trend can be observed. Cr values vary with proximity to 

the ultramafic bodies or the northwestern Shear Zones and gabbro.

8.15.10. Summary of Ni, Cu, Cr and A1 values in the southwestern Shear Zones 
and gabbro

High Cr values are seen in a gabbro and a talc-schist in the southwestern parts of 

the area. Ni and Cu values are both low or intermediate

8.16. Daleti, Ankori, Tulu Kapi and Keley: Pt and Pd distribution

No Pd was detected in the fresher rocks from the Daleti Ultramafic. Six of 13 of 

the fresher Daleti rocks contain low values of Pt. The maximum Pt value is 8ppb found in 

a dunite from the south western flank of the complex. Two dunites within 400m of the 

edge of the intrusion contain 7ppb.

The highest Pt grade (19ppb) in the altered rocks occurs in a gabbro from the 

basement southwest of Gudeya Guji. The highest Pd grade (33ppb) occurs twice, firstly 

in a quartzite north of Keley and additionally in a dunite by the road near Keley. Within 

the Daleti Ultramafic the highest Pt assay of altered rocks is 8ppb in a birbirite located in 

the centre of the complex.

The Ankori complex has a maximum Pt assay of 15ppb in a birbirite at the 

northern end of the intrusion. This sample also contains the highest Pd assay, 16ppb. The 

second highest Pt assay (1 lppb) also corresponds to the second highest Pd assay (13ppb), 

these analyses come from a dunite at the southern end of the intrusion. These two 

samples are the only ones from the Ankori complex which contain Pd above detection 

limits. Three further dunite samples out of 13 from the Ankori complex contain Pt above 

detection limits.
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Within the altered samples of the Lensoid Ultramafics, the largest Pt grade found 

is 9ppb in a birbirite from the near Keley. Only 2 of 11 samples from the Lensoid 

Ultramafics contain Pt above detection limits (3ppb and 9ppb). This compares to 4 which 

contain Pd above detection, ranging from below detection limits to 33ppb in the dunite 

near Keley.

In the southwestern quadrant of the area, 6 rocks within the basement formations 

show anomalous Pt and Pd. These form in a line trending NE-SW. The highest Pt value 

from this group (19ppb in a gabbro south-west of Gudeya Guji) is also the highest Pt 
grade found in the whole Daleti area. Pd grades of 13ppb occur in a gabbro and a 

quartzite and these also correspond to Pt values of llppb and lOppb respectively. Just 

south of Ankori, outside of the complex, a dolerite dyke returns a Pt value 4ppb and a Pd 

value of 9ppb. The other significant samples from this area are a metasediment which 

contains a Pt value of 6ppb and a Pd value 7ppb and a talc-schist containing 4ppb of Pt 

and 6ppb of Pd.

A comparison between PGE and Ni, Cu, Cr and A1 in the highest value samples 

of fresher rocks within the Daleti Ultramafic is as follows:

Sample Pt(ppb) Pd(ppb) Ni
(ppm)

Cu
(ppm)

Cr
(ppm) A1 (%)

DR 22/01 8 <2 4809 <2 130 0.1
DR 07/01 7 <2 7713 <2 58 <0.1
DR 08/01 7 <2 5173 <2 24 <0.1
DR 09/01 5 <2 6748 <2 27 <0.1
DR 02/01 4 <2 7726 <2 157 0.2
DR 01/01 2 <2 2436 <2 34 <0.1
D12* < 2 <2 22952 <2 804 0.1
D6* < 2 <2 24035 3 73 <0.1

Table 8.25: A summary of Ni, Cu, Cr and A1 values in the dunites of highest Pt and Pd grade from 
the fresher rocks within the Daleti Ultramafic. A graphical representation o f this data is provided 

in figure 8.9. *: Samples D12 and D6 are included regardless of low Pt and Pd values as they
contain high Ni values.
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Figure 8.9: Graphs of Ni, Cu, Cr and A1 versus Pt in the fresher dunites from the Daleti
Ultramafic.
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8.17. Daleti, Ankori, Tulu Kapi and Keley: Discussion

Here the processes likely to have affected the distribution of Ni, Cu, Cr Al, Pt and 

Pd in the Kingy area are discussed. The processes involved with the distribution of Ni, 

Cu, Cr and Al in fresher ultramafics are considered in sections 8.17.1 and 8.17.2, 

followed by those processes which affect altered rocks in 8.17.3 and 8.17.5. The 

mechanisms which distribute Pt and Pd are considered from section 8.17.6 to section

8.17.7.

8.17.1. The highest Ni and Cu values in the fresher rocks from the Daleti 
Ultramafic

A fresher dunite (sample D6) at the northern tip of the Daleti Ultramafic contains 

both the highest Ni value in the entire WES dataset and highest Cu value in fresher rocks 

in the complex. The Ni value seen here is over 20,000ppm too large for all the Ni to be 

partitioned into olivine (see section 8.6.2), it is therefore thought likely that the Ni has 

partitioned into sulphide minerals after sulphide segregation (see section 8.6.4). Analyses 

of spinel minerals have Ni values below detection (see chapter 9). Given such a large Ni 

content, the small Cu values are somewhat surprising. The highest Cu and Ni contents 

could occur in the same sample in a situation where sulphide segregation has occurred 

and filter-pressing or hydrothermal alteration was slight or not present (see sections 8.6.6 

and 8.6.8). However, given the chalcophile behaviour of both elements, a larger Cu value 

than seen here would be expected. It is possible that further sampling will reveal a larger 

maximum Cu value, which may be in a different location from the highest Ni. However, 

if this is truly the largest Cu content of the complex then two interpretations can be made, 

firstly that any filter pressing and/or hydrothermal alteration was slight or did not occur 

and secondly that the Cu content of the magma itself was low. Alternatively, all Cu could 
have been removed from the complex.
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8.17.2. Zonation in Cr values in the fresher rocks from the Daleti Ultramafic

The highest Cr values of fresher rocks (>500ppm) occurs in the centre of the 

Daleti Ultramafic and the samples at the northern edge of the complex contain less than 

130ppm. Given that spinel minerals are unlikely to have been taken into solution during 

the aqua regia digestion, all Cr measured here is likely to be Cr partitioned into olivine. 

Firstly, in a situation where the complex formed from one pulse of magma, the most 

primitive rocks would be in the centre and the northwestern edge is more evolved. The 

alternative is that, if more than one melt had intruded the crust to form the Daleti 

Ultramafic then the Cr-rich rocks of the centre may indicate a phase of magma mixing 

(see section 8.6.7).

8.17.3. Trace element distribution in Shear Zones

Of the talc schists observed in shear zones, Ni and Cu rise to high values in 

different samples. Both elements are known to be taken into solution by hydrothermal 

fluids at conditions of nearly neutral pH, with temperatures from 200-300°C and salinities 

of less than 3wt% NaCl (see section 8.6.8). At higher temperatures, the solubilities of 

such elements are likely to rise (see section 8.6.8). The observation that Ni and Cu reach 

high values in the same lithotype but different samples raises several questions, as 

discussed for similar observations at Kingy (see section 8.12.4). It is possible that 

multiple alteration episodes occurred -  under slightly different conditions or acting on 

different areas. Another alternative is that one element was not remobilised and 

represents a “relict” magmatic signature (as suggested for Kingy section 8.12.4).

8.17.4. Copper values in altered rocks

The highest Cu value (298ppm) occurs in a sample of altered dunite near Keley, 

however all other Cu values above lOOppm occur away from the ultramafic complexes. 

As suggested above (section 8.17.3), it is likely that Cu has been remobilised and 

reprecipitated in the Daleti area and therefore this elevated value could well be the result 

of alteration. However, the lack of Cu compared to Ni observed in the Daleti Ultramafic
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(<3ppm and <24,03 5ppm respectively, see section 8.17.1) raises a question about the true 

maximum Cu value. The Cu-bearing dunite at Keley is small sliver of dunite near to a 

large mass of shear-zone related lithotypes around 2.5km southwest of Daleti. Given the 

scale of the mobile belt in which the WES exists (chapter 2) it is reasonable to expect an 

offset of over 2km to occur along a strike-slip fault. It is possible that the Cu-bearing 

dunite at Keley could represent the “missing magmatic Cu” from the Daleti Ultramafic. 

Although this study cannot demonstrate this relationship, further analysis of the mineral 

morphology of the Cu-bearing sulphides may aid understanding of this anomalous result. 

It is expected that structural observations are unlikely to be feasible due to the poor 
exposure and extensive alteration. If the high Cu value seen here was found to be formed 

by alteration then it may be suggested that a magmatic high Cu occurance exists nearby 

and this in turn could be related to the high Ni seen at Daleti.

The distribution of high Cu values (>lOOppm) over formations other than the 

ultramafic complexes could also be explained in terms of remobilisation by high 

temperature fluids.

8.17.5. High Ni values within the ultramafic complexes

All Ni analyses above 2lOOppm in altered rock occur in samples from the 

ultramafic complexes. As with Cu, Ni is considered to be mobile in hydrothermal fluids 

(see 8.6.8). So it is to be expected that Ni will become concentrated into these rocks by 

the combined processes of sulphide segregation and fractionation and subsequently be 

remobilised by high-temperature fluids. As seen in the Shear Zones (see section 8.17.3), 

there is a different geographic distribution of Ni and Cu. This suggests that either the Ni 

has not been remobilised and represents a “relict” magmatic signature or that the two 

elements were concentrated by different alteration systems (see section 8.12.4).

8.17.6. Genesis of Pt and Pd in fresher rocks from the Daleti Ultramafic

The highest Pt value found in the fresher rocks from the Daleti Ultramafic is 8ppb 

and no Pd has been found above detection levels. Table 8.25 shows that the samples with
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highest Pt also contain Ni values which are high enough for sulphides to be present (see 

section 8.6.2). However the Ni values in these PGE-bearing samples are much smaller 

than the values seen in D12 and D6 which are barren of Pt and Pd. Additionally, none of 

the PGE-bearing samples contain any Cu. Although two PGE-bearing samples contain Cr 

values of over lOOppm, the sample with highest Cr value is barren of Pt or Pd. It appears 

likely that sulphides are present in the daleti area, but barely any Pt of Pd is detectable at 

all. Therefore, if sulphide segregation has occurred, it did so in a magma which was 

almost completely barren of Pt and Pd.

The low value of Cu in the Daleti Ultramafic is possibly explained by the element 

being leached out by hydrothermal fluids (8.17.4). In the same manner there may have 

been some remobilisation of Pt and Pd from its primary magmatic location and 

redeposited elsewhere such as Keley (see section 8.17.7).

8.17.7. Genesis of Pt and Pd in altered rocks

The highest Pt value occurs in a gabbro in the southwestern basement area -  this 

occurs in line with a WSW trending group of Pt and Pd anomalies. Two anomalous Pd 

values are observed in a dunite and quartzite from the Keley area. Further significant Pt 

and Pd grades from the area in question occur in Ankori.

The proximity of the two highest Pd values to large shear-zone related lithotypes 

indicates the influence of hydrothermal fluids directed along these Shear Zones. The Pd 

found in quartzite further infers that silica-rich fluids have a role in the remobilisation Pd. 

The low Pt analysis supports the hypothesis that Pd is more mobile than Pt in the 

hydrothermal fluids in this area (see section 8.6.8).

Unlike the samples at Keley, the samples around the southwestern basement 

retain slightly elevated Pt values. As Pt is considerably less mobile than Pd in 

hydrothermal fluids (section 8.6.8) it is less likely that these concentrations are due to 

secondary remobilisation. However, the presence of a Pt anomaly in quartzite suggests
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some degree of remobilisation. The gabbro samples obtained from the area and high Cr 

values suggest the presence of a primitive mafic-ultramaflc intrusion in the area - which 

may represent the primary source of these Pt and Pd anomalies.

The Pt and Pd values at Ankori are co-incident with intermediate values of Ni, Cu 

and Cr when compared to the surrounding area. The Cr values indicate that this complex 

formed by the crystallization of a primitive magma. However, the severe alteration (lack 

of fresher samples) and poor structural control on the complex make it hard to determine 

the influence of magmatic processes.

8.18. Daleti, Ankori, Tulu Kapi and Keley: Conclusions

Given the low values of Pt and Pd alongside high Ni values, it is considered 

unlikely that the Daleti Ultramafic will host economic mineralisation. However, further 

investigation of the extensive Pt and Pd values found associated with shear-zones in the 

southwestern part of the study area may reveal a more promising prospect.

The distribution of Ni, Cu and Cr in the fresher rocks of the Daleti Ultramafic is 

used to discuss ideas about the magmatic genesis of the complex. The high values of Ni 

in the fresher rocks from the Daleti Ultramafic suggest that sulphide segregation may 

have occurred however the Pt and Pd values remain low.

Analyses of the talc-schists and altered ultramafic samples from the Ankori, Tulu 

Kapi and Keley areas show that Ni and Cu are concentrated into different samples. This 

may be explained by the action of two different alteration episodes under slightly 

different conditions or acting on different geographical areas. Alternatively, one element 

may not have been remobilised. The analysis of the Ni- and Cu-bearing minerals may 

uncover further information regarding the alteration episodes.

High Pd values are found in a quartzite and dunite sample from around the 

extensive Shear Zones of the Keley area. The preferential mobility of Pd over Pt in
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hydrothermal fluids can explain this distribution although a primary source of Pd nearby 

has not been discovered.
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8.20. Yubdo, Sodu and Andu: Selected Major and Trace Elements

8.20.1. Introduction

100 samples were examined from the Yubdo area. According to the classification 

set out in section 8.3.1, sixteen o f the samples are altered ultramafics and 6 are fresher 

ultramafics. There are a further 76 samples o f basement lithologies and birbirites. All 

fresher ultramafic rock samples are located within the Main Yubdo Ultramafic.

The areas Yubdo, Andu and Sodu are distinguished from each other in chapter 5.

O  I . o c a b o n s  o f  frontier r o c k  s a m p l e *
O  L o c a t i o n s  o f  a l l e i e d  r o c k  samples

The Geology o f Yubdo 

I Basalt

Clioopvfoxcuitc

(Mivine-clinopyroxenile

D u n i t e

Figure 8.11: The distribution of samples within the Yubdo area.
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B a s e m e n t  3  
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B a s e m e n t  5  
b a s e m e n t  6  
B a s e m e n t  7  
b a s e m e n t  8  
B a s e m e n t  9
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Formation # Sub-unit Altered
ultramafic
rocks

Fresher
ultramafic
rocks

Non-
ultramafic
rocks

Birbirite
samples

Basalt 15 0 0 15 0
Shear Zones 23 0 0 21 2
Diorite 1 0 0 1 0
Yubdo
Ultramafic

30

Clinopyroxenite 11 4 0 7 0

Olivine-
clinopyroxenite 5 4 1 0 0

Dunite 14 5 5 0 4
Lensoid
Ultramafics 5 5 0 0 0

Basement 26 0 0 24 2

TOTAL 100 18 6 68 8
Table 8.26: A summary o f  the samples from the Yubdo, Andu and Sodu areas. The classification 

o f  fresher and altered rocks is covered in section 8.3.1 and the classification o f ultramafic 
lithotypes including birbirite is covered in chapter 3.

8.20 .2 . Data

Form ation D escr ip tio n M g

(% )

N i
(p p m )

C u
(p pm )

Cr
(p p m )

A l
(% )

Pt
(PPb)

Pd Pt/Pd  
(p pb )

A u

(PPb)

Sam ple

D un 2 2 .9 9 1 2 < 2 177 <0.1 121 < 2 - <2 A Y R -016-01

D u n 2 3 .0 1043 < 2 22 5 < 0.1 < 2 < 2 - < 2 Y 1 0
M ain

D un 2 3 .0 7 8 4 < 2 2 4 5 <0.1 <2 < 2 - <2 Y 12
Y ubdo

D un 2 4 .0 5 8 3 < 2 170 <0.1 < 2 <2 - <2 Y 13
Intrusion

D un 2 2 .8 711 2 301 <0.1 < 2 <2 - <2 Y 7
O I-cp x 13.4 1016 10 905 0.1 < 2 < 2 - < 2 Y 1 6

Table 8.27: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the fresher samples (as defined in section 
8.3.1) collected from the Yubdo, Andu and Sodu areas. Dun: Dunite. Ol-cpxite: Olivine- 

clinopyroxenite. Cpxite: Clinopyroxenite.

Form ation D escrip tion M g

(%)
N i
(p p m )

C u
(p p m )

Cr
(p pm )

A l
(%)

Pt

(PPb)
Pd

(PPb)
Pt/Pd A u

(P£b)
Sam ple

D un 1.4 55 100 6 7 2.1 6 4 1.5 2 D Y R -026-01
D un 9 .5 7 7 4 3 7 84 0 .2 109 < 2 - <2 K Y R -0 19-01
D un 10.6 553 38 78 3 1.5 65 < 2 - < 2 T Y R -009-01
D un 2 5 .7 1847 5 54 <0.1 < 2 < 2 - < 2 Y 3 0

D u n < 0.1 2 6 9 2 2 1835 3.8 28 2 14.0 4 Y R  08 /01
M ain O l-cp x 13 .0 94 9 5 53 6 0.8 57 < 2 - < 2 D Y R -023-01
Y ubdo O l-cp x 7 .8 6 8 2 7 78 6 0 .2 30 < 2 - < 2 K Y R -0 18-01
Intrusion O l-cp x 6 .2 2 3 2 7 6 4 5 0 .4 23 <2 - < 2 T Y R -008-01

O l-cp x 1.2 118 8 528 0 .4 7 6 1.2 4 Y R  06 /01
C p xite 4 .4 2 0 2 15 753 0 .7 19 < 2 - 2 A Y R -0 0 2 -0 1
C p xite 4 .7 2 5 6 4 753 4 .8 <2 < 2 - < 2 Y 1 7
C p xite 1.1 7 7 7 72 2 0 .6 <2 < 2 - <2 Y 23
C p xite 0 .9 33 < 2 179 0 .4 <2 <2 - < 2 Y 24

D un < 0.1 7 2 4 55 0 .2 <2 < 2 - 55 D Y R -029-01

L ensoid
D u n < 0.1 2 4 52 9 2 2 .3 < 2 < 2 - < 2 K Y R -0 17-01
D un 2 .8 2 4 30 2 0 2 .8 <2 < 2 - 2 T Y R -0 13-01

U ltram afic
O l-cp x 2 .0 4 5 87 55 2 .6 < 2 < 2 - < 2 A Y R -032-01
O l-cp x 3 .0 191 63 4 1 0 2 .8 2 < 2 - 3 A Y R -036-01

B asa 2 .6 4 8 37 58 4 .2 < 2 < 2 - < 2 A Y R -0 1 8 -0 1
B irb < 0 .1 9 2 8 8 1588 0.1 22 < 2 - < 2 D Y R -022-01
B irb < 0.1 4 6 93 64 2 .6 <2 < 2 - < 2 T Y C -0 10-01
B irb 0.1 1599 5 1245 0.3 <2 < 2 - < 2 Y 2 9
B irb 0.1 18 7 7 185 3.2 < 2 < 2 - < 2 Y R  01/01

u<u B irb < 0 .1 56 13 592 1.9 31 < 2 - 3 Y R  02 /01
•S
o B irb < 0 .1 27 14 1189 4 .6 21 < 2 - < 2 Y R  03 /01
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Birb <0.1 71 25 65 1.8 <2 < 2 - < 2 Y R  04/01

Birb <0.1 401 7 6 2 6 0.1 50 < 2 - 2 Y R  07/01

C hS ch i 0 .6 5 7 9 1.6 35 < 2 - <2 Y R  05/01

D ior 0 .5 <2 5 < 2 1.1 <2 < 2 - <2 T Y R -021-01

D o le 2 .5 68 93 6 9 1.4 <2 < 2 - 2 A Y R -014-01

D o le 1.8 50 94 6 2 1.9 <2 < 2 - 2 A Y R -017-01

D o le 1.3 23 74 73 1.7 <2 < 2 - 41 A Y R -028-01

D o le 2 .0 4 6 9 7 59 1.7 <2 < 2 - < 2 A Y R -030-01

D o le 2 .5 33 2 6 2 6 1.9 <2 <2 - <2 A Y R -0 3 1-01

D o le <0.1 152 7 7 2 3 7 1.9 <2 <2 - < 2 D Y R -0 13-01

D o le 2 .7 58 9 0 83 1.5 <2 <2 - <2 D Y R -028-01

Gabb 1.7 9 17 6 2 .4 < 2 <2 - < 2 A Y R -013-01

Gabb 0 .7 4 4 5 1.3 < 2 <2 - 8 A Y R -029-01

Gabb 0 .4 2 4 5 81 0 .2 17 <2 - < 2 T Y R -007-01

Gabb 0 .8 15 37 16 1.5 <2 <2 - <2 T Y R -026-01

Gabb 4 .0 136 3 361 0.3 <2 <2 - < 2 Y 3

Gabb 5 .7 191 5 4 3 9 1.1 <2 <2 - <2 Y 4

HardP <0.1 45 6 0 6 8 6 4 .0 3 <2 - 3 A Y C -0 12-01

HardP <0.1 15 4 0 2 1 6 3.6 <2 <2 - < 2 A Y C -0 13-01

HardP <0.1 2 4 86 115 3.7 3 <2 - < 2 A Y C -0 14-01

HardP <0.1 8 35 281 2 .5 2 < 2 - 2 D Y R -0 11-01

HardP <0.1 7 2 9 5 12 1.7 <2 < 2 - 7 D Y R -0 15-01

HardP 0.1 63 2 4 0 8 4 8 7 2.1 143 3 4 7 .7 3 D Y R -025-01

HardP <0.1 21 62 126 1.7 <2 < 2 - < 2 K Y C -001-01

HardP <0.1 6 6 24 8 4 0 8 2 .8 <2 < 2 - 3 K Y C -002-01

HardP <0.1 31 2 3 9 333 0 .9 <2 < 2 - < 2 K Y C -003-01

M etaSed 1.9 125 4 6 183 3.2 3 5 0 .6 4 A Y R -015-01

M etaSed 0 .8 16 198 13 1.4 <2 < 2 - 4 A Y R -035-01

M etaSed 0.1 34 6 2 8 2 52 1.2 5 9 0 .6 7 T Y R -0 10-01

M ylo 0 .8 2 0 33 177 1.1 3 3 1.0 <2 A Y R -012-01

Quar <0.1 2 2 5 0.1 <2 5 0 .0 <2 D Y R -0 12-01

S ch i 1.8 52 19 3 7 2 .9 <2 < 2 - <2 A Y R -020-01

Schi 0 .6 93 95 68 1.7 <2 6 0 .0 9 D Y C -009-01

Schi 0 .4 31 25 4 0 0 .8 <2 < 2 - <2 D Y R -0 14-01

S ch i 1.8 45 75 221 5.1 4 < 2 - 5 K Y C -006-01

Schi 0 .6 125 5 0 6 4 1.5 <2 <2 - < 2 T Y R -0 11-01

Schi 0 .3 861 4 7 1 6 0.1 <2 < 2 - < 2 Y 31

Schi 2 1 .2 1218 < 2 2 3 4 <0.1 <2 < 2 - <2 Y 6

Sed 0.1 8 48 19 1.0 <2 <2 - 35 A Y C -0 15-01

Sed <0.1 106 61 1700 2 .8 13 2 6 .5 2 2 D Y R -027-01

Sed <0.1 2 2 85 2 6 0 0 .6 <2 <2 - <2 T Y C -007-01

Sed <0.1 99 86 341 1.5 5 3 1.7 3 T Y C -0 11-01

T aSchi 0 .3 51 4 1585 0.3 39 4 7 0 .8 <2 A Y R -0 1 1-01

T aSchi 0 .3 124 10 2 25 0.1 5 < 2 - <2 D Y R -0 19-01

T aSchi 0 .5 78 3 3 45 0.1 19 < 2 - 2 D Y R -024-01

T aSchi 0 .9 3 8 7 57 1846 3.9 5 3 1.7 <2 K Y C -004-01

T aSchi 0 .3 2 8 9 4 2 0 8 9 1.0 21 < 2 - <2 K Y C -005-01

T aSchi 10.6 858 8 1907 4 .2 42 < 2 - 2 K Y R -020-01

T aSchi <0.1 2 4 50 74 0 .4 < 2 < 2 - < 2 T Y C -0 0 9 -0 1

T aSchi 0 .9 2 0 3 15 1.4 <2 < 2 - < 2 T Y R -0 12-01

T aSchi 0 .6 52 6 0 79 1.1 <2 9 0 .0 < 2 T Y R -0 14-01

T aSchi 0 .6 53 2 39 0 .9 <2 < 2 - < 2 T Y R -0 15-01

T aSchi 0 .4 53 14 75 2 .6 4 3 1.3 4 T Y R -0 19-01

T aSchi <0.1 2 < 2 2 1.7 <2 <2 - < 2 T Y R -0 2 2 -0 1

U nid 1.9 39 57 48 4 .6 <2 <2 - 4 A Y C -0 17-01

U nid <0.1 4 4 19 0.1 <2 < 2 - 16 D Y C -0 10-01

U nid 0 .2 12 37 36 0.5 <2 < 2 - < 2 Y 18
U nid 0.1 1028 6 9 72 0.1 <2 < 2 - < 2 Y1
U nid 1.2 63 59 38 7 1.8 <2 < 2 - <2 Y 2 0
U nid 3 .7 2 6 30 47 4 .0 <2 < 2 - < 2 Y 21
U nid 3.8 10 8 7 3.6 <2 < 2 - < 2 Y 22
U nid 0 .2 9 2 19 0.1 <2 < 2 - <2 Y 5
VQuar <0.1 2 3 11 0.1 <2 <2 - <2 D Y R -0 16-01
V Q uar <0.1 3 < 2 6 <0.1 <2 < 2 - <2 D Y R -0 17-01
V Q uar <0.1 2 3 7 <0.1 3 <2 - 3 D Y R -020-01
V Q uar <0.1 <2 2 3 <0.1 <2 < 2 - <2 D Y R -021-01
V Q uar <0.1 2 < 2 5 <0.1 <2 < 2 - <2 T Y C -008-01
V Q uar 8.0 32 4 11 923 0 .6 <2 <2 - < 2 Y 25
V Q uar 2 .2 123 11 671 0.5 <2 < 2 - <2 Y 2 6
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Table 8.28: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Yubdo, 
Andu and Sodu areas. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: Chlorite-Schist. 
ChSchi: Chlorite-Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite. Dun: Dunite.

Fels: Felsite. Gabb: Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: Metabasalt. 
MetaSed: Metasediment. Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: Quartzite.

Schi: Schist. Sed: Sediment. TaSchi: Talc-Schist. TCSchi: Talc-Chlorite-Schist. Troc: Troctolite.
Unid: Unidentified. VQuar: Vein Quartz.

The following sections cover the distribution o f Ni, Cu, Cr and Al in the Yubdo 

area. Each section covers one element and describes its distribution in fresher ultramafics 

and altered rocks. These sections are accompanied by a fold-out page (on page 262) o f 

maps showing the distribution o f all elements which the reader should refer to as each 

section is read.

8.20.3. Nickel

O f the fresher ultramafics within the Main Yubdo Ultramafic the highest Ni 

analysis (1046ppm) was returned for a dunite close to the centre o f the intrusion. It is 

noted that an olivine-clinopyroxenite close to the northern contact with the basement was 

analysed at a similar figure (1016ppm). The other samples from the area returned Ni 

values between 583ppm and 912ppm -  no zonation can be observed.

In the Yubdo area, all N i concentrations o f over 390ppm in rock occur over the 

main ultramafic (figure 8.13A). Figure 8.13A shows that the samples o f highest Ni in 

rock (>1000ppm) are all within 300m o f a shear zones. The largest concentration o f Ni in 

the rocks from the Main Yubdo Ultramafic occurs in a dunite (1847ppm). The lowest Ni 

value (24ppm) occurs in the eastern clinopyroxenite zone. In the Lensoid Ultramafics the 

olivine-clinopyroxenites contain Ni o f up to 191ppm and the two dunites both contain 

24ppm.

8.20.4. Copper

Two o f the 6 fresher ultramafics from Yubdo contain Cu. The highest Cu value 

(lOppm) occurs in the olivine-clinopyroxenite in close to the northwestern flank. The 

other value above detection (2ppm) occurs towards the centre o f the intrusion.

251



Chapter 8: Rock Geochemical Data

Copper is elevated to above 70ppm in only 6% (2 o f 32) o f  altered samples o f the 

Main Yubdo Ultramafic whereas in other formations 26% (18 o f 69) o f samples rise 

above this level. The highest Cu value in the Main Intrusion (lOOppm) occurs in an 

altered dunite close to the olivine-clinopyroxenite zone o f the western contact with the 

basement. Figure 8.13B shows that most other Cu analyses in the Main Yubdo 

Ultramafic fall below 15ppm and can fall as low as 3ppm (in an olivine-clinopyroxenite 

on the western contact with the basement). This compares with the Lensoid Ultramafics 

where Cu analyses o f  two dunite samples return values were 30ppm and 52ppm and two 

analyses o f olivine-clinopyroxenite samples were 63ppm and 87ppm.

8.20.5. Chromium

The highest Cr values in fresher rocks (905ppm) occurs in the olivine- 

clinopyroxenite sample near the northwestern flank o f the complex. All other Cr analyses 

fall below 300ppm and can be as low as 54ppm in a dunite close to the eastern contact 

with the basement.

In the Yubdo area, Cr is enriched dominantly in the rocks from two areas, the 

Main Yubdo Ultramafic and around a talc-schist near the northern Lensoid Ultramafics. 

In addition to this, an olivine-clinopyroxenite and a talc-schist in the southeastern comer 

of the area also contain significant values o f Cr (410 and 1585ppm respectively). The 

highest Cr value for the Yubdo Main Intrusion is 8487ppm in a hard pan found above the 

clinopyroxenite zone on the western flank o f the Main Yubdo Ultramafic. Two talc- 

schists in the northern tip o f the complex contain high Cr values (1907ppm and 

2089ppm). The highest Cr value in the altered ultramafic samples (1835ppm) occurs in a 

dunite o f the Main Yubdo Ultramafic, this occurs at the farthest western extension o f the 

complex. The lowest Cr value o f  the Main Yubdo Ultramafic is 54ppm in a dunite on the 

western flank but still 1km away from the sample with the highest Cr value. Within the 

Yubdo Main Intrusion the samples bearing high Cr contents (>1000ppm) are often 

located close (within 200m) to samples without such elevated contents.
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8.20.6. Aluminium

One fresher sample -  the only fresher olivine-clinopyroxenite on the northwestern 

flank - contains Al above detection limits (0.1%).

The altered rocks o f the Main Yubdo Ultramafic have lower background levels of 

Al than the basement units in the area. Some dunites in the Yubdo Main Intrusion have 

Al levels below detection whereas in the basement rocks values do not drop below 0.5% 

(figure 8.13D). The highest value for Al content (5.1%) occurs in a schistose basement 

rock related to a shear zone north of Yubdo. Within the Main Yubdo Ultramafic, the 

highest Al value (4.8%) occurs in the pyroxenite body from the northwestern flank. In the 

Main Yubdo Ultramafic, the four highest Al analyses come from samples aligned along 

the northwestern flank. The Al contents o f the Lensoid Ultramafics are higher than many 

parts o f the Main Yubdo Ultramafic showing a minimum of 2.3% and a maximum of 

2 .8%.

8.20.7. Summary o f  the Ni, Cu, Cr and Al values from the Yubdo Main 
Intrusion

The highest N i and Cu values in fresher rocks do not co-incide. The highest Cu 

value o f the fresher ultramafic samples occurs in an olivine-clinopyroxenite at the 

northwestern flank, this sample also contains a high Ni value. However, the highest Ni 

value occurs in a dunite close to the centre o f the intrusion. The highest Cr value also 

occurs in the same olivine-clinopyroxenite sample which has the highest Cu.

The highest Cr values in altered rocks occur at the edge o f the intrusion. 

Similarly, the highest Cu values o f the altered rocks occur close to the western edge o f 

the intrusion. All samples with high Ni are also located at the edges, but also close to 

Shear Zones which pass through the centre o f the complex.
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8.21. Yubdo, Sodu and Andu: Pt and Pd distribution

Pt was detected in one sample o f fresher rocks from the Yubdo Main Intrusion at 

a value o f 121ppb. Pd was not detected in any fresher rocks o f the Yubdo, Andu and 

Sodu areas.

The highest Pt assay in the rocks o f  the Yubdo area (143ppb) was from a hard-pan 

sample overlying the western pyroxenite zone o f the Main Yubdo Ultramafic. O f the 

altered rocks, the highest Pt value (109ppb) occurs in a dunite located within at the 

northern tip o f the Main Yubdo Ultramafic. The highest Pd value in the area (47ppb) was 

found in a sample o f a talc-schist in the southeastern flank o f the intrusion. In the Main 

Yubdo Ultramafic, the highest Pd value is 6ppb found in an olivine-clinopyroxenite. Only 

3% (2 o f 63) o f samples returned Pd values above detection limits. For Pt 71% (45 o f 63) 

of assays returned values above detection limits. For the Lensoid Ultramafics, only one 

sample is Pt bearing (2ppb) and all Pd assays were below detection limits. Two further 

assays o f 9ppb Pd each were obtained from a meta-sediment and a talc-schist in the 

basement area north o f Yubdo. Additionally, a talc-schist in the southeastern part o f the 

study area was assayed at 39ppb and 47ppb for Pt and Pd respectively.

The comparison between PGE and Ni, Cu, Cr and Al in the highest samples is 

summarised as follows:

Sample Description Pt
(ppb)

Pd
(ppb)

Ni
(ppm)

Cu
(ppm)

Cr
(PPm)

Al
(%)

AYR-016-01 Dun 121 < 2 912 < 2 177 <0.1
Y10 Dun < 2 < 2 1043 < 2 225 <0.1

Y16 Olivine-
clinopyroxenite < 2 < 2 1016 10 905 0.1

Y12 Dun < 2 < 2 784 < 2 245 <0.1
Y7 Dun < 2 < 2 711 2 301 <0.1
Y13 Dun < 2 < 2 583 < 2 170 <0.1

Table 8.29: A summary o f  Ni, Cu, Cr and Al values in the fresher samples from the Main Yubdo 
Ultramafic. A graphical representation of this data is provided in figure 8.12.
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Figure 8.12: Graphs o f Ni, Cu, Cr and Al versus Pt in the fresher rocks from the Main Yubdo
Ultramafic.
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8.22. Yubdo, Sodu and Andu: Discussion

Here the processes likely to have affected the distribution o f  Ni, Cu, Cr Al, Pt and 

Pd in the Yubdo, Andu and Sodu areas are discussed. The processes involved with the 

distribution o f Ni, Cu, Cr and Al in fresher ultramafics are considered in sections 8.22.1 

and 8.22.2, followed by those processes which affect altered rocks in 8.22.3 and 8.22.4. 

The mechanisms which distribute Pt and Pd are considered from section 8.22.5 and 

section 8.22.6.

8.22.1. The locations o f  the highest Ni and Cu values in the fresher rocks from 
the Main Yubdo Ultramafic

The highest Ni value in the fresher rocks from the Main Yubdo Ultramafic occurs 

in an olivine-clinopyroxenite sample close to the centre o f the intrusion. Another large Ni 

value (1016ppm) occurs with the highest Cu value (lOppm) in an olivine-clinopyroxenite 

near the northwestern flank. As discussed in section 8.6.2, because all N i values within 

the fresher rocks from the Yubdo dataset are lower than 3293ppm, the element could 

potentially be partitioned entirely into the olivine minerals without the presence o f 

sulphides (see section 8.6.2). The partition co-efficient for Ni clearly makes the case that 

the element will preferentially partition into sulphide but can also partition into the 

olivine crystal structure. Cu on the other hand is likely to partition into sulphide but is 

unlikely to partition into olivine (see table 8.30). For sample Y16 (see table 8.29) it is 

expected that the Cu exists in IS S. In a situation where sulphide co-precipitated with 

olivine, the Ni would also partition into the sulphide. But as the residual sulphide liquid 

which forms ISS may have been filter pressed into its current position (see 8.7.2) it is not 

possible to determine the phase which contains Ni. The Ni-rich but Cu-barren samples 

may represent either Ni partitioned into olivine or into MSS. It is, therefore, suggested 

that sulphides are present in sample Y16, but it is not possible to ascertain whether Ni has 

partitioned into sulphide or olivine. Analysis of the sulphide mineral geochemistry is 

required to confirm the presence o f sulphides and understand the behaviour o f Ni in this 

case.
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Rock Type Mineral Value Low High DCu Type Reference
MSS Olivine 730 Experimental Pedersen 1979
Basalt- Olivine 0.55 Experimental Kloeck & Palme
Andesite 1988
Andesite Olivine 0.11 Phenocrysts-

Matrix
Bougault & 
Hekinian 1974

Basalt- Olivine 0.055 Phenocrysts- Ewart & Griffin
Andesite Matrix 1994
Basalt- Olivine 0.05 Phenocrysts- Dostal et al. 1983
Andesite- Matrix
Dacite
Basal t- Olivine 0.023 Experimental Paster etal. 1974
Andesite
Basalt- Olivine 0.075 0.19 Experimental Gaetani & Grove
Andesite 1997
Basalt- Olivine 0.4 0.5 Experimental Pedersen 1979
Andesite
Andesite Olivine 2.2 Phenocrysts-

Matrix
Ewart & Griffin 
1994

Per-Alkaline Olivine 2.7 Phenocrysts- Ewart & Griffin
Rhyolite Matrix 1994
Andesite Clinopyroxene 0.66 Phenocrysts-

Matrix
Ewart & Griffin 
1994

Basalt Clinopyroxene 0.36 Experimental Hart & Dunn 1993
Basalt Clinopyroxene 0.18 Phenocrysts-

Matrix
Bougault & 
Hekinian 1974

Basalt Clinopyroxene 0.071 Experimental Paster et al. 1974
Leucosome Clinopyroxene 0.02 Phenocrysts-

Matrix
Ewart & Griffin 
1994

Basalt- Clinopyroxene 0.05 0.08 Phenocrysts- Dostal et al. 1983
Andesite Matrix
Basalt- Clinopyroxene 0.09 1.1 Model Ewart et al. 1973
Andesite
Basalt- Clinopyroxene 0.12 0.69 Phenocrysts- Ewart etal. 1973
Andesite Matrix
Dacite Clinopyroxene 0.44 3.1 Model Ewart et al. 1973
Dacite Clinopyroxene 0.51 0.87 Phenocrysts-

Matrix
Ewart et al. 1973

Low Silica Clinopyroxene 0.8 2.2 Phenocrysts- Ewart & Griffin
Rhyolite Matrix 1994
Per-Alkaline Clinopyroxene 1.1 Phenocrysts- Ewart & Griffin
Rhyolite Matrix 1994

Table 8.30: Partition co-efficients of Cu between olivine and clinopyroxene and melt or host rock 
type (as stated), where DCu = Olivine / Melt or Host Rock. This data was compiled using the

GEOROC database (2005).

The “fresher” rocks as classified here contain Mg values which are high enough 

to expect most features to reflect magmatic processes, however some degree o f alteration 

is present in many samples (chapter 3). It is therefore conceivable that the Cu value has 

been redeposited into this location from a site of magmatic concentration elsewhere. The
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presence o f the high Ni value in a dunite close to a shear-zone may further infer that this 

value could have originated from high temperature fluids.

8.22.2. Locations o f highest Cu and Cr values in fresher rocks

The highest Cu value occurs in an olivine-clinopyroxenite (Y16) near the 

northwestern flank -  this sample also has the largest Cr value o f the intrusion. The Cr is 

most likely to have been partitioned into spinel minerals (see section 8.6.3). However, in 

this study it is unlikely that these spinels will have been dissolved and therefore the Cr 

analysed will have been the Cr partitioned into olivine. It has been suggested (section 

8.22.1) that the Cu observed in this sample may occur in a sulphide phase, however it is 

not possible to determine whether this sulphide was precipitated in-situ or has been filter 

pressed into place. Furthermore the Cu values could have become transported into 

location by hydrothermal fluids. Similarly, the co-incidence o f the highest Cu and Cr 

values being seen in the same sample could be explained by two models. Either a residual 

sulphide liquid has been filter-pressed into contact with a spinel rich cumulate layer or by 

sulphide segregation occurring simultaneously to Cr-spinel precipitation. Furthermore, it 

is possible that some Cu concentration may have originated from hydrothermal 

redeposition. From this data, it is not possible to determine which hypothesis could have 

caused the geochemical patterns seen, however a study o f the sulphide mineral 

morphology may elucidate the origin.

8.22.3. Zonation o f Cr values the altered rocks from the Main Yubdo 
Ultramafic

The highest Cr values from the Main Yubdo Ultramafic occur within 600m o f the 

edge o f the intrusion. As discussed in section 8.6.8, when Cr partitions into spinels it 

becomes highly immobile in hydrothermal fluids and weathering. Although in this case, 

the Cr measured is likely to be parititioned into olivine, the high Cr values are likely to 

reflect the same pattern which would have existed in their respective protoliths. 

Furthermore, the highest Cr value occurs in a rock at the edge o f the Main Yubdo 

Ultramafic. As spinels precipitate early during fractionation - with olivine - it is
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suggested that the most primitive rocks o f the intrusion are those at the flanks o f the 

intrusion.

8.22.4. The locations o f high Ni and Cu values in altered rocks from the Main 
Yubdo Ultramafic

All Ni values o f higher than lOOOppm in the altered rocks from the Main Yubdo 

Ultramafic occur within 300m o f Shear Zones whereas high Cu values only occur close 

to the flanks o f  the intrusion. As applied to the Kingy Ridge Ultramafic (see section 

8.12.4) there are tw o possible reasons for this difference in distribution. One possibility is 

that although both elements have the potential to be remobilised by high-temperature 

fluids under sim ilar conditions (see section 8.6.8), - two alteration episodes have acted 

either on different geographic areas or under different aqueous conditions. The second 

possibility is that one element has not been remobilised. The proximity o f samples 

containing high N i close to Shear Zones indicates a possible relationship between Ni and 

shearing however this deformation may simply have acted over sites o f magmatic 

concentration. W ithout a detailed study o f  mineral morphology, it is not possible to 

determine which o f  these is the case.

8.22.5. Genesis o f Pt and Pd in fresher rocks

Only one sample has returned a value for Pt which is above the detection limit 

(121ppb) and no Pd  has been detected in the fresher rocks o f the Main Yubdo Ultramafic. 

This sample is a dunite located close to the northwestern flank o f the Main Yubdo 

Ultramafic and contains intermediate values o f Ni and Cr and is barren o f Cu (see table 

8.29).

In a situation where the entire complex formed from one sulphur-bearing 

primitive melt w hich had undergone sulphide saturation and fractionation, the Pt and Pd 

is likely to be concentrated into the Cu-rich ISS -  but this is not seen at Yubdo. 

Furthermore, if sulphide segregation had occurred but sulphide fractionation had not then 

the Pt and Pd should be concentrated into samples with highest Ni value -  but this is also
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not seen at Yubdo. In a situation where immiscible sulphides were not present, the Pt and 

Pd would be distributed throughout the mass o f rock but could not become concentrated 

to the level seen here (121ppb). Here the only Pt-bearing sample contains no Cu at all and 

only intermediate values o f Ni.

Given that some alteration is possible in “fresher” samples (chapter 3). It is 

possible that high temperature aqueous fluids could have remobilised both Pt and Pd 

alongside Ni and Cu. This may result in either a rise or fall in values for all 4 elements 

with respect to a 100% fresher rock. As such, any Cu present in the in the Pt-bearing 

sample may have been removed or alternatively, the Pt could have been redeposited here 

from a different site o f magmatic concentration. It is likely that a study o f the mineralogy 

of the sample could help understand the relative effects o f magmatic and hydrothermal 

processes.

8.22.6. Genesis o f Pt and Pd in altered rocks

Within the Main Yubdo Ultramafic, an altered dunite at the northern tip o f the 

complex contains a Pt value o f 109ppb and Pd was not found above detection limits. Six 

additional altered samples contain Pt above detection limits, all o f which occur around 

the flanks of the intrusion and none contain any Pd (see figure 8.13E). Furthermore, 

slightly elevated Pd contents (9ppb) are found in a talc-schist and a metasediment in the 

basement north o f Yubdo. Another Pt- and Pd-bearing talc-schist sample has been found 

in the southeast o f the study area which contains 39ppb and 47ppb respectively.

The altered rocks o f the Yubdo area may potentially show processes o f either 

magmatic concentration or hydrothermal remobilisation -  and possibly both. Either 

process could explain the distribution o f Pt in the altered rocks from the Main Yubdo 

Ultramafic. An argument could be made for the preferential remobilisation o f Pd (see 

section 8.6.8). The Pd could have been remobilised by hydrothermal fluids and 

reprecipitated in the basement talc-schists, whereas the Pt would not be taken into 

solution as easily and therefore left in place. However, the only PGE-bearing fresher

260



Chapter 8: Rock Geochemical Data

sample from the dataset shows no Pd at all -  which infers that there was no Pd to be 

remobilised. In addition to this, it would be unlikely for hydrothermal fluids to remove all 

the Pd from the rocks, if  there was some there at first, a remnant should remain. And 

hence, the alternative hypothesis is that the hydrothermal fluids have not remobilised Pd, 

as there was none there in the first instance. It is feasible that some limited remobilisation 

o f Pt has occurred, although it would not be possible to distinguish such a process from 

this data.

8.23. Yubdo, Sodu andAndu: Conclusions

It is difficult to assess the prospectivity o f the Main Yubdo Intrusion with the 

dataset presented here due to a lack o f fresher rock samples. It appears that the edges o f 

the complex may be the most primitive but an additional zone o f primitive ultramafics 

may exist within the complex. Furthermore, it is not possible to conclude whether 

sulphide segregation has or has not occurred. It is likely that fluids passing along shear 

zones at the flanks and through the centre o f complex may have a role in the 

remobilisation o f Pt and Pd. Future exploration should concentrate on assessing potential 

mineralisation around shear zones and at the flanks o f  the intrusion.

Pd values in talc-schists north o f the Yubdo Main Intrusion suggest that the 

element may have been remobilised by hot fluids in the Yubdo area. As there is no Pd in 

the fresher rocks and Pt is largely immobile it is not possible to comment on the effects o f 

hydrothermal fluids on PGE distribution in the Main Yubdo Ultramafic.
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8.25. P t and Pd prospectivity and ore forming processes

Here, a summary of the potential magmatic and post-magmatic ore forming 

processes is given and these are summarised finally by a description of the Pt and Pd 

prospectivity of the WES.

8.25.1. Magmatic ore forming processes

Area Formation Fresher Rock samples
Pt(ppb) Pd (ppb)

Yubdo Main Yubdo Ultramafic 121 < 2
Tulu Dimtu Tulu Dimtu Main Intrusion 37 40
Daleti Daleti Ultramafic 8 < 2
Kingy Kingy Ridge Ultramafic 3 < 2

Table 8.31: The maximum Pt and Pd values found in the fresher rocks o f the ultramafic complexes
o f the WES.

Throughout this chapter the Ni, Cu and Cr values of the major ultramafic 

complexes from the WES are discussed in relation to potential Pt and Pd ore forming 

processes. Here, the major processes involved are compared, these are: fractionation, 

sulphide segregation and PGE concentration. These models are presented on the 

assumption of a minimal influence of post-magmatic hydrothermal fluids on the Ni and 

Cu values of the fresher samples. Studies of PGM and sulphide mineral morphology are 

required throughout the study area in order to understand the relative influence of 

magmatic processes and hydrothermal fluids. Furthermore, in all four areas the analysis 

of spinel or olivine mineral geochemistry is required to test the possibility of the influx of 

multiple melts.

In both the Main Yubdo Intrusion and the Tulu Dimtu Main Intrusion Cr-values 

indicate that the most primitive rocks occur at the edges of the complexes. Fractionation 

trends can be observed in the Daleti and Kingy ridge complexes although it is harder to 

understand the structural relationships involved with these intrusions. Due to their 

refractory nature, it is unlikely that Cr-spinels will have been digested by aqua regia. 

Furthermore, analysis of standards (see section 8.2.4) has shown that the Cr analyses
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presented here are relatively imprecise. However, many analyses return positive results 
with systematic spatial trends (see figure 8.4C). It is expected that in the case of these 

samples, the Cr analysed will have been partitioned into olivine, which can be digested in 

some cases (Church et al., 1987). As Cr is relatively compatible in olivine, it is 

considered to concentrate into primitive rocks.

Relatively reliable Ni and Cu analyses make an assessment of the presence of 

sulphides possible in some areas. Sulphide segregation is suggested to have occurred in 

the Tulu Dimtu Main Intrusion and the Daleti Ultramafic. In the Tulu Dimtu Main 

Intrusion sulphide segregation is thought to have occurred at the edges of the intrusion at 

around the same time as limited Cr-spinel precipitation. Large Ni values in the Daleti 

Ultramafic suggest that sulphides have been present. However, lack of samples makes it 

is difficult to make reliable conclusions for the Main Yubdo Intrusion. Similarly, 

insignificant Cu and Ni values in the Kingy area makes an assessment of sulphides 

difficuly.

The only fresher rocks which contain Pd above detection limits are from the Tulu 

Dimtu Main Intrusion. When sulphide segregation occurs - if present - both Pt and Pd 

should be scavenged from the melt. As sulphide segregation is believed to have occurred, 

it is possible that the magma from which the Daleti complex formed was largely barren 

of Pt and Pd.

A number of smaller ultramafic complexes (<lkm2  area) occur in the Kingy, Tulu 

Dimtu and Keley areas -  these are referred to as the Lensoid Ultramafics. A limited 

number of fresher samples have been analysed from the Tulu Dimtu area. These show 

elevated Cr values and intermediate Ni values, such as those found at the flanks of the 

Tulu Dimtu Main Intrusion. These observations suggest that these small ultramafics 

could be slivers of rock “shaved-off ’ larger complexes during deformation. Detailed 

study of the structure and geochemistry of these bodies is required to understand their 

genesis.
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8.25.2. Post-magmatic ore forming processes

Area Formation Altered Rock samples 
Pt (ppb) Pd (ppb)

Yubdo Main Yubdo Ultramafic 109 47
Daleti Keley ultramafic 33 3
Tulu Dimtu Tulu Dimtu Main Intrusion 24 15
Kingy Kingy Ridge Ultramafic 18 28
Daleti Ankori 15 16
Daleti Daleti Ultramafic 8 < 2

Table 8.32: The maximum Pt and Pd values found in the altered rocks from the ultramafic
complexes o f  the WES

In all four areas the distribution of Ni and Cu in lithologies such as talc-schists 

and quartzites indicate that both elements may have been remobilised by hot fluids using 

Shear Zones as conduits. Furthermore, the elevation of Ni and Cu values in ultramafic 

samples located away from known sites of concentration in fresher rocks indicates that 

these hot fluids may have passed through and precipitated minerals within the flanks of 

the ultramafic intrusions.

At Yubdo, Kingy and Daleti the highest Ni concentrations are observed in 

different altered samples from the highest Cu concentrations. This is seen particularly in 

the Daleti area where numerous talc-schist samples are elevated either in Ni or in Cu, but 

rarely both. This indicates a different mode of genesis for the two elements in altered 

rocks. These may be either different alteration episodes (under different conditions or 

acting on different geographical areas) or it may be that one element has not been 

remobilised. At Kingy, the distribution of Ni in altered rocks is very similar to the 

fractionation trend observed for Cr. As Cr is considered to be immobile, it is possible that 

Ni still retains a “relict” magmatic signature and has not been remobilised. However, at 

Yubdo high Ni values are obtained in samples located close to Shear Zones suggesting 

that it has been remobilised.

As with Ni and Cu, high values of Pd are found in certain shear-zone related 

lithotypes. In particular, a quartzite sample from the Keley area and a talc-schist near 

Yubdo. These occurrences -  and a known affinity of Pd in hydrothermal fluids - strongly 

suggest that Pd has been taken into solution by high-temperature fluids. It is feasible that
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these fluids could be similar to those which have remobilised N i and Cu. The dislocation 

o f  Pt and Pd values (in fresher compared to altered rocks) in the flanks o f the Tulu Dimtu 

Main Intrusion also support this argument.

W ith the exception o f the Tulu Dimtu Main Intrusion, Pd is found in the altered 

rocks but not in the fresher rocks, particularly in the Kingy Ridge Ultramafic. This 

feature is difficult to explain but two suggestions can be offered. Either, hydrothermal 

fluids have reconcentrated the element from very small values in fresher rocks into larger 

values in the altered rocks. Or the Pd has been transported into the area from a site of 

magmatic Pd which has not been discovered in this study. The close proximity o f high Pd 

values to Shear Zones flanking the Kingy intrusions indicates the latter (see figure 8.7F).

8.25.3. Prospectivity

Given the extensive weathering and alteration to which the WES has been 

subjected, any evaluation o f  magmatic ore forming processes is likely to be prone to 

difficulty. However, there is better evidence for the effects o f post-magmatic 

hydrothermal processes.

In the Tulu Dimtu Main Intrusion and the Main Yubdo Intrusion the most 

primitive rocks are inferred to occur at the flanks o f the intrusion. Therefore it is 

recommended that any future exploration is targeted in these areas. However, it is 

unknown whether or not sulphide segregation has occurred in the Main Yubdo Intrusion 

and hence if  a PGE rich horizon can be discovered in this area. Further sampling is 

required.

Considerable evidence for the hydrothermal remobilisation o f Pt and Pd is found 

in each o f the four areas. The more notable occurrences are, the extensive Pd 

mineralisation at Kingy and shear zones in the Daleti and Yubdo areas. The presence o f 

Pd, Cu and Ni in these lithotypes related to hydrothermal fluids indicate that a richer 

source o f precious metals may be found in the vicinity.
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9. Results: Spinel Geochemistry
9.1. Introduction

The geochemistry of spinels from the ultramafic rocks from four geographic areas was 

studied with the aim of understanding the magmatic conditions under which the spinels 

formed. Spinels were chosen over the other minerals present in the rocks for a number of 

reasons. Within the severe alteration conditions of the WES, spinels minerals are the 

most likely to retain magamatic geochemistries. Minerals such as olivine and pyroxene 

are often highly altered (see chapter 3). Furthermore, there has been considerable 

previous work on the use of Cr-spinels for tectonic discrimination (Sack and Giorso, 

1991).

The major element geochemistry of the spinels was determined using an energy 

dispersive X-ray analyzer attached to a scanning electron microscope (SEM). Such a 

system can only measure the total Fe within a specimen and the estimation of the relative 

proportions of Fe2+ or Fe3+ was performed using the mineralogical method described in 

section 9.3. In an attempt to separate alteration from magmatic effects an assessment of 

the geochemical difference between the cores and rims of zoned spinels is described in 

section 9.4. Subsequently the spinel geochemistry of each of the four geographic area is 

considered in sections 9.5 to 9.17

This chapter examines the geochemistry of the spinels using TiC>2 analysis and the 

following ratios:

F e2+#= Fe2 +/(Fe2+ + Mg)

Fe3+# = Fe3+ / (Fe3+ + A1 + Cr + V)

Cr# = Cr / (Cr + Al)

These parameters were chosen because they can be used to discriminate between 

Alaskan-type intrusions and ophiolite complexes. Published spinel analyses have been 

used by Barnes and Roeder (2001) to create “90th percentile” fields for several plutonic

267



Chapter 9: Spinel Geochemistry

settings including Alaskan-type intrusions and ophiolite complexes. These fields use 

Ti( > 2  and the ratios above to charaterise the typical composition of spinels from each type 

of complex. In particular, a plot of Fe2+# versus Cr# shows a clear difference in 

geochemistry between Alaskan-type intrusions and ophiolites. Many other authors (Evan 

and Frost, 1975; Stowe, 1994; Jan et al., 1985) have used the same ratios to illustrate the 

relative effects of hydrothermal alteration and magmatic processes. Such processes are 

likely to have influenced the geochemistry of the spinels studied here and the effects of 
these processes are considered for the dataset from these four areas.

This chapter is divided into four sections covering each of the four geographic areas. At 

the end of each results section there is a “pull-out” page which includes a map showing 

sample locations and the graphs showing the chromite geochemistry which are referred to 

throughout the section.

9.2. Methods
9.2.1. Sample Preparation

The samples used in this study were selected because spinels were observed in hand 

specimen. The samples selected were cut and mounted in a 30mm mould using a 

polyester resin. They were then ground on a coarse grained diamond wheel to expose the 

specimen. Due to the friable nature of some samples, the exposed surface was then 

impregnated with resin and then ground again. The mounted samples were then hand- 

lapped using a 600grit and then a lOOOgrit, both made of made of silicon carbide. The 

samples were polished with a Logitech PM5 using a Kemet PSU/M polishing cloth and 

6 pm, 3 pm and 1pm diamond pastes successively. The final polish was then performed 

with a DAP/2 polishing machine and a 0.3pm AI2 O3 slurry with water.

9.2.2. Energy Dispersive X-ray Analysis

The polished blocks were analysed using a Carl Zeiss SMT (Cambridge) S360 Scanning 

Electron Microscope fitted with an Oxford instruments INC A ENERGY X-ray analyser. 

Typical analytical conditions were an accelerating voltage of 20kV, a probe current of
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InA  and a working distance o f 25mm. Analyses were taken from the centers o f euhedral 

or subhedral chromite grains (as discussed in section 9.4).

9.3. Fe- Valency Estimation

9.3.1. Introduction

To compare spinel analyses with others in different datasets it was necessary to determine 

the proportions o f  Fe2+ and Fe3+. However, the X-ray analyzer used here can only 

measure the am ount o f  total Fe (FeT) present in each specimen, it cannot measure Fe2+ 

and Fe3+. D irect measurements o f  the proportions o f  Fe2+ and Fe3+ can only be made 

using either M ossbauer spectroscopy or by “wet” chemistry techniques. A Mossbauer 

spectrometer requires samples to be either in powder or film form and to determine Fe 

valency by wet chem istry methods it is also necessary to liberate the spinel from the 

matrix. It is impractical to use such techniques for the analysis o f spinels which are in- 

situ and frequently less than 50pm in diameter and the information on the mineral 

association is then lost.

It was necessary therefore to make a mathematical estimation o f  how much o f the FeT is 

divalent and how much is trivalent. Several methods have been proposed for performing 

this calculation and Bowles (1977) showed that the method by which the Fe-valency is 

estimated can have a significant impact on the interpretations made from the data. All 

methods group together divalent ions as RaO and trivalent ions together as Rb2C>3 (see 

review by Bowles, 1977). The next stage -  for all methods -  is to create molecules using 

up RaO and Rb2 0 3 . In this process FeT is allocated to either Fe2+ or Fe3+ in order to create 

appropriate molecules. The differences between each method occur in the type o f 

molecules used and in the order in which they are allocated. M ost methods only use 

major elements to construct the molecules, however the method o f  D. R Wones (as 

described by Buddington and Lindsley, 1964) allows the use o f  minor elements in 

addition to major elements. This is considered to provide a more reasonable result in 

natural samples where the proportion o f  minor elements is significant.
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Spinels from different tectonic settings can host a wide variation in minor elements, in 

some cases it is these elements which are used to distinguish their origin (such as Ti0 2  in 

ophiolitic and Alaskan-type chromitites). As it takes account o f  the effect o f minor 

elements, the method selected for this study is based on that o f D. R Wones as described 

by Buddington and Lindsley (1964) and used the modification suggested by Anderson 

(1968). Since the minor elements present in spinel minerals vary with tectonic setting and 

locality, the minerals which they form may also vary. Therefore the method for 

investigating the Fe-valency which is developed for one dataset may not be valid for 

another.

9.3.2. M ethod

An ideal spinel has a formula A2+B2 3+C>4 . Within the spinel mineral group Mg or Fe2+ 

commonly occupy the “A ” site and A l3+, Cr3+ or Fe3+ occupy the “B” site. The formula 

AB2O4 can be usefully divided into AO.B 2 O 3 so that AO is typically either MgO or FeO 

and AI2O3 , Cr2 0 3  or Fe2 0 3  are represented by B2 O 3 . In natural minerals Zn and Mn are 

commonly found in mineral analyses and it is appropriate to include them with Mg and 

Fe2+ in the A site. Similarly other elements (including V) may jo in  Fe3+, Al3+, Cr3+ in the 

B site. Ulvospinel (Fe2 Ti0 4 ) also has the spinel structure and the quadrivalent Ti is 

accommodated by the extra Fe2+ (2 Fe2+0 .Ti4 + 0 2  means that there is FeO to correspond to 

AO and Fe2+Ti4 + 0 3  to correspond to B2 O3 -  the equal Fe2+ and Ti4+ being equivalent to a 

trivalent element). Si4+ is presumed to enter the structure in the same way at Ti4+. To 

calculate the allocation o f  FeT to Fe3+ and Fe2+ the method needs to allocate the elements 

to likely spinel molecules shown in table 9.1 where Ra = £  M g, Mn, Zn and Rb= £  Al, 

Cr, V. The molecules used this dataset are shown below in table 9.1.

Molecule_____
2R a0.Si02
2F e0.S i02
2R a0.T i02
Ra0.Rb203
Ra0.Fe20 3
FeO.Rb20 3,

Table 9.1: The molecules used in the estimation o f  Fe valency with the minerals they represent.
The molecules are listed according to order in which they are used in the calculation.
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For each analysis the sums o f the molecular proportions o f the divalent ions (Mn2+, Co2+, 

Zn2+ and Mg2+) and the trivalent ions (Al3+, Cr3+ and V3+) are calculated and referred to 

as RaO and Rb2 0 3  respectively. Subsequently, RaO, Rb2 0 3  and FeT are allocated into 

each molecule listed in table 9.1.

