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1.0 INTRODUCTION
The striatum, a region of the rodent forebrain, is part of an interconnected set of structures 

known as the basal ganglia and has long been implicated in the initiation and control of motor 

behaviour (Graybiel et al., 1994; Groenewegen, 2003). However, emerging evidence 

suggests that the basal ganglia also plays a role in a variety of other cognitive functions such 

as motor learning, habit formation, and goal rewarded behaviour (Graybiel, 2000; Oberg and 

Divac, 1975).

1.1 ANATO M Y AND PHYSIOLOGY OF TH E STRIATUM

The primate basal ganglia consists of the caudate nucleus, putamen, globus pallidus (GP), 

subthalamic nucleus (STN), and substantia nigra (SN). Each of these structures originates 

from different regions of the embryonic brain. The GP is of diencephalic origin and 

comprises of both an internal (GPi) and external segment (GPe). The SN is of midbrain 

origin, and can be divided into the pars compacta (SNc) and pars reticulata (SNr). The 

caudate nucleus and putamen are of telencephalic origin, and termed the neostriatum. Within 

rodents the caudate nucleus and putamen are indistinguishable into discrete parts.

CORTEX

STRIATUM
THAL

GPe

GPi
SNr

SNc

Figure 1.1 Schem atic o f the structural com ponents of the Basal U anglia. Arrows indicate 

neuronal pathways between structures. Adapted from Wilson (2004).
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1.1.2 CYTOARCHITECTURE AND PHYSIOLOGY

The last two decades has seen huge advances in the understanding of the physiology of the 

striatum. In particular, refinement of the in vitro slice preparation has enabled more precise 

electrophysiological recordings from the striatum, permitting a more detailed analysis o f the 

subsequent function.

In 1977, the advent o f in vitro slice recordings allowed physiological investigations of 

function to advance to another level. Technological improvements made it possible to take 

thin slices o f whole brains, keep them alive in artificial cerebrospinal fluid (aCSF), record 

responses and induce plasticity (Andersen et al., 1977). Due to further refinements over the 

decades, the in vitro slice preparation has become one o f the more popular methods for 

studying synaptic physiology. The advantages o f this method are that it permits study of 

brain regions in isolation, it easily permits the use o f known concentrations of 

pharmacological agents, and it enables application o f electrodes under visual guidance. 

Unfortunately, the major disadvantage o f this technique is the detrimental effect o f trauma 

caused by dissection and slicing o f the brain.

The strength o f synaptic transmission is measured by recording the size o f the excitatory post- 

synaptic potential (EPSP) that results from pre-synaptic stimulation. During intracellular 

recording these EPSPs are measured from a single post-synaptic cell. By contrast, during 

extracellular recordings the EPSPs recorded are the sum of a population o f post-synaptic cells, 

within the range o f the recording field, and are thus termed field excitatory post-synaptic 

potentials (fEPSP).

Conventional histological staining o f the striatum reveals a largely homogenous 

morphological population o f cells. Over 90% o f the striatal neuronal population is made up 

of medium spiny projection neurones (MSNs). The remaining 10% of the striatal neuronal 

population consists o f a largely heterogeneous population o f neurones, which are aspiny or 

sparsely spiny neurones that are large to medium in size. These neurones contain axonal 

branches which form extensive collateral aborisations with the local cellular network, and 

refrain from exiting the striatum, indicating that these neurones represent an intemeuronal 

network within the striatum. O f the numerous subtypes o f striatal intemeurones, two major 

groups can be classified via their morphological and physiological characteristics.

-  1 5 -



1.1.2.1 MEDIUM SPINY NEURONES

These neurones are characterised by a medium soma (12-20pm). A small number of dendritic 

trunks (diameter 2-3|im), which are devoid o f spines, give rise to an extensive dendritic tree 

(radius 300-500pm), which is densely studded with spines. The axonal output from these 

neurones is seen to emit a number o f collaterals prior to exiting the striatum, and these 

neurones serve as the major output relays from the striatum towards the GP and SN.

Intracellular recordings o f MSNs either in vitro or in vivo have enabled detailed analysis o f 

the normal physiological mechanisms o f function. Rodent medium spiny neurones have a 

highly negative resting potential of approximately -90mV, and an input resistance o f 20-60 

MQ (Kita et al., 1984). Though M SN’s recorded in vitro display an approximately consistent 

highly negative resting membrane potential, MSNs neurones recorded in vivo exhibit 

spontaneous fluctuations in membrane potentials, which govern the transition between two 

preferred potentials (Wilson and Groves, 1981). This fluctuation between the polarised 

“Down” state, and depolarised “Up” state is thought to be governed by both synaptic input 

and intrinsic voltage-dependant currents (Wilson, 1986). When observed experimentally 

MSNs lie in a predominantly silent state (“Down”), occasionally firing to produce a burst of 

several action potentials (“Up”), lasting 0.1-2.0 seconds (Wilson and Groves, 1981).

MSNs, like most other neuronal cell types, display a non-linear relationship between 

membrane potential and intracellularly injected current. This phenomenon is mediated by the 

presence o f a fast anomalous rectification, unique to this cell type. At membrane potentials 

near resting this anomalous rectification is mediated via the action o f a depolarising 

potassium conductance ( G j rk) (Wilson, 1986). This conductance increases during 

hyperpolarisation to be replaced during depolarisation by a hyperpolarising conductance. 

Under conditions where the membrane becomes depolarised, injection o f current produces a 

ramp like increase in membrane potential. This ramp-like response is eliminated via the 

application of a combination o f both the potassium channel blocker 4-amino-pyridine (4-AP), 

and the sodium channel blocker TTX, suggesting that it is mediated via both sodium and 

potassium currents. Further analysis enables the identification o f three sub-types of current 

involved MSN membrane conductance. The main depolarisation o f the ramp-like response is 

mediated via both a slow transiently activating potassium current (Ias), and a fast inactivating 

potassium current (Iaf). The rectification of this response is via the hyperpolarising sodium
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current ( I n 3) , which becomes activated at membrane potentials close to spike threshold 

(Nisenbaum and Wilson, 1995).

1.1.2.2 CHOLINERGIC INTERNEURONES

These neurones represent the largest sized cells within the striatum, yet constitute less than 

2% of the total neuronal population. The neurones possess an elongated cell body (50-60pm 

in length, 15-25|im diameter), with a high level o f local dendritic branching (lOOum radius), 

though some dendrites branch to a distance o f 500-750um). Axonal outputs arborise to form 

local collateral connections with medium spiny neurones predominantly within the region of 

the dendritic field, although occasionally beyond this. These neurones express acetylcholine 

(ACh) as their sole neurotransmitter, and stain positively for AChE and ChAT.

The large cholinergic neurones o f the striatum display a number of unique 

electrophysiological properties (Kawaguchi, 1993). They have a more depolarised membrane 

resting potential -55 to -60 mV, compared to other neuronal types in the striatum. Small 

injections o f depolarising current produces their characteristic firing o f long duration action 

potentials (Kawaguchi, 1993). The most interesting electrophysiological characteristic of 

these neurones is the observation that they display a degree o f spontaneous firing of action 

potentials, which occurs even in the absence o f any synaptic input (Bennett and Wilson, 

1999). Due to this unique characteristic amongst cells o f the striatum, the large cholinergic 

neurones are regarded as pacemaker-like neurones.

The ionic mechanisms underlying the pacemaker activity of cholinergic intemeurones has 

been extensively studied. Intracellular recordings from cholinergic interneurones indicates 

that these cells demonstrate an abnormal voltage-current relationship, in that they maintain a 

negative conductance below threshold membrane potential for action potential firing (Bennett 

et al., 2000). The results o f this negative conductance is that these cells do not display a 

stable resting membrane potential, and instead shift towards the threshold membrane potential 

for action potential firing. This pacemaking activity is made possible through a number o f 

unique ion currents within cholinergic intemeurones. During action potential firing, high 

voltage calcium currents are activated, resulting in an influx o f calcium into the cell and a 

prolongation of the action potential duration. As these currents are slow inactivating, and 

continue post-action potential firing, calcium builds up within the cell, resulting in the
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activation o f calcium dependant potassium currents ( I ahP)-  The activation o f I ahP causes a long 

lasting hyperporalization immediately after spiking of the action potential, which in turn 

activates the hyperpolarisation-activated cation current ( I h ) .  Activation o f the Ij, current 

results in cell depolarisation which is continued by activation of the persistent sodium current 

(IN«P). It is the activation of these two currents that causes the negative conductance below the 

action potential firing threshold, as depolarisation of the cell, via Ih, results in continued 

depolarisation o f the cell via activation o f In3P. This results in a negative deflection of the 

voltage-current curve, with cells under positive depolarising feedback, resulting in a slow 

shift towards threshold membrane potential and action potential firing.

1.1.2.3 GABAergic INTERNEURONES

The GABAergic intemeuones of the striatum can be sub-divided into three groups, dependant 

on their morphological, physiological and biochemical properties.

The first group o f GABAergic intemeuones stain positive for both GABA (Bolam et al., 

1983) and parvalbumin (Cowan et al., 1990; Kita et al., 1990). These neurones represent 3- 

5% of the striatal neuronal population. Similar in size to M SN’s, though with a smoother 

more rounded soma, these neurones are characterised by their intensely branching local 

axonal arborisations which often from baskets around the soma o f medium spiny neurones. 

Interestingly, these neurones constitute a small proportion o f the total striatal neuronal 

population yet they are evenly dispersed around the striatum, and remain connected to one 

another via gap junctions at the point o f overlap in dendritic fields (Kita et al., 1990). It has 

therefore been speculated that these neurones display an electrically coupled network that 

extends beyond a single neurone’s dendritic tree (Koos and Tepper, 1999). These neurones 

can be divided into two separate subgroups dependant on whether their axons and dendrites 

form a local (100-150um radius) or extended (300um radius) relationship (Kawaguchi, 1993).

Intracellular recordings from these neurones display characteristic short duration action 

potentials, short spike after-hyperpolarisations and the ability to fire at high rates (up to 200 

spikes/sec with no significant adaptation (Kawaguchi, 1993; Koos and Tepper, 1999). Due to 

these characteristics this subgroup o f GABAergic intemeurones are termed fast spiking 

GABAergic basket neurones.
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A second group o f GABAergic intemeurones are similar in size and morphology to the basket 

intemeurones, though lacking basket axonal arborisations. These neurones are characterised 

by their positive staining for nitric oxide synthetase (NOS) and somatostatin (SOM) (Vincent 

et al., 1983), and constitute 1-2% of the striatal neuronal population. These neurones are 

GABAergic, staining positive for both GAD and GABA within their axonal terminals 

(Kubota and Kawaguchi, 2000). Due to the scarcity o f the GABAergic NOS positive 

intemeurones, and the lack of any possible way to visually identify them in vitro these cells 

have not been extensively studied via electrophysiological recordings.

f inally, a third group o f GABAergic intemeuones have been identified due to their positive 

staining for calretinin (Bennett and Bolam, 1993). The cells represent an exceptionally small 

proportion o f the striatal cellular population and have yet to be studied in detail 

morphologically or physiologically.

1.1.3 NEUROCHEMICAL ORGANISATION

The striatum exhibits an extraordinary level o f neurochemical differentiation creating 

compartments o f contiguous groups of cells sharing a common phenotype. These two 

compartments, termed the ‘striosomes’ and ‘matrix’ (Graybiel et al., 1981), are arranged in a 

mosaic like fashion. Initially these compartments were distinguished by their heterogeneous 

staining produced by p-opiate receptor binding and AChE histochemistry (Graybiel et al., 

1981). However, further analysis demonstrates that these compartments develop at different 

stages in embryonic development (Goldman-Rakic, 1981; Lanca et al., 1986; Van der and 

Fishell, 1987), whilst also displaying differing efferent and afferent connections (Gerfen, 

1984; Gerfen, 1985; Gerfen, 1989; Goldman-Rakic, 1981).

During development o f the rodent striatum the striosomal compartment is the first to develop, 

beginning around embryonic day 13 (E l3), and forming the striatal primordium. The matrix 

compartment does not begin to form until embryonic day 16 (E l6), when matrix cells from 

the subventricular zone (SVZ) migrate into the striatal primordium. This large influx of cells 

causes division o f striosomal cells into densely packed clusters o f cells, with the less dense 

matrix regions occupying the area surrounding. This migration and compartmentalisation 

creates the mosaic appearance seen within the adult striatum (Johnston et al., 1990; Van der 

and Fishell, 1987).
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1.1.4.1 GLUTAMETERGIC AFFERENTS

The corticostriatal and thalamostriatal projections represent the major excitatory input to the 

striatum. It has been estimated that the rodent striatum contains roughly 900 million 

excitatory cortical and thalamic synapses per cubic millimetre (Wilson and Groves, 1980). 

Taking into account the approximate medium spiny cell density within the rodent striatum 

(84000 cells per cubic millimetre), it can be concluded that each medium spiny neurone 

receives approximately 11,000 excitatory synaptic contacts from afferent cortical and 

thalamic inputs (Wilson and Groves, 1980).

Unlike other targets o f cortical and thalamic projection, the relationship between post- 

synaptic medium spiny neurones and pre-synaptic cortical and thalamic projection neurones 

does not appear to be ‘one-to-one’. Quantative analysis o f the potential maximal number o f 

synapses formed by corticostriatal afferent fibres on each individual medium spiny neurone, 

suggests that each cortical projection neurone could at most form roughly 40 synapses within 

the striatum (Kincaid et al., 1998). Should these 40 synapses form on a single medium spiny 

neurone, this would equate to 0.4% o f the total innervation o f the cell. Likewise, should these 

cortical projection neurones make synapses non-preferentially with all medium spiny 

neurones within a dendritic field, a single cortical neurone would still only innervate 1.4% of 

the total medium spiny neuronal population o f that field. Further to this, it has been 

demonstrated that each cortical projection neurone innervates 1-15% o f the total striatal 

volume (Zheng and Wilson, 2002). This would suggest that each medium spiny neurone 

receives inputs from a relatively large number o f cortical and thalamic projection neurones.

Activation of the corticostriatal system causes the release o f glutamate from post-synaptic 

terminals. Glutamate diffuses into the synaptic cleft where it binds to post-synaptic 

glutametergic receptors resulting in receptor activation. Activation o f receptors causes an 

influx of positive ions into the post-synaptic bouton, resulting in depolarisation of the cell. 

The subsequent EPSP’s can be detected via electrophysiological recordings, and corresponds 

to the efficacy o f synaptic transmission. The latency o f the corticostriatal EPSP’s does not 

vary with increased stimulus intensity or frequency, suggesting that the corticostriatal 

pathway is monosynaptic.

Corticostriatal EPSP’s are blocked by the application o f kynurenic acid, a broad-spectrum 

glutamate receptor antagonist, but not by the application o f selective N-methyl-D-aspartate
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(NMDA) receptor antagonists (Herrling, 1985). This suggests that corticostriatal EPSP’s are 

mediated by the a-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) family of 

ionotropic glutamate receptors. This concurs with observations from the hippocampus and 

cortex, where baseline synaptic transmission is mediated predominantly via this form of 

glutametergic receptor. Selective inhibition of AMPA receptors, with 6-cyano-7- 

nitroquinoxaline-2,3-dione (CNQX), inhibits corticostriatal EPSPs (Calabresi et al., 1990), 

further demonstrating that corticostriatal excitatory transmission is mediated predominantly 

via AMPA receptors.

Within the striatum it is possible to see the effect o f NMDA receptors on baseline 

transmission. Under ‘normal’ conditions the NMDA receptor is considered inactive, via a 

voltage sensitive magnesium block. During depolarisation of the post-synaptic cell the 

magnesium blockade o f the NMDA receptor is removed, enabling the receptor to function. 

Likewise, in the in vitro system, the NMDA receptor can become chronically activated via the 

removal o f magnesium from the perfusate solution. Chronic activation o f NMDA receptors 

permits detection o f NMDA-mediated currents in the post-synaptic cell, resulting in a distinct 

NMDA component o f the EPSP, which is blocked via the application o f NMDA receptor 

antagonists (Calabresi et al., 1992e). However, it has been shown in vivo that repetitive 

stimulation o f the corticostriatal pathway, results in the expression o f long-term potentiation 

(LTP) within the striatum, which is critically dependant on NMDA receptor activation. 

However, within the in vitro slice preparation, where the NMDA receptor is considered 

inactive under normal conditions, a large proportion o f the corticostriatal innervation is lost. 

Therefore, it would seem that stimulation o f a single group o f corticostriatal fibres is not 

sufficient to activate the NMDA receptor, even under conditions o f high frequency 

stimulation (HFS), though activation o f a large number o f corticostriatal fibres is capable o f 

causing NMDA receptor activation.

Along with ionotropic glutamate receptors, it has been shown that corticostriatal synapses 

also contain metabotropic glutamate receptors (mGluR) (Testa et al., 1994; Testa et al., 1995). 

The predominant form o f mGluR found in the striatum is o f the group I type, which are 

coupled to phosphatidylinositol (PI) hydrolysis. However, recent studies using RNA 

amplification techniques, have shown that group II mGluRs also exist in the striatum (Shave
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et al., 2001). These receptors, which are negatively coupled to adenylate cyclase activity, 

have been shown to occupy a predominantly pre-synaptic location.

Activation o f striatal mGluRs has been shown to decrease striatal glutametergic synaptic 

transmission (Calabresi et al., 1992d; Calabresi et al., 1993b; Lovinger, 1991; Pisani et al., 

1997). Application o f the mGluR agonist (lS,3R)-l-amino-cyclopentane-l,3-dicarboxylic 

acid (t-ACPD) produces a dose dependant reduction in the amplitude o f EPSP’s recorded 

from MSN, without effecting post-synaptic sensitivity to glutamate, suggesting a pre-synaptic 

site o f action. The proposition o f a pre-synaptic site o f action for t-ACPD is further 

corroborated by the observation that putative antagonists o f type I mGluRs do not interfere 

with this effect (Calabresi et al., 1993b). Studies have shown that specific agonists for type II 

mGluRs depress excitatory synaptic potentials, which are blocked by the application o f both 

type I and type II mGluR antagonists (Lovinger and McCool, 1995).

Activation o f mGluRs has also been shown to play a role in modulating striatal GABAergic 

transmission. Agonists o f mGluR receptors have been shown to significantly reduce GABA 

mediated synaptic potentials, without affecting post-synaptic membrane responses to the 

application o f GABA (Stefani et al., 1994). The mGluR mediated inhibition of GABA 

mediated synaptic potentials is blocked in the presence o f N-type calcium channel antagonists 

(Stefani et al., 1994). Therefore, it would appear that mGluR activation modulates striatal 

GABAergic transmission via pre-synaptic activation o f N-type calcium channels.

1.1.4.2 DOPAMINERGIC AFFERENTS

Dopamine (DA) has long been linked with an involvement in motor control (Alexander et al., 

1990; Boraud et al., 2002; DeLong, 1990). Degeneration o f the nigrostriatal pathway is 

considered responsible for the motor symptoms observed in Parkinson’s disease. 

Furthermore, dopamine has been implicated in goal directed behaviour (Robbins and Everitt, 

1996), addiction (Robbins and Everitt, 2002), and reward (Schultz, 2005).

The structure and function o f DA receptors has been extensively investigated over the last few 

decades. To date five individual isoforms o f DA receptors have been cloned, and can be 

divided into two families dependant on their pharmacological and biochemical characteristics. 

The D 1 -like family o f DA receptors includes both D1 and D5 receptors. These receptors have

- 2 3 -



been shown to activate subset o f G proteins, which includes Gs/0if, G0 and Gz (Sidhu, 1998). 

Activation o f these G proteins leads to the concurrent activation o f adenylyl cyclase (AC), 

which leads to an elevation o f the second messenger, cytosolic cyclic AMP (cAMP). cAMP 

causes dissociation o f the cAMP-dependant protein kinase (PKA) regulatory subunit, which 

in turn affects cellular function. However, there is a growing body o f evidence to support the 

concept that a number o f D 1 -like receptors exist which are not coupled to AC (Anderson et 

al., 1992; Amt et al., 1992; Downes and Waddington, 1993; Friedman et al., 1997; 

Gnanalingham et al., 1995; Johansen et al., 1991; Mailman et al., 1986; Wang et al., 1995). It 

has been suggested that this subset o f D 1 -like receptors are linked to the PI pathway 

(Friedman et al., 1997; Mahan et al., 1990; Undie and Friedman, 1990; Undie and Friedman, 

1992; Undie et al., 1994).

The D2-like family o f DA receptors includes the D2, D3 and D4 receptors. These receptors 

activate the Gy0 subset o f G proteins, which inhibit AC activity.

Historically, the expression o f the two families o f DA receptors was described to be confined 

to two subtypes o f MSN neurones, which can be separated by their anatomical and 

biochemical characteristics. One group o f MSNs project to the substantia nigra and internal 

segment o f the globus pallidus, and is termed the “direct” pathway (Alexander et al., 1986; 

Gerfen, 1992). The other group o f MSNs project to the external segment o f the globus 

pallidus, and then to the subthalamic nucleus and internal segment o f the GP before reaching 

other output targets, and is known as the “indirect” pathway (Alexander et al., 1986; Gerfen, 

1992). M SN’s o f the “direct” pathway predominantly express high levels o f D l-type 

receptors, as well as substance P. M SN’s o f the “indirect” pathway predominantly express 

high levels o f D2-type receptors, as well as enkephalin. However, it has been shown that the 

separation o f D l- and D2-like receptors does not conform fully to this rule. Rough 20-25% of 

the MSN population coexpress both D l- and D2-like receptors, as well as substance P and 

enkephalin (Surmeier et al., 1996). Furthermore, the implementation o f the reverse 

transcriptase-polymerase chain reaction (RT-PCR) has made identification of the less 

abundant isoforms o f DA receptor (D3, D4, and D5) easier. It has been shown that D4 and 

D5 receptors are present, although at low levels, within the striatum (Bergson et al., 1995). 

D3 receptors seem to be expressed at high levels within roughly 40% of MSN of the “direct” 

pathway, and that following DA depletion and the introduction o f 1-DOPA there is an up 

regulation o f D3 receptor expression in these neurones (Bordet et al., 1997). This
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>bservation, coupled with the observation that MSNs of the “direct” pathway can also send 

ixon collaterals to the GPe (Kawaguchi et al., 1990), suggests that the two pathways are not 

ruly segregated.

fhough M SN’s represent the main target o f DA innervation with the striatum, the various 

ntemeurons have also been shown to receive functional DA inputs. However, due to the 

carcity o f the neurones it has proved difficult to characterise the subtype o f DA receptors 

iresent on these neurones in any but the cholinergic intemeurones. Although initially these 

leurones where thought to express only D2-like receptors (Le Moine et al., 1990), RT-PCR 

tudies have revealed that these neurones also coexpress high levels o f D5 receptors (Bergson 

:t al., 1995; Yan and Surmeier, 1997).

fhough striatal DA has been linked with a number o f behavioural responses and pathological 

onditions, the mechanisms o f DA on striatal neurones is still a matter for debate within basal 

;anglia research. Early studies using DA iontophoresis on anaesthetised animals 

lemonstrated that DA depressed spontaneous firing o f striatal neurones (Bloom et al., 1978; 

irown and Arbuthnott, 1983; Chiodo and Berger, 1986; Hu and Wang, 1988; Johnson et al., 

983; Nisenbaum et al., 1988). Further, studies have looked at the effect o f DA on single-unit 

ctivity, either evoked by cortical stimulation or via direct application o f glutamate. Although 

heses studies reported a DA-mediated decrease in evoked spiking (Brown and Arbuthnott, 

983; Johnson et al., 1983; Wachtel et al., 1989), this effect has been described as dose- 

lependant, with lower doses o f DA facilitating glutamate-evoked spiking (Chiodo and 

Merger, 1986; Hu and Wang, 1988; Hu and White, 1997; Nisenbaum et al., 1988; Shen et al., 

992). Furthermore, it has been shown that following stimulation o f the medial forebrain 

lundle, which increases DA release in the striatum, there is an enhancement of spontaneous 

iring in a subset o f MSNs (Gonon, 1997). This effect is blocked by application of Dl-type 

eceptors antagonists, suggesting a D 1 -like receptor mediated response (Gonon, 1997).

'he cellular mechanism of striatal DA receptor activation has been studied extensively with 

be in vitro slice preparation. Activation o f D l-like receptors has been shown to reduce spike 

ctivity induced by current injection (Akaike et al., 1987; Calabresi et al., 1987; Uchimura et 

1., 1986). The mechanism underlying this inhibition o f spike firing has been shown to be 

aused by D l-like receptor activation o f the cAMP pathway, leading to protein kinase (PKA) 

nediated phosphorylation o f type II sodium channels, causing a reduction in sodium peak
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current (Schiffmann et al., 1995; Surmeier et al., 1992a; Zhang et al., 1998). Furthermore, 

activation o f D 1 -like receptors has been shown to increase anomalous potassium rectifier 

currents in MSNs (Pacheco-Cano et al., 1996), which regulate the resting membrane potential 

of MSNs. This effect is mediated predominantly by Kir2 channels, which show a highly 

significant degree o f colocalisation with MSNs expressing D 1 -like receptors (Mermelstein et 

al., 1998).

D 1 -like receptors have also been shown to act upon voltage-dependant calcium channels. 

Activation o f D l receptors has been shown to decrease N- and P/Q-type calcium currents, 

whilst increasing L-type calcium currents, within MSNs (Surmeier et al., 1995). D l -like 

receptor suppression o f N- and P/Q-type calcium channels, has been shown to be mediated by 

the PI pathway (Fienberg et al., 1998; Hubbard and Trugman, 1993). D 1 -like receptor up 

regulation o f L-type channel efficacy relies on the cAMP pathway (Surmeier et al., 1996) and 

is synonymous with modulation o f calcium channels within cardiac cells (Yue et al., 1990).

The functional consequence o f D2-like receptor activation on MSNs is less well understood 

than that o f D 1 -like receptors. It has been shown that activation of D2-like receptors can 

either facilitate or inhibit voltage-dependant sodium currents (Surmeier et al., 1992a). 

Facilitation o f sodium currents is thought to involve a reversal o f the Dl-receptor-AC-PKA- 

mediated inhibition (Stoof and Kebabian, 1984). Inhibition o f sodium currents has been 

shown to involve a negative shift in the voltage dependence o f inactivation, whilst peak 

conductance remains unchanged (Ma et al., 1994).

Activation o f D2-like receptors on MSNs has been shown to activate weak inwardly 

rectifying potassium channels (Freedman and Weight, 1988; Freedman and Weight, 1989), 

whilst also suppressing currents produced by Kir2 channels (Uchimura and North, 1990). 

Furthermore, it has been shown that in a certain subset of MSNs D2-like receptor activation 

enhances depolarization-activated potassium currents (Kita, 1996).

A number o f studies have looked at the effect o f DA on cholinergic intemeurons. Activation 

of D2-like receptors has been shown to decrease release o f ACh (Lehmann and Langer, 1983; 

Stoof et al., 1992). As D2-like receptors negatively couple to N-type calcium channels (Yan 

et al., 1997), activation o f this type of receptor will inhibit calcium influx, therefore inhibiting
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ACh release. Activation o f D 1 -like receptors has been shown to enhance ACh release 

(Consolo et al., 1992; Damsma et al., 1990).

DA has been shown to affect basal striatal synaptic transmission. Activation of D2-like 

receptors reduces AMPA-mediated EPSPs when evoked via cortical stimulation, application 

of glutamate, or application o f AMPA (Cepeda et al., 1993; Hsu et al., 1995; Levine et al., 

1996b). D 1 -like receptor activation enhances the NMDA-mediated synaptic response 

(Cepeda et al., 1993; Cepeda et al., 1998; Levine et al., 1996b; Levine et al., 1996a). 

Furthermore, some studies have shown that D 1 -like receptor activation can also enhance 

AMPA-mediated excitatory post-synaptic currents (EPSCs) and EPSPs (Galarraga et al., 

1997; Umemiya and Raymond, 1997), which is thought to involve PKA phosphorylation of 

DARPP-32 (Yan et al., 1999). It must be noted however that a number of studies have 

demonstrated that DA has no effect on either AMPA or NMDA mediated responses within 

the normal striatum (Malenka and Kocsis, 1988; Nicola and Malenka, 1998; Stefani et al.,

1995). Within conditions where there is up-regulation o f DA receptors, such as following 6- 

OHDA lesions, application o f DA has an inhibitory effect on EPSPs recorded from MSNs 

(Calabresi et al., 1988; Calabresi et al., 1992a; Calabresi et al., 1993a).

1.1.4.3 STRIATAL INTERNEURONES 

Cholinergic Inteneurones

Cholinergic intemeurones represent the main source o f ACh within the striatum (W oolf and 

Butcher, 1981; Woolf, 1991), with an addional minor cholinergic projection from the 

peduncolopontine tegmental nucleus (W oolf et al., 1986; W oolf and Butcher, 1986). 

Although these neurones represent a rather small proportion o f the total striatal neuronal 

population, their extensive dendritic network indicates that they can form a large number of 

synaptic contacts with M SN’s over an extensive area (Kawaguchi et al., 1995). Cholinergic 

intemeurones receive both glutametergic innervation from the corticostriatal and thalamic 

projections (Lapper and Bolam, 1992), whilst also receiving dopaminergic inputs from nigral 

projections (Chang, 1988; Kubota et al., 1987). The extensive dendritic network of the 

cholinergic intemeurones forms predominantly symmetrical synapses to the perikarya, 

dendritic shafts and spines o f MSNs.
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Activation o f cholinergic intemeurones leads to the release of ACh, which can act on striatal 

neurones via M l like muscarinic receptors located on the post-synaptic MSNs. Activation of 

M l receptors, via the direct application o f M l receptor agonists, leads to depolarisation of 

MSNs via an inward current (Calabresi et al., 1998b; Hsu et al., 1996). Both the inward 

current and the depolarising effect are blocked by application o f barium, a potassium channel 

blocker, and by pirenzepine, a M l receptor antagonist (Calabresi et al., 1998b; Hsu et al.,

1996). Furthermore, this current is reversed at the same potential as that seen for normal 

potassium channels, indicating that the observed M l-activated inward depolarising current is 

mediated via potassium channels.

Muscarinic receptor activation has also been shown to act on calcium currents within MSNs. 

Activation of muscarinic receptors leads to a reduction in the duration o f calcium dependant 

plateau potentials (Misgeld et al., 1986). This reduction in calcium plateau potentials has 

been shown to be mediated via two distinct signalling pathways, both regulated by G proteins, 

which are separated by their sensitivity to pertussis toxin and the subtypes o f calcium channel 

they act on (Howe and Surmeier, 1995). The first pathway is sensitive to pertussis-toxin and 

inhibits both N- and P-type calcium channels (Howe and Surmeier, 1995). The second 

pathway is insensitive to pertussis-toxin and inhibits L-type calcium channels (Howe and 

Surmeier, 1995). However, the exact subtype o f muscarinic receptor involved in the 

modulation o f calcium channels is presently unknown.

The effect o f muscarinic receptor activation on ionotropic glutametergic receptors has been 

investigated. It has been shown that application o f low concentrations of muscarine increase 

the excitability o f MSNs by enhancing the membrane depolarisation mediated by NMDA- 

modulated inward currents, whilst AMPA-modulated inward currents are unaffected 

(Calabresi et al., 1998b). This effect is antagonised by M l receptor antagonists, and 

mimicked via application o f M l receptor agonists, suggesting that it is mediated by post- 

synaptic M l receptors (Calabresi et al., 1998a). Interestingly, the facilitatory action o f M l 

receptor activation is blocked by either calcium chelating agents, or PKC inhibitors (Calabresi 

et al., 1998a). Therefore, modulation o f NMDA receptor currents via M l receptor activation 

is likely to rely on direct phosphorylation o f the NMDA receptor by protein kinase C (PKC), 

as a consequence o f an increase in internal calcium concentrations.

- 2 8 -



The location o f muscarinic receptors within the striatum is not confined to MSNs. It has been 

shown that ACh can also exert a functional effect on corticostriatal afferent fibres, 

GABAergic intemeurones, and interestingly upon itself. Application of muscarinic agonists 

has been shown to reduce ACh release within the striatum (James and Cubeddu, 1987). This 

autoregulation of neurotransmitter release has been proposed to be mediated by activation of 

pre-synaptic M2 receptors leading to the inhibition of both N- and P-type calcium currents 

within cholinergic interneurones, and a consequent reduction in ACh release (Yan and 

Surmeier, 1996).

