
A p p lication A cceleration:
An Investigation of A utom atic Porting
M ethods for A pplication A ccelerators

A thesis subm itted in partial fulfilm ent

of th e requirem ent for the degree o f D octor o f Philosophy

Thom as H enry Outram Beach

Cardiff U niversity
School o f Com puter Science &

Inform atics

Septem ber 2010

Cardiff
U N I V E R S I T Y

P R I F Y S G O L

CaeRDY|§>

UMI Number: U585458

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585458
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Future HPC systems will contain both large collections of multi-core proces­

sors and specialist many-core co-processors. These specialised many-core co­

processors are typically classified as Application Accelerators. More specifically,

Application Accelerations are devices such as GPUs, CELL Processors, FPGAs

and custom application specific integrated circuit devices(ASICs). These devices

present new challenges to overcome, including their programming difficulties,

their diversity and lack of commonality of programming approach between them

and the issue of selecting the most appropriate device for an application.

This thesis attempts to tackle these problems by examining the suitability of

automatic porting methods.

In the course of this research, relevant software, both academic and com­

mercial, has been analysed to determine how it attempts to solve the problems

relating to the use of application acceleration devices. A new approach is then

constructed, this approach is an Automatic Self-Modifying Application Porting

system that is able to not only port code to an acceleration device, but, using

performance data, predict the appropriate device for the code being ported.

Additionally, this system is also able to use the performance data that are

gathered by the system to modify its own decision making model and improve its

future predictions.

Once the system has been developed, a series of applications are trialled

and their performance, both in terms of execution time and the accuracy of

the systems predictions, are analysed.

This analysis has shown that, although the system is not able to flawlessly

predict the correct device for an unseen application, it is able to achieve an

accuracy of over 80% and, just as importantly, the code it produces is within

£s15% of that produced by an experienced human programmer. This analysis

has also shown that while automatically ported code performs favourably in

nearly all cases when compared to a single-core CPU, automatically ported

code only out performs a quad-core CPU in three out of seven application case

studies. From these results, it is also shown that the system is able to utilise

this performance data and build a decision model allowing the users to determine

if an automatically ported version of their application will provide performance

improvement compared to both CPU types considered.

The availability of such a system may prove valuable in allowing a diverse

range of users to utilise the performance supplied by many-core devices within

next generation HPC systems.

To m y D ad,
W ho con stan tly helped m e, encouraged m e and even

p roof read early chapters o f th is th esis, bu t did not live
long enough to see it com p leted .

V

Acknowledgement s

Firstly, I would like to thank my supervisor; Professor Nick Avis for his help,

encouragement, and advice over the course of this project. Secondly I would like

to thank Dr Ian Grimstead for all his advice, proof reading, and putting up with

my frequent badgering and discussion of ideas (Especially regarding ClearSpeed!)

I would also like to thank other members of the Cardiff Computer Science PGR

community, especially those who have been involved in organising the various

“FTS” student social events and seminars which have been a welcome break and

a pleasant distraction.

Finally, I would like to thank my family and personal friends. My Mum and

Dad for supporting me and my elder brother Daniel for providing several valuable

pieces of inspiration.

Funded by
f p r n r Engineering and Physical Sciences

Research Council

List of Publications
1. Abstraction of Programming Models Across Multi-Core and GPGPU

Architectures - [17]

Euro GPU Mini Symposium as part of the International Conference on Parallel

Computing (PARC0) 2009

2. An Intelligent Semi-Automatic Application Porting System for Applica­

tion Accelerators - [18]

UnConventional High Performance Computing Workshop as part of Conference

on Computing Frontiers 2009

3. Poster: An Intelligent Semi-Automatic Application Porting System for

Reconfigurable Devices - [16]

Many-core and Reconfigurable Supercomputing Conference (MRSC) 2008

v i i

Table o f C ontents

1 Introduction 1

1.1 Introduction... 1

1.2 Hypothesis... 5

1.3 Scope ... 5

1.4 C ontribu tions.. 6

1.5 Thesis Summary .. 7

2 Background 10

2.1 Introduction... 10

2.2 Graphics Processing U n i t s .. 11

2.2.1 Device Architecture... 11

2.2.2 General Purpose Computation on Graphics Hardware . . . 14

2.2.3 The future of G P G P U ... 23

2.3 ClearSpeed Acceleration A rchitecture... 26

2.3.1 Device Architecture... 27

2.3.2 Programming Tools... 28

2.4 Field Programmable Gate A r ra y s .. 31

2.5 IBM Cell Broadband E ngine... 37

2.6 Computational L ib ra rie s ... 39

2.7 Existing Application Acceleration Porting M e th o d s 42

2.7.1 Portland Group Accelerator Com piler................................... 46

TABLE OF CO NTENTS viii

2.7.2 Sieve Multicore Programming System 48

2.7.3 H M P P .. 49

2.7.4 Rapidmind and Ct: C for Throughput Com puting............... 51

2.7.5 P ea k s tre a m .. 53

2.7.6 Evaluation of Existing Methodologies.................................... 53

2.8 Chapter Summary .. 56

3 Overview of the Application Porting System 58

3.1 In troduction... 58

3.2 Overall System A rchitecture.. 60

3.3 Overview of System C lie n t... 64

3.4 Source Parsing and V alidation... 65

3.5 Kernel E xtraction ... 67

3.6 Kernel A nalysis.. 72

3.7 Validation of Input Kernels .. 73

3.8 Application P ack ag in g ... 77

3.9 Chapter Summary .. 77

4 Code Generation 80

4.1 In troduction... 80

4.2 Kernel Selection.. 81

4.3 Porting to CUDA for the GPU .. 82

4.3.1 Generation of Host C o d e .. 83

4.3.2 Generation of Kernel C o d e... 90

4.3.3 Calculating the execution configuration................................. 93

4.4 Porting to Cn .. 99

4.4.1 Generation of Host C o d e .. 100

4.4.2 Generation of Device Kernel T e m p la te109

4.4.3 Non-Buffered Kernels.. 110

TABLE OF CO NTENTS ix

4.4.4 Buffered Kernels ...115

4.4.5 Determining Buffer s iz e s .. 119

4.5 Creating Build S c r ip ts ... 121

4.6 Code Generation Example - GEM M ... 122

4.7 Chapter Summary ..124

5 Device Selection, Self-modification and Expandability 127

5.1 In troduction .. 127

5.2 Architecture of the Applicat on Classifier... 128

5.3 Gathering M etrics...131

5.4 Matching Applications to D evices... 132

5.4.1 Making D ecisions.. 134

5.5 Validating Decisions .. 137

5.6 System E volu tion ...138

5.6.1 Gathering Performance D a ta ..141

5.6.2 Integration of New Devices...143

5.7 Chapter Summary ..144

6 Application Case Studies 147

6.1 Introduction.. 147

6.2 Seed A pplications...153

6.2.1 Structured Grids - Sobel Edge D etector.....................................154

6.2.2 Dense Linear Algebra - Matrix M ultip lica tion159

6.2.3 N Body M e th o d s ...165

6.2.4 Monte Carlo Methods ... 171

6.3 Test A pplications...177

6.3.1 Fast Fourier Transform... 177

6.3.2 Canny Edge D etector...188

6.3.3 Iterative Ray T r a c e r .. 198

TABLE OF CONTENTS x

6.4 Classification of Known A pplications..209

6.5 Chapter Summary ... 210

7 Conclusions 215

7.1 In troduction..215

7.2 Research H y p o th es is .. 216

7.3 C ontribu tions...218

7.4 Relation to Current W o r k ...221

7.4.1 H M P P ... 222

7.4.2 PGI Accelerator C om piler.. 222

7.4.3 C onclusions... 223

7.5 Evaluation of M etrics.. 224

7.6 ClearSpeed vs NVIDIA GPU ...226

7.7 Evaluation... 227

7.8 Chapter Summary ... 229

8 Further Work 232

8.1 In troduction..232

8.2 Making decisions based on other factors ... 233

8.3 Code Optim isations... 234

8.3.1 C learSpeed:... 234

8.3.2 C U D A ...235

8.4 Supporting larger data-sets...236

8.5 Supporting Multi-Cards A ccelerators..237

8.6 Scheduling... 238

8.7 Mapping code to computation lib ra rie s ...238

8.8 Cloud co m p u tin g ...239

8.9 Adaptive Code P o rtin g ... 241

8.10 Chapter Summary ... 242

TABLE OF CO NTENTS xi

Appendices 258

A Porting Example: GEMM 258

A.l Input Source.. 258

A.2 Code Executing on C P U ..261

A.3 C U D A ..263

A.3.1 Generated Host C ode.. 263

A.3.2 Generated Device Code... 264

A.4 CN .. 265

A.4.1 Generated Host C ode.. 265

A.4.2 Generated Device Code: Non Buffered K e rn e l 270

A.4.3 Generated Device Code: Buffered K ern e l................................. 272

B Kernel Description M etrics for FFT Application 278

List o f Figures

1.1 Examples of Acceleration Devices: a) CELL B.E [4] b) FPGA from

Nallatech [7] c) NVIDIA Tesla [101] d) ClearSpeed [1].............. 2

1.2 Application Accelerators as Co-processors.................................... 3

2.1 The GPU Rendering Pipeline... 12

2.2 The NVIDIA GeForce 8800 Architecture. Adopted from [45] . . . 13

2.3 NVIDIA CUDA Architecture. Adopted from [46] 20

2.4 The OpenCL Architecture. Adopted from [6 0] 21

2.5 The Larrabee Architecture, showing 8 CPU like cores, adopted

from [122].. 25

2.6 The ClearSpeed CSX Architecture. Adopted from [36].................... 28

2.7 A FPGA Internal Structure adopted from [2 5] 31

2.8 Typical FPGA design flow adopted from [25]............................ 33

2.9 The CELL/B.E. Architecture adopted from [119]...................... 37

2.10 An Ideal Abstraction for Application Accelerators adopted from [29] 44

2.11 A time line of software released to facilitate development on

Application A ccelerators... 54

3.1 High level design of the Porting system ... 59

3.2 The Application Porting sy stem .. 62

3.3 Client in the Compiler M ode... 66

3.4 A Control Flow G r a p h .. 68

LIST OF FIGURES xiii

3.5 A Control Flow Graph, labelled with loop I D s 71

3.6 A Control Flow Graph, with Kernels S e p a ra te d 72

3.7 A Kernel Description F i l e ... 73

3.8 A Kernel T re e .. 74

3.9 Client O u tp u t ... 77

3.10 Client in the Execution S te p ... 78

4.1 A Kernel T re e ... 82

4.2 A Multi-Dimensional A r r a y .. 86

4.3 A CUBIN f i l e ... 97

4.4 ClearSpeed: Memory buffer layout ... 118

4.5 GEMM: Example Kernel T re e ...123

5.1 Internal Structure of Application Classifier... 129

5.2 The Database of Performance Data.. 130

5.3 An Example Decision Tree... 135

6.1 Graph of Single Precision Execution Times for Structured Grids

Application... 155

6.2 Graph of Double Precision Execution Times for Structured Grids

Application... 156

6.3 Graph of Single Precision Execution Times for GEMM Application. 160

6.4 Graph of Double Precision Execution Times for GEMM Application. 161

6.5 Graph of Single Precision Execution Times for N-Body Application. 166

6.6 Graph of Double Precision Execution Times for N-Body Application. 167

6.7 Flowchart of the Monte Carlo Technique used based on [115]. . . . 172

6.8 Graph of Single Precision Execution Times for Monte Carlo

Application... 173

6.9 Graph of Double Precision Execution Times for Monte Carlo

Application... 174

LIST OF FIGURES xiv

6.10 Classification Model Produced after Seed Applications...................... 178

6.11 Sample input and output of Fast Fourier Transform...........................179

6.12 Fast Fourier Transform Application S t ru c tu r e 179

6.13 Classification Model Produced after FFT Application has been

profiled.. 183

6.14 Graph of Single Precision Execution Times for FFT Application. . 184

6.15 Graph of Double Precision Execution Times for FFT Application. 185

6.16 Sample input and output of a Canny Edge D etector...........................190

6.17 Canny Application S tructure... 191

6.18 Classification Model Produced after Canny Application has been

profiled.. 193

6.19 Graph of Single Precision Execution Times for Canny Application. 195

6.20 Graph of Double Precision Execution Times for Canny Application. 196

6.21 Sample output of Iterative Ray Tracer ... 198

6.22 Ray Tracer Application S tru c tu re .. 200

6.23 Final Classification M o d e l ...203

6.24 Graph of Single Precision Execution Times for Iterative Ray Tracer. 206

6.25 Graph of Double Precision Execution Times for Iterative Ray Tracer. 207

8.1 Cloud Computing.. 240

8.2 Adaptive Porting..241

XV

Listings

2.1 Example of Cg Code adopted from [8 5].. 15

2.2 Example of Brook Code Adopted from [24]...................................... 17

2.3 Example of C for CUDA Code Adopted from [4 6] 19

2.4 OpenCL version of CUDA Code shown in Listing 2.3 based on [70] 22

2.5 Example of Cn C o d e ... 30

2.6 Mitrion-C Code - Line numbers added for clarity 35

2.7 PGI Accelerator Compiler Example adopted from [134]............... 47

2.8 Sieve Exam ple.. 49

2.9 HMPP Example Codelet D efinition.. 50

2.10 HMPP Codelet C allsite.. 50

2.11 Rapidmind E x a m p le .. 52

2.12 Ct Code E xam ple.. 52

3.1 Code Example for Control Flow G ra p h .. 68

3.2 Algorithm for Loop Identification.. 70

3.3 Source code that generated Figure 3 .5 .. 71

4.1 CUDA: Initialisation C o d e .. 84

4.2 CUDA: Allocating memory.. 85

4.3 CUDA: Loading a single dimensional array onto the device 85

4.4 CUDA: Loading a multi-dimensional a r r a y 87

4.5 CUDA: Calling the device c o d e ... 87

4.6 CUDA:Loop counter look-up code.. 88

LISTINGS 1

4.7 CUDA: Loading data back to host for Single Dimensional Arrays 89

4.8 CUDA: Loading data back to host for a two dimensional array . . 89

4.9 CUDA: Random Number G eneration .. 92

4.10 CUDA: The Kernel T e m p la te ... 93

4.11 ClearSpeed: Initialisation C o d e ... 102

4.12 ClearSpeed: Declaring Process H andles.. 103

4.13 ClearSpeed: Declaring Variable P o in te r s ... 103

4.14 ClearSpeed: Loading the Device C ode..104

4.15 ClearSpeed: Loading Single Variables..105

4.16 ClearSpeed: Loading A rra y s ... 105

4.17 ClearSpeed: Allocating M em ory... 108

4.18 ClearSpeed: Calling a Kernel .. 109

4.19 ClearSpeed: Wait for execution to f in i s h ... 109

4.20 ClearSpeed: Loading Data Back onto the H o s t....................................109

4.21 ClearSpeed: C lea n u p ..110

4.22 ClearSpeed: Declaring Global Variables.. 110

4.23 ClearSpeed: Kernel T e m p la te .. 110

4.24 ClearSpeed: Multiple Iterations per P E .. I l l

4.25 ClearSpeed: Random Number Generation .. 113

4.26 ClearSpeed: Reading from mono m em ory... 114

4.27 ClearSpeed: Writing to mono memory .. 115

4.28 ClearSpeed: Buffered Kernel T e m p la te .. 117

4.29 CUDA: Makefile... 121

4.30 ClearSpeed: M akefile..122

5.1 Algorithm for Integration of New Devices... 140

5.2 Timing Code: Starting the T im e r ..142

5.3 Timing Code: Stopping the T im er..142

5.4 Ensuring CUDA execution finished before stopping the timer. . . 143

LISTINGS 2

6.1 Ray Tracing Algorithm [127]... 199

1

C hapter 1

Introduction

1.1 Introduction

The research described in this thesis centres around the use of Application

Acceleration Devices. A device can be classified as an Application Accelerator if it

can be added to a computing system to increase the performance of applications

running on that system. There are a wide variety of these devices currently

available, including:

— Graphics Processing Units (GPU).

— Field Programmable Gate Arrays(FPGA).

— CELL Processors.

— Physics Accelerators.

— Programmable Application Specific Integrated Circuits (ASICS) of which

ClearSpeed is an example.

- Audio Processing Accelerators.

1.1. Introduction 2

With such a wide variety of devices fitting the classification of Application

Accelerators, only a subset of these will be considered in this thesis. These are

illustrated in Figure 1.1 and will be discussed in more detail in Chapter 2.

Figure 1.1: Examples of Acceleration Devices: a) CELL B.E [4] b) FPGA from
Nallatech [7] c) NVIDIA Tesla [101] d) ClearSpeed [1].

Application Accelerators are generally added to a computing system via the PCI

bus and act as co-processors, this has the advantage that tasks executed on the

application accelerator are decoupled and can run in parallel with traditional

CPU tasks. However, connection via the PCI bus also has several disadvantages:

— Devices are unable to access main memory.

— Devices are unable to access Input or Output devices.

1.1. Introduction 3

— Devices are unable to access network interfaces.

— Devices are unable to access non-volatile storage devices.

These limitations are common across all devices attached to the PCI Bus, and this

means that all Acceleration devices have, at the highest level, a similar pattern

of execution. This is shown in Figure 1.2.

CPU Device

Host
Execution

Execution

Performed
on Host

Host
Execution

Initialise and Load
Program onto Device

Copying Data to
Device Memory

Start Program

Report Execution
Complete

Device
Initialisation

Memory
Access

Execution
Performed
on Device

Copying data back
to Host Memory

Memory
Access

Figure 1.2: Application Accelerators as Co-processors.

Figure 1.2 shows that Application Accelerators have the following overheads

compared to standard CPU execution: Device Configuration, transfer of data

1.1. Introduction 4

from host memory to device memory and transfer of results back to host memory

from device memory. All of these overheads add latency and have a detrimental

effect on an application’s performance. This means that application developers

must be mindful of these overheads when developing applications to ensure that

the speed-up attained from the use of an application accelerator is sufficient to

overcome these overheads.

Additionally, developers using application accelerators must consider that each

type of accelerator has a different architecture and different programming style.

This can lead to different applications favouring different device types, depending

largely on the characteristics of the application and the device.

Finally, a particular device type may have additional advantages/disadvantages

that are not related to performance, these could include power usage, compatibil­

ity with existing hardware, cost, software development environment and support

offered.

These variations between devices and even between manufacturers of the same

device, are further discussed in Chapter 2. This wide variations of characteristics

does however mean that an application developer must ask themselves the

following questions before starting development:

— What device is suitable for accelerating my application?

— What device is suitable for my non-performance based requirements i.e. power

requirements?

— Will the performance improvement that results from using this device be worth

the time/monetary expenditure?

1.2. H ypothesis 5

1.2 H ypothesis

The research hypothesis is:

It is possible to construct a self-modifying and expandable automatic code

porting system that can, based on heuristics, select the most appropriate

application acceleration device and provide comparable performance to that

achievable by an experienced human programmer.

In this hypothesis the term “self-modifying” refers to the ability of the system

to improve the heuristic model that it uses to determine the most appropriate

device. Additionally, the term “expandable” refers to the ability of the system

to be expanded to utilise new acceleration devices, or newer versions of existing

acceleration devices.

1.3 Scope

The scope of the research conducted in this thesis can be broken down into three

key sections:

Target Users: The level of abstraction provided by the developed system

will be targeted specifically at non computer science users. These users will

have programming experience but will not be familiar with the intricacies of

acceleration devices or their programming methods. The motivation of these

users will be to simply achieve application speedup.

Target Applications: The applications considered by the system must already

contain at least one section of code that is capable of being executed in parallel.

1.4. Contributions 6

The research described by this thesis focuses on the locating of parallel code

within the input application, deciding on the appropriate method for acceleration

of this code and then porting the selected code to the acceleration device. The

parallelisation of sequential code is not considered and is deemed beyond the

scope of this work.

Target Devices: The target devices that are considered in this thesis are

restricted by currently available hardware. The FPGA, CELL, GPU and

ClearSpeed accelerators have all been considered, however, due to hardware

limitations, only the NVIDIA GPU, and the ClearSpeed accelerator device have

been taken forward for development.

1.4 C ontributions

This section lists the major contributions of this thesis. The four main

contributions are:

1. A novel distributed system and architecture that is able to analyse and port

input applications to an acceleration device and, with a reasonable success rate,

predict the most appropriate device for the application concerned.

2. Demonstration that the system is able to modify itself, in that it is able,

from experience, to adapt the model that is used to select an acceleration device

and that it is able to adapt to the introduction of the new devices, or improved

versions of existing devices.

3. The ability to demonstrate, through the use of well understood and developed

machine learning techniques, a set of explicit parameters and features that can

be used to describe the selection of an appropriate acceleration device.

1.5. Thesis Summary 7

4. The provision of a route to application acceleration to non-computer science

users. This may be the porting of an application, generating an efficient initial

port from which further performance improvements can be made by experienced

human programmers, or determining in a quick and simple manner, whether the

users application is suitable for acceleration.

1.5 Thesis Sum mary

Chapter 2: Background

Chapter 2 introduces the field of application accelerators, outlining the different

devices that are currently available and showing the differences between them.

This chapter also examines the programming methods that these devices support

and shows that the differences between these programming methods can vary from

as little as a different API to having to use a different programming paradigm.

Using this knowledge, this chapter then describes the problems that are associated

with programming acceleration devices, namely: the difficulty in programming

such devices and the lack of abstraction between devices. Finally, this chapter

will describe and compare current academic and commercial systems that are also

aiming to tackle these problems and discuss their successes and failures.

Chapter 3: Overview of the Application Porting System

Chapter 3 outlines the overall structure of the system that has been constructed

to validate the hypothesis outlined in Section 1.2. This chapter will describe

the distributed nature of the system and how the components of the system

fit together. Additionally, this Chapter will describe the client that has been

developed to allow users to interface with the porting system.

1.5. Thesis Summary 8

Chapter 4: Code Generation

Chapter 4 describes the code generation functionality of the system. This chapter

will describe the process that is used to port code to Cat for ClearSpeed and

CUDA-C for NVIDIA GPUs. This chapter will also illustrate the differences

between these two programming methods.

Chapter 5: D evice Selection, Self-M odification and Expandability

Chapter 5 will describe the remaining functionality of the application porting

system. This chapter will explain how the system is able perform the decision

making required to match an application to the most appropriate acceleration

device. Secondly, this chapter will describe how the system is able to achieve its

goals of being “self-modifying” and “expandable” .

Chapter 6: Application Case Studies

Chapter 6 describes a series of applications that have been selected to test the

system. These applications are divided into two categories. A series of relatively

simple “seed” applications are trialled in order to provide a base of knowledge for

the system to operate with more complex examples.

Three more complicated applications are also executed. For each of these

applications the performance and the decisions taken are analysed in order to

judge the effectiveness of the system. Additionally, by the execution of these

applications in sequence, the ability of the system to modify its classification

model will be tested. Finally, the performance of the generated code will be

tested against the performance of an optimised, but not re-factored, hand port

produced by the developer.

1.5. Thesis Summary 9

Chapter 7: Conclusions

Chapter 7 will outline the overall conclusions that can be drawn from this work.

This chapter will analyse the results from Chapter 6 against the hypothesis

presented in Chapter 1 and then validate the contributions that were also

presented in Chapter 1.

Secondly, this chapter will evaluate the work done in this thesis, examining the

relative strengths and weaknesses of the work in isolation and in comparison to

the two most relevant commercial products.

Finally, this chapter will also present conclusions on the relative differences

between the two acceleration devices that have been utilised in the course of

this research.

Chapter 8: Future Work

Chapter 8 will describe ideas for the future development of this work. This will

largely centre around suggestions for the future development of the application

porting system that has been developed. In addition to suggested modifications

it will present early thoughts on how the system can be deployed in a cloud

computing environment.

1 0

C hapter 2

Background

2.1 Introduction

This chapter aims to introduce the key elements of this research, focusing

specifically on prior work and approaches related to the work that is presented

in this thesis. This chapter will outline the types of acceleration devices that are

currently available, expanding on the brief introduction presented in Chapter 1.

In particular this chapter will cover the development of the hardware architecture

of these devices. It will also provide an overview of the software tools, both

academic and commercial, that have been developed to facilitate their use in the

field of High Performance Computing. This chapter will then discuss some of

the successes that have been achieved in porting algorithms to these devices and

developing numerical libraries to support the work of other developers. Finally,

this chapter will state the key issues currently preventing the adoption of these

devices and examine the currently available industrial and academic solutions.

This examination of existing technology will enable a comparison of the available

solutions and the identification of key areas for improvement.

2.2. Graphics Processing Units 11

2.2 Graphics Processing U n its

While probably the most recent device to find acceptance as a viable Application

Accelerator for High Performance Computing (HPC) applications, the Graphics

Processing Unit (GPU) has experienced an explosion of interest, driven by the

fact that currently GPUs represent some of the most computationally powerful

hardware for the dollar [111]. This has caused a vibrant community of developers

to emerge. For example, considering only the use of NVIDIA’s tools, there have

already been over 2700 citations on Google Scholar and 300 universities worldwide

are now teaching GPU programming using NVIDIA CUDA [50].

The GPU market is dominated currently by two companies: NVIDIA and AMD

(formerly ATI), although Intel were, for a time, attempting to compete with

their Larrabee [122] architecture, although this product, as a GPU, has now been

cancelled. This section will examine the development of the GPU architectures

and programming models employed by both NVIDIA and AMD. It will also

discuss briefly existing work that has been conducted in the use of the GPU in

accelerating HPC applications.

2.2.1 D ev ice A rchitecture

The Graphics Processing Unit (GPU) was originally designed as a fixed function

rendering pipeline (shown in Figure 2.1). Within this pipeline the Vertex

and Fragment processing units have been historically configurable but not

programmable [110]. As GPUs have evolved each new generation has added

to the functionality of these Vertex and Fragment processing stages. The first

programmable stage was introduced in 1999 when NVIDIA added support for

register combiner operations which allowed a limited programmability [111]. A

2.2. Graphics Processing Units 1 2

Vertex Input Vertex
Processing

Textures

Rasterization Fragment
Processing

Frame Buffer

Figure 2.1: The GPU Rendering Pipeline.

further key development was the introduction of an assembly language that

allowed the specification of programs that run on a per vertex basis [84]. With

the addition of support for fragment (pixel) shading as well as vertex shaders,

this programmability was formally defined as a Shader Model. Shader Models

have improved through several iterations, with more complete instruction sets,

more flexible control-flow operations and larger limits on the size and resource

consumption of their programs [110]. This process of improvement, without

radically altering the architecture, continued until the development of Shader

Model 3.0 in 2004.

Shader Model 4.0, first made public in 2006, was the first shader model to

present a unified architecture rather than utilising separate vertex and fragment

processing units. This new architecture allowed the unification of the instruction

sets by defining a single common core, with a virtual machine, as the base for

each of the programmable stages. This new unified model is considerably closer

to providing all the arithmetic, logic and flow control constructs available on a

standard CPU [20].

The first GPU to utilise the unified shader architecture defined by Shader Model

4.0 was the Xenos chip by AMD in 2005. This chip was used solely in the XBox

360 [110]. However NVIDIA were the first to make Shader Model 4.0 cards

widely available with their GeForce 8800 in 2006. The GTX version of this card

comprised 128 of these unified processors (dubbed stream processors by NVIDIA)

[45]. All the programmable and fixed function aspects of the graphics pipeline

2.2. Graphics Processing U nits 13

are now computed on these stream processors. This allows more complex load

balancing to take place, allowing any stage of the pipeline to consume more of the

available stream processors dependent on its requirements. This load balancing

is critical to prevent bottlenecks caused by stages of the graphics pipeline taking

longer to compute than others.

Currently all new GPUs produced by the two main vendors, NVIDIA and AMD,

utilise this unified architecture, of which NVIDIA’s version is shown in Figure

2 .2 .

Figure 2.2: The NVIDIA GeForce 8800 Architecture. Adopted from [45]

One the most recent developments in graphics hardware was the addition of

support for double precision floating point arithmetic. The FireStream 9170,

launched in 2007, was the first card on the market to support double precision.

NVIDIA soon followed with their double precision chipset, the GTX 200 [47] and

double precision support has now become the standard for high end, professional

level GPUs. However, it should be noted that utilising double precision comes

with a performance penalty as all current model GPUs have fewer double precision

processing units when compared to single precision processing units, e.g. the

t i t imI ill!: hi

2.2. Graphics Processing Units 14

NVIDIA Tesla C1070’s double precision performance is approximately 10% of its

single precision performance [44].

GPUs have advanced considerably, even in the last few years. Current GPU

architectures bear little resemblance to those of ten years ago and GPUs are

now no longer a fixed function implementations of the graphics pipeline but are

now fully programmable devices with supporting fixed functionality enabling it

to carry out its primary role as a rendering engine.

2.2.2 G eneral P urpose C om putation on G raphics Hard­

ware

One of the first uses of the Graphics Processing Unit as a General Purpose

computation device can be found in [26], published in 1994. In this paper,

Cabral et al implemented Filtered Backprojection, a tomographic reconstruction

algorithm, on the GPU by utilising available texture mapping hardware. In

order to achieve this, Cabral was forced to re-factor the Filtered Backprojection

algorithm into a graphics problem, within the constraints of the fixed-function

OpenGL pipeline available at the time. The result of this was a two pass rendering

algorithm that utilising the GPU’s hardware accelerated texture mapping and

frame buffer accumulation functions. This new approach gave performance in

excess of lOOx faster than executing on the CPU.

Despite these early uses of the GPU for general purpose computing, general

purpose graphics processing units(GPGPU) were still largely impractical for

developers. At the time, there were simply no available tools to allow developers

to leverage the power of a GPU unless their application was able to be refactored

to leverage on the fixed-function OpenGL pipeline. Interest was renewed with the

2.2. Graphics Processing Units 15

development of programmable shaders and the formalisation of these as Shader

Models. Several high level programming languages for shaders originated from

this formalisation process. HLSL from Microsoft [113], GLSL for OpenGL [76]

and Cg from Nvidia [85].

Listing 2.1: Example of Cg Code adopted from [85]

f l o a t 4 m a i n (a p p i n IN, out f l o a t 4 COUT, un i fo r m Light
l i g h t s []) {

f o r (i n t i=0 ; i < l i g h t s . Length ; i++) {
C l = l i g h t s [i] . i l l u m i n a t e (IN. pos , L) ;
co lor+=Cl * P l a s t i c (t e x c o l o r , L,Nn, In ,30) ;

}
COUT=color ;

}

An example of Cg code is shown in listing 2.1 and the resemblance to C can

be easily seen. Both HLSL and GLSL are locked to their respective graphics

implementations while Cg provides the ability to compile to other targets.

However, all these languages share one main disadvantage: they are at their

core, shading languages. So all general purpose programming must be mapped

onto graphical concepts [64] i.e.:

— Textures —► Arrays.

— Render to Texture —> Feedback.

— Fragment Programs —» Inner loops.

— Geometry Rasterization —> Computation Invocation.

— Texture Coordinates —> Computation Domain.

2.2. Graphics Processing Units 16

- Vertex Coordinates —> Computation Range.

This means that programming using these languages is vastly different from

standard programming methodologies and requires programmers, unless already

familiar with graphical programming, to undertake various unfamiliar tasks such

as drawing geometry and manipulation of the camera to achieve the desired

computation steps.

Despite these problems, the promise of increased performance made by the GPU

encouraged a considerable amount of work in the field and a large community

grew up around the “GPGPU” (General Purpose Graphics Processing Units)

phenomena.

Many items of literature have dealt with the porting of applications to the

GPGPU using Shader Model 3.0 methods. In 2003 Moreland et al, ported the

Fast Fourier Transform to the GPU [94] and their implementation performed

competitively with highly optimised CPU implementations. Other applications

that have been successfully implemented on the GPU include Ray Tracing [118],

Volume Rendering [124] [126] and a re-implementation of earlier work on Filtered

Backprojection using commodity hardware and more modern Shader Model 3.0

techniques [135].

It was commonly accepted that shader programming was a woefully inadequate

solution for General Purpose Computation on GPUs and several pieces of work

were conducted in an attempt to resolve this. Lefohn has designed Glift which

defines a set of high level GPU data structures [82]. Glift builds on Cg from

NVIDIA to provide a set of random access data structures, similar to those

provided the STL (Standard Template Library) for C ++ . The Brook streaming

language was developed as a further attempt to solve these problems. The Brook

language presents a streaming model to the programmer with the Brook compiler

2.2. Graphics Processing Units I T

and runtime system provides the mapping onto the previous discussed GPU APIs

[24]. The Brook language enables the programmer to represent their program

in terms of streams and kernels. The language also supports many additional

features often desired by newcomers to GPGPU programming such as reductions.

An example of the Brook programming language is shown in listing 2.2

Listing 2.2: Example of Brook Code Adopted from [24]

ker ne l void mul(f l o a t a<>, f l o a t b<>, out f l o a t c<>) {
c= a * b ;

}

/ / ca l l the k e r n e l

f l o a t a<50>;
f l o a t b<50>;
f l o a t c<50>;

mul (a , b , c) ;

Brook was generally successful and several applications were successfully ported

using it. In 2006 Elsen et al, ported a N-Body simulation to the GPU using

Brook and they achieved, in some cases, upwards of 25x speedup [53].

Several other abstractions have been developed to fill a similar space of providing

translation from high level languages to shader based languages. SH [5]

was developed by a team at the University of Waterloo and was eventually

commercialised and became Rapidmind, which is discussed in Section 2.7.4.

PyGPU was developed to add GPU acceleration to Python [83] and Microsoft

developed their Accelerator language which is a set of additions to C # utilising

a special data type called Parallel Arrays [129]. While these higher level

languages go some way to solving the problems of programming in a shader

based environment they cannot escape the fact that the architecture they are

2.2. Graphics Processing Units 18

abstracting from is still too specific to GPU concepts to allow true general purpose

programming.

However, there were two developments in GPGPU that changed all of this.

Firstly, the introduction of Shader Model 4.0, which allowed programming of

the GPU in a non shader based way allowed the introduction of new high level

tools, such as CUDA and CTM, which are discussed below, and the further

improvement of existing tools.

Secondly, one of the first languages to fully utilise this new unified model was

introduced: NVIDIA’s C for Compute Unified Device Architecture language (C

for CUDA). This language leverages on the new functionality provided in Shader

Model 4.0 to provide what is probably the most popular language for General

Purpose development on GPUs.

C for CUDA allows programming in a full implementation of the C language,

with some GPU extensions and an host processor API. C for CUDA provides the

programmer with the following features [46]:

— Methods for on card memory management.

— Ability to define methods for execution on CPU or device.

— Kernel Invocation methods.

— A method to specify the allocation of threads across the device.

The CUDA architecture allows the user to declare a kernel which is executed

N times by N threads. These threads are grouped together into thread blocks.

All threads within a thread block can cooperate together, sharing memory and

synchronising. These thread blocks are then arranged into a two dimensional

2.2. Graphics Processing Units 19

grid of thread blocks. Each thread block must be able to execute independently

of any other. The number of thread blocks directly effects the parallelisation of

the application across the multiple processing units available on the GPU. This

architecture is shown in Figure 2.3 and an example of C for CUDA is shown in

listing 2.3.

Listing 2.3: Example of C for CUDA Code Adopted from [46]

__global__ void m u l (f l oa t * a, f l o a t *b, f l o a t *c) {
i n t i = b l o c k l d x . x * b lockDim.x + t h r e a d l d x . x ;
i n t j = b l o c k l d x . y * b lockDim.y + t h r e a d l d x . y ;
if (i < N &fc j < N) c [i] [j] = a [i] [j] + b [i] [j) ;

}

i nt main() {

cudaSetDevice (0) ; / / use f i r s t GPU
cudaMal loc (........) ; / / a l l o c a t e memory
cudaMemcpy (........) ; / / c o p y to d ev i c e

m u l « dimens ions of gr id , d i m en s i on s of each
t h r e a d b l o c k » (A , B , C) ;

cudaMemcpy (........) ; / / copy r e s u l t s f rom dev ice
cudaFr ee (. . . .) ; / / f r e e memory f r om d e v i c e .

}___

AMD have also constructed a software stack to utilise the new Shader Model 4.0

architecture. Their initial offering was the Close to the Metal(CTM) assembly

language. CTM was designed and marketed as a low level language, with a

supporting API; this discouraged its adoption by many programmers who were

seeking to develop at a higher level of abstraction. The CTM system allowed

direct access by the programmer to the floating point processors inside the card

[72] via an assembly language interface. AMD then expanded their offering

2.2. Graphics Processing U nits 2 0

Grid

B l o c k (0 , 0) B l o c k (1 , 0) B l o c k (2 , 0)

Block (0, 1 / 1 Block (1 , 1) 'Block (2, 1)

Block (1 , 1)

T h r e a d (0 , 0)

i
T h r e a d (1 , 0)

i
T h r e a d (2, 0)

I
T h r e a d (3 , 0)

i
T h r e a d (0 , 1)

I
T h r e a d (1 . 1) T h r e a d (2 . 1)

i
T h r e a d (3 , 1)

i
T h r e a d (0 . 2) T h r e a c 1 (1 . 2) T h r e a d (2 , 2) T h r e a c • (3 , 2)

Figure 2.3: NVIDIA CUDA Architecture. Adopted from [46]

by producing their Stream Computing Software Stack. This stack consisted of

the AMD Compute Abstraction Layer, a development of CTM and a high level

language based on Brook called Brook-(- [71].

In addition to NVIDIA CUDA and Brook+ from AMD, one of the more recent

developments has been the introduction of OpenCL. OpenCL(Open Computing

Language) is an open, royalty free standard for general purpose programming

across CPUs, GPUs and other processors. It has been developed by the Khronos

Group [61].

The OpenCL standard is based on C99 and aims to allow programming of

computation devices while abstracting from the underlying hardware. In general

design terms OpenCL is similar to CUDA, although its API is of a slightly lower

level to allow for the differing characteristics of the devices on which it targets.

2.2. Graphics Processing U nits 2 1

The OpenCL architecture is shown in Figure 2.4. Each of the basic units of the

OpenCL architecture is analogous to the basic units of the CUDA architecture

discussed earlier [105]:

— Grid - NDRange.

— Block - Work-Group.

— Thread - Work-Item.

An example of OpenCL code is shown in Listing 2.4. It can be seen from this

listing, that although the overall architecture is similar to NVIDIA’s CUDA, the

API operates at a lower level thus giving the programmer more flexibility to

program with alternative devices.

Currently OpenCL is supported by AMD, NVIDIA and Apple. At the time of

writing, however, all current OpenCL implementation are for GPUs only.

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Work-Item Work-Item Work-Item Work-Item

Local Memory Local Memory

wtawaaav mmmmmmmmmmmmimmmiBmtt
Host Memory

Figure 2.4: The OpenCL Architecture. Adopted from [60]

2.2. Graphics Processing Units 2 2

Listing 2.4: OpenCL version of CUDA Code shown in Listing 2.3 based on [70]

/ / u s i n g r un t i me co mp i l a t i on so source s t o r e d in c h a r a c t e r
array

c h a r s ou rce [] =
ke r ne l v o id m u l (g l o b a l f l o a t * a , g l o b a l f l o a t *b, g lo ba l

f l o a t *c) {
i n t i d = g e t . g l o b a l . i d (0) ;
c [id] = a [id] + b [id] ;
}
7
i n t main() {

/ / s e t t i n g up the device
c l Ge t De v i c e l D s (NULL,CLJ3EVICE_TYPE_GPU, 1 device ,

n u m _ d e v i c e s _ r e t u r n e d) ;
c o n t e x t = c l C r e a t e C o n t e x t (0 ,1 , device ,NULL,NULL,& e rr

) ;
queue.gpu=clCreateCommandQueue (c o n t e x t , device ,0,&

e r r) :

/ / c r e a t e memory on device
memobjs[0] = c l C r e a t e B u f f e r (. . . .) ;
m em objs[1] = c l C r e a t e B u f f e r (. . . .) ;
memobjs[2] = c l C r e a t e B u f f e r (. . . .) ;

/ / l o a d the program onto dev i ce
p rogram=cl Cr ea t ePr ogramWi thSour ce (c o n te x t , l , & s o u r c e

. . .) ;
c l B u i l d P r o g r a m (program ,) ;
k e r n e l = c l C r e a t e K e r n e l (program , ” mul” ,NULL) ;
c l S e t K e r n e l A r g (kernel ,0 ,) ;
c l S e t K e r n e l A r g (kernel ,1 ,) ;
c l S e t K e r n e l A r g (kernel ,2 ,) ;

g l o b a l . w o r k . s i z e [0] = n ;
/ / r u n program
clEnqueueNDRangeKernel(cmd_queue , ke r ne l ,) ;

/ / r e a d data back
c l E nqu eu eRead Buffer (con t ex t , memobjs [2]) ;

}

2.2. Graphics Processing Units 23

The competing implementations; CUDA, OpenCL and Brook+ have all enjoyed

success and have succeeded in making GPGPU programming available to a

far wider community than before. However, there are still problems. It is

commonly agreed that in order to make GPU computing more accessible higher

level APIs are needed [31] and several projects have been undertaking looking

into this. Breitbart [23] has developed a C + + framework designed to allow

the easy integration of CUDA into existing C + + applications. Additionally

Ueng et al [131] have developed CUDA-Lite. CUDA-Lite is a tool that uses a

series of programmer supplied annotations within a CUDA C code program that

uses only the device’s global memory. CUDA-Lite performs a set of automated

transformations to this input to produce output code that maximizes memory

performance via memory coalescing and ensuring that maximum use is made of

all levels of CUDA’s memory hierarchy. The different levels of this hierarchy,

such as on-chip shared memory, are often ignored by developers due to a lack of

understanding of the CUDA memory hierarchy, which is substantially different

from a standard CPU, and the possible performance improvements that can

be gained from its correct use. This problem of abstraction is currently being

addressed in a variety of ways by tools such as HMPP and Rapidmind, which are

discussed in detail in section 2.7.

2.2.3 T he future o f G P G P U

As one of the most rapidly advancing application acceleration devices, new and

improved GPUs are regularly being developed by the major device vendors to

enable them to keep their competitive edge, both in the GPGPU market and in

the traditional graphics card market.

The latest development from NVIDIA has been the FERMI architecture. FERMI

2.2. Graphics Processing Units 24

is touted as the Next Generation CUDA Architecture and NVIDIA boasts a

4.2x performance improvement over the previous CUDA chipsets [48]. NVIDIA

FERMI also promises the following key areas of improvement:

— Improved Double Precision Performance,

— ECC Support,

— Faster Context Switching,

— 4x More CUDA Cores per Multiprocessor,

— An Unified Address Space allowing the support of C++, including pointers,

— Allows the scheduling of up to four concurrent kernels.

If FERMI delivers on these promises, then it is anticipated that it will bring large

performance improvements to GPGPU users, however, it is not the architectural

leap that was encountered in the transition to Shader Model 4.0.

The other highly anticipated development in the field of GPGPU, was the release

of the now discontinued Larrabee processor from Intel [122]. The philosophy

behind Larrabee was that of a graphics card built up of CPU like cores running

an extended version of the x86 instruction set. Intel believed that this CPU-like,

x86 based architecture would allow for more flexibility than offered by current

GPUs [122]. A diagram of the Larrabee architecture is shown in Figure 2.5.