RaO Rb203 MgO AI203 Si02 Ti02 V203 Cr203 MnO Total FeO* Fe203* CoO ZnO Total*
Fe

Original data (assuming 
all Fe to be FeO) 
Convert measured FeO 
to Fe
Molecular weight of the 
oxide
Divide wt% by 
molecular wt

3.25 3.68 59.86 0.70 31.07 0.66 99.22

24.15

40.31 101.96 60.08 79.90 149.88 151.99 70.94 55.85 71.85 159.69 74.93 81.37 

0.08 0.04 0.00 0.00 0.00 0.39 0.01 0.43 0.00 0.01

Make RaO from 
MnO+CoO+ZnO+MgO 
and Make Rb203 from 
Al. Cr. V

0.10 0.43

Make 2Ra0.Si02 
Remainders:

0.00 0.00 
0.10 0.00

Make 2Fe0.Si02 
Remainders: (Si02 
should equal zero)

0.00 0.00 
0.00 0.43

Make 2Ra0.Ti02 
Remainders (Ti02 
should = 0)

0.00 0.00 
0.10 0.00

Make Ra0.Rb203 
Remainders:

0.10 0.10 
0.00 0.33

Make Ra0.Fe203 
Remainders: (RaO 
should =0)

0.00 0.00 
0.00 0.43

Make FeO.Rb203 
Remainders: (Rb203 
should = 0)

0.33 0.33 
0.00 0.10

Split remaining total Fe 
between FeO and 
Fe203 
Wt%

0.05 0.05

3.25 3.68 0.00 0.00 0.00 59.86 0.70 27.44 4.04 0.00 0.66 99.63
Figure 9.2: A worked example of the method used to calculate Fe2+ and Fe3+.

In some analyses, the Fe-valency calculation shows that the analysis may not correctly 

represent a spinel formula. In such a situation, there will be an excess o f  RaO, Rb2C>3 , 

T i0 2 or S i0 2 remaining at the end. These analyses were considered to represent other 

mineral and were removed from the dataset. Furthermore, analyses w ith totals which fall 

outside o f the range 98.5% to 101.5% were also removed from the dataset as this is the 

range within which the analyses are considered to be o f good quality.

9.3.3. The Analyses

The following tables summarize the number o f  analyses taken from specimens, those 

accepted after the Fe-valency estimation (table 9.3) and the num ber o f  analyses in the 

various formations o f  the WES (table 9.4). During the analysis the com puter program
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controlling the energy dispersive X-ray analyzer calculates all FeT as FeO and therefore a 

sample with a high Fe2 0 3  may display a total lower than 98.5% before the Fe allocation 

is carried out. However this total may rise to higher than 98.5% after some FeT has been 

allocated to Fe2 0 3 . Table 9.3 shows that the number o f analyses in the range 98.5% to 

101.5% is larger after Fe-valency is carried out.

Number o f Analyses
Raw analyses 497
Before Fe-allocation. Analyses with totals between 
98.5% and 101.5%

258

Analyses rejected as outside the range 98.5% and 
101.5% even after Fe-allocation

146

Analyses rejected as appearing not to conform to the 
spinel formula. (See section 9.3.2)

12

Final accepted analyses 339
Table 9.3: The numbers o f  analyses at various stages o f  manipulation o f the data.

Formation Lithology Number o f analyses Total number o f  
analyses in each area

Tulu Dimtu Main dunite 14

Intrusion olivine-
clinopyroxenite

31

Tulu Dimtu Sheared 
Ultramafic

dunite 28 93

Tulu Dimtu Lensoid 
Ultramafics

clinopyroxenite 20

Kingy Extra Ultramafic clinopyroxenite 19
Kingy Lensoid 
Ultramafics

clinopyroxenite 21 40

Daleti Ultramafic dunite 110 139
Ankori Ultramafic dunite 29
Main Yubdo Intrusion dunite 67 67
Total 339

Table 9.4: The numbers o f analyses in the various ultramafic formations o f the WES

9.4. Alteration Assessment

9.4.1. Introduction

Spinels from ultramafic complexes worldwide are known to re-equilibrate w ith both the 

surrounding silicate minerals and migrating fluids during m etam orphism  (Stowe, 1994). 

This results in the alteration o f the outer surface o f the m ineral to form a “rim ” o f a 

different composition from the core. These rims can be observed in a section and appear
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as zoned minerals (see figure 9.1). The composition of the rims is commonly that of 

ferrichromite, magnetite and sometimes contains inclusions of chlorite (Stowe, 1994; 

Barnes and Roeder, 2001).

Figure 9.1: SEM backscattered electron image of a zoned spinel mineral from sample KYC-007- 
01. The fresh core is observed as slightly lower mean atomic number (darker) than the altered rim. 

The rim is separated from the core by an alteration front. Alteration can be identified through a 
greater degree of “pitting” and a higher mean atomic number when compared to the fresh core.

In the WES, zoned spinels were observed in samples KYC-007-01, A2, and DTR-057-02, 

however altered spinels where no fresh centre is visible are common also. This is to be 

expected as an individual spinels can be considered to be a 3-dimensional “sphere” with a 

more “magmatic” composition in the centre and an altered shell surrounding it (figure 

9.2). It is for this reason that analyses were always located at the centre of all the spinels 

to obtain the best estimate of the core composition. Altered rims can be identified 

visually, through a greater degree o f pitting and a higher mean atomic number when 

compared to fresher core (see figure 9.1). And hence analyses are not knowingly taken
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from minerals showing these characteristics. However, visual identification is prone to 

“user-error” and it is possible that some altered analyses have been included as part o f the 

dataset. It is therefore necessary to take account o f the geochemical effect o f  alteration. In 

this section the geochemical differences between the core and rim o f spinels is 

investigated in order to understand this geochemical effect.

3-Dimensional “Sphere” 
of spinel mineral

at top of sphere 
altered-rim only

Section through the centre of 
sphere showing a more 

“magmatic” centre and an 
altered rim

Figure 9.2: The concept of an alteration rim around a 3-dimensional spinel. The centre (red) 
represents the fresher mineral which should retain the more “magmatic” composition.

9.4.2. Method

The geochemistry o f the cores and rims o f spinels from 3 samples were analysed. In this 

section the geochemistry o f the cores and rims of four zoned spinels from only sample 

KYC-007-01 are described. Only one sample was shown here in order to eliminate the 

effect o f magmatic processes on the variation in geochemistry. The two other samples 

show the same effects. The proportion o f Fe2+ and Fe3+ was estimated using the method 

outlined in 9.3 and some analyses were rejected as part o f this process. Furthermore some 

analyses were rejected as their totals fell outside o f the range 98.5 to 101.5%. As can be 

seen in figure 9.2, there are three zones in each spinel as defined by the textures and 

analyses were taken from all three zones. Analyses from the outermost (pitted) zone were 

all rejected as they had totals which fell outside o f  the above range. Furthermore, all 

analyses from one mineral (spinel A) were rejected.
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9.4.3. Results

Several analyses were taken from the centre and outwards towards the edge in 3 zoned 

spinels from the WES. The results are contained in table 9.5 and shown in the graphs in 

figure 9.3.

Spinel 
Mineral

Table 9.5: The results of analyses of the cores and the zones immediately surrounding the cores of 
zoned spinels in sample KYC-007-01. *: Fe2+ and Fe3+ values are estimated from measured total 
Fe by the method described in section 9.3. Fe2+# = Fe2+/(Mg+Fe2+). Cr# = Cr/(Cr+Al). Fe3+# =

Fe3+/(Fe3++AI+Cr+V).

Core or Analysis MgO A1203 Ti02 V203 Cr203 MnO FeO* Fe203 ZnO Total 
Rim *

Fe # Cr# Fe3*#

3 85 22 32 nd nd 39.95 1.30 28.00 3.68 2.21 101.31 0.803 0.546 0.046

* * .................  * ' * "  37.96 1.44 28.55 3 87 2.30 99.90 0.836 0.532 0.032

0.46 3 13 0.31 nd 34 98 1.20 37.04 22.56 0.68

0.51 1.65 0.28 0.29 33.45 1.26 36.79 24.35 0.73

100.36 0978 0.882 0351 

99.31 0.976 0.932 0.225

I  3.73 23.09 0,21 nd 38.18 1.37 28,66 3.35 1.43 100.02 0.812 0.526 0.042
■ . . . . . . . . .  - ■■ • . . . . . .  .. . , . . .

3.72 22 83 0.24:
0.50 2.41 0.29

0.48 3.12 0.29

0.57 3.41 0.38

nd 38.92 1.29 29.26 3.43 1.09

nd 34.14 1.13 36.95 23.49 0.71

nd 33.89 1.22 36.66 22.71 0.60

9 ./V  1.24 4 V 0 2  mm 1 .3 T

nd 35.26 1.34 36.67 22.05 0.80

100 79 0 815 0.534 0.043 

99.62 0.976 0.905 0.372 

98.97 0.977 0.879 0.359

100.48 0.973 0.874 0.342
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♦  B C O R E  

O B  R I M  

A C  C O R E  

A C  R I M  

■  D  C O R E  

□  D R I M

+
v-u

----------Es-
Fe2' / (Mg + Fe2')

Fe2+ / (Mg + Fe2')

!♦

£

Fe3: 4
(Fe}* + A f + Cr3* + V3*) /  °

............. {Sp* /
Fe2* / (Mg + Fe1*)

................ ....... .........

Figure 9.3: Graphs showing the effect of alteration on the spinels from the WES. Arrows indicate 
the effect of alteration, see 9.4.4 for an explanation.
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In each mineral there is an increase in Fe2+ and a decrease in Mg values from the core to 

the rim and this results in an increase in the Fe2+# o f at least 0.142. Both Cr2 0 3  and AI2O 3 

decrease from the core to the rim and, as nearly all AI2 O3 is removed, the Cr# increases 

by more than 0.332 in all three examples. Furthermore, the Fe3+# values increase by at 

least 0.193 from the core to the rim in all three examples. Although the Fe2+#, Fe3+# and 

Cr# increase from the core to rim in every case the situation is not so clear for TiC>2 . In 

examples B and D, Ti0 2  only occurs in the rims, however in mineral C TiC>2 is present at 

similar levels in both the core (0.21% and 0.24%) and rim (0.29% and 0.29%).

9.4.4. Discussion

The difference in spinel geochemistry between the cores and the rims analysed here have 

been observed also by other workers (Evans and Frost, 1975; Jan et al. 1985; Evans and 

Frost, 1975). Evans and Frost (1975) compared spinels from different metamorphosed 

ultramafic complexes and also the cores and rims o f zoned minerals and discovered

several systematic changes. They observed that spinels from serpentinites commonly
^  • • • •

contain very low AI2O 3 values (<5%) and that Fe /Mg ratios increase with alteration.

Furthermore, Stowe (1994) described Fe3+ and Ti enrichment and Al and Mg depletion in 

the rims o f serpentine hosted chromites. He ascribed this to the re-equilibration o f the 

spinels with the adjacent silicate minerals during serpentinisation.

Thus the changes in Fe2+#, Fe3+# and Cr# observed between cores and rims in this study 

agree with previous studies o f  alteration (Evans and Frost, 1975; Jan et al. 1985; Stowe, 

1994). It is possible that such changes could be attributed to the re-equilibration o f oxide 

minerals with the surrounding silicates during serpentinisation (as described in chapter 3).

9.5. Tulu Dimtu: Spinel Geochemistry

9.5.1. Introduction
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A total o f 8  samples from the Tulu Dimtu area contain acceptable spinel analyses (as 

defined in 9.3) and there are 93 analyses in total. From the Tulu Dimtu Main Intrusion 

spinel analyses were obtained from a dunite sample, two olivine-clinopyroxenite samples 

and a birbirite sample. Additionally, the spinels from two dunite samples from the 

Sheared Ultramafic and two clinpyroxenite samples from the Lensoid Ultramafics have 

been analysed. Table 9.4 summarizes the number o f analyses from each each lithotype 

and each ultramafic formation within the Tulu Dimtu. In the pull-out section on page 289, 

figure 9.5A shows that the samples from the Tulu Dimtu Main Intrusion are located on 

the western side o f the complex. The eastern side o f the complex was not sampled due to 

restrictions imposed under the licence agreement with the Ethiopian government.

9.5.2. Data

The results o f  the analysis o f the spinels from the Tulu Dimtu area are as follows.

Formation Sample Analysis Host
Rock

Na20 MgO A120 3 S i0 2 Ti02 v 2o 3 Cr20 3 MnO FeO* Fe20 3
4

CoO ZnO Total F e1*# Cr# Fe5*#

1 nd 7.92 5.22 nd nd nd 65.56 nd 21.24 0.76 nd nd 100.70 0.601 0.885 0.010

10 nd 3.53 4.63 nd nd nd 61.65 0.76 27.17 2.03 nd nd 99.77 0.812 0.875 0027

12 nd 4.25 4.92 nd nd nd 61.40 nd 27.04 2.36 nd nd 99.97 0.781 0.865 0.032

1
Q

14 nd 4.03 4.64 nd nd nd 64.16 nd 27.36 1.05 nd nd 101.24 0.792 0.890 0.014

18 nd 5.66 5.15 nd nd nd 64.48 nd 24.54 0.57 nd nd 100.40 0.709 0.887 nd8
0

1 
£  
G 

•1

D
T

R
-0

01 
-0

2 19 

2

20
i
Q

nd

nd

nd

6.99

6.20

7.68

5.18

5.04

5.06

nd

nd

nd

nd

nd

nd

nd

nd

nd

65.30

64.76

65.41

nd

nd

nd

22.76

23.66

21.51

0.78

0.61

0.80

nd

nd

nd

nd

nd

nd

101.01

100.27

100.46

0.646

0.682

0.611

0.885

0.889

0.887

0.010

nd8

0.010

B 3 nd 6.66 4.89 nd nd nd 64.67 nd 23.05 1.00 nd nd 100.27 0.660 0.887 0.013
a
s 4 nd 6.74 5.07 nd nd nd 64.07 nd 23.02 1.30 nd nd 100.20 0.657 0.879 0.017
3
3 5 nd 5.58 5.00 nd nd nd 63.44 0.83 24.27 1.72 nd nd 100.85 0.709 0.875 0.023
H 6 nd 6.62 5.29 nd nd nd 64.23 0.65 22.78 1.27 nd nd 100.84 0.659 0.876 0.017

7 nd 3.85 4.88 nd nd nd 62.53 0.76 27.08 1.90 nd nd 101.00 0.798 0.873 0.025

9 nd 4.66 5.49 nd nd nd 63.98 nd 26.28 0.53 nd nd 100.95 0.760 0.880 nd7

1 nd 5.65 6.25 nd nd nd 62.97 0.57 24.27 0.83 nd nd 100.54 0.707 0.862 0.011

10 nd 4.38 5.22 nd nd nd 61.99 0.57 25.86 1.50 nd 0.50 100.01 0.768 0.871 0.020

11 nd 3.25 3.68 nd nd nd 59.86 0.70 27.67 3.78 nd 0.66 99.60 0.827 0.868 0.052

'5 N 2 nd 5.30 6.01 nd nd nd 62.62 nd 25.39 1.11 nd nd 100.43 0.729 0.862 0.015

Xe
9 3 a nd 4.70 5.40 nd nd nd 62.45 nd 26.44 1.66 nd nd 100.65 0.759 0.866 0.022

a .o
c

V

0

1 4

6

Q.
V
o

nd

nd

5.58

4.13

6.35

4.94

nd

nd

nd

nd

nd

nd

61.31

59.64

0.57

0.61

24.15

26.33

1.46

3.04

nd

nd

0.56

0.57

99.98

99.26

0.708

0.782

0.850

0.853

0.019

0.041

c
■> 7 nd 5.71 5.63 nd nd nd 62.36 0.84 23.82 1.56 nd nd 99.92 0.701 0.863 0.021

5 8 nd 5.87 6.00 nd nd nd 61.98 0.80 23.81 1.73 nd nd 100.20 0.695 0.854 0.023

.1 9 nd 4.88 4.77 nd nd nd 61.51 0.80 25.45 2.80 nd nd 100.21 0.745 0.863 0.037

£ 1 nd 5.20 5.02 nd nd nd 63.35 nd 25.41 1.33 nd nd 100.31 0.733 0.879 0.018
ca 10 nd 3.25 3.63 nd nd nd 59.19 0.75 28.24 4.73 nd nd 99.80 0.830 0.857 0.065
Sa 11 nd 4.92 5.33 nd nd nd 62.30 nd 25.54 1.23 nd nd 99.33 0.744 0.872 0.016
a

S
9 12

«>

•R nd 4.85 5.46 nd nd nd 61.51 nd 25.44 1.29 nd nd 98.54 0.746 0.868 0.017
33H i

<

13

14

O.
V
o

nd

nd

5.85

4.65

5.43

4.72

nd

nd

nd

nd

nd

nd

64.64

62.94

nd

0.74

24.26

25.68

0.45

1.82

nd

nd

0.59

nd

101.23

100.56

0.699

0.756

0.883

0.878

nd6

0.024

15 nd 4.50 5.16 nd nd nd 62.46 0.95 26.13 2.17 nd nd 101.37 0.765 0.865 0.029

16 nd 3.74 4.13 nd nd nd 62.65 0.78 26.54 1.76 nd 0.63 100.23 0.799 0.889 0.024

278



Chapter 9: Spinel Geochemistry

Formation Sample Analysis Host
Rock

Na20 MgO AI2O3 S i02 Ti02 v 2o, Cr2C>3 MnO FeO* Fe20 3
*

CoO ZnO Total Fe2*# Cr# Fe3*#

17 nd 4.19 4.92 nd nd nd 63.30 nd 26.78 1.07 nd 0.61 100.87 0.782 0.883 0.014

18 nd 4.33 4.90 nd nd nd 62.93 0.72 26.00 1.38 nd nd 100.26 0.771 0.880 0.018

2 nd 4.61 5.20 nd nd nd 62.76 0.90 25.19 1.10 nd nd 99.76 0.754 0.877 0.015

3 nd 5.57 5.23 nd nd nd 62.87 0.79 23.96 1.43 nd nd 99.85 0.707 0.873 0.019

4 nd 5.70 5.18 nd nd nd 63.55 nd 24.12 0.65 nd nd 99.20 0.704 0.884 nd9

5 nd 5.30 5.21 nd nd nd 63.52 nd 25.23 1.08 nd nd 100.34 0.728 0.878 0.014

7 nd 4.62 4.98 nd nd nd 61.95 0.69 25.54 1.87 nd nd 99.65 0.756 0.871 0.025

8 nd 4.33 4.98 nd nd nd 61.85 nd 26.21 1.31 nd nd 98.68 0.773 0.877 0.018

9 nd 4.91 5.23 nd nd nd 62.02 0.97 24.62 1.61 nd 0.57 99.92 0.738 0.869 0.021

3 nd 6.42 15.65 nd nd 0.36 52.67 0.55 24.86 0.84 nd nd 101.35 0.685 0.683 0.010

£ 6 nd 7.49 14.21 nd nd nd 55.91 nd 23.38 0.32 nd nd 101.30 0637 0.722 nd4
9  pj •e
ES° 7 « nd 8.29 13.89 nd nd 0 52 55.70 nd 22.01 0.57 nd 0.50 101.48 0.598 0.719 nd7
< 8 nd 6.10 13.98 nd nd nd 54.30 0.64 24.46 0.62 nd 0.54 100.63 0.692 0.717 nd8

1/2 nd 6.07 8.44 nd nd nd 60.24 nd 24.52 1.02 nd nd 100.30 0 694 0.816 0.013

1/9 nd 5.07 7.92 nd nd 0.38 59.47 0.76 25.35 1.48 nd 0.52 100.95 0.737 0.814 0.019

10/ nd 5.58 7.77 nd nd nd 60.42 nd 25.00 1.01 nd nd 99.77 0.715 0.828 0.013

11/ nd 3.46 6.32 nd nd nd 58.80 nd 28.23 2.39 nd nd 99.20 0.821 0.834 0.032

2/2 nd 5.56 8.88 nd nd nd 60.47 nd 25.39 0.51 nd nd 100.81 0.719 0.815 nd7
<N
O 2/9 nd 3.57 6.64 nd nd 0.43 57.72 0.56 27.80 2.98 0.52 0.69 100.91 0.814 0.814 0.040

9 3/2 §Q nd 3.65 6.37 nd nd nd 57.88 nd 27.90 2.84 nd nd 98.65 0.811 0.826 0.039

E 3/9 nd 3.26 5.52 nd nd 0.56 57.27 nd 29.05 4.15 0.36 0.60 100.77 0.833 0.818 0.056

4/2 nd 3.19 5.46 nd nd 0.76 56.72 nd 28.96 4.03 nd nd 99.12 0 836 0.817 0.055

4/9 nd 2.91 4.70 nd nd 0.74 55.36 0.66 28.65 5.25 nd 0.53 98.80 0.847 0.813 0.073

5/2 nd 3.15 5.21 nd nd 0.82 57.46 nd 29.27 4.06 nd nd 99.97 0.839 0.822 0.055

5/9 nd 2.74 4.12 nd nd 0.95 55.99 0.61 29.02 5.33 0.32 0.60 99.68 0 856 0.821 0.074

*3 6/2 nd 3.31 5.14 nd nd 0.83 55.90 nd 29.30 5.28 nd nd 99.76 0.832 0.805 0.072

i 1 nd 4.49 3.59 nd nd nd 65.09 nd 26.16 0.96 nd nd 100.29 0.766 0.912 0.013
5
-o 10 nd 5,68 4.33 nd nd nd 65.30 nd 24.38 0.65 nd nd 100.35 0.707 0.902 nd9
Ks 11 nd 4.39 4.01 nd nd nd 64.24 nd 26.48 1.23 nd nd 100.35 0.772 0.900 0.016

v5 12 nd 3.92 3.99 nd nd nd 64.43 0.97 26.24 1.05 nd nd 100.60 0.790 0.903 0.014

13 nd 4.93 3.61 nd nd nd 63.81 nd 25.35 1.59 nd nd 99.29 0.743 0.902 0.021

14 nd 5.21 4.14 nd nd nd 65.59 nd 25.22 0.65 nd nd 100.81 0.731 0.906 nd9

15 nd 5.91 4.35 nd nd nd 65.35 0.90 23.40 0.99 nd nd 100.90 0.690 0.898 0.013

5 16 § nd 5.42 4.17 nd nd nd 64.87 1.19 24.06 1.47 nd nd 101.18 0.714 0.895 0.019
H

17 nd 5.12 4.29 nd nd nd 63.76 nd 25.18 1.26 nd nd 99.61 0.734 0.894 0.017

18 nd 4.51 4.05 nd nd nd 64.01 nd 26.13 1.17 nd nd 99.87 0.765 0.899 0.016

19 nd 4.06 3.99 nd nd nd 63.55 0.92 26.12 1.60 nd nd 100.24 0.783 0.895 0.021

2 nd 4.78 3.96 nd nd nd 65.22 nd 26.21 1.23 nd nd 101.40 0.755 0.902 0.016

5 nd 4.70 4.07 nd nd nd 64.54 nd 25.82 0.91 nd nd 100.04 0.755 0.903 0.012

6 nd 4.92 4.50 nd nd nd 65.36 nd 25.57 0.30 nd nd 100.65 0.745 0.903 nd4

9 nd 5.00 4.01 nd nd nd 65.45 nd 25.82 1.07 nd nd 101.35 0.743 0.903 0.014

1/2 nd nd 4.73 0.69 nd nd 52.95 1.73 33.18 5.63 nd 1.33 100.24 1.000 0.810 0.082

1/9 0.48 nd 4.48 nd nd nd 54.05 1.59 32.37 6.04 nd 1.35 100.36 1.000 0.813 0.086

2/2 nd 0.99 16.40 nd nd nd 38.68 1.18 33.60 7.59 nd 0.94 99.37 0.950 0.550 0.103

o 2/9 nd nd 3.59 nd nd nd 55.62 1.24 32.01 5.11 nd 1.35 98.93 1.000 0.845 0.074

9 3/9 nd nd 5.82 nd nd nd 53 36 1.44 32.52 5.33 nd 1.24 99.71 1.000 0.795 0.076

4/9 o 0.40 nd 7.78 nd nd nd 50.20 1.48 33.06 6.13 nd 1.44 100.49 1.000 0.742 0.086

(S
(0 5/9 nd nd 4.58 nd nd nd 56.12 1.56 31.69 4.07 nd 1.36 99.38 1.000 0.840 0.058

6/9 nd nd 3.36 nd nd nd 54.08 1.72 32.83 7.56 nd 1.48 101.03 1.000 0.816 0.109

5
T3 8/9 0.43 nd 5.21 nd nd nd 54.35 1.45 32.70 5.52 nd 1.43 101.09 1.000 0.807 0.078

l
10 nd nd 6.01 nd nd nd 54.50 1.46 32.72 4.82 nd 1.21 100.72 1.000 0.801 0.067

11 nd nd 9.55 nd nd nd 48.74 1.64 33.05 5.63 nd 1.11 99.72 1.000 0.713 0.078
5
e 12 nd nd 7.54 nd nd nd 49.81 1.66 33.21 6.85 nd 1.10 100.17 1.000 0.737 0.096
Q
J3 13 nd nd 6.55 nd nd nd 50.12 1.32 33.42 7.17 nd nd 98.58 1.000 0.751 0.102

H o
ck 14 U nd nd 5.71 nd nd nd 52.23 1.57 32.94 6 4 7 nd nd 98.92 1.000 0.781 0.092

9
pi 18

'5a.
O nd 0.83 20.40 nd nd nd 41.54 1.54 32.67 2.15 nd 2.22 101.35 0.957 0.561 0.028

P
Q 19 nd 0.71 11.33 nd nd nd 45.74 1.44 33.10 7.05 nd 1.10 100.47 0.963 0.660 0.097

2 nd 2.42 6.34 3.52 nd nd 45.49 1.41 33.97 5.91 nd nd 99.06 0.887 0.751 0.093

20 nd 2.16 6.47 2.99 nd nd 47.23 1.64 33.94 6.02 nd nd 100.46 0 898 0.754 0.092

4 nd nd 7.72 nd 0.68 nd 42.92 1.53 35.15 10.83 nd nd 98.83 1.000 0.663 0.159
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Formation Sample Analysis Host
Rock

Na20 MgO AFO-, SiC>2 T i0 2 V20 3 Cr203 MnO FeO* Fe203 CoO ZnO Total Fe2'# Cr# Fe3*#

9 nd 0.60 5.80 nd nd nd 51.38 1.65 32.19 7.44 nd 1.31 100.37 0.968 0.766 0 106

Table 9.6: The geochemistry of the spinels analysed from the Tulu Dimtu area in wt %. Analyses 
from a birbirite sample are included here, however these are not plotted on any graphs as there is 
considerable uncertainty over their mode of formation (see chapter 3). Nd: not detected. *: Fe2+ 
and Fe3+ values are estimated from measured total Fe by the method described in section 9.3. 

Fe2+# = Fe2+/(Mg+Fe2+). Cr# = Cr/(Cr+Al). Fe3+# = Fe3+/(Fe3++Al+Cr+V).

9.5.3. Fe2+# ( Fe2+/(M g+Fe2+) )

In the Tulu Dimtu area there are two populations o f spinel Fe2+# values. These are 

analyses from the clinopyroxenite hosted spinels and those from the dunite and olivine- 

clinopyroxenite hosted spinels. The spinels from the two clinopyroxenite samples (from 

the Lensoid Ultramafics) show Fe2+# values from 0.887 to 1.000, whereas the analyses 

from the dunites and clinopyroxenites are lower than these values ranging from 0.601 to 

0.830. The spinels hosted by birbirite contain even lower Fe2+# values than other samples 

and range from 0.598 to 0.692.

9.5.4. Cr# ( Cr / (Cr+Al) )

The spinel analyses from the Tulu Dimtu area show two populations o f Cr# values. Both 

populations show similar upper values but have very different lower values. The 

clinopyroxenite hosted spinels from the Lensoid Ultramafics range from 0.550 to 0.845. 

However, the dunite and olivine-clinopyroxenite samples from the Tulu Dimtu Main 

Intrusion range from 0.805 to 0.910. Twelve o f the 20 analyses o f  spinels from the 

clinopyroxenite samples have Cr# values lower than those from the dunite or olivine- 

clinopyroxenite hosted spinels. The Cr# values from the birbirite hosted spinels are 

within the range o f clinopyroxenite samples but lower than the other samples (from 0.683 

to 0.722).

9.5.5. T i0 2

Only one analysis from the Tulu Dimtu area has returned T i0 2 values above detection 

limits (0.63%). This occurs in an analysis from a clinopyroxenite sample from a Lensoid 

Ultramafic unit in the northern part o f the area.
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9.5.6. Fe3+# ( Fe3+ / (Fe3+ + Al2+ + Cr3+ + V3+) )

All Fe # values obtained from the Tulu Dimtu area occur within a similar range. 

However, some analyses from the two clinopyroxenite samples have slightly elevated 

values. The Fe3+# values for the clinopyroxenite samples (from the Lensoid Ultramafics) 

range from 0.028 to 0.159. Whereas Fe3+# values for spinels hosted by dunite and 

olivine-clinopyroxenite (from the Tulu Dimtu Main Intrusion and the Sheared 

Ultramafic) range from 0.006 to 0.074. Seventeen o f the 20 analyses from the 

clinopyroxenite hosted spinels have Fe # values which are higher than the dunite or 

olivine-clinopyroxite hosted samples. The birbirite samples show Fe3+# ratios which are 

lower than most other analyses, ranging from 0.004 to 0.010.

9.5.7. M inor Elements (Si, Co, and Zn)

Two analyses from spinels in the northernmost Lensoid Ultram afic (hosted by 

clinopyroxenite) display SiC>2 values above detection limits (3.52% and 2.99%). V 2 O 3 is 

detected in the spinels from the birbirite sample and a dunite sample from the Sheared 

Ultramafic with values o f  up to 0.95%. CoO was detected in three spinels from a dunite 

sample in the Sheared Ultramafic (0.52%, 0.36% and 0.32%). Additionally, ZnO was 

detected in 26 analyses from 6  different samples including olivine-clinopyroxenites and a 

birbirite from the Tulu Dimtu Main Intrusion. ZnO values w ere also returned from a 

dunite in the Sheared Ultramafic. However the highest ZnO values occur in the 

clinopyroxenites from the Lensoid Ultramafics at up to 2.22. N o N a 2 0  has been detected 

at Tulu Dimtu.

9.5.8. Summary o f the spinel Geochemistry in the Tulu D im tu area

There are two main groups o f analyses from the Tulu D im tu area. These are firstly 

pyroxenite hosted spinels from the Lensoid Ultramafics and secondly those hosted by 

dunite and olivine-clinopyroxenites from the Tulu Dimtu M ain Intrusion. They each have 

distinctly different Fe2+# values and slightly different Cr#, T i0 2  and Fe3+# values. All the
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analyses from the clinopyroxenites have much higher Fe2+# values than those derived 

from the dunites and olivine-clinopyroxenites. Most o f the clinopyroxenite hosted spinels 

also show much lower Cr# ratios and higher Fe3+# ratios than the dunites and olivine- 

clinopyroxenites (figure 9.5B and 9.5F). Furthermore, one o f  the clinopyroxenite hosted 

spinels contains Ti0 2  above detection limits.

In addition to the ranges described above, within each dunite or olivine-clinopyroxenite 

sample the range o f spinel Cr# values is narrower than the range o f Fe2+# values whereas 

the opposite is true for the clinopyroxenites.

Trends in Cr# and Fe3+# when compared to Fe2+# values can be seen in figures 9.5B and 

9.5G. In each dunite and olivine-clinopyroxenite sample the spinel Cr# increases with 

Fe #. The gradient within each sample differs and the trends appear to converge towards 

one point where Fe2+# ~  0.840 and Cr# ~  0.850. The clinopyroxenite hosted spinels 

show different trends -  including a wide Cr# range and narrow Fe2+ range and do not 

converge towards the same point.

The birbirite hosted spinels have compositions which fall outside o f  the ranges o f  other 

spinels studied. They have lower Fe2+# and Fe3+# values than all other groups however, 

the Cr# values are equivalent to those from the clinopyroxenite samples.

9.6. Discussion

9.6.1. Alteration

In the Tulu Dimtu area, spinels which are hosted by olivine clinopyroxenite and dunite 

show a trend whereby Cr# increases slightly with Fe2+#. These trends are similar to the 

trend in geochemistry observed within zoned spinels in the W ES and in other ultramafic 

complexes (see section 9.4). Although the possibility that these trends are controlled by 

magmatic processes cannot be eliminated, it is highly likely that the spinels have 

undergone some alteration. The presence o f  serpentine (see chapter 3) and zoned spinels 

suggests that these minerals have undergone some degree o f  alteration and as such will
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display a geochemical expression o f this alteration. Furthermore, it is common to find 

alteration trends such as these in spinel datasets from areas such as W estern Pakistan and 

the Swiss Alps (Jan et al., 1985; Stowe, 1995). It is therefore likely that the trend o f 

increasing Cr# and Fe2+# is the result o f alteration. There are two possible explanations 

for these trends, either different spinels in the sample have been exposed to slightly more 

or less severe alteration conditions or the polishing process has revealed different levels 

within equally altered zoned spinels (see section 9.4.1).

The analyses from the clinopyroxenite hosted spinels have a very steep gradient, higher 

Fe # values and some very low Cr# values when compared to the other samples (see 

figure 9.5B). These trends are much steeper than the dunite and olivine-clinopyroxenite 

hosted spinels and also steeper than the trends seen in zoned spinels (section 9.4). These 

occur because there is a large AI2 O3 content in some spinels. This phenom enon cannot 

easily be explained by magmatic processes as the range o f AI2 O 3 w ithin one sample is too 

large. Although most authors only describe a decrease in AI2 O 3 values from the cores to 

rims o f  zoned spinels (Stowe, 1994; Jan et al., 1985), a systematic com parison o f  spinel 

composition with the metamorphic facies o f the host rocks has revealed a more complex 

situation. Evans and Frost (1975) describe the spinel com positions from greenschist 

through amphibolite to granulite facies. Although the compositions o f  the altered spinels 

from greenschist facies rocks show a similar trend to those observed in the dunite and 

olivine-clinopyroxenite rocks from this study, the spinels from am phibolite facies rocks 

are enriched in AI2 O3 . The “alteration trend” observed by Evans and Frost (1975) is one 

whereby the Cr# and Fe2+# values first increase and then w ith further alteration Cr# 

drops. It is therefore possible that the spinels from the Lensoid Ultram afics (hosted by 

clinopyroxenites) have been altered to a greater degree than those from the Tulu Dimtu 

Main Intrusion. It is conceivable that the Lensoid Ultramfics could have been exposed to 

more intense alteration conditions than those o f  the Tulu Dim tu M ain Intrusion if  they are 

dismembered bodies as inferred from rock geochemistry (chapter 8 ). However, the 

metamorphic facies cannot be determined only from spinel analyses and requires a 

petrological study (chapter 3).
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Although the AI2O3 enrichment in some spinels could be explained by comparison with 

spinels from amphibolite facies rocks, the effect o f the clinopyroxene host minerals has to 

be considered. It is possible that some o f the Al3+ enrichment may occur by re

equilibration o f  the rims with the Al-bearing clinopyroxene minerals regardless o f  the 

degree o f metamorphism. However, no data has been found for the partitioning o f A l3+ 

between clinopyroxene and spinel.

In addition to the changes in Cr# values, some spinels from the dunites and olivine- 

clinopyroxenites show a gradual increase in Fe3+# with Fe2+#. Furthermore, several 

analyses from the clinopyroxenites show elevated Fe3+ values. This is in general 

agreement with variation in these ratios from the core to rims o f  zoned spinels (see 

section 9.4). The slight increase in TiC>2 may be due to alteration -  however - no 

systematic change in TiC>2 was observed from the core to rim in this study. Neverthless, 

other workers have described similar elevated values in the altered rims (Stowe, 1994; 

Jan et al., 1985).

9.6.2. Magmatic effects

Although the dominant trend in the Cr# and Fe2+# values o f  the dunite and olivine- 

clinopyroxenite hosted spinels is likely to be due to alteration (see section 9.6.1) each o f 

these 5 samples shows slightly different minimum Cr# values (see figure 9.5B). These 

differences are due to changes in both Cr2<33 and AI2 O 3 . W ithin each sample the analysis 

with the lowest Cr# value also has the lowest Mg# value and is likely to be the least 

altered o f each sample. Therefore within each sample the analysis w ith the lowest Cr# 

value is the most likely to retain the magmatic composition.

Sample Host Rock Min Cr# Fe2+# Fe3+# T i0 2
TD14 Dunite 0.894 0.690 0.004 nd
DTR-001-02 Dunite 0.865 0.601 0.007 nd
ATR-057-02 Olivine-clinopyroxenite 0.857 0.699 0.006 nd
ATR-051-02 Olivine-clinopyroxenite 0.850 0.695 0.011 nd
KTR-035-02 Dunite 0.805 0.694 0.007 nd

clinopyroxenite samples. In order with the highest at the top. Nd: not detected.
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In a situation where the Tulu Dimtu Main Intrusion formed by the differentiation o f one 

magma it would be expected that the first formed spinels would have the highest 

Cr3+values and lowest A l3+ values. In this case it is suggested that the samples at the top 

o f table 9.7 should be the most primitive and have formed first. However, figure 9.5A 

shows that the most primitive sample (TDM ) is located close to the m ost evolved sample 

(KTR-035-02). I f  the complex has crystallized from one magma it would be expected that 

the most primitive samples would be found far from the m ost evolved with the 

intermediate samples between. This apparent lack o f a systematic trend in fractionation 

could be explained by the intrusion o f multiple melts, however such a model could only 

be demonstrated using analysis o f geochemistry through a continuous section o f  the 

complex. As spinels do not occur in every sample, such an analysis could not be 

performed using the method detailed here. Methods such as olivine mineral geochemistry 

could be o f  use in determining the number o f melt influxes.

Table 9.7 shows that there is a crude negative correlation in Cr# and Fe2+# in the analyses 

o f lowest Cr# o f  each sample. This infers that crystal fractionation m ay increase Fe2+# 

alongside a decrease in Cr# as illustrated in figure 9.4. Such fractionation trends are not 

apparent in Fe3+# as all the data falls within a very similar range. Furtherm ore, TiC>2 was 

only detected in one analysis.

9.6.3. Comparison with Alaskan-type intrusions and O phiolite complexes

Figures 9.5B to 9.5G can be used to compare the data o f  this study w ith the published 

data from the ophiolite and Alaskan-type intrusion 90th percentile fields from the Global 

Spinel Database (Barnes and Roeder, 2001). Alm ost all spinels from  the Tulu Dimtu area 

lie within the Alaskan-type field for Cr# and Fe2+# and not the O phiolite field.

A feature o f  the Fe2+# vs Cr# Alaskan-type intrusion field (Barnes and Roeder, 2001) - 

which is not shared by the ophiolite spinels - is a limb w hereby spinels w ith high Fe2+# 

also contain extremely low Cr#. The spinels hosted by clinopyroxenite from the Lensoid 

Ultramafic fit within this limb. As described in section 9.6.1, even though the analyses
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were from the cores o f the spinels, the cause o f the low Cr# values could be alteration by 

amphibolite facies metamorphism (Evans and Frost, 1975) or due to the requilibration o f 

the minerals with Al-bearing clinopyroxene. Both explanations for this unique feature o f 

Alaskan-type intrusions could be described as forms o f alteration.

Some o f the spinel compositions from the Tulameen complex in British Columbia -  a 

classic Alaskan-type intrusion - also have low Cr# values with high Fe2+# values (Nixon 

et al., 1990). As at Tulu Dimtu, it is the clinopyroxenite hosted spinels which show the 

lowest Cr# values and therefore occupy the “Alaskan-type” intrusion limb. Although in 

both complexes (Tulu Dimtu and Tulameen) it is the clinopyoxenite hosted spinels which 

plot within this limb, this does not necessarily suggest that requilibration with 

clinopyroxene is the only cause for the high AI2 O3 values. A laskan-type intrusions 

typically form with clinopyroxenite or homblendite zones at the edge o f  the complex 

(chapter 2). As ultramafic complexes typically behave as com petent bodies, it is likely 

that the outermost (clinopyroxenite) zones will be the most heavily deform ed and altered. 

Therefore it is thought likely that the origin o f the “Alaskan-type lim b” (low Cr# at high 

Fe2+#) is intense alteration o f clinopyroxenite hosted spinels at the flanks o f  the intrusion. 

The innermost dunites and olivine-clinopyroxenites are less altered as a result o f being 

located further away from alteration fluids.

If the Alaskan-type limb is a result o f alteration and it is possible that ophiolite 

complexes could be exposed to the same alteration, it is possible to ask why the ophiolite 

fields do not show the same trend. The fields only include 90% o f  the data in the Global 

Spinel Database (Barnes and Roeder, 2001) and therefore a few  outliers do not fall within 

the field. Some outlying ophiolite analyses from the Barnes and R oeder (2001) dataset do 

show high Fe2+# values with low Cr# values as at Tulu D im tu and Tulameen. These 

outliers could be explained as being anomalously altered spinels w hereas m ost other 

ophiolite analyses are originated from much fresher areas. Samples collected for 

geochemical analysis to investigate primary fractionation trends would be the freshest 

lithologies possible. Given that Alaskan-type intrusions are nearly always intruded into
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mobile belts it is much more likely that their clinopyroxenite zones will become altered. 

Whereas in ophiolite complexes the clinopyroxenites are more likely to be fresh.

The alteration trend suggested in section 9.6.1 is distinctly different from the magmatic 

trend o f minimum Cr# values seen for spinels hosted by dunites and olivine- 

clinopyroxenites proposed in section 9.6.2 (see also figure 9.4).

Although the Fe2+#, Cr# and TiC>2 values are similar to those o f  Alaskan-type intrusions 

from the Barnes and Roeder (2001) database, the situation is more complicated when 

Fe3+# is plotted against Fe2+#. Figure 9.5G shows that although the Fe2+# values have a 

similar range to those o f  other Alaskan-type intrusions the corresponding Fe3+# values are 

too low. Irrespective o f this, the Fe2+# values are still considerably higher than for the 

ophiolite field.

9.7. Conclusions

This study presents a comparison o f the geochemistry o f spinels from the ultramafic 

rocks from the Tulu Dimtu area with published spinel analyses from ophiolite complexes 

and Alaskan-type intrusions. The Fe2+# and Cr# geochemistry o f  the spinels from Tulu 

Dimtu is typical o f  Alaskan-type intrusions (Barnes and Roeder, 2001). However, Fe # 

values are lower than typical Alaskan-type intrusions. Furtherm ore, the spinels hosted by
• 2 “F

clinopyroxenites from the Lensoid Ultramafics show low Cr# values and high Fe # 

values, an observation which is also made in the spinels from the Tulam een com plex -  a 

classic Alaskan-type intrusion (Nixon et al., 1990).

Although the spinels from Tulu Dimtu are typical o f A laskan-type intrusions, the work o f 

Evans and Frost (1975) can be used to suggest that the differences in spinel geochemistry 

could be explained by alteration. Due to their tectonic setting, A laskan-type intrusions are 

potentially altered to a greater degree than ophiolites and as a result, some spinels can be 

altered to amphibolite facies and show very low Cr# values at high Fe2+# values.
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Although the dominant trend within samples from the Tulu Dimtu area could be 

attributed to alteration there are features of this data that cannot be explained by such a 

process. These include differences between samples in the minimum Cr# values. It is 

possible that such differences could be accounted for by each sample forming at different 

stages during crystal fractionation. In such a situation, it is unlikely that the Tulu Dimtu 

Main Intrusion formed by the differentiation of a single melt influx.

The trends proposed here for alteration and magmatic processes are different when 

plotted on a graph of Cr# versus Fe2+# Figure 9.4 illustrates these differences.

90th Percentile fields from Barnes and Roeder
Global Spinel Database■Ophiolite

Alaskan-type Intrusion

1

Figure 9.4: The differences between magamtic trends and alteration trends on a graph of spinel 
Fe2+# versus Cr# values. For a discussion of the magmatic trend see section 9.6.2 and for the

alteration trend see 9.6.1.
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9.8. Kingy: Spinel Geochemistry

9.8.1. Introduction

Three samples from the Kingy area contain acceptable spinel analyses (as defined in 

section 9.3) and there are 40 analyses in total. The samples which host acceptable 

analyses from the Kingy area are clinopyroxenites. There is one sample from the Extra 

Ultramafic and two samples from two different Lensoid Ultram afic complexes. Spinels 

from several samples within the Kingy Ridge Ultramafic w ere analysed but the results 

were not considered to be acceptable under the conditions set down in section 9.3. Table 

9.4 summarizes the number o f analyses from each formation. In the pull-out section on 

page 295, figure 9.6A shows the locations o f each sample.

9.8.2. Data

The results for the analysis o f  the spinels from the Kingy area are as follows.

Formation Sample Analysis Host
Rock

Na20 MgO A I2O 3 SiOj T i02

6>

Cr20 3 M n O

*O
 

I 
u- FejOj CoO 

*
ZnO Total Fe2*# Cr# Fe3*#

1/3 nd 0 .8 5 10.93 nd 0.41 nd 4 7 .9 2 2 .3 6 3 1 .1 0 4 .7 3 nd 1 .58 9 9 .8 8 0 .9 5 4 0 .6 9 7 0 .0 6 6

1/4 nd 0 .6 7 8.61 nd 0 .2 7 nd 52 .3 0 2 .5 3 3 1 .7 2 4 .6 7 nd nd 1 0 0 .7 7 0 .9 6 4 0 .7 5 2 0 .0 6 4

13 nd 0 .83 8 .2 8 nd 0 .25 n d 5 2 .9 6 2 .1 0 3 1 .7 5 4 .4 9 nd nd 1 0 0 .6 6 0 .9 5 5 0 .7 6 1 0.061

16 nd 1.00 9 .51 n d nd nd 5 0 .2 2 2 .4 2 3 1 .5 0 5 .8 8 n d nd 10 0 .5 3 0 .9 4 6 0 .7 1 7 0 .0 8 0

18 nd 0.81 10 .1 9 nd 0 .3 7 nd 4 9 .6 8 2 .2 7 3 2 .1 6 5 .0 8 n d nd 1 0 0 .5 6 0 .9 5 7 0 .7 1 3 0 .0 6 9

19 nd 0 .9 5 11.95 nd 0 .5 0 nd 4 6 .1 0 2 .1 5 3 2 .7 4 6 .11 nd nd 100 .51 0 .9 5 1 0 .6 6 1 0 .0 8 3

2 / nd 0 .6 4 9 .5 2 nd 0 .2 8 nd 4 9 .5 8 2 .1 7 31 .2 1 4 .61 nd 1 .2 6 9 9 .2 8 0 .9 6 5 0 .7 2 7 0 .0 6 4

*§ 2 / nd 0 .7 4 10.83 nd 0.51 nd 4 5 .6 9 2 .0 7 3 2 .6 8 7 .0 7 n d 1 .65 1 0 1 .2 4 0 .9 6 1 0 .6 6 6 0  0 9 8

5
o

9

21

2 2
V

I
nd

nd

0 .7 6

0 .7 9

8 .83

1 0.58

nd

nd

nd

nd

n d

nd
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4 7 .3 0

2 .5 6

2 .41

3 1 .6 4

3 2 .3 8

5 .7 0

7 .1 3

nd

n d

nd

nd

1 0 0 .7 5

1 0 0 .5 9

0 .9 5 9

0 .9 5 8

0 .7 3 4

0 .6 7 7

0 .0 7 8

0 .0 9 7J 24 o nd 1.09 6 .7 4 n d nd nd 5 6.91 2 .1 8 3 0 .7 7 3 .6 3 nd nd 1 0 1 .3 2 0 .9 4 1 0 .8 0 8 0 .0 4 9

&c 25 nd 0 .7 8 11 .6 0 nd nd nd 46 .71 2 .2 5 3 2 .4 9 6 .5 7 n d nd 1 0 0 .4 0 0 .9 5 9 0 .6 6 5 0 .0 8 9

2 2 7 nd 0.71 6 .8 2 nd nd nd 5 7 .1 8 2 .1 4 3 1 .2 4 3 .1 6 nd nd 1 0 1 .2 5 0 .9 6 1 0 .8 1 3 0 .0 4 3

28 nd 0 .9 0 11.03 nd 0 .5 5 nd 4 8 .5 7 2 .1 0 3 2 .5 4 5 .0 6 nd n d 1 0 0 .7 5 0 .9 5 3 0 .6 9 6 0 .0 6 9

2 9 nd 0 .6 8 9 .4 2 nd 0 .5 4 nd 4 9 .3 9 2 .4 0 3 2 .5 4 5 .81 n d n d 1 0 0 .7 9 0 .9 6 4 0 .7 1 6 0 .0 8 0

3 /4 nd 0 .6 8 10.68 nd 0 .3 6 nd 4 7 .2 0 2 .0 7 3 2 .2 3 5 .9 5 n d 1 .43 1 0 0 .6 0 0 .9 6 4 0 .6 8 6 0 .0 8 2

4 /3 nd 0 .61 10 .09 nd 0 .4 7 nd 4 7 .5 7 2 .3 3 3 1 .7 9 5 .7 8 n d 1 .69 1 0 0 .3 3 0 .9 6 7 0 .6 9 8 0 .081

4 /4 nd 0 .91 9 .13 nd 0 .35 nd 5 2 .3 5 2 .0 8 3 1 .7 5 4 .0 8 nd nd 1 0 0 .6 5 0 .9 5 1 0 .7 5 0 0 .0 5 6

6 /4 n d 0 .7 2 6 .7 2 n d n d n d 5 6 .2 5 2 .3 3 3 1 .1 0 3 .8 0 nd nd 1 0 0 .9 2 0 .9 6 0 0 .8 0 5 0 .0 5 2

12 nd 8.91 8 .1 9 n d nd nd 6 2 .0 2 0 .7 9 1 9 .7 5 1 .49 n d nd 1 0 1 .1 5 0 .5 5 4 0 .8 2 0 0 .0 1 9

o 17 nd 2 .7 7 7 .4 6 nd nd nd 59 .6 3 0 .5 7 2 8 .7 5 0 .91 nd nd 1 0 0 .0 9 0 .8 5 3 0 .8 3 3 0 .0 1 2

1 18 nd 0 .7 2 4 .1 7 0 .3 5 nd nd 4 0 .3 0 n d 3 6 .4 9 1 6 .8 4 nd 1 .28 1 0 0 .1 5 0 .9 6 6 0 .6 4 4 0 .2 5 6
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2 5 n d 7.11 8 .11 nd nd n d 60 .71 1 .0 0 2 1 .7 6 1 .14 n d nd 9 9 .8 3 0 .6 3 2 0 .8 2 2 0 .0 1 5

7 n d 1 .26 6 .8 3 nd n d nd 5 8 .5 0 nd 3 0 .8 0 0 .9 3 nd 1 .58 9 9 .9 0 0 .9 3 2 0 .8 4 1 0 .0 1 3
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Formation Sample Analysis Host
Rock

Na^O MgO AI2O3 S i02 TiO,

O>

Cr203 MnO FeO* Fe203
*

CoO ZnO Total Fe2*# Cr# Fe3*#

8 nd 3.82 7.64 nd nd nd 58.45 0.71 26.68 1.46 nd 0.77 99.53 0.797 0.821 0.020

9 nd 4.52 8.11 nd nd nd 59.33 0.75 25.98 1.25 nd 0.52 100.46 0.763 0.817 0.016

10 nd 9.36 7.65 nd nd nd 63.91 0.81 18.69 0 65 nd nd 101.07 0.528 0.842 nd8

11 nd 9.16 7.46 nd nd nd 63.77 0.84 18.72 0.55 nd nd 100.51 0 534 0.846 nd7
13 nd 9.35 7.59 nd nd nd 63.93 0.62 19.04 0.85 nd nd 101.38 0.533 0.841 0.011

g 2 nd 8.75 7.61 nd nd nd 63.57 0.73 19.73 0.72 nd nd 101.11 0.559 0.841 nd9
*?o 3 S nd 7.81 8.30 nd nd nd 62.20 0.72 20.93 0.37 nd nd 100.33 0.601 0.830 nd5
$ a
fS

4 a.O nd 8.52 7.95 0.37 nd nd 62.02 0.81 20.40 0.73 nd 0.55 101.36 0.573 0.832 nd9
u 5 nd 8.02 7.92 nd nd nd 62.51 0.72 20.75 0.72 nd nd 100.64 0.592 0.833 nd9

6 nd 8.33 7.84 0.30 nd nd 61.86 0.89 20.79 1.17 nd nd 101.18 0.583 0.829 0.015

7 nd 3.85 6.19 nd nd nd 50.63 1.19 28 10 8.87 nd 1.11 99.94 0.804 0.741 0.124

9 nd 8.29 7.77 nd nd 0.40 62.13 1.03 20.11 1.06 nd 0.56 101.35 0.576 0.827 0.013

Table 9.8: The geochemistry o f  the spinels analysed from the Kingy area in wt %. Analyses from a 
birbirite sample are included here, however these are not plotted on any graphs as there is 

considerable uncertainty over their mode o f formation (see chapter 3). Nd: not detected. *: Fe2+ 
and Fe3+ values are estimated from measured total Fe by the method described in section 9.3. 

Fe2+# = Fe2+/(Mg+Fe2+). Cr# = Cr/(Cr+Al). Fe3+# = Fe3+/(Fe3++Al+Cr+V).

9.8.3. Fe2*# ( Fe2*/(Mg+Fe2* ))

All analyses from the Kingy area are from spinels hosted by clinopyroxenites. The 

samples from the Lensoid Ultramafics in the Kingy area contain spinels w ith a high range 

o f Fe2+# values (0.554 to 0.966), whereas the sample from the Extra U ltram afic contains 

spinels with a narrower range o f Fe2+# values from 0.941 to 0.967.

9.8.4. Cr /  (Cr+Al)

The samples from the Lensoid Ultramafics o f  the K ingy area contain spinels with a 

narrow range o f  Cr# values (0.817 to 0.820), whereas the sam ple from the Extra 

Ultramafic contains spinels with a wide range o f  Fe2+# values from 0.661 to 0.813.

9.8.5. T i0 2

T i0 2 is only detected in the sample from the Extra U ltram afic but 12 analyses out o f 19 

contain T i0 2 up to a maximum o f 0.55%.

9.8.6. F e3+# / (Fe3+ + A l2+ + Cr3+ + V 3+)

All analyses, with two exceptions, o f  the spinels from the Lensoid U ltram afics show a 

narrow range and a low range o f  Fe3+# numbers from 0.005 to 0.20. The exceptions are
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where two analyses, one from each sample, show that Fe3+# rises to 0.124 and 0.256. The 

spinels from the Extra Ultramafic have a wider range o f  Fe3+# values and many analyses 

rise to higher values than most o f  the spinels from the Lensoid U ltram afics

9.8.7. M inor Elements (Na, Si, and Zn)

Na2 0  has been detected in one analysis from the northernm ost Lensoid Ultramafic. 

(0.44%). Two analyses, one from each o f the Lensoid U ltram afics, contain SiC>2 at 

abundances o f  0.35% and 0.37%. ZnO is present in abundances up to 1.69% in all 

samples from the Kingy area. No V2 O 3 or CoO has been detected in spinels from the 

Kingy area.

9.8.8. Summary o f Spinel Geochemistry in the K ingy area

Spinels have been analysed from three clinopyroxenite samples from the K ingy area. The 

geochemistry o f  the spinels from the Lensoid U ltram afics is m arkedly different from 

those from the Extra Ultramafic. All analyses from the tw o sam ples from the Lensoid 

Ultramafics (except one) contain spinels with a w ide range o f  Fe2+# ratios and a narrow 

Cr# range. Conversely, the spinels analysed from the Extra U ltram afic show a narrow 

Fe2+# and a wide Cr# range. Furthermore, Ti(> 2  has been detected in the spinels from the 

Extra Ultramafic but not in those from the Lensoid U ltram afics. There are further 

differences observed in the Fe3+# content, nam ely the values are low in m ost spinels from 

the Lensoid Ultramafics and higher in those from the Extra Ultram afic. However two 

analyses from the Lensoid Ultramafics are higher than those from the Extra Ultramafic.

9.9. Discussion

9.9.1. Alteration

In general, the two analyses from the Lensoid U tram afics have a very narrow  Cr# range 

and an extensive Fe2+# range. One analysis, from the far northw estern Lensoid 

Ultramafic has a much lower Cr# analysis accom panied by a higher Fe2 # a geochem istry
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which is similar from the spinels o f the Extra Ultramafic. This trend in the spinel 

geochemistry from the Extra Ultramafic fits the amphibolite facies alteration trends 

suggested by Evans and Frost (1975) which were discussed further in section 9.6.1. 

Furthermore, the low Cr# from one analysis from the Lensoid Ultramafics suggests that 

this analysis maybe from an extremely altered version o f the other analyses. However, 

the lack o f correlation between Cr# and Fe2+# in the Lensoid Ultramafics does not fit the 

model o f spinel alteration suggested from other studies or the analyses o f  core and rims 

(see section 9.4).

Although the lack o f  correlation between Cr# and Fe2+# in the Lensoid Ultramafics is 

unlike a classic “alteration trend” there is one analysis from sample KTR-069-01 which 

shows a high Fe3+# with high Fe2+# value. Furthermore an analysis from another sample 

from the Lensoid Ultramafics contains elevated Fe3+# and Fe2+# along along with a lower 

Cr# value. These outliers could both be interpreted as more altered versions o f  the other 

analyses within each sample. However, the lack o f correlation between Fe2+# and Cr# 

may not be attributed to alteration and the possible control by m agm atic processes is 

discussed in the next section.

9.9.2. Magmatic Effects

In order to understand the effect which magmatic processes have on the geochemistry o f 

spinels it is necessary to take account o f the alteration w hich overprints them. As 

discussed in section 9.9.1, although the spinels from the Extra U ltram afic and some 

individual analyses appear to show alteration effects, the trends in the Lensoid 

Ultramafics remain unexplained. Therefore it is not possible to discuss the effects o f 

magmatism using this dataset. The analysis o f spinels hosted by dunite or olivine- 

clinopyroxenite may help to eluidate magmatic processes.

It may be argued that if  a trend in spinel composition cannot be attributed to alteration 

then it must be the result o f magmatic proceses. However the origin o f such a wide
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variation in Fe # within one sample is hard to explain by magmatic processes without 

some variation in Cr# accompanying it.

9.9.3. Comparison with Alaskan-type intrusions and ophiolite complexes

The analyses o f spinels from the Kingy area can be compared with the Global Spinel 

Database (Barnes and Roeder, 2001) using figures 9.6B to 9.6G. Unlike the ophiolite 

complexes summarized by the fields o f Barnes and Roeder (2001) the analyses from the 

Kingy Extra Ultramafic have both high Fe2+# values and low Cr#. This geochemistry is 

typical o f  Alaskan-type intrusions (see section 9.6.3). Furthermore, m ost analyses from 

the Kingy area plot within the Alaskan-type intrusion fields and not within the ophiolite 

fields.

Although the geochemistry o f the spinels at Kingy is more typical o f  those o f  Alaskan- 

type intrusions rather than ophiolites this is due to the fact that the analyses with the 

highest Fe2+# also have low Cr#. It is believed that this geochemistry m ay occur in an any 

spinel which has been subjected to sufficient alteration (Evans and Frost, 1975). 

Therefore, these spinels could originate from either a typical A laskan-type intrusion or an 

extremely altered ophiolite.

9.10. Conclusions

The Fe2+# and Cr# geochemistry o f the spinels from the Kingy area is generally typical o f 

Alaskan-type intrusions as characterized by the Global Spinel Database (Barnes and 

Roeder, 2001) . However, the Fe3+# values are lower than typical Alaskan-type 

intrusions. The spinels form two clear populations based on Fe2+#, those from the Extra 

Ultramafic and those from the Lensoid Ultramafics. The spinels o f  the Extra Ultramafic 

show a trend similar to the amphibolite facies alteration trend observed by Evans and 

Frost (1975). However, the spinels from the Lensoid Ultram afics do not show the change 

in Cr# values which would not be expected from alteration. The poor understanding o f 

alteration effects in the Kingy area makes the interpretation o f  m agm atic effects not 

possible.

294



Chapter 9: Spinel Geochemistry

9.12. Daleti, Ankori, Tulu Kapi and Keley: Spinel Geochemistry

9.12.1. Introduction

Seven samples from the Daleti Ultramafic and two samples from the Ankori Ultramafic 

contain acceptable spinel analyses (as defined in section 9.3). This section describes a 

total o f 139 analyses, 110 o f which are located within the Daleti Ultramafic and the 

remaining 28 occur in the Ankori Ultramafic. All the spinels in question are hosted by 

dunites. Table 9.4 summarizes the number o f  analyses from each formation. The pull-out 

section on page 306 figure 9.7A shows the location o f  each sample. Furthermore, figure 

9.7A shows that the four samples are located in a traverse from the centre o f  the Daleti 

Ultramafic towards the northern contact with a shear-zone.

9.12.2. Data

The results for the analysis o f the spinels from the Daleti, Ankori, Tulu Kapi and Keley 

areas are as follows.

