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Abstract

Studying and understanding the hydro-environmental characteristics o f the Arabian G ulf 

has received growing interest over the past few decades. This is mainly attributed to the 

strategic importance of the area, since it has been utilised to transport most o f the oil 

production from the G ulf states. Over the last five decades, rapid industrial coastal 

development also has taken place around the Gulf. Development has brought 

desalination, power and petroleum refining plants. Coastal developments and industrial 

and domestic sewage discharges have contributed to the total nutrient levels in the Gulf, 

which have enhanced unwanted algal growth in various coastal areas. More recently, 

climate change has brought flooding to the G ulf states and frequent dust storms, which 

have increased various environmental issues, such as sediment transport and nutrient 

sorption processes, also in the shallow regions o f the Gulf.

In the current study the geographic dispersion o f numerical tracers and flushing 

characteristics, in terms o f residence time, o f the G ulf have been investigated. The study 

has revealed that dispersion o f numerical tracers is chiefly controlled by tides in the Gulf, 

while winds had limited effects. The residence time in the G ulf was predicted to be 

almost 3 years using ELCOM. Kuwait Bay was also investigated in terms o f the 

governing hydrodynamics using ELCOM. Similar to the Gulf, the study revealed that the 

Bay was chiefly driven by tides and to a lesser extent by winds. Detailed studies of 

temperature, using the same model, showed that temperatures varied seasonally in the 

Bay. In terms of salinity, investigations have shown that the Shatt A1 Arab has an 

apparent effect on the Bay’s salinity, particularly in the northern areas. The maximum 

residence time o f the Bay was calculated to be 57 days near al Jahra using ELCOM.

The main model refinements were conducted on including the phosphorus source terms 

in TRIVAST, based on experimental investigations in a hydraulics flume channel. The 

refinements included the addition o f new source terms accounting for the adsorption o f 

phosphorus to suspended sediments and bed sediments. Model investigations have shown 

that the model refinements improved the model predictions of phosphorus levels, with



phosphorus being the limiting nutrient during high suspended sediment events in Kuwait 

Bay.

In general, good water quality predictions in Kuwait Bay were achieved using both 

ELCOM-CAEDYM and TRIVAST. Predictions have shown that the Shatt Al-Arab 

waterway has significant effects o f the water quality o f the Bay. Better hydrodynamic 

predictions were achieved using ELCOM than TRIVAST for the G ulf and the Bay. This 

was due to the additional mathematical terms included in ELCOM, including, in 

particular, the terms representing tidal forces that were calculated from the gravitational 

potential.
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Chapter 1

Introduction and Overview



Introduction and Overview

1 .1  Introduction:

Coastal waters have always been important for society because of their effective role 

in transportation and water supply, while also historically used as a means of disposal 

for treated or untreated effluent waste. During recent decades many scientists and 

engineers have been heavily involved in hydro-environmental research projects as a 

result of the increasing general awareness of public health and the growing public 

concern about the environmental and ecological pollution of coastal basins. In 

particular, over the past decade there has been a growing interest in the hydro-ecology 

of many estuaries worldwide, including concerns about the effects of climate change. 

These concerns have been primarily associated with the increasing greenhouse gases 

such as carbon dioxide, where there is strong evidence of them causing major 

disruption to aquatic life and water quality in many water bodies around the world 

[Perry et a l, 2005].

Studying and understanding the hydro-environmental conditions of the Arabian Gulf, 

hereafter called ‘the Gulf, has received growing interest over the last few decades. 

This is mainly attributed to the strategic importance of the area, since it has been 

utilised to transport most of the oil production by the Gulf countries around the world. 

Over the last five decades, rapid industrial coastal development has also taken place 

around the Gulf. Development has brought desalination, power and petroleum 

refining plants [Khan, 2006]. Recently, the construction of desalination plants has 

escalated in the Gulf, due to increased public needs. In many-if not most-parts of the 

Gulf it is considered to be the sole source of fresh water, for human domestic, 

agricultural and industrial use. In addition to increasing solar radiation effects rising 

from climate change, the thermal pollution plume from industrial development has led
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to rises in seawater temperatures as well, which has affected the marine ecosystems of 

the Gulf in many ways [Al-Muzaini et al., 1997]. Oil spills are among the main 

pollutants to affect the marine environment in the Gulf [Al-Muzaini et a l, 1997], Oil 

absorbs heat and, hence, has the capacity to increase seawater temperature [Habib and 

Fakhral-Deen, 2001]. This would normally lead to an increase in oxygen 

consumption via biodiversity respiration and the mineralisation processes of organic 

matter and therefore lead to what is frequently called ‘Eutrophication’ and algal 

blooms. In addition, coastal developments and industrial and domestic sewage 

discharges have also contributed to the total nutrient levels in the Gulf that have 

enhanced unwanted algal growth in various regions of the estuary, particularly in the 

northern shallow areas near Kuwait Bay. Unusually, climate change has also brought 

flooding to the Gulf countries and frequent dust storms, which have increased various 

environmental issues, such as sediment transport and nutrient sorption processes, as 

well as in the shallow regions of the Gulf. Politically, several military operations have 

taken place in the Gulf that have consequently affected the aquatic and marine 

environments, including three wars over the last 30 years.

Physical model studies have usually been the key means historically used for 

predicting flow fields and contaminant transport in hydro-environmental engineering 

and research projects for much of the past 80 years. With the rapid advances in 

computer technology over the past 40 years, computer models, based on numerical 

techniques, are now used widely for many hydro-environmental studies. With the 

rapid increase in the speed and memory capabilities of modem computers on the one 

hand, and with the fast developing numerical methods on the other hand, the scope of 

computer model applications has widened considerably. Numerical hydro-
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environmental models have been proven to be efficient tools in predicting the flow 

fields in 1-D, 2-D and 3-D water basins and the corresponding water quality 

constituents and sediment transport levels are readily added to the hydro-dynamic 

predictions, particularly for estuarine and coastal water bodies.

1. 2 Objective of the study:

This research project aims to develop an effective understanding of the 

hydrodynamics, including dispersion mechanisms, and water quality processes in the 

Gulf and Kuwait Bay by utilising three dimensional numerical models. Special 

attention has been given to nutrient modelling, in particular phosphorus in the Bay, 

where further model refinements were made to include phosphorus sorption 

processes. In addition, this study focuses on the various numerical aspects of the 

models used and outlines the effectiveness of them. The main objectives and 

achievements of this research can be summarised as follows:

1) Identify the geographic dispersion mechanism and the residence time of 

the Gulf:

A three-dimensional model was used to investigate the dispersion processes in the 

Gulf. Data from 1992 was used to validate the model, and then numerical tracers 

were injected randomly over the basin. Spatial and temporal investigations were 

undertaken of the cloud of tracers by means of sensitivity analysis. This enabled 

the effectiveness of various physical forces in dispersing the tracers horizontally 

in the estuary to be quantified. The dispersion coefficients of the tracers were 

calculated at each point of injection. Also, the residence time was obtained for the
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whole Gulf. This all led to a general understanding of the main hydrodynamic 

processes in the estuary.

2) Investigating the hydrodynamic processes of Kuwait Bay and identifying 

the residence time:

Hydrodynamics are the main drivers of effluents in the water body; therefore it is 

essential to understand such processes before conducting water quality 

investigations. The hydrodynamic processes of Kuwait Bay were investigated 

using a three dimensional model. The model was validated using the measured 

data of water levels, velocity speed and direction from 2005. The validated model 

was used to investigate the seasonal variations of temperature and salinity. In 

addition, other effects on temperature and salinity rising from the various 

boundaries were analysed. Numerical tracers were injected into the flow at the 

open boundary and the resultant cloud was analysed. This all contributed to the 

general understanding of the hydrodynamic processes in the Bay

3) Water quality modelling of Kuwait Bay:

Kuwait Bay is considered to be one of the most polluted water bodies in the Gulf 

and is subject to various algal blooms and red tide events. Previously, numerical 

modelling studies had only considered the hydrodynamics of the Bay but little was 

achieved in the modelling of water quality. In this study a three-dimensional 

model of the Bay was set and validated using data from 2005. The main water 

quality parameters considered in this study were dissolved oxygen, nitrate, 

ammonia and phosphorus. The model was utilised to investigate the seasonal
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variations of each water quality parameter. This gave a very good understanding 

as to the water quality structure of the Bay.

4) Model refinements to include sediment effect on phosphorus sorption 

processes in Kuwait bay:

As a result of climate change, a number of major dust storms and flash flood 

events have occurred recently and these have become more frequent events. These 

extreme events have supplied the Gulfs water with fine polluted sediment 

particles, especially in the shallower regions. It is therefore important to estimate 

the impact of such processes in this region particularly with regards to the nutrient 

levels adsorbed onto the sediments and the corresponding inputs into the water 

column. Hence, in this study fundamental model refinements were conducted to 

include the sediment sorption processes of phosphorus. These refinements were 

achieved through extensive experimental work conducted on various sediments 

types in a flume channel, located in a hydraulics laboratory. Such effects were 

investigated for Kuwait Bay and were found to have a marked influence on the 

reduction of phosphorus levels.

5) Modelling phosphorus in Kuwait Bay:

In previous water quality studies in the Bay, it was been realised that phosphorus 

is in general the limiting factor of algal growth. Therefore, special attention was 

given to this parameter in the current study. Further investigations were conducted 

on various physical and chemical parameters, including the effects of sediment 

sorption processes, so as to identify the main contributors to the phosphorus level 

in the Bay.
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6) Compare hydrodynamic and water quality results of the three 

dimensional models and assess the numerical results and differences:

Numerical models are widely used nowadays; however they can vary depending 

on the numerical background and the governing equations that are inherently 

included in; and solved, within the models. In terms of water quality, empirical 

equations representing source and sink terms in the numerical models may vary 

considerably from a simple diffusion equation to very sophisticated processes, 

such as chemical reactions. In this part of the research two three dimensional 

models, of different numerical background, were investigated in terms of both 

hydrodynamics and water quality in the Gulf and the Bay. This would give an 

understanding as to which physical or chemical processes are crucial when 

modelling this region and therefore determine the most suitable model that meets 

the purposes of the modelling.

1 .3  O utline o f the thesis:

The details of this thesis are summarised as follows: Chapter 1 introduces the 

background to the environmental problems in the Gulf and the Bay, the numerical 

models and the objectives of this study. Chapter 2 reviews the environmental impacts 

of the Gulf and the Bay. Chapter 3 outlines the hydrodynamic and the solute transport 

governing equations, and discusses a number of terms within these equations. Chapter 

4 presents the numerical models and methods utilised in this research, including the 

model developments associated with the inclusion of the phosphorus sorption 

processes, which were achieved by conducting experiments in a flume channel 

facility. In Chapter 5 the horizontal dispersion of numerical tracers is investigated in
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the Gulf and the dispersion coefficients are determined. Chapter 6 considers the 

hydrodynamic modelling of Kuwait Bay and the circulation of the water column, 

discussed with the aid a sensitivity analysis on the various physical boundaries. In 

Chapter 7 water quality modelling of Kuwait Bay is analysed and the effects of the 

model boundary conditions are discussed with a special focus on phosphorus 

predictions. Chapter 8 brings together the numerical prediction differences of the 

models used in these studies and the effects of the various numerical aspects of each 

model. Finally, Chapter 9 draws conclusions from the developments and makes 

recommendations for further study and research.
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2. 1 Introduction:

The G ulf is a shallow semi-enclosed water body. It is detached from the Gulf of 

Oman by the Strait o f Hormuz, shown in Figure 2.1, which is only 56 km wide at its 

narrowest point. The channel near the Strait o f Hormuz deepens to more than 100 m 

through the Strait and drops rapidly to more than 2,000 m within 200 km outside of 

the Strait. The maximum width o f the G ulf is 338 km, and the length to its northern 

coast is nominally 1,000 km. The surface area o f the G ulf is approximately 2.39 x 105 

km2, and with a mean depth o f 36 m this implies an average volume o f approximately 

8.63 x 103 km3. Unlike many estuaries, flooding and drying areas in the G ulf are 

limited.

48.167 51.000 53.833 56.667 59.500

31.167 31.167Hendijan River
Shaft A1 Arab

Iraq Hilleh River 

Iran

Mand River28.333 28.333

Strait of Honnuz
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Qatar,
■  80 m 

| 40 m
□  20m  
I I <20 m
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Figure 2.1: The Gulf, Strait of Hormuz and fresh water inflow sites  [National 

Geophysical Data Centre: http://www. node, noaa. gov1
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The Gulf is located within the arid region of the Middle East, between latitudes 24° 

and 30°N and longitudes 48° and 56°E [Al-Ghadban et al., 1998; Elshorbagy, 2005; 

Robinson and Brink, 2006]. The Gulf is bordered by a total of eight countries, 

including Iran and seven Arab countries, namely: Kuwait, Iraq, Saudi Arabia, 

Bahrain, Qatar, the United Arab Emirates and Oman (Figure 2.1).

Kuwait Bay, hereafter called ‘ftie Bay’, is an elliptically shaped embayment that 

extends in a westward direction from the extreme north of the Gulf (Figure 2.2). The 

Bay is characterised by relatively shallow water throughout. It covers an area of about 

720 km and has a boundary length of 20 km to the estuary. The extensive, intertidal 

mudflats in the Bay provide feeding grounds for a number of species of wading birds 

[Al-Yamani et al, 2004] and also several fish and shrimp species [Abouseida and 

Alsarawi, 1990]. The Shatt Al Arab (a river formed by the convergence of the Tigris 

and Euphrates Rivers) is considered to be the main provider of fresh water to the 

northern region of the Gulf, including the Bay (see Figures 2.1 and 2.2) [Al-Yamani et 

al, 2007; Reynolds, 1993]. It has also been recognised as one of the main nutrient and 

sediment supply sources to the Bay [Al-Ghadban, 2002].
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Figure 2.2: Kuwait Bay and Sulaibikhat Bay

It is worth mentioning that the geomorphological characteristics o f the Gulf and its 

coastline formation were created by Plio-Pleistocone tectonic movements [Robinson 

and Brink, 2006]. Later tectonic activities were responsible for only minor 

adjustments to its present shape [Al-Asfour, 1981]. The G ulf is a sedimentary basin 

due to its enclosed topographic conditions and favours production o f biogenic 

sediments, mainly by foraminifera and other micro-organisms [.Al-Ghadban, 2002].

The primary aim o f this chapter is to present the general physical force characteristics 

that mainly influence the water dynamics o f the Gulf. Also, to address the main 

impacts on the marine environment resulting from anthropogenic activities and 

climate change.
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2. 2 Physical forcing characteristics o f  the G ulf and Bay:

It is well known that water circulation in estuaries is regulated by one or more of the 

following:

• Ebb and flood tides;

• Differences in water densities;

• Winds; and

• Riverine inflows.

In this section the main physical forcing characteristics of the Gulf and Bay are 

illustrated as to provide an understanding of the main water drivers in the region. 

Such factors are essential to understand the dispersion and mixing processes in the 

region, as detailed in Chapter 5.

2. 2.1 Tides:

The tides in the Gulf are complex standing waves and the dominant pattern varies 

from being mainly semidiurnal to diurnal. The tidal range is relatively large compared 

to the Gulf, with values greater than 1 m everywhere [Lehr, 1984], but small 

compared to U.K. coastal waters that has a range of typically 14 m in the Severn 

Estuary for example. Rakha et a l, [2007b] have estimated the tidal range to vary from 

1 m (during neap tides) to approximately 4 m (during spring tides) in the north of the 

Gulf. The dimensions of the Gulf are such that resonance amplification of the tides 

can occur, resulting in semi-diurnal constituents that have two amphidromic points, in 

the northwest and southeast ends, and the diurnal constituents have a single 

amphidromic point in the centre, close to Bahrain [Reynolds, 1993]. Tides have often 

been considered to play a key role in stirring and mixing waters vertically and 

horizontally in the Gulf, at a scale of 10 km, but they do not make an important
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contribution to the residual circulation of the Gulf [Reynolds, 1993]. The average 

velocity of both, surface and bottom, residual current in the Gulf is roughly 6 cm/s 

[Abdelrahman and Ahmad, 1995].

Due to the geological restrictions of the Gulf, tides normally experience an oscillation 

effect that intensifies tidal effects at the northern end of the estuary. Therefore, higher 

tidal range are generally observed in the Bay. Tides in the Bay are semidiurnal with 

two high tides and two low tides occurring within a lunar day. The mean tidal 

amplitude in the Bay is approximately 2 m, but tides may vary from 3.5 to about 4 m, 

depending largely on the lunar phase [Al-Yamani et al., 2004]. The greatest tidal range 

occurred in the Bay during 2003 when it reached 4.45 m [Al-Yamani et a l, 2004].

2. 2. 2 Fresh water exchange:

Fresh water exchange in the Gulf is generally considered to be minor, due to high 

evaporation, low fresh water input and low precipitation. Evaporation in the Gulf is 

much higher than both river inflow and precipitation and so the net loss of water 

normally creates higher salinity in the estuary waters than at the coastal waters 

[Reynolds, 1993]. Thus giving rise to what is frequently called ‘Reverse Estuary’, in 

that the net circulation is in at the surface water (at the Strait) and out along the 

bottom similar to the Mediterranean water circulation [El-Sabh et al., 1997].

Evaporation in the Gulf has been estimated through a number of studies. Privett, 

[1959] estimated the evaporation rate to be 144 cm/yr, and predominantly occurring 

during the winter. Such findings were related to the strong dominant north-westerly 

winds during this season. Meteorological data from Qatar and Bahrain for 1984 were
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utilised by Meshal and Hassan, [1986], to approximate evaporation, who found it to 

be 202 cm/yr. However, Ahmad and Sultan, [1991] estimated the evaporation in the 

Gulf to be 228 cm/yr, while Sultan and Ahmad, [1994] obtained a value of 208 cm/yr 

for Kuwait’s coastal waters. Most river inflow into the Gulf occurs at the northern end 

of the Gulf near Kuwait at Shatt Al Arab (see Figure 2.1 and 2.2).

The Shatt Al Arab is a nexus of three major rivers. The Tigris and Euphrates Rivers 

together provide an annual average inflow of 708 m3/s, with the Karun adding a 

further inflow of 748 m3/s. Thus, the total average outflow from Shatt Al Arab is 

roughly 1456 m3/s [Reynolds, 1993]. Other main rivers are the Hendijan 203 m3/s, the 

Hilleh 444 m3/s, and the Mand 1387 m3/s (see Figure 2.1). The total river runoff is 13 

x 102 km /yr, corresponding to 46 cm/yr in depth. This approximation, from Iranian 

river measurement reports, is noticeably greater than formerly published estimates 

and ideally requires further verification, since Al-Hajri, [1990] estimated a value of 16 

cm/yr. Industrial and agricultural developments, including dam construction, are 

having an obvious effect on the outflow from the Shatt A 1-Arab, where annual runoff 

has reduced considerably over the past 20 years [Jones et al., 2008a; Al-Taiee, 1990; 

Altinbilek, 2004]. Annual rainfall in the arid climate of the Gulf region is small, of the 

order of 7 cm/yr [Reynolds, 1993]. This leads to the fact that rainfall makes an almost 

negligible contribution to the fresh water budget of the Gulf.

2. 2. 3 Wind:

As mentioned earlier, the Gulf is situated between latitudes of 24 and 30 °N and 

between which most of the Earth's deserts are located. This region marks the 

boundary between tropical circulations and the synoptic weather systems of the mid-
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latitudes. Descending dry air in these latitudes produces clear skies and arid 

conditions. Orographic effects are more evident in the north of the Gulf. The Taurus 

and Pontic mountains of Turkey, the Caucasus Mountains of Iran, and the Hejaz 

mountains of the Arabian Peninsula, together with the Tigris-Euphrates Valley, form 

a northwest-southeast axis that strongly influences the paths of extra tropical storms in 

a south-easterly direction [Reynolds, 1993]. The climate in the Gulf of Oman is 

markedly different to the climate in the Gulf. While the Gulf is essentially affected by 

the extra-tropical weather systems from the northwest, the Gulf of Oman is at the 

northern edge of the tropical weather schemes of the Arabian Sea and Indian Ocean 

[Reynolds, 1993]. This monsoon circulation generates southerly winds in the summer 

and strong northerlies in the winter. The Strait of Hormuz therefore approximates a 

boundary between the two systems.

The generally well-known weather phenomenon in the Gulf is the year round north

westerly wind [Perr one, 1981]. The winter north-westerly wind is a wind that sets in 

with massive shortness and force, and is associated with synoptic weather systems to 

the north-west, particularly affecting Kuwait. It infrequently exceeds 10 m/s, but lasts 

for a number of days. The summer north-westerly wind is almost continuous from 

early June through to the end of July. It is coupled with the relative forces of the 

Indian and Arabian thermal lows [Sheppard, 2000]. The winter wind carries some of 

the strongest winds and highest seas of the season into the Gulf area. Winds in the 

area ahead of an approaching cold front blow from the south-east. Due to the 

channelling of the low level air flow by the Zagros Mountains of western Iran, the 

strongest of the southerly winds occur in the eastern regions of the Gulf [Reynolds, 

1993]. The north western wind normally develops first in the northwest and then
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expands south. A strong sea breeze occurs along the whole coastline, principally 

along the Arabian Peninsula. Driven by the extreme temperature difference between 

the land and water surface, the sea breeze circulation adds a landward component to 

all winds [Reynolds, 1993]. The effect of these winds is to drive surface waters, 

including solutes and pollutants, towards the coastline much faster than they would 

move otherwise. According to KISR (Kuwait Institute of Scientific Research) data 

values of on-shore and, to a lesser extent, off-shore winds may reach 15 m/s during 

the winter; such observations have been recorded at coastal meteorological stations.

2 .3  Environm ental im pacts for the G ulf and Bay:

In recent decades, and especially during the last few years, coastal development in the 

Gulf countries have accelerated tremendously due to the major increase in oil related 

income and economic diversification schemes. The rapid expansion of industrial 

complexes, an exceptional rise in private real estate investment, tourism and service 

industries, including high birth rates and the entry of foreign labour, accompanied by 

prospering economies, have all resulted in a massive human population growth in the 

Gulfs coastal waters. This development has done much to further the well being of 

society in the region, however, it has also led to severe impacts on the terrestrial, 

coastal and marine environments. Such events have changed the environment and not 

always for the better [Gilbert 2007, Khordagui 2002]. Large areas of the coastal zone, 

including important marine habitats, are presently threatened by increasing stress on 

the Gulf ecosystem, with pollution playing a major role in adversely affecting the 

marine ecology. Such effects have raised concern in the Gulf countries about the 

marine ecology, since the costal zone serves as a resource for fishing, recreation,
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urban development, oil transportation and perhaps, most importantly, a major source 

of fresh water via desalination plants.

Global warming and related climate change issues are some of the most serious 

challenges facing the world. Unsurprisingly, the Gulf has first hand experience of 

these issues, where air temperatures of up to 54 °C have been recorded, leading to a 

very arid environment and high sea water temperatures during the summer months 

[Al-Rashid and Al-Mikaimi [2010]. Furthermore, other climatic issues related to 

climate change, such as frequent dust storms and flash floods have been recognised; 

this will be explained in section 2.3.2.1 and 2.3.2.2, respectively.

2. 3.1 Human activity:

The Arabian countries of the Gulf have undergone an extraordinary process of 

development and social transformation. This has led to rising rates of transport and 

industrial development and increased consumption of food, water and goods that, in 

turn, have led to radically heightened rates of environmental pollution. Regional 

political conflicts have also taken their toll and contributed to air, land and water 

pollution. For example, the 1991 Gulf war oil spill, one of the biggest known marine 

pollution events in human history, occurred in the waters of the Gulf. Also, oil burnt 

during this war resulted in thick clouds of mainly carbon dioxide hanging over the 

region for several months. Furthermore, the Gulf is the busiest area in the world with 

regard to oil transportation, resulting in a number of daily oil spills along the estuary. 

Moreover, the Gulf waters have been and are increasingly utilised for desalination 

processes as well as for fishing and the tourism industry [Bleninger and Jirka 2010]. 

Waterfront developments, desalination plants and petrochemical activities and their
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associated environmental impact in the Gulf will be reviewed next, in Sections 

2.3.1.1, 2.3.1.2. and 2.3.1.3, respectively.

2. 3 .1 .1  Waterfront development:

The use of leisure and tourism to redesign and stimulate city growth has been 

interpreted as a mechanism for attracting capital and people to the capital. Waterfront 

developments across the Middle Eastern coast have become popular projects, creating 

entirely new urban communities. Although any development at the waters edge 

would, in theory, be recognised as ‘waterfront’, this Middle Eastern centred trend is 

particularly concerned with newly created and redesigned urban coastlines involving 

extensive ‘land reclamation’ as well as ‘canalling’ water channels inland, thereby 

creating new waterfronts, such as those found in Al-Khairan Pearl City in Kuwait, as 

shown in Table 2.1.

Urban developments, involving both land reclamation and canalling, have been 

carried out throughout modem metropolitan history, most noticeably in Washington 

DC, Singapore, Hong Kong, Macau, Monaco and Gibraltar. Even anthropogenic 

islands have been created from the sea, such as Kansai Airport in Osaka and Chek 

Lap Kok International Airport in Hong Kong. However, world attention is being 

attracted to the Middle East, and particularly Dubai, by the sheer scale of these 

projects, which are of the order of several million m see Table 2.1, and with the 

number of such projects introducing a range of various environmental issues.
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Project General information
AI Khiran 
Pearl City 
(Kuwait)

25 years to complete 
Serves facilities for 100,000 
people.
Project area covers 6.4 
million m2

The Pearl 
(Qatar)

Durr at Al 
Bahrain 
Islands 
(Bahrain)

The World 
(U.A.E)

Consists o f 13 islands 
8 private islands 
Over 2 million m2 o f 
international retail, 
restaurants, cafes. 
Three 5 star hotels 
4 million m2

13 large artificial islands 
Several 5 star hotels, 18- 
hole golf course, 12 bridges, 
marina, flats etc.
60 % completed.
Project area is roughly 20 
million m2

5 star hotels, shopping 
malls, private flats etc.
4 km off shore 
321 million m3 o f sand and 
31 million tonnes o f rock 
used for construction o f 
islands
Project area is 21 million m"

f

Table 2.1: Waterfront d eve lop m en t  in the Gulf waters

There have been only a few studies undertaken to quantify the impact of waterfront 

developments in the Middle East and hardly any have been published. This is 

probably due to political reasons. Also, most projects are under construction and not 

ready to be environmentally evaluated. However, historically such projects show 

various environmental impacts on marine life, mainly as a result o f poor mixing and

Picture
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flushing characteristics. From an engineering point of view, Al Khairan Pearl City in 

Kuwait (see Table 2.1) shows a good example of possible marine impact arising from 

poor water flushing. While such projects involve an extensive number of artificial 

embayment and channels, poor water mixing and flushing can give rise to significant 

depletion of dissolved oxygen levels and, in turn, lead to unwanted algal growth 

locally [Newton et al., 2003], and possible eutrophication events (see section 2.3.3). 

Broadly speaking, it may act as a point source of pollution in the estuary. In the 

Mediterranean, particularly in France, waterfront developments have been shown to 

have had two main impacts. Firstly, they have caused a direct and irreversible 

replacement of the natural environment. Secondly, a permanent alteration of the 

biological structure of the water column was observed [Meinesz et al., 1991]. In the 

Red Sea in Egypt, waterfront recreational developments have caused environmental 

impacts including, changes to the depositional hydrodynamic regime, thereby creating 

down drift erosion and deterioration in the water quality and changes to the marine 

biota [Frihy et al., 2006]. Other typical environmental issues that may arise due to 

land reclamation and canalling include:

• Transportation of sediments (erosion and deposition);

• Destruction of coral reefs that support marine life;

• Increase of turbidity; and

• Sediment sorption processes of nutrients, such as phosphorus (details of model 

development related to such process is detailed in Chapter 4) etc.
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2. 3,1. 2 Desalination plants:

The demand for freshwater resources is hastily risen on a worldwide scale, especially 

in coastal areas where approximately three quarters of the world population is 

expected to live by 2020 [Latlemann and Hopner, 2008]. Hence it is not surprising 

that desalination of seawater is receiving increasing global interest. Seawater is a 

seemingly unlimited resource and many coastal regions and islands have no other 

alternative than to utilise it for the production of drinking water. Desalination is a 

vastly favourable technology, but like many technologies, it has undesirable impacts 

on the environment that need to be investigated and managed regularly [Lattemann 

and Hopner, 2008].

Analogous to the worldwide trend, coastal areas in the Gulf are experiencing a 

tremendous industrial and urban expansion. Due to rapid developments, the Gulf is 

recognised for delivering three strategic fluids: desalinated water, gas and oil. 

Concerning seawater desalination, the supplies generated in the Gulf still remain 

unequalled to date, while capacities in other estuaries of the world, such as the 

Mediterranean, are growing swiftly [Lattemann and Hopner, 2008]. The Gulf with an 

installed seawater desalination capacity of roughly 11 million m /day, currently 

accounts for almost 50% of the world’s capacity of 24 million m3/day [IDA, 2006] 

(see Figure 2.3). Most of the plants are located along the shallow Arabian shoreline of 

the Gulf (see Figure 2.3) with varying capacities: Kuwait-1.7 million m /day, Saudi 

Arabia-2.3 million m3/day, Bahrain-0.4 million m3/day, Qatar-0.9 million m3/day, and
'y

U.A.E-5.7 million m /day, whereas only a few can be found on the Iranian coast-0.1 

million m /day.
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Effluent
Parameter RO MSF

Salinity Typically 60- Typically 50
70 psu psu

Temperature Ambient 5-15 °C
seawater above
temperature ambient

Plume density Negatively Positively,
buoyant neutrally or

negatively
buoyant

Oxygen Decreased as 
a side-effect 
o f chlorine 
neutralization

Very low by 
physical de
aeration and 
use o f 
oxygen 
scavengers

Chlorine Neutralized 10-25% of
dosage

Heavy Metals Iron, Copper,
(in varying chromium, nickel
concentrations) nickel,

molybdenum

ARABIA

UME

KUWAIT
WAN

Figure 2.3: Location of desalination plants, M SF ‘Multi-Stage Flash  

distillation’ (top-right) and RO ‘R e v e r se  O s m o s is ’ (bottom-right), and effluent 

property of MSF and RO d ischarged to the receiving w ater  (left table)

The number o f potential environmental impacts relating to desalination plants is wide 

and in some respects, such as land use, air pollution and energy consumption is 

analogous to other development projects. M arine impacts relating to desalination 

plants specifically may be attributed to the intake o f large quantities o f seawater, 

including various sizes o f organisms into the plant. Such intakes are often fatal for the 

organisms and may affect population and ecosystem dynamics [Khordagui, 2002]. 

The main worry with desalination plants, however, is the impact o f the exceedingly 

saline waste stream on water and sediment quality, impairing marine life or the
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functioning and intactness of the coastal ecosystem. Due to their waste discharges, 

desalination plants were identified as a main source of land-based marine pollution in 

the Gulf [UNEP, 1999]. For illustration, the installed capacity of multi-stage flash 

(MSF) plants in the Gulf is about 9.7 million m3/day, which corresponds roughly to a 

freshwater production of 115 m3/s and a waste water flow rate of more than 1,000 

m3/s, which is a substantial volume of water compared for example to the river runoff 

into the Gulf, i.e. Shatt Al Arab. In due course this effect may create a hyper-saline 

environment that many species may not withstand. The rejected effluent discharged 

from such a plant usually has different physical and chemical parameters to these of 

the receiving water, as shown in Figure 2.3.

In terms of water quality several studies have shown that the chlorine concentration 

near the outlet of a desalination plant may reach 25 pg/1, even when 90% of the total 

concentration is decomposed [Shams El Din et al., 2000]. Ali and Riley, [1986] and 

Abdel-Jawad and Al-Tabtabaei, [1999] have observed chlorine levels of 30-100 pg/1 

and 50 pg/1 approximately 1 km from the outlet, respectively. A number of 

toxicological studies have shown that chlorine is highly toxic to many aquatic species, 

even at low concentrations in the range of 100 pg/1 or less [Lattemann and Hopner, 

2008]. Studies have shown that the ecological impact of chlorine discharged from 

desalination plants is higher in the Gulf than the Red Sea and to lesser extent in the 

Mediterranean, due to both the number of desalination plants and the technology used 

[Hoepner and Lattemann, 2003].
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2. 3. 1. 3 Petrochemical activities:

Over the past 85 years oil production in many countries around the world has grown 

to enormous proportions. The importance o f  the G ulf countries in generating such 

high levels o f production is well known, since it is considered to be the main producer 

o f oil in the world [Facey, 2008] (see Figure 2.4). In 2006 the countries bordering the 

G ulf produced 18.41 Million Barrels o f oil Per Day (MBPD), out o f a total OPEC 

(Organisation o f Petroleum Exporting Countries) production o f  34.20 MBPD, and a 

total world production o f approximately 81.66 MBPD (source: 

http://www.bp.com/liveassets/bp. Statistical Review o f W orld Energy pdf.). The 

countries bordering the G ulf therefore currently produce roughly 22.54% of the total 

world production. A production rate o f 18.41 M BPD equates to roughly 1,180 million 

tonnes o f oil per year, or 3.24 million tonnes o f oil per day [Facey, 2008]. For 

illustration, if  the average large tanker in the G ulf loads around 250,000 tonnes, then 

at least 10 large tankers will enter the G ulf in ballast, and leave the G ulf loaded with 

various types o f oil daily.

km
Too 200" 400

Figure 2.4: Main oil fields in the  Gulf countries
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Such activities normally involve oil spills that have hardly been quantified. Some are 

recognised as being operational spills, while others may arise due to political conflict, 

such as the Gulf war of 1990 [Jones et a l, 2008b]. In particular, the influx of oil from 

tankers and offshore oil operations is one of the major causes of pollution in the Gulf 

marine environment. Estimations of ballast water and other oily water discharged into 

the Gulf ranged from 400,000 to 750,000 tonnes in 1986 [.Harahsheh et al, 2004].

Due to the continuous large quantities of oil being spilled in the Gulf, various studies 

have been conducted to revise different biological impacts on the marine 

environment. Such impacts are summarised as shown in Table 2.2. Therefore, 

quantifying the dispersion and mixing in the Gulf is essential to understand the 

estuary dynamics, as detailed in Chapter 5.

Marine environment Effects Reference
Vertebrates (Sea birds • Stress and mortality Burger and Gochfeld
and mammals) • Oil ingestion leading to [2002],

toxic effects Krupp and Symens
• Disruption of nutrient [1994]

uptake
• Degeneration of liver

tissues
• Damage to respiration

system.
Inshore habitats and • Fluctuations of Basson et al., [1977],
living marine temperature and salinity Krupp and Anegay
resources that stress biota. [1993]

• High fish mortalities.
• Toxic habitat

Coral reefs • Coral bleaching Krupp [1998],
• Coral mortality Wilkinson et al.,
• Algae lost from the [1999], Fadlallah et

corals or die in their al, [1995]
tissues.