The Larrabee architecture itself consisted of a set of multiple instantiations of

an in-order CPU core that is augmented by a wide vector processor. These

cores all communicate via a high bandwidth interconnect network. The Larrabee

architecture only contains the minimum amount of fixed function logic to enable

2.2. Graphics Processing U nits 25

In-Order In-Order In-Order In-Order
CPU core CPU core CPU core CPU core 00uo

op Interprocessoi Ring Network
CD1—' Coherent Coherent Coherent Coherent

o L2 cache L2 cache L2 cache L2 cache Qo
3Ph

Coherent
L2 cache

Coherent
L2 cache

. . .
Coherent
L2 cache

Coherent
L2 cache

l-H

S
X Interprocessor Ring Network 0

1app In-Order In-Order In-Order In-Order
CPU core CPU core CPU core CPU core

Figure 2.5: The Larrabee Architecture, showing 8 CPU like cores, adopted from
[122].

it to perform its graphics based tasks. The only fixed function logic that was

expected to be included was texture filtering.

The HPC Development model for Larrabee, known as Larrabee Native, consisted

of a complete C /C ++ compiler that allowed static compilation of many existing

C /C ++ applications to Larrabee. However, there are several additional libraries

that had to be used to gain the maximum benefit from Larrabee:

— Libraries to provide communication between host and device card. These

allowed fast message passing between Larrabee and the host CPU. In addition

both synchronous and asynchronous data transfers were to be supported.

— Threading using Larrabee’s native software threading capability, exposed via a

POSIX Threads API.

— SIMD vectorization. Each of Larrabee’s SIMD processors were fully pro­

grammable by the programmer, in addition the native Larrabee compiler included

a version of Intel’s auto-vectorization compiler.

Larrabee promised a major architectural shift for GPUs, bringing their archi­

2.3. ClearSpeed Acceleration Architecture 26

tecture far closer to that of a standard CPU, while maintaining and improving

on performance. However, many details about Larrabee were never confirmed,

such as the number of cores on the card and detailed examples of the HPC

programming system. There had been a great deal of interest in the scientific

community in the impact that Larrabee would have on accelerating high

performance computing, however, despite the widespread interest, Intel cancelled

the large scale production of the chip in December 2009. It has, however, been

announced that Intel have no plans to release Larrabee as a discrete graphics

chip, but they will be investigating its use as a HPC product [77] under the name

“Knights Ferry” and the forthcoming “Knights Corner” products [52].

2.3 C learSpeed A cceleration A rchitecture

ClearSpeed Inc. was founded in 2001 and originated from PixelFusion, a company

that developed parallel technologies for high end graphics. At the core of

ClearSpeed’s offering was their acceleration chip, which evolved over several

iterations. The CS301 was ClearSpeed’s first chip and was released to customers

in 2004. This was followed by the CSX600 in 2005 and the CSX700 in 2008 [87].

Through all these iterations ClearSpeed kept a similar architectural model in their

chipsets. ClearSpeed accelerators have traditionally had several key advantages

over other acceleration devices such as GPUs:

— IEEE 754 floating point compatibility.

— Low power usage ~10W.

— ECC Memory.

2.3. ClearSpeed Acceleration Architecture 27

These advantages allowed ClearSpeed to achieve some success in the HPC

market, with several applications being successfully ported to the device, such

as: BUDE, MolPro, Amber 9, Monte Carlo Codes, and CFD(Computational

Fluid Dynamics) methods [33] [34] [87].

However, in recent years the GPU manufacturers have released cards that have

slowly eroded ClearSpeed’s key advantages while offering better performance.

ClearSpeed also suffered due to the onset of the recession in 2009, this affected

ClearSpeed’s largest market, the financial sector. These two factors have led to a

sharp decline in business for ClearSpeed in the period up to the end of 2009 and

they ceased trading in 2010.

The ClearSpeed architecture along with the Software Development Environment

that ClearSpeed provides are now described in more detail in the following

sections.

2.3.1 D ev ice A rchitecture

The CSX Chip architecture is illustrated in Figure 2.6. The architecture itself

follows a SIMD (Single Instruction Multiple Data) pattern. It consists of a RISC-

like control unit and a parallel execution unit. The parallel execution unit consists

of a set of 96 Poly Processing Elements. These poly units operate in synchronous

mode and are responsible for the execution of instruction in a SIMD manner [36].

Each Poly Processing Element, which provide the parallel processing power of

the device, contains several functional units such as: Floating point units, Integer

multiply-accumulate units and arithmetic units. Each PE(Processing Element)

also contains its own registers, a small amount (6kB) of fast private memory,

a data path to the device’s main memory and the ability to communicate with

neighbouring PE’s using an operation known as Swazzle.

2.3. ClearSpeed Acceleration A rchitecture 28

System Network

Nblwor.

Poly Execution Unit

SRAM

Syslr-rr NgtjWOjfc

Figure 2.6: The ClearSpeed CSX Architecture. Adopted from [36]

Aggregated across all the parallel processing units, the last generation of the CSX

chip boasted the following performance statistics [36]:

- Over 25 GFlops processing power, in single or double precision.

- 25,000 MIPS(Millions of Instructions Per Second).

- 96 Gbytes/s internal memory bandwidth.

2.3.2 Program m ing Tools

ClearSpeed provided a very complete development kit for their architecture,

consisting of the following components:

2.3. ClearSpeed Acceleration Architecture 29

— Compiler tool-chain,

— Libraries,

— Instruction set simulator,

— Debugger,

— A disassembler.

Their programming interface consists of an extension to C, called Cat for

programming on-chip programs. Two APIs are provided for programming on

the host; CSAPI and CSPX for C and C ++ respectively.

CSAPI provides standard functionality for loading programs, copying data

to/from the device and querying device characteristics, while CSPX provides

several items of additional functionality and a higher level approach, allowing

programs on the device to be called using a RPC(Remote Procedure Call)

mechanism [75].

The main addition in the Cat language is the ability to distinguish between

variables stored in the device’s main menu (mono variables) and in the memory

of a specific poly processor (poly variables) using two keywords: mono and poly

[74]. An example of a Cat program is shown in Listing 2.5.

This program illustrates the main features of the Cat language. It shows how

data are loaded from the array data, which is stored in mono memory, into the

variable a which is stored in poly memory. The datum is loaded from the correct

location in the array by using the geLpenum method. This method returns a value

between 0 and 95 depending on which processing element the code is executing

2.3. ClearSpeed Acceleration Architecture 30

Listing 2.5: Example of Code

mono f l o a t * d a ta ;
int main(int argc , char**argv) {

shor t SEMAPHORE— 1;
poly f l o a t a;
async_memcpym2p (SEMAPHORE, & a , data- fget_penum () ,

s i z e o f (f l o a t)) ;
s em. wa i t (SEMAPHORE) ;
aH-=20;
async_memcpyp2m (SEMAPHORE, da ta+ge t_penum () ,&a ,

s i z e o f (f l o a t)) ;
s em. wa i t (SEMAPHORE) ;

}

on. This example also shows how semaphores can be used to cause the program

to block while waiting for memory transfers to complete [35].

Additionally the ClearSpeed SDK also contained a set of tools to support

programming. A full debugger was available, which included the ability to step-

through and monitor the program internals on the device itself. The SDK also

contained a cycle accurate simulator, which allowed the testing and debugging of

Ctv programs without having a Clearpseed device present.

ClearSpeed, as a fully commercial product, was a uniformly developed application

acceleration platform. There is a single card programming API available, with

two host APIs. While there have been many applications successfully ported to

the device, the commercial nature of the device, and its pricing, has led to it

being less widely adopted than accelerators such as the GPU.

2.4. Field Program m able G ate Arrays 31

2.4 F ield P rogram m able G ate A rrays

Field Programmable Gate Arrays or FPGAs were invented by Ross Freeman

in the mid-1980s [25]. An FPGA is a semiconductor device that consists of

programmable logic elements, interconnects and IO(Input/Output) blocks. All

of these elements are configurable at run time. This provides the FPGA’s key

advantage over ASIC (Application Specific Integrated Circuit) devices: allowing

complex digital circuits to be constructed on the FPGA at run-time. The internal

structure of an FPGA is shown in Figure 2.7.

IOB IOB IOB I0B IOB IOB

BRAM BRAM

IOB IOB IOB IOB IOB IOB

Figure 2.7: A FPGA Internal Structure adopted from [25]

Initially the FPGA was mainly used for prototyping purposes, however in recent

years FPGAs have begun to contain enough programmable logic resources to

enable them to be of interest to the HPC community. Many systems companies

produce FPGA based supercomputers, including Cray, SRC, and more recently

Nallatech [132].

2.4. Field Programmable Gate Arrays 32

However, as with many Application Acceleration devices, the biggest barrier to

adoption is the programming method. FPGAs have arguably the most radically

different programming method out of all acceleration devices and there are many

additional considerations when developing for the FPGA:

— The internal clock speed of an FPGA is many times slower than that of a

standard CPU. The performance has to come from performing many operations

in parallel per clock cycle.

— There is only limited logic units available on an FPGA so a balance between

program size and the amount of parallelism must be reached.

— Floating point units take up a far larger amount of logic space on the FPGA,

so avoiding floating point where possible is desirable. This enables either the

execution of a larger program, or more parallelism to be achieved. These

characteristics means that the FPGA is particularly suited to integer based

algorithms, such as many Bioinformatics problems.

An overall FPGA design flow for an algorithm is shown in Figure 2.8. This design

flow assumes that the programming language used by the developer is a hardware

description language such as VHDL(Verilog Hardware Description Language). It

is important to note that even once the application is in a hardware description

language, there is still a large amount of testing and validation to be done before

it can run on the device. The key step in this process is the place and route

algorithm, this algorithm can take many hours to execute and will not always

converge into a valid design, meaning that the process must be repeated.

Programming in VHDL is programming at an individual gate level, which is

completely impractical for the majority of the HPC community. This had led the

development of many higher level languages and compilers to facilitate general

2.4. Field Program m able G ate Arrays 33

Verification

HDL
implementation

Synthesis

Netlist

Implementation:
map, place,
and route

Functional
simulation

Timing
simulation

Postsynthesis
simulation

Algorithm

Bitstream

Figure 2.8: Typical FPGA design flow adopted from [25]

purpose computing using these devices, these include:

- Mitrion-C [92].

- DIME-C [55].

- Handel-C [132].

- Trident C to VHDL Compiler [130].

- Single Assignment C (SA-C) (A modification of C where each variable may

only be assigned once) [95].

- ASC: A Stream Compiler. (C++ with the addition of several user-defined

types, macros, operators and function calls) [89].

2.4. Field Programmable Gate Arrays 34

Two of these languages will now be examined in detail: Mitrion-C and Dime-C.

DIME-C was selected as it exemplifies the standard C based high level languages

used for compilation. Mitrion-C was selected due to the developers, Mitrionics,

taking a novel approach to FPGA compilation that is unlike the majority of

languages developed elsewhere for these devices.

DIME-C is a high level language developed by Nallatech for their HPC FPGA

devices. The DIME-C language is a strict subset of ANSI C. The following

restrictions apply to the DIME-C language:

— DIME-C does not support pointers.

— DIME-C has had several items of C’s redundant grammar removed, namely

certain switch statements and loops.

DIME-C also had several additions to facilitate compatibility with the FPGA in

the form of function calls that allow the following functionality:

— A memory access library that allows efficient access to external SDRAM

memories on the FPGA board.

— A math library.

— Functions to provide access to FIFO channels.

In conclusion, DIME-C provides the programmer the ability to develop for the

FPGA in a familiar syntax. However, there are still significant differences and

limitations that make development of efficient programs in DIME-C a difficult

task and, as with all Acceleration devices, an understanding of the underlying

hardware is required to selecting an appropriate application for porting and to

make maximum use of the device.

2.4. Field Programmable Gate Arrays 35

Mitrion-C takes a radically different approach to any existing programming

method. The Mitrion-C language, while very similar to C syntactically, is closer

to a functional language in its method of execution. The Mitrion-C language

is a single-assignment language centred around data-dependencies. So the order

in which statements appear in the program, is largely irrelevant. A statement is

executed as soon as all its data dependencies are available. In the trivial examples

shown in Listing 2.6; lines 4 and 6 will be executed in parallel while line 5 will

need to wait for line 4 to execute before it can be executed.

Listing 2.6: Mitrion-C Code - Line numbers added for clarity

1: i n t :8 a ;
2: i n t :8 b ;
3 : i n t :8 c ;
4: c = 5*4;
5: a=c * 2;
6: b = 5*3;

As parallelism is implicit in the Mitrion-C language, it provides two different

types of loops; for will execute the body of the loop in an iterative manner and

foreach will execute a loop in a parallel manner.

Mitrion-C executes its code via a virtual machine. The virtual machine is

configured using characteristics extracted from the Mitrion-C source code. The

virtual machine code, together with the Mitrion-C program code are then

compiled into VHDL and then placed onto the FPGA [91].

In addition to programming languages mentioned above, several other pieces

of software have been developed to assist development with FPGAs. Holland

et al. [66] have developed a Reconfigurable Amenability Test (RAT) to enable

the estimation of the applications compatibility for porting to a FPGA and

2.4. Field Programmable Gate Arrays 36

Koehler et al [78] have proposed a performance analysis framework, which by

using instrumentation of the device code, allows the monitoring of the device’s

performance at runtime. Andrews et al [13] have developed a system known as

HThreads which is a pthreads compatible library that allows specified threads

from the pthreads application to be compiled either for the CPU or FPGA.

Another library that has been developed to aid FPGA programming is the Vforce

library [93]. Vforce is an extension of the Vector Signal and Image Processing

Library, that provides a FPGA hardware implementations for the algorithms in

the library, encapsulating them beneath the libraries standard API. This allows

users of the library to develop for the FPGA without the use of any hardware

specific implementation.

One of the most novel developments using FGPA based technology was the

Convey HC-1 Computer [41]. The Convey computer integrates a FPGA based

processor with a standard Intel 64 processor. The FPGA and the Intel processor

share memory and can be dynamically reloaded with different instruction sets,

dubbed “personalities”. These personalities allow the relatively rapid addition

of new instruction sets or machine features which are tailored to specific

applications. These specialised instruction sets allow efficient acceleration of

applications on the system as they are able to leverage instructions or machine

features that have been specifically developed to allow the acceleration of a

particular algorithm or class of algorithms.

Despite all of these different programming languages and libraries that are

available, no one language has emerged as dominant in the field. The only

widespread consensus is that some High Level language is needed and the

choice is often largely dependent on developer preference. This diversity of

programming languages available for FPGAs has not, however, hampered the

work of porting applications to this device and all of the languages have had

2.5. IBM Cell Broadband Engine 37

applications successfully ported to them.

2.5 IB M C ell B roadband E n gin e

The IBM Cell Broadband Engine (CELL/B.E.) processor was a joint development

by Sony, Toshiba and IBM. The CELL itself is a high-performance, multi-core

processor with a custom system-on-a-chip (SoC) implementation [121].

SPE

IGB/cycle <2x)

HI 3PU MIC BIC

1 ™ 1 iTTt
Dual XDR™ FleadO™

Source. U Gsch*md et si., Hat Chipa-17, August 2005

Figure 2.9: The CELL/B.E. Architecture adopted from [119].

Figure 2.9 shows the structure of the IBM CELL processor. The CELL chip itself

consists of an IBM 64-bit Power Architecture core, the Power Processing Element,

and eight specialised co-processors based on a single-instruction multiple-data

(SIMD) architecture, these are the Synerginistic Processing Units (SPE), which

provide the parallel processing power of the chip.

The CELL/B.E. architecture is programmed using either a modified version of

the GCC toolchain or the IBM XL C /C ++ compiler toolchains [42]. Both of

2.5. IBM Cell Broadband Engine 38

these compilers provide cross compilation from the development architecture to

the PowerPC Architecture, for programming on the PPE, or to the custom SPE

Architecture. The SPE components for both compilers support a set of extensions

for SPE programming.

The executables generated by these compilers contain both the instructions for

the PPE and instructions for the SPE units. Each program will contain one set of

instructions for execution on PPE, but there may be several sets of instructions

for the SPEs, allowing the execution of multiple kernels during the runtime of

the overall program.

In addition to these programming tools, there have been several efforts to

implement higher level programming tools for the CELL processor. IBM itself

has released their compiler system, which has become known as the Octopiler.

This compiler leverages on the existing compiler technology employed by IBM

to provide optimisation when executing scalar code in SIMD units, and allows

the auto generation of vector instructions from a scalar source, this is performed

by a process known as Auto-SIMDization. The Octopiler also provides support

for the OpenMP programming model [51]. Bellens et al [19] have developed a

system called CellSS operating at an even higher level of abstraction. CellSS is

not limited to the CELL architecture, although it is the architecture supported

by their prototype. CellSS uses a code commenting style, similar to OpenMP, to

identify tasks within a sequential program. The compiler uses these annotations

to separate the main program code, which will run in the PPE, and the task

code, which will run in the SPE. When the subsequent program is executed, the

annotated tasks are submitted for execution. The execution of these tasks is

controlled by a task list. When all data-dependencies for a task are met, it is

added to the task list. The runtime system monitors this tasks list and then

matches tasks in the list to available resources (The SPE processors in the case

2.6. Computational Libraries 39

of the CELL).

The majority of success for the CELL processor has come from its integration into

the Sony PS3™ (PlayStation 3) and this console is currently the most accessible

way for users to gain access to CELL technology. Recently, work has even been

done utilising PS3’s™as scientific computing machines, essentially becoming

acceleration devices in their own right. This has even been extended as far as the

creation of PlayStation clusters. [80].

2.6 C om putational Libraries

The use of computational libraries is a mainstay of development for standard

sequential CPUs and multi-core architectures. Many such libraries have been

developed such as LAPACK (Linear Algebra PAckage), FFTW and many offerings

from the Numerical Algorithms Group(NAG) to name but a few. These libraries

allow developers to leverage expertly optimised algorithms in order to achieve

the best possible performance for common computational tasks. One common

approach that may be taken by developers is the investigation of three possible

options for optimising their code:

— Automatic optimisations provided by compilers or similar tools.

— Re-factoring of code.

— Identifying parts of their code that can be replaced by calls to a numerical

library.

A similar approach can also be taken by developers utilising acceleration devices,

with the main difference being that when considering an acceleration device, the

2.6. Com putational Libraries 40

computational libraries are generally device specific, allowing them to optimally

utilise the varying architectures of acceleration devices. Although application

acceleration is still a rapidly developing technology, many algorithms have been

ported and optimised for use on these devices. This section will analyse existing

work in this field that is relevant to the remainder of this thesis.

When considering computational libraries that have been developed for applica­

tion acceleration devices, the libraries developed and shipped with the devices

are often the first encountered by developers.

NVIDIA provide developers with a set of libraries including Basic Linear Alge-

bra(BLAS), Fast Fourier Transforms(FFT), sparse matrix routed and random

number generation [99] and these libraries in certain circumstance can provide

performance approaching the device’s maximum level[107]. ClearSpeed also

provides users with a similar extensive set of libraries[35] and IBM provide,

among others, a BLAS library[4]. AMD also provides developers with their Core

Math Library[12] which provides implementations of BLAS, FFT, LAPACK and

random number generation algorithms.

In addition to the development of libraries by the device manufacturers, third

party libraries have also been developed. MAGMA (Matrix Algebra on GPU and

Multi-core Architectures) is one of these libraries. The MAGMA library provides

wide variety of routines including: GEMM, Linear Solvers and LU, QR and

Cholesky factorizations[6]. Recently Nath et al have also conducted other work

on optimisation of the MAGMA GEMM algorithm on FERMI GPUs[97]. In this

paper, to attempt to further improve the performance of the GEMM algorithm

within MAGMA, the authors explore using several techniques, including pointer

redirection to overcome the performance dips often seen in cases where the matrix

size is not divisible by the block size (selected based on GPU characteristics) used

to sub-divide the matrix.

2.6. Computational Libraries 41

Another library that has been developed is FLAGON. FLAGON is a library

for programming NVIDIA GPUs using the Fortran 95 programming language[2].

The FLAGON library, instead of implementing all its own functionality, leverages

on that provided by CUFFT, CUBLAS and CUDPP(CUDA Data Parallel

Primitives) libraries.

The final linear algebra library that has been examined is CULA[68]. The ap­

proach taken by the developers of CULA is to attempt to abstract away the GPU

specifics. They provide implementations of many common LAPACK functions

that developers can utilize via an API that hides all GPU implementation specific

details from the programmer. This level of abstraction allows developers to

rapidly develop GPU accelerated linear applications, and performance figures

quoted in[68] show that CULA running on a NVIDIA Tesla C1060 provides

between 1.75x and 4x speedup when compared to Intel’s MKL library, running

on a Intel Core i7 920.

Another related library that is now available is Turbostream[8][22]. Turbostream

is a computational fluid dynamics library that supports both GPUs and multi

core CPUs. The Turbostream library utilises the SBLOCK solver which is an

optimised version of the older TBLOCK solver which has been adapted to allow

fine-grained parallelism.

Another area in which there has been much development, especially in regards

to the GPU, is Molecular Modelling. One of the most widely used Molecular

Modelling packages, while not strictly a library, is NAMD. NAMD now has

extensive support for GPUs and can also utilise GPU clusters. Performance

figures have shown that benchmarking NAMD on a 60 GPU cluster provided

performance equivalent to that of 330 CPU cores[125]. Another similar success

story was the addition of GPU support to the Folding@Home project, with the

GPU implementation of Amber 9 providing speed-up factors of well over 100

2.7. Existing Application Acceleration Porting M ethods 42

compared to a single core CPU. Currently the vast majority of Folding@Home

computing power is being provided by GPUs[125].

Although only a brief overview of applicable libraries has been provided in this

section, this will be expanded upon in Chapter 6 where applications and libraries

will be utilised as comparison for the system described in this thesis.

2.7 E xisting A pplication A cceleration Porting

M ethods

As has been shown in the previous sections, there are currently several different

types of Application Acceleration devices currently in use. Some have evolved to

become acceleration devices from their use in a more specialised role i.e. FGPAs

and GPUs. Some have been specifically designed as acceleration devices.

This competition forces the manufacturers to constantly improve the performance

of their devices and provide better tooling. However, this situation presents

several challenges to today’s developers:

1. Selection of an appropriate device and/or programming language.

2 . Difficulty in programming the device.

3. Before the work of porting an application begins it is difficult to predict the

performance gain that can be achieved, or the suitability of the application for

the selected acceleration device.

4. Once ported, the application is locked in to a particular device or manufacturer.

2.7. Existing Application Acceleration Porting M ethods 43

This often means that re-porting is needed when new generations of devices are

released, or when a device offering better performance becomes available.

Once all these problems have been solved, it could theoretically be possible to

develop a heterogeneous system for application acceleration. Such as system,

illustrated in Figure 2.10 would be built from application accelerators and

standard CPUs, allowing it to provide efficient execution for all application types.

This ideal system would also have sufficient abstraction to allow users to simply

compile and run their applications, without having to know what device their

code will execute on. In short such a system would have to contain the following

functionality:

— The ability to port code with no user intervention.

— The ability to select the device to execute the application.

— The ability to target all devices.

— The ability to operate on all known applications. This ideal system can be

used as a target for work in the field of application acceleration, and has been the

motivation for academic work looking to solve the problems illustrated above.

The research outlined in this section focuses on increasing the available level of

abstraction to encourage the widespread adoption of application accelerators and

take the use of these devices out of the computer science domain and into the

application domain.

Howes et al., has made several contributions to the field [67], using ASC (A

Stream Compiler), which is a class library for C+-I-. The authors developed

a unified source description providing cross compatibility between the FPGA,

2.7. E xisting Application Acceleration Porting M ethods 44

Abstraction

Programable ASICs and GPUs

Processors

F P G A s

StreamingBit Level Symbolic

Application Type

Figure 2.10: An Ideal Abstraction for Application Accelerators adopted from [29]

GPU and Vector units on the PS2™. This work then enabled performance

comparisons to be performed comparing the three devices running a Monte Carlo

code, an FFT and a weighted sum application. The FPGA performed best out

of all the devices for the FFT(although not outperforming the CPU). The GPU

far outperformed all the other devices when running the Monte Carlo simulation

and the PS2 outperformed the others when running the weighted sum. This work

illustrates that selecting the most appropriate architecture for the application is

important to achieve the best performance, however, it does not provide any

means of using the performance data collected to select a device for the future

executions of applications.

In the same research group as Howes, Cornwall et al. have developed a source

to source compiler [40]. This compiler takes as input C ++ code using an active

visual effects library and produces CUD A output. The authors then continue

to outline a series of useful domain specific optimisations that can be performed

on the output source. The experiments conducted by the authors show that the

project was a success, delivering speed ups of between 1.3x and 6.6x. The main

2.7. Existing Application Acceleration Porting M ethods 45

difference between this work and the work described in this thesis is the tight

coupling with the active visual effects library. This means that the compilation

process utilised is domain specific, considering operations that are part of the

library as primitive operations leading to a macroscopic view of the overall

application.

Several authors have also attempted to add application acceleration to existing

systems. Goddeke et al. [57] have added a co-processor extension, with a GPU

back-end, to the FEAST MPI based Finite Element solver toolkit. This toolkit

is structured such that each node within the MPI system that has a compatible

GPU, uses the FEAST-GPU extension to enable it to use the GPU as a co­

processor for the computation being performed on that node. In addition to

work using MPI, work has also been conducted using OpenMP. Lee et al [81] has

developed an OpenMP to GPGPU compiler framework, allowing the translation

of shared memory OpenMP programs to CUDA-based GPGPU programs.

Kunzman [79] has proposed a system, using the Charm ++ programming model.

The authors expand the Charm++ model with accelerated entry methods,

accelerated blocks and an abstraction for SIMD instructions. These extensions

allow programmers to develop, using the Charm ++ system, applications that

make use of the CELL. B.E. hardware, without the programmer having to be

aware of the underling hardware programming model. This system also provides

automatic CPU fallback when a CELL device is not available.

Finally, Garg et al [54] have developed a system to compile Python code to

a hybrid execution environment consisting of a CPU and an AMD GPU. This

system is based on a series of annotations to determine if loops are executable

on the GPU and, if they are executable, are they profitable for execution on

the GPU. Once the user has identified these loops, several software tools are

then used to provide a compilation framework. This framework first converts the

2.7. Existing Application Acceleration Porting M ethods 46

Python code into C /C + + using unPython. Then, loops that are not profitable

for execution on the GPU are converted into OpenMP loops, while loops that

are suitable for the GPU are converted to code that can be compiled using the

AMD Compute Abstraction layer, using software that the authors have coined

jit4GPU. This paper is interesting because it is the first paper that has been seen

to allow the programmer to differentiate between loops that are parallel and those

that are parallel and suitable for execution on the GPU. This is important in the

case of small loops, which, while they may be easy to parallelise, contain so little

computation that the speedup achieved by executing on the GPU is not sufficient

to overcome to the overheads of moving data from the host’s main memory to

the device.

The work that has been outlined above has very successfully provided abstraction

between several different application acceleration devices and this in turn has

allowed useful performance comparisons to take place. However, all these systems

fail to tackle several key problems:

— They all require the manual selection of the acceleration device.

— Few systems have achieved support for a wide cross section of acceleration

devices.

In addition to these academic efforts there have been several products developed

within industry to facilitate the use of application acceleration devices. These

products are discussed in the following sections.

2.7. Existing Application Acceleration Porting M ethods 47

2.7.1 P ortland G roup A ccelerator C om piler

The Portland Group Accelerator Compiler [134] is currently one of the most

advanced systems for developing applications for the NVIDIA GPU. The Portland

Accelerator compiler allows developers to compile from C or Fortran to CUDA

with the addition of a set of compiler directives defined by PGI [62]. An example

of such a compiler directive is shown in Listing 2.7.

Listing 2.7: PGI Accelerator Compiler Example adopted from [134]

in t m ain(i n t argc , char* argv [])
{

i nt n ;
f l o a t * r e s t r i c t a;
f l o a t * r e s t r i c t r ;
n = 100000;
a = (f l o a t *) mal loc (n * s i z e o f (f l o a t)) ;
r = (f l o a t *) mal loc (n * s i z e o f (f l o a t)) ;
e = (f l o a t *) mal loc (n* s i z e o f (f l o a t)) ;
f or (i = 0; i < n; ++i) a [i] = (f l o a t) (i + 1) ;

#pragm a acc r eg i on
{

for (i = 0; i < n; ++i) r [i] = a [i] * 2 . 0 f

}
return 0;

From the example shown in Listing 2.7 it can be seen that the only additions are

the #pragma acc region and the restrict keyword. The addition of the compiler

directive instructs the PGI compiler that the following code block is what should

be accelerated. It is possible when defining these blocks, for the developer to

specify additional options such as which data are copied to the device or define

a set of conditions when the device should not be used and execution should

2.7. Existing Application Acceleration Porting M ethods 48

fallback to the CPU.

However, one of the most compelling features of the PGI compiler is its ability

to auto-detect the majority of these additional options without the developer

defining them. This includes the ability for the system to detect [134]:

— If the loop contains loop level dependencies preventing its acceleration. This is

done by making the assumption, based on the use of the restrict keyword, that

pointers point to different locations in memory.

— If nested loops need to be re-ordered and re-order them as appropriate

— If the loop is not parallelisable the compiler will attem pt to detect why and

provide feedback to the developer.

— Able to detect performance bottlenecks such as memory-stride or memory-

alignment problems and report to the user.

In addition to these features, the PGI Accelerator compiler is able to perform

optimisations on the code when it is ported to the GPU, the most notable of which

is its ability to re-order nested loops and to vectorise parts of the accelerated code.

All of these features makes the PGI compiler one of the most advanced

parallelising compilers currently available and it is an excellent tool for porting

code to the NVIDIA GPU with reasonable automation.

2.7.2 S ieve M ulticore P rogram m ing S ystem

The Sieve Multicore Programming System has been developed by Codeplay based

on the concept of a Sieve [120]:

2.7. Existing Application Acceleration Porting M ethods 49

— A sieve is a block of code contained within sieve {} markers and any functions

that are marked with sieve.

— Inside a sieve, all side-effects are delayed until the end of a sieve

— Side effects are defined as modifications of data that are declared outside of the

sieve.

The definition of a sieve given above, effectively allows the user to explicitly

specify which sections of the program code the compiler can attempt to

automatically parallelise. In effect the sieve block separates what is stored in

the main memory of a many-core systems(outside of the sieve) and what would

be stored in the local memory of a core in a many-core system(inside the sieve).

An example of a sieve block is shown in Listing 2.8.

Listing 2.8: Sieve Example

s ieve {
for (i n t i =0 ; i < n; i++) {

c [i] = a [i] *b [i];
}

}

The sieve system developed by Codeplay consists of an extension to a C ++

compiler, which extracts sieve blocks, performs some automatic parallelisation

on them and then compiles them according to the sieve rules. The output of

compilation with the sieve system is a set of C files, one for the control processor

and one for each of the cores within the many-core system. Different back-ends

have then been developed based on this output, including a CELL back-end. An

OpenCL back-end is also advertised as being developed.

2.7. Existing Application Acceleration Porting M ethods 50

2.7.3 H M P P

HMPP, is a Heterogeneous Multi-Core Parallel Programming environment, which

aims to allow programming of application accelerators at a higher level of

abstraction and allow cross compatibility between multiple devices [49]. HMPP

utilises source annotations entered by the programmer, to select codelets for

acceleration. An example of these annotations is shown in Listing 2.9 for the

codelet code and Listing 2.10 for the call site of the codelet.

The HMPP system consists of a preprocessor and a runtime system. The HMPP

pre-processor will extract codelets based on the programmer’s annotations and

then compile these codelets, using vendor tools, to all available back-ends creating

a library of codelets that can be selected for use. The HMPP pre-processor also

inserts calls to the HMPP API at the call site to invocate the codelet.

The HMPP runtime, is responsible for loading the required device code based on

what device is present or providing CPU fallback if there is no device is available

or if there is no compiled codelet for the available devices.

Listing 2.9: HMPP Example Codelet Definition

^pragma hmpp mul c o d e l e t o u t p u t = c
void mul (i n t n, i n t * a , i nt * b, i nt * c) {

for (i n t i =0 ; i < n; i++) {
c [i] = a [i] * b [i];

}
}

Currently the HMPP system supports C and Fortran front ends and back-ends

for CUDA, OpenCL and the AMD Compute Abstraction Layer(CAL).

2.7. Existing Application Acceleration Porting M ethods 51

Listing 2.10: HMPP Codelet Callsite

/ / i t e m —wise m u l t i p l i c a t i o n o f two 100 e l emen t s a and b.
Output s t o r e d in c

^pragma hmpp mul c a l l s i t e
m ul (100 , a ,b , c) ;

2.7 .4 R apidm ind and Ct: C for T h rou gh pu t C om puting

Rapidmind Inc. was, until its acquisition by Intel in August 2009, a software

company providing a development environment which provided abstraction

between GPUs, Multi-Core CPUs and CELL. B.E.

The Rapidmind system is programmable using the C + + language, with a series

of macro, data and API type additions. An example of a Rapidmind program

is shown in Listing 2.11. It can be seen from this example that Rapidmind

allows the programmer to define a function to execute over an array of values

in parallel. The Rapidmind programming system takes care of the generation of

code to manage the data movement back and forward to the target device.

The Rapidmind compiler, which is essentially a preprocessing system for a

standard C ++ compiler and device vendor tools, currently supports outputting

to CUDA, AMD CAL and C + + for the CELL. B.E.

Rapidmind publicity, even though licenses are still being sold, has largely

disappeared following its acquisition by Intel.

Intel have, however, developed their own parallel processing tools. These are

called Ct(C for Throughput computing) [56] and they are currently focused on

the Intel’s Multi-Core architectures, although it is assumed, but not confirmed,

that at some point the Rapidmind product will be merged into Ct. This will

2.7. Existing Application Acceleration Porting M ethods 52

Listing 2.11: Rapidmind Example

/ / Element— wise M u l t i p l i c a t i o n o f two Ar rays A and B
in t main() {

MUL=RM_BEGIN {
I n < V a l u e l i > a;
I n < V a l u e l i > b;
Ou t <Va l ue l i > c;

c = a * b ;
} RMEND;

A r r a y < l , V a l u e l i > A
A r r a y < l , V a l u e l i > B
A r r a y < l , V a l u e l i > C

/ / e x e c u t e the program
C=AtfUL(A,B) ;

provide Intel with a system that enables cross compatibility between Multi-Core

processors and Acceleration devices.

Ct is a C ++ extension which provides parallel programmability to the pro­

grammer by allowing the use of a series of managed parallel datatypes, such

as the TVEC(a managed parallel vector). Along with these parallel data types

the system also provides associated element-wise and collective communication

operators for use with the new data types [56]. An example of the use of the

element-wise multiplication operator is shown in Listing 2.12, this operation can

be used by the programmer independently of the size or shape of the two vectors.

2.7. Existing Application Acceleration Porting M ethods 53

Listing 2.12: Ct Code Example

/ / Element—wise M u l t i p l i c a t i o n o f two Vec tors A and B
TVEC<F32> A;
TVECkF32> B;
TVEG<F32> 0= A*B;

2.7.5 P eakstream

Peakstream [112], along with Rapidmind, was one of the earliest commercial

application acceleration software development packages and the two products

were in heavy competition. The Peakstream product ceased development in 2007

when the company was acquired by Google. It is mentioned here for completeness

only as information on Peakstream products has all but disappeared from the

public domain.

2.7.6 Evaluation o f E xisting M eth od o log ies

The previous sections have examined many of the academic and industrial efforts

to solve the obstacles to the adoption of application acceleration outlined in

Section 2.7. An overview of the current solutions are shown in Table 2.1 and

a complete time-line of all released solutions (i.e. those that have been made

available for wider use) are shown in Figure 2.11, this figure also shows, for

comparison, some of the other key software tools that have been discussed in this

chapter.

This table shows that, while several systems have made efforts to solve the

problems of programmability and device lock-in, there is still no solution that

provides total coverage and all solutions still require some form of user annotation

or make use of a custom API.

2.7. E xisting Application Acceleration Porting M ethods 54

Accelerator
Computer

AMD CTM AMD B r o o k +

B ro o k

Sieve; from Codeplay

HMPP

Rapidmind Intel Ct

Uuttitii O p e n C L

Cg Shader Programming

Shader Model 3.0 Shader Model 4 .0

2003 2004 2005 2006 2007 2008 2009

Figure 2.11: A time line of software released to facilitate development on
Application Accelerators

However, there are, to my knowledge, no solutions currently available for the

problems of device selection and performance prediction. At the moment there is

no system able to give performance estimates prior to porting (with the exception

of [66] specifically for the FPGA). There is also no system able to perform device

selection for the programmer, a tool which will become increasingly desirable as

the availability and diversity of acceleration devices increase and developers are

given far wider choices when selecting a device and programming language, a

choice that many will be ill-equipped to make.

Table 2.1: Comparison of Existing Porting Methods.
System Name Devices Supported Programming

Language
Modifications to
Programming Methodology

Device Selection

OpenCL AMD/NVIDIA GPU C Custom API User specified
PGI Accelerator Compiler NVIDIA GPU C, Fortran Addition of notation

with loop dependency analysis
Only NVIDIA GPU
Supported

Sieve from Codeplay CELL, OpenCL Cn—|- Addition of Sieve keyword User specified
HMPP AMD/NVIDIA GPU

OpenCL + CPU
C, Fortran Addition of Notation User selection, selection of first

available device or CPU fallback
Rapidmind GPU, CELL C++ Addition of Macros

and API calls
User selection

Howes et al [67] FPGA, GPU C++ Addition of Class Library User selection
Cornwall et al [40] NVIDIA GPU C++ Use of an Active Visual

Effects Library
NA

OpenMP to GPGPU [81] NVIDIA GPU C /C ++ OpenMP NA
Kunzman et al [79] CELL C++ Charm++ Automatic CPU fallback
Garg et al [54] AMD GPU Python Code annotations Code that is not explicitly

flagged for GPU execution
is run using OpenMP

2.8. Chapter Summary 56

2.8 C hapter Summary

This chapter has provided an overview of the four most common application

acceleration devices: The GPU, ClearSpeed, CELL and the FPGA. It has also

outlined the various programming methods used to develop applications for these

devices and has discussed the current state of the art developments in terms of

the computational libraries that have been developed for these devices.

Finally I have analysed the current solutions that have been developed to attempt

to break down the barriers to adoption of application accelerators outside of the

Computer Science domain. A comparison of these solutions has been undertaken

and the results are shown in Table 2.1, this analysis has identified several key

problems that have not yet been satisfactorily solved.

The analysis conducted has shown that, compared to the ideal system shown in

Figure 2.10, there are several areas where existing work is currently lacking, the

key missing area of work being the lack of the ability of systems to select a device

without human interaction.

In relation to other requirements of such an ideal system, several systems have

increased the level of abstraction to reduce the required level of user intervention.

However, these systems all require the programmer to learn a new programming

language, API, or annotation style. Secondly, no systems have yet achieved

complete coverage of the breadth of acceleration devices, although this is planned

for systems such as HMPP and OpenCL. Furthermore, no software tools have

attempted to solve the problem of matching an application to a device, or deciding

if an application will give worthwhile performance improvement when ported.

This is a major obstacle, as presently the time taken to port an application

can be large, especially to a new user of acceleration devices, and the lack of

2.8. Chapter Summary 57

certainty of outcome will often discourage users from investing time and money

in the technology.

These key problems currently form major obstacles to the widespread adoption of

application acceleration devices and provide fertile ground for Computer Science

research effort.

58

C hapter 3

O verview of the A pplication

Porting System

3.1 Introduction

This chapter will outline the overall architecture of the system that had been

developed in order to test the hypothesis described in Chapter 1.

From this hypothesis, and from the background research, it can be seen that the

system must perform the following tasks:

1. Selection of the most appropriate device for the application,

2. Porting the source code to the device’s programming method/API,

3. Compiling the ported code using the device’s tool chain,

4. Using the performance results gathered from executing the ported code to

modify the process of matching future applications to devices.

In order to construct this system, the initial starting point is the standard compile

and execute model used by virtually all computer systems. Figure 3.1 shows at

3.1. Introduction 59

the very highest level, the design of the system. The user will provide source code

and data to the system, which will then return an executable to the user.

Input Program
& Data-set

(2) Source Code and Dat-set

O ptimum
Device Compiler Tool Chain

(3) Compiled Program

Intelligent
Semi-Automatic Porting SystemCompiled Program

and Data-Set
(6) Program and Data

Optimum
Device Runtime

Figure 3.1: High level design of the Porting system

During this compilation phase we know, from our system’s requirements, that

the system must perform the following tasks:

1. Selection of an appropriate device.

2. Porting of the source code to the device’s programming method/API.

3. Compilation using the device’s tool chain.

During the execution phase, the executable, along with the input dataset, is

passed back to the system. The system then executes it on the device for which

it was compiled, returning the results to the user. It should be noted that,

for performance reasons, the collection of performance data does not occur as

the “production” version of the code is executing, but instead will happen as a

background task.

The remainder of this chapter will now discuss in more detail the architecture of

the Porting System.

3.2. Overall System Architecture 60

3.2 Overall System A rchitecture

The overall architecture of the system will draw inspiration from several existing

types of software.

Compilers

As mentioned in the previous section, the porting system will follow the standard

compile/execute model. Secondly, as the porting system is a source to source

compiler we can apply the same two stages that all standard compilers employ:

Analysis and Synthesis [69]. This means that the porting system shall consist of

a front end, which analyses code, and a back end, which synthesises code into the

desired output format.

Web Services

One of the main goals in the development of the system is to enable the selection

of the most appropriate device for the application being executed. This means

that the system must have access to a variety of acceleration devices. This was

the main motivation behind making the system distributed. If the system was

not distributed, then only the acceleration devices connected locally to the user’s

computer would be accessible. This would immediately place a limit on the

number of devices a system could support - the number of free expansion slots

available. Additionally, currently many acceleration devices are purchased as

shared resources, and so are not connected to an individual’s machine, but rather

to a central server. In order to leverage on these devices the system must be

3.2. Overall System Architecture 61

distributed. These reasons make it highly beneficial that the system is of a

distributed nature.

The decision to make the system distributed introduces several new items of

functionality that the system must provide:

— Ability to locate devices.

— Ability for distributed components to communicate.

Taking all these requirements into consideration the system architecture was

refined and the new, more detailed, architecture is shown in Figure 3.2. The

diagram shows the system’s three modes of operation (with solid lines representing

network traffic), and for each mode of operation the order of operations are shown:

1. Compilation (Shown in red).

2. Execution (Shown in blue).

3. Collection of Performance Data (Shown in green).

The system is divided into four components. These components, with the

exception of the client which is installed on the users machine, are all presented

as web services. The decision to use web services, was taken purely to allow this

work to leverage the pre-defined communications protocols for web services. Each

of the four components are now discussed in further detail below.