Formation Sample Analysis Host
Rock

Na20 MgO AI2O3 S i02 T i02 V20 3 C r^j MnO FeO* Fe20 3
*

CoO ZnO Total Fe2*# Cr# Fe3*#

1 nd 4.84 4.63 nd nd nd 60.51 0.62 26.41 4.22 nd nd 101.23 0.754 0.847 0.056

10 nd 4.62 4.60 nd nd nd 59.02 0.71 26.12 4.48 nd 0.63 100.18 0.760 0.841 0.061

11 nd 4.82 5.56 nd nd nd 57.52 nd 26.40 4.32 nd nd 98.62 0.754 0.823 0.059

12 nd 4.72 4.65 nd nd nd 60.63 nd 27.10 3.97 nd nd 101.07 0.763 0.850 0.053

13 nd 5.06 7.07 nd nd nd 52.15 0.67 27.55 8.46 nd nd 100.95 0.753 0.737 0.114

14 nd 5.34 7.84 nd nd nd 54.71 0.67 26.59 6.00 nd nd 101.14 0.736 0.759 0.079

15 nd 4.69 5.05 nd nd nd 58.96 0.94 25.94 4.25 nd nd 99.83 0.756 0.836 0.057

16 nd 4.59 5.03 nd nd nd 59.54 0.68 26.95 4.59 nd nd 101.37 0.767 0.834 0.061

17 nd 4.59 5.28 nd nd nd 57.40 0.65 26.83 5.48 nd 0.75 100.98 0.766 0.814 0.074

18 nd 4.65 4.98 nd nd nd 57.58 nd 27.18 5.37 nd 0.63 100.39 0.766 0.821 0.073

19 nd 4.62 4.88 nd nd nd 59.90 0.65 26.55 4.10 nd nd 100.70 0.763 0.843 0.055

tc 20 nd 4.53 4.96 nd nd nd 60.21 nd 26.69 3.12 nd nd 99.51 0.768 0.853 0.042

I ©s 21 | nd 4.69 4.85 nd nd nd 59.30 nd 26.56 3.97 nd 0.70 100.06 0.761 0.843 0.054

5
'«•a

22 nd 4.71 4.81 nd nd nd 59.49 0.64 26.12 4.05 nd nd 99.82 0.757 0.844 0.055

24 nd 4.68 4.83 nd nd nd 60.79 0.70 26.52 3.81 nd nd 101.34 0.761 0.849 0.051
o

25 nd 5.07 4.95 nd nd nd 61.13 nd 26.38 3.36 nd nd 100.89 0.745 0.852 0.045

26 nd 4.80 4.96 nd nd nd 59.23 0.84 26.42 4.81 nd nd 101.06 0.755 0.832 0.064

28 nd 5.01 4.85 nd nd nd 60.38 nd 26.34 3.68 nd nd 100.26 0.747 0.849 0.049

3 nd 4.84 4.77 nd nd nd 61.09 nd 26.44 3.15 nd nd 100.29 0.754 0.858 0.042

4 nd 4.77 4.71 nd nd nd 59.95 0.81 26.05 4.13 nd nd 100.43 0.754 0.846 0.055

5 nd 4.30 5.09 nd nd nd 57.08 nd 28.36 6.07 nd nd 100.90 0.787 0.810 0.082

6 nd 4.63 4.80 nd nd nd 60.28 0.78 26.66 4.26 nd nd 101.41 0.764 0.843 0.057

7 nd 4.80 4.89 nd nd nd 60.57 0.73 26.17 3.77 nd nd 100.93 0.754 0.848 0.050

8 nd 5.02 4.76 nd nd nd 60.99 nd 26.21 3.30 nd nd 100.27 0.745 0.856 0.044

9 nd 4.85 4.88 nd nd nd 60.52 nd 26.42 3.36 nd nd 100.03 0.754 0.853 0.045

a -  - 11 a-3- nd 5.45 2.49 nd nd nd 63.28 0.61 24.69 3.85 nd 0.72 101.09 0.718 0.896 0.052
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Formation Sample Analysis Host
Rock

Na20 MgO > O S i02 T i02 v2o3 Cr20 3 MnO FeO* Fe20 3
*

CoO ZnO Total Fe2*# Cr# Fe3*#

12 nd 5.41 3.49 nd nd nd 59.23 0.64 25.00 5.37 nd nd 99.14 0.722 0.852 0.073

1/9 nd 5.31 2.86 nd nd nd 63.21 nd 25.18 3.06 nd nd 99.62 0.727 0.898 0.041

2/9 nd 5.83 3.91 nd nd nd 61.17 0.75 24.52 4.51 0.37 nd 101.05 0.702 0.858 0.060

3/9 nd 5.14 4.10 nd nd nd 58.01 nd 26.45 5.95 0.38 nd 100.03 0.743 0.831 0.081

4/9 nd 5.15 2.46 nd nd nd 62.81 0.69 25.02 3.86 nd nd 99.99 0.732 0.895 0.052

5/9 nd 5.33 5.73 nd nd nd 50.33 0.63 26.70 10.14 nd 0.73 99.59 0.738 0.735 0.141

6/9 nd 5.14 3.88 nd nd nd 57.60 nd 26.30 6.23 nd 0.66 99.81 0.742 0.831 0.086

7/9 nd 5.19 2.74 nd nd nd 62.48 0.70 24.83 3.88 0.41 0.66 100.88 0.729 0.889 0.053

9/9 nd 4.95 2.28 nd nd nd 63.53 0.67 25.53 3.77 nd nd 100.73 0.743 0.901 0.051

1 nd 5.14 2.84 nd nd nd 62.43 0.88 25.45 4.44 nd nd 101.18 0.735 0.881 0.060

10 nd 5.30 5.15 nd nd nd 51.20 0.67 27.02 10.44 nd 0.63 100.41 0.741 0.744 0.144

11 nd 5.25 2.20 nd nd nd 62.26 0.90 24.57 4.28 nd nd 99.46 0.724 0.894 0.059

12 nd 5.04 2.86 nd nd nd 60.64 nd 25.45 4 29 nd 0.79 99.07 0.739 0.879 0.059

14 nd 5.42 4.22 nd nd nd 56.63 0.80 26.27 7.77 nd nd 101.11 0.731 0.805 0.105

15 nd 5.16 2.46 nd nd nd 62.96 1.07 25.11 4.33 nd nd 101.10 0.732 0.890 0.058

2 nd 5.27 3.47 nd nd nd 58.56 0.64 25.96 6.65 nd 0.78 101.33 0.734 0.836 0.090

21 nd 5.27 2.81 nd nd nd 62.16 nd 26.21 4.71 nd nd 101.17 0.736 0 878 0.063

22 nd 5.23 5.39 nd nd 0.41 49.59 0.80 27.78 11.64 nd nd 100.84 0.749 0.717 0.160

Sj 23 c nd 5.02 5.34 nd nd nd 50.66 0.86 27.74 10.95 nd nd 100.57 0.756 0.734 0.151
o  
Bi 24 1 nd 4.88 3.03 nd nd nd 50.54 0.94 27.95 12.86 nd nd 100.19 0.763 0.751 0.182
a 25 nd 4.94 4.22 nd nd nd 50.45 nd 28.62 11.78 nd nd 100.00 0.765 0.742 0.165

26 nd 4.98 5.57 nd nd nd 49.56 nd 28.38 11.14 nd 0.89 100.52 0.762 0.724 0.155

3 nd 5.34 4.18 nd nd nd 55.58 0.82 25.80 7.80 nd 0.60 100.13 0.731 0.803 0.107

4 nd 5.15 4.84 nd nd nd 53.34 0.87 26.80 9.16 nd nd 100.16 0.745 0.770 0.126

5 nd 5.24 4.54 nd nd nd 56.52 0.63 26.44 7.22 nd nd 100.59 0.739 0.806 0.098

6 nd 4.95 4.19 nd nd nd 55.81 0.60 26.49 7.32 nd nd 99.37 0.750 0.809 0.101

7 nd 4.80 2.55 nd nd nd 62.29 0.63 25.65 4.00 nd nd 99.92 0.750 0.891 0.055

8 nd 4.87 3.18 nd nd nd 59.33 nd 26.33 5.25 nd nd 98.96 0.752 0.859 0.072

9 nd 5.11 3.68 nd nd nd 57.57 0.79 25.73 6.48 nd nd 99.36 0.739 0.832 0 089

1/6 nd 4.34 5.99 nd nd nd 47.34 0.83 29.52 12.78 nd nd 100.79 0.792 0 692 0.178

1/7 nd 4.31 541 nd nd nd 49.45 0.71 29.21 11.58 nd nd 100.67 0.792 0.721 0.161

10 nd 4.17 5.23 nd nd nd 49.51 0.93 29.51 12.00 nd nd 101.36 0.799 0 720 0.166

10 nd 4.00 5.74 nd nd nd 48.43 nd 30.42 11.79 nd nd 100.38 0.810 0.710 0.164

11 nd 4.01 5.69 nd nd 0.39 47.90 0.90 29.86 12.31 nd nd 101.06 0.807 0.699 0.171

11 nd 3.96 5.42 nd nd 0.48 48.64 0.73 30.05 12.01 nd nd 101 30 0.810 0.709 0.167

12 nd 3.01 5.67 nd nd nd 50.84 nd 30.72 9.06 nd 0.67 99.97 0.851 0.749 0.127

13 nd 4.20 5.32 nd nd nd 51.10 0.96 29.09 10.71 nd nd 101.38 0.795 0 738 0.147

2/6 nd 4.02 5.50 nd nd nd 48.59 0.69 29.45 11.63 nd nd 99.88 0.804 0.716 0.163

o 3/6 1 nd 4.27 5.80 nd nd nd 47.99 0.73 29.71 12.55 nd nd 101.05 0.796 0.700 0.174

4/6
Q

nd 4.65 5.48 nd nd nd 49.82 0.81 28.59 11.43 nd nd 100.78 0.775 0.723 0.158

5/6 nd 4.05 5.99 nd nd nd 48.47 1.04 29.47 11.79 nd nd 100.82 0.803 0.706 0.164

5/7 nd 4.39 5.08 nd nd nd 52.16 0.65 28.93 10.20 nd nd 101.42 0.787 0.751 0.140

6/6 nd 4.08 5.76 nd nd nd 48.03 0.93 29.64 12.32 nd nd 100.76 0.803 0.703 0.172

6/7 nd 4.29 5.07 nd nd nd 51.17 0.88 28.92 10.78 nd nd 101.11 0.791 0.742 0.149

7/7 nd 4.11 5.46 nd nd nd 51.11 nd 29.62 9.94 nd nd 100.24 0.802 0.744 0.138

8/6 nd 4.21 5.29 nd nd nd 49.62 0.62 29.52 11.63 nd nd 100.89 0.797 0.724 0.161

8/7 nd 4.34 4.49 nd nd nd 54.08 nd 28.86 8.75 nd nd 100.52 0.789 0.783 0.120

9/7 nd 4.28 4.32 nd nd nd 55.33 0.82 28.09 8.16 nd nd 101.00 0.786 0.796 0.112

1 nd 4.74 5.07 nd nd nd 59.38 0.68 26.41 4.39 nd 0.36 101.02 0.758 0.835 0.059

10 nd 5.11 4.03 nd nd nd 6246 0.89 25.01 3.00 nd 0.38 100.88 0.733 0.876 0.040

11 nd 4.94 4.48 nd nd nd 61.90 0.59 25.49 2.75 nd nd 100.16 0.743 0.869 0.037

13 nd 2.69 2.55 nd nd 0.64 48 88 0.81 31.02 12.78 nd 0.59 99.97 0 866 0.746 0.186

14 nd 3.88 4.88 nd nd 0 39 51.95 0.77 28.73 9.16 nd nd 99.76 0.806 0.760 0.128

15 nd 3.39 3.53 nd nd 0.60 47.42 0.67 30.61 13.57 nd 0.58 100.37 0.835 0.716 0.195

i 16 nd 4.29 4.84 nd nd nd 55.84 0.58 28.17 7.38 nd 0.38 101.48 0.787 0.797 0.100
0
01 17

§O nd 4.72 4.46 nd nd nd 60.16 0.58 26.18 4.08 nd 0.60 100.78 0.757 0.851 0.055

a
18 nd 4.75 4.60 nd nd nd 60.84 0.81 26.06 3.72 nd nd 100.79 0.755 0.854 0.050

4 nd 4.83 4.95 nd nd nd 59.18 0.84 26.34 4.82 nd nd 100.97 0.754 0.832 0.065

5 nd 4.63 6.51 nd nd 0.40 51.89 nd 28.54 8.32 nd nd 100.29 0.776 0.742 0.113

6 nd 4.52 5.35 nd nd nd 56.37 0.68 27.37 6.34 nd nd 100.63 0.773 0.801 0.086

8 nd 5.08 4.36 nd nd nd 62.42 0.73 25.35 2.86 nd nd 100.80 0.737 0.871 0.038

9 nd 5.17 4.76 nd nd nd 61.42 0.71 25.31 3.26 nd 0.56 101.19 0.733 0.858 0.043

a oi c 1 Q 3 nd 4.99 5.10 nd nd nd 43.25 0.65 30.08 17.33 nd nd 101.40 0.772 0.642 0.245
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Formation Sample Analysis Host
Rock

Na20 MgO AI2O3 S1O2 T1O2

0>

Cr20 3 MnO FeO* Fe2Oj
*

CoO ZnO Total Fe2*# Cr# Fe3*#

10 nd 5.00 4.72 nd nd nd 47.88 0.71 28.86 13.93 nd nd 101.10 0.764 0.702 0.194

U nd 4.68 4.74 nd nd nd 43.41 0.71 30.06 17.03 nd 0.54 101.17 0.783 0.651 0.243

12 nd 4.65 4.70 nd nd nd 41.65 0.73 30.31 18.15 nd nd 100 19 0.785 0.632 0.262

15 nd 4.69 4.98 nd nd nd 42.79 0.87 29.54 16.72 nd nd 99.59 0.779 0.647 0.241

16 nd 4.75 5.06 nd nd nd 42.22 0.63 29.98 17.29 nd nd 99.93 0.780 0.638 0.249

19 nd 3.47 2.26 nd nd nd 40.62 0.63 32.98 21.13 nd nd 101.09 0.842 0.634 0.314

2 nd 3.90 5.53 nd nd nd 44.33 0.65 30.07 14.26 nd nd 98.74 0.812 0.670 0.205

3 nd 4.88 5.06 nd nd nd 44.55 nd 29.48 15.06 nd nd 99.02 0.772 0.671 0.216

4 nd 5.37 4.63 nd nd nd 50.65 0.81 27.18 11.52 nd nd 100.17 0.740 0.739 0.160

5 nd 5.34 3.20 nd nd nd 59.22 0.63 25.75 6 2 8 nd nd 100.42 0.730 0.846 0.085

6 nd 5.27 5.25 nd nd nd 43.55 0.79 29.03 16.60 nd nd 100 49 0.756 0648 0.235

8 nd 5.56 5.00 nd nd nd 50.30 0.59 27.62 12.04 nd nd 101.11 0.736 0.727 0.166

9 nd 4.34 3.61 nd nd nd 43.40 0.59 30.84 17.90 nd nd 100.68 0.799 0.659 0.259

10 nd 3.54 2.81 nd nd 0.45 42.61 0.70 31.27 17.72 nd nd 99.10 0.832 0.664 0.263

12 nd 4.17 5.10 nd nd 0.38 43.59 0.67 31.10 16.48 nd nd 101.49 0.807 0.648 0.233

13 nd 4.60 6.16 nd nd 0.44 42.84 0.64 30.52 16.18 nd nd 101.38 0.788 0.631 0.227

| 14 nd 4.03 4.13 nd nd 0.42 42.65 0.73 31.15 17.56 nd nd 100.66 0.813 0.647 0.253
<s
U, 15 <1 nd 3.99 3.29 nd nd 0.34 44.11 0.81 31.02 17.36 nd nd 100.92 0.814 0.670 0.251
O

2 nd 4.54 6.96 nd nd 0.53 39.39 0.58 31 01 17.77 nd 0 6 2 101.41 0.793 0.586 0.252

8 nd 3.84 3.33 nd nd 0.41 42.79 nd 31.42 17.22 nd nd 99.01 0.821 0.663 0.254

9 nd 4.95 6.81 nd nd nd 43.14 nd 30.40 15.59 nd nd 100.89 0.775 0.633 0.218

1/9 nd 3.70 21.74 nd nd nd 38.79 1.13 29.17 3.78 0.48 0.91 99.70 0.816 0.519 0.048

10 nd 3.79 22.32 nd 0.29 nd 38.62 1.09 28.91 3.00 nd 2.22 100.24 0.811 0.517 0.038

11 nd 3.64 22.13 nd nd nd 38.45 1.07 28.78 3.11 nd 2.20 99.37 0.816 0.517 0.040

12 nd 3.75 22.11 nd 0.31 nd 39.66 1.11 29.39 2.96 nd 1.81 101.10 0.815 0.526 0.037

13 nd 3.84 22.13 nd nd nd 39.52 1.12 28.89 3.13 0.34 1.90 100.88 0.808 0.524 0.040

14 nd 3.57 22.04 nd nd nd 39.02 1.33 29.21 3.46 nd 1.60 100.23 0.821 0.519 0.044

15 nd 3.64 21.70 nd nd nd 39.36 1.08 28.74 2.93 nd 2.18 99.63 0.816 0.528 0.037

16 nd 3.68 21.58 nd nd nd 39.71 1.33 28.73 3.23 0.36 2.07 100.69 0.814 0.530 0.041

17 nd 3.49 21.50 nd nd nd 39.52 1.29 28.83 3.07 0.37 2.06 100.13 0.823 0.531 0.039

18 nd 3.94 22.07 nd nd nd 39.22 1.27 28.33 3.10 0.31 2.15 100.39 0.801 0.522 0.039

19 nd 4.01 22.04 nd nd nd 39.30 1.26 28.19 3.01 nd 2.03 99.85 0.798 0.524 0.038

9 2/9 nd 3.94 22.53 nd nd nd 38.50 1.52 28.82 3.81 nd 1.25 100.37 0.804 0.509 0.048

O 20 i nd 3.55 22.12 nd nd nd 39.58 1.19 29.31 2.98 nd 1.37 100.10 0.822 0.525 0.038

l u
> 21

0
nd 3.40 21.48 nd nd nd 39.34 1.28 29.24 3.43 nd 2.24 100.42 0.828 0.527 0.044

£
u ,

22 nd 3.29 22.24 nd nd nd 39.08 1.59 29.29 3.17 nd 2.32 100.98 0.833 0.519 0.040

•eo 23 nd 3.32 21.85 nd nd nd 39.04 1.25 29.14 3.06 0.41 2.35 100.42 0.831 0.524 0.039

1 24 nd 2.99 21.94 nd nd nd 38.74 1.34 29.57 3.07 0.40 2.42 100.47 0.847 0.521 0.039

25 nd 2.94 21.31 nd nd nd 38.85 1.25 29.42 3.08 nd 2.30 99.15 0.849 0.528 0.040

3/9 nd 4.08 21.50 nd nd nd 39.14 1.36 28.45 3.99 nd 1.35 99.87 0.796 0.522 0.051

4/9 nd 4.29 21.65 nd 0.28 nd 39.05 1.26 27.93 3.17 nd 1.14 98.76 0.785 0.525 0.041

5/9 nd 3.27 21.62 nd nd nd 38.66 1.15 28.97 2.97 nd 2.12 98.76 0.833 0.524 0.038

6/9 nd 3.21 21.52 nd 0.36 nd 39.47 1.25 29.76 2.97 nd 1.95 100.49 0.839 0.531 0.038

7/9 nd 3.51 21.95 nd nd nd 38.73 1.35 28.65 3.06 0.37 2.13 99.75 0.821 0.521 0.039

8/9 nd 3.75 22.41 nd nd nd 39.02 1.24 28.67 2.86 nd 2.05 100.00 0.811 0519 0.036

9/9 nd 3.84 22.29 nd nd nd 38.59 1.17 28.62 3.24 nd 2.13 99.88 0.807 0.515 0.041

A2 19 nd 11.03 10.97 nd nd nd 57.74 0.99 16.52 2.48 nd 0.43 100.16 0.457 0.755 0.031

20 e nd 10.82 10.73 nd nd nd 58.37 0.98 16.52 1.83 nd nd 99.26 0.461 0.767 0.023

21 1 nd 10.75 10.89 nd nd nd 58.52 1.14 16.07 1.16 nd nd 98.53 0.456 0.771 0.015

22 nd 11.47 11.16 nd nd nd 59.17 1.15 15.56 1.57 nd 0.47 100.55 0.432 0.765 0.019

l a u i v  7 . 7 .  1 11W g v u u i b l l i l o l l j  V I  U1W ? p u i v i i )  a i m i j J V U  h *v  ----------  *

areas in wt %. Analyses from a birbirite sample are included here, however these are not plotted 
on any graphs as there is considerable uncertainty over their mode o f formation (see chapter 3). 
Nd: not detected. *: Fe2+ and Fe3+ values are estimated from measured total Fe by the method 

described in section 9.3. Fe2+# = Fe2+/(Mg+Fe2+). Cr# = Cr/(Cr+Al). Fe # —
Fe3+/(Fe3++Al+Cr+V).
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9.12.3. Fe2+# ( Fe2+/(Mg+Fe2+) )

All spinels analysed from the Daleti Ultramafic and the Ankori U ltram afic are hosted by 

dunite. Most spinels from the Daleti area -  including one sam ple from the Ankori 

Ultramafic -  have Fe2+# values which fall into the range 0.702 to 0.866. W ithin this 

range, there are no notable differences in Fe2+# values between samples. However sample 

A2 from the Ankori complex contains Fe2+# which are much low er than all other samples 

and range from 0.432 to 0.461.

9.12.4. Cr# ( Cr / (C r+A l))

The spinels from the Daleti area have Cr# values ranging from 0.509 to 0.898. The lowest 

spinel Cr# values (0.509 to 0.531) are those hosted by sample KYC-007-02 from the 

Ankori Ultramafic. The second lowest Cr# ratios occur in sample D R 22/01 with a range 

o f 0.586 to 0.670. All other samples occupy the range 0.632 to 0.898. Although one 

sample from the Ankori complex (KYC-007-02) has spinel Cr# values w hich are below 

those o f the Daleti Ultramafic the spinels from the other sample from the Ankori 

Ultramafic (A2) have higher values (see figure 9.7C).

9.12.5. T i0 2

T i0 2 was detected in only four analyses from the Ankori U ltram afic (sample KYC-007- 

02) and range from 0.28 to 0.36%

9.12.6. Fe3+# ( Fe3+ / (Fe3+ + Al2+ + Cr3+ + V3+) )

All analyses o f spinels from the Daleti Ultramafic and Ankori U ltram afic have Fe3+# 

ratios which range from 0.015 to 0.314. The lowest Fe3+# values are found in the spinels 

from sample A2 from the Ankori Ultramafic which range from 0.015 to 0.031. The 

spinels from the other sample from the Ankori Ultramafic have slightly higher Fe3+# 

values, ranging from 0.036 to 0.051. The highest Fe3+# value (0.314) occurs in a spinel 

from sample DR 09/01 however some other spinels from this sample host some o f  the
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lowest values (>0.085) seen in this area. The analyses from sample D R 22/01 are 

noteworthy for their uniformly high Fe3+# values (0.218 to 0.263).

9.12.7. Minor Elements (Co and Zn)

CoO is detected in two samples from the Daleti Ultramafic, these are three analyses from 

sample D l l  from the Daleti Ultramafic with values ranging from 0.37 to 0.41%. Eight 

analyses from sample KYC-007-01 returned positive analyses for CoO with values 

ranging from 0.31 to 048%. ZnO was detected (<0.89%) in 22 analyses from the Daleti 

Ultramafic and it has been detected in at least one analysis from each sample. Unlike the 

other samples, in one sample from the Ankori Ultramafic (KYC-007-02) every analysis 

returned ZnO values above detection limts, ranging from 0.91 to 2.42%. N o N a2 0 , Si0 2 , 

S, NiO, ZnO or AsO has been detected in the the Daleti or Ankori U ltram afics.

9.12.8. Summary o f Spinel Geochemistry in the Daleti U ltram afic

The spinels from the Daleti Ultramafic all cover a similar range o f  Fe2+#, Fe3+# and Cr# 

values and Ti0 2  has not been detected. Each sample shows sim ilar upper limits o f Cr# 

and similar lower limits o f Fe3+#. M ost samples cover similar ranges o f  Cr# and Fe3+# 

however samples DR 09/01 and DR 22/01 have slightly lower Cr# and higher Fe3+# 

values. These two samples are both situated at the northwestern edge o f  the intrusion. 

Another sample (D20) is located close to DR 22/01 but it does not share the same 

restricted Cr# and elevated Fe3+# values.

For each sample, the range o f Fe2+# ratios is more restricted than the ranges o f Cr# and 

Fe3+#. As such, all spinels in the Daleti Ultramafic tend to show a broad negative trend 

between Fe2+# and Cr#. Furthermore within each sample there is a negative correlation 

between Cr# and Fe3+#.
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9.12.9. Summary o f  Spinel Geochemistry in the Ankori U ltram afic

The two samples from the Ankori Ultramafic which contain spinels (A2 and KYC-007- 

01) are both dunites. The analyses from each sample display sim ilar Fe3+# values yet very 

different Fe2+# and Cr# values. The spinels from sample A2 have lower Fe2+# and higher 

Cr# values than sample KYC-007-01. The difference in Fe3+# values is 0.005 which is 

much smaller than the difference in Fe2+# values (0.324) and the difference in Cr# 

(0.224). Furthermore, TiC>2 is detected in KYC-007-04 but not detected in A2.

The ranges o f both Cr# and Fe3+# values for the analyses o f  spinels hosted by sample 

KYC-007-01 are narrower than the range o f Fe2+# values. Due to the low number o f  

analyses o f spinels from sample A2 an assessment o f the relative ranges would not be 

reliable.

When compared to the Daleti Ultramafic the two samples both show sim ilar Fe3+# values, 

however in the other ratios considered here the samples are different. Sample A2 has 

much lower Fe2+# values than the Daleti Ultramafic but sim ilar Cr# and TiC>2 values. 

Whereas sample KYC-007-01 has lower Cr# values and higher TiC>2 but similar Fe2+# 

values.

9.13. Discussion

9.13.1. Alteration

Although the trend o f  analyses from most samples shows a restricted range o f  Fe2+# and a 

wide range o f  Cr#, many samples include at least one analysis w hich contains a larger 

Fe2+# than the others. Analyses o f the cores and rims o f zoned spinels and from several 

complexes worldwide (see section 9 .4 ) have suggested that post m agmatic alteration 

increases both Cr# and Fe2+#. Although it is not possible to dem onstrate the geochemistry 

o f a truly “fresh” spinel from this dataset, there are some outliers which have higher 

Fe2+# than most o f the other analyses within each sample. These outliers could be 

considered to be altered equivalents o f the analyses that from the main trend.
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Some samples show no outliers and others show a continuous trend where Fe2+# 

increases with Cr#. This is to be expected if  the Fe2+# and Cr# increases with alteration. 

As all analyses were taken from the cores o f  spinels, if  a truly “fresh” core was exposed 

then the analysis would reflect this. However some samples w ill have been pervasively 

altered and therefore the only trend which could be represented w ould be the alteration 

trend. There may also be some samples where the alteration was very slight and these 

would show a dominantly magmatic trend with few outliers. Therefore the extent o f 

alteration (as opposed to severity o f the conditions eg, am phibolite versus granulite 

facies) could be expressed by the degree o f fit between alteration and m agmatic trends - 

such as those suggested in section 9.7.

If the extent o f alteration could be estimated by the degree o f  fit to the alteration trend - 

as suggested above - then the samples which are the most extensively altered from Daleti 

Ultramafic would be DR22/01 and DR 09/01 (see figure 9.7C). Both o f  these samples are 

located near the shear-zone/ultramafic contact northwestern flank o f  the intrusion. This is 

consistent with the hypothesis that the alteration fluids used shear-zones as conduits and 

as such the most altered rocks should occur near such features and at the edges o f the 

ultramafic intrusions. Trends in Fe2+# versus Cr# could be used to estim ate the degrees o f 

alteration only if  magmatic fractionation is understood (which are discussed in section 

9.13.2)

Figure 9.7G shows the correlation between Fe2+# and Fe3+# within samples. It is 

considered that such trends may also be used to help understand alteration. H owever the 

effects o f magmatic processes on the Fe3+# ratio needs to be understood before such 

interpretations can be made. Furthermore, the strong negative correlation between Cr# 

and Fe3+# infers that fractionation may have the same effect as alteration in figure 9.7G. 

Therefore it may not be possible to separate their relative influences using diagrams such 

as figure 9.7G.
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9.13.2. Magmatic Effects

Several samples from the Daleti Ultramafic show a narrow Fe2+# range and a wide Cr# 

range (with a few outliers which are discussed in section 9.13.1). This creates a trend 

which is different from the alteration trend suggested in section 9.13.1. The variation in 

Cr# is due to a variation in C^Ch values within each sample and this variation could be 

explained in terms o f crystal fractionation where the highest Cr3+ values occur in the most 

primitive minerals.

As alteration should increase the Cr# values, the lowest Cr# values for each sample 

should be the least altered o f each sample (see section 9.6.2). H owever fractionation will 

act to decrease the amount o f Cr# values (irrespective o f Fe2+#). Therefore the analysis 

with the lowest Cr# from each sample will represent the least altered, but possibly the 

most evolved, spinel in the sample.

Sample Min Cr# Fe2+# Fe3+#
D20 0.737 0.736 0.042
D ll 0.735 0.702 0.051
DR 01/01 0.717 0.724 0.055
DR 08/01 0.716 0.733 0.037
DR 07/01 0.692 0.775 0.112
DR 09/01 0.632 0.730 0.085
DR 22/01 0.586 0.775 0.218

Table 9.10: The minimum Cr# values for spinel analyses from the sample o f the Daleti Ultramafic. 
All spinels are hosted by dunite and analyses are listed with the highest minumum Cr# at the top.

Nd: not detected.

In a situation where all the samples formed by the differentiation o f  a single magma, the 

spinels which formed first should have the highest Cr3+ values (and lowest A l3+ values. 

Furthermore, the most primitive samples should form near to each other and the more 

evolved samples located further away. However, the situation in the Daleti intrusion does 

not show this. Figure 9.7A shows that o f the 7 samples from the Daleti intrusion, the two 

with highest minimum Cr# (D20) and lowest minimum Cr# (DR 22/01) occur next to 

each other. Furthermore, the samples with the intermediate minim um  Cr# occur over 1 km 

away. The lack o f systematic variation in minimum Cr# could be explained by the 

intrusion o f multiple melts. However this would need to be confirm ed by studying
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geochemical variations through a continuous section o f  the com plex. As many samples 

from the Daleti intrusion do not contain spinels, this would need to be perform ed using a 

more common mineral such as olivine.

There is a crude negative correlation between the Cr# and Fe2+# in the analyses o f  lowest 

Cr#. This infers that fractionation may have had an effect on the Fe2+ or M g2+ values.

9.13.3. Comparison with Alaskan-type intrusions and ophiolite complexes

Figures 9.7B to 9.7G can be used to compare the geochemistry o f  spinels from the Daleti 

area with the 90th percentile fields o f disseminated spinels and chromitites from the 

Global Spinel Database (Barnes and Roeder, 2001). A clear difference in the 

geochemistry o f Alaskan-type intrusions and ophiolites can be dem onstrated by 

comparing Fe2+# values with Cr# values (see figure 9.7F). W hen studying the Fe2+# and 

Cr# values o f the Daleti Ultramafic very few from the analyses fall into the ophiolite field 

and those which are similar to ophiolites also fall into the A laskan-type field. M ost other 

analyses either fall into the Alaskan-type field, or contain Cr# values lower than typical 

Alaskan-type intrusions. These slightly lower Cr# values may indicate that these samples 

are slightly more evolved than typical Alaskan-type intrusions. Figure 9.7G shows that 

although the analyses plot into Fe2+# and Fe3+# ranges which are different from both 

ophiolite and Alaskan-type intrusion fields, the Fe3+# range is larger than m ost ophiolite 

complexes. TiC>2 has not been detected in the Daleti Ultramafic.

Although the ranges Fe3+ and TiC>2 values in the Daleti Ultramafic do not show similarity 

to either type o f complex, figure 9.7C shows that the geochem istry o f  m ost spinels is 

similar to most Alaskan-type intrusions. Furthermore, very few spinels show 

geochemistries similar to ophiolite complexes. However -  as discussed in section 9.6.3 -  

the difference in spinel geochemistry between Alaskan-type intrusions and ophiolites 

could be attributed to a greater degree o f alteration. Therefore, although the compositions 

described here are more typical o f Alaskan-type intrusions, they could have originated 

from a highly altered ophiolite complex.
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The two samples from the Ankori Ultramafic show starkly different compositions. The 

low minimum Cr# in sample KYC-007-01 may represent a highly evolved Alaskan-type 

intrusion or may originate from another type o f complex altogether. The low Fe2+# values 

o f the spinels from sample A2 when compared to the Daleti U ltram afic cannot be 

explained here. However figure 9.7C shows that it has Cr# values similar to both 

Alaskan-type intrusions and ophiolites. As is the case with the spinels from the Daleti 

Ultramafic, figures 9.7E and 9.7G show that the Ankori spinels have different TiC>2 and
i  I

Fe # values to both ophiolites and Alaskan-type intrusions.

9.14. Conclusions

The geochemistry o f spinels from the Daleti Ultramafic are unlike typical analyses o f 

ophiolitic spinels. Furthermore, many o f the analyses plot w ithin the Alaskan-type 

intrusion on a plot o f Fe2+# versus Cr# (see figure 9.7C). O f the two samples from the 

Ankori Ultramafic, one shows a geochemistry unlike both types o f  com plex and the other 

plots within both fields.

The samples from the Daleti Ultramafic show a variety o f  trends w hich could be 

interpreted as being controlled either by alteration, magmatic processes or a combination 

o f the two. Within the Daleti intrusion the two samples w hich show the strongest 

alteration trend lie close to the contact with a shear-zone.

A study o f the minimum Cr# values in each sample suggests the least evolved and most 

evolved samples from the Daleti Ultramafic occur within 200m o f  each other. This raises 

the possibility that the Daleti Ultramafic may have formed through the differentiation o f 

more than one melt influx.
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9.15. Yubdo, Sodu and Andu: Spinel Geochemistry

9.15.1. Introduction

Three samples from the Main Yubdo Intrusion contain acceptable spinel analyses (as 

defined in 9.3). There are 67 analyses in total, however only 6  acceptable analyses were 

obtained from sample Y30 . All the samples which host the spinels covered here are 

dunites. In the pull-out section , figure 9.8A shows that the three sam ples are located in 

the centre o f  the intrusion.

9.15.2. Data

The results for the analysis o f the spinels from the Yubdo, Sodu and Andu areas are as 

follows.

Formation Sample Analysis Host
Rock

Na20 MgO a i2o 3 SiOj Ti02 v 2o 3 Cr20 3 MnO FeO* Fe20 3
*

CoO ZnO Total Fe2*# Cr# Fe3*#

1/8 nd 5.56 9.77 nd 0.49 nd 48.03 0.66 27.25 8.18 nd nd 99.93 0.733 0.682 0.111

1/9 nd 4.59 9.77 nd 0.39 nd 44.01 0.72 29.59 11.24 nd nd 100.31 0.783 0.635 0.154

10 nd 3.21 10.17 nd 0.43 nd 42.87 0.66 31.49 10.75 nd nd 99.58 0.846 0.628 0.150

11 nd 4.17 10.34 nd 0.49 nd 45.92 0.56 30.43 9.51 nd nd 101.42 0.804 0 652 0.129

12 nd 4.47 9.99 nd 0.45 nd 43.72 0.81 29.35 10.69 nd nd 99.48 0.786 0.636 0.148

13 nd 5.50 9.46 nd 0.36 nd 47.72 nd 27.84 8.63 nd nd 99.51 0.740 0.681 0.117

14 nd 3.96 9.80 nd 0.34 nd 46.11 0.51 30.71 9.97 nd nd 101.39 0.813 0.657 0.135

15 nd 3.50 8.93 nd 0.33 nd 44.31 0.89 30.52 10.92 nd nd 99.40 0.830 0.651 0.153

15 nd 6.52 8.90 nd 0.35 nd 48.40 nd 27.11 9.94 nd nd 101.22 0.700 0.680 0.133

16 nd 5.69 9.43 nd 0.39 nd 47.97 0.55 27.43 9.01 nd nd 100.48 0.730 0.679 0.121

17 nd 5.69 9.72 nd nd nd 48.01 0.72 27.33 9.62 nd nd 101.10 0.729 0.670 0.128

18 nd 4.99 9.33 nd 0.57 nd 46.36 nd 29.26 9.60 nd nd 100.12 0.767 0.668 0.132

18 nd 5.38 9.06 nd 0.34 nd 5nd 0.51 27.62 7.97 0.34 nd 101.22 0.742 0.703 0.107

19 nd 4.51 9.57 nd 0.45 nd 45.41 0.69 29.75 10.53 nd nd 100.91 0.787 0.652 0.144

2/ nd 6.04 10.09 nd 0.43 nd 47.91 0.60 27.23 8.97 nd nd 101.26 0.717 0.670 0.119

2/ g nd 2.91 8.69 nd 0.29 nd 43.08 0.82 31.65 11.93 0.38 nd 99.75 0.859 0.639 0.168

20 Q nd 4.51 9.16 nd 0.37 nd 44.17 0.86 29.16 11.19 nd nd 99.42 0.784 0.645 0.156

20 nd 5.30 8.95 nd 0.36 nd 48.22 nd 28.71 9.34 nd nd 100.88 0.752 0.684 0.126

21 nd 3.09 11.89 nd 0.51 nd 35.89 0.62 33.60 14.97 nd nd 100.56 0.859 0.529 0.210

21 nd 5.64 9.13 nd 0.39 nd 49.57 0.53 27.36 8.20 nd nd 100.83 0.731 0.698 0.110

22 nd 1.65 4.67 nd 0.86 nd 30.41 0.67 37.47 24.31 nd nd 100.04 0.927 0.503 0.382

22 nd 2.94 8.61 nd 0.45 nd 46.29 0.76 31.96 10.23 nd nd 101.24 0.859 0.672 0.141

23 nd 0.98 0.38 nd 0.95 nd 16.86 nd 42.37 37.97 nd nd 99.51 0.960 0.315 0.675

23 nd 4.77 8.92 nd 0.39 nd 49.28 0.73 28.75 8.57 nd nd 101.41 0.772 0.697 0.115

25 nd 3.27 9.06 nd nd nd 45.96 1.03 30.97 10.82 nd nd 101.11 0.842 0.659 0.148

25 nd 3.84 8.99 nd 0.33 nd 45.72 0.72 29.87 9.89 nd nd 99.37 0.814 0.667 0.137

26 nd 3.84 9.99 nd 0.45 nd 41.91 1.08 31.28 12.84 nd nd 101.39 0.820 0.607 0.177

27 nd 5.30 9.07 nd 0.40 nd 45.81 0.69 27.70 10.09 nd nd 99.05 0.746 0.665 0.139

29 nd 2.43 8.92 nd 0.41 nd 39.45 nd 34.13 14.21 nd nd 99.55 0.887 0.595 0.204

3/9 nd 3.66 8.79 nd 0.37 nd 45.68 0.67 30.45 10.35 0.50 nd 100.47 0.824 0.666 0.143

4/8 nd 4.01 9.64 nd 0.50 nd 47.69 0.87 29.96 8.61 nd nd 101.28 0.807 0.679 0.117

4/9 nd 3.65 8.72 nd 0.45 nd 43.05 0.55 31.36 12.36 nd nd 100.14 0.828 0.635 0.173
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i Sample Analysis Host
Rock

Na20 MgO AljO, SiOj TiOj v2o3 C r ^ j MnO FeO* Fe20 3*
CoO ZnO Total Fe2*# Cr# Fe3*#

5/8 nd 4.53 9.69 nd 0.42 nd 48.66 0.75 28.80 7.84 nd nd 100.69 0.781 0.690 0.106
5/9 nd 2.94 8.91 nd 0.50 nd 47.82 0.72 30 83 7.90 0.39 nd 100.01 0.855 0.697 0.110
6/8 nd 4.17 9.78 nd 0.44 nd 47.68 0.60 29.61 8.25 nd nd 100.53 0.799 0.680 0.112
6/9 nd 3.08 8.98 nd 0.38 nd 47.87 nd 30.87 7.46 nd nd 98.64 0.849 0.700 0.104
7/8 nd 2.93 9.79 nd 0.40 nd 44.90 0.78 31.65 9.80 nd nd 100.25 0.858 0.652 0 136
7/9 nd 5.62 9.12 nd 0.42 nd 48.41 0.62 27.18 8.62 nd nd 99 99 0.731 0.690 0.117
8/8 nd 2.86 9.77 nd 0.35 nd 43.22 0.53 32.23 11.02 nd nd 99.98 0.863 0.633 0.154
8/9 nd 3.31 9.32 nd 0.47 nd 45.34 0.86 30.95 9.87 nd nd 100.12 0.840 0.661 0.137
9/8 nd 2.81 9.89 nd 0.36 nd 40.66 0.80 32.09 12.30 nd nd 98.91 0.865 0.606 0.174
9/9 nd 5.40 9.22 nd 0.33 nd 47.47 0.62 27.40 9.03 nd nd 99.47 0.740 0.680 0.123
10 nd 5.76 9.26 nd nd nd 44.87 1.01 27.06 11.80 nd nd 99.76 0.725 0.642 0.161
11 nd 5.18 9.51 nd 0.41 nd 40.86 1.37 27.85 13.30 nd 1.15 99 64 0 751 0.604 0.187
14 nd 6.33 10.45 nd 0.39 nd 44.67 1.02 26.78 11.15 0.56 nd 101.35 0.704 0.630 0.150
15 nd 6.13 10.42 nd 0.45 nd 46.02 1.12 26.56 9.80 0.44 nd 100.94 0.709 0.649 0.132
16 nd 7.42 10.81 nd 0.47 nd 46.83 0.68 25.32 9.60 nd nd 101.14 0.657 0.650 0.127
17 nd 3.89 6.86 nd 0.39 nd 42.60 1.64 28.71 13.22 nd 1.26 98.57 0.805 0.651 0.192
18 nd 4.41 8.05 nd nd nd 38.77 1.37 30.48 17.55 nd 0.67 101.30 0.795 0.575 0.248
2 nd 7.74 9.68 nd 0.41 nd 45.25 0.86 25.30 12.25 nd nd 101.49 0.647 0.634 0.163
21 nd 7.46 10.33 nd 0.51 nd 46.46 0.66 25.41 10.25 nd nd 101.08 0.657 0.649 0.136

CS 22 §
Q

nd 5.52 9.90 nd 0.44 nd 44.75 1.54 27.51 11.10 nd nd 100.76 0.737 0.639 0.151
24 nd 4.84 9.24 nd nd nd 43.22 1.57 28.59 13.26 nd 0.64 101.36 0.768 0621 0.181
25 nd 2.49 2.58 0.45 nd nd 24.54 1.01 37.75 31.91 nd nd 100.73 0.895 0.418 0.517
26 nd 5.80 10.37 nd 0.50 nd 44.45 1.21 26.99 10.54 nd 063 100.49 0.723 0636 0.143
4 nd 7.14 10.29 nd 0.32 nd 44.65 0.94 25.91 11.84 nd nd 101.09 0.671 0.627 0.158
5 nd 5.43 10.16 nd 0.42 nd 44.15 1.23 27.85 11.10 nd nd 100.35 0.742 0.632 0.151
6 nd 5.39 8.97 nd 0.34 nd 43.09 1.15 28.67 13.49 nd nd 101.10 0.749 0.622 0.185
7 nd 7.19 9.52 nd 0.43 nd 45.73 0.74 25.96 11.59 nd nd 101.15 0.670 0.645 0.155
8 nd 6.37 10.08 nd 0.51 nd 46.13 1.03 26.65 10.25 nd nd 101.02 0.701 0.651 0.138
9 nd 7.60 10.56 nd 0.39 nd 46.38 0.75 25.03 10.30 nd nd 101.01 0.649 0.645 0.136
10 nd 8.50 11.16 nd 0.52 nd 42.95 nd 25.49 12.82 nd nd 101.44 0.627 0.598 0.170
3 nd 1.95 1.21 nd 1.40 nd 45.88 0.73 34.21 14.85 nd nd 100.23 0.908 0.742 0.229

o 4 _ nd 1.76 1.24 nd 2.51 nd 30.78 0.59 38.38 24.65 nd nd 99.91 0.924 0.549 0.418
r s>* 5 nd 4.82 11.32 nd 0.40 nd 37.69 0.62 30.83 15.04 nd nd 100.72 0.782 0.547 0.208

7 nd 2.08 0.75 nd 2.35 nd 39.73 0.80 35.84 18.69 nd nd 100.24 0.906 0.678 0.303
8 nd 1.70 0.46 nd 2.69 nd 28.12 nd 39.57 26.83 nd nd 99.38 0.929 0.517 0.470

Table 9.11: The geochemistry of the spinels analysed from the Yubdo, Sodu and Andu areas in wt 
%. Analyses from a birbirite sample are included here, however these are not plotted on any 

graphs as there is considerable uncertainty over their mode of formation (see chapter 3). Nd: not 
detected. *: Fe2+ and Fe3+ values are estimated from measured total Fe by the method described in 

section 9.3. Fe2+# = Fe2+/(Mg+Fe2+). Cr# = Cr/(Cr+Al). Fe3+# = Fe37(Fe3++Al+Cr+V).

9.15.3. Fe2+# ( Fe2+/(Mg+Fe2+) )

The spinels from each of the samples from the Main Yubdo Intrusion cover similar Fe # 

ranges - from 0.627 to 0.960. However, most of the analyses fall within the range 0.629 

to 0.860. There are 10 outliers which have Fe2+# ratios which are larger than 0.860.

9.15.4. Cr# ( Cr / (Cr+Al))

The full range of Cr# values in the MainYubdo Ultramafic is 0.315 to 0.742. There are

four outliers with Cr# values lower than 0.500. However the upper limits of sample Y1
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(0.703) are higher than those of sample Y12 (0.651). The highest Cr# values occur in 

sample Y30 (<0.742).

9.15.5. Ti02

Ti02 is below detection limits in only 6 of the 67 analyses of spinels from the Main 

Yubdo Intrusion. The four highest Ti02 values occur in spinels from sample Y30 

(<2.690%) and two anomalously high values occur in sample Yl. Most analyses fall 

between the ranges 0.29% to 0.52% and no distinction can be made between samples Yl 

and Y12.

9.15.6. Fe3+# ( Fe3+ / (Fe3+ + Al2+ + Cr3+ + V3+) )

The Fe3+ values of the spinels from the Main Yubdo Intrusion fall between 0.104 and 

0.675. Both the highest and lowest values were obtained from the spinels from sample 

Yl. The Fe3+# values from sample Y30 lie above most of the analyses of samples Yl 

and Y12.

9.15.7. Minor Elements (Si02, CoO and ZnO)

One analysis from sample Y12 has returned a positive Si02 value (0.45%). Five analyses 

from samples Yl and Y12 contain CoO above detection limits at abundances of up to 

0.56. ZnO has been detected in five analyses from sample Y l2 up to a maximum of 

1.26%

9.15.8. Summary of Spinel Geochemistry in the Main Yubdo Intrusion

The three samples from the Main Yubdo Intrusion share similar spinel Cr#, Ti02, Fe3+ 

and Fe2+ values, however there are outliers in each sample. In sample Yl there are two 

outliers with slightly elevated Fe2+# values, and these analyses also share much lower Cr# 

but elevated Ti02 and Fe3+#. Sample Y12 has one outlier also with elevated Fe2+# and 

Fe3+# and lower Cr#, however unlike sample Yl this outlier is not enriched in Ti02.
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There are 6 analyses from sample Y30 and 2 of these have similar values to the other two 

samples. As with samples Yl and Y12 the outliers in sample Y30 have elevated Fe2+# 

and Fe3+# but also show elevated Ti02.

If the outliers are not considered, then the range Fe2+# values is wider than those of Cr#, 

Ti02 and Fe3+#.

9.16. Discussion

9.16.1. Alteration

Figure 9.8C shows a broad negative correlation between Fe2+# and Cr# in samples Yl 

and Y12. The alteration trend proposed in section 9.4 is positive and therefore it is 

thought unlikely that these trends could have been caused by alteration (see figure 9.4). 

The evidence presented in section 9.4 suggests that, at low Fe2+# values it is likely that 

alteration may have increased the Cr# from the true “magmatic” value. Hence alteration 

could be partially responsible for the “broadness” of the trend seen in figure 9.8C.

In samples Yl and Y12 there are several outliers from the trend described above, these 

have very low Cr# and high Fe2+#. These may be explained either by extreme alteration 

(into amphibolite facies) or by the continuation of the main trend, however it is not 

possible to distinguish between the two models with this dataset.

Of the six analyses from sample Y30 four appear to follow the same main trend as 

samples Yl and Y12 and two outliers have much higher Cr# values. The two outliers 

with high Cr# values are likely to represent spinels which have been altered to a greater 

degree than the main trend. However, it is not possible to determine whether the two 

analyses with the highest Fe2+# are a continuation of the main trend or are extremely 

altered spinels. Analysis of further spinels from this sample may help to reveal more 

distinctive alteration trends.
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The outliers from samples Y30 and Yl also show elevated TiC>2 and Fe # values. 

Although Stowe (1994) suggested that TiC>2 was enriched into ferrit-chromite rims, the 

comparison between cores and rims in this study (section 9.4) shows that some cores are 

also enriched in TiC>2 . Furthermore a close negative correlation (see section 9.12.8) 

between Fe3+# and Cr# suggests that Fe3+# values may also increase with magmatic 

processes. Therefore it is unlikely that alteration and magmatic effects could be separated 

using a plot of Fe2+# versus Fe3+#.

9.16.2. Magmatic Effects

It is not possible to distinguish between alteration and magmatic effects for the outliers in 

this dataset (see section 9.16.1) however, most spinels of the Main Yubdo Intrusion show 

a negative trend where Cr# decreases with Fe2+#. This negative trend is unlike the trend 

which would be expected from alteration (see figure 9.4). During crystal fractionation it 

would be expected that Cr# would decrease and the most primitive spinels would contain 

the largest Cr3+ values. In the Main Yubdo Intrusion, the decrease in Cr# values is 

accompanied by a decrease in Fe2+# values. A negative trend of Fe2+# with Cr# is also 

found in the spinels hosted by the Daleti Ultramafic (see section 9.13.2). As the Cr# 

changes could be explained in terms of crystal fractionation it is possible that Fe2+# may 
also increase.

9.16.3. Comparison with Alaskan-type intrusions and Ophiolites

Figures 9.8B to 9.8G can be used to compare the spinels from the Main Yubdo intrusion 

with those from Alaskan-type intrusions and ophiolite complexes contained in the Global 

Spinel Database (Barnes and Roeder, 2001) . The samples with the highest Cr# values 

plot within both the ophiolite and Alaskan-type intrusion fields. Most other spinels plot 

along a trend whereby Cr# decreases with Fe2+#. As discussed in section 9.16.2, this 

trend may be the result of some form of magmatic process such as crystal fractionation 

whereby the spinels with the highest Cr# are the most primitive. Therefore these spinels 

may be evolved from Alaskan-type intrusions or ophiolite complexes.
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The TiC>2 and Fe3+# values are highest at the highest Fe2+# values. These features are 

typical of Alaskan-type intrusions and the great Fe3+# range is not common in ophiolite 

complexes (see figures 9.8E and 9.8G). However it is not possible to determine whether 

these features originate from alteration or magmatic processes. Therefore it is only 

possible to conclude that although the geochemistry is similar to Alaskan-type intrusions, 

it may also have formed through the alteration of ophiolite complex lithologies.

9.17. Conclusions

A comparison of the spinel geochemistry from the Main Yubdo Intrusion with the Bames 

and Roeder (2001) Global Spinel Databse shows that the Fe2+#, Fe3+# and Ti02 ranges 

are similar to Alaskan-type intrusions. The Cr# values are lower than typical Alaskan- 
type intrusions.

There are several outliers from the main trends within the three samples. It is not possible 

to determine whether these spinels are more altered or more evolved than their 

counterparts. It is likely that alteration has caused a degree of scatter in the dataset, 

however no distinct alteration trend can be observed.

The decrease in Cr# with Fe2+# is the reverse of the trend expected for alteration and 

could be explained by a decrease in Cr# with crystal fractionation. This indicates that 

Fe2+# increases with fractionation.
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9.18. Summary o f Spinel Geochemistry in the WES

The spinel geochemistry presented here attempts address the relative influence of 

alteration versus and processes such as crystal fractionation. Although several ratios and 

TiC>2 values are described in this study it is concluded that a plot of Fe2+# versus Cr# is of 

most use. The following sections summarize the use of this plot to assess alteration, 

magmatism and tectonic setting.

Tulu
Dimtu

Kingy Daleti, Ankori and 
Keley

Yubdo, Andu and 
Sodu

Dunite and olivine-
clinopyroxenite
Clinopyroxenite

YES

YES YES

YES YES

Table 9.12: A summary o f the rocks which host acceptable spinel analyses (as set down in section 
9.3) from this study. It shows that at Tulu Dimtu, spinel analyses are described from both dunite 

and clinopyroxenite whereas in the three other areas, there are only analyses from either dunite or 
clinopyroxenite hosted spinels. This means that each area can be compared with Tulu Dimtu but

not each other.
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90th Percentile fields from Barnes and Roeder
Global Spinel Database■Ophiolite

Alaskan-type Intrusion

Magmatic Trend in
minimum Cr#
Alteration Trend
(Evans and Frost, 1975)

Tulu Dimtu Main Intrusion and
Lensoid Ultramafics

Kingy Extra Ultramafic and
Lensoid Ultramafics

Daleti Ultramafic

Ankori Ultramafic

Main Yubdo Intrusion

0 4------------— ------------------------------------------------------------- -
1

Figure 9.9: The Cr# and Fe2+# values of the spinels of the five ultramafic complexes of the WES 
compared to Alaskan-type intrusions and ophiolites.
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9.18.1. Alteration

Alteration is seen to have a variable in effect on spinel geochemistry through the 
intrusions. Section 9.4 shows how a comparison of the cores and rims of zoned spinels 

can be used to indicate alteration effects. The results -  supported by published work -  

show that with low Fe2+# values alteration causes an increase in Cr# and Fe2+# values. 

Trends such as these are seen clearly in the dunites and olivine-clinopyroxenites from the 

Tulu Dimtu Main Intrusion. Furthermore, some samples from the Daleti Ultramafic show 

this effect. In other samples from both the Daleti Ultramafic and from the Main Yubdo 

Intrusion alteration produces analyses that form outliers on the diagrams.

Clinopyroxenite hosted spinels from the Lensoid Ultramafics from the Tulu Dimtu area 

and the Kingy Extra Ultramafic show a wide variation in Cr# at high Fe2+#. Although this 

does not agree with alteration trends suggested from other studies, Evans and Frost 

(1975) may provide an explaination. A comparison of spinel geochemistries with the 

metamorphic grade of their host rock suggests that in amphibolite facies alteration 

actually reduces the Cr# value and hence alteration has a different effect at different 

metamorphic grades. However, such a hypothesis must be validated with a petrological 

study to determine metamorphic grade.

9.18.2. Magmatic Effects

An assessment of the alteration effect as described above can be used to help uncover 

hidden magmatic trends. In the Tulu Dimtu Main Intrusion and the Daleti Ultramafic the 

alteration trends are fairly clear. Cr# should increase with alteration, therefore the 

analysis with the minimum Cr# should be the least altered and therefore show the clearest 

magmatic signature. Furthermore, as Cr3+ should partition into early formed minerals 

during fractionation, the analysis with the least Cr# may also represent the most evolved. 

A comparison of the minimum Cr# in a sample with its location within the complex 

shows that -  in both the Daleti Ultramafic and the Tulu Dimtu Main Intrusion -  the most 

evolved sample lies close to least evolved. The intermediate samples lie elsewhere. This
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lack of systematic variation indicates that each complex may have formed from more 
than one melt influx.

At both Tulu Dimtu and Daleti there is trend of increasing Fe2+# with the minimum Cr#. 

This infers that the same process which causes a decrease in Cr# (possibly fractionation) 

also causes an increase in Fe #. This “magmatic” trend is clearly different to the 

alteration trend (see figure 9.4 in section 9.7)

In the Kingy area and the Yubdo Main Intrusion the alteration effects are not well 

understood and it is therefore inappropriate to make interpretations about magmatic 

effects. Further sampling in these areas may help to uncover the effect of alteration.

9.18.3. Comparison with Alaskan-type intrusions and ophiolite complexes

A clear difference in the spinel geochemistry of Alaskan-type intrusions and ophiolite 

complexes can be observed in a plot of Fe2+# versus Cr# (Barnes and Roeder, 2001). In 

the Tulu Dimtu Main Intrusion, the Kingy area and the Daleti Ultramafic most spinels 

plot within the Alaskan-type intrusion field. It is suggested here that the difference in 

spinel geochemistry between Alaskan-type intrusions and ophiolites can be accounted for 

by differing degrees of metamorphism (see section 9.6.3 for further discussion). As such, 

although the spinels from the two types of complexe are more similar to typical Alaskan- 

type intrusions, they could also be highly altered ophiolites.

The Ankori Ultramafic and Main Yubdo Intrusion are more complex. The two samples 

from the Ankori Ultramafic plot in very different places and further sampling is required 

here. Most spinels from the Main Yubdo Intrusion plot outside of both the Alaskan-type 

Intrusion and Ophiolite field, however elevated Ti02 and Fe3+# values at high Fe2+# are 

similar to Alaskan-type intrusions.

In all the ultramafic complexes studied in here, the spinel geochemistry is typical of 

Alaskan-type intrusions.
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10. Summary

10.1. Introduction

This thesis was designed to address two issues concerning the ultramafic 

bodies of the WES. Firstly, to assess the prospectivity of the ultramafic complexes in 

relation to the Pt and Pd distribution. Secondly, the thesis examined the tectonic 

origin of the ultramafic bodies with particular reference to the question of whether 

these complexes are Alaskan-type intrusions or ophiolites. The answer to this question 

is likely to affect the perceived prospectivity of the WES in the eyes of the scientific 

community.

Chapter 3 shows that the degree of alteration of the ultramafic lithotypes of the 

WES varies from 50% to 100%. Dunite samples are generally serpentinised and some 

clinopyroxenite samples are metamorphosed into the amphibolite facies. Given that 

some ultramafic samples are completely altered, section 3.3.6 establishes a 

classification of local rock-types based partly on the observation of relict mineral 

features. Also, in order to support other chapters in the thesis, chapter 3 provides an 

account of preliminary work on the mineralogy of spinels (see section 3.4), sulphides 

(see section 3.5) and platinum-group minerals (see section 3.6).

Using the rock-type classification set out in section 3.3.6 and to provide a 

framework for successive chapters, geological maps of the ultramafic bodies of the 

WES are produced. Chapter 4 details the analysis of terrain from aerial photography 

to establish the locations of the ultramafic bodies and in some cases the extent of 

these bodies (eg. the Tulu Dimtu Main Intrusion). In chapter 5 the terrain maps are 

validated using geological observations and the results are used to create geological 

maps which cover each of the four geographic areas.

In chapter 9, it was suggested that a graph of Fe2+# (Fe2+/(Fe2+ + Mg2+)) 

versus Cr# (Cr / (Cr + Al)) is of most use in distinguishing Alaskan-type intrusions 

from ophiolites, furthermore the same graph is also of use in distinguishing magmatic 

processes from alteration. Additionally, it is proposed that within the spinel analyses
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from each sample, the analysis with the lowest Cr# is the least altered and, therefore, 

it is the most likely to approach a magmatic composition.

In the following sections, the principle findings of chapters 6, 7, 8 and 9 are 

summarized. Each of the four geographic areas are considered in turn. Finally, a 

summary of the prospectivity and exploration recommendations is given (section 

10.6)

10.2. Tulu Dimtu

In the Tulu Dimtu area, geological mapping (chapter 5) has identified several 

small ultramafic bodies, these are referred to here as the Lensoid Ultramafics. They 

are described along with a larger ultramafic body refered to as the Tulu Dimtu Main 

Intrusion (first mapped by DeWit and Aguma, 1977). As with the edges of the Tulu 

Dimtu Main Intrusion, the Lensoid Ultramafics are associated with talc- and chlorite- 

rich shear-zones.

The geochemistry of the soils in the Tulu Dimtu area shows the influence not 

only of the underlying lithotype but also hydromorphic dispersion within the thick 

laterite (see chapter 7). Although Cr and A1 appear to have acted as immobile 

elements, Ni and Cu both show the effects of redistribution in solution with water (see 

figures 7.37 and 7.38). It is likely that Pt and Pd have been remobilized within the 

overburden in the WES, furthermore there is some evidence to suggest that Pt has 

increased in grade from the rocks into the soils.

In chapter 8, the differences in Ni, Cu and Cr values between fresher and 

altered samples has led to some ideas being developed for the concentration of the Pt 

and Pd within the Tulu Dimtu Main Intrusion. The distribution of Cr in the Tulu 

Dimtu Main Intrusion indicates that the most primitive rocks occur at the edge of the 

complex and that fractionation is directed inwards. In order to explain the locations of 

Ni, Cu and Cr in fresher rocks, the discussion includes an evaluation of the possible 

magmatic and alteration mechanisms. The Cu may have been driven away from Ni by 

sulphide fractionation and filter-pressing, however, hydrothermal remobilization may 

have a similar effect. In the fresher rocks, the Pt and Pd may be associated with Cu-
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rich sulphide liquid, however subsequent remobilization is likely to have redistributed 

Pd and to a lesser degree Pt. This chapter has indicated that the ore forming processes 

involved in both magmatic and post-magmatic situations will act at the flanks of the 

intrusion. It is therefore recommended that any further exploration work is targeted in 

sheared contacts between the ultramafics and the basement.

To compliment the geochemistry, section 3.5.2 describes altered bomite 

(Cu5FeS4 ) and glaucodot ((Co,Fe)AsS) from the Tulu Dimtu Main Intrusion, both 

minerals indicate that sulphur has been remobilized and bomite indicates that 

chalcopyrite was present. No PGM were found in the Tulu Dimtu area.

