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Summary

This thesis examines the use of multi-stack pushdown autom ata to model 

the behaviour and properties of Web services based cryptographic protocols. 

The protocols are modelled in Promela and verified using the Spin model 

checker. The Simple Message Exchange Protocol and the Security Token 

Protocol are protocols that underlie the WS-Security and WS-Trust 

specifications, respectively. These two protocols are tested for correctness in 

the presence of an intruder tha t conforms to the Dolev-Yao model, i.e., it is 

tested whether the required properties the protocols hold in the presence of 

a Dolev-Yao intruder. The thesis also extends the Dolev-Yao intruder 

model to encompass attacks targeted specifically at Web services. An 

intruder model in Promela is created based on the Dolev-Yao abstraction 

which is extended to incorporate an XML injection attack model. The 

behaviour and properties of the Simple Message Exchange Protocol and the 

Security Token Protocol are then examined when subjected to an XML 

injection attack using this extended Dolev-Yao model.



CHAPTER 1

Introduction

Web Services are self-contained, modular applications th a t can be described, 

published, located and invoked over a network, generally the World Wide 

Web [Nei03].

The WS-* security specifications provide mechanisms for the security of 

SOAP messages, which are the most common way of communicating with, 

and between, Web services. The specification suite consists of various com­

ponents each addressing different security requirements. For example, WS- 

Security, W S-Trust and WS-SecureConversation provide mechanisms to es­

tablish a shared security context to enable SOAP sessions. These specifi­

cations, however, are undergoing a process of maturation, and are therefore 

vulnerable to various threats. This work tries to address such threats through 

a formal analysis of these specifications.

1



1.1. W EB SERVICES 1. Introduction

1.1 Web Services

Rosenberg et al. [RR04] define Web services as follows:

“A Web service is an application that provides a Web API, 

identified by a Universal Resource Identifier (URI), whose in­

terface and bindings are capable of being defined, described and 

discovered as XML artifacts. A web service supports direct in­

teractions with other software agents using XML-based messages 

exchanged via Internet-based protocols.”

For Web services to be widely adopted they have to be made secure. The 

research community, together with industry, have introduced various specifi­

cations to make Web service platforms more secure. Different forms of these 

security specifications arc available including WS-* based specifications and 

XML based security specifications. The WS-* base security stack includes (i) 

WS-Security, (ii) WS-Trust, (Hi) WS-SecureConversation, (iv) WS-Policy, 

(v) WS-SecurityPolicy, (vi) WS-ReliableMessaging, (vii) WS-Federation, and 

(viii) WS-Reliability (see Section 1.1.4). XML based security specifications 

include (i) XML Signature, (ii) XML Encryption, (Hi) XACML, (iv) SAML 

and (v) XKMS. Section 1.1.3 summarises these specifications.

These security specifications complement each other in order to  improve 

overall Web service security. For example, the initial proposed WS-Security 

specification only addresses message level security and ignores various other 

aspects of security including trust establishment, reliable message delivery, 

and session level security. In order to address the establishment of trust, a
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1.1. W EB SERVICES 1. Introduction

further extension, WS-Trust, was proposed.

Different categorizations of the security aspects for Web services have 

been introduced. For example, Nezhad et al. [Nea05] have categorized Web 

service security in terms of a five-dimensional space. These dimensions are: 

(i) secure messaging, (ii) resource protection, (Hi) security properties bind­

ing, (iv) contractual interactions and (v) federated trust management. These 

dimensions help in evaluating any particular security specification. For exam­

ple, the security requirements for messaging include confidentiality, integrity, 

non-repudiation, authentication and session security. Different security spec­

ifications address these security requirements. For example, confidentiality 

and integrity issues are both addressed by WS-Security. However these speci­

fications are in their early development phase, thus leaving room for improve­

ment. This work focuses on security involving WS-Security and WS-Trust.

1.1.1 W eb Services Security

The sharing of global information, generated on different platforms by dif­

ferent applications, has emerged as an active research area over the past 

few years. Web services have developed as a globally accepted medium for 

sharing diverse information from different platforms. Web services are a 

transformational technology which is used to integrate resources inside and 

outside of an organization. The wider adoption of Web services is dependent 

on their security and reliability. Various efforts have been made by the re­

search community to improve the security of Web services and as a result 

various security specifications have been introduced.