Along with autoregulation o f ACh release, striatal cholinergic intemeurones also play a role 

in regulating the release o f glutamate and GAB A from pre-synaptic corticostriatal afferents 

and GABAergic intemeurones. Application o f ACh has been shown to increase the 

spontaneous action potential firing rate in MSNs, whilst also reducing EPSPs, when 

conducted in vivo (Bemardi et al., 1976). Furthermore, application o f ACh in vitro has an 

inhibitory effect on action potentials evoked by local striatal stimulation but has no effect on 

action potential firing evoked by local application o f glutamate (Akaike et al., 1988; Dodt and 

Misgeld, 1986; Takagi and Yamamoto, 1978). This would suggest that ACh-mediated 

inhibitory effects on intra-striatal EPSPs are mediated via presynaptic mechanisms. It has 

been suggested that the focus o f this pre-synaptic effect on synaptic transmission is mediated 

via M2 receptor inhibition o f both GABA and glutamate. It has been shown that GABA 

mediated post-synaptic synaptic potentials are reduced by the application o f muscarine, or 

neostigmine (Sugita et al., 1991). Likewise, both neostigmine and muscarine inhibit 

glutamate mediated post-synaptic potentials, which is reversed by M2 receptor antagonists 

(Calabresi et al., 1998a).

Nitric Oxide Interneurones

NOS-positive neurones represent a rather small proportion o f the total striatal population 

(Kawaguchi, 1993). They receive glutamatergic excitatory inputs from the corticostriatal 

projection, which forms glutamatergic synapses on the cell body and proximal dendrites 

(Salin et al., 1990; Vuillet et al., 1989). Furthermore, it has been shown that NOS-positive 

intemeurones contain mRNA encoding for iontropic glutamate receptors (East et al., 1996). 

Application o f either kainate (Kendrick et al., 1996; Marin et al., 1993) or NMDA (East et al., 

1996; Iravani et al., 1998; Kendrick et al., 1996; Marin et al., 1993) results in an elevation o f 

NO levels in the striatum. It has also been demonstrated that NOS-positive neurones form
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synapses with nigral DAergic inputs (Fujiyama and Masuko, 1996; Gomez-Urquijo et al., 

1999; Vuillet et al., 1989). Furthermore, 6-OHDA lesions o f the DA system results in a 

reduction o f NOS activity (de Vente et al., 2000; Sahach et al., 2000). It is theorised that the 

action o f DA on NOS-positive intemeurones is mediated by pre-synaptic D l-like and D2-like 

receptors. Application o f D l-like receptor antagonists has been shown to decrease the 

intensity o f NADPH-diaphorase staining, a measure o f NOS activity, where it is upregulated 

following application o f D2-like receptor antagonists (Morris et al., 1997).

NOS-positive intemeurones form synaptic contacts with the dendrites of M SN’s (Morello et 

al., 1997). The role o f NO in the striatum is not clearly defined. Although it appears that NO 

is capable o f modulating MSN synaptic transmission, no clearly defined mechanism of NO 

action exists. A number o f studies have been conducted linking NO with guanylyl cyclase 

(GC). Activation o f GC, has been shown to stimulate cGMP, which in turn activates PKC, a 

powerful phosphorylator o f neuronal receptors (Garthwaite et al., 1995). Furthermore, cGMP 

can directly influence ion channel function via PKG posphorylation (Fagni and Bockaert, 

1996; Robello et al., 1996). NO has been shown to influence NMDA receptor function 

directly, inhibiting calcium currents (Fagni and Bockaert, 1996; Hoyt et al., 1992; Manzoni et 

al., 1992). This effect is also induced via application o f multiple NO donors (Fagni and 

Bockaert, 1996). Likewise, NO can directly effect GABAa receptor function, inhibiting 

chloride influx, which is believed to be dependant on the cGMP/PKG-mediated pathway 

(Robello et al., 1996).

The action o f NO in the striatum is not confined to glutamatergic or GABAergic transmission. 

It has been shown that infusions o f NOS increase striatal DA concentrations (Hanbauer et al., 

1992; Stewart et al., 1996; Zhu and Luo, 1992). Furthermore, infusions o f NOS-inhibitors 

reduce basal DA concentrations (Black et al., 1994), DA release following intra-striatal 

stimulation (Sandor et al., 1995), and DA release following application o f NMDA (Hanbauer 

et al., 1992; Leslie et al., 1994). Conversely, some studies have shown that application of NO 

increases DA release to a greater degree following administration in the dorsolateral striatum 

than in the dorsolmedial striatum (Iravani et al., 1998).

The mechanism underlying NO-facilitated DA release is not clearly understood. It has been 

shown that NO-facilitated DA release is both calcium dependant (Buyukuysal, 1997; Lonart
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et al., 1993; Trabace and Kendrick, 2000; West and Galloway, 1996; West and Galloway,

1998), and calcium independent (Black et al., 1994; Stewart et al., 1996).

It has been postulated that NO also acts on gap junction transmission between MSNs. NO has 

been shown to increase the incidence o f dye coupling between MSNs, which is thought to be 

mediated by increases in gap junction permeability. Furthermore, this effect is blocked via 

application o f NOS inhibitors, and mimicked by the application o f NO donors. These 

observations suggest that NO may play a critical role in priming neuronal clusters to fire 

synchronised bursts o f action potentials.

GABAergic Interneurones

GABA mediated synaptic transmission within the striatum is facilitated by the two subtypes 

o f GABAergic intemeurones (Kawaguchi et al., 1995). However, it is important to note that 

the MSNs receive GABAergic synaptic contacts from both the pallidal and nigral afferents 

(Kita, 1993), and axonal collaterals from local M SN’s (Kita, 1993; Park et al., 1980; Wilson 

and Groves, 1980).

GABA released into the synaptic cleft binds with two types o f GABA receptors on the post- 

synaptic MSNs. These two types o f GABA receptors are separated according to their 

sensitivity to the GABA antagonist bicucullune, with GABAa receptors being insensitive, and 

GABAb receptors sensitive to the drug (Calabresi et al., 1991; Nisenbaum et al., 1993; 

Seabrook et al., 1990).

Activation o f GABAa receptors within MSNs results in a fast membrane depolarisation 

(Calabresi et al., 1991). This fast membrane depolarisation is thought to be due to the 

activation o f chloride currents, which at the highly negative resting potential of MSNs (- 

80mV) would cause membrane depolarisation (Calabresi et al., 1991; Mercuri et al., 1991). It 

has therefore been speculated that activation o f GABAa receptors on MSN’s may play a role 

in the generation o f ‘up-states’ in these neurones. This theory is further corroborated by the 

observation that GABAa receptor mediated responses reverse at around -60mV (Kita, 1996; 

Mercuri et al., 1991), which is within the membrane potential range o f resting states (Plenz 

and Kitai, 1998).
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It has been theorised that GABAb receptors occupy a predominantly pre-synaptic location. 

Activation o f GABAb receptors has been shown to reduce glutamate mediated EPSPs, whilst 

also reducing GABA mediated depolarising potentials (Calabresi et al., 1991). Furthermore, 

as the effect o f GABAb receptor stimulation is not coupled with post-synaptic sensitivity to 

glutamate or GABA, this effect is considered to be predominantly pre-synaptic. Therefore, 

GABAb receptors may play a pre-synaptic role in regulating release o f glutamate and GABA.

Adenosine

Adenosine is an active metabolite produced during the breakdown of various intracellular 

compounds, such as ATP, to produce energy. Extracellular concentrations of adenosine are 

elevated when the demand on cellular energy exceeds that normally produced by the cell.

Adenosine acts upon four subtypes o f adenosine receptors to produce a potent depression like 

effect. O f the receptor subtypes, A l adenosine receptors are widely distributed around the 

mammalian brain, including the striatum, whereas the A2A subtype is expressed almost 

exclusively with the striatum.

Activation o f A l receptors has been postulated to have a pre-synaptic effect on the 

suppression o f transmitter release (Greene and Haas, 1991). The suppression o f transmitter 

release is often coupled with post-synaptic changes in membrane hyperpolarisation and 

increased membrane conductance (Uchimura and North, 1991). Within the striatum, 

activation o f adenosine receptors results in a reduction o f M SNs’ EPSP amplitude, with no 

discemable effect on the MSN membrane response or the response following application o f 

glutamate (Calabresi et al., 1997b). Furthermore, activation o f adensosine receptors is 

associated with an increase in MSN paired pulse facilitation (PPF), which would further 

indicate a pre-synaptic site o f action (Calabresi et al., 1997b).

Activation o f A2A receptors have been shown to have two main physiological consequences. 

Application o f A2A receptor agonists has been shown to suppress GABAA-mediated synaptic 

currents (Mori et al., 1996). The suppression o f GABAA-mediated synaptic currents, via A2A 

receptor activation, has been attributed to a pre-synaptic site o f action (Mori et al., 1996). 

Therefore, MSN output activity may be regulated by A2A receptors, by reducing GABAa 

mediated inhibition o f spiny neurones. Activation o f A2A receptors has also been shown to 

inhibit the conductance o f NMDA receptors, though only in a subset o f MSNs (Norenberg et
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al., 1997). However, the mechanisms for this effect, or the consequences, are not fully 

understood.

1.2 SYNAPTIC PLASTICITY WITHIN THE STRIATUM

Synaptic plasticity can be defined as the ability o f synaptic contacts between neurones to 

change their strengths, according to their patterns o f activation, over time. Plastic synapses 

are able to respond to changes in input by modifying the strength o f their output. Synaptic 

plasticity is widely considered to underlie many cognitive functions involving learning and 

memory (Martin et al., 2000), and addiction (Gerdeman et al., 2003).

The concept that synapses are able to respond to changes in their environment was first 

suggested by Donald Hebb in 1949. Hebb, suggested a co-incidence detection rule, whereby 

the synapse that links two cells would become strengthened if both cells fired at the same time 

(Hebb , 1949). This theory was first observed in vivo at the excitatory synapses between the 

perforant path and granule cells o f the hippocampus (Bliss and Lomo, 1973). A control level 

of stimulus was given, and the response from a population of cells measured. The cells were 

subjected to a high frequency tetanus pulse that activated both pre- and post-synaptic cells 

simultaneously. It was observed that size o f the response gained had become larger when the 

control stimulus was applied. This increase in the response is known as long-term 

potentiation (LTP), and was shown to last many hours. Today, the phenomenon know as LTP 

is the focus o f many investigations, and has been proposed as the cellular correlate underlying 

many if not all aspects o f learning and memory (Martin et al., 2000).

Synapses can be described as bi-directionally modifiable as they display the ability to 

decrease their synaptic strength as well as to increase it. This decrease in synaptic efficacy 

has been shown to follow a similar time course o f development and maintenance as LTP, and 

is termed long-term depression (LTD). LTD can be divided into two types; heterosynaptic 

LTD which occurs at inactive synapses during high frequency stimulation o f a converging 

input, and the more common homosynaptic LTD which occurs at active synapses (Bear and 

Malenka, 1994; Bear and Abraham, 1996; Dudek and Bear, 1992).
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There appear to be three basic principles that define synaptic plasticity (Bliss and 

Collingridge, 1993); they were first used to describe LTP, but are readily transferable to LTD. 

Firstly, a specific intensity threshold exists for the induction o f plasticity, a weak tetanus 

(which only activates a small number o f afferent fibres) will not be sufficient to induce 

plasticity, whereas a strong tetanus will. Also, a low frequency tetanus will not induce 

plasticity. However increasing the stimulus frequency can render it effective. There remains 

a balance between tetanus intensity and frequency, where an increase in one can compensate 

for a decrease in the other. The underlying mechanism regulating induction threshold as a 

product o f both intensity and frequency is termed ‘co-operativity’. Secondly, plasticity is 

considered to be associative. Weak inputs can induce plasticity if they are active at the same 

time as a stronger, yet convergent input. Thirdly, plasticity can be considered as input 

specific, as only inputs that are active at the time o f tetanus display plasticity.

Since the first observation o f synaptic plasticity in the hippocampus, both LTP and LTD have 

been observed in other brain regions including the amygdala (Heinbockel and Pape, 2000; 

Racine et al., 1983; Racine and Milgram, 1983), cerebellum (Ito and Kano, 1982; Racine et 

al., 1986), neocortex (Baranyi and Feher, 1981) and the striatum (Boeijinga et al., 1993; 

Calabresi et al., 1992c; Calabresi et al., 1992e).

The observation o f synaptic plasticity in the striatum proves important, as PET studies in 

humans have shown that the basal ganglia are heavily involved in the storage o f motor 

memories (Seitz et al., 1990). The striatum, and more particularly the corticostriatal 

projection, is considered to play a major role in motor learning (Kimura, 1995). Interestingly, 

recent studies have shown that in conditions where corticostriatal synaptic plasticity is 

impaired, learning o f striatal specific behavioural tasks is also impaired (Pittenger et al., 

2006).

Synaptic plasticity within the striatum can be induced via a number o f methods including HFS 

of the cortex or thalamus, focal application o f glutamate (Calabresi et al., 1999a), or 

stimulation o f the NO/cGMP pathway (Calabresi et al., 1999b). HFS stimulation o f the 

corticostriatal input fibres remains the favoured method o f inducing striatal synaptic 

plasticity.
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1.2.1 CORTICOSTRIATAL LTD

The preferential form o f synaptic plasticity expressed at corticostriatal synapses in vitro is a 

matter o f debate. Early studies demonstrated that HFS stimulation o f the corticostriatal 

pathway in vitro, resulted in the expression o f LTD (Calabresi et al., 1992c). Paradoxically, 

under conditions where magnesium is omitted from the aCSF perfusate solution, HFS results 

in the expression o f LTP (Calabresi et al., 1992e). This interesting phenomenon is considered 

to be due to the high level magnesium blockade o f NMDA receptors observed within the 

striatum. Within the in vitro slice HFS of the corticostriatal fibres is not considered to be 

sufficient to provide suitable membrane depolarisation to remove the magnesium block. 

Interestingly, studies in vivo have shown that cortical stimulation can induce striatal LTP 

(Charpier et al., 1999; Reynolds and Wickens, 2000). However, within the in vivo 

preparation, where the whole corticostriatal project is kept intact, HFS probably provides 

suitable depolarisation to remove the magnesium block o f NMDA receptors. Furthermore, 

recent studies have demonstrated that it is possible to obtain corticostriatal LTP in vitro in the 

presence o f magnesium (Mahon et al., 2004; Spencer and Murphy, 2000), where it is 

suggested that stimulation intensity and slicing plane may play a role in determining the 

preferential form o f synaptic plasticity expressed.

Striatal LTD is dependant on a number o f crucial pharmacological interactions. First o f all 

the AMPA family o f glutametergic ionotropic receptors plays a vital role, as application o f 

AMPA antagonists blocks the expression o f LTD. It has been postulated that AMPA 

receptors are not essential for the induction o f LTD, and merely provide a mechanisms for the 

more critical membrane depolarisation. Studies have shown that LTD can be induced in 

situations where a mild stimulation o f the corticostriatal pathway is coupled with enforced 

depolarisation o f the post-synaptic neurone (Choi and Lovinger, 1997). Interestingly, 

intracellular application o f voltage-dependant sodium channel antangonsists blocks the 

expression o f LTD during HFS o f the corticostriatal fibres, although expression o f LTD is 

restored when the neurone is depolarised via current injection (Calabresi et al., 1994). It is 

suggested that membrane depolarisation via voltage-dependant sodium currents activates 

various voltage-gated calcium currents, since application o f L-type calcium channel 

antagonists blocks the expression o f LTD (Calabresi et al., 1994; Choi and Lovinger, 1997).
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The post-synaptic increases in calcium concentration represent a critical step in the generation 

of LTD. Intracellular application o f calcium chelating agents prior to administration of HFS 

prevents the expression o f LTD (Calabresi et al., 1994). The intracellular mechanisms linked 

to calcium dependant regulation o f striatal LTD share a high degree of similarity with those 

observed in other neuronal systems. Selective blockers of PKC activity also block LTD 

expression in a dose dependant manner (Calabresi et al., 1994).

Though a number o f sub-types o f the mGluR receptor exist within the striatum, type mGluR I 

receptors are the most predominant sub-type present. Type I mGluRs have been implicated in 

the formation o f LTD within the hippocampus (Bashir, 2003), cortex (Shave et al., 2001) and 

cerebellum (Shave et al., 2001). Application o f mGluR I antagonists has no effect on 

corticostriatal baseline transmission, but does inhibit LTD in a dose dependant manner 

(Calabresi et al., 1992d). Further evidence for the important role o f mGluR I receptors in 

LTD expression is that following chronic lithium treatment, corticostriatal LTD is blocked 

(Calabresi et al., 1993b). Lithium treatment is known to reduce the supply of inositol, which 

is the substrate o f PI metabolism. mGluR I receptors are coupled to PI and rely on PI 

metabolism to affect protein kinases. Therefore, it would seem that the activation o f mGluR 

receptors is essential for corticostriatal LTD expression (Sung et al., 2001).

Corticostriatal LTD is also critically dependant on the activation o f the nigrostriatal projection 

system, release o f DA and activation o f DA receptors on the post-synaptic MSN. Antagonists 

for either D l-like or D2-like DA receptors prevent the expression o f LTD (Calabresi et al., 

1992c; Calabresi et al., 1992a; Calabresi et al., 1992b; Choi and Lovinger, 1997), 

demonstrating that activation o f both receptor sub-types is critical for LTD expression. 

Furthermore, LTD induced by the focal application o f glutamate is blocked by D2-like 

receptor antagonists (Calabresi et al., 1999a). Interestingly, unilateral 6-OHDA lesions of the 

striatum result in a loss o f LTD in the ipsilateral but not contralateral striatum (Calabresi et 

al., 1992e; Calabresi et al., 1992a; Calabresi et al., 1992b). LTD is restored following 

administration o f DA, or coadministration o f D l-like and D2-like receptor agonists, but not 

when either agonist is applied alone (Calabresi et al., 1992e; Calabresi et al., 1992a; Calabresi 

et al., 1992b). Finally, studies in D2-like receptor knockout mice have demonstrated a lack of 

corticostriatal LTD, though they do demonstrate a NMDA-dependant LTP following HFS, 

even in the presence o f magnesium (Calabresi et al., 1997c).
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There is a large body o f evidence to demonstrate that DAergic nigrostriatal afferents display 

ionotropic glutamate receptors on their pre-synaptic terminals, which are capable of 

modulating DA release (Carrozza et al., 1992; Carter et al., 1988; Cheramy et al., 1986a; 

Cheramy et al., 1986b; Clow and Jhamandas, 1989; Imperato et al., 1990; Moghaddam et al., 

1990; Morari et al., 1993). Furthermore, it has been shown that glutamate can modulate 

nigrostriatal DA release via pre-synaptic mGluR receptors (Verma and Moghaddam, 1998). 

Application of mGluR agonists has been shown to facilitate DA release under baseline 

conditions, whilst inhibiting DA release during hyperstimulation, such as that seen during 

HFS (Verma and Moghaddam, 1998).

Within MSNs, the main substrate for protein kinase activity is the dopamine- and cAMP- 

regulated protein with molecular weight o f 32 kDa (DARPP-32). This protein is expressed in 

high concentrations within dopaminoceptive MSNs (Brene et al., 1995). In its 

phosphorylated state DARPP-32 inhibits protein phosphatase-1 (PP-1), which in turn 

regulates the phosphorylation and activity o f NMDA and AMPA channels (Greengard et al.,

1999). Mice lacking DARPP-32 show normal baseline transmission, but fail to express LTP 

or LTD (Calabresi et al., 2000b). Interestingly, pharmacological inhibition o f PP-1 in these 

mice, restores both LTP and LTD (Calabresi et al., 2000b).

The role o f NO/cGMP activation in striatal LTD has recently been investigated. 

Pharmacological inhibition o f either NO, or guanylyl cyclase (GC) prevents the expression of 

corticostriatal LTD (Calabresi et al., 1999b). Application o f NO donor agents has been 

shown to induce LTD (Calabresi et al., 2000b). However, within DARPP-32 knockout mice, 

application o f NO donors fails to induce LTD (Calabresi et al., 2000b). These findings 

suggest that the expression o f corticostriatal LTD requires activation, in this case via PKG 

mediated signalling cascades.

Studies over the last decade have discovered a role for endocannabinoids in striatal LTD. 

Two isoforms o f cannabinoid receptor exist (CB1 and CB2), which are almost exclusively 

expressed within the basal ganglia (Herkenham et al., 1991). Whilst activation of CB1 

receptors is essential for the induction of corticostriatal LTD (Gerdeman et al., 2002), little is 

known regarding the mechanism of endocannabinoid mediated synaptic plasticity. Activation 

of CB1 receptors has been shown to inhibit release o f glutamate and GABA (Gerdeman and 

Lovinger, 2001; Szabo et al., 1998). Furthermore, endogenous production of
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endocannabinoids has been shown to occur following D2-like receptor activation in the post- 

synaptic neurone (Giuffrida et al., 1999), with it’s release facilitated via MSN membrane 

depolarisation (Di Marzo and Deutsch, 1998). Therefore, it is possible that endocannabinoids 

could act as a retrograde messenger.

1.2.2 COTRICOSTRIATAL LTP

As previously described, under normal physiological conditions NMDA receptors located 

post-synaptically on MSNs are considered inactive, even following HFS. Removal of 

magnesium from the aCSF perfusate solution results in the chronic disinhibtion of the NMDA 

receptor and the expression o f corticostriatal LTP following HFS (Calabresi et al., 1992e). It 

must be noted however that HFS o f the corticostriatal fibres can also lead to the expression of 

LTP, even in the presence o f physiologically normal levels o f magnesium (Akopian et al., 

2000; Garcia-Munoz et al., 1996; Lovinger et al., 1993; Partridge et al., 2000; Smith et al., 

2001; Spencer and Murphy, 2000; Walsh and Dunia, 1993; Wickens et al., 1996). The 

intensity o f stimulation used during HFS to induce synaptic plasticity could be critical to 

determining whether striatal LTP or LTD is expressed. Intense HFS, reliably induces a 

preferential expression o f striatal LTD, which is dependant on contiguous activation o f DA 

synapses (Calabresi et al., 1996). Less intense HFS, which is likely to only weakly activate 

DA synapses, produces a mix o f short-term depression (STD), LTD, short-term potentiation 

(STP) and LTP (Akopian et al., 2000; Lovinger et al., 1993). This suggests that activation of 

the dopaminergic system may play a critical modulatory role between the expression of 

striatal LTP and LTD. Furthermore, it has been shown that regional differences in the 

recording location within the striatum dictate a preferential expression o f either LTP or LTD 

(Smith et al., 2001). It has been shown that the striatum receives topographic projections 

from the cortex, with visual and limbic structures projecting more medially, and motor 

structures projecting to a more dorsal and lateral location (Deniau et al., 1996; Donoghue and 

Herkenham, 1986; Gerfen, 1989; McGeorge and Faull, 1989). Similarly there are reported 

regional differences in the synaptic structures formed by the nigrostriatal system (Joyce and 

Marshall, 1987; Szele et al., 1991). Therefore, whilst irregularities occur in the expression of 

LTP and LTD, the predisposed state o f the NMDA receptor and the modulatory action of DA 

provide a compelling explanation for the mechanism of selection between these two forms of 

plasticity.
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The expression o f corticostriatal LTP is critically dependant on the activation of post-synaptic 

NMDA receptors. Application o f NMDA receptor antagonists blocks the expression of 

corticostriatal LTP, whilst application o f AMPA antagonists has no effect on the expression 

of LTP (Calabresi et al., 1992c).

As with corticostriatal LTD, LTP is dependant on activation o f the DAergic system. Whilst 

application o f D l-like receptor antagonists blocks expression o f corticostriatal LTP (Kerr and 

Wickens, 2001), application o f D2-like receptor antagonists greatly enhances LTP (Boeijinga 

et al., 1993; Calabresi et al., 1997a; Calabresi et al., 1999a; Centonze et al., 1999). 

Furthermore, corticostriatal LTP is enhanced in D2-like receptor knock out mice (Calabresi et 

al., 1997c). This would suggest that activation o f D l-like receptors is critical for the 

expression o f corticostriatal LTP, where activation o f D2-like receptors negatively controls 

the expression o f LTP.

As previously described for corticostriatal LTD, the main target for protein kinase activity 

within MSNs is DARPP-32, which is capable o f modifying both AMPA and NMDA receptor 

activity (Greengard et al., 1999). Interestingly, application o f PKA inhibitors has been shown 

to inhibit corticostriatal LTP but not LTD (Calabresi et al., 2000b). Suggesting that 

corticostriatal LTP is mediated by posphorylation o f DARPP-32 by the PKA signalling 

cascade.

The involvement o f ACh in corticostriatal LTP has been studied. Corticostriatal LTP is 

blocked by M l receptor antagonists (Calabresi et al., 1999a), whilst it is enhanced by 

application o f M2 receptor antagonists (Calabresi et al., 1998a).

1.2.3 MOLECULAR MECHANISMS OF SYNAPTIC PLASTICITY

Synaptic plasticity has been shown to last for a number o f hours in vitro (Bliss and Lomo, 

1973; Bliss and Collingridge, 1993), and up to several weeks in vivo (Bliss and Collingridge, 

1993). It has therefore been postulated that in order for long lasting changes to occur in 

synaptic efficacy some form of molecular change must take place. These changes are 

dependant on activity-mediated modification o f protein expression. Both LTP and LTD result
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in an inevitable increase in intracellular calcium concentration. Over the past few decades it 

has become clear that this rise in intracellular calcium can act as a signalling mechanism, not 

just by influencing protein kinase molecules to modify channel efficacy, but also by 

influencing a variety o f transcriptional factors that modify gene expression.

Since the first conception of intracellular calcium as a signalling molecule for the molecular 

mechanisms o f synaptic plasticity, the role o f the calcium binding protein calmodulin (CaM) 

has been strongly implicated. CaM is expressed at exceptionally high levels within neurones 

(Cimler et al., 1985), and has been shown to influence a number o f CaM-regulated molecules, 

that have been implicated in synaptic plasticity. Binding o f calcium to CaM has been shown 

to increase its affinity for its target proteins (LaPorte et al., 1980). These changes in target 

affinity are mediated by a calcium-induced conformational change, resulting in the exposure 

o f a hydrophobic domain, which is the main site o f intereaction between CaM and its target 

proteins (Babu et al., 1988; Chapman et al., 1992; LaPorte et al., 1980).

During basal resting state, CaM is considered inactive, where it is bound to neuromodulin and 

neurogranin (Alexander et al., 1988; Andreasen et al., 1983). During this state CaM is not 

considered to play a role in signal transduction. However, a number o f studies have shown 

that both neuromodulin and neurogranin may play a role in PKC-regulated phosporylation of 

ion channels (Alexander et al., 1988; Apel et al., 1990; Chao et al., 1996). Studies within the 

hippocampus demonstrate that during LTP neuromodulin is phosphorylated. Furthermore, 

transgenic mice with mutated neuromodulin that mimics the phosphoryalated isoform display 

enhanced hippocampal plasticity (Hulo et al., 2002). Neurogrannin has been shown to act on 

PKC action much like that seen by neuromodulin (Baudier et al., 1991). However, 

localisation studies have demonstrated that whilst neuromodulin occupies a predominantly 

pre-synaptic location, neurogranin is located almost exclusively post-synaptically (Represa et 

al., 1990).

During conditions where intracellular calcium concentrations are increased, such as during 

LTP and LTD, CaM becomes unbound from neuromodulin and neurogranin, due to its higher 

affinity for binding to free calcium (Alexander et al., 1988; Andreasen et al., 1983). Under 

these conditions CaM is able to bind to a number of other intracellular signalling molecules.
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The calcium/calmodulin-dependant protein kinase II (CaMKII) is a calcium stimulated 

enzyme that has been extensively studied for its involvement in synaptic plasticity. Binding 

o f calcium to CaM enables the calcium/CaM complex to subsequently bind to CaMKII 

causing activation o f the CaMKII enzyme. Activation o f CaMKII enables it to perform a 

number of functions on other intracellular molecules. Interestingly, activated CaMKII can 

also autoposhporylate itself (De Koninck and Schulman, 1998). Autophosphorylation o f 

CaMKII enables it to disassociate from membrane bound actin where it can diffuse into the 

synapse and act upon the NR2B subunit o f NMDA receptors (Bayer et al., 2001; Shen and 

Meyer, 1999; Torok et al., 2001).

The role o f CaMKII in LTP was initially discovered within the CA1 synapse (Malenka et al., 

1989b; Malenka et al., 1989a). It was found that inhibition of CaMKII blocks the induction 

o f LTP (Malenka et al., 1989b; Malenka et al., 1989a), whilst application of CaMKII to the 

post-synaptic neurone produces LTP (Lledo et al., 1995; McGlade-McCulloh et al., 1993). 

Furthermore, a-CaMKII knockout mice demonstrate deficits in both LTP and spatial memory 

(Silva et al., 1992b; Silva et al., 1992a). Due to the high co-localisation o f a-CaMKII with 

the post-syantpic densitiy, it has been postulated that a-CaMKII has a predominantly post- 

synaptic method o f action. Within most forms o f synaptic plasticity, the AMPA family o f 

glutametergic receptors plays a critical role in the induction, and maintenance o f synaptic 

plasticity (Hayashi et al., 2000; Kauer et al., 1988; Muller and Lynch, 1988; Nusser et al., 

1998). a-CaMKII has been shown to modulate AMPA receptor conductance by directly 

phosphorylating the GluRl subunit (Barria et al., 1997; Mammen et al., 1997). Furthermore, 

a-CaMKII has been shown to play a role in the insertion o f new AMPA receptors into the 

syanspe (Lisman and Zhabotinsky, 2001; Wu et al., 1996). Transgenic mice which lack both 

a-CaMKII and PKA phosphorylation sites display impaired LTP and LTD, and spatial 

memory (Lee et al., 2003).

Whilst a-CaMKII plays an important role in the induction and maintenance o f synaptic 

plasticity, it has also been thought to play a role in long-lasting synaptic plasticity. It has been 

postulated that enhanced protein synthesis within dendrites (Steward and Worley, 2001; 

Tiedge and Brosius, 1996) may play a role in the concept o f ‘synaptic tagging’, where 

activated neurones are marked to distinguish the non-active synapses (Frey and Morris, 1997). 

mRNA for a-CaMKII has been shown to contain a region which targets it to dendrites 

(Mayford et al., 1996) where it is able to accumulate (Thomas et al., 1994) with levels o f
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expression elevated during synaptic plasticity (Ouyang et al., 1999). Interestingly, transgenic 

mice in which the region o f mRNA encoding for dendritic targeting is inhibited demonstrate 

impaired late-phase LTP and deficits in spatial memory (Miller et al., 2002). Furthermore, it 

has recently been demonstrated that a-CaMKII can phosphorylate, and in doing so stimulate 

the activity o f the cytoplasmic polyadenylation element binding protein (CPEB) (Atkins et al., 

2004). CPEB is able to influence mRNA transcription and protein synthesis, and therefore 

may provide a second mechanism for a-CaMKII modification o f long-term synaptic plasticity 

(Atkins et al., 2004).

Calcium bound CaM can also influence cAMP signalling, which regulates a number o f other 

internal molecules. Calcium-CaM is able to stimulate increased levels o f cAMP via 

interaction with adenylyl cyclases. Although a number o f AC isoforms exist, only AC1 and 

AC8 are stimulated by CaM. AC1 is neurospecific and expressed predominantly in the 

hippocampus, neocortex, and the olfactory system, whilst AC8 is expressed throughout the 

brain and is not neuro-specific (Wu et al., 1995; Xia et al., 1991). Both AC1 and AC8 

knockout mice display impaired synaptic plasticity in a number o f brain regions (Otmakhova 

et al., 2000; Villacres et al., 1998; Wu et al., 1995). Knockouts for either AC1 or AC8 do 

display long-lasting synaptic plasticity, although it is impaired slightly in AC1 knockouts (Wu 

et al., 1995). However, transgenic knockouts for both AC1 and AC8 do not display long 

lasting synaptic plasticity (Wong et al., 1999). Furthermore, transgenic animals with 

enhanced AC1 expression also demonstrate enhanced synaptic plasticity and recognition 

memory (Wang et al., 2004).

cAMP activation has been shown to activate EPACs, which act as exchange factors for the 

Ras-related proteins 1 and 2 (RAP1 and 2) (Bos 2003). Activation o f either RAP1 or 2 

results in the consequent activation o f both the extracellular signal-related kinase (ERK) and 

the mitogen-activated protein kinase (MAPK). Both ERK and MAPK signalling has been 

shown to be critical for synaptic plasticity (English and Sweatt, 1996; Impey et al., 1998; 

Mazzucchelli et al., 2002).