Chapter 9 indicates that the Fe2+# and Cr# values of the spinels from the Tulu 

Dimtu area are typical of those of Alaskan-type intrusions. The spinels hosted by 

dunite and olivine-clinopyroxenite have a different geochemistry to those hosted by 

clinopyroxenite. This could be explained by the fact that the clinopyroxenite hosted 

spinels (which typically form at the edge of Alaskan-type intrusions) have been 

metamorphosed to amphibolite facies, unlike those of the dunites and olivine- 

clinopyroxenites. The analysis of spinel minimum Cr# values for the dunite samples 

suggests that the Tulu Dimtu Main Intmsion may have formed through more than one 

melt influx. This partially supports the model proposed to explain the geochemical 

differences between fresher and altered rocks where a second melt influx is proposed.

10.3. Kingy

Chapter 5 shows that the largest ultramafic body in the Kingy area is the 

Kingy Ridge Ultramafic and another complex, the extra ultramafic, is located on the 

northwest flank of this. Five additional, smaller bodies are found in the area, these are 

associated with shear-zones and quartzite bodies and are referred to as the Lensoid 

Ultramafics.

Cr appears to have acted as an immobile element in the soils over the Kingy 

Ridge Ultramafic (chapter 7). The Ni values in the same soils also reflect the 

composition in the underlying rocks, suggesting that in this setting, it has acted as an 

immobile element. The most striking feature of the soil geochemistry in the Kingy
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area is the high Pd values in soils over the basement in the northwest compared to 

those over the Kingy Ridge Ultramafic.

The low number of fresher ultramafic samples from the Kingy area makes an 

assessment of possible magmatic processes difficult (see chapter 8). However, the 

systematic variation in Cr values in altered rocks and soil samples from the Kingy 

Ridge Ultramafic indicates that the more primitive rocks may occur at the 

northwestern end of the complex. The distribution of Ni in the altered rocks of the 

Kingy Ridge Ultramafic mirrors that of Cr, however the Cu distribution is more 

irregular which infers the remobilization of Cu to a greater degree than Ni. The Pt and 

Pd values in fresher rocks are almost below detection, however Pd dominates Pt in the 

altered rock which suggests that the action of hydrothermal fluids was extensive (see 

chapter 8). Such severe alteration may obscure magmatic features, however the Pd 

values found in shear zone conduits are likely to have originated in a primary source 

in the vicinity. An investigation of the geometry and geochemistry of the shear zones 

may help to uncover this source.

The spinel geochemistry of the Kingy area is described in chapter 9 and it is
^  I

found that the Fe # and Cr# values are generally typical of Alaskan-type intrusions 

as opposed to ophiolites. However, spinels were found in only three samples and as 

such it is not possible to separate magmatic from alteration effects.

10.4. Daleti, Ankori, Tulu Kapi and Keley

There are two large ultramafic complexes found in this area along with five 

smaller bodies described here as the Lensoid Ultramafics (see section 5.3.3). The 

larger complexes, the Daleti Ultramafic and the Ankori Ultramafic are aligned in NE- 

SW and N-S directions respectively. The Lensoid Ultramafics are associated with 

extensive shear-zones and large quartzite bodies (see Chapter 5).

Significant Ni and Cr values are only found above the ultramafic complexes in 

area areas around Daleti, Ankori, Tulu Kapi and Keley. Furthermore, Pt and Pd is 

only found in the soils above the Ankori complex and above a set of shear-zones in 

the southwest of the area.
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Fresher rocks (as defined in section 8.2.2) are only found in the Daleti 

Ultramafic and in combination with the altered rocks are used to develop an 

understanding of the potential ore-forming processes which may have occurred (see 

section 8.17). It is possible that two melt influxes may have occurred and it is likely 

that some sulphides were present, although they are not associated with significant Pt 

and Pd values. Any magmatic processes have been overprinted by the effects of 

hydrothermal processes. In support of this, the analysis of talc-schists and altered 

ultramafic samples from the whole area shows that Ni and Cu are concentrated into 

different samples. Anomalous Pd values (33ppb) found in a quartzite and a dunite 

near to an extensive shear-zone are consistent with the view that Pd is more mobile 

than Pt. The high Ni values alongside very low Pt and Pd values indicates that the 

magma from which the Daleti Ultrmafic cyrstallised was barren. Hence further 

exploration in the Daleti Ultramafic may not be worthwhile.

Chapter 9 shows that the spinels of the Daleti Ultramafic have a geochemistry 

which is unlike ophiolite complexes and many of these analyses have Fe # and Cr# 

compositions which are similar to Alaskan-type intrusions. Comparison with 

published work and core-rim analyses (see section 9.4) shows that alteration and 

magmatic effects can be separated in the Daleti Ultramafic. The two most altered 

samples (based on spinel geochemisty alone) occur close to a shear-zone which 

supports the proposal that alteration fluids use these features as conduits. The 

minimum Cr# values for each sample indicate that the Daleti Ultramafic may have 

formed through more than one melt influx. This is similar to the model proposed in 

chapter 8 which requires two melt influxes to explain the Ni, Cu, Cr, Pt and Pd values 

in the complex.

10.5. Yubdo, Andu and Sodu

The largest ultramafic body of the WES is the Main Yubdo Intrusion which 

covers 30km2. There are five smaller complexes, referred to here as the Lensoid 

Ultramafics. Shear-zones are located in both the basement and within the Main Yubdo 

Intrusion.
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The model proposed to explain the magnetic survey described in chapter 6 

uses a variation in the frequency of siliceous veining. It is suggested that the most 

intense veining occurs in two elongate zones through the north and south of the Main 

Yubdo Intrusion. The northernmost zone appears to be the continuation of a shear- 

zone mapped by Kazmin and Demessie (1971).

In the overburden of the Yubdo area, high Ni and Cr values are only found in 

the laterites above the Main Yubdo Intrusion whereas high Cu values occur above the 

basement. A significant difference between the locations of the highest Pt and Pd 

values is observed.

Chapter 8 details efforts to describe possible ore-forming processes which may 

have occurred within the Main Yubdo Intrusion. A lack of fresher samples hampered 

attempts to uncover magmatic processes. However, both fresher and altered rocks 

show that the highest Cr values occur at the edge of the complex, suggesting that the 

most primitive rocks formed at the flanks. Observations of Ni and Cu in the altered 

rocks of the Main Yubdo Intrusion suggest that they may have been affected by 

different alteration episodes, or that only one element has been remobilized. Pd has 

been detected in the talc-schists north of the Main Yubdo Intrusion. It is suggested 

here that any future attempts to uncover economic mineralisation at Yubdo be focused 

either at the flanks of the intrusion or around the shear-zones which pass through the 

centre.

Three PGM from the Main Yubdo Intrusion have been described in chapter 3. 

These include a Pt-Fe alloy, an Os-Ir alloy and an Ir-Os alloy. They were all 

discovered in samples from the northwestern flank of the complex.

2+
In Chapter 9, observations of the spinel geochemistry show that the Fe #, 

Fe3+# and TiC>2 values are similar to those of Alaskan-type intrusions although the 

Cr# values are lower than would be expected. No distinct alteration trend can be 

distinguished in the Main Yubdo Intrusion although a decrease in Cr# with an 

increase in Fe2+# is the reverse of the trend expected for alteration and therefore could 

be attributed to magmatic processes such as fractionation.
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10.6. Exploration Summary

This thesis covers the ultramafic rocks from 4 adjacent areas of the Western 

Ethiopian Shield (WES). Five large complexes are described in addition to numerous 

smaller complexes referred to here as the Lensoid Ultramafics. The investigation is 

restricted to the use of Ni, Cu, Cr, Al, Pt and Pd from an aqua regia digestion 

followed by an ICP-OES analysis and to major elements from spinel geochemical 

analysis. To compliment the geochemical chapters, some preliminary observations 

have been made of sulphides and platinum-group minerals (PGM). The conclusions 

from the four geographic areas are as follows.

The principle findings from the Tulu Dimtu area concern the Tulu Dimtu Main 

Intrusion. A comparison of the rock geochemistry of fresher and more altered samples 

(as defined in section 6.2.2) has allowed the assessment of some potential ore-forming 

processses. The effects of alteration and magmatism on spinel geochemistry have 

been distinguished using a graph of Fe # versus Cr#. Both the rock and the spinel 

geochemistry o f the Lensoid Ultramafics is consistent with the idea these bodies may 

be “sheared-off ’ slivers from larger complexes such as the Tulu Dimtu Main 

Intrusion. Comparison with published work suggests that the spinel geochemistry of 

the Tulu Dimtu Main Intrusion and Lensoid Ultramafics is typical of Alaskan-type 

intrusions.

The lack of fresher samples from the Kingy area has made the understanding 

of magmatic processes in this area difficult. However, a systematic variation in Cr 

values in altered rocks and soils of the Kingy Ridge Ultramafic has indicated that the 

most primitive rocks occur at the northeastern end of the complex. The spinel 

geochemistry of the ultramafics from the Kingy area is typical of published analyses 

from Alaskan-type intrusions.

The high Ni values but extremely low Pt and Pd analyses suggest that, if the 

complex has undergone sulphide segregation then the original magma is likely to have 

been barren of the precious metals. Hence is it considered unlikely that further 

exploration in the area will uncover higher grades. The high Cr and significant Pt and 

Pd values found in both soils and rocks from the south west of the area are worthy of
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further investigation. Investigation of these shear-zones may reveal a further -  

previously unknown -  primary deposit. Furthermore, it is suggested here that the 

spinel geochemistry of the Daleti and Ankori complexes are similar to that of 

Alaskan-type intrusions.

The magmatic processes which have occurred in the Main Yubdo Intrusion 

remain uncertain and the geochemistry is strongly influenced by the action of 

hydrothermal fluids. Attempts to compare the fresher and more altered rocks have 

been largely unsuccessful, however it is suggested that the most primitive rocks are at 

the edge of the complex. Therefore the best locations for future exploration would be 

either the flanks of the intrusion or close to the shear-zones within the complex. 

Spinel analyses show a similarity to the published spinel geochemistry from Alaskan- 

type intrusions. A magnetic survey of the complex has been interpreted on the basis of 

variations in the frequency of siliceous veining.

10.7. Comparison with published work on the tectonic setting o f  the complexes

This thesis finds that the spinel geochemistry of the ultramafic rocks of the 

WES are unlike those of ophiolites and are similar to those of Alaskan-type 

intrusions. This conclusion supports the suggestion made by Mogessie et al. (2000). 

Furthermore, chapter 2 reviews the key differences between the two types of complex 

and shows that Alaskan-type intrusions generally have negative Ru and positive Pt 

anomalies without high Pd values on chondrite normalized diagrams - a feature which 

is rarely seen in ophiolites (Prichard and Lord, 1993). The PGE analyses from the 

Tulu Dimtu published by Sighinolfi et al. (1993) show a low Ru value and a positive 

Pt anomaly, both of which further support the Alaskan-type intrusion hypothesis.

The proponents of the ophiolite hypothesis (Berhe and Rothery, 1986; Tadesse 

and Allen, 2005; Warden et al., 1982) do not address the possibility that these 

complexes may be Alaskan-type intrusions. Indeed, the comparison described in 

section 2.4 shows that much of the data published by these authors may also fit the 

Alaskan-type intrusion hypothesis. For example, Berhe and Rothery (1986) classified 

the rocks as ophiolitic because they displayed the Penrose (1972) ophiolitic
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assemblage. It is common to find features such as basalt flows, metasediments, 

gabbro bodies juxtaposed together in a mobile belt the size of the WES.

Warden et al. (1982) commented that although the petrological criteria and 

major, minor and trace elements showed an ophiolitic signature the evidence from 

REE was inconclusive. The ultramafics and “lower intrusive members” are enriched 

in LREE and depleted in HREE - this could not be explained by an ophiolitic origin or 

by subsequent alteration (Warden et al., 1982). Comparison with figure 2.4 shows that 

such enrichment in LREE and depletion in HREE is common in Alaskan-type 

intrusions.
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12.Appendix

12.1. Repeat Analyses

Sample
Name Au (ppb) Pd (ppb) Pt (ppb)

Difference (% o f the 
highest value)

Au Pd Pt
OMAC
Genalysis

<2 <2 36 
<5 5 102

0.0 100.0 64.7

OMAC TD8 
Genalysis

<2 15 4 
<5 18 9 0.0 16.7 55.6

OMAC TD9 
Genalysis

<2 37 27 
<5 44 48 0.0 15.9 43.8

OMAC TD10 
Genalysis

<2 2 40 
<5 4 38 0.0 50.0 5.0 j

Table 12.1: A comparison o f Pb Fire Assay results from analyses performed on the same 
samples from OMAC and Genalysis.

Number o f 
Repeats Sample Name

Au
1

Au
2

Elemental Analyses (ppb)

Au Pd Pd Pd 
3 1 2  3

Pt
1

Pt
2

Pt
3

Difference (% o f  the highest 
value)

Au Pd Pt
2 KYR-018-01 0 0 0 0 0 0 28 30 28 0.0 0.0 6.7
2 TYR-008-01 0 0 0 0 0 0 21 21 23 0.0 0.0 8.7
2 TYR-006-01 0 2 0 3 3 3 10 19 10 100.0 0.0 47.4
1 TYR-009-01 0 0 0 0 0 0 60 65 0 0.0 0.0 7.7
1 DYR-023-01 0 0 0 0 0 0 57 52 0 0.0 0.0 8.8
1 YR 07/01 2 0 0 0 0 0 50 49 0 100.0 0.0 2.0
1 DYR-022-01 0 0 0 0 0 0 21 22 0 0.0 0.0 4.5
1 KYC-005-01 0 0 0 0 0 0 21 13 0 0.0 0.0 38.1
1 TYR-007-01 0 0 0 0 0 0 17 17 0 0.0 0.0 0.0
1 DYR-024-01 2 0 0 0 0 0 15 19 0 100.0 0.0 21.1
1 DYR-027-01 22 0 0 2 0 0 13 13 0 100.0 100.0 0.0
1 KTR-035-02 0 0 0 0 0 0 9 7 0 0.0 0.0 22.2
1 TDR 23/01 0 0 0 0 0 0 7 16 0 0.0 0.0 56.3
1 ATR-117-02 0 0 0 10 9 0 2 0 0 0.0 10.0 100.0
1 ATR-081-02 2 0 0 10 9 0 0 0 0 100.0 10.0 0.0
1 AYC-015-01 34 35 0 0 0 0 0 0 0 2.9 0.0 0.0
1 DTR-034-02 70 68 0 0 0 0 0 0 0 2.9 0.0 0.0
1 DTR-044-02 2 0 0 14 14 0 0 0 0 100.0 0.0 0.0
1 DYR-003-01 177 214 0 0 0 0 0 0 0 17.3 0.0 0.0
1 TYR-018-01 45 42 0 0 0 0 0 0 0 6.7 0.0 0.0
1 AYR-011-01 0 0 0 47 45 0 39 38 0 0.0 4.3 2.6
1 TTR-018-02 0 0 0 34 38 0 25 22 0 0.0 10.5 12.0
1 TD9 0 0 0 34 37 0 23 27 0 0.0 8.1 14.8
1 AYR-002-01 2 2 0 0 0 0 17 19 0 0.0 0.0 10.5
1 ATR-057-02 32 35 0 5 0 0 4 3 0 8.6 100.0 25.0
1 AYR-022-01 0 0 0 3 3 0 4 4 0 0.0 0.0 0.0
1 KTR-043-02 32 12 0 5 11 0 4 0 0 62.5 54.5 100.0
1 KTR-053-02 11 13 0 9 9 0 0 0 0 15.4 0.0 0.0
1 KTR-062-02 817 825 0 28 24 0 0 0 0 1.0 14.3 0.0

1 TTR-007-02 3 3 0 22 26 0 18 19 0 0.0 15.4 5.3

1 TTR-035-02 4 4 0 19 17 0 18 12 0 0.0 10.5 33.3

1 DTR-027-02 2 2 0 13 16 0 15 15 0 0.0 18.8 0.0

1 KYR-022-01 5 4 0 15 16 0 15 15 0 20.0 6.3 0.0

1 KTR-063-02 5 4 0 10 8 0 9 8 0 20.0 20.0 11.1

1 TTR-057-02 12 13 0 37 41 0 9 7 0 7.7 9.8 22.2

1 TTR-051-02 19 19 0 4 4 0 7 7 0 0.0 0.0 0.0

1 DYC-008-01 12 13 0 9 9 0 6 6 0 7.7 0.0 0.0

1 TTR-031-02 4 4 0 7 8 0 5 4 0 0.0 12.5 20.0

1 AYC-011-01 23 24 0 5 5 0 4 4 0 4.2 0.0 0.0

1 KTR-049-02 0 3 0 13 13 0 4 5 0 100.0 0.0 20.0

1 ATR-072-02 0 3 0 10 10 0 3 3 0 100.0 0.0 0.0

1 DR 16/01 12 11 0 0 9 0 0 2 0 8.3 100.0 100.0

1 DR 18/01 11 9 0 2 33 0 0 4 0 18.2 93.9 100.0

Table 12.2: A table detailing the repeat analyses performed by OMAC during the course o f the sample
analysis.
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12.2. Analysis o f  Standards

min
max

Pd Pt
ppb) (ppb) (ppb)

264 1637 3883
326 1486 3743
282 1573 3664
270 1633 3653
238 1530 3692
244 1577 3624
986 1512 3739
246 1495 3726
264 1381 3771
226 1582 3783
354 1468 3729
284 1525 3747
236 1517 3708
264 1564 3802
212 1547 3777
292 1608 3778
304 1518 3706
256 1570 3698
238 1553 3768
298 1551 3737
268 1564 3735
230 1504 3658
242 1546 3774
242 1515 3641
248 1498 3719
266 1516 3792
244 1547 3780
254 1528 3649
238 1498 3664
386 1502 3632
264 1503 3717
300 1433 3662
246 1593 3703
278 1531 3776
232 1480 3718
296 1581 3760
224 1553 3736
256 1544 3809
224 1532 3786
290 1540 3734
274 1499 3657
212 1381 3624

986.00 1636.88 3883.36
774.00 255.53 259.37

310 1530 3740

249.68 16.70 6.94

range
Reccomended Value 
Standard SARM-7b 
Precision (variation as 
% o f reccomended 
value)

Table 12.3: A table o f analysis o f the standard sample SARM7b with a summary o f the ranges 
o f values obtained and a measurement o f precision.
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Mg
(0,

Ni Cu Cr Al
1 (ppm) (ppm) (ppm) (%)
2.87 684 2638 132 1.46
2.80 677 2672 115 0.99
3.00 679 2679 128 1.51
2.93 679 2633 122 1.32
2.93 669 2654 131 1.38
2.98 667 2690 126 1.25
3.01 672 2690 129 1.37
2.97 675 2697 124 1.44
2.98 677 2684 125 1.46
2.91 680 2639 122 1.32
2.93 679 2680 121 1.35
2.84 677 2586 114 1.19
2.90 663 2682 120 1.30
2.94 669 2682 123 1.37
2.94 673 2625 128 1.35
2.97 681 2687 121 1.16
2.97 682 2663 116 1.03
2.92 680 2708 118 1.06
2.87 673 2557 114 1.00
2.90 679 2701 117 1.04
2.91 679 2664 114 1.24
2.94 679 2671 116 1.29
3.01 685 2673 123 1.28
2.94 685 2609 125 1.33
2.85 667 2607 113 1.13
2.90 676 2656 123 1.22
2.92 678 2651 126 1.39
2.93 686 2616 112 1.11
2.89 681 2624 114 1.17
2.88 672 2679 116 1.22
2.88 682 2658 118 1.27
2.94 686 2664 124 1.49
2.94 685 2658 120 1.31
2.92 679 2585 125 1.48
2.93 681 2686 119 1.34
2.88 673 2632 121 1.36
2.86 669 2657 123 1.47
2.85 671 2651 118 1.33
2.88 681 2613 116 1.27
2.93 686 2685 120 1.36
2.91 674 2689 116 1.23
2.88 658 2662 115 1.29
2.91 671 2695 115 1.23
2.90 670 2655 113 1.19
2.80 678 2635 123 1.60
2.90 685 2627 119 1.44
2.92 684 2641 124 1.59
2.80 657.83 2556.53 112.38 0.99
3.01 685.98 2707.82 132.05 1.60
0.21 28.15 151.29 19.67 0.62
2.90 683 2650 N/A N/A
7.26 4.12 5.71 N/A N/A

Min 
Max 
Range
Assigned Value 
Precision (variation 
as % of assigned 
value)

Table 12.4: A table o f analysis o f the OMAC laboratories in-house standard with a summary 
o f the ranges o f values obtained and a measurement o f precision.
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Abstract

This thesis covers two separate but complimentary themes. Firstly, work on the spinel composition of 
the ultramafic rocks o f has provided evidence that they formed as Alaskan-type intrusions. This has 
implications both for prospectivity and for the understanding of neoproterozoic plate movements. 
Additionally, the study o f the rock and soil geochemistry has been used to identify exploration targets 
and evaluate the prospectivity o f the major complexes.

It is proposed here that the ultramafic complexes Tulu Dimtu, Kingy, Daleti, Ankori and Yubdo, in the 
Western Ethiopian Shield are Alaskan type intrusions. Alaskan-type intrusions are concentrically zoned 
ultramafic intrusions thought to be the feeder pipes o f volcanoes. They have dunite at the core and 
grade outwards to clinopyroxenite and sometimes hornblendite. These intrusions typically occur in 
continental arc settings such as Alaska, British Colombia and the Urals. This compares with ophiolite 
complexes which are thought to be obducted oceanic upper mantle and crust. The two types of complex 
may be difficult to distinguish because if ophiolites are dismembered and deformed fragments, they 
may resemble Alaskan-type intrusions.

This thesis documents several features o f these Ethiopian complexes that are typical of Alaskan type 
intrusions. Mapping o f the Yubdo complex has shown a circular out crop pattern with concentric zones 
of clinopyroxenite at the edge to dunite at the centre. New mapping of the Tulu Dimtu area has shown 
a similar zoned circular body. Both the Yubdo and Tulu Dimtu complexes show concentric zones of Cr 
values, where the greatest values occur at the edge and the lowest in the centre.

These mafic and ultramafic intrusions are very altered by surface weathering but contain chrome- 
spinels which have a geochemistry which is unlike ophiolites and similar to Alaskan-type intrusions. 
The analysis o f these spinels demonstrates how the compositions o f spinel Fe2+# and Cr# values may 
be used to distinguish between an Alaskan type or ophiolite complexes. In Alaskan-type intrusions, 
spinels with Fe2+# values greater than 0.85 frequently have Cr# values which are lower than 0.5. Such 
low Cr# values in spinels with high Fe2+# values are rare in ophiolite complexes.

The variations in Ni, Cu, Cr and A1 contents of highly altered ultramafics and fresher ultramafics have 
been used to investigate the magmatic and post-magmatic ore forming processes that have influenced 
the Pt and Pd content o f the complexes. It is expected that medium to low temperature hydrothermal 
activity may have had a significant impact on the geochemistry of even the fresher rocks. The 
discovery o f high Pd values and low Pt in lithologies such as talc-schists and quartzite support the idea 
that Pd is more mobile than Pt in medium to low temperature conditions. Furthermore, in the Tulu 
Dimtu Main Intrusion, the altered rocks indicate that Pd has been removed from the magmatic sites of 
concentration. In a few places it is possible to see through the extensive alteration and potential 
magmatic processes can be considered. Within the Tulu Dimtu Main Intrusion and the Main Yubdo 
Intrusion, the most primitive rocks occur at the flanks. Furthermore, it is indicated that sulphide 
segregation may have occurred in the Tulu Dimtu Main Intrusion and Daleti Ultramafic. In the Daleti 
Ultramafic, regardless o f the presence o f sulphides, the Pt and Pd values remain low -  it is therefore 
unlikely that the complex hosts economic grades. However, at Tulu Dimtu and Yubdo, it is 
recommended that any future exploration be targeted at the flanks o f the complexes, where magmatic 
and post-magmatic processes may potentially co-incide to elevate the grade.

Much work has been published to document the nature of platinum-group minerals (PGM) in the 
alluvial and eluvial placers around the Yubdo area and some PGM have been discovered in the 
serpentinsed dunites o f the main Yubdo intrusion. In this thesis further discoveries of PGM have been 
made in the serpentinised dunites and chromites from the Yubdo area.

In the course o f this work new base maps covering the ultramafic complexes and the surrounding 
basement have been produced. These have revealed many smaller ultramafic bodies which are referred 
to here as the Lensoid Ultramafics. Both spinel and whole rock geochemistry supports the hypothesis 
that these are slivers o f rock “sheared-off’ the outside of larger complexes.

The conclusion that these complexes have an Alaskan-type origin has consequences for the 
understanding o f plate movements in this part of the Neoproterozoic Western Ethiopian Shield. 
Additionally, the identification of exploration targets will help focus efforts to uncover any potential 
economic mineralisation.
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Chapter 1: Introduction

1. Introduction

1.1. Introduction

The Western Ethiopian Shield (WES) is 500 km west of the capital Addis 

Ababa (see figure 1.2). It is a Neoproterozoic ancient mining district (United Nations, 

1971; Jelenc, 1966) and the alluvial and eluvial deposits around the Yubdo ultramafic 

complex have been mined for Pt-Fe alloys and Au since 1926 (Mogessie and Belete, 

2000). Yubdo forms part of a line of ultramafic complexes located along a NNE-SSW 

trending structure. The ultramafic complexes from the WES are (from north to south) 

Tulu Dimtu, Kingy, Daleti, Ankori and Yubdo (see figure 1.2). None of these bodies 

are mined on a commercial scale but Pt-Fe alloys are known in the surrounding 

placers. Most of the WES is only accessible on foot. The rocks are covered by a thick 

laterite which is frequently over 15m in thickness and exposure is generally less than 

5%.

Ethiopia is covered by extensive Quaternary and Tertiary flood basalts. In 

some areas, the older rocks can be observed as inliers between these sequences 

(Mohr, 1983). The WES is one of such inliers and has been correlated northwards to 

join the Arabian Nubian Shield and southwards to the Mozambique belt, all of which 

form part of the East African Orogen. Johnson et al. (2004) believe that the WES 

records a history of crustal formation and deformation of around 500Ma in duration, 

this may have begun with a rifting event starting at around 900Ma (Stem, 1994). The 

eastern and western flanks of the WES are orthogneissic and they surround a central 

zone of volcano-sediments and ultramafics (Johnson et al., 2004). These ultramafic 

bodies are the subject of this thesis (see figure 1.2).
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Figure 1.1: A geological map of the WES. (Johnson et al., 2004).

The southernmost ultramafic body (Yubdo) has been the subject of several 

publications (for a review see Mogessie et al., 1999). It is concentrically zoned with 

dunite at the core and clinopyroxenite on the outside (Kazmin and Demessie, 1971). 

The northernmost complex is also the subject of several petrological investigations 

(see Tadesse and Allen, 2005 and Sighinolfi et al., 1993). There are three additional, 

smaller, complexes which occur between Yubdo and Tulu Dimtu, these are Kingy, 

Daleti and Ankori which have been studied very little. All five bodies are highly 

altered and serpentinisation is greater than 50% in each case.

It is estimated that over 2700 kg of Pt has been mined from the laterites of the 

Yubdo area and an inferred resource of 20tons at a grade of 0.4g/m has been 

calculated (Mogessie and Belete, 2000). Although Pt-Fe nuggets are found in the 

rivers around the other five complexes, the origin of these grains is uncertain.
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Figure 1.2: A map of the four field areas of this thesis, showing the largest ultramafic 
complexes and major roads and settlements. The map at the top of the figure is the outline of 

Ethiopia showing the location of the field area.

This thesis is intended to address two issues concerning the ultramafics in the 

WES. Firstly, there is a dispute over the tectonic setting of the complexes, many 

authors regard them to ophiolite complexes but others consider them to be Alaskan- 

type intrusions. Secondly, platinum group minerals (PGM) are extensively 

documented in the placers of the WES. However, little is known about the 

prospectivity of the primary mineralisation. The next two sections (1.2 and 1.3)
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introduce the two issues. The final sections (1.6 and 1.7) outline the way in which 

these issues will be addressed.

1.2. The tectonic setting o f  the ultramafic complexes

There is a dispute about the origin of the ultramafic bodies in the WES. The 

complexes have been spatially linked with intrusions of a similar petrology 

northwards in the Arabian Nubian Shield and southwards in the Mozambique belt 

(Berhe and Rothery, 1986). These have been collectively interpreted as the mantle 

sequences of ophiolites using the criteria specified by Penrose, (1972) and structural 

observations (Berhe and Rothery, 1986). Berhe (1990) further considered these to 

mark a suture zone between east and west Gondwanaland.

However, Mogessie et al. (2000) state that the PGE and chromite chemistry of 

the Yubdo and Tulu Dimtu ultramafics infer the geochemical signature of an Alaskan- 

type intrusion. Thought to mark the feeder pipes of volcanoes (Murray, 1972), these 

concentrically zoned ultramafic complexes have been studied principally in Alaska 

and British Columbia (Nixon et al., 1997; St Louis et al., 1986; Taylor, 1967; Johan, 

2002). They are known in many parts of the world including Northwest Columbia 

(Tistl, 1994, Tistl et al., 1994), Kamchatka and the Russian Far East (Tolstykh et al., 

2000; Tolstykh et al., 2002) and Central Australia (Andrew et al., 1995). Alaskan-type 

complexes commonly occur in lines of discrete intrusions in mobile belt settings 

which also contain ophiolite complexes, for example the Urals, E Russia (Garuti et 

al., 1997; Garuti et al., 2003) and southeastern Alaska (Taylor, 1967).

Mogessie et al. (2000) suggested that an Alaskan-type intrusion origin for 

these bodies indicates that the Mozambique belt and Arabian Nubian Shield are not 

spatially linked and may only have an inter-fingering relationship.

This thesis includes an extensive study of the spinel geochemistry from the 

ultramafic samples throughout the WES (chapter 7). The results are compared with 

published spinel analyses from Alaskan-type intrusions and ophiolites worldwide.
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1.3. The development o f  Pt and Pd

Research into Pt and Pd in the area has focused on studies of placer platinum 

group minerals (PGM) from the Yubdo area (see Belete et al., 2000 and Mogessie et 

al., 1999). Further mineralogical studies have characterized some PGM from 

serpentinised dunite within drill core (Mogessie et al., 1999). The only published 

geochemical work on the area is that of Mogessie et al. (1999) and Signolfi et al. 

(1993). Both studies discuss the likely effect of serpentinisation and comment only 

briefly on the mechanisms by which Pt and Pd may have become concentrated into 

the primary rocks before alteration.

An assessment of the geochemistry of altered ultramafic rocks with fresher 

rocks is included in this thesis (chapter 6). This may uncover some of the ore forming 

processes by which Pt and Pd may have been concentrated and hence develop future 

targets for exploration.

1.4. The mining history o f  the WES

Although it has been speculated that platinum grains from Yubdo were used to 

decorate objects in Egypt in the 7th century BC (Mogessie and Belete, 2000), the 

platinum deposit at Yubdo is generally regarded to have been discovered by a Russian
thmissionary sometime in the early 20 century. In their account of the mining history 

of the area, Mogessie and Belete (2000) state that large scale extraction did not begin 

until 1926. Mining was conducted initially under a French company, which was then 

taken over by and Italian firm and by 1941 the mine was in the hands of the 

government. During the 1960’s some mining and exploration was carried out by the 

Duval corporation. At the time of writing mining licences for the Yubdo and Sodu 

areas are held by Golden Prospect Mining (Ethiopia) Ltd, a wholly owned subsidiary 

of Golden Prospect Pic.
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Y ubdo v illa g e

Figure 1.3: An aerial photograph of the opencast workings of the laterite in the Yubdo area 
(within the black lines) in 1957. The bright line is the course of the Birbir river.

The mining was conducted in two large open pits (see figure 1.3). In 2001, 

mining was conducted by pumping water into reservoirs high up in the soil profile. 

This water is then released and allowed to flow through the laterite where the soil 

particles are then taken into suspension. These waters then flow through a sluice 

system whereby selected fractions are panned to produce a concentrate. A study of the 

effectiveness of these systems was performed by Childs (2001). In the past these 

methods have been assisted by the use of monitors and also shaker tables (Mogessie 

and Belete, 2000).

Artisanal mining of both platinum group minerals and Au grains from stream 

sediments is common throughout the WES. It is not possible to determine when this 

practice started, the skill of panning has been past down through several generations 

of the local people. During the course of the fieldwork conducted for this project, Tan 

Range Exploration Corporation owned exploration licences for the area around Tulu 

Kapi and the eastern half of the Tulu Dimtu Main Intrusion.
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1.5. The conduct o f  the study

This project was conducted in co-operation with and partially sponsored by 

Golden Prospect Mining Co Ltd (£)PM)- As a result these circumstances, there were 

certain constraints on the way in v/hich the work could be performed. As detailed in 

chapters 7 and 8, many samples were collected and analysed for a suite of chemical 

elements. Although the author participated in the exploration programme which 

collected the samples, the geochemical analysis was conducted without his 

involvement.

Three bore-holes were Sunk into the Yubdo Main Intrusion by the Duval 

corporation in 1969 (for a review See section 2.3.5). Studies of these cores were 

performed by Mogessie et al. (199^) afld Belete et al. (2000). The rock retrieved by 

this method has been kept in archive by the Ethiopian Ministry of Mines and was 

available for study by members of the OPM team. Some geochemical analyses were 

performed on a few grab samples fjroia within the core. A description of the core itself 

was not included within this study as this work had already been performed by other 

workers (see above). Furthermore, the manner in which samples had been taken from 

the drill-core meant that a scientific analysis of the geochemical variations was not 

possible.

1.6. Aims and methods used in the thesis

This thesis aims to use Ni, Cu, Cr> Al and Mg to investigate the differences in 

geochemistry between altered and fresher ultramafic rocks and hence suggest the 

mechanisms by which Pt and pd havs been concentrated. Furthermore, it aims to use 

spinel geochemistry investigate the tectonic origin of the ultramafic complexes of the 

WES with particular reference to Alaskan'type intrusions and ophiolites. The methods 

used for each theme are summarised as follows.

In chapter 8, the distribution of Ni, Cu, Cr, Al, Pt and Pd in the ultramafics is 

examined. The rocks are classified as fresher or altered (see section 8.3.1). The 

distribution of these elements has iead the development of ideas about potential 

magamtic and post-magmatic ore forming processes. These allow an assessment of
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the prospectivity of the ultramafic bodies of the WES and the identification of 

possible exploration targets. To compliment this, a discussion of the possible factors 

affecting the distribution of Pt and Pd in the overburden of the WES is also included 

(see chapter 7).

To evaluate the tectonic origin of the ultramafic complexes, the geochemistry 

of spinels is studied (see chapter 7). The results of this analysis are compared with 

published spinel analyses from Alaskan-type intrusions and ophiolites. Furthermore, 

the relative influence of alteration and magmatic processes is evaluated using core and 

rim analyses and comparison with published work.

/. 7. Layout o f  the thesis

In order to fulfill the above aims, chapter 2 describes the geological 

background to the area, introduces Alaskan-type intrusions and ophiolites, and 

discusses the key differences between them. Subsequently, chapter three describes the 

alteration to which the rocks have been exposed and the key minerals of interest to the 

thesis. Chapters 4 and 5 show the production of geological base-maps for the 

subsequent chapters using the analysis of terrain and geological observations. To 

support an understanding of the alteration processes in the Main Yubdo Intrusion, a 

magnetic survey was carried out, this is described in chapter 6. As a way of 

understanding the redistribution of the pathfinder elements in the overburden, chapter 

7 describes the geochemistry of the soils. Chapter 8 describes an attempt to use rock 

geochemistry to ascertain the prospectivity of the complexes. Following this, the 

geochemistry of spinels is described in chapter 9 in order to investigate the tectonic 

origin of the complexes.

Each results chapter (4, 5, 6, 7, 8 and 9) considers each of the four geographic 

areas shown in figure 1.2 in turn. At the end of each results chapter the conclusions 

from all four areas is compared. Finally, in chapter 9 the conclusions for each method 

are summarized for each geographic area.
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2. Literature Review

2.1. Introduction

Due to its position within the large Precambrian shield that extends from Egypt to 

Mozambique there have been several studies of the structural aspects of the WES. These 

are used in section 2.2 to set this thesis into context within East Africa. Studies of the 

ultramafic rocks in the area are less common, although there is an abundance of 

petrological studies which have been undertaken and these are reviewed in section 2.3. 

Two preliminary geochemical studies have been published and section 2.3 describes 

these along with a review of the research published on the famous Pt-Fe nuggets from 

Yubdo (see section 2.3.5)

An important theme of this thesis is the question of the tectonic origin of the ultramafic 

complexes. Section 2.4 introduces the structure, petrology, mineralogy and geochemistry 

of the Alaskan-type intrusions and ophiolite complexes and proposes several differences 

that may be used to distinguish the two.

2.2. Geological Setting

Most of Ethiopia is covered by Tertiary or Quaternary volcanic flood basalt sequences. 

The area of western Ethiopia examined in this thesis occurs within a window through this 

basalt plateau which allows the underlying Precambrian basement to be observed (United 

Nations, 1971). This 100 by 300 kilometer inlier is a N-S trending mobile belt hosting: 

metavolcano-sedimentary sequences, zones of gneiss and migmatite and the ultramafic 

complexes that are the subject of this study.

Using remote sensing, Berhe and Rothery (1986) linked the ultramafic complexes in 

western Ethiopia with those further north and south in East Africa and identified the 

position of five N-S trending sutures in this part of East Africa. In his discussion of the 

tectonic consequences, Berhe (1990) considers that these sutures with remnant ophiolites
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represent the remnants of back arc basins, supra-subduction zones and sutures between 
two continental blocks. Berhe (1990) identified the Baraka -  Yubdo - Sekerr suture 
(which includes the ultramafic complexes in this study) as being juxtaposed against a 

similar suture from Eastern Sudan that may continue southward into Tanzania. Satellite 
interpretation has shown that the structure continues northwards to Baraka in NE Sudan 
and Eritrea (Berhe and Rothery, 1986).

Figure 2.1: The “ophiolite belts” o f  northeast Africa (modified after Berhe, 1990).

The ultramafic complexes covered by this study are located within the the Western 
Ethiopian Shield (WES) which itself forms part of the greater East African Orogen 
(EAO). The deformational history of the EAO is divided into two phases: structures 
associated with collision and post accretionary structures (Abdelsalam and Stern, 1996). 

Of the collisional structures, two suture types are identified: arc-arc and arc-continentaL
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The Baraka -  Yubdo -  Sekerr suture is the result of the accretion of two arc terranes 

(Abdelsalam and Stem, 1996). The deformation within this suture is characterized by 

north trending sinistral transpression. Arc-arc sutures in the EAO typically have nappes 

containing ophiolitic material associated with them, and these were steepened by upright 

folding during the final stages of collision (Abdelsalam and Stem, 1996). Another aspect 

of the post accretionary deformation is the development of northwest trending strike slip 

faults and shear zones (Belete et al., 2000; Abelsalam and Stem, 1996).

The Western Ethiopian Shield (WES) records a history of crustal formation and 

deformation within the EAO lasting around 500Ma (Johnson et al., 2004). The shield is 

divided into three lithotectonic domains: the Baro, Geba and Birbir domains (Johnson et 

al., 2004; Ayalew et al., 1990; Allen and Tadesse, 2003). These domains strike NNE- 

SSW with the Birbir domain in the centre, this trend is parallel to the trend of the EAO. 

The Birbir domain hosts the ultramafic complexes.

The Birbir domain comprises mainly either schistose metaclastic or metavolcanic 

sequences. The metaclastics are typically pelites or greywackes with intercalated 

metavolcanics. The metavolcanic sequences are typically metamorphosed to greenschist 

facies and sometimes contain actinolitic hornblende. The protoliths for such 

metavolcanics are believed to be andesitic tuffs and felsic sediments which are commonly 

associated with arc settings (Johnson et al., 2004). Some authors refer to the domain 

hosting the ultramafics as the Kemashi domain (Allen and Tadesse, 2003; Tadesse and 

Allen, 2005). These rocks of the Birbir or Kemashi domain are pervasively deformed by 

NNE-SSW trending structures with the strain taken up by folding and westerly directed 

thrusting. Post accretionary tectonics mark the WES by the imprint of NNE-SSW 

transcurrent shearing and strike-slip faulting on top of the earlier N-S directed folds 

(Johnson et al., 2004). The shear zones related to this late stage of deformation appear to 

have been the conduits for hydrothermal fluids and further north in Baruda these deform 

the flanks of the mafic-ultramafic complexes (Braathen et al., 2001).
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2.3. Previous Work on the Ultramafics o f the WES

2.3.1. Introduction

Studies of the ultramafic rocks in the WES fall into two categories. Some authors 

consider the ultramafic complexes together and relate them to the other lithological and 

structural domains in the region. Other studies have focused on the individual bodies. In 

the following sections, the regional studies including the ultramafics are described and 

then an account of the work on individual ultramafic complexes is summarised.

2.3.2. Regional Studies of the Ultramafic bodies

The Yubdo complex is considered to be the southernmost ultramafic body in the WES. 

There are several more bodies north of Tulu Dimtu (these are not covered in this study). 

These additional bodies include: Jaja Kubsa (Alemu and Abebe 1998), Korka Meti 

(Alemu and Abebe, 1999; Tadesse and Allen, 2005) and Baruda (Braathen et al., 2001; 

Allen and Tadesse, 2003). The publications summarized in this section treat all 

complexes together and therefore some observations described may have originated from 

outside the coverage area of this study.

There is a general consensus that the ultramafic complexes studied here are elongate and 

occur in a zone associated with metavolcanics and metasediments (Johnson et al., 2004; 

Allen and Tadesse, 2003; Alemu and Abebe, 1998; Warden et al., 1982). The bodies are 

orientated parallel to the regional tectonic fabric (NNE-SSW). Allen and Tadesse (2003) 

report the presence of associated gabbros, diorites and plagiogranites. One publication 

states that the terrain associated with the ultramafic units is low-lying with some elevated 

areas where the rocks are less altered (Tadesse and Allen, 2005) but another reports that 

the ultramafics form prominent ridges almost devoid of vegetation (Alemu and Abebe,

1998).

Altered dunites and pyroxenites have been observed in all studies of petrology. Several 

publications report that the dunites are completely serpentinised, however, Alemu and
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Abebe (1998) also report that fresh olivine is present at up to 20% in some samples. 

Furthermore, Tadesse and Allen (2005) describe metre-scale blocks of harzburgite, 

lherzolite and wehrlite within ultramafic schists. Warden et al. (1982) observed a relict 

cumulate texture in some samples from the WES. Tadesse and Allen (2005) also report 

only partial replacement towards the centre of the ultramafic masses. Alteration minerals 

such as talc and carbonate are found along thrust faults and shear-zones and also in rims 

around massive serpentinite blocks (Alemu and Abebe, 1998; Warden et al., 1982). 

Pyroxenite samples show variable alteration to chlorite, albite, epidote and sometimes 

actinolite (Johnson et al., 2004). Furthermore, pyroxene psedomorphs containing 

secondary hornblende suggests lower amphibolite facies metamorphism (Warden et al. 

1982). In most publications, the strongest alteration is reported closest to fault or shear- 

zones. All descriptions of petrology report the presence of magnetite and chromite.

An account of the whole-rock geochemistry of the ultramafic rocks in the WES is 

provided by Warden et al. (1982) and is accompanied by a comprehensive study of 

alteration petrology. Chondrite normalized REE analyses show that the intrusive 

ultramafic rocks of the area have a very strong LREE enrichment and HREE depletion.

2.3.3. Tulu Dimtu and Kingy

This section covers Tulu Dimtu and Kingy together. This is because the publications 

summarized here do not distinguish between the two and they are jointly referred to as 

“Tulu Dimtu”. Later in this thesis these two areas are described separately.

The Tulu Dimtu area was mapped at a scale of 1:50,000 by de Wit and Aguma (1977), 

they identified a large mass of partially serpentinised dunites surrounded by serpentinite 

schists. They also identified a zone of other more elongate bodies which extend 

southwards into the Kingy area. Many accounts comment on the fact that the largest 

ultramafic body in the area stands out as a conspicuous hill which is barren of vegetation. 

The rocks forming this large hill are referred to in this study as the Tulu Dimtu Main 

Intrusion.
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The most comprehensive study of the petrology of the Tulu Dimtu area is that of de Wit 

and Aguma (1977), but further descriptions are given by Sighinolfi et al. (1993) and 

Alemu and Abebe (1998). The lithologies discovered in the Tulu Dimtu and Kingy areas 

include dunite, olivine-clinopyroxenite and homblendite. Serpentinisation is never 

reported at less than 80% and it is often over 95% (de Wit and Aguma, 1977; Signolfi et 

al., 1993). The relict outlines of forsteritic olivine crystals with diameters of 0.2-0.5mm 

are observable and olivines can be observed now as chrysotile mesh and window 

structures. Fine grained magnetite occurs along silicate grain boundaries and Cr-spinel 

and chromite are also present. Furthermore, de Wit and Aguma (1977) describe original 

“magmatic” (sic, see chapter 3) galena and barite crystals within dunite. The olivine- 

clinopyroxenites include clinopyroxene crystals of up 0.5mm which all have tremolitic 

rims. There are believed to have been at least two phases of alteration which include one 

of serpentinisation and a separate silicification phase (de Wit and Aguma, 1977; Alemu 

and Abebe, 1998).

A study of the geochemistry of the rocks in the Tulu Dimtu complex was undertaken by 

Sighinolfi et al. (1993). The PGE analysed from serpentinised dunites were depleted with 

respect to chondrite, but Pt was found to be more enriched than the other elements. 

Furthermore, Sighinolfi et al. (1993) only found significant PGE values in serpentinised 

dunites and the silicified equivalents were almost barren. Although Ni is reported to 

increase with serpentinisation, the distribution in the altered lithotypes is similar to that of 

the less altered rocks suggesting that Ni remobilization is a local effect (Sighinolfi et al,

1993). A depletion in Cu values with serpentinisation led Sighinolfi et al. (1993) to 

suggest that serpentinisation had removed sulphides and chalcophile elements from the 

complex.
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Figure 2.2: The average chondrite normalized Ru, Rh, Pt and Pd analyses for dunite from the Tulu

Dimtu area (Sighinolfi, 1993).

2.3.4. Daleti, Ankori, Tulu Kapi and Keley

The ultramafics at Daleti (refered to in this study as the Daleti Ultramafic) occur in two 
parts, firstly a prominent ridge trending NE-SW and secondly a lower-lying area to the 
northeast (United Nations, 1971). The ridge is barren of vegetation. A report by the 
United Nations (1971) suggests that these two areas are offset by intersection faults and 
at least partially surrounded by diorites and gabbros. Athough the limited exposure only 
shows serpentinised dunite, a drill-hole has revealed an alternation of dunite and 
peridotite bands (Mogessie and Hoinkes, 1998). These bands are believed to be 
“concentric zoning” (United Nations, 1971).

The petrology of the ultramafic samples often reveals completely serpentinised rocks 
(United Nations, 1971; Mogessie and Hoinkes, 1998). However relict olivine grains can 
sometimes be observed with a mesh of chrysotile and antigorite. Fine grained magnetite 
and chromite is sometimes observed (Mogessie and Hoinkes, 1998). The faulted eastern 
contact of the intrusion is rich in hydrous alteration minerals such as talc, talc-serpentine, 
chlorite and chlorite-serpentine (United Nations, 1971). Birbirite can be found on the 
crest of the ridge (see chapter 3 for a definition of birbirite).

The United Nations report (1971) briefly mentions the Ankori Ultramafics near the road 
from Tulu Kapi to Genji. No fresh rocks were observed by the team of the United
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Nations (1971) and most samples were serpentinite or talc-serpentine. The complex is 

reported to host lenses of chlorite and actinolite schists. Mogessie and Hoinkes (1998) 

also report the presence of smaller serpentine bodies in the area.

2.3.5. Yubdo, Andu and Sodu

The maps of the Main Yubdo Intrusion generally show a “pear” shaped intrusion 

(Kazmin and Demessie, 1971). The elongate northeast end of the intrusion forms a NNE- 

SSW trending prominent ridge which is barren of vegetation. The United Nations (1971) 

report that the eastern contact of the intrusion dips gently to the east and that further 

ultramafics to the north are caps of the same intrusion. The western contact is reported to 

be a steeply dipping thrust fault associated with shearing (United Nations, 1971). A 

system of NNE-SSW trending “en-echelon” shear-zones is said to cross-cut the centre of 

the complex. Furthermore, a set of WNW-ENE transcurrent faults are recorded that are 

frequently associated with both shearing and quartz-veins. The ultramafics are found to 

be zoned having dunite at the core, with peridotite then pyroxenite surrounding it (United 

Nations, 1971; Mogessie and Hoinkes, 1998). Some peridotites are found to be 

intercalated with dunite in the eastern and southern parts of the intrusion (Mogessie et al., 

1999). Several cross-cutting diorite dykes are reported (United Nations, 1971). Most of 

the geological features recorded in the literature are also mentioned in a drilling report by 

the Duval Corporation (Howell, 1969). All the drill holes were sunk into the dunite zone 

and they only intersected dunite and peridotite layers. The drill core also intersected 

hairline magnetite veinlets which extend along fault zones and talc-chlorite dykelets.

There are two large studies of the petrology (United Nations, 1971 and Mogessie and 

Hoinkes, 1998) and these are supplemented by the work of Belete et al. (2000) and 

Mogessie et al. (1999). All studies report that the central dunites are serpentinised to a 

large degree and a relict cumulate texture can be observed (Mogessie and Hoinkes, 1998; 

Mogessie et al., 1999). The olivines have a forsterite content of 81-84% (Mogessie et al.,

1999) and are typically rimmed by talc, carbonate and opaque minerals. Pyroxene is 

mainly diopside and is associated with chlorite. The United Nations report (1971)
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commented that pyroxenes tend to be coarser than olivine minerals and are often found 

with tremolite and chlorite. Euhedral and subhedral chromites with altered rims can be 

observed in all the ultramafic host rocks. The United Nations (1971) report the 

occurrence of pyrite and arsenopyrite in the shear-zone on the northeastern contact of the 

intrusion.

Platinum-group minerals (PGM) have been found in both the rocks and placers around 

Yubdo. The two largest petrological studies report sperrylite (PtAs2 ) in both dunite and 

pyroxenite (United Nations, 1971; Mogessie and Hoinkes, 1998). Furthermore, 

Augustithis (1965) discovered sperrylite in birbirite samples. The more systematic 

accounts of primary PGM in the area are of Pt-Fe nuggets in both chromite and 

serpentinite (Belete et al., 1999; Belete et al., 2002). These were discovered in the 

boreholes sunk by the Duval Corporation (Howell, 1969). The Pt-Fe alloys in the 

chromite appear to be rounded in shape and contain minor Ir (Mogessie et al., 1999). The 

Pt-Fe alloys (with minor Rh and Cu) found in the serpentinites are reported to be elongate 

and between 20pm and 30pm (Mogessie et al., 1999).

The placer Pt-Fe nuggets from Yubdo historically generated controversy over the 

formation of Pt-nuggets (Bowles, (1986); Hattori and Cabri, 1992). All nuggets reported 

from Yubdo are Pt-Fe (isoferroplatinum and tetraferroplatinum) in composition and 

Belete et al. (2000) analysed a wide variety of inclusions from these nuggets. The most 

abundant inclusions found were hollingworthite (RhAsS), genkinite ((Pt,Pd)4Pb3), 

irarsite (IrAsS), platarsite (PtAsS) and native Os.

2.4. Alaskan-type intrusions versus ophiolites

2.4.1. Introduction

Alaskan-type complexes and ophiolites represent different tectonic settings and have 

differing implications for mineralisation. Ophiolites are fragments of ancient oceanic 

lithosphere now emplaced on land at fossil subduction zones (eg Gass, 1990). The setting 

of Alaskan-type complexes is less well defined. There have been many attempts to
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explain the characteristics of Alaskan-type intrusions (see Johan, 2002). The generally 

accepted model is that they originate as the feeder pipes of volcanoes in continental 

subduction zones (Murray, 1972).

Both comprise mafic and ultramafic sequences and considering the two genetic models, it 

may at first glance be hard to understand why the two may be confused. However the 

various modifications and complications of the models result in some overlap in 

structure, petrology, mineralogy and geochemistry. The ophiolite descriptions given here 

focus on the Troodos massif of Cyprus and the Semail nappe in eastern Arabia, as these 

provide the best exposed and studied complexes.

2.4.2. Scale of Alaskan-type intrusions and ophiolites

Complete ophiolite complexes typically consist of a basaltic unit predominantly 

composed of up to 0.5 to 1 km thickness of pillow lavas and sheeted dykes. This in turn 

is underlain by plutonic gabbro and ultramafic crustal units which in the Oman ophiolite 

make up a total of 3.6 km in thickness (Nicolas et al., 1996) and lie on top of mantle 

lherzolite or harzburgite which may also be several km thick. These sequences extend 

along strike for 450km (Lippard et al., 1986). Ophiolites are often truncated at the base 

by a thrust, below which is a metamorphic aureole that continues into lower grades of 

metamorphism away from the contact with the ophiolite (Gass, 1990).

In contrast, Alaskan-type intrusions are concentrically zoned with dunite in the centre 

grading outwards to clinopyroxenite and homblendite, they are often associated with an 

outer gabbro zone. In many cases, one or more of these zones may be missing from the 

complex. The two largest Alaskan-type intrusions include Nizini Tagil (70km2) and 

Tulameen (80km2), but most range between 12km2 and 40km2 (Johan, 2002).

Both ophiolites and Alaskan-type intrusions are commonly highly fragmented. The 

Troodos and Oman complexes display the full lithological sequence and both are exposed 

over several hundreds of square kilometers. However, most ophiolites are much smaller,
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are frequently highly deformed and occur in fault bounded blocks. The primary igneous 

textures of ophiolites are offset and juxtaposed against country rocks by thrust faulting 

related to their emplacement onto continental crust. Similarly, Alaskan-type complexes 

such as the Hickman and Polaris, British Columbia (Nixon et al., 1997) are highly 

disrupted by faulting and other types of deformation. There are further complications in 

that the proportions and sizes of primary igneous lithologies in Alaskan-type complexes 

may vary. The complete zonal structure of Alaskan-type intrusions is only seen in a few 

localities such as the Konder and Inagli intrusions of the Aldan shield, Eastern Siberia 

(Malitch, 1991) and Alto Condoto complex in NW Columbia (Tistl et al., 1994; Tistl,

1994). Konder and Inagli show central dunite cores comprising 60% of the total volume 

whereas in the Alto Condoto complex the dunite occupies around 20% of the intrusion. 

As with ophiolites, Alaskan-type complexes may either have one or more zones missing 

and/or the zonal structure could be disrupted by deformation. In some cases the central 

dunite core is missing, such as in the Duke Island western body (Taylor, 1967), Gnat 

Lakes and Menard Creek (Nixon, 1997). In others, there is no clinopyroxenite zone as in 

Duke Island East, Annette Island and Blashke Island (Taylor, 1967).

2.4.3. Structure of Alaskan-type intrusions and ophiolites

The large components of ophiolites (described above) cover much larger areas than those 

of Alaskan-type complexes. However, smaller features of fragmented ophiolites may 

resemble Alaskan-type intrusions (see figure 2.3). Lippard et al. (1986) and Robertson 

and Xenophontos (1993) describe how the ultramafic rocks of ophiolites within smaller 

features occur as three distinct lithological associations:

• The Mantle sequence: a residual suite of massive lherzolite or harzburgite 

frequently containing dunite pods.

• The Crustal layered sequence: a rhythmically layered series of dunite, 

wherlite and pyroxenite.

• The Late intrusive complexes: usually composed of wehrlite, peridotite or 

gabbro; these plutonic bodies intrude the crustal sequence.
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C olu m b ia  (F ind lay, 1 969 )

D u n ite O liv in e -c lin o p y ro x en ite G abbro

Figure 2.3: Schematic diagrams o f  the mafic and ultramafic units o f the Josephiene Ophiolite and 
Tulameen Alaskan-type intrusion showing similar zoned outcrop patterns (modified from Findlay,

1969 and Harper, 1984).

Dunite bodies are common in the uppermost parts of the mantle sequence (Roberts and 
Neary, 1993; Gass, 1990). These bodies have relatively sharp interfmgering contact 
relationships with the enclosing harzburgite (Gass, 1990). They are irregular with 

anastomosing offshoots. The more tectonised bodies, closer to the paleo Moho, are more 
elongate (Lippard et al., 1986). In the Oman ophiolite, dunites are generally under 100m 
in length but extremely tectonised and elongate bodies can be up to 14km in length 
Lippard et al., 1986). The dunites themselves envelop nodular, massive and schlieren
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chromitite deposits, these display a gradational relationship with their host (Roberts and 

Neary, 1993).

A gabbroic complex is an essential component of a complete ophiolite as defined at the 

Penrose Conference in 1972 (Penrose, 1972). In the Semail ophiolite this is represented 

by the layered series consisting of a complex association of 0.5cm to 2m rhythmic layers 

of interbedded gabbro, dunite and wehrlite. Contacts are gradational or sharp and the 

layers are traceable up to 100m. A number of bodies cross-cut the Oman layered series 

including wehrlite, gabbro and pegmatitic gabbros (Lippard et al., 1986). Showing a 

remarkable similarity with the gabbros in Oman, the layered series in the Troodos 

ophiolite consists of gabbros with dunite and wehrlite displaying rhythmic layering 

ranging from 0.5cm to 2m in width (Gass, 1990).

The Late Intrusive Complexes in the Oman ophiolite vary in size from around 1km up to 

5km in diameter, although some peridotite-gabbro complexes cover less than 1km2 

(Lippard et al., 1986). The structures of these intrusions vary considerably, they are 

generally crudely layered and irregular with sharp cross-cutting contacts with the upper 

crustal rocks. One complex is a large plutonic body, but others are regarded as dykes or 

sills. The layers often consist of coarse grained wehrlites with subordinate gabbro 

sometimes grading into lherzolites (Lippard et al., 1986).

In contrast to the layering in ophiolites, Alaskan-type intrusions exhibit a pipe-like 

concentrically zoned structure with a dunite core (Taylor, 1967; Johan, 2002). The 

idealized sequence displays dunite surrounded successively by clinopyroxenite, 

homblendite and monzonite-gabbro rims. The contacts at the rim of the dunite core of 

and Alaskan-type complex are typically gradational and it is common to find olivine- 

bearing clinopyroxenite rafts. However, dunite to clinopyroxenite contacts in ophiolites 

can be either sharp or gradational. The contact between Alaskan-type gabbro zones and 

the associated ultramafics is normally sharp (Johan, 2002; Taylor, 1967), however, the 

gabbros of ophiolites have either sharp or gradational contacts. Massive chromitite lenses 

and pods occur at the rims of some Alaskan-type intrusions (Nizini Tagil, Garuti et al.,
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1997). In ophiolites, chromitites also form in dunite pods in the mantle sequence, 

however, they are more abundant towards the centre of each dunite body (Roberts and 

Neary, 1993).

Both ophiolites and Alaskan-type intrusions are often disrupted and deformed to the point 

at which they are indistinguishable on the basis of structure. Therefore, based on structure 

or proportions of lithotypes alone, it is difficult to distinguish between an Alaskan-type 

intrusion and a dismembered ophiolite.

2.4.4. Petrology and Mineralogy

The mantle sequences of the Semail and Troodos ophiolites consist of variably 

serpentinised peridotites (85%) with associated lherzolites and dunites (5 to 15%) (Gass, 

1990; Lippard et al., 1986). The harzburgites are medium to coarse-grained and are 

composed of 75 to 85% olivine and 15 to 20% orthopyroxene. Within these, 

clinopyroxene forms an average <1% abundance and a maximum of 5% of the mode and 

chrome spinel forms 0.5 to 2%. Chromite is a ubiquitous and accessory phase. The 

dunites typically comprise >98% olivine and <2% chromite and are largely massive 

dunite with chromite segregations (Gass, 1990; Lippard et al., 1986).

The dominant lithology in the Layered Series is gabbro with dunites (including minor 

chromite) and wehrlite as the other main rock types (Gass, 1990). The primary minerals 

of the Semail and Troodos ophiolites are plagioclase, clinopyroxene, olivine, chrome 

spinel, orthopyroxene, hornblende and titanomagnetite (Lippard et al., 1986; Gass, 1990). 

Within each cyclic unit of the Semail Nappe the most common crystallization sequence 

shows that olivine and chromite form the earliest phases, followed by pyroxene and 

plagioclase as intercumulus phases, then titanomagnetite and hornblende as minor phases 

(Lippard et al., 1986). This means that the most common rock sequence is: dunite —*■ 

wehrlite —► olivine-gabbro —> gabbro (Gass, 1990). Other ophiolites can display differing 

orders of crystallization including olivine —► plagioclase —► clinopyoxene (eg the Lizard 

ophiolite).
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The Late Intrusive Complexes of the Semail are divided into two broad groups: gabbro- 

diorite-plagiogranite bodies and peridotite-gabbro complexes (Lippard et al., 1986; 

Browning and Smewing, 1981). The former composed mainly of layered gabbros, 

diorites and subordinate plagiogranite (Lippard et al. 1986). These gabbros are typically 

medium grained with plagioclase and interstitial clinopyroxene grading upwards into 

coarser diorites. The Mashin intrusion is a typical peridotite-gabbro complex in the 

Semail. Lippard et al. (1986) describes this as wehrlite grading upwards into coarse 

grained gabbros and diorites. The wehrlites are typically coarse grained poikilitically 

enclosed by clinopyroxenes and orthopyroxenes. Smaller peridotite-gabbro intrusions 

sometimes grade from wehrlite into lherzolite (Lippard et al., 1986).