3.2. Overall System Architecture 62

Selection

Lookup
Servier

Application Classifier

Collection of Performance Data

Source Code+
Data-set \

Compiled Program +
Source Compiled Program and Data

/

<l >' Results
/ 1 /

•*\ Compile Application] | Execute Application]
Client

Device Program Execution
Check for new \
Optimum D evice/'"^ \

(2) \
/ Locate \

/ Classifier/Devices

(2 .4)

(5) \
Program
CompilationFind Device

Execute Application!

Compile Program|
Acceleration Device
Back-End

Figure 3.2: The Application Porting system

Client

The client is the only component of the system that is installed on the user’s

computer and takes as input suitable source code containing at least some parallel

elements. The client handles front end parsing of the input source and acts as a

driver for the porting process. The majority of the client’s processing is related

to the extraction and analysis of the input code. It takes the input and from it

extracts small chunks of code that are candidates for acceleration, these chunks

of code are known as “kernels” . The client is discussed in more detail in Section

3.3.

3.2. Overall System Architecture 63

Application Classifier

The Application Classifier takes the descriptions of all the input kernels in the

application being considered. It produces as output the recommended device

for the application, and a set of recommendations as to which kernels should be

accelerated and which should not. The application classifier is also responsible

for receiving and storing all performance related data produced by the system.

Finally the application classifier is responsible for monitoring the system and

collecting performance data in order to improve the predictions being made. The

application classifier is discussed in more detail in Chapter 5.

Accelerator Back-End

The Accelerator Back-Ends take as input: the host source code, the set of kernel

descriptions and associated kernel source code as produced by the client and the

recommendations produced by the application classifier. The back-end will then

port the input code to the appropriate target language as required by the device

and then compile it using the device’s tool chain. The back-end is also responsible

for gathering performance data from the applications as they execute and passing

it to the Application Classifier. The Accelerator Back-Ends are discussed in more

detail in Chapter 4.

Lookup Server

The lookup server is a Universal Description Discovery and Integration (UDDI)

server, running Apache jUDDI. The UDDI server sees the distributed components

of the porting system as a set of “Accelerator” services and a single “Classifier”

3.3. Overview of System Client 64

service. The server maintains a list of the locations(IP addresses) of all of these

services which it provides, upon request, to the other components in the system.

These four components all encapsulate the key functionality of the system. The

accelerator back-ends provide the ability to generate of device specific code, which

is discussed in Chapter 4. The Application Classifier, described in Chapter

5, provides the functionality related to the self-modification of the system’s

classification model, the ability of the system to expand itself and the core

functionality of device selection.

The remainder of this chapter will consider the functionality of the client, which

is a critical part of the overall operation of the system.

3.3 Overview of System Client

The system client is the driver behind the compilation and execution processes

for the porting system, integrating the distributed components into one cohesive

system. The client is also responsible for performing the code analysis tasks

performed by the front end of a compiler. The client itself operates in two different

modes; compilation and execution.

The overall structure of the compiler client is shown in Figure 3.3. The

communication tasks that are performed by the client are shown with dotted

lines, while each main analysis task of the client is shown in a box. Each of these

tasks are discussed in more detail below, while the execution client is discussed

in Section 3.8.

The current version of the client constructed for this work supports a single input

language: ANSI C with a few restrictions:

3.4. Source Parsing and Validation 65

— Unstructured jumps, i.e. goto statements, are not permitted,

— The current version can only parse array accesses using the indexing operators

[] and not pointer arithmetic.

— All memory allocations must be visible within the bounds of the code provided

to the client.

— The current version assumes that all pointers to arrays are non overlapping,

i.e. if a and b both point to arrays, it is assumed that they point to different

arrays and neither points to a subset of the other.

The approach taken, however, is generic and could be extended to support other

imperative languages such as Fortran 90.

3.4 Source Parsing and V alidation

The first analysis stage of the client performs parsing and validation of the input

source code. This stage of the client takes as input a directory containing the

input program and then performs the following tasks:

1. Locate all necessary code files.

2. From the code files, locate all required header files, ignoring those that are

part of the operating system libraries.

3. Pre-process all source files, with the exception of ^include directives.

4. Parse each method within the code, starting with main, using the CTOOL

(http://ctool.sourceforge.net) library.

http://ctool.sourceforge.net

3.4. Source Parsing and Validation 6 6

Source Code

Source Parsing and Validation

I
Kernel Extraction

Kernel Analysis

Locate
Application Classifier Kernel Validation

Locate a Acceleration
Device of Required type

1
J
T

Pass Kernel Descriptions to Classifier

/ " >
/

Return Recomendations

Pass Host Code, Kernels, Kernel
Descri£tioos.aod-R^comendations to device

— — — Return ported code

Package Application

J
Executable

Figure 3.3: Client in the Compiler Mode

This stage will result in (assuming the input code is valid) a set of Abstract Syntax

Trees, generated by CTOOL, for all the methods within the input application.

For the purposes of identification each abstract syntax tree is associated with its

function definition. These Abstract Syntax Trees are then passed to the next

stage: Kernel Extraction.

3.5. Kernel Extraction 67

3.5 K ernel Extraction

The extraction of kernels from the input source code centres around finding the

loop level parallelism within the code. This is done automatically in several steps:

Constructing a Control Flow Graph

The first step is to construct a control flow graph for each abstract syntax

tree produced by the previous stage. A control flow graph consists of nodes,

representing basic blocks within the code and edges, representing the flow of

control. In addition to the standard nodes generated by flow graph analysis,

additional nodes, which contain no code, are added to mark the entry and exit

of branches [27], this is to assist the later stages of the client in processing the

graph.

Basic Block: A basic block is a sequence of consecutive statements in which

the flow of control enters and leaves at the end without halt or the possibility of

branching except at the end [10].

An example of a control flow graph for a piece of code is shown in Figure 3.4 and

the code that the graph represents is shown in Listing 3.1.

Kernel Formation and Separation

Once a control flow graph has been constructed the client will extract an

exhaustive set of all possible kernels from the code. This in essence consists of all

natural loops within the code. It should be noted that many natural loops are

unsuitable for execution on any acceleration device e.g. because input/output

3.5. Kernel Extraction 68

Listing 3.1: Code Example for Control Flow Graph

b = 100;
whi le (a < b) {

b — ;
i f (a < b) {

a=a + l;
} e l s e {

a=a — 1;
}
a=a+10;

}
b=0;

b=100

r

Loop

Branch

a = a + l

Branch Exit

a=a+10

Figure 3.4: A Control Flow Graph

3.5. Kernel Extraction 69

takes place within the kernel or the loop that formed the kernel may be non-

deterministic. These kernels will be filtered out by later stages of the system.

In order to define what a natural loop is we must first define the concept of one

basic block dominating another.

Dominators: A node d dominates node n, if every path from the initial node of

the flow graph to n goes through d [10].

Loop Entry: A loop entry node is single entry point into the loop. This entry

point dominates all nodes in the loop and there must be at least one path through

the loop back to the entry node [10].

Natural Loop: A natural loop is defined as a collection of nodes, all dominated

by the loop entry node and all strongly connected such that from any node in the

loop to any other, there is a path of length one or more, wholly within the loop

[10].

Back-Edge: An edge that connects a node to an ancestor within a tree[10].

Reverse Postorder Traversal: When traversing a tree, each node is visited

before all of its successor nodes, except when the successor is reached by a back

edge) [10].

As the first step in kernel formation, the client will traverse through the data

flow graph for each function, locating loops and labelling each node within a

loop. The algorithm used is based on that outlined by Alfred [10] and later used

by Callahan [27] and is shown in Listing 3.2. The algorithm loops through each

node in the control flow graph in reverse postorder, and for each node performs

the following actions:

3.5. Kernel Extraction 70

- If a node n is a loop entry node, then it is part of loop n.

— Determines if the node is a member of any other loops by checking if it is

dominated by the loop entry nodes of any loops to which its predecessors belong

to.

The end result of this is that each node in the flow graph is annotated with the id

of each loop that it is part of. An example of a fully labelled control flow graph

is shown in Figure 3.5, with associated source code shown in Listing 3.3. This

figure shows how nested loops are handled and that it is quite correct for an inner

loop to be shown as part of multiple loops.

Listing 3.2: Algorithm for Loop Identification

I n p u t s :
G= Blocks from the Co n t r o l Flow Graph o r d e r e d in r e ve r s e

p o s t o r d e r

for a l l nodes n in G
i f n is a loop e n t r y node

Add th e node ID of node n to l i s t of loop IDs for
node n

end i f

P = All p r e d e c e s s o r nodes to n
for a l l p in P

for a l l loop IDs i a s s i g n e d to node p
i f loop e n t r y block of i domi na t es n

add i to l i s t of loop IDs for node n
end i f

end for
end for

end for

With all loops now identified within the control flow graph, they can be separated

3.5. Kernel Extraction 71

Block 5

Block 1

Block 2
Loop 1

Block 4
Loop 1

Block 3
Loop 1,2

Figure 3.5: A Control Flow Graph, labelled with loop IDs

Listing 3.3: Source code that generated Figure 3.5

X=500;
for (i n t i=0; i < X ; iH—h) {
/ / L o o p 1 Code
for (i n t z=0; z < X*2;z++) {
/ / L o o p 2 Code
}
/ / L o o p 1 Code
}

X = 0 ;

into kernels. This is done by taking each loop, starting with the innermost,

removing it from the control flow graph and placing into a new flow graph

representing a kernel. A placeholder node is then placed into the original flow

graph at the location the loop was previously. A separated version of Figure 3.5

is shown in Figure 3.6. It is important to note that in Figure 3.6 Kernel 2 is a

sub-kernel of Kernel 1, as prior to processing, Loop 2 was an inner-loop of Loop

3.6. Kernel Analysis 72

Kernel 1
Block 2Block 1

Kernel 2
Kernel 1

Block 4
Block 5

Kernel 2

Block 3

Figure 3.6: A Control Flow Graph, with Kernels Separated

3.6 K ernel Analysis

Once all kernels have been extracted from the application source code, each kernel

is in turn analysed and information is extracted from its code. Some of this

information is useful to the client for its processing, while some are metrics used

in matching the application to an appropriate acceleration device.

The Kernel Analyser takes as input the control flow graph for the kernel and

extracts the following information from it:

— The kernel ID.

— The kernels parent kernel (if it exists).

— A list of sub kernels.

— The source file, from which the kernel originated prior to processing.

— A list of variables written to and read from inside the kernel, and their sizes.

— List of array indexes used to access variables that are read from or written to.

— Details of the loop instruction that caused the kernel to form.

- List of functions called by the kernel.

3.7. Validation of Input Kernels 73

For the sake of organisation, only the analysis related to the client’s processing is

discussed here. The extraction of the metrics used in the decision making process

is discussed in Chapter 5.

Once the analysis of all candidate kernels is complete, the kernel analyser outputs,

for each kernel, a Kernel Description File, an example of which is shown in Figure

3.7.

BcCESSHAP:a,i * k + y :b ,j * k + y :c ,x : a , i * k + y :b , j * k + y:
ACCESSMAPWRITE: cQut, X
BRANCHING:0
DATAIN:120020
DATAOUT:40000
FILENAME: src///dgenmi. c
FUNCTIONS:
INTENSITY:14
ISSUBKERNEL:N
ITERATIONS:10000
KERNEL:3
LO O P :fin ite:fo r
LOOPCONO-.x = 8 : X < n * «:x++
LOOPCONTROL:X
PARENTKERNEL:-1
READVAR:int ,m :flo a t [s iz e o f(f lo a t) * m * k /s iz e o f (f lo a t }] ,
SOURCEFILE: s rc///dgem ii. c
SUBKERNELS: 4
WRITEVAR:float [s iz e o f(f lo a t) * n * m /s iz e o f(f lo a t)] f cOut

Figure 3.7: A Kernel Description File

3.7 Validation o f Input K ernels

With the kernel processing now completed, the set of kernels within the program

can be visualized as a kernel tree, such as the one shown in Figure 3.8. Validation

is performed individually on each kernel within the tree and, as part of this

process, each kernel is either passed or discarded based on a series of tests:

Filtering Kernels not executable on any device: This phase of kernel

validation is performed on the system client prior to the selection of the target

3.7. Validation of Input Kernels 74

Kernel 2

Kernel 3

Kernel 4

Kernel 1 Kernel 5

Program Code

Figure 3.8: A Kernel Tree

device and consists of checking the kernel against one key requirement applicable

to all devices:

— That the amount of iterations of the loop that formed the kernel is known

before execution of the loop begins, i.e. it is a deterministic loop.

Filtering Kernels with loop dependencies: The second step is also

performed by the system client, and its aim is to filter out some of the kernels

with dependencies prior to device selection or porting.

Whilst much theoretical work has been conducted into array dependency analysis,

such as the Omega Test by Pugh [117], the work in this thesis, however, takes

a far more pragmatic approach. It was decided that an exhaustive but complex

dependency checker is not required, as the aim of this phase of kernel validation is

limited to reducing the number of candidate kernels, rather than the completely

accurate elimination of all kernels with dependencies. This approach accepts that

some kernels will be incorrectly selected for execution. However, the modular

approach that has been used in constructing this component of the system allows

for a more sophisticated approach to be added in the future.

Instead the client applies a few simple heuristics to eliminate the majority of

3.7. Validation of Input Kernels 75

kernels with dependencies:

1. If a kernel writes to a single variable(i.e. not an array) that is then used outside

the kernel, this creates a race condition, so disallow the kernel.

2. If any array writes are based on an index value that is a constant, then the

kernel will be disqualified.

3. If any array writes are based on an index value that is not calculated within

the kernel, then the kernel is disqualified.

It should be noted, that the result of validation for a kernel in these first two

steps, does not affect the result for its parent kernel or sub-kernels. The reason

for this is because that if a kernel has array dependencies, then it would function

as a sub-kernel.

Filtering Kernels not executable on the chosen device: The final filtering

process is performed on the device back-end components of the system and will

eliminate from the list of candidate kernels, any kernels that, while they are

generally valid for acceleration, are not valid for acceleration on the considered

device.

This process will involve traversing the kernel tree in post-order, checking the

following for each kernel:

— Remove kernels containing recursion if recursion is not supported.

— Remove kernels containing function calls to non user-defined functions that are

not supported by the device.

— Remove kernels using data types that are not available on the device.

3.7. Validation of Input Kernels 76

— Remove kernels using language features not supported by the device’s

programming method, i.e. structures.

This filtering works slightly differently to that discussed previously. When

filtering based 011 these characteristics, it should be obvious that if a kernel

contains, for example, recursion, then its parent kernel would also contain

recursion and thus also be an invalid kernel. However, conversely, if a kernel

contains recursion it does not necessarily mean that its sub-kernels are also

invalid.

If a kernel fails any of the above tests then it is discarded at this stage. Kernels

that are discarded because they are not executable on a specific device are merged

back into the control flow graph from which they originated, this may either be

as part of another kernel or as the main body of source code that is not to

be accelerated. However, kernels that are discarded because they contain loop

dependencies are flagged as containing loop dependencies but are not rolled back

up. This is because a kernel with loop dependencies could still be a valid sub­

kernel.

Once the kernel validation has been completed, the client outputs the processed

application code ready to be passed to the Application Classifier and the

appropriate back-end. The original application source code that is not part of a

kernel is outputted to the src directory, maintaining its original file and directory

structure. The control flow graph for each kernel is output as source code into

a kernel directory and the kernel description files are output into a kernelloader

directory. In all cases, when the output function of the compiler encounters our

custom node that represents a kernel call then a #include directive is output

pointing to the appropriate kernel loader. An example of output from the client

in shown in Figure 3.9, this particular example has one source file and five kernels.

3.8. Application Packaging 77

| - - kernelloaders
j | - - kernele.c
j | - - kernell.c
| j-- kernel2.c
j j-- kernel3.c
j j-- kernel4.c
j kernels.c
j-- kernels
j | - - kernele.c
j j-- kernell.c
j j-- kernel2.c
j j-- kernel3.c
j | - - kernel4.c
j kernels.c

src
src

dgeM.c

Figure 3.9: Client Output

3.8 A pplication Packaging

Once the appropriate device has been selected, and the application code has been

ported and then compiled by the device back-end, the complete set of source files,

build scripts and the compiled executable are returned. As, depending on device

and application, this may be a significant amount of files, the client will then

archive them. This archive file is then bundled along with a small script, which

is responsible for invoking the execution client. This structure enables the user

to execute the compiled application from a single executable file, in the same

manner to which they would execute any standard program. The only custom

command line argument that must be passed to this executable specify the path

to the needed data files. An overview of the execution client that is invoked is

shown in Figure3.10.

3.9 C hapter Sum m ary

This chapter has described the architecture of the Application Porting System

that has been created. This system is distributed in nature, so that it may

3.9. Chapter Summary 78

Com piled E xecu tab le and Path to R untim e D ata

| Archive R untim e D ata

L ocate a A cceleration
D evice of R equired ty p e

V alidate th a t
S e le c te d D evice
is still op tim um

Pass Com piled E x ecu tab le an d
R untim e D ata to D evice

/

— — R eturn re su lts

Figure 3.10: Client in the Execution Step

leverage on a wider range of acceleration devices than just those directly

connected to the user’s desktop computer.

This chapter has outlined the overall design of the system and it can be seen that

the three key features of the system are:

— The ability of the system to filter the input application down to those sections

of code that are executable on an acceleration device,

— Intelligently select an appropriate target device for these kernels,

— By collecting new performance data, modify its own decision making model so

that the accuracy of the selections made will improve,

— Automatically port the selected kernels to the target device.

However, not all of the functionality of the system has yet been described. The

code generation that the system undertakes is discussed further in Chapter 4

while the decision making, and collection of performance data is discussed in

Chapter 5.

3.9. Chapter Summary 79

More specifically, this chapter has discussed in detail the components that

make up the system client. These components, including the process of kernel

extraction, kernel filtering and kernel analysis can be viewed as one large filtering

process going from a full application down to “hotspots” in the application that

are executable in parallel. These components have been developed as part of

the production of this system and are built on a mixture of well-known compiler

techniques and heuristics developed from the experience gained by working with

application acceleration devices.

However, there are still ways in which these could be improved and it would

have been preferable if the system could have been built by creating linkage

between pieces of industry strength software, but, in many cases, such software is

simply not available. Instead the system was developed in a modular fashion by

combining a series of custom programs. This means that individual parts of the

system can be improved in a modular fashion by replacing any of the components

that have been developed so far.

One of the main components that could be improved are the heuristics used to

filter out kernels with array dependencies; while the ones used in this chapter have

functioned well for our testing, it is realised that these will not catch all cases

of array dependencies. An ideal solution for this would be the implementation

of the Omega Test [117] or using technologies similar to those used by the PGI

Accelerator Compiler [134].

80

Chapter 4

C ode G eneration

4.1 Introduction

This chapter will show how the porting system fulfils one of its key requirements:

the generation of device specific code. This functionality is largely contained

within the Acceleration Back-End component of the system, discussed in Chapter

3.

The process that has been created for the generation of device specific code takes

input consisting of the following:

— Application source code to be executed on the host.

— A set of kernel descriptions(Described in Chapter 3) each containing the

characteristics of a candidate kernel.

— Kernel source code for each candidate kernel.

Each back-end will follow a process consisting of the following stages to generate

code for its target device:

1. Selection of Kernels for Execution.

4.2. Kernel Selection 81

2. Porting.

While stage 1 must be customised for the each device, it will be, in essence, very

similar for all devices. Stage 2, however, is radically different depending on the

target programming language of the device being considered.

This chapter will examine in detail each of these stages, discussing stage 1

generically, and then stage 2 in detail for each device back-end that has been

constructed.

The current back-ends that have been selected for construction are NVIDIA

CUDA and Cn for ClearSpeed. This selection was made primarily due to

limitations of available hardware, but the two back-ends that have been developed

are sufficient to exercise the intellectually important elements of the system.

4.2 K ernel Selection

Once the initial kernel filtering process has removed all kernels that are presently

incapable of being accelerated on the device, then the next stage is to select the

kernels that will provide the best expected performance improvement. Figure 4.1

shows a kernel tree and an example of the selection of two kernels for execution.

It should be noted that in Figure 4.1 as Kernel 2 has been selected for acceleration

it also implies that Kernel 3 will also be accelerated.

The decision on which kernels are to be accelerated is taken by passing the

kernel description of each kernel to the application classifier and, as each kernel

description encapsulates all of its subkernels, a decision can be made based on the

predicted performance returned from the classifier. The application classifier and

4.3. Porting to CUDA for the G PU 82

Program Code

Kernel 1 Kernel 5

Kernel 2 Kernel 4

Kernel 3 Kernels Selected for Execution

Figure 4.1: A Kernel Tree

this decision making process are discussed in more detail in Chapter 5. It should

be noted, that at this point, since a target device has already been selected the

decision that is made is simply whether to accelerate the kernel or not.

4.3 Porting to C U D A for th e G P U

Once selected, each kernel that is to be accelerated is passed to the code generator.

In the case of porting to CUDA, if the kernel being accelerated has subkernels

then the subkernels are rolled up into the main kernel to produce one larger

kernel.

The CUDA code generator will then take the kernel description and the kernel

source code and perform three tasks: generating the host code, generating the

kernel code and finally calculating the CUDA execution configuration. Each of

these tasks is now examined in further detail.

Throughout this section several variables will be used within code listings to

show items of code that the code generator will replace with suitable values. The

following is a list of variables used:

4.3. Porting to CUDA for the G PU 83

— N - Kernel Number.

— T - Data Type.

— V - Variable Name.

— S - Variable size (i.e. number of elements in the array).

— $S1...N$ - Size of array dimension 1....N.

— 1 - Number of iterations of the loop.

4.3.1 G eneration of H ost C ode

A typical CUDA host program consists of several sections and it is the

responsibility of the CUDA host code generator to generate code for each of

these sections:

1. Initialisation.

2. Memory allocation

3. Loading data onto the device.

4. Calling the device code.

5. Loading data back from the device.

6. Cleanup.

4.3. Porting to CUDA for the G PU 84

Initialisation

The initialisation section of code is static and at this stage the code generator

simply generates code from the template shown in Listing 4.1. This code firstly

queries the number of available CUDA devices and displays an error if this is 0.

The final line selects the first available device for use by this application.

Listing 4.1: CUDA: Initialisation Code

in t noD evicesK ernel$N $;
cudaG etD eviceC ount(& noD evicesK ernel$N $) ;
i f (noD evicesK ernel$N $ <1) {
p r i n t f (’’N o ^ C u d a ^ D ev ic e s^ F o u n d \\n \\r”) ;
e x i t (1) ;
}
cu daS etD ev ice (0) ;

Memory Allocation

The next step is to generate code to allocate memory on the device. In this stage,

code is generated for each variable that is listed as being read from, or written to,

in the kernel description. In the case where a variable is listed as being written

to and read from, only one line is generated. This code is not generated if the

variable is a single variable(i.e. not an array), in this case memory does not need

to be allocated, as single datums can be passed directly as parameters to the

kernel call, which is shown in Section 4.3.1.

The code to allocate memory on the device is shown in Listing 4.2. This code

first defines a pointer to the memory on the device and then allocates it using

cudaMalloc.

4.3. Porting to CUDA for the G PU 85

Listing 4.2: CUDA: Allocating memory

T* $V $Kernel$N$Load;
cudaM alloc ((void **)&VKernelNLoad , s i z e o f (T) *S) ;

Loading data onto the device

Once the code to allocate memory has been generated, the next step is to load

the input dataset into the newly allocated memory. This stage only occurs for

variables that are read from by the kernel code.

The code generated by this stage differs if the data being considered is a single

dimensional array or a multi-dimensional array. The method used to generate

code for each of these circumstances is shown below.

Single Dimensional Array: When a single dimension array is being allocated

and loaded onto the device, only a single line of code is generated. This will copy

the data from the source variable to the memory on the device. An example of

this code is shown in Listing 4.3.

Listing 4.3: CUDA: Loading a single dimensional array onto the device

T * $V $K ernel$N $Load;
cudaMemcpy (VKernelNLoad ,V , s i z e o f (T) *S ,

cudaM em cpyHostToD evice) ;

M ulti-Dimensional Array: Allocating a multi-dimensional array is effectively

a generalisation of allocating a single dimensional array. In CUDA, like in C,

multidimensional array are structured as a set of single dimensional arrays linked

by pointers. This is demonstrated for a 10 x 10 array in Figure 4.2. When the

code generator generates the code for multi-dimensional arrays, it is able to detect

4.3. Porting to CUDA for the G PU 86

if all dimensions of the array are used. This means that if an array a[x][y] has

been declared in the source file, but only one dimension (i.e. a[10]) is used in the

kernel then only that dimension will be loaded, enabling this array to be treated

as a one dimensional array. However, when multi dimensional arrays need to be

loaded onto the GPU the code shown in Listing 4.4 is used. In this example,

the code first allocates memory space for the pointers to each single dimensional

array. Then, the memory for each single dimensional array is allocated, and its

data copied. Finally, the array of pointers to the single dimensional arrays is

loaded onto the device.

90 1

Figure 4.2: A Multi-Dimensional Array

Calling the device code

Once the code to allocate memory and load the data on the device has been

generated, the next step it to generate the kernel call itself, the code for this is

shown in Listing 4.5. In this code the $Paramters$ variable represents the list of

all single variables that must be passed to the kernel call, pointers to all memory

that has been allocated by cudaMalloc and a variable containing the number of

iterations of the kernel. Additionally, there are two key variables that must be

4.3. Porting to CUDA for the G P U 87

Listing 4.4: CUDA: Loading a multi-dimensional array

T ** VKernelNLoad;
cudaM alloc ((void**)& VK ernelNLoad , s i z e o f (T*) *$S1$) ;
T ** VKernelNLoadTmpDim=(T*) m a llo c ($ S l$ * s iz e o f

($ T $ *));

fo r (i n t loopCountD im l =0; loopC ountD im l < $S1$) {
cudaM alloc ((vo id **)&VKernelNLoadTmpDim [

loopCountD im l] , s iz e o f (T) *$S2$) ;
cudaMemcpy (VKernelNLoadTmpDim [loopC ountD im l] ,

V [loopCountD im l] , s i z e o f (T) *$S2$,
cudaM em cpyHostToDevice) ;

}
cudaMemcpy (VKernelNLoad , VKernelNLoadTmpDim, s iz e o f

(T*) *$S1$, cudaM emcpyHostToDevice) ;

generated at this point: Dg and TV These variables define how the application is

divided between the multiprocessors on the GPU and a description of how these

two variables are generated is shown in Section 4.3.3.

Listing 4.5: CUDA: Calling the device code

k e rn e l$ N $ « < D g ,D b » > ($ P aram ete rs$) ;

One of the key parameters needed to calculate Dg is the number of iterations,

this can. in many cases, be calculated from the definition of the loop that formed

the kernel, as shown below:

MaximumBoundO f Loop — M immumBoundO fLoopNumberof Iterations ------------------------- ------—— ——----------------------------LoopbtepV alue

4.3. Porting to CUDA for the G PU 88

However, it is anticipated that calculating the number of iterations in this manner

will not always be possible (i.e. when the loop counter does not increment

uniformly), in these cases additional code must be generated prior to the kernel

call to calculate the number of iterations at runtime. The generated code will run

a dry version (without any loop body) of the loop that simply counts the number

of iterations and stores it in a variable. This can then be used to calculate Dg

at runtime (Db is always calculated at compile time). In cases when the loop

counter does not change uniformly, code will also need to be generated to provide

a mapping from the iteration number to the value of the loop control variable.

Once generated, the array containing this mapping must then be loaded onto the

device. This code performing this mapping is shown in Listing 4.6.

In cases where both pieces of additional code described above need to be

generated, they are merged into one loop.

Listing 4.6: CUDA:Loop counter look-up code,

in t *xK ernel$N $C ontro lH ost = (i n t *) m alloc (s i z e o f (int)*1) ;

int tm pC ounter=0;
$Loop d e f in i t i o n th a t form ed n a tu r a l loopS {

xK ernel$N $C ontro lH ost [tm pC ounter] = $C urren t Loop
count v a lu e $;

}

Loading data back from the device

The next code that needs to be generated will load data back from the device.

In this section, the code generator will generate code for each variable in the

list of variables being written to. Once again the way this is handled for single

dimensional arrays and multi dimensional arrays differ.

4.3. Porting to CUDA for the G PU 89

For every single dimensional array that is to be copied back, the code shown in

Listing 4.7 is generated to copy the data from the device memory to the host

memory.

Listing 4.7: CUDA: Loading data back to host for Single Dimensional Arrays

cudaMemcpy (V, VKernelNReturn , s i z e o f (T) *S ,
cudaM emcpyDeviceToHost) ;

For multi-dimensional arrays, the code shown in Listing 4.8 is generated, although

for the sake of brevity an example using a two dimensional array is shown. This

code firstly loads back the memory addresses of each sub-array within the multi­

dimensional array. It then, using these memory addresses, loads back each sub

array reconstructing them into a two dimensional array on the host.

Listing 4.8: CUDA: Loading data back to host for a two dimensional array

T ** VKernelNReturnTmpDim=(T*) m a llo c ($ S l$ *
s i z e o f ($ T $ *)) ;

cudaMemcpy (VKernelNReturnTmpDim, $V $K ernel$N $Return ,
s i z e o f (T*) *$S1$, cudaM em cpyD eviceToH ost) ;

for (i n t loopCountD im l =0; loopC ountD im l < $S1$) {
cudaMemcpy (V [loopC ountD im l] ,

VKernelNReturnTmpDim [loopC ountD im l] , s i z e o f
(T) *$S2$, cudaM em cpyD eviceToH ost) ;

}

Cleanup

The final section of code that must be g nerated is to perform cleanup tasks.

While the code generator is generating the code in previous sections it will keep

a list of all variables that have been allocated with cudaMalloc and malloc. It

4.3. Porting to CUDA for the G PU 90

then uses this list to generate cudaFree and free instructions to free the allocated

memory.

4.3.2 G eneration of K ernel C ode

Once the host code has been generated, the kernel code generator will generate

the code for the CUDA kernel from the input kernel code. It does this in two

phases; firstly a series of transformations are performed on the kernel code and,

secondly, the now transformed code is inserted into a kernel template. Each of

these phases will now be examined in more detail.

Code Transformations

The code generator will initially perform the following code transformations on

the kernel code, before it is inserted into the kernel template.

— If there are multi-dimensional arrays, where some dimensions have not been

loaded (as discussed in 4.3.1), then the unneeded dimensions are removed from

the kernel code.

- Any user defined functions must have __device__ prepended to their definition,

and their names changed to differentiate them from their host equivalents.

These code transformations are minimal as CUDA’s device API so closely matches

C’s. However, there is one major area in which they differ: CUDA has no

random number generation functionality. This is because using a standard

random number generation function would lead to the same sequence of results

4.3. Porting to CUDA for the G PU 91

being generated in each thread on the device - almost certainly not what the

programmer desires.

It was decided, after consideration, that because random number generation is a

part of the core API, code should be generated to deal with this case. It was also

decided that, at this time, the simplest possible random number generator should

be implemented: A Linear Congruence operating with different seeds in each

thread (Shown in Listing 4.9). This decision was taken because, although there

are better parallel random number generators available such as the Mersenne

Twister [86] and Multiply-with-carry [58], the implementation at this stage should

be kept as simple as possible and it should be noted that if a user requires higher

quality random number generation they would not be using the standard C library

random functions in the first place. Additionally, Linear Congruence random

number generators are also the type primarily used by ClearSpeed’s API [74].

The Linear Congruence random number generator that was selected for use is

the one provided as reference in the glibc manual pages [3]. The process of

transforming the original random function call takes the following steps:

— The method body for the random number generator must be inserted into the

kernel file.

— At the start of the kernel a seed must be declared and initialised.

— Calls to the random function must be replaced with calls to our new generated

function, and the seed must be passed as a pointer.

4.3. Porting to CUDA for the G PU 92

Listing 4.9: CUDA: Random Number Generation

/ /m e th o d ca l l to ge ne r a t e random number
__device__ in t K ernelR and (in t * seed) {
seed = (seed * 1103515245 + 12345) & 0 x 7 f f f f f f f ;
return *seed ;

}

/ / i n i t i a l i s e seed
int seed= th readN o * 27 + 13;

/ / cal l
int a ;
a=K ernelR and(& ;seed) ;

Kernel Template

Once the code transformations have been completed, the kernel code is inserted

into the kernel template shown in Listing 4.10. This template shows the version

that will be generated when a control array is used to provide a mapping from

the iteration number to the loop count value. If the control array is not used the

loop count variable value can be calculated as:

LoopCountV alue = (LoopStepV alue* Iteration Num ber)+M inim um Boundof Loop

In the template the following variables will be used in addition to those described

in Section 4.3:

- SKernel Code$ - The Kernel itself.

— $Loop Count Variable Name$ - The name of the loop counter variable, i.e. i.

- $Parameters$ - The list of parameters passed to the kernel by the host code.

4.3. Porting to CUDA for the G PU 93

- $Dg.y$ - The y dimension of the grid of thread blocks (See section 4.3.3).

— Db - The dimension and size of each thread block (See section 4.3.3).

Listing 4.10: CUDA: The Kernel Template

__g lobal__ v o id kernel$N $ ($ P a ram e te rs$) {
in t execNo= (((b lo c k ld x . x*$D g. y$)+ b lo ck Id x . y) *

$ D b $)+ th read Id x . x ;
in t $Loop Count V a r ia b le N am e$=xControl [execNo];
i f (execNo < N u m lte ra tio n s) {

$ K ernel Code $

}
}

4.3 .3 C alcu lating th e execu tion configuration

The CUDA execution configuration consists of four parameters that must be

passed to each kernel call [46]:

- Dg, which is the dimension and size of the grid of thread blocks.

— Db, which is the dimension and size of each thread block.

- Ns, the number of bytes of shared memory that is dynamically allocated per

block.

— S, any associated CUDA streams.

As the current version of the CUDA code generator does not utilise dynamically

allocated shared memory or CUDA streams, the final two parameters can be

4.3. Porting to CUDA for the G PU 94

ignored and be allowed to take their default values of zero. However, the first

two parameters need to be calculated. Before this can be done it is important

to understand how CUDA allocates each execution of the kernel (known as a

thread) across the graphics card. The two key virtual groupings of threads [46]

that CUDA utilises are defined as::

Thread Block: A thread block is a group of threads that can cooperate together.

Thread blocks are processed in batches and each thread block is executed by a

single multiprocessor. The number of blocks that a multiprocessor can process is

dependent on the register and shared memory usage of the kernel being executed.

Warp: A group of threads from a thread block that is executed by a

multiprocessor in a SIMD fashion. The current active warps i.e. all the warps

from the currently active thread blocks on the multiprocessor are time-sliced to

make maximum use of the multiprocessor computational resources[108].

From these definitions there are some general rules for efficient CUDA execution

that should be followed:

— Each multiprocessor should have enough threads available to it to ensure it is

fully occupied.

— There should be at least as many thread blocks as there are multiprocessors.

Ideally twice as many.

— The number of threads per block should be a multiple of the warp size.

From these rules it can be seen that Db must first be calculated to determine how

many threads per block are required to ensure that each multiprocessor is fully

occupied. Once Db is known then Dg can be calculated using Db.

4.3. Porting to CUDA for the G PU 95

Calculating Db

To assist programmers in developing applications that maximise utilisation,

NVIDIA have provided an Excel spreadsheet [104] to calculate device occupancy.

Formulas from this spreadsheet are used to calculate Db by the porting system.

It should be noted that, in my implementation, the hardware dependant values

used in these formulas are stored in a configuration file, this enables the CUDA

back-end to easily be reconfigured to cope with differing GPU models.

The utilisation of each multiprocessor is determined by the number of active

thread blocks on the multiprocessor and the number of warps per block, such

that:

_ N um ActiveThr eadBlocks * N um W arps Per Block
Occupancy = --------------------------------------- (4.1)

Where W pM P represents the hardware limit for the number Warps Per Multi

Processor.

The value of Db depends primarily on the value of Num W arps Per Block. So the

optimum value for this must be first be calculated.

To calculate N um W arps Per Block we must first calculate a value for

Num ActiveT hr eadBlocks. However, due to the nature of the equations involved

it is not possible to directly compute the value of N um ActiveThr eadBlocks for

a specific application. However, the optimum value of N um ActiveT hr eadBlocks

for the specific GPU that is being used can be calculated, by assuming that:

N um ActiveT hr eadBlocks = BpM p

4.3. Porting to CUDA for the G PU 96

Where BpM p is the maximum number of active blocks allowed by the hardware.

Making this assumption allows the calculation of the occupancy as:

^ BpMp * Num W arps Per Block
Occupancy = --------- (4.2)

As we require maximum occupancy(meaning that Occupancy = 1) we now have

the following equation:

Num W arpsPer Block = (4-3)

This value is the minimum number of warps required to achieve full occupancy

of each multiprocessor for this GPU regardless of application. However, due

to features of the application being executed, such as shared memory and the

number of registers used, N um ActiveT hr eadBlocks may take a value lower than

that of BpMp and possibly this value may be as low as 1. This means that the

actual number of warps takes a value:

< N um W arpsPer Block < W p M P (4-4)

The only way to accurately determine the optimum value for Num W arps Per Block

and NumActiveThreadBlocks for an application is, taking each value of

Num W arpsPer Block that is within the range shown above, compute

Num ActiveT hr eadBlock manually and then recompute the occupancy using

Equation 4.1.

To compute N um ActiveT hr eadBlocks manually the minimum value from Equa­

tions 4.6 and 4.5 are taken.

4.3. Porting to CUDA for the G PU 97

W p M P
N um W arps Per Block

(4.5)

Where W pM P is the hardware limit for the number of Warps per multiprocessor.

ITr
64 * NumRegistersUsed * (Num W arpsPerBlock — [N u m W a r P^P e r B lo c k j)

(4.6)

Where ITr is the hardware limit for the total number of registers per multipro­

cessor and NumRegistersUsed is discovered by examining the kernels CUBIN

file. This CUBIN file is generated by the compiler and an example is shown in

Figure 4.3.

architecture {sm_10}
abiversion {0}
code {

name = _Z5nbodyPfS_S_S_S_i
Imem = 0
smem = 60
reg = 17
bar = 0

}

Figure 4.3: A CUBIN file

Once all the values of N um W arpsPer Block have been computed, the desired

value will be the one that has the highest occupancy. In the case when there are

several values with the same occupancy the lowest value of N um W arps Per Block

shall be taken so that the maximum number of thread blocks can be formed from

the problem size.

Once the value for Num W arpsPer Block has been computed we can use the

following equation from [104]:

4.3. Porting to CUDA for the G PU 98

N um W arps Per Block = \ (4.7)

Where TpW is the hardware limit for the number of threads per warp.

As we require the smallest amount of threads to form the number of warps desired,

while still ensuring that Db is a multiple of the warp size. Db can be written as:

Calculating Dg

With Db calculated, calculating Dg is relatively simple. As the CUDA porting

system has already determined the number of iterations of the loop that is forming

the kernel. (Let this be called N um lterations). Then we can say the number of

thread blocks should be:

However, as Dg in theory could be a very large number and CUDA sets a hard

limit for the size of each dimension of the grid. We need to split Dg into X and

Y coordinates for the grid. This is done as follows:

Db = (Warps Per Block) * TpW (4.8)

N um lterations
(4.9)

Num lterations
(4.10)

Num lterations1 (4.11)
Db * Dg.x

It should be noted that this will often mean that more iterations than required

are run. This is a side effect of splitting the kernel uniformly across the GPU

4.4. Porting to C m 99

and it is preferable to executing fewer iterations than required. In order to deal

with the problems that executing additional iterations of a kernel may cause, a

branch is present in the CUDA kernel template (Listing 4.10) to ensure that these

additional kernels perform no computation.

In this section we have covered the entire process undertaken to generate device

specific code for NVIDIA’s C for CUDA language. A worked example of the

process that has been described here is shown in Section 4.6.

4.4 Porting to C n

The second back-end that has been developed for the system is Cm for ClearSpeed.

Cm is a modification of the C language with two added keywords:

Mono: The mono keyword designates that a variable is to be stored in the devices

main memory (A non parallel variable).

Poly: The poly keyword designates that a variable is to be stored in the memory

of the particular processing element on which the current instantiation of the

kernel is executing on (A parallel variable).

Due to the differences in the ClearSpeed’s architecture, the ClearSpeed code

generator is significantly different to CUDA’s. ClearSpeed has no context

switching mechanism allowing memory 10 latency to be hidden, so the problem

of memory latency must be dealt with explicitly by the programmer, using

asynchronous I/O and other methods. This adds considerably to the complexity

of the code generator.

The recommended method to increase memory 10 efficiency on ClearSpeed

4.4. Porting to C n 100

and thus reduce the 10 latency is to reduce the number of data transfers and

increase the size of each transfer [98]. The simplest way to achieve this is to

use double buffering, which enables the system to leverage ClearSpeed’s ability

to perform asynchronous 10. The decision to use double buffering had led to

the ClearSpeed code generator having four modes of operation: Generating Host

Code, Generating a Kernel Template, Generating Code for a Non-Buffered Kernel

and Generating code for a Buffered Kernel.

In order to select which kernels are buffered or not, the following two rules are

applied, depending on the number of subkernels that the kernel being executed

has:

1. If the kernel being executed has no sub-kernels then it will be a buffered kernel.

2. If the kernel has subkernels then the innermost kernel(i.e. at the bottom of the

kernel tree), will be a buffered kernel, while the remaining kernels will be rolled

up into one non-buffered kernel.

However, it should be noted that not all kernels are able to make use of

the buffering technique and any kernels with large poly memory requirements

or where either the memory read/writes are not incremental between kernel

executions can not be buffered.

Each of following three modes of operation are outlined in the following sections.

4.4.1 G eneration o f H ost C ode

The ClearSpeed host code generator operates in largely the same manner as

the CUDA code generator, however there are some important differences. The

4.4. Porting to C n 101

code generated by the ClearSpeed host code generator can be classified into the

following four sections:

1. Initialisation.

2. Loading data onto the device and calling the device code.

3. Loading data back from the device.

4. Cleanup.

Also, throughout this section several variables will be used within code listings

to show items that the code generator will replace with suitable values. The

following is a list of variables used:

— N - Kernel Number.

— T - Data Type.

— V - Variable Name.

— S - Variable size(i.e. number of elements in the array).

Initialisation

The main difference between the initialisation within the ClearSpeed code gener­

ator, apart from syntax differences, occurs because each ClearSpeed accelerator

consists of multiple ClearSpeed chips. The initialisation section must, once the

API has connected to the card, discover the number of chips present on the card,

this is shown in Listing 4.11.

4.4. Porting to C n 1 0 2

Once this has been done, the number of times the kernel will be executed must

be computed, if necessary, and the control array that contains the mapping from

iteration number to the value of the loop control value must be populated. These

sections of code are identical to that shown for CUDA in section 4.3.1.