Table 2.2: Effect of oil activities in the Gulf on the marine environment
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2.3. 2 Effects of climate change:

The climate system is an interactive system consisting of the atmosphere, land 

surface, snow and ice, oceans, rivers, lakes and estuaries that interrelate with all forms 

of life on earth. Climate is frequently defined as the long-term mean and variability of 

temperature, precipitation and wind over different time scales, from decades to 

million of years (the classical period being 30 years) [IPCC, Climate change 2007: 

The physical Science Basis, 2007]. Climate change often refers to variations in each 

of the climate forms over a certain area, despite the reasons for the change. Although 

the extent and level at which climate change becomes intolerable is controversial, the 

fact that climate change is now occurring at a considerable rate is almost universally 

accepted.

The causes of climate change have been widely related to human activity on Earth, for 

example see Section 2.3.1.3. Other factors that may influence the climate include:

• Plate tectonics;

• Solar output;

• Orbital variations;

• Volcanism; and

• Ocean variability.

The effect of climate change on estuaries has been widely documented [Purcell, 2005; 

Attrill and Power, 2002]. Here we are concerned with two climatic phenomena that 

have been recently recognised in the Gulf as having apparent impact on the marine 

life in the estuary, namely dust storms and flooding.
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2. 5. 2.1  Dust storms:

Natural dust is a dynamic component of the climate system and plays multiple roles in 

mediating physical and biogeochemical exchanges between the atmosphere, land 

surface and ocean [Harrison et a l, 2001]. Dust storms are windstorms accompanied 

by suspended clay and silt material, usually-but not always-without precipitation. 

Presently, between 130 and 800 million tonnes of dust, with extremes as high as 5,000 

million tonnes, are entrained by winds each year [Bryant, 2005]. The average annual 

amount of clay-sized particles moved is about 500 million tonnes [Bryant, 2005]. 

Dust storms are responsible for most of the terrigenous material found in ocean 

basins, contributing over 75 million tonnes of material per year to the Atlantic Ocean 

alone [Simonson, 1995]. At distances of 5,000 km out into the Atlantic Ocean, fallout 

from the Sahara is still deposited at a rate of 3,000 tonnes/km2/yr [Simonson, 1995].

Dust storms generally form as a result of the passage of cold fronts linked to mobile 

polar highs across arid or drought-affected plains. The passage of these fronts can 

give rise to dust storms lasting for several days. In the northern Sahara region, dust 

storms are mainly produced by complex depressions linked with westerly winds. The 

depressions originate in the winter in the eastern Mediterranean Sea or the Atlantic 

Ocean. The seasonal movement of the monsoon into the Sudan region of the Sahara is 

responsible for dust in eastern Africa, while the Indian monsoon controls the timing of 

dust storms on the Arabian Peninsula [Bryant, 2005].

In terms of water quality, dust storms may carry heavy metals, fungi, bacteria, and 

viruses. In particular, nutrients such as phosphorus and nitrogen can be absorbed by 

sediment particles and transported to coastal areas (see Figure 2.5 for illustration).
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The particles may then be deposited onto marine waters and for certain conditions, i.e. 

for suitable temperatures and chemical reactions, the nutrients may be released into 

the surrounding water. Therefore, in terms o f sorption processes, this phenomenon 

may well be considered as a major source or sink o f nutrients in a marine system 

(with more details related to model development being given in Chapter 4 and model 

application in Chapter 7). In addition, dust retention times in air and surface waters 

may limit algal growth in a marine system by blocking the light necessary for algal 

growth.

m -------------  Dust deposition  ►

« ■ Dust transport ----------------------------------------------------►
-•------------------------------- Sand deposition  ►

______________  Sand  ^
transportation

Figure 2.5: Flowing air erodes, transports, and d ep o s its  fine sed im en ts  on  

land or water [modified after http://earthds.info/1

Due to the effects o f climate change and related global warming, the G ulf has been 

affected by dust storms in mainly two aspects. Firstly, high air temperatures: recent 

records have shown high temperatures in the northern region o f the Gulf, particularly 

Kuwait, that have reached 50 °C [Al-Gahtani and Maslehuddin, 2002], while Al- 

Rashid and Al-Mikaimi, [2010] have recorded values o f 55 °C in Kuwait City. 

Secondly, rainfall is very limited, but can occur in large quantities that occasionally 

results in flooding (see section 2.3.3.2). In addition to global effects, an area o f about
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9,000 km2 (i.e. the southern marshes of Iraq) was drained, resulting in the occurrence 

of dry lands that were exposed to the dominant northwest and southeast winds \Al- 

Ghadban et al., 1999]. This has all led to the fact that this region is very vulnerable to 

occasional dust storms as shown in Figure 2.6, in which even minor winds may attract 

sediment and displace sediments into the surrounding air streams. Such events have 

been widely recorded, particularly at the northern end of the Gulf. Dust storms have 

been occurring more frequently over the past few years and currently occur in over 

25% of the year in Kuwait [.Alsharhan, 2009]. In addition, Al-Qabandi, [2010] 

announced, with reference to a Kuwait Environmental Public Authority (K-EPA) 

reports, that the sum of sediment attraction related to this phenomenon occurs, on 

average, about 154 days/yr and deposits approximately 55 tonnes/km2 over Kuwaiti 

land and territorial waters, 26 days of which are considered to be an extreme event in 

that visibility is considerably reduced. Thus, an approximate deposition of sediment 

particles can be roughly estimated to be 39,600 tonnes/yr over the whole Bay; most of 

these sediments deposits come from Iraq, in response to limited rainfall and increased 

desertification [Al-Haddad, 2009; Khalaf et al., 1985].
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Figure 2.6: Dust storm in the Gulf occurred in March 2 0 1 0 ,  [Source: 

http://m odis.qsfc .nasa.gov/index.php 1

2. 3. 2. 2 Flooding:

With the increasing concerns o f climate change in the M iddle East, flash floods (see 

Figure 2.7) have received special interest in the G ulf countries. Although it has been 

considered to be a natural common phenomenon over the past few decades, there is 

increasing evidence in the region that climate change has accelerated such processes 

and caused them to occur more frequently. Flash floods in arid regions, such as the 

Gulf, can principally be harmful to the environment for several reasons. Firstly, 

storms in arid regions are occasional, but they can deliver an enormous amount o f rain 

in a very short time interval, such as with the Jeddah flood o f 2009 (see Figure 2.7). 

Secondly, these rains often fall on poorly absorbent land and often clay like soil that 

seriously increases the amount of runoff that rivers and other water channels have to 

handle. Thirdly, some regions do not have the infrastructure that wetter regions have 

to divert water from structures and roads, such as storm drains and retention basins, 

either due to the minor population and poverty in such regions or because o f poor
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planning that underestimates the risks of flash floods rising mostly from unpredictable 

climate change effects. Therefore, untreated water streams rising from such events 

would normally find their way to coastal areas and may likely cause disturbance to the 

receiving water by introducing different physical and chemical characteristics.

In terms of flood frequency, such events may have a major impact on the local biota. 

It has been shown that the frequency of disturbance by floods is a fundamental 

determinant of the spatial patterns in average benthic algal biomass among streams 

[Biggs, 1996], and it seems sensible to conclude that flood disturbance might also 

influence patterns in benthic algal taxonomic richness [Biggs and Smith, 2002], For 

example, streams in regions of New Zealand with frequent floods appear to have 

larger mean monthly benthic algal richness than streams in regions with less frequent 

floods [Clausen and Biggs, 1997]. Other effects of flash floods on receiving waters 

can be summarised in the following:

• Increase of nutrients through sediment adsorption processes;

• Increase of turbidity;

• Local ecological effects;

• Bed erosion and sediment transport; and

• Increase of heavy metals.
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Figure 2.7: Flash floods in Oman, cyc lon e  Phet 2010: more than 360  mm of 

rain (left), Saudi Arabian flood (Jeddah) 2 0 0 9  m ore than 90  mm of rain 

(middle), U.A.E flood (Dubai) 2 0 0 8  reach ed  50  mm of rain (right)

2. 3. 3 Eutrophication:

Due to anthropogenic activities and related pollution, as mentioned in Section 2.3.1, 

and to lesser extent climate change (explained in section 2.3.2), the G ulf has 

experienced an increasing number o f algal blooms and consequently ‘eutrophication’ 

events in various regions o f the G ulf [Gilbert, 2007]. Some o f these events have been 

considered to be toxic to the marine life, while others have caused major fish kills and 

‘Red Tides’, as experienced in the Bay (see Figure 2.8) [Ismail et al., 2007, Al- 

Yamani et al., 2006, Gilbert et al., 2002, Heil et al., 2001, Subba-Rao and Al-Yamani 

1998, Richlen et al., 2010], It is therefore important to review eutrophication in 

reasonable detail and the consequences o f such events on the marine environment.
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Figure 2.8: Major fish kill in Kuwait bay [Glibert e t al., 2002]

Eutrophication is often caused by an over-enrichment o f a marine system with 

nutrients that enhance extensive growth, which can cause algal blooms. It has 

sometimes been defined as the biological response o f  a marine system to 

anthropogenic changes in rivers, lakes, and coastal waters [Menesguen, 1990], 

Eutrophication is a natural process, but human activity can accelerate the process by 

increasing nutrient loadings into a water body. Natural eutrophication is a process that 

is measured in terms of thousands o f years, whereas the on set o f eutrophication due 

to human activity can take only a few decades or even years to develop. 

Eutrophication is one o f the leading environmental problems which leads to excessive 

plant growth: algae in the open water, periphyton (attached to benthic algae) on the 

bottom of the water body, and macrophytes (large vascular rooted plants that are often 

called weeds) in the shallower water areas [Glibert et al., 2002].
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Based on its biological productivity and nutrient conditions, a water body can 

generally be categorised as oligotrophic, mesotrophic, and eutrophic as shown in 

Table 2.3.

Condition Definition Diagram
Oligotrophic A water body with low 

biological activity and excellent 
water quality, since the water is 
low in nutrients and algae and 
both primary production and 
biomass are severely limited.

LowNufeuttti
V v c—

Oligotrophic

Mesotrophic A water body with medium 
biological activity and good 
water quality.

ModtrtU NutouxU 

M«sotrophic

Euirophic A water body with excessive
biological activity and poor 
water quality. The water has 
abundant nutrients and high 
rates of primary production, 
frequently resulting in oxygen 

_______________ depletion in the bottom layers

Table 2.3: Oligotrophic, Mesotrophic and Eutrophic condition of a marine

system

As shown in the Table 2.3, an oligtrophic marine system is low in nutrients and is 

supplied with less nutrients, and therefore it is normally characterised with low 

biodiversity. Therefore, the water is normally clear with sufficient oxygen throughout 

the year. However, when the nutrient supply increases, the system can be well defined 

as a mestrophic system. As the nutrients increase slightly the production of both 

phytoplankton and zooplankton increase without extensive damage to the ecosystem. 

In such a state the system is normally well balanced in terms of both biological
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growth and dissolved oxygen consumption, particularly in deep waters. Further 

supplies of nutrients can lead to over enrichment of the system and consequently large 

biological production and high dissolved oxygen consumption. Such effects lead to 

high turbidity levels, due to dense growth and therefore less light penetration. The 

bottom of an eutrophic system is often characterised by a thick sediment layer loaded 

with organic matter that often leads to changes in species composition. Trophic state 

is normally controlled by the following parameters:

• Nutrient loading from point and non-point sources, such as water treatment 

plant discharges, sewage discharges, industrial wastewater, agricultural and 

urban runoff;

• Meteorological conditions, such as solar radiation, air temperature and 

precipitation;

• Topographical and geometrical features of a marine system; and

• Horizontal and vertical dispersion mechanism (explained in Chapter 5).

Since the above feature varies dramatically from one system to another, there is no 

numerical criteria collectively applicable to measuring the trophic state of a marine 

system. Total phosphorus, total nitrogen, chlorophyll and secchi depth are normally 

used to represent the eutrophic state of a system. Since eutrophication is normally 

caused by high phosphorus and nitrogen level in a system, it is often related to these 

variables. On the other hand, chlorophyll and secchi depth are initial response 

variables. Other variables, such as dissolved oxygen are very helpful in identifying the 

eutrophication status of a water body. In practice, dissolved oxygen is used in the 

decomposition processes of algae, where nutrient enrichment would increase the algae 

production and accelerate the decomposition process until the dissolved oxygen is
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mostly depleted. This would normally lead to larger fish kill and undesirable odours 

that would, in turn, be decomposed using dissolved oxygen and finally block light 

penetration leading to major retardation of photosynthesis processes throughout the 

water column, in particular near the seabed [.Ji, 2008]. In general, the dissolved 

oxygen level is predominantly highest during the winter and lowest during the 

summer, when temperature and stratification are more appreciable. Noticeable 

modifications in the ecosystem may arise when a species dies due to eutoriphcation 

and is replaced by another species that can tolerate eutrophic conditions [Ji, 2008].

2. 3. 3.1 Limiting nutrient and Redfleld ratio:

In addition to nitrogen and phosphorus, algal growth is affected by light, water 

temperature and various trace nutrients, which in practice are hard to control in 

natural marine system. Since some control can be exerted over the concentration of 

nitrogen and phosphorus, considerable studies are conducted on how to make nitrogen 

or phosphorus a limiting nutrient, in which eutrophication can be controlled in a 

marine system.

Algae consume nutrients in a fixed stoichiometric ratio and this ratio is relatively 

constant and occasionally called the Redfield ratio named after Alferd Redfield. He 

found that the ratios of carbon to nitrogen to phosphorus remained the same from 

coastal to open ocean regions. The elemental ratios he found were; Carbon : Nitrogen 

: Phosphorus as 106 : 16 : 1. Disparity in the ratio of nutrients supplied often leads to 

depletion of one nutrient, while other remains available. This nutrient, which is least 

available for algal growth, is called limiting nutrient. When the limiting nutrient is 

depleted, according to the Liebig’s Law of Minimum, the algal concentrations stop
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increasing and the eutrophication process is retarded or in some cases reversed [Ji, 

2008]. It is worth mentioning that in this research there was no attempt to identify the 

limiting nutrient in the Gulf region, instead physical processes affecting nutrient level 

were investigated such as phosphorus sorption processes (see Chapter 7).

Generally, seawater is most often limited by nitrogen, while freshwater are most often 

limited by phosphorus. Compared with phosphorus, nitrogen is frequently more 

complex to manage, because it is almost unattainable to control the nitrogen exchange 

between the atmosphere and water. In estuaries limiting nutrient may vary from being 

phosphorus, nitrogen or other physical parameters such as light due to its dynamic 

nature and the effect of human activities as mentioned previously. In the Gulf of 

Samique (Aegean Sea) Becacos-Kontos [1977] suggested that the factor limiting 

primary productivity in the waters were on occasion solely phosphorus and other 

times both phosphorus and nitrogen. Also, Maclsaac and Dugdale [1972] have 

conducted studies near Greece coastal water and reported enhancement of nitrate 

uptake after addition of phosphorus.

2. 4 Summary:

In this chapter an outline of the main physical forcing parameters (i.e. tide, freshwater 

input and wind) on the Gulf, including the Bay, has been discussed. Further details of 

such effects on the horizontal dispersion of numerical tracers will be investigated in 

Chapter 5. The main marine environmental impacts in the Gulf have been addressed 

in relation to human activity (such as: waterfront developments, desalination plants 

and petrochemical industry) and climate change, including the impacts arising from 

dust storms and flash floods. Such impacts have led to various problems in the Gulf,
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in particular eutrophication events, which have been explained in some detail. It is 

therefore important to understand the fundamental dispersion mechanism of the Gulf; 

this will be studied in Chapter 5. The effects of sediment sorption processes of 

phosphorus arising from sediment deposition on the Bay waters will be addressed in 

Chapter 7.
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Governing Equations of Motion and Solute Transport

3 .1  Introduction:

During recent decades many scientists and engineers have been involved in hydro- 

environmental research projects as a result of the increasing general awareness of 

water quality and the growing public concern about environmental and ecological 

issues in the Gulf. Predicting the hydrodynamic processes and the distribution of 

contaminant quantities have generally been a major part of these projects. Analytical 

solutions are not options available for such predictions, because of the complex 

boundaries and natural geometry of practical studies.

Physical model studies have traditionally been a major means for predicting flow 

fields and contaminant transport in hydro-environmental research projects for much of 

the past 80 years. However, with the rapid advances in computer technology over the 

past 30 years, computer models, based on numerical techniques, have been used 

increasingly for such simulation studies. The rapid increase in the speed and memory 

capabilities of modem computers, on one hand, and the fast developing numerical 

methods, on the other hand, have widened the scope applications of the computer 

model applications.

The main aim of this chapter is to present the three-dimensional governing equations 

for the hydrodynamic processes and the advection diffusion equation for solutes that 

are commonly solved by numerical models, such as those detailed in Chapter 4.

3. 2 H ydrodynam ic equations:

Prior to modelling the water quality and sediment transport processes in estuarine and 

coastal waters, the hydrodynamic characteristics of the flow fields, such as water
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elevations and velocity components must be predicted. This is undertaken through the 

hydrodynamic model, which is used to solve the governing hydrodynamic equations.

The Navier-Stokes equations describe unsteady turbulent flow in coastal and estuarine 

waters, with the numerical procedures employed to solve these equations being called 

direct numerical simulation (DNS). Nevertheless, the storage capacity and speed of 

present day computers is, to some extent, still not satisfactory to permit a solution for 

any practically relevant turbulent flow [Rodi, 2000; Tannehill et al., 1997]. Presently, 

the Navier-Stokes equations are averaged over time and these time-averaged 

equations are referred to as the Reynolds Averaged Navier-Stokes equations (RANS) 

that were first proposed by ‘Osborne Reynolds’. This time-averaging process 

introduces new terms, known as the Reynolds stress or apparent stress terms into the 

equations, which require turbulent models to close the system of equations. Details 

about the different turbulence models and their application in hydraulics can be found 

in Rodi, [2000]. According to the number of transport equations used for the 

turbulence quantities to evaluate the eddy viscosity, a turbulence model can be 

classified into three main categories:

1) Zero-equation models: which specify both a length and velocity scale using 

an algebraic relationship.

2) One-equation models: which use an additional partial differential equation for 

the velocity scale and specify a length scale algebraically.

3) Two-equation models: which use one partial differential equation for the 

velocity scale and one for the length scale.
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Among these models, the zero-equation models (such as the mixing length model) 

and the two-equation models (such as the k - s  model) are the most widely used 

[-Sotiropoulos, 2005; Rodi, 2000].

In modelling estuarine and coastal waters, usually a hydrostatic pressure is assumed, 

which means that the pressure is balanced by the gravity [Blumberg and Mellor, 

1987]. Hence, the vertical acceleration must be much smaller than the pressure 

gradient and gravitational acceleration [Lin and Falconer, 1997]. This can 

significantly simplify the equations and numerical solutions [Vreugdenhil, 1994]. 

Applying the kinematic boundary condition on the free surface, the hydrodynamic 

equations can be further simplified by integrating over the water column. The 

resulting depth-integrated equations are frequently called the shallow water equations 

(SWEs), which are widely used to prescribe the hydrodynamic processes in estuarine 

and coastal waters [Liang et al., 2006].

Hydrodynamic models can be divided into: one-, two- and three-dimensional models. 

Normally for river modelling one dimensional models are used in water systems 

where vertical and lateral variations are minor e.g. [ Wondzell, 2006]. Depth integrated 

two dimensional models are generally used for estuarine and near shore coastal waters 

and two dimensional laterally averaged models are generally used for narrow deep 

water bodies [Crowder and Diplas, 2006]. For deep and large water bodies, where 

stratification is significant, then a three-dimensional model should be used [Chen and 

Sheng, 2005]. In this study we are concerned with three-dimensional modelling.
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In hydrodynamic modelling, the theory is now generally accepted and the quality of 

the numerical solution is the more critical aspect for discussion [Falconer et al., 

2001]. Therefore research efforts on numerical schemes and their performances have 

developed significantly in recent years, such as the TVD-MacCormack scheme 

refined by Liang et al., [2006, 2007] to simulate rapid varying flooding flows.

3. 2.1 Three-dimensional Reynolds averaged equations:

The numerical models commonly used to predict hydrodynamic, water quality and 

sediment transport processes in coastal, estuarine and river waters are based on first 

solving the governing hydrodynamic equations of motion. In a cartesian co-ordinate 

system, the corresponding three-dimensional Reynolds averaged equations for mass 

and momentum conservation in the x-direction can be respectively written in a general 

form as [Falconer, 1993]:

dit dv dw _ o
dx dy dz

(3.1)

du du2 duv duw 1 dPw— +---- +-----+----- - X ---------  +
dt dx dy dz ^  p dx

(3.2)

- j —
p dx

du —  p - - p u u  
dx

d + —
dy

du —  
dy

+ -
dz

du —  p - - p u w  
dz

where w,v and w are the time averaged velocity components in the x, y  and z

directions respectively, 

t is the time.
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X  is the body force in the x-directions,

Pw is the pressure, 

p  is the water density, 

p  is the viscosity and

m' , v ' and vv are the fluctuating velocity components in the x, y  and z  directions 

respectively.

The expressions p u u \  pu'v’ and p u w  are known as the Reynolds or apparent 

stresses in the x-direction, and on the x, y  and z planes respectively (see Figure 3.1), 

with these terms existing due to the turbulence o f the flow, in which for laminar flow 

they are zero. For the numbered terms in equation (3.2), these terms refer to, the local 

acceleration (term 1), the advective (or convective) acceleration (term 2), the body 

force (term 3), the pressure gradient (term 4) and the laminar and turbulent shear 

stresses (term 5) see [Falconer, 1993].

XZ Plane

x yy,.

XX

XY Plane

Figure 3.1: Co-ordinate sy stem  for the apparent s tr e s s e s  in the x, y and z

p lan es
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For the Reynolds stresses, Boussinesq [Falconer, 1993; Goldstein, 1938] proposed 

that they could be represented in a diffusive behaviour as follows:

- p u u  = 7 7
du du 
dx dx

- p  u v -T]  ̂du dv^ 
dy dx

(3.3)

-puw  = TJ( du dw 
dz dx

where 77 is the absolute eddy viscosity, 

£ is the kinematic eddy viscosity = rj! p

In general, 77 »  p , in the y  and z directions similar equations can be obtained for the

conservation of momentum giving respectively:

dv dvu dv2 dvw __ 1 dPw ■ + -----+ ----- + -= Y  -  +
dt dx dy dz

-  —  

p [dx
dv —  p - — pvu  
dx

+ •
dy

p dy

dv —
P ~ ~ P VVdy

+  ■

dz
dv

— A>vW
dz

(3.4)

dw dwu dwv dw2 1 dPw■ + ----- + ------+ ------ = Z -------- ^ +
dt dx dy dz p dz

1  -p [dx
dw — r ~ ,H — pw u  
dx

+  ■
dy

dw n  
P—— Pw v  dy

+ ■
dz

dwp  pw'w
dz

(3.5)

In considering the rotation of the earth, the body force term can be expressed in the 

following term:
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X  = fv

Y = -fu (3.6)

z  = - g

where /  is the Coriolis coefficient = 2cosin 0L, co is the angular speed of earth’s 

rotation * 7.3 xlO*5 rads/s i.e. 2tc/('24x3600>) , 0L is the latitude of the site and g  is the 

acceleration due to gravity »9.807m is 2.

For flows in estuarine and coastal waters usually a hydrostatic pressure distribution 

can be assumed, since the vertical acceleration of the fluid is small compared to that 

of gravity acceleration, and the Navier-Stokes equation in the vertical z-direction can 

be reduced to give:

At the free surface continuity of stress is assumed, i.e. the stresses in the water just 

below the free surface are assumed to be the same as those in the air just above, 

giving for pressure:

where Pa is the atmospheric pressure.

Integrating down through the water column from the surface, using boundary 

condition in equation (3.8), and assuming a constant density gives:

(3.7)

P = Pw a (3.8)

P.(*) = p g l£ -z )+ P .

(3.9)

where £ is the water surface elevation above datum

From equation (3.9), the pressure gradients can be determined giving:
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dP
dx~ ~ P g A

dx

—151 * PR dy dy

(3.10)

3. 2. 2 Three-dimensional layer integrated equations:

For the three-dimensional layer integrated model, the water column was divided into 

several layers as illustrated in Figure 3.2.

z
4

hk-l

Figure 3.2: Co-ordinate system for layer integrated equations in the z(k) - x(i) 

plane: T is the vertical velocity, -> is the horizontal velocity and H is the total

depth [Lin and Falconer, 1997]

For the three-dimensional layer integrated model, each layer has a different velocity 

from that in the neighbouring layers, with the governing equations for mass and 

momentum conservation being integrated over the layer thickness. As illustrated in 

Figure 3.2, there are three types of layers; including, a top layer (& = 1), a bottom 

layer ( k = kma3l) and a middle layer. The top and bottom layer thicknesses are not
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uniform and define both the free surface and bed topography respectively. In contrast 

the middle layers normally have a uniform thickness [Lin and Falconer, 1997].

3. 2. 2.1 Continuity equation:

Integrating the continuity equation over the kth layer gives:

£ 2 | du dv dw 
- 1 dx dy dz

dz = 0 (3.11)

This leads to:

du dv 
I dx dy

dz + w . - w  . =0
k -~  k + -

2 2

(3.12)

where £±1 /2  refers to the vertical elevations of the interface between the k +1, k 

and k — 1 layers. Expanding equation (3.12), using Leibnitz rule [Hall, 1987; Lin and 

Falconer, 1997] and simplifying the resulting equation, then the layer integrated 

continuity equation give the vertical velocity component w at the interface k -1  / 2:

w
ax

* -i+ L
2 *=*

d(hkut ) f d(htvt )
dx dy

=  0 (3.13)

At the water surface, the continuity equation reduces to:

=  0— + y  
st h

d(htut ) + 8(hkvt )
dx dy

(3.14)

Where hk is the thickness of layer k.

Chapter 3 49



Governing Equations of Motion and Solute Transport

3. 2. 2. 2 Momentum equations:

Integrating the momentum equation over the kth layer gives:

\ (  du duu duv|*‘2
L i  ^ + +  Wz +
'k+2 \ d t  dx dy J

u , w  ,
V 2 2

u . w
k + -  k+-

V 2 2 7

jk+- *+- p qx *+- p y  Qx dy dz (3.15)

+ -  " r« L ' ,
P  V 2 2 7

Where x^ -  p u ’u' and = pu'v

i f  dv duv d w ^1*7 —+—+
2 {d t dx dy

dz + V ,W J
k - -  k - -

V 2 2 7

/ \
V , w*+- *+- 

V 2 2 7

t_I j ( dx dr ^X I V* v  v V
+ ■2/1 '

2 /? dy H  dx dy
dz (3.16)

+  •
T y A k - ~  T y z \k+-

V 2 2 7

Where ryx = p vV  and x ̂  = pvV  .From a hydrostatic pressure distribution

assumption, the pressure gradient component can be expressed as given in equation 

(3.10), and applying the Boussinesq approximation of equation (3.3) for shear stress 

term, then the layer integrated momentum equations can be given as:

d {u A )
dt + Pk

^8(ut7ht ) + d(ut vkht ) '
dx dy = P A  ~gK dx

+ d , 
dx

8uk t duk~] 
dx dx j + T -«**»dy

duL dvL
dy dx

(3.17)

+ ( /  i )-(w ,U ,) + -
k h— in— t —  k —  n

2 2 2 2 r

T I —X 1* z \ k —  « I J t+ -  
V 2 2
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5(vA )
dt + fit r d(utv A )

V dx dy /
= - f uk K - s K ^ -dy

dx
fot ! dv,
dx dy

d_
dy+ —

f dv, dv, N
dy dy )

(3.18)

where ukvk and wk are the velocity components for the layer k in the x, y  and z 

directions respectively, hk is the thickness of layer k, s h is the horizontal eddy 

viscosity in the layer k and p k is the momentum correction factor for the layer k. For 

the surface layer (i.e.A: = l), then (w xu j) and (w j) can be removed byk— k— k— k—
2 2 2 2

applying the kinematic free surface boundary condition. At the bed boundary

(w ju j) and (w xv ,)  are zero due to the no-slip boundary condition.
k — k — k — k~¥—

2 2 2 2

3. 2. 2. 3 Vertical and horizontal viscosity:

In modelling estuarine and coastal waters, the ratio of the vertical length scale to the 

horizontal length scale is generally very small. The eddy viscosity term in the vertical 

direction is generally more dominant than the corresponding viscosity terms in 

horizontal direction. In the current study, the horizontal eddy viscosity ehwas 

assumed to be constant in the vertical, and its value was assumed to be equal to the

depth-averaged eddy viscosity e . Lin and Falconer, [1997] represented the vertical 

eddy viscosity evby using a two-layer mixing length model suggested by [Rodi, 2000] 

of the form:
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(3.19)
\ d z )  ydz )

where / is mixing length, defined as :

l = KnZ for KnZ^ AH

I = 0. \H  for k^ z  > 0.1H  

and kwn is von Karman’s constant.

3. 2. 2. 4 Surface wind shear stress:

At the water surface, the shear stress was equated directly to the wind shear stress 

giving:

where is the air-water resistance coefficient, generally«0.0026, p a is the air 

density = 1.29 kg/m3, and Wx,Wy is the wind velocity components in the in jc, y

surface. Wu, [1969] has proposed a number of constants and expressions for the air- 

water resistance coefficient. They are the most broadly used expressions for the air- 

water resistance coefficient. The expressions are given in a piecewise formulation of 

the following form:

(3.20)

directions, Ws -  yjWx2 + Wy2 with the wind being measured at 10 m above water

yw =1.25x10"3̂ “°2 (Ws <lm/s)

yw =0.5x10~3JVs~°5 (1 m / s < W s <15m/s)
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yw =2.6x10 3 ( W >15m/s)

3. 2. 2. 5 Bed shear stress:

By assuming a logarithmic velocity profile within the bottom layer, Lin and Falconer, 

[1997] and Hakimzadeh and Falconer, [2007] represented the bed shear stress in the 

following form, as proposed by French, [1986]:

^  = «V»2+v2 2.5 In 3 Od
p {l . l2k, }

Where rb is the flow induced bed shear stress, d  is the thickness of the bottom layer 

and ks is roughness length.

For a two-dimensional flow the bed shear stress can be represented in the form of a 

quadratic friction law, as given by Henderson, [1966], as follows:

Txb =pguju2 +v2/ c 2
 7 ,  2 (3-22>Tyb=pgVju2 +v2/ c 2

where C is the Chezy roughness coefficient, typically 30m 1/2 / j  < C < 100m V2 Is .  

Alternatively, C can be evaluated from the Manning equation of the form:

r r  1/ 6

C = - —  (3.23)
n

where n is the Manning roughness coefficient and typically range from 0.012 for 

smooth lined rives to 0.05 for irregular and vegetated rivers [Chanson, 2004]. Even 

though the Manning’s coefficient is mainly used for one-dimensional rivers, this
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parameter has been extensively used in two-dimensional flow fields with high level of 

accuracy often being obtained for complex flow fields [Falconer et al., 2005].

The Colebrook-White equation can be used to give:

where /  is the Darcy-Weisbach bed resistance coefficient, ks is the equivalent sand 

grain roughness, and Re is the Reynolds number for open channel flow

The Colebrook-White equation is better for representing the bed roughness on 

shallow flood plains, such as wetland systems etc, since it includes Reynolds number 

flow effects at low Reynolds numbers and incorporates turbulent transitional flow as 

well as turbulent rough flow [Falconer, 1993; Falconer and Owens, 1987]. In 

contrast, the equations that use the Chezy C and Manning n coefficients assume 

turbulent rough flow only.

3. 3 Advective-Diffusion equation:

In modelling the flux of water quality parameters and suspended sediment 

concentrations within estuaries and coastal waters, the mass conversation equation 

can be written in general terms for any constituent introduced into the water column, 

as given by Harleman [1966] and Falconer et al. [2005]:

(3.24)

v

where Us is the fluid speed. For fully rough flow this can be simplified to:
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dm duo  dvm dw<p d —r~, d  -7 -7  d —n
t t + * +^ + * +^ : u ^ + ^ r v ^ + t - w <p =<p,+<Pj+<Pk (3-25)ut dx uy uz ux uy uz v-------------v -------------4

where w,v and w is the time averaged velocity component in x, y  and z direction 

respectively, q> is the time averaged solute concentration, <ps is the source or sink 

solute input (e.g. an outfall), q>d is the solute decay or growth term, and (pk is the total

kinetic transformation rate for solute. Equation (3.25) is referred to as the advective- 

diffusion equation. Variable (p can represent a range of parameters, such as salinity, 

phosphorus, sediment concentration, or a wide range of other water quality 

parameters. In this section the general form of the advective-diffusion equation is 

discussed. The specific form of the advective-diffusion equation for phosphorus 

related to sediment adsorption-necessary for the current study-will be detailed in 

Chapter 4. The numbered terms in equation (3.25) refer to: (1) local effects; (2) 

transport by advection; (3) turbulence effects; and (4) source (or sink) terms, 

including decay (or growth); and kinetic transformation effects.

The cross product terms u'(p\v'<p' and w'tp' stand for the flux due to the turbulent 

fluctuations. By analogy with Fick’s law of diffusion, which assumes that the mass 

flux is proportional to the gradient of the mean concentration and the flux is in the 

direction of decreasing concentration [.Harleman, 1966], the turbulence diffusion 

effect can be expressed in following:
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OX

v<p' = - D „ ^ -d(p
¥

(3.26)

02 ,

where is the turbulent diffusion coefficients in the jc, y, and z directions.

For well-mixed estuarine and river flows it is common to assume isotropic turbulence 

and to approximate the horizontal diffusion terms to the depth mean coefficients as 

given by Fischer, [ 1973]:

Dtx= D ^ = C tu M  (3.27)

where Ct is the constant of diffusion, typically assumed to be 0.15, w* shear velocity

given by w* = I— , //total depth of flow and r is the shear stress.
V P

For the vertical diffusion coefficient, it is common to assume a linear shear stress 

distribution and a logarithmic velocity profile, which gives [.Falconer et al., 2005] and 

[Vieira, 1993]:

Dtz = u .K mrz 1 -
H j

(3.28)

The turbulent diffusion coefficients are regularly related to the turbulent eddy 

viscosity by Schmidt numbers through the following equation:

Da =exl<rx, Dn, = £ / ( 7 .  DB= e J a 1 (3.29)

where <jx,a y,crz is the turbulent Schmidt number in the x, y  and z direction

respectively, and ex, sy, s z is the eddy viscosity in the x, y  and z direction 

respectively. Experiments have shown that the Schmidt number varies only little
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across any flow field and also little from flow to flow [Rodi, 2000]. Therefore many 

models inherently assume that the Schmidt number is a constant, such as Lin and 

Falconer, [1996] with values ranging from 0.5 to 1.0.