Alaskan-type intrusions are composed of dunite, olivine-clinopyroxenite, 

clinopyroxenite, homblendite and gabbro zones (Taylor, 1967). This compares with the 

more orthopyroxene-rich lherzolites and harzburgites which dominate ophiolite mantle 

sequences. Alaskan-type intrusions are noted for the absence of orthopyroxene. 

Considered on their own, the petrologies of the ophiolitic crustal sequence are similar to 

the zones of Alaskan-type intrusions. However, in Alaskan-type intrusions the contact 

between clinopyroxenites and gabbros is generally sharp whereas gabbro contacts in 

ophiolites may be either sharp or gradational. Additionally, plagioclase in Alaskan-type 

complexes is only observed in the peripheral homblendite zone whereas it is ubiquitous 

in the typical ophiolite crustal sequence. Accessory chromite in Alaskan-type intrusions 

occurs exclusively and throughout the dunite zones (Johan, 2002). Alaskan-type 

intrusions show the crystalisation sequence olivine —► clinopyroxene —► plagioclase 

(Murray, 1972). The same crystallization sequence is observed in the Semail and Troodos 

ophiolites although some complexes show plagioclase crystalising before clinopyroxene. 

In both Alaskan-type intrusions and ophiolites, olivine generally crystallizes first.
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2.4.5. Rare Earth Elements (REE)

Godard et al. (2000) showed that mantle sequence dunite pods from the Semail Nappe are 
highly depleted in REEs with respect to chondrite. The patterns show a smooth positive 
slope from La to Lu (Figure 2.4).

Light REEs from the Layered Series in the Semail Nappe are slightly enriched compared 
to chondrite (Lippard et al., 1986), however, analysis of the CY-4 drill core from the 
Troodos ophiolite shows considerable depletion in LREE. These wide ranging values 
converge for the heavier elements.

The Late Intrusive Complexes of the Semail Nappe display an enrichment of REE with 
respect to chondrite (figure 2.4). A slightly positive slope is observed with a pronounced 
negative Eu anomaly (Lippard et al., 1986).

Alaskan-type intrusions,
100 Johan

The Oman Ophiolite
Lippard et al. (1986)

Figure 2.4: The typical REE geochemistry o f Alaskan-type intrusions compared to Oman ophiolite
(Johan, 2002; Lippard et al., 1986).
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Alaskan-type intrusions are generally enriched in REE with respect to chondrites and the 

Late Intrusives complexes of the Semail Nappe are enriched to the same extent. These 

late Intrusive Complexes show a similar degree of enrichment, however, they have 

positive slopes. In general, the REE patterns from the Alaskan-type intrusions of 

Owendale and the Urals display gentle negative slopes with only slight Eu anomalies 

(Fershtater et al., 1997; Johan, 2002). This also contrasts with the mantle sequence 

dunites which display severe depletion and positive slopes. Commonly, the REE 

abundances in ophiolites show pronounced anomalies such as Ce, Eu and Gd - only broad 

anomalies are observed in Alaskan-type intrusions (figure 2.4).

2.4.6. Platinum-Group Elements

Platinum-group elements (PGE) in ophiolites are depleted in comparison with chondrite, 

they show a generally neutral slope with Os, Ir and Ru enrichment, however, some 

samples are slightly enriched in Rh, Pt and Pd (figure 2.5). Table 2.1 compares Pt and Pd 

values, it is observed that Pt/Pd ratios for dunite pods in ophiolite complexes worldwide 

are generally below 7.

PGE abundances for the Troodos Layered Series show significant depletion with respect 

to chondrite, however, they are slightly enriched in Rh, Pt and Pd. In ophiolites Pd 

typically predominates over Pt and a negative Ru anomaly is rarely observed (Prichard 

and Lord, 1990).
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Figure 2.5: A  comparison o f  the chrondrite normalized PGE abundances for Alaskan Type 
intrusions and the Troodos ophiolite. The Alaskan-type intrusions show strong negative Ru 

anom alies and a high Pt/Pd ratios when compared to ophiolites (After Johan, 2002 and Prichard
and Lord, 1990).

Alaskan-type intrusions frequently display a negative Ru anomaly when displayed on a 
chrondrite normalised PGE diagram (Johan, 2002). The PGE patterns in the Troodos 

ophiolite rarely have negative Ru anomalies (Prichard and Lord, 1990). The elemental 
abundances of the mantle sequences of ophiolites are generally depleted in all the PGE 

whereas in Alaskan-type intrusions Ir and Pt are often enriched with respect to chondrite 
(Johan, 2002).

A significant difference between the dunites of ophiolites and Alaskan-type intrusions is 

in the Pt and Pd ratio. Table 2.1 shows Pt/Pt ratios for dunites from 7 ophiolite bodies and 
6  Alaskan-type intrusions. The Pt/Pd ratios in ophiolites are normally less than Pt/Pd = 2 
although the Pt/Pd ratio of the New Caledonia ophiolite is Pt/Pd = 6.67. The Pt/Pd ratio 

of Alaskan-type intrusions is normally significantly higher with values of Pt/Pd = 21-27 

being recorded. The Pt/Pd ratio of the Nizhni Tagil and Wrede Creek Alaskan-type 
intrusions are, however, lower (Pt/Pd = 2.45 and >1).
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Complex and Location Pt
(PPb)

Pd
(PPb)

Pt/Pd Reference

&
Nizhni Tagil, Urals, Russia 93 38 2.45 Fominykh and Khvostova 

(1970)
£* c  • o Alto Condoto, Colombia 38 2 21.11 Tistl (1994)
s /  3 Lunar Complex, British Columbia (8) 214 8 26.75 Nixon et al., 1997
wj £

.2 c Wrede Complex, British Columbia (8) 7 BD >1 Nixon et al., 1997
< Polaris Complex, British Columbia (18) 1 BD >7 Nixon et al., 1997

Chad, Eastern Siberia 24 BD >24 Malitch (1996)
Troodos Ophiolite, Cyprus (5) BD 1 <1 Becker and Agiorgtis (1978)
Newfoundland Ophiolite(4) 3 5 0.69 Page and Talkington (1984)

(/> Troodos Ophiolite, Cyprus (1) 3 4 0.71 Prichard and Lord (1990)
g Zambales Ophiolite, Philippines (2) 25 32 0.78 Zhou et al. (2000)
o Northern Oman Ophiolite(63) 14 16 0.88 Ahmed and Arai (2002)
O.
o Northern Oman Ophiolite (40) 2 2 1.00 Ahmed and Arai (2002)w Leka Ophioilite, Norway (7) 8 6 1.33 Pedersen et al. (1993)

Semail Ophiolite, Oman (1) 10 6 1.67 Prichard et al. (1996)
New Caledonia Ophiolite, South Pacific (8) 20 3 6.67 Augd and Maurizot (1995)

Table 2.1: Pt/Pd ratios for dunites in Alaskan-type intrusions and dunite pods in ophiolite complexes.
Abundances are averages, numbers o f samples in brackets. BD: Below Detection Limits

2.4.7. Fractionation of Nickel, Copper and Chromium

In the Layered Series in the Semail Nappe, the compatible elements Ni and Cr are most 

abundant in the early formed olivine- and pyroxene-rich lithologies. Their abundances 

decrease in the more mafic lithotypes (Lippard et al. 1986). The same is seen in 

ultramafics of Alaskan-type intrusions. Ni is concentrated and Cu depleted in the early 

dunites in the Urals. These abundances fall and rise respectively in the mafic lithotypes 

(Garuti et al., 1997). Similar patterns are observed in the Tulameen and Condoto 

complexes of British Columbia and Columbia (Findlay 1969; Tistl, 1994).

2.4.8. Summary

Alaskan-type intrusions are pipe-like concentrically zoned ultramafic-mafic intrusions 

(Taylor, 1967; Johan, 2002), in some cases this may be sufficient to distinguish them 

from the layering of ophiolites. However, due to the dynamic setting into which Alaskan- 

type complexes are intruded and ophiolites are obducted, both may be deformed so that 

the layering or zoning cannot always be observed.

27



Chapter 2: Literature Review

In such geological situations, the following criteria are suggested to distinguish the type 

of mafic-ultramafic complex:

• In ophiolite sequences, gabbros can display both gradational and sharp 

contacts with ultramafic rocks, whereas, in Alaskan-type complexes such 

contacts are typically sharp.

• The mantle sequences of ophiolites are dominated by orthopyroxene-rich 

lithotypes. Conversely, Alaskan-type intrusions are noted for the absence 

of orthopyroxene.

• The ratio Pt/Pd for ophiolitic dunites is typically <7 whereas Alaskan-type 

dunites are generally >2 (Table 2.1)

• Alaskan-type intrusions frequently display negative Ru anomalies on 

chrondrite normalized PGE diagrams (see figure 2.5), whereas ophiolites 

rearely show negative Ru anomalies.

• Ophiolitic mafic and ultramafic rocks show neutral to positive gradients 

on REE abundance diagrams, whereas, similar mafic-ultramafics in 

Alaskan-type intrusions display negative gradients (figure 2.4)

• Ophiolite REE patterns can include pronounced positive or negative Ce, 

Eu and Gd anomalies. Whereas, all lithologies in Alaskan-type intrusions 

only display a slight rise in Sm, Eu and Gd abundances (figure 2.4).

28



Chapter 3: Mineralogy and Petrology

3. Petrology and Mineralogy
3.1. Introduction

Samples of ultramafic rocks from the each of the four geographic areas of study within 

the WES were cut and mounted as either thin sections or polished blocks. These samples 

were then observed using transmitted light microscopy and scanning electron 

microscopy. The sulphide minerals were analysed using an energy dispersive X-ray 

analyzer attached to a Scanning Electron Microscope (SEM).

This chapter is divided into four sections. The first section describes the study of thin 

sections to define the rock-types and to document the degree of alteration present in the 

WES. The second section describes the texture of oxide minerals in order to support a 

study of their geochemistry. Another section describes typical sulphide minerals and 

lastly three PGM are described.

3.2. Methods

3.2.1. Scanning Electron Microscopy

Polished blocks were analysed using a Carl Zeiss SMT (Cambridge) S360 scanning 

electron microscope (SEM). The search for PGM and photographs of spinels and 

sulphides were performed using a 4-quadrant back-scattered electron detector. 

Photographs of PGM were taken using a Veeco FEI (Philips) XL30 environmental SEM.

3.2.2. Energy Dispersive X-Ray analyzer

Both quantitative and qualitative analyses were obtained using an Oxford Instruments 

INCA ENERGY (EDX) X-ray analyzer. Quantitative analyses were undertaken using an 

accelerating voltage of 20kV, a probe current of InA and a working distance of 25mm. 

During petrological studies, mineral identification was confirmed by qualitative analyses 

the SEM.
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3.3. Petrology

3.3.1. Introduction

The petrology of the rocks from the WES was investigated using both transmitted light 

microscopy and electron microscopy. This section describes the typical petrology of the 

ultramafic rocks and is illustrated by photographs of thin sections taken under transmitted 

light. The degree of alteration is described and subsequently a definition and description 

of rock-types is described.

The petrology of each of the ultramafic complexes covered in this thesis has been 

documented by other workers (see chapter 2). Furthermore, many studies comment on the 

significant degree of alteration to which each complex has been subjected (eg Mogessie 

and Hoinkes, 1998). This section aims to describe the variation in alteration through the 

two key rock types: dunite and clinopyroxenite. Additionally, some rocks may be 

classified as olivine-clinopyroxenite, as this is composed of two minerals it is not 

described here because it is easier to describe the alteration of olivine and clinopyroxene 

separately. In order to demonstrate the degrees of alteration present, this study focuses 

only on the two mono-mineralic lithotypes. For both rock types, a number of thin sections 

are described from the least to most altered. In addition to this, a description of the little 

known lithotype known as birbirite is included. Birbirite is an alteration product and is 

widely distributed in the soils of the area. It is named after the Birbir river which flows 

around the Main Yubdo Intrusion.
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3.3.2. Dunite

The following images illustrate the range of serpentinisation within the ultramafic rocks 
of the WES. The Mg values are quoted for reference with the geochemical assessment of 
alteration as described in chapter 8 .

Figure 3.1: A  photograph o f  a dunite sample 
under crossed polars. The lower edge o f the  
image is 120pm in length.

This sample is  composed o f  approximately 
50% serpentine. The high birefringence marks 
relict olivine minerals. The olivine crystal in 
the centre o f the im age has been pulled-apart 
and partially replaced by serpentine. Fine 
anhedral Fe-rich spinels decorate the original 
edge o f  the olivine mineral.

This sample has 25.8%  M g

Figure 3.2: A  photograph o f  a dunite sample 
under crossed polars. The lower edge o f  the 
im age is 120pm in length.

This sample is  composed o f  approximately 
60% serpentine with a typical mesh texture. 
Some relict o livine minerals show high  
birefringence colours and slightly wavy 
extinction but are otherwise they are 
undeformed. The arrangement o f  the relict 
crystal edges indicates that the protolith had 
an adcumulate texture.

This sample has 22.0% M g
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Figure 3.3: A  photograph o f  a dunite sample 
under crossed polars. The lower edge o f the 
im age is 120pm in length.

This sample is  composed o f  approximately 
85% serpentine. Unaltered olivine grains have 
a high birefringence and they are surrounded a 
serpentine mesh.

This sample has 20.4 % M g

Figure 3.4: A  photograph o f  a dunite sample 
under crossed polars. The lower edge o f the 
im age is 120pm in length.

This sample is  composed o f  approximately 
90% serpentine. Grains with a high 
birefringence indicates the presence o f a few  
remaining fresh olivine minerals. This sample 
show s intense alteration along cracks and 
patchy alteration in places (not shown). Some 
minor pyroxene (<5%) is  observed.

This sample has 16.4% M g

Figure 3.5: A  photograph o f  a dunite sample 
under crossed polars. The lower edge o f the 
im age is 120pm  in length.

This sample is  com pletely serpentinised (not 
including the oxide minerals). This sample 
show s a relict olivine texture within the 
serpentine mesh which is  decorated with fine 
anhedral spinels. Additionally, the sample 
contains subhedral spinels such as the one 
shown in the centre o f  the image.

This sample has 7.0% M g
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3.3.3. Clinopyroxenite

Figure 3.6: A  photograph o f  a clinopyroxenite 
sample from Kingy area under crossed polars. 
The lower edge o f the image is  120pm in 
length.

This sample is  100% replaced by fibrous 
amphibole. The clinopyroxene has a poikilitic 
texture enclosing minor olivine and can form  
up to lcm  in length.

Figure 3.7: A  photograph o f  a clinopyroxenite 
sample from the Kingy area under crossed 
polars. The lower edge o f  the image is 120pm  
in length.

This sample is  100% by fibrous amphibole 
minerals. The field o f  v iew  is occupied by one 
large clinopyroxene and it is recognised by 
closely spaced which would be expected for 
orthopyroxene. The clinopyroxene minerals 
frequently occur in sizes over 1.5cm.

3.3.4. Birbirite
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Figure 3.8: A photograph o f a birbirite sample from the Tulu Dimtu Main Intrusion area. The lower edge of 
the image is 120pm in length. Left: Plane polarized light. Right: Crossed polars

This sample contains a fine silica network with highly altered spinels (hematite) 

sometimes disseminated and sometimes in veins (see figure 3.8).

3.3.5. Summary

The dunites show a gradual change in texture with serpentinisation (from 50% to 100%).

The least altered samples (50%) show serpentine forming around fresh olivine grains and 

the edges of the original minerals are decorated with fine anhedral spinels. With further 

alteration serpentine becomes more abundant and the mesh texture more extensive. 

Although the most altered samples have no fresh olivine, a relict olivine texture remains 

visible within the serpentine mesh and fine spinels are visible. Regardless of the degree 

of alteration, euhedral to subhedral spinels can be observed in most samples in addition to 

the fine grained anhedral spinels found at the edges of the olivine grains. Furthermore 

throughout all samples, olivines show pull-apart textures and some show slightly wavy 

extinction.

No fresh clinopyroxene has been observed in this study of the WES. Some minor olivine 

(<10%) is observed. The clinopyroxene is recognized by a closely spaced relict cleavage 

which does not occur in the olivines or spinels. In one sample the clinopyroxene shows a 

poikilitic texture around olivine. The clinopyroxene has been replaced by fibrous 

amphibole and cleavage can continue as far as 1 .5cm, indicating that the original crystals 

were large. Furthermore, no relict or fresh orthopyroxene has been identified.

3.3.6. Classification of Rock Types

This study uses the recommendations made by the IUGS subcommission on the 

Sytematics of Igneous Rocks (Streckeisen, 1976). The rock types used here are defined as 

follows:
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• Dunite: greater than 90% olivine and less than 10% pyroxene

• Clinopyroxenite: greater than 90% clinopyroxene and less than 10% olivine.

• Olivine-olinopyroxenite: Greater than 60% clinopyroxene and less than 40% 

olivine.

Given the high degree of alteration observed in the WES (a minimum of 50%) minerals 

are often completely replaced. However, even in the most altered dunites (figure 3.5) and 

clinopyroxenites (figures 3.6 and 3.7) relict features of the key minerals can be observed. 

Therefore, in this study the identification of the primary magmatic minerals is made 

either using observations of fresh minerals (eg high birefringence for olivines) or by the 

identification of relict features. The following relict features have been used to identify 

olivine and clinopyroxene:

• Olivine: A relict olivine texture preserved within a serpentine mesh with or 

without fine anhedral spinels decorating the relict mineral edge.

• Clinopyroxene: A closely spaced cleavage which does not occur in spinels or 

olivines.

An ultramafic rock as classified here may not actually contain any of the igneous 

minerals specified by Streckeisen (1976). For example the term dunite as used in this 

thesis may refer to a rock entirely composed of serpentine, so long as pseudomorphed 

olivines can be recognized using a mesh texture. A further account of the degrees of 

alteration within each area is undertaken in chapter 6  which attempts to quantify the 

alteration using geochemical data.

In a situation where no relict features are observed the sample is classified as 

“unidentified”.
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3.4. Oxide Minerals

3.4.1. Introduction

Spinels often resist alteration and, therefore, a study of their morphology and 
geochemistry can help us understand the magmatic processes. The crustal cumulates and 
mantle tectonites of ophiolite complexes can host chromitite layers. Further down the 
crustal sequences of ophiolites, podiform chromitite bodies can form (eg Lippard et al., 
1986). Disseminated spinels are common in many parts of ophiolite mantle sequences. 
Similarly, in Alaskan-type intrusions disseminated spinels are common but they can also 

form into schlieren and in some complexes podiform ore-bodies have been observed 
(Johan, 2002). In the WES, the only descriptions concerning spinels are those of Belete et 

al. (2 0 0 0 ) who describe both magmatic and metamorphic forms.

In this section, photomicrographs of spinels and their host minerals were taken using the 
Cardiff S360 SEM (see section 3.2.1). This section presents an account of the typical 
textures of spinels from the WES in order to accompany a study of the geochemistry of 
the spinels described in chapter 7.

3.4.2. Tulu Dimtu

Figure 3.9: SEM photomicrographs o f  a disseminated spinel (white colour, high mean atomic 
number) in a clinopyroxenite sample (D TR -019-02). The spinel show s a pull apart tecture and is 

hosted by a gangue o f  fibrous amphibole. Left: back-scattered electron im age, Right: secondary
electron image.
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3.4.3. Kingy
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Figure 3.10: SEM photomicrographs o f  disseminated spinels (white colour, high mean atomic 
number) hosted by olivine in sample DTR-057-02. Some spinels are subhedral and zoned. Left: 

back-scattered  electron image, Right: secondary electron im age.

3.4.4. Daleti, Ankori, Tulu Kapi and Keley

Figure 3.11: SEM photomicrographs o f  disseminated spinels (white colour, high mean atomic number) 
hosted by partially serpentinised olvines from sample D 19. Many spinels show pull-apart textures. Left: 

back-scattered  electron im age, Right: secondary electron im age.
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3.4.5. Yubdo, Andu and Sodu

i v  V f  • *■ }

Figure 3.12: SEM  photomicrographs o f  anhedral spinels (white colour, high mean atomic number) from 
sample Y 28. The spinels occur in serpentine filled cracks between fresh clinopyroxenes minerals (large 

grey coloured minerals. Left: back-scattered electron im age, Right: secondary electron image.

Figure 3.13: SEM photomicrographs o f  disseminated spinels (white colour, high mean atomic number) 
partially serpentinised olivines from sample Y 30. Left: back-scattered  electron im age, Right:

secondary electron im age.

3.4.6. Summary

In all areas, two distinct groups of spinels are found, fine anhedral minerals and coarser 

subhedral to euhedral ones. In some samples anhedral spinels up to 100pm across occur 
(see figures 3.1 and 3.12). These form at the edges of silicate phases in association with 

serpentine. In contrast, it is common to find more regular disseminated spinels which are 
hosted by olivine, serpentine or fibrous amphibole. These minerals commonly show pull- 

apart textures and are often well over 500pm in length.
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3.4.7. Discussion

The observation that there are two types of spinel textures is common in ultramafic rocks 

(Sack and Giorso, 1995). The serpentinisation of olivine minerals releases Fe from the 

crystal lattice to form Fe-oxides. The irregular shapes, formation at the edges of olivines 

and association with serpentine support this hypothesis. Furthermore, preliminary 

analysis of the geochemistry of these minerals show a high Fe content.

The euhdral to subhedral form of the second spinel group and their association with host 

minerals which include fresh olivine suggests that they formed before alteration. These 

may be cumulus spinels and therefore their geochemistry may reflect magmatic processes 

(see chapter 7).

3.5. Sulphide Minerals

3.5.1. Introduction

PGE are known to form a close association with sulphide minerals and many models 

have been developed whereby the behaviour of sulphur is used to help explain the 

development of PGE deposits. In magmas where sulphur is present, geochemical models 

suggest that PGE are likely to be taken into solution within sulphide melts (Naldrett and 

Duke, 1980). Furthermore, Pt and Pd are most likely to partiton into Cu-rich sulphides 

(Barnes et al., 1997). Such geochemical models are complimented by mineralogical 

studies. Prichard et al. (2004) have observed the expression of such geochemical models 

in sulphide blebs from a mafic dyke in Uruguay. After the crystallization of the magma, it 

is believed that the same hydrothermal fluids which remobilize sulphur also remobilize 

PGE (Wood, 2002)

This section provides a description of sulphide minerals from the WES and the 

subsequent discussion may provide a further insight into the processes which influence 

the PGE distribution.
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3.5.2. Tulu Dimtu

Figure 3.14: SEM photomicrographs of an altered bomite (white colour, high mean atomic number in the 
centre of image) in the altered rim of a Cr-spinel (grey colour), hosted by serpentine (black). This image 
has been taken from sample TDR19/01 which is located on the southern flank of the Tulu Dimtu Main 

Intrusion. Left: back-scattered electron image, Right: secondary electron image.

Cu S Fe 0 Total
59.41 24.47 12.24 2.64 98.76

This analysis can be quoted as Cu4 .88F e u 4 S3.98 -  ignoring oxygen - which is close 

to bomite (CusFeS4). The oxygen indicates that the mineral has been altered. As bomite 

is an alteration product o f chalcopyrite, this mineral infers that at least two phases of 

alteration have occurred.
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Figure 3.15: SEM photomicrographs of an anhedral glaucodot split into three parts (white colour, high 
mean atomic number) hosted by serpentine. The sulphide mineral on the left hosts a Ni- As-bearing 

magnetite inclusion. This image has been taken from sample DTR-019-02 from the Tulu Dimtu Lensoid 
Ultramafics. Left: back-scattered electron image, Right: secondary electron image.

As S Co Ni Fe O Total
44.88 17.77 15.77 13.74 4.44 3.7 100.3

If the oxygen is ignored then this analysis may be quoted as (Co,Ni,Fe)i.oiAsi.o4 So.96 

which is close to glaucodot and is represented by the formula (Co,Fe)AsS. This assumes 

that the Ni has substituted for Co. The oxygen could indicate that the mineral has been 

altered.

3.5.3. Kingy

Figure 3.16: SEM photomicrographs of an anhedral chalcopyrite mineral (white colour, high mean atomic 
number) hosted by quartz in an extremely altered olivine-clinopyroxenite sample. This image has been 

taken from sample KTR-049-02 from the Kingy Ridge Ultramafic. Left: back-scattered electron image,
Right: secondary electron image.
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s Cu Fe Total
34.3 32.69 29.9 96.89

This mineral can be quoted as C u 0 . 9 7 F e 1 . 0 1 S 2 . 0 2  which is close to chalcopyrite (CuFeS2).

3.5.4. Daleti, Ankori, Tulu Kapi and Keley

500pm

Figure 3.17: SEM photomicrographs of several anhedral barite crystals (white specs, high mean atomic 
number) on the edge of larger partially serpentinised olivine minerals. There are many anhedral Fe-rich 

spinels. This image has been taken from sample DR22/01 from the Daleti Ultramafic. Left: back- 
scattered electron image, Right: secondary electron image.

Ba S Fe Si Al Mg O Total
55.16 12.19 0.66 0.29 0.25 0.18 24.21 92.94

This analysis can be quoted as Ba1 0 3 S0 .98O3.89 which is close to barite (BaS0 4 )
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3.5.5. Yubdo, Andu and Sodu

Figure 3.18: SEM photomicrographs of a Ni-sulphide mineral (white spec, high mean atomic number) in 
the altered rim of a zoned spinel hosted by serpentine (black). In addition to the subhedral spinels (centre 
of image) there are many fine anhedral Fe-rich spinels which sometimes form schlieren. This image has 
been taken from sample AYR-016-01 from the northwestern flank of the Main Yubdo Intrusion. Left: 

back-scattered electron image, Right: secondary electron image.

s Ni Fe Co Total
33.19 25.96 22.8 18.93 100.88

This analysis could be quoted as Fei.3o(Ni,€ 0 )2 .4 2 8 3 .2 8- The most similar mineral found is 

violarite (FeNi2 S4), unfortunately the fit for this mineral is poor and attempts to fit the 

analysis to the following minerals less successful: bravoite, (Fe,Ni,Co)S2 ; pentlandite, 

(Fe,Ni)9S6 ; siegenite, (Co,Ni)3S4.

3.5.6. Summary

Most sulphides are hosted by serpentine but some by quartz or altered spinel. Those 

sulphides sufficiently large to be resolved by the SEM, they appear to be anhedral in 

shape.

It is observed that Ni-barren, Cu-sulphides occur in both the southern flank of the Tulu 

Dimtu Main Intrusion and the Kingy Ridge Ultramafic. However, in the Tulu Dimtu 

Lensoid Ultramafics, several Ni-sulpharsenides have been discovered. In the Main Yubdo 

Intrusion only Cu barren, Ni-sulphide minerals are observed.
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3.5.7. Discussion

Most sulphides described here are hosted by minerals such as serpentine and quartz 

which are often associated with the action of medium and low temperature fluids. A 

highly irregular shape is observed for the base-metal sulphides in most cases and this is 

unlike the euhedral or rounded shapes expected if these minerals crystallised from a 

magma. Furthermore, the presence of magnetite inclusions within the sulphides from the 

Tulu Dimtu Lensoid Ultramafics suggests that they formed after the magma cooled and 

possibly after at least one phase of alteration.

Given the affinity of these sulphides with high temperature fluids (as discussed above), 

the division between the Cu-bearing sulphides (Tulu Dimtu Main Intrusion and Kingy 

Ridge Ultramafic) and the Ni bearing-sulphides (Tulu Dimtu Lensoid Ultramafics and the 

Main Yubdo Intrusion) could have two interpretations. Firstly, the Cu and Ni could have 

formed in the same magmatic site and then been remobilized different degrees by 

alteration -  maybe one Ni-rich phase and another Cu-rich. Alternatively, the Ni and Cu 

could have been driven apart at a magmatic stage (as proposed by Barnes et al., 1997 and 

Prichard et al., 2004).

Two sulphide minerals are observed in the altered rims of spinels, one Cu-rich and the 

other Ni-rich (figures 3.9 and 3.19 respectively). Although their presence in the alteration 

rim of a spinel suggests that alteration fluids have affected their host, there is no direct 

evidence for large amounts of fluid transport through the spinel itself. Furthermore, as 

spinels resist alteration to a greater degree than silicate phases, it is possible that little 

transport of fluid has been made into the mineral. Even if the sulphide phases have 

recrystallised in situ, these two minerals may infer the possibility that Ni and Cu formed 

at different sites during magmatic processes.

The low number of sulphide minerals studied here means that this study does not provide 

a comprehensive account of the behaviour of S, Cu and Ni in the WES. However it is one 

of the first accounts of sulphide minerals in these igneous complexes in the WES.
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3.6. Platinum Group Minerals

3.6.1. Introduction

A search for PGM was performed in the 10 rock samples with the highest Pt and Pd 

values which included two samples from the Tulu Dimtu Main Intrusion (see chapter 6). 

Three PGM were discovered in rock samples from the Main Yubdo Intrusion and none 

from the Tulu Dimtu Main Intrusion. In the following section the geochemistry and 

association o f each PGM is described.

3.6.2. Sample AYR-016-01

Figure 3.19: An SEM back-scattered electron image photomicrographs of a subhedral 
Pt-Fe alloy (white colour, high mean atomic number) in a Cr-spinel hosted by 

serpentine. This image has been taken from sample AYR-016-01 from the northwestern 
edge of the Main Yubdo Intrusion.

Pt Fe Cr 0 Total
92.29 11.86 1.12 2.27 107.55
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It is possible that all Cr and Fe in this analysis originated from chromite and hematite as a 

result of fluorescence. If chromite and hematite are removed (resulting in a total of 

99.87), then the analysis can be quoted as Pt3.10Fe0.89 which is close to Pt3Fe. Although 

both Cr and Fe are common in the host rock, the poor total raises suspicion about the 

quality o f original analysis.

3.6.3. Sample KYR-019-02

Figure 3.20: An SEM back-scattered electron image photomicrographs of an 
anhedral Os-Ir alloy (white colour, high mean atomic number) hosted by 

serpentine. This image has been taken from sample KYR-019-01 located the 
northwestern flank of the Main Yubdo Intrusion.

Qualitative analysis shows that this mineral contains major Os and Ir, lesser amounts of 

Ru, Fe and 0 , and traces o f Si and Mg.
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3.6.4. Sample Y30

Figure 3.21: An SEM back-scattered electron image photomicrographs of a subhedral Ir- 
Os alloy (white colour, high mean atomic number) within a Cr-spinel hosted by partially 

serpentinised olivine. This image has been taken from sample AYR-016-01 located on the 
far western flank of Main Yubdo Intrusion.

Ir Os Zr Ru Fe Rh Cr S 0 Total
79.11 9.25 6.33 2.76 2.18 2.55 1.71 0.45 1.14 105.48
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It is possible that all Cr and Fe in this analysis originated from chromite and hematite as a 

result of fluorescence. If chromite and hematite are removed (resulting in a total of 

101.50), then the analysis can be quoted as Ir0 .6 7 Os0 .0 8Ru0 .0 4Rh0 .0 4Zr0 .11Fe0 .0 3 S0 .0 2 . 
Although both Cr and Fe are common in the host rock, the poor total raises suspicion 

about the quality of original analysis.

3.6.5. Discussion

The only other account of PGM in the rocks from the Yubdo area is a description of Pt- 

Fe alloys (Mogessie et al., 1999). These contain minor Ir and are hosted by either 

chromite or serpentine. The Zr found in the Ir-Os alloy from sample Y30 is unusual for a 

platinum group mineral. The Pt-Fe alloy described here (sample AYR-016-01) has a 

similar chemistry and shape to those found by Mogessie et al. (1999) however it is 

considerably smaller. The Pt-Fe alloys which are hosted by serpentine are typically 20- 

30pm in diameter.

There are many studies of placer PGM from the rivers and laterites around Yubdo (as 

reviewed in chaper 2). Most of the placer PGM described are Pt-Fe nuggets and a recent 

study documents 3 grains which contain Os-Ir inclusions (Belete et al., 2000). It is 

possible that the Os and Ir bearing PGM described here could be magmatic or 

postmagmatic minerals around which further PGE-bearing phases will nucleate. This 

preliminary study is one of the few accounts of PGM in the WES and may prompt further 

work to understand the genesis of placer Pt-Fe alloys.
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4. Terrain Mapping
4.1. Introduction

This chapter details the use o f terrain mapping from aerial photographs to identify the 

characteristic terrain for the larger ultramafic complexes in the WES (Yubdo and Tulu 

Dimtu) and to map these features elsewhere in the WES. In this area terrain mapping is 

more appropriate than normal geological mapping as there is little exposure (<5% in 

some areas), the rocks are very weathered and access is often difficult. Preliminary 

studies around the Yubdo and Daleti areas have indicated that the ultramafic complexes 

form high ridges on which vegetation is sparse and no cultivation is being undertaken. By 

contrast, the surrounding terrain is densely vegetated and subsistence farming is common.

Figure 4.1: A photograph of a barren ridge above the Daleti Ultramafic. The ridge is almost devoid 
of vegetation when compared to the foreground. Furthermore, the houses to the right indicate the

presence of fertile subsistence farmland.

The lack o f vegetation and agriculture may result from high Ni or low Ca values in the 

soil, which is characteristic of lateritic soils above ultramafic rocks. As detailed in 

chapter 2, the ultramafics o f the WES are commonly surrounded by volcano-sedimentary 

sequences. These units are less resistant to weathering and therefore the harder ultramafic 

complexes are likely to stand out from the softer sedimentary sequences and therefore 

form ridges. Hence it is thought likely that the “barren-ridge” terrain will be characteristic 

of the ultramafic complexes.
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A set of aerial photographs were procured from the Ministry of Mines (Addis Ababa). In 

section 4.2, the method of acquisition of these images and their compilation into map 

form is described. Subsequently, a description of the use of terrain elements to describe 

the terrain in the WES is provided (see section 4.3). The results are recorded as a set of 

maps containing photomorphic regions covering four geographic areas (as described in 

chapter 5), the boundaries of which were confirmed by field observations (see section 

4.4).

4.2. Aerial Photography

4.2.1. Introduction

When aerial photographs are used for mapping, the user must consider the method by 

which the photograph was acquired, as the equipment used will create distortions of the 

scene being recorded. Before maps are created, these distortions must be corrected. This 

section describes the acquisition and processing of the aerial photographs from the WES. 

Finally an account of the specifications of the aerial photographs is provided.

4.2.2. The Aerial Photographs of the WES

The aerial photographs (from the Ministry of Mines, Addis Ababa) used in this study can 

be divided into two groups: those acquired during 1957/58 and those taken in 1980. The 

images taken in 1957/58 covered the Yubdo and Daleti areas however the 1980 set 

covered Tulu Dimtu and Daleti.
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1957/58 1980
Camera Type Single Lens Frame Single Lens Frame
Camera Focal Length 53.046mm 53.66
Film Format 230mm 233mm

Dates of acquisition
19-Dec-1957
20-Dec-1957 
l-Jan-1958

15-Jan-1980 
18-Jan-1980 
22-Jan-1980 
24-Jan-1980 
31-Jan-1980

Time of acquisition Between 9:45AM and 11:49AM *
Lens Serial Number XF6751 UAGII 3119
Orientation of Flight North - South East - West
Average Scale 1:55715 1:53063
Mean distance between Aerial photographs (m) 5,233 4,667
Average distance to Terrain (m) 9,370 *
Apparent Stereoscopic Viewing Distance (cm) 24 *
Stereoscopic Vertical Exaggeration 1.97 *
Digital resolution 10m 10m

Table 4.1: The details o f the aerial photographs. *: Data obscured during development.

To demonstrate the degree of distortion present in the images, figures for the relief 

displacement of two prominent features have been calculated. This is done using an 

equation based on the distance from the feature to the centre of the image image and the 

altitude (see table 4.2). Sodu ridge is the highest point in the image and is close to the 

edge and therefore is likely to have the largest relief displacement. However, this figure is 

only 3mm which equates to around 150m on the ground. These figures show that relief 

displacements are negligible for these images.

Feature Distance from photograph centre Altitude of Relief Displacement
to top o f feature (m) feature (m) (m)

Yubdo Village 0.02 1670 0.00059
Sodu Ridge 0.102 1668 0.00300

Table 4.2: Relief Displacements of Yubdo Village and Sodu Ridge.
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Figure 4.2: A typical aerial photograph with the data block enlarged.

4.2.3. The Acquisition of Aerial Photographs

This section covers the physics o f the acquisition of aerial photography. Typical cameras 

used in aerial photography are described, followed by an account of the properties of 

photographic film. The characteristics of photographic films and cameras cause several 

distortions and displacements which are described at the end of this section.

There are several types o f camera used on aircraft; panoramic, multilens, strip (for a 

review see Wolf, 1983). However in this study, airphotos were aquired using a single lens 

frame mapping camera. Single lens frame cameras are the simplest type of aerial camera. 

The setup of the camera is based around the focal length, which is selected according to 

the intended application for the resulting images. The focal length of a camera is of
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importance as it determines the angular field of view of the photographs. As the camera is 

always set up with the image distance as the focal length of the lens, the shorter the focal 

length the wider the field of view (Wolf, 1983; Paine, 1981). Figure 4.3 shows the three 

main sections of the single lens frame mapping camera: magazine, body and lens cone 

assembly (Lillesand and Kiefer, 2000). The “data block” is shown on figures 4.3 and 4.2. 

In this feature several measurements are displayed so that the photograph includes a 

number of key readings including: altitude, time of day, focal length, exposure number, 

lens serial number and date.

Supply res! Tafct-uprwl

> Magazine

Diaphragm

Figure 4.3: Principle components o f a single-lens mapping camera (Lillesand and Kiefer, 2000)

Within the camera, light rays traveling from the scene are focused through a lens onto a 

film creating an invisible “latent” image. As a result the image acquired in the camera is 

negative (black and white exchanged) and reversed both left for right and top for bottom 

through the camera lens. Printing then produces a visible image on print paper and the
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image is positive with axes corrected. Although many types of film are available such as 

colour and infra-red, the film used in this study is panchromatic. Such films are not the 

same as a “black and white” films. Panchromatic films produce an image based on the 

total light intensity, so a bright scene at any wavelength appears as white on the image 

(Lillesand and Kiefer, 2000).

A vertical aerial photograph is not a map. It is the product of a perspective projection and 

as such there are displacements and distortions which affect the image which are as 

follows:

• Exposure fall-off. The image appears brighter in the centre than at the 

edges of the scene. This is because the light collected from the further 

points has traveled further through the dust in the air and the scene is 

viewed from a more oblique angle. This is more obvious when using wide 

angle lenses.

• Vignetting. These are shadowing effects as a result of lens imperfections 

and parts of the camera.

• Relief displacement. This has the strongest effect in mountainous or 

urban scenes. The top of a vertical object is observed as being further 

away from the centre of the image than the bottom of the object (Wolf, 

1983).

• Tilt displacement. An aerial photograph is never truly vertical and as 

such, relief displacement (see above) is exaggerated in particular 

directions.

• Lens distortion. This is the effect of imperfections in the grinding and 

production of the lens causing the image to be blurred or distorted mainly 

on the outside of the image and depends on the f-stop used in the aperture.

Some of these problems, such as exposure fall-off, vignetting and lens distortion are 

normally corrected through calibration. A scene of known and uniform brightness is 

imaged and the systematic variations in image tone recorded on the film are used to
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create a filter, or recalibrate parts of the camera apparatus (Lillesand and Kiefer, 2000). 

However, the problems associated with relief and tilt displacement need to be addressed 

by image processing.

4.2.4. Image Processing

An aerial photograph does not exactly match the scene it represents due to a number of 

factors (see section 4.2.3). The process of orthocorrection reduces the impact of relief and 

tilt displacement. Furthermore the images must be associated with a map projection to 

allow other spatial data to be compared with it, a process known as georeferencing. The 

aerial photography used in this study was orthocorrected and georeferenced 

simultaneously, using PCI Geomatica Orthoengine (version 8.3).

Geomatica is a suite of programs used to create Geographic Information System (GIS) 

databases. Within this software package, Orthoengine is an image processing tool which 

can be used to allow aerial photographs to be used with GIS applications. In this study it 

is used to correct geometric distortions and to georeference the aerial photographs. The 

method used to correct the photographs is called polynomial correction. The aerial 

photograph is scanned at a resolution of 600dpi and saved in TIFF file format. The user 

defines 5 to 10 points on the image and these are known as Ground Control Points 

(GCPs). Each point is then located on a map and each GCP is assigned to a location 

based on the grid system used on the map. Each image has a number of defined points 

with a grid reference assigned, the program uses an iteration technique to determine a 

polynomial function (unique to each image) which describes the translation and rotation 

necessary to distort those image points to fit the grid defined by the grid references. It 

then uses this polynomial to distort the entire image to fit the grid. This process is 

completed for all images. These corrected images were then combined as a mosaic and 

saved as one image.

The cartographic system chosen for this study is the Universal Transverse Mercator 

which matches the Ethiopian national grid. It was chosen to allow an easy comparison 

between this study and other work in the area and provides a smaller degree of distortion
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than latitude and longitude grids. The aerial photographs of this study were georeferenced 

to the following grid:

Grid UTM Zone 36
Projection Transverse Mercator
Spheroid Clarke 1880 (modified)
Unit of measurement Metre
Meridian of origin 33°E
Latitude at origin Equator

Table 4.3: The mapping parameters used in the study.

4.3. Terrain Analysis

4.3.1. Introduction

In this study, the technique of Terrain Analysis is used to evaluate the landforms in the

WES with the aim of producing a map of photomorphic regions which the reflect the 

underlying geology and the soil geochemistry. The term “Terrain Analysis” has been 

used to describe a variety of activities which evaluate landforms (for example see Wilson 

and Gallant, 2000 or Townshend, 1981). The method used here is the form of Terrain 

Analysis which is reviewed by Lillesand and Kiefer (2000). For a more detailed account 

of the method see Way (1973).

The aerial photographs described in section 4.2 were viewed using a mirror stereoscope 

(see section 4.3.2) and the landforms in each stereo-pair were analysed using five “terrain 

elements” which are explained in section 4.3.3. These landform properties were then 

used to delineate “photomorphic regions” (see section 4.3.9) and the boundaries of such 

regions were then tested by field work (see section 4.3.10).

4.3.2. Stereoscopy

A stereoscope was used to aid in the analysis of the landforms which have been 

photographed. This enables an operator to view two images simultaneously and thereby 

observe the landforms in 3-dimensions. The two photographs are referred to as a stereo- 

pair. The aerial photographs used here have an overlap at least 50% with of the
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4.3.4. Terrain Elements: Drainage pattern

Figure 4.4: A section from an aerial photograph showing the boundary between a coarse dendritic 
(top left) and fine dendritic (bottom right) drainage patterns. This image is uncorrected and

therefore the scale is approximate.

The drainage pattern o f an area is the pattern made by the network of waterways. 

Drainage patterns are classified according both pattern and texture. The pattern is 

determined according to the direction and shape of the waterways (see figure 4.5). The 

texture is the density o f waterways in an area, ranging from fine to coarse (see figure 

4.6). In this study drainage pattern textures are classified as follows:

• Coarse. Less than or equal to 3 waterway intersections per km2

• Medium. Between 3 and 6 waterway intersections per km2

• Fine. Greater than 6 waterway intersections per km2
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There are many factors which affect the drainage pattern. Some factors are equal over 

areas the size of the WES, these include: rainfall, temperature and evaporation rate. 

However over a few kilometers, the relative proportions of overland flow to groundwater 

flow determine the texture of drainage pattern. In a situation where rain falls onto ground 

which is entirely impermeable, all runoff must be overland, and therefore due to the large 

flux of water over the surface, many waterways will be formed. Where most runoff 

passes through the groundwater, few waterways will form and the drainage texture will 

be coarser. Thus drainage pattern directly reflects underlying rock and soil type 

Furthermore, the strike of geological layering will affect the direction in which water runs 

off the land surface and therefore drainage pattern can reflect the underlying structure. 

For example trellis drainage patterns typically form over inclined sedimentary beds 

whereas dendritic may form over homogenous igneous bodies. For further discussion of 

the interpretation of drainage patterns see Way (1973).

Dendritic Rectangular

Radial

Centripetal

Figure 4.5: The six basic drainage patterns, after Lillesand and Keifer (2000)
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Figure 4.6: Illustrations of drainage texture. A: coarse-textured and B: fine-textured, after
Lillesand and Keifer (2000).

4.3.5. Terrain Elements: Erosion

Figure 4.7: A section from an aerial photograph showing the boundary between areas with round- 
bottomed gullies (left) and v-shaped gullies (right). This image is uncorrected and therefore the

scale is approximate.
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The form of gullies in an area is assessed in order to determine the way in which erosion 

has been controlled by the substratum. Gullies are small scale waterways (sometimes as 

small as lm in width) which form during sheet flow as a result of intense precipitation 

which changes into channelised flow. The cross-sectional gully form is controlled 

partially by the texture and cohesiveness of the substratum it erodes.

Although the shape of a gully is related to the texture of the soil, these textures may be 

controlled by the underlying bedrock. Since the way in which a rock weathers is 

controlled in part by its hardness, the underlying lithotype may exert some control over 

the texture of the overlying soils and thereby the gully shape. Table 4.4 shows the three 

cross-sectional forms and the substratum textures associated with them.

Name Cross-section Related textures (Way, 1973; Lillesand and 
Kiefer, 2000)

Round bottomed
Cohesive clays and silty clays. Usually found 
in lake beds, marine terraces and clay-shale 
areas.

Flat bottomed Moderately cohesive silt. Often loess and 
alluvial silt deposits.

V-Shaped Noncohesive granular materials. Sand and 
Gravel. Often terraces and outwash plains.

Table 4.4: Gully cross-sections and their related textures.
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4.3.6. Terrain Elements: Topography

Figure 4.8: A section from an aerial photograph showing a ridge (center) and smaller hills around 
the outside. This image is uncorrected and therefore the scale is approximate.

There are numerous ways in which topography can be characterized (see Way, 1973) and 

modem landform analysis uses slope measurements from digital terrain models (Wilson 

and Gallant, 2000). In this study, the assessment of topography is used to record only 

whether or not the terrain forms a ridge (as shown in figure 4.1). Hard lithotypes are 

eroded less than softer rocks and hence hard formations form ridges.
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4.3.7. Terrain Elements: Relative image tone and texture

Figure 4.9: A section from an aerial photograph showing the boundaries between bright and dark 
image tones. The darkest mottled texture is tree cover, however the dark tone of the soil can be 

observed between trees. This image is uncorrected and therefore the scale is approximate.

The brightness o f a land-form (tone) can vary widely (see figure 4.9). Within areas of 

bare soil or thin vegetation, changes in image tone reflect the moisture content of that 

soil, this can vary according the texture of that soil and the parent rock material. Within 

areas of bare soil, the tone may vary and create a tonal texture. This texture can be a 

useful indicator o f soil conditions and soil textures themselves. Within areas of 

apparently homogenous tone, very fine changes in tone may occur, showing the 

differences in moisture content.

The images used in this study are panchromatic, which means that they record the total 

light exposure o f all colour bands (including some near-infrared). Due to the exposure 

fall-off (see section 4.2.3) it is only possible to determine differences in relative image 

tone. Absolute values for image tone cannot be determined using these images.
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4.3.8. Terrain Elements: Land use

Figure 4.10: A section from an aerial photograph showing the boundary between cultivated land 
(bottom and top) and non-cultivated land (center). Subsistence farms in Ethiopia typically 
cultivate fields of no larger than 500m in width. These appear on aerial photographs as a 
“patchwork” texture. This image is uncorrected and therefore the scale is approximate.

This categorory is an assessment o f land use either as vegetation, cultivation or neither. 

The type and origin o f vegetation can indicate important changes in soil geochemistry 

which are closely related to the parent rock type. Areas of dense cultivation tend to 

follow water-courses and can also indicate a fertile soil and areas of dense vegetation 

may indicate other properties such as a high moisture content.

4.3.9. Photomorphic Regions

In order to combine and illustrate the information recorded from the analysis of the air 

photo stereopairs, a number o f photomorphic regions are delineated. A photomorphic
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region is defined as a discrete geographic unit within which at least one terrain element is 

uniform (Lillesand and Kiefer, 2000). In some cases more than one terrain element may 

be uniform within the photomorphic region. The concept of photomorphic regions is used 

in many remote sensing mapping applications, not only geological investigations 

(Lillesand and Kiefer, 2000).

Using the ArcView 3.2 software package, the photomorphic regions were overlain onto 

the orthocorrected and georeferenced aerial photographs (see section 4.2.4). The 

information has been presented as a set of four maps (see section 4.4).

4.3.10. Ground Truth

In order to validate the relationship between the land-forms and the underlying geology, 

each of the suspected ultramafic complexes was studied in the field and samples were 

collected. The petrology and geochemistry of these samples was investigated and the 

results are discussed in the subsequent chapters. Chapter 5 describes the full results of 

geological mapping in the WES. In some areas, there are landforms which have been 

mapped as ultramafic but no exposure has been found, these are defined as “suspected 

ultramafics” in chapter 5.

4.4. The Terrain in the WES

4.4.1. The photomorphic regions

A total of 25 photomorphic regions have been defined in this study but not all occur in 

any one of the four geographic maps. A description of the terrain for each region is 

contained in table 4.5. The ground truth study established that four formations can be 

effectively mapped by using terrain analysis, these are Basement, Graphitic Schist, Basalt 

and Ultramafic. In addition to this, the ground truth investigation discovered that the 

geological terrain information in some areas is obscured by the practice of burning 

savanna grass.
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Photomorphic
region

Drainage
Pattern

Erosion Topography Relative Image 
Tone and Texture

Land use

Basalt A coarse
dendritic

flat
bottomed

plateau rolling 
hills

bright polygonal 
texture.

Highly cultivated. 
Vegetation along 
roads and bottoms 
of valleys.

Basalt B coarse
dendritic v-shaped

non-orientated 
hills and 
ridges

heterogenous

Sparse vegetation 
everywhere 
(individual trees) 
small fields 
everywhere.

Basalt C medium to 
fine dendritic

v-shaped 
and fiat in 
places

non-orientated 
hills and 
ridges

dark in most 
places

Dense vegetation 
covering most 
parts. Small 
patches of 
cultivation.

Basalt D medium to 
fine dendritic v-shaped

non-orientated 
hills and 
ridges

mainly
heterogenous.
One patch of dark 
tone

Cultivation in 
many places. 
Dense veg at the 
bottom of gullies.

Ultramafic A very fine 
parallel v-shaped single big hill

mostly very dark 
some light 
swathes

No cultivation very 
little vegetation

Ultramafic B coarse
dendritic v-shaped large distinct 

hills

medium to light 
(dep on exp. 
cond.)

V. sparse veg, v. 
little cultivation 
although some.

Ultramafic C fine dendritic v-shaped incline dark tone
No cultivation, 
sparse vegetation 
in most places.

Ultramafic D medium trellis rounded ridges, one 
elongate light homogenous

Vegetation strictly 
at bottoms of 
valleys. No 
cultivation.

Basement A fine trellis v-shaped
steep sided, 
ridges NNE- 
SSW.

homogenous light 
tone on valley 
sides

Only ridge tops 
cultivated. Natural 
vegetation at 
bottom of valleys 
only.

Basement B fine dendritic v shaped small hills and 
ridges

medium to dark 
tone, homogenous

Some vegetation 
out of gullies, very 
little cultivation.

Basement C v fine 
dendritic v-shaped non-orientated

ridges
generally dark 
tone

Vegetation in most 
areas. Very little 
cultivation

Basement D medium to 
fine dendritic rounded

non-orientated 
hills and 
ridges

mainly dark tone

Mostly covered by 
dense veg. 
Cultivation at the 
top of the 
ridges/hills.

Basement E fine dendritic non-oriented
hills dark Dense vegetation 

and no cultivation.

Basement F medium
dendritic rounded non-orientated

hills heterogenous
Generally barren 
but some areas of 
cultivation
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Basement G medium to 
fine dendritic

non-orientated 
hills and 
ridges

heterogenous
Veg in bottom of 
gullies. Cultivation 
in most places

Basement H fine dendritic v-shaped
non-oreintated 
hills and 
ridges

heterogenous

Cultivated in most 
places some 
vegetataion out of 
gullies

Basement I v fine 
dendritic v-shaped large ridge, 

high elevation heterogenous
Veg in bottom of 
gullies. Cultivation 
in most places

Basement J medium trellis rounded ridge

bright near the top 
of the ridge. 
Darker tone 
generally towards 
the bottoms of 
slopes

Cultivtaion at the 
top of the ridge. 
Spare cult in most 
places.

Basement K

fine parralell 
on the west, 
fine dendritic 
on the east

v-shaped large ridge, 
high elevation medium tone No cultivation very 

little vegetation.

Basement L N/A ?coarse? rounded ridge light tone Cultivated in most 
places.

Basement M medium to 
fine dendritic v-shaped

variably 
oriented large 
ridges

generally light 
tone

Cultivation 
widespread but 
sparse. Little dense 
vegetation.

Basement N v coarse 
dendritic rounded low gradient 

rounded hills
homogenous 
medium tone

Completely 
uncultivated, some 
large patches of 
dense vegetation.

Basement 0 medium radial v-shaped large hill medium tone No cultivation very 
little vegetation.

Graphitic
Schist trellis v-shaped

small
distinctive
ridges

mostly dark 
altough some 
lighter

Dense vegetation 
no cultivation.

Burnt Grass fine dendritic v-shaped variable very dark no cultivation or 
vegetation

Table 4.5: A table of the photomorphic regions of the WES.
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4.4.2. Tulu Dimtu
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s i Ultramafic A

Basement K

Basement M

1 1 Graphitic Schist

□ Burnt Grass
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Figure 4.11: A map of photomorphic regions for the Tulu Dimtu area. White lines indicate the
course of the major rivers. Inset is a representative aerial photograph showing the main ultramafic

formation.
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Figure 4.12: A map of photmorphic regions for the Kingy area. White lines indicate the course of
the major rivers. Inset is a representative aerial photograph showing the main ultramafic

formation.
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Figure 4.13: A map of photmorphic regions for the Daleti, Ankori, Tulu Kapi and Keley areas.
White lines indicate the course of the Birbir river. Inset is a representative aerial photograph

showing the main ultramafic formation.
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4 . 4 . 5 .  Y u b d o ,  S o d u  a n d  A n d u
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Figure 4.14: A map of photmorphic regions for the Yubdo, Andu and Sodu areas. White lines
indicate the course of the major rivers. Inset is a representative aerial photograph showing the

main ultramafic formation.
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4.4.6. Summary

In order to locate ultramafic intrusions, the terrain of the WES was mapped using aerial 

photographs and the results plotted as maps of photomorphic regions which are 
considered to reflect the geology (see sections 4.2 and 4.3). The four maps included in 

this chapter are composed of a selection of 25 photomorphic regions which each have 

different terrain features.

During fieldwork, the changes in the geology over the boundaries between photomorphic 

regions was investigated. The results of such fieldwork is covered in chapter 5. Although 

several terrain units are identified as basement, in this study, it was not possible to 

demonstrate a change in geology over these boundaries. However, geological 

investigations have suggested that three major formations can be mapped using this 

method:

• Ultramafic units. These are identified as areas of sparse vegetation and 

no cultivation and almost always form ridges.

• Tertiary Basalt units. These form a plateau of round rolling hills with no 

particular orientation and always form a dendritic drainage pattern. They 

are frequently cultivated.

• Basement units. These have a wide variation in drainage pattern however 

the drainage texture is always fine or medium. Basement units typically 

form a topography which is lower than both ultramafic and basalt units. 
Within the basement units, graphitic schists are sometimes observed as 

small ridges with no cultivation.
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5. Geological Mapping
5.1. Introduction

Small scale maps of the WES have been published by various authors. Additionally, 

large scale maps of the Main Yubdo Intrusion and the Tulu Dimtu Main Intrusion 

have been produced (Kazmin and Demessie, 1971; de Wit and Aguma, 1977). Of 

these maps, it is only those of the Main Yubdo Intrusion that provides details of the 

internal structure of the ultramafic complexes. It is for this reason that new maps have 

been produced during this study for Tulu Dimtu, Kingy and Daleti and the Kazmin 

and Demessie (1971) map of the Yubdo area has been modified in light of the 

observations made during this study.

These new maps have been created for use as a base for the presentation of 

geochemical data (see chapter 6 ) They are the result of a combination of field 

observations and terrain mapping. The Ethologies identified here are those defined in 

chapter 3. Although the ultramafic formations are given names based on their fresh 

protoliths many of the rocks they represent may be completely replaced by 

metamorphic minerals (see chapters 2 and 3). Furthermore, the poor exposure and 

high degree of weathering makes the collection of structural measurements difficult. 

Although some geological structures (such as shear tension indicators) are visible in 

the basement, such information is not clear in the ultramafic units.

5.2. Method

The geological maps were compiled using several methods which were combined 

using a GIS database (ArcView 3.2). Fieldwork was carried out in four trips between 

September 2001 and June 2002. As a result, lithological descriptions of samples and 

field observations were combined with the terrain mapping information as described 

in chapter 4. Therefore on the maps, the basalt and basement units were mapped 

mainly using the terrain but verified geologically at the locations indicated on each 

map. The next four sections show the geological map of each of the geographic areas 

followed by a description of the geology.
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5.3. Geological Maps o f the WES

5 . 3 . 1 .  T u l u  D i m t u
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Figure 5.1: The geological map of the Tulu Dimtu area. Black lines indicate the course of the

major rivers.
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There are three groups of ultramafic rocks in the Tulu Dimtu area: The Main 

Intrusion, Sheared Ultramafic and the Lensoid Ultramafics.

The lithologies of the Main Intrusion at Tulu Dimtu include dunite, olivine-
  • •clinopyroxenite and clinopyroxenite zones covering 17km (figure 5.1). The intrusion 

is zoned with dunite at the centre, comprising 70% of the intrusion. Flanking the 

dunite body to the NW and SE are two zones of olivine-clinopyroxenite, these are on 

the edge of and are partially surrounded by dunite. A small exposure of 

clinopyroxenite was found on the west of the dunite and a large gabbro body occurs 

south of the Main Intrusion. The dunites are cross-cut by later dolerite and diorite 

dykes.

The Sheared Ultramafic is a zone of highly deformed ultramafic rocks on the southern 

edge of the Main Intrusion. This unit consists mainly of dunite and minor 

clinopyroxenite. These rocks are bounded to the south by a shear zone.

Away from the Tulu Dimtu Main Intrusion are a further 9 discrete ultramafic bodies 

varying in size from 3km to 700m in length, these are referred to here as the Lensoid 

Ultramafics. Five of these nine bodies are associated with shear zones. The petrology 

of individual bodies varies considerably, but as a group they consist mainly of dunite 

and smaller amounts of olivine-clinopyroxenite and clinopyroxenite.

The southern and western flanks of the Main Intrusion are sheared. These zones of 

sheared rocks can be traced to the southwest as mylonitised and more weathered 

schistose rocks. The map of Tulu Dimtu shows that two further shear zones can be 

indentified: one trending NE-SW, 2km to the west of the Main Intrusion and another 

trending NNW-SSE, 2km to the southwest. The shearing is associated with talc and 

chlorite. To the south and west of the Main Intrusion the shear zones envelop 

quartzite bodies, two further quartzite bodies were observed which are associated with 

the shear zone to the southwest.
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Figure 5.2: The geolog ica l map o f  the Kingy area. Black lines indicate the course o f  the major
rivers.
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The Kingy Ridge Ultramafic is an NE-SW trending elongate body composed mainly 

of dunite and olivine-clinopyroxenite with a small amount of clinopyroxenite. These
a

ultramafic Ethologies cover a total area of 6 km and although three lithotypes have 

been identified, no particular spatial organisation is observed within the complex. 

Birbirite is common in the soils above the southwestern end of the complex. The 

Kingy Ridge Ultramafic is bounded to the north and west by shear-zones consisting of 

talc and chlorite schists.

At the northern end of the Kingy Ridge Ultramafic, the Extra Ultramafic also consists 

of a range of lithotypes from dunite to clinopyroxenite. It covers an area much smaller 

than the Kingy Ridge Ultramafic at less than 1km2. It is bounded to the north and west 

by basement.

Five smaller ultramafic bodies (the Lensoid Ultramafics) occur elsewhere in the 

Kingy area. Two of which are associated with shear-zones and large (>200m2) 

quartzite bodies. As with the other ultramafic complexes in the area, the lithotypes 

here range from dunites to clinopyroxenites.

Other units in the area include several small gabbro bodies and three large quartzite 

bodies to the south west of the Kingy Ridge Ultramafic.
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of the Ankori Ultramafic have been located using terrain mapping (see chapter 4). 

However, no exposure could be found at these locations and therefore they are named 

“suspected ultramafics”.

The largest complex is the Daleti Ultramafic which covers an area of around 5km2. 

The complex is a large dunite body with several pods of a mafic monomineralic rock 

around 6 m in length and 2m in width and consisting mainly of spinel (MgALO^. To 

the northwest, the complex is bounded by a shear-zone consisting of talc-schists and a 

small gabbro body occurs close to the southern contact with the basement.

The Ankori Ultramafic is an elongate body of around 5km in length and up to 800m 

in width. It is composed mainly of dunite, but some minor clinopyroxene was 

observed near the northern tip. The complex is associated with some small quartzite 

bodies and is mostly surrounded by basement.

The five Lensoid Ultramafics occur throughout the area covered in this section. Only 

one locality has been found for each complex and as a result structural control on their 

association is very poor. Two of these bodies, in the Keley area, are closely associated 

with extensive shear-zones. Furthermore, a troctolite body has been located at Gudeya 

Guji associated with an elongate zone of talc and chlorite-schists. One Lensoid 

Ultramafic was located in the southern basement and a further ultramafic body was 

located close to a Tertiary Basalt and a quartzite in the northwest of the area.

