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Abstract

Equilibrium geometries, interaction energies and harmonic frequencies of (NH3),
(n = 2 —5) and NH4*(NH3), (n = 2 — 5) were computed using correlated electronic
calculations (MP2) in conjunction with aug-cc-pVXZ (X=D, T, Q) basis sets and the
Counterpoise procedure. The zero-point energy (ZPE) on the relative stability of the
clusters was estimated using harmonic frequencies. For both pure and protonated
ammonia clusters we found that using basis set superposition error (BSSE) corrected
forces or freezing the monomer structure to its gas phase geometry had only a weak
impact on the energetics and structural properties of the clusters.

For pure ammonia clusters, (NH3), (n = 2 — 5), we found that low lying isomers
for (NH3)4 and (NHj3)s have similar binding energies, perhaps suggesting the presence
of a very smooth energy landscape. The harmonic frequencies highlighted the presence
of vibrational fingerprints for the presence of double acceptor ammonia molecules. In
addition, many-body effects for n = 2 — 4 were investigated; we found the 3-body
effects to account for 10-15% of the total interaction energy and 4-body effects to be
negligible.

Under these premises, a model pair interaction fitted to ab initio data for rigid
ammonia molecules was developed. It was extended with a description of polarisation
effects, introduced by using a noniterative form of the charge-on-spring model, the
latter accounting for more than 95% of the dipole induction energy and of the increased
molecular dipole. This model was used to optimise putative global minima for (NHj3),
(n = 3 — 20); the structure and energetics of the clusters with n = 2 — 5 were found

to be in good agreement with previous ab initio results. For larger isomers our model



predicts larger binding energies than previous analytical surfaces, and also predicts a
reorganisation of the energy ranking and a different global minimum structure.

For protonated ammonia clusters, we have found two general types of isomeric
structures, globular and linear, the former showing larger binding energies. Harmonic
frequencies reveal that the signature of these clusters is given mainly by NH,*. In agree-
ment with the literature we also found that higher frequencies for the N-H vibrational
modes of the NH4* are seen upon increasing cluster size. Finally, the vaporisation en-
ergy computed in this work compares well with previous theoretical and experimental

data.
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Chapter 1

Introduction

1.1 Ammonia

When the ancient city of Thebes became the most important metropolis in Egypt,
Amun, the patron of the city [1], knew a fame that surpassed the national frontiers.
One of the many constructions erected to the worship of the deity was the Oracle of
Siwa, in the oasis of Siwa (Libyan desert) [1, 2]. Both the oasis and the temple were well
known by the classic Greeks, who found in Ammon (Greek for Amun) an equivalent of
their much respected Zeus [1, 2]. Under the Roman Empire, Jupiter became the deity
related to the temple, the oasis became a place of banishment [2] and Latin language
coined the eponym “sal ammoniacus” or “sal ammoniac”, literally “salt of Ammon”, to
describe the white crystal deposits found in the area of Siwa [3-5]. This accumulation
of ammonium chloride crystals comes from burning camel dung as fuel source, and
from sun-heating for many years great amounts of camel dung and urine left behind in
cesspits by the visitors to the oasis, together with soot and sea salt [3, 5-7].

In full Age of Enlightenment, in 1774, Joseph Priestly isolated “alkaline air” [4, 7,

8] whose composition would be determined to be hydrogen nitride by Claude Louis
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Berthollet in 1785 [4, 7, 9]. In between, in 1782, Torbern Olof Bergman is attributed
to have devised the name “ammonia” as a bastardisation of the Latin “sal ammoniac”
[3, 5, 7, 10]. This novel word would enter the English language, to stay, in less than
two decades since its birth [5].

Ammonia may be the most popular name for NH3, but is not by any means the
only one: azane, hydrogen nitride, spirit of hartshorn, Nitro-Sil or Vaporole have also
been used to nominalise this ubiquitous gas of pungent odour [4].

NHj3 is naturally released to the atmosphere from the decomposition of animal and
vegetable matter [4]. Nitrogen compounds are a fundamental part of living organisms
(e.g. purines, aminoacids, porphirines). At some point in their metabolic lives they may
be broken into ammonium ion or ammonia, both pernicious in the cellular environment.
Thus, in animals, an effective mechanism to keep toxic concentrations of ammonium
ion at bay is achieved by converting ammonia to urea, that is then excreted through
the kidneys. Ammonia is not only directed to excretion, its basicity can be exploited to
compensate for severe metabolic acidosis in humans, and is also recycled to anabolise
several aminoacids [11]. Interestingly, considering the established role of ammonia in
the biochemistry of living organisms, is only recently that the mechanisms for the
homoeostasis of NH; have started to be understood [12, 13].

In 2004, the tentative detection of ammonia in Mars, triggered the hypothesis of
a biological source of the gas in the Red Planet [14]. More radically, NH3 has been
proposed as a molecule from which an alternative biochemistry could stem, therefore
substituting water as the“liquid of life” [15, 16]. This idea is mainly based in the
existence of ammonia and water analogues (e.g. methylamine and methanol, CH3NH,
and CH30H) and the likeness of some physico-chemical characteristics (e.g. ability
to create hydrogen bonds, solvation properties) [16, 17]. The pitfall of this theory is

found within the latter argument, ammonia has a vaporisation heat and surface tension
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significantly lower than that of water thus, “ammonia based” organisms could not be
structurally kept together in Earth conditions. Notwithstanding, in planets such as
Jupiter and Venus, with remarkably different atmospheric conditions and where NH3
is readily available, metabolism in liquid ammonia could be conceivable [15-17].

At the beginning of the 20" century, the increasing world population put on the
rise the demand for the use of fertilisers to feed the crops [18, 19]. At the time, the
main source for nitrates was the limited and swiftly vanishing natural resource of the
Chile saltpetre (NaNOj3) [4, 18-21]. Fritz Haber and Carl Bosch made possible the
synthetic fixation of atmospheric nitrogen to produce ammonia in a large scale around
1913 [18, 21]. Nowadays, the Haber-Bosch process, in equation 1.1 below, is responsible

for virtually the entire global manufacture of NHj [23].

N, (g) + 3H; (g) = 2NH; (g) AH(298K) = —22.08 kcal/mol (1.1)

This is a demanding process, taking place at high temperatures (around 500 °C),
high pressures (100 - 250 atm) and in the presence of an iron catalyst in order to
overcome the inertness of the nitrogen gas and to tilt the equilibrium as much as
possible to the formation of NHj3 [21-33]. |

Industrially, ammonia has very diverse uses. It is used as a refrigerant, exploiting
its large heat of evaporation. Since is very soluble in water, weak solutions of NH;3 are
found as household cleaning products. It is also used in the manufacture of explosives
such as NH4NO3; and HNO3. The textile industry uses ammonia for the manufacture of
synthetic fibres like nylon. It is used in the pharmaceutical industry, e.g. urea is used
in the production of barbiturates. The rubber industry uses NH; to avoid premature
coagulation of natural and synthetic latex. In the mining industry metals such as
copper, nickel and molybdenum are extracted from their ores using ammonia [19].

Regarding its chemical properties, NH; has a trigonal pyramidal shape with a exper-
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imental geometry of ryy=1.0124 A, HNH = 106.67° [24]. The “valence shell electron
pair repulsion theory” (VSEPR) explains that this shape is due to the lone electron
pair on the nitrogen atom repelling the N-H bonds and pushing them together, hence
deviating the H NH angle from that of a regular tetrahedron (the sp® hybridisation
of the Nitrogen 2p and 2s orbitals would tend to distribute the electron pairs in a
tetrahedron). Ammonia is a polar molecule with a dipole moment of 1.42 D, and is
able to form hydrogen bonds. The acid-base properties of ammonia result largely from

the self-ionisation reaction:

2NH; = NH} + NH; K_spc = [NH}][NH;] =~ 107% (1.2)

which make ammonia a strong proton-acceptor enabling most potential proton

donors to act as an acid [23, 25]; it is also extemely soluble in water [25]:

NH;(aq) + HoO = NHj + OH™  pK,(25°C) = 4.75 (1.3)

Ammonia has boiling point of -33.4°C and a melting point of -77.7°C. The liquid
form has a large heat of evaporation (1.37 kJ /g at the boiling point) [25]. An interesting
property of ammonia is its ability to dissolve alkali metals. The resulting solutions
are blue and very good electrical conductors. Moreover, when the solution is very
concentrated the conductivity is as good as that of the free metals. It is believed that

the metal atoms are ionised in liquid ammonia giving solvated electrons [26].
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1.2 Ihtermolecular interactions

Are intermolecular interactions! important? “If the intermolecular interactions were
suddenly switched off, the world would disintegrate in about a femtosecond, that is
a single period of atomic vibration (the atoms simply would not come back when
shifted from their equilibrium positions). Soon after, everything would evaporate and
a sphere of gas, the remainder of the earth, would be held by gravitational forces. Isn’t
it enough?” [34]

Since the concept of “intermolecular” varies with the system being considered,
we would like to point out, even if is obvious, that in this work, “intermolecular”
indicates forces between the fragments (i.e. monomers) that constitute a cluster, and
“intramolecular” will refer to occurrences within the monomer.

The existence of forces between molecules (intermolecular, also called van der Waals
forces) can be deduced from two macroscopic observations. On one hand, the forma-
tion of condensed phases indicate the presence of forces between molecules that are
strong enough to cause long-term clustering, hence their nature is “attractive”. On
the other hand, condensed phases resist further compression, this would mean that
intermolecular forces are weak enough to keep the fragments from reacting with one
another, preserving the chemical identity of the fragments composing the cluster. This
resistance manifests the action of a “repulsive” force [27, 28].

The range of these forces depends on the distance between the fragments, so, in-
tuitively, we can say “long distance” when the fragments are infinitely apart and do
not “feel” each other, and “short distance” when the separation of the monomers is at
equilibrium. At long distances the contribution to the energy can be divided in three

components with robust physical meaning: electrostatic, induction and dispersion ef-

! have consulted the following references in the writing of this section[27- 32, 34]. I have also used
my own work, previously presented in my MSc dissertation.
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fects. At very short distances the largest contribution to the energy is repulsive and

its component is the exchange effect.