3.3.1 Sediment transport modelling:

Sediment transport in estuarine and coastal water bodies is governed by the sediment 

particle properties, settling velocity and the hydrodynamic properties of the flow 

(including velocity or flow field). Suspended sediments in the water column are 

transported with the flow and will tend to settle out onto the bed due to gravity. The 

bottom sediments may also be entrained and suspended due to increased levels of 

turbulence and increased bed shear stresses. The main aim of this section is to 

introduce the key formulations used in modelling sediment transport, with these 

formulations then linked to phosphorus adsorption processes in Chapter 4. It is 

necessary to understand the phosphorus adsorption onto the sediments and the effects 

will be studied further in Chapter 7.

3. 3 .1 .1 Suspended sediment transport modelling:

Sediment transport formulations for predicting suspended sediment fluxes in a three- 

dimensional numerical model are usually based on solving the three-dimensional 

advective-diffusion equation. This equation for sediment transport processes can be 

written in a similar manner to equation (3.25) giving:

ds dus dvs d ( w - w  s) d (  n ds  ̂ d ( _ ds') d—  + ------ + ------- +  -£ _ £ ------ I n  — -----------d  —
dt dx dy dz dx V dx) dy dz

D. ds
dz

= 0 (3.30)

where s is the suspended sediment concentration at a location x, y, z and ws is the 

sediment settling velocity.
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In solving the three-dimensional sediment transport equation (3.30), an operator 

splitting algorithm is used to split the three-dimensional advective-diffusion equation 

into a vertical one-dimensional equation and a horizontal two-dimensional 

formulation, as adopted by Lin and Falconer, [1996] and Wu and Falconer, [2000]. 

This approach will be discussed in more detail in Chapter 4.

The two-dimensional horizontal advective-diffusion equation for sediment transport 

can be obtained by integration of equation (3.30) to give:

dS dUS dVS d. ( „  dS} d + ------+  —I £>_ —
dt dx dy d x \ * dx) dy

=  0 (3.31)

where U , V are the depth averaged velocity components in the x, y  direction and S is 

the depth averaged concentration.

The one-dimensional vertical advective-diffusion equation for sediment transport can 

be written as:

ds d ( w - w ss) d
dt dz dz d A* dz

0 (3.32)

with the vertical boundary conditions being as the follows:

At the free surface the vertical sediment flux is zero given as:

dz

while at the bed:

w S - D  —  = E -  D 
“ &

(3.33)

(3.34)
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where E is the erosion flux rate, D is the deposition flux rate, and E-D net sediment 

flux rate, which describes the exchange of sediment particles between the water and 

sediment bed.

The net sediment flux rate for non-cohesive sediment can be expressed in the form 

[van Rijn, 1993]:

E - D  = w,(Sv - S a) (3.35)

where Sa is the sediment concentration at a reference level (i.e. the concentration at an 

elevation ‘a’ above. bed) and Sa>e is the equilibrium sediment concentration at 

reference level ‘a’. The equilibrium concentration is that value which occurs when the 

sediment flux vertically upwards from the bed due to turbulence is in equilibrium with 

the net sediment flux downwards attributable to the fall velocity (or gravity). The 

equilibrium reference concentration used in this study was proposed by van Rijn, 

[1993] and is given as:

s „,e = 0-015—7§T- (3-36)aU*

where D5o is the sediment diameter of which 50% of the bed material is finer, T is the 

transport stage parameter [van Rijn, 1984a] and D* is the particle parameter.

For cohesive sediment transport, the most widely used expression for the depositional 

flux is that originally proposed by Krone, [1962], see [ Winterwerp and Van Kesteren, 

2004]:
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D =

l -
' c ,d

n  Tc,d

Tb >  T c.d

(3.37)

where rh in the flow induced bed shear stress, rc d is the critical shear stress for

deposition and Sb is the near bed sediment concentration.

While the erosion flux rate can be calculated using the original formulation given by 

Partheniades, [1963], the equations have been recently generalised by Winterwerp 

and Van Kesteren, [2004] to give:

E =

M
Tu —Tb c,e

"o

(3.38)

where xc e is the critical shear stress for erosion, M  is the empirical erosion constant,

with reported values being typically in the range of 0.00001 to 0.0005 for soft natural 

mud [Falconer and Chen, 1996] and the exponent no being equated to unity.

Sediment transport formulations for predicting suspended sediment fluxes in depth 

integrated two-dimensional numerical models are based on solving the depth 

integrated form of equation (3.30), which can be shown to be of the form:

dSH dSUH dSVH d
dt

+
dx

+
dy dx

as
dx dy

HD dS = E - D (3.39)

where S is the depth-averaged suspended sediment concentration.
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3. 3.1. 2 Bed load transport:

The bed load sediment flux is calculated using the following equation [van Rijn, 

1984a, b]:

% = huA  = s*Ka (3-40)

where sb is the bed load concentration, ub is the velocity of bed load particles, Sb is 

the saltation height, and ua is the effective particle velocity, the is given as ua = aub 

where ub = [(l-s)g D 50]°5 x 1.57°6 and a  = 2.3.

3 .4  Summary:

The governing hydrodynamic and solute transport equations have been reviewed in 

this chapter. The two dimensional and three-dimensional hydrodynamic and solute 

transport equations have been presented for three-dimensional numerical model 

studies. Different terms and parameters of mass, momentum and sediment transport 

equations have been discussed and formulated. It is important to present the 

governing equations of the model in order to understand the main processes that are 

solved in any model. Also it is important to understand the sediment transport 

processes as these will be linked to the phosphorus adsorption processes to be 

discussed in Chapter 4.
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Numerical Model Details and Model Development

4 .1  Introduction:

Flow and solute transport processes can be described by the sets of governing 

equations, as detailed in Chapter 3. These equations are based on the principles of 

conservation of mass and momentum and only have analytical solutions for idealised 

cases. Numerical methods provide a valuable tool to approximate the solution of these 

governing partial differential equations and such tools are increasingly important in 

environmental water management.

The main aim of this chapter is to give details of the numerical methods and 

procedures used to solve the governing equations, as mentioned in Chapter 3, in a 

three-dimensional model named TRIVAST (ThRee-dimensional layer Integrated 

Velocities And Solute Transport). Details are also given of the main developments 

made to the source and sink terms for phosphorus of the advection-diffusion equation 

(explained in Chapter 3), based on experimental work conducted in the Loughor 

Estuary (U.K.). The development was mainly focused on the sorption processes for 

phosphorus in the sediments. General details of another three-dimensional model, 

named ELCOM-CAEDYM (Estuary, Lake and Coastal Ocean Model linked to 

Computational Aquatic Ecosystem Dynamics Model), is also given and the main 

differences of both models i.e. (TRIVAST and ELCOM-CAEDYM) are outlined in 

this chapter, with the main differences between the model predictions between 

ELCOM-CAEDYM and TRIVAST being investigated in detail in Chapter 8 , which 

are applied to the Arabian Gulf and Kuwait Bay.
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4. 2 Num erical solution o f the hydrodynam ic equations (TRTVAST):

Since TRTVAST is a layer integrated model in which the depth integrated equations 

are first solved throughout the layer thickness (k), it is important to review the 

numerical solution of the depth integrated equations. Therefore, in this section the 

solutions to the depth integrated equations are first addressed, followed by the 

solution of the layer integrated equations.

4.2.1 Depth integrated equations:

In the two-dimensional depth integrated model a regular mesh is used. The discrete 

variables are represented in a space staggered grid system, as shown in Figure 4.1, 

where water elevations are defined at the centre of the grid cells and velocity and bed 

levels below datum are described at the centre of the sides of the grid cells. The 

Alternating Direction Implicit (ADI) method is used to solve the governing equations, 

as given in Chapter 3. Each time step is divided into two half time steps. For the first 

half time step, from time level n to n+ 1 / 2 , values of water elevation and velocity are 

solved implicitly in the x direction, whereas velocity components in the y  direction are 

expressed explicitly. For the second half time step, from time level n+1/2 to n+1, 

values of water elevation and velocity are solved implicitly in the y  direction, while 

velocity components in the x direction are now expressed explicitly.
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X 0

e —

j+i

o
j

j-i

i+li-l 1

X  Water elevation above datum ( 0  and solute (S)

^  x-component discharge per unit width (p)

^  y-component discharge per unit width (q)o Depth below datum (h)

Figure 4.1: Description of the sp a c e  s ta g g ered  grid sy stem

The continuity equation (3.1) can be integrated and expanded using Leibniz’s rule, 

that gives the depth integrated continuity equation, as detailed in Falconer, [1993]:

d£ dp dq
—  +  —  +  — =  <3
dt dx dy

(4.1)

where p = UH q = VH ; with U, V being the depth averaged velocity components in 

the x and y  directions respectively and H  is the total depth o f flow (/*+£) and qm is the

external source or sink discharge per unit area. Similarly, the momentum equations 

for an incompressible turbulent flow in a cartesian co-ordinate system can be 

integrated over the depth to give the depth integrated momentum equations, with the 

detailed derivation being found in Falconer, [1993]:
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8 UH n (dU2H dUVH 
+ P <— -----+

dt

+ sH

dx dy
= JVH + g H —  +

dx p p

( a2dlU d U2 t t \

5VH \ dUVH dV2H 
\  dx dydt

+ eH

dy p  p

d2V d2 V  ̂
dx2 dy2 j

(4.2)

(4.3)

where p  is the momentum correction factor for non-uniform vertical velocity profile,

s  is the depth average eddy viscosity, rwis the wind stress and rh is the bed shear 

stress. The continuity equation (4.1) can be expressed in its finite difference form for 

the first and second half time steps respectively as follows:

2 f \ l (
Za2- pni +---

At V Ax^
/!+—

P i -P. i .
1— <j 2 2 y

+-
Ay

\
0 . . i . i

V , J + 2 l ’J  2 J

_2_

At

1 An+—
2 + •

Ax

i An+—

P i -P .  i .
V 2 2 J J

+ ■
Ay

 /n-l _«+l
4 . 1 - 4  1

l J + -V 2 '^ iy

(4.4)

(4.5)

where i , j  grid point location in the x and y  directions respectively and superscripts n ,

n + -i and n +1 represent time levels at time t = nAt, t = (n + ̂ )At and t = (n + 1 )At

respectively, and At represents the time step for computations. It can be seen by 

summing the above two equations that the scheme is fully centred in both time and 

space over the whole time step, giving second order accuracy in both time and space. 

The x direction momentum equation (4.2) can be written in the following manner for 

the first half time step:
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where U denotes a value corrected by iteration, by setting:

U =
u n—  2

1 (

U
2 V

1 iA— n+— (4.7)

V represents a value obtained by averaging the corresponding values for the 

surrounding grid points:

1, 1i+-'j+~
2 2

Vn , + V n
i,j +- v 2

z'+l,/+—27
(4.8)

and p  denotes a value obtained from the upwind algorithm where

• v
if

V \  >0
l+2 J

if v \  <0
(4.9)

,+ 2’y

Similarly, the y  direction momentum equation (4.3) can be written for the second half 

time step as:

Chapter 4 67



Numerical Model Details and Model Development

_n+lq i -q
i J + 2

1

t J * 2

At 2 Ay

r a v+

a ?

+
l . i  
2 2

V + -

Uq

Ax

1«+—
2

' ^ + 2

r
. i +9. . il>J+— l ,J+—

\  2 2 J

+ £ H

f  1 1 \ 2, «+— n+—
H \ C  \

V U + 2  ' J + 2 J

V i+i.y+I -  2 • F,J+I + F t-ij+l ViJ+l  -  2 • Vu+i  + V,j-1

Ax A y

, . i . i  y i— , / + -  
2 2

Rearranging equation (4.4) gives:

i i in+— wh— «h—
a 2 i - l P .  1 . +  b 2i- A j 2 +  C2 i - l P .  1 . =  d 2i - \

>-2.J

where

*2,-1 = -
At
Ax

V.=2

'2 i - l
At
Ax

a w  At
d» - '= ^ ~ T y q.. i - q .. i

V , J + 2 , J - 2  J

+ Atql

Rearranging equation (4.6) gives:

in+— 1n+— 1
n + —

a 2 A i  2 +  bliP  2 . +  C2,^+l2 =  d I
1+-.J

2

(4.10)

(4.11)

(4.12)
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where

a2, = -gH
At
Ax

b2i = 2  + At-

( a n V 
D. 1 •

+ 2 'J V

+
( _ n  V

4 i A - , j
1 J

M i ,

u  At 
2i = S h t  Ax

d2i = 2 - At-

/ ah A

\

2 r  n V

+

(H C U

p. 1/+-
2

-g H At_
Ax

r i

W t  - f w

- p
At

(Pu r , - i w. 3 . j2 'V

J/
Ax2

a  n a  n

Ax 

+ 2 e H

+ 2At^-yWxWs +2A t-f-q" l 
P V

+ ■24/
A

(P v r ^ ^ - ( P v r  , . i
l+2'J+2

+■
A / 2  A r t

4v

\f  a n

UiA-j+i - 2 UiA.j+UiA-,j-i 
2 2 2 

v y

Similar rearranging can be made to equation (4.5) and (4.10) to give:

n+i
iJ+-

(4.13)
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where

a2j-\ ~
At
4y

b2i_x= i

'2j-\
At
Ay

At
Ax

i \n+— n-t—

P. I  -P .  I.
V  ,+ 2 ’J ' 2 ,J  J

+ Atq

and

% C + M ”+1 . +c 2; C . = ^
n+1

t.J+-
(4.14)

where

a 2 i = - g H
At
Ay

(  i y  f  i vn+—
—  2

+

bjj — 2 -t- At-
P.j4

V  J

a  n+—
2

V  J
in+-

{HC) S
•-J+Z

'2j gH
At
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V 7
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Ay2
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a  n-i—  a  »H—
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F  3- 2 F  , + F  j

v 'J + 2 , J + 2 i‘j-2 J

+ 2 A t^ -yW W -2 A t> f> p  \  
P , J + 2

These equations can be expressed in a matrix form as follows:

6 , c, 
o2 b2 c2

f l2 i-l ^ 2 /-l C2/-l

2 ; 2 /

Pi .
2*y

P. 1 .- ?y

2 /-1

(4.15)

This gives a tri-diagonal matrix that can be solved using the Thomas algorithm to give

i in-i— n+— . .
<fi y 2 and/?..2. A similar procedure can be used to obtain andg”y .

4. 2. 2 Layer-integrated equations:

In the three-dimensional layer integrated model, a regular square mesh is used in the

horizontal plane, while an irregular mesh is used for the vertical layers. Figure 4.2
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illustrates the location of the various variables for the three-dimensional finite 

difference mesh in the vertical plane.

z

-►X

i-l,k i +l fk

i,k+l

Figure 4.2: Vertical grid system

In the horizontal plane the discretised values for the variables are located in the same 

positions as for the two-dimensional depth integrated model (see Figure 4.1). The 

layer integrated governing equations are solved using a combined explicit and implicit 

scheme. The vertical diffusion terms were treated implicitly, whilst the remaining 

terms were treated explicitly [Lin and Falconer, 1997]. For the first half time step the 

depth integrated equations are first solved to obtain the water elevation field across 

the domain, as explained in section 4.2.1. The layer integrated equations in the x 

direction are solved using the water elevations obtained from solving the depth 

integrated equations. Lin and Falconer [1997] expressed the momentum equation in 

the x direction for the three-dimensional model as follows:

d(uA )
dt

du
dz J k - ‘ v dz

= S. (4.16)
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where represents the terms treated explicitly. The following is the finite difference 

representation for equation (4.16):

(  i  j
(uh)"t * - (u h \

V

A hJ k -

i \n+— n+—
I 2 — U 2 **-1 U k +

1 \n— n—
l k - l  ~ U k 2

+A/ r e, '
\  n  J k + -  2

n+— n+
2 — U 2 k u k+1 +

n-
14 2 —14 2u k u k +1

J

J

1 2

/ 2  = 5

where

Sx = ADV + COR + PRE + DIF + VTC 

where

(4.17)
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\
V j - V  j

i+—, j , k  i—, j , kv 2 J 2 y

VTC = At (WU) x 1 - ( W )  j 1

2

Rearranging gives:

i ir>+— n+—

Pk«k-i + 9 A  2 +r„»M = sk + s .
1

(4.18)

Chapter 4 73



Numerical Model Details and Model Development

where

Pk =
\  n  J k -

< I k = h k +

At +
V n  j k _ L  v n  J k +-  

2  2 .

At
n  =  —

v n  J k +

,  "_ 2 ^  
sk = K uk + y

e

V n  J k - 2 .  
2

£v
h

‘Ar-l

+
v

2
*J*+>

2

1n—

‘*+1
V n  J k +

1n+—
where u 2ijk is the velocity component in the x direction at the kth layer. Equation

(4.18) can be expressed in matrix form for the different layers, where k = 1 for the 

surface and k = k ^  for the bottom layer:

1

U i , j ,  1

P i  < h  r 2

<

U iJ ,2

► = <

*2

P k -1 Q k -1 r k-1 1 S k -1

P k .  “ u,* .

(4.19)

As before the Thomas algorithm has been used to solve this tri-diagonal matrix to 

obtain the velocity in the x direction. Once the water elevations and velocity 

component in the x direction have been solved, then the vertical velocity w can be 

determined everywhere for each layer across the computational domain by utilising
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the continuity equation. The finite difference continuity equation used for the first 

half time step to obtain w can be obtained as follows:

w
1—
2 = W

1n+—
2

1 1n+— n+—
h 2 . +h 2 ,

i J M -

2Ax (4.20)
h* .+ h K ,

i , j , k + — i , j , k - ~

2 Ay

For the bottom layer, where# = , the vertical velocity is zero:

w
1w+—
2 0

i , j , k+ -
(4.21)

For the second half-time step, the same procedure is followed to calculate the velocity 

components in they andz directions.

4. 3 Num erical solution o f advection-diffusion equation (TRIVAST):

The three-dimensional advective-diffusion equation (3.25) in Chapter 3 is repeated 

here for completeness giving:

d(p duq> dvtp d (w -w s<p)
dt dx dy dz

dx
D. dtp

* dx dy
dtp

j
D.

dz
De ^L

dz

(4.22)

=  <Po

This equation includes the three main terms of: advection, dispersion-diffusion and 

source or sink terms. In solving this three-dimensional equation, an operator splitting 

algorithm, as proposed by Lin and Falconer, [1996] and Wu and Falconer, [2000], 

has been used to split the three-dimensional advective-diffusion terms into a vertical 

one-dimensional and a horizontal two-dimensional set of equations. The three- 

dimensional equation is split into the following equations:
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dtp d (w -w stp) d f
dt dz dz I

dtp> 
dz j

(4.23)

and

(4.24)

The layer-integrated two-dimensional advective-diffusion equation (4.24) is first 

solved horizontally, and then the one-dimensional vertical advective-diffusion 

equation (4.23) is solved for the z direction.

For the layer-integrated equation, the ULTIMATE QUICKEST scheme is used for the 

advection term, the central difference scheme for the diffusion terms and the Euler 

method for the source and sink terms. For the vertical one-dimensional advective- 

diffusion equation, this equation is solved using a non-uniform grid in the vertical 

direction. Since the diffusion process is the key term in this equation, and also some 

of the grid sizes are very small near the sea bed and water surface, then this equation 

is solved using a centred implicit method to avoid the use of a very small time step. 

The discretised equation is then expressed in the following form:

(4.25)

where

a p,k aT + a B +
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and

where the symbol [a,b] is used to denote the greater of a and b, T and B denote the top 

and bottom control volume faces, Pe is the grid Peclet number and F  is the mass flow

rate. These finite difference equations are arranged in a matrix form, giving a tri

diagonal matrix, which is solved using the Thomas algorithm.

In general, two types of boundary conditions exist, the first type being a closed 

boundary (also frequently known as a wall boundary condition) and the second type 

being an open boundary. For the three-dimensional modelling study, precise surface 

and bed boundary conditions also need to be specified.

4. 4 .1  Closed boundary condition:

For a closed boundary condition as shown in Figure 4.3, no flow is allowed to pass 

across the boundary, so for the closed boundary condition:

4. 4 Boundary conditions (TRIVAST):

V'=0 (i = 1,2,3,4) (4.26)
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Figure 4.3: Closed boundary condition

For the velocity component parallel to the closed boundary, this can be expressed as 

follows:

Ubi=XUi (i = 0,1,2,3,4; (4.27)

where X = -1 for a no-slip boundary, X = l for a ffee-slip boundary, and 0 < X < 1 for 

a partial slip boundary. The closed boundary condition for a solute is:

dtp
dn

= 0  and ^
dn2

=  0

This means that there is no solute flux across a wall boundary. The subscript w 

indicates that the value was taken from the wall boundary, while n indicates that the 

direction is perpendicular to the wall.
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4. 4. 2 Open boundary condition:

For an open boundary condition both flow and solute fluxes were permitted across the 

boundaries. Thus suitable hydrodynamic and solute flux conditions needed to be 

satisfied, in the form of measured water surface levels, velocities and solute 

concentration values. If the open boundary was a flow boundary and the velocities at 

the boundary were defined, as indicated in Figure 4.4, then the following boundary 

condition could be obtained for the hydrodynamic conditions:

♦ J

▼
I

- ©
eI 1

•■H

-________1________

-  ® * -  

I02

1

'  ® -  

Pa

-  ® v *  

I03

1

’  ® -  

Pm

-  ®vt 
f l t . .

-________1________

Open boundary of flow 

Figure 4.4: Flow boundary condition

U ,= U bi (i=0,l,2,3,4)
1 bi ■■■■- '  ( 4  28)

V, = Vtl (i=l,2 ,3,4)

If the open boundary condition was a water elevation, as indicated in Figure 4.5, then 

the following condition could be obtained for the hydrodynamic conditions:
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v, =  val (i=l,2,3,4)

■ U, = UM 0=0,1,.2,3,4) (4.29)

£ = f w (i=l,2,3,4)

where £bi is the known water level at the open boundary.
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Figure 4.5: Water elevation boundary condition

Similarly, solute concentration values at the open boundary were described from 

known boundary value, (pbi on the incoming tide as given below:

V i  =  Vbi 0=1.2,3,4) (4.30)

and by extrapolation on the outgoing tide as given in Falconer and Lin, [1997].
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4.4. 3 Free surface boundary condition:

For the three-dimensional model, at the free surface boundary the shear stress is set to 

the wind shear stress, as given by:

U - = p . r j r , 4 f r . 2 + w ;

* l = p . r j r , W  + w,
(4.31)

The surface boundary condition for the advective-diffusion terms is to set the solute 

flux across the free surface to zero, giving:

( w - w J) q > - D &  = 0
oz

(4.32)

4. 4.4 Bed boundary condition:

For the bed boundary condition, a no-slip boundary is applied, with the corresponding 

velocity components at the bed being set to zero, giving:

W i .j ,kmax*-—

OII

V 'Jkmax*-̂ = 0 (4.33)

W/,y,*max+- = 0

For the bed shear stress a logarithmic velocity profile was assumed within the bottom 

layer, as suggested in French, [1986], representing the bed shear stress and as written 

in the following form, given by Lin and Falconer, [1997]:

n+I/2 n-1/2 »+l/2 n-1/2
u +u u +ukmax k max kmax kmax

2 2
2.5 In

2.12k

-2

where d  is the thickness of the bottom layer, and k is roughness height.
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4. 5 Source and sink o f solutes in TRTVAST based on QUAL2E:

QUAL2E is a comprehensive and adaptable stream water quality model used in 

TRIVAST. It represents the source and sink terms of various water quality parameters 

in the advection diffusion equation (3.25) for solutes. In the following sections a brief 

description of the source and sink terms will be given of dissolved oxygen (DO), 

nitrogen (N), including: ammonia (NH4), nitrate (NO3) and organic nitrogen (ON), 

and phosphorus (P) including: PO4 3 in dissolved form and organic phosphorus (OP). 

Also, the development of PO4’ source and sink terms linked to the sediment transport 

model will be presented. This includes the effects of the sediment grain size on 

phosphorus sorption, based on experimental findings. Such effects will be 

incorporated into TRIVAST to model PO4’ levels in Kuwait Bay, with details of the 

model predictions being discussed in Chapter 7.

4. 5.1 Dissolved oxygen (DO):

DO is a basic requirement for a healthy aquatic ecosystem and is one of the most 

important parameters of water quality that most marine species rely on heavily to 

survive. The DO balance in a stream system depends on the capacity of the stream to 

re-aerate itself. This capacity is a function of the advection and diffusion processes 

occurring within the system and the internal sources and sinks of DO. The main 

sources of DO, in addition to atmospheric re-aeration, are the oxygen produced by 

photosynthesis and the DO contained in the incoming flow. The sinks of DO include 

biochemical oxidation of carbonaceous and nitrogenous organic matter, benthic 

oxygen demand and the oxygen utilised by algae respiration [Bowie et al., 1985]. The 

general DO cycle is summarised in Figure 4.6. The differential equation used in 

QUAL2E to describe the rate of change of DO is given as:
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——  = K 2 (DO' -  DO) + (a2p  -  a 4 p)A  
dt (4.34)

- K , L - Z ± - a sfltNH4 - a tP 2 NO3 
a

where DO is the dissolved oxygen concentration (mg/1), K2  is the re-aeration rate 

(/day), DO* is the saturation concentration of dissolved oxygen (mg/1), a 3 is the rate 

of oxygen production per unit of algal photosynthesis (mg O!mg A), p  is the algal 

growth rate, which is temperature dependant (/day), a 4 is the rate of oxygen uptake 

per unit of algae respired (mg O/mg A), p  is the algal respiration rate, which is 

temperature dependant (/day), A is the algal biomass concentration (mg/1), K\ is the 

carbonaceous biological oxygen demand (BOD) deoxygenation rate (/day), L is the 

concentration of ultimate carbonaceous biological oxygen demand BOD (mg/1), K4  is 

the sediment oxygen demand rate (g/m day), d  is the mean stream depth (m), a 5 is

the rate of oxygen uptake per unit of ammonia nitrogen (mg O/mg N), J3X is the 

ammonia oxidation rate coefficient, which is temperature dependant (/day), NH4 is the 

ammonia nitrogen concentration (mg/1), a 6 is the rate of oxygen uptake per unit of

nitrite nitrogen (mg O/mg N), p 2 is the nitrite oxidation rate coefficient, which is 

temperature dependant (/day) and NO3 is nitrate nitrogen concentration (mg/1).
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Figure 4.6: General DO cycle

4. 5. 2 Nitrogen (N):

N is the key component of proteins that is found in the cells of the entire living 

organisms, and is continually recycled by animals and plants [Ji, 2008]. N enters the 

marine system in numerous forms. In natural aerobic waters there is a stepwise 

transformation from ON to NH4 , to nitrite and finally to NO3 , generally the N cycle 

can be summarised as shown in Figure 4.7. The N cycle in QUAL2E contains all 

three of these components including: ON, NH4  and NO3 as given in equations (4.35), 

(4.36) and (4.37) respectively:

= a ,p A -  P /JN  -  a,ON  (4.35)
dt

where ON is the concentration of organic nitrogen (mg/1), a x is the fraction of algal 

biomass consisting of nitrogen (mg N/mg A), / ? 3 is the rate constant for hydrolysis of 

organic nitrogen to ammonia nitrogen, which is temperature dependant (/day) and <j4 

is the rate of coefficient for organic nitrogen settling, which is temperature dependant 

(/day).

Chapter 4 84



Numerical Model Details and Model Development

= p .O N -p .N H , + - - F la lfjA (4.36)
dt d

where =PnNH4 /(PNNHA+ ( l -P N)N 0 3 ) , f i 3 is the organic nitrogen hydrolysis

rate (/day), <r3 is the benthos source rate for ammonia nitrogen (mg/m2 day), Fj is the

fraction of algal nitrogen uptake from the ammonia pool and Pn is the preference 

factor for ammonia nitrogen.

= p, NH, -  (1 -  F)a,nA (4.37)
dt

where F  is the fraction of algal nitrogen taken from the ammonia pool.
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Mortality
Excretion Settling 
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Organic
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Sediment ̂   ̂Settling 
Flux > r Re suspension Sediment Flux

Sediment

Figure 4.7: General N cycle

4. 5. 3 Phosphorus (P):

The P cycle operates like the N cycle in many respects, as shown in Figure 4.8. 

Organic forms of P (OP) are generated by the death of algae, which then convert into 

a dissolved inorganic state (PO4'3), it is considered as the only phosphorus compound 

readily available for algal uptake without further breakdown and provides a measure 

of the phosphorus immediately available for plant growth. Hereafter this has been
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referred to as PO4 for simplicity. Phosphorus discharged from sewage treatment plants 

is generally available in the dissolved inorganic form (PO4) and is readily taken up by 

algae [Bowie et al, 1985]. The differential equations representing organic and 

dissolved forms of P in QUAL2E are given as the following respectively: 

dOP
dt

= a 2pA -  PAOP -  <j 5OP (4.38)

where OP is the concentration of organic phosphorus (mg/1), a 2 is the phosphorus 

content of algae (mg P/mg A), / ? 4 is the organic phosphorus decay rate, which is 

temperature dependant (/day) and cr5 is the organic phosphorus settling rate (/day)

and for PO4:

^ ^ -  = fit O P + ^ - - a 2juA 
dt d

(4.39)

where PO4 is the concentration of inorganic or dissolved phosphorus (mg/1) and cr2 is 

the benthos source rate for dissolved phosphorus (mg/m2 day).
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Figure 4.8: General P cycle
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4. 5. 5.1  Development o f  the model:

In recent years there has been a growing interest in the need to predict sediment 

transport fluxes in estuarine water more accurately. There has also been an increased 

interest directed towards how water pollutants and nutrients interact with solid matter, 

such as inorganic sediments [Chapra, 1997]. The high adsorption ability of fine 

suspended matter in the water column towards chemical constituents such as P and 

bacteria, enable fine sediments to act as a means of carrying or transferring 

contaminants along the flow field with substantial implications for related water 

quality problems [Mehta et al., 1989].

Bed sediments can act as either a sink or source for PO4 in the water column, 

depending on a number of physical processes that fundamentally influence stream 

sediment equilibrium phosphorus concentration (EPC). In well mixed systems, the 

availability of PO4 in benthic sediments can possibly be estimated using an EPC of 

zero net sorption or desorption [Froelich, 1988; Sharpley et al., 2002]. A quasi 

equilibrium for PO4 concentration exists between marine sediments and the water 

column, where sorption and release rates of PO4 are practically equal. Marine 

sediments may well have a key impact on PO4 concentrations and P retention, in 

particular during normal flow conditions [Klotz, 1988]. Theoretically P will desorb 

from marine sediments if the water column’s PO4 concentration is below the sediment 

EPC, or otherwise P will adsorb to marine sediments if the water column’s PO4 

concentration is greater than the sediment EPC [Taylor and Kunishi, 1971].In 

addition, However, the PO4 concentration in streams is not exclusively controlled 

through sediment sorption and desorption processes, and the relative significance of
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biological, chemical and physical processes may adjust this equilibrium concentration 

between the water column and the marine sediments.

In this section, a brief explanation will be given of the outcome of experimental work 

conducted on sediments collected from the Loughor Estuary, along the South Wales 

coast. This study was undertaken in parallel with a related PhD research project [Al- 

Enezi, 2010], in hydraulics laboratory of Hydro-Environmental Research Centre at 

Cardiff University. The main aim of the experiments was to investigate the sediment 

sorption processes of P, by means of sediment grain size. An empirical relationship 

was obtained and adapted for model predictions, with the model results being 

explained in detail in Chapter 7. More details can also be found in Al-Enezi et al, 

[2010].

Experiment description: The main experimental work was conducted in a hydraulics 

flume facility which was 10 m in length, 1.2 m wide and 0.3 m deep, as shown in 

Figure 4.9. The channel had a steel bed and was enclosed with thick glass on either 

side of the channel. The water discharge along the channel was driven by an electric 

pump, which delivered the water from a reservoir, located underneath the channel, to 

the upstream end of the flume. The water passes through a honeycomb baffle in order 

to minimise the turbulence, before entering the flume channel. The discharge was 

controlled by a mechanical valve and was set at a constant rate of approximately 9.5 

1/s. At the downstream end of the channel, a weir controlled the water level in the 

flume which was generally operated at a depth of approximately 16 cm.
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Sediment samples of various sizes were collected from the Loughor estuary in order 

to assess the sorption processes in the sediments. The sediments were placed at 

approximately mid-length along the flume channel, in the form of a plug of 0.0045 m3 

(see Figure 4.9), and the water flow was then allowed to pass over the sediments at a 

low constant velocity of approximately 6  cm/s to minimise erosion. Samples of 

sediments were taken for adsorption analyses from the surface of the plug, at various 

time intervals, typically ranging from 5 minutes to 72 hours. The main technique used 

was the extracted method proposed by Ruttenberg [1992] to estimate the phosphorus 

levels adsorbed onto the grain surface of the sediments. Further details of the 

chemical aspect of this experiment can be found in Al-Enezi [2011].

Inkt Reservoir 

Inlet Grin
Honeycomb Baffle

► ♦♦♦♦♦♦♦♦«
► ♦♦♦♦♦♦♦♦<
► ♦♦♦♦♦♦♦♦<
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i i n n s  na
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Collection Tank

.25 m
4.75 m

Figure 4.9: Flume channel dimensions including sediment plug in the middle

of the channel

Experimental results: Sediment grain sizes, which varied spatially in the Loughor 

Estuary, have a relatively good correlation with PO4 sorption processes with a R2 

value of 0.7654 (see Figures 4.10). Power relationships best explained the correlation 

between the sediment grain size and the P sediment flux as shown in Figure 4.10. This

1 . 2  m
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may well be attributed to the fine grain sediment having a higher surface area to 

weight ratio and thus having a greater P 0 4 adsorption capacity [Jin et al., 2005].

o Measured

y = 213.89x'1 2114 
R2 = 0.7654« 1.2 ■o

^  1

I  0.8
•I. 0.6
X
=> 0.4

U L

50 70 90 110 130 150 170 190 210

Sediment median grain size (um)

Figure 4.10: Phosphorus flux against sed im en t m edian grain s ize

Utilising Figure 4.10, the benthos source cr2 in equation (4.39) can now be replaced

by:

213.89
= T^TTT (4-4°)

50

where Z)50 is the bed sediments median grain size (pm).