Finally, using the previously computed values, the number of executions per chip

and per processing element must be calculated:

_ _ rNoIterations..Iter ationsP er Processor = — -------
1 NoChips 1

r Iter ationsPer Processor
Iterations Per Processing Element = —-----—------------- —---------

NumProces sing Elements

Listing 4.11: ClearSpeed: Initialisation Code

in t noD evicesK ernel$N $;
s tr u c t CSA PIState* kernel$N $State=N U LL;
CSA PI_num _cards(& noDevicesK ernel$N $) ;
i f (noD evicesK ernel$N $ <1) {
p r in t f (’’Nou. C lear speed ̂D evices ~ F o u n d \n \r”) ;
e x it (1) ;
}
kernel$N $State=C SA PI_new () ;
C SA PI.connect (k e rn e l$ N $ S ta te , C SH _Private , C SC .D irect , ”

l o c a l h o s t ” ,CSAPIJNSTANCE.ANY,0) ;
in t n o P ro cesso rsK ern e l$ N $;
in t noPeK ernel$N $;
CSA PI_num _processors (k e rn e l$ N $ S ta te ,&

n o P ro c e sso rsK e rn e l$ N $) ;
CSAPI_num_pes(k e rn e l4 S ta te ,0 ,& noPeK ernel$N $) ;

4.4. Porting to C n 103

Loading data onto device and calling the device code

Due to the presence of multiple chips on each ClearSpeed accelerator board, the

memory allocation, loading of data and calling the kernel must be performed on

a per chip basis.

Firstly a set of variables need to be declared to store process handles for the

running kernel on each chip, this is shown in Listing 4.12.

Listing 4.12: ClearSpeed: Declaring Process Handles

s tr u c t CSA PIProcess *process$N $ [n o P ro cesso rsK ern e l$ N $] ;
in t procNoN ;

The next step is to declare variables to hold pointers to all memory that will later

be read back from the device. Additionally, the maximum and minimum values

within that memory that are accessed by each chip must be stored. Finally,

a single pointer must be declared to each array that will be loaded onto the

device. All this needs to be done outside of per-chip loop so that this data can

be accessed later in the program. The code generated for each variable written

to by the device is is shown in Listing 4.13.

Listing 4.13: ClearSpeed: Declaring Variable Pointers

CSAPIMemoryAddress $V $R eturnK ernel$N $ [
n o P ro cesso rsK ern e l$ N $] ;

in t w riteM ax$V $K ernel$N $ [n o P ro cesso rsK ern e l$ N $] ;
in t w riteM in$V $K ernel$N $ [n o P ro cesso rsK ern e l$ N $] ;
CSAPIMemoryAddress symbolAddrVKernelN ;

The first task that must be performed is loading the device code onto the chip.

This must be done on a per chip basis, but all the compiled device code must be

4.4. Porting to C n 104

loaded onto all chips before any further memory allocation can occur. The code

for initialising a chip is shown in Listing 4.14.

Listing 4.14: ClearSpeed: Loading the Device Code

CSAPI_load(k e rn e l$ N $ S ta te , procNoN , ” k e rn e ls /k e rn e l$ N $.
c sx ” ,NULL,&(process$N $ [procN oN]) ,CSAPI_NO_TIMEOUT) ;

At this point it should be noted that, unlike CUDA, ClearSpeed’s requirement

that a CSX program must first be loaded onto a chip before any memory can be

allocated, precludes the ability for ClearSpeed accelerators to keep data on the

chip between executions of different kernels.

The remainder of the set up code is contained within a single loop and is done on

a per chip basis. Once the code to load the device program has been executed,

a second loop is created to allocate memory and load data into the device. This

process consists of two steps: first acquiring the memory address of the desired

variable on the ClearSpeed chip, and then copying data to it. If the variable is

a single variable (i.e. not an array) then there is no need to allocate memory. If

the variable is an array, then the memory must first be allocated. An example

of fetching the memory address and then copying data to it is shown in Listing

4.15 and an example of allocating memory and then copying data to it is shown

in Listing 4.16.

Multi-dimensional arrays in ClearSpeed are handled in identical fashion to that

of CUDA (shown in Section 4.3.1) using the CSAPI-allocateshared-memory and

CSAPI .write jmono-memory methods.

4.4. Porting to C n 105

Listing 4.15: ClearSpeed: Loading Single Variables

CSAPIMemoryAddress sym bolAddrVKernelN ;
/ / f e t c h memory address
CSA PI_get_sym bol_value (k e rn e l$ N $ S ta te , p rocess$N $ [

procNoN] , ” V” ,&sym bolAddrVKernelN) ;
/ / c o p y data
CSAPI_write_mono_memory (k e rn e l$ N $ S ta te ,

CSAPI_TRANSFER_PARAMS_SAFE, symbolAddrVKernelN ,
s i z e o f (T),&V) ;

Listing 4.16: ClearSpeed: Loading Arrays

CSAPIMemoryAddress symbolAddrVKernelN ;
/ / a l l o c a t e memory
C S A P I_ a llo ca te_ sh ared .m em o ry (k e rn e l$ N $ S ta te , procNoN ,

CSMJDram, s iz e o f (T) *S , s iz e o f (T) , p rocess$N $ [
procNoN] , ” V” ,&;symbolAddrVKernelN) ;

/ / c o p y data
CSAPI_write_mono_memory (k e rn e l$ N $ S ta te ,

CSAPI_TRANSFER_PARAMS_SAFE, symbolAddrVKernelN ,
s i z e o f ($ T $)* $ S $,$ V $);

4.4. Porting to C n 106

When considering memory allocation on a ClearSpeed device there are however

additional concerns. Each ClearSpeed chip consists of a DRAM memory store

of size X MBytes. This memory however is split between each chip on the

ClearSpeed card and so each chip is only able to allocate NumberOf Chips MBytes

of the total memory.

Even though the main memory is split between chips; a chip is still able to access

memory attached to another chip, but a performance penalty is incurred. From

experience, it has been determined that when possible it is preferable to duplicate

the input data-set into each chips memory rather than incur this performance

penalty.

All of these factors must be taken into account when generating code to allocate

memory on a ClearSpeed device. Whenever possible, the ClearSpeed code

generator will duplicate the required data, into each chip’s own segment of

memory. This, however, dramatically reduces the total memory available to

the application and there are certain circumstances where this strategy is not

possible.

To combat this, the code for allocating memory is generated in the pattern shown

in Listing 4.17, in this listing detailed implementation details are omitted for

brevity, but can be seen in the worked example shown in Section 4.6.

Listing 4.17 illustrates the memory allocation operating in two modes:

1. Each array is allocated onto one chip, and pointers are loaded onto the other

chips: This enables the application to make full use of the ClearSpeed card’s

memory, but incurs a performance penalty.

2. Each array is duplicated onto each chips own segment of memory. This means

4.4. Porting to C n 107

that application only has ^^berojchipa memory available to it but

gives improved performance.

When reading the code it should be noted that it is designed in such a way to

enable the first chip to start executing as soon as the first iteration of the per chip

loop has run, rather than having to wait for all memory to be allocated across all

chips before starting execution.

The above memory allocation strategy only applies for data that is read and not

written to. In the case of data that is written to; the output data-set will either

be split based on the iterations that are taking place on each chip, or the output

data-set will be loaded solely onto one chip, and then a pointer to it will be loaded

onto all other chips.

Once the memory has been allocated and copied, then the execution of the kernel

must be started. Before this can be done two variables holding the number of

iterations that the current chip is performing and the number of the first iteration

executing on the chip must be loaded into the chip’s memory. Once this is done

the kernel is launched using the code shown in Listing 4.18.

Loading data back from the device and cleanup

The code for loading back data from the device to the host, is once again

structured in a loop acting on a per chip basis. Firstly the loop must wait for the

chip being considered to have finished executing, this is shown in Listing 4.19.

Then, once the chip has finished executing, data can be loaded back into the host

memory, obviously considering that if only a portion of the array was loaded onto

the device then the portion loaded back will need to be positioned correctly within

4.4. Porting to C n 108

Listing 4.17: ClearSpeed: Allocating Memory

/ / A f l a g to hold what memory al io c a t i o n mode we are in
in t d o u b le lo ad =0;
for (i =0; i< $Num P ro c e sso rsS ; i+ +) {
/ / V a r i a b l e to s t or e t o t a l number o f by t es al io c a t e d
in t t o ta lA l lo c a te d =0;

/ / A l l o c a t e array A o f s i z e X by t es
t o t al A lloc a t ed+=X;
/ / D e t e r m i n e what chip A shoul d be l oaded on
in t procA = floo r (to ta lA l lo c a te d /$Mem Per Chip$) ;
i f (d o u b le lo ad = = 0) {

/ / N o t Double Loading
i f (i = 0) {

//M em ory l oadi ng is al l done on the f i r s t
pass o f the loop

/ / S o l oad array A i n t o procA ’s memory
}
i f (p ro c A != i) {

/ / I f we h a v e n ' t a l r e a d y loaded the data
i n t o t h i s p r o c e s s o r s memory

/ / L o a d a p o i n t e r to the data i n t o t hi s
p r o c e s s o r s memory

}
} e ls e i f (d o u b le lo a d = = l) {

/ / D o u b l e Loading
/ / S o load the data s e t i n t o chip i

}

/ / A t the end o f the i t e r a t i o n of the loop we check i f we
have used al l the chi ps memory.

/ / I f we h a v e n ’t t hen we can d u p l i c a t e the d a t a - s e t across
al l chi ps .

/ / T h i s only has any e f f e c t in the f i r s t i t e r a t i o n .
i f (to t a lA l lo c a t e d < $ Mem Per C h ip$) d o u b le lo ad =1;

}

4.4. Porting to C n 109

Listing 4.18: ClearSpeed: Calling a Kernel

CSAPI_run(k e rn e l$ N $ S ta te , p rocess$N $ [procNoN] ,NULL) ;

the main dataset on the host. This is done using the CSAPIjreadjmonojmemory

function demonstrated in Listing 4.20.

Listing 4.19: ClearSpeed: Wait for execution to finish

C SA P I_w ait_on_term inate (k e rn e l$ N $ S ta te , process$N S [
procNoN] , CSAPI_NO_TIMEOUT) ;

Listing 4.20: ClearSpeed: Loading Data Back onto the Host

CSAPI_read_mono_memory (k e rn e l$ N $ S ta te ,
CSAPI_TRANSFERPARAMS_SAFE, $V $R eturnK ernel$N $ [
procNoN] , S* s iz e o f (T) ,V]) ;

The final code generated performs any required cleanup. The only two tasks that

need to be performed here are calls to free to deallocate any local memory that

has been allocated, and a single call to free the ClearSpeed card (which also frees

the card’s shared memory), this call is shown in Listing 4.21.

4.4.2 G eneration o f D ev ice K ernel T em plate

The first stage in generating Cn device code is to generate the kernel template.

The kernel template is only generated for the top level kernel of the set of kernels

that are being ported.

This template consists of the generation of variable declarations for all data loaded

onto the device as mono (this mono keyword is omitted as ClearSpeed assumes

4.4. Porting to C n 1 1 0

Listing 4.21: ClearSpeed: Cleanup

C S A P I.d e le te (k e rn e l$ N $ S ta te) ;

mono unless poly is specified) variables which is shown in in Listing 4.22, and

the generation of a main method which is shown in Listing 4.23. Once the kernel

template has been generated, the code for the actual kernel itself is inserted using

include directives. Equivalently any sub kernels are also included by generating

#include directives at appropriate points within the kernel code itself.

Listing 4.22: ClearSpeed: Declaring Global Variables

/ / a s i ng l e var i ab l e
in t noP erP roc ;
/ / an array
f lo a t * d a ta

Listing 4.23: ClearSpeed: Kernel Template

in t m ain (in t argc , c h a r* * a rg v){
/ / a n example i n c l u d e d i r e c t i v e to i n c l u d e the ac t ua l

k e r n e l code.
^ in c lu d e ” k e rn e ls /k e rn e l$ N $. cn ”
}

4.4.3 N on-B uffered K ernels

Once the kernel template has been generated, the code for the kernel itself must

be generated. This consists of a series of additions and transformations on the

input code.

4.4. Porting to C n 1 1 1

Firstly, as the code generated will execute exactly X times, where X is calculated

as:

X = Num berOf Chips * NumberO f ProcessingElementsOnChip

We must generate code that allows us to deal with situations where the number

of iterations are less than the number of times the generated code will execute.

This code is shown in Listing 4.24. In this code the if statement within the for

loop is present to deal with situations where the number of iterations does not

divide evenly onto the topology of the device.

Listing 4.24: ClearSpeed: Multiple Iterations per PE

in t kernel$N $L oop;
poly in t o f f s e t ;
n o P e rP ro c= ce il ((d o u b le)n o E x e c /p eP e rC h ip) ;

o ff s e t =(get_penum () * noP erP roc)4 -f irs tE x e c ;

for (kernel$N $L oop= 0;kernel$N $L oop < no P erP ro c ;
kernel$N $Loop++) {

i f (o ffse t+ k ern e l$ N $ L o o p < noExec) {

}
}

The remainder of the kernel code will be inserted inside the loop and if statement,

before this can be done however it must undergo a series of transformations:

Variable Declarations: Each variable declared inside the kernel code must be

converted into a poly variable declaration. To do this the code generator will add

the keyword poly before each such variable declaration.

4.4. Porting to C n 1 1 2

Functions: Each function call within the kernel code, that is not a function

defined in the program code itself, needs to be converted to a poly function call.

To do this the code generator will change the name of the function adding a p

to the end. i.e. sqrtf will transform to sqrtfp. There are, however, some more

complex transformations that need to occur here.

One of these cases is that of random number generation. When a call to function

that generates random numbers i.e. rand or random is detected the ClearSpeed

parallel random number generation API must be used. Using this API consists

of [74]:

— Adding the library flag -lcn-mg to the makefile,

— Adding an include directive to the top of the kernel source file,

— Adding a method call to initialise the random number generator,

— Replacing the old function call with a new functional call to the ClearSpeed

random number generator.

An example of the code described above is given in Listing 4.25.

Additional Include Files: As mentioned in the previous section, each function

call must be translated to its poly equivalent, enabling it to operate on poly

variables. This means that the ^include directives must also be changed to allow

the importing of the poly function prototypes. To achieve this a p is added to

the end of the file name of the include file and the new directive is added in

addition to the existing one. i.e. #include stdio.h will cause # include stdiop.h

to be generated.

4.4. Porting to C n 113

Listing 4.25: ClearSpeed: Random Number Generation

/ / i n c l u d e d i r e c t i v e
in c lu d e < rn g p .h >

/ / c o d e to i n i t i a l i s e random number g e n e r a t o r
/ / U s i n g the Clearspeed r and f 8 (A L i near Congruence random

number g e n e r a t o r) .
poly c s _ r a n d 4 8 _ s t a t e r n g _ s t a t e ;
c s _rand48_s t ream rng_s t ream ;

/ / t h i s random number g e n e r a t o r uses a seed of
/ / 13 + pe number * 27
c s _ i n i t _ r n g _ m u l t i s e e d (rand48 ,&rng . s t r e a m , &rng . s t a t e ,13+

get.penum () *27) ;

/ / c o d e to generat e a random number

poly long a;
a = (c s _ f r a n d 4 8 (& r n g _ s t r e a m) *RAND_MAX) ;

4.4. Porting to C n 114

Reading Mono Memory: As each ClearSpeed processing element is only able

to access data within its own poly memory, every time the program code requires

data from mono memory, code must be generated to copy the required datum from

mono memory to poly memory. When generating this code, the code generator

ensures that each datum is only loaded from mono memory the first time it is

accessed, after that the copy in poly memory is always used. This process consists

of several steps, all of which are illustrated in Listing 4.26:

1. A temporary variable and a semaphore must be declared at the top of the

block.

2. A call to async.memcpym2p must be generated, before the variable is used

and as early as possible within the code. This is to give the maximum amount of

time for the data transfer.

3. Immediately before the datum is needed, the program must wait to ensure the

semaphore is ready.

4. The variable name within the code must be altered to the temporary variable.

Listing 4.26: ClearSpeed: Reading from mono memory

/ / d e c l a r e s e m a p h o r e
mono short SEN1APH0RE= 1:
/ / d e c l a r e t e m p o r a r y v a r i a b l e
poly f lo a t tmpKernelO;
/ / g e n e r a t e f u n c t i o n c a l l
async_memcpym2p (SEMAPHORE^tmpKernelO , $da t a a r r a y $ + (

$ p o s i t i o n in a r rayS) , s iz e o f ($type$)) ;
/ / w a i t f o r s e m a p h o r e
sem_wait (SEMAPHORE)

Writing to M ono Memory: Writing to mono memory is similar to reading

from mono memory. A temporary variable and semaphore must still be declared

4.4. Porting to C n 115

and the variable name within the code must be changed to match the temporary

variable. However, the position of the generated function call and the function

call itself are different. The function call is shown in Listing 4.27 and in this

case it is generated immediately after the final time that variable is used in

the current iteration of the kernel. Finally, the sem.wait is inserted immediately

before the first use of the variable in the next iteration of the kernel. This gives the

memory transfer the maximum amount of time to complete without it blocking

the program. However, this method does present a slight problem, as in certain

cases a semjwait will be encountered before any call to async-memcpyp2m, this

would mean the program would block infinitely, as without a memory transfer in

progress the semaphore will never become ready. This is solved by generating a

semsig , which initially sets the semaphore’s state to ready.

Listing 4.27: ClearSpeed: Writing to mono memory

async_memcpyp2m (SEMAPHORE, $ d a t a a r r a y $ + ($ p o s i t i o n in
a r ray$) ,&tmpKernelO , s i z e o f ($ t y p e $)) ;

There is one exception to these final two transformations, if the variable that is

being read from or written to, is a single variable (not an array) then they are not

necessary. ClearSpeed implicitly allows each PE to access single variables stored

in mono memory [35].

4.4 .4 Buffered K ernels

Generating code for a buffered kernel, consists of several main sections. A

template for a buffered kernel is used, this consists of calls to several functions

that will also be generated by the system. During this section we refer to two

variables, BuffeSize, which is the size of each buffer and NumBuffers, which is

the number of buffers. These variables are discussed further in Section 4.4.5.

4.4. Porting to C n 116

The overall buffer template is described in Listing 4.28, within the listing the

following assumptions are made, in order to simply the code for presentation

purposes:

— All input data are of the same type.

— The input and output semaphore are declared as ISEMAPHORE[..] and

OSEMAPHORE[..] respectively.

— The input and output buffers are declared as inputBuffer[0..1] and output-

Buffer[0..1] respectively.

— The Semaphores on the output buffers are set in the ready state.

The following variables are used within the listing:

— X - The number of individual memory copies that must be done to populate a

buffer.

— Y - The number of individual memory writes that must be done to empty an

output buffer.

— T - Data type of input.

— N - Kernel Number.

A buffered-kernel consists of calls to several functions, which are generated

specifically for the kernel:

saveData and loadData: These functions start the loading of data from either

mono to poly or poly to mono memory. This data, while in poly memory, are

4.4. Porting to C n 117

Listing 4.28: ClearSpeed: Buffered Kernel Template

mono in t c u r r e n t B u f f e r =0;
mono in t b u f f e r l t e r =0, b u f f e r O f f s e t =0;

/ / s t a r t l o a d i n g t he f i r s t t wo b u f f e r s
loadDataN (SEMAPHORE [c u r r e n t B u f f e r] , i n p u t B u f f e r [

c u r r e n t B u f f e r] ,0) ;
c u r r e n t B u f f e r =1;
loadDataN (SEMAPHORE [c u r r e n t B u f f e r] , i n p u t B u f f e r [

c u r r e n t B u f f e r] , 1) ;

for (b u f f e r l t e r =0; b u f f e r l t e r < $NoBuffers$; b u f f e r l t e r + +)
{

in t i n n e r L o o p I t e r ;
i f (c u r r e n t B u f f e r ==0) c u r r e n t B u f f e r =1; e ls e c u r r e n t B u f f e r

=0;
/ / b l o c k u n t i l t he b u f f e r we a r e a b o u t t o p r o c e s s i s

l o a d e d i n t o mem ory
inBufferWai tN (SEMAPHORE[c u r r e n t B u f f e r]) ;

/ / i s t he o u t p u t b u f f e r r e a d y t o u s e .
out Buffer Wai t $N $ (OSEMAPHORE[c u r r e n t B u f f e r]) ;

for (i n n e r L o o p I t e r =0; i n n e r L o o p I t e r < $ Buf fe rS i ze$;
i nne r L o o p I t e r + +) processN (i n p u t B u f f e r [c u r r e n t B u f f e r
] , ou t p u t Buf fer [c u r r e n t B u f f e r] , b u f f e r O f f s e t +
i n n e r L o o p I t e r , $Li s t of a l l p a r a m e t e r s r eq u i re d$,
i n n e r L o o p I t e r) ;

/ / s t a r t s a v i n g t he d a t a ba c k t o mono m emory
saveD ata$N $ (OSEMAPHORE[c u r r e n t B u f f e r] , ou t p u t Buffer [

c u r r e n t B u f f e r] , b u f f e r l t e r , b u f f e r l t e r +2) ;

/ / o n c e p r o c e s s i n g i s f i n i s h e d s t a r t r e l o a d i n g t h i s b u f f e r
o n l y i f m o re b u f f e r s n e e d t o be f i l l e d

i f (b u f f e r l t e r +2 < $ No B u f f e r s $) {
load D at aN (SEMAPHORE [c u r r e n t B u f f e r] , i n p u t B u f f e r

[c u r r e n t B u f f e r] , b u f f e r I t e r + 2) ;
}

bufferO ffset+=BU FFERSIZE;

}

4.4. Porting to C n 118

stored in buffers. An example of a buffer for a kernel where each iteration accesses

one datum from arrays a,b and c and the buffer size is five is shown in Figure 4.4.

A

Figure 4.4: ClearSpeed: Memory buffer layout

This method obviously places limitations on when using a buffered kernel is

applicable. If kernels do not access memory in an incremental fashion, it will

lead to loading of additional data which are not required. This will cause, in

some cases, major performance issues as the data communication path becomes

saturated with unneeded data transfers.

outBufferWait and inBufferWait: These functions force the program to wait

until the buffer has finished saving from poly memory into mono memory or

from mono to poly, respectively. To do this, it contains a loop which performs a

semjwait for each memory transfer that has been conducted.

process: The process function contains the actual kernel code itself. The code

here will have undergone transformations to its variable declarations and function

calls as described in Section 4.4.3. Additionally, all read/writes to variables that

are now stored in the buffer must be translated to refer to their location within

the buffer and not to the device’s main memory. As each data within the buffer

is arranged in order of first appearance within the code (note, in this case, each

unique data access is considered separate, even if it is in the same array, i.e.

data[z] and data[y] will be considered as two data accesses). Then, knowing

the location within the code, the location of the data within the buffer can be

calculated as:

4.4. Porting to C n 119

(.X * B u f ferSize) + IterationN um berW ithinB uf fe r

Where X is a value representing the order of occurrence within the code.

In certain kernels, additional code must be generated to deal with circumstances

where there are variables that must be loaded from mono memory but do not

change between iterations of the kernel. These are known internally by the system

as invariants and mainly occur when the buffered kernel is a subkernel of a non­

buffered kernel. When invariants are present, code is generated to load all of

these into an invariant array before the first iteration of the kernel is executed.

This invariant array is then passed to the process function.

Even though the code described here generates, for organisational purposes, pieces

of code in separate functions, it is entirely possible for the code to operate inline

with the main code running on the device. This is desirable in certain cases, i.e.

where the application struggles to fit in the memory available on the PE.

4.4.5 D eterm in ing Buffer sizes

In order to provide the best possible performance, the buffer size and the number

of buffers used within a buffered kernel must be calculated.

It is obvious that these two variables are related such that:

NumberoflterationsOnProcessingElement = B u f ferS ize*N um berO /B u ffers

So in practice only the B u f fe rS ize will be calculated.

4.4. Porting to C n 1 2 0

The main objective in using buffering, is that it decreases the total number

of memory copy operations, while increasing the size of each individual copy

operation. On a ClearSpeed chip maximum transfer rates are only achieved using

higher byte per transfer sizes [98]. It is known from previous experiments carried

out [98] that the achievable bandwidth begins to approach its maximum for mono

to poly transfers when the number of bytes per transfer equals 128. For poly to

mono transfers, the figure is 256 bytes.

From this, it can be said that the size of each data transfer is:

S i z e o f D a t a T r a n s f e r = B u f f e r S i z e * s i z e o f (Da taType)

So, a value of B u f f e r S i z e is selected so that each transfer moves enough data

to achieve its peak performance. However, there is a limitation to this; each

ClearSpeed PE has only 6kbytes of poly memory and we assume that that only

5kbytes are available for us to allow memory space for the call stack. So the total

amount of memory available for all input and output for each buffer is (in bytes).

_ (5120 — S i z e o f Invar ian t s)
M e m o r y Avai lable — ----------------- ------------------

This means that in cases where there is not enough poly memory to have a value

of B u f f e r S i z e that achieves maximum efficiency, then B u f f e r S i z e is set to the

largest possible value that will fit into memory. In cases where there is sufficient

poly memory then the BufferSize will be the smallest possible value, where all

transfers meet the requirements to achieve maximum bandwidth.

This section has outlined the process that is undertaken to port to ClearSpeed’s

Cn language. Due to the architectural differences between ClearSpeed and C for

CUDA, the generation of device specific code for C/v is a more complex process.

4.5. Creating Build Scripts 1 2 1

An example of this porting process is show in Section 4.6 and it is interesting

to see the difference in the size of the program code generated by each of the

currently available back-ends.

4.5 Creating Build Scripts

The final stage of the compilation process, for both of the two device types

considered, is the generation of build scripts. This consists of generating a

Makefile, that will allow the automatic building of the generated code using Make.

For CUDA this consists of generating rules to allow the compilation of cu files

to c files, then the compilation and linking of c files into the final binary and

the linking of this binary to the CUDA runtime library. An example of a CUDA

Makefile is shown in Listing 4.29.

Listing 4.29: CUDA: Makefile

OBJS=src / / src/dqem m . o
CFLAGS=—I .
%.c :%. cu

nvcc $ (CFLAGS) —cuda $< —o $@
%.o:%. c

cc $ (CFLAGS) - c $< - o $@
a l l : $ (OBJS)

cc —L / u s r / l o c a l / c u d a / l i b $(OBJS) —04 — o . / r u n —gpu
— l c u d a r t

c lean :
rm — f r un—gpu
rm - f $ (OBJS)

For ClearSpeed the Makefile consists of rules to build the . csx (Device binary file)

from the kernel code and then build and link the C host code, ensuring that it

4.6. Code Generation Example - GEMM 1 2 2

is linked with the ClearSpeed library and the operating system dynamic linking

library (libdl in the case of Linux). An example of a ClearSpeed Makefile is shown

in Listing 4.30.

Listing 4.30: ClearSpeed: Makefile

O BJS=src/ / s r c / d g e m m . o
CNOBJS=kernels / / k e r n e l s . c s x
CFLAGS=—I . — I / opt / c l e a r s p e e d / i n c l u d e / hos t
%. cs x :%. cn

cscn — dynamic —04 $< —o $@
%.o:%. c

cc $ (CFLAGS) - c $< - o $@
a l l : $ (OBJS) $(CNOBJS)

cc —L / o p t / c l e a r s p e e d / l ib $(OBJS) —o . / r u n —cs —
l c s a p i —l dl —lm

clean :
rm —f run—cs
rm - f $ (OBJS)
rm - f $ (CNOBJS)

4.6 Code G eneration Exam ple - GEM M

This section will outline a complete example of the porting process for a simple

application code: a general matrix multiplication. Firstly describing the initial

analysis and parsing that was performed by the client (this process was outlined

in Chapter 3) and then describing the process undertaken to port the application

to both C for CUDA and Cat-

The input source of the application is shown in Appendix A.I. This source, once

passed to the system client, generates the kernel tree that is shown in Figure 4.5.

Figure 4.5 shows that the client detects six possible kernels, each one correspond-

4.6. Code Generation Example - GEMM 123

Kernel 1Kernel 0 Kernel 3

Kernel 4

Kernel 2 Kernel 5

Program Code

Figure 4.5: GEMM: Example Kernel Tree

ing to a for loop within the code. Once parsing has been completed, kernels

0,1,2 and 5 will all be discounted by both the ClearSpeed and CUDA back-ends

because they each contain function calls (fgets and printf) that correspond to

I/O, something that neither of our considered devices are able to handle.

At this point the application now consists of the two kernels that are acceleratable

and the remainder of the code that will be executed on the host. The next step is

to actually port the code. The code that will run on the CPU (shown in Appendix

A.2) will be the same for both of the considered devices. However, actions taken

by the Cn and CUDA back-ends from this point differ significantly.

CUDA: The first action that the CUDA b ck-end will take will be to combine

kernels 3 and 4 into one larger kernel. This kernel will then be ported to CUDA.

The host code is shown in Appendix A.3.1 while the device code is shown in

Appendix A.3.2.

Cjy: The ClearSpeed back-end will operate differently; firstly using the process

outlined in this chapter, the ClearSpeed back end will firstly generate the host

code, which is shown in Appendix A.4.1. The key difference to note here is that

the Cn host code contains the loops that enable the application to utilise both

chips on the ClearSpeed Accelerator.

Secondly, the device code is generated for both kernels. As kernel 3 has a sub­

kernel it is ported as a non-buffered kernel and the code is shown in Appendix

4.7. Chapter Summary 124

A.4.2. Kernel 3 is also the top level kernel, so it contains the main method for

the device program. Kernel 4, as it is the innermost kernel, is generated as a

buffered kernel and the code is shown in Appendix A.4.3.

When run on both of the GPU and ClearSpeed device, the application produces

results that match those produced by the CPU and also, depending on data-set

size, provides improved performance compared to the CPU.

4.7 Chapter Sum m ary

This chapter has covered the functionality of one of the key requirements for

raising the level of abstraction available for programming acceleration devices: the

ability to perform source(C) to source (Accelerator) translation from a standard

language to a language/API suitable for execution on an acceleration device.

This chapter has covered the two back-ends that have currently been developed,

CUDA-C and Cn for ClearSpeed. For each of these back-ends there is

functionality in place to:

— Generate code to manage the loading of data to and from the device.

— Generate a kernel code to execute on the device.

— Generate appropriate build scripts to allow the automated compilation of the

generated code.

While it can be seen from the work presented in this chapter that there are many

similarities between Cn and CUDA, it can be also been seen that porting to Cn

is a much more involved process than porting to CUDA. This is largely due to the

4.7. Chapter Summary 125

abstraction at which the memory model of the ClearSpeed chip is exposed to the

developer. Using Cn the user has to explicitly manage data movement between

mono and poly memory using memory copy functions, in comparison CUDA hides

explicit data movement within the memory hierarchy from the programmer.

Possibly the most important difference from a performance perspective is CUDA’s

ability to natively hide memory IO latency from the programmer by time

slicing between a large number of threads. This ability is not present on a

ClearSpeed device and Cn programmers must use their own methods to hide the

memory latency within their programs. This performance issue is compounded

by ClearSpeed’s accelerators having their main memory split between chips.

This further complicates programming, forcing the developer to either split or

duplicate data between the two chips or incur the steep performance penalty of

having a chip accessing memory attached to one of the other chips on the device.

Other differences, include CUDA’s ability to keep a data-set stored in GPU

memory between execution of kernels, this is especially useful in applications

with pipeline characteristics. Although ClearSpeed does not support this, it can

be achieved on ClearSpeed by merging multiple kernels into one using branches

and using run time variables to decide which branch of the kernel is executed,

however, this is far from intuitive.

In the case of the Cn back-end that has been developed, the memory latency has

been hidden using double buffering. This implementation, which is provided by

the porting system, took a great deal of effort to implement and is required to

make ClearSpeed function anywhere close to competitively with the GPU but is

only applicable in certain circumstances.

However, ClearSpeed does provide other functionality that can be leveraged to

overcome this. One of ClearSpeed’s unique features is their swazzle operator.

4.7. Chapter Summary 126

Swazzle is a memory transfer between neighbouring processing elements within a

ClearSpeed chip, and can provide a massive performance boost, if the application

can be constructed in a manner to take advantage of it. The developed system

however, is unable to leverage on the Swazzle functionality, as the information on

the locality of data that is required is not expressible in C.

While this chapter has presented work that is specifically related to Cjv and C for

CUDA, it is clear that at the highest level the structure of both of these porting

systems is similar. This means that it will be entirely possible to construct

additional back-ends for other devices such as CELL, OpenCL, AMD GPUs

or even multi-core CPUs using OpenMP. Doing so should only be a matter of

developing the translation between the input, provided by the system client, and

the target device’s programming method. This is a development task of the

order of several hundred programmer hours(based on personal experience), with

this figure directly depending on the current level of abstraction provided by the

vendor tools for the device in question. One thing that must be considered while

developing back-ends for acceleration devices is that, as with ClearSpeed and

Swazzle, it is not always possible for an automated porting system to leverage all

of a device’s functionality, especially if it is a feature unique to that device, or it

requires information that is not expressible in the input language.

127

Chapter 5

D evice Selection,

Self-m odification and

Expandability

5.1 Introduction

One of the key abilities for an intelligent application porting system is its ability

to match an application to the most appropriate acceleration device. The

application classifier component of the system performs this functionality and, in

essence, it functions as a black box with which other components of the system

communicate.

In order to carry out this task of matching an application to a device, the

application classifier stores a series of metrics and performance data for all

application/device/data-set size combinations within the system.

Using the collected data, the system is then able to make an informed decision

as to which device each new application should be executed on.

By the very nature of what the application classifier does, the decisions it makes

5.2. Architecture of the Application Classifier 128

will be predictions based on previous data and, in order for the predictions it

makes to be accurate, the data that they are based on must also be accurate.

To ensure this, the application classifier will constantly acquire new performance

data, enabling its decision making capabilities to evolve.

In short, this leads to the application classifier having three main areas of

functionality:

— Storing Application Metrics.

— Decision Making.

— Acquiring new performance data to modify its classification model.

This chapter will firstly outline in detail the architecture of the application

classifier and then describe how each of these three areas of functionality are

implemented in the system.

5.2 A rchitecture of the A pplication Classifier

A diagram of the internal structure of the application classifier is shown in Figure

5.1 and it can be seen from this diagram that the system consists of five main

components:

1. A Web Service front end.

2. A Machine Learning system powered by WEKA [63].

3. A database of metrics and performance data, stored in a MySQL database. A

diagram of this database is shown in Figure 5.2.

5.2. Architecture of the Application Classifier 129

4. A database of applications. Stored in the format output by the system client,

prior to being ported to any specific device.

5. A database of data-sets, each associated with a specific application.

D atab a se of
P erfo rm an ce D ata

and M etrics

A pplication
store

D a ta -s e t
store

V a lid a teAdd D ata
Classify
Kernel

C lassify
A pplication

WEKA

W eb Serv ice Front End

Figure 5.1: Internal Structure of Application Classifier.

The database of performance data (shown in Figure 5.2) consists of three main

entities: accelerators, applications and kernels. The majority of performance

data and metrics are stored in relation to kernels; each kernel will have several

different entries for it showing the differing metrics for the various known problem

sizes. Each entry stores the runtime and optimum device for that kernel for a

specific problem size. Additionally, each application (which consists of one or more

kernels) also has an optimum device associated with it for all known data-set sizes.

The database of applications and data-sets are flat file databases, consisting solely

of archived copies of the application/data as appropriate, with each data-set being

linked to an application ID.

5.2. Architecture of the Application Classifier 130

+Executes Optim a lly On applications
+Application ID
+Problem Size
+Device_________

+is part of

+has

accelerators
+Name

Performance
+Kernel ID
+Problem Size
+Device
+Execution Time

kernels
+Application ID
+Kernel ID
+Problem Size
+Sub Kernels
+ In ten s ity
+Highest Precision Used
■jBranch Count
+Memory Access Count
+Memory W rite Count
+ Ite ra tio n s
+Data In
+Data Out
+Device________________
+Executes Optim ally on

Figure 5.2: The Database of Performance Data.

These databases and the other internal components of the application classifier

are only visible to the rest of the system via the four method calls provided by

the web service front end.

Add Data: This method is used to add performance data to the database.

It takes as input an Application ID, Kernel ID, the problem size, the recorded

metrics for that problem size, the execution time as measured by the acceleration

device and a copy of the data-set. This method will firstly add the execution

time and metrics to the database and then, if necessary, change the device that is

recorded as being optimal for this application/kernel for the problem size being

executed. If a data-set is provided it will be stored in the data-set database for

future use. More detail of the process of acquiring performance data is described

in Section 5.6.1

Validate: This method is used to validate that the current device the application

is being accelerated on is still valid. It is called when the application is executed

and takes as input the application ID and problem size. It returns the optimum

device for the application and problem size and stores the data-set being used.

If this prediction differs from what the end user is currently accelerating the

5.3. Gathering Metrics 131

application on, then the application may be re-ported for the new optimum device.

More details on this functionality are outlined in Section 5.5

Classify Application: This method is the core of the application classifier,

enabling the matching of the application to the device and takes as input the

application being considered. This method first stores the application in the

application database and then, using the metrics produced by the client, it returns

a prediction of the optimum device for the application. This process is described

in more detail in Section 5.4.

Classify Kernel: This method is a specialisation of the classify program method.

It is only used to determine, by a device, if a specific kernel should be executed

or not. It takes as input an Application ID, a Kernel ID, problem size, and the

name of the current device. This method, using similar steps to those discussed

previously, will simply determine if the kernel should be accelerated by the current

device or not.

5.3 G athering M etrics

In order for the system to make decisions a series of metrics are used. The

following metrics are collected for each kernel in the input application at compile

time:

— The highest precision data-type that is used by the application.

— A count of mathematical operations(Intensity).

— A count of the number of memory accesses (read and write).

5.4. Matching Applications to Devices 132

— A count of branching that occurs.

— The number of iterations of the kernel that are performed.

— Size of data that must be loaded to/from the device.

These metrics can be classified into two types: static, where the value does not

depend on the data-set size i.e. highest precision, and dynamic, where the value

does depend on the problem size.

Static metrics can be extracted at compile time, while, in order to discover

dynamic metrics such as the number of iterations and data transfer sizes, the

application is instrumented and executed once at compile-time with the supplied

data-set.

It should be noted that, at this stage, when extracting metrics for a kernel at

compile time, only that kernel is considered and not any sub-kernels. It should

be obvious that, as it is impossible to accelerate a kernel and not accelerate its

sub-kernels, the metrics of sub-kernels must be considered but this is done at a

later stage as a post-processing step.

5.4 M atching A pplications to D evices

The process of matching the input application to a device consists of several steps:

Step 1 : The application is checked to see if it is already known to the system. For

an application to be known each of its kernels and the grouping of these kernels

into an application must already be present within the database of performance

5.4. Matching Applications to Devices 133

data. If the application is known, the matcher simply returns the optimum device

stored for that application and no further steps are taken.

Step 2: An application ID is generated for the application.

Step 3: The application is checked to see if any of its kernels are already known

by the system. If any of its kernels are exactly equal to any existing kernels in

the performance database then these are duplicated and associated with the new

application ID (In reality this is unlikely to occur).

Step 4: All kernels of the application that are not already present within the

database are added for the initial problem size but with no performance data, or

optimum device attached.

Step 5 : The best possible device for each new kernel within the application is

selected using WEKA [63]. This stage is, in essence, a classification problem [128]

which a decision tree is utilised to solve. More detail on this phase can be found

in Section 5.4.1.

Step 6 : The best device for the application as a whole is selected. This is done by

selecting the device which is optimum for the majority of kernels in the application

weighted by the size of the kernel which is calculated as Noiterations*Intensity.

However, it should be noted that the CPU is here treated as a special case i.e.

the only time the CPU will be selected as the optimum device is if no kernels in

the application provide acceleration.

Step 7: A copy of the application code is stored.

The results of this process is a recommendation for the best device for the

application based on the initial problem size that has been provided.

5.4. Matching Applications to Devices 134

5.4.1 M aking Decisions

In order to actually make a decision regarding which device is optimum for a

particular kernel, a classification algorithm is used. The classification algorithm

that has been selected for use in the system is a decision tree. This algorithm

was selected for the following reasons [9]:

1. A decision tree is a representation that is human-readable and easily

interpreted.

2. The decision tree algorithm is a well understood algorithm allowing manual

validation of the decisions the system is making.

3. A decision tree copes well with both categorical and continuous data, both of

which are gathered as part of the metrics which are used by the system.

4. Decision trees are able to cope well with the presence of useless variables within

the data-set. This is a situation that may arise if some of the metrics that have

been used prove to be irrelevant for the performance data gathered.

5. Decision trees make no assumptions in regards to the distribution of the

training data.

Within this decision tree, leaf(terminal) nodes are used to represent acceleration

devices, while the non-terminal nodes are test conditions based on each of the

metrics which are extracted from the kernel source code. An example decision

tree is shown, for illustration purposes only, in Figure 5.3

In order to implement such a decision tree within the system, the WEKA machine

learning toolkit was used. The WEKA toolkit provides several different methods

5.4. Matching Applications to Devices 135

Intensity

> 25
and
< = 200

> 200< = 25

CPU Data In

< X MB Double Precision> X MB
In te g e r or
Single
Precision C learspeedCPU GPU GPU

Figure 5.3: An Example Decision Tree.

of constructing decision trees, but the one that was selected is a method of decision

tree induction known as C4-5. The C4-5 decision tree, and its successor, C5.0,

developed by J. Ross Quinlan have become the industry standard for decision

tree induction [133] and were the obvious choice. The precise implementation

of the C4.5 algorithm that is used is known as J48 and for the purposes of our

system, the suggested default parameters were used.

In order to construct the training data from data in the database a simple

transformation is used to produce a kernel instance for each entry in the kernels

table, excluding any that do not yet have an optimal device assigned. An

illustration of such an instance is shown in Table 5.1, in addition to the data shown

in the diagram it should be noted that instances are identified by an application id,

kernel id and a problem size, although these values are not used when constructing

the classification model. Example of these constructed instances for one of the

example application are shown in Appendix B.

Intensity Highest Branching Memory Memory Iterations Data Device
Precision Access Write Moved

Table 5.1: An Kernel Instance used for Constructing a Decision Tree

The majority of items here are extracted directly from the database, however:

5.4. M atching Applications to Devices 136

Intensity, Branching, Memory Write and Memory Access need to be computed

to take into account the execution of subkernels. This is done in the following

manner for a kernel k with a set of sub-kernels /:

Instancelntensityk = Intensity * -I- IterationSi * Intensityi
iei

It should also be noted that the Data Moved metric is the sum of the data that are

loaded to the device and the data that are loaded back to the host from the device.

The reason that the sum of these two figures are used to build the decision is that

the relative sizes of the Data In and Data Out figures make implications about

characteristics of an application, i.e. Reduction will produce much less output

data than input data. However, these implications are better measured directly

through metrics such as the intensity, number of memory reads and number of

memory writes, rather than being implied by the amount of data loaded to/from

the device.

The J48 decision tree, as implemented by the WEKA toolkit, is a non incremental

classifier, meaning that it must be reconstructed from these instances each time

new data are added. The computational complexity for constructing a decision

tree (assuming a constant number of attributes) with n training instances is [133]:

Oinlogn) + 0(n(logn)2)

This is the worst case complexity, assuming that n instances generate a tree

consisting of n leaves. However, in the vast majority of cases the complexity for

constructing the tree is far lower. In our results presented in Figure 6.18, the tree

was constructed from 200 training instances but only has 12 leaves. This means

that in many cases the computational complexity of constructing a decision tree

will tend towards O(n).