1.2.1 Electrostatic forces

This effect arises from the interaction between the static charges of the interacting
monomers. The overall charge distribution of a molecule is represented by its non-zero
multipole moments, which are used to describe electrostatic interactions. The outcome
of the interaction can lead to attraction or repulsion depending on the orientation and

geometry of the molecules.

Multipole moments

Considering a molecule as a spatial distribution of charges, it can then be described
in terms of a multipole expansion, a series in which each term is a “moment” of the
distribution of charges, the first term being the monopole moment, second term dipole
moment, third term is the quadrupole moment, then octupole moment and so on.

The monopole @, or zeroth moment, is the net charge of the distribution of charges:

Q= Z‘b‘ (1.4)

where g; is the charge of atom i, summation is taken over a configuration of point

charges. For a charge density distribution (p(z,y, z) = p(7)), Q is expressed as:

Q= / p()dr (15)

the first moment of the multipole expansion is the dipole (jz), which describes the
symmetric arrangement of positive and negative charges separated by a vector 7. This

vector is represented as pointing from the negative to the positive charge. For a static
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point charge distribution we have:

fi= Eqiﬁ (1.6)

where 7 is the vector position of the ith particle with respect to some origin. For a

charge density distribution the dipole becomes:

ﬁ=/mmm (17)

equation 1.7 indicates that the dipole moment is the average of the position of all
charged particles (given by 7) over the spatial charge distribution p(z,y, z).

The simplest representation of a quadrupolar charge distribution is given by four
alternating charges of equal magnitude and opposite sign placed at the corners of a
square. For a continuous distribution of charge, the quadrupole moment is the set of
averages of all pairs of the type 72, zy, T2, y%, yz and 22 over the charge distribution
p.

The presence of multipole moments in a molecule is determined by its own make-
up, in terms of composition and geometry, but can be also determined by the presence
of a non-uniform electric field such as the one created by the multipole moment of a
neighbour molecule. In fact, dipole moments can be divided in two (non-excluding)
types: permanent and induced. A permanent dipole moment occurs when a charge
separation is always present in a molecule, whereas an induced dipole is a charge
separation arising only in the presence of an electric field [29)].

In the following sections we introduce dispersion and induction forces. These are
also electrostatic in the sense that they derive from the Coulombic interaction of
charged particles, but they separate from the notion of “static” because they account

for the reordering of the charge distribution when a molecule is exposed to an electric
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field.

1.2.2 Dispersion

They are also called London forces, or “induced dipole-induced dipole interactions”,
and they are common to all molecules.

Dispersion can be conceptually explained by considering the motion of electrons in
the environment of a neutral molecule. The electronic motion causes the charge to be
continuously redistributed. This fluctuation can lead to an asymmetric distribution of
electron density, creating a transient dipole, which gives rise to transient electric field.
The transient field will affect the charge distribution of molecules nearby, resulting in
the generation of an induced dipole in the neighbouring molecules.

Electron motion is correlated in such a way that favours lower energy configura-
tions, the induced dipole will be aligned in such a way that it always has a favourable
interaction with with the first (transient dipole) one. This favourable interaction is
always maintained even if molecules move around, because the fluctuations leading to
the formation of transient and induced dipoles are very rapid processes compared to
the rate at which molecules move due to thermal motion.

Conversely, the orientation of permanent dipoles is ruled by the thermal motion
of the molecules, meaning that they are not always aligned in such a way as to have
an attractive interaction. In fact, when averaged across the sample the interaction
between permanent dipoles is usually much less than the dispersion interaction.

Polar molecules also have instantaneous (or transient) dipoles, so they also interact
via dispersion. In this case the time average of each transient dipole does not vanish,
but corresponds to the permanent dipole. Hence, polar molecules interact through

their permanent dipoles and the instantaneous fluctuations in them [32].
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1.2.3 Induction

The ease with which the electron distribution can be distorted from its normal shape
by an electric field is called polarisability (a). This susceptibility to respond to an
external electric field determines the strength of the dispersion interaction. The more
polarisable a molecule is, the bigger is the separation of charges (hence, its induced
dipole), and the stronger is the dispersion interaction.

The dipole induced on an atom (fing) by a uniform, infinitesimal electric field (E)

can be written as:

fing = aF (1.8)

equation 1.8 shows a linear relationship between fi;,q and E , this is the case for
small (infinitesimal) fields. For large fields, ji;,s may depend on higher powers of
E (fliina = aE + 0oE? + a3E® + ...) [29], when expanded as a series, the term
hyperpolarisability must be applied. In addition, f;,s and E do not have to point in

the same direction, a more general representation of the induced dipole would be:

3
ﬁi,ind = ZaijEj (i,j =Y, z) (1-9)

j=1

equation 1.9 indicates how the components of the dipole moment are affected by the
direction of the electric field, introducing the concept of polarisability as a tensor. The
polarisability is the induced dipole moment per unit of applied electric field [29]; it can

also be expressed as polarisability volume (o), where ¢ is the vacuum permittivity:

e (1.10)
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1.2.4 Exchange

Exchange is a purely quantum effect, however, a physical picture of the exchange
phenomenon can be given considering the situation in which molecules come close
together. In this situation, the space available for electron motion is extended to
both molecules, and when two electrons of the same spin attempt to occupy the same
region of the space, Pauli exclusion principle forces a redistribution of the charge. The

exchange effect controls the steepness of the repulsion interaction.

1.2.5 Hydrogen bond

When the hydrogen atom bonds an electronegative atom, a polarised bond is created
in which the latter has partial negative charge and the hydrogen has a partial positive
charge. This allows the hydrogen to interact with another electronegative atom (to
which is not “formally” bonded) to create the hydrogen bond.

The strength of the hydrogen bond covers a wide and continuous energy scale from
around 0.5 kcal/mol to nearly 40 kcal/mol [37]. It contains energy contributions from
electrostatic, induction and dispersion interactions, as well as some degree of covalent
interaction [38].

For maximum stability the hydrogen donor pair and the acceptor tend to form a
linear structure in species like (H,O) and (HF),. However, this is not observed in
ammonia, where after some debate, is now accepted that a deviation from linearity is

preferred.
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1.2.6 Potential Energy Surface (PES)

Graphically, the combination of attractive and repulsive interactions between two
atoms or molecules as a function of the distance separating them, has the following

form:

25 3 4 4.5 5

Figure 1.1: 1-D potential energy surface along atom-atom distance coordinate, r.

The range of the interaction is defined by the dependence of the potential energy,
V' (r), on the separation r. Moreover, the span of the interaction of an n-pole with an

m-pole can be predicted by [27, 32]:

v/i(r)°c” r 1 (1U)

where V(r) is the potential energy in terms of the distance and » and m are the
order of the multipole moments on which the interaction operates (n — 1 for monopole,
n = 2 for dipole, n = 3 for quadrupole and so on). Thus, for example, dipole-dipole
interaction falls off as r-3, dipole-quadrupole as r“4 and quadrupole-quadrupole as

r-5. From this sequence it can be seen that the interaction energy falls more rapidly
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the higher the order of the multipole. We will also mention that dispersion interaction
decays as r°, but we will not go into the details of the calculation.

Figure 1.1 is a one dimensional representation of a Potential Energy Surface (PES).
More accurately, the PES is a hypersurface defined by the potential energy of a collec-
tion of atoms over all possible atomic arrangements. Important points in the surface
are local minima, corresponding to optimal molecular structures; and saddle points,
which are related to the concept of “transition state™ since they represent lowest energy
barriers on paths connecting minima [40].

For a given collection of atoms, the PES provides complete information about all
possible chemical structures and isomerisation pathways connecting them. However, a
complete PES for polyatomic molecules is very hard to visualise because of the many
dimensions they involve (the PES involves 3N —6 coordinate dimensions, where N > 3;
for practical purposes dimensionality can be reduced by defining the degrees of freedom
with respect to internal coordinates). Therefore. the PES is normally presented as a
“slice” involving a single coordinate (e.g. atom-atom distance, r, as in figure 1.1) or
two [40].

A typical model to describe the empirical intermolecular potential (e.g. figure 1.1)

is that by Lennard-Jones:

Via(r) = 4{(%) 12—(%‘1)6} (1.12)

where ¢ is the well depth and ry is the distance at which V7;(r) = 0. The mini-
mum interaction energy occurs at r, = 2'/%ry. r, being the equilibrium intermolecular
distance. The first term in brackets in equation 1.12 accounts for the repulsive term
of the intermolecular forces (left hand side of the minimum in figure 1.1), and the sec-
ond term accounts for the attractive forces (right hand side of the minimum in figure

1.1). The 6" power was adopted following London’s work on dispersion forces, while
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the 12" power was thought to be mathematically convenient for describing the speed
of the repulsive potential. It is now known that an exponential function (i.e. e™°")
is closer to the description of the exponential decay of atomic wavefunctions at large

distances, and hence to the overlap that is responsible for repulsion [32].

1.3 Methodology

1.3.1 Introduction
The Schrodinger equation

In order to determine the electron structure of atoms and molecules, one has to solve

the Schrodinger equation. We will be concerned with it’s time-independent form only?:

nmy = By (1.13)

FE is the energy of the atomic or molecular system being investigated. ¥ is the
wavefunction containing the full description of the system, this is, all the properties
of the system that are open to experimental determination (observables). H is the
Hamiltonian operator corresponding to the total energy of the system, which in turn is
the sum of a kinetic energy and a potential energy operators acting on all the particles
of the system. For a single particle (e.g. electron) of mass m, with a position vector
P =x§+yf+zl::. under the influence of a field V (e.g. the electrostatic potential due to
the nuclei of a molecule)[40], we can write:

2
{—Qf"—mv2 +V}I¥(r) = E¥(r) (1.14)

2To write this section I have consulted references[38, 40 42, 50]. The following sections contain
my own work, previously presented in my MSe dissertation: “Practical considerations™, “Basis Set
Superposition Error”, “Supermolecular approach™ and “Many-body effects”.
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In equation 1.14, h is Plank’s constant divided by 27 and V? is the Laplacian
operator. V is the potential energy operating on the system.