Phosphorus (P) cycle refinement, linked with sediment transport: Since the P 0 4 flux 

cr2 only represents the benthos source, it is reasonable to link such a coefficient with 

the sediment transport processes (as explained in section 3.3.1), as the flux is not 

directly measured from the data acquired from the lab experiments, but it has been 

calculated from the P 0 4 adsorption onto the bed sediments. Therefore, utilising P 0 4 

adsorption, rather than the flux, and linking it to the sediment transport processes is 

more reasonable to avoid errors in the transformation from P 0 4 adsorption to P 0 4 flux
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(see Figure 4.11). A link to sediment transport can be achieved by considering PO4 

adsorption to bed Pb (mg/g) and P partition coefficient Kq (1/g), including the effects

of sediment deposition and resuspension (explained in section 3.3.1). Therefore —
d

in Equation 4.39 can now be rewritten as:

„ dS j dS' ,. .  ̂v- P w— d-  + Ph—  ̂ (4.41)
w dt b dt V ;

where Pw = K DCS, Pb is a function of the sediment median grain size D 5 0  (mg/g), Sd

is the amount of suspended sediment (SS) deposited on the bed by the settling process

(mg/1), Sr is the amount of resuspended bed sediment concentration (mg/1), Pw is the

phosphorus adsorbed to the suspended sediment (mg/g) and Cs is the particulate 

phosphorus attached to the suspended sediment in the water column (mg/1). Therefore 

Equation 4.39 can be rewritten as:

,iA 2>

Based on the experimental data (Figure 4.11), the sediment PO4 adsorption can be 

written as:

P = ^ 3 5
r b j~vl.2119

50

Kd=0M 16  (4.44)

This is for Loughor Estuary case study, where a brief description will be given with 

regard to KD for Kuwait Bay in Chapter 7.

For the particulate phosphorus attached to the suspended sediments in the water 

column we have:

C J £ dS _ c  (4.45)
s i + a:0s
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where S is the SS concentration in the water column (mg/1) and C is the dissolved and 

particulate phosphorus concentration in the water column (mg/1).

o Measured
0.018 g 0.016 

</> 0.014 
§ 0.012

y = 2.4235x‘1 2119 
R2 = 0.7676

0 0.008 
0.006

1  0.004 
o  0.002 -
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Sediment median grain size (um)

150 170 190 210

Figure 4.11: Phosphorus adsorption aga inst  sed im en t grain s ize

4. 6 In troduction to E LC O M -C A E D Y M :

ELCOM (Estuary, Lake and Coastal Ocean Model) is a three-dimensional 

hydrodynamics model for lakes, reservoirs and estuaries. The model forms the three- 

dimensional hydrodynamics driver to the CAEDYM (Computational Aquatic 

Ecosystem Dynamics Model) water quality model (see Figure 4.12). Heat exchange 

through the water’s surface is governed by standard bulk transfer models found in the 

literature (e.g., Amorocho and Devries [1980]; Imberger and Patterson [1981]; 

Jacquet [1983]). ELCOM and CAEDYM are coupled in that ELCOM simulates the 

physical parameters (such as salinity and temperature) that are necessary for the water 

quality variables included in CAEDYM. The advection and dispersion of a water 

quality variable is accounted for in CAEDYM by passing such a variable from 

CAEDYM to ELCOM as schematically illustrated in (Figure 4.12). The coupled
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models present a powerful tool to study the spatial and temporal relationships between 

physical, biological, and chemical variables in lakes, rivers and estuaries. More details 

can be found in Robson and Hamilton [2004]. CAEDYM has previously been applied 

to various water systems including estuaries and rivers [Romero et al, 2002 and Chan 

et al., 2002]. The main equations used in CAEDYM are outlined in detail in by 

Robson and Hamilton, [2004].

In the following section a brief description of ELCOM-CAEDYM is given. Also the 

main differences between TRIVAST and ELCOM-CAEDYM are discussed, by 

means of both the solution of the governing equations (Chapter 3) and the source and 

sink terms of the various water quality parameters considered in both models.
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4. 6.1 Brief description of ELCOM:

As for TRIVAST, ELCOM solves the 3-D, hydrostatic, Boussinesq, Reynolds- 

averaged Navier-Stokes and scalar transport equations to model velocity, temperature 

and salinity distributions in space and time [Hodges et al., 2000]. The hydrodynamic 

algorithms in ELCOM are based on a proven semi-Lagrangian method for the 

advection of momentum with a conjugate gradient solution for the free surface height 

and the ULTIMATE-QUICKEST scheme for the advection of scalars and kinematic 

boundary conditions for the free surface evolution [Casulli and Cheng, 1992; 

Leonard, 1991; Casulli and Cattani, 1994], For geophysical-scale simulations the 

time step can be allowed to exceed the Courant Friedrichs Lewy (CFL) condition for 

velocity, without producing numerical instability or requiring a fully-implicit 

numerical discretisation of the Navier-Stokes equations. Scalars and momentum are 

mixed vertically according to the amount of turbulent kinetic energy available from 

wind stirring and shear production compared to the potential energy of the ambient 

stratification [Spigel et al., 1986; Laval et al., 2003]. Similar to TRIVAST, the 

turbulent eddy viscosity is utilised in the horizontal direction, while in the vertical 

direction mixing layer model is incorporated. A new component to allow for tidal 

generation in an enclosed basin has been incorporated into ELCOM, examining the 

water level fluctuations in numerous locations of a relatively long estuary, such as the 

Gulf which is more than 900 km in length, associated with a lunar semidiurnal tidal 

response. Following Cartwright and Tayler [1971], tidal forces were calculated from 

the gravitational potential, and were included in the momentum-transport equation in 

ELCOM, with such effects being explained and compared with TRIVAST in Chapter 

8. It is worth mentioning at this stage that such effects are not modelled in TRIVAST.
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Unlike TRIVAST, ELCOM also takes into account the surface thermodynamics and 

mass fluxes for heat transfer across the free surface. The energy transfer across the 

free surface is separated into non-penetrative components of long-wave radiation, 

sensible heat transfer, and evaporative heat loss, complemented by penetrative 

shortwave radiation. Non-penetrative effects are introduced as sources of temperature 

in the surface-mixed layer, whereas penetrative effects are introduced as source terms 

in one or more grid layers on the basis of an exponential decay and an extinction 

coefficient based on ‘Beer’s law’. ELCOM computes a model time step in a staged 

approach consisting of:

1) Introduction of surface heating/ cooling in the surface layer;

2) Mixing of scalar concentrations and momentum using a mixed-layer model;

3) Introduction of wind energy as a momentum source in the wind-mixed layer;

4) Solution of the free-surface evolution and velocity field;

5) Horizontal diffusion of momentum;

6) Advection of scalars;

7) Horizontal diffusion of scalars.

4. 6. 2 Brief description of CAEDYM:

CAEDYM allows a flexible ecological configuration that could be modified for 

specific applications, though major elemental cycling and a minimum of one algal 

group is compulsory. Therefore, the model includes a comprehensive process 

illustration of the carbon (C), N, P, silica (SIO3) and DO cycles (see Figures 4.6-4.8), 

a number of size classes of inorganic suspended solids and phytoplankton dynamics. 

Various optional biological and other state variables can also be configured. 

Consequently, CAEDYM is more advanced than traditional Nutrient-phytoplankton- 

zooplankton (N-P-Z) models, such as the one found in TRIVAST, as it is a general
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biogeochemical model that can resolve species or group-specific ecological 

interactions. This often results in higher computational costs (see Chapter 8 for more 

details). CAEDYM operates on any sub-daily time step to determine algal processes, 

including diurnal photosynthesis and nocturnal respiration, and is generally run at the 

same time intervals as the hydrodynamic model (ELCOM). Algorithms for salinity 

reliance are included with the intention that a diverse range of aquatic settings can be 

simulated. With the condition of the nature of the water body being included (i.e. 

fresh, estuarine or marine), internal checks in the model are then activated to ensure 

that salinity reliance is maintained (e.g. for an estuarine case), or removed (e.g. for a 

freshwater or marine water case). Unlike TRIVAST, CAEDYM includes additional 

source and sink terms of DO, N and P as detailed in Hipsey et al., [2006] and briefly 

described in Figure 4.12 and Table 4.1 (for further details see Chapter 8).

While sediment transport is essentially an issue of flow physics, the algorithms for the 

sediment transport processes are more suitably grouped with the water quality 

algorithms in CAEDYM. Settling of suspended matter is computed using ‘Stokes law’ 

to obtain settling velocities for the top and bottom of each affected grid cell. This 

permits the net settling flux in each cell to be computed. A two-layer sediment model 

has been developed that computes re-suspension, deposition, flocculation, and 

consolidation of sediment based on:

• The shear stress at the water-sediment interface;

• The type of sediment (cohesive and/or non-cohesive) and;

• The thickness of the sediment layer.

Chapter 4 91



Numerical Model Details and Model Development

Parameter Source and Sink
Dissolved Oxygen 
(DO)

Exchange to and from the air/water interface 
Utilisation of oxygen at the sediment/water interface. 
Utilisation of oxygen as bacteria degrade organic matter. 
Utilisation of oxygen in the process of nitrification. 
Photosynthetic oxygen production and respiratory 
consumption by phytoplankton.
Utilisation of oxygen due to respiration by zooplankton. 
Photosynthetic oxygen production and respiratory 
consumption by macroalgae and
seagrasses/macrophytes.
Utilisation of dissolved oxygen due to respiration in 
jellyfish and higher organisms (macroinvertebrates, 
fish).____________________________________________

Nitrogen (N)
DONL (Dissolved 
Organic Nitrogen 
Labile).
DONR (Dissolved 
Organic Nitrogen 
Refractory).
NH4 (Ammonia).
N 0 3 (Nitrate).
IN (Internal Nitrogen). 
PIN (Particulate 
Inorganic Nitrogen). 
PONL (Particulate 
Organic Nitrogen 
Labile).
PONR (Particulate 
Organic Nitrogen 
Refractory)._________

Mineralization of DONL and DONR to NH4.
Biological uptake of NH4 and NO3 by phytoplankton and 
macroalgae into the IN pool.
Dissolved sediment fluxes of NH4, NO3, DONL, and 
DONR.
Adsorption/desorption of NH4 onto inorganic suspended 
solids into PIN pool.
Decomposition of PONL to DONL and PONR to 
DONR.
Biological mortality and excretion into the DONL and 
PONL pools.
Settling of PONL, PONR, PIN and IN.

Phosphorus (P)
DOPL (Dissolved 
Organic Phosphorus 
Labile).
DOPR (Dissolved 
Organic Phosphorus 
Refractory).
P 0 4 (Dissolved 
Phosphorus)
PIP (Particulate 
Inorganic Phosphorus). 
POPL (Particulate 
Organic Phosphorus 
Labile).
POPR (Particulate 
Organic Phosphorus 
Refractory).__________

Mineralization of DOPL and DOPR to FRP (directly or 
through bacteria).
Biological uptake of PO4 by phytoplankton and 
macroalgae into the internal pools.
Dissolved sediment fluxes of P04, DOPL, and DOPR. 
Adsorption/desorption of PO4 onto inorganic suspended 
solids into PIP pool.
Decomposition of POPL to DOPL and POPR to DOPR.

Table 4.1: General source and sink of DO, N and P incorporated in CAEDYM
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4.7 Sum m ary:

Details have been given herein of the numerical solution procedures for the two- 

dimensional and layer integrated three-dimensional flow and solute transport 

algorithms in TRIVAST. The three-dimensional layer integrated hydrodynamic 

equations were solved using a combined explicit and implicit finite difference 

method. The advective-diffusive equation was solved using an operator splitting 

scheme, where the equation was split into a set of both horizontal and vertical 

equations. The horizontal equations were solved using the ULTIMATE QUICKEST 

scheme and an implicit scheme was used to treat the vertical diffusive term, to avoid 

the use of a very small time step. It is important to understand the numerical solution 

of the governing equations as this would give an indication of how the model would 

behave according to the problem considered. The source and sink terms of DO, N and 

P were explained based on QUAL2E and the development of the PO4 source and sink 

terms were included in TRIVAST based on lab experiments. A brief description and 

explanation was given of the ELCOM-CAEDYM model and the main differences 

between the two models were addressed, in which ELCOM-CAEDYM model was 

shown to have more sophisticated representations of the water quality processes than 

the TRIVAST model. Details of the differences between the ELCOM-CAEDYM and 

TRIVAST model predictions for the Gulf and Kuwait Bay are given in Chapter 8.
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Horizontal Dispersion and Residence Time Studies of the Arabian Gulf

5.1 Introduction:

For centuries native communities have made great use of the dispersive capacity of 

the Arabian Gulf to dilute and flush away waste products (see Chapter 2). Previously 

this practice worked well when the pollutant loading was much smaller than that of 

the receiving water’s assimilative capacity. However, with the relatively acute 

expansion in anthropogenic activities in the region, the assimilative capacity of the 

coastal regions has been exceeded. This has led to a major impact on marine 

biodiversity and has become a threat to human wellbeing in the region. Furthermore, 

dispersion and mixing processes are of fundamental importance to marine life. For 

example, phosphorus excreted by fish would be toxic to aquatic life if it was not 

mixed and diluted with the surrounding waters. Generally, nutrients derived from the 

decay of dead organisms at the seabed would not be available to the plankton if, for 

example, there was no vertical mixing to disperse, and therefore spread the nutrients 

throughout the water column. Hence, identifying the horizontal dispersion coefficient 

of the marine system is of great importance in stressed regions such as the Gulf.

The term dispersion is sometimes applied to the spreading of immiscible substances 

that do not undergo any dilution. This can be misleading and a careful distinction 

must be made between dispersive spreading, in which there is no dilution, and that in 

which the mixing reduces the concentration of the material. Thus it is essential to 

define the physical transport processes of flow in natural waters that cause pollutants 

or solutes to be transported and mixed or exchanged with other mediums (see Table 

5.1).
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The main aim of this chapter is to highlight the dispersion and flushing characteristics 

across the Gulf, in terms of residence time, to provide a guide for new engineering 

developments, such as those shown in Chapter 2, and their environmental 

management. This will be first achieved by validating the three dimensional model 

(ELCOM) and showing that the model reproduces the dispersion of the salinity field 

originating from the Strait of Hormuz and the river inflows (see Figure 5.1). Once 

validated, the three dimensional model was then used to ascertain the degree of 

dispersion of numerical tracers as a function of geographic location.

Process Definition
Advection Transport by an imposed current system, as in a river or coastal 

waters
Convection Vertical transport induced by hydrostatic instability
Molecular The scattering of particles by random molecular motions, which may
Diffusion be described by Ficks law and the classical diffusion equation
Turbulent The random scattering of particles by turbulent motion, considered
Diffusion roughly analogous to molecular diffusion, but with eddy diffusion 

coefficients (which is much larger than molecular diffusion 
coefficients)

Shear The advection of fluid at different velocities at different positions
Dispersion The scattering of particles or a cloud of contaminants by the 

combined effects of shear and transverse diffusion.
Mixing Diffusion or dispersion as described above; turbulent diffusion in 

buoyant jets and plumes; any process which cause one parcel of water 
to be mingled with or diluted by another.

Evaporation The transport of water vapour from a water or soil surface to the 
atmosphere.

Radiation the flux of radiant energy, such as at a water surface
Particle The picking up of particles, such as sand or organic detritus, from the
Entrainment bed of water body by turbulent flow past the bed

Table 5.1: Definition of physical transport processes that are likely to occur in

typical marine system
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Figure 5.1: The Gulf including Strait of Hormuz and main river input 

5. 2 H orizontal dispersion m echanism :

Traditionally, coastal communities have relied on dispersion o f effluents once they 

entered coastal waters so that, once diluted, biological breakdown renders them 

harmless. Here the “assimilative capacity” is defined as that loading, which properly 

dispersed throughout the receiving domain, can be rendered harmless without 

jeopardizing the health o f the ecosystem. Clearly, three distinct sets o f processes 

combine to determine whether a domain has the assimilative capacity to accept an 

additional effluent loading. Firstly, the near and intermediate rates o f dispersal must 

be sufficiently fast to dilute the effluent to a level that is sufficiently low, that when 

added to the background concentration, does not kill components o f the ecosystem 

impacting on the functioning of the ecosystem [Imberger et al., 2007]. Secondly, the 

transport or flushing must remove the by-products o f the effluent breakdown 

processes rapidly enough not to cause a long-term build up in the domain as a whole,
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in simple terms the flushing must prevent the domain from filling up with harmful 

products, implying that the criterion of whether a discharge is acceptable or not may 

depend on an event in the future. Thirdly, the ecosystem must have the biochemical 

capacity necessary to ensure the breakdown of those pollutants that may be harmful to 

the rest of the original food chain. In the present chapter special attention is given to 

the first two, the physics of dispersion and flushing in the Gulf.

5. 2.1 Mixing regimes:

Dispersion is primarily achieved by [Fischer et al., 1979]:

1) Turbulent near field dispersion, where the dispersion is energised by the turbulent 

kinetic energy from the discharge itself;

2) The region following the near field, called the intermediate field, where the 

mixing switches from being discharge energised to mixing energised by the 

turbulence of the ambient fluid flow; when the effluent density differs from that of 

the receiving water, the intermediate region can be quite significant in size 

because the added buoyancy must be overcome by the energy from the receiving 

water flow; and

3) The far field, where the pollutant is dispersed by mechanisms inherent to the 

ambient flow conditions.

The scale of such processes can be summarised as shown in Table 5.2.
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Phase Phenomenon Length 
Scale* (m)

Time 
Scale* (sec)

Initial je t mixing Rise of buoyant jets over an outfall 
diffuser in a stratified fluid

< 102 <103

Establishment of 
sewage field or 
cloud

Travelling with the mean current, 
lateral gravitational spreading

o1©

ioM o3

Natural lateral 
diffusion and/or 
dispersion

Spread resulting in stretching

o1rsO

0 U
J 1 o \y
\

Advection Due to currents (including scales of 
water motion too large compared to 
sewage plume to be called turbulence

103-105 ioMo6

Large scale 
flushing

Advection integrated over many tidal 
cycles, upwelling or down-welling, 
sedimentation

104-106 106-108

Table 5.2: Effluent flow from a typical outfall passes through a succession of 

physical processes at scales from small to la rge.a Approximate orders of

magnitude [Fischer et al., 1979]

5. 2. 2 Far field mixing:

5. 2. 2 .1  Turbulent dispersion:

After initial dispersion in the near field, effluents disperse by turbulent mixing until 

the effluent cloud has reached a size comparable to the scale of the velocity field. 

Once the cloud is as large as the scale of the shear, the mean background velocity 

field distorts the effluent cloud and shear and transverse mixing combine to yield an 

enhanced dispersion (see next section). For effluent clouds smaller than the scale of 

the background shear, turbulence disperses the effluent cloud and Richardson, [1926] 

showed that the dispersion may be modelled by the “4/3 law”, which accounts for the 

rate of increase of dispersion as the effluent cloud intersects ever-increasing scales of 

turbulence as the cloud grows.
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5. 2, 2. 2 Shear dispersion:

Longitudinal shear dispersion occurs when the distortion of a concentration field by a 

vertical or horizontal shear flow is balanced by vertical or transverse turbulent mixing 

[Fischer et al., 1979]. Once this balance is achieved, the rate of dispersion may be 

modelled by a simple diffusion equation with a horizontal dispersion coefficient 

Fischer et al., [1979]:

Here ^ is a constant dependent on the velocity and transverse diffusivity profile, / is 

the length scale of the velocity straining the concentration field, U is the velocity scale 

and Kz is the vertical diffusivity. As demonstrated by Fischer et al. [1979] for a 

simple plane flow with a vertical turbulent velocity profile, I = h, where h is the 

depth, U is the discharge velocity, and K z = 0.07hU*, where U* is the bottom shear 

velocity. By contrast, in a wide river with a transverse velocity profile, I becomes the 

width of the channel and U is the discharge velocity. The coefficient (f> depends on 

the vertical structure of the velocity and diffusivity. For a constant diffusivity, Fischer 

et ah, [1979] showed that (j> = 0.008 for a linear velocity profile and Bowden, [1965] 

showed that (f) -  0.001 for a logarithmic profile resulting from bottom friction, 

(f) = 0.019 for the density current profile, and (f) -  0.005 -  0.008 for wind drift 

profiles.

Clearly, dispersion due to the balance of transverse mixing and longitudinal straining 

will always be much larger than that due to vertical mixing in shallow estuaries. 

However, the validity of this statement depends on the time available for mixing. It is 

well known, see Fischer et ah, [1979], that a balance between distortion due to
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velocity shear and that due to transverse mixing can be achieved only after there has

been sufficient time for transverse mixing to take place, a time of 0 where K  is

the horizontal (or vertical) diffusion coefficient. Shear dispersion via vertical shear 

with, typically a depth of 10 m and a vertical diffusion coefficient of around 10-4 m2/s, 

leads to a set up time 0(12) days and a horizontal dispersion coefficient of around 6 

m2/s, assuming a value of </> = 0.01 and U = 0.025 m/s. If the water velocity is around 

0.5 m/s, then shear dispersion would become relevant only after 500 km, which is 

already half of the studied domain. In contrast, if  we assume a coastal current with a 

transverse scale of 1 km and a transverse diffusion coefficient of 1 m /s, then the 

horizontal dispersion coefficient for transverse mixing and longitudinal strain balance 

would be around 2,500 m2/s and the time required to reach such a balance would 

again be 0(12) days. Hence the larger the length scale, the larger the horizontal 

dispersion. However, again the distance required for this estimate to become valid 

would be comparable to, or larger than, the dimensions of the Gulf itself [Lewis, 

1997; Dooley and Steele, 1969; Hughes, 1956].

Dispersion of a coastal effluent discharge occurs in several stages. Firstly, in the near 

field the mean kinetic energy of the discharge generates turbulence that mixes or stirs 

the discharge into the receiving water. Secondly, in the absence of a buoyancy flux 

the diluted effluent is mixed with the receiving water turbulence until the cloud 

reaches a scale comparable to the scale of the ambient velocity field. Once this 

happens the mean velocity shear distorts the cloud, rather than simply transporting it, 

and this distortion may interact with the ambient turbulent mixing to produce shear 

dispersion and/or stagnation point dispersion as in Okely et a l,  [2010], or it may
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interact with particular kinematic flow forms to produce kinematic chaos or ghost rod 

dispersion [Aref 1984; Stocker and Imberger, 2003; Boyland et al., 2000; Newhouse 

and Pignataro, 1993]. Although the last three forms of dispersion were not 

specifically investigated in the present study, as this would require an extensive field 

survey to identify individual processes, it is likely that each contributes to the 

dispersion evaluated numerically with the three dimensional model.

ELCOM is first being validated for the Gulf by showing that the model reproduces the 

dispersion of the salinity field originating from the boundary values specified for the 

Strait of Hormuz and the river inflows. The salinity differences were low enough not 

to influence the buoyancy, with salinity acting simply as a tracer in the upper reaches 

of the Gulf. Once validated, ELCOM was used to ascertain the degree of dispersion of 

tracers as a function of geographic location, the processes sustaining the simulated 

dispersion and the net flushing or residence time resulting from this dispersion. 

Before proceeding to this stage it is useful to review the dispersion characteristics of 

estuaries as given in the following section.

5.3 Dispersion in estuaries:

Estuaries vary in physical, chemical and biological properties, giving rise to a large 

variation of dispersion coefficients as shown in Table 5.3. Unlike rivers, estuaries are 

more complex systems since the flow is usually driven by the slope of the water 

surface, wind stresses and internal density variations. These may exist in rivers, 

however, oscillating flow adds complexity to the estuarine system. Hence, it is 

reasonable to classify estuaries in terms of the degree of stratification. Bowden, [1967]
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md Pritchard, [1967] distinguished three main hydrodynamic groups shown in Table 

1.4.

Estuary Dispersion 
coefficient (m2/s)

Comments Source

Hundson

Rotterdam
Waterway

160

280

Thatcher and
Harleman
[1972]

Potomac 55

Delaware 500-1500

San Francisco 
Bay

200 Approximate value 
used in numerical 
model

Cox and 
Macola [1967]

Severn 10-100 Stommel
[1953]

Potomac 20-100 From dye 
experiment

Hetling and 
O 'Connell 
T19661

Delaware 100 Paulson [1969]
Mersey 160-360 Bowden [1963]
Rio Guayas 760 Computed from 

data given by 
Murray et al., 
[1975]

Severn
(summer)

54-122 Bowden [1963]

Severn (winter) 124-535 Bowden [1963]
Thames (low 
river flow)

53-84 Bowden [1963]

Thames (high 
river flow)

338 Bowden [1963]

Table 5.3: Typical values of dispersion coefficient in estuaries
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Stratified and Partially Stratified Estuaries
Apparent difference in 
density.
Controlled by both 
temperature and salinity 
alterations.
Limited upward 
transport of turbulent 
kinetic energy generated 
by friction at the bed.

FrafcWi  ^_iUTMf J M W

Example
The Gulf (summer), Chesapeake Bay, Vellar River

Well Mixed Estuaries
Homogenous water 
vertically.
Strong tidal mixing and 
transport.
Wind and wave play an 
essential role for 
transferring kinetic 
energy.

Water

Example
Delaware Bay, Kuwait Bay (see Chapter 6)

Table 5.4: General characteristics of stratified, partially stratified and well

mixed estuaries

5. 4 Horizontal dispersion in the Gulf

The horizontal dispersion mechanism of the Gulf will be studied in the following 

sections by utilising ELCOM. It is worth mentioning that the results obtained in this 

study are mainly based on 1992 data, due to availability of data during this period.

5.4.1 Model setup:

The modelling approach adopted in this study involved a uniform grid of 5,000 m in 

both X and Y directions. Twenty layers in the Z direction at increments of 4 m for the 

first top 11 layers and 4.5 m for the remaining layers were adopted, leading to a total 

of 104,056 wet cells discretising the domain (see Figure 5.2). A computational time
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step of 300 s was utilised in the model. The bathymetric information was obtained 

from a map digitiser at the Hydro-environmental Research Centre of Cardiff 

University that interpolated the depth at each grid point from a map obtained from the 

United Kingdom Hydrographic Office. The sea surface elevation due to semidiurnal 

tides was prescribed at the open boundary at the Strait of Hormuz using the KGULF 

model, developed by Al-Salem (Kuwait Institute of Scientific Research, 2009) for the 

1992 period (available on Coastal Information System www.hceatkuwait.net). The 

salinity and temperature data acquired by the Mt Mitchell cruise [Reynolds, 1993] 

were used as initial conditions for the model. Also, temperature-salinity data gathered 

in a recent study in the southern part of the Gulf [Elshorbagy et al., 2006] were used 

to define three main sub-domains for the model initial conditions, as shown in Figure 

5.3. Discharges from the rivers were assumed to remain constant throughout the 

simulation period, based on the values given by Reynolds, [1993], and as explained in 

the introduction. Horizontal diffusivity, k, is an input parameter in ELCOM 

representing turbulent sub-grid diffusion in the model transport equations, with more 

details being provided by Hodges et al., [2000] and was set to 1 m /s. The effect of 5 

and 10 m2/s on the horizontal dispersion of numerical tracers was also investigated, as 

described in Section 5.4.4 and discussed in Section 5.4.6. A bottom drag coefficient of 

0.005 was assigned across the whole domain to take account of bed friction. A light 

extinction coefficient of 0.25 was used for light attenuation. Meteorological forcing, 

shown in Figures 5.4 and 5.5, was applied at 8 m above sea level.
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Figure 5.2: Grid size adopted in ELCOM and length of open boundary

Temperature °C

j—j "Winter 18 
Summer 26 

. Winter 19 
Summer 28 

□  Winter 20 
Summer 30

Figure 5.3: Initial condition configurations of temperature and salinity in 

ELCOM during winter and summer

5. 4. 1. I Meteorological effects:

Meteorological effects over the estuary during 1992 were included in the model and 

were obtained from the Dubai Meteorological Services (DMS), located at the far

Salinity psu

n  Winter 42 
Summer 39

|—I Winter 41 
Summer 38

_  Winter 40 
Summer 36
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south of the Gulf in Dubai and the Kuwait Institute for Scientific Research (KISR), 

located at the far north of the Gulf, near Kuwait Bay. The differences in 

meteorological parameters outlined in Figures 5.4 and 5.5 between the stations were 

insignificant from 27 January to 26 February 1992 and from 13 May to 7 June 1992, 

in particular for the wind speeds shown in Figures 5.6 and 5.7. Not surprisingly, other 

parameters such as air temperature were seen to vary seasonally at both stations, with 

values ranging from between 15 to 40 °C in winter and summer respectively. 

Humidity variations were similar to air temperature variations, but in the opposite 

sense (see Figures 5.4 and 5.5) at both stations. Records of solar radiation at both 

stations showed the same maximum mean values of 550 W/m2 during January and 

February 1992, and 900 W/m2 during May and June 1992, probably as a result of the 

similar geographic locations of the two stations. KISR data for 1992 (Figure 5.4 and 

5.5) were assumed to be adequate for the current study, as minor differences in the 

meteorological parameters did not have a great influence on the hydrodynamics of the 

Gulf, which were driven chiefly by the tides [Elshorbagy, 2006; Reynolds, 1993].
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Figure 5.4: Winter meteorological conditions
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Figure 5.6: Com parison of wind s p e e d  b e tw e e n  at KISR and DMS in winter
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Figure 5.7: Comparison of wind speed between at KISR and DMS in summer 

5. 4. 2 Salinity and temperature in the Gulf:

In late 1991 a joint monitoring programme was set up by the Regional Organization 

for the Protection o f the Marine Environment (ROPME), the Intergovernmental 

Oceanographic Commission (IOC) and the National Oceanic and Atmospheric 

Administration (NOAA) with a vessel supplied by NOAA. A broad, multidisciplinary 

survey was carried out over six periods for 100 days between February and June 

1992, with the relevant results being shown in Figures 5.8 and 5.9 [Reynolds, 1992 a, 

b; Reynolds, 1993].

During winter the water column was well mixed vertically to a depth o f about 70 m 

(Figure 5.8 A) and both the temperature and salinity varied gradually along the G ulf 

between Kuwait and the Strait o f Hormuz, in which the temperature increased and the 

salinity decreased towards the Strait. Together these variations resulted in a density 

difference o f about 2 kg/m3 over a distance o f  500 km (Figure 5.8 A panel 3). In 

summer, the surface mixing penetrated to a depth o f only about 30 m and the 25 °C 

isotherm (Figure 5.8 B panel 1) was almost horizontal over the whole domain. More 

saline and cooler water was observed (Figure 5.8 B panel 2), its location between 100
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km and 700 km south east of Kuwait, suggesting an origin not in the Strait of 

Hormuz, as the salinity maximum lies over 100 km away from the Strait. 

Furthermore, as seen from Figure 5.8 B panel 3, the isopycnols showed a distinct 

slope downwards towards the Strait, with the origin of this water column therefore 

most likely being the Gulf perimeter, where evaporation over the shallow water would 

increase salinity. The Strait of Hormuz acts as a hydraulic control for the exchange 

between the Arabian Gulf and the Gulf of Oman, the upper layer of fresher water 

transferring from the Gulf of Oman to replace water lost by evaporation, and the 

lower, higher saline water exiting to complete the reverse-estuarine circulation 

[Reynolds, 1993]. More details of the temperature, salinity and density cross-sections 

across the estuary between Kuwait and Iran, Qatar and Iran, and across the Strait of 

Hormuz are given in Reynolds, [1993].
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Figure 5.8: A. Vertical variation of temperature, salinity and density along the 

Gulf (from Strait of Hormuz to Kuwait) during winter; starting 26 February

1992 [Reynolds, 1993] 

B. Vertical variation of temperature, salinity and density along the Gulf (from 

Strait of Hormuz to Kuwait) during summer; starting 12 June 1992 [Reynolds, 

1993]

The surface inflow from the Gulf of Oman into the Arabian Gulf occurs year round, 

but extends deeper along the northern boundary into the Gulf in the summer, as seen 

in Figures 5.8 and 5.9.
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Figure 5.9: Surface field data variation of temperature and salinity of the Gulf 

during: A. winter, starting February 26 1992 [Reynolds, 1993]

B. summer, starting 12 June 1992 [Reynolds, 1993]

River inflows do not contribute significantly to the water structure in the Gulf, but 

local effects are apparent during both seasons, particularly during winter at Shatt Al 

Arab, north of the Gulf (Figure 5.9). In addition, records show that precipitation 

during 1992 was very low in the Gulf, so the relatively small fresh water inflow and 

the short period considered in this study (i.e. around 30 days each season) suggest that 

this is not likely to have had a significant impact on the dispersion mechanisms 

considered in this study.
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5.4.3 Model validation using 1992 data and estimation of shear:

The above information provided an excellent data set for the validation of the model 

hydrodynamics and associated dispersion. To optimize the test a 30-day simulation 

was carried out for both winter and summer configurations, with initial values as 

stated in Figure 5.3 (i.e. 13 May to 12 June 1992 and 27 January to 26 February 

1992). The simulations were required to model first the hydraulic control across the 

Strait of Hormuz and fresh water input from the rivers, and then the dispersal of the 

salinity across the Gulf, as observed in Figures 5.8 and 5.9. Evaluation of both 

temperature (mainly at the water surface) and salinity (mainly through the Strait and 

rivers) provided the validation.

The purpose of the validation simulations was to see whether ELCOM could 

reproduce the three dimensional summer and winter temperature and salinity 

structures when forced with the data shown in Figures 5.4 and 5.5 and initialized with 

uniform water columns having values given as shown in Figure 5.3. The results from 

these simulations are shown here for the winter (Figures 5.10 and 5.12) and summer 

(Figures 5.11 and 5.13) periods; the agreement between the simulation results and the 

field data are generally excellent as shown in Figures 5.10-5.13.

During winter, relatively fresh water entered the Gulf through the Strait of Hormuz, 

making its way to the comparatively deeper Iranian coast. In contrast, higher water 

densities were noticed all around the basin, particularly around the area surrounding 

Qatar and the UAE (Figure 5.10 A panel 3). These results support the predominant 

control of density by the salinity distribution (Figure 5.12 A). This pattern is 

consistent with the broad circulation in the Gulf where the Coriolis force deflects the
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surface inflow towards Iran and the subsurface outflow towards the Arabian coastline 

[Sultan et al., 1995]. The salinity increased from 36 psu near the Strait to 41 psu near 

Kuwait (Figures 5.10 A panel 2 and 5.12), while the temperature fell from 22 to 

approximately 14 °C, as shown in Figures 5.10 A panels 1 and 5.12, at the same 

location. In the shallower waters of the Gulf, higher salinity levels are obvious, 

reaching 44 psu near the UAE coastal waters (Figure 5.12), resulting in an increase in 

the surface density and consequent vertical sinking (Figure 5.10 A panel 3). This 

generally agreed with the findings of Reynolds, [1993]. The simulations revealed that 

the Gulf water is mostly mixed vertically along its main axis during 1992 winter 

conditions.

Summer simulations exposed a more stratified structure in the estuary but with 

horizontal trends of both temperature and salinity similar to those of winter (Figure 

5.11 A panel 1 and 2). A significant rise in water temperature of the estuary was 

evident parallel to the coastal areas of the Gulf, as indicated in Figures 5.11 A panels 

1 and 5.13, reaching 31 °C near the UAE. This sharp rise in temperature was due to 

the continuous heat input through the air-sea interface as indicated in Figure 5.5, 

leading to a rather lower surface water density than winter, ranging between 24 and 

30 kg/m3 (Figure 5.11 A panel 3). The contour plot in Figure 5.13 and the vertical plot 

in Figure 5.11 A imply that relatively cold, saline and dense Gulf water was found 

beneath the warmer, less saline and lighter surface inflow from the Gulf of Oman.