Shear-zones are common within the basement units and they are often associated with 

ultramafics and quartzite bodies. The shear-zones at Gudeya Guji form in a distinctive 

straight NE-SW trending ridge in line with several smaller shear-zones to the 

southwest. Some gabbro units have been observed within the basement.
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5.3.3. Daleti, Ankori, Tulu Kapi and K eley

Figure 5.3: The geological map of the Daleti, Ankori, Tulu Kapi and Keley areas. Black lines
indicate the course of the major rivers.

There are tw o large ultram afic com plexes in this area, the Daleti Ultramafic and the 

Ankori Ultramafic. A dditionally, there are five smaller com plexes described here as 

the Lensoid Ultramafics. Several more possible ultramafic bodies to  the east and w est
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Figure 5.4: The geological map of the Yubdo. Andu and Sodu areas. Black lines indicate the
course of the major rivers.

The Main Y ubdo Intrusion covers an area o f  around 30km 2 and consists o f  three 

concentric zones w ith dunite in the core continuing outwards to o liv ine- 

clinopyroxenite and then clinopyroxenite. The clinopyroxenite zone is w idest on the
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eastern flank and only a few thin remnants are observed on the northwestern edge. 

Diorite dykes have been located in both the eastern and northwestern clinopyroxenite 

zones. Shear-zones have been observed both within the complex and on the eastern 

and western flanks.

Five smaller ultramafic bodies have been located within both the basement and as 

inliers within the Basalt formations. The northernmost of these bodies is associated 

with a shear-zone.

Several more ultramafic bodies have been located using terrain mapping (see chapter 

4) these occur to the west of the Main Yubdo Intrusion and in the Andu area. 

However, no exposure was found over these bodes and therefore these are classed as 

“suspected ultramafics”.

5.3.5. Summary

There are five large ultramafic complexes in the WES and numerous smaller bodies 

referred to as the Lensoid Ultramafics. The two largest, the Main Yubdo Intrusion 

(30km2 in area) and the Tulu Dimtu Main Intrusion (17km2 in area) show specific 

zones of different ultramafic lithologies. The other large complexes, the Kingy Ridge 

Ultramafic, the Daleti Ultramafic and the Ankori Ultramafic all show no particular 

zonation. All complexes show an association with shear-zone lithologies such as talc- 

schists and quartzites.

The Lensoid Ultramafics are described on the basis of up to a maximum of three 

outcrops per body and therefore structural control on their formation is lacking. 

However most of these complexes show a strong association with shear-zones and 

quartzites. Individual bodies can show a range of lithotypes from dunite to 

clinopyroxenite.
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6. Ground Magnetics
6.1. Introduction

During the period from 25/5/2002 to 7/6/2002 a ground magnetic survey was 
conducted over the Main Yubdo Intrusion. This chapter examines the features of the 

magnetic field in the area and proposes a model to explain them.

The magnetic survey was conducted using two proton precession magnetometers. 

To allow for a high sensitivity, fluctuations in the magnetic field were eliminated by 

using one magnetometer as a base station. The results are displayed as 3 dimensional 

maps of the magnetic field in the 3rd dimension. Different colours are used to highlight 

high and low anomalies in the data.

In general a magnetic survey records the distribution of magnetic minerals 

including magnetite. Such variations may distinguish between different igneous 

lithologies such as pyroxenite and dunite or different degrees of alteration. In the Yubdo 

area there is field evidence for secondary alteration episodes such as shearing and 

silicification. Belete et al. (2000) suggest that hydrothermal processes are an important 

part of the PGE concentration mechanism. It is possible that alteration occurs either along 

zones of weakness related to shearing or it may be related to zoning of the igneous 

lithologies due to magmatic processes.

The aim of the survey described here was to understand the geometry of the 

alteration and therefore was carried out almost entirely within the dunitic core of the 

Main Yubdo Intrusion. The following sections describe the collection and description of 
the data and the results are displayed in several pull-out pages.
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6.2. Methods

6.2.1. Data collection

Two Geometries G856AX portable proton precession magnetometers were used, one set 
as the base station and one used to measure the magnetic field strength at the survey 

points. To allow for the greatest possible radiometric resolution, the base station was used 

to correct for diurnal fluctuations (see section 6.2.2). The base station was also run 

overnight in order to detect disturbances in the magnetic field caused by magnetic storms.

The base station magnetometer was powered using a car battery. The sensor was 

aligned to north and attached to a strong tree to prevent movement (figure 6.1). The 

strength of the magnetic field was recorded every 60 seconds and stored within a memory 

on the magnetometer. Each field strength reading was recorded against the day and time 

so that temporal fluctuations in the earth’s magnetic field could be reconstructed. The 

sensor of the base station remained in the same place throughout the duration of the 

survey. The location of the base station was located at grid reference (769657,990747). 

The sensor was mounted 2.5m above the ground and the magnetometer was tuned to 

34,400nT and the sensor coil mounted vertically. The coil orientation was decided by a 

test at the beginning of the survey (the results are described in section 6.3.1). Before and 

after the ground survey was carried out the base-station data was analysed with the aid of 

the Magmap program to detect the signs of any magnetic storms.
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Figure 6.1:

The survey was carried out using a second G 856AX magnetometer mounted on a 

harness. The sensor was mounted on a staff 2.5m high and oriented vertically. At each 

survey location, the sensor was aligned to north. For each reading stored in the 

magnetometer, a number o f  other items o f  data were also stored, including day, time, line 

number and mark number.

The tw o types o f  survey that were carried out were: wide and close grid spacing. 

During the w ide grid spacing survey, the location o f  each survey point was determined 

using a handheld GPS receiver and stored as a waypoint. The GPS location data was 

combined with the magnetic field  strength data using a spreadsheet. During a close grid 

spacing survey (< 1 0 m between survey points), the spacing between subsequent points 

was too small to be accurately determined using a handheld GPS, therefore the location 

o f  each point was surveyed using canvas based measuring tape. The location o f  the origin 

was determined using a GPS, the x-axis co-ordinate was recorded within the 

magnetometer as the line number. The Y  co-ordinate was determined using pacing.

The magnetometer sensor set up aligned to N and attached to a tree.
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During the w ide spacing survey the aim was to cover the largest possible area 

with 100m between each point. In open ground, a 100m spacing was achieved. However, 

figure 6.2 show s that large areas have no coverage at all. This is because areas o f  human 

influence should not be covered due to false readings from metal objects. Furthermore, 

there are two large open-cast pits which cannot be entered as they are unsafe and in 

places dense vegetation makes access unavailable. The location o f  the tight grid spacing 

survey is shown on figure 6.2.

2 K ilom eters

Survey Locations

The Geology of Yubdo 
Basalt

Shear zone

Diorite

Yubdo
Village

Duoite

Lcnsoid Ultra mafics

Opencast
Workings

Opencast
Workings

Basement 3

Basement 4

Basement 5

Basement 6

Basement 7

Tight Spacing 
Survey

Figure 6.2: The survey point locations for the ground magnetic survey of the Main Yubdo 
Intrusion overlaid onto the geological map (see chapter 5).

During the coil orientation test a 4m grid spacing survey was carried out twice 

using two different methods: 1st with both sensors oriented vertically and 2nd with both 

sensor coils fixed horizontally. In both cases the origin o f  the grid was at grid reference 

(769950,990211) and the X -axis was oriented on a bearing o f  196°. The aim o f  this test
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was to assess which sensor orientation was the most radiometrically sensitive at the 

survey site.

6.2.2. Diurnal correction

The magnetic field at a location depends on a number of factors including the 

underlying geology. Diurnal variation is where the magnetic field varies with time over a 

24 hour period, as illustrated in figure 6.3. At Yubdo this variation is frequently over 

150gammas. Furthermore the field may vary by a number of other mechanisms such as 

micropulsations and magnetic storms. All variations -  except magnetic storms -  have the 

same effect over several square kilometers. Therefore to allow for the greatest possible 

radiometric sensitivity, a base station was used to correct for diurnal fluctuations in the 

Earths magnetic field.

3 3 8 0 0

3 3 7 5 0

O  3 3 7 0 0

3 3 6 5 0

3 3 6 0 0

3 3 5 5 0

3 3 5 0 0

12:00 16:00 20:008:00 0:00 4 :00 8:00

Time of Day

Figure 6.3: The magnetic field strength at the base station over a 24 hour period (30th to the 31st of May
2002)

Magnetic storms disrupt the magnetic field on a scale of several hundreds of 

metres and therefore a base station cannot cancel out this effect. No magnetic storms 

were detected during the period of this investigation.
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As described in section 6.2.1, the base station automatically recorded the 

magnetic field every 60 seconds. The nearest base-station reading is subtracted from each 

reading taken with the portable magnetometer. Ideally, the readings at the portable 

magnetometer and the base station will have been taken at exactly the same time, but in 

reality this is unlikely to have been the case. Where no reading at the base station has 

been taken at the same time as the portable magnetometer, the MagMap software uses a 

linear time interpolation procedure to calculate an appropriate value.

6.2.3. Data presentation

The results of the survey at Yubdo are displayed as a three dimensional surface 

where the height of the surface is determined by the difference in the magnetic field 

strength at that point. The values for the locations between survey points have been 

interpolated using a kriging function. The magnetic field strength is diumally corrected 

(see section 6 .2 .2 ) and displayed as a Logio scale. Both negative and positive values for 

the corrected field strength occur in the dataset. These were processed separately so that 

the negative values remain negative on the Logio scale. There are, in effect, two 

logarithmic scales used simultaneously: negative and positive.

The 3D maps are plotted with three different colour scales in order to emphasize 

key features. Figure 6 . 6  shows that map A uses the simplest set of colours, grading from 

blue at the lowest to red at the highest. Map B is the same as A except that a blue stripe is 

added at 0  and everything immediately lower than 0  is yellow grading to blue and 

everything immediately above 0 is green grading to red. Map C is the same as B except 

the blue stripe is just above Logio = 3.

In order to demonstrate the variation in the field strength, Figure 6.7 shows the 

same area in 4 different orientations in 3D maps where the height represents the Logio 

magnetic field strength with the same colour schemes as figure 6 .6 .
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6.2.4. Limitations and accuracy

Two inaccuracies are involved with the method used for the collection of the data 

in this study and these must be considered during interpretation. One limitation is the 

accuracy of the handheld GPS. Although the location of each survey point is quoted to 12 

figures -  implying an accuracy of lm -  the location is only accurate to 10m. This does 

not have a direct effect on the nature of the conclusions, however any detailed work 

targeted by this survey should consider this inaccuracy.

The use of an interpolation function to calculate expected total field values away 

from survey points is necessary for the estimation of the shape of the magnetic field and 

the easy analysis of results. However it is possible that these estimated values are entirely 

incorrect. The varied results contained in this survey indicate that it is not only possible 

but quite likely that some estimated values are incorrect, however the use of this 

interpolation function is necessary for ease of analysis. The images of 3D surfaces 

(figures 6 . 6  and 6.7) show interpolated values for some areas over 1km away from the 

survey points. Interpolated values at large distances away from survey points are 

meaningless and are marked as white on figure 6 .1 1 .

The nature of the ground has meant that there were some areas where it was not 

possible to collect magnetic field data. As figure 6.2 shows, the size and shape of the 

survey means that there is barely 1km square of unbroken survey area. The areas shown 

in white in figure 6 . 1 1  are those areas where it is not possible to make interpretations due 

to lack of data. All areas delineated in figures 6 . 8  and 6.11 are only marked in areas 

where there is sufficient data to distinguish between two different patterns.

Given the use of a base station to correct for temporal changes and the use of 

proton precession magnetometers, the radiometric accuracy of the survey is considered to 

be 1 gamma which is a greater degree of accuracy than required for a geological 

investigation of this type.
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The three colour schemes applied to the same data show two different groups of 

anomaly in the magnetic field of the Main Yubdo Intrusion (see figures 6 . 6  and 6.7). Map 

A in figure 6 . 6  shows that there are two large zones of negative anomalies in northern 

and southern parts of the survey area. However, the colour scheme used on map C shows 

that in addition to the wide anomalies (covering >2 0 0 m in width), there are many smaller 

anomalies with widths of less than 100m. The wide anomalies cover two discrete zones 
in the north and south whereas the shorter anomalies occur over the whole area. The 

farthest northern and southern parts of the survey have a magnetic field which is 

relatively uniform and neither of the anomalies described above are observed.
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• Area 2 (red dots): Covering a total of « 2.5km2, the magnetic field 

strength in this area ranges from 3.2 to 3.5 Logio units. It covers two large 

tracts in the north and south of the area shown in figure 6 .8 .

• Area 3 (pink dots): This isolated area located at the centre of the the 

Main Yubdo Intrusion is characterized by an uneven magnetic field 

strength of around 3 Logio units with small negative anomalies which can 

fall to 2.3 Logio units.

• Area 4 (yellow dots): This zone in the southern part of the survey area is 

entirely surrounded by area 2 . The field strength is 2.5 Logio units.

• Area 5 (orange dots): Numerous small parts of the survey are covered by 

this form of non-uniform magnetic field ranging from 2.5 to 3.5 Logio 

units.
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Figure 6.9 shows the results of the tight grid spacing survey at Yubdo. Two 

distinct negative magnetic anomalies are observed. Both anomalies have a linear sinuous 

shape. The depth of the anomaly is approximately 2000 gammas. The shoulders of the 

anomaly are symmetrical. The very deep anomaly in the NW of the survey, corresponds 

to a small hut with a tin roof. Slight N-S trending offsets in the northernmost anomaly 

have been caused by slight inaccuracy in the pacing method of measuring the Y- 

coordinate.

6.4. Discussion

It is expected that the nature of the magnetic field can be explained by a 

heterogeneous distribution of magnetic minerals throughout the intrusion. These 

magnetic minerals are largely magnetite but possibly also maghemite, ulvfispinel and 

titanomagnetite. There are a number of models which could be used to explain all of or 

some of the features of the field, they are listed below.

• Quartz Veining: Siliceous veining can dilute the abundance of magnetite 

in parts of the ultramafic body. Variations in the density of veining will 

cause differences in patterns of magnetic field strength.

• Serpentine Distribution: During the alteration of olivine to serpentine Fe 

is released to form magnetite. Therefore different stages of alteration of 

the igneous rocks to serpentinite will produce different quantities of 

magnetite.

• Chromitite Lenses: Magnetite is less abundant in some areas due to the 

presence of fresh chromitite lenses. However, where chromite is altered to 

ferrichromite a greater magnetic susceptibility can occur.

• Juxtaposition of magnetite bearing units: Fault action causes 

preferential concentration of magnetite formed due to the alteration and 

focused along fault planes.

The magnetic field surveyed above the Main Yubdo Intrusion shows generally 

high values with 2  zones of large negative anomalies and numerous smaller negative
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anomalies. The generally high values observed here are likely to be ultramafic rocks as 

they have some of the highest magnetic susceptibilities known (see table 6.1). Therefore 

the origin of the negative anomalies could be explained by the presence of some less 

magnetically susceptible units. It is unlikely that the presence of magnetite or chromite 

could have caused such a decrease in magnetic field strength as alteration would have 

created a high magnetic susceptibility. As seen in table 6.1 both quartzite and serpentinite 

have significantly lower magnetic susceptibilities than olivine or pyroxene-bearing rocks. 

However, the presence of Fe-rich spinels at the rims of olivine minerals in the Main 

Yubdo Intrusion (see chapter 3) suggests a role for serpentinisation in the formation of 

ferrichromite. Hence, it is likely that this ferrichromite would increase the magnetic field 

strength as a result of sepentinisation.

Rock Average Magnetic 
Susceptibility (xlO6 emu)

Andesite 13,500
Peridotite 13,000
Pyroxenite 10,500
Diorite 7,000
Basalt 6,000
Gabbro 6,000
Serpentinite* 1,000
Quartzite 350
Amphibolite 60
Sandstone 30

Table 6.1: A table o f magnetic susceptibility values in order o f decreasing susceptibility (after 
Robinson and Coruh, 1988). *: This value is for pure serpentinite with very little magnetite.

Of the possible explanations covered above, the most likely cause of the variation 

in magnetic field strength over the Main Yubdo Intrusion is different degrees of quartz 

veining through the ultramafic lithotypes. Quartz veins can frequently be observed in the 

rocks of the Main Yubdo Intrusion and the remnants of such veins can also be seen in the 

laterites exposed in the quarry faces. Furthermore, Kazmin and Demessie (1971) have 

mapped a shear-zone which intersects with a zone of very low magnetic field strength 

observed here (see figure 6 .8 ). It is feasible that the one of the major conduits of silica- 

rich fluids could have been a shear-zone. Smaller siliceous fluids could well have 

permeated through the rest of the complex to precipitate silica and create the lower 

magnetic anomalies. The value quoted for the magnetitic susceptibility of serpentinite in
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table 6.1 is that of pure serpentinite with very little magnetite. When olivine is 

serpentinised, magnetite is formed as a result and hence a serpentinised dunite (as is 

observed at Yubdo, see chapter 3) will have a magnetitic susceptibility comparable to 

peridotite.

The negative anomalies mapped in the tight grid spacing survey may also be 

caused by siliceous veining. In the wide spacing survey, such anomalies appear to be 

circular due to the kriging interpolation function. However the tight spacing survey may 

have uncovered the geometry of these smaller veins. E-W trending quartz-veins can be 

observed in a quarry cutting 300m east of the tight spacing survey.

There are two zones in the farthest north and south (classified as area 2, see figure 

6 .8 ) where the magnetic field is relatively uniform and strong negative anomalies are not 

seen. The northernmost of these zones is over the area mapped as basement by terrain 

mapping and Kazmin and Demessie (1971). A possible explanation for this is that either 

the ultramafics or the basalts extend further than expected from geological mapping. 

Alternatively, this magnetic field could have been caused by ultramafic rocks which have 

not been silicified.

6.5. Conclusions

The results of the wide grid spacing survey are summarized by figure magintmap. 

Figure magmodel is a schematic diagram to illustrate the model suggested here to explain 

the anomalies observed in the total field during the magnetic survey. The features of this 

model are as follows:

• High Frequency Siliceous Veining: These are thin (around 10m wide) 

elongate zones of silicification. There are likely to be large slivers of 

ultramafics surrounded by quartz veining within the zone. The frequency 

of veins within the zone is likely to be greater than anywhere else in the 

survey. This results in some very low magnetic field readings directly over
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veins and some higher readings -  even within the zone -  over slivers of 

trapped ultramafic. This vein morphology could be the result of 

hydrothermal fluids passing through a zone of structural weakness perhaps 

associated with shear deformation.

• Low Frequency Siliceous Veining: This zone generally has a greater 

proportion of ultramafic than the high frequency zone described above, 

but the veining is thinner and distributed more pervasively throughout the 

host rock. The result is a generally low and variable magnetic field (see 

section 6.3.2).

• Non-silicified Ultramafic rocks: These rocks contain very little variation 

in composition and must be either ultramafic rock or basalt. The two zones 

(figure 6 .1 1 ) may be different rock types but both must be generally 

homogenous and of a high magnetic susceptibility. This results in a high 

magnetic field strength which varies very little.

• Unidentified Anomalous rock: This small zone to the south, is 

completely covered by a non-silicified ultramafic rock but shows 

anomalously low total field readings. This may be related to silicification, 

but the size and restricted shape does not support this idea.

The explanation of the anomaly patterns described above is supported by the 

results of the of the close spaced grid survey (figure 6.9). The characteristics of the 

anomalies observed can be explained by the presence of a steeply dipping planar feature 

having a lower magnetic susceptibility than its surroundings. This fits well with the idea 

of a quartz vein. The location of this anomaly is in the Low frequency Siliceous Veining 

zone identified in the wide spaced survey.
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7. Soil Geochemical Data

7.1. Introduction

The Precambrian volcano-sediments and ultramafics of the WES are overlain 

by a thick and extensive laterite. As part of the exploration program in the WES, a 

total of 930 soil samples were collected from the four areas of study in this thesis. 

The samples were analysed for major and trace elements by OMAC laboratories with 

the aim of gaining an understanding of the economic value of the prospects being 

studied.

This chapter contains several sections within which the soils of the WES are 

described and observations of several key elements are made. After the sampling 

strategy and methods used to analyze the samples has been considered, a number of 

interpretation techniques have been applied to the data. As exploration data frequently 

displays gaussian distributions it was considered valuable to examine the dataset by 

using univariate statistical methods (Sinclair, 1983; Moon, 1995). This has allowed an 

understanding of the populations and modes present within the dataset, which in turn 

can be of use in evaluating PGE prospects. To compliment the statistical methods 

used, maps of the elemental distribution of Ni, Cu, Cr, Al, Pt and Pd are included and 

these are used to evaluate the use of overburden geochemistry to exploration within 

the WES.

Observations are made within this chapter which indicate a control on the 

geochemistry of the laterites in question not only by the underlying bedrock but also 

by hydromorphic dispersion.

7.2. The overburden o f the WES

As a result of the important PGE placer deposits they contain, accounts of the 

structure and morphology of the lateritic soils in the WES occur in several 

publications the most recent of which is an MSc thesis (Childs, 2001). Other 

important documents include Augustithis (1965), Molly (1959) and Jelenc (1966), 

who all give extensive accounts of the nature of these bodies.
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7.3. Sampling strategy

Soils samples were taken in traverses across open ground and in areas where 

access was not possible, the samples were taken parallel to roads but away from areas 

of human influence. They were taken within the bounds of the licence areas stated by 

the Ethiopian government. Furthermore, under the terms of their agreement with the 

government, GPM were required to take over 900 samples covering the whole licence 

area. The spatial constraints on sampling areas are described at the start of each 

section.

For the best geological use, the soil samples collected should be as close to the 

weathered bedrock as possible. However, given the depth of the laterite (often greater 

than 15m) it was impractical to collect samples close to the bedrock. In this study, the 

samples were taken from a depth of 1 0 -2 0 cm below the surface, within the laterite 

horizon (see section 7.2). In the poor agricultural conditions of Western Ethiopia, this 

was considered to be low enough not be influenced by humic acids from plant roots or 

human influence.

Noting the soil profile described in section 7.2, this sampling depth was 

considered to be appropriate for comparison with other samples from the same dataset 

for a number of reasons. Studies of the soil horizons in the Yubdo area (Childs, 2001) 

found no significant barriers or weathered horizons within the soil profile and 

similarly no such horizons were found in the road cutting at Daleti or Kingy. The 

laterite horizon (Chirecha) is a homogenous mass of friable soils and therefore the 

material at the top of the layer is considered to be comparable in geochemistry to that 

of the bottom.

Given the arguments made above and the absence of slump and mass wasting 

features around the laterites in the WES (United Nations, 1971) this thesis suggests 

that these soil samples are likely to reflect the in-situ geochemistry and therefore are 

suitable for exploration activities. However given that the studies of soil profiles can 

only be performed in the road cuttings or open cast workings, it was always intended 

that anomalous values would be followed up by a pitting program. Such a system of 

sampling from high in the lateritic profile and validation with samples from lower in
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the stratigraphy has been recommended through work in Australia (Smith et al., 

2000). Furthermore, some degree of hydromorphic remobilization (as described by 

Smith et al., 2000) of metals is to be expected and therefore, this needs to be 

considered when interpreting the data. The factors affecting the geochemistry of the 

soils studied are described further in section 7.5).

7.4. Method o f Analysis

A total of 981 soil samples were analysed by OMAC Laboratories (Co 

Galway, Ireland) by two different procedures: one for Pt and Pd and another for 47 

additional elements. Considerably more detail about this method is given in the 

analytic methods section of chapter 8 . For Pt and Pd analyses, each sample was 

ground to 100pm and split to 30g. Subsequently, the powders were analysed using a 

30g lead fire assay with an inductively coupled plasma finish, resulting in detection 

limits of 2ppb for both Pt, Pd and Au. For other elements, the samples were also 

ground to 100pm but they were subjected to an Aqua Regia digestion with 

Inductively Coupled Plasma -  Optical Emission Spectroscopy finish. It is necessary to 

point out that an aqua regia digestion will not be total, some of the more refractory 

minerals will not have been digested (see chapter 8 ).

7.5. Soil Forming processes and geochemical dispersion

7.5.1. Ni, Cu, Cr and Al

A high degree of Ni concentration in laterites is common over ultramafic units 

(Schellmann, 1989). The increase in Ni values is caused by a removal of Si and Mg 

which are both highly mobile in soils. The Ni concentration can be further facilitated 

by remobilisation to form gossans. Studies of the behaviour of Ni and Cu in the 

surficial environment are summarized by Smith et al. (2000). Ni and Cu (amongst 

other elements) are frequently used to determine the location of primary ore deposits 

covered by laterites in Australia by identifying dispersion haloes. Ni and Cu can be 

taken into solution by meteoric water, which then forms part of the aquifer system 

within the laterite body. The elements are then dispersed through the laterite in the 

direction of groundwater flow, in the same way as As groundwater contamination 

(Nickson et al., 2000).
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When partitioned into spinel minerals, Cr is known to be highly immobile. 

Unlike sulphide minerals, Cr-spinels in the WES remain intact throughout severe 

alteration (chapter 3) and weathering. Aluminium is also known to be immobile in 

soils. The immobility of Al means that small amounts of it will be concentrated by 

volume loss during soil formation (Schellmann, 1989). It can be expected that 

immobile elements will become concentrated in soils compared with the underlying 

rocks. This is owing to the mobile components of the rock being removed and hence a 

soil will have originated from a rock volume larger than that of the soil.

7.5.2. Pt and Pd

The fluids involved with the remobilisation of Pt and Pd in soils could be 

regarded as the lower temperature equivalents (~85°C according to Tarkian et al. 

1996) of those fluids involved in the high-temperature alteration (see chapter 8). In 

addition to the Cl-complexes thought to occur at high temperatures, it is possible that 

hydroxide, thiosulphate and organic complexes may be the dominant forms of 

dissolved Pt and Pd. Such situations may form from natural humic and fulvic acids 

(Bowles et al., 1995). For example, Wood (1990) reacted with aqueous solutions of 

K̂ PtCL* to discover that such acids can hold over 140ppm Pt in solution.

In addition to the Cl-rich fluid and hydrothermal fluid models, many studies 

have shown that PGE can be oxidised in the surficial environment (see papers in 

Bowles and Gize, 2005). For example, studies of the mineralogy of the Massive 

Sulphide Zone of the Great Dyke of Zimbabwe have shown that with progressive 

alteration, the PGM become oxidised with concomitant destruction of the sulphide 

minerals present in the fresher rock (Oberthur et al., 2003). Oberthur et al. (2003) also 

remark that -  as in hydrothermal fluids -  Pd is more mobile than Pt and is dispersed 

in the surficial environment. The preferential mobility of Pd over Pt is also observed 

by many other authors including Wood and Vlassopoulos (1990) and Bowles et al. 

(1994).
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

58 1 261 100.0 Mean 6.5
55.1 0 260 99.6 Standard 8.3
52.2 0 260 99.6 Deviation
49.3 0 260 99.6 Minimum 0
46.4 0 260 99.6 Lower 0
43.5 0 260 99.6 Quartile
40.6 3 260 99.6 Median 4
37.7 0 257 98.5 Upper 9
34.8 1 257 98.5 Quartile
31.9 0 256 98.1 Maximum 58

29 1 256 98.1 Mode 0
26.1 6 255 97.7 Number o f 261
23.2 9 249 95.4 samples
20.3 8 240 92.0
17.4 11 232 88.9
14.5 10 221 84.7
11.6 19 211 80.8

8.7 28 192 73.6
5.8 63 164 62.8
2.9 20 101 38.7

0 81 81 31.0
Table 7.1: A  summary o f  the Pt values in the soil samples from Tulu Dimtu

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

31 1 261 100.0 Mean 3.0
29 0 260 99.6 Standard 3.9
28 0 260 99.6 Deviation
26 0 260 99.6 Minimum 0
25 1 260 99.6 Lower 0
23 0 259 99.2 Quartile
22 0 259 99.2 Median 2
20 0 259 99.2 Upper 4
19 0 259 99.2 Quartile
17 2 259 99.2 Maximum 31
16 2 257 98.5 Mode 0
14 4 255 97.7 Number o f 261
12 2 251 96.2 samples
11 1 249 95.4
9 2 248 95.0
8 13 246 94.3
6 33 233 89.3
5 38 200 76.6
3 53 162 62.1
2 0 109 41.8
0 109 109 41.8

Table 7.2: A  summary o f  the Pd values in the soil samples from Tulu Dimtu
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Class Upper 
Limitc Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

4869 1 261 100.0 Mean 24
4626 0 260 99.6 Standard 301
4382 0 260 99.6 Deviation
4139 0 260 99.6 Minimum 0
3895 0 260 99.6 Lower 0
3652 0 260 99.6 Quartile
3408 0 260 99.6 Median 2
3165 0 260 99.6 Upper 5
2921 0 260 99.6 Quartile
2678 0 260 99.6 Maximum 4869
2435 0 260 99.6 Mode 0
2191 0 260 99.6 Number o f 261
1948 0 260 99.6 samples
1704 0 260 99.6
1461 0 260 99.6
1217 0 260 99.6
974 0 260 99.6
730 0 260 99.6
487 0 260 99.6
243 164 260 99.6

0 96 96 36.8
Table 7.3: A  summary o f  the Au values in the soil samples from Tulu Dimtu.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

10648 1 261 100.0 Mean 2406
10116 1 260 99.6 Standard 3001
9584 1 259 99.2 Deviation
9053 5 258 98.9 Minimum 12
8521 3 253 96.9 Lower 130
7989 6 250 95.8 Quartile
7457 9 244 93.5 Median 336
6925 12 235 90.0 Upper 5288
6394 18 223 85.4 Quartile
5862 9 205 78.5 Maximum 10648
5330 12 196 75.1 Mode 103
4798 6 184 70.5 Number o f 261
4266 6 178 68.2 samples
3735 4 172 65.9
3203 1 168 64.4
2671 2 167 64.0
2139 3 165 63.2
1607 3 162 62.1
1076 7 159 60.9
544 152 152 58.2

0 0 0 0.0
Table 7.4: A summary o f  the N i values in the soil samples from Tulu Dimtu.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

146 4 261 100.0 Mean 54
139 3 257 98.5 Standard 42
132 7 254 97.3 Deviation
125 4 247 94.6 Minimum 3
117 16 243 93.1 Lower 10
110 5 227 87.0 Quartile
103 16 222 85.1 Median 50
96 10 206 78.9 Upper 88
89 12 196 75.1 Quartile
82 12 184 70.5 Maximum 146
75 11 172 65.9 Mode 6
67 12 161 61.7 Number o f 261
60 12 149 57.1 samples
53 18 137 52.5
46 12 119 45.6
39 5 107 41.0
32 12 102 39.1
24 9 90 34.5
17 13 81 31.0
10 68 68 26.1
0 0 0 0.0

Table 7.5: A  summary o f  the Cu values in the soil samples from Tulu Dimtu

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

3098 2 261 100.0 Mean 428
2944 1 259 99.2 Standard 438
2790 0 258 98.9 Deviation
2636 0 258 98.9 Minimum 18
2482 0 258 98.9 Lower 158
2328 0 258 98.9 Quartile
2174 0 258 98.9 Median 304
2020 0 258 98.9 Upper 575
1866 3 258 98.9 Quartile
1712 3 255 97.7 Maximum 3098
1558 0 252 96.6 Mode 218
1404 2 252 96.6 Number o f 261
1250 4 250 95.8 samples
1096 4 246 94.3
942 13 242 92.7
788 20 229 87.7
634 28 209 80.1
480 46 181 69.3
326 61 135 51.7
172 74 74 28.4

0 0 0 0.0
Table 7.6: A  summary o f  the Cr values in the soil samples from Tulu Dimtu.

112



Chapter 7: Soil Geochemical Data

Class Upper 
Limit (%)

Cumulative 
Frequency Frequency

Cumulative 
Frequency (%)

7.3 1 261 100.0 Mean 3.62
7.0 7 260 99.6 Standard 1.91
6.6 8 253 96.9 Deviation
6.3 6 245 93.9 Minimum 0.4
5.9 20 239 91.6 Lower 1.4
5.6 15 219 83.9 Quartile
5.2 26 204 78.2 Median 4.0
4.9 17 178 68.2 Upper 5.1
4.5 26 161 61.7 Quartile
4.2 19 135 51.7 Maximum 7.3
3.9 7 116 44.4 Mode 1
3.5 16 109 41.8 Number o f 261
3.2 4 93 35.6 samples
2.8 8 89 34.1
2.5 6 81 31.0
2.1 4 75 28.7
1.8 4 71 27.2
1.4 23 67 25.7
1.1 30 44 16.9
0.7 14 14 5.4
0.0 0 0 0.0

Table 7.7: A summary o f  the Al values in the soil samples from Tulu Dimtu.

The following sections describe the distribution of Ni, Cu, Cr and Al in the 

soils covering the Tulu Dimtu area. It is important to remember that it is unlikely that 

complete digestion has been acheieved during the aqua regia leach of these samples. 

Each section describes one element and its distribution in the soils in turn. These 

sections are accompanied by two fold-out pages (page 123) of maps showing the 

distribution of all elements which the reader should refer to as each section is read.
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7 .6 .3 . N ick el
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Figure 7.6: A rithm etic and L o g !0 transformed histograms o f  N i in the so ils o f  the Tulu Dimtu  
area. T he grey lines indicate the class-boundaries used in figure 7 .12A.

N ick el is enriched  on ly  over the Tulu Dim tu M ain Intrusion and Sheared 

Ultram afic (see  figure 7 .1 2 A ). T w o regions o f  high values are observed in the soils 

overlying the M ain Intrusion. T hese are firstly on the flanks o f  the intrusion and 

additionally form ing a N -S  trending feature 1km east o f  the western flank; here values 

rise to over 8000ppm  (figure 7 .1 2 A ). The h ighest value o f  N i in the Tulu Dim tu area 

is found in the so ils  ab ove the southw estern flank o f  the intrusion.

There are tw o  populations o f  N i values in the Tulu Dim tu area. Figure 7.6  

show s that above 3000p pm  (found over the Tulu Dim tu M ain Intrusion and Sheared 

U ltram afic), the N i va lu es have an approxim ately normal distribution. H ow ever, the 

sam ples w ith  N i va lues o f  low er than 3000ppm  (generally found over the basem ent 

units have an approxim nately lo g  normal distribution.
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7 .6 .4 . Copper
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Figure 7.7: A rithm etic and L o g |0 transformed histograms o f  Cu the so ils o f  the Tulu Dimtu 
area. T he grey lines indicate the class-boundaries used in figure 7.12B .

W ithin the T ulu D im tu  M ain  Intrusion, on ly  one soil sam ple -  located on the 

w estern flank - contains a Cu va lue w h ich  is above 70ppm . A ll remaining samples 

from so ils  above the T ulu  D im tu  M ain Intrusion have Cu values b elow  50ppm. 

H ow ever, over the rest o f  the area, Cu rises to above 90ppm  in so ils overlying many 

different rock form ations. A lth ou gh  som e values o f  less than 500ppm  are found in 

so ils over the basem ent units.

There are tw o  popu lations o f  Cu values in the Tulu D im tu area. A bove 25ppm  

there is an approxim ately ev en  distribution o f  Cu values (not norm ally distributed, see  

figure 7 .7). H ow ever, an additional population o f  Cu values b elow  25ppm  show  a 

roughly L og norm al distribution.
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When displayed on an arithmetic scale (see figure 7.10 and 7.11) the Pt and Pd 

distributions appear to be Log normal. However a logarithmic scale reveals that the Pt 

and Pd values in the soils of the Tulu Dimtu area show an erratic distribution.

7.6.9. Discussion

7.6.10. Ni, Cu, Cr, and Al distribution in soils

It is observed that the distribution of Ni over the Tulu Dimtu area is the 

opposite of the Cu distribution. The highest values of Ni and lowest values of Cu 

occur only over the ultramafic lithologies as defined by geological mapping (chapter 

5) and by the interpretation of aerial photography (chapter 4). Additionally, a zone of 

high Cr values is seen in the soils over the western and southern flanks of the Main 

Intrusion. Al also shows anomalously high values over the same areas, in addition to 

the high values seen over the basement.

There are two possible explanations for the marked change in Ni and Cu 

values across the boundary between the Main Intrusion and the basement. Firstly, the 

change could be reflecting the change in rock-type below and secondly, the Cu may 

have been remobilized from the soils above the ultramafic rocks and redeposited at 

the base of the slope.

If the high increase in Cu values at the contact of the Tulu Dimtu Main 

Intrusion with the basement were solely due to hydromorphic dispersion then those 

high values would only be expected at the base of the slope. However, analysis of the 

aerial photographs (chapter 4) shows that high Cu values are also found in soils above 

the basement many of which are located at ridge summits. However, given the porous 

nature of the laterite and frequent rains in the area it is likely that hydromorphic 

dispersion will have had some effect on the Cu distribution, in combination with the 

effect from the relict rocks. This combined effect is discussed further in section 7.10.

The poor exposure means that the western boundary of the Tulu Dimtu Main 

Intrusion has been defined principally by the change in vegetation (chapter 4). The 

change in Ni and Cu concentrations across the same boundary supports the validity of
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this method of geological mapping and suggests that some form of biogeochemical 

change has occurred. A high degree of Ni concentration in laterites is common over 

ultramafic units (Schellmann, 1989).

When partitioned into spinel minerals, Cr is known to be highly immobile. 

Unlike sulphide minerals, in the WES, Cr-spinels often remain intact throughout 

severe alteration (chapter 3) and also weathering. Therefore the locations of high Cr 

values in soils can be considered as being in-situ -  given that soil transport is likely to 

have been minimal. Given that the high Cr values in soils show the same patterns and 

locations as those seen in altered and fresher rocks (see chapter 8), the distances by 

which these soils have moved are considered to be low (~<10m).

Aluminium is also known to be immobile in soils and therefore it is to be 

expected that Al may be present in the soils above the basement, given the high 

proportion of alumino-silicates in the underlying rocks. The zone of high Al at the 

flanks of the Main Intrusion is less easy to explain. The immobility of Al means that 

small amounts of it will be concentrated by volume loss during soil formation. The 

fresher ultramafics of Tulu Dimtu contain 1% Al at most and these values could 

potentially be increased to 4% if the volume loss effect of hydrothermal alteration 

acting at the flanks of the intrusion is also taken into account (see chapter 8).

7.6.11. Genesis o f Pt and Pd in soils

In the Tulu Dimtu area, Pt is enriched over the soils of the Main Intrusion but 

not over the Lensoid Ultramafics. Also, a greater proportion of soil samples compared 

to rock samples are enriched in Pt to greater than 20ppb (see figures 7.12E and 

7.12F). Theoretically, it is known that the high Eh, acid and chloride-rich conditions 

in lateritic soil covers can mobilise the PGE (see section 7.5.2). The predominance of 

Pt over Pd in the soils above the Tulu Dimtu Main Intrusion may be attributed to 

prefential leaching of Pd during the soil-formation. The Pt acts as a less mobile 

element and is retained within the soil. The increased proportion of Pt-bearing soil 

samples compared to rock samples over the Main Intrusion may be attributed to either 

the loss in volume from rock to soil or to the reconcentration of Pt within the lateritic 

conditions (as proposed by Bowles, 1995; see section 7.5.2). It is not possible to
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assess the behaviour of Pt and Pd in the soils overlying the Lensoid Ultramafics 

because the rock samples are located far from the soil samples.

7.6.12. Conclusion

The distribution of Ni and Cu in the Tulu Dimtu area is likely to have been 

partially influenced by the geochemistry of the underlying rocks. However, it is likely 

that hydromorphic dispersion will have had an additional influence. Cr and Al have 

both acted as immobile elements and may reflect the same patterns seen in primary 

rocks (see chapter 8).

Redistribution of Pt and Pd is observed in the soils above the Tulu Dimtu 

Main Intrusion (see chapter 8). It is likely that Pt acted as a less mobile element and 

Pd was taken into solution. Consequently, Pd will have been leached out and some Pt 

may remain. The increase in Pt values from rock to soil may be accounted for by 

either by the volume change from rock to soil or by the reconcentration of Pt within 

the lateritic conditions as first suggested by Ottemann and Augustithis (1967).
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7.7.2. Summary of Analytical Results

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

69 1 201 100.0
66 0 200 99.5 Mean 4.4
62 0 200 99.5 Standard 7.1
59 0 200 99.5 Deviation
55 0 200 99.5 Minimum 0
52 0 200 99.5 Lower 0
48 0 200 99.5 Quartile
45 0 200 99.5 Median 3
41 0 200 99.5 Upper 5
38 0 200 99.5 Quartile
35 1 200 99.5 Maximum 69
31 1 199 99.0 Mode 0
28 0 198 98.5 Number of 201
24 1 198 98.5 samples
21 3 197 98.0
17 11 194 96.5
14 5 183 91.0
10 17 178 88.6
7 39 161 80.1
3 43 122 60.7
0 79 79 39.3

Table 7.8: A summary o f the Pt values in the soil samples from the Kingy area.

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

71 1 201 100.0
67 0 200 99.5
64 0 200 99.5 Mean 5.1
60 0 200 99.5 Standard 7.1
57 0 200 99.5 Deviation
53 0 200 99.5 Minimum 0
50 0 200 99.5 Lower 0
46 0 200 99.5 Quartile
43 0 200 99.5 Median 4
39 0 200 99.5 Upper 7
36 1 200 99.5 Quartile
32 1 199 99.0 Maximum 71
28 1 198 98.5 Mode 0
25 0 197 98.0 Number of 201
21 1 197 98.0 samples
18 6 196 97.5
14 11 190 94.5
11 25 179 89.1
7 59 154 76.6
4 32 95 47.3
0 63 63 31.3

Table 7.9: A summary ojfthe Pd values in the soil samples from the Kingy area.
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Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

304 1 201 100.0
289 0 200 99.5
274 0 200 99.5 Mean 10
258 0 200 99.5 Standard 26
243 0 200 99.5 Deviation
228 0 200 99.5 Minimum 0
213 0 200 99.5 Lower 2
198 0 200 99.5 Quartile
182 0 200 99.5 Median 4
167 0 200 99.5 Upper 9
152 0 200 99.5 Quartile
137 1 200 99.5 Maximum 304
122 1 199 99.0 Mode 2
106 0 198 98.5 Number of 201
91 0 198 98.5 samples
76 2 198 98.5
61 1 196 97.5
46 3 195 97.0
30 18 192 95.5
15 148 174 86.6
0 26 26 12.9

Table 7.10: A summary o f the Au values in the soil samples from the Kingy area.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

6976 1 201 100.0
6627 1 200 99.5
6279 0 199 99.0 Mean 460.9
5930 0 199 99.0 Standard 999.8
5581 0 199 99.0 Deviation
5232 0 199 99.0 Minimum 1
4884 0 199 99.0 Lower 29
4535 2 199 99.0 Quartile
4186 1 197 98.0 Median 86
3837 0 196 97.5 Upper 345
3489 2 196 97.5 Quartile
3140 2 194 96.5 Maximum 6976
2791 3 192 95.5 Mode 29
2442 2 189 94.0 Number of 201
2094 2 187 93.0 samples
1745 4 185 92.0
1396 5 181 90.0
1047 5 176 87.6
699 20 171 85.1
350 151 151 75.1

0 0 0 0.0
Table 7.11: A summary of the Ni values in the soil samples from the Kingy area.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

188 2 201 100.0
179 2 199 99.0
170 4 197 98.0 Mean 80.0
160 2 193 96.0 Standard 41.3
151 2 191 95.0 Deviation
142 5 189 94.0 Minimum 4
133 11 184 91.5 Lower 49
124 15 173 86.1 Quartile
114 13 158 78.6 Median 80
105 19 145 72.1 Upper 108
96 16 126 62.7 Quartile
87 13 110 54.7 Maximum 188
78 18 97 48.3 Mode 90
68 18 79 39.3 Number of 201
59 7 61 30.3 samples
50 17 54 26.9
41 8 37 18.4
32 6 29 14.4
22 12 23 11.4
13 11 11 5.5
0 0 0 0.0

Table 7.12: A summary of the Cu values in the soil samples from the Kingy area.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

3861 1 201 100.0
3668 0 200 99.5
3475 0 200 99.5 Mean 481
3282 0 200 99.5 Standard 601
3089 0 200 99.5 Deviation
2896 0 200 99.5 Minimum 0
2703 1 200 99.5 Lower 83
2510 3 199 99.0 Quartile
2317 2 196 97.5 Median 258
2124 1 194 96.5 Upper 635
1931 3 193 96.0 Quartile
1737 2 190 94.5 Maximum 3861
1544 4 188 93.5 Mode 55
1351 7 184 91.5 Number of 201
1158 9 177 88.1 samples
965 8 168 83.6
772 13 160 79.6
579 19 147 73.1
386 43 128 63.7
193 84 85 42.3

0 1 1 0.5
Table 7.13: A summary of the Cr values in the soil samples from the Kingy area.
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Class Upper 
Limit (%) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

8.4 1 201 100.0
8.0 3 200 99.5
7.6 4 197 98.0 Mean 4.2
7.2 4 193 96.0 Standard 1.6
6.9 4 189 94.0 Deviation
6.5 11 185 92.0 Minimum 0.7
6.1 11 174 86.6 Lower 3.1
5.7 10 163 81.1 Quartile
5.3 13 153 76.1 Median 4.1
4.9 19 140 69.7 Upper 5.2
4.6 17 121 60.2 Quartile
4.2 25 104 51.7 Maximum 8.4
3.8 19 79 39.3 Mode 3.6
3.4 12 60 29.9 Number of 201
3.0 10 48 23.9 samples
2.6 12 38 18.9
2.2 13 26 12.9
1.9 8 13 6.5
1.5 3 5 2.5
1.1 2 2 1.0
0.0 0 0 0.0

Table 7.14: A summary o f the A1 values in the soil samples from the Kingy area.

The following sections cover the distribution of Ni, Cu, Cr and A1 in the 

Kingy area. It is important to remember that it is unlikely that complete digestion has 

been acheieved during the aqua regia leach of these samples. Each section covers one 

element and describes its distribution in turn.
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Ultramafic but does not rise above 9ppb over the northeastern basement (figure 

7.20E). Additionally, high Pt and Pd values are more common in soils than rocks.

The highest grades of both Pt and Pd in the whole Kingy area are in a soil 

sample above the isolated gabbro in the southeastern comer of the area. However, the 

soils elsewhere in the Kingy area, show Pt and Pd anomalies in very different areas 

(see figure 7.20E and 7.20F).

On the arithmetic scale (figure 7.18 and 7.19) both Pt and Pd seem to have 

approximately log normal distributions. However on a log scale, only Pd shows a 

roughly log normal distribution and Pt seems much more uneven.

7.7.9. Discussion

7.7.10. Trace Element distribution in soils

Except for the isolated gabbro (see chapter 5) all high Cr and Ni values in soils 

of the Kingy area only occur over the ultramafic units. However, high Cu and A1 

values are observed over all formations. The high Cr, Cu and Ni values observed 

above the ultramafic units are to be expected and these reflect the geochemistry of the 

underlying rocks. Additionally the elevated A1 content of the soils is to be expected as 

this immobile element will be concentrated even from the low amounts seen in the 

rocks from the Kingy Ridge Ultramafic.

7.7.11. Genesis of Pt and Pd in soils

The distribution of Pt and Pd values in the soils from the Kingy area show a 

distinct geographical split between the two elements (see figures 7.20E and 7.20F). Pd 

is concentrated mainly in the soils over the basement of the northwest and the Pt is 

concentrated over the Kingy Ridge area -  although a few anomalous Pd values also 

occur.

As discussed in section 7.5.2, Pt and Pd are likely to be concentrated in the 

soils above PGE-bearing ultramafic complexes and some Pd may also be lost between 

the rocks and soils. It appears that Pt is more extensively mineralised in soils than in
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the rocks over the Kingy Ridge Ultramafic. It is possible that due to the large volume 

of rock from which a thick laterite is formed (several times greater than the thickness 

of the laterite itself) small amounts of the immobile Pt may have become 

concentrated. At the same time as the immobile Pt particles are concentrated, the 

mobile Pd is leached out. In the soils above the Kingy Ridge Ultramafic, the relative 

distributions of Pt and Pd in soils versus rock support the hypothesis that Pd is more 

mobile than Pt in lateritic soils.

Given the mobility differences described above, it is hard to understand the 

origins of the Pd concentration observed over the basement in the northwest where the 

laterites are known to be of a similar thickness to those from the Kingy Ridge areas. If 

Pd is mobile in the fluids of lateritic covers from the Kingy Ridge why is it retained in 

the soils seen here? It is possible that there are some different aqueous conditions 

occurring in these laterites due to a different protolith (metavolcanic and meta 

sedments as opposed to ultramafic) whereby Pd becomes immobile. However, there is 

also a difference in vegetation type seen from aerial photography (chapter 4) between 

this area and the Kingy Ridge Ultramafic and it is conceivable that biochemical 

factors may have caused Pd to complex with humic or fulvic acid as a locked 

molecule.

The primary source of the Pd in the soils from the northwest of the Kingy area 

could be attributed to some Pd-bearing (9 or lOppb) Shear Zones and gabbros (see 

figure 7.20F). However, the Pd distribution in the soils covers a wider area than the 

known extent of these exposures and therefore hints towards a larger system of Pd- 

bearing rocks not yet exposed.

The highest Pt and Pd values in soils occur above the isolated gabbro exposure 

in the southeast. Lack of further geological information about this area precludes 

precludes a definite conclusion however the presence of a high Cu value in soil hints 

towards either magmatic or hydrothermal origin. This area merits further 

investigation.

7.7.12. Conclusions
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The distribution of Ni and Cr over the ultramafic complexes in the Kingy area 

suggests that their distribution is connected to the underlying lithotypes. However Cu 

and A1 show no particular pattern with lithotype.

The extent of Pt mineralisation in the soils overlying the Kingy Ridge 

Ultramafic is wider than seen in the fresher rocks, which may be attributed to either 

volume loss from rock to soil or by in-situ remobilisation of Pt and Pd. The most 

striking feature of the Pt and Pd distribution in soils from the Kingy area is the 

division between northwest and southeast, the origin of this pattern cannot be 

ascertained here.
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7.8.2. Summary of Analytical Results

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

34 2 240 100.0
32 0 238 99.2
31 0 238 99.2 Mean 1.8
29 0 238 99.2 Standard 4.5
27 0 238 99.2 Deviation
26 0 238 99.2 Minimum 0
24 0 238 99.2 Lower 0
22 1 238 99.2 Quartile
20 0 237 98.8 Median 0
19 1 237 98.8 Upper 2
17 1 236 98.3 Quartile
15 3 235 97.9 Maximum 34
14 2 232 96.7 Mode 0
12 1 230 95.8 Number of 240
10 5 229 95.4 samples
9 2 224 93.3
7 3 222 92.5
5 15 219 91.3
3 35 204 85.0
2 0 169 70.4
0 169 169 70.4

Table 7.15: A summary o f the Pt values in the soil samples from the Daleti, Ankori,
Kapi areas.

Class Upper Cumulative Cumulative
Limit (ppb) Frequency Frequency Frequency (%)

48 1 240 100.0
46 1 239 99.6 Mean 2.0
43 0 238 99.2 Standard 5.6
41 0 238 99.2 Deviation
38 0 238 99.2 Minimum 0
36 0 238 99.2 Lower 0
34 0 238 99.2 Quartile
31 0 238 99.2 Median 0
29 1 238 99.2 Upper 3
26 0 237 98.8 Quartile
24 0 237 98.8 Maximum 48
22 1 237 98.8 Mode 0
19 3 236 98.3 Number of 240
17 0 233 97.1 samples
14 2 233 97.1
12 3 231 96.3
10 5 228 95.0
7 14 223 92.9
5 30 209 87.1
2 11 179 74.6
0 168 168 70.0

Table 7.16: A summary of the Pd values in the soil samples from the Daleti, Ankori, and Tulu
Kapi areas.
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Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

17639 1 240 100.0
16757 0 239 99.6 Mean 99
15875 0 239 99.6 Standard 1145
14993 0 239 99.6 Deviation
14111 0 239 99.6 Minimum 0
13229 0 239 99.6 Lower 2
12347 0 239 99.6 Quartile
11465 0 239 99.6 Median 4
10583 0 239 99.6 Upper 10.25
9701 0 239 99.6 Quartile
8820 0 239 99.6 Maximum 17639
7938 0 239 99.6 Mode 2
7056 0 239 99.6 Number of 240
6174 0 239 99.6 samples
5292 0 239 99.6
4410 0 239 99.6
3528 0 239 99.6
2646 1 239 99.6
1764 1 238 99.2
882 202 237 98.8

0 35 35 14.6
Table 7.17: A summary o f the Au values in the soil samples from the Daleti, Ankori, and Tulu

Kapi areas.

Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

19266 1 240 100.0
18303 0 239 99.6
17340 1 239 99.6 Mean 459
16378 1 238 99.2 Standard 2161
15415 0 237 98.8 Deviation
14452 0 237 98.8 Minimum 10
13489 0 237 98.8 Lower 29
12526 0 237 98.8 Quartile
11564 0 237 98.8 Median 38
10601 0 237 98.8 Upper 57
9638 1 237 98.8 Quartile
8675 2 236 98.3 Maximum 19266
7712 0 234 97.5 Mode 41
6750 1 234 97.5 Number of 240
5787 0 233 97.1 samples
4824 0 233 97.1
3861 1 233 97.1
2898 0 232 96.7
1936 6 232 96.7
973 226 226 94.2

0 0 0 0.0
Table 7.18: A summary of the Ni values in the soil samples from the Daleti, Ankori, and Tulu

Kapi areas.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

366 1 240 100.0
348 0 239 99.6
330 0 239 99.6 Mean 50.4
311 0 239 99.6 Standard 35.6
293 0 239 99.6 Deviation
275 0 239 99.6 Minimum 2
257 0 239 99.6 Lower 32
239 0 239 99.6 Quartile
220 0 239 99.6 Median 42
202 0 239 99.6 Upper 60
184 1 239 99.6 Quartile
166 1 238 99.2 Maximum 366
148 4 237 98.8 Mode 39
129 5 233 97.1 Number of 240
111 10 228 95.0 samples
93 17 218 90.8
75 23 201 83.8
57 82 178 74.2
38 70 96 40.0
20 26 26 10.8

0 0 0 0.0
Table 7.19: A summary o f the Cu values in the soil samples from the Daleti, Ankori,

Kapi areas.

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

3056 1 240 100.0
2904 1 239 99.6
2752 1 238 99.2 Mean 243
2599 0 237 98.8 Standard 432
2447 0 237 98.8 Deviation
2295 1 237 98.8 Minimum 12
2143 0 236 98.3 Lower 76
1991 0 236 98.3 Quartile
1838 1 236 98.3 Median 104
1686 1 235 97.9 Upper 154
1534 3 234 97.5 Quartile
1382 3 231 96.3 Maximum 3056
1230 0 228 95.0 Mode 103
1077 1 228 95.0 Number of 240
925 2 227 94.6 samples
773 8 225 93.8
621 8 217 90.4
469 6 209 87.1
316 20 203 84.6
164 183 183 76.3

0 0 0 0.0
Table 7.20: A summary o f the Cr values in the soil samples from the Daleti, Ankori, and Tulu

Kapi areas.
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Class Upper 
Limit (%) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

7.4 1 240 100.0
7.0 1 239 99.6
6.7 2 238 99.2 Mean 3.82
6.3 5 236 98.3 Standard 1.24
6.0 10 231 96.3 Deviation
5.6 17 221 92.1 Minimum 0.2
5.2 15 204 85.0 Lower 3.0
4.9 21 189 78.8 Quartile
4.5 19 168 70.0 Median 3.7
4.2 27 149 62.1 Upper 4.7
3.8 32 122 50.8 Quartile
3.4 28 90 37.5 Maximum 7.4
3.1 15 62 25.8 Mode 3.6
2.7 23 47 19.6 Number of 240
2.4 12 24 10.0 samples
2.0 2 12 5.0
1.6 3 10 4.2
1.3 4 7 2.9
0.9 1 3 1.3
0.6 2 2 0.8
0.0 0 0 0.0

Table 7.21: A summary o f the A1 values in the soil samples from the Daleti, Ankori, and Tulu
Kapi areas.

The following sections cover the distribution of Ni, Cu, Cr and A1 in the 

Daleti, Ankori, Tulu Kapi and Keley areas. It is important to remember that it is 

unlikely that complete digestion has been acheieved during the aqua regia leach of 

these samples. Each section covers one element and describes its distribution in the 

soils.
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7.8.3. Nickel
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Figure 7.22: Arithmetic and Logio transformed histograms of Ni the soils o f the Daleti,
Ankori, Tulu Kapi and Keley areas. The grey lines indicate the class-boundaries used in figure

7.28A.

High values of Ni in soil (over 1120ppm) are only seen in two areas, over the 

Daleti Ultramafic and the Ankori Ultramafic. The highest value of Ni in soil 

(19,266ppm) is seen over the Daleti Ultramafic. As with the fresher rocks, a high 

degree of local variation (within 250m) in Ni values is seen in soils (see figure 

7.28A).

The Ni values in the soils of the Daleti, Ankori, Tulu Kapi and Keley areas 

show a positively skewed log normal distribution with a mode at around 41 ppm.
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7.8.9. Discussion

7.8.10. Trace element distribution in soils

With one exception, the highest Ni values in soil occur over the ultramafic

bodies whereas the highest Cu values occur over the basement. The exception occurs 

at Keley where the highest Cu value in soil occurs over a dunite body. The high Cu 

value at Keley can be explained as it reflects the high Cu value found in rock (see 

chapter 8). It is common to find Ni-rich lateritic bodies over ultramafic complexes 

(Schellmann, 1989; Schellmann, 1971). It is notable that, high Cu values occur in 

soils at ridge summits and hence it appears that the element acts as an immobile 

element in the soils above the basement but also in the ultramafics where it exists in 

the underlying rocks. The Cu values found in the soils above the basement may have 

originated from Cu-bearing veins which have scavenged the element from the 

ultramafic intrusions. The clear-boundaries between Ni and Cu distribution co-incide 

with the contacts mapped in this study and therefore these elements validate the 

mapping technique.

7.8.11. Genesis of Pt and Pd in soils

Soil samples at only two locations studied in this section contain Pt or Pd 

values of above 20ppb, one at the southwestern basement and one above the Ankori 

complex. The soils above the Daleti Ultramafic are entirely barren of both elements. 

As expected, both of the soil anomalies lie close to high Pt and Pd values in rock (see 

figures 7.28E, 8.10E, 7.28F and 8.1 OF). These soils probably represent the weathered 

equivalent of the PGE-bearing rocks.

There is an absence of PGE-bearing soils over many other Pt and Pd bearing 

complexes. Furthermore, the highest value PGE-bearing soils from the Ankori 

complex does not co-coincide with the locations of highest Pt and Pd values in rock. 

This difference in location of the rock and soil anomalies in the Ankori Ultramafic 

may be due to soil transport. However the lack of Pt and Pd over the other complexes 

cannot be explained here.
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7.8.12. Conclusions

Both Ni and Cr show high values solely over the ultramafic intrusions whereas 

A1 and Cu show high values over many formations, including the basement. Some 

notably high (>19,000ppm) Ni values occur in the laterites covering the Daleti 

Ultramafic. Significant Pt and Pt values are only found in two places, the Ankori 

complex and the soils around a system of shear zones to the southwest of Gudeya 

Guji (see figures 7.28E and 7.28F).
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7.9.2. Summary of Analytical Results

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

232 1 227 100.0
220 0 226 99.6
209 0 226 99.6 Mean 4.7
197 1 226 99.6 Standard 25.0
186 0 225 99.1 Deviation
174 0 225 99.1 Minimum 0
162 1 225 99.1 Lower 0
151 0 224 98.7 Quartile
139 0 224 98.7 Median 0
128 1 224 98.7 Upper 0
116 0 223 98.2 Quartile
104 1 223 98.2 Maximum 232
93 0 222 97.8 Mode 0
81 0 222 97.8 Number o f 227
70 0 222 97.8 samples
58 1 222 97.8
46 1 221 97.4
35 0 220 96.9
23 3 220 96.9
12 32 217 95.6
0 185 185 81.5

Table 7.22: A summary o f the Pt values in the soil samples from the Yubdo, Andu and Sodu
areas.

Class Upper 
Limit (ppb) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

31 1 227 100.0
29 0 226 99.6
28 0 226 99.6
26 0 226 99.6 Mean 1.2
25 0 226 99.6 Standard 3.7
23 1 226 99.6 Deviation
22 0 225 99.1 Minimum 0
20 2 225 99.1 Lower 0
19 0 223 98.2 Quartile
17 1 223 98.2 Median 0
16 1 222 97.8 Upper 0
14 0 221 97.4 Quartile
12 1 221 97.4 Maximum 31
11 0 220 96.9 Mode 0
9 2 220 96.9 Number of 227
8 2 218 96.0 samples
6 3 216 95.2
5 3 213 93.8
3 39 210 92.5
2 0 171 75.3
o 171 171 75.3

Table 7.23: A summary o f the Pd values in the soil samples from the Yubdo, Andu and Sodu
areas.
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Class Upper Cumulative Cumulative
Limit (ppb) Frequency Frequency Frequency (%)

102 1 227 100.0
97 0 226 99.6
92 0 226 99.6 Mean 4.2
87 0 226 99.6 Standard 11.4
82 1 226 99.6 Deviation
77 0 225 99.1 Minimum 0
71 0 225 99.1 Lower 0
66 2 225 99.1 Quartile
61 0 223 98.2 Median 2
56 0 223 98.2 Upper 3
51 0 223 98.2 Quartile
46 0 223 98.2 Maximum 102
41 2 223 98.2 Mode 0
36 2 221 97.4 Number of 227
31 1 219 96.5 samples
26 0 218 96.0
20 3 218 96.0
15 5 215 94.7
10 15 210 92.5
5 89 195 85.9
0 106 106 46.7

Table 7.24: A summary o f the Au values in the soil samples from the Yubdo, Andu an
areas.