In order to solve Schriodinger’s equation values of E and ¥ have to be found such
that when the energy Hamiltonian operates on the wavefunction it returns the wave-
function multiplied by the energy [40]. Exact solutions for the Schrodinger equation
cannot be obtained for any molecular systems: hence, for N-particle systems, such as

the clusters in this work, approximation techniques are needed.

The interpretation of ¥

The relationship between the wavefunction and the particle location it describes is
probabilistic in nature[41]. Born suggested that the probability that a particle will be

found in the volume element dr (dr = dxdydz) at the point r is proportional to |¥|?.

| U2 = g (1.15)

where U* is the complex conjugate of ¥. Born’s interpretation means that |¥|? is
a probability density, and also implies normalisation. It is said that a wavefunction is

normalised if:

/1@;2(17 =1 (1.16)

In other words. given that if we multiply ¥ by a constant in both sides of equation
1.13 the equality would still be obeved, we would like to find a constant that ensures

that the probability of finding the electron in the space volume is 1.
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The variational principle

One approach to the solution of Schrodinger’s equation for a many-body system of
a known Hamiltonian, is to build an approximation to the problem wavefunction.
U.pprox- This will return an approximate value of the energy of the system, F,,;rox.
The variational principle applies the Rayleigh ratio (equation 1.17) to the evaluation
of Eopproz-

‘II OX ; ‘Ija TOoX
Elapprox:< e lH' e > (1.17)

( v approx | v approx )

The variational principle states that the energy calculated from an approximation

to the true wavefunction, E,pprox, Will always be greater than the true energy, Eexact

[40].

Eapprox > Ecxaft (118)

The significance of this principle is that the optimum wavefunction will be the one
for which the energy of the Rayleigh ratio is a minimum, because it will be the closest
we can get to the true energy of the system. WU, is typically expressed in terms

of one or more adjustable parameters that are varied until equation 1.17 is minimised

[42].

Born-Oppenheimer approximation

For a system of NV nuclei and n electrons we can write the Hamiltonian as:

R DI DD R 9) St 9 I
T 2m, - Vi- 2MN 47r(7,4 2 4me,ri; Z e RAB

(1.19)
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where m, and M4 are the electron and nuclear masses respectively and e and
Z are the electron and nuclear charges, respectivelyv. The first term is the kinetic
energy operator for the electrons; the second term is the kinetic energy operator for
the nuclei; the third term is the electron-nucleus Coulombic attraction; the fourth term
is the electron-electron repulsive interaction and the fifth term is the nucleus-nucleus
repulsive interaction.

The rationale behind the Born-Oppenheimer approximation is the great difference
in masses between the nuclei and the electrons (the resting mass of the lightest nucleus,
the proton. is 1836 times heavier than the resting mass of the electron [40]). This
difference implies that the electrons can respond almost instantaneously to any changes
in the positions of the nuclei [40, 42]. Therefore, the motion of nuclei and electrons can
be decoupled. meaning that the nuclei can be considered fixed (or clamped) in their
positions in a particular instant, giving rise to a static electric potential “felt” by the

electrons. In this situation, the Hamiltonian can be simplified to:

i (R) = Z Zi Zae? 12"22": e2? iXN: ZaZp
elec 2m, ATe,Tin 2 S Ameors; 4me HAB

(1.20)

ﬁelec(R), is the electronic Hamiltonian that depends on all the nuclear positions,

R, at once. Now, the problem at hand is to solve a Schrédinger equation that involves
only the electronic degrees of freedom (R denoting the dependence on the particular

configuration of the nuclei):

A

I_](‘]c(‘(R)‘IJc]c('(R) = olec(R CICC(R) (121)

When approximate solutions to equation 1.21 are computed without the use of

empirical parameters the calculation is known as “ab initio”, meaning “from the be-
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ginning”. Once equation 1.21 has been solved, the Hamiltonian for the nuclei, Hx. can
be written by adding the nuclear kinetic energy (left out from equation 1.20) to the

electronic energy, Fc.(R):

. K2
Hy = T 2Ny

A

Hence, the Schrodinger equation for the complete system, which would return the

energy including contributions from the electrons and the nuclei would be:

HxUn = EVy (1.23)

In this thesis we will be concerned with electronic energy calculations, hence with

equation 1.21, from here onwards we will drop the subscripts.

Molecular Orbital approximation

Even with the Born-Oppenheimer approximation, Schodinger’s equation remains very
difficult to solve for an N-particle system. The evaluation of the electron-electron
potential energy is particularly difficult because it depends on all possible and simulta-
neous pairwise interactions between electrons (fourth term in equation 1.19). To avoid
dealing with this. it is further assumed that any one electron moves in an average po-
tential due to the other electrons and the nuclei, (which is to say that electrons behave
independently from each other, hence, electron correlation is neglected). The electronic

Hamiltonian is rewritten as a sum of the one electron operators:

i~y h (1.24)

where h; is known as “core Hamiltonian”:
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) 2 N 2
b= — g2y A (1.25)

2m, ATeTin

Equally. the wavefunction ¥ is then taken to be a product of one-electron wave-

functions:

\IJ(TI, Ty ... Tn) = ’l/'l (rl)y,'2(r2) C e 'c'n(rn) = Hzl:l’l/’i(ri) (126)

equation 1.26. also called “Hartree product”, does neither fulfil the Pauli principle
nor take into consideration the antisymmetry of the electronic wavefunction. Fock
suggested that, in order to satisfy both of these requirements, equation 1.26 should be

re-written as a Slater determinant:

Yi(r1) wi(r) ve(r) - Paga(r)

Yi(rs) 0i(r2) Ya(ra) - Yuya(r) (1.27)

al-

i(rn) Wi(rn) Yo(rn) -+ Pnja(ra)

where # ensures normalisation of the wavefunction, n! being the number of terms
in the determinant; (r;)3 is electron 1 in orbital ¢ with a spin, while ¢ (r1). is
electron 1 in orbital ¢, with  spin. The columns in a slater determinant are the single-

electron wave-functions (orbitals) and along the rows are the electron coordinates.

Hartree-Fock method

From now on we will assume a closed-shell system, this is a system with all electrons
spin paired (e.g. NHj3), the method is then called “Restricted Hartree-Fock” (RHF). In

the HF method the Rayleigh ratio (equation 1.17) is minimised respect to ¢ in order

37To introduce the clectron spin, the one electron wavefunctions (') are multiplied by spin orbital
functions (a or 3). Thus, ¥(r) x a = v(r) and y(r) x 3 = ¥’(r)
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to find a set of one-electron wave functions that obeys the expression:

-

S = ey (1.28)

where f is the Fock operator for a closed-shell system with n electrons in n/2

orbitals:

n/2
j=1

the first term is the “core Hamiltonian”, seen in equation 1.25. The second term,
Jj, is the “Coulomb operator”, representing the Coulombic interaction of an electron
in orbital ¢ with and electron in orbital j. The third term is the “exchange operator”,
which takes into account the spin effects, but has no physical meaning.

If equation 1.28 is solved for each electron in turn. a set of orbital energies is
obtained:

n/2
€; = h‘ii + ZQ.],’J‘ — K,'j (130)
j=1

Note that for any solution found for one electron, the solutions of the other electrons
in the system will be affected. Hence, the strategy to solve these equations is to set
a trial of one-electron wavefunctions by using the variation method. These are used
to calculate the Coulomb and exchange operators. Then the HF equations are solved
giving a second set of solutions which are used again in the same fashion. This is
the Self Cousistent Method (SCF) that gradually refines the one-electron solutions.
Energies lower with each iteration. The process is repeated until the results for all the
electrons are unchanged (or the change is an acceptably small quantity), when they
are said to be “self-consistent”.

In order to solve the HF equations for molecules, Roothaan and Hall, independently,
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suggested using a linear combination of known basis functions with which to expand
the one-electron orbitals. In this way the HF equations are reduced to a matrix problem
and facilitate its solution:

K

d]i = th'id)lV (131)

v=1

where ¢; represents a molecular orbital, and ¢, represent an atomic orbital with an
associated coefficient ¢,;. The cocfficients represent the contribution of different atomic
orbitals (¢) to the molecular orbital (). The use of a linear combination like that in

equation 1.31 in the HF equations leads to the expression:

FC = SCe (1.32)

where F' is a KxK squared matrix called the Fock matrix, C is a KxK matrix
containing the coefficients ¢,;, € is a diagonal matrix containing the orbital energies
and S is the overlap (between different basis ¢) matrix. The solution of equation 1.32

is also an iterative process. The total energy for the ground state is given by:

n/2 n/2

E= Zs =20 (25— Ky) (1.33)

i=1 j=1
1.3.2 Mogller-Plesset method

The method that Moller and Plesset proposed to address the problem of electron
correlation is based in the Rayleigh-Schrodinger perturbation theory. In this theory.
the true or exact Hamiltonian. H, is considered a small perturbation of a “zeroth order”

Hamiltonian, H© for which a set of molecular orbitals can be obtained [40].

H=H 4+)\v (1.34)
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where ) is a parameter that can vary between 0 and 1, when A = 0 there is
no perturbation and the exact Hamiltonian, H, equals the zeroth-order Hamiltonian,
H®: and when X = 1, the perturbation is “on” and H equals its true value.