As for the collected data, fresh water inflow from the rivers did not significantly 

affect the flow characteristics of the basin as a whole for both seasons, but local 

effects were apparent, particularly at the far north of the Gulf near Kuwait, where the
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Shatt Al Arab meets the hypersaline water (Figure 5.12 and 5.13). Also, during 

winter, at 650 km off the Strait predictions in Figure 5.10 A panel 2 show salinity 

values (41 psu) lower than the summer 42 psu (Figure 5.11 A panel 2), suggesting 

that the river buoyancy effect was apparent in this region of the Gulf.
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Figure 5.10: A. Simulated vertical variation of temperature, salinity and 

density along the Gulf (from the Strait of Hormuz to Kuwait) during winter

(1992) 

B. Field data variation of temperature, salinity and density along the Gulf 

(from the Strait of Hormuz to Kuwait Bay) during winter (1992)
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Figure 5.11: A. Simulated vertical variation of temperature, salinity and 

density along the Gulf (from the Strait of Hormuz to Kuwait) during summer

(1992)

B. Field data variation of temperature, salinity and density along the Gulf 

(from the Strait of Hormuz to Kuwait Bay) during summer (1992)
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Figure 5.12: A. Simulated surface variation of temperature and salinity of the

Gulf during winter 

B. Field data of temperature and salinity of the Gulf during winter
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Figure 5.13: A. Simulated surface variation of temperature and salinity of the

Gulf during summer 

B. Field data of temperature and salinity of the Gulf during summer

The scale of motion in the domain is shown in Figure 5.14, where the depth-averaged 

velocity of the spring flood tide at the Strait of Hormuz is depicted. Clearly the scale 

of the velocity field is considerably larger than the grid resolution of 5,000 x 5,000 m.
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Figure 5.14: Depth-averaged velocity for spring flood tide during winter 1992

at the Strait of Hormuz

5. 4. 4 Geographic distribution of dispersion intensity:

Horizontal dispersion coefficients Kx were derived following Taylor, [1954], Okubo, 

[1971] and Lawrence et al., [1995] using:

1yT 1 CT , 2 -^ 9 0K  =  and a  = ——
x 4 t 7.23

where t is time (5 days, 20 days and 40 days) and Ago is the horizontal area containing 

90% of the tracer mass. The time for vertical mixing tv can be estimated by arranging 

the above equation to give: 

a]
t.. =

v

It is usual to assume that vertical mixing is complete when the standard deviation 

equates to 0.8/z [Lewis, 1997], where h is the total depth, and hence the mixing time is 

given by:

(0.8/Q2 0.32ft2
v ~ 4 K . ~ K .
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For a well-mixed estuary, a typical value of Kz would be 0.01 m2/s [Lewis, 1997], so 

that for a water depth of typically 36 m, such as the Gulf, the above equations imply 

that tv = 5.75 hours for a completely mixed scenario over the depth. Fischer et al., 

[1979] estimated the vertical mixing time scale to be: 

h2
K \0 K Z

Using similar values of Kz in the above equation, tv is estimated to be 3.6 hours.

Horizontal dispersion coefficients were determined by observing the horizontal spread 

of four numerical tracers and utilizing the above equations. The numerical tracers 

were introduced uniformly over the depth at various locations, as shown in Table 5.5, 

namely at stations T6, T7, T8 and T9. The initial size o f the patch was 5,000 * 5,000 

m, which equates to the size of a grid cell. The length scale was obtained by 

calculating Ago/1.23 using MATLAB, and the horizontal dispersion coefficient was 

calculated after 5, 20 and 40 days of continuous tracer release, starting from the 

validation period.

In general, higher values were apparent near the Arabian coast. The highest dispersion 

coefficient occurred during winter, with a value of 141 m2/s at T9, during the early 

days of tracer release; similar values were achieved during summer. It is clear that 

even with higher horizontal diffiisivities of 5 and 10 m2/s, the dispersion coefficients 

remained almost the same as in Table 5.5. In the model validation the effects of the 

rivers were found significant only locally, and buoyancy related to fresh water inflows 

would only be substantial in the long run. Hence the effect of rivers may be neglected 

since all locations of injections were far enough away from the fresh water inputs.
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Winter
5 D a y s 2 0  D a y s 4 0  D a y s

\  * T S \ v 6 \Z t6

I*  I 7  yj

\ y 7  0 T 8  /

K 1.0 5.0 10.0 1.0 5.0 1 0 . 0 1.0 5.0 10.0
T6 103 103 104 73 73 7 3 77 78 78
T7 99 99 100 86 86 86 90 90 90
T8 127 128 128 61 62 62 80 80 80
T9 140 141 141 87 88 88 83 83 83

Summer

\  « T € \ % T 6 \Y t6

/ V y x 0

mmn

T8 /w  /

K 1.0 5.0 10.0 1 . 0 5.0 1 0 . 0 1.0 5.0 10.0
T6 100 100 100 70 71 71 15 15 76
T7 95 95 95 81 81 82 87 87 88
T8 126 127 127 60 61 61 83 83 83
T9 137 138 138 83 84 84 81 82 82

Table 5.5: Dispersion coefficients Kx (m 2/s)  during su m m er  and winter 1992,  

using meteorological effects  from 18 January to 2 6  February for winter 

simulations and 8 May to 12 June for s u m m e r  sim ulations, with at= 1, 5 and 10

m2/s, + is the r e le a s e  point

5. 4. 5 Residence time:

Flushing times, age, and residence times are commonly used measures for calculating 

retention characteristics o f water or scalar quantities transported by the flow. Boynton 

et al., [1995] argued that the residence time is a vital element that should form the 

basis o f comparative analyses o f ecosystem nutrient budgets. In practice, different
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approaches may lead to different time scales, even for the same domain [Monsen et 

a l , 2002].

Dronkers and Zimmerman, [1982] defined the residence time as the time taken for a 

whole water parcel to leave the lagoon through its outlet to the sea. In this study 

special attention was given to the residence time of the water in the whole estuary, 

since flushing time is an integrative system measure, whereas both residence time and 

age are local measures. In the case of the Gulf, the circulation in and out of the Strait 

of Hormuz has been poorly defined in the past, resulting in estimates of the residence 

times varying widely from between 2 to 5 years [Hughes and Hunter, 1979; Hunter, 

1983]. Sadrinasab and Kamp, [2004] studied the flushing time of the Gulf and found 

that 95% flushing times of surface waters ranged from between 1 to 3 years along the 

Iranian coast, while larger values of more than 5 years were obtained along the 

Arabian coast.

In modelling the residence time of the Gulf using ELCOM, forcing model data of 

1992 (January to December) were adopted and repeated for successive years. It was 

assumed that initially each cell contained water with a residence time of zero. The 

flushing time was defined as the residence time of the water as it left the domain (i.e. 

the time taken for the water to leave the domain). The model revealed that the 

residence time in the Gulf was almost 3 years, as shown in Figure 5.15, the residence 

time being the longest time for water packages to remain along the Arabian coast of 

the Gulf. In particular, near Kuwait Bay, Qatar and the UAE coast values reached 858 

days. Obviously the residence time at the Strait of Hormuz was lowest (2 days), due 

to the open boundary effects in the region.
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Figure 5.15: Residence time of the Gulf in days

5 .4 .6 Discussion:

To determine the main drivers of the horizontal dispersion of the tracers, various 

forcing scenarios were implemented for the sensitivity analysis. All the simulations 

were carried out using a selection of the above summer and winter forcing data from 

1992, as detailed in Table 5.6.

Experiment Season Tide Wind T6
« * )

T7
(Kx)

T8
(Kx)

T9
(Kx)

ELCOM1 Winter Yes No 49 60 69 60
ELCOM2 Winter No Yes 24 27 10 20
ELCOM3 Summer Yes No 53 60 72 60
ELCOM4 Summer No Yes 20 25 8 19

Table 5.6: Diffusion Coefficients due to various effects after 40 days of

release
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These simulations enabled a sensitivity analysis to be undertaken for the various 

forcing mechanisms. As seen from Table 5.6, tidal forcing accounted for about two 

thirds of the total tracer dispersion at T6 and T7, almost 90% at T8 and 75% at T9, 

during summer and winter.

Justification for using a 5,000 m grid and the chosen horizontal diffusivity value is 

necessary before analysing the results obtained in this study. Previously, observations 

by Lawrence et a l [1995] suggested diffusivity values of 0(1 O'1) m2/s for a length 

scale of 500 m; also Stocker and Imberger [2003] computed turbulent diffusivities of 

0(10°) m2/s in Lake Kinneret. Okely et al. [2010] for Victoria Lake revealed that a 

horizontal diffusivity in ELCOM of less than 1 m2/s was appropriate. In this study, an 

initial horizontal diffusivity of 1 m /s was utilised in the model, selected on the basis 

of the findings of Okubo, [1974], in which a length scale of 5,000 m corresponded to 

1 m /s (see Figure 5.16). By analogy, 1 m /s  would take account of horizontal 

dispersion at scales smaller than the model grid resolution, as shown in Figure 5.17, in

which this value was fixed throughout the simulation period. To ensure adequacy of

2 2
the value chosen, the horizontal diffusivity was altered to 5 m /s and then to lO m /s  

in the model, confirming that this did not significantly influence the horizontal 

dispersion of the tracers, as shown in Table 5.5. Therefore, Table 5.5 shows that as 

time progressed the tracer at each station formed a circular patch during the first days 

after injection, which eventually progressed into an oval shape along the mean flow 

direction due to turbulent diffusion, as shown in Figure 5.18 A and B. However, as 

the patch size evolved due to further injection the oval shape was distorted and 

stretched, forming a random shape dependent on the direction of shear force effects 

and, to a smaller extent, larger or smaller eddies. Shear effects played the main role in
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expanding the patch size after 30 days, which will be explained in the following 

paragraphs. It is worth mentioning that by using the Okubo, [1974] K  vs / graph to 

calculate Kx from the corresponding length scales o f T6, T7, T8 and T9 during 20 

days (shown in Table 5.5), values o f  68, 78, 62 and 83 m2/s were obtained (see Figure 

5.16), with these values being similar to the respective computed values cited in Table 

5.5.
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Figure 5.16: Separated  ran ges  in plot of horizontal d ispersion coefficient  

against length s c a le  including typical d ispers ion  coeffic ients obtained in the 

current study (modified after Okubo, [1974])
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Figure 5.17: Injection of tracer at a typical cell, with a scale of 5,000 m *

5,000 m would typically take 30 days to spread 5,000 m

Scenarios adopted in this study and shown in Table 5.6 revealed that the G ulf is 

mainly driven by tidal forces during both seasons and therefore tides are the main 

drivers in creating the shear forces that play key roles in dispersing the numerical 

tracers in both summer and winter. A lthough T8 was located at a site with a 

comparatively greater depth, the simulation suggests a dispersion coefficient similar 

to that at the shallower T6 site due to the uniform  currents, since tracers spread out in 

both directions away from the release point, sim ilar to the spread shown at T7 in 

Figures 5.18 A and B. Furthermore, higher currents and consequently larger shear 

forces generated by tides are distinguishable and played a key role in dispersing the 

tracer at T8. Similarly, but to a smaller extent at T6, shear generated by wind speeds 

o f approximately 15 m/s in a direction across the mean flow, combined with large 

eddies and Coriolis forces, enhanced dispersion by more than 15% along the estuary 

and deflected the patch in a seaward direction with dispersion coefficients comparable 

to values obtained at T8. Analogously, conditions at T9 are significantly affected by
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wind shear, but the topography at this location caused dispersion coefficients to be 

increased due to bed friction. This elongated the patch towards the north Qatar 

coastline, and eventually it became vulnerable to large eddies (e.g. Figure 5.14) as it 

developed towards the estuary main channel.

Figure 5.18 A: Flood tide effect at T7 (5 days), B: Ebb tide effect at T7 (10 

days), C: Shear force effect in spreading the tracer at T7 (45 days)

At T7 the great contribution o f tides in stretching the patch away from the release 

point towards the coast o f the UAE and Qatar is indicated by its increase in size and 

developing a most random shape, as shown in Figure 5.18 C. This can be explained 

by the combination o f wind, tides, an irregular topography and coastal interaction that 

enhanced shear forces. Moreover, as the patch evolved, it interacted with the 

coastline, comprising smaller bays and headlands that dramatically increased the 

dispersion coefficients after 40 days, giving rise to “Coastal Trapping” [Inoue and 

Wiseman, 2000] and making mixing efficient and chaotic (Figure 5.18 C). Although
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the mixing processes appear to be considerable at T7, the residence time in Figure 

5.15 suggests that the patch would prevail for about 750 days.

Horizontal turbulent diffusion played a minor role because dispersion coefficients 

varied only slightly for different horizontal diffusivities (shown in Table 5.5). Bottom 

and internal shear, as observed in the velocity profiles in the top centre of the Gulf, 

also contributed to vertical mixing of the water column particularly during summer 

due to minor stratification developing in the upper layer (Figure 5.11). Shear 

components of horizontal velocity along the Arabian coastline were greater, both near 

the surface and near the bed, due to wind drift and bottom friction respectively.

The dispersion mechanisms affecting the Gulf have a fundamental influence on the 

ecology. Furthermore, spatial variability in the horizontal mixing and dispersion 

coefficients has several implications for water quality within the Gulf. Due to the 

nature of the Gulf, high nutrient values normally result in high rates of oxygen 

consumption, particularly along the relatively shallow Arabian shoreline [Brewer and 

Dyrssen, 1985], so dispersion processes arising from the wind along this region would 

significantly influence the nutrient levels along the coast. Brewer and Dyssen, [1985] 

found high surface phosphorus levels that may be attributed to the vertical dispersion 

mechanism in such regions. Moreover, nutrient concentrations in the Gulf have often 

been concentrated in the north of the Gulf, in the Bay (see Chapter 7 for nutrient 

predictions in the Bay) and in the region around the outfall of Shatt Al Arab, and they 

have been cited as the cause of a number of eutrophication incidents, mostly during 

summer. For example, a major red tide and an associated fish kills occurred in 1999 

[Heil et al., 2001].
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An estimate of the fluid residence time, i.e. the average time a water particle spends 

within a region [Geyer and Signel, 1992], is given as:

/ 2

where tR ~ 200 days for an average dispersion coefficient of 90 m2/s and / = 40 km, 

an estimated length scale for the assemblage localities. This relatively long time scale 

allows the ecological niches to exist and promotes spatial heterogeneity of 

biochemical material, in particular in the northern part of the Gulf near the Bay (see 

Chapters 6 and 7).

5. 5 Summary:

Understanding and identifying the dispersion mechanisms of the Gulf is of great 

importance, since it has been used extensively for the mixing and spreading of various 

types of effluents. In this chapter, the general definition of horizontal dispersion has 

been given, including the dispersion coefficients for the Gulf which have been 

identified as a function of geographic location by using ELCOM. The model was first 

validated by means of temperature, salinity and density of the Gulf water, during the 

winter and summer of 1992. Then the validated model was used to calculate the 

dispersion coefficients of numerical tracers, distributed randomly in the basin and 

injected continuously throughout the simulation period (40 days). The analyses have 

shown that tides played a key role in the spreading of the tracers, while winds had a 

lesser effect. The highest dispersion coefficient obtained in this study occurred near 

Qatar, due to the shear effects produced by tides and the coastal geometry, which 

reached 141 m2/s during the first 5 days of tracer injection. Other locations were 

shown to have similar dispersion coefficients that ranged from between 60 and 90
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m2/s. Also in this chapter, the residence time of the Gulf was calculated using 

ELCOM. The results showed that a higher residence time occurred along the Arabian 

coast, in particular near Kuwait and Qatar, which reached times of 1002 and 858 days 

respectively, while the lowest residence time occurred near the Iranian coast, with a 

typical period of 200 days. Such results have huge implementations in identifying the 

high-algal-production-zone in the basin.
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6 .1  Introduction:

Every estuary is unique with respect to physical, chemical, and biological 

characteristics. Yet any estuary may share a number of features with any bays along 

its coastline. Therefore, it was important to understand the Gulfs water circulation 

and dispersion mechanisms (as discussed in Chapter 5) before studying the 

mechanisms of Kuwait Bay (see Figure 6.1). This analysis of the Gulf would provide 

some information about the behaviour o f the Bay that could consequently help in 

understanding the various water quality processes within Kuwait Bay.

It is important to study the hydrodynamic processes of Kuwait Bay before conducting 

any water quality analyses. Here hydrodynamics is referred to as the study of the 

motion of the water and the major forces acting on it, such as those mentioned in 

Chapter 2. It is well recognised in the literature that hydrodynamics is the driving 

mechanism for the transport of nutrients, algal blooms and sediments and is also a 

major factor when considering the circulation of pollutants in a marine system. In 

addition, hydrodynamic modelling may supply essential information for other models, 

such as eutrophication models, including water level and velocity, circulation 

patterns, mixing and dispersion, water stratification and temperature variations.

The main aim of this chapter is to validate ELCOM and investigate the water 

circulation of the Bay using the validated model. This was achieved by conducting 

various sensitivity analyses on the domain boundaries and injecting numerical tracers 

at the open boundary. Also, the residence time of the Bay will be investigated in this 

chapter, so as to provide an understanding as to how effluents would, for example, 

accumulate within the Bay and then be flushed away to the Gulf water body.
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Figure 6.1: Kuwait Bay location in the Gulf and including Sulaibikhat Bay

6. 2 H ydrodynam ic m odelling o f  K uw ait Bay:

In studying the hydrodynamic processes in the Bay, special attention was given to 

temperature and salinity, as they were considered to have an apparent influence on 

water circulation in this region [Reynolds, 1993]. It is worth mentioning that direct 

fresh water input to the Bay can reasonably be considered negligible. Recently, 

temperature and salinity were recognised to have a fluctuative manner throughout the 

year in some parts o f the Bay [Al-Rashidi, 2009]. In terms o f fluctuations in water 

temperature this is due to the following three main reasons as explained by Al- 

Rashidi, [2009]:

• Global effects (climate change);

• Regional effects (anthropogenic activities in the Gulf); and

• Local effects (desalination plants in the Bay see Chapter 2).
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While salinity fluctuations are mainly attributed to the indirect effects of Shatt Al 

Arab [Al-Yamani, 2008], the effects o f Shatt Al Arab on the Bay waters were not 

taken into account in the previous modelling studies as in Rakha et al, [2007a]. In 

this chapter an attempt to quantify the effects of Shatt Al Arab on the Bay salinity will 

be considered by means of a sensitivity analysis. The effects of Shatt Al Arab on the 

Bay water quality is detailed in Al-Yamani, [2008] and will be explained in Chapter 7.

6. 2.1 Model setup:

ELCOM was considered in studying the water dynamics of the Bay. The modelling 

approach adopted in this study involved a uniform grid of 150 m in both the X and Y 

directions (see Figure 6.2). A total of 7 layers in the Z direction at increments of 5 m 

leading to a total of 115,095 wet cells discretising the domain and the open boundary 

was approximately 17.5 km in connection with the Gulf main channel (see Figure 

6.2). A computational time step of 100 s was utilised in the model. The bathymetric 

information was obtained from a map digitiser at the Hydro-environmental Centre of 

Cardiff University that interpolated the depth at each grid point from a map obtained 

from the United Kingdom Hydrographic Office. The sea surface elevation, due to 

semidiurnal tide, was prescribed at the open boundary using the KTIDE model 

developed by Al-Salem (KISR, 2009) for the 2005 period (Available on Coastal 

Information System www.hceatkuwait.net). The salinity and temperature data 

necessary for initialising and running the model was obtained from the K-EPA and 

values were assigned based on previous data from 2004 as shown in Table 6.1. The 

typical values for desalination plant (MSF or RO, see Chapter 2 for more details) 

discharges were given at a rate of approximately 10 m /s through an outfall of 

approximately 60 m in width [Bleninger and Jirka, 2010]. However, in this study a
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discharge of 4 m3/s was utilised due to the relatively large grid size considered (150 

m) to account for the desalination plant outflow. Two main desalination plant outfalls 

were considered in this study which are located at Al Doha (see Figure 6.3), with 

temperature and salinity values based on these cited in Figure 2.3 (in Chapter 2) and 

detailed in Table 6.1. To optimise the predictions, the model was allowed to run for 

20 days before the actual intended simulation period (i.e. 20 days before 1st January 

2005).

Boundary Temperature (°C) Salinity (psu)
Outfall 30 50
Open boundary 15-33 36-41
Domain 14 35

Table 6.1: Initialising values of temperature and salinity based on 2004 (K-

EPA)

Horizontal diffusivity, k , is an input parameter in ELCOM, representing turbulent sub 

grid diffusion. In the model transport equations (for more details see [Hodges et a l , 

2000]) this was set to 1 m2/s. Similar to Rakha et a l, [2007a] a bottom drag 

coefficient of 0.003 was assigned for the whole domain to take account for bed 

friction. A light extinction coefficient of 0.25 was used to take account of attenuation 

of light. The meteorological forcing adopted in this study is summarised in section 

6.2.1.1 and was applied at 10 m above sea level.
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Figure 6.2: Discretisation of the Bay, showing the grids utilised in ELCOM 

and the length of the open boundary, also the cross section considered along
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Figure 6.3: Location of sampling points in the Bay (left) and a discharge from 

the desalination plant at Sabiya (right)
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6. 2 .1.1  Meteorological effects:

The temporal meteorological effects necessary for the simulation purposes were 

obtained from KISR. The station that recorded the data on an hourly basis was located 

at the KISR campus south of the Bay, as shown in Figure 6.3. The meteorological 

parameters for the period 2005 were adopted in the model and are shown in Figure 

6.4. These effects were considered to be applied over the entire water body, as a finer 

spatial resolution was not available; however this was not expected to have significant 

implications on the results due to the relatively small size of the Bay which was 

recognised to have been driven mainly by tides [Rakha et a l, 2007a; Rakha et al., 

2009]. As shown in Figure 6.4 the Bay is mostly affected by wind blowing from the 

northwest, particularly during winter with typical peak speeds of 12 m/s. Meanwhile, 

a less effective wind blows from the south, mostly during summer, reaching speeds of 

5 m/s. In addition, a pronounced air temperature rise was observed during the summer 

of 2005 that reached 45°C during August. Nasrallah et al., [2004] have related the 

high temperature to changes in regional circulation patterns of air to climate change. 

He explained that the change of the subtropical jet stream towards the north and the 

accumulation of the ridge of high pressure were mainly responsible for heat wave 

events. In comparison, a lower air temperature during the winter of 15°C was 

observed (see Figure 6.4). Rain and cloud cover effects were not taken into 

consideration, as records from the same station did not show any significant values 

during 2005. According to KISR data of 2005, solar radiation over the Bay reached 

600 W/m2 during the winter, while 900 W/m2 was recorded for the summer; such 

effects were adapted in the model accordingly.

Chapter 6 144



Hydrodynamic Modelling o f  Kuwait Bay

 Air T em peratu re
50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0 
5.0 
On

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

W ind D irection
360.0

180.0

Figure 6.4: Meteorological data of 2005 adopted in the model, air 

temperature (top), wind speed (middle), wind direction (bottom)

6. 2. 2 Model validation and discussion:

The model was calibrated using data obtained from KJSR at CM2, which is located 

approximately at middle o f the Bay (see Figure 6.3). The main parameters used to 

validate the model were: water level, velocity m agnitude and velocity direction. Due 

to limited data, the model validation period ran from 20th April 2005 to 10th May 2005 

(see Figure 6.5). The simulations had to model first the hydraulic control across the
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mouth of the Bay and then the dispersal of the salinity across the Bay, originating 

from both the Gulf and Shatt Al Arab. Such predictions will be discussed in the next 

section. The main aim of validating the model was to identify if ELCOM could 

represent the actual water levels and velocity, and therefore show how to use the 

model predictions to better understand the dynamics of the Bay.

6. 2. 2,1 Water level and velocity:

In general, the water level and velocity magnitude and direction at CM2 was well 

predicted by ELCOM as shown in Figure 6.5, which had R2 value of 0.850, 0.770 and 

0.696, respectively. During the spring tide (24th April to 2nd May) high water levels 

were predicted, which reached more than 4 m and had a tidal range of approximately 

3.5 m. This is mainly attributed to the geographic location of the Bay, since it is 

exposed to relatively high water levels compared to the southern part of the Gulf 

[Rakha et al., 2007b]. Undoubtedly, this effect would make have an enormous 

contribution to the mixing processes of the Bay, in a similar manner to the Gulf (see 

Chapter 5).

Velocity magnitudes and direction predicted during 2005 followed an almost uniform 

pattern (see Figure 6.5). The highest velocity magnitude was predicted during the 

spring tides and the lowest during the neap tides at 95° and 275° during ebb and flood 

tides respectively. This uniformity can possibly be explained by the geographical 

location of CM2, which had minimal turbulence. In comparison, a more complex flow 

was apparent near the headlands e.g. Kuwait City and Sulaibikhat Bay (see Figure 

6.6), with more explanations being given in Section 6.3. High velocity values were 

predicted at the mouth of the Bay reaching 1 m/s, while a relatively lower velocity
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distribution was predicted in the northern part o f the Bay. Due to the geophysical 

nature of the coastal areas o f Kuwait City and Sulaibikhat Bay they can be classified 

as the least energetic waters, with velocity values reaching 0.1 m/s (see Figure 6.6), 

and therefore would occasionally be driven by winds, particularly during the winter 

(for more explanations see section 6.3).
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Figure 6.6: Depth-averaged velocities at typical flood tide 

6. 2. 2. 2 Temperature and salinity:

Generally, temperature and salinity in the Bay at station Z1 were well predicted by 

ELCOM during 2005, as shown in Figures 6.7 and 6.8 respectively. Water 

temperature across of the Bay varied seasonally during 2005, similar to the findings of 

Al-Yamani, [2008]. The highest temperature level was predicted during August, which 

almost reached 34°C. While the lowest water temperature was predicted during 

January, with a value of approximately 15°C. In a recent study conducted by Al- 

Rashidi, [2009], the direct effects of desalination plants on water temperature and 

salinity were recorded in the local areas. Therefore, special attention was focused on 

areas near to stations Z3 and Z4 as they are located near two main desalination plants 

(see Figure 6.3).
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Figure 6.8: Com parison of predicted and m ea su red  salinity at Z1 during 2005

Broadly speaking, higher temperature levels are predicted at coastal areas, particularly 

near Kuwait city and Sulaibikhat Bay, rather than the deeper northern parts o f the 

Bay, as shown in Figures 6.9 and 6.10, throughout all the seasons. This is similar to 

the findings of Anderline et a l, [1982], in which they explained that the northern 

areas are characterised by low salinity and temperature due to the relatively larger 

wind mixing and the minor anthropogenic activities in this region. Temperature is 

relatively higher at Z3 and Z4, as shown in Figures 6.9 and 6.10. This is mainly due to 

both the shallow nature o f the Bay at these stations and the plume discharged from the 

desalination plants located nearby. Air temperature (see Figure 6.4) could be 

considered as the main source o f  heat to the surface water o f the Bay during the
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summer, similar to Al-Fahed et al., [1997] findings. During the winter the Bay 

exhibits a vertical well-mixed uniform structure, as shown in Figure 6.9 in terms of 

water temperature. While, during the summer, water temperatures reached more than 

31°C so that a two-layer structure was established near the shore, consisting of a 

warm layer overlaying cooler water as shown in Figure 6.10.
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Figure 6.9: ELCOM predictions o f su r fa ce  tem perature distribution in the Bay  

during the Winter (January 2 0 0 5 ), including data collection  stations and Al 

Doha desalination plants m arked a s  □ ’ (top graph) and a vertical tem perature  

variation prediction during the winter (January 2 0 0 5 )  b etw een  the Bay mouth

and Jal A z Zour (bottom  graph)

Chapter 6 151



Hydrodynamic Modelling o f  Kuwait Bay

♦Z 1

Z6

•  Z2
• Z 5

Temperature °C

T T T T T
15

’ Jal Az Zour Bay mouth '

M
-10

-15

-20

-25

10 15
Distance (km)

20 25

34

33.5 

33

32.5 

32

31.5 

31

30.5 

30

Figure 6.10: ELCOM predictions o f su r fa ce  tem perature distribution in the  

Bay during the sum m er (July 2 0 0 5 ), including data collection  stations and Al 

Doha desalination plants m arked a s  □ ’ (top graph) and a vertical tem perature  

variation prediction during the su m m er (July 2 0 0 5 )  b etw een  the Bay mouth
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Similar to temperature, salinity shows higher values near the coastal areas where they 

reached 41 psu at Z l, Z3 and Z4. This was mainly attributed to the discharge from the
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desalination plants and low mixing at these stations (see Figure 6.11 and 6.12). 

Unsurprisingly, low salinity levels were marked near the mouth, at stations Z5 and Z6 

with levels reaching 38 psu during the winter, while higher values were found during 

the summer, as in Figures 6.11 and 6.12 respectively. This supported the fact that 

relatively intense fresh water flowing from the Shatt Al Arab during the winter 

modified the Bay’s water by creating a two layer water structure; the top layer being 

lower in salinity than the bottom layer (see Figure 6.12) [Al-Yamani, 2008; Johns et 

al., 2003]. This effect would give rise to density driven currents near the mouth of the 

Bay during calm conditions [Patterson et a l, 1984]. During the summer, a uniform 

vertical structure was predicted with values ranging from 40 to 41 psu, as shown in 

Figure 6.12. It is worth mentioning that deficiency in salinity predictions during the 

summer may well rise from the exclusion, due to domain limitations, of the Al Sabiya 

desalination plant effects (see Figure 6.3). More details on the effects of Shatt Al Arab 

will be given in Section 6.2.2.3.
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Figure 6.11: ELCOM predictions of surface salinity distribution in the Bay 

during the winter (January 2005), including data collection stations and Al 

Doha desalination plants marked as □ ’ (top graph) and a vertical salinity 

variation prediction during the winter (January 2005) between the Bay mouth

and Jal Az Zour (bottom graph)
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Figure 6.12: ELCOM predictions of surface salinity distribution in the Bay 

during the summer (July 2005), including data collection stations and Al Doha 

desalination plants marked as □ ’ (top graph) and a vertical salinity variation 

prediction during the summer (July 2005) between the Bay mouth and Jal Az

Zour (bottom graph)
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6. 2. 2. 3 Effects o f Shatt Al Arab:

In order to quantify the effects of Shatt Al Arab on the Bay the model was validated 

using Z6 data, with the same model settings as used in section 6.2.1. However, a 

modified open boundary was included, as explained in the following paragraph. 

Station Z6 was considered in this study due to the station location (closest station to 

Shatt Al Arab) which would show the effects of fresh water effects and also due to 

data availability at this station. The modelling period considered in this study was the 

entirety of 2005.

Two scenarios were considered to predict the salinity levels at Z6. In the first scenario 

(ELCOM1), the water salinity originating from the open boundary was set to a 

constant mean value of 41 psu. While water salinity in the second scenario 

(ELCOM2) varied seasonally with 38 psu during the winter and 43 psu during the 

summer.

As can be seen in Figure 6.13 better agreement was achieved between the model and 

the measured data in ELCOM2 than in ELCOM1. In ELCOM1 an apparent 

deficiency in model prediction occurred mainly during the winter (January, November 

and December 2005), with values of 20% more than the measured data. While the 

prediction in ELCOM2 showed that salinity at Z6 reached 36 psu during the winter 

and 44 psu during the summer (see Figure 6.13).
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Figure 6.13: Comparison of predicted and measured salinity at Z6 during

2005

It is important that when modelling the Bay, the variation o f  salinity at the open 

boundary was taken into consideration due to the Shatt Al Arab fresh water effects. 

Otherwise, inclusion o f fresh water input derived from the northern parts o f the G ulf 

in the modelling domain was essential when modelling the Bay as suggested in Figure 

6.14. Such grid configurations were not considered in this study due to a lack o f data. 

Even though, the desalination outfalls were considered in this investigation, they had 

gradual effects on raising the salinity at Z6 during 2005. Such findings confirm Al- 

Rashidi, [2009] the main conclusion in which desalination plants only have local 

effects in the Bay (see section 6.2.2.4). For completeness, water salinity originating 

from the southern areas o f the Gulf, near Saudi Arabia, may be reasonably considered 

to be constant and have a minimal role in modifying the structure o f the Bay’s waters. 

Other water quality parameters such as nutrients associated with the Shatt Al Arab 

input would defiantly have a pronounced influence on the water quality o f the Bay, 

this will be addressed in Chapter 7.
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Figure 6.14: Inclusion of Shatt al Arab and other fresh water input (from Iran)

in the modelling domain

6. 2. 2. 4 Effects of outfalls to the southern parts o f  the Bay:

As mentioned earlier in Chapter 2, desalination plants have had a major effect on 

increasing the salinity of the receiving waters. Here, the model was used to quantify 

the effects o f the desalination plants located in the southern areas o f the Bay, 

especially at Al Doha, (see Figure 6.3), on the surrounding water salinity. This was 

achieved by running the model using the same settings as mentioned in Table 6.1 and 

considering two key scenarios. Firstly, the model was run without outfalls. Secondly, 

the model was run with outfalls in the same locations as shown in Figure 6.3, with the 

Al Sabiya desalination plant excluded. Summer conditions were considered in the 

simulations, since the discharges were considered to be constant at a rate o f 4 m3/s 

throughout the simulation period.
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As shown in Figure 6.15 the effects o f the outfalls in the southern parts o f the Bay are 

apparent and have increased the salinity levels from 39 to 40 psu, which corresponds 

to a salinity increase o f approximately 2.5% during the simulation periods. Although 

this may be considered to be a small increase, it would contribute significantly in 

building up salinity levels in those regions that may have a direct effect on marine 

biology [Borowitska, 1981; Bouvier and del Giorgio and Bouvier, 2002]. However, 

in the far northern areas o f the Bay, salinity concentration remained the same during 

the simulation periods. This reinforces the fact that the waters in the northern parts 

and near the open boundary are more energetic than in the southern areas o f the Bay.

Salinity psu

Salinity psu

40

39.8

39.6

39.4

39.2 

39

38.8

38.6

38.4

38.2 

38

Figure 6.15: Salinity distribution in the Bay, excluding desalination outfall 

(top) and including desalination outfall marked as □ ’ (bottom)
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6. 3 W ater circulation o f the Bay:

The water circulation o f the Bay was investigated by injecting tracer within the open 

boundary water flow. M eteorological and tidal forcing o f 1 January 2005 to 10 

February 2005 was considered in this study. The circulation o f the Bay was 

investigated by analysing the concentration o f  the tracers resulting from continuous 

injection after 3, 10, 30 and 40 days (see Figure 6.16).