Both cAMP and ERK/MAPK signalling cascades terminate in the activation of CREB, which 

in turn activates CRE mediated transcription. CREB has long been implicated in both 

memory and synaptic plasticity in Aplysia (Bartsch et al., 1998; Dash et al., 1990; Martin et 

al., 1997), Drosophila (Yin et al., 1994; Yin et al., 1995), mammalian hippocampus (Pittenger
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et al., 2002), amygdala (Josselyn et al., 2001), cerebellum (Ahn et al., 1999) and more 

recently the striatum (Pittenger et al., 2006). HFS of the CA1 region of the hippocampus has 

been shown to lead to phospohrylation o f CREB and activation of CRE-mediated 

transcription (Abel et al., 1997). Interestingly, the expression o f constitutively active CREB 

has been shown to enhance the late phase o f synaptic plasticity (Barco et al., 2002). 

Furthermore, both striatal LTP and LTD are abolished in animals expressing a striatal 

specific dominant negative mutation o f CREB (Pittenger et al., 2006).
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1.3 HUNTINGTON’S DISEASE AND CELL REPLACEMENT 

THERAPY

The extensive neuronal loss brought on by neurodegenerative disorders results in distinct and 

adverse symptoms. Grafting o f embryonic tissue into sites of degeneration proves exciting as 

such methods aim to treat degeneration both at the source and at a symptomatic level.

1.3.1 AEITIOLOGY AND GENETIC BACKGROUND

Huntington’s disease (HD), was first described by George Huntington in 1872 in his landmark 

article ‘On Chorea’, published in The Medical and Surgical Reporter (Huntington, 1872). In 

this paper, Huntington described a form o f hereditary chorea where ‘...one or more of the 

offspring...’ o f an effected parent ‘...alm ost invariably suffer from the disease...’. Along 

with a fairly detailed description o f the hereditary nature o f the disease, Huntington also 

adequately described the chorea itself, the psychiatric symptoms such as onset o f dementia, 

and the select window within a suffers lifespan for expression o f symptoms.

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a 

CAG trinucleotide repeat expansion in the HD gene (The Huntington's Disease Collaborative 

Research Group, 1993). The gene, and subsequent mutation, responsible for HD was 

discovered by the Huntington’s Disease Collaborative Research Group in 1993.

The HD gene was found to express a protein, now known as huntingtin, with a molecular 

mass o f roughly 350kDa. It is within the N terminal end o f this protein that the poly­

glutamine tract lies. Normal huntingtin contains between 8 and 36 glutamines within this 

region, whilst HD suffers contain in excess o f 38 glutamines in this region. The poly­

glutamine tract o f huntingtin is encoded within exon 1 o f the Huntingtin gene. The number of 

poly-glutamine repeats is directly proportional to the number o f CAG repeats within the exon. 

Therefore, HD suffers contain an expanded CAG repeat in excess o f 38 repeats. However, 

there is a degree o f instability in the expression o f CAG repeats, where repeat lengths are not 

maintained either between generations (‘paternal anticipation’ effect (Abe, 1997)) or between 

cells o f the body (‘somatic mosaicism’).
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The huntingtin protein is ubiquitously expressed in all cells o f the human body, though 

highest levels o f expression are found within the neurones o f the brain (Strong et al., 1993). 

The protein itself is expressed from early stages of development, where it appears to play a 

critical role in functional development. Animals that do not express huntingtin die at 

embryonic day 6-10 (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995). By contrast 

lack of huntingtin in cells grown in culture is non-lethal (Metzler et al., 1999). It has been 

shown that reduction o f normal huntingtin can result in abnormal brain development 

(O'Kusky et al., 1999; White et al., 1997), though the profile o f changes does not replicate 

that seen in HD.

It is apparent that normal huntingtin plays an essential role in neurogenesis, and a possible 

protective effect in later life. One possible mechanism for such function is the observation 

that up regulation o f brain-derived neurotrophic factor (BDNF) is associated with normal 

huntingtin (Zuccato et al., 2001). BDNF is an important neuronal survival factor generated 

by cortical neurones and released within the striatum (Canals et al., 2001). Normal huntingtin 

has also been implicated to play a role in a number of cellular and synaptic processes.

1.3.2 PATHOLOGY

Macroscopic investigation o f HD brains reveals a characteristic reduction in brain size, 

corresponding to an approximate 10-20% reduction in brain weight. Neuronal atrophy occurs 

throughout the cerebral hemispheres, the diencephalon, cerebellum, brainstem and spinal 

cord. The most apparent pathological feature o f the disease is the shrinkage and the marked 

gross pathology o f the caudate nucleus and putamen, with later cortical atrophy. Typically 

around 57% of the cross sectional area o f the caudate nucleus and 65% within the putamen, is 

observed in post-mortem samples (Rubinsztein, 2002).

Microscopically, HD pathology in the striatum shows a marked neuronal loss and increased 

gliosis. Interestingly, the MSNs o f the striatum are the predominant cell type lost in HD, with 

the striatal intemeurones relatively spared (Bruyn, 1979; Roos et al., 1985; Vonsattel et al., 

1985). It is suggested that this selective neuronal loss is a causative factor of the motor and 

cognitive symptoms observed in HD patients (Albin et al., 1989; Crossman, 1987; DeLong, 

1990), and the majority o f the experimental models of HD are based on this pathology and
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target the MSNs using excitotoxins (DiFiglia, 1990). More recently, transgenic models o f HD 

with expanded poly-glutamine repeats have been introduced as an alternative experimental 

model (Rubinsztein, 2002; Mangiarini et al., 1996).

One o f the main cellular consequences o f HD, is the aggregation o f mutant huntingtin into 

intranulcear and extranuclear inclusions (Davies et al., 1997; Davies et al., 1998; DiFiglia et 

al., 1997). These inclusions indicate that mutant huntingtin is processed via different methods 

to normal huntingtin. Although no conclusive answer as to how mutant huntintin can cause 

cell death has yet been given, there is a suggestion that mutant huntingtin can cause 

proteasome dysfunction (Bence et al., 2001; Jana et al., 2001) and altered gene expression via 

transcriptional changes (Boutell et al., 1999; Nucifora, Jr. et al., 2001; Steffan et al., 2000). 

However it is important to note that how inclusions may cause, or be linked with, HD 

pathology is a matter o f debate. Emerging evidence suggests that inclusions may provide a 

neuroprotective role (Zhai et al., 2005; Gauthier et al., 2004), possibly by ‘moping ‘ up the 

toxic mutant huntingtin.

1.3.3 MOTOR SYMPTOMS

The most prevalent o f symptoms observed in HD is the appearance o f involuntary choreiform 

movements, which provide the original namesake o f the disease. Chorea is defined as:

‘A state o f  excessive, spontaneous movements, irregularly timed, randomly distributed and 

abrupt. Severity may vary from  restlessness with mild, intermittent exaggeration o f gesture 

and expression, fidgeting movements o f  the hands, unstable, dance-like gait to a 

continuous flow  o f  disabling, violent movements'

(Barbeau et al., 1981)

Chorea is observed in the majority o f HD patients, and typically increases in severity during 

the initial period o f disease progression. Interestingly, during the later stages o f the disease 

there appears to be a reversal o f motor symptoms towards bradykinesia and rigidity, though 

this reversal often occurs so late on in the disease progression that it becomes masked by the 

final stages o f life.
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The chorea observed in HD patients is present at all times when the patient is awake, and is 

seen to worsen with increased stress. The movements are totally involuntary, regardless of 

any conscious effort the patient may make. Although chorea differs between patients, there is 

a degree o f stereotypical behaviour associated with this condition, such that most patients 

show involuntary facial, neck, thoracic, lumbar and digit movement, all o f which contribute to 

produce the characteristic Huntington’s chorea.

1.3.4 COGNITIVE SYMPTOMS

Typically the cognitive symptoms observed in HD patients are attributed to the broad title of 

“Subcortical dementia”. However, the many facets o f cognitive symptoms observed in HD 

patients are well documented. Such symptoms occur early on in the time course o f the 

disease (Butters et al., 1978) and increase in severity with disease progression. These 

cognitive symptoms are o f the frontal-type and were originally attributed to the later cortical 

pathology observed in HD. However, more recent refinement o f cognitive and behavioural 

tests has led to the acceptance that striatal degeneration and disruption of corticostriatal 

circuits plays a role in the observed cognitive symptoms.

One o f the most marked cognitive symptoms of HD is a deficit in executive function. 

Executive function is a generic term applied to cognitive functions underlying selection, 

sequencing and control o f plans for action. Within the scope of HD, patients seem to 

demonstrate a poor ability to plan and judge complex situations, often making judgements 

based on short term rather than long term goals. Likewise patients demonstrate an impaired 

ability to self-monitor mistakes, even when such errors are relatively apparent to others. 

Patients are often noted as being ‘rigid’ o f thought, preferring routine to adaptation o f 

thought.

Studies conducted by (Backman et al., 1997; Harris et al., 1992), have looked at correlating 

executive function deficits and striatal degeneration. Their findings show a correlation o f 

impaired executive function with striatal atrophy and D1/D2 receptor binding.

1.3.5 LESIONING OF THE RODENT STRIATUM

Early methods o f lesioning the rodent striatum relied on ablative, electrolytic or cryogenic 

techniques. Such lesions presented the undesirable condition where phenotypic effect o f the

- 4 7 -



lesion could not separate destruction o f the striatum or fibres that transversed the structure 

(Laursen 1963).

The introduction o f a number o f excitotoxins revolutionised the used of striatal lesions to 

mimic HD pathology. The first descriptive use o f such excitotoxins was by Coyle and 

Schwarcz (1976), who used the glutamate receptor agonist kainic acid (KA) to make 

selective lesions o f the rodent striatum (Coyle and Schwarcz, 1976). They observed a marked 

atrophy o f the striatum with a 90% loss o f MSNs and large cholinergic neurones, whilst the 

myelinated axons o f corticothalamic fibres o f passage were spared (Coyle and Schwarcz, 

1976). Importantly, the close correlation between the pathology observed in lesioned rodents 

and that of HD patients suggested the KA rodent lesion as a good model of HD. This 

observation was later ratified by Mason and Fibiger (1979), who demonstrated that bilateral 

striatal KA lesions in rodents produced locomotor hyperactivity, which they considered as a 

homologue to human chorea (Mason and Fibiger, 1979).

Since the initial observation that excitotoxins produce HD like pathology, a number o f other 

more selective compounds o f the same class have been developed. In the early 80’s ibotenic 

acid (IA) replaced KA as the excitotoxin o f choice, due to its lower epileptogenic effects. 

Subsequently, the toxin quinolinic acid (QA) has become more popular. As compared to 

previous agents, QA -  at appropriate doses - demonstrates a selective degeneration of MSNs, 

whilst sparing other striatal neuronal types, which better replicates the profile of striatal 

cellular pathology observed in HD patients.

In addition to the excitatory amino acids, a second group of lesion toxins has become popular 

for producing rodent models o f HD. ‘Metabolic’ toxins such as 3-nitroproprionic (3-NP) acid 

reproduce mitochondrial dysfunction, producing pathology by a similar process o f cell death 

to that seen in HD patients (Beal et al., 1993). This compound’s popularity is increased by its 

ability to target the striatum even after peripheral application, preventing the need for 

complex stereotaxic surgery. Although peripheral application results in reduction of neuronal 

metabolism throughout the whole brain, there is a selective degeneration o f striatal neurones 

(Beal et al., 1993; Palfi et al., 1998). With the current understanding of the causes of human 

HD pathology, the 3-NP model o f HD represents a favourable replication o f the pathology of 

the disease, though variability in the lesion size whatever the dosing regime make this model
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of HD less reliable to assess deficits and recovery whether using behavioural, biochemical or 

anatomical techniques.

Functional descriptions o f excitotoxic striatal lesions have been performed using an array o f 

techniques. The most notable characteristic o f QA striatal lesions is the expression o f  a 

behavioural phenotype similar to HD, which contains a number of distinct behavioural 

components.

The most striking behavioural phenotype of excitotoxic lesions is the advent of locomotor 

hyperactivity. Rodents who have received a striatal lesion demonstrate a higher level of 

locomotor hyperactivity (Deckel et al., 1983; Isacson et al., 1984), which is observed to peak 

at night time (Isacson et al., 1986).

Unilateral lesions o f the striatum produced motor asymmetries that can be facilitated 

following injection o f apomorphine or amphetamine. Although the rotation phenomenon was 

has been described in the context o f unilateral nigral lesions (Ungerstedt et al 1970), a similar, 

though less reliable response can be seen following striatal lesions (Schwartz 1979, Dunnett 

1982, Dunnett 1988, Klug 1993). It must be noted however that rotational turning behaviour 

following striatal lesions is not consistent from experiment to experiment and does not 

correlate well to cell loss (Fricker et al., 1996), in contrasts to that seen following nigral 

lesions (Ungerstedt and Arbuthnott, 1970; Ungerstedt, 1971a; Ungerstedt, 1971b).

More recently the use o f more complex behavioural tests has enabled further characterisation 

of striatal lesions. Early studies within the nigral lesion model reported a defecit in paw 

reaching (Hamilton et al., 1985), which was later also reported within the striatal lesion model 

(Dunnett et al., 1988). Subsequently, the paw reaching test developed by Montoya et al 

(1990), requires animals to reach for food pellets, with each paw being confined to one side of 

a staircase apparatus. Unilateral lesions of the striatum disrupt the animals ability to reach for 

food pellets with the contralateral paw (Montoya et al., 1991).

More advanced behavioural testing has permitted the identification of a number of cognitive 

deficits following striatal lesions. It was first demonstrated by Divac et al (1967), that 

selective striatal lesions produced delayed response and alternation deficits in monkeys. 

Further studies have demonstrated this on a number o f different behavioural tasks in rats
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(Divac et al., 1978; Dunnett and Iversen, 1981; Dunnett et al., 1999). More complex 

behavioural testing, using the operant conditioning technique, has further demonstrated that 

lesioning specific sub-sections o f the striatum have differing effects on behavioural 

performance (Brasted et al., 1999a; Fricker et al., 1996). Whilst striatal lesions do not 

interfere with an animals ability to perform the basic operant response o f lever pressing 

(Sanberg et al., 1979), animals do display impaired performance on various operant tasks 

(Brasted et al., 1998; Brasted et al., 1999a; Dobrossy et al., 1995; Dobrossy et al., 1996; 

Dobrossy and Dunnett, 1997). Furthermore, such deficits are more marked following ventral 

striatal lesions, than in medial striatal lesions (Brasted et al., 1999a).

1.3.6 GRAFTING IN RODENT MODELS OF HUNTINGTON’S 

DISEASE

The concept o f transplanting neural tissue from one subject to another as a strategy for repair 

is not a modem one. The first report o f neural transplantation was published by Gilson 

Thompson in 1890, where cortical tissue from adult cats was transplanted into the brain of 

adult dogs. Though Thompson reported living cells a number o f weeks post transplantation, 

with hindsight it is likely that such cells were most likely inflammatory or glial cells, which 

may have been o f host origin. Nevertheless, the first reports o f clearly surviving neurons 

transplanted into the brains o f experimental animals is most likely that of Elizabeth Dunn, 

reporting on 10 years o f studies o f grafting cortical tissues between neonatal rats.

Modem graft techniques utilise the dissociated cell suspension method (Bjorklund et al., 

1983a; Bjorklund et al., 1983b; Dunnett et al., 1983; Schmidt et al., 1983). Although this 

method has been refined over the last two decades, the basic protocol has remained constant 

throughout. For striatal transplants, cells are prepared from the ganglionic eminence (GE) of 

rodent embryos from gestational age E l3-15. This range o f embryonic ages are selected as 

E l4 represents the peak period o f striatal neurogenesis within the ganglionic eminence 

(Marchand and Lajoie, 1986). Following removal, the WGE is subjected to enzymatic 

digestion, and mechanical dissociation to produce a cell suspension that can be injected into 

the host brain.
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The advantages o f the cell suspension technique are that these injections rely on a thin 

injection needle which results in very little surgical damage to the host brain (Bjorklund et al., 

1983a; Nikkhah et al., 1994). Grafts can be placed in multiple sites, using multiple deposits 

o f either the same or different tissue. Furthermore, the use of a cellular suspension means that 

the grafted cells require no special manipulation to ensure vascularisation. Therefore, it is 

possible to implant cell suspensions into deep regions of the host brain, with little surgical 

damage and no need for extensive vascular support.

1.3.7 ANATOMICAL CHARACTERISTICS OF STRIATAL GRAFTS

One o f the most striking characteristics o f striatal grafts is that they form a mosaic patch like 

appearance which was initially considered to reflect the patches and striosomes of the normal 

striatum (Graybiel et al., 1989; Isacson et al., 1985). However, it turns out that the patch 

zones (‘P-Zones’), which comprise roughly 30-50% of the total graft volume, contain cell 

types with a morphology resembling all adult striatal neurones (Clarke et al., 1988a; Helm et 

al., 1990; McAllister et al., 1995). Furthermore, neurones within the P zones stain positive 

for DARPP-32 (Wictorin, 1992) and AChE (Graybiel et al., 1989) and a variety o f other 

markers o f striatal specific neurones (Graybiel et al., 1990).

The remaining 50-70% of the graft volume are termed non-patch zones (‘NP-Zones’). NP 

zones are characterised by not staining positive for either DARPP-32 (Wictorin, 1992) or 

AChE (Graybiel et al., 1989). Cells within NP zones display morphology consistent with the 

adult pallidum, cortex and other non-striatal cell types (DiFiglia et al., 1988; Isacson et al.,

1985). Studies have shown that the cells within this region come from the transplanted 

embryonic cellular suspension (Graybiel et al., 1989; Wictorin, 1992). Therefore the 

existence o f cells o f a non-striatal phenotype in the NP zones has been attributed to the fact 

that both striatal and non-striatal cells originate from the common germinal zone primordium, 

and cannot be differentially dissected based on regional cues alone. Moreover, it has not 

proved possible to sort cells o f different fates so early on in their development, so that 

inclusion o f cells o f a non-striatal phenotype is inevitable within the transplanted cellular 

suspension.
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It has been suggested that graft suspensions prepared from lateral ganglionic eminence 

(LGE), yeild a much higher proportion of striatal tissue within the graft (Pakzaban et al., 

1993). In such cases, it has been reported that up to 90% of the graft volume is occupied by 

P-zones (Pakzaban et al., 1993). However, whilst it is true that the LGE grafts yield a higher 

proportion o f medium spiny neurons in the graft than the whole ganglionic eminence (WGE), 

this dissection excludes many o f the precursors o f intemeurons, which originate in the medial 

ganglionic eminence (MGE) (Olsson et al., 1998).

Embryonic striatal grafts have been shown to undergo a certain amount o f anatomically 

assessed reconnection with the host circuitry. A number o f studies have demonstrated that for 

a certain period o f time post-transplantation, afferent fibres begin to innervate the graft region 

(Pritzel et al., 1986; Wictorin, 1992). Although such transplants receive afferent innervation 

from nearly all o f the input phenotypes, there is a notable variation in the type and density of 

innervation. Cortical and thalamic inputs appear initially to innervate the outer edge of the 

graft densely, with a significantly lower innervation o f the core regions of the graft Wictorin 

(1998). Although over time the fibre ingrowth by such efferents increases, it fails to reach the 

level observed in the intact striatum (Xu et al., 1989). The dopaminergic (DA) afferents from 

the substantia nigra (SN) appear to form patchy innervation o f the transplant (Pritzel et al.,

1986), innervating the striatal-like “P-Zones” compartment selectively (Graybiel et al., 1989), 

with similar density o f innervation to that seen in the normal striatum as the transplant 

matures (Wictorin et al., 1989). Finally, the serotonergic innervation from the mesencephalic 

raphe appears to innervate the whole transplant, and like DA input from the SN, eventually 

reaches similar densities to that observed in the intact striatum (Wictorin, 1992).

Ultrastructural studies have demonstrated that afferent projections form synaptic contacts with 

transplanted neurones, within striatal grafts (Clarke and Dunnett, 1993; Wictorin et al., 1989; 

Xu et al., 1989; Xu et al., 1991a). Whilst it has been shown that the various afferent fibres 

form synaptic contacts with transplanted MSNs, not all o f these synapses are located on the 

correct region o f the post-synaptic neurones. In a study conducted by Xu et al. (1992) 

labelled cortical inputs only form synapses with the spines o f MSNs roughly 50% of the time, 

whereas in the normal striatum over 90% of these contacts are found on the spines. A similar 

disparity was found with inputs from the thalamus (Xu et al., 1991a). It must be noted 

however that in a similar study, Wictorin et al (1989), found that roughly 87% of 

corticostriatal fibres form synaptic contacts on the heads o f spines.
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The concept o f efferent projections from striatal grafts to the host brain was first postulated 

based on evidence gained from biochemical studies. Following excitotoxic lesions, the levels 

of glutamate decarboxylase (GAD) in the SN and GP are greatly reduced (Isacson et al., 

1985). Following transplantation, the levels o f GAD in both the SN and GP increase to 90% 

of that seen in the normal adult brain (Isacson et al., 1985). A later study demonstrated a 

similar result in both the SN and GP, though this time using in vivo push-pull perfusion 

(Sirinathsinghji et al., 1988). Efferent fibres projecting from the graft to the GP were first 

demonstrated by Pritzel et al (1986), although the frequency of this observation was reported 

as being quite rare. Later anatomical studies, using longer survival times and more sensitive 

pathway tracing methods, have demonstrated that striatal grafts send out projections to the 

adjacent GP and to the SN, and form antomically correct synapses (Wictorin et al., 1989; 

Wictorin and Bjorklund, 1989; Wictorin, 1992).

1.3.8 FUNCTIONAL ASSESSMENT OF STRIATAL GRAFTS

Studies by Deckel et al (1983), and Isacson et al (1984), were the first to report a positive 

functional effect o f striatal grafts. These studies demonstrated the motor hyperactivity seen 

post lesion, is significantly reduced following transplantation. Further studies have 

corroborated this observation (Deckel et al., 1986a; Deckel et al., 1986b; Deckel et al., 1988a; 

Deckel et al., 1988b; Isacson et al., 1985; Isacson et al., 1986; Sanberg et al., 1986), whilst 

also demonstrating that transplantation of striatal tissues into the GP (Isacson et al., 1986) or 

using control tissues implanted into the striatum (Sanberg et al., 1986) has no positive effect. 

Moreover, lesioning o f the graft reverses the motor improvement (Sanberg et al., 1986).

As previously described, unilateral lesions o f the striatum produce a rotational like behaviour 

when stimulated by either apomorphine or amphetamine. Following transplantation the 

degree of both spontaneous rotation (Deckel et al., 1988a; Deckel et al., 1988b) and 

stimulated rotation (Dunnett et al., 1988; Fricker et al., 1996; Isacson et al., 1984; Labandeira- 

Garcia et al., 1995; Norman et al., 1989) is reduced. Again, rotational behaviour is not seen 

to be alleviated following transplantation of cortical tissue (Labandeira-Garcia et al., 1995) 

astrocytes, or P zone poor MGE tissue (Nakao et al., 1998).
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As previously described, unilateral lesions o f the striatum disrupt the animals ability to 

perform in the paw reaching tests, and grafts are seen also to alleviate performance of more 

complex motor tasks (Dunnett et al., 1988; Fricker et al., 1997; Montoya et al., 1990). Graft 

induced recovery is only seen following transplantation of WGE cellular suspensions, and not 

following transplantation o f nigral cellular suspensions, or cellular suspensions prepared from 

the MGE (Montoya et al., 1990). Furthermore, the degree o f recovery has been shown to 

correlate with DARPP-32 P zone volume (Nakao et al., 1996). Therefore, it would seem that 

recovery o f skilled motor performance requires functional reconstruction of striatal circuitry.

Graft induced functional recovery o f behavioural performance is not confined to the recovery 

of motor deficits. Studies involving a delayed alternation task in the T-maze have 

demonstrated that grafts improve acquisition and retention of the task (Deckel et al., 1986b; 

Deckel et al., 1988b; Isacson et al., 1986). More precise behavioural analysis using operant 

testing demonstrate a similar recovery on various operant tasks involving delayed response 

and stimulus-response (S-R) associative learning (Brasted et al., 1999b; Dobrossy and 

Dunnett, 1998; Mayer et al., 1992). Therefore, transplanted tissue not only restores the ability 

to perform motor tasks, but also provides a substrate for the re-leaming of motor skills and 

habits, lost post-lesion.

The concept o f “learning to use the graft” was first described by Coffey, et al (1989), within 

the context of retinotectal transplantation. Within the striatal graft environment, “learning to 

use the graft” was first investigated by Mayer et al (1992), and later expanded on by Brasted 

et al (1999). Both studies utilised the Carli S-R task (Carli et al., 1985), to explore the 

learning and retention o f motor skills and habits. Unilateral excitotoxic lesions of the striatum 

disrupt the initiation o f responses on the contralateral side, without affecting the ability to 

respond to the eliciting stimulus (Brasted et al., 1997; Carli et al., 1985). Interestingly, 

following transplantation, S-R performance remains similarly impaired, with no improvement 

compared to that seen post-lesion, when tested 4 (Brasted et al., 1999b) or 6 (Mayer et al., 

1992) months post-surgery. However, further training on the task, whilst lesioned animals 

display no significant improvement over time, grafted animals can now relearn to perform the 

S-R task (Brasted et al., 1999b; Mayer et al., 1992). Therefore, it seems essential that grafts 

not only integrate with the host circuitry to form anatomically appropriate connections, but 

that the transplant itself is retrained on the task. Interestingly, the ability to relearn skills and 

habits lost post-lesion occurs over a similar time period to that required by normal animals to
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learn the task initially. It has therefore been theorised that the transplant itself contains the 

substrates for learning o f motor memory, seen within the normal organism.

1.4 PLAN OF THESIS

Embryonic striatal grafts connect with host striatal circuitry, receiving afferent projection 

from the host cortex, thalamus and SN, and projecting anatomically correct efferent 

connections to host GP. Previous neurochemical analysis has demonstrated that grafts not 

only connect appropriately with the host, but are able to influence host neuronal function, 

restoring the neurochemical balance in target structures. Restoration o f host cortico-striatal- 

pallidal circuits is believed to provide a mechanism for the restoration o f motor performance 

observed post-transplantation.

Interestingly, the phenomenon ‘learning to use the graft’ demonstrates that striatal grafts are 

not only capable o f restoring motor performance, but that the graft itself possibly provides the 

substrate for the ability to re-leam motor skills and habits lost post-lesion. The specific 

question this thesis aims to answer is; does this form of ‘new learning’ use similar 

physiological mechanisms to that seen in the normal striatum?

Learning and memory within the mammalian nervous system has been extensively studied for 

many years, with many theories emerging regarding the cellular mechanisms underlying it. 

To date, synaptic plasticity is considered as the most appropriate model of learning and 

memory within the mammalian nervous system. Therefore, the major theme to be 

investigated within the context o f this thesis is: Do striatal grafts display synaptic plasticity, 

and does such plasticity mimic that seen in the normal striatum?

Firstly, transplanted striatal cells have been show to be physiologically active to host 

stimulation, suggesting that transplanted cells reconnect with the host circuitry to form 

functional host-graft synapses, capable o f transducing afferent stimulation into suitable post- 

synaptic responses. However, whether this activity includes restoration of tonic baseline 

transmission to the lesioned striatum is, as o f yet, not known. Furthermore, whilst it is known 

that striatal grafts express a variety of neurotransmitters seen within the normal striatum, 

limited evidence exists to demonstrate that striatal grafts display pharmacological
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mechanisms o f transmission in keeping with the normal striatum. Experiments presented 

within this thesis will aim to demonstrate that striatal grafts restore baseline transmission, and 

display pharmacological mechanisms of neurotransmission in keeping with the normal 

striatum.

Secondly, the phenomenon o f ‘learning to use the graft’ suggested that striatal grafts display 

cellular mechanisms o f learning and memory, consistent with that seen in the normal striatum. 

Therefore, it is hypothesised that striatal grafts contain the ability to express synaptic 

plasticity, which is considered the most appropriate model of learning and memory in the 

nervous system. Experiments presented within this thesis will aim to demonstrate that striatal 

grafts express synaptic plasticity in keeping with the normal striatum.

Thirdly, synaptic plasticity is critically dependant on the interplay of a number of 

neurotransmitter systems. Within the mammalian nervous system the variety of 

neurotransmitter expression across a number of brain structures provides distinct 

pharmacological mechanisms of synaptic plasticity to specific structures. Therefore, 

experiments presented in this thesis will attempt to investigate the pharmacological 

mechanisms o f graft synaptic plasticity.

Finally, the mammalian brain is at its most plastic during development and following injury. 

Previous experiments have demonstrated that subtle changes in the environment can have a 

functional effect on the adult brain, which is exacerbated following injury. Furthermore, 

changes in environment have been shown to have a significant effect on graft tissue, 

improving motor recovery, biochemical, and morphological characteristics associated with 

graft function. Experiments presented within this thesis will aim to investigate the effect of 

environmental enrichment on graft synaptic plasticity.
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2. GENERAL METHODS

2.1 ANIMALS
Male C57/BL6 mice (Harlan, U.K.), were used as control animals and hosts for 

transplantation. All animals were housed 6 per cage in a temperature (21°C) and humidity 

(50%) controlled room, with a 12h:12h light cycle (lights on during the day). All animals 

were give free access to food A d libitum. All experiments were undertaken in accordance 

with personal and project licenses issued under the UK Animals (Scientific Procedures) Act 

1986.

For graft experiments all donor tissue was collected from the PrP-L-EGFP-L transgenic 

mouse (Feil et al., 1996). This transgenic mouse exhibits endogenous expression of green 

fluorescent protein (GFP) in all cells (Feil et al., 1996).

2.2 SURGERY
For all surgical techniques mice were anaesthetised in an induction chamber by inhalation 

anaesthetic (Isoflurane, Abbott, UK), using O2 and NO as carrier gases, and placed in a 

stereotaxic frame (Kopf Instruments). The animals were kept anaesthetised throughout the 

entire surgical procedure. Prior to regaining consciousness, animals received 5 ml glucose 

saline s.c. in the neck and 0.15 ml diazepam i.m. in the hind leg. A 500 mg paracetamol 

tablet was dissolved in 1 litre o f the drinking water for 48 hours post surgery.

2.2.1 LESIONING OF THE HOST STRIATUM
Unilateral dorsal striatum lesions were made by injecting 2 x 0.24ml o f 0.12M of the 

excitotoxin quinolinic acid (Cambridge Research Biochemicals), dissolved in 0.1 M phosphate 

buffered saline (pH = 7.4), at two depths within the same needle track in the left neostriatum. 

Each injection was administered via a 30 gauge stainless steel cannula connected to a 

microdrive pump, permitting a further 2 min for diffusion. The injection co-ordinates were: 

A= +1.0, L = +1.8, V = 3.1 and 2.5 with measurements in mm anterior (A) in front o f bregma, 

lateral (L) to the midline, vertical (V) below dura, and the nose bar set at the same horizontal 

plane as the interaural line. Please note the two measurements given for vertical positioning 

refer to the dorsal movement o f the cannula for the second injection site.
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2.2.2 H AR V ESTIN G  OF E M B R Y O S AND G RAFT TISSU E

A B
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Figure 2.1 Collection and Preparation of G raft Suspension. (A) Diagrammatic representation 

o f  WGE dissection from the developing embryonic brain. (B) Schematic o f the steps taken to 

produce a cellular suspension from the dissected WGE tissue. Schematic and diagram modified 

from (Dunnett et al., 2000). WGE=Whole Ganglionic Emminence. MGE=Medial Ganglionic 

Emminence, LGE=Lateral Ganglionic Emminence.

Time mated female mice, with embryos at E13 on the day of grafting were killed via terminal 

anaesthesia and decapitation. The abdomen was shaved, then sterilised with betadine 

followed by 70% alcohol. The peritoneum was opened using a vertical midline incision of 

first the skin then the fascia of the abdomen. Each uterine horn was removed in turn, being 

careful not to touch the uterine horn against the mothers skin. These horns were then placed 

in 45ml dissection medium containing 95.5% lx  Dulbecco’s modified Eagle medium 

(DMEM), 2.2% Glucose (30%), 1.6% NaHCOs (7.5%), and 0.5% HEPES (1M).