In the same way, the wavefunctions, ¥;, and energies, E;, of the true Hamiltonian

H can be expanded as a power series in \:

U, = 0O 4 ae® 42209 4 (1.35)

E: = EQ+2EM + 2E? 4+ (1.36)

where ¥? is the wavefunction of H© with energy E”. The ground state wave-
function is then \Il((,o) and its energy is E((,o). E,-(l) is the first-order correction to the
energy, E,-(2) is the second-order correction to the energy and so on. The series of equa-
tions 1.35 and 1.36 are substituted in H V; = E;V;, and then terms of the same order

are collected together:

E? = (@A) (1.37)
EY = (@ v ) (1.38)
EP = (30| v ¥l (1.39)
E® = (1P v|v?) (1.40)

In the MP method the unperturbed Hamiltonian A© is the sum of the one-electron

Fock Hamiltonians over the total number of electrons n:

HO=3"f, (1.41)
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The Hartree-Fock (ground state) wavefunction ‘Il(()o) is a function of the HF (zeroth-
order, unperturbed) Hamiltonian, H®O® | with an energy value of E(()O) given by the sum
of the orbital energies of all the occupied one electron orbitals. This means that the

sum of E((,o) (equation 1.31) and E’él) (equation 1.32) corresponds to the HF energy:

B+ By = (W IHOND) + (3] V %)

= (U] A7 |2 (1.42)

Therefore, the first correction to the Hartree-Fock energy is given by the second
order perturbation theory. This level of theory is called MP2 and involves equation 1.33.
The higher order wavefunction \Il((,l) is expanded as a linear combination of solutions to

the zeroth-order Hamiltonian, to give:

) = Y Pul? (1.43)
i
(0) (0)y |2
@ _ K% | V [¥;7)]
E” = Z EO _ g (1.44)
J#0 0 ~j

where \Ilgo) includes excitations obtained by promoting electrons into virtual orbitals
obtained from HF calculation. Also, \p§0) is a function of H©® with corresponding
energy EJ(-O).

The advantage of MBPT is that is size-consistent, even when a truncated expansion
is used, such as MP2. However, is not a variational theory, meaning that it can

sometimes give energies lower than the “true” energy [40].



Chapter 1. Introduction 24

Practical Considerations

The level of theory used throughout this work is second order Mgller-Plesset Perturba-
tion Theory (MP2). The reasoning behind this choice is that ammonia dimer is held
together partly by dispersion forces, and since this is a correlation effect [36, 38] a
post-Hartree-Fock evaluation is mandatory. MP2 is also a popular way of accounting
for electron correlation [40] and it has been shown to be successful when applied to
many weakly bound and hydrogen bond complexes. For this particular case of ammo-
nia, it was found in references [39, 43] that MP2 provides quantitative results for both
equilibrium structure and interaction energies when compared with MP4, suggesting
that higher order dispersion components contribute only weakly. This means that MP2
gives a good compromise between accuracy and performance with no real shortcomings
over a more expensive MP approach.

Full Configuration Interaction (CI) is too expensive a method for evaluating am-
monia clusters. In addition, the application of CI would lead to a non size-consistent
treatment of the systems we are involved with, which is incompatible with the “super-
molecular approach” also used in this work.

In the 2003 study by Boese et al. [43], a broad representation of Density Func-
tional Theory (DFT) functionals were evaluated, and it was concluded that none of
the density functionals tested in their work contains information to accurately describe
the structure, or the relative energies, particularly dispersion forces, of the ammonia
dimer. With “structure” they referred to the bent, i.e. non-linear, hydrogen bond
displayed by the pair of fluxional putative minima dimers, a feature that an ab initio

method can reproduce.
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1.3.3 Basis Set

The basis set is a set of known mathematical functions from which the wavefunction
is constructed. When molecular calculations are performed, molecular orbitals are
expressed as linear combinations of atomic functions (equation 1.45, again below),

whose coefficients are determined by the iterative solution of the HF equations.

K
Y= cudy (1.45)
v=1

The basis (atomic) functions first used were the Slater Type Orbitals (STO), but
it was found that in HF theory they gave rise to integrals that were very difficult
to evaluate. This problem was bypassed by Boys’ suggestion of replacing STOS by
Gaussian type orbitals (GTOs), which are easier to handle. However, this is not a one-
to-one replacement, since this leads to significant errors due to the different properties of
STOs and GTOs. Roughly, three times as many GTOs are needed to achieve a certain
accuracy compared with STOs [50], hence, STOs are modelled as linear combinations
of GTOs. This is to say that each atomic orbital (¢ from equation 1.45) is represented

as a linear combination of GTOs.

L
¢v = Z dkm¢k(akm) (146)
k=1

where dj, is the coefficient of the “primitive”* Gaussian function ¢, which has an
exponent oy, and L is the number of functions in the expansion.

The best representation of a molecular orbital would be given by the use of an
infinite number of basis sets, the complete basis set (CBS), which when applied to the

HF' method would provide the energy associated to the HF limit. This would mean

4each of the individual Gaussian functions from which the expansion is built. Also, when a basis
function is defined as a linear combination of GTOs it is said to be “contracted”
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that the difference between the HF energy Eynr and the true energy of the system E

is the electron correlation E. [38]:

Evopr = E — Egp (1.47)

The use of a complete basis set in impractical; hence, in practice, the aim is for
a finite number of basis sets to approach the HF limit efficiently. Basis sets can be
constructed using an optimisation procedure in which the coefficients and the exponents
in equation 1.46 are varied to give the lowest atomic energies. The approach chosen to

this construction leads to the different “families” of basis sets (e.g. Pople, Dunning).

Practical considerations

Within the framework of this thesis, the choice of basis set is of importance for two
specific reasons. First, it defines the accuracy of the computed energies required to
calculate binding energies. Second, the accurate calculation of multipole moments is
important to us given our interest in decomposing the many-body effect for ammonia
clusters and the construction of a potential energy surface.

The choice of basis set dealing with small ammonia clusters has been tested in
the literature [39, 49] and by us in a project prior to this thesis. Dunning’s and
Pople’s basis set families were tested and compared®. The initial test between the
two families of basis sets focused on the calculations of monomer properties known
to play a role in intermolecular interactions (dipole moment, quadrupole moment and
polarisability, etc.), and we compared this with available experimental data afterwards.

This comparison was extended to the study of the structures and energetics of the

5The performance of the cheaper Pople’s triple-¢ basis set family 6-311++G with increasing polar-
isation functions (2d,2p), (3d,3p) and (3df,3pd) were first tested in the small structures (NHj3), and
(NH)3; hoping that they could provide a less costly alternative when computing the ammonia PES,
and so we could extrapolate roughly the MP2 interaction energies
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(NH3); and (NHj)3 structures. As a result, we concluded that Dunning’s family of
basis set provides the best choice of functions for exploring ammonia clusters at the
MP2 level of theory, as they give a more balanced performance with increasing basis
set size. Hence, that was our choice to describe the (NH3);s and (NHj3)s structures in

our study. The notation for the basis set and level of theory will be the following:

MP2/aug —cc—pVXZ (X =D,T,Q,5)

Dunning’s basis set can be double (D), triple (T), quadruple zeta (Q), etc. depend-
ing on how many basis functions define the valence (V) orbitals (two, three or four,
respectively). The core is described by six contracted Gaussian primitives. Large basis
set are used in an attempt to obtain total energies and energy differences close to the
basis set limit (CBS) [49]. Correlation consistency or “cc” means that regardless the
function type (s,p,d,f...) the ones that contribute the same amount of correlation en-
ergy are added to the basis set at the same stage [50]. The addition of diffuse functions
is referred to as “augmentation”, or “aug”, and polarisation functions are represented
by a “p”. For contraction scheme see reference [50], for polarisation functions included
in each basis set see “Gaussian98 User Reference 2"¢ Edition” [46].

Both references [39, 49] and us have concluded that MP2/aug-cc-pVTZ gives the
best compromise between cost and accuracy for ammonia dimers, and we have used
the same method for bigger clusters ((NH3),, n = 4,5).

In this work, the inclusion of diffuse functions is mandatory. On the one hand,
because they help to define the “tail” of the wavefunction. This “tail” is, in princi-
ple, of secondary importance to the total energy [36, 50]; however, it carries useful

information in describing the multipole values and polarisabilities of molecules, which
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are both relevant for a faithful estimation of the interaction energy, of particular im-
portance in this work. On the other hand, different studies [39, 51, 52] point out the
necessity of using diffuse functions due to the flat bottom of the ammonia PES dimer.
Since putative minima structures are separated by small energy differences, not adding
diffuse functions to the basis set during the optimisation process leads to missing the
“isolation” of one of them, as one isomer “falls down” into the other [39, 51].

Finally, polarisation functions are necessary in the calculations for monomers and
clusters to describe electron correlation and the distortion of the atomic orbitals when

a bond is made or an interaction occurs.

1.3.4 Basis Set Superposition Error

This work has chosen the Boys and Bernardi [44] Counterpoise Correction (CP) ap-
proach to tackle Basis Set Superposition Error (BSSE). It is established that for closed-
shell interactions BSSE can be corrected by applying this method [35], and this proce-
dure is also available in the Gaussian98 [46] and Gaussian03 [47] suites of codes which
have been used to run all calculations in this work.

The aspects of CP correction are neatly summarised in the work by Ponti and Mella
[48], the diagrams and equations shown below are based in their paper.

There are two factors to be considered when tackling BSSE: the basis set of choice,
and the geometry of the monomers constituting the aggregate.

To illustrate these two points let us consider two free monomers A and B, that

when interacting change (or “deform”) their geometry to A? and B¢, in order to form

a dimer, A’B¢.

A, B 25uet, pa | pa BPadnd, papa (1.48)
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In the scheme above AFEg¢, of positive value, is the energy required to bring
monomers A and B to the dimer geometry is what we will call “deformation energy”,

AEdef.