The following subsection presents some of the basic building blocks of

3



1.1. W EB SERVICES 1. Introduction

the Web services architecture. Following this, Sections 1.1.3 and 1.1.4 cover 

the two main families of security specifications currently available for making 

Web services platforms reliable and secure.

M essaging

Web Services employ SOAP messages for information exchange using the 

H TTP protocol. These SOAP messages are in XML format, as defined by 

the W3C SOAP Standard. SOAP defines many message exchange patterns 

(MEPs), for example one-way and peer-to-peer, but there are two main MEPs 

used in Web services: request and response. The general operation of Web 

services can be seen as request-response communication between two end­

points. When a certain SOAP request is received by a Web service, it returns 

a SOAP response after performing the corresponding operation.

D iscovery Process

Web services use the Web Service Description Language (WSDL) and the 

Universal Description, Discovery and Integration (UDDI) service registry to 

support the service discovery process. WSDL is used to  define the interface 

of a web service, whereas UDDI is used as a registry through which Web ser­

vices can be discovered. Each Web service is responsible for creating a WSDL 

interface and may also enable dynamic binding. Using dynamic binding Web 

services can communicate with each other and with newly-added Web ser­

vices. Web services can dynamically discover each other using UDDI.

Consider a service A  looking for some operation O to be performed. Ser­

vice B  is capable of providing this service O and has its WSDL interface

4
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registered with a UDDI registry. The following steps take place in order to 

discover service B:

1. Service B  registers its WSDL interfaces with the UDDI registry so that 

its services can be discovered by other services.

2. Service A  queries the UDDI registry for a service providing an operation 

O .

3. The UDDI registry returns the URI and details about accessing service 

B.

4. Service A  utilizes B  for the desired operation.

P orta ls

Web portals provide user-friendly interfaces for end-users, particularly in the 

context of a Service Oriented Architecture (SOA). Portals are platforms that 

are accessed through a Web browser, and which can be used as interfaces to 

a set of Web services. Instead of directly discovering the Web service, users 

can go to a portal and simply request the portal for a particular service. 

Some commonly-used web portals include Google, Amazon, and eBay. For 

example, in the Google portal, users request a particular piece of information 

and the portal finds the corresponding information (request) and returns the 

results (response) to the end user.

R oles

There can be different roles associated with a Web service. A Web service can 

act as (i) a provider, (ii) a requester, or (Hi) an intermediary. The requester 

and provider roles are usually associated with endpoints. An intermediary

5



1.1. W EB SERVICES 1. Introduction

service is used to complete some overall task initiated by the requester. A 

provider Web service provides a response based on a request initiated by the 

requester Web service. It is also responsible for setting security requirements 

for authentication, authorization, encryption and non-repudiation. When a 

requester initiates a request, it can be its own request or on behalf of a another 

party. The requesting Web service is responsible for setting the proper syntax 

and security parameters required by the provider. Intermediary Web services 

are invoked as part of a chain of Web services, for example, XML Gateways. 

These roles are non-exclusive, th a t is, a service can be a requester at one 

instance and may be an intermediary at another instance.

W eb Services Coordination

Web services can dynamically bind to each other in two different ways, (i) 

Orchestration and (ii) Choreography. Web service orchestration is performed 

within an organization. It allows the use of existing Web services to create 

another Web service. It has a central architecture, and Web services are 

invoked based on the decisions made by an orchestration engine. Web service 

choreography is performed between multiple organizations. Its invocation 

is more dynamic in nature and is based on relationships defined between 

individual services. Web service choreography is distributed in nature since 

there is no central control point.

1.1.2 The N eed for N ew  Security Specifications for 

W eb Services

The traditional security mechanisms are not enough to secure Web services. 

Some of the reasons which give rise to the need to develop new security 

specifications for Web seivices include:

6
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1. SSL/TLS based mechanisms only ensure the security of a message while 

the message is in the secure tunnel. The moment the message reaches 

an intermediary node, it is decrypted and becomes vulnerable to attacks 

(message contents become visible). SSL/TLS based security mecha­

nisms only allow encryption/decryption of the whole message, whereas 

Web services may require the encryption of certain parts of messages. 

It may not be desirable in Web services to make the whole content of 

SOAP messages visible at intermediary points. Therefore, SSL/TLS 

based security mechanisms are not enough for securing Web services 

data.