5.5. Validating Decisions 137

5.5 Validating Decisions

The previous sections have shown how the system is able to make an initial

decision about which acceleration device to execute an application on based on

the initial data-set that has been provided. However, the metrics of the vast

majority of applications are in some way dependent on the size of the problem

that they are solving. This leads to the strong possibility that the device that

is favourable for one data-set size may not be the optimum for another. In fact

it is widely assumed that for smaller data-set sizes the CPU will always be the

preferable device.

This problem resulted in the development of the idea of “validating “ the initial

selection each time the application is executed. However, in order to retain the

performance advantages of executing on an acceleration device, a full analysis of

the application is not practical each time it is executed.

The solution that has been used is to make use of metrics of other problem sizes

for this application to compute the estimated metrics. Details of how this is

undertaken for each metric is outlined below:

Highest Precision: Is fixed per application, so does not vary based on data-set

size. The value from initial analysis is used.

Iterations, Data In and D ata Out: These metrics will vary based on problem

size in the vast majority of applications. The new metrics for each of these are

computed as follows, assuming that for kernel k there are n previous metrics

stored for this kernel for varying data-set sizes, although an example is given

only for iterations:

5.6. System Evolution 138

Iterationsj

Iterationsk = ProblemSizek * — 1 ProblemSlzei
n

Intensity, Branching, Memory Write and M emory Access: These four

metrics do not vary based on problem size. As the value collected is for one

iteration of the kernel, but not its sub kernels. However, in order to accurately

perform classification of a kernel, the sub kernels must be taken into account.

This is done in the same manner that is described in Section 5.4.1.

Once the new kernel has been computed the method outlined in Section 5.4

is used to reclassify the application based on the new data-set size and, if the

classification has changed, the application can be reported to the new device.

5.6 System Evolution

The previous sections of this chapter have all discussed using data stored in

the application classifier to make predictions about the optimum device for an

application at a specific data-set size. However, the decision that is made is only

as good as the experimental data that is held. This shows a clear requirement for

the system to have to a supply of experimental data in order to base its decisions

on.

As mentioned previously in Section 5.4 when a new application is added to the

database, its metrics are stored but no performance data is present, as it has not

yet been executed by any devices.

The process of evolving the classification model used to make decisions is

essentially a gap-filling algorithm. This process is described in Listing 5.1.

5.6. System Evolution 139

This algorithm is executed periodically and has the effect of ensuring that the

performance database is as complete as possible given the current set of known

applications and data-sets. This allows the system to fill gaps in its performance

database i.e. if a new data-set has become available for an existing application

but there are some existing devices that this particular application and data-set

combination has not been executed on.

This process happens without user intervention and makes use of free runtime

on the devices present within the system, as opposed to interfering with user’s

execution of applications. This methodology was adopted due to the possibility

that the instrumentation of the application code would negatively impact the

performance, something which would be undesirable to the end user.

Listing 5.1: Algorithm for Integration of New Devices

for each a p p l i c a t i o n A in a p p l i c a t i o n s t a b l e

for each d a t a —set D a s s o c i a t e d with the a p p l i c a t i o n

for each a c c e l e r a t o r C in a c c e l e r a t o r s t a b l e

i f Performance da t a is not a v a i l a b l e for a p p l i c a t i o n A on a c c e l e r a t o r C using a
d a t a - s e t of s ize D

then
execute a p p l i c a t i o n A on a c c e l e r a t o r C using d a t a - s e t D and record performance

end i f

end for

update optimum device for a p p l i c a t i o n A using d a t a - s e t D

end for
end for

5.6. System

Evolution
140

5.6. System Evolution 141

5.6.1 G athering Perform ance D ata

The performance data required by the system is acquired by re-porting the

application and adding generated instrumentation to the code, in order to collect

the following metrics for each kernel:

— Wallclock execution time of the kernel. This is the execution time of all

generated code including device initialisation, loading data to/from the device

and the execution of the device program.

— Updated iteration count.

— Updated Data In and Data Out figure.

The instrumentation that is inserted consists of standard ANSI C code that

outputs the metrics to a file that is then read by the system.

Updating Iteration Count: This metric is updated by outputting the number

of iterations of the kernel prior to its execution starting.

Updating Data In and D ata Out Count: These metrics are updating by

printing to the file, the sum of the sizes of input/output data loaded to/from the

device, prior to execution of the kernel.

Collecting Execution Time: The execution time is collected by inserting two

pieces of code, shown in Listings 5.2 and 5.3. The code to start the timer is added

immediately prior to the first line of generated code for the kernel and the timer

stop code is added immediately after the final line of code in the generated kernel.

This enables the system, on a per kernel basis, to measure the execution time of

the kernel, including initialisation and data movement overheads in a consistent

5.6. System Evolution 142

manner. If the kernel that is being instrumented is a subkernel which may be

executed many times, then the average (mean) execution time is used.

Listing 5.2: Timing Code: Starting the Timer

long long t i m e r _ s t a r t () {
s tr u c t t imeva l t ime;
ge t t imeofday(&t ime , NULL) ;
return (t ime . t v_sec * 1000000 + t ime . t v . u s e c)

/ 1000 ;

Listing 5.3: Timing Code: Stopping the Timer

long long t i m e r _ s t o p (long lon g p r e v i o u s T i m e) {
return t i m e r . s t a r t () — pr ev iousT ime ;

}

The decision to include all of the overheads is only natural when considering that

a fair comparison with CPU execution is essential; it is useless to accelerate an

application, even if the performance on the device is better than on the CPU,

if the total execution time, including overheads such as data transfer, is greater

than if the code was executed on the CPU.

However, when performing this instrumentation, there are two special cases which

must be dealt with. Firstly, the CUDA compiler performs optimisations, to reduce

the memory transfer between host and device, when multiple kernels are present.

So in order to gain accurate performance data of one kernel’s execution, each

kernel must be executed in isolation.

Secondly, the CUDA programming model dictates that the method call to execute

the kernel on the device is non-blocking and that blocking occurs in the method

calls to load data back onto the host [46]. This means that in cases where data

5.6. System Evolution 143

is not loaded back to the host at the end of the execution of a kernel, the timer

methods will report the execution time as very low. In order to counteract this

the code shown in Listing 5.4 is inserted into the generated code immediately

after the kernel call. This code will block until the Kernel execution is finished,

ensuring accurate timing results are obtained.

Listing 5.4: Ensuring CUDA execution finished before stopping the timer.

cudaThreadSynchronize () ;

5.6.2 Integration of N ew D evices

As a special case of the process of acquiring performance data, the application

classifier is also able to pro-actively improve its own knowledge-base by adapting

to the introduction of new devices or newer versions of existing devices.

This functionality is motivated by the need for the system to be able to bootstrap

any new devices that are added to the system. Without such a process,

a newly added device would not be selected to execute applications as the

application classification system would continually select devices that it already

has performance data for. The solution that has been developed consists of two

phases: firstly, the system must discover any new devices and add them to its

database. Secondly, the system must integrate these devices into the system by

generating performance data for them, this step is identical to the process of

gap-filling that has already been discussed in this section.

In order for a new device to be added to the system a set of pre-requisites must

be met:

— A back-end porting system must be developed/adapted for the device.

5.7. Chapter Summary 144

— A web services server must be installed on the host node that the device is

attached to.

— The device must be named.

Each type of device must had a unique name within the system. The device name

must also allow for differentiation between versions of the same device, i.e. if the

device name GPU represented GPU model X then the newer model Y could be

named GPU2.

Once these pre-requisites have been met, all that is required for the user to add

the device to the system is add it to the UDDI server, this is normally as simple

as adding the host nodes IP address to the UDDI server.

Once the entry has been added to the UDDI server, the application classifier

(which periodically checks for new devices) will pick up that a new device is

present and add it to its internal database. This step then allows the device to

be fully integrated into the system using the process that has been previously

discussed and the algorithm mentioned in Listing 5.1.

5.7 Chapter Sum m ary

This chapter has described the architecture and functionality of the application

classifier component of the Application Porting System. This component,

although used as a service by both the system client and the individual

acceleration devices, forms the core of the system.

The application classifier stores all the performance knowledge that the system

has gained and uses this data to predict a-priori the optimum device for applica­

5.7. Chapter Summary 145

tions. It is also able to provide updates, and improve existing recommendations

as new knowledge becomes available.

In order to produce these predictions the application classifier uses a classification

model: a decision tree. The decision tree algorithm that is used is the J48

implementation of a C4.5 decision tree. The primary reason for choosing the

decision tree algorithm, is that it is a relatively simply, but powerful classification

model. It is human readable enabling the constructed tree to be analysed and,

additionally, used to manually validate classifications that have been made. The

J48 algorithm that has been utilised is non incremental meaning that every time

the training data that built the tree is modified the tree must be rebuilt. This

has the side effect of ensuring that the algorithm is deterministic, meaning that

regardless of the order that training data are received by the system, the resultant

tree will always be the same.

The application classifier itself consists of a web services front end, a machine

learning system and a set of databases storing performance data, application

code and sample data-sets.

The application classifier that has been outlined in this chapter is a key component

of the novel self-modifying application porting system that is described in this

thesis. It operated in both a pro-active and reactive system; responding to

requests and storing performance data that is provided to it. The system will pro­

actively detect and fill gaps in its performance database, allowing the classification

model to be modified, thus improving the recommendations that it gives without

user interaction. This process is also used to allow the automatic integration

and bootstrapping of new devices into the system, once the device had been

added to the UDDI server. This process is necessary because any device that the

system did not possess performance data for could never be selected to execute

an application.

5.7. Chapter Summary 146

Another possible use of the application classifier component, along with a

populating classification model, could be as a stand alone recommendation

service. Such a service would prove valuable to non computer science users with

limited knowledge of application acceleration by providing a prediction of the

optimum device for an application(s) prior to the purchase of hardware, in order

to ensure that the correct device is purchased.

147

C hapter 6

Application Case Studies

6.1 Introduction

In order to evaluate the performance of the system that has been built, a series

of test applications were run through the system. These test applications aim to

show that the system is functioning according to the following goals:

1. The system is generating device specific code which performs comparably to

hand ported code.

2. The system is able to select the most appropriate device based on performance

data it holds.

3. The system is able to modify its internal classification model based on the

data acquired.

In order to fully evaluate the system, a set of test examples were selected.

However, before these examples were executed, a set of simpler examples were

first ported in order to provide the system with a base set of performance data

that it will use to make predictions on the unseen test examples that will later

be trialled with the system.

6.1. Introduction 148

For each application selected, both seed and test, a single precision and a double

precision version will be executed and, for both of these versions, the following

results will be presented for a variety of data-set sizes:

— Wall-clock execution times of the application running on the CPU, GPU and

Clear Speed.

— Wall-clock execution times of a hand ported version of the application running

on the same hardware.

— A comparison of these performances relative to the CPU control device.

— The performance difference between the optimised hand ported code, produced

by the developer, and automatically ported code, produced by the system.

— Peak performance, measured in GFlop/s, and the application’s memory

bandwidth, measured in GB/second, will be presented to enable a comparison to

any re-factored or tuned versions of the applications that exist.

In the results tables presented in this chapter, it should be noted that where X is

shown this means that the execution time for that kernel/application could not

be measured, this means that either the application was not executable at that

data-set size, the kernel itself was not executable or the kernel execution time

was too long to measure (this time-out is a set parameter).

It should be noted that these performance results are taken from the results

acquired by the acceleration back-end devices (Discussed in Chapter 5) and an

overall measure of each applications wall-clock runtime. This means that for the

measured execution times of the kernels, the runtime acquired includes the device

initialisation, kernel runtime and memory transfers. The overall application

6.1. Introduction 149

runtime is the entire execution time of the application on the node hosting the

acceleration device. This includes all non-accelerated code running on the CPU.

Additionally, the device code generated by the human programmer is a direct port

from the CPU code to the respective devices. In many cases, it is possible to get

higher performance by re-factoring the input code or adapting it to utilise libraries

available for the device. These cases are shown by way of comparisons to re­

factored applications which illustrate the performance that can be achieved given

sufficient development time and the availability of expert developers. However,

with regards to the hand ported versions of the applications, the purpose of the

comparison is to confirm that the code generators are producing efficient direct

ports without re-factoring. As such, these hand-ports have been developed with

rigour and all reasonable methods for improving performance have been taken

short of undertaking re-factoring of the original algorithm.

The peak performance figures that have been presented for each application

are calculated from the metrics stored within the Application Porting System.

Computation is calculated as follows where KernelExecutionTime is execu­

tion time excluding the time taken for transfer of data to the device, and

NoFloatingPointOperations Per Kernel is the number of flops per iteration of

the kernel:

^ . NoFloatingPointOperations Per Kernel * NoiterationsComputation = ----------------------—--
Kernel ExecutionT ime

Memory Bandwidth is calculated as follows, where SizeD ataTransfer is the

number of bytes that is moved between the processing element and device’s main

memory:

6.1. Introduction 150

_ . . . (SizeO fD ataTransfer) * Noiterations
Memory Bandwidth = ----- Kernel ExecutionT ime

Finally, transfer rate is calculated as:

_ . _ SizeO f D ataTransfered
Transfer Rate = — ---------—------ -——-----

M emoryTrans ferT im e

However, there are slight issues in measuring some of the inputs for these

equations. The Application Porting system measures the execution time of each

kernel (excluding memory transfer time) and the total execution time(including

time taken to transfer data to the device). However, when measuring the time

taken for memory transfers to the GPU it is reliant on the data given by the

CUDA profiler (for ClearSpeed this was measured directly).

In addition to the performance data described above, for the more complex test

examples, detailed analysis will be presented on the decisions that the system

made when predicting the optimum device for the application. Additionally,

the decisions will be validated to determine if the chosen device is actually the

optimum device for the application.

The applications that were selected as seed applications, were selected as

“building block” applications based on their categorisation within the Seven

Dwarfs of Applications, these Dwarfs, which were first described by Asanovic

et al, constitute classes of applications defined by similarity in computation and

data movements [14]:

— Dense Linear Algebra,

— Sparse Linear Algebra,

6.1. Introduction 151

— Spectral Methods,

— N-Body Methods,

— Structured Grids,

— Unstructured Grids,

— Monte Carlo.

From these categories the following applications were selected as seed applica­

tions:

— Dense Linear Algebra - GEMM,

— Structured Grids - Sobel Edge Detector,

— An N-Body Simulation,

— A Monte Carlo Simulation.

The three more complex applications that were selected as test applications are:

— A 2D Fast Fourier Transform,

— A Canny Edge Detector,

— An iterative ray tracer.

All of the experiments discussed in this chapter were conducted on the same

system. This system consists of two acceleration devices: A NVIDIA Tesla

6.1. Introduction 152

C1060 GPU with 4GB of GPU memory running CUDA version 2.2 and a single

ClearSpeed e710 accelerator board, consisting of two CSX600 ClearSpeed Chips

with 1GB of shared memory running version 3.1 of the C/v SDK. Acting as a

control for the gathered performance data is an Intel Xeon 3.0GHz with 16GB

RAM, with data shown for both single-core and estimated quad-core performance

of this chip. All CPU code is compiled using GCC version 4.1.2. For comparison

the optimum performance characteristics of both devices are shown in Table 6.1.

Please note that the quoted performance for ClearSpeed is for one chip, so the

theoretical maximum computation achievable for the board that is utilised in this

chapter will be twice this figure.

Device Computation
GFlop/s

Memory
Bandwidth

GB/s
Single Precision

GPU 933 102
ClearSpeed 25 96

Double Precision
GPU 78 102

ClearSpeed 25 96

Table 6.1: Optimal Performance Characteristics of Devices[43] [36]

In all the results shown in this chapter estimated quad-core performance is used.

The estimated quad-core CPU was used in order to provide a comparison to the

best possible single chip CPU performance that is currently available. In order to

achieve this “best possible” comparison it is assumed that all kernels encountered

give a four times performance improvement when running on a quad-core CPU.

This is an assumption that linear speedup is achievable and, to verify that it is

a reasonable assumption, a series of experiments were conducted with a subset

of the applications discussed in this chapter ported to utilise all four cores of

a Intel Xeon 3.0GHz, using GCC’s inbuilt OpenMP support. These results are

shown in Table 6.2 and show that in both precisions an average performance

6.2. Seed Applications 153

improvement of « 2.9x has been achieved. These results suggest that while

employing a quad-core CPU will not provide a 4x performance improvement, it

is a useful approximation to enable the simulation of a “best possible” multi­

core version of the CPU that is being used and could be extended for future

generations of CPUs i.e. oct-core.

Execution Time /s
Application N-

Body
Sobel Caimy FFT

Kernel 1 2 1 2 3 4 1 2 3
Single Precision

Single
Core

2.07 4.90 3.55 6.57 1.22 0.17 14.85 7.53 1.45

Quad
Core

0.68 1.54 1.28 2.12 0.42 0.05 5.31 4.57 0.52

Speedup 3.04x 3.19x 2.77x 3.10x 2.91x 3.53x 2.80x 1.65x 2.79x
Double Precision

Single
Core

2.75 5.00 3.67 6.62 1.27 0.22 15.86 7.75 2.1

Quad
Core

0.89 1.58 1.33 2.14 0.43 0.09 5.58 3.78 0.61

Speedup 3.09x 3.17x 2.76x 3.09x 2.96x 2.45x 2.84x 2.05x 3.45x

Table 6.2: OpenMP Performance

6.2 Seed A pplications

In addition to the four specified seed applications two even simpler applications

were also run through the system. These applications were deliberately selected

as some of the simplest pieces of code that could be constructed but still be

parallelisable. The two applications that were trialled were:

— Zeroing memory.

- Addition of two arrays.

6.2. Seed Applications 154

Both of these two applications were executed using data-set sizes from 640,000 to

25,000,000 data-items in both single and double precision and in all cases, due to

the lack of any mathematical complexity, the GPU offered the best performance.

6.2.1 S tructured Grids - Sobel E dge D etecto r

The Sobel Edge Detector application involves finding the magnitude of the

gradient of each pixel in a 2D black and white image. This is done by convolving

two 3x3 masks (A and B), which are shown in Figure 6.3, over the image. The

magnitude of the gradient can then be calculated for each pixel by:

\G\ = %A2 + B 2

-1 0 +1 +1 + 2 + 1
-2 0 + 2 0 0 0
-1 0 +1 -1 -2 -1

Table 6.3: Sobel Convolution Masks A and B

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
1000x1000 0.16 0.12 1.06 1.15 8% 0.22 0.28 31%
2000x2000 0.41 0.26 1.21 1.27 4% 0.64 0.68 5%
4000x4000 1.43 0.84 1.78 1.91 7% 2.36 2.53 7%
6000x6000 3.19 1.86 2.69 3.01 12% 5.2 5.48 5%
8000x8000 5.63 3.27 3.69 4.46 21% 9.04 9.57 6%

10000x10000 8.65 4.98 5.47 6.49 19% X X X

Table 6.4: Single Precision Execution Times for Structured Grids Application (
X signifies that the application failed to execute)

6.2. Seed A pplications 155

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
1000x1000 0.14 0.10 1.09 1.17 7% 0.25 0.25 2%
2000x2000 0.41 0.26 1.26 1.34 7% 0.75 0.79 6%
4000x4000 1.54 0.93 1.9 2.17 14% 2.7 2.84 5%
6000x6000 3.38 2.02 2.97 3.42 15% 5.94 6.22 5%
8000x8000 5.96 3.55 4.48 5.29 18% X X X

10000x10000 9.27 5.52 6.37 7.73 21% X X X

Table 6.5: Double Precision Execution Times for Structured Grids Application

Sobel Performance Results - Single Precision
10

— -------------- CPU —
Quad Core CPU — x—

Human GPU Port •••*•••
System GPU Port a

Human Clearspeed Port » -
System Clearspeed Port ----o---

9

8

7

6

5

4

3

2

1 •x-M*
0

6000 7000 8000 9000 100002000 3000 4000 50001000
Image Size

Figure 6.1: Graph of Single Precision Execution Times for Structured Grids
Application.

Ex
ec

ut
io

n
T

im
e/

s
6.2. Seed A pplications 156

Sobel Performance Results - Double Precision
10

— -------------- CPU
Quad Core CPU — x—

Human GPU Port
System GPU Port a

Human Clearspeed Port -*■-
System Clearspeed Port -• -o- ••

9

8

7

6

5

4

3

2

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Image Size

Figure 6.2: Graph of Double Precision Execution Times for Structured Grids
Application.

6.2. Seed Applications 157

Data

Size
n

Single Precision
Performance

Double Precision
Performance

GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

1000x1000 O.lOx 0.43x QCPU O.Olx 0.40x QCPU
2000x2000 0.20x 0.38x QCPU 0.19x 0.33x QCPU
4000x4000 0.43x 0.33x QCPU 0.43x 0.33x QCPU
6000x6000 0.62x 0.34x QCPU 0.59x 0.32x QCPU
8000x8000 0.89x 0.34x QCPU 0.67x X QCPU

10000x10000 0.77x X QCPU 0.71x X QCPU

Table 6.6: Performance Comparison Results for Total Execution Time of
Structured Grids Application

Tables 6.4, 6.5 and 6.6 along with graphs 6.1 and 6.2, show that this application

gives the best performance on the quad-core CPU, although the GPU does

outperform the single core CPU. Additionally, the Sobel application performs

poorly on the ClearSpeed accelerator, and, in the largest test case in single

precision and the two largest cases in double precision, the application is not

able to execute due to the smaller size and organisation of ClearSpeed’s device

memory.

This poor performance on ClearSpeed is due to the fact that the Sobel application

reads data from memory non-sequentially i.e. it requires data from three separates

rows of the source image in order to compute the current pixel. This means

that the ClearSpeed device must load the data from the device memory into the

processing element memory in smaller chunks, and, unlike CUDA, ClearSpeed

has no method of hiding this memory latency. It is however, interesting to note

that for smaller data-set sizes ClearSpeed outperforms the GPU, but, at these

data-set sizes, the CPU performs better than both acceleration devices.

When comparing the performance of the manual and automatic ports, we can see

that differences (baring the smallest ClearSpeed test case) are all within «21% of

6.2. Seed Applications 158

the hand ported code. The main reason for these differences is that the manual

CUDA port is able to take advantage of loading some items of memory into

the multiprocessor’s shared memory in order to reduce the amount of memory

transfers needed.

Comparison with Existing Work

While no direct performance data from other implementations of the same

application could be found, there are several examples in literature of similar

applications running on ClearSpeed devices and GPUs.

Heuveline et al[65] have implemented the Lattice Boltzmann Method on a

ClearSpeed accelerator card utilising the CSX600 chip (the predecessor to the

chip used in this thesis). While this application is radically more complex that the

Sobel implemented here it is also categorised into the Structured Grids dwarf[14].

In their report the authors implement the algorithm on the device and then

compared it against a Xeon CPU, before deciding that only a small part of the

overall algorithm (the collision step) was actually beneficial to implement on

the Accelerator board. However, the performance results for this part of the

application shows that the have achieved a 1.6x speed-up compared to the CPU.

Examining GPU based applications, Brandvik et al[21] in 2009 developed

TurboStream, a Navier Stokes solver. In this paper the author has provided

performance figures that compare a single NVIDIA GT200 GPU and a quad-core

Xeon 2.33GHz Processor. This data shows that the NVIDIA GPU provides a

performance improvement of approximately 20x, reducing the computation time

to 1 minute on the GPU from 20 minutes on the CPU. In a second publication[22],

Brandvik et al compare the performance of generated CUDA code from a source

code generator to that of a CPU. The code generator that the author has

6.2. Seed Applications 159

developed takes as input the Python definition of a stencil kernel and produces

the code for an equivalent CUDA kernel. The generated GPU code provides,

on average, 300-440% performance improvement over the CPU and the author

calculates that the GPU achieves between 13 and 99 GFlop/s performance and

between 18 and 47 GB/s memory bandwidth.

When comparing these performance figures to those for the Sobel shown in Table

6.7 it can be seen that the performance of the automatically generated code only

achieves approximately 2.5 GFlop/s. This data also shows that the memory

bandwidth achieved within the kernel is very low. This low memory bandwidth

is the main factor preventing a further performance improvement. In order to

improve the performance additional work will need to be done to increase the

memory efficiency of the generated kernel, possibly by utilising CUDA’s shared

memory functionality or by reducing the number of memory reads by changing

the way in which the kernel accesses the device memory.

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
GB/s

Peak
Transfer

Rate
GB/s

Single Precision
GPU 2.58 1.86 1.19

ClearSpeed 1.21 0.87 0.34
Double Precision

GPU 2.62 3.78 1.33
ClearSpeed 1.1 1.59 0.39

Table 6.7: Sobel Application Peak Performance

6.2.2 D en se Linear A lgebra - M atrix M ultip lication

The next application that has been executed using this system was a general

matrix multiplication application. This application utilised the standard GEMM

6.2. Seed A pplications 160

formula C = aA B + (3C , where the new matrix C is computed based on the

product of two matrices A and B and the old matrix C. The dataset size n signifies

that the size of matrices A B and C is n * n .

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
200 0.15 0.12 1.13 1.14 1% 0.18 0.23 28%
800 4.00 1.93 2.55 2.59 2% 2.70 2.72 1%
2000 51.72 18.68 15.73 18.24 16% 25.46 25.65 1%
2800 135.97 45.33 40.00 40.86 2% 72.92 73.21 1%
4000 382.84 118.60 110.62 133.57 21% 166.86 167.39 1%
5000 738.06 220.07 224.65 249.65 11% 337.59 339.05 1%

Table 6.8: Single Precision Execution Times for GEMM Application

GEMM Performance Results - Single Precision
800

----------- CPU —+—
Quad Core CPU — x—

Human GPU Port •••*-■-
System GPU Port a

Human Clearspeed Port -
System Clearspeed Port - -o---

700

600

jo 500
'i>
£i—
| 400
3
O

m 300

200

100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Image Size

Figure 6.3: Graph of Single Precision Execution Times for GEMM Application.

Ex
ec

ut
io

n
T

im
e/

s
6.2. Seed A pplications 161

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port Diff
Human

Port
System

Port
%

Diff
200 0.18 0.15 1.10 1.25 14% 0.16 0.19 19%
800 4.13 2.03 2.86 2.87 1% 3.89 3.93 1%
2000 53.68 19.70 17.98 22.05 23% 46.01 46.40 1%
2800 142.07 47.90 41.60 42.63 3% 142.28 143.12 1%
4000 399.56 125.11 124.22 137.82 11% 311.90 312.61 1%
5000 768.22 232.23 242.75 255.76 6% 842.67 1084.55 29%

Table 6.9: Double Precision Execution Times for GEMM Application

GEMM Performance Results - Double Precision
1200

CPU —
Quad Core CPU — x—

Human GPU Port —•*•••
System GPU Port s

Human Clearspeed Port -
System Clearspeed Port -- -o- --

1000

800

600

400

200

20001000 1500 2500 3000 3500 4000 4500 5000500
Image Size

Figure 6.4: Graph of Double Precision Execution Times for GEMM Application.

6.2. Seed Applications 162

Data

Size
n

Single Precision
Performance

Double Precision
Performance

GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

200 O.llx 0.52x QCPU 0.12x 0.79x QCPU
800 0.75x 0.71x QCPU 0.70x 0.52x QCPU

2000 1.02x 0.73x GPU 0.88x 0.42x QCPU
2800 l .l lx 0.62x GPU 1.12x 0.33x GPU
4000 0.89x 0.71x QCPU 0.91x 0.40x QCPU
5000 0.89x 0.65x QCPU 0.91x 0.21x QCPU

Table 6.10: Performance Comparison Results for GEMM Application

As can be seen from the performance results presented in Tables 6.8, 6.9 and

6.10 and Figures 6.3 and 6.4, the matrix multiplication largely gives the best

performance on the quad core CPU.

The application is characterised as an 0 (N 3), however there is N 2 way parallelism

available, with each item of the output matrix being computed in parallel. This

gives this particular algorithm the characteristics of having a large number of

iterations of a reasonably sized kernel.

When analysing the performance results in more detail it is clear that although

the quad core CPU gives generally the best performance, the difference between

it and the GPU is relatively small, and that the GPU does outperform the single

core CPU by a significant margin. One interesting result that has also been seen

here is that for the 2000x2000 and 2800x2800 sized datasets the GPU performs

better (although only marginally). It is thought that this has occurred because it

is at this data-set size that the performance improvement that the GPU provides

overtakes the overheads of moving the data into GPU memory, however this

improvement is then lost as the size of the problem increases and the amount

transfers to/from the GPU’s core to its main memory also increases.

Another key point to note is that the performance difference between the

6.2. Seed Applications 163

automatic and manual port is small compared to the data-set size, this causes the

percentage difference between the two ports to vary quite considerably, but it is

encouraging to note that, except for examples with very small run times and the

largest ClearSpeed experiment in double precision, the difference between hand

ported and automatically ported code is ~20%.

When considering the performance of the ClearSpeed accelerator: this particular

application outperforms the single core CPU in single precision. However, in

double precision, ClearSpeed only slightly outperforms or matches the CPU’s

performance and for the final dataset the ClearSpeed performance is noticeably

worse. This is due to ClearSpeed’s memory management model, as the 5000x5000

matrix is too large for each chip to store a copy in its own local memory the chips

must start sharing memory between them, this incurs a significant performance

overhead as shown by the results.

Comparison with Existing Work

Dense linear algebra, under which DGEMM is classified are one of the application

types that are most commonly ported to an acceleration device. In terms

of ClearSpeed, the manufacturer provides an extensive BLAS(Basic Linear

Algebra Sub-programs) library, and Mclntosh-Smith claimed in a presentation

that executing their DGEMM on the most recent model achieved performance

approaching the chip’s maximum of 25GFlop/s[88].

On the GPU, a great deal of work has been done in optimising BLAS routines and

CUDA have provided their own BLAS library, which includes an implementation

of DGEMM[103] shown to achieve, on a current TESLA GPU, a maximum of

approximately 350GFlop/s in single precision and up to approximately 70GFlop/s

in double precision[96]. As discussed in Section 2.6, this performance is however

6.2. Seed Applications 164

heavily dependant on the dimensions of the matrix being considered. Finally Nath

et al have shown that on the NVIDIA FERMI M2050 (a higher performance GPU

than used in this thesis) that they can achieved performance of up to 300GFlop/s

in double precision, this performance was achieved using the MAGMA BLAS

DGEMM[97].

Comparing these results to the performance shown in Table 6.11 we can see that

the automatically generated code is nowhere near achieving the peak performance

discussed above. This is simply because of the issues with directly porting

the standard GEMM algorithm. In order to improve performance the GEMM

algorithm needs to decompose the problem, this is not exhibited in input CPU

code, so it is not something that can be automatically generated using the

methods employed in this thesis. A second related problem is that when running

on almost any processor the GEMM algorithm is memory bound, so in order to

provide improved performance on the GPU far more work is needed to ensure

that the maximum possible memory bandwidth is achieved, such as ensuring

the memory access is coalesced and making extensive use of the GPU’s shared

memory.

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
MB/s

Peak
Transfer

Rate
MB/s

Single Precision
GPU 3.70 4.94 1.6

ClearSpeed 2.59 3.46 0.32
Double Precision

GPU 3.62 9.83 2.00
ClearSpeed 0.73 1.94 0.59

Table 6.11: GEMM Application Peak Performance

6.2. Seed Applications 165

6.2.3 N B od y M ethods

The next seed example that was executed by the system is an N-Body simulation

based on the all-pairs method outlined in [32], where the initial inputs to the

problem are a set of n bodies b\...bn each body i has mass ra*, velocity Vi and

position pi. The distance between any two bodies is written dij and the force on

body i due to body j is written fa.

The algorithm then carries out the following steps

— Compute fij for all pairs of bodies, fa = Gm*r̂>r%t where i ^ j
I r i j I

— Compute total force on each body fi = JT fij

- Update the position and velocity Vi of each body pi — pi + V{At + t2

and Vi = Vi +1 1 rrn

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
500 0.82 0.80 1.08 1.13 5% 0.77 2.67 246%
1000 3.24 0.84 1.17 1.19 2% 2.01 4.79 138%
2000 12.94 3.27 1.49 1.60 7% 6.64 13.88 109%
4000 51.67 13.00 2.23 2.39 7% 24.64 50.48 105%
6000 116.21 29.31 2.49 2.59 4% 55.98 111.15 99%
8000 206.53 52.26 3.05 3.15 3% 97.85 196.05 100%

Table 6.12: Single Precision Execution Times for N-Body Application

6.2. Seed A pplications 166

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
500 1.04 0.92 1.36 1.39 2% 1.01 3.14 211%
1000 4.14 1.01 1.75 1.88 7% 3.52 7.74 120%
2000 16.71 3.93 5.09 2.63 4% 12.27 25.02 104%
4000 66.61 17.46 5.56 5.63 1% 46.18 94.78 105%
6000 150.016 39.73 10.51 10.53 1% 105.41 211.11 101%
8000 268.02 68.75 13.78 13.86 1% 184.30 373.85 103%

Table 6.13: Double Precision Execution Times for N-Body Application

N-Body Performance Results - Single Precision
250

CPU i
Quad Core CPU — x—

Human GPU Port •••«•••
System GPU Port a

Human Clearspeed Port — »•-
System Clearspeed Port - -o- -200

150
E

I -
c0
D
1 100

7000 80005000 60003000 40001000 2000
Image Size

Figure 6.5: Graph of Single Precision Execution Times for N-Body Application.

Ex
ec

ut
io

n
T

im
e/

s
6.2. Seed A pplications 167

N-Body Performance Results - Double Precision
400

CPU — t—
Quad Core CPU — x—

Human GPU Port
System GPU Port a ...

Human Clearspeed Port - -» -
System Clearspeed Port -- -o- --

350

300

250

200

150

100

6000 7000 80001000 2000 3000 4000 5000
Image Size

Figure 6.6: Graph of Double Precision Execution Times for N-Body Application.

6.2. Seed Applications 168

No Single Precision
Performance

Double Precision
Performance

Bodies GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

500 0.71x 0.30x QCPU 0.66x 0.29x QCPU
1000 0.71x 0.18x QCPU 0.54x 0.13x QCPU
2000 2.04x 0.24x GPU 1.49x 0.16x GPU
4000 5.44x 0.26x GPU 3.10x 0.18x GPU
6000 11.32x 0.26x GPU 3.77x 0.19x GPU
8000 16.60x 0.27x GPU 4.96x 0.18x GPU

Table 6.14: Performance Comparison Results for N-Body Application

This application presents a computational complexity, for a system of N bodies

and T timesteps, of 0 (T N 2). However, there is only N way parallelism available.

This means that this application consists of fewer kernels instances, with each

instance each undertaking a larger amount of work.

This application has produced excellent results when executed on the GPU,

producing extremely low runtime compared to both ClearSpeed and the single

and quad core CPUs for both single and double precision. The reason for this

is that the GPU being used supports concurrent memory transfers, allowing

execution of the kernel to begin before all the data have been loaded onto the

device. Additionally, these concurrent memory transfers allow data to be loaded

back from the device before the execution of the current kernel has finished. In

order to leverage this functionality, no code modifications are necessary, the only

requirement is that the GPU is of a sufficiently recently model and supports the

concurrent functionality.

In single precision and for the hand ported code in double precision, ClearSpeed

produces performance better than that of the single core CPU. It is, however,

significantly lower than that of the GPU. This is due to the fact that the N-body

application needs a relatively large amount of data to be kept in the small PE

6.2. Seed Applications 169

memory in each of the ClearSpeed acceleration units. This reduces the number of

data items that can be stored in each buffer within the double-buffering framework

that has been developed. This means that each data transfer fails to reach the

size required for peak efficiency(as discussed in Chapter 4). This problem is

made even worse when operating in double precision and the buffer size must be

reduced even further, resulting in even worse performance.

The performance difference between the manual and automatic ports on the GPU

is small being less than 5% in all cases. However, there is a considerable difference

between the performance of the manual and automatic ports on ClearSpeed. The

reason for this is that because the N-Body simulation executes in a sequential

sequence of timesteps, the output of one becoming the input of the next one.

The automatic port on ClearSpeed, duplicates the input data between the two

chips, and splits the output data between them. Then, at the end of a timestep,

the output data are loaded back to the CPU, merged and then loaded back to

both chips on the ClearSpeed card. However, the manual port, more intelligently,

does not split the data, instead it loads a copy of the input and output dataset

onto one chip and loads pointers to that data onto the other chip. This means

that the output dataset can, instead of loading the data back to the CPU and

then saving it back to the ClearSpeed card, swap memory pointers around. The

performance difference between these two methods was found to be significant

with the results showing that the method employed by the human developer does

provide a significant performance improvement over the method employed by the

automatic port.

6.2. Seed Applications 170

Comparison with Existing Work

Table 6.15 shows that the N-Body application has achieved a high peak

performance and a high memory bandwidth for the GPU in both single and

double precision. This is an excellent result for automatically generated code.

However, there are still improvements that could be made. Nyland et al[109]

in 2008 developed a more efficient GPU version of the all pairs algorithm and

have achieved performance of up to 163GFlop/s in single precision. Their port

arranges all the bodies into tiles, with the bodies within a tile arranged in rows

and columns and stored in shared memory. This method allows significant data

reuse and this is what allows the increase in performance between the N-body

port presented here, which is memory bound, and that in [109].

There is also evidence that an improved implementation would allow for better

performance on a ClearSpeed accelerator. In their presentation at a ClearSpeed

user group meeting Steinke claimed up to 3.4x improvement when comparing

an N-Body simulation to a single Operon 2.8Ghz core, although very little

implementation detail is provided.

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
MB/s

Peak
Transfer

Rate
MB/s

Single Precision
GPU 64.01 97.56 0.04

ClearSpeed 0.69 1.05 0.02
Double Precision

GPU 25.31 77.31 0.04
ClearSpeed 0.47 1.43 0.05

Table 6.15: N-Body Application Peak Performance

6.2. Seed Applications 171

6.2.4 M onte Carlo M ethods

The name Monte Carlo refers to a technique of simulating a physical processes

using a stochastic model [90] [115].

The simulation chosen for implementation is one simulating light propagation

in an infinite medium with isotropic scattering. The source code used for this

program is based on source provided by [30] and a flowchart describing the steps

taken in the simulation is shown in Figure 6.7.

In this simulation, each photon is first launched and moved through the medium.

Then a fraction of the photon’s weight will be absorbed. If the remaining weight

is above a minimum the direction of the photon changes and the previous steps

are repeated. If the weight is below the minimum then a roulette is conducted

to determine if the photon will continue or not. If the current photon does not

survive then the simulation continues with the next photon.

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
100000 1.55 0.39 1.03 1.03 0% 0.05 0.05 0%
500000 7.85 1.96 1.15 1.16 1% 0.15 0.16 7%
750000 11.56 2.89 1.23 1.24 1% 0.21 0.22 5%
1000000 15.45 3.86 1.31 1.33 2% 0.27 0.28 4%
2500000 38.45 9.61 1.78 1.81 2% 0.64 0.68 6%
5000000 76.91 19.22 2.55 2.62 3% 1.24 1.33 7%

Table 6.16: Single Precision Execution Times for Monte Carlo Application

6.2. Seed Applications 172

Light Propagation Sim ulation

Launch Photon

Move Photon

Absorb

NoW eight
too Small?

C hange Photon
D irection

Yes

Survive
R oulette Yes

No

Last Photon
No

res

Figure 6.7: Flowchart of the Monte Carlo Technique used based on [115].

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
100000 1.54 0.39 1.05 1.05 0% 0.04 0.05 25%
500000 7.71 1.93 1.23 1.24 1% 0.13 0.14 8%
750000 11.35 2.84 1.34 1.35 1% 0.18 0.20 11%
1000000 15.23 3.81 1.46 1.47 1% 0.23 0.25 9%
2500000 37.94 9.49 2.15 2.18 1% 0.55 0.60 9%
5000000 75.98 18.99 3.29 3.41 4% 1.08 1.18 10%

Table 6.17: Double Precision Execution Times for Monte Carlo Application

Ex
ec

ut
io

n
T

im
e/

s
6.2. Seed A pplications 173

System Clearspeed Port

Monte Carlo Performance Results - Single Precision

Quad Core CPU — x—
Human GPU Port •••*•••
System GPU Port —a —

Human Clearspeed Port — * —

— —i--------- r-------- f--------- r __~ r~ ~ " i ~ r ____Z '
500000 1e+06 1 ,5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

Image Size

Figure 6.8: Graph of Single Precision Execution Times for Monte Carlo
Application.

Ex
ec

ut
io

n
T

im
e/

s
6.2. Seed A pplications 174

Monte Carlo Performance Results - Double Precision
40

CPU — •-
Quad Core CPU — x-

Human GPU Port
System GPU Port — B-

Human Clearspeed Port — *•
System Clearspeed Port •• -o-

35

30

25

20

500000 1e+06 1 ,5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06
Image Size

Figure 6.9: Graph of Double Precision Execution Times for Monte Carlo
Application.

6.2. Seed Applications 175

No

Photons
n

Single Precision
Performance

Double Precision
Performance

GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

100000 0.90x 7.8x CS 0.37x 7.80x CS
500000 1.69x 12.25x CS 1.56x 13.79x CS
750000 2.33x 13.14x CS 2.10x 14.20x CS
1000000 2.90x 13.78x CS 2.59x 15.24x CS
2500000 5.31x 14.13x CS 4.35x 15.82x CS
5000000 7.34x 14.45x CS 5.57x 16.09x CS

Table 6.18: Performance Comparison Results for Monte Carlo Application

The application is the only one of the seed applications to provide optimum

performance on the ClearSpeed accelerator card. The Monte Carlo application

is largely based on computation of a series of random numbers to simulate

the physical process described above, because of this the applications key

characteristic is that each iteration of the kernel has very little memory access.

This is the key characteristic of the application that enables the ClearSpeed

accelerator to perform well in this case.

However, even though ClearSpeed does provide good performance for this

application, it only slightly outperforms the GPU. Also of note here is that the

percentage difference between manual and automatic ports (ignoring the very

smallest case) is approximately 10%.

Finally, it is noticed that the ClearSpeed accelerator provides near identical, or

sometimes better, performance in double precision but the GPU provides slower

performance in double precision. This is due to the fact that the ClearSpeed

accelerator only possesses double precision computation units, which perform

both single and double precision calculations while the GPU has single precision

floating point units and, a smaller number of double precision units.

6.2. Seed Applications 176

Comparison with Existing Work

A Monte Carlo credit risk application has been one of ClearSpeed’s success

stories. In this example they have shown performance of « 26 TFlop/s when

running a 42U rack fully loaded with CATS-700 systems (giving a total of 1008

ClearSpeed chips) [37], it is also claimed that, in this example, ClearSpeed will

outperform a NVIDIA Tesla by 2.7x[37]. Using the headline 26 TFlop/s figure

quoted in [37] it can be calculated that each ClearSpeed board will be nearing its

peak performance of 50 GFlop/s, whereas the performance of the automatic port

presented in Table 6.19 only achieved 13 GFlop/s. When examining this table,

it should also be noted that in this example the transfer time between the CPU

and device’s memories was too quick to measure.