ALEIA Al AFu 4= Ega— E4 (1.49)
B 28«12, i AEu p = Egi— Ep (1.50)
AEdef = (EAd - EA) + (EBd - EB) (151)

AFE japa, in equation 1.48, generally of negative value, is the formation energy of
the dimer. A first approach to AE4aps according to the “supermolecular approach”

adopted in this work and introduced in the following section, is given by:

AEAdBd = EAdBd - EA - EB (152)

All values at the right hand side of equation 1.52 can be computed. However, since
the use of complete basis sets is impractical, the interacting monomers of a cluster will
use each other’s basis set in order to complete their own basis set and improve their
own energy. This results in an artificial lowering of the total energy of the complex, or
overbinding effect. Hence, the formation energy calculated with equation 1.52 carries
an error, the BSSE, because the complex has been effectively computed with a bigger
basis than the monomers. In fact, BSSE can be defined as the difference in energy
between the monomers in the complex geometry structure (i.e. “deformed”) computed

with the cluster basis set (i.e full basis) and with just their own basis set.
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BSSE = (E‘{;l;llbasis _ Egdbasis) + (E{;;ubasis _ Eggasis) (1'53)
Let us note that BSSE vanishes at the Complete Basis Set limit (CBS). Boys and
Bernardi [44] recipe is to calculate the formation energy of the cluster as follows:

AEBE, = Epaps — B30t — plufibesss (1.54)

This means that we subtract from the complex energy the energy of the monomers
in their cluster geometry calculated with the full basis set. Equation 1.54 does not
account for deformation energy, AFEg4s (equations 1.49-1.51), so it has to be added.
This, however, includes another difficulty, since for the energies to be comparable one
would have to calculate the non-interacting monomers at the non-deformed geometry
with the full basis as well. More specifically, the problem appears when defining the
centring of monomer’s B functions for the computation of monomer A at full basis, and
vice versa, because the choice of location of monomer’s B basis set functions becomes
arbitrary. Thus, the deformation energy cannot be unambiguously computed with the
full basis set. In this situation the Counterpoise corrected formation energy will be

written as:

AES,: = ES5i + Eugega + Eaesn (1.55)

which expanded gives:

AngBd — EAdBd _ E]{:llbasis _ E{;:llbasis + [(Eﬁ;’baais _EA) + (Eggbaais _EB)] (156)
Ny ) | ——

v

Gaussian suit of codes 98 [46] and 03 [47] provide the Counterpoise corrected energy,
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ECP ' considering the elements underbraced in equation 1.56. Hence, for calculating

gauss’

the interaction energy in this work we use:
AEgepa = ES,,— Eo—Ep (1.57)

1.3.5 Supermolecular approach

The interaction energies throughout our work have been calculated by means of the
“supermolecular approach”. This method considers that the interaction energy of a
molecular aggregate is defined as the energy difference between the supermolecule (the
aggregate or cluster) and the free fragments that constitute its whole. Thus, for a dimer

constituted by fragments A and B the interaction energy would have the following form:

AE= Esp — E4 — Ep (1.58)

In the expression above E4p represents the interaction energy of the dimer AB,
while E4 and Fp represent the energy of the fragments A and B, respectively.

A faithful description of the supermolecule interaction depends on how reliably we
can compute the energies of the aggregate and the monomers. The reliability of the
numerical values comprises three demands [35], two related to the method of choice
and one to the basis set. First, our method of choice must provide energies of similar
accuracy for the cluster and its individual fragments; this implies the election of a
size-consistent method. Secondly, our method of choice should be able to reproduce
non-additive effects (e.g. many-body). Finally, it is known that the evaluation of the
energy of a system is very sensitive to the choice of basis set. Fragments and aggregate
should be evaluated using the same basis set (basis set consistency) and the BSSE,

discussed previously, should be taken into account.
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1.3.6 Many-body effects

Let us consider an assembly of N molecules. A first approximation to the calculation

of the total energy of the system (E) would be to take the molecules in pairs:

E= zn: E:+ \2: E;; (1.59)
i 1

J>i=

n
In equation 1.59, ) F; indicates the summation of the monomer energies, and

1
n

Z E;; accounts for the energy of each pair of molecules. This is the pairwise ad-
g;lz\:lty assumption, in which the energies of each pair are calculated as if the other
molecules were not present. However, they are, and do affect the stability of the pair
considered. This means that when we consider the binding energy of a cluster, there
is a many-body correction to be accumulatively added: three-body for a trimer, four-
body for a tetramer and so on. That said, the many-body correction is usually small
in magnitude, continuously decreasing upon increasing cluster size.

In this work, we have decomposed the interaction energies into their n-body con-
tributions for the pure ammonia clusters up to the tetramer in an attempt to improve
our understanding of the molecular interactions. The computational strategy for the

many-body decomposition can be summarised using (NHj3), as an example, and with

the help of the energy decomposition described by the following equation:
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'Tk -

Figure 1.2: Ammonia tetramer for the calculation of many-body effects.

This is one of the isomeric structures we have isolated for (NH3)4. It can be structurally
decomposed by considering that it contains six dimers (12,13,14,23,24,34) contributing the
2-body interaction energy and three sets of trimers (123,134,234) contributing the 3-body
interaction energy. The 4-body contribution to the interaction energy (1234) is obtained as

a complement to the total energy value. Image obtained with MOLEKEL [45]

4 4 4 4
E(xi,x2,x3,x4) =Y E'(x>)+7Y E2(xiXj)+ xhkxt)
t=1 *<g= i<G<k=l i<G<k<l=

(1.60)
where E(xi, X2,x3,x4) is the (NH3)4 interaction energy, Xi is the position of all the
atoms in the ?th molecule, E /(x{) is the energy required to distort NH3 from its gas-
phase structure to the one in the complex, E2(xiXj) is the 2-body interaction between
two molecules i and j, and so on. Given an optimised isomer, (either fully relaxed
or with the intramolecular structure kept frozen to the experimental gas-phase geom-
etry), single point calculations were performed on the single monomers, pairwise and
threewise fashion to evaluate the 1-body, 2-body and 3-body distortion effects. The

4-body effect is obtained as the complement to the total interaction energy value.
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Chapter 2

Pure ammonia clusters: (NHj3),

(n=2-05)

2.1 Introduction

Among ammonia clusters, the dimer is the most studied structure both theoretically
and experimentally. Up to the publication of the microwave study for (NHjs); by
Klemperer and co-workers [1] in 1985, it was assumed that such a structure would
feature a classical (i.e. linear) hydrogen bonded structure, just as (H;O), and (HF),
clusters. The idea of “non-linearity” was also supported by the investigation of the
Fourier Transform Infrared (FTIR) spectra of ammonia in noble gas matrices [2]. It
was further suggested, based on isotope substitution microwave experiments (3], that
the ammonia dimer structure would also be quite rigid near the equilibrium structure,
a finding that was contradicted by the infrared predissociation spectra of reference [4]
and other subsequent IR experiments [5-8] in which a “floppy” ammonia dimer was
predicted.

In parallel to the experiments, several theoretical investigations involving ab initio

40



Chapter 2. Pure ammonia clusters: (NH3), (n =2 —5) 41

and model potentials were carried out. Hirao et al. [9] computed the binding energy
of the ammonia clusters up to the pentamer using Hartree-Fock (HF) and the 6-31G*
basis set. In contrast with the experimental suggestions, a linear H-bond was found.
More accurate calculations revised this result [10-16], proposing the existence of two
stationary points for the ammonia dimer. On one hand, the minimum energy structure
having C, symmetry and a H-bond less linear than that predicted by HF calculations.
On the other hand, a “centrosymmetric” cyclic structure with Cy, symmetry, which
would be the transition state in the hydrogen bond donor-acceptor interchange. The
barrier high for this process was predicted to be very low (roughly 3.5 cm™! [14] or 5.9
cm™! [16]). The model potential by Olthof et al. [13], in which a model surface was
fitted to the (NHj), infrared spectra [7], supported these ideas and could also explain
the existing experimental IR data. In conclusion, all modern evidence suggests that
(NHj3), is a hydrogen bonded complex with a non-linear H-bond structure with the
tendency to interchange the donor/acceptor nature of the two molecules easily. In this
respect, a very recent study by Curotto and Mella [44] performing different quantum
Monte Carlo simulations on ammonia clusters, has indicated that the “donor-acceptor”
configuration is visited with the same likelihood as the “acceptor-donor” configuration
for the ammonia dimer.

Regarding clusters up to the hexamer, the experimental data from references [4-
6, 17, 38], indicate that these structures would have a very small electric dipole moment,
suggesting a cyclic or ring-like arrangement. However, the presence of a broad IR
absorption band in the spectrum of the pentamer [5] was interpreted as an indication
of a less rigid structure than the tetramer and trimer, perhaps suggesting that (NH;3)s
may have a fluxional nature, making structural assignments more difficult. Larger
species than the hexamer (n = 18,745,1040) were studied by Buck et al. [18] but

direct structural information was not extracted from the experiment data.



Chapter 2. Pure ammonia clusters: (NH3), (n =2 —5) 42

The ab initio geometry optimisation for (NH3), (n = 3 — 5) by Hirao et al [9]
predicted a ring like geometry for the global minima of these isomers, albeit largely
overestimating their binding energies, most likely due to the lack of BSSE corrections.
The model potential with polarisable terms of Dykstra and Andrews [33] found that
the trimer and tetramer are symmetric, cyclic structures. Using a nonpolarisable model
potential calibrated against Coupled Pair Functional (CPF) results [31], Greer et al.
[32] found, as before, that the trimer and tetramer arranged in cycles, but that the
pentamer, hexamer and heptamer preferred 3D structures for their global minima. In
particular, the pentamer was found to display a distorted pyramid conformation. The
investigation of clusters up to n = 18 by Beu and Buck [25] using a nonpolarisable
model potential parameterised to the crystal sublimation energy of ammonia by Impey
and Klein [34], provided the same result, that pentamer and higher isomers tend to
form 3D isomeric structures that are very close in energy.

As far as we know, three correlated ab initio methods have also been used to in-
vestigate clusters larger than the dimer. The work of Slipchenko et al. [38] recently
studied, both experimentally and using MP2 calculations, clusters up to the tetramer,
once again predicting cyclic arrangements for the trimer and tetramer global minima
structures. Kulkarni and Pathak [30] computed interaction energies and equilibrium
geometries for (NH3), (n = 3 — 6). They presented and compared cyclic and linear
arrangements for the clusters, concluding that linear species have smaller binding en-
ergies than cyclic ones, as found for neutral and protonated water clusters [19, 20].
Finally, Szczesniak et al. [21] focused on addressing the decomposition of (NH3); in-
teraction energy in different components employing syminetry adapted perturbation
theory (SAPT).