The uterine horns were transferred to a sterile Petri dish under sterile conditions (dissection 

hood). Embryos were removed one at a time from the uterine horn and placed on their side in 

a second sterile Petri dish containing dissection medium. Measurements of crown-rump 

length were taken, as a method of confirming gestational age of the embryo. The embryos
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were then killed via decapitation. The brains were dissected out under a dissecting 

microscope. The brain was laid out flat on a Petri dish surrounded by ice.

With the brain laid dorsal side up, a longitudinal cut was made across the medial dorsal cortex 

to reveal the striatal primordia. To remove the whole ganglionic eminence (WGE), a 

horizontal cut was made underneath the heart shaped structure. The pieces o f WGE tissue 

were transferred to sterile Eppendorf tubes containing dissection medium and kept on ice. 

Once the tissue pieces had settled they were washed 3-4 times with sterile dissection medium, 

then a trypsin/DNase soltuion containing 0.1% bovine trypsin (Worthington, UK) and 0.05% 

DNase (Sigma, UK) in dissection medium, volume of solution was 1.5ml. This was then 

incubated at 37°C for 20 mins. Following incubation, the trypsin/DNase solution was 

removed and the tissue was washed 4 times with 200pl 0.05% DNase solution. The tissue 

was then mechanically dissociated using a Gilson pipette with yellow tip to obtain a cell 

suspension.

Cell numbers and viability were calculated by the trypan blue dye exclusion method using a 

haemocytometer. Cell suspensions with 95% or over viability were resuspended in DNase 

solution and used for the transplant procedure.

2.2.3 TRANSPLANT PROCEDURE

Seven days post-lesion the mice were brought back to surgery for transplantation of 

embryonic striatal cells. The cells were harvested and prepared on the day o f transplantation.

Mice were anaesthetised with inhalation anaesthetic, and placed in a stereotaxic frame (same 

methods, compounds, and equipment as the lesion surgery). Each animal received 2 x lpl 

aliquots o f graft suspension (approximately 200,000 cells per pi, 400,000 cells per graft), at 

the two lesion injection sites A= +1, L= +1.8, V= 3.1/2.5 and 1.0 = 0.0.
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2.3 ELECTROPHYSIOLOGY

2.3.1 SLICE PREPARATION

Mice were killed via cervical dislocation and decapitated. The brain was quickly removed 

and placed into ice-cold artificial cerebrospinal fluid (aCSF -  composition 126 mM NaCl, 2.5 

mM KC1, 2.5 mM CaCl2, 1.3 mM M gS04, ImM N aH P04, 26 mM N aH C 03 and 11 mM D- 

glucose) which was constantly bubbled with 95% 02/5% C 02 to maintain the pH at 7.4. 

During dissection and subsequent slicing this solution also contained ImM Kynurenic acid 

(Sigma Aldrige, UK), a broad spectrum glutamate antagonist, to protect against excitotoxicity 

during slicing. Sagital sections of 300pm thickness were cut on a vibratome (Leica., GM). 

They were then transferred to a holding chamber containing room temperature aCSF (Same 

composition as above), and incubated for at least 1 hour prior to recording. To 

perform extracellular recording, slices were transferred to a submersion recording chamber. 

During the equilibration period and remainder o f the experiment slices were perfused with 

aCSF at 4m lm in'1 at a temperature o f 31 + 0.5°C. Slices were left in the chamber for 5-10 

minutes to equilibrate before electrode placement.

2.3.2 ELECTRODE PLACEMENT

For all experiments slices were viewed under 50x magnification by a microscope (Olympus, 

UK). Grafts neurones from GFP embryonic tissue were visualised using UV light, under the 

same magnification (see Fig 2.2B).

For all experiments stainless steel monopolar stimulating electrodes, with a tip resistance of 

0.60 MQ (Intracel, UK), were placed in the host corpus callosum 1-2 mm away from the graft 

site (see Fig 2.2A). Recording electrodes were produced from boroscilicate glass capillaries 

(Harvard Apparatus, UK), with an external diameter o f 1.5mm and an internal diameter of 

0.86mm. Glass recording electrodes were pulled using a motorised micropipette puller (Sutter 

Instrument Co., USA), to produce finely pulled glass electrodes, and filled with 1M KC1. The 

glass pulled recording electrode was placed within the core of the graft region (region of 

dense GFP possitve cells) in a ventral location to the stimulating electrode. For control 

experiment where graft tissue was not present, the recording electrode was placed in a ventral 

position to the stimulating electrode, in the same commonly observed region for graft sites.
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Figure 2.2 The Corticostriatal ‘in vitro' graft preparation. (A) Schematical representation o f  

electrode positions within the striatal graft in vitro slice preparation. (B) Photomicrograph 

demonstrating the endogenous GFP fluorescence o f  the transplanted tissue within the striatum.

CTX = Cortex, CC = Corpus Callosum. STR = Striatum.

2.3.3 STIM U LU S AND R ECO RD IN G

In all case, stimuli patterns were generated using a Master 8 pulse generator (Intracel, UK) 

and a Neurolog stimulus isolator (Digitimer, UK). Responses were amplified using a 

differential amplifier (Warner Instrument Corp., USA), and Axoclamp (Axon Instruments, 

UK). Responses were monitored and stored for off-line analysis using custom software 

written in LabView (National Instruments, USA) running on a Macintosh G4 computer.

In all experiments, the initial slope of the fEPSP was used a measure of synaptic strength 

(Anderson et al, 1977). Once a response had been gained, the slice was submitted to a 30 min 

rest period, where the slice was stimulated every 5-10 minutes, until the fEPSP slope became 

stabilised.



2.3.4 EXPERIMENTAL PROTOCOL

Initially, an input/output (I/O) curve was performed. The fEPSP slope was measured 

across a stimulus intensity of 10-100mA, in steps of 10mA. Four stimuli were given 

every 10 seconds for each current intensity. Following I/O curve measurement, the 

slices were subjected to a 5 minute rest period, before an intensity that evoked 

roughly 60% of the maximum response size was selected.

Stimuli were delivered to the slice once every 20sec (square wave pulses, 0.2ms 

duration) until a 20 minute period of response stability was seen. Response stability 

was defined as a >5% response size change over the 20 minute period. This period is 

termed the baseline; as it reflects the fEPSP prior to any changes brought about by 

tetanus or drug application.

Attempts to produce plasticity within both grafted and control tissue were made via 

high frequency stimulation, termed tetanus. Theta-burst stimulation (TBS) 

comprising o f 6 trains, each train consisting of 10 bursts at 5Hz and each burst 

consisting o f 4 pulses at 100Hz, with a pulse width of 0.4ms and an inter-train interval 

of 20s. Following tetanus, slices were stimulated at baseline levels (0.05Hz), and 

recording continued for a further 65 minutes.

2.3.5 DATA ANALYSIS AND STATISTICS

Data was analysed off-line. All data were normalised to a baseline level, which was 

defined as the average response size over the 20 minutes o f baseline stimulation. 

These normalised values were expressed as a percentage of the baseline response 

(Baseline = 100%) and averaged into 2 minute bins. Results are presented as the 

mean result gained ± the standard error o f the mean (SEM).

Multi-factorial analyses of variance were conducted on the data as appropriate, using 

the STATISCTICA statistical package (StatSoft, USA).

62



2.4 HISTOLOGY

2.4.1 PERFUSION AND PREPARATION

Following terminal anaesthesia with sodium pentobarbatone (1ml per Kg), each 

mouse was perfused transcardially with phosphate-buffered saline (PBS; pH 7.4) for 1 

min, followed by 4% paraformaldehyde in 0.1 M PBS over 2 minutes.

Brains were removed, post-fixed in 4% paraformaldehyde for a further 3 hours and 

then immersed in 30% sucrose in PBS, until they sank (-24 hours).

2.4.2 SECTIONING

The tissue was serially sectioned at 50pm on a freezing microtome. The sections were 

stained either in a free floating or in a mounted state. (See Appendix 1 for detailed 

protocols)

2.4.3 STAINING

2.4.3.1 Immunohistochemistry

For immunohistological staining all sections were stained free floating in groups of 

roughly 10 sections per ‘Grenier pot’ and kept on an orbital shaker at all times.

Sections were initially subjected to a 5 minute quench period (See appendix 1 for 

solution details), before being washed in TBS three times for ten minutes each period. 

An initial blocking step, whereby all sections were incubated at room temperature in a 

3% concentration o f ‘normal’ serum made up in TXTBS. ‘Normal’ serum 

corresponds to the species o f animal the secondary antibody was raised in. Following 

the blocking step all section were transferred, without washing, to a solution 

containing the primary antibody (See Table 2.1 for concentrations and suppliers), 1% 

‘normal’ serum, with the final concentration made up in TXTBS. Sections were 

incubated for a period o f 48 hours at 4°C.

Once primary antibody incubation had been completed, sections were submitted to a 

second 3x10 minute TBS wash, before being subjected to a two hour incubation with
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a IgG conjugated secondary antibody (See Table 1 for concentrations and suppliers). 

Once secondary antibody incubation had been completed, sections were submitted to 

a third 3x10 minute TBS wash, before being treated with a DAKO streptavidin kit for 

two hours (DAKO, Denmark). Sections were then subjected to a further two separate 

washes, first with TBS (3x10 minutes), then with TNS (2x5 minutes). Following this 

all sections were incubated in DAB at room temperature for revelation of antibody 

reaction.

Stained free floating sections were serially mounted on gelatinised slides, air dried 

overnight, and dehydrated via an ascending series o f alcohol concentrations, finishing 

in a 5 minute xylene incubation. Mounted dehydrated sections were rapidly 

coverslipped with DPX.

P rim ary
A n tib od y

R aised
In

D ilu tion B lock
Seru m

S eco n d a ry
A n tib od y

D ilu ation S u p p lier

Anti-TH M ouse 1:1000 Horse Horse
A nti-M ouse

1:200 C hem icon
U K

Anti-GFP Rabbit 1:1000 Goat Goat
A nti-rabbit

1:200 C hem icon
UK

A nti-D 32 M ouse 1:30000 Horse Horse
A nti-M ouse

1:200 Cornell Uni 
U SA

T ab le  2.1 P r im ary  and  S econ d ary  an tib od y  D etails. The above table dem onstrates the dilutions and 

suppliers for all antibodies used during im m unhistochem ical experiments

2.5 Common Post-Mortem Histological Analysis of Graft Survival Within the In 

Vitro Slice

For all the experimental groups presented within this thesis, a sample of the 

experimental population was processed for post-mortem histological analysis. 

Routing histological staining for GFP, and DARPP-32 was performed in order to 

clearly demonstrate that transplanted embryonic GFP positive WGE tissue survives 

transplantation, and demonstrates similar histological properties to that seen with 

embryonic WGE tissue from the normal striatum.

The following histological images provide examples of the results from the routine 

histological analysis.
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Fig 2.3 Inununohistochemical Staining For GFP. The above photomicrographs demonstrate 

immunohistochemical staining for GFP in post-mortem sections from E13 GFP WGE grafted animals. Scale 

bar = 4mm (5x) =1 mm (1.25x)
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Fig 2.4 Immunohistochemical Staining For DARPP-32. The above photomicrographs demonstrate 

immunohistochemical staining for DARPP-32 in post-mortem sections from E13 GFP WGE grafted animals. 

Scale bar = 4mm (5x) = 1 mm (1.25x)
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Fig 2.5 Immunohistochemical Staining For TIL The above photomicrographs demonstrate 

immunohistochcmical staining for TH in post-mortem sections from E13 GFP WGE grafted animals. Scale bar 

= 4mm(5x) =lmm (1.25x)
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2.5.1 Discussion of Post-Mortem Anatomical Studies

Previous histological analysis o f embryonic striatal grafts has revealed that 

transplanted striatal tissue not only survives and develops post transplantation, but is 

also capable o f forming functional synapses with the host striatal circuitry. Within the 

context of this thesis, it is essential to demonstrate that transplantation of embryonic 

striatal tissue, from GFP transgenic animals, displays anatomically similar grafts to 

those seen from transplantation of normal striatal tissue.

Immunohistochemical staining for GFP demonstrates that all transplanted cells stain 

possitive, whilst cells from the host striatum show no immunoreactivity. 

Furthermore, within there are regions of dense GFP immunoreactivity, which when 

examined under high power microscopy correspond to large bundles o f dendritic 

fibres. Therefore, transplanted embryonic GFP positive cells not only survive post­

transplantation but also display a large degree of dendritic branching and arborisation.

Immunohistochemical staining for DARPP-32 reveals regions of positive and 

negative immunoreactivity with GFP WGE grafts. Histological analysis of 

embryonic striatal grafts prepared from normal striatal WGE tissue display similar 

DARPP-32 immunoreactive patterns. As previously described, patches which stain 

positive for DARPP-32 display cells which appear morphologically similar to the 

MSNs o f the normal striatum, and are termed ‘P-zones’. Patches o f the graft which 

stain negative for DARPP-32 contain cells which appear morphologically similar to 

host cortical or pallidal cells, and are termed ‘NP-Zones’. Within the context of this 

thesis, it was impossible to distinguish between ‘P-zones’ and ‘NP-zones’ within the 

in vitro graft slice preparation, as all transplanted cells, regardless of phenotype, 

display endogenous GFP fluorescence. Though steps were taken to recover slices 

post-recording, and perform post-mortem histological analysis, such attempts failed to 

yield any suitable histological findings. Therefore, all electrophysiological recordings 

performed within this thesis are undertaken without the ability to distinguish between 

‘P-zones’ and ‘NP-zones’, though it must be noted that all recordings were performed 

within the GFP positive graft region.
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Finally immunohistochemical staining for TH demonstrates that whilst the lesioned 

striatum demonstrates positive immunoreactivity for TH, the graft region is mainly 

devoid o f any dopaminergic input from the SN. Interestingly there are dense patches 

of TH immunoreactivity surrounding the graft region and the presence of a small 

number o f TH immunoreactive fibres within the graft.
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3. ‘FUNCTIONAL INTEGRATION’ OF 

EMBRYONIC STRIATAL GRAFTS

3.1 INTRODUCTION

Embryonic striatal grafts have been shown to receive efferent projections from the 

host prefrontal cortex, thalamus, SN, and RN, forming anatomically correct synapses 

(Clarke et al., 1988b; Clarke et al., 1988a; Clarke and Dunnett, 1993; Wictorin et al., 

1988b; Wictorin et al., 1989; Wictorin, 1992). Furthermore, embryonic striatal grafts 

project fibres to the host GP and SN (Wictorin et al., 1988a; Wictorin et al., 1988b; 

Wictorin et al., 1989; Wictorin and Bjorklund, 1989; Wictorin, 1992), where they 

form anatomically correct synapses (Wictorin et al., 1988a; Wictorin and Bjorklund, 

1989; Wictorin, 1992), capable of influencing neurotransmission (Sirinathsinghji et 

al., 1988). Therefore, it would seem that embryonic striatal grafts are capable of 

integrating with the host striatal circuitry (Dunnett, 1994). Furthermore, such 

integration has been shown to include a number o f correlates of neuronal function 

(Dunnett, 1994), including restoration of neurotransmission (Rutherford et al., 1987; 

Siviy et al., 1993; Surmeier et al., 1992b; Wilson et al., 1990; Xu et al., 1991b).

Only a handful o f studies exist in which electrophysiological recordings have been 

made from embryonic striatal grafts. Rutherford et al (1987) were the first to report 

that transplanted embryonic striatal neurons (TSNs) are physiologically active post­

transplantation. Using the in vitro slice preparation, they reported that following 

stimulation o f the host cortex, it was possible to detect EPSPs from TSNs (Rutherford 

et al., 1987). Although EPSPs from TSNs resembled those from MSNs o f the normal 

striatum, the authors noted that on average EPSPs from TSNs appeared smaller than 

those from MSNs. Later studies conducted in vivo demonstrate that TSNs are also 

responsive to stimulation o f the host thalamus (Wilson et al., 1990; Xu et al., 1991b). 

However, the authors report that following stimulation of either the host cortex or 

thalamus does not result in the exclusive expression of EPSPs, and that TSNs are also 

capable o f expressing IPSPs (Wilson et al., 1990; Xu et al., 1991b). There appears to 

be no apparent discrimination between expression o f EPSP or IPSP, save that 

immediately following impalation of a cell for intracellular recordings there is an
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immediate predominate expression of IPSPs (Wilson et al., 1990; Xu et al., 1991b). 

The expression o f these immediate IPSPs only lasts for a few minutes, disappearing 

gradually to reveal the predominant expression of EPSPs. Due to the higher level of 

IPSP expression in neonatal MSNs, it has been speculated that the indiscriminate 

expression of IPSPs in TSNs may reflect certain mechanisms of their immaturity. 

Interestingly, it has been shown that certain voltage sensitive potassium currents, 

which are regulated over development, are similar to those seen in normal MSNs 

(Surmeier et al., 1992b). However, studies by Siviy et al (1993), demonstrate that 

TSNs display enhanced NMDA mediated transmission (Siviy et al., 1993). Such 

enhanced NMDA mediated transmission has been shown to exist in neonatal MSNs 

(Siviy et al., 1991), which would argue for a more neonatal phenotype.

The most striking difference between MSNs and TSNs is that TSNs appear to lack the 

rhythmic depolarizing cycles between “Up” and “Down” states (Xu et al., 1991b) 

which in the intact striatum is thought to play a critical role in priming subsections of 

the striatum for burst firing of action potentials (Wilson and Groves, 1981). Though 

TSNs display a lack o f this rhythmic depolarisation, burst firing o f action potentials 

has been observed following artificial depolarisation (Xu et al., 1991b). This would 

suggest a pre-synaptic mechanism for this observed phenotype.

Whilst a number o f studies have demonstrated that TSNs are responsive to host 

stimulation (Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 1992b; Wilson 

et al., 1990; Xu et al., 1991b), little is known regarding the ‘functional integration’ of 

TSNs into the host striatal circuitry. Specifically, it is unclear if  striatal grafts 

‘functionally integrate’ to a degree where they are able to express baseline 

transmission. Furthermore, though anatomical and molecular studies have 

demonstrated that grafts express receptors and proteins associated with normal striatal 

function, it is unknown whether such connection with the host projection systems 

recapitulates functionally what is seen in the normal striatum.

The studies presented in this chapter aim to investigate the physiological and 

pharmacological mechanisms underlying the restoration of cortico-striatal baseline 

transmission, in striatal grafts.
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3.2 METHODS

Experiments were performed as described in the general methods chapter, with 

additional details here:

All control animals in all five experiments were 10-14 weeks of age at time of testing. 

All grafted animals were 4-6 weeks o f age at point of transplantation, 10-14 weeks of 

age at time o f experimentation, with a graft age of 6-8 weeks.

3.2.1 Experiment 1: TSNs are Physiologically Active To Host Stimulation

Animals were divided into two groups: Control (n=12) and Graft (n=10). For sharp 

electrode recordings TSNs were impaled under visual guidance following positive 

identification for GFP fluorescence.

3.2.2 Experiment 2: Restoration o f Baseline Transmission

Animals were divided into two groups: Control (n=28) and Graft (n=33). Baseline 

recordings were performed as previously detailed in the general methods.

3.2.3 Experiment 3: Glutamatergic Characterisation

Animals were divided into six groups: Control CNQX (n=6), Graft CNQX (n=5), 

Control APV (n=6), Graft APV (n=6), Control APV Zero Mg2+ (n=7), and Graft 

APV Zero Mg2+ (n=8). For The CNQX experiments a normal aCSF perfusate 

solution was used. Following an initial 20 minute baseline lOpM CNQX was applied 

to the perfusate solution and the response to the drug was measured over a 60 minute 

period. For the APV experiments a normal aCSF perfusate solution was used. 

Following an initial 20 minute baseline 30pM APV was applied to the perfusate 

solution and the response to the drug was measured over a 60 minute period. For the 

zero magnesium APV experiments a zero magnesium aCSF perfusate solution was 

used, to ensure activation o f NMDA receptors. Following an initial 20 minute
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baseline 30pM APV was applied to the perfusate solution and the response to the 

drug was measured over a 60 minute period.

3.2.4 Experiment 4: GABAergic Characterisation

Animals were divided into two groups: Control BIC (n=6), and Graft BIC (n=5). 

Throughout all experiments normal aCSF perfusate was used. Following an initial 20 

minute baseline 30pM Bicuculline was applied to the perfusate solution and the 

response to the drug was measured over a 60 minute period.

3.2.5 Experiment 5: Monoamergic Characterisation

Animals were divided into four groups: Control SCH 23390 (n=8), Control SULP 

(n=9), Graft SCH 23390 (n=8), and Graft SULP (n=9). Throughout all experiments 

normal aCSF perfusate was used. For the SCH 23390 experiments an initial 20 

minute baseline lOpM SCH 23390 was applied to the perfusate solution and the 

response to the drug was measured over a 60 minute period. For the SULP 

experiments an initial 20 minute baseline 3pM Sulpiride was applied to the perfusate 

solution and the response to the drug was measured over a 60 minute period.
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3.3 RESULTS

3.3.1 Experiment 1: TSNs are Physiologically Active To Host Stimulation
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Figure 3.1 TSNs Respond to  Host Stimulation. (A) Histogram representation o f  the 

frequency o f distribution o f  the absolute size o f  EPSPs measured from TSNs and MSNs .

(B) Mean histogram plot o f the average EPSP size recorded from M SNs and 

TSNs. (C) Example EPSP trace recorded from TSNs and MSNs following 50mA 

stimulation o f  the host corticostriatal fibres, during sharp electrode recordings.

Figure 3.1C demonstrates an example EPSP trace from a MSN of the normal striatum, 

and a TSN, following stimulation of the host corticostriatal fibres, during sharp 

electrode recordings. EPSPs evoked from both MSNs and TSNs appear visually 

similar, although it must be noted that TSN evoked EPSPs are on average smaller 

than those evoked from MSNs. Figure 3 .2A demonstrates a frequency distribution 

plot of the size of the EPSP gained during intracellular sharp electrode baseline 

recordings (50mA stimulation) from either MSNs or TSNs, and is summarized in the 

averaged histogram (Fig 3. IB). In total 35 MSNs from 12 control animals, and 28 

TSNs from 10 grafted animals expressed EPSPs. There is a higher frequency of TSNs 

expressing basal EPSPs of lower than 0.8mV of magnitude. Basal EPSPs evoked 

from MSNs show an average EPSP size of 0.8369mV +0.007mV, which is 

significantly larger than the average EPSP size for TSNs which is 0.7154mV 

+0.008mV (Groups, t< i9 4 5 ) = 3 2 .8 1 ,  p=0.00).
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3.3.2 Experiment 2: Restoration o f Baseline Transmission

•  Control (n=28) 
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Figure 3.2 Restoration of Baseline Transmission The above time plots demonstrate 

baseline extracellular recordings from Control (n=28) and Graft (n=33) animals. All data 

are normalised to their respective averaged 1EPSP size across the whole 60 minute 

recording period. Insert traces display examples o f  fEPSPs taken from graft and control 

recordings.

Following basal stimulation of the host corticostriatal fibres it is possible to 

detect fEPSPs from the graft region (Fig. 3.2). Example traces (Insert) taken 

from control and graft based recordings demonstrate that graft fEPSPs appear 

visually similar to those recorded from the control striatum, albeit consistently 

smaller than that seen in control recordings. Both control and graft basal 

recordings demonstrate that following consistent basal stimulation there is no 

significant difference in size of the normalised fEPSP between graft and control 

recordings over time (Groups, F(i,59)=0.79, p=0.71, n.s.).
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Figure 3.3 Input/Output Curves. Stepped increases in input current (Input) are plotted 

against the size o f  the IEPSP (Output), under both normal conditions (A), and in the 

presence o f 30fiM  Bicuculline (B).

Input/Ouput curves generated from control and graft recordings demonstrate that 

under normal conditions, and below 4mA stimulation, both control and graft fEPSPs 

show no significant difference in the size of the fEPSP (Fig. 3.3A) (Groups, t(28)=0 03, 

p=0.97 n.s.). However, over stimulation intensities greater than 5mA, there is highly 

significant difference between the size o f the fEPSP evoked from control and graft 

recordings (Groups, T (28)=5 .48, p=0.00), with control fEPSPs being of a greater size 

than those evoked from the grafts.

Following application of 30/iM bicuculline there is no significant difference in the 

size of the fEPSP between graft and control recordings, below 7mA stimulation (Fig. 

4.3B) (Groups, T(28)=0024, p=0.98 n.s.). However, at stimulation intensities of 7mA 

and above a significant difference occurs in the size of the fEPSP between graft and 

control recordings (Groups, T(28)=3.17, p=0.01), with control fEPSPs being of a 

greater size than their graft counterparts.
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3.3.3 Experiment 3: Glutamatergic Characterisation
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Figure 3.4 Effect of CNQX on Baseline Transmission. (A ) All data are normalized to 

their respective baseline and plotted against time. It can be clearly seen that application 

o f  lOftM CNQX results in a reduction in the size o f  both graft and control fEPSPs. (B) 

Mean reduction in fEPSP size following application o f  10/iM CNQX. (C) Example 

fEPSP traces for control and graft recording prior to. and during, application o f 10/tM 

CNQX.

Figure 3.4 demonstrates the effect of CNQX on graft and control transmission. 

Example fEPSP traces (Fig. 3.4C), demonstrate that application of CNQX causes a 

reduction in the size of both control and graft evoked fEPSPs. Prior to administration 

of CNQX a twenty minute baseline is recorded, for the remainder of the experiment 

all data points are normalized to their averaged baseline, respectively. There is no 

significant difference in the normalized responses during the baseline period (Groups, 

F(i,ii)=2.13, p=0.17, n.s.). Application of 10/tM CNQX to the aCSF perfusion 

medium produces a significant decrease in the size of the fEPSP; Graft CNQX (n=6) 

45.51% + 0.78% of baseline, Control CNQX (n=6) 43.47% + 2.62% of baseline, with 

no significant difference in the size of the response during application of 10/tM 

CNQX in both graft and control recordings (Groups, F(i,np0.89, p=0.36, n.s.). 

Figure 3 .4B demonstrates a histogram plot of the mean size of the fEPSP evoked from 

both control and graft recordings during baseline conditions and during application of 

10/tM CNQX.
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Figure 3.5 The Kffect of APV on Control and Graft Transmission. (A) All data are 

normalized to their respective baseline and plotted against time. It can be clearly seen 

that application o f  30/iM APV results in no reduction in the size o f  both graft and control 

fEPSPs. (B) Mean reduction in fEPSP size following application o f  30/iM APV. (C) 

Example fEPSP traces for control and graft recording prior to. and during, application o f  

30/iM APV.

Figure 3.5 demonstrates the effect of APV on graft and control transmission. 

Example fEPSP traces (Fig. 3.5C), demonstrate that application of APV causes no 

visible effect on both control and graft evoked fEPSPs. Prior to administration of 

APV a twenty minute baseline is recorded, for the remainder of the experiment all 

data points are normalized to their averaged baseline, respectively. There is no 

significant difference in the normalized responses during the baseline period (Groups, 

F(i,ii)=0.21, p=0.65, n.s.). Application of 30/iM APV to the aCSF perfusion medium 

has no significant effect on the size of the fEPSP; Graft APV (n=8) 99.94% + 0.994% 

of baseline, Control APV (n=7) 100.14% + 1.16% of baseline, with no significant 

difference in the size of the response during application of 30/iM APV in both graft 

and control recordings (Groups, F(U3p4.02, p=0.065, n.s.). Figure 3.5B demonstrates 

a histogram plot of the mean size of the fEPSP evoked from both control and graft 

recordings during baseline conditions and during application of 30/iM APV.
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Figure 3.6 The Effect of APV on Control and Graft Transmission. (A) All data are 

normalized to their respective baseline and plotted against time. (B) Mean reduction in 

fEPSP size following application o f 30/iM APV. (C) Example fEPSP traces for control 

and graft recording prior to, and during, application o f  30/iM APV.

Figure 3.6 demonstrates the effect of 30/iM APV on graft (n=6) and control (n=6) 

transmission, under conditions where magnesium is omitted from the perfusate 

solution. Example fEPSP traces (Fig. 3.6C), demonstrate that application of 30/iM 

APV causes a visible reduction in the size of both graft (n=6) and control (n=6) 

fEPSPs. Prior to administration of 30/iM APV a twenty minute baseline is recorded, 

for the remainder of the experiment all data points are normalized to their averaged 

baseline, respectively. There is no significant difference in the normalized responses 

during the baseline period (Groups, F(i,io)=1.00, p=0.33, n.s.). Application of 30/iM 

APV to the aCSF perfusion medium results in a significant reduction in the size of the 

fEPSP; Graft APV (n=6) 76.60% ± 1.57% of baseline, Control APV (n=6) 73.04% ± 

1.43% of baseline, with no significant difference in the level of depression observed 

in both graft (n=6) and control (n=6) recordings following application of 30/tM APV 

(Groups, F(i(io)=16.06, p=0.002.). Figure 3.6B demonstrates a histogram plot of the 

mean size of the fEPSP evoked from both control and graft recordings during baseline 

conditions and during application of 30/tM APV.
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3.3.4 Experiment 4: GABAergic Characterisation
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Figure 3.7 The Effect of 30 gM Bicuculline on Control and Graft Transmission. (A)

All data are normalized to their respective baseline and plotted against time. Dashed line 

represents the baseline value. (B) Mean reduction in IEPSP size following application 

o f  30/tM Bicuculline. (C) Example fEPSP traces for control and graft recording prior 

to. and during, application o f  30/iM Bicuculline.

Figure 3.7 demonstrates the effect of 30/iM bicuculline on graft (n=5) and control 

(n=6) transmission, under normal physiological conditions. Example fEPSP traces 

(Fig. 3.7C), demonstrate that application of 30/iM bicuculline causes a visible 

increase in the size of both control (n=6) and graft (n=5) fEPSPs. Prior to 

administration of 30/iM bicuculline a twenty minute baseline is recorded, for the 

remainder of the experiment all data points are normalized to their averaged baseline, 

respectively. There is no significant difference in the normalized responses during the 

baseline period (Groups, F(i 9)=0.58, p=0.46, n.s.). Application of 30/iM bicuculline 

to the aCSF perftision medium causes a gradual significant increase in the size of the 

fEPSP; Graft BIC (n=5) 131.12% ± 4.10% of baseline, Control BIC (n=6) 129.07% ± 

5.94% of baseline, with no significant difference in the level of potentiation observed 

in both graft (n=5) and control (n=6) recordings following application of 30/iM 

bicuculline (Groups, F(i,9)=0.73, p=0.412, n.s.). Figure 3.7B demonstrates a 

histogram plot of the mean size of the fEPSP evoked from both control and graft 

recordings during baseline conditions and during application of 30/iM bicuculline.
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3.3.5 Experiment 5: Monoamergic Characterisation
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Figure 3.8 The Effect of 3/zM Sulpiride on Control and Graft Transmission. (A)

All data are normalized to their respective baseline and plotted against time. Dashed line 

represents baseline. (B) Histogram plot o f  the mean size o f  the fEPSP pre- & during 

application o f  3gM  sulpiride. (C) Example fEPSP traces for control and graft recording 

prior to, and during, application o f 3/rM sulpiride.

Figure 3.8 demonstrates the effect of 3/tM sulpiride, a D2 antagonist, on graft (n=9) 

and control (n=9) transmission, under normal physiological conditions. Example 

fEPSP traces (Fig. 3.8C), demonstrate that application of 3/iM sulpiride causes no 

visible effect on both control (n=9) and graft (n=9) fEPSPs. Prior to administration of 

sulpiride a twenty minute baseline is recorded, for the remainder of the 

experiment all data points are normalized to their averaged baseline, respectively. 

There is no significant difference in the normalized responses during the baseline 

period (Groups, F(ii6)=0.06, p=0.79, n.s.). Application of 3/iM sulpiride to the aCSF 

perlusion medium has no significant effect on the size of the fEPSP; Graft SULP 

(n=9) 101.10% + 3.40% of baseline, Control SULP (n=9) 99.40% + 0.54% of 

baseline, with no significant difference in the size of the response during application 

of 3/iM sulpiride between graft (n=9) and control (n=9) recordings (Groups, 

F(i,i6)=0.22, p=0.64, n.s.). Figure 3.8B demonstrates a histogram plot of the mean size 

of the fEPSP evoked from both control (n=9) and graft (n=9) recordings during 

baseline conditions and during application of sulpiride.
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Figure 3.9 Effect of 10/iM SCH 23390 on Baseline Transm ission. (A) A ll data are 

normalized to their respective baseline and plotted against time. (B) Mean reduction in 

fEPSP size following application of 10/rM SCH 23390. (C) Example fEPSP traces for 

control and graft recording prior to, and during, application o f  10/xM SCH 23390.