Figure 6.16: Tracer injection at the open boundary; progress of tracer 

spreading after 3, 10, 30 and 40 days of continues injection

As shown in Figure 6.16, during the first 3 days the tracer mostly made its way 

towards the middle and northern area o f  the Bay and away from the mouth with a 

number o f small eddies apparent near coastal areas. This was mainly attributed to the
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headlands on the coastal areas o f  Kuwait city. As the time develops (see Figure 6.16 

after 10 days), the tracer started to split to form two larger eddy shape, first towards 

the northern part o f the Bay in a clockwise direction (see Figure 6.6), while the 

second was relatively smaller in a counter clockwise direction towards Al Jahra, 

allowing for further stretching o f the tracer cloud. Such processes can be explained 

due to both the irregular coastline restrictions and the dominant north westerly wind 

effects during this period o f the year (January and February). After 30 days o f further 

injection (see Figure 6.16), the tracer was widened due to shear mixing produced by 

tides (as addressed in Chapter 5 for the Gulf) and has mostly occupied the main 

channel o f the Bay, apart from the far northern parts and the lower parts, suggesting 

that tidal force effects were minimal in those regions. In those regions wind effects 

were apparent in the water circulation and mixing processes. General circulation and 

the associated driving forces o f the Bay are summarised in Figure 6.17.

47.667 47.750 47.833 47.917 48.000 48.083 48.167

Wind driven

47.667 47.750 47.833 47.917 48.000 48.083 48.167

Figure 6.17: W ater circulation of the B ay du e to tides and w inds e ffects
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6. 4 Residence tim e o f the Bay:

In a similar manner to calculating the residence time of the Gulf in Chapter 5, the 

residence time of the Bay is estimated in this section using ELCOM. Previously the 

flushing of the Bay was estimated to take two months using a simple box type model 

based on the residual flow [Gopalakrishnan and Muralidhar, 1989], However, Rakha 

et al, [2009] estimated the flushing time of the inner parts of the Bay to take more 

than 2 years for a complete flush using RMA-10 (Resource Modelling Associates), 

which is three dimensional finite element HD model [King, 1988], using an 

unstructured grid.

In modelling the residence time of the Bay using ELCOM, the forcing data of 2005 

(from January to December) was adopted. It was assumed that initially each cell 

contained water with a residence time of zero. The flushing time was defined as the 

residence time of the water as it left the domain (i.e. time taken for the water to leave 

the domain).

As shown in Figure 6.18 the longest residence time in the Bay was 57 days near Al 

Doha, with slightly lesser values obtained at Sulaibikhat Bay of 36 days. Also a value 

of 30 days was achieved for the northern part of the Bay. Such results give an 

important indication of the crucial regions where ecological stress may occur. In other 

words, high residence time values define the location of eutrophic zones in the Bay, 

such as those found near Al Jahra that reached 57 days. In previous studies, harmful 

algal bloom events were found to occur in such regions [Gilbert et al., 2002].
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Residence time 
days

Figure 6.18: Residence time of the Bay

6. 5 Summary:

Details of the hydrodynamic modelling of Kuwait Bay are given in this chapter. The 

investigations were carried out using ELCOM and the data used were for 2005. The 

model was first validated using data obtained from KISR, comprising water levels and 

current speed and direction in the northern area of the Gulf. The model showed good 

agreement with the measured data. As for the Arabian Gulf, the hydrodynamic model 

results showed that the Bay has mainly driven by tides and high water velocities were 

predicted at the mouth of the Bay (almost 1 m/s), as opposed to the relatively low 

velocities near Sulaibikhat Bay (0.1 m/s).

Temperature and salinity levels were investigated in the Bay using the same model. 

The model showed that the water temperature had a seasonal variation of 34 °C in the 

summer and 15 °C in the winter, while salinity concentrations were affected by Shatt 

Al Arab and desalination plants. Further investigations were undertaken to estimate
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the effects of the Shatt Al Arab and the desalination plants using the model. The 

investigation revealed that the Shatt Al Arab had pronounced effects on the salinity in 

the northern areas of the Bay, particularly during the winter when fresh water input 

was a maximum. In comparison, desalination plants were shown to have 

predominantly local effects only.

In order to investigate the water circulation in the Bay a tracer was injected along with 

the water inflow at the open boundary. The investigations revealed that tides were the 

main drivers of hydrodynamics in the Bay and produced variously complex eddies 

near the coastal zones and along the Bay’s main channel. Hence tides are mainly 

responsible for dispersion and mixing in those regions. Winds are important in 

circulating the water in the shallow areas of the Bay, particularly in the southern 

regions. This has all provided crucial information to the understanding of the water 

quality processes in this region.
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7 .1  Introduction:

Water quality includes the physical, chemical, and biological characteristics of water 

and measures the capability of a marine system to sustain beneficial use to society [Ji, 

2008]. Estuaries are in general considered to be a highly productive system, as they 

normally contain a reasonable amount of biomass made up of algae, phytoplankton 

and sea grass, thus supporting large bird and fish populations. This high population of 

living plants and animals implies that biota and seabed sediments embody important 

nutrient pools. Due to the geological, meteorological and biochemical variability of 

estuaries, quantification of eutrophication and the source of nutrients, or any other 

algal-growth limiting factor, is very complex (see Table 7.1).

Estuary/Lake/Harbour Eutrophication and algal 
growth limitation factor

Reference

Peel-Harvey Estuary Nutrient supply from 
agriculture land

[McComb et al., 1993]

Tuggerah Lakes Nutrient urban runoff [King and Hodgson, 1995]
Pearl River Estuary Turbidity and PO4 from 

domestic sewage and 
industrial wastewater

[.Huang et ah, 2003]

Tolo Harbour Solar radiation [Lee and Arega, 1999]
Ems Estuary Retention time of PO4 and 

N
[Beusekom and Jonge, 
1998]

Table 7.1: Limitation factors of eutrophication and algal growth in various

estuaries, lakes and harbours

One of the most critical water quality issues in Kuwait Bay is eutrophication (see 

Chapter 2) and red tides. Similar to many estuaries (see Table7.1), algal growth is 

mainly controlled by nutrients, such as N and P in the Bay [Subba Rao and Al- 

Yamani, 1999]. The resultant product of eutrophication and red tides (i.e. algae, 

including high nutrients levels such as N and P), are significantly affected by 

hydrodynamic processes, such as those explained in Chapters 5 and 6, in that they
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controls their distribution in a marine system. Therefore, when considering the water 

quality of Kuwait Bay, it is first important to understand the hydrodynamic 

characteristics of the marine system as detailed in Chapter 6 . This gives an indication 

as to the location of the most vulnerable sites to eutrophication in the Bay and also has 

huge implications in understanding the sediment adsorption processes relating to 

nutrients such as phosphorus.

The main aim of this chapter is to model the water quality parameters (including DO, 

N and P) in the Bay and explain the seasonal variations of each parameter, using same 

hydrodynamic settings as in Chapter 6 . This has been undertaken by utilising 

ELCOM-CAEDYM and the developed TRIVAST model (see Chapter 4). Special 

attention has been given to PO4  predictions in both models, since it is thought that 

algal growth is limited to PO4 availability, in particular in the northern area of the Bay 

[Subba Rao and Al-Yamani, 1999]. In ELCOM-CAEDYM an attempt to quantify PO4  

rising from different sources has been achieved, in order to understand PO4  

management strategies. While in TRIVAST the effects of adsorption and desorption 

processes relating to sediment grain size have been investigated (based on TRTVAST 

developments in Chapter 4).

7. 2 W ater quality modelling of the Bay:

Rapid coastal developments in the Bay (see Figure 7.1) have caused considerable 

ecological stress [Bou-Olyan and Al-Sarawi, 1993]. Major sources of pollution 

include the effluents from oil production, exploration, transportation and the 

municipal and petrochemical industries, including three major power plants (as
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explained in Chapter 2). As a result, algal blooms and consequently red tides have 

been noted along various parts of the Bay [Glibert et a l, 2002].

Two major fish kill events were reported in 1999 and 2001 in the Bay. Significant 

natural and aquacultural fish deaths in the Bay occurred from September to October in 

1999 and were attributed to a bloom of the dinoflagellate [Heil et al., 2001] 

(Dinoflagellate: known as saltwater plankton, are important in marine biodiversity 

food chains). A scenario of the bloom event suggests that a period of low winds and a 

steady water column structure preceded the bloom. High cell concentrations of 

dinoglagellates were also immediately preceded by more than a 20-fold increase in 

the mean NH4  and NO3 concentrations that promoted PO4 concentrations [Heil et al., 

2001]. This incident, with elevated inorganic and organic nutrient concentrations 

within the bloom, suggests that coastal nutrient eutrophication, including DO 

reduction, were likely to have contributed significantly to bloom development and 

support (more details can be found in Heil et a l, [2001]).
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In the following sections details are given of the DO and N levels predicted using 

ELCOM-CAEDYM. Special focus is then given to P O 4  predictions using both 

ELCOM-CAEDYM and TRIVAST. In ELCOM-CAEDYM, the effects of an open 

boundary, outfalls, decomposition rates of organic matter and sediment flux on P O 4  

levels have been investigated (see section 7.3.1.1), whereas TRTVAST has been used 

to study the effects of sorption processes on P 0 4  levels (see Section 7.3.2).

7. 2.1 Field data and model setup (ELCOM-CAEDYM):

DO data was obtained from (K-EPA) and includes nutrient data for 2004 and 2005. 

The data were collected on a monthly basis from six sites that were spread randomly 

over the Bay, as shown in Figure 7.2. DO levels had spatial and temporal variations
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K e y
Kuwait City
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Figure 7.1: Main activities in the Bay
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during 2004 and 2005, with similar variations for both years. Higher DO levels were 

observed during the winter and near the open boundary, while lower DO levels were 

observed during the summer and near the coastal areas of the Bay. Stations Z1 and Z6  

(see Figure 7.2) had the highest level throughout the seasons, varying from 10 down 

to 6  mg/1 during the winter and the summer respectively. However, stations Z2, Z3, 

and Z4 had comparatively lower values, ranging from 8.5 to 5 mg/1 respectively for 

the same seasons.

In general, the data showed that there was a slight increase in all nutrients from 2004 

to 2005. In coastal areas, near stations Z2, Z3, Z4 and Z5, higher nutrient values were 

observed compared to the middle of the Bay at Z1 (see Figure 7.2), particularly during 

the summer months. Inorganic N levels in general had higher values compared to PO4  

levels, particularly during the winter months, when levels reached more than 0.08 and 

0.4 mg/1 for NH4 and NO3 respectively at Z3. This was possibly due to the Shatt Al 

Arab fresh water effects [Al-Yamani, 2008]. However, during the warm seasons NH4 

and NO3 levels ranged from 0.01 to 0.05 mg/1 and 0.01 to 0.06 mg/1 respectively, at 

most stations.

PO4 levels at Z2 were found to have the highest values among the other stations 

reaching levels of 0.08 mg/1  during the warmer seasons, while the rest of the stations 

fell with levels in the range of 0.03 to 0.009 mg/1 during the winter. Bou-Olyan and 

Al-Sarawi, [1993] related such increases to anthropogenic activities near the coastline 

(see Figure 7.1), and added that PO4 concentrations do not vary temporally, but 

spatially.
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An abundance of SIO3 was noticeable throughout the year in the Bay, with maximum 

values obtained during the winter and mostly in the coastal areas of the Bay with 

concentrations varying from 0.2 to more than 2 mg/1 [Al-Yamani et a l, 2004]. 

Therefore, SIO3 was not investigated in this study as it would not act as a limiting 

factor of algal growth in the Bay. According to the K-EPA, suspended sediment (SS) 

data were incomplete and less frequently recorded than nutrient data; however the 

data were set to a mean value of 10 mg/1 during the winter and 18 mg/1 during the 

summer.
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29.333 
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29.167

Figure 7.2: Water quality data collection sites and outfalls considered in

modelling studies

The data for 2004 were incorporated to initialise and calibrate CAEDYM to give 

predictions for 2005. For water flowing from the open boundary, the data from Z6
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were initially used to define the concentrations of water parameters, that varied to 

include the summer and winter effects as described previously (see Table 7.2). Due to 

a lack of wastewater outfall data, it was deemed reasonable to group the outfalls in 

Figure 7.1 into a single outfall to represent each region as shown in Figure 7.2, and 

treat the outfalls as a calibration factor in the model. The water quality parameters for 

the outfalls were initially assigned according to the data from Z2 (see Table 7.2) and 

the findings of Al-Muzaini et al., [1997]. This was done at Z2, which is located very 

near to the Al Jahra wastewater outfall and would likely represent the water quality 

parameter concentrations (see Figure 7.2). The outfalls had a typical flow rate of 4 

m3/s throughout the simulation periods [Bou-Olyan and Al-Sarawi, 1993]. All data 

obtained from K-EPA were assumed to be depth averaged values. Other parameters, 

such as the mineralisation rate of organic matter, the sediment nutrient flux rate and 

the pH values were treated as calibration factors (see Table 7.3), as direct data for 

such parameters were not available.

In CAEDYM all measurements of water quality parameters were interpolated linearly 

in time to provide forcing data at the 100 s timestep. It is worth mentioning that other 

physical effects, such as tides, meteorological forcing, salinity and temperature, were 

set as shown in Chapter 6 for the 2005 predictions.

Parameter Initial Open boundary Outfall
DO 9.0 8.5-10.0 5.0
n h 4 0.11 0.09-0.11 0.09
n o 3 0.10 0.01-0.08 0.017
p o 4 0.03 0.010-0.023 0.015
S I03 0.02 0.02-0.16 0.04

Table 7.2: Calibrated values of dissolved oxygen and nutrients, adopted in

CAEDYM (all values in mg/l)
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Parameter Value unit
Maximum mineralisation
rate o f organic matter to 
P 04

0.02 /day

Maximum mineralisation
rate o f organic matter to
n h 4

0.0035 /day

Sediment flux rate of PO4 0.0031 g/m2/day
Sediment flux rate o f NH4 
and NO3

0.015 g/m2/day

pH 7.00 Neutral
Table 7.3: Calibrated values of other water quality parameters adopted in 

CAEDYM based on [Abdel Aziz, 1997]

7. 2.1.1 Phytoplankton setup:

As mentioned earlier, dinoflagellate was observed to be the main phytoplankton 

produced before major algal bloom events occurred in the [Heil et al., 2001]. Thus, in 

this study dinoflagellate was considered, for two main reasons. Firstly, the lack of any 

other phytoplankton data, secondly phytoplankton primary production transforms 

energy and inorganic material into organic material, with significant implications, not 

only for phytoplankton biomass, but also for cycling of DO, nutrients, trace elements 

and suspended matter [Cloem, 2001] (see Chapter 4 for more details). Hence the 

consideration of phytoplankton is essential in order to represent the source and sink 

terms to nutrients. It is worth mentioning that zooplankton grazing was considered to 

be of secondary importance to nutrient increases in the Bay, as the main supply was 

derived from anthropogenic activities and opened boundaries [Bou-Olyan and Al- 

Sarawi, 1993; Al-Yamani, 2008; Al-Yamani et ah, 2004]. Higher biological groups, 

such as jellyfish, pathogens and fish, were not considered in this study. For 

completeness, modelling equations of phytoplankton (dinoflagellate) in CAEDYM 

consider various processes as shown in Table 7.4. Other phytoplankton 

(dinoflagellate) parameters were used to calibrate the model, as given in Table 7.5.
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Parameters____________________________ Description______________________
Rate o f change Increases with growth rate, decreases with respiration rate and 
of phytoplankton also changes according to the net flux of phytoplankton due to
concentration settling (vertically) and due to advection and mixing._____
Phytoplankton Changes as a function of the maximum growth rate under ideal
growth rate conditions and limitation functions for temperature, salinity, light
______________  and nutrients._____________________________________________
Phytoplankton Concatenates respiration, natural mortality and excretion. It is a 
respiration and function of the respiration rate coefficient and a temperature 
mortality rate function, and also increases with more severe salinity limitations 
Temperature Allows for inhibition above optimal temperatures. Limitation 
limitation value is 1 at standard temperature, increases up to an optimum

temperature and then decreases at a defined maximum
_________________temperature._______________________________________
Light limitation Exponentially decreasing curve according to incoming 

photosynthetically active radiation and the defined initial slope of
_________________the photosynthesis irradiance curve.__________________________
N  limitation Formulated to give a limitation curve dependent on the internal 

nutrient store relative to defined maximum and minimum internal
___________________ N levels.________________________________________________
P limitation Formulated to give a limitation curve dependent on the internal 

nutrient store relative to defined maximum and minimum internal
___________________ P levels_________________________________________________

Table 7.4: Explanation of phytoplankton (dinoflagellate) modelling equations 

in CAEDYM [Hipsey et al., 2006]
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Parameter Calibrated value Units
Dinoflagellate mean concentration 70 gg chi a/ 1

Maximum growth rate 0 . 8 /day
Respiration rate coefficient 0.06 /day
Temperature multiplier for respiration 1.08 dimensionless
Minimum internal N 4.5 mg N/mg chi a
Minimum internal P 0.27 mg PCVmg chi a
Maximum internal N 9.3 mg N/mg chi a
Maximum internal P 0 . 6 mg PCVmg chi a
Maximum rate o f N  uptake 1.7 mg N/mg chi a/day
Maximum rate of P uptake 0.06 mg PCVmg chi 

a/day
Half saturation constant for N  uptake 0.052 mg/ 1

Half saturation constant for P  uptake 0.005 mg/ 1

Light saturation for maximum production 180 pE /m2/s
Maximum optimum salinity tolerance 41 psu
Minimum optimum salinity tolerance 34 psu
Multiplier for temperature limitation 1 . 1 dimensionless
Chlorophyll a per cell 0.000005 mg chi a/cell
Table 7.5: Calibrated phytoplankton (dinoflagellate) parameters in CAEDYM

based on typical values given by Hipsey et al., [2006]; Hipsey et al., [2008]; 

Subba Rao and A l Yamani, [1999]; Heil et al., [2 0 0 1 ]

7. 2. 2 Model validation and discussion:

As mentioned earlier the model was calibrated using the values given in Tables 7.2, 

7.3 and 7.5, based on the K-EPA 2004 data and was validated using the 2005 K-EPA 

data at station Zl. Water quality parameters, such as DO, were relatively 

uncomplicated for calibration purposes. However, other water quality parameters, 

such as nutrients, were more complex for calibration, particularly when sophisticated 

modelling terms were involved, such as those found in CAEDYM (as outlined in 

Chapter 4). A key consequence of so many water quality parameters was that it takes 

much more effort to tune the parameters and to calibrate the model, such as those 

shown in Tables 7.3 and 7.5. It is always desirable to attain actual measurements of 

water quality parameters, but in practise a number of these parameter values are not
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measured or difficult to measure [Smith et a l, 1997], e.g. organic matter 

mineralisation rate, nutrient phytoplankton uptake etc [Hecky and Kilham, 1988], and 

so these are often determined via model calibration. For illustrative purposes, cultural 

studies have recognised that internal cellular concentrations of nutrients determine 

phytoplankton growth rates, and these studies have shown that it is often complex to 

relate growth rate to external nutrient concentrations [Hecky and Kilham, 1988]. Since 

water quality processes are interrelated, adjusting one parameter may affect several 

processes. Therefore, it is vital to understand the processes being modelled and the 

controlling factors of the system, in order to obtain acceptable model predictions and 

interpretations.

In the Bay it is thought that the main controlling factor of algal growth is nutrients, in 

particular PO4 [Al-Yamani et al., 2006]. Other limiting factors such as solar radiation 

and temperature (typically 20 °C) are frequently available for algal growth in the Bay 

[Subba Rao and Al-Yamani, 1999]. It was therefore deemed important to model 

nutrients in the Bay and understand the fundamental water quality processes that 

contributed significantly to nutrient levels.

7. 2. 2 .1  Dissolved oxygen (DO):

In general, good agreement was achieved between the model and measured DO levels 

as shown in Figure 7.3. At Z1 the lowest DO levels were predicted during the summer 

with 5.6 mg/1, while the highest levels reached almost 9 mg/1 during the winter. 

Broadly speaking predictions of DO levels in the Bay had higher values in the 

northern areas than in the southern areas, as shown in Figure 7.4. In comparing station
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Z1 with stations Z2-Z5, it was clear that Z1 had consistently higher DO levels 

throughout the year by at least 1 m g/1, this was mainly due to the following reasons:

• Fresh water input effects from the open boundary (see Chapter 6 );

• Lower anthropogenic activities near Z1 (see Figures 7.1 and 7.2);

• Lower DO utilisation for organic m atter mineralisation processes at Z1 (see 

section 7.3.1.1 and explained later in Figure 7.12); and

• Better mixing processes at Z1 (see Chapter 6 ).

During the winter, the model had slightly underestim ated DO levels by about 10%. 

Such a deficiency may well have arisen from the DO representation at the open 

boundary o f the domain. It was therefore im portant to investigate the DO levels 

beyond the Bay as higher DO could arise from the Shatt Al Arab [Al-Hassan and 

Hussain, 1985] similar to salinity explanations in Chapter 6 . Not surprisingly, DO 

levels in Sulaibikhat Bay had the lowest value with approximately 5.0 mg/1 during the 

summer.
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Figure 7.3: Model validation of DO at Z1 during 2 0 0 5  (ELCOM-CAEDYM)
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Figure 7.4: Depth-averaged DO predictions during winter (top) and sum m er  

(bottom) 2 0 0 5  (ELCOM-CAEDYM)

7. 2. 2. 2 Nitrogen (N):

Although good predictions o f NH4 and NO 3 were apparent during the summer season, 

CAEDYM underestimated the levels by approximately 5% and 10% during the winter 

respectively (see Figures 7.5 and 7.6). NH 4 and NO 3 levels were predicted to be at 

their highest concentration during the wet season, with 0 . 1 1  and 0 . 1 2  mg/1, and lowest
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during the warm season with levels of 0.025 and 0.020 mg/1 respectively (see Figures

7.5 and 7.6).

Due to a large drainage channel constructed after the Gulf war 1991, whose purpose is 

to drain the southwest Al-Ahwar wetlands of coastal Iraq at the Iraq-Kuwait border 

(Shatt al Arab), large, nutrient rich and reduced salinity waters are introduced directly 

into the Bay [Heil et al., 2001; Al-Saadi et al., 1989]. This has undoubtedly modified 

nutrient levels in the Bay in a manner respective to various activities upstream of the 

Tigris and Euphrates rivers [Tailing, 1980], and therefore would have had a direct 

effect on the efficiency of the model’s predictions. Furthermore, Abaychi et al., 

[1988] studied nutrients in the Tigris and Euphrates in relation to agricultural 

activities in the catchment areas and suggested that the most abundant nutrient 

introduced into the river is nitrogen. In a similar manner to that of the Shatt Al Arab 

effect on salinity levels (as explained in Chapter 6 ), levels of N, particularly in the 

northern areas of the Bay, including station Z l, were highly influenced by nutrients 

originating from the open boundary, in which better predictions could be achieved if 

detailed data were available. Better model predictions were achieved for NH4 than 

NO3 in the Bay. Again, this is probably attributed to the N representations at the open 

boundary, in which the additional input may have arisen from other sources outside 

the modelling boundaries. Unlike DO, depth averaged distributions of both NH4 and 

NO3 showed higher values in the southern areas than in the northern areas (see 

Figures 7.7 and 7.8). This is mainly attributed to the anthropogenic activities, 

presented by outfalls in the model, and high temperatures that enhance nutrient 

release from the sediments in the southern shallower regions (see Chapter 6 ).
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Figure 7.5: Model validation of NH4 at Z1 during 2 0 0 5  (ELCOM-CAEDYM)
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Figure 7.6: Model validation of N 0 3 at Z1 during 2 0 0 5  (ELCOM-CAEDYM)
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Figure 7.7: Depth-averaged NH4 predictions during the winter (top) and the 

summer (bottom) 2005 (ELCOM-CAEDYM)
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Figure 7.8: Depth-averaged NO3 predictions during the winter (top) and the 

summer (bottom) 2005 (ELCOM-CAEDYM)

7. 3 Modelling phosphorus (PO4) using ELCOM -CAEDYM  and 

TRIVAST:

As mentioned earlier, in the following section a special focus will be given to PO4 

predictions. Firstly, ELCOM-CAEDYM was used to produce annual predictions of 

PO4 . Subsequently, the same model was used to study the main contributors o f PO4

•Z1

•  Z2 •  Z5

•Z1

Z3
•  Z2
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levels in the Bay by means o f a sensitivity analysis to the main sources of PO 4 (i.e. 

open boundary, outfalls, organic matter mineralisation rate and sediment flux). 

Secondly, P 0 4 sorption processes, as detailed in Chapter 4, were investigated using 

TRIVAST.

7. 3. 1 Modelling phosphorus (PO4) using ELCOM-CAEDYM:

In general, predictions of PO4 at Z 1 showed good agreement with the collected data 

from 2005 with R2 value of 0.652, as shown in Figure 7.9, in which PO4 did not show 

a large variation throughout the year. Better predictions were achieved during the 

winter than the summer. The highest levels were predicted during the winter, with 

maximum values reaching 0.03 mg/1 during January 2005. On the other hand, the 

lowest PO4 levels were generally predicted during the summer season reaching 0.023 

mg/1, as shown in Figure 7.9. Similar to the findings o f Bou-Olyan and Al-Sarawi, 

[1993] P 0 4 had more apparent spatial than temporal variations, as shown in Figures 

7.9 and 7.10, this will be investigated further in section 7.3.1.1. This was thought to 

be due to anthropogenic activities predominantly in the southern shallow regions (see 

Figure 7.2).

o  M easured   ELCOM-CAEDYM
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E
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Figure 7.9: Model validation of P0 4 at Z1 during 2005 (ELCOM-CAEDYM)
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Figure 7.10: Depth-averaged P 0 4 predictions during winter (top) and sum m er

(bottom) 2 0 0 5  (ELCOM-CAEDYM)

The model was less accurate in predicting the measured fluctuating manner o f P 0 4 

during the summer. This was possibly thought to be due to dust storms and the related 

sorption processes of P 0 4 (see Chapter 2). Unlike N, P 0 4 has a higher tendency to be 

adsorbed onto sediment particles due to the negatively charged ions, or in certain

•Z1

Z6

•  Z2
•  Z5

+

P 0 4 mg/l
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conditions (e.g. suitable temperature and DO) PO4 may be released into the 

surrounding water giving rise or reduction in PO4 levels [Paytan and McLaughlin,

2007]. In CAEDYM sediment particle deposition from the atmosphere is not included 

in the model, however, a sensitivity analysis will be conducted using TRIVAST in 

section 7.3.2 to analyse sediment sorption processes in relation to sediment grain size 

(as developed in Chapter 4).

It is important when modelling PO4 to be aware o f all the forms of P, including 

organic phosphorus (OP). Since under certain conditions, such as reasonable 

temperature and DO levels, OP can be rapidly mineralised to produce PO4 [Ji, 2008]. 

Hence P04 levels in the Bay would only reflect the direct amount o f PO4 available for 

biological activity. Consequently, total phosphorus (TP) (TP=P04 + OP) is a very 

important indicator that should be taken into consideration when studying PO4 in a 

marine system (see Figure 7.11).

□ P04

□ 41%

■ 59%

Figure 7.11: Percentage of P0 4 and OP representing total amount of P in the 

Bay during the summer at station Z3
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As can be seen in Figure 7.11, most P in the Bay at Z3 during the summer is in 

organic form. Hence, parameters affecting mineralisation rate should be heavily 

investigated when considering PO4 modelling in the Bay. However, this is beyond the 

scope of this study. In the current study the effects of the mineralisation rate will be 

investigated in the following section.

7. 3. 1.1 Effect o f open boundary, outfalls, mineralisation rate o f OP and sediment 

flux:

In order to quantify the effects of the open boundary, outfalls, mineralisation rate of 

OP and sediment flux on PO4 levels in the Bay, various sensitivity analyses were 

conducted on each parameter, as summarised in Table 7.6. Two main stations were 

considered for this investigation, analysing the spatial distribution of PO4 in the Bay.

Scenario Open Boundary Outfalls Mineralisation rate Sediment flux
CAEDYM1 Yes Yes Yes Yes
CAEDYM2 No Yes Yes Yes
CAEDYM3 Yes No Yes Yes
CAEDYM4 Yes Yes No Yes
CAEDYM 5 Yes Yes Yes No
Table 7.6: Scenarios conducted in ELCOM-CAEDYM to investigate the effect 

of the open boundary, outfalls, mineralisation rate and sediment flux on P04

concentration in the Bay

It is important to note that ‘Yes’ in Table 7.6 corresponds to the values of PO4 

assigned as shown in Tables 7.2 and 7.3, while ‘N o’ corresponds to a zero value for 

each parameter. The results of the investigation shown in Table 7.6 can be 

summarised as shown in Figure 7.12.
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Station Z1

□  25%

Key
■ Open boundary
□ Outfalls
□ Mineralised organic matter
■ Sediment flux
•  K-EPA water quality monitoring point
□  Desalination plant
f  Wastewater discharge 

considered in the models

Station Z3

km

Figure 7.12: Percentages of open boundary, outfalls, mineralisation organic 

matter and sediment flux contributions to PO4 at stations Z1 and Z3 during

winter

As shown in Figure 7.12 most PO4 is delivered from the open boundary o f the Bay, in 

particular at Station Z l. Not surprising, it was established that outfalls at Z3 were 

responsible for more than 35% o f the PO 4 at this location, while at Z l this impact 

dropped to 25%. The sediment flux had a stable influence at both stations where it 

accounted for 11% of the P 0 4 level. The mineralisation rate had the least effect on the 

other parameters, where it accounted for 4% o f the PO4 at Z 1 and just a little more at 

Z3.

In terms of marine water management, PO4 from sediment flux and the open 

boundary were almost incontrollable parameters; in particular with regard to real 

sources associated with the Shatt Al Arab water flow entering the Bay, and the current
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political issues in this regions. However, PO4 from the wastewater outfalls can 

certainly be controlled and monitored. Therefore, special attention should be given to 

wastewater outfalls when considering Bay water management strategies, particularly 

in the sense of controlling the limiting nutrients for algal growth. Although the 

mineralisation rate had the least effect on PO4  levels at both stations, it is important to 

bare in mind the following:

• The value used to represent mineralisation is a calibrated value and not the 

actual value; therefore, predictions may slightly under/over-estimate the actual 

effects;

• Other parameters (e.g. temperature and pH) may have considerable effects on 

mineralisation rates; these were not investigated since it is beyond the scope of 

this study (see Chapter 9); and

•  OP is higher than PO4 (see Figure 7.11) and therefore mineralised OP may be 

a large source for PO4 when considering large time scales.

7. 3. 2 Modelling phosphorus (PO4) using TRIVAST:

During the last few decades, Kuwait’s coastline, including the Bay, has undergone 

various waterfront developments, such as the Al-Kairan Pearl (for more details see 

Chapter 2). Such projects, and the associated dredging and land reclamation, have 

introduced large amounts of suspended sediments (SS) to the coastal waters \Al- 

Ghadban and El-Sammak, 2005]. In addition to human activity, it has recently been 

established that occasional natural dust storms (detailed in Chapter 2) are one of the 

main sources of fine sediment inputs into the Bay (see Figure 7.13). These source 

inputs in turn, lead to various environmental impacts that are related to nutrient 

increases/decreases via sorption processes [Aqrawi, 1994; Stutter and Lumsdon,
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2008]. In addition to dust storms, the Shatt Al Arab was also considered through 

several studies to be the main input o f  SS in the northern region of the Gulf, and 

subsequently in the Bay, as shown in Figure 7.13 [Aqrawi, 1994; Al-Ghadban and El- 

Sammak, 2005; Anderlini et al., 1982; Elsayed and Albakri, 1994; Saad and Al-Azmi, 

2002]. In these studies the sedimentation rate at the mouth o f the Shatt Al Arab was 

estimated to be approximately 0.05 m /year and the net annual sediment discharge 

entering the Gulf was estimated to be approxim ately 0.93 million tons [Karim and 

Salman, 1987].

A B
Shatt

Kuwait

Figure 7.13: A. Typical dust storm during the summer affecting the northern 

region of the Gulf. B. Shatt Al Arab sediment effects on the Bay, Source:

http://modis.qsfc. nasa.gov/.

Based on the relationship detailed in Chapter 4, PO4 sorption processes were 

investigated by means o f sediment adsorption effects using the developed TRIVAST 

model. Two main periods were considered in this study; winter (January, February 

and March) and summer (June, July and August) 2005, with these periods being
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recognised as to have apparent differences in SS concentrations according to K-EPA 

data.

7. 3. 2 .1  Model set up:

The TRIVAST settings were similar to the ELCOM-CAEDYM settings in terms of 

both physical parameters (i.e. tides, wind effects, salinity, temperature etc.) and water 

quality parameters (e.g. DO, NH4 , NO3 , PO4 etc.) as summarised in Table 7.7. The 

partition coefficient (KD) is a site specific parameter [EPA, 1999], and special 

attention should be given when assigning it. According to [Abdil Aziz, 1997] a value 

of Kd = 0.01 can be suitably used for the Bay’s conditions, with more details of KD 

being given in [EPA, 1999]. In order to represent the SS levels during the summer 

months (i.e. dusty events), the concentration was initially set to 55 mg/1 for the entire 

Bay waters, while the levels ranged from 30 to 64 mg/1 at the open boundaries. These 

values were considered to reflect the effects of dust storms which occurred during this 

period of the year (i.e. summer) according to K-EPA meteorological data, and the 

Shatt Al Arab sediment input, which can reach as high as 125 mg/1 [Hartmann et al., 

1971]. The bed sediments median grain sizeD 50 was typically set to 110 pm.

Parameter Initial Open boundary Outfall
Winter Summer Winter Summer

DO 9.0 8 . 0 1 0 . 0 8 . 0 5.0
n h 4 0 . 1 1 0.027 0 . 1 0 0.07 0.09
n o 3 0 . 1 0 0.025 0 . 0 1 0 . 0 1 0 . 0 1

PO4 0.03 0.023 0.27 0.019 0.015
SS 6 55 6 - 1 0 30-64 15

Table 7.7: Water quality set up parameters used in TRIVAST
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Unlike ELCOM-CAEDYM, heat transfer through surface waters is not considered in 

TRIVAST (see Chapter 4) and therefore there will be a slight difference in the 

prediction of water dynamics, particularly during the summer months when there is a 

slight stratification rise during the warm season. Broadly speaking, such effects would 

not significantly modify the water circulations; since the Bay is chiefly driven by tides 

[Rakha et al., 2007a] (explained in Chapter 6). The differences in model predictions 

between TRIVAST and ELCOM-CAEDYM will be investigated in Chapter 8.