2. When originally designed SOAP did not have any built-in mechanisms 

for security. It was only intended to provide interoperability between 

different platforms. The initial idea was that security should be added 

as an extension to SOAP. As a result different security specifications 

have been proposed to make SOAP messages secure.

3. A further complexity arises due to the fact th a t SOAP messages are 

communicated using the HTTP (or HTTPs) protocol. Traditional fire­

wall filters may allow h ttp  traffic to pass through undetected. Both 

trusted and un-trusted users can initiate a Web service which passes 

undetected through the firewall.

1.1.3 XM L-based Web Services Security Specifications

XML-based security specifications can be used for securing Web services 

[NKHBM04]. For example, XML encryption is used to achieve the confiden­

tiality property for Web services. The following throws light on some of the 

existing XML-based security specifications used for Web services security.

7
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X M L Encryption

XML Encryption is a W3C security specification. XML data is text format 

da ta  and thus additional encryption is required. SSL/TLS security mech­

anisms also use encryption, however, selective encryption cannot be done 

using SSL. XML Encryption on the other hand, allows selective encryption 

which is desirable for Web services to ensure confidentiality. In the context of 

Web services, XML Encryption [Nei03] allows the security principle of confi­

dentiality to be satisfied across more than just the context of a single SOAP 

message. XML Encryption can also be used to keep the SOAP message en­

crypted even the message is processed by an intermediary Web service. XML 

Encryption involves expressing encrypted data using XML and allowing por­

tions of the documents to be encrypted. Encryption can be performed on 

XML elements and contents, on only XML contents, and on arbitrary data.

Encryption steps include: (i) selection of an encryption algorithm, (ii) 

obtaining the encryption key, (Hi) serialisation of data, (iv) performing en­

cryption, and (v) specifying the data type. Decryption steps include: (i) 

determining the algorithm, parameters and ds:KeyInfo, (ii) locating the key, 

(Hi) decrypting the data, (iv) processing the XML elements or XML element 

content, and (v) processing data tha t is not an XML element or XML element 

content.

XM L Signature

XML Signature, introduced by W3C and IETF, facilitates the digital signing 

of XML data, and is used to provide data integrity in Web services [Nei03]. 

XML Signature allows three types of document signing: (i) the whole docu­

ment can be signed, (ii) different parts of the document can be signed, and

8
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(Hi) different parties can sign the same document. XML Signature is also 

used for authentication and non-repudiation when used in conjunction with 

identity-based security. WS-Security employs XML Signature and binds the 

“security token” with the SOAP message. XML Signature may also be used 

for integrity and non-repudiation of WSDL files. An XML Signature may be 

used as: (i) an Enveloped Digital Signature, meaning th a t the signature is 

contained within the signed document, (ii) an Enveloping Digital Signature 

where the signed data is contained within the XML Signature structure itself, 

and (Hi) a Detached Signature which is separate from the signed entities.

SA M L

Security Assertion Markup Language (SAML) [Nei03] is an XML standard 

introduced by OASIS. It is used for exchanging authentication and autho­

rization data  between an identity provider and a service provider. OASIS 

SAML has three types of assertions: (i) authentication, (ii) attribute, and 

(Hi) authorization. SAML is mainly concerned with access control for already 

authenticated principals based on some pre-defined policies. The SAML ar­

chitecture has two roles: Policy Decision Point (PDP) for making decisions 

based on a set of policies, and Policy Enforcement Point (PEP) for enforcing 

the decisions. SAML also facilitates single sign-on for Web services.

X A C M L

XACML [Nei03] is used to control access to resources based on the character­

istics of the requester, request protocol and authentication context in XML 

format. Access can be granted to resources by using (i) ACL (Access Control 

Lists) and (ii) RBAC (Role-Based Access Control). XACML is composed of 

different modules including (i) Policy Enforcement Point (PEP), (ii) Policy

9
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Information Point (PIP), (in) Policy Retrieval Point (PRP), (iv) Policy De­

cision Point (PDP), and (v) Policy Administration Point (PAP). For more 

details, readers are referred to [Nei03].

X K M S

XML Key Management Specification [Nei03] is service-oriented and, there­

fore, is implemented as a Web service. It supports management of public 

keys for Web services, and defines two Web services for this purpose: (i) 

the XML Key Registration Service specification manages functions related 

to life-cycle management of public key credentials, and (ii) the XML Key 

Information Service specification manages query operations th a t obtain and 

validate public key credentials.