Figure 3.9 demonstrates the effect of 10/iM SCH 23390, a D1 antagonist, on graft 

(n=8) and control (n=8) transmission. Example fEPSP traces (Fig. 3.9C), demonstrate 

that application of 10/iM SCH 23390 causes no visible reduction in the size of control 

(n=8) fEPSPs, whilst showing a visible reduction in the size of graft (n=8) fEPSPs. 

Prior to administration of 10/iM SCH 23390 a twenty minute baseline is recorded, for 

the remainder of the experiment all data points are normalized to their averaged 

baseline, respectively. There is no significant difference in the normalized responses 

during the baseline period (Groups, F(i,i4)=2.54, p=0.132, n.s.). Application of 10/iM 

SCH 23390 to the aCSF perfusion medium has no significant effect on the size of 

control (n=8) fEPSPs, but does cause a significant reduction in the size of graft (n=8) 

fEPSPs; Graft SCH 23390 (n=8) 57.57% ± 6.81% of baseline, Control SCH 23390 

(n=8) 103.16% + 3.60% of baseline (Groups, F(i,i4)=35.12, p=<0.005.). Figure 3.9B 

demonstrates a histogram plot of the mean size of the fEPSP evoked from both 

control (n=8) and graft (n=8) recordings during baseline conditions and during 

application of 10/iM SCH 23390.
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3.4 DISCUSSION

The data presented in this chapter demonstrates that TSNs become integrated with the 

host striatal circuitry, and in doing so are physiologically active to host stimulation, 

restore baseline transmission, and display pharmacological mechanisms consistent 

with, though not in every respect a replicate of, the normal striatum.

3.4.1 Transplanted Striatal Cells are Physiologically Active

A number o f previous studies have shown that TSNs are physiologically active 

(Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 1992b; Wilson et al., 1990; 

Xu et al., 1991b), and responsive to stimulation of the host cortex (Rutherford et al., 

1987; Siviy et al., 1993; Surmeier et al., 1992b; Wilson et al., 1990; Xu et al., 1991b), 

or thalamus (Xu et al., 1991b). The data presented in this chapter further corroborates 

these findings.

At four weeks post-transplantation it is possible to detect EPSPs from TSNs following 

stimulation o f the host cortex. However, at this point in the post-transplantation 

period only a proportion of the cells tested exhibited EPSPs following stimulation of 

the host cortex, suggesting that only a proportion of TSNs receive functional 

innervation from the host corticostriatal projection. Interestingly, visual observations 

as to the location of TSNs responsive to host stimulation suggests that such 

‘connected’ cells seem to cluster within the ‘periphery’ o f the graft, whilst the ‘core’ 

regions display a lower probability o f obtaining ‘connected’ TSNs. Interestingly, as 

the graft develops over the post-transplantation period (4-8 weeks post­

transplantation) the probability of obtaining ‘connected’ TSNs from the ‘core’ region 

increases. This apparent gradient in the functional innervation of the graft has been 

shown previously via immunohistochemical tracing o f host afferent fibres innervating 

the graft (Clarke and Dunnett, 1990; Clarke and Dunnett, 1993; Wictorin et al., 

1988b; Wictorin et al., 1989; Wictorin, 1992). It has been shown following 

transplantation that host afferent fibres first innervate the ‘periphery’, before 

innervating ‘core’ regions later on in post-transplantation development. Beginning at 

roughly 6 weeks post-transplantation nearly all TSNs are responsive to localised 

stimulation o f the graft tissue, with a high proportion also responsive to host
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corticostriatal stimulation. Interestingly, studies conducted in vivo report that at 6 

months post-transplantation nearly all TSNs are responsive to stimulation of either the 

host cortex or thalamus (Xu et al., 1991b). Therefore, it appears that ‘functional 

connection’ between the graft and host circuitry begins at 4 weeks post­

transplantation, increasing to innervate most of the graft region over 4-24 weeks post­

transplantation.

TSNs display similar current-voltage relationships to MSNs, baring a high input 

resistance seen in TSNs, suggesting that differences in the ionic mechanisms of TSN 

excitability, may contribute to, but do not fully account for the differences in the 

average EPSP size. The most logical explanation for the decreased EPSP size 

observed from TSNs is the decreased ‘functional innervation’ of the graft, when 

compared to the normal striatum. As previously mentioned, innervation o f the graft 

develops over the post-transplantation period, though never recapitulates that seen in 

the normal striatum. Specifically, a decreased level of corticostriatal innervation of 

the graft would result in a lower level o f excitation delivered to the TSN, which in 

turn may result in a lower level o f excitation and the expression of smaller EPSPs. 

Furthermore, anatomical studies have shown that striatal grafts demonstrate a 

decreased level o f “Point-to-Point” innervation (Wictorin et al., 1989; Wictorin, 1992; 

Wilson et al., 1990; Xu et al., 1989; Xu et al., 1991a), where between 20-50% of 

excitatory synapses from the corticostriatal projection synapse with the shaft of TSN 

dendritic spines, rather than the head (Wictorin et al., 1989; Wictorin, 1992; Wilson et 

al., 1990; Xu et al., 1989; Xu et al., 1991a). The functional consequences o f such 

incorrectly targeted synaptic contacts on TSNs in unknown. However, a decreased 

level of excitatory innervation o f the graft, coupled with a reduction in “Point-to- 

Point” connection could explain why TSNs express smaller EPSPs than MSNs. 

Interestingly, direct stimulation of the graft region surrounding a TSN increase the 

size of the EPSP, though such EPSPs never reach the same magnitude as those 

recorded from MSNs. Therefore, although decreased excitatory drive and “Point-to- 

Point” connection could be responsible for the observed differences, other 

irregularities within TSNs (Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 

1992b; Wilson et al., 1990; Xu et al., 1991b) must contribute. A number o f studies 

have reported that TSNs display ionic characteristics attributed to immature striatal 

neurones (Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 1992b; Wilson et
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al., 1990; Xu et al., 1991b). However, other studies have demonstrated that TSNs 

display ionic mechanisms consistent with a more adult phenotype (Surmeier et al., 

1992b). Nevertheless, it remains clear that although TSNs integrate with the host 

circuitry, the host-graft corticostriatal synapses are not as functionally strong as those 

seen in the normal striatum.

Extracellular field potential recordings enable a greater understanding of the 

physiological characteristics of networks o f TSNs. Field potential recordings 

demonstrate similar findings, regarding the size of the fEPSP, as that seen during 

intracellular recordings. fEPSPs elicited from striatal grafts are on average much 

smaller in size than those recorded from the normal striatum. Furthermore, when 

probing graft tissue for extracellular recordings there are distinct regions o f the graft 

that do not show any form of excitatory response. However, unlike the 

electrophysiological ‘dead zones’ seen during intracellular recordings, these ‘dead 

zones’ are not uniformly divided into ‘periphery’ and ‘core’ regions of the graft, and 

are randomly located within the graft boundary. Furthermore, though these regions of 

the graft are non-responsive to host stimulation, fEPSPs can be detected following 

local stimulation o f the graft tissue. However, such fEPSPs are exceptionally small 

(0.25-0.34mV), and display no stable response over time.

There are a number of possible explanations for the electrophysiological ‘dead zones’ 

seen in striatal grafts. Firstly, corticostriatal innervation of the graft is not uniform 

over the whole graft area (Wictorin et al., 1988b; Wictorin et al., 1989; Wictorin, 

1992). It is plausible that the regions o f the graft which are non-responsive may 

correspond to regions o f low corticostriatal innervation. Therefore, stimulation of the 

host corpus callosum many not activate sufficient fibres to result in the expression of 

fEPSPs from the ‘dead zones’, whilst localised stimulation may activate enough 

afferent fibres to result in the expression of fEPSPs. A second important factor to 

consider is the mosaic localisation of cells of striatal phenotype within the graft 

region. It has been shown that following transplantation cells or a striatal phenotype 

cluster into zones (‘P-zones’), whilst cells of a non-striatal phenotype cluster into 

other zones (‘NP-zones’). Within the eGFP transplant model used during the 

experiments presented here GFP is expressed in neuronal cells (Feil et al., 1996), and 

therefore it is impossible to distinguish between ‘P-zones’ and ‘NP-zones’, at the time
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of placing electrodes. Therefore, it is possible that the electrophysiological ‘dead 

zones’ may correspond to ‘NP-zones’ where the cells are o f a cortical and pallidal 

phenotype (Graybiel et al., 1989). It has been shown in anatomical studies that 

innervation of the graft region favours the ‘P-zones’ over the ‘NP-zones’ (Wictorin et 

al., 1988b; Wictorin et al., 1989; Wictorin, 1992). Furthermore, expression of 

receptors and neuro-peptides found within the normal striatum is much denser within 

the ‘P-zones’ than the ‘NP-zones’ (Campbell et al., 1995b). Therefore, it is plausible 

that ‘NP-zones’ would display little, if any, response to host stimulation. Further 

evidence for this theory was sought by attempting to recover in vitro slice post 

recording, and to perform immunohistochemistry to identify the phenotype of cells 

within the recording site. Unfortunately, it was not possible to obtain suitable 

resectioned in vitro slices within the time frame of thesis, rendering 

immunohistochemical identification of the recordings site impossible. 

Immunohistochemical identification of the recording site would provide a conclusive 

example o f the phenotype of the cells recorded from during intracellular sharp 

electrode recordings. However, extracellular recordings are the result o f the sum of 

synaptic responses from a neuronal field, and therefore immunohistological 

identification o f the cellular phenotype within the localised region o f the electrode 

placement, may not fully reflect the neuronal field recorded from. Therefore, to make 

accurate recordings from specified regions o f the graft, a higher degree of accuracy 

would be achieved using donor tissue from transgenic animals which express GFP 

exclusively within the target cell type (see General Discussion).

3.4.2 Restoration o f Baseline Transmission

Excitotoxic lesions o f the host striatum, via the application o f excitotoxins, results in a 

pronounced loss o f MSNs (Coyle and Schwarcz, 1976), which represent the major 

post-synaptic cellular population of the striatum. It was impossible to detect any form 

of excitatory response from the lesion site when tested 2-4 weeks post-lesion (n=15). 

Recordings from the contralateral, lesion spared, striatum demonstrate visually 

normal fEPSPs to that seen in control non-lesioned animals. The functional 

significance of excitotoxic lesions has been described both behaviourally (Dunnett 

and Iversen, 1980; Dunnett and Iversen, 1981; Mason and Fibiger, 1979), and 

anatomically, but the electrophysiological consequences are far less clear. However,
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the loss of baseline transmission within the lesioned striatum must contribute 

significantly to the behavioural phenotype seen post-lesion, and consequently is 

investigated in later chapters.

Basal stimulation of the host corticostriatal fibres results in the expression of fEPSPs 

within the graft. These fEPSPs display stability, with a constant level and rate of 

stimulation, over a 60 minute period. Though previous studies have shown that TSNs 

are physiologically active to host stimulation (Rutherford et al., 1987; Siviy et al., 

1993; Surmeier et al., 1992b; Wilson et al., 1990; Xu et al., 1991b), the data presented 

within this chapter builds on previous findings, demonstrating that TSNs are not only 

physiologically active, but also restore baseline transmission to lesioned striatum. 

This observation is important as restoration o f baseline transmission to the lesioned 

striatum may provide a functional mechanism for the observed beneficial effects of 

striatal grafts. Striatal grafts have been shown to dramatically reduce the adverse 

motor symptoms o f HD in experimental models (Deckel et al., 1983; Deckel et al., 

1986a; Deckel et al., 1986b; Deckel et al., 1988a; Deckel et al., 1988b; Isacson et al., 

1985; Isacson et al., 1986; Sanberg et al., 1986) and clinical trials (Bachoud-Levi et 

al., 2000a; Bachoud-Levi et al., 2000b). It would be logical to assume that restoration 

of baseline transmission, much like that seen in the normal striatum, would facilitate 

recovery o f motor abilities. More specifically, the striatum has been heavily 

implicated with, amongst other things, a strong neurological control over the initiation 

and control of movement (Graybiel, 2000). Futhermore, it has been shown within 

experimental models of PD that baseline transmission, and more specifically synaptic 

plasticity, plays a role in movement disorders such as 1-DOPA induced dyskinesias 

(Picconi et al., 2003). Therefore, it seems logical that restoration of baseline 

transmission, would play a major role in the recovery o f normal behavioural function 

post-transplantation.

As previously stated, fEPSPs recorded from the graft region are on average much 

smaller than those recorded from the normal striatum. Normalising fEPSPs to the 

averaged response size over the baseline period show that recordings from grafts 

show no significant difference to baseline recordings in the normal striatum. To 

investigate the efficacy of host-graft baseline transmission input-output curves were 

generated, using uniform increases in stimulation current, in the absence of any
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changes in stimulation rate. Under physiologically normal conditions, and below 

4mA stimulation, there is no significant difference in the absolute size o f the fEPSP 

between graft and control recordings. Above 4mA stimulation there is an apparent 

discrepancy between graft and control responses. Whilst control recordings display 

an increased response size with increased stimulation, graft recordings reach a 

asymptote o f response by 4mA. Interestingly, following application o f GABA 

receptor antagonists it is possible to see an increased response size from graft based 

recordings. Although there is a detectable difference between graft and control 

recordings, this is present at much higher stimulus levels, 7mA as opposed to 4mA.

The data from the input-output experiments suggests a number o f interesting facets 

regarding host-graft transmission. Under normal conditions striatal grafts display a 

much lower level of maximal stimulation (5mA), to the normal striatum (8mA). This 

maximal level o f stimulation is increased in conditions where the GABA inhibitory 

effect is blocked (8mA), but is still lower than that seen in the normal striatum 

(10mA). These findings suggest that the difference in output voltage to input stimulus 

is mediated to a certain degree by a higher level of GABA inhibition within striatal 

grafts than the normal striatum. Two possible explanations could account for this 

interesting phenomenon.

Firstly, it is possible that regions where successful extracellular recordings are 

obtained correspond to the ‘P-zones’, as previously described. It has been shown that 

within the “P zones” o f striatal grafts there is higher proportion of GABAergic 

intemeurones (Liste et al., 1997; Zhou et al., 1989), than that seen within the normal 

striatum. Therefore, it is plausible that the higher proportion o f GABAergic 

intemeuones would correspond functionally to a higher GABAergic inhibition of graft 

transmission.

A second possible hypothesis for the observed higher level of GABAergic inhibition 

within striatal grafts is the observed higher level of axonal arborisation. MSNs of the 

normal striatum display a certain degree o f axonal arborisation, producing inhibitory 

GABAergic synaptic contacts with other MSNs (Wilson and Groves, 1980). Within 

striatal grafts, the level of axonal arborisation by TSNs has been shown to be much 

higher than that observed in the normal striatum (Clarke et al., 1988b; Clarke et al.,
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1988a; Clarke and Dunnett, 1990; Clarke and Dunnett, 1993; Wictorin et al., 1988b; 

Wictorin et al., 1989; Wictorin and Bjorklund, 1989; Wictorin, 1992; Wilson et al., 

1990; Xu et al., 1989; Xu et al., 1991a). Therefore, it is plausible that the higher level 

of TSN axonal arborisation could contribute to this higher level of GABAergic 

inhibition.

Interestingly, when GABAergic inhibition is removed there still remains a disparity in 

the input-output relationship between striatal grafts and the normal striatum, albeit at 

a higher stimulus intensity that that seen under normal physiological conditions. 

Therefore even though the higher level of GABAergic inhibition in striatal grafts may 

govern the differences in response size, this is only the case up to a specific 

stimulation intensity. Above this stimulus intensity, it is plausible that other 

mechanisms, which have been previously described, such as decreased corticostriatal 

innervation and “point-to-point” connection governs the observed differences between 

the grafted and normal striatum.

3.4.3 Glutamatergic Mechanisms of Host-Graft Transmission

The corticostriatal projection represents the major glutamatergic input to the striatum. 

Within the normal striatum glutamatergic transmission provides the driving force for 

excitatory synaptic transmission, and therefore is crucial to the restoration of baseline 

transmission.

Pharmacological inhibition o f AMPA receptors via the application of CNQX has been 

shown to cause a dramatic reduction in the EPSPs recorded from MSNs (Calabresi et 

al., 1992c; Calabresi et al., 1992e). Recordings from the control striatum demonstrate 

that application of CNQX causes an immediate reduction in the size o f the fEPSP (Fig 

3.4), clearly demonstrating that, under normal conditions, the AMPA receptor 

contributes a significant proportion of the fEPSP response. Recordings from striatal 

grafts demonstrate that application of CNQX causes a similar reduction in the 

response size to that seen in control recordings, with no significant difference between 

the size of control and graft fEPSPs following CNQX application. Furthermore, the 

time course of CNQX mediated reduction of the fEPSP is similar in both grafts and
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control recordings. These findings would suggest that AMPA mediated synaptic 

transmission is comparable in control and graft baseline transmission.

Studies conducted within the normal striatum, in vitro, show that under normal 

physiological conditions, application of the selective NMDA receptor antagonist APV 

has no effect on the size of the fEPSP (Calabresi et al., 1992c; Calabresi et al., 1992e). 

Under normal conditions the NMDA receptor is considered to be inactive due to the 

high affinity magnesium ion block of the receptor (Calabresi et al., 1992e). The 

experiments presented in this chapter demonstrate that application of APV has no 

effect on control or graft baseline transmission (Fig 3.6). However, following 

removal o f magnesium from the aCSF perfusate solution it is possible to detect a 

NMDA mediated component of excitatory synaptic transmission, which is sensitive to 

APV (Calabresi et al., 1992e). The experiments presented here demonstrate that 

application o f APV in magnesium free conditions results in a reduction in the size of 

the fEPSP in both control and graft recordings, with no significant difference in the 

size of the fEPSP in the presence of APV between graft and control recordings. 

These findings would suggest that NMDA mediated transmission is similar in grafts, 

as to that seen in the normal striatum.

3.4.4 GABAergic Mechanisms of Host-Graft Transmission

Data presented earlier on in this chapter has suggested that striatal grafts display a 

higher level o f GABAergic inhibition, than that seen in the normal striatum. 

Application of bicuculline within the normal striatum has been shown to increase the 

size of the fEPSP (Calabresi et al., 2000a). The data presented here demonstrates that 

application of bicuculline results in an increase in the size o f the fEPSP in both 

control and graft recordings, with no significant difference in the size o f the fEPSP 

between the two. Whilst slightly unexpected this observation can be easily explained. 

For the majority of experiments a stimulus intensity of 5mA is used, at this intensity 

the size of response gained is similar in both control and graft recordings, when in the 

presence of bicuculline (Fig 3.4). Therefore, the effect o f GABA receptor blockade is 

similar in both graft and control preparations. Observations from the input-output 

studies in the presence o f bicuculline indicated that differences in response size 

between control and graft recordings is only present at stimulus intensities above
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8mA. Therefore it would be interesting to see if bicuculline has a similar effect on 

transmission at stimulus intensities above 8mA. Unfortunately, at these stimulus 

intensities it is almost impossible to gain a stable response over a 20 minute baseline 

period, and therefore impossible to establish an accurate comparison between the 

effect of bicuculline application and basal effects.

3.4.5 Monoamergic Mechanisms of Host-Graft Transmission

Within the normal striatum, projections from the SN form DAergic synapses with 

MSNs, as well as with other neurons within the striatum (Wilson and Groves, 1980). 

Anatomical studies have shown that striatal grafts receive projections from the SN, 

which like the corticostriatal projection, innervate the “P zones” more densely than 

the remainder o f the graft (Clarke et al., 1988b; Clarke et al., 1988a; Clarke and 

Dunnett, 1990; Clarke and Dunnett, 1993; Wictorin et al., 1988b; Wictorin et al., 

1989; Wictorin and Bjorklund, 1989; Wictorin, 1992; Wilson et al., 1990). The data 

presented here demonstrates that DAergic innervation of striatal grafts form 

functional synapses capable o f affecting baseline transmission.

Application o f sulpiride, a selective D2-like receptor antagonist, has been shown to 

have no effect on baseline transmission within the normal striatum (Calabresi et al., 

2000a). Similarly, the results presented here demonstrate that sulpiride has no effect 

on either control or graft baseline transmission, with no additional effect on the size of 

the fEPSP following increasing concentrations, indicating that the D l-like mediated 

component o f graft excitatory transmission is similar to that seen in the normal 

striatum.

Application of SCH 23390, a selective Dl-like receptor antagonist has an interesting 

effect on control and graft baseline transmission. Within control recordings, 

application of SCH 23390 causes a slight increase in the fEPSP size, which, following 

a 20 minute period returns to baseline levels (Fig 3.10). Within graft based recordings 

application of SCH 23390 causes a gradual reduction in the size of the fEPSP 

stabilizing to roughly 50% of baseline following 20 minute period o f application. 

This observation is interesting as it indicates a significant difference between normal 

and graft baseline transmission. It would therefore seem that the D2-like mediated
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component o f excitatory synaptic transmission is different in grafts to that seen in the 

normal striatum. A number of anatomical studies have shown that within the “P- 

zones” of striatal grafts, the level o f D2-like receptor expression is lower than that 

seen within the normal striatum (Campbell et al., 1995b; Sirinathsinghji et al., 1994). 

Furthermore, studies utilising PET analysis have shown an increased D2-like receptor 

binding in striatal grafts (Torres et al., 1995), though it must be noted that other 

studies has reported no increase in D2-like receptor binding (Pundt et al., 1997). 

Therefore, it is plausible that the abnormal differences in D2-like mediated 

transmission seen between graft and control recordings could be attributed to a lower 

level of D2 receptors seen within striatal grafts.

Finally, it is important to consider the time frame of post-transplantation recovery 

with respect to reconstruction o f the normal striatal-nigral circuitry. It has previously 

been shown that innervation o f the graft by host nigral fibres occurs at approximately 

3 months post-transplantation, with more extensive innervation o f the graft region by 

6 months post-transplantation (Pritzel et al., 1986; Wictorin et al., 1988a; Wictorin et 

al., 1988b). Therefore, it is plausible that differences observed in the D2-like 

mediated component o f graft excitatory transmission may simply reflect that within 

the time frame of post-transplantation recovery, within these experiments, functional 

reconnection between the graft and host nigral fibres is impaired.
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3.5 CONCLUSION

TSN’s are physiologically active to host stimulation, given suitable post­

transplantation development to form functional synapses with the host corticostriatal 

projection system. Embryonic striatal grafts ‘functionally integrate’ with the host 

striatal circuitry restoring baseline transmission to the lesioned striatum, and restoring 

a number of functional connections with host striatal networks. Within striatal grafts 

blockade o f D l-like receptors produces a different effect on baseline transmission 

than that seen in the normal striatum.
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4. EMBRYONIC STRIATAL GRAFTS DISPLAY 

BIDIRECTIONAL SYNAPTIC PLASTICITY

4.1 INTRODUCTION

“Learning to use the graft” describes a mechanism whereby functions that had been 

established in the intrinsic circuits of the brain through a lifetimes’ training and 

experience prior to lesion need to be re-established - through training leading to 

relearning - using the graft circuitry. The concept that transplanted tissue could 

provide recovery o f learned skills and habits was first observed in the context o f 

functional recovery following enucleation and retinal transplantation (Coffey et al 

1989). These early experiments showed that following transplantation the recovery of 

visual pathways was not sufficient to permit the rat to immediately “see” and respond 

accordingly. In order to regain behavioural performance transplanted animals needed 

to be trained to interpret the meaning o f the visual stimuli and to respond accordingly, 

therefore permitting the relearning of the specific task.

The concept o f “learning to use the graft” has been more extensively investigated 

within the striatal graft environment. First by Mayer and later expanded on by 

Brasted et al, they assessed functional recovery using the ‘9 hole’ box apparatus, 

which utilises an array o f tests specifically aimed at measuring deficits in cognitive 

mechanisms intrinsic to the striatum. Unilateral excitotoxic lesions o f the striatum 

impair the initiation o f responses on the contralateral side without affecting the 

animals’ ability to detect or respond to the eliciting stimulus (Brasted et al., 1997; 

Carli et al., 1985). Interestingly, animals which have received a striatal graft 

displayed a similar level o f profound behavioural deficit to their lesion only 

counterparts when returned to the test 4 (Brasted et al., 1999b) or 6 (Mayer et al.,

1992) months post-surgery. However, with repeated testing, whilst lesioned animals 

showed no significant improvement over time, grafted animals improved with training 

(Brasted et al., 1999b; Mayer et al., 1992). It would therefore seem essential that 

grafts not only form anatomically appropriate connections, but also that the animal is 

re-trained on the task itself with the transplant serving as the substrate for the re­

acquisition o f the skill. Such relearning takes place over a similar time period to that
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required for naive animals to learn the task. It has recently been shown that relearning 

can occur in low repetition non-operant tasks, such as paw reaching, with much less 

exposure and practice (Dobrossy and Dunnett, 2005). Furthermore, such relearning is 

critically dependant on training to be specific in targeting the limb controlled by the 

damaged striatum with the striatal implant (Dobrossy and Dunnett, 2003).

Whilst it has been clearly demonstrated that striatal grafts display the ability to relearn 

previously trained tasks, it still remains unknown whether such grafts similarly 

display cellular correlates of learning and memory. Synaptic plasticity is widely 

regarded as the most appropriate model of cellular learning (Bliss and Collingridge,

1993). It has been shown that selective blockade of NMDA receptors in the

hippocampus, blocks both hippocampal synaptic plasticity, and impairs behavioural 

performance on tasks relying heavily on appropriate hippocampal memory function 

(Morris et al., 1986). Within the striatum, genetic manipulation of CREB, a key

protein involved in the maintenance of synaptic plasticity, both eliminates

bidirectional striatal synaptic plasticity, and causes deficits in behavioural tasks 

requiring striatal specific mechanisms of memory (Pittenger et al., 2006). Therefore, 

it appears clear that learning and memory, and synaptic plasticity are critically linked.

As the previous chapter reports, a small number of studies have shown that 

embryonic striatal grafts are capable of forming anatomically correct synaptic 

contacts with the host circuitry (Clarke et al., 1988b; Clarke et al., 1988a; Clarke and 

Dunnett, 1990; Clarke and Dunnett, 1993; Wictorin et al., 1989). Gene expression 

studies have shown that grafted cells express neurotransmitters appropriate to that 

seen in normal striatal neurones (Campbell et al., 1995b). Furthermore, experiments 

using “push-pull” perfusion demonstrate that striatal grafts restore only 34% of 

baseline levels of GABA in the host globus pallidus and substantia nigra 

(Sirinathsinghji et al., 1988).

Host-graft synapses are physiologically active to stimulation of host afferent fibres, 

displaying mechanisms of neuronal excitability (Rutherford et al., 1987; Siviy et al., 

1993; Xu et al., 1991b; Wilson et al., 1990). Grafted cells also express immediate 

early gene responses, which are in part mediated by neuronal excitability, and display



increase expression during mechanisms of plasticity (Mandel et al., 1992). However, 

it is still unknown whether grafted embryonic striatal neurones are capable of 

expressing synaptic plasticity, and how this relates to the normal striatal neurones.

The studies presented in this chapter aim to demonstrate that embryonic striatal grafts 

display synaptic plasticity, in keeping with that observed in the normal striatum.

4.2 METHODS

Experiments were performed as described in the General Methods chapter, with 

additional details here:

All control animals in all five experiments were 10-14 weeks of age at time of testing. 

All grafted animals were and 4-6 weeks of age at point of transplantation, 10-14 

weeks of age at time of experimentation, with a graft age of 6-8 weeks.

4.2.1 Experiment 1: Long-Term Depression in Embryonic Striatal Grafts.

For extracellular recordings animals were divided into two groups: Control (n = ll), 

and Graft (n=12). Extracellular recordings were performed as indicated in the 

general methods section. For intracellular recordings animals were divided into two 

groups: Control (n=15), and Graft (n=14). Intracellular sharp electrode recordings 

were performed as indicated in the previous chapter. During both extracellular and 

intracellular recordings LTD was induced via HFS in the presence of normal aCSF 

perfusate.

4.2.2 Experiment 2: Long-Term Potentiation in Embryonic Striatal Grafts.

For extracellular recordings animals were divided into two groups: Control (n=23), 

and Graft (n=25). Extracellular recordings were performed as indicated in the 

general methods section For intracellular recordings animals were divided into two 

groups: Control (n=18), and Graft (n=18). Intracellular sharp electrode recordings 

were performed as indicated in the previous chapter. During both extracellular and
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intracellular recordings LTP was induced via HFS in the presence of magnesium free 

aCSF perfusate.
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4.3 RESULTS

4.3.1 Experiment 1: Ijong-Term Depression in Embryonic Striatal Grafts

Control Graft

100 - i-

TETANUS G raft (n=12) 
C on tro l (n=11)

50mS

0  20 40  60 80 100  Control (n=11) Graft (n=12)

Time (Mins)

Figure 4.1. Extracellular Dem onstration of Long-Term Depression in Embryonic 

Striatal Grafts. (A) Normalised time-response plot demonstrating LTD in embryonic 

striatal grafts. Dashed line represents baseline. Bold vertical line represents point o f  

tetanus (See General Methods). (B) Histogram plot o f the mean normalised response 

size seen pre- & post-tetanus. (C) Example fEPSP traces o f  both groups pre- & post­

tetanus.

Figure 4.1 demonstrates the effect of HFS on graft and control recordings, under 

physiologically normal conditions. All data points are normalised to their respective 

baseline periods. There is no significant difference in the normalised responses 

during the baseline period, between graft and control recordings (Groups, F(i^i)=2.24, 

p=0.14, n.s.). Tetanic stimulation of the host corticostriatal fibres results in an 

immediate depression in the size of the fEPSP within both control (n= ll) 47.90% 

+0.77%, and graft (n=12) 48.80% +0.78% recordings (Fig 4.1a+b). Both control 

(n= ll) and graft (n=12) (Groups vs Time, F(29,609)=l-50, p=0.04.) recordings display 

a significant reduction in the size of the fEPSP when compared to their respective 

baselines, with no significant difference in the level of depression seen between graft 

and control recordings (Groups, F(i 2i)=0.68, p=0.41, n.s.).
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Figure 4.2 Intracellular Demonstration of Long-Term Depression in transplanted 

striatal neurones. (A) Normalised time-response plot demonstrating LTD in 

transplanted striatal neurones. Dashed line represents baseline, bold vertical line 

represents point o f tetanus (See General Methods). (B) Histogram plot o f the mean 

normalised response seen pre- & post-tetanus.

Figure 4.2 demonstrates LTD in TSNs and MSNs during intracellular sharp electrode 

recordings, under physiologically normal conditions. All data points are normalised 

to their respective baseline periods. There is no significant difference in the 

normalised responses during the baseline period, between graft and control 

recordings (Groups, F(i,27)=0.014, {3=0.90, n.s.). Tetanic stimulation of the host 

corticostriatal fibres results in an immediate depression in the size of the EPSP within 

both control (n=15) 48.40% +0.57%, and graft (n=14) 53.50% +4.03% recordings 

(Fig 4.1a+b). Both control (n=15) and graft (n=14) (Groups vs Time, F(29,783)=5.03, 

p=<0.005.) recordings display a significant reduction in the size of the EPSP when 

compared to their respective baselines, with no significant difference in the level of 

depression seen between graft and control recordings (Groups, F(i,27)=1.19, p=0.28, 

n.s.).
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4.3.2 Experiment 2: Long-Term Potentiation in Embryonic Striatal Grafts

C Control Graft
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Figure 4.3 Extracellular Dem onstration of Long-Term Potentiation in Embryonic 

Striatal Grafts. (A) Normalised time-response plot demonstrating LTP in embryonic 

striatal grafts, note that magnesium is omitted from the aCSF perfusate throughout the 

entire experiment. Dashed line represents baseline. Bold vertical line represents point o f  

tetanus (See General Methods). (B) Histogram plot o f the mean normalised response 

size seen pre- & post-tetanus. (C) Example fEPSP traces o f both groups pre- & post­

tetanus.