7. 3. 2. 2 Results and discussion:

To assess the effects of the adsorption processes derived in Chapter 4, the TRTVAST 

model was run with the PO4 benthos term cr2 being included as given in equation 

4.39 and with the corresponding results for the simulation being given in Figures 7.14 

and 7.15 as TRJVAST 1. Then, using the same settings, the adsorption term in 

equation 4.42 was included instead of the benthos source term cr2, with the 

corresponding simulation results being shown in Figures 7.14 and 7.15 as TRTVAST 

2. As can be seen in Figure 7.14, good agreement was achieved between the model 

and the K-EPA data during the winter, while less accurate predictions were found 

during the summer months for TRIVAST 1, as shown in Figure 7.15). However, 

when applying equation 4.42, good predictions were achieved for both seasons, as 

shown in Figure 7.15.
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O Measured  TRIVAST 1  TRIVAST 2
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o>
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o
CL 0.015

January February March

Figure 7.14: TRIVAST predictions validated with measured data at Z1 during 

winter 2005, TRIVAST 1 including equation 4.39, TRIVAST 2 including

equation 4.42

O Measured  TRIVAST 1  TRIVAST 2
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Figure 7.15: TRIVAST predictions validated with measured data atZ1 during 

summer 2005, TRIVAST 1 including equation 4.39, TRIVAST 2 including 

equation 4.42 (sediment grain size effects only)

It is thought that the deficiency in predicting the PO4 levels with the benthos 

model, <j 2 , was mainly due to the lack o f PO4 representations being included for the
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high SS seasons. According to K-EPA records the highest SS concentration occurred 

during the summer of 2005 and, to a lesser extent, over the winter. Thus, in applying 

the sediment adsorption model (i.e. TRTVAST 2), a large amount of PO4 was removed 

by the sediment adsorption process, which would then either settle, particularly near 

Sulaibikhat Bay, or be flushed away by the tidal currents near the mouth (as explained 

in Chapter 6). The adsorption processes o f PO4 to SS were comparatively larger than 

the adsorption to bed sediments, as shown in the model predictions illustrated in 

Figures 7.14 and 7.15. This was mainly attributed to the dynamics of the Bay 

(explained in Chapter 6), in which lower residence times, allowing minor sediment 

settling, persisted near the Bay main channel than in the coastal areas of the Bay. 

Such findings are crucial when defining the limiting nutrient of algal growth in the 

Bay, as adsorption process could lead to PO4 becoming the limiting factor in the Bay.

It is worth mentioning that other factors may affect the predictions for example, SS 

levels from sewage outfalls were not efficiently presented in the model, due to a lack 

of data (see Chapter 9 for future work and recommendations). Therefore, detailed SS 

levels were of crucial importance when considering sorption processes in the Bay. 

Furthermore, the atmospheric input of dry PO4 was not considered in this study which 

could also contribute to modifying PO4 concentrations as in the Mediterranean [Herut 

et al., 2002]. Hence, an additional mathematical representation would need to be 

included to represent the amount of dry PO4 in the sediments, together with the rate of 

deposition from the air to the surface water (see Chapter 9 for future work and 

recommendations).

Chapter 7 193



Water Quality Modelling of Kuwait Bay

7. 4 Summ ary

In this chapter general water quality parameters were investigated using ELCOM- 

CAEDYM and TRIVAST. First ELCOM-CAEDYM was used to predict DO, NH4, 

NO3 and PO4 during 2005. The model showed good agreement with the measured 

data. DO predictions were shown to vary seasonally, with the highest values of 8.5 

mg/1 being achieved during the winter and the lowest values of 5.8 mg/1 occurring 

during the summer. High DO is attributed to the fresh water input from the open 

boundary (mainly from the Shatt Al Arab). While low DO concentrations during the 

summer are mainly due to biological respiration and decomposition processes, 

predictions of NH4 and NO3 showed good agreement with the measured data from 

2005. N levels in the Bay are mainly supplied from the open boundary and it has been 

shown that the levels are sufficient for biological activity. NH4 concentrations 

generally ranged from 0.02 to 0.12 mg/1 throughout 2005, with the highest values 

occurring during the winter. Similarly, NO3 ranged from 0.02 to 0.14 mg/1. Model 

predictions of PO4 agreed reasonably well with the measured data from winter, but 

less so with the measured data from the summer. Unlike N, PO4 concentrations did 

not vary greatly throughout 2005, ranging from 0.023 to 0.03 mg/1. Further 

investigations were undertaken using the same model on the main contributors to PO4. 

It was found that most of the PO4 entered the Bay from the open boundary, while 

anthropogenic activities made similar contributions. OP was found to have larger 

concentrations than PO4 where special attention should be given to mineralisation 

processes in the Bay.

TRIVAST predictions were shown to have better results when considering adsorption 

processes during the summer. Therefore, in modelling the seasonal variation of PO4 in
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the Bay it is essential to consider the adsorption processes in the Bay, particularly 

during the high SS level seasons, when PO4 sorption processes are significant. Such 

processes have encouraged PO4 to be the limiting factor of algal growth in the Bay. 

Hence, this leads to the finding that any processes related to sediment sorption and 

grain size should also be given special attention when considering any environmental 

issues in the Bay.
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8 .1  Introduction:

Numerical models, such as ELCOM-CAEDYM and TRIVAST, are based upon 

fundamental physical, chemical, and biological principles that aim to simulate the 

spatial and temporal variations of a marine system. Numerical models do not 

generally assert to represent all of the complex features of the marine environment, 

but simply attempt to integrate only those aspects of the problem that are most 

relevant. The parameters of the model can be adjusted so that it can logically 

represent certain characteristics of the marine system. However, in some cases where 

unique water characteristics are involved, new parameterisations or mechanisms may 

be required to represent the water system appropriately (e.g. the development of the 

model in Chapter 4). Numerical models are often a set of coupled, nonlinear, partial 

differential equations (see Chapters 3 and 4), and they can be classified according to 

the numerical methods, grid types, time differencing schemes and spatial differencing 

schemes (see Chapters 3 and 4). Three-dimensional models such as ELCOM- 

CAEDYM and TRTVAST, normally offer the closest approximation to reality by 

simulating gradients along three spatial dimensions, i.e. X, Y and Z. Although these 

models all solve the same three-dimensional Navier-Stockes equations, they can be 

significantly different in terms of their turbulence schemes, numerical methods, grid 

types and solution algorithms, which would give rise to different model predictions.

The aim of this chapter is to investigate the main differences between ELCOM- 

CAEDYM and TRIVAST predictions in terms of hydrodynamics and water quality 

(P04). This will be achieved by modelling the Gulf and Bay dynamics using similar 

model settings as described in Chapters 5 and 6. For water quality investigations, PO4 

will be studied in both models in the Bay.
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8. 2 Hydrodynamic predictions in ELCOM and TRTVAST:

In this section the main differences in the hydrodynamic predictions of both models 

will be studied. First, both models were set up for the Gulf, and then the Bay. It is 

obvious that the Gulf and the Bay have different domain sizes (the Gulf is roughly 

900 km x 300 km whereas the Bay is around 40 km x 20 km), enabling us to 

understand the major forces which may arise due to domain orientations in both 

models. In order to investigate the differences between the models special attention 

was given to the model set up stage. Both models should have identical boundaries 

and forcing boundary conditions, i.e. the same tides at the open boundary and the 

same meteorological effects etc, to achieve valid comparisons and conclusions.

8. 2.1 Model setup and prediction results for the Gulf:

In this section the hydrodynamics of the Gulf was investigated in terms of water 

levels and velocity using data from the summer of 1992 only, due to limited 

availability (obtained from KISR). The models were set up in a similar manner as to 

those described in Chapter 5, which can be summarised as shown in Table 8.1. River 

discharge settings are as described in Chapter 5, for both models. The meteorological 

effects in the summer of 1992 were considered in this study as shown in Figure 5.5 

(Chapter 5). The location of measured data considered for this investigation is shown 

in Figure 8.1. To optimise the test, a 30 day simulation was allowed prior to the 

validation period in both models.
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Figure 8.1: Location measured data in the Gulf (CM6), including water level

and velocity

P aram eter E L C O M TRIV A ST
Grid size (m) 5000 5000
Layers number 18 18
Layers thickness (m) 5 5
Time step (s) 100 *50
Tides at open boundary KGULF model KGULF model
Initial temperature ( °C) 28 28
Temperature at open boundary ( °C) 28 28
Initial salinity (psu) 38 38
Salinity at open boundary (psu) 38 38
Bottom drag 0.005 0.005
Light extinction coefficient 0.25 -

Horizontal diffusivity (m2/s) 1 1

Table 8.1: Model settings of ELCOM and TRIVAST, (* )  represent the half

time step for TRIVAST

8. 2. I. 1 Water levels:

As shown in Figure 8.2 both models followed the same pattern in predicting the water 

levels at CM6 in the Gulf. However, better predictions were achieved by ELCOM

F XShatt Al Arab
Hendijan River

Mand River

Strait of Hormuz

U.A.E Oman
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compared to TRIVSAT. The deficiency in TRIVAST predictions occurred mostly 

during low tides. Possible reasons for such predictions will be discussed in section 

8.2.3.

o Measured ELCOM TRIVAST

_J

7-Jun -Jun 9-Jun 10 Jun 11 Jun

Figure 8.2: Comparisons of water level predictions between ELCOM and 

TRIVAST using the measured data for the summer of 1992 at CM6

8. 2. 1. 2 Velocity:

As with the water levels, the velocities in both models were satisfactorily predicted, 

however again better predictions were achieved by ELCOM. According to the 

measured data, the velocity at CM 6 ranged from 0.05 to almost 0.5 m/s. Neither o f the 

models showed accurate prediction at low velocities.
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o Measured ELCOM TRIVAST

Figure 8.3: Comparison of velocity predictions between ELCOM and 

TRIVAST using the measured data for the summer of 1992 at CM6

8. 2. 2 Model setup and prediction results for the Bay:

In a similar manner to the G ulf predictions in the previous section, the hydrodynamics 

o f the Bay was investigated in terms o f  w ater levels and velocity using data from the 

summer o f 2005 only, due to limited availability (obtained from KISR). The models 

were set up in a similar manner as to those described in Chapter 6, which can be 

summarised as shown in Table 8.2. The outfalls were set to the same values as shown 

in Chapter 6. The meteorological effects in the summer o f 2005 were considered in 

this study as shown in Figure 6.4 in Chapter 6. The location o f  the measured data 

considered for this investigation is shown in Figure 8.4. To optimise the test, a 10 day 

simulation was undertaken prior to the validation period.
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Figure 8.4: Location measured data in the Bay (CM2), including water level

and velocity

Param eter E L C O M TRIV AST
Grid size (m) 150 150
Layers number 7 7
Layers thickness (m) 5 5
Time step (s) 30 *15
Tides at open boundary KTIDE model KTIDE model
Initial temperature ( °C) 33 33
Temperature at open boundary ( °C) 34 34
Initial salinity (psu) 41 41
Salinity at open boundary (psu) 41 41
Bottom drag 0.003 0.003
Light extinction coefficient 0.25 -

Horizontal diffusivity (m2/s) 1 1
Table 8.2: The Bay model settings of ELCOM and TRIVAST, ( ) represents

the half time step for TRIVAST

8. 2. 2. 1 Water levels:

In general good agreement was achieved between the measured and predicted results 

by both models in the Bay, as shown in Figure 8.5. In particular, slightly better

Kuwait Bay
Zl ____
Q  CM2

J i l  A s  Z o u r

A lJahn

Sulaibikhat Bay
□  < 2 m
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agreement was achieved between the measured data and ELCOM. Generally speaking 

the predictions of water levels in the Bay were comparatively more accurate in both 

models when compared to the predictions o f  the G u lfs  water levels. Further 

explanation regarding such results will be given in section 8.2.3.

ELCOMo Measured TRIVAST
4.5

- I
i -

24-Aug20-Aug 21 - Aug 22-Aug 23-Aug

Figure 8.5: Com parison of w ater level predictions b e tw een  ELCOM and

TRIVAST using the m easu red  data  for the su m m er of 2 0 0 5  at CM2

8. 2. 2. 2 Velocity:

As with the water levels in the Bay, both models were able to represent the collected 

data at CM2. Unlike the G ulf predictions, however, both models were able to replicate 

low velocities, where the lowest mean value was 0.15 m/s at CM2.
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TRIVAST

23-Aug

Figure 8.6: C om parison of ve locity  pred ictions b etw een  ELCOM and  

TRIVAST using  the m easu red  data  from the su m m er of 2 0 0 5  at CM2

8. 2. 3 Discussion:

B roadly  speaking both models satisfactorily reproduced the measured data in both the 

G u lf  and the Bay as explained in sections 8.2.1 and 8.2.2. However better predictions 

w ere  achieved for the G ulf by ELCOM  (see Figures 8.2 and 8.3) compared to 

T R IV A ST . This may well be attributed to the momentum equation representations in 

bo th  models. In ELCOM, tidal forces were calculated from the gravitational potential 

w h ich  was included in the momentum equation (for more details see [Cartwright and 

Tayler, 1971]), while such effects were not included in TRIVAST (for more details 

see Chapter 4). Also, a deficiency in the TRIVAST predictions rose from a lack in 

surface-w ater-heat-input representations, which would be more pronounced in the 

m uch larger G u lf model due to the much more substantial losses. Furthermore, the 

G u lf  water can develop stratification during the warm seasons (see Chapter 5), which 

w ou ld  have apparent effects on water circulation, particularly with regard to the 

velocity  o f w ater, as shown in Figure 8.3.
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For the Bay, both models gave almost the same predictions in water levels, as in 

Figure 8.5, and to a lesser extent, for the velocity predictions, as shown in Figure 8.6. 

Such results indicate that the effects of the gravitational potential (used to calculate 

the tidal forces in ELCOM), as well as stratification, have limited effects on the 

relatively small and less stratified Bay. Therefore, both models can be sufficiently 

utilised in areas with conditions similar to the Bay. It is worth mentioning that 

turbulence representation in both models can give rise to different predictions, 

however, in ELCOM and TRIVAST similar models were used (see Chapter 4).

It is very important to understand the physical background for each intended 

modelling study. The gravitational potential effect which is found in ELCOM is very 

important when considering long water bodies, such as the Gulf and the Red Sea. This 

has allowed for tidal generation within the estuary, in which the water level 

fluctuations in numerous locations associated with the lunar semidiurnal tidal 

response were incorporated particularly for the Gulf predictions. Also, for estuaries 

where significant stratification occurs due to heat input, models such as TRTVAST 

should not be considered. However, were models such as theses to be considered, 

further model developments should be taken into consideration (see Chapter 9 for 

future work and recommendations).

8. 3 W ater quality predictions o f  phosphorus (P) (ELCO M - 

CAEDYM  and TRIVAST):

In this section, the main differences in PO4 predictions between ELCOM-CAEDYM 

and TRIVAST are investigated. As mentioned earlier both models are based on 

different source and sink terms (see Chapter 4), and therefore potentially lead to
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different predictions. In general, more detailed processes are included in the P cycle in 

CAEDYM (see Table 4.1 in Chapter 4), while in TRIVAST less detailed processes 

are included. In this section the development model of TRTVAST will be investigated, 

which includes PO4 adsorption effects. Due to limited data, the investigations were 

carried only out for the Bay, and during the summer months.

8. 3.1 Model setup and prediction results:

In modelling P in the Bay, settings similar to those of Chapter 7 were utilised (see 

section 7.3.2, Table 7.5) and both models had the same forcing boundary conditions. 

It is worth mentioning that other detailed parameters related to P in CAEDYM were 

not included in TRIVAST (see Table 7.5 in Chapter 7). In this investigation Z1 was 

considered, which is located in the northern area of the Bay, as shown in Figure 8.4.

As can be seen in Figure 8.7, good predictions were achieved in both models. 

However, more accurate predictions were achieved with TRIVAST than with 

ELCOM-CAEDYM, although the ELCOM-CAEDYM predictions were smoother. 

TRIVAST predictions were particularly accurate during July 2005 when most 

adsorption occurred. Furthermore, ELCOM-CAEDYM predictions show an increase 

of at least 0.004 mg/1 in PO4 compared to TRTVAST for the same period. An 

explanation of such predictions will be given in the following section.
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Figure 8.7: C om parison of P 0 4 predictions b e tw een  ELCOM-CAEDYM and  

TRIVAST using the m easu red  data from the su m m er of 2 0 0 5  at Z1

8. 3. 2 Discussion:

Although ELCOM-CAEDYM is more a sophisticated model (see Chapter 4 for more 

details), TRIVAST predictions were more accurate in representing the measured data 

at Z1 for the summer o f 2005. This does not necessarily indicate that ELCOM- 

CAEDYM is a less reliable model in such conditions due to the following:

• The developed TRIVAST model, suggests that most P 0 4 reduction occurred

due to adsorption processes. In ELCOM -CAEDYM , additional sources 

increased the P 0 4 predictions rose from organic matter and the P 0 4 sediment 

flux which is a function o f temperature, DO and pH. Such processes are not 

modelled in TRIVAST. Therefore, detailed water quality data is crucial to 

identifying the most suitable model for studying the Bay.

• The representation o f the biological uptake o f P 0 4 in TRIVAST is

summarised in three parameters (see equation 4.39 in Chapter 4), where as in

ELCOM-CAEDYM more than three terms are involved in such 

representations. This includes nutrient representations in each algal group (see
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Table 7.5), which leads to an explanation for detailed processes (e.g. limiting 

nutrients, nutrient increases etc).

• Similar to the explanation given in the previous section, TRIVAST does not 

include surface thermodynamic effects, which normally lead to high 

temperatures rising from solar radiation. In terms of water quality, such effects 

would increase respiration and mortality rates and consequently increase PO4 

through mineralisation processes of organic matter, as in the ELCOM- 

CAEDYM predictions (see Figure 8.7).

In terms of the computational aspects of both models, TRTVAST is a relatively faster 

model than ELCOM-CAEDYM. As for the predictions shown in Figure 8.7, a time of 

approximately 6 days was needed to complete the simulation using TRTVAST, while 

roughly 19 days were needed in a typical ELCOM-CAEDYM test. Consequently, a 

smaller computational memory is needed when using TRIVAST (typically around 2 

GB), compared to ELCOM-CAEDYM (more than 20 GB). This is mainly due to the 

sophisticated modelling processes included in CAEDYM.

Similar to hydrodynamic modelling, in water quality modelling it is important to 

understand the fundamental chemical and biological background of the intended 

modelling region. Based on this requirement, the modeller should consider which is 

the best model to utilise for the relevant case. As shown in this chapter, TRIVAST is a 

relatively good model to consider for the Gulf and, in particular, for the Bay. 

However, for sophisticated physical, chemical and biological case studies, ELCOM- 

CAEDYM is a better option. Unlike sophisticated models, such as ELCOM-
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CAEDYM, simpler models, such as TRJVAST, are often computationally less 

expensive.

8. 4 Summary:

Although most models are based on solving similar set of governing equations, 

different results may be achieved based on the techniques used to solve theses 

equations. In this chapter the main differences between TRIVAST and ELCOM- 

CAEDYM have been investigated by means of comparing hydrodynamic and water 

quality predictions (PO4). The study was implemented for the Gulf and in the Bay, 

and in general both models show acceptable results. The hydrodynamic results of both 

models showed that the effects of gravitational potential, included in ELCOM, give 

good predictions in relatively large water bodies such as the Gulf. In addition, 

thermodynamics is an important factor to include when considering warm seasons in 

large water bodies such as the Gulf. Such an effect is not so significant in the Bay, 

due to the structure being well mixed throughout the year. Hence, TRJVAST is the 

equally reliable in smaller and less stratified water bodies.

In terms of water quality, PO4 was taken into consideration in the Bay. Again both 

models gave good predictions during the summer, however, better predictions were 

achieved by TRIVAST due to adsorption representations in the model. In ELCOM- 

CAEDYM, additional sources have over estimated the PO4 concentrations in this 

model. This leads to the fact that adsorption processes are an important factor when 

considering PO4 fluxes in the Bay. In addition, detailed water quality data is a crucial 

factor that enables the selection of an appropriate model. Computationally, ELCOM- 

CAEDYM has been shown to be a more expensive model -computationally- due to
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the detailed water quality parameterisation involved, as well as the larger range of 

parameters and processes.
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Conclusion and Recommendations

9.1 Sum m ary and conclusions:

Estuaries and coastal areas are generally considered to be highly productive systems, 

as they frequently contain reasonable amounts of algae, phytoplankton and sea grass 

biomass. Thus, they normally support large bird and fish populations, which are 

essential for the community. This high population of living plants and animals implies 

that the biota and seabed sediments embody important nutrient pools that are 

necessary for the productivity of estuaries and coastal areas and these are mainly 

controlled by the water flow. Therefore, the hydrodynamics of such water bodies are 

an essential factor that provide a fundamental understanding of the water mixing 

processes and the accumulation of biodiversity. Unlike rivers, estuaries and coastal 

areas seas are more complex systems, since the flow is usually driven by the slope of 

the water surface, wind stresses and also internal density variations that may exist in 

some rivers, however, oscillating flow adds a further complexity to the coastal 

system.

In this study, the Arabian Gulf and Kuwait Bay were considered for further 

investigations and an analysis of the physical and chemical aspects of these water 

bodies were undertaken by means of numerical modelling. The Gulf is a relatively 

shallow semi-enclosed water body located in the Middle East, which is detached from 

the Gulf of Oman by the Strait of Hormuz. The Bay is an elliptically shaped 

embayment that extends in a westward direction from the extreme north of the Gulf.

In recent decades, and especially during the last few years, coastal developments in 

the Gulf countries have accelerated enormously, due to the major increase in oil 

related income and economic diversification schemes. The rapid expansion of
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industrial complexes, an exceptional rise in private real estate investment, tourism and 

service industries, including high birth rates and the entry of foreign labour, 

accompanied by prospering economies, have all resulted in a massive human 

population growth along the Gulfs coastal waters. Such effects have raised concerns 

in the Gulf countries about the marine ecology, since the coastal zone serves as a 

resource for fishing, recreation, urban development, oil transportation and perhaps, 

most importantly, a major source of fresh water via desalination plants. Furthermore, 

natural phenomenal issues related to climate change have been considered to act as a 

source of pollution that includes flash floods and dust storms and perhaps requires 

further scientific investigation. This has all led to numerous environmental issues in 

the region, with one of most frequent being eutrophication and red tides, mainly due 

to nutrient increases.

Recently, numerical models have been widely used to resolve many hydro- 

environmental issues related to anthropogenic activities and waterfront developments 

such as those found in the Gulf, such as Dubai in the United Arab Emirates. 

Furthermore, they play an important role in a number of political and economical 

fields by means of decision-making. Numerical models are based upon fundamental 

physical, chemical, and biological principles that illustrate the spatial and temporal 

variations of a marine system. Due to the environmental complexity of estuaries, and 

to a lesser extent computational cost, there has been no such model, or what may 

possibly be called a ‘Global Model’, able to present all of the key physical and 

chemical aspects of all estuaries. Therefore, numerical models attempt to integrate 

only those aspects of the problem that are most relevant. Otherwise, further 

developments to models are essential in tackling a particular problem.
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The main conclusions and outcomes achieved in this study in modelling the Gulf and 

Bay, can be summarised as follows:

• Dispersion processes are of fundamental importance to marine life in the Gulf, 

which are affected by extensive anthropogenic activities. Traditionally, the 

Gulf countries have relied on the dispersion of effluents once they entered 

coastal waters so that, once diluted, biological breakdown renders them 

harmless. However, such practices have been extensively used and have led to 

various environmental impacts in the region. Therefore, the main goal 

achieved in this study is determining the geographic dispersion of numerical 

tracers and flushing characteristics, in terms of residence time, of the Gulf. 

That, in turn, has provided a crucial guide for new engineering developments. 

This was achieved by incorporating ELCOM and most importantly, validating 

the model using 1992 Mt Mitchell data from the summer and winter. 

Excellent model validation was achieved and utilised to conduct various 

sensitivity analyses on the forcing boundaries, in particular winds and tides. 

The study has revealed that dispersion of numerical tracers is chiefly 

controlled by tides. Winds had limited effects on dispersing the numerical 

tracers in the Gulf, particularly during the summer. The highest dispersion 

coefficient was calculated near Qatar during the early stages of tracer injection 

in the winter (141 m2/s), in which coastal areas have enhanced tracer 

spreading due to shear effects. The horizontal dispersion of other tracers in the 

estuary varied from 60 to 90 m2/s, which were mainly affected by shear forces 

produced by tides. Although, such results were based on the 1992 forcing data, 

dispersion coefficients obtained in this study can be considered as typical
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values for the Gulf, since wind did not affect the results significantly. 

Therefore, applying 2011 forcing data, for example, would give similar 

results.

• Residence times are generally measures used to calculate the retention time of 

water or scalar quantities transported by water. In the Gulf such measures are 

of particular importance in understanding the formation and accumulation of 

biodiversity. The residence time in the Gulf was calculated to be almost 3 

years using ELCOM. The residence time being the longest for the waters 

along the Arabian, vis-a-vis the Iranian, coast of the Gulf. In particular, near 

Kuwait Bay, Qatar and the UAE coast the residence times values reached 858 

days. Obviously the residence time near the Strait of Hormuz was lowest (2 

days) due to the open boundary effects in the region.

• Water flow is an essential mechanism that controls a major amount of the 

variability of water quality in estuaries [McCutcheon, 1989]. Any fundamental 

study of water quality including modelling studies, requires a knowledge of 

the circulation patterns of the water mass within the basin. In practical terms, 

the first step in any water quality modelling investigation is to determine 

‘where the water departs’ and how water circulation affects the accumulation 

of suspended and dissolved materials. Hence, Kuwait Bay was investigated in 

terms of hydrodynamics using ELCOM before conducting water quality 

modelling studies. The model was first validated with the 2005 measured data 

for water levels, velocity and velocity direction, obtained from KISR. Similar 

to the Gulf, investigations showed that the Bay is chiefly driven by tides and 

to a lesser extent by winds, particularly near coastal regions. Simulations have 

shown the water velocity to be highest near the mouth of the Bay, typically 0.8
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m/s during flood tides, which create a fairly mixed structure throughout the 

year, while low velocity fields were obvious in the coastal areas of the Bay, 

particularly at Sulaibikhst Bay (typically 0.1 m/s). Detailed studies of the 

temperature, using the same model, showed that temperature varied seasonally 

in the Bay with the highest value being predicted during the summer with 34 

°C and the lowest during the winter with 15 °C. Furthermore, stratification 

was slightly raised near coastal regions during the summer due to the heat 

from solar radiation effects. In terms of salinity, investigations have shown 

that the Shatt A1 Arab has an apparent effect on the Bay’s salinity, particularly 

in the northern areas, while desalination plants have local effects such as at the 

A1 Doha desalination station.

• Studies using tracer injection at the mouth of the Bay showed that the 

circulation of the Bay is characterised mainly by two gyres produced by tides; 

the first is slightly larger than the second and acts in a clockwise direction, 

while the second acts in a counter clockwise direction. Such forces are mainly 

responsible for the mixing process in the main channel of the Bay, while wind 

effects are predominant in the far north of the Bay and in the southern areas 

near Sulaibikhat Bay. The maximum residence time of the Bay was calculated 

to be 57 days near al Jahra using ELCOM. Such studies provided important 

information for water quality modelling.

• Water quality represents the physical, chemical, and biological characteristics 

of water and measures the capability of a marine system to sustain its 

beneficial use to society. For the Bay water quality parameters were 

investigated using ELCOM-CAEDYM and TRJVAST. ELCOM-CAEDYM 

was used to predict DO, NH4, NO3 and PO4 during 2005. In general, good
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agreement was obtained between the model results and the model showed 

reasonable agreement with the measured data.

• DO predictions varied seasonally, with the highest values achieved during the 

winter 8.5 mg/1 and the lowest during the summer 5.8 mg/1. High DO is 

attributed to the fresh water input from the open boundary (mainly from the 

Shatt A1 Arab). While low DO concentrations during the summer are mainly 

due to biological respiration and mineralisation processes. N levels in the Bay 

are mainly supplied from the open boundary and have been shown to be in 

sufficient levels for biological activity. NH4  concentrations generally ranged 

from 0.02 to 0.12 mg/1 throughout 2005 with the highest values occurring 

during the winter. Similarly, NO3 values ranged from 0.02 to 0.14 mg/1. PO4 

predictions have agreed reasonably well with the measured data during the 

winter, but were less accurate during the summer. Unlike N, PO4 levels did not 

show large temporal variations during 2005 but did have noticeable spatial 

variations. PO4 levels had comparatively lower concentrations than N, which 

ranged from 0.023 to 0.03 mg/1 in the middle of the Bay. Such results implied 

that PO4 is the main the limiting nutrient for biological activity for during 

most of the year.

• Investigations on the main contributors to PO4 levels show that most PO4 

entered the Bay from the Gulf, while anthropogenic activities had similar 

contributions. OP was found to have larger concentrations than PO4 and 

therefore the mineralisation rate was an important factor when considering 

PO4 modelling in the Bay.

• The main model developments were undertaken on the PO4 source and sink 

terms in TRIVAST. Such developments were associated with PO4 sorption
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processes to sediment particles. Seasonal predictions from the developed 

model (TRIVAST) showed that the adsorption of PO4 had a critical influence 

on the removal of PO4 from the Bay during the summer, which supported PO4 

to be the limiting nutrient, particularly during high suspended sediment level 

events. Therefore, such developments gave crucial understanding to the 

phosphorus behaviour in the Bay.

• Although model developments of phosphorus adsorption were based on 

experimental work conducted on sediments obtained for the Loughor Estuary, 

U.K., it was found that such effects could successfully be applied to analysing 

the phosphorus-sediment interaction behaviour in Kuwait Bay.

• As mentioned earlier, numerical models do not purport to represent all the 

features of an actual complex marine environment, but merely attempt to 

integrate only those aspects of the problem that are most relevant. In this study 

two models were considered, ELCOM-CAEDYM and TRIVAST, which have 

various and notable dissimilarities in their numerical aspects based on solving 

the governing equations. Investigations into the model differences were 

undertaken by conducting various hydrodynamic and water quality analyses in 

the Gulf and the Bay. Due to limited data the Gulf was only investigated in 

terms of the hydrodynamics. In general, the study showed that better 

predictions were achieved using ELCOM than TRTVAST in the Gulf and Bay. 

This was due to the additional term of tidal forces that were calculated from 

the gravitational potential in ELCOM. It is crucial when modelling such long 

domains to consider such forces in the model. In comparison, such effects 

have been shown to be minor in the Bay predictions using ELCOM, leading to 

very similar predictions in both models. PO4 predictions in ELCOM-
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CAEDYM and TRTVAST showed that adsorption processes of PO4 are a vital 

factor to consider when modelling PO4 in the Bay. This was apparent in the 

prediction of the developed model TRIVAST in which a reasonable amount of 

PO4 was removed from the Bay waters through adsorption to SS.

9.2 Recom m endations for further study:

This research project has led to several key conclusions and the outcome of the work 

has also led to a number of primary recommendations for additional study. These 

recommendations can be summarised as follows:

• Although good results were achieved in identifying the dispersion coefficient 

in the Gulf, it is worth investigating and comparing the results with actual dye 

release studies, such as those conducted by Hetling and O ’Connell, [1966].

• In modelling the Bay it is necessary to include the new fresh water input, 

originating from the Shatt A1 Arab, in the modelling domain as it appears to 

have apparent effects on the water salinity. Hence, obtaining detailed data of 

the various physical water parameters of fresh water inflow are essential for 

accurate Bay modelling studies.

• As for the hydrodynamic studies, when considering water quality modelling 

studies in the Bay, it is important to include the Shatt A1 Arab in the modelling 

domain, as it appears to have a direct effect on nutrient levels, in particular N. 

This would also need detailed data for the modelling applications of various 

water quality parameters originating from upstream of the Euphrates and 

Tigris rivers.

• Due to the high level of organic matter in the Bay, further investigation on the 

mineralisation rate of organic matter would be highly beneficial in terms of
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understanding the amount of nutrients rising from this source. Several studies 

have suggested that factors such as DO and temperature have a direct 

influence on the mineralisation rate [Middelbrug et a l, 1993], and therefore 

should be further investigated when modelling the Bay.

• Obtaining detailed data of various water quality parameters originating from 

wastewater outfalls have crucial implications in understanding the 

accumulation of nutrients in the southern areas of the Bay, and consequently 

would give a better understanding o f the ecological composition and variations 

within the Bay. In terms of modelling, this would allow further refinements to 

the ecological aspects of the models.

• The position of phytoplankton in the food web, and the undesirable effects of 

phytoplankton blooms on the water quality and biota of coastal seas denote 

that understanding their dynamics is crucial in managing eutrophication 

[.Paerl, 1988; Reynolds et a l, 2000]. Therefore, detailed data and further 

investigation of phytoplankton is an essential requirement to understanding 

eutrophication in the Gulf and Bay.

• Mathematical representations o f atmospheric deposition of dust/sand particles 

should be taken into consideration when modelling PO4 in the Bay, in 

particular when studying adsorption processes in the Bay.

• Suspended sediment data originating from the Shatt Al Arab has crucial 

importance when studying sorption processes in the Bay, with detailed data, 

including SS levels from wastewater outfall, providing improved information 

for more accurate model applications.

• Similar to PO4, N has a sorption capacity to SS [Ji, 2008], however, this was 

not studied in the Bay. Further investigations and model refinements on
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sorption processes, similar to PO4, would give a better understanding to N 

levels in the Bay particularly during high SS events.

•  Although the grid used in modelling the Bay was 150 m and showed relatively 

good results, it is worth reducing the grid resolution to include the mud flats of 

the Bay, since such areas can possibly act as a nutrient source arising from 

sediment-water interactions [Abdel Aziz, 1997; Al-Zaidan et al, 2006].

•  Due to frequent dust storms, further investigations should be carried out on the 

dry sediment chemical composition in order to investigate the dominant 

nutrient sources for the estuary arising from this phenomenon, and therefore 

allowing for further refinements to the model.

•  The inclusion of thermodynamic effects and better tidal force representations 

in the TRIVAST model is an important required refinement, particularly for 

modelling partially stratified long estuaries or coastal seas, such as the Gulf 

during summer months.
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[i] The assimilative capacities of estuaries and coastal seas for effluent discharges are 
predominantly determined by the rates at which pollutant-bearing effluents are first 
dispersed and then flushed from the coastal region into the open ocean. The dispersion 
coefficients and flushing, as measured by the water residence time in the Persian Gulf 
(Arabian Gulf), were investigated using the three-dimensional numerical model 
Estuary, Lake and Coastal Ocean Model (ELCOM). The model was first validated 
using die R/V Mt. Mitchell expedition profile data, collected from 27 January to 26 February 
1992 and from 13 May to 12 June 1992. The validated model was then used to compute the 
geographic variability of the horizontal dispersion coefficients Kx throughout the gulf.
Model results revealed that dispersion was principally driven by the shear associated with the 
tides, but along the Arabian coast, wind was an additional significant energy source for 
dispersion. The water residence time was found to be more than 3 years along the Arabian 
coast, but shorter along the Iranian coast.
Citation: Alosairi, Y., J. Imberger, and R. A. Falconer (2011), Mixing and flushing in the Persian Gulf (Arabian Gulf), 
J. Geophys. Res., 116, C03029, doi:10.1029/2010JC006769.