The following table summarizes the XML based security specifications 

th a t are used for Web services.

X M L  Specification U sage
XML Encryption WS-Security, confidentiality
XML Signature WS-Security, integrity, authentication 

and non-repudiation
SAML WS-Trust, authentication and delega­

tion
XACML Authorization and privacy
XKMS WS-Trust, trust establishment

1.1.4 W S-* based Web Services Security Specifications

The WS-* security specifications were introduced by a set of organisations 

including IBM, Microsoft, VeriSign, and many others. The WS-* family of 

specifications include various definitions that each address a specific security

10
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issue in Web services. In the following, some of these security specifications 

are outlined, and their target applications are highlighted, we also summarise 

the possible vulnerabilities mentioned in these specification.

W S-Security

WS-Security was introduced as a security specification for securing Web 

services. It addresses the basic security requirements, and its further ex­

tensions address more specific requirements. The WS-Security specification 

[NKHBM04] defines means of securing SOAP messages by means of secu­

rity tokens and digital signatures to allow secure message exchanges between 

applications. It also provides a means of associating security tokens with 

message contents.

W S-T rust

W S-Trust was introduced in order to address trust related issues for Web 

services security. WS-Security only deals with securing the message contents 

and does not address trust issues. The WS-Trust specification [NGG+07] 

is an extension to WS-Security. It allows secure communication between 

two parties, and focuses on two main aspects: (i) the issuing, renewing and 

validating of security tokens, and (ii) ways to establish and manage trust 

relationships and how to assess them.

W S-SecureC onversation

In order to address the problem of redundancy in the WS-Security and WS- 

Trust specifications, a session-level security specification, WS-SecureConversation,

11
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was introduced [Aea05]. The main idea here is to establish a shared security 

context between two endpoints so that the reestablishment of security cre­

dentials for each message can be avoided. It defines how to provide secure 

communication when multiple messages are exchanged. It provides a means 

of establishing and sharing a security context and deriving keys from them.

W  S-Federation

WS-Federation aims at providing a security solution not only between two 

endpoints, but also between two organisations. The WS-Federation speci­

fication [LcaOG] defines mechanisms through which different security realms 

can federate, i.e., control authorized access to resources in one realm to prin­

cipals whose identities and attributes are managed in other realm. It defines 

mechanisms for the brokering of identity, attribute, authentication and au­

thorisation assertions between realms, and privacy of federated claims.

W  S-R eliableM essaging

The reliable messaging extension of the WS-Security specification suite en­

sures the reliable delivery of messages between two endpoints. It does not 

address issues specific to security, rather it aims at reliable delivery of mes­

sages. The WS-ReliableMesaging specification [Boa05] defines the reliable 

delivery of messages between a source and a destination, and a SOAP bind­

ing required for interoperability. It provides a mechanism to identify, track 

and manage the reliable delivery of messages.

12



1.1. W EB SERVICES 1. Introduction

W S -P o licy

The WS-Policy specification [Bea06b] provides a general-purpose model and 

syntax for describing policies of a Web service. Security concerns involve 

tampering with policies and assertions, which should be signed.

W  S- S ecu rity  Policy

WS-Security Policy [DLeaO-5] defines a framework for Web services to express 

their constraints and requirements, which are represented as policy asser­

tions. This specification indicates the policy assertions for use with WS- 

Policy. It can be applied to WS-Security, WS-Trust and WS-SecureConversation.

The following table summarizes the WS-* based security specifications 

th a t are used for Web services.

W S -*  B ased  Specification S ecu rity  R eq u ire m en ts  A d d ressed
WS-Security Confidentiality, integrity, non­

repudiation, authentication
W S-Trust Trust establishment, trust proxying
WS-SecureConversation Confidentiality, integrity, non­

repudiation, authentication and 
trust

WS-Federation Trust federation
WS-ReliableMessaging Security properties (availability)
WS-Security Policy Messaging security policies and trust 

policy

WS-Security is a communication protocol providing a means of apply­

ing security to Web services. The protocol works at the application layer 

and describes how to embed signatures and encryption headers in SOAP

13



1.1. WEB SERVICES 1. Introduction

messages. It does this by incorporating security features in the header of 

SOAP messages. WS-Security alone only ensures message level security. In 

order to meet other security requirements, such as the establishment of trust 

and session level security, there are various complementary specifications for 

WS-Security which, when used together, satisfy a broader range of security 

requirements. Figure 1.1 shows the WS-* stack.

ws-
SecureConv

( ' -■"v

W S-
Federation

WS-
Trust

Authorization

Privacy

W S-Security

SOAP Foundation

Figure 1.1: Web Services Security Stack.