Figure 4.3 demonstrates the effect of HFS on graft and control recordings, under 

conditions where magnesium is omitted from the perfusate solution. All data points 

are normalised to their respective baseline periods. There is no significant difference 

in the normalised responses during the baseline period, between graft and control 

recordings (Groups, F(i,44)=1.60, p=0.21, n.s.). Tetanic stimulation of the host 

corticostriatal fibres results in an immediate potentiation in the size of the fEPSP 

within both control (n=23) 154.69% +3.78%, and graft (n=25) 148.06% +3.29% 

recordings (Fig 4.1a-b). Both control (n = ll) and graft (n=12) (Groups vs Time, 

F(29,i276)=12.15, p=<0.005.) recordings display a significant increase in the size of the 

fEPSP when compared to their respective baselines, with no significant difference in 

the level of potentiation seen between graft and control recordings (Groups, 

F(i,44)=1.52, p=0.22, n.s.).
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Figure 4 .4 Intracellular Dem onstration of Long-Term Potentiation in transplanted  

striatal neurones. (A) Normalised time-response plot demonstrating LTP in 

transplanted striatal neurones. Dashed line represents baseline, bold vertical line 

represents point o f tetanus (See General Methods). (B) Histogram plot o f the mean 

normalised response seen pre- & post-tetanus.

Figure 4.4 demonstrates LTP in TSNs and MSNs during intracellular sharp 

electrode recordings, under conditions where magnesium is omitted from the 

perfusate solution. All data points are normalised to their respective baseline 

periods. There is no significant difference in the normalised responses during 

the baseline period, between graft and control recordings (Groups, F(i 34)=0.098, 

p=0.76, n.s.). Tetanic stimulation of the host corticostriatal fibres results in an 

immediate potentiation in the size of the EPSP within both control (n=18) 

135.50% ±2.70%, and graft (n=18) 137.50% ±3.30% recordings (Fig 4.4afb). 

Both control (n=15) and graft (n=14) recordings display a significant increase in 

the size of the EPSP when compared to their respective baselines (Groups vs 

Time, F(29,986)=9.60, p=<0.005.), with no significant difference in the level of 

potentiation seen between graft and control recordings (Groups, F(i,34)=0.21, 

p=0.64, n.s.).
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4.4 DISCUSSION

Embryonic striatal grafts are capable of expressing biphasic synaptic plasticity, 

consistent with that observed in the normal striatum (Calabresi et al., 2000a). Within 

the current literature there is a growing amount of controversy regarding the preferred 

form of synaptic plasticity expressed at corticostriatal synapses in vitro. 

Corticostriatal synaptic plasticity was first expressed in vitro by Calabresi and 

collegues (Calabresi et al., 1992c). They reported an exclusive expression of LTD 

following HFS o f corticostriatal afferents. However, it was later shown that following 

omission of magnesium ions from the aCSF perfusate solution the same HFS 

produced an exclusive expression of LTP (Calabresi et al., 1992e). More recent 

studies have shown that it is possible to express LTP in vitro following HFS of 

corticostriatal afferents, under normal physiological conditions (Partridge et al., 2000; 

Smith et al., 2001; Spencer and Murphy, 2000; Wickens et al., 1996) which is 

critically dependant on dopaminergic action and independent of NMDA receptor 

activation (Reynolds and Wickens, 2002).

Within the context o f the experiments presented in this chapter, under normal 

physiological conditions HFS o f corticostriatal afferents results in the expression of 

LTD. Within control recordings, HFS results in a predominant expression of LTD (27 

out of 28), with a single case expressing LTP (1 out o f 28). Whilst in the absence of 

magnesium HFS resulted in an exclusive expression of LTP (41 out of 41). 

Recordings from striatal grafts always express LTD in the presence o f magnesium (26 

out of 26), and LTP in its absence (43 out of 43). Studies have demonstrated that it is 

possible to obtain LTP within in vitro slices, under normal physiological conditions 

(Partridge et al., 2000; Smith et al., 2001; Spencer and Murphy, 2000; Wickens et al., 

1996). Smith et al, attempt to explain the mechanistic underpinning o f this disparity 

by demonstrating that within the striatum in vitro there is a regional specificity in the 

predominant expression of LTP/LTD (Smith et al., 2001). Using coronally prepared 

striatal in vitro slices, Smith et al demonstrated that recordings taken from the lateral 

region of the striatum demonstrate a preferential expression of LTD (Smith et al., 

2001). Conversely, recordings from the medial region of the striatum demonstrate a 

preferential expression o f the LTP. The most favourable explanation for the observed
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regional specificity in the expression of LTP/LTD, is the observation that projections 

to the striatum organise themselves in a topographic manner. Specifically, it appears 

that the topographical separation within the cortex is conserved in the corticostriatal 

projections. Visual and limbic regions of the cortex, have been shown to project to 

medial regions of the striatum, whilst motor regions project to lateral regions of the 

striatum (Deniau et al., 1996; Donoghue and Herkenham, 1986; Gerfen, 1989; 

McGeorge and Faull, 1989). Interestingly, there is a predominant expression of LTP 

from the striatum in vivo, which is attributed to the conservation of dense 

corticostriatal projections, and intrinsic intemeuronal networks. Traditionally, the 

predominant expression of LTD in vitro has been attributed to the loss of the dense 

corticostriatal projection following tissue sectioning. It has been shown that the 

expression of LTP in vitro is critically dependant on removal of the NMDA receptor 

magnesium block (Calabresi et al., 1992e). Removal of the magnesium blockade of 

striatal NMDA receptors requires a large membrane depolarisation, which is provided 

by the corticostriatal projection. Though HFS of corticostriatal projections may be 

sufficient to activate NMDA receptors in vivo, it may not be sufficient to do the same 

in vitro. As previously stated, different regions of the striatum receive differing 

topographical origins o f corticostriatal innervation (Smith et al., 2001). Within a 

specific in vitro slice the level of cortical innervation of the striatum may be 

sufficient, under normal physiological conditions, to express LTP in the medial 

region, though insufficient to do so in the lateral regions. Within the literature, 

recording sites are rarely defined into medial or lateral regions, thus it is highly 

plausible that some of the disparities regarding the preferred form of synaptic 

plasticity observed from corticostriatal synapses in vitro could in fact be due to these 

reported topographical differences. All of the recordings presented in this chapter 

were obtained from the dorsal lateral striatum, with within the site of transplantation 

(A= +1.0, L = +1.8, V = 2.5), or within the same location in the normal striatum. This 

region of the striatum has been shown to receive projections, predominantly, from the 

motor cortex (Deniau et al., 1996; Donoghue and Herkenham, 1986; Gerfen, 1989; 

McGeorge and Faull, 1989), and preferentially to express LTD (Smith et al., 2001). 

However, the experiments presented in this chapter do not provide any further 

clarification of the mechanisms underlying the regional specificity in striatal 

LTP/LTD in vitro. It can be clearly seen that within control recordings, under 

physiological conditions, there is a preferential expression of LTD (27 out of 28);
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though under conditions where magnesium is removed from the aCSF perfusate 

solution this switches to a total expression of LTP.

Though the level of cortical innervation preserved within the in vitro slice provides a 

compelling argument for the preferential expression of LTP/LTD, a number of other 

factors must be considered. Firstly, due to the proximity of the stimulating electrode 

to the striatum it is more than likely that current spread across the slice will activate 

other projection systems, such as the DAergic projection from the SN. Interestingly, 

differing strengths and intensities o f HFS have been shown to produce a mix of 

plasticities. Intense HFS stimulation of the corpus callosum results in the 

predominant expression of LTD (Calabresi et al., 1992c). Weaker, less intense HFS 

of the corpus callosum results in the expression of a mixture of STD, STP, LTD and 

LTP (Akopian et al., 2000; Calabresi et al., 1992c; Calabresi et al., 1992e; Lovinger et 

al., 1993). Therefore, the differing intensities of HFS used, and the location of the 

stimulating electrode may in some way contribute to the differing forms of plasticity 

observed. Within the experiments presented here, a theta burst stimulation protocol 

was used to induce synaptic plasticity. Though intense forms of HFS used in other 

studies produces stable reliable synaptic plasticity within the normal striatum 

(Calabresi et al., 1992c), attempts to induce plasticity from striatal grafts using this 

protocol yielded limited results, with very few recordings displaying stable synaptic 

plasticity. This observation is hardly surprising given the observation that striatal 

grafts receive a less dense corticostriatal innervation than that seen in the normal 

striatum (Wictorin, 1992). Therefore, it is highly likely that intense HFS of the 

limited corticostriatal projection will results in over-stimulation o f the pathway. 

Interestingly, in experiments where a strong HFS protocol is used, a large STD is 

observed from striatal grafts. In hindsight, this observation fits with the theory that 

strong HFS over-stimulates the limited corticostriatal inputs to striatal grafts, 

preventing the expression o f LTD.

4.4.1 Striatal Grafts Display Bidirectional Synaptic Plasticity

Beginning at four weeks post-transplantation it is readily possible to readily induce 

both LTD and LTP within embryonic striatal grafts. Within the normal striatum HFS 

results in a periodic expression of LTD. Within the experiments presented in this
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chapter, HFS induced LTD in 27 out of 40 recordings. Failure to induce LTD was not 

confined to either particular slices, or particular animals. In many cases recordings 

from one site within the striatum failed to yield LTD, whilst recordings form other 

sites with the slice displayed LTD following HFS. Therefore, it would appear that 

induction of LTD within the normal striatum is critically dependant on the 

environment in which HFS occurs, and the location of recording. Within embryonic 

striatal grafts the failure to express LTD following HFS was much higher (26 out of 

65) than that seen in control recordings from the normal striatum. Unlike control 

recordings, moving the location of the recording and stimulating electrode does not 

always yield LTD. However, this observation is not quite as clear as that seen in the 

normal striatum and the ability of striatal grafts to express LTD is more random than 

that seen in control recordings. Therefore, whilst it is clear that obtaining LTD from 

striatal grafts is much more difficult than within the normal striatum, evidence for the 

mechanisms underlying this is limited only to electrophysiological observations. Yet, 

two important factors regarding the integration of grafts into the host striatum provide 

compelling arguments for these observations.

Following transplantation, functional innervation of the graft is time dependant and 

varied across the numerous striatal afferents (Wictorin et al., 1988b; Wictorin, 1992). 

Furthermore, innervation of the graft is not a total process, with differing regions of 

the graft receiving differing levels of afferent innervation across the post­

transplantation period. Anatomical studies have clearly shown that the outer regions 

of the graft are most densely innervated around four weeks post transplantation, 

following this period innervation of the graft begins to reach the innermost regions 

(Wictorin et al., 1988b; Wictorin, 1992). In the context of the experiments presented 

in this chapter, LTD is first sought from the inner-most regions o f the graft, before 

moving to the other regions should LTD fail to be expressed. Though success is not 

guaranteed from the outer regions o f the graft the probability o f gaining LTD is 

increased. Additionally, it has been shown that within striatal grafts only 50-80% of 

the corticostriatal afferents form anatomically correct synapses with transplanted 

striatal neurones (Wictorin et al., 1989; Xu et al., 1989). Though it is not yet known 

whether the incorrect synapses affect TSN neuronal function, a reduction in the 

number of functionally normal synapses is likely to affect the ability to induce LTD.

105



When ascertaining the possible mechanisms for the increased failure to express LTD 

observed within striatal grafts, it is important to consider the cellular mosaic unique to 

the graft environment (Graybiel et al., 1989). Many studies have demonstrated, 

anatomically, that the expression o f receptors and proteins indicative of a striatal 

phenotype, particularly DARPP-32, are exclusively located within the patches or ‘P- 

zones’, as opposed to the non-patch or “NP”-zones, of the graft. Electrophysiological 

studies, conducted in vivo, have also demonstrated on a single cell level that almost all 

neurones within the graft are responsive to host stimulation (Wilson et al., 1990; Xu et 

al., 1991b; Xu et al., 1991a). Therefore, what is unknown is whether TSNs from the 

‘NP-zones’ respond in a similar electrophysiological fashion to those from the ‘P- 

zones’. One possible way TSNs from ‘P-zones’ and ‘NP-zones’ could differ would 

be in the expression of synaptic plasticity. It is highly plausible that the inability to 

express LTD in some of the recordings could reflect the proximity o f the recording 

site to ‘NP-zones’ within the graft. Transplanted cells within the ‘NP-zones’ have 

been shown to display a cortical or pallidal phenotype (Wictorin, 1992). Furthermore, 

afferent connections from the host brain, such as dopaminergic inputs from the 

substantia nigra, have been shown to preferentially innervate the ‘P-zones’ (Wictorin, 

1992). Therefore, it is logical to assume that although such transplanted cells may 

express mechanisms o f excitatory transmission, they do not display any mechanisms 

of synaptic plasticity.

Although recordings from striatal grafts display a lower probability of expressing 

LTD than that seen in control recordings there is no significant difference in the level 

of depression observed in recordings from striatal grafts when compared to those from 

the normal striatum. It is important to note however, that on average the size of the 

fEPSP recorded from striatal grafts is lower than that recorded from the control 

striatum, and thus although the size of the fEPSP recorded from striatal grafts, post­

tetanus, is smaller than that recorded post-tetanus in controls both responses decrease 

in size by the same proportion following HFS. Although striatal grafts display a 

lower probability o f expressing LTD than the normal striatum, successful expression 

of LTD occurs to similar levels to that seen within control recordings. Therefore, it 

would appear that within striatal grafts the host-graft corticostriatal synapse is not 

only functional to host stimulation, but is also plastic to changes to host stimulation.
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As with LTD, it is possible to express LTP from striatal grafts from 4 weeks post­

transplantation. One interesting observation is that following removal of magnesium 

the probability of obtaining synaptic plasticity, in this case LTP, is much higher (43 

out of 50) than the probability of obtaining synaptic plasticity, in this case LTD, under 

normal physiological conditions (26 Out of 65). This proves interesting as it would 

be expected that the suggested causative factors for the lower probability of 

expressing synaptic plasticity from striatal grafts under normal physiological 

conditions would also affect the probability of expressing synaptic plasticity under 

conditions where magnesium is removed. Assuming such factors do contribute to the 

ability to express LTP in the absence of magnesium, there are a number of possible 

reasons for the higher probability of obtaining synaptic plasticity.

Under magnesium free conditions the NMDA receptor is chronically active, and 

therefore able to contribute to baseline transmission and LTP induction. LTP 

induction is critically dependant on internal calcium concentrations, which 

subsequently is critically dependant on calcium flow into the cell. Chronic activation 

of NMDA receptors results in a large increase in calcium currents into the cell, and 

therefore increases the cells ability to potentiate following HFS. Furthermore, 

increased calcium entry into the post-synaptic cell would make the cell more 

responsive to weaker inputs. Therefore, weak stimulation intensity, may not be 

sufficient to induce LTD, yet is sufficient to induce LTP, due to the higher potential 

of the post-synaptic cells to be potentiated following removal of magnesium. This 

increased potentiation effect can be seen as a positive drift in the baseline values 

during low frequency baseline recordings, prior to LTP induction. Additionally, it is 

important to note that a number of studies looking at the physiological properties of 

TSN, have shown that TSNs display a higher degree of excitability than the MSN of 

the normal striatum (Siviy et al., 1993). Studies by Sivy et al have demonstrated that 

one component of higher excitability is attributed to NMDA mediated excitatory 

responses, which are more excitable in TSNs than MSNs. Therefore, it is possible 

that an increased NMDA excitability may be contributing to the increased probability 

of expressing synaptic plasticity in magnesium free conditions.
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4.4.2 Synaptic Plasticity and “Learning to use the graft”

A number of studies have demonstrated that the ability to learn motor skills and 

habits, lost post-lesion, can be restored by transplantation of embryonic striatal grafts 

(Brasted et al., 1999b; Mayer et al., 1992; Wictorin et al., 1989). Furthermore, this 

‘new learning’, facilitated by embryonic striatal grafts, can be disrupted by delaying 

transplantation, thereby impairing formation of host-graft corticostriatal synapses 

(Brasted et al., 2000). Therefore, “learning to use the graft” appears to be critically 

dependant on functional reconnection between the host cortical afferents and TSNs.

The data presented in this chapter demonstrates that the host-graft corticostriatal 

synapse is capable of expressing bidirectional synaptic plasticity consistent with that 

observed in the normal striatum. Within the normal striatum it has been shown that 

conditions which impair striatal synaptic plasticity also impair behavioural tests of 

learning and memory, which are heavily dependant on corticostriatal mechanisms of 

memory (Pittenger et al., 2006). It would appear logical that ‘new learning’, 

facilitated by embryonic striatal grafts, would likewise be critically dependant on the 

expression of host-graft corticostriatal synaptic plasticity.
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4.5 CONCLUSION

The findings reported in this chapter propose not only that embryonic striatal grafts 

can restore cortico-striatal connectivity lost due to the lesion, but that striatal grafts 

are also capable of expressing bidirectional synaptic plasticity. Both LTP and LTD 

expressed at host-graft corticostriatal synapses resembles that seen in the normal 

striatum. However, the probability of expressing synaptic plasticity is lower in striatal 

grafts, suggesting that the density of host cortical innervation may be lower than that 

seen in the normal striatum. Nevertheless, the expression of synaptic plasticity from 

embryonic striatal grafts could provide a cellular mechanism for the behaviourally 

observed “learning to use the graft” phenomenon, and more generally the substrate for 

new S-R or habit learning in striatally grafted animals.
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5. PHARMACOLOGICAL INVESTIGATION OF HOST- 

GRAFT SYNAPTIC PLASTICITY

5.1 INTRODUCTION

The previous chapter demonstrates that both embryonic striatal grafts, and TSNs 

display bidirectional synaptic plasticity in keeping with the normal striatum. Though 

synaptic plasticity expressed from striatal grafts is similar to that seen in the normal 

striatum, little is known about the pharmacological mechanisms governing the 

synaptic plasticity o f grafts. The corticostriatal synapse receives a varied 

heterological range of neurotransmitter inputs from striatal intemeurons, cholinergic, 

for example, and from extrinsic projections from other brain structures, such as 

dopaminergic afferents from the substantia nigra. Therefore, to demonstrate that 

striatal grafts functionally integrate into the host striatal circuitry it is vital that graft 

synaptic plasticity shares similar pharmacological mechanisms as that seen in the 

ungrafted host.

Conventional staining of striatal grafts with either DARPP-32 or AChE reveals a 

cellular mosaic, representing two distinct heterogeneous compartments o f cells. 

Regions, or patches, of the graft that stain positive for DARPP-32 or AChE are 

termed ‘P-zones’, and refer to cells with morphological and biochemical 

characteristics of normal striatal cells (Graybiel et al., 1989). Regions of the graft that 

do not stain positive for DARPP-32 or AChE are termed ‘NP-zones’ and stain 

positive for neuronal markers of cortical or pallidal cell types (See the General 

Introduction for a more detailed description of “P-“ and “NP-Zones”).

Within the ‘P-zones’ of striatal grafts it is possible to detect a number of 

neurotransmitters and neuropeptides found within the normal striatum. Levels of 

precursor peptides for enkephalin (PPE) and substance P (PPT), are similar to that 

seen in the normal striatum, where roughly 50% of all neurones express either PPE or 

PPT (Campbell et al., 1995a). Levels of ChAT, an enzyme involved in the synthesis 

of acetylcholine, is roughly 40% of that seen in the normal striatum, when quantified 

across the whole graft volume (Campbell et al., 1995a). However, cells which mark
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positive for ChAT are predominantly found within the ‘P-zones’ where they are 

densely located (Campbell et al., 1995a). Therefore, it is likely that the levels of 

ChAT within the ‘P-zones’ of striatal grafts is similar to that seen in the normal 

striatum. Levels of GAD67, an enzyme involved in the synthesis of GABA, displays 

regions of high and low levels of expression within both the normal striatum, and 

striatal grafts. Correlation of cells which mark positive for GAD67 with those that 

mark positive for DARPP-32 demonstrate that only 50% of GAD67 positive neurones 

are also positive for DARPP-32 (Campbell et al., 1995a). Actual levels of GAD67 

expressed within striatal grafts shows that regions of low GAD67 expression correlate 

with regions of DARPP-32 expression, within the ‘P-zones’. Within ‘NP-zones’ 

levels of GAD67 expression are 2.2-2.6 times higher than that seen in the normal 

striatum (Campbell et al., 1995a). These cells display morphological characteristics 

similar to GABAergic cells of the cortex and globus pallidus (Campbell et al., 1995a).

The expression of receptors found within the normal striatum has been quantified in 

striatal grafts. Expression of D1 and D2 receptors has been well documented 

(Campbell and Bjorklund, 1995; Campbell et al., 1995a; Pundt et al., 1997; 

Sirinathsinghji et al., 1994; Torres et al., 1995). In situ hybridization for D1 and D2 

receptors demonstrates that both receptor sub-types are present in striatal grafts, 

though largely confined to the ‘P-zone, the area receiving the dopaminergic 

innervation. Within the normal striatum, almost all of the MSNs express either D1 or 

D2 receptors. Within the ‘P-zones’ of striatal grafts, whilst expression of D1 is 

similar to that seen in the normal striatum, expression of D2 receptors is 

approximately 13% lower (Campbell et al., 1995a). Furthermore, receptor binding 

studies have demonstrated increased levels of D1 receptor binding in striatal grafts, 

whilst there is no change in D2 receptor binding between grafts and lesioned controls 

(Pundt et al., 1997). Though it must be noted that some studies using PET to monitor 

D2 receptor binding report a moderate increase in this measure (Torres et al., 1995).

This chapter details experiments conducted to provide pharmacological classification 

of synaptic plasticity expressed from striatal grafts.
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5.2 METHODS

Experiments were performed as described in the general methods chapter, with 

additional details here:

All control animals in all five experiments were 10-14 weeks of age at time of testing. 

All grafted animals were 4-6 weeks of age at point of transplantation, 10-14 weeks of 

age at time of experimentation, with graft a graft age of 6-8 weeks.

5.2.1 Experiment 1: Glutamatergic Characterisation

Animals were divided into two groups: Control APV (n=7), and Graft APV (n= ll). 

For all experiments a zero magnesium aCSF perfusate solution was used, to ensure 

activation of NMDA receptors. Following an initial 20 minute baseline 30pM APV 

was applied to the perfusate solution and a second 20 minute baseline was recorded 

prior to the administration of tetanus.

5.2.2 Experiment 2: GABAergic Characterisation

Animals were divided into two groups: Control BIC (n=9), and Graft BIC (n=8). 

Throughout all experiments normal aCSF perfusate was used. Following an initial 20 

minute baseline 30pM Bicuculline was applied to the perfusate solution and a second 

20 minute baseline was recorded prior to the administration of a tetanus.

5.2.3 Experiment 3: Monoamergic Characterisation

Animals were divided into four groups: Control SCH 23390 (n=8), Control Sulpiride 

(n=8), Graft SCH 23390 (n=7) and Graft SULP (n=7). Throughout all experiments 

normal aCSF perfusate was used. For the SCH 23390 experiments an initial 20 

minute baseline lOpM SCH 23390 was applied to the perfusate solution and a second 

20 minute baseline was recorded prior to the administration of a tetanus. For the 

SULP experiments an initial 20 minute baseline lOpM Sulpiride was applied to the
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perfusate solution and a second 20 minute baseline was recorded prior to the 

administration of a tetanus.
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5.3 RESULTS

5.3.1 Experiment 1: Glutametergic Characterisation

Control Graft
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Figure 5.1 The effect of 30/iM APV on synaptic plasticity within Embryonic Striatal 

Grafts. (A) Normalised time-response plot demonstrating the effect o f  both 30/iM APV  

and tetanic stimulation in embryonic striatal grafts. Dashed line represents baseline. 

Bold vertical line represents point o f  tetanus (See General Methods). (B) Histogram plot 

o f the mean normalised response size seen pre- & post-tetanus. (C) Example fEPSP 

traces of both groups pre- & post-tetanus.

Figure 5.1 demonstrates the effect of 30/xM APV on graft and control synaptic 

plasticity. All data points are normalised to their respective baseline periods. There 

is no significant difference in the normalised responses during the baseline period, 

between graft and control recordings (Groups, F(iji7)=0.73, p=0.40, n.s.). Tetanic 

stimulation of the host corticostriatal fibres within control (n=7) recordings results in 

an immediate moderate depression of the fEPSP 67.97% +3.30%. Whilst tetanic 

stimulation of host corticostriatal fibres within graft (n= ll) recordings results in a 

short lasting (~10 mins) potentiation followed by a gradual depression in the size of 

the fEPSP within graft recordings (n= ll) 96.41% +4.95%, of baseline (Fig 5.1a+b). 

Graft recordings (n = ll)  display no decrease in the size of the fEPSP. Control 

recordings (n=7) display a reduction in the size of the fEPSP when compared to their 

respective baselines, with a significant difference in the level of depression seen 

between graft and control recordings (Groups, F(i,i7)=19.23, p=<0.005, n.s.). Within 

graft recordings at 60 pm  concentration of APV (n=5), tetanic stimulation of the host 

corticostriatal fibres results in no change in the size of the fEPSP 97.76% +0.71%.
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5.3.2 Experiment 2: GABAergic Characterisation
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Figure 5.2 The effect of 30/iM Bicuculline on synaptic plasticity within Embryonic 

Striatal Grafts. (A) Normalised time-response plot demonstrating the effect o f  both 

30/iM Bicuculline and tetanic stimulation in embryonic striatal grafts. Dashed line 

represents baseline. Bold vertical line represents point o f tetanus (See General Methods). 

(B) Histogram plot o f  the mean normalised response size seen pre- & post-tetanus. (C) 

Example fEPSP traces o f both groups pre- & post-tetanus.

Figure 5.2 demonstrates the effect of 30/iM Bicuculline on graft and control synaptic 

plasticity. All data points are normalised to their respective baseline periods. There 

is no significant difference in the normalised responses during the baseline period, 

between graft and control recordings (Groups, F(i,2i p l . l 8 , p=0.28, n.s.). Tetanic 

stimulation of the host corticostriatal fibres results in a gradual potentiation of the 

fEPSP, which increases over time to reach an average of control (n=9) 

121.51%+0.98% and graft (n=8) 126.48%+1.73% of baseline over the 60 min post­

tetanus period, with no significant difference in the level of potentiation seen between 

graft and control recordings (Groups, F(i,2i)=1.35 , p=0.25, n.s.).
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5.3.3 Experiment 3: Monoamergic Characterisation 
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Figure 5.3 The effect of 10/tM SCH 23390 on synaptic plasticity within Embryonic 

Striatal Grafts. (A) Normalised time-response plot demonstrating the effect o f  both 

30/iM Bicuculline and tetanic stimulation in embryonic striatal grafts. Dashed line 

represents baseline. Bold vertical line represents point of tetanus (See General Methods). 

(B) Histogram plot o f the mean normalised response size seen pre- & post-tetanus. (C) 

Example fEPSP traces o f  both groups pre- & post-tetanus.

Figure 5.3 demonstrates the effect of 10/zM SCH 23390 on graft (n=9) and control 

(n=8) synaptic plasticity. All data points are normalised to their respective baseline 

periods. There is no significant difference in the normalised responses during the 

baseline period, between graft and control recordings (Groups, F(U5)=2.29, p=0.15, 

n.s.). Tetanic stimulation of the host corticostriatal fibres results in a gradual 

potentiation of the fEPSP, which increases over time to reach an average of control 

(n=8) 99.28%±0.69% and graft (n=9) 113.47%+6.09% of baseline over the 60 min 

post-tetanus period, with a significant difference in the level of potentiation seen 

between graft and control recordings (Groups, F(i5i5)=4.68, p=0.046).
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Figure 5.4 The effect o f 3ftM Sulpiride on synaptic plasticity within Em bryonic 

Striatal Grafts. (A) Normalised time-response plot demonstrating the effect o f  both 

30/iM Bicuculline and tetanic stimulation in embryonic striatal grafts. Dashed line 

represents baseline. Bold vertical line represents point o f tetanus (See General Methods).

(B) Histogram plot o f the mean normalised response size seen pre- & post-tetanus. (C) 

Example fEPSP traces o f both groups pre- & post-tetanus.

Figure 5.4 demonstrates the effect of 3/tM Sulpiride on graft (n=8) and control (n=7) 

synaptic plasticity. All data points are normalised to their respective baseline periods. 

There is no significant difference in the normalised responses during the baseline 

period, between graft and control recordings (Groups, F(i,i3j=0.01, p=0.91, n.s.). 

Tetanic stimulation of the host corticostriatal fibres results in no real change in the 

size of the fEPSP, control (n=7) 96.19%+2.94% and graft (n=8) 105.13%+4.071% of 

baseline over the 60 min post-tetanus period, with no significant difference in the 

level of potentiation seen between graft and control recordings (Groups, F(i,i3)=3.00, 

p=0.10, n.s.).
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5.4 DISCUSSION

Synaptic plasticity within the mammalian brain is dependant on the interaction of a 

number of neurotransmitters and neuro-modulators. Within the striatum the diverse 

mix of transmitters, neuropeptides, and receptors within the corticostriatal synapse 

interact to produce mechanisms o f synaptic plasticity unique to this synapse and 

structure. The data presented in this chapter demonstrates that although some 

mechanisms of graft plasticity remain consistent with the normal striatum, some 

mechanisms appear unique to the graft environment.

5.4.1 Glutamatergic Mechanisms of Graft Plasticity

As with baseline transmission, glutamate mediated excitatory transmission represents 

a critical component of striatal synaptic plasticity. Within the normal striatum the 

form of synaptic plasticity expressed at the corticostriatal synapse is critically 

dependant on the combination of ionotropic glutamate receptors activated during HFS 

of the corticostriatal efferents. Activation of AMPA receptors, without NMDA 

receptor activation, results in the expression of LTD (Calabresi et al., 1992c). 

Paradoxically, expression of LTP is dependant on activation of both AMPA and 

NMDA receptors (Calabresi et al., 1992e). Embryonic striatal grafts have been 

shown to express similar pharmacological mechanisms of baseline transmission as 

that seen in the normal striatum (See chapter 3), including similar responses to 

application of AMPA and NMDA receptor antagonists. Furthermore, embryonic 

striatal grafts are capable of expressing bidirectional synaptic plasticity, in keeping 

with the normal striatum (See chapter 4). However, studies have indicated that 

embryonic striatal grafts display mechanisms of increased excitability, which maybe 

attributed to the NMDA receptor (Siviy et al., 1993). Yet, though blockade of either 

NMDA or AMPA receptors produces similar effects in both control and graft 

recordings, under baseline conditions, the same is not true following HFS o f the 

corticostriatal afferents.

Application of APV in the absence of magnesium, has an interesting effect on 

synaptic plasticity from embryonic striatal grafts. Under such conditions HFS of the 

host corticostriatal afferents results in an immediate, short duration potentiation of
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graft recordings, which return to baseline conditions within ten minutes. Whilst the 

mechanism for this apparent disparity is unknown, a number of possible explanations 

exist. Previous analysis of the AMPA receptor, within embryonic striatal grafts, has 

shown it to function in a similar manner to that seen in the normal striatum. 

Therefore, it is likely that the observed effects may be facilitated by the NMDA 

receptor. Interestingly, APV concentrations of 60pM and above results in a loss of 

the immediate STP, followed by a further reduction in the size o f the fEPSP. This 

would suggest that within embryonic striatal grafts the NMDA receptor may 

contribute to the expression of LTD. It has been previously reported that TSNs 

display a higher level of excitability than MSNs (Siviy et al., 1993). This observation 

has been attributed to an early developmental age of TSNs, as it has been shown that 

developing striatal neurones display similar characteristics of increased excitability 

(Siviy et al., 1991). This increased excitability has been attributed to the NMDA 

receptor, which has been shown to be regulated throughout development (van Zundert 

et al., 2004). Within the NMDA receptor complex, whilst the NR1 sub-units remain 

constant, the NR2 subunits, of which four subtypes exist, are regulated over 

development and activity (Cull-Candy et al., 2001). It is the NR2 subunits which 

regulate receptor calcium ion permeability, magnesium ion affinity, and selectivity of 

antagonists (Anson et al., 2000; Tovar et al., 2000). It has been shown that the NR2 

subunit is regulated over development. Studies have shown a higher incidence of 

NMDA receptors containing the NR2B subunit within the embryonic brain, which 

gradually decreases post-natal, switching to a higher incidence o f NMDA receptors 

expressing the NR2A subunit that is more common in adults (Monyer et al., 1994). 