It seems to us that high level calculations on ammonia clusters larger than the

dimer are scarce, particularly indicated by the lack of consensus on the structure of a
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relatively small isomer like the pentamer. Hence, this chapter presents an MP2 study
of the structure, intermolecular biding energies and harmonic frequencies of (NHj3),
(n = 2 —5). Several isomers for each cluster were optimised, and their interaction
energy decomposed in 2-, 3- and 4-body contributions. Harmonic frequencies were

computed and used to correct for the nuclear zero-point motion.

2.2 Methodology

As advanced in the introduction of this thesis, all of the electronic structure calculations
on (NHj3), (n = 2 — 5) were performed using the Gaussian 98 [27] and 03 [28] ab initio
suits of codes using second-order Mgller-Plesset perturbation theory (MP2) with frozen
core. Also, for the initial optimisation steps for clusters n = 3 and 4, for structural
aspects only, we found useful the use of the Hartree-Fock (HF) level of theory. BSSE
was accounted for by means of the Counterpoise (CP) correction procedure [22-24] on
the optimised structures.

We think it is worth mentioning the optimisation strategy followed throughout this
work. The first step was to encode each geometrical structure in a Z-Matrix that
could be used as an input for the geometry optimisation. Possible putative minima
structures were obtained from previous published results, obtained mostly using model
intera.cfion potentials [25]; and also from considering molecular arrangements likely to
have relatively strong hydrogen bonds.

Basis sets were used hierarchically, meaning that the output of an optimisation was
then used as an input for the following, larger basis set optimisation calculation. We
used two routes for the optimisation of the (NH3),, n = 2 — 4 structures: on one hand,
we allowed the whole structure to relax; on the other hand, we kept the intramolecular

structure of the monomers frozen to the experimental values of gas-phase ammonia
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(rng = 1.0124 A, HNH = 106.67°) [29]. The reason for this is, given our goal of
developing an ab initio based interaction potential between rigid ammonia molecules,
to see whether for a given isomer the relaxation of the intramolecular geometry has
any impact on the energetics and structure of the cluster. It can be advanced that
the adoption of the frozen intramolecular approximation produces negligible changes
from the results of the “fully relaxed” approach for both energy and structure (for
comparison Appendix 1 can be seen, it contains BSSE energies for (NH3),,, n =2—-5
keeping intramolecular parameters frozen to the experimental value).

After each optimisation with a different basis set, we performed a single point
BSSE corrected calculation. If we consider two PES’s, one not accounting for BSSE
and a second one BSSE corrected, performing a single point correction on the first
one is equivalent to obtain the “vertical” corrected energy. In addition, a further
optimisation was performed on the optimised geometry (a “re-optimisation”) including
BSSE correction. In other words, we allow our “vertical” point energy to find the
minimum in the BSSE corrected PES.

Also, to improve our understanding of the intermolecular interaction, we proceeded
to decompose the interaction energies into their n-body contributions for the clusters
up to the tetramer. The computational strategy for the many-body decomposition was
explained in the introduction of this thesis using (NH3), as an example.

Finally, harmonic frequencies were computed on the fully relaxed clusters as a way
to introduce zero-point energy (ZPE) correction and to study the effects of vibrational
motion on their relative stability. We also investigated possible patterns in the N-
H frequency shifts of the ammonia aggregates that could be used as a spectroscopic

signature of some structural feature.
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2.3 Results

2.3.1 Structural results and binding energies

Figures 2.1 to 2.4 show the optimised structures for (NH3), n = 2 — 5 obtained at the
CP corrected MP2/aug-cc-pVTZ level of theory. Tables 2.1 to 2.4 show the energetic
data, in kcal/mol, for all the isomeric species obtained in this work together with
previously published ab initio and model potential data. For all tables 2.1 to 2.4
“BE” is the BSSE uncorrected binding energy for an optimised cluster (i.e. binding
energy computed using the energy of fully relaxed local minima); “ZPE” is its harmonic
zero point energy; “BECF” gives its single point CP-corrected (i.e. BSSE corrected)
binding energy, and “Opt®F” gives the BSSE corrected binding energy after structural

relaxation on the counterpoise corrected surface.

Dimer

All basis set results support the asymmetric isomer (asym, I) as the most stable one,
with the cyclic species (II) being a transition state (TS). The relative energy difference
between these two isomers represents the hydrogen donor-acceptor exchange barrier
[14], it amounts to roughly 3 cm™! at the CP-corrected MP2/aug-cc-pVQZ level of
theory. These results are in good agreement with the work by Lee and Park [14].
As expected, introducing single point Counterpoise (i.e. vertical) correction on the
optimised isomeric geometries reduces the binding energy, but no substantial changes
are seen in the relative energy of the two isomers. In the same way, only slight changes
are observed after the structural relaxation on the CP-corrected PES.

Looking at table 2.1, we also notice that energy results at the MP2/aug-cc-pVTZ
level are in very good agreement with those obtained at MP2/aug-cc-pVQZ level of

theory. Let us stress that MP2 has already been reported to compare well with the



Table 2.1: Energy values for (NH;3)2 in kcal/mol.

—

MaDZ? — MaTZ MaQZ’ Other
(NH3); BE(ZPE) BE®? Opt®” BE(ZPE) BE®? Opt®® BE BECT Opt®F
asym® 3.624(44.647) 2.735 2.771 3.287(44.777) 3.001 3.011 3.220 3.089 3.090 4.03"

TS® 3.403 2.735 2.756 3.239 2.999 2999 3.197 3.082 3.082

asym® 3.623 2.737 3.286 3.000 3.219 3.088 3.138¢
TS® 3.404 2.729 3.239 2.995 3.196 3.081 3.130°
asym 2.9234
asym 3.090¢
dimer 2.934f
asym 2.7849

® This work; ® Ref. [14], MP2/aug-cc-pVXZ, X= D, T; © Ref. [16], W2 result; 4 Ref. [15], LMP2/aug-cc-pVTZ; € Ref. [31, 32],
coupled pair functional (CPF); f Ref. [33], model potential; 9 Ref. [25], model potential; * Ref. [30], MP2/6-31++4G(d,p) result; /
MaXZ (X=D, T, Q) is a shorthand notation for MP2/aug-cc-pVXZ. BE are the BSSE uncorrected values for an optimised cluster
(i.e. binding energy computed using the energy of fully relaxed local minima); “ZPE” is the calculated zero point correction;
“BECP” gives its single point CP-corrected (i.e. BSSE corrected) binding energy, and “Opt®?” gives the BSSE corrected binding
energy after structural relaxation on the counterpoise corrected surface. The “Other” column collects literature values obtained
using both ab initio calculations and model potentials.

u) “(SYN) :sI9snpo eluowrure aimnd ‘g Iajdey)

(R

9¥



Chapter 2. Pure ammonia clusters: (NH3)n {n= 2 —5) 47

more expensive MP4 and Coupled Cluster methods [14] for several atomic basis. The
good agreement between basis sets in our calculations suggests that the MP2/aug-cc-
pVTZ level may provide an accurate representation for the energetics of the ammonia

clusters.

(a) asym I (b) TSI

Figure 2.1: Equilibrium structures for (Nthi® obtained with Counterpoise corrected
MP2/aug-cc-pVTZ optimisations. All images in this work have been obtained and
visualised using MOLEKEL [26]

Also, our best value for the asymmetric dimer (asym, I) agrees very well with the
coupled pair functional results reported by Sagarik et al. [31, 32] which is the most
accurate ab initio data available. Good agreement is also seen with the results of the
W2 method by Boese et al. [16], the relative energy difference between the asymmetric
and cyclic dimers is predicted to be roughly 3 cm-1 as in this work. In addition,
good a agreement is also seen, particularly at the MP2/aug-cc-pVTZ level of theory,
between this work and the local-MP2/aug-cc-pVTZ data of Staking ef al. [15]. On the
other hand, the BE for for the asymmetric dimer (asym,l) obtained by Beu and Buck
[25] using the Impey and Klein [34] potential is 2.784 kcal/mol. This represents an
underestimation of roughly 0.3 kcal/mol respect to the MP2 values, although we found
that the optimised structure is in good agreement with all of the ab initio results. In
opposition to this, the equilibrium structure presented by Dykstra and Andrews model
potential [33] in as the minimum energy structure for the dimer does not match any of
the stationary points reported in the literature or by this work. This fact has already

been discussed in the literature [35, 36] and it is thought to be due to the difficulty
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at the time of parameterising properly the nonelectric part of the potential model.
Nonetheless, the interaction energy for this “odd” isomer is 2.934 kcal/mol [33], only
slightly lower than the ab initio values, perhaps suggesting that induction may play an

important part in defining the interaction energy.

Trimer

We have obtained two putative global minima for the trimer, which can be seen in figure
2.2. As seen in table 2.2, the results for all basis set predict the most symmetric isomer
(“equi”) as the most stable structure, with isomer II (asym) lying 3.4-3.7 kcal/mol
above isomer ‘“equi” on the BSSE corrected surface. This energy difference is the
largest to be seen between the BEs of two local minima among all of the cluster sizes.
It is due to the inverted ammonia in the “asym” ring, which also induces a large dipole
moment in the structure (3.04 D versus 0 D for “equi”). Kulkarni and Pathak [30]
provide the only other correlated ab initio result for the most stable isomer ‘“equi”
using MP2/6-31++G(d,p). Their result is roughly 2.7 kcal/mol more binding than our

best results, due to the lack of BSSE correction in their calculations.

(a) equi () (b) asym (II)

Figure 2.2: Equilibrium structures for (NH3)3 obtained with Counterpoise corrected
MP2/aug-cc-pVTZ optimisations.