Figure 1.2 shows a SOAP envelope incorporating WS-Security, with un­

necessary details omitted. The purpose of this example is to show how the 

WS-* standards are deployed at the SOAP level. As can be seen in this ex­

ample, the security header is specified and has certain parameters which tell 

end systems the necessary information. The information given in green rep­

resents the security token, and that given in purple represents data relevant 

for a particular protocol run. For example, the “<nonce>” and “<created>” 

sub-elements are used to defend against replay attacks. A ‘nonce’ is a unique 

random value used once in a protocol run to help ensure that previous com-
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1.1. WEB SERVICES 1. Introduction

munications cannot be re-used. In a replay attack valid data is transmit­

ted/delayed with malicious intent. A replay attack can be carried out by 

either an initiator or an attacker in the middle of the protocol run.

<Envelope>
<Header>

<Security>

<UscmamcToken Id=2>
<Usemam e>U SER-N A M E</Uscm am e> 
<Nonce>cGxr8\v2AnBUzuhLzDYDoV\v==</Nonce> 
<Created>2008-08-04T 16 49:45Z</Created>

</Uscm am cTokcn>

</Security>
</Header>

<Body Id= 1 >... </Body>
</Envelope>

Figure 1.2: SOAP envelope incorporating WS-Security

In summary, some of the security challenges faced by Web services include 

repudiation of transactions, secure issuance of credentials, insecure services, 

the spread of viruses and trojan horses, denial-of-service attacks, incorrect 

service implementation, and the lack of quality of service due to improper 

design.

1.1.5 Security  R equirem ents

Web services are popular because of their dynamic nature, platform inde­

pendence, interoperability, and greater access to data. However, there are 

unresolved issues and problems, such as (i) data integrity and confidential­

ity of messages between end points and intermediaries, (ii) the integrity of 

the Web service in question has to be established beforehand, and (Hi) the

15
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availability of the Web service in case of attacks, such as denial-of-service. 

Perimeter based technologies are unfit to protect Web services because (i) 

they are dynamic and are not restricted or bound to one network, (ii) SOAP 

is transferred over HTTP which passes unhindered through firewalls, (in) 

TLS is inadequate for protection of SOAP messages as it provides end-to-end 

security, but cannot accommodate Web services’ inherent ability to forward 

messages to multiple Web services.

A combination of the security specifications discussed in Section 1.1.4 can 

be applied to make Web service use secure over the network. Some security 

techniques for Web services are as follows:

1. Web service confidentiality can be provided by means of XML Encryp­

tion.

2. The integrity of Web services can be ensured using XML Encryption.

3. Web service authentication and authorization can be performed by us­

ing SAML and XACML, as proposed by OASIS. Also, WS-Security can 

be employed for the purpose of confidentiality and integrity of SOAP 

messages, thus resulting in end-to-end SOAP message security,

4. PKI can be used for Web services using XKMS.

1.1.6 Vulnerabilities of W S-* Specifications

The WS-* specifications are in the process of maturation. WS-* specifi­

cations are not only vulnerable to threats specific to cryptographic pro­

tocols, but also to threats specifically targeted at them, such as WSDL 

Scanning, XML Injection, and so on. We summarise the security concerns
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mentioned in the WS-* specifications[NKHBM04] [NGG+07] [Aea05] [Lea06] 

[Bea05] [Bea06b] [DLea05] respectively as follows:

1. WS-Security. There are certain flaws in WS-Security which limits its 

deployment when used alone. As a result, further extensions have been 

proposed and WS-Security is used in conjunction with these extensions 

to provide a security solution. Some of the security concerns not ad­

dressed by WS-Security alone are: (i) freshness guarantee, (ii) protec­

tion of security tokens, (in) certificate verification, (iv) using passwords 

without protection, (v) the use of randomness, (vi) man-in-the-middle 

attacks, and (vii) PKI attacks.