The data presented within this chapter demonstrates that within embryonic striatal 

grafts twice the concentration of APV is required to antagonise the NMDA receptors 

to produce a switch in expression of LTP to LTD, as seen in the normal striatum 

under conditions where magnesium is not present. It is important to note that the 

antagonist selectivity is regulated by the NR2 sub-unit (Laube et al., 1997). 

Furthermore, it has been shown that APV displays a higher selectivity for NR2A 

subunits over NR2B (Laube et al., 1997). Therefore, it is plausible that the higher 

concentrations of APV needed to produce similar electrophysiological effects as that 

seen in the normal striatum could indicate that NMDA receptors from embryonic 

striatal grafts show a higher incidence of the NR2B subunit over the NR2A. Also, it 

has been shown that the NR2B subunit has a higher calcium permeability than the
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NR2A (Monyer et al., 1994), which could account for the reported higher excitability 

observed from striatal graft recordings (Siviy et al., 1993). Regardless, the findings 

reported here would suggest that embryonic striatal grafts demonstrate high levels of 

NR2B subunits at four weeks post-transplantation, which would suggest that TSNs 

retain some electrophysiological characteristics of an immature neuronal phenotype.

5.4.2 GABAergic Mechanisms of Host-Graft Synaptic Plasticity

Application of the GABA receptor antagonist bicuculline, in the presence of 

magnesium, results in the expression of LTP from both graft and control recordings 

following HFS. Under normal conditions, HFS in the presence of magnesium results 

in the expression of LTD. The mechanisms underlying this switch in expression of 

LTP to LTD are not clearly understood. It is plausible that blockade of GABAergic 

inhibition enables the post-synaptic MSNs and TSNs to be sufficiently depolarised so 

that pre-synaptic stimulation is sufficient to activate NMDA receptors resulting in the 

expression of LTP. Interestingly, the level of potentiation observed following 

GABAergic blockade is less than that seen under conditions where LTP is induced in 

the absence of magnesium. If inhibition of GABAergic transmission enables the 

expression of LTP, it would be expected that similar levels o f LTP would be 

expressed as that seen in zero magnesium conditions. However, it is worth noting that 

bicuculline is selective to GABAa receptors over GABAb, leaving GABA b receptors 

active (Bowery et al., 2002). Therefore, it could be essential that for total expression 

of LTP both GABAa and GABAb receptors must be antagonised. It is important to 

note that following application of bicuculline the mean size of the fEPSP increases to 

roughly 130% of baseline. Thus it is plausible that under such conditions HFS 

increases the size of the fEPSP to maximal levels prior to reaching the level of 

potentiation seen under zero magnesium conditions.

Interestingly, the data demonstrate that, under conditions where GABAa receptors are 

inhibited by bicuculline, HFS produces similar levels of LTP in both control and graft 

recordings. This would suggest that GABAergic mechanisms of synaptic plasticity, 

modulated by GABAa receptors, is similar in graft and control recordings.
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5.4.3 Monoamergic Mechanisms o f Host-Graft Synaptic Plasticity

The data presented within this chapter demonstrates that monoamergic mechanisms of 

host-graft synaptic plasticity are different to that observed within the normal striatum. 

Application of sulpiride, a D2 receptor antagonist has been shown to have no effect 

on either graft or control baseline transmission (see chapter 3, Fig 3.9). However, 

following HFS, whilst control recordings display no change in fEPSP size, recordings 

from striatal grafts demonstrate a gradual potentiation. Within the normal striatum it 

has been shown that application of sulpiride, followed by HFS, has no effect on 

fEPSP size, thus eliminating the expression of either LTP or LTD (Calabresi et al., 

1992b). The results presented here confirm the observation that within the normal 

striatum application of sulpiride blocks the expression of both LTP and LTD.

Interestingly application of sulpiride, followed by HFS, to striatal grafts results in the 

expression of LTP, although it must be noted that the level of LTP observed is lower 

than that seen in either control or graft recordings under conditions where magnesium 

is omitted from the perfusate solution. Interestingly, similar levels of LTP have been 

observed in recordings from animals which have received unilateral 6-OHDA lesions 

(Calabresi et al., 1992b). Such lesions ablate the dopaminergic inputs to the striatum, 

resulting in a pronounced loss of DA within the striatum (Calabresi et al., 1992b). 

Recordings from DA depleted slices demonstrate a complete lack of striatal LTP or 

LTD following HFS of the corticostriatal afferents (Calabresi et al., 1992b). 

However, in the presence of sulpiride and DA, HFS results in the expression of LTP 

(Calabresi et al., 1992b). Therefore it seems essential that expression of LTP, 

following blockade o f D2 receptors, requires activation of other DA receptors. 

Further studies conducted within D2 receptor knock out mice demonstrate that 

following HFS LTP is expressed from the corticostriatal synapse (Calabresi et al., 

1997c). As would be expected application of sulpiride has no effect on the expression 

of LTP from D2 knockout mice (Calabresi et al., 1997c). Furthermore application of 

the D1 receptor antagonist SCH 23390 has no effect on the expression, or level of, 

LTP observed following HFS (Calabresi et al., 1997c). Therefore it would seem that 

within the normal striatum activation of both D1 and D2 receptors is essential for the 

expression of LTD, whilst inhibition of D2 receptors is sufficient for the expression of 

LTP, which is independent of D1 receptor activation.
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The data presented within this chapter demonstrates that in the presence of sulpiride 

HFS results in the expression of LTP from graft recordings, whilst control recordings 

display neither LTP nor LTD. Interestingly, the level of LTP observed from striatal 

grafts closely resembles those reported by Calabresi et al in the DA depleted and D2 

knockout striatal recordings (Calabresi et al., 1992b; Calabresi et al., 1997c). The 

similarity in these observations suggest several features of graft function and 

connection. Firstly, the similarity in expression of LTP between graft recordings and 

those from the DA depleted striatum proves interesting. In the dopamine depleted 

studies conducted by Calabresi et al, a unilateral 6-OHDA lesion of the SN, resulted 

in a near total loss of DAergic cells from the SN, with a similar total loss of DAergic 

terminals from the striatum (Calabresi et al., 1992b). Within the lesion model of HD 

used throughout the experiments presented within this thesis, it has been shown that 

post-lesion there is a moderate degeneration of the DAergic fibres from the host SN 

(Wictorin et al., 1988b; Wictorin, 1992). Yet, it has been shown that embryonic 

striatal grafts contain fibres from the host SN that stain positive for TH, and which 

correspond with the areas containing the striatal-like “P-zones” within the grafts 

(Wictorin et al., 1988a). Furthermore, it has been shown that TSNs form 

anatomically appropriate synaptic contacts with the host DAergic fibres from the SN 

(Clarke et al., 1988b; Wictorin, 1992). The data presented within this chapter 

demonstrates that pharmacological blockade of D2 receptors, and administration of 

HFS, results in the expression of LTP from striatal graft recordings. This clearly 

demonstrates that following transplantation, DAergic fibres from the SN make 

synaptic contacts with TSNs to form functional connections between the host SN and 

the graft. Within the DA depleted striatum, the sulpiride induced expression of LTP 

requires the co-application o f DA (Calabresi et al., 1992b), which is not required for 

the sulpiride induced expression of LTP from striatal grafts. This would be expected 

as application of DA to slices from the 6-OHDA lesioned striatum is presumably 

required to activate other DA receptors, where the functional connection observed 

within striatal grafts provides intrinsic DA sufficient to activate receptors.

The sulpiride dependant expression of LTP within striatal grafts poses an interesting 

question regarding functional connections between striatal grafts and the host 

dopaminergic network. Functional connection is clearly plausible since the DAergic
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projections are able to release DA, and DA receptors located on TSNs are responsive 

to application of antagonists. However, the sulpiride dependant expression of LTP 

within striatal grafts would suggest that receptor mechanisms observed within striatal 

grafts may be somewhat similar to that seen within the DA depleted striatum. A 

possible explanation for this observed similarity would be dopamine receptor 

supersensitivity following lesion. Firstly, it is know that following 6-OHDA lesions 

the dopamine receptors located on MSNs become sensitised to the application of DA 

(Amt, 1985). This supersensitivity has been suggested to be regulated via increased 

cAMP-dependant signalling (Gnanalingham et al., 1995; Missale et al., 1989). 

Furthermore, it has been shown that cAMP dependant signalling, involving CAMKII, 

mediates serine phosphorylation of NMDA NR2 subunits (Kotter, 1994; Omkumar et 

al., 1996), augmenting NMDA receptor currents (Rostas et al., 1996). Interestingly, it 

has been shown that DA mediated phosporylation of NMDA receptors is increased in 

6-OHDA lesioned animals (Oh et al., 1999). This, in turn, suggests that dopamine 

receptor supersensitivity results in enhanced glutamatergic excitatory transmission.

Within the context of the experiments presented within this chapter, it is plausible that 

the sulpiride induced expression of LTP observed within grafts could be due to D1 

receptor supersensitivity. The observation that NMDA receptor efficacy plays a 

major role in determining the direction of synaptic plasticity induced at the 

corticostriatal synapse, via HFS, is pertinent in this observation, as enhanced NMDA 

receptor efficacy as a result of receptor supersensitivity could result in a preferential 

switch from LTD to LTP, as seen in figure 5.3.

One would expect that dopamine receptor supersensitivity would result in the 

supersensitisation of both D1 and D2 receptors. The data presented in this chapter 

demonstrates HFS in the presence of SCH 23390, a D1 receptor antagonist, results in 

a lack of LTP/LTD expression (Fig 5.4). Interestingly, other studies have 

demonstrated that behavioural expression of dopamine receptor supersensitivity is 

confined to D1 receptor activation (Cai et al., 2002). Furthermore, D2 receptors have 

been shown to negatively couple to cAMP dependant signalling (McAllister et al., 

1995; Onali et al., 1985; Potenza et al., 1994; Tang et al., 1994b; Tang et al., 1994a). 

It is more than likely that D2 receptor supersensitivity would negatively affect serine 

phosphorylation of NMDA receptors, resulting in decreased NMDA receptor efficacy.
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Though it would be expected that in the absence of LTP, LTD would be expressed, it 

has been shown that expression of LTD requires co-activation of both D1 and D2 

receptors (Calabresi et al., 1992b). Therefore, one would expect the total lack of 

expression of synaptic plasticity observed.

The monoaminergic influences on host-graft plasticity would suggest an interesting 

mechanism underlying connection of monoamergic circuitry in the grafted striatum. 

The observation that dopaminergic regulated plasticity is similar to that seen in 6- 

OHDA lesion models, following application of DA, would suggest a similarity in the 

receptor mechanisms observed between the two lesion models. Whilst dopamine 

receptor sensitivity provides a logical hypothesis for the observed phenomenon within 

the striatal lesion and graft model, it is hard to ignore the relevance of the 

developmental age of the tissue transplanted into the lesioned striatum. It has been 

theorised that enhanced glutamatergic transmission within striatal grafts is a result of 

increased glutamatergic receptor efficacy. Whilst it has not been demonstrated it is 

possible that dopaminergic receptors may display similar mechanisms of increased 

efficacy due to developmental age. However, it has been demonstrated that D1 

receptors within striatal grafts display increased levels of receptor binding (Pundt et 

al., 1997), therefore suggesting that D1 receptor sensitivity within striatal grafts is 

responsible for sulpiride dependant switch in expression of LTP over LTD.

Finally, it is important to consider a potential time course effect. It has been shown 

that DA fibres from the nigra can take up to 6 months to fully innervate the graft 

region. Within the post-transplantation periods studied in the experiments presented 

in this chapter, it is likely that dopaminergic innervation of the graft is at an early 

stage. Therefore, supersensitive TSNs are only just receiving a new DA input with 

insufficient time to compensate back to normal following the lesion induced 

denervation.
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5.5 CONCLUSION

The findings presented in this chapter propose that although embryonic striatal grafts 

restore synaptic plasticity to the lesioned striatum, the pharmacological mechanisms 

of host/graft synaptic plasticity are different to that seen in the normal striatum. 

Specifically, NMDA mediated and D2 mediated mechanisms of host/graft plasticity 

differ significantly from that seen in the normal striatum. The differences in NMDA 

mediated mechanisms of synaptic plasticity between striatal grafts and the normal 

striatum are hypothesised to be due to a higher expression of NR2B subunits with 

embryonic striatal grafts. Therefore, it is plausible that during development post­

transplantation, TSNs retain some phenotypes of an embryonic development age. The 

differences in D2 mediated mechanisms of host/graft plasticity are suggested to be 

due to functional connection between striatal grafts, and the host DAergic projection 

from the SN, resulting in supersensitisation of D2 receptors.

125



6. ENVIRONMENTAL ENRICHMENT AND GRAFT 

PHYSIOLOGICAL AND ANATOMICAL PLASTICITY

6.1 INTRODUCTION

Environmental enrichment refers to measures taken to enhance the sensory and motor 

experiences of experimental animals. Though studies involving enrichment do not 

conform to any form of standardised protocol, nearly all studies utilise manipulations 

of the animals’ environment in order to increase social interaction, exploratory 

behaviour, and exercise levels. Common environmental manipulations taken in order 

to enrich the environment in which animals inhabit include increasing the number of 

animals housed in a single cage, increasing the cage size, and introduction of novel 

items. What is remarkable is that such environmental manipulations can impinge on 

neuronal development and function.

Hebb first introduced the concept that the behavioural experience, acquired 

throughout ones life, can modify or promote activity dependant changes in neuronal 

function (Hebb , 1949). Pioneering experiments by Rosenweig demonstrated that 

environmental enrichment produces both structural changes in the brain, such as 

increased cortical thickness, and morphological changes, including increased soma 

size, dendritic branching and density of dendritic spines (Rosenzweig et al., 1967). 

Later experiments have demonstrated that environmental enrichment can also impact 

positively upon a number of cognitive and motor tasks (Femandez-Teruel et al., 1997; 

Tees, 1999; Xerri et al., 1996). The observed enhancement o f behavioural 

performance is considered to be dependant on morphological, physiological, and 

biochemical changes, induced by the enriched environment.

Environmental enrichment has been shown to induce increased expression of a 

number of genes encoding for proteins which play a key role in neuronal development 

and function (Rampon and Tsien, 2000; Rampon et al., 2000). There is an up 

regulation in expression of key genes involved in synaptic transmission and plasticity 

(Rampon et al., 2000), and expression of trophic factors (Pham et al., 1999).
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Furthermore, it has been shown that environmental enrichment can impact upon 

neuronal transmission (Foster et al., 1996; Irvine and Abraham, 2005). Studies 

conducted within the hippocampus have further demonstrated that environmental 

enrichment can enhance synaptic plasticity expressed from the CA1 region (Artola et 

al., 2006; Duffy et al., 2001), whilst also positively effecting LTP induction (Artola et 

al., 2006).

The adult brain is at its most plastic during development and following injury, and 

these initial observations lead to studies looking at the effect o f environmental 

enrichment in animal models of HD and cell transplantation. Environmental 

enrichment has been shown to increase behavioural performance on tasks which rely 

on the striatal hemisphere controlled by the graft (Dobrossy et al., 2000; Dobrossy 

and Dunnett, 2001; Dobrossy and Dunnett, 2003; Dobrossy and Dunnett, 2004; 

Dobrossy and Dunnett, 2005). Furthermore, it has been demonstrated that grafts in 

animals housed in enriched environments display bigger DARPP-32 positive cell 

soma, and receive denser innervation from the host DAergic projection system 

(Dobrossy and Dunnett, 2004). Studies have also shown that grafts within animals 

housed in enriched environments demonstrate an increase in brain-derived 

neurotrophic factor (BDNF) (Dobrossy and Dunnett, 2004). Similar increases in 

BDNF levels have been seen in both control animals (Neeper et al., 1996), and HD 

transgenic mice (Hockly et al., 2002; Spires et al., 2004), where it has been shown to 

slow disease progression (Hockly et al., 2002; Spires et al., 2004).

Therefore, it would seem that environmental enrichment can enhance behavioural 

performance through anatomical, biochemical and physiological mechanisms. 

Though it has been clearly demonstrated that environmental enrichment can influence 

graft mediated behavioural performance, anatomical characteristics, and biochemical 

properties it is still unclear whether enrichment can influence physiological properties 

such as synaptic plasticity expressed from striatal grafts.

Therefore, the aim of this chapter is to identify the effect of environmental enrichment 

on synaptic plasticity within the normal striatum and striatal grafts.

127



6.2 METHODS

Experiments were performed as described in the general methods chapter, with 

additional details here:

Enrichment Protocol

Upon arrival, animals were divided into enriched and non-enriched housing. Animals 

housed within enriched environments were housed in groups of six, within a 40 x 25 x 

12cm sized cage. The cage was equipped with a number of novel toys, and 

environmental stimuli designed to induce increased social interaction and exploratory 

behaviour (Bio-Serv, NJ, USA). Additionally all enriched environment cages 

contained a horizontal mouse running wheel, designed to provide the animals with 

free access to exercise (Bio-Serv, NJ, USA).

Animals housed within non-enriched environments were housed in groups of two, 

within a 30 x l2  x 12cm sized cage. The cage was devoid of any environmental 

stimuli bar the standard mouse housing medium (a single cardboard tube) required 

under Home Office guidelines. Both enriched and non-enriched animals were given 

free access to the standard laboratory animal food and water, ad libitum, and housed 

within the same room with the standard light:dark cycle, temperature, and humidity 

settings (as per General Methods).

Animals remained housed within their respective environments, during all surgery 

procedures, and until the point of sacrifice for experimentation.

6.2.1 Experiment 1: The Effect of Enrichment on LTP/LTD from the Normal 

Striatum.

Animals were divided into two groups. Standard Control (n=13), animals were 10-14 

weeks of age at the time of experiment, and housed in a standard environment from 4 

weeks of age. Enriched Control (n=T5), animals were 10-14 weeks o f age at the time 

of experiment, and house in an enriched environment from 4 weeks o f age. For LTD
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experiments a normal aCSF perfusate was used. For LTP experiments magnesium 

was omitted from the aCSF perfusate.

6.2.2 Experiment 2: The Effect o f Enrichment on LTP/LTD from Striatal Grafts.

Animals were divided into two groups. Standard Graft (n=14), host animals were 6-8 

weeks of age at the point of transplantation, 10-14 weeks of age at the time of 

experiment, and housed in a standard environment from 4 weeks of age. Enriched 

Graft (n=20), host animals were 6-8 weeks of age at the point o f transplantation, 10- 

14 weeks of age at the time of experiment, and housed in an enriched environment 

from 4 weeks of age. For LTD experiments a normal aCSF perfusate was used. For 

LTP experiments magnesium was omitted from the aCSF perfusate.

6.2.3 Experiment 3: The Effect of Enrichment on Synaptic Plasticity from the 

Normal Hippocampus.

Animals were divided into two groups. Standard Control (n=9), animals were 10-14 

weeks of age at the time of experiment, and housed in a standard environment from 4 

weeks of age. Enriched Control (n=10), animals were 10-14 weeks o f age at the time 

of experiment, and house in an enriched environment from 4 weeks of age. For all 

experiments a normal aCSF perfusate was used. For all hippocampal experiments a 

HFS protocol consisting of 3 trains, each train consisting of 10 bursts at 5Hz and each 

burst consisting of 4 pulses at 100Hz, within an inter-train interval of 10s.

6.2.4 Experiment 4: Assessing the Levels of BDNF Following Enrichment.

Three animals from each group (Standard Control, Enriched Control, Standard Graft, 

Enriched Graft) were sacrificed via cervical dislocation, decapitated, and their brains 

quickly removed and submersed in ice cold aCSF, containing ImM Kynurenic acid. 

Brain were hemisected, and the left hemisphere, containing the striatal graft, was 

stored for preparation of in vitro slices for electrophysiology (as per General 

Methods). The right hemisphere was quickly dissected, and samples of the Cortex, 

Striatum, Hippocampus, and Cerebellum were taken, and stored at -80°C in
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preweighed Eppendorf tubes. The tubes containing the tissue samples were weighed 

to determine the weight o f the sample. The levels of BDNF present in the tissue were 

ascertained by following the protocol for the enzyme-linked immunosorbent assay 

(ELISA) method using £ max ImmunoAssay System (Promega, Madison WI, USA). 

The tissue was homogenized and centrifuged and the supernatant fluid, containing the 

extracted BDNF, was aliquoted in duplicate into 96-well plate precoated with 

antiBDNF monoclonal antibody. Following blocking to reduce non-specific 

reactions, the capture BDNF was incubated with 1:500 antihuman BDNF polyclonal 

antibody (Promega, Madison WI, USA). The specifically bound polyclonal antibody 

was detected using anti IgY conjugated with horseradish peroxidase antibody which, 

when incubated with a chromogenic substrate, resulted in a colour change 

proportional to the amount o f BDNF present. The absorbance of the colour 

development was measured in a microplate reader at 450nm wavelength to allow 

quantification o f the BDNF concentrations present in the test samples based on the 

absorbance from the standardised samples of known concentrations. The 

concentrations in each sample were determined in duplicate and the mean value was 

used for analysis.

130



6.3 RESULTS

6.3.1 Experiment 1. The Effect o f  Enrichment on LTP/LTD from the Normal 

Striatum.
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Figure 6.1 The effect of Environ mental Enrichm ent on synaptic plasticity within the 

normal striatum . (A ) Normalised time-response plot demonstrating the effect o f tetanic 

stimulation within the normal striatum o f enriched (n=7) and non-enriched (n=6) 

animals. Dashed line represents baseline. Bold vertical line represents point o f  tetanus 

(See General Methods). (B ) Histogram plot o f  the mean normalised response size seen 

pre- & post-tetanus. (C) Example fEPSP traces o f both groups pre- & post-tetanus.

Figure 6.1 demonstrates the effect of tetanic stimulation on synaptic plasticity from 

the enriched (n=7) and non-enriched (n=6) normal striatum, under physiologically 

normal conditions. All data points are normalised to their respective baseline periods. 

There is no significant difference in the normalised responses during the baseline 

period, between enriched (n=7) and non-enriched (n=6) recordings (Groups, 

F(i,ii)=0.24, p=0.62, n.s.). Tetanic stimulation of the host corticostriatal fibres results 

in an immediate depression in the size of the fEPSP, enriched (n=7) 52.39%+7.13% 

and non-enriched (n=6) 51.35%±4.67% of baseline over the 60 min post-tetanus 

period, with no significant difference in the level of depression seen between graft and 

control recordings (Groups, F(i,n)=0.39, p=0.54, n.s.).
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Figure 6.2 The effect of Environm ental Enrichm ent on synaptic plasticity within the 

norm al striatum. (A ) Normalised time-response plot demonstrating the effect o f tetanic 

stimulation within the normal striatum o f enriched (n=8) and non-enriched (n=7) 

animals, under conditions where magnesium is omitted from the perfusate solution. 

Dashed line represents baseline. Bold vertical line represents point o f tetanus (See 

General Methods). (B) Histogram plot o f  the mean normalised response size seen pre- & 

post-tetanus. (C) Example fEPSP traces o f both groups pre- & post-tetanus.

Figure 6.2 demonstrates the effect of tetanic stimulation on synaptic plasticity from 

the enriched (n=8) and non-enriched (n=7) normal striatum, under conditions where 

magnesium is omitted from the perfusate solution. All data points are normalised to 

their respective baseline periods. There is no significant difference in the normalised 

responses during the baseline period, between enriched (n=8) and non-enriched (n=7) 

recordings (Groups, F(i,n)=0.10, p=0.75, n.s.). Tetanic stimulation of the host 

corticostriatal fibres results in an immediate potentiation in the size of the fEPSP, 

enriched (n=8) 51.35%+4.67% and non-enriched (n=7) 52.39%+7.13% of baseline 

over the 60 min post-tetanus period, with no significant difference in the level of 

potentiation seen between graft and control recordings (Groups, F(i,i3)=3.00, p=0.10, 

n.s.).
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6.3.2 Experiment 2. The Effect o f  Enrichment on LTP/LTD from Striatal Grafts. 
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Figure 6.3 The effect of Environm ental Enrichm ent on synaptic plasticity within 

embryonic striatal grafts (w ith M g2+). (A) Normalised time-response plot

demonstrating the effect o f  tetanic stimulation within the embryonic striatal grafts o f  

enriched (n=8) and non-enriched (n=5) animals. Dashed line represents baseline. Bold 

vertical line represents point o f  tetanus (See General Methods). (B) Histogram plot o f  

the mean normalised response size seen pre- & post-tetanus. (C) Example fEPSP traces 

o f both groups pre- & post-tetanus.

Figure 6.3 demonstrates the effect of tetanic stimulation on synaptic plasticity from 

the enriched (n=8) and non-enriched (n=5) embryonic striatal grafts, under 

physiologically normal (with magnesium) conditions. All data points are normalised 

to their respective baseline periods. There is no significant difference in the 

normalised responses during the baseline period, between enriched (n=8) and non- 

enriched (n=5) recordings (Groups, F(i,np0.01, p=0.91, n.s.). Tetanic stimulation of 

the host corticostriatal fibres results in an immediate depression in the size of the 

fEPSP, enriched (n=8) 52.39%±7.13% and non-enriched (n=5) 51.35%±4.67% of 

baseline over the 60 min post-tetanus period, with no significant difference in the 

level of potentiation seen between graft and control recordings (Groups, F(i,n)=0.10, 

p=0.91, n.s.).
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Figure 6.4 The effect of Environm ental Enrichm ent on synaptic plasticity w ithin  

embryonic striatal grafts (w ithout M g2+). (A ) Normalised time-response plot

demonstrating the effect o f  tetanic stimulation within the normal striatum o f  enriched 

(n=12) and non-enriched (n=9) animals, under conditions where magnesium is omitted 

from the perfusate solution. Dashed line represents baseline. Bold vertical line 

represents point o f tetanus (See General Methods). (B ) Histogram plot o f  the mean 

normalised response size seen pre- & post-tetanus. (C) Example fEPSP traces o f both 

groups pre- & post-tetanus.

Figure 6.4 demonstrates the effect of tetanic stimulation on synaptic plasticity from 

the enriched (n=12) and non-enriched (n=9) embryonic striatal grafts, under 

conditions where magnesium is omitted from the perfusate solution. All data points 

are normalised to their respective baseline periods. There is no significant difference 

in the normalised responses during the baseline period, between enriched (n=12) and 

non-enriched (n=9) recordings (Groups, F(i,i9)=2.97, p=0.10, n.s.). Tetanic 

stimulation of the host corticostriatal fibres produces an immediate potentiation of the 

fEPSP in both enriched (n=12) 168.52%+6.79% and non-enriched (n=9)

142.19%+5.21% recordings, with enriched (n=12) recordings potentiating to a 

significantly higher degree than non-enriched (n=9) recordings (Groups, F(i,i9y=8.41, 

p=0.009, n.s.).
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6.3.3 Experiment 3. The Effect o f Enrichment on Hippocampal Synaptic Plasticity.
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Figure 6.5 The effect of Environmental Enrichment on synaptic plasticity within the 

CA1. (A) Normalised time-response plot demonstrating the effect o f  tetanic stimulation 

within the CA1 o f enriched (n=10) and non-enriched (n=9) animals, under conditions 

where magnesium is omitted from the perfusate solution. Dashed line represents 

baseline. Bold vertical line represents point o f tetanus (See General Methods). (B) 

Histogram plot o f the mean normalised response size seen pre- & post-tetanus. (C) 

Example fEPSP traces o f both groups pre- & post-tetanus.

Figure 6.5 demonstrates the effect of tetanic stimulation on synaptic plasticity from 

the enriched (n=10) and non-enriched (n=9) CA1 region of the hippocampus, under 

physiologically normal conditions. All data points are normalised to their respective 

baseline periods. There is no significant difference in the normalised responses 

during the baseline period, between enriched (n=10) and non-enriched (n=9) 

recordings (Groups, F(iti7pl.56, p=0.22, n.s.). Tetanic stimulation of the CA1 

produces an immediate potentiation of the fEPSP in both enriched (n=10) 

172.89%+11.94% and non-enriched (n=9) 178.88%+10.64% recordings, with no 

significant difference in the level of potentiation seen between enriched (n=10) and 

non-enriched (n=9) recordings (Groups, F(i,i7)=0.137, p=0.71, n.s.).
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6.3.4 Experiment 4. Assessing the Levels o f BDNF Following Enrichment.
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Figure 6.6 The effect o f Environm ental Enrichm ent on BDNF levels. Histogram plot 

demonstrating the mean concentration o f  BDNF (ng/g) in Striatum, Hippocampus, Cortex 

and Cerebellum samples collected from (B ) grafted and (A) control animals housed in 

standard and enriched environments.

Figure 6.6 demonstrates the effect of environmental enrichment on BDNF levels 

within control and grafted animals. Enriched Control (n=3), Standard Control 

(n=3), Enriched Graft (n=3) and Standard Graft (n=3) animals were dissected 

for tissue samples of the Striatum, Hippocampus, Cortex and Cerebellum. Each 

tissue sample was tested via ELISA in duplicate, with the mean value used as a 

representative figure for BDNF concentration within the sample. Samples were 

then averaged across the three animals to produce an overall mean for each 

structure, and housing condition, and plotted as a histogram (Fig 6.6). Due to 

large differences in the variance between regions, the data was log transformed 

in order to homogenise the variance. The log transformed data was subjected to 

a 2 way ANOVA to assess significance. There is a significant increase in 

BDNF levels across all brain regions (Groups, F(i,23)=47.43, p=<0.001) 

following environmental enrichment, with no significant interaction between 

regions and groups (Groups, F(3>2i)=0.20, p=0.895, n.s).

136



6.4 DISCUSSION

The mammalian brain is at its most plastic during development and following injury. 

Therefore, it would be expected that the effects of environmental enrichment would 

be exacerbated within embryonic striatal grafts, which represent a situation where 

developing embryonic tissue is placed into the damaged adult nervous system. The 

data presented in this chapter aims to identify if bi-directional corticostriatal synaptic 

plasticity expressed from striatal grafts is affected by environmental enrichment, and 

to probe some of the mechanisms behind enrichment dependant modification of 

neuronal function.

6.4.1 The Effect of Enrichment on LTP/LTD from the Normal Striatum

Studies have demonstrated that environmental enrichment can affect hippocampal 

synaptic transmission (Duffy et al., 2001; Irvine and Abraham, 2005) and increase 

both LTP and LTD expressed from the CA1 region (Artola et al., 2006). However, 

the effect of environmental enrichment on bi-directional corticostriatal synaptic 

plasticity had yet to be investigated.

The data presented in this chapter demonstrates that environmental enrichment (under 

the parameters employed) had no effect on the level of corticostriatal LTD expressed 

from the normal striatum. Whilst it would be logical that environmental enrichment 

would increase LTD within the normal striatum, the findings presented here are not 

totally unexpected. Previous studies demonstrate that LTD is increased, following 

enrichment, have concentrated on LTD expressed from the CA1 region of the 

hippocampus (Artola et al., 2006; Duffy et al., 2001). Within the hippocampus 

expression of LTD is induced by repetitive low frequency stimulation (LFS) and is 

dependant on NMDA receptor activation. LTD expressed from the striatum is 

independent of NMDA receptor activation (Calabresi et al., 1992c; Calabresi et al., 

1992e). This proves important, as the effects of enrichment on synaptic plasticity 

have been suggested to be heavily dependant on modification of NMDA receptor 

(Artola et al., 2006; Duffy et al., 2001). Therefore it is plausible that corticostriatal 

LTD is not overtly effected by enrichment.
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Also, it is important to note, that previous studies on the effect of enrichment on CA1 

synaptic plasticity, have used differing enrichment protocols to the one employed in 

the studies presented here. Duffy et al report that CA1 LTP is only enhanced 

following 8-week exposure to an enriched environment (Duffy et al., 2001), whilst 

animals exposed to an enriched environment display no change in CA1 LTP, after 

shorter exposure periods (Duffy et al., 2001). Furthermore, Artola et al report that 

both CA1 LTP and LTD are enhanced following a 5-week exposure to an enriched 

environment (Artola et al., 2006), which is not reversed following a further 3-5 week 

exposure to a standard environment (Artola et al., 2006). In this present study mice 

were exposed to the enriched environment for 8-12 weeks prior to experimentation. 

Whilst, this time period may be sufficient to induce changes in CA1 LTD, the same 

time period may not be sufficient to induced changes in corticostriatal LTD. 

Interestingly, gene expression studies have demonstrated that the effect of enrichment 

on promoting up regulation o f gene expression is time dependant (Rampon et al., 

2000). It is plausible that 8-weeks exposure to an enriched environment provides an 

early stage of the enrichment effects within the striatum. Therefore, it is impossible to 

rule out that corticostriatal LTD may be affected following longer periods of 

enrichment.