Table 2.2: Energy values for (NH;)3 in kcal/mol
MaDZ’ MaTZ MaQZ7’ Other
(NH;);  BE(ZPE) BEC” Opt®”  BE(ZPE)  BECP Opt®® BE BEC? Opt°?
equi® 11.919(68.806) 9.242 9.326 10.974(69.001) 10.067 10.074 10.747 10.334 10.329‘ 13.02"
asym® 7.827(67.886) 5.775 5.886 7.182(68.155) 6.439 6.453 6.961 6.633 6.633

equi 8.2639
equi 8.439¢
trimer 9.392/

@ This work; ¢ Ref. [32], model potential; / Ref. [33], model potential; 9 Ref. [25], model potential; * Ref. [30], MP2/6-31++G(d,p)
result;  CP-corrected MP2/aug-cc-pVQZ using a geometry obtained with a CP-corrected optimization at the MP2/aug-cc-pVTZ
level; 7 MaXZ (X=D, T, Q) is a shorthand notation for MP2/aug-cc-pVXZ. BE are the BSSE uncorrected values for an optimised
cluster (i.e. binding energy computed using the energy of fully relaxed local minima); “ZPE” is the calculated zero point correction;
“BECP” gives its single point CP-corrected (i.e. BSSE corrected) binding energy, and “Opt®P” gives the BSSE corrected binding
energy after structural relaxation on the counterpoise corrected surface. The “Other” column collects literature values obtained
using both ab initio calculations and model potentials.
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Also, table 2.2 shows the model potential results by references [25, 32, 33]. Two
structures, also labelled “equi” obtained by Beu and Buck [25] and Greer et al. [32]
are almost identical to our lowest energy isomer. Their resulting interaction energies
agree well between themselves, data obtained using rigid body pairwise additive po-
tentials. However, these values underestimate by roughly 2 kcal/mol our CP-corrected
MP2/aug-cc-pVQZ value, suggesting that the lack of many-body effects in the model
potentials may undermine the accuracy to reproduce larger clusters energy landscapes.
Regarding the data by Dykstra and Andrews [33], similarly to the dimer case, the
geometry of their trimer shows a cycle of three ammonia molecules that are rotated by
60° around their C3 axis with respect to our ab initio “equi” structure [35, 36]. Even in
this case, the energy difference in binding energy when compared to our CP-corrected

MP2/aug-cc-pVQZ is only 1 kcal/mol.

Tetramer

We obtained three stationary structures for (NH3), (figure 2.3). The two most sta-
ble isomers (I “boat” and II “planar”) are almost degenerate at the CP-corrected
MP2/aug-cc-pVTZ level. The estimated binding energy at the aforementioned level of
theory is roughly 15.5 kcal/mol, the sign and magnitude of the small energy differences
between the isomers depending on the level of the calculations. Structurally, “boat”
and “planar” isomers have as a main structural difference the value of the torsional an-
gle formed by the four nitrogen atoms, in isomer II (“planar”) they are constrained to
lie in the same plane. Depending on the calculation level, isomer II “planar”, is either
a transition state (at MP2/aug-cc-pVDZ) connecting two equivalent “boat” isomers
through a puckering (rocking or pseudorotation) motion; or a minimum (at MP2/aug-
cc-pVTZ). Looking at table 2.3 it can be seen that the results by Kulkarni and Pathak
[30], which do not account for BSSE, predict a larger binding energy for the “boat”
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Table 2.3: Energy values for (NH3),4 in kcal/mol.

MaDZ’ MaTZ’ Other
(NH3)4 BE(ZPE) BECP Opt®® BE BECF Opt¢”
boat®  18.523(92.244) 14.304 14.427 17.002 15.515 15.527 20.12"
planar® 18.52 14.208 14.426 17.009 15.514 15.535
tail® 15.128(91.442) 11.503 11.640 13.786 12.552 12.569

boat 12.632¢9
planar 12.613¢
boat 13.098¢
boat 14.119/

@ This work; ¢ Ref. [32], model potential; / Ref. [33], model potential; 9 Ref. [25], model
potential; * Ref. [30], MP2/6-314++G(d,p) result. # MaXZ (X=D, T, Q) is a shorthand
notation for MP2/aug-cc-pVXZ. BE are the BSSE uncorrected values for an optimised clus-
ter (i.e. binding energy computed using the energy of fully relaxed local minima); “ZPE” is
the calculated zero point correction; “BECP” gives its single point CP-corrected (i.e. BSSE
corrected) binding energy, and “Opt¢P” gives the BSSE corrected binding energy after struc-
tural relaxation on the counterpoise corrected surface. The “Other” column collects literature
values obtained using both ab initio calculations and model potentials.

structure than our results. In addition, model potential results from references [25] and
[32] underestimate our ab initio binding energies by 2.9 and 2.4 kcal/mol, respectively.
This represents a worsening of the model potentials with respect to the (NHj3); case,

in the previous subsection. The model used by Dykstra and Andrews [33] performs

better, the discrepancy with our ab initio data being only 1.4 kcal/mol.
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(a) boat (I) (b) planar (II)

€

(c) tail (III)

Figure 2.3: Equilibrium structures for (NH3)4 obtained with Counterpoise corrected
MP2/aug-cc-pVTZ optimisations.

The third isomer (III, “tail”), lies roughly 3 kcal/mol above isomer I (“boat”)
and is the first time that it is reported, while isomers ‘boat” and ‘“planar” already
have equivalents in the literature [25, 32, 33]. The “tail” isomer was built by adding
an external ammonia molecule to the ‘“equi” trimer. This optimisation strategy was
used as a way to explore the possibility of an ammonia molecule remaining trapped
outside the ring. This would be a feasible scenario during the formation of (NH3)4 by
sequential pick up of ammonia molecules in a dissipating cold environment (i.e. He
droplets [37]); facilitated by the fact that during the pick up process the cyclic trimer
might form before the fourth ammonia is added to the droplet and by the compact

nature and lack of dipole moment of the cyclic trimer. However, recent IR spectra
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of small (NH3),, in He droplets [38] appeared to provide no support for the presence
of a “tail” (or 3+1) isomer, a finding that may suggest the possibility of the fourth
ammonia molecule entering the ring as a consequence of the addition dynamics. This
event would require the partial opening of the ring, a process that appears to take
place during the sequential pick-up of water molecules in He droplets [39].

Regarding the structure of the “tail” isomer, the binding of an external ammonia
molecule to the trimer ring has the consequence of changing the N-N distances with
respect to those in the cyclic trimer geometry from where the tail is built. Particularly,
the distance between the coordinating molecule and its H-bond donor in the ring is
reduced by 0.06 A, whereas the distance between the same molecule and its H-bond
acceptor counterpart is increased by 0.09A. Parallel changes are also found for the

harmonic frequencies NH stretches, discussed in the relevant section.

Pentamer

All the putative local minimum we found for (NH3)s are shown in figure 2.4. From
table 2.4 we can see that the pentamer “tail” isomer is the least stable species, lying
roughly 2 kcal/mol above all the others, due to the lower number of H-bond contacts.
On the other hand, we can also see that the energy ranking for the remaining pen-
tamer isomers is quite compressed and strongly sensitive to the level of treatment. In
this respect, uncorrected results using both MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ
favour compact species as the most stable, while CP-corrected values predict the “ring”
as the most stable one, although marginally. This reversal in energy ranking is due to
a different magnitude of BSSE correction, which is in turn related to the number of
H-bond contacts.

As far as we know, only a few structures have been proposed as stationary species

using model potentials. The binding energies of the two 3D structures described by Beu
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(a) BB1

(¢) ring (d) pyramid

(f) tail

Figure 2.4: Equilibrium structures for (NH3)s obtained with MP2/aug-cc-pVTZ opti-
misations.
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Table 2.4: Energy values for (NH3)s5 in keal/mol.

MaDZ MaTZ’ Other
(NHy), BE(ZPE)  BEC? Opt®? BE BECP
BBI®  23.867(115.445) 17.932 18.177 21.377 19.315 16.7289
BB2®  23.706(115.091) 17.886 18.128 20.958 19.077 16.5899
ring® 23.617(115.287) 18.161 18.334 21.287 19.358 25.48"
pyramid® 24.053(115.608) 17.892 18.181 21.388 19.263
compact® 23.705(115.329) 17.883 18.127 21.260 19.203

tail® 21.532(114.918) 16.359 16.533 18.930 17.286
BB3 16.5879
ring 16.927¢

¢ This work; ¢ Ref. [32], model potential.; 9 Ref. [25], model potential; » Ref. [30], MP2/6-
31++G(d,p) results; ? MaXZ (X=D, T, Q) is a shorthand notation for MP2/aug-cc-pVXZ.BE
are the BSSE uncorrected values for an optimised cluster (i.e. binding energy computed
using the energy of fully relaxed local minima); “ZPE” is the calculated zero point correc-
tion; “BECP” gives its single point CP-corrected (i.e. BSSE corrected) binding energy, and
“OptCP” gives the BSSE corrected binding energy after structural relaxation on the counter-
poise corrected surface. The “Other” column collects literature values obtained using both
ab initio calculations and model potentials.
and Buck [25] and Greer et al. [32] are included in table 2.4. By visual comparison these
structures appear similar to isomer I (obtained optimising the lowest energy structure
from the work by Beu and Buck [25], hence “BB1”) and isomers “BB2” and “pyramid”,
respectively. As found before for smaller clusters, the binding energies predicted by
the model potentials are smaller, by roughly 2.5 kecal/mol, than the ones provided by
CP-corrected ab initio calculations.

We think this results point to the idea of a very smooth energy landscape for (NH;)s,
maybe making necessary a higher level of ab initio theory to elucidate the ranking of

the present isomers.

2.3.2 Many body effects and comparison with experiments

We have used the results presented in tables 2.1 to 2.4 to predict molecular evapo-
ration energies in order to compare them with other results from the literature, both

theoretical and experimental. The results can be seen in 2.5. All of the incremen-
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tal energy data from this work have been computed using zero point energies at the
MP2/aug-cc-pVXZ (X = D for (NH3), and (NH;3)s; X = T for (NHj3), and (NHj3)s) and
CP-corrected results for the electronic energies obtained using the largest affordable
basis set and CP corrected optimisation when possible. For each cluster size we list
only the BE for the isomer with the lowest total energy.