Work has also been conducted to port Monte Carlo applications to the GPU and

Alerstam et al[ll] have ported a light propagation simulation, very similar to

that presented here, to the GeForce 8800GT. Their results show that the GPU

achieved a 1080x speed-up over an Intel Pentium 4 HT 3.4 GHz, a figure that is

far superior to the « 15x speed-up that have been achieved with an automatic

port.

As with many applications running on an acceleration device, this application is

memory bound. The key improvement that would need to be made in order to

improve performance is altering the way in which the photon data are updated,

currently this must be read into the memory of the computational unit, updated

and then written back to the device’s memory. This would need to be changed

to allow the data for each photon to be cached in a more local memory (PE

Memory for ClearSpeed and shared memory for CUDA), so that computation

does not stall while waiting for data from the GPU/ ClearSpeed device’s memory.

6.3. Test Applications 177

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
MB/s

Peak
Transfer

Rate
MB/s

Single Precision
GPU 4.45 2.21 X

ClearSpeed 13.43 6.67 X
Double Precision

GPU 4.24 4.22 X
ClearSpeed 15.41 15.32 X

Table 6.19: Monte-Carlo Application Peak Performance

6.3 Test Applications

With the seed applications now run, and all performance data gathered so that

there are no gaps in the performance database, the test applications can now be

run.

Initially, the classification model that results from the data gathered from the

seed applications is shown in Figure 6.10.

This section will now show how the system performs when executing three more

complex applications.

6.3.1 Fast Fourier Transform

The Fast Fourier transform is based on the Discrete Fourier Transform which is

shown in Equation 6.1 [39], where j is an integer ranging from 0 to N — 1.

6.3. Test A pplications 178

B ran c h in g

<= 10536 > 10536

In te n s ity

<= 16808 > 16808

QUADCPL) (4 .0)

Figure 6.10: Classification Model Produced after Seed Applications.

This discrete version of the transform has a computational complexity of 0 (iV 2).

So, generally speaking, is always computed by using more efficient methods known

as Fast Fourier Transforms which have computational complexity of the order

0(N \og2N). The algorithm that has been chosen for this test case is the most

popular of these methods: the Cooley-Tukey algorithm [39].

The actual implementation that has been created is a 2D , Radix-2 FFT. This

implementation computes the FFT of an input image, a sample of which is

shown in Figure 6.11. This computation is done by computing a one dimensional

FFT, using the Cooley-Tukey algorithm, of each index(rows and columns) of the

original input [116]. i.e, if the input image is A and the output is X then the

calculation would be:

X = F F T — o f — rows(FFT — o f — columns(A))

6.3. Test Applications 179

Figure 6.11: Sample input and output of Fast Fourier Transform.

A pplication S tructu re

Cernel

47
Kernel 10 Kernpl 1 1---- ► l/ornol 1 7Kernel y i\C 1 1 ici xu 1 NCI IIcl ± /

K ernel 4] Kernel 6 Kernel 11 Kernel 13

I
| Kernel 7 K ernel 14

Kernel 8 Kernel 15

erne

7

Figure 6.12: Fast Fourier Transform Application Structure

The overall structure of the generated kernel tree for the FFT application is

shown in Figure 6.12. In this diagram, the kernels that are crossed out have been

discarded becau.se they contain file 10, the kernels highlighted in blue have been

discarded because the loops that formed them were not deterministic and the

kernels highlighted in red contain loop dependencies.

It should be noted that kernels 10, 13 and 15 are duplicates of kernels 3,6, and 8

respectively. This is because the FFT algorithm calls for the rows of the image to

be transformed, followed by the columns. Kernel 9 re-orientates the data-set in

memory, in essence performing a 90° rotation on the image. Kernel 17 then scales

the output from the FFT back into a format that can be output as an image file.

6.3. Test Applications 180

System Predictions

Data
Size

Kernels Optimal
3 6 8 9 10 13 15 17 Device

512 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
1024 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
2048 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
4096 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
8192 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU

Table 6.20: FFT System Predictions - Single Precision

Data
Size

Kernels Optimal
3 6 8 9 10 13 15 17 Device

512 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
1024 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
2048 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
4096 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU
8192 GPU QCPU QCPU QCPU GPU QCPU QCPU QCPU GPU

Table 6.21: FFT System Predictions - Double Precision

Tables 6.20 and 6.21 show the predictions returned by the system for the single

and double precision FFT applications with differing data-set sizes. It is obvious

from the tables (and will be later shown) that ClearSpeed is not competitive

for this application. However, the GPU is predicted as the optimum device for

all data-set sizes in both single and double precision. In these tables any items

highlighted in red show where an incorrect prediction has been made (this will

be discussed further in section 6.3.1) and the optimum device column shows the

overall prediction that the system generates for the application as a whole (as

described in Chapter 5).

It is interesting to note that the system predicts the quad-core CPU as the

optimum device for all kernels apart from Kernels 3 and 10 where it predicts

the GPU, and it is for this reason that the system predicts the GPU as the

optimum device for the application. This decision is taken because as long as one

6.3. Test Applications 181

kernel provides a performance benefit, then the application will give increased

performance executing on a system with a GPU, even if only one of the kernels

actually executes on the GPU.

Validating the Predictions

With the system’s predictions now made, they must be verified. To do this the

execution times, for each individual kernel are shown (details on how these data

are gathered are described in Chapter 5). Tables 6.22 and 6.23 show the relative

execution times of the GPU and ClearSpeed devices compared to the quad-core

CPU. In these tables, a positive value indicates that the kernel took longer to

execute on the device than on the quad-core CPU, while a negative value shows

that a kernel executed faster on the acceleration device than on the quad-core

CPU. The decision to present measurements in this manner, was taken because

this section is focused on the relative performance of the kernels and not on the

amount of acceleration achieved. Information on the overall performance of the

application and the acceleration achieved is presented in Section 6.3.1.

Data
Size

Kernel Execution Time Relative to Quad-Core CPU in Seconds
3 6 8 9 17

CS GPU CS GPU CS GPU CS GPU CS GPU
512 0.41 0.96 0.03 0.01 X X 0.06 0.96 0.04 0.96
1024 1.76 0.56 X 0.01 X X 0.18 0.95 0.14 0.96
2048 7.27 0.99 X 0.04 X X 0.17 0.92 0.57 1.00
4096 48.76 1.13 X 0.13 X X 3.29 0.79 2.14 1.11
8192 206.04 3.42 X X X X X 0.35 8.01 1.58

Table 6.22: Kernel Execution Times for FFT Application - Single Precision

From these data, the incorrect predictions are highlighted in red in Tables 6.20

and 6.21. This shows that the system made a total of 20 false predictions out of

80. That is a success rate of 75%. The errors that have been made are relating

6.3. Test Applications 182

Data
Size

Kernel Execution Time Relative to Quad-Core CPU in Seconds
3 6 8 9 17

CS GPU CS GPU CS GPU CS GPU CS GPU
512 0.26 0.96 0.04 0.01 X X 0.05 0.96 0.04 0.96
1024 1.41 0.97 X 0.01 X X 0.15 0.96 0.13 8.96
2048 5.69 1.02 X 0.04 X X 0.62 0.95 0.44 1.01
4096 38.98 1.64 X 0.13 X X 2.12 0.67 1.48 1.15
8192 X 9.08 X X X X X 1.09 X 1.74

Table 6.23: Kernel Execution Times for FFT Application - Double Precision

to kernels 3 and 10. Both of these kernels should be executing on the quad

core CPU for all data-sets, meaning that this application should be predicted to

execute optimally on the quad-core CPU.

The reason that the system performs poorly in regards to kernels 3 and 10 is that

these kernels are all mathematically intense kernels, but they execute relatively

few times (each kernel only executes once per row). This type of kernel has not

be seen before by the system, as all the seed kernels it encountered were kernels

with high execution counts.

However, even though the system has not achieved complete accuracy with its

initial predictions for this application, it is able to self-modify its own classification

model, by using the performance data that has been gathered. The resultant

classification model is shown in Figure 6.13 and it can be seen that the model

has changed based on the new performance data. This new model will be used

to make the predictions for the next test application: The Canny Edge Detector.

Overall Application Performance

Finally, the overall performance of the FFT application should be examined.

Tables 6.24, 6.25 and 6.26 and Figures 6.14 and 6.15 show the overall performance

6.3. Test Applications 183

CS (12.0)

> 896000

Branching QUADCPU (124.0/3 0)

QUADCPl) (10.0) ■ I

Figure 6.13: Classification Model Produced after FFT Application has been
profiled.

data for the application, executing with the optimal kernel configuration for each

data-set on each device.

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
512x512 0.12 0.08 1.07 1.08 0% 0.82 0.88 7%

1024x1024 0.63 0.42 1.29 1.35 5% 3.5 3.94 12%
2048x2048 2.75 1.80 2.22 2.3 4% 22.08 23.21 5%
4096x4096 11.64 7.59 6.13 6.51 6% 133.89 137.98 3%
8192x8192 50.15 32.28 25.8 27.7 7% 397.09 444.18 12%

Table 6.24: Single Precision Execution Times for FFT Application

6.3. Test Applications 184

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
512x512 0.14 0.1 1.07 1.09 2% 0.45 0.63 40.00%

1024x1024 0.68 0.45 1.37 1.37 0% 2.29 3.28 43%
2048x2048 2.89 1.86 2.44 2.62 7% 9.89 13.36 35%
4096x4096 12.74 7.38 7.87 8.68 10% 69.11 85.65 24%
8192x8192 53.87 34.59 39.21 43.24 10% X X X

Table 6.25: Double Precision Execution Times for FFT Application

FFT Performance Results - Single Precision
250

CPU — «-
Quad Core CPU — x~

Human GPU Port
System GPU Port q -

Human Clearspeed Port - -»
System Clearspeed Port - -o-200

150

100

50

0
6000 7000 80004000 50001000 2000 3000

Image Size

Figure 6.14: Graph of Single Precision Execution Times for FFT Application.

Ex
ec

ut
io

n
T

im
e/

s
6.3. Test Applications

FFT Performance Results - Double Precision

CPU — i—
Quad Core CPU — x—

Human GPU Port •••■*---
System GPU Port o

Human Clearspeed Port *
System Clearspeed Port - -o- --

140

120

100

0
1000 6000 7000 80002000 3000 4000 5000

Image Size

185

Figure 6.15: Graph of Double Precision Execution Times for FFT Application.

6.3. Test Applications 186

Data Single Precision
Performance

Double Precision
Performance

Size GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

512x512 0.07x 0.09x QCPU 0.09x 0.16x QCPU
1024x1024 0.31x O.llx QCPU 0.33x 0.14x QCPU
2048x2048 0.78x 0.08x QCPU 0.71x 0.14x QCPU
4096x4096 1.17x 0.06x GPU 0.85x 0.09x QCPU
8192x8192 1.17x 0.07x GPU 0.80x X QCPU

Table 6.26: Performance Comparison Results for FFT Application

This data confirms that the ClearSpeed device is completely uncompetitive for

this application. This is due to the fact that the FFT algorithm that is used

modifies the data in-place. This means that we cannot split the data-set between

the two memory chips on the ClearSpeed card, meaning that we must incur

the overhead of one chip accessing another chip’s memory. Secondly, the FFT

algorithm does not access memory in a regular pattern, this means that double­

buffering, which is often used to hide the memory latency, cannot be used. More

interestingly, ClearSpeed actually performs better in the double precision case.

This is because ClearSpeed can achieve faster memory transfer rates with larger

transfers (as described in Section 4.4.5), this means that transfers of double

precision data are naturally more efficient. Secondly, ClearSpeed only contains a

64bit floating point unit, meaning that at single precision only half of each floating

point unit is being utilised. Finally, due to the limitations on ClearSpeed’s device

memory, the largest test case in double precision was unable to be executed.

It should be noted at this point (and will be discussed later) that ClearSpeed

provides a sample implementation of the FFT application, which was not used

in this test. This version of the FFT uses a re-factored algorithm that provides

vastly improved performance, to achieve this it is assumed (due to the closed

source nature of this application) that ClearSpeed’s implementation leverages on

the Swazzle operation [73].

6.3. Test Applications 187

The results achieved when executing the application on the GPU are interesting in

that in single precision, contrary to the performance measured when examining

each individual kernel, the GPU does outperform the quad-core CPU for the

largest two data-sets. The reason for this is because the FFT application consists

of multiple kernels, asynchronous transfer of data between the host’s memory

and the GPU’s memory can take place. This means that in essence data can

be streamed back to the CPU’s memory before computation has been completed

and by extension, data transfers for the execution of the next kernel can begin

sooner.

When examining the performance differences between the automatically gener­

ated code and hand-ported code, we can see that there is very little difference

between them on the GPU. However, there is a significant difference in

performance when considering ClearSpeed. The reason for this, is the manual

port on ClearSpeed is able to reduce memory transfers back and forward to

the host, by combining some of the kernels. This means that the entire FFT

application is combined into one larger kernel, with an integer variable acting as

a mode flag, determining what kernel is actually executed.

Comparison w ith E xisting Work

The FFT is a core part of many computing applications and as such it is provided

as a library on both ClearSpeed and CUDA[73][100]. The CUFFT library when

running a ID radix-2 FFT gives performance of up to « 350GFlop/s in single

precision and « 100GFlop/s[107] in double precision. It should be noted however,

that currently performance figures are only available for NVIDIA’s top of the

range FERMI card, which is significantly more powerful than the GPU used in

this thesis. In comparison, ClearSpeed’s implementation provides performance of

6.3. Test Applications 188

up to 19.5 GFlop/s for a ID FFT and 16.2 GFlop/s for a 2D FFT [38].

Another FFT implementation is presented by Govindaraju et al[59], in this paper

the authors utilise the Stockham formulation of the FFT, commenting that the

Cooley-Tukey can be expensive due to incoherent memory accesses[59]. As part

of this work the authors implement several FFT algorithms and then compare

the performance using a NVIDIA GTX280 (roughly equivalent in single precision

to the TESLA card used in this thesis). The highest performance achieved was

approaching 300 GFlop/s, providing a 2-4x improvement over CUFFT running on

the same GPU[59]. One key point that is made in the paper, is that depending

on: the radix of the FFT, the problem size and the architecture, the correct

choice of FFT algorithm is important to get maximum performance. This shows

the existence of a complex decision space and the ideal circumstances for when

a decision making system is needed, as when selecting the optimal device for a

FFT application, the selection of the algorithm, and by extension the device, both

depend not only on the size but also on the characteristics of the input data-set.

When comparing the results achieved in literature to those presented in Table 6.27

it can be seen that the automatic port is far from achieving peak performance.

Probably the biggest fault here is the fact that the Cooley-Tukey algorithm is far

from optimal for the GPU/ClearSpeed architecture, being completely memory

bound due to frequent incoherent memory accesses[59].

6.3.2 C anny E dge D etec to r

The next application that was trialled using the system is a classic image

processing algorithm: The Canny Edge detector [123] [28].

This method of edge detection is a multi step algorithm which involves the

6.3. Test Applications 189

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
MB/S

Peak
Transfer

Rate
MB/S

Kernel 3 9 17 3 9 17 3 9 17
Single Precision

GPU 2.21 0.52 1.74 2.14 0.75 0.35 1.95 2.68 2.67
ClearSpeed 0.07 0.08 0.39 0.07 0.12 0.08 0.7 0.75 0.72

Doub e Precision
GPU 1.22 0.41 2.08 2.36 1.19 0.83 1.97 3.48 2.67

ClearSpeed 0.09 0.13 1.64 0.17 0.37 0.65 0.68 0.77 0.89

Table 6.27: FFT Application Peak Performance

following steps [123] [28]:

1. Noise Reduction: The noise reduction step involves blurring the input

image by convolving it with a Gaussian Filter. The one that is used in this

implementation is shown in Table 6.28.

2. Detection: The detection step that is used in our implementation of the

Canny Edge detector is the Sobel. Firstly the image will be convolved using two

masks, A and B , which are shown in Table 6.3. Then the magnitude of gradient

of each pixel is then calculated using:

\G\ = V A 2 + B 2

Additionally the angle of the gradient 0 is then is computed using:

/ A0 = arctan (—)B

Finally, O' is computed by rounding 6 to one of four directions 0°, 45°, 90° or 135°

3. Non-M axim um Suppression: The Non-Maximum Suppression step will

6.3. Test A pplications 190

ensure that the edges that have been found by the previous step are 1 pixel wide,

by checking that, on an edge, only the pixels with the highest gradient magnitude

are kept. This is computed by examining neighbouring pixels according to the

angle of the gradient O' which was computed previously and if the current pixel

being examined is greater than its neighbours it is kept as an edge pixel, otherwise

it is discarded.

4. T hreshold ing by H ysteresis: The final step is the algorithm is hysteresis

thresholding. This step is performed by taking two thresholds and Thigh-

Pixels that fall above Thigh are retained, while pixels falling below 7}̂ are

discarded, by pixels that fall between the two thresholds are kept only if they

form an edge with the pixels that fall above Thigh-

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

Table 6.28: Gaussian Filter Used for Blurring

Sample input and sample output data for the implemented Canny Edge detector

is shown in Figure 6.16.

Figure 6.16: Sample input and output of a Canny Edge Detector

6.3. Test A pplications 191

A pplication S tru c tu re

neKernel 3 Kernel 6

irnel

srnel. Kernel 4 Kernel 5

Figure 6.17: Canny Application Structure

The overall structure of the generated kernel tree for the Canny application is

shown in Figure 6.17. In this diagram, the kernels that are crossed out have been

discarded because they contain file IO and the kernels highlighted in blue have

been discarded because they contained recursion. In the application structure

kernel 3 is the kernel for the Gaussian blur, kernel 4 is the kernel for the Sobel

edge detection and the computation of the angle of gradient of the edges, kernel 5

is non-maximal suppression and kernel 6 is the initialisation of the output array

for the hysteresis (Kernel 7) to zero.

System P red ic tio n s

The predictions made by the system using the classification model shown earlier

(Figure 6.13) are shown in Tables 6.29 and 6.30.

Data
Size

Kernels Optimal
3 4 5 6 Device

1000 QCPU QCPU QCPU QCPU QCPU
2000 QCPU QCPU QCPU QCPU QCPU
4000 QCPU QCPU QCPU QCPU QCPU
6000 QCPU QCPU QCPU QCPU QCPU
7000 QCPU QCPU QCPU QCPU QCPU
8000 QCPU QCPU QCPU QCPU QCPU

Table 6.29: Canny System Predictions - Single Precision

6.3. Test Applications 192

Data
Size

Kernels Optimal
3 4 5 6 Device

1000 QCPU QCPU QCPU QCPU QCPU
2000 QCPU QCPU QCPU QCPU QCPU
4000 QCPU QCPU QCPU QCPU QCPU
6000 QCPU QCPU QCPU QCPU QCPU
7000 QCPU QCPU QCPU QCPU QCPU
8000 QCPU QCPU QCPU QCPU QCPU

Table 6.30: Canny System Predictions - Double Precision

Validating the Predictions

In order to validate the predictions that have been made the application was

analysed on a per-kernel basis. These data is shown in Tables 6.31 and 6.32.

From this we can see that the system correctly predicts all of the kernels and

that it predicts that this application will perform optimally on the quad-core

CPU.

Data Kernel Execution Time Relative
to Quad-Core CPU in Seconds

Size 3 4 5 6
CS GPU CS GPU CS GPU CS GPU

1000 0.08 0.96 0.14 0.94 0.07 0.97 0.03 0.96
2000 0.23 0.96 0.47 0.91 0.16 1.00 0.06 0.99
4000 0.86 0.99 1.77 0.74 0.60 1.11 0.28 1.11
6000 1.95 1.03 4.00 0.47 1.29 1.33 0.50 1.31
7000 2.61 1.06 5.45 0.36 1.74 1.48 0.66 1.48
8000 2.96 1.12 6.63 0.14 2.08 1.61 0.83 1.59

Table 6.31: Kernel Execution Times for Canny Application - Single Precision

This application achieved a 100% success rate with its predictions, because of

this the generated decision tree should not change, however, a new tree can still

be generated based on the results from the Canny application being added to

the training set. This new model, taking into account all the seed applications,

the FFT application and the Canny edge detector is shown in Figure 6.18. As

6.3. Test A pplications 193

Data Kernel Execution Time Relative
to Quad-Core CPU in Seconds

Size 3 4 5 6
CS GPU CS GPU CS GPU CS GPU

1000 0.12 0.96 0.15 0.95 0.09 0.97 0.04 0.97
2000 0.44 0.98 0.58 0.92 0.31 1.02 0.32 1.00
4000 1.29 1.07 2.15 0.79 0.96 1.21 0.37 1.13
6000 2.88 1.23 4.89 0.58 1.97 1.55 0.80 1.35
7000 X 1.32 X 0.51 X 1.77 X 1.49
8000 X 2.35 X 0.30 X 1.97 X 1.66

Table 6.32: Kernel Execution Times for Canny Application - Double Precision

expected the tree has not changed from that in Figure 6.13.

< - 816 > 816

CS (12.0)

< - 896000 > 896000

Brat cnit a QUADCPU (172 0/3 0;

< - 512 > 512

QUADCPU (10 0) CPU (10.0)

Figure 6.18: Classification Model Produced after Canny Application has been
profiled.

Overall A pp lication Perform ance

When analysing the overall application performance of the Canny, as shown

in Tables 6.33, 6.34 and 6.35 and Figures 6.19 and 6.20 we can see that

as predicted the quad-core CPU provides the best performance, although the

6.3. Test Applications 194

difference between the quad-core CPU and the automatic port is relatively small.

Additionally it can be seen that the manual GPU port does actually outperform

the quad-core CPU by a small margin once the data-set size reaches 6000x6000

in single precision and 7000x7000 in double precision.

ClearSpeed proves to be uncompetitive here and due to its memory arrangement,

it cannot execute the higher dataset sizes. In this example, when producing the

manual ClearSpeed port, two different versions were considered. The first is the

version that is present here, this does not attem pt to merge kernels together

and instead accepts that the output of each kernel, which is split so each chip

produces half the output, must be brought back to the CPU merged together and

then loaded back onto the chip as the input for the next kernel. The second, did

not split the output dataset, merged the kernels and kept all the data on the card

for the duration of execution. This method removed the need to copy the data

back to the host after each kernel, but it also incurs the penalty of having to have

one chip accessing the other chip’s memory. This was found to produce worse

performance than moving the data repeatedly back and forward to the CPU. So

the first version was selected for use.

When examining the difference between the automatic and the manual port,

this example presents a considerable difference in some cases. The reason for

this is that both the Gaussian Blur and Sobel kernels are able to be made more

efficient by making use of the multiproc ssors shared memory to store values that

are used in multiple threads. Additionally, the need to rely on the concurrent

loading/executing has been removed in the manual port as, in this application,

we can keep the entire input and output data-sets on the GPU’s memory for the

duration of the execution of the kernels, without the need for it to be loaded back

to the host.

6.3. Test A pplications 195

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
1000x1000 0.29 0.16 1.12 1.14 2% 0.36 0.42 17%
2000x2000 0.99 0.47 1.3 1.4 8% 1.16 1.43 23%
4000x4000 3.7 1.5 1.99 2.43 22% 4.14 5.34 29%
6000x6000 8.18 3.33 3.14 4.12 31% 9.12 11.95 31%
7000x7000 11.1 4.7 3.82 5.35 40% 11.1 16.08 45%
8000x8000 14.28 5.65 4.86 6.44 33% 15.96 19.46 22%

Table 6.33: Single Precision Execution Times for Canny Application

Canny Performance Results - Single Precision
20

CPU — ^
Quad Core CPU — x—

Human GPU Port ■■■■*■■■
System GPU Port a

Human Clearspeed Port - -*
System Clearspeed Port - -o- --

18

16

14

12

10
, j r

8

6

4

2

0
4000 5000 6000 7000 8000300020001000

Image Size

Figure 6.19: Graph of Single Precision Execution Times for Canny Application.

6.3. Test A pplications 196

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
1000x1000 0.29 0.16 1.11 1.14 3% 0.44 0.5 14%
2000x2000 1.01 0.48 1.36 1.46 7% 1.56 1.91 22%
4000x4000 3.86 1.6 2.36 2.64 12% 5.82 6.39 10%
6000x6000 8.47 3.52 3.64 4.54 25% 11.15 14.17 27%
7000x7000 11.5 4.91 4.58 5.81 27% 15.14 X X
8000x8000 14.89 6.06 5.72 7.18 26% X X X

Table 6.34: Double Precision Execution Times for Canny Application

Canny Performance Results - Double Precision
16

1 ' ' CPU — ^
Quad Core CPU — x—

Human GPU Port
System GPU Port a

Human Clearspeed Port - -
System Clearspeed Port -- -o- -

14

12

10

8

6

4

2

0
6000 7000 8000500040002000 30001000

Image Size

Figure 6.20: Graph of Double Precision Execution Times for Canny Application.

6.3. Test Applications 197

Data

Size
n

Single Precision
Performance

Double Precision
Performance

GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

1000x1000 0.14x 0.38x QCPU 0.14x 0.32x QCPU
2000x2000 0.36x 0.33x QCPU 0.33x 0.25x QCPU
4000x4000 0.62x 0.28x QCPU 0.61x 0.25x QCPU
6000x6000 0.81x 0.28x QCPU 0.78x 0.24x QCPU
7000x7000 0.88x 0.29x QCPU 0.85x X QCPU
8000x8000 0.88x 0.29x QCPU 0.84x X QCPU

Table 6.35: Performance Comparison Results for Canny Application

Comparison with Existing Work

Examining the performance results seen in Table 6.36 it can be seen that the

Canny exhibits low number of GFlop/s when executed on the GPU. The main

reason for this is that the Canny algorithm utilises several image processing

kernels which all have high memory requirements. Kernel 3 is the Gaussian

Blur and kernel 4 is the Sobel, both of these kernels share the issue of being

memory bound, due to the fact that each iteration of the kernel has high memory

requirements. Kernel 5 computes the angle gradient, this kernel has two main

performance bottlenecks; it has high memory to computation requirements and it

has a high amount of branching. Finally kernel 6 is simply initialising an array to

zero and thus does no computation at all. In order for this application to improve

its performance changes must be made to how the kernels (especially 3 and 4)

access memory, possibly by more intelligently grouping threads into thread blocks

so that each datum is only fetched from memory once for each thread block.

6.3. Test A pplications 198

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
MB/S

Peak
Transfer

Rate
MB/S

Kernel 3 4 5 6 3 4 5 6 3 4 5 6
Single Precision

GPU 3.91 3.18 2.07 0.04 3.81 2.72 4.38 0.18 1.36 1.36 0.76 1.28
CS 3.36 0.78 3.73 0.07 3.27 0.67 7.89 0.29 0.17 0.08 0.15 0.16

Double Precision
GPU 2.38 2.89 1.92 0.04 4.63 4.96 8.12 0.36 1.81 1.35 0.88 1.81
CS 0.54 0.78 0.97 0.04 1.05 1.33 4.11 0.35 0.2 0.05 0.19 0.2

Table 6.36: Canny Application Peak Performance

6.3 .3 Iterative Ray Tracer

The final test application that has been selected in an iterative ray tracing

application. This application will render a scene consisting of three spheres in a

variety of image sizes. For each rendered image, the sizes of the spheres will be

adjusted to ensure that the amount of work done in rendering each image size is

the same. An example of the rendered output of the ray tracer is shown in Figure

6 .21 .

Figure 6.21: Sample output of Iterative Ray Tracer

The standard ray tracing algorithm (shown in Listing 6.1) is taken from [127].

6.3. Test Applications 199

Currently the ray tracer supports diffuse and specular lighting using Phong

Illumination.

Listing 6.1: Ray Tracing Algorithm [127]

for each p i x e l
shoo t a ray i n t o the image from t he c e n t r e of the

p i xe l
for each s t ep the ray t a k e s t h r o u g h t h e image

compute i n t e r s e c t i o n wi th o b j e c t s
for each l i g h t s o u r ce

compute i f c u r r e n t p i x e l is in
shadow

i f not in shadow
compute new RGB va lue

from d i f f u s e and
s p e c u l a r l i g h t i n g
component s

end i f
end for

end for
end for

Application Structure

The structure of the application is shown in Figure 6.22. In this application the

only viable kernel is kernel 1 which executes per pixel. Kernel 2, which moves the

ray through the image, is non deterministic and kernel 3, which loops through

each light source, contains loop dependencies. Kernel 4 and 5 are disqualified

because they contain file IO.

6.3. Test A pplications 2 0 0

Kernel 1 e r n e l

Kernel 3

Figure 6.22: Ray Tracer Application Structure

System P red ic tions

The predictions that the system has made regarding this application are shown

in Tables 6.37 and 6.38.

Data
Size

Kernel
1

Optimal
Device

500 QCPU QCPU
1000 QCPU QCPU
2500 QCPU QCPU
5000 QCPU QCPU
7500 QCPU QCPU
10000 QCPU QCPU

Table 6.37: Ray Tracer System Predictions - Single Precision
Data
Size

Kernel
1

Optimal
Device

500 QCPU QCPU
1000 QCPU QCPU
2500 QCPU QCPU
5000 QCPU QCPU
7500 QCPU QCPU
10000 QCPU QCPU

Table 6.38: Ray Tracer System Predictions - Double Precision

6.3. Test Applications 2 0 1

Validating the Predictions

Examining the actual per kernel performance data shown in Tables 6.39 and

6.40 reveals that the system makes 5 errors out of the 10 predictions, mistakenly

predicting this application to provide better performance on the quad-core CPU.

Kernel Execution
Time Relative to
Quad-Core CPU

in Seconds
Data Kernel 1
Size CS GPU
500 0.60 0.94
1000 2.45 0.90
2500 15.91 0.62
5000 78.24 -0.35
7500 165.14 -1.89
10000 X -2.98

Table 6.39: Kernel Execution Times for Ray Tracer Application - Single Precision

Kernel Execution
Time Relative to
Quad-Core CPU

in Seconds
Data
Size

Kernel 1
CS GPU

500 0.61 0.95
1000 2.52 0.92
2500 16.42 0.69
5000 80.39 0.01
7500 X -1.38
10000 X -2.08

Table 6.40: Kernel Execution Times for Ray Tracer Application - Double
Precision

Based on the new performance data gathered a new classification model (shown in

Figure 6.23) can be built. Prom examining this model we can see that, because the

predictions made here were poor, the model has changed significantly becoming

6.3. Test Applications 2 0 2

significantly more complex, this occurred because the dominance of the quad-

core CPU in the previous example has led to the decision tree becoming overly

simplified.

< = 8 1 6 > 8 1 6

Branching

> 1717

Mem WriteIntensity

> 2 8 6< = 7 5 4 9 < = 2 8 6> 7 5 4 9

IntensityIntensity

< = 1 6 8 0 8 < = 1 2 0 0 8 > 1 2 0 0 8> 1 6 8 0 8

Iterations

< = 7 8 4 0 0 0 0 > 7 8 4 0 0 0 0

CS (1 2 .0)

GPU (6 .0)

GPU (1 0 .0)GPU (4 .0 /1 .0)

QUADCPU (8 .0)

QUADCPU (4 .0)

QUADCPU (2 0 .0)

Data

QUADCPU (1 5 2 .0)

Figure 6.23: Final Classification Model

6.3. Test
A

pplications
203

6.3. Test Applications 204

Overall Application Performance

The overall application performance is shown in Tables 6.41, 6.42 and 6.43 and

graphs 6.24 and 6.25.

At a high level, it appears that this application is quite similar to the Monte

Carlo seed application, in that a large amount of computation is carried out

for a relatively small amount of input data. So initially it was expected that

ClearSpeed would perform well for this application. However, this is not the case

and ClearSpeed performs poorly.

The reason for this is that on the CUDA GPU, threads are batched together

in warps of 32 (on the GPU used to obtain these results). These 32 threads

all execute together in a SIMD fashion, so that if one thread does more work

than the others, then all threads in the warp must wait for it to finish, before

they can complete. These warps are then time-sliced by the GPU. ClearSpeed

operates in much coarser grained fashion. On a ClearSpeed accelerator the

threads are split equally between the two chips and executed in SIMD. This

means that the ClearSpeed accelerator will be executing half of the threads on

each chip in sequential blocks of 96 threads, with each block running in SIMD.

CUDA meanwhile will be executing the application as many time-sliced blocks

of 32 threads. This presents a large problem for ClearSpeed, because when an

individual thread takes longer to execute it will delay the execution of other

threads within the application. This has not been a problem for other applications

as the work load has been relatively uniform between threads but within the ray

tracing application the work loads will differ considerably. A thread that does not

intersect with a sphere will do very little work, but threads which intersect with

several spheres, plus possibly have reflections to calculate, will be many times

slower due as multiple interactions between the ray and objects in the scene must

6.3. Test Applications 205

be calculated.

In order to mitigate against this two arrangements of the threads on ClearSpeed’s

processing elements were tried: in memory order, and grouped by locality. It was

found, however, that when comparing these arrangements neither were seen to

give any noticeable performance improvement. To this end we must assume,

as long as we respect the limitation of not re-factoring the algorithm, that this

application simply is not suitable for ClearSpeed’s architecture in its current form.

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
500x500 0.23 0.17 1.09 1.11 3% 0.69 0.74 7%

1000x1000 0.43 0.18 1.14 1.16 2% 2.7 3.14 16%
2500x2500 2.64 1.08 1.68 1.74 4% 17.36 17.5 1%
5000x5000 10.27 4.19 3.54 3.84 9% 83.2 84.51 2%
7500x7500 22.28 8.99 6.47 7.31 13% 176.57 179.03 1%

10000x10000 35.43 15.59 10.92 12.15 11% X X X

Table 6.41: Single Precision Execution Times for Iterative Ray Tracer

Data

Size
n

Execution Time (Seconds)

CPU
Quad
Core
CPU

GPU ClearSpeed
Human

Port
System

Port
%

Diff
Human

Port
System

Port
%

Diff
500x500 0.23 0.16 1.1 1.08 2% 0.74 0.74 0%

1000x1000 0.47 0.20 1.18 1.18 0% 2.78 2.82 2%
2500x2500 2.84 1.11 1.81 1.9 5% 17.47 18.1 4%
5000x5000 10.99 4.22 4.16 4.39 6% 85.69 88.04 3%
7500x7500 24.07 9.28 7.72 8.44 9% X X X

10000x10000 36.77 14.80 13.26 13.92 5% X X X

Table 6.42: Double Precision Execution Times for Iterative Ray Tracer

Ex
ec

ut
io

n
T

im
e/

s
6.3. Test A pplications 206

Ray Tracer Performance Results - Single Precision
80

------------ CPU —
Quad Core CPU — x—

Human GPU Port •••«•*•
System GPU Port « —

Human Clearspeed Port —
System Clearspeed Port

70

60

50

40

30

20

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Image Size

Figure 6.24: Graph of Single Precision Execution Times for Iterative Ray Tracer.

Ex
ec

ut
io

n
T

im
e/

s
6.3. Test A pplications 207

Ray Tracer Performance Results - Double Precision
80

 ----------------c p u — 2 -
Quad Core CPU — x—-

Human GPU Port
System GPU Port —e .

Human Clearspeed Port
System Clearsoeed Port -- o 4/

70

60

50

40

30

20

- I - —
20001000 3000 4000 5000 6000 7000 8000 9000 10000

Image Size

Figure 6.25: Graph of Double Precision Execution Times for Iterative Ray Tracer.

6.3. Test Applications 208

Data

Size
n

Single Precision
Performance

Double Precision
Performance

GPU ClearSpeed Optimal
Device

GPU ClearSpeed Optimal
Device

500x500 0.15x 0.23x QCPU 0.15x 0.22x QCPU
1000x1000 0.16x 0.05x QCPU 0.17x 0.07x QCPU
2500x2500 0.62x 0.06x QCPU 0.58x 0.06x QCPU
5000x5000 1.09x 0.05x GPU 0.96x 0.05x QCPU
7500x7500 1.22x 0.05x GPU l.lOx X GPU

10000x10000 1.28x X GPU 1.06x X GPU

Table 6.43: Performance Comparison Results for Iterative Ray Tracer

When examining the differences between the performance of the manual and

automatic ports it can be seen that there is only a minor difference of ^10%.

Comparison w ith Existing Work

There has been a great deal of work related to the implementation of Ray Tracers

onto a GPU using CUDA. However, in order to further analyse performance,

rather than comparing GFlop/s (shown in Table 6.44) a more sensible comparison

in this case is to consider the number rays per second. At the maximum image size

in single precision the automatically ported ray tracer generates 8.23 million rays

per second. In comparison Popov et al[l 14] have achieved a peak performance of

over 16 million rays per second, using an older GPU (NVIDIA 8800 GTX with

518GFlop/s peak).

The main performance bottleneck in the automatic port is not memory bandwidth

but instead a far less severe manifestation of the problem that badly effected the

ray tracer’s performance on ClearSpeed. As threads are grouped together into

warps, performance bottlenecks occur when only one thread within a warp is still

executing because for example the ray it represents was reflected. This is known

6.4. Classification of Known Applications 209

as “warp divergence” and it causes the entire warp to continue occupying the

multiprocessor when in reality only one thread is doing useful computation. In

their paper Popov et al have achieved much better performance largely because

they have used a much more sophisticated ray tracing algorithm, centred around

utilising a stackless traversal of kd-trees[114].

Device Peak
Performance

GFlop/s

Peak
Memory

Bandwidth
MB/S

Peak
Transfer

Rate
MB/S

Single Precision
GPU 32.32 0.54 0.84

ClearSpeed 0.11 0 0.11
Double Precision

GPU 26.57 0.9 0.93
ClearSpeed 0.22 0.01 0.51

Table 6.44: Ray Tracing Application Peak Performance

6.4 C lassification o f K now n A pplications

One final test that can be conducted, is to determine if the tree that has been

constructed is able to predict applications that it has already seen. When

attempting this, the system will attempt to classify all 216 instances that the

system has already seen. When this is done the system correctly classifies 215

instances and makes a single error; a success rate of over 99%.

The only misclassification that occurred at this point is that the system wrongly

predicted that the GPU will provide the best performance for the 2000x2000

dataset in the double precision GEMM seed application. Examining this

prediction error it can be seen from the results presented in Table 6.9 that this

application displays an odd characteristic in that the GPU outperforms the quad-

6.5. Chapter Summary 2 1 0

core CPU by a small amount only in this particular case. Additionally when

examining Table 6.8, it can be seen that in the single precision version when

using the 2000x2000 sized data-set the application performs better on the GPU

but only by a very small amount (« 0.5 seconds). Prom this, it is apparent that

the similar characteristics shared by the single and double precision versions of the

application and the very small performance differences in question are what have

caused this error. This occurred because for two very similar kernels, one executed

optimally on one device and one executed optimally on another. This means that

there was no way for the decision tree algorithm to divide the performance data

in such a way that these differences could be expressed unambiguously.

6.5 C hapter Sum m ary

This chapter has firstly described the performance of several seed applications.

The performance results from these seed applications were used to build an initial

classification model that was then used to start the following process:

— Predict which device an application will need to execute on in order to provide

best performance.

— Port the application to that device.

— Gather performance data for the application on all devices.

This process was carried out for three further applications, with each application

using the updated classification model that was produced by executing the

previous application.

The results collected have revealed several important points:

6.5. Chapter Summary 2 1 1

— Automatic porting performs favourably when compared to a single core CPU.

However, compared to a quad-core CPU the results are not as promising.

— In three out of the seven applications (N-Body, Monte Carlo and Ray Tracing)

automatically ported code outperforms the quad-core CPU. In the remaining four

the quad-core CPU outperforms the automatically ported code.

— With the exception of the Monte Carlo example, the GPU performs much

better than ClearSpeed.

— The system is able to successfully modify the classification model based on the

performance data collected.

— The more accurate the predictions that are made, the less the performance

model changes. This leads to the notion that eventually, once sufficient examples

have been executed, the performance model will stabilise.

— The predictions made by the system, although not perfect, have an overall

success rate of 82%.

— That the difference between hand ported and automatically ported code for

the GPU is, on average, ^8% and for ClearSpeed is ^30%. However, this value

considers all results, and if the N-Body simulation example is disregarded, then

the value improves to «12%.

— That the automatically generated code presented in this chapter, while able

to outperform the quad-core CPU in certain applications, is significantly slower

when compared against the optimised re-factored codes described elsewhere.

— The majority of the automatically generated applications are severely memory

bandwidth limited and it is this that is the main obstacle to achieving better

6.5. Chapter Summary 2 1 2

performance. This is shown in Table 6.45 which shows which factor limits each

application’s performance.

- Another problem encountered is that of warp divergence, which commonly

occurs in applications where multiple threads executing in SIMD need to perform

differing tasks.

Application Processing Bound Memory Bound Comments
Sobel X /

GEMM X ✓
N-Body X /

Monte Carlo X ✓ Possibility of warp
divergence, but not

a major factor in
this case

e f t X ✓
Canny X /

Ray Tracer X X Warp Divergence
encountered

Table 6.45: Summary of factors limiting applications performance

Application Device Highest
Single Core

Speedup
Quad-Core

Sobel GPU Single Precision 1.33x 0.89x
GEMM GPU Double Precision 3.00x 1.12x
N-Body GPU Single Precision 65.57x 16.60x

Monte Carlo ClearSpeed Double Precision 64.39x 16.09x
FFT GPU Single Precision 1.81x 1.17x

Canny GPU Single Precision 2.22x 0.88x
Ray Tracer GPU Single Precision 3.05x 1.28x

Table 6.46: Speed-ups achieved by executing application on an acceleration
device.

Examining the overall performance of all applications (shown in Table 6.46), it is

obvious that, for the applications tested so far, the optimum performance is found

either with the quad-core CPU or the GPU. However, in a wider environment

consisting of other acceleration devices and other versions of existing devices i.e.

6.5. Chapter Summary 213

a NVIDIA FERMI GPU, the decision on which device to use would not be so

simple. It is expected that the addition of FPGAs, CELL Accelerators, other

models of GPUs and other multi core devices will provide considerable diversity,

making the ability for a device to be selected automatically, possibly even without

the user knowing or caring what device is being used, highly desirable.

When examining the performance increases that have been achieved, it is

promising to note that speed up has been achieved in all applications compared to

the single-core CPU and in three out of seven applications when compared to the

quad-core CPU. Even though, the improvement is far less than the “headline”

figures that have been publicised, the speed-ups that have been achieved are

in essence free and require only that the input source code be passed through a

different compiler (the porting system). It should also be noted that the speed-up

figures given are for the entire execution of the application and not just for isolated

kernels. However, there are still further optimisations that can be examined in

terms of improving the performance of the ported code, and these are discussed

in Chapter 8.

All of this has shown that the system has performed well in terms of device

selection and, when considering performance of the ported code, it has provided

performance improvement for a subset of the applications considered. For the

other applications the automatically ported code is unable to outperform the

quad-core CPU mainly because the algorithm that has been ported is unable

to fully utilise the architecture of the GPU, largely due to the way in which

these applications access memory. In order to further improve performance

optimisations or re-factoring of the applications is needed.

It is expected that, despite the GPUs current dominance of the field, multi and

many core devices acting as co-processors will continue to be developed and as

hardware competition intensifies, the ability to automatically select a device and

6.5. Chapter Summary 214

then produce code for it will be essential to novice users that desire to take

advantage of the performance improvements offered by these devices.