2. WS-Trust. One of the main security issues of WS-Trust is that the 

security token issuance messages are prone to  tampering. To avoid 

this they should be signed. XML Signature can be used to sign the to­

kens. Security token requests are also prone to denial-of-service attacks. 

Symmetric keys and password-containing tokens should be sent to the 

concerned parties only. Tokens containing personal information should 

adhere to the security policy of the organisation. In multi-message ex­

changes, signatures are susceptible to attacks. To avoid this signature 

confirmation methods should be used.

WS-Trust and WS-Security both work at the message level. The major 

drawback of this approach is that the trust and security processes have 

to be repeated for all the messages in a particular session between two 

endpoints. This leads to degradation of quality-of-service.

3. WS-SecureConversation. Some of the security considerations are: (i) 

replay attacks -  to prevent replay attacks all relevant elements of a mes-
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sage should be included in the signature, and security context estab­

lishment messages should be timestamped, (ii) security context estab­

lishment should contain all policies to prevent attacks like downgrading 

in which an attacker tries to downgrade encrypted message content to 

something that can be more easily exploited, such as clear text, and 

(Hi) authenticating services are susceptible to denial-of-service attacks. 

This, however, is not a complete list of possible attacks.

4. WS-Federation. Common attacks to WS-Federation and their pos­

sible prevention include: (i) message alteration (include signatures 

of the message information using WS-Security), (ii) message disclo­

sure (encrypt sensitive data using WS-Security), (Hi) key integrity 

(use strongest algorithms possible, by comparing WS-Policy and WS- 

SecurityPolicy), (iv) authentication ( WS-Security and W S-trust), (v) 

accountability (strong symmetric keys or PKI signatures), (vi) avail­

ability (one form of attack is replay and countermeasure is WS-Security), 

(vii) address spoofing (all addresses are signed) and replay (time-stamp 

mentioned in WS-Security), (viii) meta-data alteration (include signa­

tures in meta-data or use secure channels for transfer), (ix) forged se­

curity tokens (Security Token Service must guard their keys to prevent 

forging of tokens and requester identities), (x) privacy (Security Token 

Service should not send requester’s personal information without con­

sent), and (xi) compromised services (if the Security Token Service is 

compromised it must not be able to issue tokens outside the compro­

mised realm).

5. WS-ReliableMessaging. Common attacks to WS-ReliableMessaging 

and their possible preventions include: (i) message alteration (include
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signatures of the message information using WS-Security), (ii) mes­

sage disclosure (encrypt sensitive data using WS-Security), (Hi) key 

integrity (use strongest algorithms possible), (iv) authentication (W S- 

Security and WS-TYust), (iv accountability (strong symmetric keys or 

PKI signatures), and (v) availability (one form of attack is replay and 

countermeasure is WS-Security).

6. WS-Policy and WS-SecurityPolicy. Security concerns involve tamper­

ing of policies and assertions, which should be signed. Unsigned policies 

should not be accepted.

1.2 Formal M ethods

Our everyday lives are being governed more and more by computerised sys­

tems, ranging from small systems, such as mobile phones, to large systems, 

such as airplanes, industrial plants, and so forth. In critical systems, where 

investments or human life are involved, the quality of the system becomes of 

crucial importance. Such systems can be validated before deployment using 

formal verification techniques. The system, or part of it, can be modelled 

at an acceptable level of abstraction and checked for the properties that the 

system is supposed to possess. Some of the most famous software failures 

[BK08] which could have been avoided are the Intel Pentium II floating point 

bug, which caused a loss of about $475 million, and a defect in the software 

of the Mars Pathfinder spacecraft which had a disastrous effect. W ith proper 

verification, these errors could have been avoided.

Formal methods are a combination of mathematical and logical mod­

els of a system and its requirements [ButOl]. Formal methods have not
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only been applied to software and hardware systems, but have also been 

extended to cryptographic protocols. Cryptographic protocols are aimed at 

providing security services across distributed systems. Some of the goals of 

cryptographic protocols include secrecy, authentication, integrity, and non­

repudiation. The network is usually assumed to be hostile, in th a t it may 

contain intruders who can read, modify, and delete traffic, and who may have 

control of one or more network resources. As a result, security protocols are 

used in order to make the communication between two nodes secure. How­

ever, the difficulty in designing and analysing security protocols has been 

extensively debated over the past couple of decades. The factors responsible 

for complicating the analysis process include:

•  The properties they are supposed to exhibit are extremely subtle.