1. Introduction
[2] The Persian Gulf (Arabian Gulf, hereinafter called the 

gulf), shown in Figure 1, is a relatively shallow coastal 
basinthat extends between 22° and 30° north and between 
48° and 56° east and is surrounded by eight countries, 
namely: Kuwait, Saudi Arabia, Bahrain, Qatar, United Arab 
Emirates, Oman, Iran and Iraq. The gulf has a maximum 
width of 338 km, a length of about 1000 km, a mean depth 
of 36 m and a volume o f around 900 km3. It is separated 
from the Gulf o f Oman by the Strait o f Hormuz which, at its 
narrowest point is only 56 km wide. From the strait seaward 
toward the Indian Ocean the depth gradually increases from 
100 m to 2000 m. River inflows occur mostly in the 
northern end o f the gulf, primarily on the Iranian side, with 
the largest being the Shatt Al Arab-a river formed by 
convergence o f the Tigris, Euphrates, and Karun rivers 
(Figure 1). This river has an average annual flow o f  around 
1456 m3/s. Other key rivers are the Hendijan (203 m3/s), 
the Hilleh (444 m3/s), and the Mand (1387 m3/s) (see 
Figure 1) [Reynolds, 1993].

[3] The gulf is generally bowl-shaped, with very shallow 
depths along the Arabian coastline, with particularly shallow 
waters occurring around the western coastline adjacent to 
Kuwait, Qatar, and United Arab Emirates, ranging from 10 
to 15 m. Rapid coastal development in these gulf countries 
has caused considerable ecological stress in the shallow
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2Centre for Water Research, University of Western Australia, Crawley, 
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coastal regions, with increasing levels o f effluent discharges 
from oil production, exploration and transportation, as well 
as from municipal and petrochemical activities, and red tides 
having been noted along various parts of the Arabian coast 
[Richlen et a l ,  2010],

[4 ] Traditionally, coastal communities have relied on 
dispersion o f effluents once they entered coastal waters so 
that, once diluted, biological breakdown has rendered them 
harmless. Here we define the “assimilative capacity” as that 
loading, which properly dispersed throughout the receiving 
domain, can be rendered harmless without jeopardizing the 
health o f the ecosystem. Clearly, three distinct sets o f pro
cesses combine to determine whether a domain has the 
assimilative capacity to accept an additional effluent load
ing. First, the near and intermediate rates o f dispersal must 
be sufficiently fast to dilute the effluent to a level suffi
ciently low, that when added to the background concentra
tion, it does not kill components o f the ecosystem impacting 
on the functioning o f the ecosystem [Imberger et al., 2007]. 
Second, the transport or flushing must remove the by
products o f the effluent breakdown processes sufficiently 
rapidly such that there is no long-term build up in the 
domain as a whole. In simple terms the flushing must prevent 
the domain from filling up with harmful products, implying 
that the criterion o f whether a discharge is acceptable or not 
may depend on an event in the future. Third, the ecosystem 
must have the biochemical capacity necessary to ensure the 
breakdown o f those pollutants that may be harmful to the rest 
of the original food chain. In the present paper we concern 
ourselves with only the first two, the physics of dispersion 
and flushing in the gulf. In particular, our objective is to 
determine the geographic dispersion and flushing char
acteristics o f  the gulf, in terms of residence time, to provide
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Figure 1. Persian Gulf (Arabian Gulf) physical characteris
tics. Source: National Geophysical Data Centre (http://www. 
ngdc.noaa.gov).

a guide for new engineering developments and their envi
ronmental management.

2. Horizontal Dispersion Mechanisms
2.1. Mixing Regimes

[5] Dispersion is achieved by the following three 
mechanisms [F ischer e t a l., 1979]:

[6] 1. Turbulent near field dispersion, where the disper
sion is energized by the turbulent kinetic energy from the 
discharge itself.

[7] 2. The region following the near field, called the 
intermediate field, where the mixing switches from being 
discharge energized to mixing that is energized by the tur
bulence of the ambient fluid flow. When the effluent density 
differs from that of the receiving water, the intermediate 
region can be quite significant in extent because the added 
buoyancy must be overcome by energy from the receiving 
water flow.

[8] 3. The far field, where the pollutant is dispersed by 
mechanisms inherent in the ambient flow conditions.

2.2. Far Field Mixing
2.2.1. Turbulent Dispersion

[9] After initial dispersion in the near field, effluents 
disperse by turbulent mixing until the effluent cloud has 
reached a size comparable to the scale o f the velocity field. 
Once it is as large as the scale of the shear, the mean 
background velocity field distorts the effluent cloud and 
shear and transverse mixing combine to yield an enhanced 
dispersion (see section 2.2.2). For effluent clouds smaller 
than the scale of the background shear, turbulence disperses 
the effluent cloud and R ich a rd so n  [1926] showed that 
the dispersion may be modeled by the “4/3 law,” which 
accounts for the rate of increase of dispersion as the effluent 
cloud intersects ever increasing scales o f turbulence as the 
cloud grows.
2.2.2. Shear Dispersion

[10] Longitudinal shear dispersion occurs when the dis
tortion of a concentration field by a vertical or horizontal

shear flow is balanced by vertical or transverse turbulent 
mixing [F isch er e t a l., 1979]. Once balance is achieved the 
rate o f dispersion may be modeled [see F isch er  e t a l., 1979] 
by a simple diffusion equation with a horizontal dispersion 
coefficient

Here 0  is a constant dependent on the velocity and trans
verse diffusivity profile, / is the length scale of the velocity 
straining the concentration field, U  is the velocity scale and 
K z is the vertical diffusivity. As demonstrated by F isc h e r  
e t  al. [1979] for a simple plane flow with a vertical turbu
lent velocity profile, I =  h, where h is the depth, U  is the 
discharge velocity, and K z =  0.07hU *, where U* is the 
bottom shear velocity. By contrast, in a wide river with a 
transverse velocity profile, I becomes the width of the 
channel and U  is the discharge velocity. The coefficient 0 
depends on the vertical structure of the velocity and diffu
sivity. For constant diffusivity, F isch er e t al. [1979] showed 
that 0  =  0.008 for a linear velocity profile and B o w d e n  
[1965] showed that 0  =  0.001 for a logarithmic profile 
resulting from bottom friction, 0  = 0.019 for the density 
current profile, and 0  = 0.005-0.008 for wind drift profiles.

[11] Clearly, dispersion due to the balance of transverse 
mixing and longitudinal straining will always be much 
larger than that due to vertical mixing in shallow estuaries. 
However, the validity o f this statement depends on the time 
available for mixing. It is well known [see F isc h e r  e t  a l., 
1979] that a balance between distortion due to velocity 
shear and that due to transverse mixing can be achieved only 
after there has been sufficient time for transverse mixing to
take place, a time o f where K  is the horizontal (or
vertical) diffusion coefficient. Shear dispersion via vertical 
shear with, typically a depth o f 10 m and a vertical diffusion 
coefficient o f around 10-4 m2/s leads to a set up time 0(12) 
days and a horizontal dispersion coefficient of around 6 m2/s, 
assuming a value o f 0  = 0.01 and U =  0.025 m/s. If the water 
velocity is around 0.5 m/s, then shear dispersion would 
become relevant only after 500 km, which is already half of 
the studied domain. By contrast, if we assume a coastal cur
rent with a transverse scale of 1 km and a transverse diffusion 
coefficient o f 1 m2/s, then the horizontal dispersion coeffi
cient for transverse mixing and longitudinal strain balance 
would be around 2500 m2/s and the time required to reach 
such a balance would again be 0(12) days. So we see that the 
larger the length scale, the larger the horizontal dispersion. 
However, again the distance required for this estimate to 
become valid would be comparable to, or larger than, the 
dimensions o f the gulf itself [L ew is, 1997; D o o le y  a n d  S teele , 
1969],

[12] Dispersion o f a coastal effluent discharge occurs in 
several stages. First, in the near field the mean kinetic 
energy o f the discharge generates turbulence that mixes or 
stirs die discharge into the receiving water. Second, in the 
absence o f a buoyancy flux the diluted effluent is mixed 
with the receiving water turbulence until the cloud reaches a 
scale comparable to the scale o f the ambient velocity field. 
Once this happens the mean velocity shear distorts the 
cloud, rather than simply transporting it, and this distortion
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Figure 2. Initial condition configurations o f temperature and salinity in ELCOM during winter and 
summer.

may interact with the ambient turbulent mixing to produce 
shear dispersion and/or stagnation point dispersion as with 
O kely  e t al. [2010], or it may interact with particular kine
matic flow forms to produce kinematic chaos or ghost rod 
dispersion [Aref, 1984; S to c k er  a n d  Im b e rg e r , 2003; 
B oylan d  e t a l., 2000; N ew h o u se  a n d  P ig n a ta ro , 1993]. 
Although the last three forms o f dispersion were not spe
cifically investigated in the present study, as this would 
require an extensive field survey to identify individual 
processes, it is likely that each contributes to the dispersion 
evaluated numerically with the 3-D model.

[13] Here we first validate a 3-D model o f the flow dis
persion in the gulf by showing that the model reproduces the 
dispersion o f the salinity field originating from the Strait o f 
Hormuz and river inflows. The salinity differences were low 
enough not to influence the buoyancy, with salinity acting 
simply as a tracer in the upper reaches o f the gulf. Once 
validated, the 3-D model was used to ascertain the degree o f 
dispersion o f tracers as a function of geographic location, 
the processes sustaining the simulated dispersion and the net 
flushing or residence time resulting from this dispersion.

3. ELCOM
3.1. Brief Description of Model

[14] The Estuary Lake Coastal Ocean Model (ELCOM) 
applied to the gulf solves the 3-D, hydrostatic, Boussinesq, 
Reynolds-averaged Navier-Stokes, and scalar transport 
equations, to model velocity, temperature and salinity dis
tributions in space and time [.H o d g es e t  a l., 2000]. The 
model utilizes a fixed, Z coordinate finite difference mesh 
with Euler-Lagrangian approach for momentum advection, 
Ultimate-Quickest scheme for advection of scalars and a 
kinematic boundary condition for the free surface evolution 
[C a su lli  a n d  C h e n g , 1992; L e o n a r d , 1991; C a s u l l i  a n d  
C attan i, 1994]. Scalars and momentum are mixed verti
cally according to the excess of turbulent kinetic energy 
available from wind stirring and shear production through
out the water column over the potential energy inherent in 
the ambient stratification [S p ig e l e t a l., 1986; L a v a l  e t  a l.,  
2003]. A new component to allow for tidal generation as a 
body force was incorporated in the model, necessary 
because of the relatively long length of the gulf, associated

with a lunar semidiurnal tidal response and its effect in 
d ispersing  tracers. Follow ing C a r tw r ig h t  a n d  T a y le r  
[1971], tidal forces were calculated from the gravitational 
potential and included in the momentum-transport equation 
in ELCOM.

3.2. M odel Setup
[15] The modeling approach adopted in this study 

involved a uniform grid of 5000 m in both X and Y direc
tions. Twenty layers in the Z direction at increments of 4 m 
for the first top 11 layers and 4.5 m for the remaining layers 
were adopted leading to a total of 104,056 wet cells dis
cretizing the domain, and a Neumann boundary condition 
was applied at the open boundary. A computational time 
step o f 300 s was utilized in the model. The bathymetric 
information was obtained from a map digitiser at the Hydro- 
Environmental Research Centre o f Cardiff University 
that interpolated the depth at each grid point from a map 
obtained from the United Kingdom Hydrographic Office. 
The sea surface elevation due to semidiurnal tide is pre
scribed at the open boundary at the Strait of Hormuz using 
the KGULF model developed by Al-Salem (Kuwait Institute 
o f  Scientific Research, 2009) for the 1992 period (available 
on Coastal Information System www.hceatkuwait.net). The 
salinity and temperature data acquired by the R/V M t. 
M itc h e ll cruise [R eyn o lds, 1993] were used as initial con
ditions for the model. Also, temperature-salinity data gath
ered in a recent study in the southern part o f the gulf 
[E lsh o rb a g y  e t  a l., 2006] were used to define three main 
subdomains for the model initial conditions, as shown in 
Figure 2. Discharges from the rivers were assumed to 
remain constant throughout the simulation, based on the 
values given by R e yn o ld s  [1993], and as explained in the 
introduction. Horizontal diffusivity, k , is an input param
eter in Estuary, Lake and Coastal Ocean Model (ELCOM) 
representing turbulent sub grid diffusion in the model 
transport equations (more details provided by H o d g es  e t al. 
[2000]) and was set to 1 m2/s, but the effect of 5 and 10 m2/s 
on the horizontal dispersion of numerical tracers was also 
investigated, as described in section 5 and discussed in 
section 6. A bottom drag coefficient o f0.005 was assigned to 
the whole domain to take account of bed friction. A light 
extinction coefficient of 0.25 was used for light attenuation.
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Figure 3. Winter meteorological conditions.

Meteorological forcing, shown in Figures 3 and 4, was 
applied at 8 m above sea level.

4. M odel V alidation  U sing 1992 F ield  D a ta  

4.1. Meteorological Data
[i6] Meteorological effects over the estuary during 1992 

were included in the model and were obtained from the 
Dubai Meteorological Services (DMS), located at the far 
south of the gulf in Dubai and the Kuwait Institute for 
Scientific Research (KISR), located at the far north o f the 
gulf, near Kuwait Bay. The differences in meteorological 
parameters outlined in Figures 3 and 4 between the stations

were insignificant from 27 January to 26 February 1992 and 
from 13 May to 7 June 1992, in particular for wind speeds 
as shown in Figures 5 and 6. Not surprisingly, other para
meters such as air temperature are seen to vary seasonally at 
both stations, with values ranging from 15 to 40°C in winter 
and summer, respectively. Humidity variations were similar 
to air temperature variations, but in the opposite sense (see 
Figures 3 and 4) at both stations. Records o f solar radiation 
at both stations showed the same maximum mean values of 
550 w/m2 during January and February 1992 and 900 w/m2 
during May and June 1992, probably as a result of the 
similar geographic locations of the two stations. KISR data 
for 1992 (Figures 3 and 4) were assumed to be adequate for
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our study, as minor differences in meteorological parameters 
do not have a great influence on the water dynamics o f 
the gulf, which are driven chiefly by the tides [.E lsh o rb a g y  
e t a l., 2006; R eyn olds, 1993J.

4.2. Salinity and Temperature in the Gulf
[17] In late 1991 a joint monitoring program was set up by 

the Regional Organization for the Protection o f the Marine 
Environment (ROPME), the Intergovernmental Oceano
graphic Commission (IOC) and the National Oceanic and 
Atmospheric Administration (NOAA) with a vessel sup
plied by NOAA. A broad, multidisciplinary survey was 
carried out over six periods for 100 days between February

and June 1992, the relevant results being shown in Figures 7 
and 8 [R eyn o ld s , 1992a, 1992b, 1993].

[18] During winter the water column was well mixed 
vertically to a depth of about 70 m (Figure 7a) and both the 
temperature and salinity varied gradually along the gulf 
between Kuwait and the Strait of Hormuz, in which the 
temperature increased and the salinity decreased toward the 
strait. Together these variations resulted in a density differ
ence o f about 2 kg/m3 over a distance of 500 km (Figure 7a, 
bottom). In summer, the surface mixing penetrated to a depth 
o f only about 30 m and the 25°C isotherm (Figure 7b, top) 
was almost horizontal over the whole domain. More saline 
and cooler water was observed (Figure 7b, middle), its 
location between 100 and 700 km southeast Kuwait, sug-

S  50--  50-

Saimity psuSalinity psu

Density kg/m3Density kg/m3

Figure 7. (a) Vertical variation o f temperature, salinity, and density along the gulf (from the Strait of 
Hormuz to Kuwait) during winter; starting 26 February 1992 [R eyn o ld s , 1993]. (b) Vertical variation 
of temperature, salinity, and density along the gulf (from the Strait of Hormuz to Kuwait) during summer; 
starting 12 June 1992 [R eyn o lds, 1993].
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February 1992 [Reynolds, 1993], and (b) summer, starting 12 June 1992 [Reynolds, 1993].
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Figure 9. (a) Simulated vertical variation o f temperature, salinity, and density along the gulf (from the 
Strait o f Hormuz to Kuwait) during winter (1992). (b) Field data variation of temperature, salinity, and 
density along the gulf (from the Strait o f Hormuz to Kuwait) during winter (1992).
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Figure 10. (a) Simulated vertical variation o f temperature, salinity, and density along the gulf (from the 
Strait of Hormuz to Kuwait) during summer (1992). (b) Field data variation o f temperature, salinity, and 
density along the gulf (from the Strait o f  Hormuz to Kuwait) during summer (1992).

gesting an origin not in the Strait o f Hormuz, as the salinity 
maximum lies over 100 km away from the strait. Further
more, as seen from Figure 7b (bottom), the isopycnols 
showed a distinct slope downward toward the strait, the 
origin of this water column therefore most likely being the 
gulf perimeter, where evaporation over shallow water would 
increase salinity. The Strait o f Hormuz acts as a hydraulic 
control for the exchange between the Persian Gulf (Arabian 
Gulf) and the Gulf o f Oman, the upper layer o f fresher water 
transferring from the Gulf o f Oman to replace water lost by 
evaporation, and the lower, higher saline water exiting to 
complete the reverse estuarine circulation [Reynolds, 1993]. 
More details o f the temperature, salinity and density cross 
sections across the estuary between Kuwait and Iran, Qatar 
and Iran, and across the Strait o f Hormuz are given by 
Reynolds [1993]. The surface inflow from the Gulf o f Oman 
into the Persian Gulf (Arabian Gulf) occurs year-round, but 
extends deeper along the northern boundary into the gulf in 
the summer, as seen in Figures 7 and 8.

[19] River inflows do not contribute significantly to the 
water structure in the gulf, but local effects are apparent 
during both seasons, particularly during winter at Shatt Al 
Arab, north of the gulf (Figure 8). In addition, records show 
that precipitation during 1992 was very low in the gulf, so 
the relatively small fresh water inflow and the short period 
considered in this study (i.e., around 30 days each season) 
suggest that this is not likely to have had a significant 
impact on the dispersion mechanisms considered in this 
study.

4.3. Model Validation and Estimation of the Shear 
Scale

[20] The above information provided an excellent data set 
for the validation o f the model hydrodynamics and associ
ated dispersion. To optimize the test we carried out a 30 day 
simulation for both winter and summer configurations, with 
initial values as stated in Figure 2 (i.e., 13 May to 12 June 
1992 and 27 January to 26 February 1992). The simulations 
were required to model first the hydraulic control across the 
Strait o f Hormuz and fresh water input from the rivers, and 
then the dispersal o f the salinity across the gulf, as observed 
in Figures 7 and 8. Evaluation o f both temperature (mainly 
at the water surface) and salinity (mainly through the strait 
and rivers) provided the validation.

[21] The purpose o f  the validation simulations was to see 
whether ELCOM could reproduce the three-dimensional 
summer and winter temperature and salinity structures when 
forced with the data shown in Figures 3 and 4 and initialized 
with uniform water columns having values given as shown in 
Figure 2. The results from these simulations are shown here 
for the winter (Figures 9 and 11) and summer (Figures 10 and 
12) periods; the agreement between the simulation results and 
the field data are generally excellent (Figures 9-12).

[22] During winter, relatively fresh water entered the gulf 
through the Strait o f Hormuz, making its way to the com
paratively deeper Iranian coast. In contrast, higher water 
densities were noticed all around the basin, particularly 
around the area surrounding Qatar and the UAE (Figure 9a, 
bottom). These results support the predominant control o f
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Figure 11. (a) Simulated surface variation o f temperature and salinity o f the gulf during winter, (b) Field 
data of temperature and salinity o f the gulf during winter.

density by the salinity distribution (Figure 11a). This pattern 
is consistent with the broad circulation in the gulf where the 
Coriolis force deflects the surface inflow toward Iran and the 
subsurface outflow toward the Arabian coastline [Sultan 
et al., 1995]. The salinity increased from 36 psu near the 
strait to 41 psu near Kuwait (Figures 9a, middle and 11), 
while the temperature fell from 22 to approximately 14°C, 
as shown in Figures 9a (top) and 11, at the same location. In 
the shallower waters o f the gulf higher salinity levels are 
obvious, reaching 44 psu near the UAE coastal waters 
(Figure 11), resulting in an increase in the surface density 
and consequent vertical sinking (Figure 9a, bottom). This 
generally agreed with the findings o f Reynolds [1993]. The 
simulations revealed that the gulf water is mostly mixed 
vertically along its main axis during 1992 winter conditions.

[23] Summer simulations exposed a more stratified struc
ture in the estuary but with horizontal trends o f both tem
perature and salinity similar to those o f winter (Figures 10a, 
top and 10a, middle). A significant rise in water temperature 
of the estuary was evident parallel to the coastal areas o f the 
gulf, as indicated in Figures 10a (top) and 12, reaching 31°C 
near the UAE. This sharp rise in temperature was due to the 
continuous heat input through the air-sea interface as indi
cated in Figure 4, leading to a rather lower surface water 
density than winter, ranging between 24 and 30 kg/m3 
(Figure 10a, bottom). The contour plot in Figure 12 and the 
vertical plot in Figure 10 A imply that relatively cold, saline

and dense gulf water is found beneath the warmer, less 
saline and lighter surface inflow from the Gulf o f Oman.

[24] As for the collected data, fresh water inflow from 
rivers did not significantly affect the flow characteristics of 
the basin as a whole for both seasons, but local effects 
were apparent, particularly at the far north o f the gulf near 
Kuwait, where the Shatt Al Arab meets the hypersaline 
water (Figures 11 and 12). Also, during winter, at 650 km 
off the strait predictions in Figure 9a (middle) show salinity 
values (41 psu) lower than the summer 42 psu (Figure 10a, 
middle), suggesting that the river buoyancy effect is 
apparent in this region o f the gulf.

[25] The scale o f motion in the domain is shown in 
Figure 13, where the depth-averaged velocity o f the spring 
flood tide at the Strait o f Hormuz is depicted. Clearly the 
scale o f the velocity field is considerably larger than the 
grid resolution o f 5000 x 5000 m.

5. Geographic Distribution of Dispersion

5.1. Geographic Distribution of Dispersion Intensity
[26] Horizontal dispersion coefficients Kx were derived 

following Taylor [1954], Okubo [1971], and Lawrence et al. 
[1995] using

„ 1 a2 . 2  9̂0K x — ~ — and <r — —— .4 t 7.23
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Figure 12. (a) Simulated surface variation o f  temperature and salinity o f the gulf during summer, 
(b) Field data of temperature and salinity o f  the gulf during summer.

Here t is time (5, 20, and 40 days) and Ago is the horizontal 
area containing 90% of the tracer mass. The time for vertical 
mixing tv can be estimated by arranging the above equation 
to give

tv = A
4Kz

were introduced uniformly over the depth at various loca
tions as shown in Figure 14, namely at stations T6, T7, T8, 
and T9. It is worth mentioning that the initial size o f the 
patch was 5000 * 5000 m, which equates to the size of a 
grid cell. The length scale was obtained by calculating Agot 
7.23 using MATLAB, and the horizontal dispersion coef-

It is usual to assume that vertical mixing is complete when 
the standard deviation equates to 0.8/t [Lewis, 1997], where 
h is the total depth, and hence the mixing time is given by

(O. Sh)2 0.32h2 

U -  4K, '  Kz ■

For a well-mixed estuary, a typical value o f Kz would be 
0.01 m2/s [Lewis, 1997], so that for a water depth o f typi
cally 36 m deep, such as the gulf, the above equations imply 
that tv = 5.75 h for a complete mix scenario over the depth. 
Fischer etal. [1979] estimated the vertical mixing time scale 
to be

h2
tv  ~  10 K z  ‘

Using similar values of Kz in the above equation, tv is 
estimated to be 3.6 h.

[27] Horizontal dispersion coefficients were determined 
by observing the horizontal spread o f four numerical tracers 
and utilizing the above equations. The numerical tracers

158 316 652474

Velocity

0.5 m/s666 -

q 444
J

kM
20 30 100

Figure 13. Depth-averaged velocity for spring flood tide 
during winter 1992 at the Strait o f Hormuz.
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Figure 14. Tracer spread after 5, 20, and 40 days during summer and winter 1992, using meteorological 
effects from 18 January to 26 February for winter simulations and from 8 May to 12 June for summer 
simulations. Crosses indicate the release points.

ficient was calculated after 5, 20, and 40 days o f continuous 
tracer release, starting from the validation period as in 
Table 1.

[28] In general, higher values were apparent near the 
Arabian coast. The highest dispersion coefficient occurred 
during winter, with a value of 141 m2/s at T9, during the early 
days o f tracer release; similar values were achieved during 
summer. It is clear that even with higher horizontal diffu- 
sivities o f 5 and 10 m2/s, the dispersion coefficients remained 
almost the same as in Table 1. In the model validation section 
it was obvious that the effect of rivers was significant only 
locally, and buoyancy related to fresh water inflows would 
only be substantial in the long run. Hence the effect o f rivers 
may be neglected since all locations o f injections were far 
enough away from the fresh water inputs.

5.2. Residence Time
[29] Flushing time, age, and residence time are the com

monly used measures for calculating retention character
istics of water or scalar quantities transported by the flow.

B o yn to n  e t al. [1995] argued that the residence time is a 
vital element that should be the basis of comparative anal
yses o f ecosystem nutrient budgets. In practice, different 
approaches may lead to different time scales, even for the 
same domain [M onsen  e t a l., 2002],

[30] D ro n k e rs  a n d  Z im m erm an  [1982] defined the resi
dence time as the time taken for a whole water parcel to 
leave the lagoon through its outlet to the sea. In this study 
special attention was given to the residence time o f the water 
in the whole estuary, since flushing time is an integrative 
system measure, whereas both residence time and age are 
local measures. In the case o f the gulf, the circulation in and 
out o f the Strait o f Hormuz has been poorly defined in the 
past, resulting in estimates of the residence times varying 
widely from 2 to 5 years [.H ughes a n d  H un ter, 1979; 
H u n ter, 1983], S a d r in a sa b  a n d  K a m p f  [2004] studied the 
flushing time o f the gulf and found that 95% flushing 
times o f surface waters ranged from 1 to 3 years along the 
Iranian coast, while larger values of more than 5 years were 
obtained along the Arabian coast.

Table 1. Dispersion Coefficients Kx (m2/s) During Summer and Winter 1992a

5 Days 20 Days 40 Days
K  — 1 .0 ?! H U

l b K  =  1 0 .0 K =  1 .0 k = 5.0 K  =  1 0 .0 K  =  1 .0 k = 5.0 K = 10.0

T6 103 103 104 73
Winter

73 73 77 78 78
T7 99 99 1 0 0 86 86 86 90 90 90
T8 127 128 128 61 62 62 80 80 80
T9 140 141 141 87 88 88 83 83 83

T6 1 0 0 1 0 0 1 0 0 70
Summer

71 71 75 75 76
T7 95 95 95 81 81 82 87 87 88
T8 126 127 127 60 61 61 83 83 83
T9 137 138 138 83 84 84 81 82 82

“Using meteorological effects from 18 January to 26 February for winter simulations and 8 May to 12 June for summer simulations, with « = 1, 5, 
and 10 m2/s.
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Figure 15. Residence time o f the gulf in days.

[31] In modeling the residence time o f the gulf using 
ELCOM, forcing model data o f 1992 (January-December) 
were adopted and repeated for successive years. It was 
assumed that initially each cell contained water with a res
idence time of zero. The flushing time was defined as the 
residence time of the water as it left the domain (i.e., the 
time taken for the water to leave the domain). The model 
revealed that the residence time in the gulf was almost 3 years, 
as shown in Figure 15, the residence time being the longest 
time for water packages to remain along the Arabian coast o f 
the gulf. In particular, near Kuwait Bay, Qatar and the UAE 
coast values reached 858 days. Obviously the residence time 
at the Strait of Hormuz was lowest (2 days), due to the open 
boundary effects in the region.

6. D iscussion

[32] To determine the main drivers of the horizontal dis
persion of the tracers various forcing scenarios were 
implemented for the sensitivity analysis. All the simulations 
were carried out using a selection o f the above summer and 
winter forcing data from 1992, as detailed in Table 2.

[33] These simulations enabled a sensitive analysis to be 
undertaken for the various forcing mechanisms. As seen 
from Table 2, tidal forcing accounted for about two thirds o f 
the total tracer dispersion at T6 and T7, almost 90% at T8 
and 75% at T9 during summer and winter.

[34] Justification for using a 5000 m grid and the chosen 
horizontal diffusivity value is necessary before analyzing the

Table 2. Diffusion Coefficients (m2/s) Due to Various Effects 
After 40 Days of Release
Experiment Season Tide Wind T6 (Kx) T7 (Kx) T8 (Kx) T9 (Kx)

ELCOM 1 Winter Yes No 49 60 69 60
ELCOM2 Winter No Yes 24 27 10 20
ELCOM3 Summer Yes No 53 60 72 60
ELCOM4 Summer No Yes 20 25 8 19

5-5km->

i
1

5km

Figure 16. Injection of tracer at a representative cell, with a 
scale o f  5000 * 5000 m, would typically take 30 days to 
spread 5000 m.

results obtained in this study. Previously, observations by 
L a w re n c e  e t  al. [1995] suggested diffusivity values of O 
(10_1) m2/s for length scale o f 500 m; also S to c k e r  a n d  
Im b e rg e r  [2003] computed turbulent diffusivities of O 
(10°) m2/s in Lake Kinneret. O k ely  e t  al. [2010] for Victoria 
Lake revealed that a horizontal diffusivity in ELCOM of 
less than 1 m2/s was appropriate. In this study, an initial 
horizontal diffusivity o f 1 m2/s was utilized in the model, 
selected on the basis o f O k u b o 's [1974] findings, in which a 
length scale of 5000 m corresponds to 1 m2/s. By analogy, 
1 m2/s would take account of horizontal dispersion at 
scales smaller than the model grid resolution as shown in 
Figure 16, in which this value is fixed throughout the 
simulation period. To ensure adequacy o f the value chosen, 
the horizontal diffusivity was altered to 5 m2/s and then to 
10 m2/s in the model, confirming that this did not signif
icantly influence the horizontal dispersion o f the tracers, as 
shown in Table 1. Therefore, Table 1 shows that as time 
progress the tracer at each station forms a circular patch 
during the first days after injection that eventually pro
gresses into an oval shape along the mean flow direction 
due to turbulent diffusion, as shown in Figures 17a and 
17b. However, as the patch size evolves due to further 
injection the oval shape is distorted and stretched, forming 
a random shape dependent on the direction of shear force 
effects and, to a smaller extent, large or small eddies. 
Shear effects playing the main role in expanding the patch 
size after 30 days will be explained in the following par
agraph. It is worth mentioning that by using the O ku bo  
[1974] K  versus / graph to calculate K x from the corre
sponding length scales of T6, T7, T8, and T9 during 20 days 
(shown in Table 1), values of 68, 78, 62, and 83 m2/s were 
obtained, with these values being similar to the respective 
computed values cited in Table 1.

[35] Scenarios adopted in this study and shown in Table 2 
revealed that the gulf is mainly driven by tidal forces during 
both seasons and therefore tides are the main drivers in 
creating the shear forces that play key roles in dispersing the 
numerical tracers in both summer and winter. Although T8
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Figure 17. (a) Flood tide effect at T7 (5 days), (b) ebb tide effect at T7 (10 days), and (c) shear force 
effect in spreading the tracer at T7 (45 days).

was located at a site with a comparatively greater depth, the 
simulation suggests a dispersion coefficient similar to that at 
the shallower T6 site due to the uniform currents, since 
tracers spread out in both directions away from the release 
point, similar to the spread shown at T7 in Figures 17a and 
17b. Furthermore, higher currents and consequently larger 
shear forces generated by tides are distinguishable and 
played a key role in dispersing the tracer at T8. Similarly, 
but to a smaller extent at T6, shear generated by wind speeds 
of approximately 15 m/s in a direction across the mean flow, 
combined with large eddies and Coriolis forces, enhanced 
dispersion by more than 15% along the estuary and deflected 
the patch in a seaward direction with dispersion coefficients 
comparable to values obtained at T8. Analogously, condi
tions at T9 are significantly affected by wind shear, but the 
topography at this location caused dispersion coefficients to 
be increased due to bed friction. This elongated the patch 
toward the north Qatar coastline, and eventually it became 
vulnerable to large eddies (e.g., Figure 13) as it developed 
toward the estuary main channel.

[36] At T7 the great contribution o f tides in stretching the 
patch away from the release point toward the coast o f  the 
UAE and Qatar is indicated by its increase in size and 
developing a most random shape, as shown in Figure 17c. 
This can be explained by the combination o f wind, tides, an 
irregular topography and coastal interaction that enhanced 
shear forces. Moreover, as the patch evolved, it interacted 
with the coastline, comprising of smaller bays and head
lands that dramatically increased the dispersion coefficients 
after 40 days, giving rise to “Coastal Trapping” [Inoue a n d  
W isem an, 2000] and making mixing efficient and chaotic 
(Figure 17c). Although the mixing processes appear to be 
considerable at T7, the residence time in Figure 15 suggests 
that the patch would prevail for about 750 days.

[37] Horizontal turbulent diffusion played a minor role 
because dispersion coefficients varied only slightly for dif
ferent horizontal diffusivities (shown in Table 1). Bottom

and internal shear, as observed in the velocity profiles in the 
top center o f the gulf, also contributed to vertical mixing of 
the water column particularly during summer due to minor 
stratification developing in the upper layer (Figure 10). 
Shear components o f horizontal velocity along the Arabian 
coastline were greater both near the surface and near the 
bed, due to wind drift and bottom friction, respectively.

[38] The dispersion mechanisms affecting the gulf have a 
fundamental influence on the estuary ecology. Furthermore, 
spatial variability in the horizontal mixing and dispersion 
coefficients has several implications for water quality within 
the gulf. Due to the nature o f the gulf, high nutrient values 
normally result in high rates of oxygen consumption, par
ticularly in the relatively shallow Arabian shoreline [B rew er  
a n d  D y rs se n , 1985], so dispersion processes arising from 
wind along this region would significantly influence the 
nutrient levels along the coast. B re w e r  a n d  D yrssen  [1985] 
found high surface phosphorus levels that may be attributed 
to the vertical dispersion mechanism in such regions. 
Moreover, nutrient concentrations in the gulf have often 
been concentrated in the north of the gulf, in Kuwait Bay 
and in the region around the outfall o f Shatt Al Arab, and 
they have been cited as the cause of a number of eutro- 
phication incidents, mostly during summer. For example, a 
major red tide and an associated fish kill occurred in 1999 
[H eil e t  a l., 2001].

[39] An estimate of the fluid residence time, i.e., the 
average time a water particle spends within a region [G eyer  
a n d  S ig n e l, 1992], is given as

I2
,r = K''

where tR ~  200 days for an average dispersion coefficient of 
90 m2/s and / = 40 km, an estimated length scale for the 
assemblage localities. This relatively long time scale allows 
the ecological niches to exist and promotes spatial hetero-
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geneity of biochemical material, in particular in the northern 
part of the gulf.
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