It is also important to note that previous studies demonstrating a change in CA1 LTD 

have used animals at a much later stage in adult development 7-9 months of age 

(Artola et al., 2006). Furthermore, it has been shown that CA1 synaptic plasticity 

decreases with increased age (Foster et al., 1996). It is plausible that the increase in 

CA1 LTD following enrichment could be facilitated by a decline in LTD with age, 

resulting in an increased enrichment effect. Therefore, it would be interesting to 

analyse the effect o f environmental enrichment on corticostriatal LTD and LTP from 

aged normal mice.

Interestingly, the data presented in this chapter clearly demonstrates that 

environmental enrichment causes an increased expression of LTP. In the presence of 

magnesium, HFS resulted in the expression of synaptic plasticity from enriched 

animals in 10 out o f 15 recordings, with 7 out of 15 being LTD, and 3 out of 15 being 

LTP. Under similar conditions, animals housed in standard environments expressed

138



synaptic plasticity in 6 out of 15 recordings, with a total expression of LTD (6 out of 

15). Furthermore, in conditions where magnesium is omitted from the perfusate 

solution, animals from standard housing demonstrated LTP in 7 out of 10 recordings, 

whilst those from enriched housing demonstrated LTP in 10 out of 10 recordings 

(Two recordings clearly displayed LTP, but were omitted from the final analysis due 

to data not being collected for a full 60 minute post-tetanus period). These 

observations prove interesting for a number of reasons. It can clearly be seen that 

environmental enrichment improves the success rate of expressing corticostriatal 

synaptic plasticity from the normal striatum. Interestingly, similar findings have been 

found, with regard to CA1 LTP (Artola et al., 2006; Duffy et al., 2001). It has been 

suggested that increased expression o f synaptic plasticity may provide a physiological 

mechanism for the observed increases in behavioural performance following 

enrichment (Artola et al., 2006). Therefore, though the enrichment paradigm utilized 

in the experiments presented here does not affect bidirectional corticostriatal synaptic 

plasticity size, it does result in increased expression of corticostriatal synaptic 

plasticity, which may have an effect on behavioural performance.

Additionally, environmental enrichment appears to increase the expression of LTP 

under normal physiological conditions. As previously described, LTP within the 

normal striatum appears to be critically dependant on the activation of NMDA 

receptors, which under in vitro conditions requires the omission of magnesium from 

the perfusate solution (Calabresi et al., 1992c; Calabresi et al., 1992e). Striatal 

NMDA receptors are distinct from other NMDA receptors in that they have a high 

strength magnesium block, requiring strong depolarisation from corticostriatal 

afferents in order to be activated (Calabresi et al., 1992c). It is theorised that the lack 

of NMDA receptor activation under normal conditions in the striatal in vitro slice is 

the result of poor preservation o f corticostriatal afferents within the slice (See Chapter 

4). Furthermore, it has been shown that enrichment can influence morphological 

changes (Rosenzweig et al., 1967) which may include changes in the density of the 

corticostriatal input. However, it would seem that environmental enrichment can 

offset some of the difficulties in activating the NMDA receptor, resulting in the 

increased expression o f LTP under normal conditions. Yet, how could enrichment 

result in increased ease o f NMDA receptor activation?
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There are two possible ways environmental enrichment could affect striatal NMDA 

receptor activation within the normal striatum. Firstly, enrichment could directly 

affect pre-synaptic mechanisms o f LTP induction. A number of studies have 

demonstrated that enrichment causes a reduction in the threshold for LTP induction 

(Artola et al., 2006; Duffy et al., 2001). Under such conditions a lower number of 

tetanic bursts are required for induction of LTP. Though the mechanisms for this 

reduction in threshold are unknown, it has been suggested that it may involve 

enhanced neurotransmitter release from the pre-synaptic terminals, therefore reducing 

the pre-synaptic activation requirement (Artola et al., 2006). It has also been shown 

that environmental enrichment causes morphological changes, such as increased 

dendritic branching and spine density, which could increase the pre-synaptic 

activation of striatal MSNs. Furthermore, gene expression studies have demonstrated 

that enrichment causes an increase in expression of genes involved with formation of 

new synapses (Rampon et al., 2000). Therefore, it is highly plausible that increasing 

and strengthening the corticostriatal synapses may be a causative factor in enrichment 

facilitated expression o f LTP. It is also important to note that enrichment could affect 

post-synaptic mechanisms o f LTP induction and expression, such as internal 

signalling cascades. Studies have shown that the enrichment induced facilitation of 

CA1 LTP is blocked by PKA inhibitors, whilst this is not the case in standard animals 

(Duffy et al., 2001). Furthermore, enrichment has been shown to cause an increase in 

expression of gene encoding for key proteins involved in signal transduction (Duffy et 

al., 2001). Therefore, enrichment may modify post-synaptic signalling cascades 

involved in the transduction o f synaptic signalling.

It would therefore seem that the environmental enrichment paradigm presented within 

this chapter is capable o f altering the induction of LTP at corticostriatal synapses, 

resulting in an increased expression of LTP.

6.4.2 The Effect o f Enrichment on LTP/LTD from Striatal Grafts.

Previous studies have demonstrated that environmental enrichment can enhance 

behavioural performance on motor learning tasks under the control of the grafted 

striatum (Dobrossy and Dunnett, 2001; Dobrossy and Dunnett, 2004). Though the
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mechanisms o f this increased behavioural performance are not clearly understood, it 

has been shown that enrichment can induce morphological changes in the graft tissue, 

such as increased cell size, dopaminergic innervation, and BDNF expression 

(Dobrossy and Dunnett, 2001; Dobrossy and Dunnett, 2004). The data presented in 

this chapter demonstrates that enrichment can also induce changes in host-graft 

synaptic plasticity.

Within striatal grafts whilst expression of LTD is similar in animals housed in both 

standard and enriched environments, LTP expressed from enriched animals is 

facilitated with respect to those housed in standard environments. Therefore, though 

LTP is not facilitated within the normal striatum, the grafted striatum clearly 

demonstrates an increase in LTP. This observation proves interesting as it would 

suggest that the grafted striatum, in some way, facilitates the effects o f environmental 

enrichment.

As previously mentioned, enrichment induced facilitation of LTP is considered to be 

dependant on both pre- and post-synaptic modifications of the transplanted tissue. It 

has been shown that enrichment causes activity dependant changes in the morphology 

of transplanted cells (Dobrossy and Dunnett, 2001; Dobrossy and Dunnett, 2004). 

Such morphological changes would be consistent with increased activation of TSNs, 

which is more than likely facilitated by increased synapse formation. These 

morphological changes could account for the observed increase in host-graft 

corticostriatal LTP, seen within enriched animals. Furthermore, it has been shown 

that dopaminergic innervation of the graft is increased in enriched animals (Dobrossy 

and Dunnett, 2001; Dobrossy and Dunnett, 2004)). Though there is no direct 

evidence, it would be plausible that cortical innervation of the graft would also be 

increased by environmental enrichment. Therefore, enrichment induced changes in 

host-graft corticostriatal LTP could be facilitated by increased cortical innervation of 

the graft region.

Reported experience dependant changes induced by enrichment have also included 

changes in post-synaptic signalling (Duffy et al., 2001), and changes in gene 

expression (Rampon et al., 2000). Furthermore, it has been suggested that striatal 

grafts display a higher expression of neonatal NMDA receptors, which display
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increased calcium permeability (Siviy et al., 1993) (Also see Chapter 5). It is 

possible that enrichment induced changes in intracellular signalling may be amplified 

by the higher presence o f neonatal NMDA receptors present in TSNs. Therefore, the 

enrichment protocol employed in the studies presented here may not be sufficient to 

induce changes in LTP expressed from the normal striatum, due to the predominant 

expression of the less conductive adult NMDA receptors.

Finally, it is important to note that enrichment results in up regulation of growth 

factors such as BDNF (Dobrossy and Dunnett, 2001; Dobrossy and Dunnett, 2004; 

Hockly et al., 2002; Spires et al., 2004). Inhibition of BDNF has been shown to 

impair hippocampal LTP (Ma et al., 1998). Therefore up regulation of BDNF may 

contribute to enrichment induced facilitation of LTP.

6.4.3 The Effect o f Enrichment on Hippocampal Synaptic Plasticity.

The data presented in this chapter did not replicate the obervation that environmental 

enrichment (under the parameters employed) can affect the level or expression of LTP 

from the CA1 region o f the hippocampus. Previous studies have demonstrated that 

enrichment causes a facilitation o f LTP (Artola et al., 2006; Duffy et al., 2001) and 

LTD (Artola et al., 2006). However, both Artola et al, and Duffy et al, used the lOOhz 

stimulation paradigm in order to express LTP from the CA1 region. In the studies 

presented here a standard hippocampal theta burst was used to express CA1 LTP. 

Thus, the differences in HFS protocols could account for the lack of enrichment 

induced facilitation in the studies presented here, with respect to those of Artola et al, 

and Duffy et al. It has been shown that the mechanisms of enrichment induced 

changes of CA1 LTP/LTD do not involve modulation of AMP A and NMDA currents 

(Artola et al., 2006; Duffy et al., 2001). Rather, enrichment reduces the threshold for 

LTP induction, which is critically dependant on the HFS protocol employed (Artola et 

al., 2006; Duffy et al., 2001). Therefore, it is likely that the changes induced by 

lOOhz HFS, are not sufficiently induced by theta burst HFS.
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6.4.4 Assessing the Levels of BDNF Following Enrichment.

Previous studies have demonstrated that BDNF levels are increased in animals 

receiving striatal grafts following enrichment (Dobrossy and Dunnett, 2001; Dobrossy 

and Dunnett, 2004). Interestingly, levels of BDNF are increased in transgenic models 

of HD (Hockly et al., 2002; Spires et al., 2004), and are considered to play a 

neuroprotective role in slowing down the disease progression (Hockly et al., 2002; 

Spires et al., 2004). BDNF has also been shown to promote cell survival, growth, and 

enhance development and plasticity of MSNs (Ivkovic et al., 1997; Mizuno et al., 

1994; Ventimiglia et al., 1995).

The data presented in this chapter demonstrates that under normal conditions, animals 

housed in enriched environments display an increase in neuronal BDNF levels across 

all four brain regions as a consequence of their housing. Within the context of the 

studies present here, enrichment resulted in no change in the level, or expression of 

either corticostriatal, or hippocampal synaptic plasticity, from control animals. 

Furthermore, it has been shown that behavioural performance, relying on the 

corticostriatal synapse, is not overtly affected by environmental enrichment (Dobrossy 

and Dunnett, 2001; Dobrossy and Dunnett, 2004). Therefore, though enrichment 

causes an increase in BDNF levels, within control animals enrichment causes no 

major affect on striatal and hippocampal physiology, and function. This adds further 

evidence to the argument that the enrichment paradigm employed during the 

experiments presented here is either not rigorous enough, or extensive enough to 

induce global changes in neuronal function. Furthermore, studies have shown that 

enrichment induced increases in gene expression is time dependant (Rampon et al., 

2000). Therefore, the observation that BDNF levels are increased would suggest that 

the enrichment paradigm used represents an early stage in the enrichment induced 

changes on function.

Enrichment induced changes in the levels of BDNF is dramatically different 

following lesion and cell transplantation. Grafted animals display a higher level of 

BDNF expression than control animals. This observation proves interesting as it 

would suggest that lesion and transplantation increases the effects of enrichment on 

BDNF levels. More specifically, it would seem that unilateral lesions, and grafts, are
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capable of effecting enrichment induced BDNF expression in the contralateral 

striatum cortex and even hippocampus. As previously stated, the enrichment 

paradigm employed in the studies presented here caused no change in neuronal 

function, but a significant change in BDNF levels. However, it would seem that the 

lesion and graft is capable o f inducing enrichment effect, suggesting that such injury 

and repair may ‘kick-start’ the effects of environmental enrichment, so that a 

paradigm which previously had little effect is now exacerbated.

Interestingly, grafted animals display an increase in both BDNF levels and 

corticostriatal LTP following enrichment. Previous studies have shown that BNDF is 

implicated in synaptic plasticity. BDNF knockout mice demonstrate impaired LTP 

(Korte et al., 1995; Patterson et al., 1996), which is reversed by transfection with 

lentiviruses expressing BDNF (Korte et al., 1995). Furthermore, spatial learning has 

been shown to activate BDNF expression (Gomez-Pinilla et al., 2001), whilst 

inactivation of BDNF impairs spatial learning (Ma et al., 1998), Also mice lacking the 

BDNF receptor show impaired learning (Minichiello et al., 1999), whilst BDNF 

receptor over expresser mice display improved cognitive performance (Koponen et 

al., 2004). It would therefore seem clear that BDNF plays a significant role in 

synaptic plasticity, learning and memory. However, most such experiments have 

been undertaken using hippocampal-dependant tests of spatial memory rather than 

using tests of motor associative and habit learning more associated with striatal 

plasticity. Increased levels of BDNF expression is quite likely to only play a 

contributing role in the functional effects observed following enrichment. It is 

important to consider that BDNF can influence other factors such as morphological 

changes, increased neuronal survival, and increased innervation of the graft may 

contribute to the enrichment effects observed. Furthermore, enrichment induced up 

regulation of other growth factors, and intracellular signalling compounds more than 

likely contribute to the observed effects.
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6.5 CONCLUSIONS

The studies presented in this chapter demonstrate that subtle manipulations of the 

environment in which an animal is housed can influence neuronal correlates of 

function, such as expression and levels of synaptic plasticity, and expression of 

BDNF. Interestingly, it would seem that both the level, and the time course of 

enrichment, plays a role in the degree o f positive effects on neuronal function. The 

enrichment paradigm employed within this chapter results in minor effects on striatal 

synaptic plasticity, and BDNF expression, which would indicate an early stage in the 

enrichment effects. However, the same paradigm results in enhanced LTP, and 

BDNF expression within animals which have received unilateral lesions and striatal 

grafts. Therefore, it would seem that neuronal injury and repair provides a ‘kick-start’ 

for the observed enrichment effects.
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7. GENERAL DISCUSSION

The aims of this thesis were to evaluate the extent to which embryonic striatal grafts 

integrate functionally with the host tissue, and display cellular correlates of learning 

and memory. Previous functional assessment of striatal grafts has relied upon 

behavioural (Dunnett, 1995; Dunnett et al., 2000), anatomical (Wictorin, 1992), and 

biochemical techniques (Sirinathsinghji et al., 1994). Physiological analysis of graft 

function has demonstrated that TSNs are active to stimulation of the host cortex 

(Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 1992b; Wilson et al., 1990; 

Xu et al., 1991b), and thalamus (Xu et al., 1991b), both in vivo (Xu et al., 1991b) and 

in vitro (Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 1992b). 

Furthermore, emerging evidence has suggested that TSNs retain some immature 

physiological characteristics (Siviy et al., 1993; Xu et al., 1991b).

This studies presented in this thesis build on previous physiological analysis o f graft 

function by providing evidence for the expression of LTP and LTD, pharmacological 

analysis of both baseline transmission and host-graft bidirectional synaptic plasticity, 

and the effect of environmental enrichment on graft physiological function. This 

chapter will detail how these factors interact to influence graft function.

7.1 Limitations of the current in vitro graft slice model.

All of the experiments presented in this thesis have been conducted within the same in 

vitro graft model. Over the course of this thesis a number limitations have arisen 

which though not addressed within the available time frame, would need to be 

considered before performing further analysis.

The primary limitation o f the current model is the lack of distinction between 

recordings from “P-zones” and “NP-zones”. During this thesis work extensive 

attempts were made to recover slices post-recording, resection, and stain using 

markers positive for “P-zones” locality (DARPP-32, AChE). Successful recovery and 

histological processing of slices would have enabled me to match the recording site 

with immunohistological evidence of “P-zone” locality. Whilst it is fustrating that 

such analysis was not successful within the time frame of this thesis, I believe the
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results obtained have not overtly suffered from the lack of histological confirmation. 

Furthermore, though such analysis would add further depth to the results obtained, 

positive identification of “P-zone” locality would be confined to post-recording 

analysis.

One method of addressing this issue, whilst also enabling identification of “P-zone” 

locality prior to recording would be to utalise a transgenic tissue donor with GFP 

linked to a “P-zone” positive marker. In the last year a transgenic mouse with GFP 

driven under the DARPP-32 promotor has become available. Using the D32-GFP 

transgenic as a tissue donor would enable positive identification of “P-zones” within 

the graft, prior to electrode placement. Unfortunately, the availiability of these 

transgenic mice fell outside o f the time frame for this thesis. However, the use of this 

transgenic in future studies will enable direct electrophysiological investigation of “P- 

zone” function.

A second limitation of the experimental model presented in this thesis is the inability 

to study graft function on a systems level. Whilst in vitro analysis enables a more 

direct assessment of ‘functional integration’ at a monosynaptic level, one must also 

consider ‘functional integration’ at a systems level. In vivo analysis would permit the 

study of ‘functional integration’, not just in the context of multiple brain regions 

constituting a functional circuit, but also in the context o f the ‘normal’ system in 

which the graft would integrate functionally. Therefore, whilst the experiments 

presented in this thesis build on, and develop, our understanding of host-graft synaptic 

transmission, one would seek to perform comparative studies in a suitable in vivo 

model. Therefore, whilst my findings provide interesting revelations regarding graft 

function and integration, one would hope that further in vitro and in vivo investigation 

takes place.

7.2 Do Embryonic Striatal Grafts ‘Functionally Integrate* With the Host Striatal 

Circuitry?

It has been clearly demonstrated that striatal grafts receive projections from the host 

cortex, thalamus, and SN, and that these projections form anatomically correct 

synapses with TSNs (Clarke et al., 1988b; Clarke et al., 1988a; Clarke and Dunnett,
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1990; Clarke and Dunnett, 1993; Wictorin et al., 1988a; Wictorin et al., 1988b; 

Wictorin et al., 1989; Wictorin and Bjorklund, 1989; Wictorin, 1992; Wilson et al., 

1990; Xu et al., 1989; Xu et al., 1991a). Furthermore, efferent projections from the 

graft project to the host GP, and SN (Wictorin, 1992) where they are capable of 

influencing neuronal transmission (Sirinathsinghji et al., 1994).

Behavioural analysis post-transplantation has shown that cognitive performance on a 

number of behavioural techniques, relying on intact cortico-striatal-pallidal circuits is 

improved (Dunnett, 1995). Additionally, ‘push-pull’ perfusion techniques have 

demonstrated that innervation o f the host GP by the striatal graft influences pallidal 

levels of GABA (Sirinathsinghji et al., 1994). Finally, electrophysiological 

experiments have demonstrated that TSNs are responsive to stimulation of the host 

cortex and thalamus (Rutherford et al., 1987; Siviy et al., 1993; Surmeier et al., 

1992b; Wilson et al., 1990; Xu et al., 1991b). Therefore, prior to the work carried out 

in this thesis there existed a growing body of indirect evidence to support the concept 

that embryonic striatal grafts do indeed ‘functionally integrate’ with host circuitry.

The experimental findings of this thesis provide further evidence to support the 

concept that embryonic striatal grafts can ‘functionally integrate’ with the host. 

Experiments conducted within this thesis have focused on the host-graft corticostriatal 

projection, as this represents the major afferent host input to striatal grafts, and has 

been shown to be critical to the mediation of plasticity and restoration o f cognitive 

function, involved in learning and memory (Brasted et al., 1999b; Brasted et al., 

1999a). however, one would hope that future experiments would seek to investigate 

other host inputs to the graft, and inputs to the host of graft origin.

It can be clearly seen that given sufficient time post-transplantation the host cortex is 

capable of forming functional corticostriatal synapses with embryonic striatal grafts. 

Furthermore, such ‘functional integration’ of the graft with the host circuitry includes 

restoration of baseline transmission, which could be critical to the observed 

improvement in motor performance post-transplantation. It can be clearly seen that 

the host-graft corticostriatal synapses are functional. Data presented in this thesis 

demonstrates that striatal grafts display tonic baseline transmission that is stable over 

continuous recording periods (60 mins). However, though baseline transmission is
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restored, does the efficacy o f such baseline transmission replicate that seen in the 

normal striatum? On average extracellular responses from the graft are consistently 

smaller than those expressed from the normal striatum. Therefore, though baseline 

transmission is restored, the level of transmission is lower within the grafts. It is 

difficult to draw a functional significance of this impaired transmission, because it 

may simply reflect the smaller net number o f connections formed. A reduction in the 

size of extracellular responses would suggest that although striatal grafts reconnect 

with the host neuronal system, such reconnection is not as dense, nor as robust as that 

seen in the normal striatum.

A second factor in assessing the efficacy of host-graft baseline transmission is its 

ability to respond to changes in input stimulation. The data presented in this thesis 

demonstrates that increases in input stimulation reaches an output saturation point at a 

much lower input current in grafts, than that seen in the normal striatum. 

Furthermore, this saturation point can be increased by application of GABA 

antagonists. Therefore, it would appear that although host-graft corticostriatal 

synapses are robust enough to respond to increased stimulation, their saturation point 

is much lower than that seen in normal striatum, and is more heavily modulated by 

GABAergic inhibition. This increased GABAergic inhibition is considered to be 

facilitated by increased synapse formation with collateral TSNs. Whilst collateral 

inhibition between MSNs is present in the normal striatum, there appears to be a 

higher prevalence of its occurrence in the grafted striatum. The functional significant 

of this increased collateral inhibition is unknown, and is more likely a consequence of 

the highly plastic environment in which graft connections develop. Regardless, it 

would appear that host-graft cortical connections do indeed functionally connect, in a 

manner much like that seen in the normal striatum.

This thesis presents a large body of evidence to demonstrate that the various 

neurotransmitter systems seen within the normal striatum are functionally replicated 

within striatal grafts. Both glutamatergic and GABAergic mechanisms of baseline 

transmission appear consistent with that seen in the normal striatum. However, there 

is a striking difference in the DAergic mechanisms seen within striatal grafts. 

Specifically, D2 mediated transmission appears different to that seen in the normal 

striatum, both under baseline conditions and during synaptic plasticity. Data
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presented in this thesis demonstrates that D2 mediated mechanisms of synaptic 

plasticity mimic that seen in 6-OHDA lesioned striatum following DA application 

(Calabresi et al., 1992c). This has led to the speculation that within the striatal lesion 

and graft model similar mechanisms of DAergic reconnection and D2 receptor 

supersensitivity occur. Therefore, it would seem that in order to improve the 

‘functional integration’ o f embryonic striatal grafts due attention must be paid to the 

formation of functionally normal DAergic synapses. One hypothesis to account for 

this pattern is that it reflects the relatively short time frame of the experiments 

whereas a longer survival period will allow restored DA transmission to stabilise and 

receptor sensitivity to normalise. Clarification of this issue will involve further 

experiments on the time course that have fallen outside of the time frame available for 

this thesis work.

It must be noted that the experiments presented within this thesis provide a broad 

overview of the various neurotransmitter and receptor relationships seen in the normal 

striatum. Therefore, it would be interesting to see if ‘functional integration’ of 

embryonic striatal grafts includes restoration of other systems such as functional 

connections between TSNs and the large cholinergic intemeurones.

7.3 Do TSNs Retain Physiological Characteristics of A Neonatal or Embryonic 

Development Age?

Previous analysis of TSN physiological function has shown that they display a 

number of characteristics consistent with an immature phenotype, such as increased 

expression of IPSPs (Xu et al., 1991b), and increased NMDA receptor efficacy (Siviy 

et al., 1993). This thesis provides further evidence for the theory that NMDA 

receptors located on TSNs display an immature phenotype consistent with early 

neonatal MSNs.

The NMDA receptor proves to a key site is probing the developmental characteristics 

of TSNs for a number of reasons. Firstly, the NMDA receptor contributes a large 

proportion of the excitatory current during enhanced synaptic transmission, and plays 

a key role in governing the preferential expression of LTP or LTD within in vitro 

striatal slices. Secondly, the NR2 sub-unit of the NMDA receptor has been shown to
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be regulated over development so that NR2B sub-units are predominantly expressed 

during embryonic and neonatal neurones, whilst the NR2A sub-unit is predominantly 

expressed in adult neurones. Thirdly, the NR2B displays a higher calcium 

conductance, lower magnesium ion affinity, and decreased selectivity to antagonist 

such as APV, when compared to the NR2A sub-unit.

This thesis demonstrates quite clearly that NMDA receptor mediated mechanisms of 

synaptic plasticity are different within embryonic striatal grafts, when compared to the 

normal striatum. Specifically a number o f characteristics such as an increased 

concentration of APV required to fully antagonise NMDA receptors, and lower 

strength of magnesium ion blockade would suggest that within TSNs there is a 

preferential expression of NR2B NMDA receptors over NR2A. However, it is 

important to note that further experimentation, using voltage clamp recordings and 

sub-unit selective NMDA receptor antagonists and agonist would be prudent.

Though not conclusive proof, the evidence presented within this thesis does provide a 

compelling argument that TSNs do retain some physiological characteristics of a 

embryonic or neonatal development age, at least up to 8 weeks post transplantation.

7.4 Learning to Use the Graft and Corticostriatal Synaptic Plasticity, does 

Corticostriatal Synaptic Plasticity Influence Learning and Memory?

One of the aims of this thesis has been to demonstrate that embryonic striatal grafts 

display biphasic synaptic plasticity. Though I have clearly demonstrated that striatal 

grafts can express synaptic plasticity, this observation provokes more questions 

regarding how behavioural and cellular correlates of learning and memory interact.

Studies by Rosvold in the early 1960s demonstrated that lesions of the striatum can 

produce deficits in a number o f cognitive tasks, relying on learning and memory. 

This observation was further refined by studies conducted by Divac which 

demonstrate that the corticostriatal projection plays an essential role in some forms of 

learning and memory (Divac et al., 1967).
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Synaptic plasticity was first demonstrated by Bliss, et al in the anaesthetised rabbit 

hippocampus (Bliss and Lomo, 1973), and was subsequently theorised to provide a 

cellular model for learning and memory (Bliss and Collingridge, 1993). Later studies 

have demonstrated that the measures taken to inhibit synaptic plasticity also impair 

performance in behavioural tasks relying on learning and memory (Morris et al., 

1986). It would therefore seem apparent that both learning and memory, and synaptic 

plasticity are critically linked.

Studies conducted in parallel to this thesis have further demonstrated that both 

corticostriatal synaptic plasticity and behavioural tasks involving striatum dependant 

forms of learning and memory are inhibited in a transgenic animal expressing 

dominant negative forms of CREB (Pittenger et al., 2006), thereby, demonstrating 

that corticostriatal synaptic plasticity is essential for striatal forms of learning and 

memory.

In my studies excitotoxic lesions of the striatum eliminate all corticostriatal 

transmission, not just the lack of expression of synaptic plasticity. Yet, given suitable 

amounts of time post-transplantation embryonic striatal grafts expresses bidirectional 

synaptic plasticity in keeping with the normal striatum. Studies conducted by Brasted 

et al, demonstrate that unilateral excitotoxic lesions disrupt the ability to learn new 

motor skills or habits (Brasted et al., 1999b). However, following transplantation 

such animals relearn tasks in a time frame similar to that taken by naive animals to 

learn the task (Brasted et al., 1999b). Furthermore, such relearning appears to rely on 

the formation of an intact corticostriatal projection (Brasted et al., 2000). Therefore, 

the evidence presented in thesis, combined with the behavioural data presented by 

Brasted et al, adds further weight to the argument that corticostriatal synaptic 

plasticity is essential for, and a potential substrate of, the learning of new motor skills 

and habits.

Additionally, I have demonstrated that grafted animals which have been housed in 

enriched environments display increased levels of LTP. Studies conducted by 

Dobrossy et al, have shown that in similar enrichment paradigms behavioural 

performance is improved in animals which have received striatal grafts (Dobrossy and

152



Dunnett, 2005). Therefore, it would seem that conditions which improve 

corticostriatal synaptic plasticity, also improve behavioural performance.

7.5 FINAL SUMMARY AND CONCLUSIONS

In this thesis, I have sought to address some o f the basic scientific questions regarding 

graft integration and function. Physiologically, it would appear that embryonic 

striatal grafts reconnect functionally with the host striatal circuitry in a manner that 

replicates many of the physiological properties of the normal striatum. The 

observation that striatal grafts restore synaptic plasticity to the lesioned striatum adds 

further weight to the working hypothesis that striatal grafts facilitate true repair of the 

lesioned striatum.

The driving force behind research into cell transplantation is the potential for its 

application as a therapy for neurodegeneration. Clinical trials have demonstrated that 

cell transplantation can produce beneficial effects in patients with HD (Bachoud-Levi 

et al., 2000a; Bachoud-Levi et al., 2000b; Bachoud-Levi et al., 2006). Embryonic 

striatal grafts are required to reconstruct the damaged circuitry to represent true repair. 

This thesis demonstrates that embryonic striatal grafts are capable o f integrating with 

the host striatum, restoring functional circuits which are present in the normal 

striatum. It is believed that this functional integration facilitates improvement in 

behavioural performance. Therefore, probing the physiological characteristics of 

striatal grafts is essential if  we are to improve on the technique, and provide greater 

functional benefits.
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9. APPENDIX
IMMUMOHISTOCHEMISTRY ON RAT AND MOUSE SECTIONS.

Sections.

Suitable for 30-60um free-floating sections. Cut from tissue which has been perfused 
with phosphate buffer, fixed in 4% buffered paraformaldehyde, and then equilibrated 
with 25% buffered Sucrose. 10-20um slide mounted paraffin or cryostat sections may 
also be used for this method.

Free floating sections are processed in “Greiner pots” on a rotating mixer. The lids 
of the pots are cut away partly and a gauze square is fitted between the lid and the pot 
in a way such as to retain the sections but allow the liquid to be tipped away and more 
added.

Method:
1 Quench ( Solution 1) below

2 Wash in TBS (solution 2 below)

3 Block in 3% Serum block in TXTBS 
(see solution 3 below)

4 Transfer without washing to primary antibody 
in TXTBS with 1% serum.

5 Wash in TBS

6 Biotinylated Secondary antibody in TBS with 
1% serum.

7 Wash in TBS

8 ABC Kit DAKO (solution 4 below) in TBS 
with 1% serum

9 Wash in TBS

10 Wash in TNS (solution 5 below)

11 DAB Solution (solution 6 below)

12 Wash in TNS

5mins 

3x10 mins

lhr

Overnight at room temp, 
or 2-3 days at 4 degrees 
On a rotating mixer. 
3x10 mins

2 hours

3xl0mins

2 Hours 

3x10 mins 

2x5mins
May be left overnight at 
4 degrees overnight.

Until light background 
But dark specific stain 
Check microscopically 

2x5mins
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13 Wash in TBS Store at 4 degrees until

14 Mount on gelatinised slides, air dry, dehydrate in 
Ascending series of alchohols. Clear in xylene. 
Coverslip with DPX

Solutions.

Solution 1 Quench.

Methanol (98%) 
Hydrogen peroxide (30%) 
Distilled Water

5ml 
5ml 
40 ml

Solution 2 TBS

Solution 3 TXTBS

Solution 4 ABC

Trizma Base 
Sodium Chloride 
Distilled water
Adjust to pH 7.4 with cone HCL 

TBS
Triton X-100
Adjust to ph 7.4 with cone HCL
DAKO Streptavidin Kit
Per ml of solution
Solution A
Solution B
TBS with 1% serum.

12g
9g
Make up to 1L

250ml
500ul

5ul
5ul

Solution 5 TNS Prepare fresh prior to use 
Trizma base 6g 
Distilled water Make up to 1L

Solution 6 DAB

A stock solution o f DAB is prepared where lg  DAB (Sigma D5637 3,3’- 
Diaminobenzidene tetra hydrochloride) is dissolved in a fresh TNS solution.
The resulting solution is then aliquoted into2ml amounts in bijous and stored at -20 C 
for future use . This solution contains 20 mg of DAB per aliquot.

DAB Soln. 2ml
TNS(fresh) 40ml
Hydrogen peroxide soln 12ul.

This solution may be diluted to lin 5 with TNS if the reaction proceeds too quickly.

This method for Tyrosine hydroxylase staining is used as follows.
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Using Horse serum block , Chemicon MAB 318 Anti Tyrosine Hydroxylase (mouse 
monoclonal at a primary dilution of lin  1000 . Secondary Horse anti Mouse (rat 
adsorbed) Vector BA2001 at a dilution of lin 200