215

C h apter 7

C onclusions

7.1 Introduction

This chapter will firstly present the final thoughts on the work presented in

this thesis and will evaluate the results that have been acquired, against the

criteria set out in Chapter 1. Secondly, this chapter will compare the system

that has been developed to test the hypothesis against what are deemed the

two closest competing systems. This will analyse the relative strengths and

weaknesses of the developed system against those of these products. This chapter

will then summarise the lessons that have been learnt when working with the

two acceleration devices that have been considered in this thesis and draw some

conclusions as to how they compare. Finally, this chapter will briefly evaluate

the successes and failures of the work overall.

7.2. Research H ypothesis 216

7.2 R esearch H ypothesis

The research hypothesis that was stated in Chapter 1 is:

It is possible to construct a self-modifying and expandable automatic code porting

system that can, based on heuristics, select the most appropriate application

acceleration device and provide comparable performance to that achievable by an

experienced human programmer.

In order to validate this hypothesis it will be broken down into sections. Each

section will then be validated:

Self-modifying: Chapter 6 has shown that the system is able to modify its

own internal classification model based on experience acquired from executing

applications. Figures 6.10, 6.13, 6.18 and 6.23 show a series of decision trees

built from the performance database. As explained in Chapter 5 this performance

database is automatically augmented by the system using an algorithm that, in

essence, finds and fills gaps in the performance database.

Expandable: Chapter 5 has shown how the system will expand to encompass

additional devices once they are added. This is demonstrated as part of the self­

modification of the system, as, in essence, the addition of new devices is a special

case of the same gap filling algorithm but with a far larger amount of data that

must be gathered.

Based on heuristics, select the m ost appropriate application accelera­

tion device: Chapter 6 has shown that, once a set of seed applications are fed

into the system, it can make predictions on both seen and unseen kernels across a

variety of devices. It has been found that when the system is making predictions

on kernels that it has previous seen, then the accuracy is, as expected, very high

7.2. Research H ypothesis 217

at ?^99%. When the system is making predictions based on unseen kernels the

accuracy is lower at ^82%. This is a significantly better than randomly guessing

the correct device.

Provide comparable performance to that achievable by an experienced

human programmer: Chapter 6 has shown that, in the majority of cases, the

system is able to produce code that is within &8% for the GPU and within ^12%

(excluding one exceptionally poor case) for ClearSpeed, of that produced by an

experienced human programmer.

This test has, however, assumed that the hand ported code is also a direct port

of the input code and the application is not “re-factored” to achieve higher

performance. This is to enable us to test the code generation ability of the

system against a human programmer without being subject to a human’s ability

to intelligently reconstruct an application that performs the same task but in a

different form.

There are improvements that can be made regarding these tests. Firstly, a

different programmer than the developer should be used to develop the manual

ports of applications. This would prevent the possibility of the introduction of

any bias, although, it should be stressed, that the manual ports that have been

produced are to the best of the developers ability, ensuring the best possible

performance is achieved within the restrictions that have been given.

Secondly, the introduction of additional programmers will provide a fairer overall

comparison. Ideally, the developers should not have knowledge of how the system

works but they would need detailed knowledge and skills in programming the

respective devices.

The main problem with carrying out this experiment is locating developers with

7.3. Contributions 218

the required skills. This is important because if the developers chosen are novices,

then the performance of the manual ports would almost certainly be worse than

has been presented in this thesis. One possible time saving measure that could

be introduced, is to use the developed system to provide an initial port of an

application to the developers from which they can improve the code. Even with

this possible time saving measure, it was still deemed impractical within the scope

of this doctoral program, due to the lack of other developers, to carry out the

experiment at this time.

When comparing the automatically generated code against re-factored versions

of the same algorithm, Chapter 6 shows that automatically generated code does

not compete favourable against tuned implementations, such as those that have

been discussed in Section 2.6 of Chapter 2. This is not a surprising outcome but

it is encouraging to see that automatically generated code is able to consistently

outperform a single-core CPU and, in certain cases, a quad-core CPU.

7.3 C ontributions

Contribution 1: A novel distributed system and architecture that is able

to analyse and port input applications to an acceleration device and, with a

reasonable success rate, predict the most appropriate device for the application

concerned.

This contribution is drawn directly from the hypothesis and it has been shown

above that the system that has been constructed is able to both port code with

good efficiency and make predictions of reasonable accuracy. No known system of

this type has been previously published and this is supported by the publication

of two peer reviewed papers and the comments received from the referees.

7.3. Contributions 219

Contribution 2: Demonstration that the system is able to modify itself, in

that it is able, from experience, to adapt the model that is used to select an

acceleration device and that it is able to adapt to the introduction of the new

device’s, or improved versions of existing devices.

This contribution is also drawn directly from the hypothesis and we have shown

in the previous section that the system is not only able to modify itself based

on data from running existing, and new applications, but it is also modify itself

based on the introduction of new devices, as this process is a special case of the

system self-modification mechanism.

Contribution 3: The ability to demonstrate, through the use of well understood

and developed machine learning techniques, a set of explicit parameters and

features that can be used to describe the selection of an appropriate acceleration

device.

This contribution justifies the inherent value and the expressive power of the data

that the system collects. The decision tree method of classification was chosen

mainly because of its ability to be easily understood by humans. This results in

the decision trees produced by the system being very valuable in their own right.

Even if a user did not possess any devices, they could examine such a decision tree

along with their code and make a decision, without the need for experimentation,

as to which device would be appropriate to select. This is exhibited in Figure

6.23, which express the criteria for choosing an optimal device from all the devices

our system has used (Quad-Core CPU, GPU and ClearSpeed).

Contribution 4: The provision of a route to application acceleration to novice

users. This may be the porting of an application, generating an efficient initial

port from which further performance improvements can be made by experienced

human programmers, or determining in a quick and simple manner, whether the

7.3. Contributions 2 2 0

users application is suitable for acceleration.

The increasing reliance on parallel technologies and the introduction of hybrid

systems has made HPC far more complex for novice users. This thesis has shown

that the generation of automatically ported code is a viable and efficient strategy

in certain circumstances. However, in other circumstances the performance of

automatically generated code is often inferior to existing libraries and re-factored

version of the algorithm.

The analysis of the performance of the applications in Chapter 6 has shown that

they are all (apart from the Ray Tracer) memory bound and, in order for their

performance to improve, automatically generated code needs to map better to

the device’s memory architecture. Something which the GPU and ClearSpeed

code generators developed in the thesis are not yet able to do.

Table 7.1 shows the percentage of peak performance that each application has

achieved, where the peak performance is the highest performance that has been

found on a comparable device. It should be noted that in certain cases that no

comparable figures could be found, meaning that a complete comparison against

all applications in single and double precision is not possible. Nevertheless, the

table does allow trends to be identified. Examining Table 7.1 it can be seen

that the relative performance for the Sobel, GEMM and FFT applications is low,

but the Monte-Carlo and N-Body simulation provide a far better comparison,

achieving 31% and 39% of peak performance respectively.

Even though automatically generated code is not, in many cases, able to compete

with the performance provided by a re-factored and tuned application that

has been ported to the device, the system that has been developed could still

have significant impact in providing an easier route to the use of application

acceleration devices within future HPC systems, especially for novice users. The

7.4. R elation to Current Work 2 2 1

Application Re-factored Algorithm
% of Peak Perfo

Single Precision
rmance Achieved
Double Precision

Sobel Brandvik et al[21] 2.6% Not Available
GEMM Nath et al[96] 1.1% 5.2%
N-Body Nyland et al[109] 39.2% Not Available

Monte-Carlo ClearSpeed[37] 27% 31%
FFT Govindaraju et al[59] 0.7% Not Available

Table 7.1: Percentage of Peak Performance Achieved by Automatically Generated
Code

developed systems strength lies in its ability to provide an essentially intellectually

effort free route of access to the use of an acceleration device.

This ability can be leveraged by end-users in one of several ways. The system

could be used to port applications, determine if an application is viable for

acceleration or used as a rapid prototyping system. Take for example the situation

where a user wishes to develop the most efficient possible port of their application.

They could utilise the porting system to generate an initial port of the code and

that code could, from the output produced by the system, be incrementally made

more efficient by expert human intervention. Another possible example would be

the utilisation of the system by a novice user looking to purchase an acceleration

device. The user would use the system to predict on which device their application

gives the best performance, this enables them to make a more informed decision

prior their purchase.

7.4 R elation to Current W ork

This section will outline the strengths and weaknesses of the developed system

when compared to what are deemed the closest existing approaches: HMPP and

the PGI Accelerator Compiler. Both of these tools were discussed in detail in

7.4. Relation to Current Work 2 2 2

Section 2.7 in Chapter 2.

7.4.1 H M P P

The HMPP system provides the ability for the programmer to augment their

code with OpenMP like directives. Once augmented, the HMPP system allows

the code identified by these directives to be executed on acceleration devices.

The following outlines the various strengths and weaknesses compared to the

developed automatic self-modifying application porting system.

Strengths:

— Supports Fortran in addition to C,

— Supports OpenCL as an additional back-end,

— OpenMP like directives will be familiar to many developers, and allow the

expression of details that are not originally expressible in the input language.

Weaknesses:

— User must select which kernels to execute by way of directives added to the

code,

— Selection of device is based on the device availability on the host node.

7.4.2 P G I A ccelerator C om piler

The Accelerator Compiler from PGI also allows the programmer, using a series

of OpenMP like directives, to indicate which statements are to be accelerated.

7.4. R elation to Current Work 223

The following outlines the various strengths and weaknesses compared to the

developed automatic self-modifying application porting system.

Strengths:

— Supports Fortran in addition to C,

— OpenMP like directives will be familiar to many developers, and allow the

expression of details that are not originally expressible in the input language,

— PGI Compiler is able to override users choices if array dependencies are

detected,

— PGI Compiler is able to detect performance bottlenecks and advise the user

appropriately,

— PGI Compiler is able to undertake a rich portfolio of optimisations such as

re-ordering of nested loops.

Weaknesses:

— User must select which kernels to execute by way of directives added to the

code,

— Only one back-end supported, so device selected is irrelevant.

7.4.3 C onclusions

The above analysis of what is deemed the two most directly competitive systems

leads to the following conclusions:

7.5. Evaluation of Metrics 224

- The PGI Compiler has superior front end parsing abilities,

- Neither of the two systems provide mechanisms for selecting the device and

they generally make the assumption that the compiled binary will be executed

on single device systems.

- The selection of kernels for execution is done by the programmer by way of

inserting directives. The developed automatic self-modifying application porting

system eliminates this need by automatically selecting appropriate kernels from

the code and then determining if they are suitable for execution.

7.5 Evaluation o f M etrics

One of the key features of the system is its ability to select an appropriate device

for an application based on a series of metrics. The metrics that have been utilised

so far are:

- The highest precision data-type that is used by the application.

- A count of mathematical operations (intensity).

- A count of the number of memory accesses (read and write).

- A count of branching that occurs.

- The number of iterations of the kernel that are performed.

- Size of data that must be loaded to/from the device.

7.5. Evaluation of M etrics 225

These metrics have been selected based what on has been determined, from

experience, to be the key program features relating to the performance of

applications on acceleration devices. The system itself, by its use of a decision

tree classification model, provides its own internal validation of these metrics

and any metrics that are not significant will be factored out by the decision tree

induction algorithm.

The surprising result of this is that the only metric that is unused is the highest

data precision metric (i.e. single or double precision) and this metric does not

have any effect on the selection of the device within the decision model that

has so far been constructed. This is shown by the results and the decision trees

presented in Chapter 6. However, it should be noted that when additional devices

are added to the system, this is expected to change. An example of this would be

the introduction of a FPGA acceleration device, which presently strongly favours

integer and single precision arithmetic over double precision.

A key point that was realised in the development of the system is that as much as

possible the metrics should be independent and orthogonal to each other. This

is illustrated in the case of the data loaded to and from the device. If these

two figures are treated individually then they make implications about the other

metrics, i.e. if data out is much lower than data in, then it implies that the

amount of memory written and the amount of memory read by each iteration

will have a similar relationship.

From the work conducted so far, it is believed that appropriate metrics have been

selected and used, and in many ways it is better to have too many metrics within

the system and allow the classification model to eliminate them, than to have too

few.

7.6. ClearSpeed vs N VIDIA G PU 226

7.6 C learSpeed vs N V ID IA G P U

One of the main considerations when comparing ClearSpeed and NVIDIA GPUs

is the comparative ages of the technologies. While the ClearSpeed device’s most

recent iteration was released in 2008 [87], the fundamental architecture has not

changed since 2005. The GPU architecture that has been used was first designed

in 2006 [45]. However, the CUDA system itself was not released until 2007 [46].

Finally the specific model of GPU that has been used in this thesis was released

in 2008 [101].

This illustrated that in reality the ClearSpeed system is, in terms of design, ap­

proximately two years behind NVIDIA. However, development on the ClearSpeed

accelerator, as far as can be seen, has all but stopped.

This lack of progress is apparent because, in all except one case, ClearSpeed is

completely unable to compete with the GPU in terms of performance. The lack

of performance presented by ClearSpeed is due to several reasons:

— CUDA has developed a novel method of hiding memory latency by the rapid

context switching of groups of threads known as warps, whereas ClearSpeed leaves

this to the developer.

— CUDA only executes small numbers of threads in SIMD, where ClearSpeed

executes NoTĥ eads [n SIMD. This enables CUDA to overcome the problem of

uneven load balancing between threads as shown in the Ray Tracing example.

— CUDA has a larger on-board memory size.

— Each GPU Streaming Core has a clock frequency of 1.3 GHz while each

ClearSpeed Processing Element has a clock frequency of 250MHz. However it

7.7. Evaluation 227

should be noted that a ClearSpeed board consists of 192 Processing elements

whereas the GPU consists of 240 streaming cores.

- Each Streaming Multiprocessor has a shared memory of 16Kbytes whereas each

ClearSpeed core only has a local memory of 6Kbytes.

- The programming level of Cn is at a noticeably lower level than CUDA and

when programming in Cn you must manually handle data movement between the

device’s main memory and the processing elements. The CUDA system does this

automatically and also features methods for reducing the memory transfers to

the absolute minimum. This difference in API level can be illustrated by noting

that the ClearSpeed back-end totals 4000 lines of code whereas the CUDA back

end totals just over 1200.

7.7 Evaluation

Looking back at the work that has been conducted, there are several things that

could be improved if the project was to be repeated or extra time was available:

- The one major problem throughout the project has been the poor comparative

performance of the ClearSpeed accelerator. When the project started, GPGPUs

were in the early days of development and when the initial work was carried

out with the ClearSpeed accelerator it was competitive with GPU devices that

were available at that time. However, since then the GPU has gone through

several iterations, whereas ClearSpeed has not released any new models. This

had led to ClearSpeed simply being unable to compete with the GPU. When

this was realised, it would have been desirable to use another device. However,

7.7. Evaluation 228

there simply were no other devices that could be used within the time-scale of

the project.

— One possible weakness in the proof of the hypothesis that has been presented

is the fact that only a single programmer has been used, whereas, in an ideal

world, a large survey set of experienced programmers would have been used.

Unfortunately, due to the unfamiliarity of many developers with CUDA and,

especially, ClearSpeed programming this simply was not possible. Due to

the time that would be required to port these applications, and the level of

experienced required, the only feasible way to conduct this particular comparison

more rigorously would be to employ a group of expert programmers to port the

applications.

— Examining again the seven dwarfs model outlined by Asanovic et al [14]

this thesis has outlined examples from five out of the seven dwarfs. It has

not tackled applications from the Unstructured Grids or Spare Linear Algebra

categories. However, it is anticipated that the system will functional equally well

for application from these two dwarfs and including them would only be necessary

for completeness.

— Initial results when comparing against a single core CPU were very promising.

However, once quad-core CPU performance was included the results were less

promising. When comparing against the single-core CPU all applications achieved

performance improvement once ported to the GPU but when comparing against

7.8. Chapter Summary 229

the quad-core CPU, three out of the seven applications (N-Body, Monte-Carlo

and Ray Tracing) achieved performance improvement on the GPU, with the other

four applications performing optimally on the quad-core CPU.

7.8 C hapter Sum m ary

This chapter has analysed the overall success of the system. It has shown that

although the system is not able to predict unseen applications with complete

accuracy it is able to make predictions with a success rate of over 80%.

This chapter has also shown that the system is able to produce code with a

performance that compares favourably to that achieved by an experienced human

programmer, assuming no re-factoring takes place. However, when comparing

automatically generated code against that of re-factored code, large performance

gaps have been shown. These show the importance of being able to adapt the

algorithm in use to suit the architecture of the device, this means that end-users

should endeavour to leverage on libraries providing optimised versions of their

code whenever possible. In situations where optimized versions of an algorithm

are not available, automatic porting can achieve for certain applications virtually

effort free performance improvement and also enable end-users to utilise the

generated code as a platform to aid and inform them in the construction of their

own optimised version of the algorithm.

This chapter has also described how automatically generated code for the

GPU outperformed the single-core CPU in all applications and the quad-core

CPU in certain cases. However, even though based on final decision tree

constructed by the application porting system system, the GPU would only

be selected to accelerate a sub-set of the kernels encountered, the system is

7.8. Chapter Summary 230

expansible. This would allow the addition of new devices such as a NVIDIA Tesla

C2070(FERMI)[106], which will then result in changes to the decision model.

Despite this, this chapter has shown that the hypothesis proposed in Chapter 1

is true and that it is possible to construct a system that meets these criteria.

However, in order for such a system to be commercially viable it is anticipated

that further work must be done. Chapter 8 discusses this and suggests one

possible method of deployment for the system.

The system that has been described in this thesis can also be compared to the

ideal system presented in Chapter 2, Figure 2.10. Examining the key factors

of that system it can be seen that each of the requirements outlined has been

tackled, although for this ideal system to be constructed, each aspect would have

to be taken to the limit:

The ability to port code with no user intervention: This requirement has

been met, however, problems can arise when the lower level API of the device

requires information that is not expressible in the input language used. There

are however extensions to this functionality that can add to the performance of

automatically generated code and these will be discussed in Chapter 8.

The ability to select the device to execute the application: This

requirement has been met, although the accuracy of the decisions that are made

are dependent on the amount and accuracy of the performance data that has

been collected.

The ability to target all devices: Back-ends for two devices have so far been

implemented. In order to fulfil this requirement an ideal system would need to

have back-ends for every acceleration device type.

The ability to operate on all known applications: This requirement relates

7.8. Chapter Summary 231

strongly to the power of the client. The more languages that are supported and

the better at code analysis that the front end client is, the more applications

that the system can process. Currently a front-end for the ANSI C language has

been implemented. However, it is noted that this could be improved by adding

additional front end analysis, such as further loop dependency analysis and other

techniques, such as loop-unrolling and the analysis of nested loops used by the

PGI accelerator compiler (described in Chapter 2).

Implementing an ideal system, as described above, is in all likeliness impractical,

but it is a useful comparison to the porting system that has been developed. It

is my belief that even though there is a great deal of work to be done in order

to advance the development of the porting system, all the intellectually difficult

areas have been tackled within this thesis.

As a final thought, it is anticipated that this system will be of benefit to those

developers who are unfamiliar with acceleration devices and simply wish to

acquire the best possible performance for their application. It is also anticipated

that users of legacy codes will be especially interested. However, going forward,

it is also obvious that, in order for the boundaries of computing to be pushed

forward, parallel thinking, as opposed to sequential thinking must become the

norm, if new hybrid HPC system consisting of collections of many-core and multi­

core systems are to be fully leveraged.

232

C h a p ter 8

Further Work

8.1 Introduction

This chapter will consider the work that has been described in this thesis with a

view for continuation of the research.

This chapter will only consider improvements from a research perspective and

will not consider purely engineering challenges such as:

— The addition of new back-end devices.

— The addition of new front ends, such as Fortran90.

— The implementation of additional loop dependency checking.

The main ideas that will be discussed in this chapter include:

— The ability to make decisions based on characteristics other than pure

performance,

— Adding the ability to support larger data-sets,

8.2. Making decisions based on other factors 233

- Supporting Multi-Card Accelerators,

- Intelligent Scheduling,

- Code Optimisations,

- Mapping of code to pre-existing libraries.

- Possible applications of the porting system regarding cloud computing,

- Ideas related to a process for an adaptive porting system.

8.2 M aking decisions based on oth er factors

Currently the porting system makes its decisions based purely on performance

data. However, there are other factors to consider:

Power: If several acceleration devices are able to provide acceleration for an

application, then a user may wish to select the most power efficient device for

their application. This method could use a measurement such as FLO PS/W ATT ,

or a measure of the carbon footprint that is produced in order to power the

machines. Both of these metrics could be used in addition to performance to

decide the optimum device.

Financial: It is feasible that the porting system, along with appropriate

performance data, could be used to select an appropriate device for an application

prior to the device being purchased. In this case then the following measure of

financial outlay and performance achievement could be used:

8.3. Code Optim isations 234

ExecutionTimecpu ~ ExecutionTimeDevice
C o s t C heapest D evice C o s t D evice

Where cost is the total cost of ownership for the life-cycle of the device.

This would compare the ratio of the differences in performance to that of cost

and would allow some judgement to be made as to how cost efficient each device

is, i.e. it would not normally be acceptable to spend many thousands of pounds

extra to achieve a minor performance gain.

8.3 C ode O ptim isations

There are several program optimisations for both CUDA and ClearSpeed which

can be explored and, if possible, added to the system.

8.3.1 C learSpeed:

The main optimisation that can be added to ClearSpeed is to determine if

there is a feasible method for exploiting ClearSpeed’s Swazzle operation. The

Swazzle operation allows register to register data transfers between neighbouring

processing elements. However, the lower level nature of this operation means that

the system would need to be able to specifically detect features of the input code

that would map onto the Swazzle operation. This is a difficult problem to solve,

as in many cases the information required to take advantage of Swazzle is not

expressible in the C language.

8.3. Code Optim isations 235

8.3 .2 C U D A

There are two viable optimisations that could be investigated for addition to the

CUDA back-end that has been constructed:

O ptim isation of Global M emory Access

In CUDA the memory accesses of each half-warp are coalesced by the device

into as few transfers as possible when certain requirements are met [46]. The

requirements for the device to coalesce memory access are complex, but it may

be possible for the system to perform a series of program transformations to

facilitate the device’s ability to coalesce global memory access. Baskaran et al

[15] has already done work in this field, but they have, so far, limited their work

to focus on optimisations of affine loop nests. Additionally, Ueng et al [131]

have produced CUDA-Lite, which is software that allows the optimisation of

global memory accesses using a series of programmer annotations. It would be of

interest to see if either of these techniques can be adapted or expanded to provide

this valuable optimisation with the system that has been described in this thesis.

Making increased use of shared m emory

It is possible to reduce the number of loads from global memory to the memory on

the individual processing units by utilising each multiprocessor’s shared memory.

In order to do this the system would need to detect common memory accesses

between threads and add additional code before the execution of the thread begins

to copy of the shared accesses to the multiprocessors shared memory. This could

be expanded to also allow the CUDA back-end to utilise texture memory. This

8.4. Supporting larger data-sets 236

would be beneficial in cases where there is 2D locality in fetches from memory

[102]. However, the major disadvantage is that texture memory is read only and

the performance of memory fetches is often uncertain if certain requirements (i.e.

2D spatial locality) are not met. This would mean that the system would need

to detect when using texture memory is appropriate, and only then generate the

appropriate code.

8.4 Supporting larger d ata-sets

One of the problems that has been encountered while carrying out this work

was that, especially on devices with limited memory such as ClearSpeed, that

the device memory was simply insufficient to contain the input/output data-sets

that the application required.

This problem could be solved by doing the following:

— Detecting the memory requirements of each iteration of the kernel.

— Determine the maximum number of iterations that each device can fit in

memory X .

— This means that the entire execution process on the device will need to repeat
r T otal Ite ra tio n s 1
• X *

— Balance this figure so the load is evenly distributed.

This, however, will not always be possible, as in some cases it is simply not

possible to determine the memory requirements of a kernel in advance of its

execution. In these cases there are two options that could be investigated:

8.5. Supporting M ulti-Cards Accelerators 237

- Accept that if the entire application cannot fit into memory then the application

cannot be executed on the device,

- Provide a method for the programmer to guide the system in determining what

the memory requirements of each iteration of the kernel are, such as annotations

or interaction during the compilation process.

8.5 Supporting M ulti-C ards A ccelerators

The system that has been developed to date treats each acceleration device as a

separate entity, even if several devices are connected to one host node. Possible

further work, would be the added ability to treat the set of all devices connected

to one host node as one single device when necessary. Additionally, this could be

expanded to also treat other facilities available on the host node, i.e. a multi-core

CPU, as additional devices to assist with accelerating the application.

This would lead to the addition of several new “composite” devices within the

system. As these larger devices would only be applicable in cases where the input

application can be separated to such an extent to allow different segments of it

to execute on each card. The main obstacle that would need to be overcome

is that each device within the “composite” device would not have access to the

device memory of other devices. Secondly, the system would have to view the

composite device both as a device consisting of X cards and X individual devices

consisting of a single card. The reason for this is that not all applications will

benefit from being executed on a “composite” device and having such a large

amount of hardware sitting idle would be a tremendous waste of resources. This

would also raise the issue of scheduling and the problem of ensuring that all cards

within a “composite” device are kept free to enable an application to execute.

8.6. Scheduling 238

8.6 Scheduling

Another possible improvement that could be made to the system is the addition

of an intelligent scheduler. Such a scheduler would attem pt to solve the following

issue that would arise in a production system:

I f a user has to wait X minutes for device A. Then as long as device B is available

and provides performance within X — 1 minutes of device A, then device B would

be the most efficient device to use.

The improvement would be necessary to ensure that a system consisting of many

application acceleration devices was truly adaptive to the application load that

would be placed upon it.

8.7 M apping code to com pu tation libraries

A key point that has been identified in the course of this work is that

automatically generated code, generally speaking, cannot compete with the

optimised algorithms often present in computational libraries. This issue has led

to the development of the idea of mapping input source code to that of an existing

library and there are two circumstances in which this idea could be applied.

Firstly, to enable the mapping of CPU based libraries to those present on an

acceleration device i.e. mapping FFTW(CPU library) to CuFFT(GPU library).

In developing this approach care would need to be taken in ensuring that the

method of calling the CPU library can be translated onto that required by

the device’s library and that either the data format used by the libraries are

compatible or code can be generated to enable a conversion to take place.

8.8. Cloud com puting 239

The second, and far more complex scenario, requires the application porting

system to recognise known algorithms within a kernel. This would involve the

application porting system extracting the algorithmic form of a kernel and then

attempting to match it to a database of algorithmic forms, each with an associated

library function call. However, before such an approach could be developed many

key problems would need to be solved, such as:

— Mapping of input and output data from the format used in the ported code to

that of the library.

— Implementing sufficiently permissive matching of user's code to algorithmic

forms to allow successful matching despite differing programming styles.

— Implementing sufficiently restrictive algorithm detection to ensure that the

correct library call is chosen.

— Many computation libraries in order to achieve the best performance require

extra information regarding the characteristics of the input data-set in advance.

This information may not be available through automatic analysis.

8.8 Cloud com puting

One of the most interesting areas of future expansion for the system is making

it available within a cloud computing environment in the manner of “Software

as a Service” . In order for the system to function in this environment, the main

addition that would be needed is the implementation of a scheduler as discussed

previously.

8.8. C loud com puting 240

An example of a possible architecture for the system within a cloud is shown in

Figure 8.1.

S o u rc e C o d e A pplica t ion
A n a ly s e r

S c h e d u le r
C lassifier

Perfo rm ance]
JData

S o u rc e C o de
+ D a ta D e v ic e

D e v ic eResults D e v ic e
D e v ic e

C l ie n t

D e v ic e

Figure 8.1: Cloud Computing.

Such a system could provide a subset of services to end users in addition to the

overall functionality that has been outlined in this thesis. These services could

include:

- A system that recommends a device to execute a given application.

- A system that ports code i.e. a rapid prototyping system.

One of the main advantages of a cloud computing system is that such a system,

given sufficient usage, would be able to rapidly acquire a large amount of

8.9. A daptive Code Porting 241

performance data. This would mean that when a user supplies an application,

the system will have already seen many of the common kernels that occur

within scientific applications and bo able to accurately supply the appropriate

recommendation.

8.9 A daptive Code P orting

One of the interesting points discussed in Section 6.2.3, was that two alternative

manual ports were considered for the ClearSpeed version of the N-Body simula­

tion. This led to the idea of developing an adaptive method for code porting. This

method would involve, in situations where there could be multiple versions of an

accelerated application, selecting the best one. This selection could be made in

two ways: performance, and qualitative i.e. does the code function and produce

correct results. An example of such a process is outlined in Figure 8.2.

Port Optimal PortInput Source Fitness
Analysis

Modification

Figure 8.2: Adaptive Porting.

Examples of when this process could be useful would include:

- Deciding if a ClearSpeed port should divide the input data-set between memory

chips or if it should duplicate data between them.

— Deciding if a kernel should use double buffering or not.

8.10. Chapter Summary 242

- If there were a set of optimisations that could be applied, i.e. use of the Swazzle

operator, these optimisation could be applied and validated. If the code functions

and gives correct results, the optimisations can be used, if not then they can be

discarded.

8.10 C hapter Sum m ary

This chapter has outlined several improvements that could be made to the

automatic self-modifying application porting system. The culmination of these

improvements is the development of the system as “Software as a Service”

within a cloud computing system. This future work would enable the provision

of application acceleration to the wider computing community without the

requirement for detailed knowledge of the underlying device that executes the

application.

One of the implications of this, is that the availability of different device types will

need to be carefully managed. This would mean that, given a system with a finite

number of devices, not every user would be able to execute their application on

the optimum device without waiting. This could be tackled by the introduction of

pricing mechanism and a rare device that provides excellent performance would

undoubtedly cost more to utilise than other devices.

In addition to these improvements relative to cloud computing, other work can

be done such as the ability to handle applications with data requirements larger

than the device’s memory. This process is reasonably easy in cases where the

system can identify memory requirements at compile time, but, when this is not

possible, further work is needed to investigate an appropriate solution.

8.10. Chapter Summary 243

Additional code optimisations can also be investigated and added to the system.

In terms of the ClearSpeed accelerator, the use of Swazzle needs to be investigated

as does how the input could be used to “guide” the system in using this lower

level operation. In terms of CUDA, the most important optimisation is the

implementation of further code transforms to ensure that global memory access

is, where possible, always coalesced.

Finally, ideas are presented related to the idea of adaptively porting code.

This means that a porting system may produce several different ports of an

application, which are then analysed based on performance and quality. This

enables the system to try multiple methods of producing code and perhaps

different combinations of optimisations that may or may not function as expected.

While only very early ideas for this are presented, it is anticipated this could be

highly useful, especially on devices that possess a lower level programming model

(i.e. ClearSpeed).

244

B ibliography

[1] ClearSpeed Company Website. [Online] http://www.Clearspeed.com,
[Accessed Dec 2009].

[2] FLAGON Website. [Online] http://sourceforge.net/apps/trac/flagon/wiki,
[Accessed February 2011].

[3] GNU-C Library Manual. [Online] http://www.gnu.org/software/libc/manual,
[Accessed June 2010].

[4] IBM Website. [Online] http://www.ibm.com, [Accessed February 2011].

[5] LibSH Project Website. [Online] http://www.libsh.org, [Accessed May
2010].

[6] Magma Library Website. [Online] http://icl.cs.utk.edu/m agm a/, [Accessed
February 2011].

[7] Nallatech Company Website. [Online] http://www.nallatech.com, [Ac­
cessed Dec 09].

[8] Turbostream. [Online] http://www.turbostream-cfd.com/, [Accessed
March 2011].

[9] Weka Manual. [Online] http://www.cs.waikato.ac.nz/ ml/weka/, [Accessed
June 2010].

[10] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers : Principles,
Techniques, and Tools. Reading, Mass. ; Wokingham : Addison-Wesley,
1986.

http://www.Clearspeed.com
http://sourceforge.net/apps/trac/flagon/wiki
http://www.gnu.org/software/libc/manual
http://www.ibm.com
http://www.libsh.org
http://icl.cs.utk.edu/magma/
http://www.nallatech.com
http://www.turbostream-cfd.com/
http://www.cs.waikato.ac.nz/

BIBLIO G RAPH Y 245

[11] Erik Alerstam, Tomas Svensson, and Stefan Andersson-Engels. Parallel
computing with graphics processing units for high-speed Monte Carlo
simulation of photon migration. Journal of Biomedical Optics, 13, 2008.

[12] AMD. AMD Core Math Library Website. [Online]
http://developer.amd.com/cpu/Libraries/acml/, [Accessed February
2011].

[13] David Andrews, Ron Sass, Erik Anderson, Jason Agron, Wesley Peck, Jim
Stevens, Fabrice Baijot, and Ed Komp. Achieving Programming Model
Abstractions for Reconfigurable Computing. IEEE Transactions on Very
Large Scale Integration Systems, 16:34-44, 2008.

[14] Krste Asanovic, Ras Bodik, Bryan Catanzaro, Joseph Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Plishker, John Shalf,
Samuel Williams, and Katherine a Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical report, University
of California at Berkeley, 2006.

[15] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy,
J. Ramanujam, Atanas Rountev, and P. Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for GPGPUs. In
Proceedings of the 22nd annual international conference on Supercomputing,
pages 225-234, 08.

[16] Thomas Beach. Poster: An Intelligent Semi-Automatic Application
Porting System for Reconfigurable Devices. Many-core and Reconfigurable
Supercomputing Conference (MRSC), 2008.

[17] Thomas H Beach, Ian J Grimstead, David W Walker, and Nick J Avis.
Abstraction of Programming Models Across Multi-Core and GPGPU
Architectures. In Proceedings of International Conference on Parallel
Computing(PARCO), 2009.

[18] Thomas Henry Beach and Nicholas J Avis. An Intelligent Semi-Automatic
Application Porting System for Application Accelerators. Conference
on Computing Frontiers: Proceedings of the Combined Workshops on

http://developer.amd.com/cpu/Libraries/acml/

BIBLIO G R A PH Y 246

UnConventional High Performance Computing Workshop plus Memory
Access Workshop, pages 7-10, 2009.

[19] Pieter Bellens, Joesp M Perez, Rosa M Badio, and Jesus Labarta. CellSs:
a programming model for the cell BE architecture. In Proceedings of the
2006 ACM /IEEE conference on Supercomputing, page 86, 2006.

[20] David Blythe. The Direct3D 10 System. ACM Transactions on Graphics,
25:724-734, 2006.

[21] Tobias Brandvik and Graham Pullan. An Accelerated 3D Navier-Stokes
Solver For Flows In Turbomachines. A S ME Transactions, Journal of
Turbomachinery, 133, 2009.

[22] Tobias Brandvik and Graham Pullan. SBLOCK: A Framework for
Efficient Stencil-Based PDE Solvers on Multi-core Platforms. Proceedings of
International Conference on Computer and Information Technology (CIT)
2010, pages 1181 - 1188, 2010.

[23] Jens Breitbart. CuPP - A Framework for Easy CUDA Integration. In
Proceedings of the IEEE International Symposium on Parallel&Distributed
Processing, pages 1-8, 2009.

[24] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for GPUs: Stream Computing on
Graphics Hardware. ACM Transactions on Graphics (TOG), 23:777-786,
2004.

[25] Duncan Buell, Tarek El-Ghazawi, Kris Gaj, and Volodymyr Kindratenko.
High Performance Reconfigurable Computing. IEEE Computer, 40:23-27,
2007.

[26] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Volume Rendering
and Tomographic Reconstruction using Texture Mapping Hardware. In
Proceedings of the 1994 Symposium on Volume Visualization, pages 91-
131, 1994.

BIBLIO G R A PH Y 247

[27] Timothy John Callahan. Automatic Compilation of C for Hybrid
Reconfigurable Architectures. PhD thesis, University Of California,
Berkeley, 2002.

[28] J Canny. A Computational Approach to Edge Detection. Readings in
Computer Vision, pages 184-203, 1986.

[29] Allan Cantle. A Review of the HPRC Industry Current Progress & Future
Predictions. In Manchester Reconfigurable Supercomputing Conference,
2007.

[30] Oregon Medical Laser Center. Monte Carlo Simulations. [Online]
http://omlc.ogi.edu/software/mc/, [Accessed June 2010].

[31] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Slieaffer, and Kevin Skadron. A Performance Study of General-Purpose
Applications on Graphics Processors using CUDA. Journal of Parallel and
Distributed Computing, 68:1370-1380, 2008.

[32] Francisco Chinchilla, Todd Gamblin, Morten Sommervoll, and
Jan F Prins. Parallel N-Body Simulation using GPUs. [Online]
http://wwwx.cs.unc.edu/ tgamblin/gpgp/GPGPfinalReport.pdf, 2004
[Accessed December 2009].

[33] ClearSpeed. ClearSpeed Application Note: Accelerating computer assisted
molecular modeling for drug design. Technical report, ClearSpeed, 2007.

[34] ClearSpeed. ClearSpeed Application Note: Ground-Breaking Acceleration
Quantum Chemical Calculations Using MOLPRO. Technical report, 2007.

[35] ClearSpeed. ClearSpeed Introductory Programming Manual. Technical
report, ClearSpeed, 2007.

[36] ClearSpeed. CSX Processor Architecture. Technical report, ClearSpeed,
2007.

[37] ClearSpeed. Credit Risk Analysis. Technical report, ClearSpeed, 2008.

[38] Clearspeed. FFT Performance. [Online]
http://www.clearspeed.com/applications/, [Accessed] January 2011.

http://omlc.ogi.edu/software/mc/
http://wwwx.cs.unc.edu/
http://www.clearspeed.com/applications/

BIBLIO G RAPH Y 248

[39] James W. Cooley and John W Tukey. An Algorithm for the Machine
Calculation of Complex Fourier Series. Mathematics of Computation,
19:297-301, 1965.

[40] Jay L. T. Cornwall, Lee Howes, Paul H. J. Kelly, Phil Parsonage, and Bruno
Nicoletti. High-Performance SIMT Code Generation in an Active Visual
Effects Library. Proceedings of the 6th ACM conference on Computing
frontiers, pages 175-184, 2009.

[41] Convey Computer Corporation. The Convey HC-1 Computer: Architecture
Overview. Technical report, Convey Computer Corporation, 2009.

[42] IBM Corporation. Software Development Kit for Multicore Acceleration:
Programmer’s Guide. Technical report, IBM Corporation, 2007.

[43] NVIDIA Corporation. NVIDIA Tesla C l060 Computing Processor.
[Online] http:/ /www.nvidia.com/object/product_tesla_cl060_us.html, [Ac­
cessed Aug 2010].

[44] NVIDIA Corporation. The NVIDIA Tesla S1070 Computing System.
[Online] http://www.nvidia.co.uk/object/tesla_sl070_uk.html, [Accessed
Aug 2010].

[45] NVIDIA Corporation. Technical Brief: NVIDIA GeForce 8800 GPU
Architecture Overview. Technical report, NVIDIA Corporation, 2006.

[46] NVIDIA Corporation. NVIDIA CUDA Programming Guide. Technical
report, NVIDIA Corporation, 2007.

[47] NVIDIA Corporation. NVIDIA GeForce GTX 200 GPU Architectural
Overview. Technical report, NVIDIA Corporation, 2008.

[48] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi. Technical report, NVIDIA Corporation, 2009.

[49] Romain Dolbeau, Stephane Bihan, and Francois Bodin. HMPP: A Hybrid
Multi-core Parallel Programming Enviroment. Technical report, CAPS
Enterprise, 2009.

http://www.nvidia.com/object/product_tesla_cl060_us.html
http://www.nvidia.co.uk/object/tesla_sl070_uk.html

BIBLIO G R A PH Y 249

[50] Douglas Eadline. The Cost to Play: CUDA Programming. [Online]
http://www.linux-mag.com/id/7707, [Accessed Aug 2010].

[51] A. E. Eichenberger, J. K. OBrien, K. M. OBrien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,
P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo. Using
Advanced Compiler Technology to Exploit the Performance of the Cell
Broadband Engine Architecture. IBM Systems Journal, 45:59-84, 2006.

[52] Tal Elgar. Intel Many Integrated Core (MIC) architecture. [Online]
http: / / www.many-core.group.cam.ac.uk/ukgpucc2 / talks/Elgar.pdf, [Ac­
cessed January 2011].

[53] Erich Elsen, V Vishal, Mike Houston, Vijay Pande, Pat Hanrahan, and
Eric Darve. N-Body Simulations on GPUs. In Proceedings of the 2006
ACM /IEEE conference on Supercomputing, 2006.

[54] Rahul Garg and Jose Nelson Amaral. Compiling Python to a Hybrid
Execution Environment. GPGPU ’10: Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages 19-
30, 2010.

[55] Gildas Genest, Richard Chamberlain, and Robin Bruce. Programming an
FPGA-based Super Computer Using a C-to-VHDL Compiler: DIME-C. In
Proceedings of the Second NASA/ESA Conference on Adaptive Hardware
and Systems, pages 280-286, 2007.

[56] Anwar Ghuloum, Eric Sprangle, Jesse Fang, Gansha Wu, and Xin Zhou.
Ct: A Flexible Parallel Programming Model for Tera-scale Architectures.
Technical report, Intel, 2009.

[57] Dominik Goddeke, Hilmar Wobker, Robert Strzodka, Jamaludin Mohd-
Yusof, Patrick McCormick, and Stefan Turek. Co-Processor Acceleration
of an Unmodified Parallel Solid Mechanics Code with FeastGPU.
International Journal of Computational Science and Engineering, 4:254-
269, 2009.

http://www.linux-mag.com/id/7707
http://www.many-core.group.cam.ac.uk/ukgpucc2

BIBLIO G RAPH Y 250

[58] Mark Goresky and Andrew Klapper. Efficient Multiply-with-Carry Random
Number Generators with Maximal Period. ACM Transactions on Modeling
and Computer Simulation, 13:310-321, 2003.

[59] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith,
and John Manferdelli. High Performance Discrete Fourier Transforms on
Graphics Processors. Proceedings of the 2008 AC M /IEEE conference on
Supercomputing, pages 2:1-2:12, 2008.

[60] Khronos Group. OpenCL: Parallel Computing for Hetrongenous Devices.
Technical report, Khronos Group, 2009.

[61] Khronos OpenCL Working Group. The OpenCL Specification. Technical
report, 2009.

[62] The Portland Group. PGI Fortran & C Accelerator Programming Model.
Technical report, 2008.

[63] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An
Update. SIGKDD Explorations, 11:10-18, 2009.

[64] Mark Harris. GPU Gems 2, chapter 31: Mapping Computational Concepts
to GPUs , pages 493-508. Addison-Wesley, 2005.

[65] Vincent Heuveline and Jan-Philipp Weib. A Parallel Implementation of
a Lattice Boltzmann Method on the ClearSpeed AdvanceTM Accelerator
Board. Technical report, Karlsruhe Institute of Technology, 2007.