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

10454 1 227 100.0
9932 0 226 99.6 Mean 504
9410 0 226 99.6 Standard 1168
8888 0 226 99.6 Deviation
8366 0 226 99.6 Minimum 14
7844 0 226 99.6 Lower 52
7322 0 226 99.6 Quartile
6800 0 226 99.6 Median 70
6278 1 226 99.6 Upper 416
5756 1 225 99.1 Quartile
5234 2 224 98.7 Maximum 10,454
4712 0 222 97.8 Mode 72
4190 1 222 97.8 Number of 227
3668 2 221 97.4 samples
3146 6 219 96.5
2624 1 213 93.8
2102 2 212 93.4
1580 12 210 92.5
1058 20 198 87.2
536 178 178 78.4

0 0 0 0.0
Table 7.25: A summary o f the Ni values in the soil samples from the Yubdo, Andu and Sodu

areas.
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Class Upper 
Limit (ppm) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

409 2 227 100.0
389 0 225 99.1
369 0 225 99.1 Mean 61
349 0 225 99.1 Standard 48
329 0 225 99.1 Deviation
309 1 225 99.1 Minimum 8
289 0 224 98.7 Lower 40
269 0 224 98.7 Quartile
249 1 224 98.7 Median 48
229 2 223 98.2 Upper 64
209 0 221 97.4 Quartile
188 0 221 97.4 Maximum 409
168 2 221 97.4 Mode 40
148 3 219 96.5 Number of 227
128 6 216 95.2 samples
108 9 210 92.5
88 21 201 88.5
68 66 180 79.3
48 102 114 50.2
28 12 12 5.3

0 0 0 0.0
Table 7.26: A summary o f the Cu values in the soil samples from the Yubdo, Andu a

areas.

Class Upper Cumulative Cumulative
Limit (ppm) Frequency Frequency Frequency (%)

6504 1 227 100.0
6180 0 226 99.6
5855 0 226 99.6 Mean 649.7
5531 0 226 99.6 Standard 942.1
5206 0 226 99.6 Deviation
4882 0 226 99.6 Minimum 16
4558 1 226 99.6 Lower 122.5
4233 1 225 99.1 Quartile
3909 0 224 98.7 Median 187
3584 2 224 98.7 Upper 869
3260 4 222 97.8 Quartile
2936 2 218 96.0 Maximum 6504
2611 3 216 95.2 Mode 238
2287 12 213 93.8 Number of 227
1962 8 201 88.5 samples
1638 9 193 85.0
1314 12 184 81.1
989 6 172 75.8
665 12 166 73.1
340 154 154 67.8

0 0 0 0.0
Table 7.27: A summary o f the Cr values in the soil samples from the Yubdo, Andu and Sodu

areas.
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Class Upper 
Limit (%) Frequency

Cumulative
Frequency

Cumulative 
Frequency (%)

8.7 3 227 100.0
8.3 3 224 98.7
7.9 4 221 97.4 Mean 5.39
7.5 15 217 95.6 Standard 1.60
7.1 17 202 89.0 Deviation
6.8 35 185 81.5 Minimum 0.9
6.4 18 150 66.1 Lower 4.2
6.0 28 132 58.1 Quartile
5.6 18 104 45.8 Median 5.7
5.2 10 86 37.9 Upper 6.6
4.8 10 76 33.5 Quartile
4.4 14 66 29.1 Maximum 8.7
4.0 8 52 22.9 Mode 6.6
3.6 15 44 19.4 Number of 227
3.2 9 29 12.8 samples
2.9 12 20 8.8
2.5 5 8 3.5
2.1 0 3 1.3
1.7 1 3 1.3
1.3 2 2 0.9
0.0 0 0 0.0

Table 7.28: A summary o f the A1 values in the soil samples from the Yubdo, Andu and Sodu
areas.

The spatial and statistical distribution of each element is considered in turn in 

the next sections. It is important to remember that it is unlikely that complete 

digestion has been acheieved during the aqua regia leach of these samples. The maps 

which accompany the section are included at the rear.
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Within the Main Yubdo Ultramafic, Pd is enriched (up to 31 ppb) in soils over 

the southeastern clinopyroxenite zone and Pt enriched (up to 232ppb) above the 

northern tip of the dunite and talc-schist zones. In addition to this, a sample from 

above an associated diorite dyke (north of Yubdo) has returned assay results of 13ppb 

for Pt and 8ppb for Pd. Many samples of soil overlying the Main Yubdo Intrusion 

return analyses of Pt and Pd below detection limits (see figures 7.36E and 7.36F). One 

kilometre south of the Main Yubdo Ultramafic, a soil sample above a shear zone gave 

5ppb for Pt and 19ppb for Pd. Similarly, a soil sample above a talc-schist in the 

southeast of the study area returned Pt values of 5ppb and Pd a value of 19ppb.

A significant Pt value occurs in a hard-pan and other soil samples contain Pt 

and Pd anomalies in soil occur in different locations. At the northern tip of the Yubdo 

main complex Pd is low and Pt is elevated above lOOppb in several places. This 

contrasts with the soils above the eastern clinopyroxenite zone where both Pt and Pd 

both rise to similar values.

Additionally, the soils in the southeast of the study area are enriched in Pd and 

Pt around a talc-schist. And Pd returned higher values than Pt in both cases

Neither Pt nor Pd show normal distributions on arithmetic or logarithmic scales.

7.9.9. Discussion

7.9.10. Ni and Cr values in soils above the Main Yubdo Ultramafic

The highest Cr value occurs in a hard-pan found above the western 

clinopyroxenite zone of Main Yubdo Ultramafic. Furthermore, high Cr contents are 

restricted to the soils above the Main Yubdo Ultramafic. The highest Ni values in soil 

occur either over the northern tip of the complex or in the centre of the intrusion.

Elevation in the Cr content of the hard-pan found above the clinopyroxenite 

zone from the Main Yubdo Ultramafic supports the evidence for high Cr-spinel 

concentration at the flanks of the intrusion. The high value could be attributed to the 

extreme volume change from rock to soil and further during the compaction into a
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hard-pan lithotype. The presence of Cr in the soils overlying the flanks of the 

intrusion together with the known resistance of spinels to weathering indicates that the 

most primitive rocks occur at the flanks of the intrusion. However, surprisingly high 

Cr values occur in soils at the centre of the intrusion. The concentration of Cr in these 

samples may possibly be accounted for by a higher degree of concentration due to 

deeper weathering over the top of the Yubdo hill. Similarly, the variations in Ni 

content in the soils over the Yubdo Main Intrusion may be understood in terms of the 

relative degrees of weathering.

7.9.11. Genesis of Pt and Pd in soils

A hard pan of the western flank of the intrusion contains the highest Pt value 

in this study of the WES at 143ppb and a corresponding Pd value of 3ppb. 

Furthermore, the maximum Pt value in the soils collected here is over lOOppb higher 

than that seen in rock. Additionally, it is observed here that in the soils above the 

Main Yubdo Ultramafic that Pt is only enriched in soils above the northern tip and Pd 

is only enriched over the eastern clinopyroxenite zone.

As described in section 7.5.2 the increase in Pt grade between the rocks and 

soils from the Main Yubdo Ultramafic could be explained either by the element being 

immobile within the soil, or alternatively the element might have been reconcentrated 

into the soils. The hard-pan sample perhaps represents an extreme case of volume loss 

from rock to soil as it shows an increased Pt value from the equivalent rocks nearby 

(see figure 8.13E). This sample may also be the product of a longer time-period of the 

action of aqueous fluids in laterites. Furthermore, the hardpan may also have been 

cemented by circulating Si-rich fluids which could have redeposited the Pt. The 

difference in locations of Pt and Pd highs indicates that Pd has become immobile in 

the soils over the eastern clinopyroxenite zone. This may possibly be due to Pd being 

complexed with a different organic compound to Pt. The data presented here cannot 

be used to determine the aqueous conditions of these laterites and therefore we cannot 

determine the solution to this anomalous distribution.
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7.9.12. Conclusions

Although high Ni and Cr values only occur in the soils over the Main Yubdo 

Ultramafic, high Cu values are only found in the basement and high A1 values are 

found throughout the area. This indicates a relationship between the underlying 

lithotype and the the geochemistry of the soils. However, it is likely that both Ni and 

Cr will have become concentrated partially by volume loss from rock to soil.

Similarly, the immobile nature of Pt is likely to have increased the content in 

soils when compared to rock samples. The difference in location of the highest Pt and 

Pd concentrations is distinct in the soils of the Main Yubdo Intrusion, and from this 

study it is not possible to determine the mechanism which causes this feature.
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7.10. Discussion o f the distribution ofNi, Cu, Cr, Al, Pt and Pd in the soils o f 
the WES

Some notable differences in the distribution of the elements in question can be 

seen between the four areas studied, as described with the following figures. For ease 

of comparison between the four areas studied, graphs using cumulative % are used. 

Histograms showing the same data can be found in the respective sections earlier in 

this chapter.
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Figure 7.37: A graph comparing the distribution of Ni in each of the four areas studied. For 
histograms further illustrating the data see individual sections.

There are several differences in the distribution of Ni in the four areas studied 

in this chapter. Tulu Dimtu is the only area where an arithmetic normal distribution 

occurs however there is an additional population which is log normal. In the 

remaining three areas, all Ni distributions are log normal. The only unimodal 

distribution occurs in the area containing the Daleti, Ankori, Tulu Kapi and Keley 

complexes.

Such distributions are difficult to understand in terms of the number of 

ultramafic complexes within the area, given that the only area with one population is 

the area with four discrete complexes (Daleti, Ankori, Tulu Kapi and Keley). It is 

possible that one population in each area could be created by hydromorphic dispersion 

in additional to the original population which reflects the bedrock values.
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Figure 7.38: A graph comparing the distribution of Cu in each of the four areas studied. For 
histograms further illustrating the data see individual sections.

The Cu distribution in each area of the WES is log normal, however the 

distributution of the Tulu Dimtu area has two modes (see figure 7.7).

As discussed in section 7.6.4, it is possible that the Cu distribution in the Tulu 

Dimtu area may be influenced partially by the underlying bedrock and partially by 

hydromorphic dispersion. In a situation where the Cu was remobilized by 

groundwater, a lower value population could occur due to dilution. These lower 

values (<25ppm) would represent the remobilized values, and the higher population 

would be related to the original composition of the protolith.
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Figure 7.39: A graph comparing the distribution of Cr in each o f the four areas studied. For 
histograms further illustrating the data see individual sections.

All Cr populations in the WES are log normal and unimodal, except the 

Yubdo area where two populations occur (see figure 7.32).

Unlike Ni and Cu, this additional population is difficult to explain in terms of 

hydromorphic dispersion as Cr typically remains intact within Cr-spinels (see chapter 

3). It is possible that such an observation could be the result of two magmatic phases
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of Cr-spinel precipitation. Such an interpretation would need to be supported by 

petrological investigation.
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Figure 7.40: A graph comparing the distribution of A1 in each o f the four areas studied. For 
histograms further illustrating the data see individual sections.

Unlike Ni, Cu and Cr the A1 values in the soils of the WES are the only ones 

which are normally distributed. However, in the Tulu Dimtu area, the distribution is 

sufficiently erratic that it cannot be regarded as being normally distributed.
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Figure 7.41: A graph comparing the distribution of Pt in each of the four areas studied. For 
histograms further illustrating the data see individual sections.
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Figure 7.42: A graph comparing the distribution of Pd in each of the four areas studied. For 
histograms further illustrating the data see individual sections.
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The distribution of both Pt and Pd in the WES is generally erratic. However, in 

all areas but Yubdo, this erratic nature is tends slightly towards a log normal 

distribution.

The erratic nature of of Pt and Pd distributions is well known given their 

tendency to form nuggets. However the slightly log normal patterns observed suggest 

that there is a more statistically uniform mechanism operating. This mechanism may 

be the underlying magmatic dissolution process, however given the severe degree of 

the alteration and weathering it is unlikely. However, the log normal patterns may 

reflect the dissolution of the elements the fluids within the laterite (see section 7.5.2).

7.11. Summary o f the Soil development in the WES

7.11.1. Ni, Cu, Cr and A1

Distinct changes in the proportions of Ni and Cu are seen in the soils over the 

different lithologies of the WES. Ni is typically higher over the ultramafic units than 

the basement, whereas Cu tends to show higher values over the basement units, in 

particular the shear-zone related lithologies. Although such trends indicate a 

relationship between Ni and Cu distribution with lithotype, univariate statistical 

methods show that at Tulu Dimtu a second population exists. Such lower value 

populations may be the result of the hydromorphic dispersion of Ni and Cu. Although 

A1 shows no particular relationship with the underlying lithotype, Cr is present in the 

highest values in soils over ultramafic units. Given the resistance of Cr-spinels to 

alteration and weathering (chapter 3) it is unlikely that it has undergone 

remobilization within the soil.

These geochemical differences are important to this study as in some places 

they are considered to validate the mapping technique. Large scale changes in the 

value of Ni (at values >1000ppm) and Cu (at values >25ppm) are likely to have been 

controlled by the underlying lithotype. However Ni and Cu values below those stated 

are likely to have been influenced strongly by hydromorphic dispersion. For example 

clear changes in Ni and Cu value can be seen at the contact between the Tulu Dimtu 

Main Intrusion and the basement (see figures 7.12A and 7.12B). This contact was
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mapped using a change in vegetation seen from aerial photography (chapter 4). 

However, additional populations can be seen in figures 7.6 and 7.7 which are likely to 

have been the result of hydromorphic dispersion.

7.11.2. Pt and Pd

Area Formation Soil samples 
Pt (ppb) Pd (ppb)

Yubdo Main Yubdo Ultramafic 232 31
Tulu Dimtu Tulu Dimtu Main Intrusion 58 31
Daleti Ankori 34 48
Kingy Kingy Ridge Ultramafic 29 29
Daleti Daleti Ultramafic <2 < 2
Daleti Keley <2 < 2

Table 7.29: The maximum Pt and Pd values found in the soils above the ultramafic complexes
of the WES.

A full understanding of the mechanisms controlling the development of Pt and 

Pd in the soils above the ultramafic bodies in the WES is difficult. However, this 

chapter gives an account of the salient features of the distribution and proposes some 

mechanisms which may have caused them

The distribution of the elements is nuggety, but some evidence is present for 

remobilization within the laterites. Figures 7.41 and 7.42 show an erratic distribution 

of values which may have formed through the presence of nuggets. However there is 

a division in the distribution of Pt and Pd in the soils above the Kingy area (figures 

7.20E and 7.20F). The soils above the basement in the northwest havce greater 

amounts of Pd and the soils above the Kingy Ridge Ultramafic contain much more Pt. 

There is a similar division between Pt and Pd in the soils above the Yubdo Main 

Intrusion. These differences in distribution could possibly be explained by a 

difference in lateritic conditions as a result of the different basement lithotype. 

However, it is not possible to determine these conditions in this study. An alternative 

hypothesis is that Pd has become immobile instead of Pt in certain areas perhaps by 

being complexed with a different type of vegetation (see chapter 4).
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8. Rock Geochemical Data

8.1. Introduction

Samples of rocks were collected from the 4 complexes: Tulu Dimtu, Kingy, 

Daleti and Yubdo. With the aim of assessing the prospectivity of each of the ultramafic 

complexes, these samples were analysed for major and trace elements including Pt, Pd 

and Au by the OMAC laboratories as part of an exploration program for Golden Prospect 

Mining Co Ltd (GPM). In order to identify targets for detailed exploration, this chapter 

examines this dataset describing the distribution of key elements that characterise: each 

rock type, fresher and altered rocks, pathfinders for PGE and the Pt and Pd distribution 

itself.

The dataset used in this chapter is the result of samples collected during the 2001- 

2002 field season by the author and several GPM geologists. The grids and traverses used 

are typical of those used in geological exploration, where geochemical anomalies are 

sought. Samples were collected in order to both characterise known ultramafics and also 

to discover unknown deposits.

These complexes are examined using two types of sample: fresher rocks which 

are used to interpret magmatic ore formation processes and altered rocks, which display 

magmatic features that have been overprinted by the effects of alteration.

The elements analysed include Au, Pd, Pt, Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, 

Co, Cr, Cu, Fe, Ga, Ge, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, 

Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. This chapter focuses on Ni, Cu, Cr, 

Al, Pt and Pd. Each of these elements - except Al - are chosen as they characterize, and 

are affected by, the processes which concentrate Pt and Pd. Pt and Pd are considered to be 

concentrated in magmas with sulphur as immiscible sulphide liquids in a silicate magma 

(Naldrett et al., 1979). After sulphide segregation of a magma, Pt and Pd crystallise with 

Ni- and Cu-rich sulphides in ultramafic or mafic complexes (Barnes et al., 1997). Sulphur
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saturation in a magma is often associated with chromite crystallisation as removal of Fe 

and Cr from a magma will cause sulphides to segregate (Naldrett and von Gruenewaldt, 

1989). Alaskan-type complexes such as those studied here, are traditionally S-poor 

(Nixon et al., 1997). Ophiolite complexes such as the Shetland ophiolite complex do 

contain small percentages (1-2%) of sulphides which are Pt and Pd enriched in the 

ultramafic parts of the complex (Prichard et al., 1996). Thus if base-metal sulphides are 

Pt and Pd collectors in these complexes in the WES then Ni, Cu and Cr should be path

finders for Pt and Pd. Hence their distribution is studied here to attempt to understand 

their inter-relationships during magmatic and secondary alteration processes.

The Al content of a magma should increase with fractionation, therefore if PGE 

content is controlled by the evolution of a magma then Al should correlate with Pt and 

Pd. Furthermore, the surrounding basement rocks should have a greater proportion of 

alumino-silicate minerals and therefore Al will help to validate the mapping technique.

Graphs of base metals and other elements against Pt and Pd show no clear trends 

or correlations and it was therefore decided that a different method of interpretation was 

required. The results were compiled to produce element concentrations on maps showing 

the geology. The geological sketch maps were produced using a combination of 

published maps (at Yubdo) and field observations made in this study (chapters 4 and 5). 

The GIS application ArcView 3.2 was used display these maps.

This chapter is divided into four sections covering each of the four geographic 

areas. At the end of each section there is a “pull-out” page which contain the maps which 

are referred to throughout the chapter.

8.2. Analytical Techniques

8.2.1. Introduction

A total of 481 rock samples were analysed by OMAC Laboratories (Co Galway, 

Ireland) by two different procedures: one for Pt, Pd, Au and another for 47 additional
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elements. After crushing, each sample was ground to 100pm, split to 30g and then 

prepared and analysed by the two different methods. For Pt and Pd analyses, the powders 

were analysed using a 30g Pb fire assay with an inductively coupled plasma analysis, 

resulting in detection limits of 2ppb for both Pt and Pd. For other elements, the samples 

were subjected to an Aqua Regia digestion with Inductively Coupled Plasma -  Optical 

Emission Spectroscopy finish.

The next sections describe the methods and validation for each stage for each of 

of each analytical process.

8.2.2. Pb Fire Assay

Au
(PPb)

Pd
(PPb)

Pt
(PPb)

min 212 1381 3624
max 986.00 1636.88 3883.36
range 774.00 255.53 259.37
Recomended Value 310 1530 3740
Standard SARM-7b
Precision (range as % 249.68 16.70 6.94
of recomended value)

Table 8.1: Summary statistics o f 41 analyses of the standard sample SARM7b.

The standard sample SARM 7b was analysed for Pt, Pd and Au a total of 41 times 

through 9 batches of samples processed by OMAC laboratories. The full listing of results 

is included in table 12.3 in section 12.2 and a summary of the ranges of values obtained is 

included in table 8.1. For all three elements the range encompassed the recommended 

value for the standard, which can be regarded as a reasonable accuracy. Given the relative 

inhomogeneity of Pt, and Pd standards, both Pt and Pd varied only slightly from the 

recommended values (16.7% and 7.0%) in each case. The variation in measured Au 

values was significantly larger (see table 8.1). This indicates an acceptable degree of 

accuracy and precision for both Pt and Pd and a slightly lesser degree for Au analyses.

The analysis of blank samples returned values which were at or below detection 

limits in each case.
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In order to assess the accuracy of the Pb fire assay method performed at the 

OMAC laboratories, four samples were analysed at a different laboratory (Genalysis). 

Table 12.1 (section 12.1) shows that the biggest difference in Pt values between the two 

laboratories was 64.7% which corresponds to a difference of 36ppb versus 102ppb. The 

biggest difference between the analyses of Pd was 5ppb versus below detection limts and 

other results are comparable. The accuracy of the analyses performed at the OMAC 

laboratories have been accepted for this investigation.

To test the precision of the analyses, repeat analyses were also carried by the 

OMAC laboratories. Within each batch, repeats were performed in every sample which 

produced anomalous results. If no significantly anomalous results are produced from a 

batch then every 10th sample was repeated. In some batches, repeats were carried out at a 

greater frequency, in order to assure confidence in the procedure. In a some cases, two 

repeat analyses were performed on the same sample, this was done in situations where 

either the first repeat showed an unacceptable variance or where particularly unusual 

results were obtained at first.

Repeat analyses were performed for 48 rock samples from the WES, for three 

samples two repeat analyses were performed (see table 12.2 in section 12.1). For all three 

precious metals, there was no measurable variation in the results between each repeat for 

slightly less than half the samples. High repeatability was only present in analyses of low 

values (<5ppb). The least precise analysis is of Au, where the greatest variation between 

repeats is between 22ppb and below detection limits. For Pd the highest variation is 

between 2ppb and 33ppb (93.9% difference). The greatest degree of precision is found 

for Pt where the highest variance is between 7ppb and 16ppb (56.3%). Although poor 

repeatability occurs in some individual samples, there is an acceptable variation between 

analyses in most cases. It is therefore considered that this dataset is sufficiently accurate 

for this investigation; however, a degree of natural variation is to be expected due to 
nugget effect.

175



Chapter 8: Rock Geochemical Data

8.2.3. Aqua Regia Digestion

Aqua regia constitutes a 3:1 ratio of HC1:HN0 3 . The effectiveness of this 

technique is due to the complexing power of the chloride ion acting in the presence of Cfe 

and NOC1 as catalysts. An aqua regia leach is frequently used in exploration applications 

to selectively dissolve certain minerals of interest to the geologist (Snail and Liljefors, 

2000; Chao, 1984). When a sample is subjected to an aqua regia leach some minerals are 

taken into solution and other, more resistant minerals, remain undissolved. When 

interpreting the results of a partial leach, it is nessecary to consider which minerals have 

been taken into solution. Furthermore, when a mineral is dissolved, some elements are 

taken into solution easier than others (Church et al., 1987).

Mineral

Minerals 
dissolved (wt 

%)
lower upper 
limit limit

olivine 70 80
pyroxenes 30 40
amphiboles 20 40
quartz 10 10
plagioclaise 10 60
spinel 10 100
disulphides 50 100
monosulphides 40 100
bisulphides 40 100
arsenides 80 80

Table 8.2: The weight percent of minerals dissolved by aqua regia (Chruch et al., 1987).

Mineral Metal Leachability
(%)

Cr 60
Cu 35

Olivine Ni 98
Al 30
Mg 99
Cr 2
Cu 70

Spinel Ni 75
Al 20
Mg 60

Table 8.3: Percentages of various metals leached by aqua regia from olivine and spinel relative to 
total recovery calculated from an HF-HN03-NC104 digestion (Chruch et al., 1987).
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Although a quantitative dataset of the leachability of all minerals and metals by 
aqua regia is not available, a study of the leachability of some minerals was performed by 

Church et al. (1987). The most reliably dissolved minerals were sulphides, where 

complete digestion was possible. Additionally, table 8.2 shows that 70 to 80 wt% of the 

olivine minerals were dissolved. Furthermore, Church et al. (1987) (see table 8.3) showed 

that of the minerals tested almost all Mg and Ni could be extracted from olivine. 

Similarly, a large amount of Ni and Cu could leached from spinel minerals almost no Cr 

could be extracted.

The study by Church et al. (2000) showed that an Aqua Regia leach will attack 

the secondary minerals as well as the sulphides. Mafic chain silicates and the 

phyllosilicates (such as the serpentine minerals) are attacked and leached. With such 

silicates the study concluded that the method will leach many of elements attached to 

octahedrally coordinated lattice sites (including Mg and in some cases Al). However it 

will not attack the tetrahedrally coordinated sites, occupied by ions such as Si and Al 

(Klein and Hurlbut, 1993). Further to the studies performed by Church et al. (2000), 

information provided by the OMAC laboratories states that the dissolution is partial for a 

number of elements including Al and Cr.

8.2.4. Inductively Coupled Plasma -  Optical Emmission Spectroscopy

Mg Ni Cu Cr Al
(%) (ppm) (ppm) (ppm) (%)

Min 2.80 657.83 2556.53 112.38 0.99
Max 3.01 685.98 2707.82 132.05 1.60
Range 0.21 28.15 151.29 19.67 0.62
Assigned Value 2.90 683 2650 N/A N/A
Precision (variation 
as % of assigned 
value)

7.26 4.12 5.71 N/A N/A

Table 8.4: A table of 48 analyses of the OMAC laboratories in-house standard with a summary of 
the ranges o f values obtained and a measurement of precision.

An in house standard was used by the OMAC laboratories to assess accuracy and 

precision during elemental analysis using aqua regia, ICP-OES. A total of 48 analyses 

were performed throught the 9 batches processed at the laboratory. The full dataset is
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included in section 12.2 (table 12.4) and a summary of the range of values is included in 

table 8.4. The elements Mg, Ni and Cu show a variation of around 7.26, 4.12 and 5.71% 

respectively. Although no assigned values are available for the analysis of Cr and Al, it is 

possible to see that the precision for these elements is significantly poorer. These results 

are as expected given that Ni and Cu will be easily leached by aqua regia and Mg can be 

leached from its silicate octahedral lattice sites (see section 8.2.3).

All blanks analysed showed results which were at or below detection limits.

8.3. Methods

8.3.1. Definition of a fresher sample

The rock samples from the WES lie along a spectrum of alteration from “nearly- 

soil” to completely fresh (see chapter 3), therefore for comparison it was necessary to 

divide them on that basis. This was done principally by a combination of methods 

including the identification of weathering and alteration minerals in hand specimen and 

using transmitted light microscopy.

However, the samples analysed petrologically were one half of the same sample 

sent for analysis. Therefore, it was necessary to make a geochemical determination of the 

degree of weathering and alteration on the half of the sample which was sent for analysis. 

As this analysis could be compared with the half analysed petrologically. This 

geochemical analysis was intended to support the petrological determination which is the 

main method for determining the degree of alteration.

The geochemical assesement of alteration was performed using the Mg value. 

Although Church et al. (1987) suggest that Mg ions can be leached from olivine minerals 

(see section 8.2.3) in practice it is known that often silicate minerals are not dissolved. As 

no data is available on the degree of dissolution in the samples from the WES it must be 

considered that the Mg values in this dataset could originate from either olivine or 

serpentine. Hence this method is intended simply to support petrological determination.
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Ultramafic rocks are characteristically Mg-rich. Dunites and pyroxenites have a 

range of Mg values which are shown in table 8.6. The ranges of Mg-values for fresher 

ultramafic rocks can be calculated using published Mg values of fresher olivine and 

clinopyroxene combined with the mineral proportions of dunite, olivine-clinopyroxenite 

and pyroxenite as set out by Streckeisen (1976). Examples of Mg values for fresher 

ultramafic minerals are shown by the analyses shown in table 8.5.

Mineral Min
MgO
(%)

Max
MgO
(%)

Min
Mg
(%)

Max
Mg
(%)

Number
of
samples

Reference

olivine 47.46 47.58 28.6 28.7 2 R6villon (2000)
olivine 46.46 46.46 28.0 28.0 1 Morishita (2001)
olivine 35.97 45.68 21.7 27.5 10 Neumann(2000)
olivine 38.24 44.13 23.1 26.6 12 Mattioli (2003)
olivine 30.4 41.8 18.3 25.2 2 Fodor(2001)
olivine 34.44 39.18 20.8 23.6 2 Upton (2000)
olivine 37.26 38.03 22.5 22.9 3 Renzulli (2001)
olivine 37.47 37.47 22.6 22.6 1 Leonard (2002)
olivine 36.58 37.1 22.1 22.4 2 Muller (2001)
olivine 33.41 36.49 20.1 22.0 6 Gibson (2000)
clinopyroxene 14.42 27.84 8.7 16.8 6 Spandler (2003)
clinopyroxene 14.6 17.6 8.8 10.6 4 Cole (2001)
clinopyroxene 9.27 16.96 5.6 10.2 25 Neumann (2000)
clinopyroxene 16.02 16.02 9.7 9.7 1 Leonard (2002)
clinopyroxene 15.71 15.86 9.5 9.6 2 Morishita (2001)
clinopyroxene 14.28 15.72 8.6 9.5 9 Mattioli (2003)
clinopyroxene 13.4 15.7 8.1 9.5 7 Fodor (2001)
clinopyroxene 14.54 15.53 8.8 9.4 2 Muller (2001)
clinopyroxene 13.1 13.86 7.9 8.4 2 Turner (2003)

Table 8.5: Typical values o f Mg for selected fresher ultramafic lithotypes. This data was compiled
using the GEOROC database (2005).

The minimum and maximum Mg values for olivine and clinopyroxene were 

determined from table 8.5 and combined with the proportions of minerals for each 

lithotype according to Streckeisen (1976). As such, the likely maximum and minimum 

Mg values for ideal ultramafic rocks can be calculated, as shown in table 8.6.

Rock
Min or 
Max

olivine
value

clinopyroxene
value

olivine
proportion

clinopyroxene
proportion boundary

Dunite MIN 20.1 7.9 90% 10% 18.88
Dunite MAX 28.7 16.8 100% 0% 28.7
Olivine - 
Clinopyroxenite MIN 20.1 7.9 60% 40% 15.22
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Olivine - 
Clinopyroxenite MAX 28.7 16.8 10% 90% 17.99
Clinopyroxenite MIN 20.1 7.9 10% 90% 9.12
Clinopyroxenite MAX 28.7 16.8 0% 100% 16.8

Table 8.6: The ranges of Mg values used to define the fresher rock samples. The proportions of 
olivine and clinopyroxene are defined by Streckeisen (1976). These values represent the range of 
Mg values which are likely to occur in a hypothetical fresher dunite, olivine-clinopyroxenite or

clinopyroxenite.

This method of selection of fresher samples is validated by virtue of a break seen 

in the unclassified samples at around the boundaries calculated (see table 8.7). This break 

is seen in all four areas. For example, the analyses of the dunite samples from the Tulu 

Dimtu area show a range of Mg values from 24.8% to 1.1%. In table 8.7 these are 

ordered with the highest Mg values at the top and the break can be seen below 18.8% 

where the next value is 17.0%. This is a difference of 1.8%; the differences further up the 

table are all lower than 1%. A break at approximately the same level is seen in all four 

geographic areas (particularly at Daleti, see 8.15.2) and also with pyroxenite samples, 

however the lower numbers of these lithologies mean that this arguement is illustrated 

more effectively with dunite samples.

Sample Mg Al Cr Cu Ni Petrological
(%) (%) (ppm) (ppm) (ppm) description

DTR-035-02 25.8 0.0 16 3 2327 Figure 3.1
TD12 24.8 0.0 102 16 1456
ATR-051-02 24.4 0.0 19 4 3380
DTR-005-02 23.6 0.0 40 3 2691
TDR 20/01 23.2 0.0 97 0 2617
DTR-009-02 22.8 0.0 13 2 2945
ATR-053-02 22.8 0.1 131 6 2037
ATR-057-02 22.7 0.0 55 3 2574
KTR-035-02 22.4 0.1 61 9 2182
DTR-026-02 22.4 0.2 72 5 2340
DTR-001-02 22.3 0.1 18 5 2942
TDR 12/01 22.1 0.0 46 0 2856
TDR 24/01 22.0 0.0 42 0 2312
TD11 22.0 0.1 366 2 1846
DTR-007-02 22.0 0.4 33 3 2091 Figure 3.2
DTR-004-02 21.9 0.1 61 4 2686
TD3 21.8 0.0 70 0 3575
TD10 21.5 0.1 634 4 1909
TDR 08/01 21.0 1.0 25 0 4543
TDR 07/01 21.0 0.0 76 0 5860
ATR-044-02 20.6 0.1 304 4 3880
TDR 05/01 20.5 0.1 651 0 2155
TTR-018A-02 20.4 0.1 119 3 2824 Figure 3.3
KTR-002B-02 20.4 0.1 379 3 3285
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TD14 20.3 0.0 64 0 3062
TD4 19.9 0.1 292 0 1802
TDR 19/01 19.5 0.1 436 16 2872
ATR-056-02 19.5 0.1 196 4 2154
DTR-034-02 19.4 0.0 27 0 3469
TD9 18.8 0.5 2728 8 2992

NATURALBREAK

TDR 06/01 17.0 0.0 187 0 7695
TDR 11/01 16.4 0.1 223 2 2894
TDR 22/01 16.1 0.0 91 3 1962
TDR 09/01 16.0 0.3 383 0 2129
DTR-050-0 9.4 0.1 139 2 2190
TDR 25/01 7.0 0.1 48 0 586
TD17 4.6 3.7 705 22 527
KTR-004-0 4.2 5.5 1517 95 887
TD13 4.1 2.5 43 70 113
TDR 10/01 3.2 3.3 88 3 1447
TDR 27/01 2.6 3.1 1022 12 453
DTR-029-0 1.2 2.2 64 89 75
ATR-045-0 1.1 0.8 20 25 154
ATR-034-0 1.1 0.9 118 180 107
DTR-040-0 0.5 0.1 32 6 72
DTR-039-0 0.5 2.4 21 8 87
TDR 26/01 0.3 1.0 28 169 30
TDR 01/01 0.0 0.0 11 3 5
DTR-033-0 0.0 0.1 42 9 55

Figure 3.4

Figure 3.5

Table 8.7: The Mg values for the dunite samples in the Tulu Dimtu area before classification into 
fresher and altered. Ordered with the highest Mg value at the top and lowest at the bottom. For 

validation o f the method, selected samples are referred to the petrological descriptions contained
in chapter 3.

100.00

50.00

0.00

18.88%
Mg (%)

Figure 8.1: A graph of the cumulative percent (by rank) of the Mg values of the dunite samples from the 
Tulu Dimtu area. The value o f 18.88% is marked onto the graph as it is the lowest possible Mg 

value for an ideal fresher dunite (see figure 8.6).



Chapter 8: Rock Geochemical Data

Figure 8.1 shows a clear difference between two populations of Mg values in the 

dunite samples from Tulu Dimtu. One population has values which are greater than 

18.88% and another population has values which are less 18.88%. The two populations 

can be summarised with two linear lines of best fit which intercept very close to 18.88% 

(as calculated above). This suggests that there are two distinct groups of dunite samples 

from Tulu Dimtu separated at 18.88% which was calculated as the minimum Mg value 

for a fresh dunite.

Furthermore, figure 8.1 shows that although there is a break just below 18.8%, 

there are four samples which have Mg values between 16.0% and 17.0%. Below these 

values there is another, larger, break which may infer that the break should be below 

16.0%. However, these values are still significantly lower than the ideal Mg values 

calculated in table 8.6. Furthermore, these values could be explained as being due to 

serpentinisation with very little silicification. Although alteration generally decreases the 

Mg content of a rock, the alteration of olivine to serpentine can retain high Mg values. 

For example Lecuyer et al. (1994) analysed serpentine minerals which have Mg 

compositions as high as 22.6%. However the action of sepentinisation also introduces 

some OH' which would reduce the Mg value in some cases.

Given the fact that serpentine can contain Mg at up to 22.6% (Lecuyer et al., 

1994). With the classification system described above, a 100% serpentinised dunite could 

be classed as “fresher”. It is therefore this method using Mg is intended simply to support 

petrological analysis (see chapter 3). The samples classified as “fresher” in this manner 

are only expected simply to be more likely to retain magmatic features than the samples 

regarded as being altered.

8.3.2. The samples

Samples were taken from both the ultramafic complexes of the WES and also the 

surrounding basement. Of the ultramafic complexes, the following numbers of samples 

were taken:
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Ultramafic Complex Number of 
Samples

Tulu Dimtu Main Intrusion 59
Kingy Ridge Ultramafic 30
(including the extra ultramafic)
Daleti Intrusion 21
Ankori Complex 13
Main Yubdo Intrusion 34
Lensoid Ultramafics (from all 68
four geographic areas)

Table 8.8: The numbers of samples from the ultramafic complexes of the WES. A summary of
entire dataset is provided in table 8.9.

When considering the ultramafic complexes, the greatest number of samples were 

taken from the Lensoid Ultramafics from over the entire study area. Of the main 

complexes, the greatest samples were taken from the Tulu Dimtu Main Intrusion, 

followed by the Main Yubdo Intrusion

After classification as fresher and altered rocks (see section 8.3.1), the following 

numbers of samples were used for the analysis of geochemical processes in the WES.

Area Total Altered
ultramafic
rocks

Fresher
ultramafic
rocks

Non-
ultramafic
rocks

Birbirite
samples

Tulu Dimtu 116 35 31 47 3
Kingy 110 33 6 67 4
Daleti, Ankori, 
Keley and Tulu 
Kapi

155 14 13 115 13

Yubdo, Andu and 
Sodu

100 18 6 68 8

TOTAL 481 100 56 297 28
Table 8.9: A summary of the numbers and types of samples used in the four geographic areas in 

this study. A further breakdown of these is provided in each respective section.

8.4. Tulu Dimtu: Selected Major and Trace Elements

8.4.1. Introduction

There are 115 rock samples from the Tulu Dimtu area. Using the classification 

method shown in section 8.3.1, thirty-one are samples are fresher ultramafics, 43 are 

altered ultramafics and 6 are from the surrounding basement. The numbers and types of
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Lensoid
Ultramafics 25 14 2 7 1

Basement 6 0 0 6 0

TOTAL 115 34 31 47 3
Table 8.10: A summary of the samples from the Tulu Dimtu area. The classification of fresher and 

altered rocks is covered in section 8.3.1 and the classification of ultramafic lithotypes including
birbirite is covered in chapter 3.

8.4.2. Data

Form ation D escr ip tio n M g N i C u Cr A l Pt Pd Pt/Pd A u S am ple

(%) (p p m ) (p pm ) (ppm ) (%) (PPb) (PPb) (PPb)
D u n 2 4 .4 33 8 0 4 19 <0.1 3 < 2 - 3 A T R -0 5 1 -0 2

D u n 2 2 .8 2 0 3 7 6 131 0.1 8 3 2 .7 2 A T R -0 5 3 -0 2

D u n 2 2 .8 2 9 4 5 2 13 <0.1 5 4 1.3 2 D T R -009-02

D u n 2 2 .7 2 5 7 4 3 55 <0.1 4 5 0 .8 35 A T R -0 5 7 -0 2

D u n 19.5 2 1 5 4 4 196 0.1 5 7 0 .7 < 2 A T R -0 5 6 -0 2

D u n 19.4 3 4 6 9 < 2 27 <0.1 <2 <2 - 70 D T R -034-02

D un 18.8 2 9 9 2 8 272 8 0.5 27 37 0 .7 <2 T D 9

D u n 2 5 .8 2 3 2 7 3 16 <0.1 4 < 2 - < 2 D T R -035-02

D u n 2 4 .8 1456 16 102 <0.1 <2 < 2 - < 2 T D 12

D u n 2 3 .6 2691 3 4 0 <0.1 3 < 2 - < 2 D T R -005-02

D u n 2 3 .2 2 6 1 7 < 2 97 <0.1 4 < 2 - 2 T D R  20 /01

D u n 2 2 .4 2 3 4 0 5 72 0.2 7 < 2 - < 2 D T R -026-02

D un 2 2 .4 2 1 8 2 9 61 0.1 9 < 2 - < 2 K T R -035-02

D u n 2 2 .3 2 9 4 2 5 18 0.1 5 5 1.0 < 2 D T R -001-02

D un 22 .1 2 8 5 6 < 2 46 <0.1 4 < 2 - 2 T D R  12/01

D un 2 2 .0 2091 3 33 0 .4 5 < 2 - < 2 D T R -007-02

D un 2 2 .0 1846 2 3 66 0.1 2 2 1.0 < 2 TD 11

D un 2 2 .0 2 3 1 2 < 2 42 <0.1 4 < 2 - < 2 T D R  24/01

c D un 2 1 .9 2 6 8 6 4 61 0.1 6 < 2 - < 2 D T R -004-02
.2C/3 D un 2 1 .8 3 5 7 5 < 2 70 <0.1 < 2 < 2 - < 2 TD 3

£ D un 2 1 .5 1909 4 6 3 4 0.1 4 0 2 2 0 .0 < 2 T D 10
c

D un 2 1 .0 5 8 6 0 < 2 76 <0.1 <2 < 2 - < 2 T D R  07/01
c
c3 D un 2 1 .0 4 5 4 3 < 2 25 1.0 4 < 2 - < 2 T D R  08/01
s D un 2 0 .6 3 8 8 0 4 304 0.1 8 5 1.6 < 2 A T R -044-02
3e D u n 2 0 .4 3 2 8 5 3 3 7 9 0.1 7 < 2 - < 2 K T R -002B -02
S
Q D u n 2 0 .3 3 0 6 2 < 2 64 <0.1 < 2 < 2 - <2 T D 14
a D u n 19.9 1802 < 2 2 9 2 0.1 4 < 2 - < 2 T D 4
3H D un 19.5 2 8 7 2 16 4 3 6 0.1 30 37 0 .8 2 T D R  19/01

Sheared
U ltram afic

D u n 2 0 .5 2 1 5 5 < 2 651 0.1 7 8 0 .9 2 T D R  05/01

L en soid  C p xite  7 .3  1644  9 2 9 4  0.
U ltram afics D u n  2 0 .4  2 8 2 4  3 119 0.

Table 8.11: Mg, Ni, Cu, Cr, Al, Pt and Pd values 
8.3.1) collected from the Tulu Dimtu area.

1 3 < 2  4  D T R -0 16-02
1 9  < 2  - 0  T T R -018A -02

for the fresher samples (as defined in section 
Dun: Dunite. Cpxite: Clinopyroxenite.

Form ation D escrip tion M g N i C u C r A l Pt Pd Pt/Pd A u Sam ple

(% ) (PP m ) (p p m ) (PPm ) (% ) (PPb) (PPb) (PPb)
D un 9 .4 2 1 9 0 2 139 0.1 6 <2 - 5 D T R -050-0

.2 D un 16.1 1962 3 91 <0.1 5 <2 - 2 7 T D R  22 /01
3
•to D un 7 .0 5 8 6 < 2 4 8 0.1 24 <2 - < 2 T D R  25 /01
c D un 1.1 154 25 2 0 0.8 <2 <2 - 2 A T R -0 4 5 -0

3 D un <0.1 55 9 42 0.1 <2 < 2 - <2 D T R -033-0

l O l-cp x ite 1.9 150 112 2 16 2 .0 2 2 1.0 2 A T R -0 4 7 -0

3 O l-cp x ite 9 .4 7 0 5 4 2 2 0 0.1 24 < 2 - <2 A T R -0 5 2 -0
.§ O l-cp x ite 4 .8 8 1 6 18 502 1.9 5 <2 - <2 T D 7
Oa O l-cp x ite 2 .2 3 5 0 116 60 2.5 4 15 0 .3 <2 T D 8
3 C pxite 0 .6 3 7 51 12 1.0 <2 < 2 - < 2 A T R -0 4 6 -0
H

C pxite 0 .7 139 41 47 4 0.5 3 < 2 - < 2 D T R -0 3 2 -0
oT3 IS D un 4.1 113 70 43 2.5 <2 < 2 - < 2 T D 13

U 3  
c3 E D un 4 .6 5 2 7 2 2 705 3 .7 4 4 1.0 <2 T D 17
u  53JZ H D un 17.0 7 6 9 5 < 2 187 <0.1 5 < 2 - 4 T D R  06 /01

“ 5 D un 16.0 2 1 2 9 < 2 383 0.3 6 < 2 - < 2 T D R  09 /01
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D un 3 .2 1447 3 88 3.3 6 13 0 .5 2 T D R  10/01

D un 16.4 2 8 9 4 2 223 0.1 6 < 2 - < 2 T D R  11/01

C pxite 1.9 2 3 2 14 17 6.3 < 2 < 2 - 2 K T R -034-0

C p xite 1.3 30 0 5 5 2.5 < 2 < 2 - 2 T D 15

C pxite 0 .8 100 4 34 3.6 < 2 < 2 - < 2 T D 16

D un 1.1 107 180 118 0 .9 3 2 1.5 3 A T R -034-0

D un 4 .2 8 8 7 95 1517 5.5 4 4 1.0 2 K T R -004-0

D un 2 .6 4 5 3 12 1022 3.1 6 6 1.0 8 T D R  27 /01
t/i D un <0.1 5 3 11 <0.1 < 2 < 2 - 3 T D R  01/01
o
*a D u n 0 .3 30 169 28 1.0 3 3 1.0 < 2 T D R  26 /01

D u n 1.2 75 89 6 4 2 .2 < 2 2 0 .0 4 D T R -029-0
I D u n 0 .5 87 8 21 2 .4 <2 < 2 - 8 D T R -039-0
D D u n 0 .5 72 6 32 0.1 < 2 < 2 - <2 D T R -0 4 0 -0
-a
o O l-cp x ite 3.1 4 6 7 75 708 3.4 14 3 4 .7 6 D T R -0 1 4 -0
i/ic4/ O l-cp x ite 1.8 80 4 7 143 2.5 <2 3 0 .0 3 D T R -041-0

_1 O l-cp x ite 1.6 31 104 33 2 .0 2 10 0 .2 4 K T R -006-0

O l-cp x ite 0 .7 138 4 6 2.5 < 2 < 2 - < 2 T T R -020-0

C p x ite 1.6 2 1 0 34 42 8 1.6 21 < 2 - < 2 A T R -0 3 6 -0

C p x ite 0 .4 109 3 9 21 0 0 .2 3 < 2 - 2 D T R -0 1 5 -0

B a sa 0 .6 122 3 0 30 9 0 .2 5 <2 - <2 D T R -0 17-0
B a sa 1.1 2 1 5 155 20 9 5 0 .9 19 2 6 0 .7 3 T T R -007A -

B a sa <0.1 7 6 29 0.1 <2 <2 - <2 T T R -010-0
B irb 0.1 1364 12 387 0.1 3 <2 - < 2 A T R -0 5 0 -0
Birb 1.9 1437 5 2 8 0 0 .2 4 <2 - <2 K T R -002-0

Birb 0 .2 38 2 29 0.1 < 2 < 2 - 2 T D 23

C h S ch i 0 .2 16 55 17 1.8 2 3 0 .7 < 2 T D R  18/01
C h S ch i 19 .0 6 8 9 9 22 4 5 9 0 .4 9 41 0 .2 13 T T R -057 -0
D ior 1.2 13 6 0 3 1.9 < 2 < 2 - 3 A T R -035-0
D ior 2 .6 6 3 7 58 2 3 6 1.8 4 5 0 .8 <2 TD 5
D o le 0 .6 13 53 14 1.3 <2 < 2 - 2 K T R -010-0
D o le 2 4 .7 2 1 9 5 < 2 2 6 <0.1 4 12 0 .3 < 2 T T R -025-0

F e ls 1.2 16 28 8 1.6 <2 6 0 .0 < 2 A T R -043-0
F els 1.3 3 7 110 6 5 1.7 <2 10 0 .0 2 D T R -042-0
G abb 1.1 2 7 4 3 32 4 .5 <2 < 2 - < 2 D T R -025-0
G abb 0 .9 29 105 23 1.5 4 4 1.0 2 T T R -050 -0
G abb 2 .5 3 5 6 41 4 8 6 2 .4 8 5 1.6 <2 T T R -052-0
G ranD i 0.1 19 19 44 0 .3 4 15 0 .3 4 D T R -0 12-0
G ranD i 1.5 173 16 23 1.2 <2 < 2 - < 2 D T R -038-0
HardP 19.6 2 0 5 6 6 53 < 0.1 4 < 2 - 8 T T R -030-0
M etaB as 18.9 414 1 4 6 7 <0.1 7 < 2 - <2 T T R -027-0
M etaB as 2 3 .2 2 5 2 7 2 7 <0.1 4 < 2 - 2 T T R -028-0
M ylo 3.5 5 3 0 32 92 4 3 .5 7 < 2 - <2 A T R -048-0
M ylo 0 .2 14 6 22 0 .2 < 2 < 2 - <2 D T R -030-0

I—
M ylo 2 .0 160 148 193 2 .0 7 4 1.8 <2 K T R -0 1 1-0

•So M ylo 2 0 .3 5 0 7 9 5 150 0.1 25 38 0 .7 < 2 T T R -018-0
Quar 0 .2 3 6 15 22 0.1 < 2 < 2 - <2 D T R -0 11-0
Quar 1.5 3 1 2 12 141 0 .5 <2 <2 - < 2 K T R -003-0
Quar 0.1 2 5 9 22 0 .2 < 2 < 2 - <2 K T R -005-0
Quar 0 .2 32 3 19 0.1 < 2 2 0 .0 <2 T D R  13/01
Quar 0.1 18 3 25 0.1 <2 < 2 - <2 T D R  14/01
Quar 0.1 15 < 2 17 <0.1 <2 < 2 - 3 T D R  15/01
Quar 0.1 15 41 2 9 0 .2 31 3 7 0 .8 3 T D R  17/01
S ch i 15.3 1 1 0 4 4 2 84 2 0.1 <2 < 2 - <2 TD1
S ch i 7.8 1975 <2 1127 0.1 36 < 2 - < 2 T D 2
S ch i 0 .2 15 3 33 1.1 <2 <2 - <2 T D R  16/01
S ch i 0 .2 2 9 14 4 3 0 .3 <2 <2 - < 2 T T R -014-0
Sed 0.1 16 3 6 2 2 0.2 <2 4 0 .0 <2 D T R -0 3 1 -0
T aS ch i 1.7 3 9 6 10 21 5 0 .2 3 3 1.0 < 2 D T R -0 10-0
T aS ch i 10.6 9 5 4 4 58 0 6 .0 15 16 0 .9 2 D T R -0 2 7 -0
T aS ch i 4 .4 57 3 71 983 4 .3 7 4 1.8 19 T T R -051 -0
T C Schi 1.6 20 5 59 2 28 1.5 <2 4 0 .0 8 T D 18
U nid 1.0 6 8 7 4 23 0.1 <2 < 2 - 2 A T R -0 5 4 -0
U nid 0 .2 2 9 2 2 19 1.5 <2 < 2 - < 2 D T R -024-0
U nid 4 .9 1262 68 2 8 7 2 .5 <2 < 2 - < 2 T D R  21/01
V Q uar 21.1 2 5 9 5 < 2 169 <0.1 5 < 2 - < 2 T D 6
V Q uar <0.1 3 < 2 5 <0.1 7 9 0 .8 <2 T D R  02/01
V Q uar <0.1 13 < 2 7 0.1 <2 < 2 - < 2 T D R  03 /01
V Q uar < 0.1 2 0 8 12 0.1 <2 < 2 - < 2 T D R  04/01
V Q uar 12.1 2 6 5 6 4 465 0.1 16 < 2 - < 2 T D R  23/01
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Table 8.12: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Tulu 
Dimtu area. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: Chlorite-Schist. ChSchi: 
Chlorite-Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite. Dun: Dunite. Fels: 

Felsite. Gabb: Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: Metabasalt. MetaSed:
Metasediment. Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: Quartzite. Schi: Schist.

Sed: Sediment. TaSchi: Talc-Schist. TCSchi: Talc-Chlorite-Schist. Troc: Troctolite. Unid:
Unidentified. VQuar: Vein Quartz.

The following sections describe the distribution of Ni, Cu, Cr and Al in the Tulu 

Dimtu area. Each section describes one element and its distribution in fresher ultramafics 

and then altered rocks (as defined in section 8.3.1). These sections are accompanied by a 

fold-out page (page 213) of maps showing the distribution of all elements which the 

reader should refer to as each section is read.

8.4.3. Nickel

The fresher rocks on the flanks of the Tulu Dimtu Main Intrusion are enriched in 

Ni to a much greater degree than those in the centre. In fresher rocks nickel rises above 

3000ppm (and up to 5860ppm) only within 500m of the contact of the Main Intrusion 

with the surrounding basement. Figure 8.4A shows that throughout the centre of the 

intrusion and in two places near the flanks, Ni is below 3000ppm but not lower than 

1456ppm. The two fresher samples from the Lensoid Ultramafics contain significant Ni 

(2824ppm and 1644ppm), the remaining samples from Lensoid Ultramafics show 

negligible amounts (31 to 467ppm). The highest Ni content in fresher rocks (5860ppm) is 

found within 150m of the southern flank of the Sheared Ultramafic.

In samples classified as altered, Ni is enriched almost exclusively in the Main 

Intrusion and the Sheared Ultramafic (figure 8.4A). Although most samples outside of the 

Main Intrusion and Sheared Ultramafic do not host significant Ni, three samples do 

contain significant amounts. These come from two Shear Zones (containing 11,044ppm 

and 6899ppm) and one Lensoid Ultramafic (5079ppm). Indeed, the highest Ni content in 

the samples of the Tulu Dimtu area (11044ppm) is contained in a schistose rock from a 

shear-zone bounding the southeast flank of the Main Intrusion.
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At one location in the northwestern Lensoid Ultramafic both altered and fresher 

rocks show Ni enrichment. A fresher dunite has 2824ppm Ni and this value rises to 

5079ppm in a mylonitised rock.

8.4.4. Copper

In fresher rocks Cu reaches a maximum of 16ppm in two samples of the Sheared 

Ultramafic. Everywhere else - including the Lensoid Ultramafics - Cu never rises above 

5ppm in fresher rocks.

Cu values of greater than 70ppm in altered rock are almost entirely situated over 

the basement and units other than the Main Intrusion and Sheared Ultramafic (figure 

8.4A). Within the Main Intrusion, the highest values of Cu occur close to the western and 

southern flanks. The highest Cu analysis within the altered samples of the Main Intrusion 

(116ppm) occurs close to the samples with the highest values in the fresher rocks.

Analyses of Cu in samples from the Lensoid Ultramafics and Shear Zones frequently rise

above 70ppm, however some samples show negligible amounts (<5ppm).

8.4.5. Chromium

The highest Cr value in the Tulu Dimtu area (2728ppm) occurs in a fresher dunite 

on the southern flank of the Main Intrusion, close to the Sheared Ultramafic. Of the other 

fresher rocks, all other Cr values above lOOppm in the Main Intrusion are found in a zone 

close to the western flank of the formation. None of the three fresher ultramafics of the 

Lensoid Ultramafics show Cr values which rise above 500ppm, however all are higher 

than lOOppm.

In altered rocks, the dunites and olivine-clinopyroxenites at the centre of the 

intrusion are depleted in Cr. As seen in the fresher rocks, some higher Cr values 

(<100ppm) are found towards the outside of the formation. A schistose rock in a shear- 

zone bounding the southeastern parts of the Main Intrusion has a Cr value of 1127ppm.
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Outside the Main Intrusion high Cr values (<900ppm) can be found in Lensoid 

Ultramafics and Shear Zones.

8.4.6. Aluminium

In all of the fresher rocks (except two) of the Tulu Dimtu area, Al is below 

detection limits. Two dunites from the Sheared Ultramafic returned values of 1% for Al.

The altered dunites in the centre of the Main Intrusion are almost entirely depleted 

in Al. The flanks of the Main Intrusion and Sheared Ultramafic are slightly elevated in 

Al. A high Al value (4.5%) occurs in a gabbro on the western flank of the intrusion and a 

zone of slightly elevated Al values occurs on the southern flank of the formation. Several 

pyroxenites and dunites in the Sheared Ultramafic show Al elevated above 2%. Several 

high values of Al (>4%) occur in the Shear Zones and Lensoid Ultramafics.

8.4.7. Summary of the Ni, Cu, Cr and Al values in the Main Intrusion and 
Sheared Ultramafic

Of the fresher rocks of the Main Intrusion (including the Sheared Ultramafic) the 

highest Ni values in the complex are close to the edge. As such, the highest Ni 

(5860ppm) is found within 150m of the southern flank of the Sheared Ultramafic. 

Similarly, the highest Cr values are found close to the flanks. Although these high Cr 

values are found in five samples within the Main Intrusion, only two fresher samples 

contain both high Ni and high Cr. At the southern edge and near the junction between the 

Main Intrusion, the Sheared Ultramafic and the southern shear-zone, both Cr and Cu rise 

to their highest values in two separate fresher dunites. Figure 8.3 shows the relative 

proportions of Cu and Cr in these samples (TDR 19/01 and TD9).

As seen in the fresher rocks, the altered samples also show the largest values of Cr 

at the flanks of the Main Intrusion. Additionally, Cu and Al show their highest values in 

the same samples located near the southern flank. As with Cu, Cr and Al the altered 

ultramafics show the highest values of Ni close to the flanks of the Main Intrusion,
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similar to those values seen in the fresher rocks. However, unlike the other elements, Ni 

is enriched in two samples in the centre of the intrusion (4141 and 2527ppm).

8.4.8. Summary of the Ni, Cu, Cr and Al values in the Lensoid Ultramafics

When compared to the Main Intrusion the three fresher samples of the Lensoid 

Ultramafics (two dunites and one pyroxenite) display elevated Cr and intermediate Ni 

values.

The altered ultramafics show similar patterns to those seen in the Shear Zones 

(see section 8.4.9). One altered dunite sample is enriched in Ni but two different dunites 

are enriched in Cu. Elsewhere in the Lensoid Ultramafics, one altered olivine- 

clinopyroxenite is enriched in both Cr and Al (700ppm and 3% respectively).

8.4.9. Summary of the Ni, Cu, Cr and Al values in the Shear Zones

Two samples within Shear Zones (a mylonite and a talc-schist) have high values 

of both Cr and Al. High Ni and Cu values occur in different samples, two schistose rocks 

show high Ni values and a mylonite shows Cu enriched above 130ppm.

8.5. Tulu Dimtu: Pt and Pd Distribution

8.5.1. Rock

The highest Pt and Pd grades of fresher rocks in the Tulu Dimtu area occur at the 

south of the Main Intrusion. Pt is present from below detection to 40ppb and Pd from 

below detection to 37ppb in the three samples. These samples are located at the junction 

between the Tulu Dimtu Main Intrusion, the Sheared Ultramafic and the southern shear 

zone. Elsewhere, neither Pt nor Pd rise above 9ppb and drop to below detection limits 
(<2ppb).
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Within the Tulu Dimtu Main Intrusion, the three highest Pt analyses (36ppb, 

24ppb and 24ppb) in the altered rocks occur at the edge of the complex and these all 

coincide with Pd below detection limits (<2ppb). All other altered ultramafics show Pt 

assays between 7ppb and 3ppb. The maximum Pd value within the altered rocks of the 

Main Intrusion is 15ppb found near the southern flank. A dolerite dyke cross-cutting the 

intrusion near the western flank has a Pt at a value of 4ppb and a Pd value of 12ppb. The 

two Pt- and Pd-bearing samples from the Lensoid Ultramafic units are an altered 

ultramafic with a Pt value of 21ppb and a Pd value below detection and a mylonitised 

sample with a Pt value of 25ppb and a Pd value of 38ppb. These are found in two 

separate ultramafic units to the northwest of the Main Intrusion (figure 8.4E and 8.4F).

Other Pt- and Pd-bearing samples include a chlorite schist in a zone cross-cutting 

the gabbro and this shows results of 9ppb Pt and 41ppb Pd. A talc schist occurs close to 

the sheared western contact of the Tulu Dimtu Main Intrusion and this has returned 

results of 15ppb and 16ppb for Pt and Pd respectively. A fine-grained volcanic sample 

close to the isolated shear zone west of the Main Intrusion has Pt and Pd concentrations 

of 26ppb and 19ppb respectively.

8.5.2. Summary of Pt and Pd distribution in the Main Intrusion and Sheared 
Ultramafic

The highest Pt and Pd grades of the Tulu Dimtu area occur in a fresher rock on 

the southern flank of the intrusion. This occurs with two other fresher samples which are 

also relatively high in both Pt and Pd (see table 8.13). These samples occur at the junction 

between the Main Intrusion, Sheared Ultramafic and Shear Zones.

Within the altered rocks of the Main Intrusion all Pt grades above 20ppb also 

occur in the flanks of the intrusion -  which may suggest a zonation in Pt values. As seen 

with Pt, all Pd values in altered rocks are 15ppb or below and occur within 400m of the 

flanks of the intrusion. However - unlike the fresher rocks -  Pt reaches the highest values 

in different altered samples from those of Pd (figure 8.4E).
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The comparison between PGE and Ni, Cu, Cr and Al in the highest samples is 

summarised as follows:

Sample Pt Pd Ni Cu Cr Al

TDR 19/01 37 30 2872 16 436 0.1

TD9 37 27 2992 8 2728 0.5

TD10 2 40 1909 4 634 0.1

TD12* < 2 <2 1456 16 102 <0.1

Table 8.13: A summary o f Ni, Cu, Cr and Al values in the dunite samples of highest Pt and Pd 
grade of the fresher rocks. A graphical representation of this data is provided in figure 8.3. *: 

Sample TD12 is included regardless of low Pt and Pd values as it contains a high Cu value and is 
located close to the Pt- and Pd-bearing samples.
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Figure 8.3: Graphs of Ni, Cu, Cr and Al versus Pt and Pd in the fresher rocks of the Tulu Dimtu 
area. The key to symbols in the top right comer.
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8.5.3. Summary of Pt and Pd distribution in the Lensoid Ultramafics

The highest Pt and Pd values in fresher rocks are 9 and 8ppb respectively. 

Whereas the highest Pt and Pd values in altered Lensoid Ultramafics are 25 and 38ppb. 