•  The environment of the communication network is hostile.

•  Knowing the capabilities of intruders beforehand is extremely difficult.

•  Security protocols are concurrent in nature which makes the analysis 

more challenging.

There has been a substantial amount of work done in the analysis of se­

curity protocols using formal methods. The need for this has arisen from the 

fact tha t so-called secure protocols have been proved not-so-secure at some 

later time. In order to increase trust in any security protocol the security 

requirements and promises need to be verified, and formal methods can be 

used in this regard. Some of the categories of formal methods are now briefly 

described.
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Theorem Proving techniques correspond to a process where it is shown 

that some statement is a logical outcome of a set of statements. The problem 

is described in a logical form. Another technique is Type Checking, where 

the system is presented in the form of datatypes. Any difference in the types 

is considered as a threat to the system. Type checking is automatic and can 

handle infinite system states. The main drawback of type checking is that 

the type assertions have to be incorporated in the system at design time, 

making it a less scalable option.

In Belief Logic the possible states of the system are expressed as a set of 

rules, or “beliefs” . These systems can be thought of as an “expert system” 

which has a knowledge base consisting of rules in the system. This concept 

was first proposed by Burrow, Abadi and Needham in their work on BAN 

logic [BAN90]. The main theme proposed in BAN logic is th a t the “beliefs” 

or “tru st” in the system are presented as rules in the system. As in more 

recent forms of expert systems, new rules can be inferred from the existing 

rules. The verification process is then simply to look for any rule violations.

The work presented in this thesis is based on the Model Checking tech­

nique. The next two sub-sections describe the model checking process and 

give an introduction to the Spin model checking tool used in this thesis. 

Model checking is an automatic verification technique. The verification pro­

cess is an exhaustive search of all the possible states in the system. It is 

fast and does not require mathematical proof. Model checking also generates 

counterexamples for the model under consideration. Logic can be expressed 

easily as temporal formulas. However, the main disadvantage of model check­

ing is the state explosion problem.
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1.2.1 M odel Checking

Model checking based approaches can be described as a sequential process 

involving (i) modeling, (ii) specification, and (Hi) verification. In the mod­

elling phase we present the system in a formal notation having a finite set 

of discrete states. The specification phase deals with presenting the formal 

system in some form of mathematical or logical way, for example, temporal 

logic, predicates, finite state automata, and so on. The actual validation 

of the correctness of the model is done in the validation phase. The model 

checking systems are also referred to as state exploration systems, where the 

possible set of paths which an intruder may take are specified.

The model checking process consists of a system model describing the 

behaviour of the system. The system is represented as a finite state model 

and is automatically generated from a model description language, such as 

Promela, pi calculus, etc. This thesis presents a system model of the proto­

cols used, and describes the environment these protocol will be active in. The 

properties of the protocol are given as formulas in Linear Temporal Logic. 

The protocol models are then translated into Promela and simulations and 

verifications are performed on them.

In some cases, the system model is automatically generated from a model 

description that is specified in some appropriate dialect of a programming 

language. These system models are accompanied by algorithms that system­

atically explore all states of the system. This leads to different verification 

techniques, such as model checking, simulation, or in testing in reality.

22



1.2. FORM AL METHODS 1. Introduction

In order to describe what the system ought to do, property specification 

languages like Propositional Temporal Logic, or PTL, can be used. Such 

languages are used to express correctness properties of a system. They are 

extensions of propositional logic, and reason about the system in terms of 

time.

1.2.2 Spin M odel Checker

This sub-section gives a brief description of the model checking tool used in 

our research. Spin (Simple Promela Interpreter) [Hol03] has been used for 

model checking various software systems. A verification model consists of a 

set of facts about the system which we want to verify, and aspects of the 

system which are needed to verify those facts. Spin can be used for veri­

fying the correctness of verification models. These verification models can 

be described in a specification language. Spin is used in this thesis because 

it counters the state explosion problem by using the partial order reduction 

algorithms built into it, thus reducing the number of transitions and states in 

the system. Spin can generate reduced state space, with only representatives 

of classes of execution sequences that are indistinct for a given LTL prop­

erty. Partial order reduction [Hol03] works with commutative property of 

concurrently executed traditions that result in the same state when executed 

in different order.