[66] Brian Holland, Karthik Nagarajan, Chris Conger, Adam Jacobs, and
Alan D George. RAT: A Methodology for Predicting Performance
in Application Design Migration to FGPAs. In High-Performance
Reconfigurable Computing Technologies & Apps Workshop, 2007.

[67] Lee W. Howes, Paul Price, Oskar Mencer, Olav Beckmann, and Oliver Pell.
Comparing FPGAs To Graphics Accelerators And The Playstation 2 Using
A Unified Source Description. In IEEE Conference on Field Programmable
Logic and Applications, pages 119-124, 2006.

BIBLIO G RAPH Y 251

[68] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J.
Kelmelis. CULA: Hybrid GPU Accelerated Linear Algebra Routines. SPIE
Defense and Security Symposium (DSS),, 2011.

[69] Robin Hunter. The Essence of Compilers. Pearson Education, 1999.

[70] AMD Inc. AMD OpenCL Examples. [Online]
http://developer.amd.com/GPU/ATISTREAMSDK, [Accessed November
2009].

[71] AMD Inc. AMD Stream Computing: Software Stack. Technical report,
AMD Inc., 2007.

[72] ATI Inc. ATI CTM Guide. Technical report, ATI Corporation, 2007.

[73] ClearSpeed Inc. The ClearSpeed Accelerated D FT Library, 2006.

[74] ClearSpeed Inc. ClearSpeed Software Development K it Reference Manual,
2008.

[75] ClearSpeed Inc. The CSPX Accelerator Interface Library User Guide, 2008.

[76] John Kessenich, Dave Baldwin, and Rani Rost. The OpenGL Shading
Language. Technical report, OpenGL, 2004.

[77] Bill Kircos. An update on our graphics-related programs. [Online] Tech-
nology@Intel Blog http://blogs.intel.com/technology/, [Accessed August
2010].

[78] Seth Koehler, John Currenri, and Alan D George. Performance
Analysis Challenges and Framework for High Performance Reconfigurable
Computing. Parallel Computing, 24:217-230, 2008.

[79] David M Kunzman and Laxmikant V Kale. Towards a Framework
for Abstracting Accelerators in parallel Applications: Experience with
Cell. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, volume 54, pages 54:1-54:12, 2009.

[80] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra. The
PlayStation 3 for High Performance Scientific Computing. Technical report,
University of Tennessee Computer Science Technical Report, 2008.

http://developer.amd.com/GPU/ATISTREAMSDK
http://blogs.intel.com/technology/

BIBLIO G RAPH Y 252

[81] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU:
A Compiler Framework for Automatic Translation and Optimization. In
Proceedings of Principles and Practice of Parallel Computing, pages 101-
110, 2009.

[82] Aaron Eliot Lefohn. Glift: Generic Data Structures for Graphics Hardware.
PhD thesis, University of California Davis, 2006.

[83] Calle Lejdfors and Lennart Ohlsson. Implementing an Embedded GPU
Language by Combining Translation and Generation. Proceedings of the
2006 ACM symposium on Applied computins, pages 1610-1614, 2006.

[84] Erik Lindholm, Mark J Kilgard, and Henry Moreton. A User-Programmable
Vertex Engine. Proceedings of ACM SIGGRAPH , pages 149-158, 2001.

[85] William R Mark, R. Steven Glanville, Kurt Akely, and Mark J Kilgard.
Cg: A System for Programming Graphics Hardware in a C-like Language.
ACM Transactions on Graphics, 22:896-907, 2003.

[86] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-
dimensionally Equidistributed Uniform Pseudo-random Number Generator.
ACM Transactions on Modeling and Computer Simulation, 8:3-30, 1998.

[87] Simon McIntosh-Smith. Practical Parallel Computing:
Harnessing The Many-Core Future. [Online] http://www.iee-
cambridge.org.uk/arc/seminar07 / slides/SimonMcIntoshSmith.pdf,
[Accessed January 2010]. Presentation given at The IET Cambridge
Branch Seminar November 2007.

[88] Simon Mclntosh-Smith. Meeting the Performance Per Watt Power
Challenge a 10X Increase in GFLOPS per Watt. [Presentation], 2004.

[89] Oscar Mencer. ASC: A Stream Compiler for Computing with FPGAs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and System ,
25:1603-1617, 2006.

[90] Nicholas Metropolis and S. Ulam. The Monte Carlo Method. Journal of
the American Statistical Association, 44:335-341, 1949.

http://www.iee-

BIBLIO G RAPH Y 253

[91] Mitrionics. Low Power Hybrdi Computing for Efficient Software
Acceleration. Technical report, Mitrionics AB, 2008.

[92] Stefan Mohl. The Mitrion-C Programming Language. Technical report,
Mitrionics AB, 2006.

[93] Nicholas Moore, Albert Conti, and Miriam Lesser. VForce: An Extensible
Framework for Reconfigurable Computing. IEEE Computer, 40:39-49,
2007.

[94] Kenneth Moreland and Edward Angel. The FFT on a GPU. Proceedings Of
The Acm Siggraph/Eurographics Conference On Graphics Hardware, 1:112-
119, 2003.

[95] Walid A Najjar, Wim Bohin, Bruce A Draper, Jeff Hammcs, Rober Rinker,
J. Ross Beveridge, Minica Chawathe, and Charles Ross. High Level
Language Abstraction for Reconfigurable Computing. IEEE Computer,
36:63-69, 2003.

[96] Rajib Nath, Stanimire Tomov, and Jack Dongarra. Accelerating GPU
kernels for dense linear algebra. Proceedings of VECPAR 2010, 6449:83-92,
2010 .

[97] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An Improved MAGMA
GEMM for Fermi GPUs. Technical report, University of Tennessee, 2010.

[98] Yuri Nishikawa, Michihiro Koibuchi, Masato Yoshimi, Kenichi Miura, and
Hideharu Amano. Performance Improvement Methodology for ClearSpeed
CSX600. In Proceedings of International Conference on Parallel Processing,
pages 77-85, 2007.

[99] NVIDIA. CUDA Product Information Website. [Online], [Accessed
February 2011].

[100] NVIDIA. CUDA CUFFT Library. Technical report, NVIDIA, 2007.

[101] NVIDIA. NVIDIA Tesla Computing Processor: Solve Tomorrows
Computing Problems Today. Technical report, 2008.

[102] NVIDIA. CUDA Best Practices Guide. Technical report, 2009.

BIBLIO G RAPH Y 254

[103] NVIDIA. CUDA CUBLAS Library. Technical report, 2009.

[104] NVIDIA. Cuda Occupancy Calculator Spreadsheet. NVIDIA SDK, 2009.

[105] NVIDIA. OpenCL Overview. Technical report, NVIDIA, 2009.

[106] NVIDIA. TESLA C2050 / C2070 GPU Computing Processor:
Supercomputing at 1 /10th the Cost. Technical report, 2010.

[107] NVIDIA. CUDA Toolkit 3.2 Math Library Performance. [Presentation],
February 2011.

[108] Cyril Zeller NVIDIA. CUDA Tutorial. [Online]
http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/,
NVIDIA_CUDA_Tutorial_No_NDA_Apr08.pdf [Accessed August 2010].

[109] Lars Nyland, Mark Harris, and Jan Prins. GPU Gems 3, chapter 31: Fast
N-Body Simulation with CUDA, page 633673. Addison-Wesley, 2008.

[110] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone,
and James C Phillips. GPU Computing. Proceedings of the IEEE , 96:879-
899, 2008.

[111] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Kruger, Aaron E Lefohn, and Timothy J Purcell. A Survey of General
Purpose Computation of Graphics Hardware. Eurographics, 26:80-113,
2005.

[112] Peakstream. The Peakstream Platform:: High Productivity Software
Development for Multi-Core Processors. Technical report, Peakstream,
2006.

[113] Craig Peeper and Jason L Mitchell. Introduction to the DirextX 9 High
Level Shading Language. Technical report, Microsft, 2004.

[114] Stefan Popov, Johannes Gnther, Hans-Peter Seidel, and Philipp Slusallek.
Stackless KD-Tree Traversal for High Performance GPU Ray Tracing.
Computer Graphics Forum, 26:415-424, 2007.

http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/

BIBLIO G RAPH Y 255

[115] S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch. A Monte Carlo
Model of Light Propagation in Tissue. In SPIE Proceedings of Dosimetry
of Laser Radiation in Medicine and Biology, pages 102-111, 1989.

[116] William H Press, Brian P Flannery, Saul A Teukolsky, and William T
Vetterling. Numerical Recipes in C. Cambridge, 1990.

[117] William Pugh. The Omega Test: A Fast and Practical Integer Programming
Algorithm for Dependence Analysis. Communications of the ACM , 8:102-
114, 1992.

[118] Timothy J Purcell, Ian Buck, William R Mark, and Pat Hanrahan. Ray
Tracing on Programmable Graphics Hardware. ACM Transactions on
Graphics (TOG), 21:703-712, 2002.

[119] IBM Research. Innovation matters: The Cell architecture. [Online]
htt p : / / domino. research. ibm. com / comm / research. nsf / pages / r . arch .innovation. ht ml,
[Accessed Dec 09].

[120] Andrew Richards. The Codeplay Sieve C + + Parallel Programming System.
Technical report, Codeplay, 2007.

[121] M. W. Riley, J. D. Warnock, and D. F. Wendel. Cell Broadband Engine
processor: Design and implementation. IBM Journal of Research and
Development, 51:545-557, 2007.

[122] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman3, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: A Many-Core x86 Architecture for Visual Computing. Technical
report, Intel Corporation, 2009.

[123] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis
and Machine Vision. Thompson Computer Press, 1996.

[124] Sinmon Stegmaier, Magnus Strengert, Thomas Klein, and Thomas Ertl. A
Simple and Flexible Volume Rendering Framework for Graphics-Hardware-
based Ray casting. Volume Graphics 2005 Eurographics/IEEE VGTC
Workshop Proceedings, 1:187-195, 2005.

BIBLIO G RAPH Y 256

[125] Jone E Stone, David J Hardy, Ivan S Ufimtsev, and Klaus Schulten.
GPU-accelerated molecular modeling coming of age. Journal of Molecular
Graphics and Modelling, 29:116-125, 2010.

[126] Magnus Strengert, Thomas Klein, Ralf Botchen, Simon Stegmaier, Min
Chen, and Thomas Ertl. Spectral volume rendering using GPU based
raycasting. The Visual Computer, 22:550-561, 2006.

[127] Kevin Suffern. Ray Tracking from the Ground Up. A K Peters, Ltd., 2007.

[128] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Pearson, 2006.

[129] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data
Parallelism to Program GPUs for General-Purpose Uses. Proceedings of
the 12th international conference on Architectural support for programming
languages and operating systems, pages 325-335, 2006.

[130] Justin L Tripp, Maya B Gokhale, and Kristopher D Peterson. Trident:
From High-Level Language to Hardware Circuitry. IEEE Computer, 40:28-
37, 2007.

[131] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen mei W. Hwu.
CUDA-Lite: Reducing GPU Programming Complexity. Lecture Notes in
Computer Science, 5335:1-15, 2008.

[132] Richard Wain, Ian Bush, Martyn Guest, Miles Deegan, Igor Kozin, and
Christine Kitchen. An Overview of FPGA and FPGA Programming; Initial
Experiences at Daresbury. Technical report, CCLRC, 2006.

[133] Ian H Witten and Eibe Frank. Data Mining : Practical machine learning
tools and techniques. Morgan Kaufmann, 2000.

[134] Michael Wolfe. The PGI Accelerator Programming Model on NVIDIA
GPUs. PGI Insider, 2009.

[135] Fang Xu and Klaus Mueller. Accelerating Popular Tomographic
Reconstruction ALgorithms on Commodity PC Graphics Hardware. IEEE
Transactions on Nuclear Science, 52:654-663, 2005.

A ppendices

258

A p p e n d ix A

P ortin g Example: G EM M

A .l Input Source

// does C= alphaAB + betaC
// C is of dimensions m*n
//A is of dimensions m*k
// B is of dimensions k*n
#include <stdlib.h>
#include <stdio.h>

int m a i n O {

int m=2800
int n=2800
int k=2800
int i;
float alpha=25.21;
float beta=42.52;
int x;
FILE * file;
float * a;
float * c;
float * b;
float *cOut;

A .I. Input Source 259

a=(float*)malloc(sizeof(float)*m*k);
b=(float*)malloc(sizeof(float)*k*n);
c=(float*)malloc(sizeof(float)*n*m);
cOut=(float*)malloc(sizeof (float)*n*m) ;
file=fopen("data","rb");

//initialise bodies
for (i=0; i < k*m;i++) {

char buf[999];
fgets(buf,999,file);
a[i]=atof(buf);

>

for (i=0; i < k*n;i++) {
int x=i/n;
int y=i - (x*n);
char buf[999];
fgets(buf,999,file);
b [(y*k)+x]=atof(buf);

>

for (i=0; i < m*n;i++) {
char buf[999];
fgets(buf,999,file) ;

c [i]=atof(buf);
}

fclose(file);

for (x=0; x < n*m;x++) {
int y;
int i= x/m;
int j= x-(i*m);

A .I. Input Source 260

// C is of dimensions m*n
//A is of dimensions m*k
// B is of dimensions k*n

float sum=0.0;
for (y=0; y < m;y++) {

sum+=a[(i*k)+y]*b[(j*k)+y];
>

cOut[x]= (alpha*sum) + (beta*c[x]);

>

for (x=0; x < n*m;x++)

printf (" [#/,d] =#/,f \n",x , cOut [x]) ;
}

>

A .2. C ode E xecuting on C PU 261

A .2 C od e E xecutin g on C P U

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdlib.h>
#include <stdio.h>
int main(){

int m = 2800;
int n = 2800;
int k = 2800;
int i;
float alpha = 25.21;
float beta = 42.52;
int x;
FILE *file;
float *a;
float *c;
float *b;
float *c0ut;

a = (float *) (malloc(sizeof(float) * m * k))
b = (float *) (malloc(sizeof(float) * k * n))
c = (float *) (malloc(sizeof(float) * n * m))
cOut = (float *) (malloc(sizeof(float) * n * m));
file = fopen("data","rb");

for (i = 0;i < k * m;i++){
char b u f [999];
fgets(buf,999,file);
a[i] = atof(buf);

A .2. C ode E xecuting on C PU 262

>

for (i = 0;i < k * n;i++){
int x = i / n;
int y = i - x * n;
char b u f [999];
fgets(buf,999,file);
b[y * k + x] = atof(buf);

>

for (i = 0;i < m * n;i++){
char b u f [999];
fgets(buf,999,file);
c[i] = atof(buf);

>

fclose(file);

#include "kernelloaders/kernel3.c"

for (x = 0;x < n * m;x++){
printf (" [#/«d] =#/,f \n" , x , cOut [x]) ;

>

>

A .3. C U D A 263

A .3 C U D A

A .3.1 G en era ted H ost C od e

int noDevicesKernel3;
cudaGetDeviceCount(&noDevicesKernel3);
if (noDevicesKernel3<l) {
printf("No Cuda Devices Found\n\r");
exit(1);
>
cudaSetDevice(O);
float *aKernel3Load;
cudaMalloc((void**)&aKernel3Load,(sizeof(float) * m

*sizeof(float));
cudaMemcpy(aKernel3Load,a ,sizeof(float)*sizeof(float)

,cudaMemcpyHostToDevice);
float *bKernel3Load;
cudaMalloc((void**)&bKernel3Load,(sizeof(float) * k

*sizeof(float));
cudaMemcpy(bKernel3Load,b ,sizeof(float)*sizeof(float)

,cudaMemcpyHostToDevice);
float *cKernel3Load;
cudaMalloc((void**)&cKernel3Load,(sizeof(float) * n

*sizeof(float));
cudaMemcpy(cKernel3Load,c,sizeof(float)*sizeof(float)

,cudaMemcpyHostToDevice);
float *c0utKernel3Return;
cudaMalloc((void**)&c0utKernel3Return,(sizeof(float)

*sizeof(float));
int kerne13timesExecuted=0;
kerne13timesExecuted= (n*m - 0) / 1;

* k/sizeof(float))

* m * k/sizeof(float)

* n/sizeof(float))

* k * n/sizeof(float)

* m/sizeof(float))

* n * m/sizeof(float)

* n * m/sizeof(float))

int kernel3alloc=ceil(sqrt (ceil((f loat)kernel3timesExecuted/(float)97)));

A .3. C U D A 264

dim3 kernel3Grid(kernel3alloc,ceil((double)kernel3timesExecuted
/((double)97*kernel3alloc))));

dim3 kernel3Block(97,1);
kernel3 «<kernel3Grid, kernel3Block»> (m, aKernel3Load, k ,bKernel3Load, alpha

, beta,cKernel3Load,n ,c0utKernel3Return,
kernel3timesExecuted,kernel3alloc);

cudaMemcpy(c0ut,c0utKernel3Return> sizeof (float)* (sizeof (float) * n *
m/sizeof(float)),cudaMemcpyDeviceToHost);

cudaFree(aKernel3Load);
cudaFree(bKernel3Load);
cudaFree(cKernel3Load);
cudaFree(c0utKernel3Return);

A .3.2 G en era ted D ev ic e C ode

 global void kernel3(int m,float *a,int k,float *b,float alpha,float beta,
float *c,int n,float *cOutReturn,int kernel3timesExecuted,
int kernel3alloc) {

int execNo= (((blockldx. x*kernel3alloc) +blockIdx. y) *97) +threadldx. x ;
if (execNo < kernel3timesExecuted){

int x=(l*execNo)+0;
int y;
int i = x / m;
int j = x - i * m;
float sum = 0.0;
for (y = 0; y < m; y++) {

sum += a[i * k + y] * b[j * k + y] ;
>
cOutReturn [x] = alpha * sum + beta * c [x] ;

>

}

A.4. C N 265

A .4 C;v

A .4.1 G en era ted H ost C ode

int noDevicesKernel3;
struct CSAPIState* kernel3State=NULL;
CSAPI_num_cards(&noDevicesKernel3);
if (noDevicesKernel3<l) {
printf("No Clearspeed Devices Found\n\r");
exit (1) ;
>

kernel3State=CSAPI_new();
CSAPI_connect (kernel3State, CSH_Private, CSC_Direct, "localhost",

CSAPI_INSTANCE_ANY,0);
int noProcessorsKernel3;
int noPeKernel3;
CSAPI_num_processors (kernel3State, &noProcessorsKernel3) ;
CSAPI_num_pes(kernel3State,0,&noPeKernel3);
int kernel3timesExecuted=0;
kernel3timesExecuted=(n*m - 0) / 1;;

int noIterPerProcKernel3=ceil((float)kernel3timesExecuted/
(float)noProcessorsKernel3);

int noIterPerPeKernel3=noIterPerProcKernel3/noPeKernel3;
struct CSAPIProcess *process3 [noProcessorsKernel3] ;
CSAPIMemoryAddress c0utReturnKernel3[noProcessorsKemel3] ;
int writeMaxc0utKernel3 [noProcessorsKernel3] ;
int writeMinc0utKernel3 [noProcessorsKernel3];
CSAPIMemoryAddress symbolAddrcLKernel3;
CSAPIMemoryAddress symbolAddrbKernel3;
CSAPIMemoryAddress symbolAddrcKernel3;
int kernel3MemPerProc=1048576000/noProcessorsKernel3;
int kernel3doubleload=0;

A .4. C N 266

int procNo3;
for (procNo3=0; procNo3 < noProcessorsKernel3; procNo3++) {
CSAPI_load(kernel3State ,procNo3, "kernels/kernel3. csx" ,NULL,

& (process3 [procNo3]),CSAPI_NO_TIMEOUT);
}

for (procNo3=0; procNo3 < noProcessorsKernel3; procNo3++) {
int kernel3totalLoad=0;
int loopCondxKernelMin3=procNo3 * noIterPerProcKernel3;
int loopCondxKernelMax3=loopCondxKernelMin3+noIterPerProcKernel3;
writeMinc0utKernel3 [procNo3] =sizeof (float) * n * m/sizeof (float) ;
if (writeMinc0utKernel3 [procNo3] >loopCondxKernelMin3)

writeMinc0utKernel3 [procNo3]=loopCondxKernelMin3;
writeMaxc0utKernel3[procNo3]=0;
if (writeMaxc0utKernel3 [procNo3] <loopCondxKernelMax3)

writeMaxc0utKernel3 [procNo3]=loopCondxKernelMax3;
kernel3totalLoad+=(writeMaxc0utKernel3 [procNo3] -writeMinc0utKernel3 [procNo3])

*sizeof(float);
CSAPI_allocate_shared_memory (kernel3State, procNo3, CSM_Dram,

(writeMaxc0utKernel3 [procNo3] -writeMinc0utKernel3 [procNo3])
*sizeof (float), sizeof (float) ,process3 [procNo3] , "cOutOut",
&c0utReturnKernel3[procNo3]);

CSAPIMemoryAddress symbolAddrmKernel3;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "m",

&symbolAddrmKernel3);
CSAPI_write_mono_memory (kernel3State ,CSAPI_TRANSFER_PARAMS_SAFE,

symbolAddrmKernel3,sizeof(int),&m);

kernel3totalLoad+=sizeof (float) * m * k/sizeof (float))*sizeof (float);
int tmpProca=f loor (kernel3totalLoad/kernel3MemPerProc) ;

if (kernel3doubleload==0) {
if (procNo3 == 0) {
CSAPI _al 1 o cat e_ shar ed_memory (kernel3Stat e , tmpProca, CSM_Dram,

A .4. C N 267

(sizeof (float) * m * k/sizeof (float))*sizeof (float), sizeof (float),
process3[tmpProca],"a",&symbolAddraKernel3);

CSAPI_write_mono_memory(kernel3State ,CSAPI_TRANSFER_PARAMS_SAFE,
symbolAddraKernel3, (sizeof (float) * m * k/sizeof (float))
*sizeof(float),a) ;

>

if (tmpProca != procNo3) {
CSAPIMemoryAddress symTmp;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "a" ,&symTmp);
CSAPI_write_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE, symTmp,

sizeof(CSAPIMemoryAddress),&symbolAddraKernel3);
>

} else if (kernel3doubleload==l) {
CSAPI_allocat e_shared_memory (kernel3State, procNo3, CSM_Dram,

(sizeof (float) * m * k/sizeof (float))*sizeof (float) , sizeof (float),
process3[procNo3],"a",&symbolAddraKernel3);

CSAPI_wr it e_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE,
symbolAddraKernel3, (sizeof (float) * m * k/sizeof (float))
*sizeof(float),a);

>

CSAPIMemoryAddress symbolAddrkKernel3;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "k",

&symbolAddrkKernel3);
CSAPI_write_mono_memory (kernel3State,CSAPI_TRANSFER_PARAMS_SAFE,

symbolAddrkKernel3,sizeof(int),&k);

kernel3totalLoad+= (sizeof (float) * k * n/sizeof (float))*sizeof (float)
int tmpProcb=f loor (kernel3totalLoad/kernel3MemPerProc) ;

if (kernel3doubleload==0) {
if (procNo3 == 0) {

A .4. C tv 268

CSAPI_allocat e_shared_memory (kernel3State, tmpProcb, CSM_Dram,
(sizeof (float) * k * n/sizeof (float))*sizeof (float), sizeof (float),
process3[tmpProcb],"b",&symbolAddrbKernel3);

CSAPI _wr i t e_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE,
symbolAddrbKernel3,(sizeof(float) * k * n/sizeof(float))
*sizeof(float),b);

>

if (tmpProca != procNo3) {
CSAPIMemoryAddress symTmp;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "b",&symTmp);
CSAPI_wr it e_mono_memory(kernel3St at e,CS API _TRANSFER_PARAMS_SAFE, symTmp,

sizeof(CSAPIMemoryAddress),&symbolAddrbKernel3);
>
> else if (kernel3doubleload==l) {
CSAPI_allocate_shared_memory (kernel3State, procNo3, CSM_Dram,

(sizeof (float) * k * n/sizeof(float))*sizeof(float),sizeof(float),
process3[procNo3],"b",&symbolAddrbKernel3);

CSAPI_write_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE,
symbolAddrbKernel3, (sizeof (float) * k * n/sizeof (float))
*sizeof(float),b);

>

CSAPIMemoryAddress symbolAddralphaKernel3;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "alpha" ,

&symbolAddralphaKernel3);
CSAPI_write_mono_memory(kernel3State ,CSAPI_TRANSFER_PARAMS_SAFE,

symbolAddralphaKernel3,sizeof(float),&alpha);
CSAPIMemoryAddress symbolAddrbetaKernel3;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "beta",

&symbolAddrbetaKernel3);
CSAPI_write_mono_memory (kernel3State,CSAPI_TRANSFER_PARAMS_SAFE,

A .4. C N 269

symbolAddrbetaKernel3,sizeof(float),&beta);

kernel3totalLoad+= (sizeof (float) * n * m/sizeof (float))*sizeof (float)
int tmpProcc=floor(kernel3totalLoad/kernel3MemPerProc) ;

if (kernel3doubleload==0) {
if (procNo3 == 0) {
CSAPI_allocate_shared_memory (kernel3State, tmpProcc, CSM_Dram,

(sizeof (float) * n * m/sizeof (float))*sizeof (float) , sizeof (float) ,
process3[tmpProcc],"c",&symbolAddrcKernel3);

CSAPI_write_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE,
symbolAddrcKernel3,
(sizeof (float) * n * m/sizeof (float))*sizeof (float) ,c) ;

>

if (tmpProca != procNo3) {
CSAPIMemoryAddress symTmp;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "c" ,&symTmp) ;
CSAPI_write_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE, symTmp,

sizeof(CSAPIMemoryAddress),&symbolAddrcKernel3);

>

> else if (kernel3doubleload==l) {
CSAPI_allocate_shared_memory (kernel3State, procNo3, CSM_Dram,

(sizeof (float) * n * m/sizeof(float))*sizeof(float),sizeof(float),
process3[procNo3],"c",&symbolAddrcKernel3);

CSAPI_write_mono_memory(kernel3State ,CSAPI_TRANSFER_PARAMS_SAFE,
symbolAddrcKernel3,
(sizeof (float) * n * m/sizeof (float))*sizeof (float) ,c);

CSAPIMemoryAddress symbolAddrnKernel3;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "n",

A .4. C N 270

&symbolAddrnKernel3);
CSAPI_write_mono_memory(kernel3State ,CSAPI_TRANSFER_PARAMS_SAFE,

symbolAddrnKernel3,sizeof(int),&n);

CSAPIMemoryAddress noExecAddr;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "noExec" ,&noExecAddr) ;
CSAPI_write_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE, noExecAddr,

sizeof(int),&noIterPerProcKernel3);
CSAPIMemoryAddress firstExecAddr;
int firstExec=procNo3*noIterPerProcKernel3;
CSAPI_get_symbol_value(kernel3State,process3[procNo3] , "firstExec",

&firstExecAddr);
CSAPI _wr it e_mono_memory (kernel3St at e , CSAPI _TRANSFER_PARAMS_SAFE, f irstExecAddr,

sizeof(int),&firstExec);
CSAPI_run(kernel3State,process3 [procNo3],NULL);
if (kernel3totalLoad < kernel3MemPerProc) kernel3doubleload =1;

>

for (procNo3=0; procNo3 < noProcessorsKernel3; procNo3++) {
CSAPI_wait_on_terminate (kernel3State,process3 [procNo3] , CSAPI_N0_TIME0UT);
CSAPI_read_mono_memory (kernel3State, CSAPI_TRANSFER_PARAMS_SAFE,

c0utReturnKernel3 [procNo3] , (writeMaxc0utKernel3 [procNo3]
-writeMinc0utKernel3[procNo3])*sizeof(float),cOut
+writeMinc0utKernel3[procNo3]);

>
CSAPI_delete(kernel3State);

A .4 .2 G en era ted D ev ice Code: N on B uffered K ernel

#include <stdiop.h>
#include <stdlib.h>
#include <mathp.h>

A .4. C N 271

#include <lib_ext.h>
int noExec;
int firstExec;
int noPerProc;
int m;
float* a;
int k;
float* b;
float alpha;
float beta;
float* c;
int n;
float* cOutOut;

int main(int argc, char**argv) {

int kernel3Loop;
poly int offset;
mono short SEMAPH0RE=1;
mono short SEMAPHORE1=2;
sem_sig(SEMAPHORE);
noPerProc=ceil((float)noExec/96) ;
offset=(get_penum()*noPerProc)+firstExec;
for (kernel3Loop=0;kernel3Loop < noPerProc;kernel3Loop++) {

poly int x=(l*(offset+kernel3Loop))+0;
poly float tmpKernelO;
poly float tmpKernell;
poly int y ;
poly int i = x / m;
poly int j = x - i * m;
poly float sum = 0.0;
a sy n c _ m e m c p y m 2 p (SEMAPHOREl, &tmpKernelO, c+x, sizeof (float));

A .4. C N 272

if (1<2) {
#include "kernel4.cn"
>

sem_wait (SEMAPHORED ;
tmpKernell = alpha * sum + beta * tmpKernelO;
sem.wait(SEMAPHORE);
async_memcpyp2m (SEMAPHORE, cOutOut-f irstExec+x, &tmpKernell, sizeof (float));

>

sem_wait(SEMAPHORE);

>

A .4.3 G en era ted D ev ice C ode: B uffered K ernel

#define BUFFERSIZE 32

void process (poly float * mono inData, poly float * mono outData,poly int y,
int bufferlter,poly float *sum){

(* sum) += inData [(0*BUFFERSIZE)+bufferlter] *
inData[(l*BUFFERSIZE)+bufferlter] ;

>

void loadData(mono short * SEMAPHORE, poly float * mono inData, int bufferNo,
poly int i, poly int k,poly int j) {

short size;
poly int offset=(bufferNo*BUFFERSIZE) ;
poly int y=offset;
size=BUFFERSIZE*sizeof(float);
async_memcpym2p(SEMAPHORE[0] ,inData+0*BUFFERSIZE,a+(i * k + y),size);

A .4. C N 273

size=BUFFERSIZE*sizeof(float) ;
async_memcpym2p(SEMAPHORE[1] ,inData+l*BUFFERSIZE,b+(j * k + y),size);
>

void saveData(mono short * SEMAPHORE, poly float * mono outData,
int bufferNo) {

short size;
poly int offset=(bufferNo*BUFFERSIZE) + (get_penum()*noPerProc);
poly int y=offset;
>

void outBufferWait(mono short * SEMAPHORE) {
int i;
for (i=0; i < 0;i++) sem_wait(SEMAPHORE[i]);

>

void inBufferWait(mono short * SEMAPHORE) {
int i ;
for (i=0; i < 2;i++) sem_wait(SEMAPHORE[i]);

>

int errorOffset;
mono short ISEMAPHORE[3][2] ;
mono short OSEMAPHORE[3][1];
poly float bufferl [2*BUFFERSIZE] ;
poly float buffer2[2*BUFFERSIZE] ;
poly float buffer3 [2*BUFFERSIZE];
poly float buffer4[l];
poly float buffer5[l];
poly float buffer6[l];
poly float * mono inputBuffer[3] ;

A.4. C N 274

poly float * mono outputBuffer[3] ;
short currentBuf f er, buf ferlter, innerLoopIter, buf f erCount;
poly int bufferOffset;
noPerProc=ceil((float)noExec/96);
inputBuffer[0]=&bufferl;
inputBuffer[1]=&buffer2;
inputBuffer[2]=&buffer3;
outputBuffer[0]=&buffer4;
outputBuffer[1]=&buffer5;
outputBuffer[2]=&buffer6;

ISEMAPHORE[0][0]=3;
ISEMAPHORE[1][0]=4;
ISEMAPHORE[2][0]=5;
ISEMAPHORE[0][1] =6;
I SEMAPHORE [1] [1]=7;
ISEMAPHORE[2][1]=8;

currentBuffer=0;
loadData(ISEMAPHORE [currentBuf fer] , inputBuf fer [currentBuf fer] ,0,i,k,j);
currentBuffer=1;
loadData(ISEMAPHORE [currentBuf fer] , input Buf fer [current Buf fer] ,l,i,k,j) ;
currentBuffer=2;
1 o a d D a t a (ISEMAPH0RE [current Buf fer] , inputBuf fer [currentBuf fer] ,2,i,k, j) ;

bufferCount=ceil(((float)m)/((float)BUFFERSIZE))-3;
bufferOffset=firstExec+(get_penum()*noPerProc);

for (bufferlter=0; bufferlter < bufferCount;bufferlter++) {

if (currentBuffer==0) {
currentBuffer=l;

> else if(currentBuffer==l) {
currentBuffer=2;

A.4. C * 275

} else {
currentBuffer=0;
>

inBufferWait (ISEMAPHORE [currentBuffer]) ;

for (innerLoopIter=0; innerLoopIter< BUFFERSIZE;innerLoopIter++)
process (inputBuf fer [currentBuf fer] , outputBuf fer [currentBuf fer] ,

bufferOffset+innerLoopIter,innerLoopIter,&sum);
loadData(ISEMAPHORE [currentBuf fer] , inputBuf fer [currentBuf fer] ,

bufferIter+3,i ,k ,j);
outBufferWait(0SEMAPH0RE[currentBuffer]) ;
saveData(OSEMAPHORE [currentBuf fer] , outputBuf fer [currentBuf fer] , buf ferlter) ;
bufferOffset+=BUFFERSIZE;
>

if (currentBuffer==0) {.

currentBuffer=l;
} else if(currentBuffer==l) {
currentBuf f er=2;

> else {
currentBuffer=0;
>

inBufferWait(ISEMAPHORE[currentBuffer]);
for (innerLoopIter=0; innerLoopIter< BUFFERSIZE; innerLoopIter++)

process (inputBuf fer [currentBuf fer] , outputBuf fer [currentBuf fer],
bufferOffset+innerLoopIter,innerLoopIter,&sum);

out Buf f erWait (OSEMAPHORE [currentBuf fer]) ;
s aveDat a (0SEMAPH0RE[current Buf fer] , outputBuf fer [currentBuf fer] ,buff erCount) ;
bufferOffset+=BUFFERSIZE;

if (currentBuffer==0) {
currentBuffer=1;

A .4. C N 276

} else if(currentBuffer==l) {
currentBuffer=2;

} else {
currentBuffer=0;
}

inBufferWait(ISEMAPHORE[currentBuffer]);
for (innerLoopIter=0; innerLoopIter< BUFFERSIZE;innerLoopIter++)

process(inputBuffer[currentBuffer],outputBuffer[currentBuffer] ,
bufferOffset+innerLoopIter,innerLoopIter,&sum);

outBufferWait(OSEMAPHORE[currentBuffer]);
saveData(OSEMAPHORE[currentBuffer],outputBuffer [currentBuffer],bufferCount);
buf f erOf f set+=BUFFERSIZE;

if (currentBuffer==0) {
currentBuffer=l;
} else if(currentBuffer==l) {
currentBuf f er=2;

} else {
currentBuffer=0;
>

inBufferWait(ISEMAPHORE[currentBuffer]);
if (((bufferCount+3)*BUFFERSIZE) > m)

errorOffset=m-((bufferCount+2)*BUFFERSIZE);
else
errorOf f set=BUFFERSIZE;

for (innerLoopIter=0; innerLoopIter<errorOffset;innerLoopIter++)
process(inputBuffer [currentBuffer],outputBuffer [currentBuffer],
bufferOffset+innerLoopIter,innerLoopIter,&sum);

A.4. C N 277

outBufferWait(OSEMAPHORE[currentBuffer]);
s aveDat a (OSEMAPHORE [currentBuf fer], outputBuf f er [currentBuf fer], buf f er Count+1)

if (currentBuffer==0) {
currentBuffer=l;
} else if(currentBuffer==l) {
currentBuffer=2;

> else {
currentBuffer=0;
>

outBufferWait(OSEMAPHORE[currentBuffer]);
if (currentBuffer==0) {
currentBuffer=l;
} else if(currentBuffer==l) {
currentBuffer=2;

} else {
currentBuffer=0;
>

outBufferWait(OSEMAPHORE[currentBuffer]);
if (currentBuffer==0) {
currentBuffer=l;
} else if(currentBuffer==l) {
currentBuffer=2;

> else {
currentBuffer=0;
>

outBufferWait(OSEMAPHORE[currentBuffer]);

A ppendix B

Kernel D escription M etrics for FFT Application

App
ID

Kernel
ID

Problem
Size

Intensity Highest
Precision

No
Branch

Data
Access

Data
Write

No
Iterations

Data
Moved

Device

7 3 512 75395 DOUBLE 512 16509 3191 512 8388608 CPU
7 3 1024 168363 DOUBLE 1024 37002 5702 1024 33554432 CPU
7 3 2048 372179 DOUBLE 2048 82071 10374 2048 134217728 CPU
7 3 4096 815611 DOUBLE 4096 180388 19267 4096 536870912 GPU
7 3 8192 1774115 DOUBLE 8192 393393 36488 8192 2147483648 GPU
7 3 512 75395 FLOAT 512 16509 3191 512 4194304 CPU
7 3 1024 168363 FLOAT 1024 37002 5702 1024 16777216 CPU
7 3 2048 372179 FLOAT 2048 82071 10374 2048 67108864 CPU
7 3 4096 815611 FLOAT 4096 180388 19267 4096 268435456 GPU
7 3 8192 1774115 FLOAT 8192 393393 36488 8192 1073741824 GPU
7 6 512 1570 DOUBLE 0 253 127 9 8388608 CPU
7 6 1024 2228 DOUBLE 0 321 161 10 33554432 CPU
7 6 2048 3229 DOUBLE 0 396 198 11 134217728 CPU
7 6 4096 4836 DOUBLE 0 480 240 12 536870912 CPU
7 6 8192 7549 DOUBLE 0 572 286 13 2147483648 CPU
7 6 512 1570 FLOAT 0 253 127 9 4194304 CPU
7 6 1024 2228 FLOAT 0 321 161 10 16777216 CPU
7 6 2048 3229 FLOAT 0 396 198 11 67108864 CPU
7 6 4096 4836 FLOAT 0 480 240 12 268435456 CPU
7 6 8192 7549 FLOAT 0 572 286 13 1073741824 CPU

2
7

9

App
ID

Kernel
ID

Problem
Size

Intensity Highest
Precision

No
Branch

Data
Access

Data
Write

No
Iterations

Data
Moved

Device

7 8 512 35 DOUBLE 0 8 4 31 8388608 CPU
7 8 1024 35 DOUBLE 0 8 4 40 33554432 CPU
7 8 2048 35 DOUBLE 0 8 4 49 134217728 CPU
7 8 4096 35 DOUBLE 0 8 4 60 536870912 CPU
7 8 8192 35 DOUBLE 0 8 4 71 2147483648 CPU
7 8 512 35 FLOAT 0 8 4 31 4194304 CPU
7 8 1024 35 FLOAT 0 8 4 40 16777216 CPU
7 8 2048 35 FLOAT 0 8 4 49 67108864 CPU
7 8 4096 35 FLOAT 0 8 4 60 268435456 CPU
7 8 8192 35 FLOAT 0 8 4 71 1073741824 CPU
7 9 512 11 DOUBLE 0 2 2 262144 16777216 CPU
7 9 1024 11 DOUBLE 0 2 2 1048576 67108864 CPU
7 9 2048 11 DOUBLE 0 2 2 4194304 268435456 CPU
7 9 4096 11 DOUBLE 0 2 2 16777216 1073741824 GPU
7 9 8192 11 DOUBLE 0 2 2 67108864 4294967296 GPU
7 9 512 11 FLOAT 0 2 2 262144 8388608 CPU
7 9 1024 11 FLOAT 0 2 2 1048576 33554432 CPU
7 9 2048 11 FLOAT 0 2 2 4194304 134217728 CS
7 9 4096 11 FLOAT 0 2 2 16777216 536870912 GPU
7 9 8192 11 FLOAT 0 2 2 67108864 2147483648 GPU
7 10 512 75395 DOUBLE 512 16509 3191 512 8388608 CPU
7 10 1024 168363 DOUBLE 1024 37002 5702 1024 33554432 CPU
7 10 2048 372179 DOUBLE 2048 82071 10374 2048 134217728 CPU
7 10 4096 815611 DOUBLE 4096 180388 19267 4096 536870912 GPU
7 10 8192 1774115 DOUBLE 8192 393393 36488 8192 2147483648 GPU
7 10 512 75395 FLOAT 512 16509 3191 512 4194304 CPU
7 10 1024 168363 FLOAT 1024 37002 5702 1024 16777216 CPU
7 10 2048 372179 FLOAT 2048 82071 10374 2048 67108864 CPU
7 10 4096 815611 FLOAT 4096 180388 19267 4096 268435456 GPU
7 10 8192 1774115 FLOAT 8192 393393 36488 8192 1073741824 GPU

280

App
ID

Kernel
ID

Problem
Size

Intensity Highest
Precision

No
Branch

Data
Access

Data
Write

No
Iterations

Data
Moved

Device

7 13 512 1570 DOUBLE 0 253 127 9 8388608 CPU
7 13 1024 2228 DOUBLE 0 321 161 10 33554432 CPU
7 13 2048 3229 DOUBLE 0 396 198 11 134217728 CPU
7 13 4096 4836 DOUBLE 0 480 240 12 536870912 CPU
7 13 8192 7549 DOUBLE 0 572 286 13 2147483648 CPU
7 13 512 1570 FLOAT 0 253 127 9 4194304 CPU
7 13 1024 2228 FLOAT 0 321 161 10 16777216 CPU
7 13 2048 3229 FLOAT 0 396 198 11 67108864 CPU
7 13 4096 4836 FLOAT 0 480 240 12 268435456 CPU
7 13 8192 7549 FLOAT 0 572 286 13 1073741824 CPU
7 15 512 35 DOUBLE 0 8 4 31 8388608 CPU
7 15 1024 35 DOUBLE 0 8 4 40 33554432 CPU
7 15 2048 35 DOUBLE 0 8 4 49 134217728 CPU
7 15 4096 35 DOUBLE 0 8 4 60 536870912 CPU
7 15 8192 35 DOUBLE 0 8 4 71 2147483648 CPU
7 15 512 35 FLOAT 0 8 4 31 4194304 CPU
7 15 1024 35 FLOAT 0 8 4 40 16777216 CPU
7 15 2048 35 FLOAT 0 8 4 49 67108864 CPU
7 15 4096 35 FLOAT 0 8 4 60 268435456 CPU
7 15 8192 35 FLOAT 0 8 4 71 1073741824 CPU
7 17 512 40 DOUBLE 2 1 1 262144 8388608 CPU
7 17 1024 40 DOUBLE 2 1 1 1048576 33554432 CPU
7 17 2048 40 DOUBLE 2 1 1 4194304 134217728 CPU
7 17 4096 40 DOUBLE 2 1 1 16777216 536870912 CPU
7 17 8192 40 DOUBLE 2 1 1 67108864 2147483648 CPU
7 17 512 40 FLOAT 2 1 1 262144 4194304 CPU
7 17 1024 40 FLOAT 2 1 1 1048576 16777216 CPU
7 17 2048 40 FLOAT 2 1 1 4194304 67108864 CPU
7 17 4096 40 FLOAT 2 1 1 16777216 268435456 CPU
7 17 8192 40 FLOAT 2 1 1 67108864 1073741824 CPU