There are three altered samples from the Lensoid Ultramafics which contain Pt or Pd. An 

altered pyroxenite and an olivine-clinopyroxenite sample are more enriched in Pt rather 

than Pd and one mylonite sample contains both Pt and Pd.

8.5.4. Summary of Pt and Pd distribution in the Shear Zones

Two samples within the Shear Zones are Pt- and Pd-bearing. These are a talc- 

schist close to the western contact of the Main Intrusion and a chlorite-schist in the 

southwestern comer of the area. In the chlorite-schist Pd predominates over Pt, but in the 

talc-schist Pt shows similar values to Pd.

8.5.5. Summary of Pt and Pd distribution in the basement

Two basement rocks are Pt- or Pd-bearing. These are a quartzite (with a Pt value 

of 31ppb and Pd value of 37ppb) and a fine-grained volcanic rock (with a Pt value of 

19ppb and Pd value of 26ppb).

8.5.6. Comparison of the geochemistry of the soil versus rock samples

Ni and Cu anomalies in soil occur in different places from those of the rocks 

(when compared to chapter 8). As with the rock samples (see chapter 8), the highest Cr 

values in soil are found above the western and southern flanks of the Main Intrusion and 

the lowest values are in the centre of the intrusion.

There are a greater number of soil samples enriched to above 20ppb Pt compared 

to the number of rock samples. In fresher and altered rocks 7% of the samples (3/42) 

contain more than 20ppb Pt whereas in soils 33% (23/70) contain more than 20ppb. Pd 

anomalies (13 and 15ppb) only occur in the centre of the intrusion.
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8.6. Review o f processes concentrating Pt and Pd

8.6.1. Introduction

There are several mechanisms cited to explain the distribution of PGE within 

mafic and ultramafic complexes. Much research has been directed towards the role of 

sulphur in magmas but alternatively some authors advocate a role for hydrothermal 

fluids. Furthermore, some models have been developed whereby PGE are concentrated 

without sulphur or hydrothermal fluids.

The proponents of the role of sulphur argue that PGE-rich droplets of liquid 

sulphide segregate out of a silicate magma and then concentrate the PGE into a horizon 
(for a review see Naldrett, 1998). Alternatively, the study of polyphase silicate inclusions 

within Pt-Fe alloys from sulphur-poor complexes suggests that the magma involved in 

the precipitation of PGM is highly water-rich (Johan, 2002). Studies of /O 2 and fluid 

inclusions can also be used to support the role of high temperature fluids in concentrating 

PGE. Some recent work has begun to reveal an additional view on PGE concentration. 

Macambria and Filho (2005) cite a correlation between Al and PGE to suggest that 

neither sulphur nor high temperature fluids are required to create a PGE “reef’.

In order to aid the subsequent discussion this section reviews the igneous 

processes believed to have a role in the concentration of Ni, Cu, Cr, Al and PGE. This is 

followed by an account of the study of PGE solubility in medium to low temperature 

fluids.

8.6.2. The fractionation of Ni

The partitioning behaviour of Ni can vary with magmatic conditions of formation 

such as /O 2 and /S 2 (Kinzler et al., 1990; Gaetani and Grove, 1997). Table 8.14 shows 

the range of partition co-effcient (D Nj) values determined from in-situ measurements of 

natural examples and from experimental systems. The lowest partition cocoefficient of Ni
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8.6.4. Sulphide immiscibility and solubility

As the primitive magma rises through the Earth’s crust, a small amount of 

precipitation of silicate or oxide minerals occurs and then sulphur may become saturated 

in the magma. At this point S comes out of solution in the silicate melt and a situation 

occurs where both silicate and sulphide melts exist together as immiscible liquids -  an 

event called sulphide segregation. Ni, Cu, Pt and Pd are known to be concentrated into 

the sulphide melt within a magma by sulphide segregation (Naldrett and von 

Gruenewaldt, 1989) which may be triggered by several different changes in conditions.

Sulphur saturation in a magma can be achieved in a situation where sulphur 

becomes insoluble. The most common explanation for this is through the precipitation of 

silicate minerals, or a fall in temperature, or an increase in / O2 or by a decrease in the 

amount of Fe2+ in the magma. However, there are several other factors which affect 

sulphide solubility (for a review see Robb, 2005) including the injection of a new magma 

(see section 8.6.7).

8.6.5. Sulphide fractionation

As an immiscible mixture of silicate and sulphide liquids rise through the crust 

crystallisation occurs in each melt. The sulphides fractionate to produce a Ni-bearing 

monosulphide solid solution (MSS) which is precipitated leaving a Cu-rich residual 

sulphide liquid (Fleet and Pan, 1994; Barnes et al., 1997). Partition coefficients 

confirmed by geological studies have demonstrated that during sulphide fractionation, Pt 

and Pd are compatible with the Cu-rich residual sulphide liquid (Bames et al. 1997; Fleet 

et al., 1993). The residual sulphide liquid may then crystallise as a Pt-, Pd- and Cu-rich 

Intermediate Solid Solution (ISS). Alternatively, the Cu-rich liquids could be driven 

away from the MSS, through filter-pressing (see section 8.6.6). The products of sulphide 

fractionation are seen in-situ in the sulphide blebs described by Prichard et al. (2004).
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It has been argued that the concentration of PGE by the action of sulphides is only 

valid in magmas of large bulk-S content such as the Bushveld or Sudury Intrusive 

complexes. Furthermore, a sulphur solubility assessment has suggested that the Bushveld 

complex does not contain sufficient sulphur to explain the amount of PGE present (see 

Cawthom, 2005). These arguments suggest that alternative models (not involving 

sulphur) should also be explored. However, Peregoedova and Ohnenstetter (2002) argue 

that a high / S2 can be obtained in low-S magmas through fractionation of the silicate 

melt and immiscibility of the sulphides. Furthermore, Tolskykh et al. (2000) have shown 

that in Alaskan-type intrusions -  which are commonly low-S - it is common to find 

cooperite (PtS) rimming Pt-Fe alloys. This presence of cooperite suggests that the / S2 of 

the magma must have risen high enough to allow the sulphuration of Pt (Peregoedova and 

Ohnenstetter, 2002).

8.6.6. Filter-pressing

After and during sulphide fractionation, the Cu-rich residual sulphide liquid can 

migrate away from the MSS crystals and precipitate. This is proposed by the “filter- 

pressing” model of Andersen et al. (1998) to explain the zonation of Au and PGE in the 

Skaergaard Intrusion (East Greenland). As sulphide fractionation occurs, cumulus silicate 

crystals precipitate, and the residual sulphide liquid will be interstitial. As further 

accumulation of cumulus material occurs, the volume of interstitial space will drop and 

the residual sulphide material will be entrained along with the other interstitial fluids and 

migrate towards the more evolved portions of the system. The MSS, however, will have 

already crystallised will therefore be trapped within the cumulate pile thereby allowing 
ISS to crystallise away from MSS.

In a situation where bulk sulphur content is very low, it may be hard to understand 

how a residual sulphide liquid can migrate. However, the validity of this model is 

dependant on the potential for the residual sulphide liquid to be entrained in the bulk 

interstitial liquids. Smaller amounts of liquid are more likely to become entrained than 

larger amounts and hence the model becomes more feasible with smaller amounts of
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fluid. Additionally, when the residual sulphide liquid is moving away from the MSS, a 
“tail” will form behind the bulk of the entrained liquid. The more entrained the liquid, the 

larger the tail and, therefore, the less likely that ISS will be split apart from MSS. So the 

smaller the proportion of residual sulphide liquid, the greater the potential for filter- 

pressing to occur and the more likely Cu-rich sulphides (ISS) will be split apart from Ni- 

rich sulphides (MSS).

It may be argued that the residual sulphide liquid is unlikely to travel distances 

larger than 1cm. However the evolved Cu-rich liquid can behave in a number of ways. 

Prichard et al. (2004) describe a situation in a mafic dyke whereby both MSS and ISS 

crystallise together as sulphide blebs less than 1cm in diameter. In contrast, Naldrett et al. 

(1992) describe how the ores of the “Copper” and “Deep Copper” zones of the Strathcona 

mine are the end product of fractionation of the Main Zone Sulphides over 200m away. 

Furthermore, Andersen et al. (1998) document the effect of filter pressing in separating 

Au and PGE reefs over several 100s of metres in the relatively sulphur-poor Skaergaard 

complex. And as such, it is expected that under the appropriate conditions, the evolved 

residual sulphide liquid can travel up to 200m away from the location of the MSS.

8.6.7. Magma mixing

Magma mixing may result in the precipitation of large amounts of chromite which 

may be accompanied by sulphide immiscibility The mechanism of chromitite formation 

is dealt with first. Chromite saturation can be reached in a situation where a slightly 

evolved melt (precipitating olivine) is mixed with a primitive melt (Naldrett et al., 1990; 

Naldrett and von Gruenewaldt, 1989). The precipitation of chromite by the mixing of two 

magmas was proposed by Irvine (1977) to explain the formation of massive chromitites 

in the Muskox intrusion in NW Canada. His model is consistent with observations of 

chromitites from the Bushveld and Stillwater complexes where chromitites form at the 

base of well-defined cyclic units (Naldrett et al., 1990). Naldrett et al. (1990) suggest that 

if a magma on the olivine-chromite cotectic (point A) is mixed with a magma in the 

orthopyroxene field (point D) the resulting melt (AD) may fall within the chromite field
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and as cooling occurs, chromite will be precipitated followed by olivine. This will then be 

followed by the typical fractionation sequence. This only occurs in a situation where the 

fresher magma intrudes the evolved melt well before plagioclase is precipitated.

Where an advanced differentiate (precipitating plagioclase) mixes with a 

primitive melt, sulphides may become immiscible with the silicate melt (Naldrett and von 

Gruenewaldt, 1989). Subsequently, suitable conditions for the crystallisation of these 

sulphides may then allow Ni, Cu and the PGE to become concentrated. In order for 

chromite to be precipitated only a slightly evolved melt is required, but for chromites to 

be precipitated and sulphides to become immiscible the influx of a more advanced melt is 

necessary. This raises the possibility within this model of the existence of sulphide-barren 

and sulphide-poor chromitites.

8.6.8. Hydrothermal remobilisation

When associated with primary sulphides of a small grain size, Ni and Cu are both 

known to be highly soluble in hydrothermal fluids. This behaviour is indicated from 

precipitates of hydrothermal fluids (Marshall and Gilligan, 1987; Keays, 1987; Canals et 

al., 1992). Furthermore, the presence of Cu in hydrothermal fluid inclusions has been 

noted by Vanko et al. (2001) and Baker et al., (2004) -  for a synopsis of previous studies 

see Kesler (2005). Fluids in such systems are regarded to be of nearly neutral pH, with 

temperatures from 200-300°C and salinities of less than 3wt% NaCl (Kesler, 2005) all of 

which are obtainable in a mobile belt such as the WES. Therefore the presence of Ni and 

Cu in highly sheared rocks (at values much higher than in fresher rocks) may be the result 

of shear-zone hosted high-temperature fluids.

In comparison to sulphide-associated elements, Cr-bearing spinels are highly 

resistant to hydrothermal alteration. It is therefore likely that a fresher rock with high Cr 

will retain a high Cr value in the subsequent altered rock. Aluminium is also immobile in 

hydrothermal fluids and, therefore, if present it may indicate the presence of 
aluminosilicates in the protolith.
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The evidence for the stability of Pd- and Pt-chloride complexes in fluids at 

equilibrium with typical alteration minerals at temperatures up to 300°C is well 

established (Wood, 2002; Wood 1987; Gammons et al., 1992). At higher temperatures, it 

is expected that the solubility of these elements in alteration fluids will increase and 

lower salinities and pH will be required. Solutions in equilibrium with clay minerals 

and/or hematite are thought to take more Pt and Pd into solution than those fluids which 

precipitate pyrite, pyrrhotite and other alteration minerals (Tarkian et al., 1996). The 

solubility of Pt- and Pd-bisulphide complexes is not well understood, but may be capable 

of transporting far more of the elements under less extreme conditions. Additionally, the 

case for preferential dissolution and transport of Pd over Pt has been made clearly by 

experimental studies of several conditions (see numerous references in Wood, 2002).

8.7. Tulu Dimtu: Discussion

Here the processes likely to have affected the distribution of Ni, Cu, Cr Al, Pt and 

Pd in the Tulu Dimtu area are discussed. The processes involved with the distribution of 

Ni, Cu, Cr and Al in fresher ultramafics are considered from 8.7.1 to 8.7.3, followed by 

those processes which affect altered rocks in 8.7.4 and 8.7.5. The mechanisms which 

distribute Pt and Pd are considered from section 8.7.6 to section 8.7.7.

8.7.1. Zonation of nickel and chromium in fresher rocks

The highest Ni value in the fresher rocks (5960ppm) occurs within 150m of the 

southern flank of the Sheared Ultramafic. Ni values then drop steadily towards the centre 

of the Tulu Dimtu Main Intrusion and as such, all Ni values above 3000ppm occur within 

500m of the edges (figure 8.4A). Similarly, the highest Cr value (2728ppm) occurs at the 

edge of the Main Intrusion and all Cr values above lOOppm occur within 700m of the 

flanks of the complex (figure 8.4C). Although both elements show a gradual variation in 

values with distance away from the edge of the intrusion there are only two samples 

which contain both elevated Cr and elevated Ni. Additionally, the highest Cr values occur 

in a different location to the highest Ni values.
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into olivine, it would be expected that the higher Cr values would form uniform zones. 

However, in the Tulu Dimtu Main Intrusion (figure 8.4C) several isolated samples with 

high Cr values occur -  an observation which is consistent with the concentration of Cr 

within discrete spinel minerals. In most spinel-bearing complexes, Cr-spinels precipitate 

with olivine early during fractional crystallization and/or relate to an increase in /O 2 

(Barnes and Roeder, 2001). The refractory nature of the spinels mean that they will not 

go into solution easily in aqua regia. It is likely that the Cr values found in the analyses 

presented here represent Cr partitioned mainly into olivine and to a small degree into 

spinel. With this in mind, a rock with a high Cr value remains a relatively primitive rock.

It is proposed here that as a partial melt rose through the Earth’s crust, olivine 

precipitated and took Cr and some Ni into its crystal structure. As silicates continued to 

crystallise from the melt a point came whereby the dissolved sulphides became 

immiscible (Naldrett and von Gruenewaldt, 1989). When this occurred, Ni was 

scavenged from the silicate melt into the immiscible sulphide liquid. Subsequently 

sulphur saturation of the magma occurred and Ni-bearing (and possibly Cu-bearing) 

sulphides crystallised. After these immiscible sulphides had precipitated, Ni continued to 

be partitioned to a lesser degree into the olivine and oxides in the more evolved rocks. 

Simultaneously as olivine crystallised, discrete spinel minerals precipitated into which Cr 

partitioned. It can be suggested that the rocks of the western and southern flanks of the 

Tulu Dimtu Main Intrusion are the most primitive and that progressive fractionation was 

directed towards the centre of the intrusion.

It could be argued that the action of sulphur in concentrating Ni is not relevent 

due to the low sulphur content. Only one fresher ultramafic rock returned S values above 

detection limits (0.02% found in DTR-007-02). However, Peregoedova and Ohnenstetter 

(2002) argue that a high / S2 can be obtained in low-S magmas through fractionation of 
the silicate melt and immiscibility of the sulphides (8.6.5).

It is not possible to rule out the effects of re-mobilisation of Ni by late or post 

magmatic hydrothermal fluids. It is likely that hydrothermal fluids have remobilised Ni in
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these rocks to some degree. However, as shown in section 8.3.1 the rocks classed as 

“fresher” in this study all retain Mg values which are as high as can be expected for a 

typical fresher dunite or clinopyroxenite. Therefore, these samples cannot have been 

subjected to pervasive alteration, however it is still possible that some limited action of 

hot fluids may have affected the Ni values (in the order of 100’s of ppm) without a 

significant difference in Mg values. Narrow veinlets containing Ni-bearing phases may 

cross-cut an otherwise fresher sample and this is documented in chapter 3. However, 

unlike Ni, Cr is not known to be remobilised by hydrothermal fluids -  even from olivine - 

and shows similar zoning to Ni and this therefore, supports the fractionation hypothesis.

8.7.2. Locations of highest copper and chromium values in fresher rocks

The highest values of Cu in the fresher rocks (16ppb in two samples) occur 200m 

from the southern flank of the intrusion. The highest Cr values occur in a different sample 

located close by (<100m). The highest values of Cu and Cr do not occur with the highest 

Ni values -  which are located over 1km away.

Although crystal fractionation and the immiscibility of sulphides can explain the 

Ni values and some of the Cr values, this model (section 8.7.1) cannot explain why the 

highest Cu values are located in a different location from Ni. Furthermore, it cannot 

explain why the highest Cr values occur close to the highest Cu but not Ni. In a situation 

where sulphide minerals crystallise at the same time Cr partitions into olivine, the highest 

Ni and Cu values would initially occur close to the highest Cr values. Subsequently, the 

Cu may be moved away from the highest Ni and Cr by either filter-pressing or high 

temperature fluids (see below). Here, the close proximity of the highest Cu and Cr values 

and their dislocation from the highest Ni values suggests that a different or more complex 

model is required. In this section two possible explanations are discussed, firstly a 

combination of filter-pressing and magma-mixing and secondly the remobilisation of Cu.

During filter-pressing, the Ni-rich MSS precipitates and then the Cu-rich residual 

sulphide liquid migrates away from the MSS by the compaction of the cumulus olivines.
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8.7.3. Trace element distribution in fresher rocks of the Lensoid Ultramafics

Ni values in the limited number of fresher samples from the Lensoid Ultramafics 

are above lOOOppm but lower than 3000ppm and Cr values are higher than lOOppm. 

These values are similar to those seen close to the edge of the Tulu Dimtu Main 

Intrusion. The Ni values are low enough for this element to be taken into the crystal 

structure of olivine without the involving other phases. The Cr values are comparable to 

those seen on the western flank of the Tulu Dimtu Main Intrusion. By comparison with 

the Tulu Dimtu Main Intrusion, it is inferred that these rocks crystallised before sulphide 

saturation. It is plausible that these smaller ultramafic bodies could be considered as 

slivers of “sheared-off’ material from the flanks of a larger intrusion. Although with only 

three samples of fresher rocks from the Lensoid Ultramafics these interpretations are 

preliminary.

8.7.4. Trace element distribution in Shear Zones

The highest value of Ni in the rocks of Tulu Dimtu (ll,044ppm) occurs in a 

sheared rock at the southeastern flank of the Tulu Dimtu Main Intrusion , this is almost 

twice the highest value seen in fresher rocks (5860ppm). Additionally, a mylonite sample 

shows Cu values of 148ppm which is much higher than the amount of Cu in fresher rocks 

which is 16ppm. Two samples within Shear Zones (a mylonite and a talc-schist) show 

high Cr and Al at over 900ppm and 4% respectively.

The necessary aqueous conditions for the remobilisation of Ni and Cu are 

obtainable in a mobile belt such as the WES (section 8.6.8). Therefore the presence of Ni 

and Cu in highly sheared rocks - at values much higher than in fresher rocks - may be the 

result of the redeposition by hot aqueous fluids transported along Shear Zones.

This leaves the question of how both Al and Cr are concentrated into the samples 

since Al is to be expected in a felsic protolith and Cr is expected in primitive ultramafics. 

Given that some altered rocks may more resemble soils it is possible that the Al has been
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concentrated by soil-forming processes occurring above a Cr bearing ultramafic protolith 

or alternatively that two different protoliths have been juxtaposed in the shear-zone.

8.7.5. Zonation of trace elements in altered rocks

The altered rocks of the Tulu Dimtu Main Intrusion show a zonation in Ni and Cr 

similar to that seen in the zones of the fresher rocks (>3000ppm and >100ppm 

respectively). Patterns seen in altered rocks but not seen in the fresher samples are that 

Cu and Al also have high values at the edge of the intrusion (>30ppm and 0.7% 

respectively). Individual samples from the Lensoid Ultramafics also show elevated values 

for all four elements in question. Chapter 3 shows that the principle mineral in these 

samples is serpentine and as a phyllosilicates is likely to be affectively digested by aqua 

regia along with the sulphides (see section 8.2.3).

The altered samples studied here represent a magmatic signature overprinted by 

alteration. It has been seen (chapter 2) that the WES has been subjected to considerable 

deformation and the movement of hydrothermal fluids. This deformation has been 

observed at Tulu Dimtu by De Wit and Chewaka (1977) who described alteration in 

Shear Zones flanking the intrusion resulting in a talc-carbonate and serpentine-talc 

assemblage. It is therefore likely that the same hydrous fluids could have penetrated the 

flanks of the Tulu Dimtu intrusion to remobilise and precipitate both Ni and Cu. Hence 

the elevated Ni and Cu values could be the result of either or both hydrothermal 

remobilisation or magmatic concentration. Cr is unlikely to have been remobilised from 

its primary position and, therefore, the zonation in high Cr values at the flanks of the 

intrusion supports similar zones seen in fresher rocks. The values of Cr in an altered rock 

may be elevated slightly from the equivalent in the protolith, due to changes in volume 

between fresher and altered rocks (Giggenbach, 1984). Slightly elevated Al values at the 

flanks of the intrusion may be attributed to the concentration of the element -  seen in 

trace amounts in fresher rocks - during soil-forming. However, the original source of the 

Al is unknown. For this study, an “altered” rock may be partially affected by soil-forming 

processes at the start of the transformation from rock to soil.
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As with the Tulu Dimtu Main Intrusion, hydrothermal fluids can be invoked to 

explain the distribution Ni and Cu in the Lensoid Ultramafics. If the Lensoid Ultramafics 

are considered as deformed slivers of the Tulu Dimtu Main Intrusion (as suggested in 

section 8.7.3) it is to be expected that they have been subjected to similar and possibly 

more intense alteration systems due to the deformation required to dismember them from 

the Tulu Dimtu Main Intrusion. Both Ni and Cu are observed in concentrations much 

higher than those seen in the fresher samples of the Lensoid Ultramafics and also higher 

than the altered samples of the Main Intrusion. It is to be expected that the deformation 

required to dismember the lensoid bodies from the Main Intrusion is greater than that 

seen at the flanks of the Main Intrusion itself. It is possible that the subsequent alteration 

will have been more intense and the potential for concentration of Ni and Cu greater as a 

result. However, hydrothermal fluids may also act to disperse the elements which are 

soluble within them.

8.7.6. Genesis of Pt and Pd in fresher rocks

Three fresher dunites from the Tulu Dimtu Main Intrusion contain significant Pt 

and/or Pd values (TD10, TD9 and TDR 19/01). Each of these three samples contains 

significant amounts of either Ni, Cu and/or Cr and the variations of these elements are 

summarised in table 8.13 and figure 8.3. The three Pt- and Pd-bearing samples are 

located close to another fresher dunite (TD12) which is barren of both elements but 

contains the highest Cu value.

A model to explain the origin of the high Cr value found in sample TD9 by the 

mixing of a fresher primitive magma is outlined in section 8.7.2 and this can also explain 

the high Ni value as it will concentrate strongly into the early crystallised olivines. 

Naldrett and von Gruenewaldt (1989) have determined that magma mixing may account 

for sulphide segregation where an advanced differentiate (precipitating plagioclase) 

mixes with a primitive melt (see section 8.6.7). However plagioclase is not observed in 

the ultramafics from the Tulu Dimtu Main Intrusion and therefore this is seen as unlikely.
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The model used to explain the dislocation of Cr and Cu anomalies from Ni (see section 
8.7.2) can be used to explain the Pt and Pd distribution. In this model the Pt and Pd was 

filter pressed into the fresher cumulate pile along with the Cu-rich residual sulphide 

liquid.

As with Cu, the locations of the highest Pt and Pd values can be explained on the 

basis of either magmatic processes (filter-pressing) or alteration. The Pt and Pd of sample 

TDR 19/01 (see table 8.13) could be explained as being partitioned into a Cu-bearing 

residual sulphide liquid which was subsequently filter-pressed through the pile of 

cumulate olivines so that it is separated from the crystallised Ni-rich MSS (as described 

in section 8.6.6). A similar explanation may be given for the Pt- and Pd-barren sample 

TD12, however in this case the ISS crystals precipitated from the sulphide liquid after the 

precious metals had already partitioned out of this melt.

Alternatively, both Pt and Pd in each sample could have been remobilised along 

with Cu. The origin of high Pd in sample TD10 is hard to explain by magmatic processes 

as Pt should behave similarly in a magma. The absence of Pt indicates that a Pd mineral 

was present in this sample. The Cu value is too low to conceive the presence of residual 

sulphides and the Ni value is low enough to be partitioned into olivine alone. It is 

possible that the anomalous Pd value may have been transported in by aqueous fluids, as 

this is seen frequently in other deposits (section 8.6.8). The reason for the dislocation of 

Pt and Pd from the areas of the highest Ni can only be determined through the analysis of 

the morphology of the PGM.

8.7.7. Genesis of Pt and Pd in altered rocks

Pt- and Pd-bearing altered rocks occur at different locations in the Main Intrusion 

(figures 8.4E and 8.4F). The dislocation of Pt and Pd anomalies at the flanks of the Tulu 

Dimtu Main Intrusion could be explained by the preferential transport of Pd away from 

the sites of magmatic concentration (see section 8.6.8). The preferential remobilisation of 

Pd over Pt has been documented by many other authors (for example Oberthur et al.,
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2003; Prichard et al., 1996). The sites of magmatic PGE concentration are likely to occur 

at the flanks of the intrusion which is also where hydrothermal fluids are likely to act. So 

the two modes of transport are likely to have been superimposed.

There are seven Pt- and Pd-bearing rocks outside of the Tulu Dimtu Main 

Intrusion and these are from the Shear Zones, Lensoid Ultramafics and basement units 

(see section 8.5.2). Five of these samples contain higher Pd values than Pt. Of particular 

note is a chlorite schist which returned values of 9ppb for Pt and 41ppb for Pd. This 

further suggests that Pd has been preferentially reconcentrated by hydrothermal fluids in 

the area. The higher Pd values than Pt in the Lensoid Ultramafics may indicate the 

redeposition of Pd in these complexes as the chlorite schist is likely to contain 

precipitates from the alteration fluids.

8.8. Tulu Dimtu: Conclusions

Throughout the Tulu Dimtu area, distinguishing the effects of hydrothermal 

alteration from magmatic processes is difficult. The geochemical analyses discussed in 

this chapter suggest that both hydrothermal and magmatic processes are likely influence 

Pt and Pd grade at the flanks of the intrusion. Consequently, it is recommended that any 

further exploration activities are focussed in these areas.

Some preliminary ideas have been proposed to explain the development of Pt and 

Pd in the fresher rocks of the Tulu Dimtu Main Intrusion. A large variation Cr values 

between the centre and the edges of the intrusion indicate that the most primitve rocks 

occur at the edge of the complex. Further variations in Cr value may indicate the presence 

of a second melt influx. A series of processes may then have occurred to concetrate Pt 

and Pd from the magma. High Ni values and significant vairaitions in Cu values indicate 

that sulphide immiscibility and fractionation may have occurred, in such a situation the Pt 

and Pd would be associated with the Cu-rich residual sulphide.
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Although sulphide fractionation may explain the dislocation of Cu and Ni values, 

it is also possible that the Cu -  along with Pt and Pd - could have become remobilised by 

hot aqueous fluids and then redeposited close to magmatic Cr-spinels. Analysis of PGM 

and sulphide mineralogy is required to test the filter-pressing and hydrothermal models. 

Furthermore, there is no direct evidence for the influx of a fresher batch of melt, it is 

nessecary for this to be validated using spinel geochemistry (see chapter 9).

A limited number of fresher ultramafic samples from the Lensoid Ultramafics 

have been described, these indicate that the samples formed after chromite precipitation 

but before sulphur saturation. These complexes may be slivers from the edges of larger 

intrusions, such as the Tulu Dimtu Main Intrusion.

From the presence of Ni and Cu in shear-zone related lithotypes it can be inferred 

that either during or after the deformation of the Lensoid Ultramafics hydrothermal fluids 

have been directed along Shear Zones. Furthermore, these fluids may have permeated and 

circulated around the flanks of the Tulu Dimtu Main Intrusion thereby remobilising and 

re-precipitating Ni and Cu. Both Pt and Pd are also likely to have been taken into 

solution, but Pd to a much greater extent. Hence, the locations of Pt and Pd anomalies 

have become separated (figure 8.4E and 8.4F).
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Unid 0.1 972 11 347 0.2 4 <2 - <2 KTR-050-02
VQuar 0.1 10 <2 8 0.1 <2 <2 - <2 DTR-059-02
VQuar 0.1 34 8 10 0.1 <2 <2 - 2 KTR-064-02
VQuar 0.1 11 7 11 0.1 <2 <2 - 5 TD20
VQuar <0.1 4 4 10 0.1 <2 <2 - 1262 TD21
VQuar 0.1 11 <2 28 0.1 <2 <2 - <2 TDR 28/01
VQuar <0.1 2 7 11 0.1 <2 <2 - 3 TDR 30/01

Table 8.20: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Kingy 
area. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: Chlorite-Schist. ChSchi: Chlorite- 
Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite. Dun: Dunite. Fels: Felsite. Gabb: 
Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: Metabasalt. MetaSed: Metasediment. 

Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: Quartzite. Schi: Schist. Sed: Sediment. 
TaSchi: Talc-Schist. TCSchi: Talc-Chlorite-Schist. Troc: Troctolite. Unid: Unidentified. VQuar:

Vein Quartz.

The following sections cover the distribution of Ni, Cu, Cr and Al in the Kingy 

area. Each section covers one element and describes its distribution in fresher ultramafics 

and altered rocks. These sections are accompanied by a fold-out page (page 229) of maps 

showing the distribution of all elements which the reader should refer to as each section 

is read.

8.10.3. Nickel

The highest Ni value in the fresher ultramafic samples is 4646ppm in a dunite 

located within the large Lensoid Ultramafic in north-eastern side of the Kingy area. 

Another sample in the same body shows Ni at 2131ppm all other Ni values are below 

2000ppm but not lower than 485ppm.

The altered rocks from the Kingy Ridge Ultramafic show that the highest Ni 

abundances (1718ppm) occur in the centre and decrease to below detection limits towards 

the southwest and northeast (figure 8.7A). Elsewhere, the Ni contents in the altered 

ultramafics rise to a maximum of 963ppm in the Extra Ultramafic but 5 samples fall to as 

low as 8ppm in a Lensoid Ultramafic body. Within the basement units and quartzites, Ni 

remains below lOOppm and frequently falls below detection limits.
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8.10.4. Copper

All Cu values in the samples of fresher ultramafics from the Kingy ridge are 

lower than or equal to 13ppm. The highest value of Cu (13ppm) occurs in a pyroxenite 

from the Extra Ultramafic all other Cu values are lower than 5ppm.

In altered rocks, the highest Cu value in the area (263ppm) occurs in an isolated

gabbro body to the south-east of the study area (figure 8.7B). Of the ultramafic

complexes, the highest Cu occurrences (up to 216ppm) lie in the altered dunites from the 

Kingy Ridge Ultramafic but some samples of the same rock formation contain Cu values 

below detection limits. The highest value occurs in a dunite on the farthest western point 

of the complex, Similarly, within the Extra Ultramafic the highest value (183ppm) occurs 

close to the bounding shear-zone.

8.10.5. Chromium

The highest Cr value in fresher rocks (833ppm) occurs in a pyroxenite from the 

Extra Ultramafic. All other Cr values in fresher rocks lie below 200ppm, the lowest of 

which is 59ppm in a dunite of the large northwestern Lensoid Ultramafic.

High Cr values (>200ppm) in altered rocks only occur in the ultramafic 

complexes and related shear-zones. The highest Cr values in altered rocks (up to 

1993ppm in an olivine-clinopyroxenite occur close to the centre of the Kingy Ridge 

Ultramafic (figure 8.7C). The values drop to below 200ppm on the southwestern end of 

Kingy Ridge Ultramafic forming a crude zonation from northwest to southeast, where the 

lowest value is 6ppm in a dunite. Samples from the Lensoid Ultramafics contain 

intermediate Cr values, from 200ppm to 1 OOOppm.
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8.10.6. Aluminium

The fresher rocks at Kingy contain up to 0.4% Al, this figure is obtained from an 

olivine-clinopyroxenite from the Extra Ultramafic. All other fresher ultramafics contain 

less than 0.2% Al.

The four largest Al values (>7%) in the altered rocks occur in samples from the 

Kingy Ridge Ultramafic. The highest Al value (14.6%) occurs in an altered dunite within 

the south western part of the Kingy Ridge Ultramafic. Al is enriched (over 5%) in some 

rocks from the Kingy Ridge Ultramafic and the Extra Ultramafic (figure 8.7D). Values of 

Al can drop below detection limits in rocks from both the Basement and the Kingy Ridge 

Ultramafic. The altered Lensoid Ultramafics display Al contents between 0.6% and 5% 
(see figure 8.7D).

8.10.7. Summary of Ni, Cu, Cr and Al distribution in the Kingy Ridge 
Ultramafic and Extra Ultramafic

No fresher samples are available from the Kingy Ridge Ultramafic but a sample 

from the Extra Ultramafic contains the highest values of Cu, Cr and Al of the fresher 

samples (see figure 8.6). This sample is located on the northernmost comer of the Extra 
Ultramafic complex.

Some spatial trends in Ni and Cr are observed in the altered dunites from the 

Kingy Ridge Ultramafic. The highest values of Ni and Cr occur in the central and 

northeastern end of the intrusion. These values drop to low values towards the 

southwestern end of the ridge. Unlike Ni and Cr, both Cu and Al are distributed unevenly 

in the Kingy Ridge Ultramafic. The four highest Al values come from samples located in 

the Kingy Ridge Ultramafic. A different sample contains the largest Cu value in the 
complex.
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8.10.8. Summary of Ni, Cu, Cr and Al distribution in the Lensoid Ultramafics

The two highest Ni values in the Kingy area (4646ppm and 2131ppm) occur in 

the fresher rocks from the large northwestern Lensoid Ultramafic. Ni values in the altered 

Lensoid Ultramafics are much lower. Cu values are high, sometimes over 120ppm. Cr 

and Al values are intermediate compared to the Kingy Ridge Ultramafic.

8.10.9. Summary of Ni, Cu, Cr and Al distribution in the Isolated Gabbro

The highest Cu values (263ppm) occur in an altered gabbro sample in the 

southeastern quadrant of the Kingy area.

8.11. Kingy: Pt and Pd distribution

Aall Pt and Pd values from the fresher rocks of the Kingy area are almost below 

detection. Two fresher rocks resulted in assays of Pt at 3ppb each. One was an olivine- 

clinopyroxenite from a Lensoid Ultramafic (KTR-052-02) and the other was a pyroxenite 

from the small northeastern Lensoid Ultramafic (ATR-132-02). No Pd was found above 

detection limits in the fresher rocks from the Kingy area.

In altered rocks, assays for Pt and Pd in the samples from the Kingy area are 

dominated by Pd where 14 of 104 samples have >8ppb Pd and only 3 samples returned a 

Pt assay of >8ppb (see figures 8.7E and 8.7F). The highest Pd grade (28ppb) occurs in an 

altered dunite from the Extra Ultramafic and the highest Pt grade (18ppb) occurs in a 

clinopyroxenite from the Lensoid Ultramafics (figure 8.7E). In the Kingy Ridge 

Ultramafic the highest Pt value is 7ppb and occurs twice in two dunite samples. An 

olivine-clinopyroxenite showed the largest Pd assay of 13ppb. The three highest Pd 

assays occur at the periphery of the complex. The highest Pt and Pd values in the altered 

samples of the Lensoid Ultramafics occur in an olivine-clinopyroxenite which assays at 

6ppb for Pd and 8ppb for Pt. In all ultramafic complexes of the area, both Pt and Pd can 

be below detection limits.
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Of the lithologies associated with Shear Zones, the highest Pt and Pd values occur 

in the same mylonite sample showing Pt values of 18ppb and Pd values of 19ppb. The 

next highest Pt value is 9ppb in a talc-schist and the second highest Pd assay is 1 Oppb and 

occurs 3 times in two mylonitised samples and one talc-schist. Of the basement units, two 

dolerite dykes, one diorite and a basalt returned analyses of <10ppb for Pt and <15ppb for 

Pd and ranging to below detection for both elements. The highest Pt value in the 

basement (lOppb) occurs in the dolerite and highest Pd values (15ppb) occurring in the 

basalt and diorite samples.

A comparison between PGE and Ni, Cu, Cr and Al in the highest samples is 

summarised as follows:

Sample Description s2 cr

Pd

W > )

Ni
ppm

Cu
ppm

Cr
ppm

Al
%

KTR-052-02 Olivine-
clinopyroxenite 3 < 2 1615 13 833 0.4

ATR-132-02 Pyroxenite 3 < 2 548 2 107 0.1

Table 8.21: A summary o f  Ni, Cu, Cr and Al values in the dunite samples with the highest Pt and 
Pd grade from the fresher rocks. A graphical representation o f this data is provided in figure 8.6.
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8.11.1. Comparison of the geochemistry of the soil versus rock samples

Other than the isolated gabbro body, the largest Pd value in soil occurs above the 

Extra Ultramafic. Additionally, high Pt and Pd values are more common in soils than 

rocks. 7% (7 of 104) rock samples returned assays at >12ppb for either Pt or Pd whereas 

18% (36 of 202) soil samples assayed above that figure.

8.12. Kingy: Discussion

The processes that involve the distribution of Ni, Cu, Cr and Al in fresher 

ultramafics are considered in 8.12.1 and 8.12.2, followed by those processes which affect 

altered rocks in 8.12.3 and 8.12.5. The mechanisms which distribute Pt and Pd are 

considered from section 8.12.6 to section 8.12.7.

8.12.1. The locations of the highest Ni and Cu values in fresher rocks

The difference in location of the highest Cu values and the highest Ni could be 

explained by the process of filter-pressing (see section 8.6.6). This is where an 

immiscible sulphide liquid fractionates then the Cu-rich liquids migrate through 

interstitial space to become located with more evolved rocks. Alternatively, hot aqueous 

fluids could have remobilised the Cu and reconcentrated it away from the site of 

magmatic concentration. The study of mineral morphology is required in order to 

understand the degree of influence of high temperature fluids on Cu mineralisation.

Although it appears that the Cu and Ni highs occur in two separate complexes, the 

ultramafic complexes of the Kingy area could have become dismembered from one 

conformable unit. Johnson et al. (2004) discuss the tectonic evolution of the WES and 

transcurrent movement along a NE-SW striking faults ( D 3 ) .  A reconstruction of this 

deformation may bring the highest Ni and Cu values to within 500m of each other.

8.12.2. Locations of highest Cu and Cr values in fresher rocks
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Sample KTR-052-02 from the Extra Ultramafic, contains the highest Cu and Cr 

values of the fresher rocks from the Kingy area (13ppb and 833ppb respectively). As 

discussed for a similar situation in the Tulu Dimtu Main Intrusion (see section 8.7.2), if 

the Cu-rich residual sulphide is filter-pressed away from the MSS then it will be forced 

into the more evolved cumulate pile, with less Cr. However, if a new primitive magma is 

mixed with a slightly evolved melt then chromite will precipitate and consequently, the 

residual sulphide could be filter-pressed against primitive chromite grains. Unlike the 

same observations made at the Tulu Dimtu Main Intrusion, the Cu analyses made here 

are sufficiently low that it is difficult conlude that sulphide segregation has occurred.

An alternate explanation for the location of the highest Cu values is that both Ni 

and Cu were located in the same location by sulphides and subsequently, later 

hydrothermal fluids have brought Cu into contact areas of high Cr. This assumes the 

preferential remobilisation of Cu over Ni. Furthermore, the small amount of Cu may have 

been deposited in it’s position by hydrothermal fluids themselves.

8.12.3. Zonation of Ni and Cr in altered rocks from the Kingy Ridge 
Ultramafic

In the Kingy Ridge Ultramafic the Ni and Cr values in altered rocks drop steadily 

towards the southwestern end of the intrusion (see figure 8.6A and 8.6C). It is likely that 

the Cr has been partitioned into the spinels which have been observed in these rocks (see 

chapter 3). However, given the refractory nature of spinels, it is likely that the Cr 

analysed here was partitioned into the olivine lattice. Hence it is likely that the highest Cr 

values in altered rocks mark the most primitive part of the complex with apparent 

fractionation directed towards the south-western end of the intrusion. As Ni is compatible 

in olivine (see section 8.6.2) the trend seen in its concentration could also be attributed to 

fractionation. However due to the mobility of the element under hydrothermal conditions 

(see section 8.6.8), the role of alteration on the control of this distribution cannot be 

eliminated.
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8.12.4. Uneven Cu and Al distribution in the altered rocks from the Kingy 
Ridge Ultramafic

The distribution of Cu and Al shows no distinct spatial pattern (see figures 8.6B 

and 8.6D). As Cu is known to be easily taken into solution in hydrothermal fluids of 

various conditions (see section 8.6.8) it is expected that the Cu has been remobilised and 

precipitated in association with hydrous phases throughout the complex. As Ni is soluble 

in similar fluids, it would be expected that it would show a similar distribution to Cu -  

however this is not the case. There are two possible explanations for this. Firstly, the two 

elements may have been remobilised by different alteration episodes under slightly 

different conditions or acting on different areas. Or secondly, that Ni has not been 

remobilised which would mean that the distribution observed (section 8.12.3) is 

magmatic in origin as suggested by its similarity to the Cr distribution.

Slightly elevated Al values in places throughout the intrusion may be attributed to 

the concentration of the element -  seen in low amounts in fresher rocks - during soil 

forming. A study of the degree of alteration is out of the scope of this study and therefore 

an “altered” rock -  as classified here - may be partially affected by soil forming 

processes.

8.12.5. Trace element distribution in the altered rocks from the Lensoid 
Ultramafics

Nickel values in the altered Lensoid Ultramafics are typically low and Cu values 

are high. Cr and Al values are intermediate when compared to the Kingy Ridge 

Ultramafic. The elevation of Cu values above those found in fresher rocks (<13ppm) 

could be attributed to alteration as hydrothermal fluids can take large amounts of Cu into 

solution (see section 8.6.8). The Ni values are low enough that the element could be 

completely contained within the olivine crystal structure, without the presence of 

sulphide or alteration phases although the effect of both cannot be ruled out. The low 

mobility of Cr-spinels means that the intermediate Cr values indicate that the fresher 

protoliths could have been primitive or slightly evolved -  as Cr value could be increased
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slightly due to volume loss from fresher rocks (see section 8.6.8). The relatively minor 

degree of fractionation show by the Cr values in these rocks means that they could 

represent slivers of rock “shaved” off from the flanks of a larger complex such as the 

Tulu Dimtu Main Intrusion.

8.12.6. Genesis of Pt and Pd in fresher rocks

Almost no Pt or Pd has been detected in the fresher rocks of the Kingy area. Two 

fresher samples are Pt-bearing (3ppb each) and no Pd has been detected in the Kingy 

area.

Section 8.7.2 discusses the origin of the high Cu and Cr values in sample KTR- 

052-02 and it is possible that sulphide segregation and fractionation has occurred - yet the 

Pt value is very low. If the conditions have been set for the concentration of the PGE in 

the magma and it remains that very little has been found then it is possible that the 

magma was not Pt enriched before sulphide segregation. However, the Cu value in such 

samples is very low and it is therefore considered difficult to demonstrate that sulphide 

segregaton has occurred.

An alternative hypothesis for concentration of the Cu in the Extra Ultramafic is 

that the magmatic Cu has been remobilised by hydrothermal fluids and redeposited near 

to Cr-bearing spinels (see section 8.12.2). It is, therefore, also possible that the Pt values 

seen are either magmatic in origin or have been redeposited by hydrothermal fluids. The 

determination of the origin of the Pt values seen here can only be ascertained by the 

analysis of PGM and associated minerals. Unfortunately, given the low values of Pt at 

Kingy (3ppb) it is highly unlikely that any PGM can be found.

8.12.7. Genesis of Pt and Pd in altered rocks

Pd is more common and reaches higher values than Pt in the Kingy area. Figures 

8.6E and 8.6F clearly show predominance of Pd over Pt in altered rocks. This is in stark 

contrast to fresher rocks where Pt and Pd were barely detected. Pd is more mobile than Pt
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in hydrothermal systems. The preferential mobility of Pd over Pt in chloride-rich high- 

temperature fluids is discussed in section 8.7.7. The increase in Pd values and the 

movement of Pd away from the locations of magmatic Pt concentration could be 

attributed to hydrothermal fluids. From the data currently available, the distribution of Pt 

and Pd in the altered rocks from the Kingy area can only be explained by the preferential 

movement of Pd by high-temperature fluids. However, it is difficult to imagine a 

situation where such a low and spatially restricted Pt content in the fresher rocks from a 

complex (3ppb) could give rise to the extent of Pd mineralisation seen in the altered 

lithologies. Therefore it is reasonable to believe that further and richer magmatic sources 

of Pt and Pd exist which have not been uncovered by this study. Further sampling around 

the Extra Ultramafic or investigation of the area around the isolated gabbro may give an 

insight into this distribution.

8.13. Kingy: Conclusions

As Pt and Pd has barely been detected in the fresher rocks of the Kingy area it is 

not possible to recommend a strategy to discover or evaluate a “magmatic” ore deposit. 

However, there is much evidence for the remobilisation of Pd along shear-zones in the 

area and an improved understanding of the structure and fluids involved with these 

features may point to a richer source material.

There is little evidence in the Kingy area to construct a magmatic model of the 

events. However, a fractionation trend in Cr values can be observed in altered rocks and 

soil samples (see chapter 7) of the Kingy Ridge Ultramafic (see figure 8.6C).

The erratic distribution of Cu-values in altered rocks indicates that the element 

has been remobilised. Unlike Cu, the distribution of Ni mirrors the fractionation trend 

seen in Cr, this suggests that Ni has been remobilised by a different alteration episode or 

has not been remobilised at all. The intermediate Cr values from the altered Lensoid 

Ultramafics raise the possibility that they may represent slivers of rock “shaved” off a
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larger complex. Detailed study of the structure and geochemistry of these bodies is 

required to test this hypothesis.

Pd dominates Pt in the altered rocks and is distributed over a much wider extent 

than the Pt in fresher rocks. This suggests firstly that the PGE distribution in the altered 

rocks is controlled largely by hydrothermal fluids. Additionally, it is inferred that further 

sites of magmatic Pt and Pd exist which have not been discovered here.
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8.15. Daleti, Ankori, Tulu Kapi and Keley: Selected Major and Trace Elements

8.15.1. Introduction

There are 155 samples from the area around Daleti, Ankori, Tulu Kapi and Keley. 

According to the classification method outlined in section 8.3.1 only 13 samples are 

considered to be fresher ultramafics and a further 14 are altered ultramafics. The 

remaining 128 are basement lithologies. The fresher ultramafics are all dunites from the 

quarry and road-cuttings at Daleti. The altered ultramafic rocks are from the Ankori 

Ultramafic, Daleti Ultramafic and Lensoid Ultramafics. Samples were taken along roads 

and tracks where exposure was found (see figure 8.8).
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Dole 2.2 34 22 20 2.6 <2 <2 - 2 DYR-006-01

Dole <0.1 17 49 21 0.1 <2 7 0.0 5 DYR-010-01

Dole 0.1 50 71 187 1.6 2 5 0.4 4 KYC-009-01

Dole <0.1 150 88 119 0.6 <2 <2 - 3 KYR-004-01

Dole 0.9 12 89 6 1.8 3 8 0.4 4 KYR-014-01

Dole 0.7 19 39 29 0.9 <2 <2 - 2 TYR-028-01

Dole 0.4 20 24 18 1.1 4 9 0.4 <2 TYR-033-01

Dole 0.4 16 86 14 1.8 <2 <2 - <2 TYR-034-01

Fels 0.5 16 15 25 1.1 <2 3 0.0 6 AYR-004-01

Fels 0.1 14 8 13 1.2 <2 <2 - <2 AYR-008-01

Fels 0.2 2 4 4 1.6 <2 <2 - <2 DYR-034-01

Fels 0.1 2 3 4 0.6 <2 <2 - 2 DYR-035-01

Fels <0.1 <2 4 2 0.2 <2 <2 - 2 DYR-037-01

Fels <0.1 8 16 14 0.1 <2 <2 - <2 DYR-038-01

Fels 0.2 104 21 317 0.2 4 5 0.8 2 KYR-009-01

Gabb 0.1 187 65 335 1.1 4 3 1.3 <2 AYR-022-01

Gabb 3.9 1061 10 1650 5.3 11 13 0.8 2 AYR-023-01

Gabb <0.1 12 68 301 23.3 2 <2 - <2 AYR-025-01

Gabb 1.2 21 81 71 1.8 <2 <2 - 3 AYR-026-01

Gabb 1.3 17 14 29 1.9 <2 <2 - 3 AYR-037-01

Gabb 1.9 24 17 23 2.4 <2 <2 - <2 D4

Gabb <0.1 18 7 14 0.1 <2 <2 - <2 DR 06/01

Gabb 0.2 19 40 30 1.1 <2 <2 - <2 DYR-001-01

Gabb 1.2 41 19 68 1.8 <2 <2 - 8 DYR-004-01

Gabb 7.9 656 4 854 0.2 5 <2 - <2 KYC-008-01

Gabb 0.1 2 7 9 0.4 <2 <2 - 2 KYR-011-01

Gabb 0.2 2158 66 2510 0.6 3 <2 - 4 KYR-025-01

Gabb 1.3 13 37 37 1.8 <2 <2 - 3 TYR-002-01

Gabb 3.1 104 5 279 0.4 19 3 6.3 2 TYR-006-01

Gabb 0.6 6 22 10 1.2 <2 <2 - 2 TYR-027-01
Gran 0.2 2 4 3 0.6 <2 <2 - <2 AYR-042-01
Gran 0.5 8 8 12 1.0 <2 <2 - <2 KYR-026-01
Gran <0.1 5 3 5 0.3 <2 <2 - <2 TYC-003-01
Gran 0.2 2 4 <2 0.8 <2 <2 - <2 TYR-030-01
GranDi 0.5 24 14 22 0.9 <2 <2 - <2 AYR-046-01
GranDi 0.4 1 7 4 1.0 <2 <2 - <2 DYR-018-01
GranDi 0.7 11 25 12 1.7 <2 <2 - 3 DYR-040-01
GranDi 0.1 2 16 4 1.1 <2 <2 - <2 KYR-015-01
GranDi <0.1 2 2 2 0.3 <2 <2 - <2 TYR-005-01
HardP 0.5 23 259 33 1.5 <2 3 0.0 5 TYR-032-01
MetaSed 0.1 12 2 14 0.2 <2 <2 - <2 TYR-003-01
Mylo <0.1 8 14 8 0.4 <2 <2 - 24 AYR-041-01
Mylo <0.1 26 7 16 0.3 <2 <2 • <2 DYC-002-01
Mylo 0.5 14 9 9 1.1 <2 <2 - <2 DYC-005-01
Mylo <0.1 3 24 5 0.1 <2 <2 - 214 DYR-003-01
Mylo 3.4 186 19 401 6.8 <2 <2 - <2 DYR-030-01
Mylo 1.4 95 14 81 2.0 <2 <2 - 3 DYR-041-01
Mylo 0.1 105 70 16 0.3 <2 <2 - 3 KYR-006-01
Mylo 0.1 5 4 21 0.7 <2 <2 - <2 TYR-029-01
Quar <0.1 29 70 33 0.4 10 13 0.8 4 ANR 06/01
Quar 0.2 48 5 8 0.3 <2 <2 - 28 DR 04/01
Quar 0.1 759 5 273 <0.1 5 <2 - <2 DR 14/01
Quar <0.1 21 7 14 <0.1 <2 <2 - 2 DR 15/01
Quar <0.1 24 143 39 0.1 2 9 0.2 12 DR 16/01
Quar <0.1 17 101 15 0.2 2 <2 - 132 DR 17/01
Quar 0.1 26 19 16 0.1 4 33 0.1 11 DR 18/01
Quar <0.1 5 20 18 0.2 <2 8 0.0 15 DR 20/01
Quar <0.1 2 3 3 <0.1 <2 <2 - 3 DYR-032-01
Quar <0.1 5 7 26 0.1 <2 <2 - <2 KYR-010-01
Schi <0.1 45 77 95 0.4 <2 <2 - <2 A3
Schi 2.4 63 46 38 1.6 <2 <2 - 20 AYR-005-01
Schi 10.6 373 5 162 9.3 <2 <2 - 2 AYR-044-01
Schi 11.0 349 17 265 6.6 <2 <2 - <2 D1
Schi <0.1 7 <2 9 0.1 <2 <2 - <2 DYC-003-01
Schi <0.1 4 24 14 0.2 3 8 0.4 2 DYC-007-01
Schi 0.3 6 29 18 1.3 <2 <2 - 2 DYR-031-01
Schi <0.1 15 88 14 0.2 2 <2 - 2 DYR-039-01
Schi 0.1 54 4 43 0.4 <2 <2 - 2 KYR-008-01
Schi <0.1 1 <2 22 0.2 <2 <2 - <2 TYR-001-01
Schi 0.7 15 19 27 1.9 <2 <2 - <2 TYR-016-01
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Schi 8.6 489 19 1123 6.7 <2 <2 - 45 TYR-018-01
Sed <0.1 8 21 47 2.1 4 3 1.3 3 AYC-007-01
Sed <0.1 15 7 19 2.1 <2 <2 - 2 AYC-008-01
Sed <0.1 7 90 32 0.5 6 7 0.9 4 AYC-009-01
Sed 0.3 7 179 35 0.8 4 5 0.8 24 AYC-011-01
Sed 0.1 2 45 20 0.4 3 5 0.6 5 AYR-009-01
Sed <0.1 104 140 340 1.4 <2 <2 - 3 KYR-024-01
TaSchi 0.4 64 32 531 0.1 3 <2 - 2 AYR-007-01
TaSchi 0.1 20 22 32 1.8 <2 3 0.0 2 AYR-021-01
TaSchi 3.2 422 2 987 2.8 4 6 0.7 <2 AYR-024-01
TaSchi 0.3 8 20 12 1.0 <2 <2 - <2 AYR-038-01
TaSchi 0.6 129 19 647 0.2 <2 <2 - <2 D2
TaSchi 9.7 159 7 49 9.3 <2 <2 - <2 D21
TaSchi 0.3 110 <2 158 0.3 <2 <2 - <2 D7
TaSchi 0.8 223 <2 563 0.2 <2 <2 - <2 D9
TaSchi 0.2 238 184 205 4.8 <2 <2 - 109 DYR-002-01
TaSchi 0.1 24 10 14 0.4 <2 <2 - <2 DYR-009-01
TaSchi <0.1 39 9 59 0.3 <2 <2 - 2 KYR-003-01
TaSchi 0.1 21 69 21 0.9 <2 <2 - 10 TYR-017-01
TCSchi 0.7 355 8 492 0.2 5 <2 - <2 DR 11/01
TCSchi 9.4 941 11 138 11.7 2 7 0.3 4.51 DR 19/01
Unid <0.1 348 9 87 0.2 <2 <2 - 25 AYC-020-01
Unid <0.1 17 159 24 0.4 6 9 0.7 13 DYC-008-01
Unid 0.9 149 35 634 0.4 <2 <2 - 4 AFYC-004-01
VQuar <0.1 1406 3 742 0.2 <2 <2 - <2 ANR 04/01
VQuar <0.1 2 <2 4 0.1 <2 <2 - <2 AYC-018-01
VQuar 8.6 47 5 17 5.7 <2 <2 - <2 AYR-006-01
VQuar 0.2 1413 19 388 0.2 4 <2 - 2 DR 13/01
VQuar <0.1 2 <2 8 0.1 <2 <2 - <2 DYC-006-01
VQuar <0.1 2 3 6 0.1 <2 <2 - <2 DYR-007-01
VQuar <0.1 1 2 3 0.1 2 <2 - 2 DYR-008-01
VQuar 1.2 28 15 15 1.6 <2 <2 - 2 DYR-033-01
VQuar <0.1 13 12 10 0.1 <2 <2 - <2 KYR-001-01
VQuar <0.1 19 37 8 0.1 <2 <2 - 3 KYR-002-01
VQuar <0.1 66 50 9 0.1 <2 <2 - 9 KYR-007-01
VQuar <0.1 9 3 52 0.1 <2 <2 - <2 KYR-012-01
VQuar <0.1 3 <2 7 <0.1 <2 <2 - 72 KYR-013-01
VQuar 0.1 25 2 102 0.1 <2 <2 - <2 KYR-023-01
VQuar <0.1 3 <2 11 <0.1 <2 <2 - <2 KYR-033-01
VQuar <0.1 11 28 16 0.3 <2 <2 - <2 TK1

Table 8.24: Mg, Ni, Cu, Cr, Al, Pt and Pd values for the altered samples collected from the Daleti, 
Ankori, Tulu Kapi and Keley areas. Anor: Anorthosite. Basa: Basalt. Birb: Birbirite. ChSchi: 

Chlorite-Schist. ChSchi: Chlorite-Schist. Cpxite: Clinopyroxenite. Dior: Diorite. Dole: Dolerite.
Dun: Dunite. Fels: Felsite. Gabb: Gabbro. GranDi: Granodiorite. HardP: Hard pan. MetaBas: 

Metabasalt. MetaSed: Metasediment. Mylo: Mylonite. Ol-cpxite: Olivine-clinopyroxenite. Quar: 
Quartzite. Schi: Schist. Sed: Sediment. Spin: spinel-like rocks (see chapter 3) TaSchi: Talc-Schist.

TCSchi: Talc-Chlorite-Schist. Troc: Troctolite. Unid: Unidentified. VQuar: Vein Quartz.

The following sections cover the distribution of Ni, Cu, Cr and Al in the Daleti, 

Ankori, Tulu Kapi and Keley areas. Each section covers one element and describes its 

distribution in fresher ultramafics and then altered rocks. These sections are accompanied 

by a fold-out page (on page 247) of maps showing the distribution of all elements which 

the reader should refer to as each section is read.
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8.15.3. Nickel

The fresher dunites from the Daleti Ultramafic show the highest Ni value in the 

WES at 24,035ppm from the northern tip of the complex. At the centre of the Daleti 

Ultramafic local variations are large, of 8 samples of fresher dunite located within 250m 

of each other Ni content varies from l,876ppm to above 22,952ppm.

All Ni analyses above 2,100ppm in altered rock are located in samples from the 

ultramafic bodies. The altered rocks from the Ankori Ultramafic and the Lensoid 

Ultramafics have less Ni than the samples from the Daleti Ultramafic, with maximas of 

l,248ppm and 138ppm respectively (figure 8.10A). The 5 samples of ultramafic rocks 

from the Ankori complex show no distinct pattern in Ni content and the lowest Ni value 

is 95ppm in an olivine-clinopyroxenite. Ni values in the dunites of the Lensoid 

Ultramafics vary from lppm to 11 lppm and no particular spatial pattern can be observed. 

Shear-zone related rocks show no more than 94 lppm of Ni, this value occurring in a talc- 

chlorite-schist near Keley.

8.15.4. Copper

Only two fresher rocks returned positive results slightly above detection for Cu. 

These are located at the northernmost tip of the Daleti Ultramafic (3ppm) and on the 

western flank of the intrusion (2ppm)

Within the altered ultramafics only 2 of 31 samples contain Cu above 65ppm, 

these are a dunite (298ppm) and a troctolite (10lppm) from the Lensoid Ultramafics. The 

highest Cu value from the Daleti, Ankori, Tulu Kapi and Keley areas (298ppm) occurs in 

a dunite from the Lensoid Ultramafics near Keley. The maximum Cu value in the Daleti 

Ultramafic is 65ppm -  from spinel-like rocks (see chapter 3) in the centre of the 

formation, some dunites have Cu values below detection limits. In the Ankori Ultramafic 

the maximum is 46ppm from a dunite and some values fall below detection limits. No 

spatial trends in Cu content can be observed within any of the ultramafic complexes. Two 

of 15 shear-zone related samples display high Cu values the highest of which is a talc-
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schist 3km south of the Keley complex (184ppm), the next highest is a schistose-rock 
from Gudeya Guji (88ppm). Some shear-zone related rocks returned Cu analyses which 

are below detection limits.

8.15.5. Chromium

The three highest Cr values (above 500ppm) in fresher rocks occur in dunites of 

the centre of the Daleti Ultramafic. The maximum Cr value in the fresher rocks from 

Daleti is 804ppm. Most of the Cr values below lOOppm occur close to the edge of the 

intrusion near to the contact with the shear zones, however the lowest Cr value (24ppm) 

occurs in a dunite in the centre within 200m of the highest Cr value.

Chromium values above 300ppm in rock are restricted to the ultramafic 

complexes and related shear zones. Of all the Daleti, Ankori, Tulu Kapi and Keley areas 

the highest Cr value (2510ppm) occurs in a gabbro from the basement north of the 

Ankori complex. The lowest Cr values occur in an altered pyroxenite also in the centre of 

the intrusion. In the Ankori complex the highest Cr composition is 1063ppm in the 

southern end of the intrusion and the lowest values are 45ppm in a dunite from the centre 

of the intrusion. The highest Cr composition in the Lensoid Ultramafics (322ppm) is 

found in a dunite of the body farthest to the southwest. In addition to this the talc-schists 

and gabbros from the basement in the south-western part of the study area contain Cr 

(<1650ppm in gabbro).

8.15.6. Aluminium

Three fresher dunites from the Daleti Ultramafic contain 0.2% of A1 and for 10 of 

13 samples A1 was not detected. All three of these rocks occur close to the centre of the 
complex.

With the exception of the spinel-like rocks (see chapter 3) of the Daleti 

Ultramafic all A1 analyses above 4.1% are found in the basement or shear-zone related 

rocks. The highest A1 content of the study area (23.3.%) is found in a gabbro from the
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