Aside from our data, table 2.5 also presents the thermochemical data for the for-
mation of (NHj3),, from (NHj3),_; [40], data derived from photodissociation of (NHs),
into (NH3),,—; [6], photoionisation studies [41] and we also list the evaporation energies
predicted by reference [32], which are calculated from binding energies that are not
ZPE corrected.

From table 2.5 we can see that ZPE accounts for a 35%-45% reduction in the BE
for all cluster sizes. No significant changes were found in the relative energy ranking
upon introduction of the ZPE correction for all clusters (see Appendix 2 for a more
detailed account of BE computed with ZPE corrections for all clusters), the only result
to mention being the increase in stability of the “ring” and “BB2” pentamers. Looking
at table 2.5 it can also be seen that less energy is required to evaporate an ammonia
molecule from the pentamer than from the trimer and tetramer, a result supported by
the less compact structure of the larger size clusters.

We see a reasonable agreement between the experimental AF data and the theo-
retical values in table 2.5, especially taking into account the small magnitude of the
measured quantity and the difficulties measuring it. All the values from this work fall
in the energy range obtained by the photodissociation experiments from reference [6].
There is, however, a relatively large discrepancy between theory and experiment in
the case of (NH3)4 and (NHj)s. In particular, the experiments in references [40] and
[41] provide substantially higher evaporation energies than the theory, this result was

explained by Greer et al. [32] with the suggestion that the concentration of small clus-



Chapter 2. Pure ammonia clusters: (NH;3), (n =2 —5) 57

Table 2.5: Binding (BE) and vaporisation (AE) energies for (NH3), (n = 2 — 5), in
kcal/mol.

n BE® AE® AR’ AE° AE? AE®
2 3.011(1.651) 1.651 3.090 4.6(5) < 2.85 2.8
3 10.074(6.197) 4.546 5.637 3.9(5) 2.85< AE<572 35
4 15.537(10.125) 3.928 4.659 55(5) 2.85<AE <572 5.1
5 19.358(12.612) 2.487 3.828 3.9(5) 5.1

¢ This work; ® Ref. [32], model potential; ¢ Ref. [40], thermochemical measurements; ¢ Ref.
(6], photodissociation experiments; ¢ Ref. [41], ionisation threshold measurements. The first
column shows adiabatic and ZPE corrected (between brackets) binding energies computed in
this work using Counterpoise corrected energies and ZPE at the MP2/aug-cc-pVXZ (X =D
for (NH3)4 and (NH3)s; X = T for (NH3)2 and (NH3)3) level. AE values from this work are
computed including ZPE corrections.

ters was overestimated during the thermochemical experiments due to the variation in
ionisation probability with cluster size.

Table 2.6 presents the many-body decomposition (equation 55, chapter 1) of the
binding energies for clusters up to the tetramer. They were calculated at the CP-
corrected optimisation MP2/aug-cc-pVTZ level of theory. In order to have values
of many-body effects that are directly comparable across different cluster sizes, the
different contributions (i.e. 2-, 3-, and 4-bodies) have been divided by the number
of possible sub-clusters contained in a particular cluster size (i.e. the total 2-body
contribution in a tetramer has been divided by 6, the number of different dimers it
contains).

From table 2.6 we can see that the 4-body effect appears to be negligible, whilst 2-
and 3-body effects are mandatory for an accurate decomposition of the total binding
energy for any given cluster. This finding is of importance for the task of building a
model potential for ammonia, suggesting that one may concentrate only on low order

many-body effects. In addition, looking at the normalised 2-body effects in table 2.6

one can see that they decrease with increasing cluster size, the principal reason for
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Table 2.6: Many-body contributions to the binding energy of (NH3), (n =2 —4), in
kcal/mol.

“System 2-body 3 body 4 body
n=2, asym J3.011 3.011
n=2,sym 2999 2999
n=3, equi 9.063 3.018 1.142 1.142
n=3,asym 6.206 2.069 0.369 0.369
n=4, boat 12.984 2.164 2.632 0.658 0.150
n=4, plane 13.171 2.195 2.441 0.610 0.155
n=4, tail 11.561 1.927 1.150 0.288 0.004

For each n-body contribution, the first column presents the total value; the second column
shows the total contribution divided by the number of n-body moieties in the cluster.

this trend being the longer distance on average, between pairs of ammonia molecules
in large clusters. Finally, let us add that in view of the small magnitude of 4-body
effects in the tetramer, we did not calculate higher many-body contributions for the

pentamers.

2.3.3 Harmonic frequencies

Ab initio harmonic frequencies were calculated for ammonia clusters on the fully op-
timised structures at the MP2/aug-cc-pVDZ level. These were analysed in order to
extract information on the frequency shift for the N-H stretching modes, in an attempt
to associate a particular geometrical feature to a range of frequencies [42]. The results
of our frequency calculations for the N-H stretches are shown in figures 2.5, 2.6 and
2.7 for the trimers, tetramers, and pentamers, respectively.

Firstly, we observe that all NH stretch frequencies are seen to decrease upon increas-
ing cluster size, a common feature present in several H-bonded clusters [42]. Although
somewhat difficult to quantify due to the complicated dependency on the aggregate

geometry, we notice that the average frequency of antisymmetric stretches decreases
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by roughly 20 cm~! going from the trimers to the tetramers, and by roughly 5 — 10
cm™! from tetramers to pentamers. In the case of symmetric stretches, the frequency
shifts are found to be larger: roughly 50 cm™! going from the trimer to tetramers and
roughly 10 — 20 cm™! from tetramers to pentamers.

Our analysis also highlighted the presence of two additional overlapping trends, one
of which is the common occurrence of a lower frequency (roughly 100—200 cm™?) for the
symmetric stretches when compared to the asymmetric ones. Moreover, free H atoms
are always found to participate only in antisymmetric stretches, vibrating at higher
frequencies (roughly 40—50 cm™!) than H-bonded ones. In the case of antisymmetric H-
bonded NH stretches, we also found a clear dependency of the frequency on the H-bond
length (i.e. the N-H...N distance), with the NH involved in long H-bonds (above 2.24
A) showing a higher frequency (20 — 40 cm™!) than short H-bonded ones. According to
our optimised structures, these long H-bonds are present when an ammonia molecule
acts as a double donor, or double acceptor, a feature shown only by our cage-like and
“tail” structures. Thus, the presence of the vibrational signature for these long H-bonds
could be used as an indication of the transition from a planar ring-like structure to a 3D
one, or for the presence of “docked” ammonia molecules outside a cycle arrangement.

An energetic ordering similar to the one found for antisymmetric stretches is also
found for the symmetric vibrations. Once again, low-frequency values are associated
with atoms involved in short N-H...N bonds, whereas high values are representative of
symmetric stretches involving atoms implicated in long N-H...N bonds for any partic-

ular isomer.
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Figure 2.5: N-H stretching frequencies for (NH3)3 and (NH3)4 obtained using MP2/aug-
cc-pVDZ
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The labels in the pictures have the following meaning: “H BOND d 2.886” indicates a NH

bond involved in a H-bond with the two nitrogens at a distance of roughly 3.833 A; “NH

2.16 tail” indicates the stretching of the NH bond of the ammonia in the ring donating an

H-bond to the external NH3 with an N-H distance of 2.16 A; “H BOND d 2.31” indicate
the stretching of an NH involved in a long H-bond (roughly 2.31 A long).
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Figure 2.6: N-H stretching frequencies for the BB1, BB2, and compact isomers of
(NH3)5 obtained using MP2/aug-cc-pVDZ
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Figure 2.7: N-H stretching frequencies for the ring, pyramid and tail isomers of (NH3)s
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2.4 Conclusions

In this chapter we have presented a high level ab initio study of the structure and
energetics of small ammonia clusters (NH3),, (n = 2 — 5). We have carried out the
electronic calculations using MP2 and the aug-cc-pVXZ (X= D, T, Q) family of basis
sets, and we have accounted for BSSE by means of the Counterpoise procedure [22].
The isomeric structures we have obtained, are in good agreement with the experimental
conclusion that clusters bigger than the dimer should have small dipole moments.
The only exceptions being trimer “asym”, tetramer and pentamer “tail” , lying 3 — 4
kcal/mol above their respective most stable structure.

On the other hand, our theoretical calculations predict lower binding and evapo-
ration energies than experimental data. This could be due to the lack of higher order
excitations in the MP2 method; however, previous work on (NHj), presented evidence
that triple and quadruple excitations, as included in MP4 method, did not play an
important role in defining the electronic binding energy.

We have also compared our ab initio data with the performance of model potentials
available in the literature. The latter provide isomeric structures in good agreement
with those from this work, but the binding energy tends to be underestimated with
respect to our predictions. In this respect, we have seen that the model potential
including an explicit treatment for the molecular polarisation (reference [33]) provides
a better agreement with our data. The n-body decomposition shown in table 2.6
indicates that 2- and 3- body effects are needed for an accurate decomposition of the
total binding energy, while higher order effects appear to be negligible.

Our calculations suggest that the tetramer and the pentamer have several, almost
degenerate, isomers. This points at the possibility of a smooth energy landscape,
and also at the occurrence of fast interconversion between the most stable, same size

isomers. This compact energy ranking is not significantly altered upon introduction of



Chapter 2. Pure ammonia clusters: (NHj),, (n =2 —5) 64

harmonic ZPE correction, which, as seen in neutral water clusters, may not be enough
for an adequate treatment of quantum motion effects in “floppy” clusters. In fact,
recent investigations led by Curotto and Mella [43, 44] using Monte Carlo simulations,
have established that the quantum effects on the binding energy per ammonia molecule
are large: 42% of the total binding energy of the dimer, 38% of the trimer and 35% of

the total binding energy for the tetramer and pentamer.
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