The specification language that Spin takes as input is Promela. Spin can 

be used in two modes: simulation and verification. Simulation provides a 

representation of types of behaviour of the system model. Verification is per­
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formed to prove some facts about a system. One way of representing these 

facts is in the form of Linear Temporal Logic, as is explained in more detail 

in Chapter 3. XSpin is a graphical interface to Spin tha t provides a visual 

environment for the simulation runs.

Promela is an acronym for Process Meta-Language. Promela is a speci­

fication language used for describing abstractions of the system design, and 

is not an implementation language. The focus of Promela is on modelling of 

process synchronization and coordination, and not on computation.

1.3 Problem  Formulation

“Security protocols are three-line programs tha t people still manage to get 

wrong.” (Roger Needham).

1.3.1 Research Objectives

The main research objectives of this thesis are as follows:

(i) Can Web services based cryptographic protocols (WSBCPs) be modelled 

using automata to reflect the 1operations ' and 1properties ’ the protocol is 

supposed to satisfy?

(ii) Can the Dolev- Yao model be extended to cater for WSBCP-specific 

attacks using traditional model checking techniques?

(iii) Can WSBCPs and their goals be accurately modelled and analysed 

using existing model checkers, and can attacks based on the Dolev-Yao 

model be detected?
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The Dolev-Yao model is a formal model introduced by Dolev and Yao to 

prove the properties of communicating protocols. The details of the Dolev- 

Yao model are discussed in Section 1.4. A pushdown automaton is a finite 

state automaton which uses a stack containing data to decide which transition 

to take, as discussed further in Section 4.2.

1.3.2 Proposed Analysis

This thesis proposes to use a multi-stack pushdown automaton model to 

map the ‘functionality’ and ‘properties’ of WSBCPs. Two stacks are used 

for the two legitimate services A and B participating in the protocol run. 

Each participating service is allocated its own stack. The number of stacks 

depends on the services involved in the protocol. The stack contains the 

operations th a t must be applied to the service before proceeding to the next 

state in the protocol run. We deviate slightly from the traditional definition 

of stack elements. Stack alphabets are defined as functions. The combination 

of autom aton and the stack expounds the ‘functionality’ and ‘properties’ of 

the WSBCPs tha t the protocol is supposed to satisfy- At the end of a suc­

cessful run, the stack is empty and the protocol ‘goals’ are satisfied. The 

WSBCPs are modelled using traditional cryptographic notations (symbolic 

cryptography) and present the protocol environment as a transition system. 

Promela is used to model the protocol and its environment. Spin is used to 

perform simulations and verify the models. A protocol run is said to be cor­

rect with respect to some property when at the end of the run the protocol 

has satisfied th a t property throughout the run. For example, if the property 

of the protocol is secrecy, then at the end of the run the message contents 

should have remained secret thus implying a ‘correct’ run of the protocol. 

This thesis examines two protocols: the Simple Message Exchange Proto­
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col (SMEP), based on WS-Security, and the Security Token Protocol (STP), 

based on WS-TYust. SMEP is said to be correct when it satisfies secrecy 

and authentication goals. STP is said to be correct if at the end of a run 

services agrees on a full security context, while maintaining authentication 

and secrecy. Linear Temporal Logic is used to specify these properties of 

WSBCPs for verification using Spin.

This thesis also studies the application of the Dolev-Yao model to WS­

BCPs, and extends the model to encompass attacks targeted at Web services. 

An intruder model in Promela is created for the Dolev-Yao abstraction and 

our proposed XML Injection attack model. SMEP and STP are subjected 

to these attacks. This thesis studies the suitability of applying traditional 

cryptographic model checking techniques to WSBCPs. The thesis models 

and analyses WSBCPs using an existing model checker (Spin), and detects 

attacks based on the Dolev-Yao model.

The focal point of the thesis is a methodology based on automaton theory 

for modelling WS-* cryptographic protocols. The approach will allow us to 

model the properties and the behaviour of the protocols in a singular model. 

This approach can also be extended to protocols that are not described us­

ing WS-* specifications e.g TCP/IP, Needham and Schroeder protocol[NS78].

We use push-down automata to to model WSBCPs as the combination of 

the input tape, automaton and the stack allows us to  capture the behaviour 

and properties of the protocols.

A blocking protocol is one where the protocol is blocked till the previous
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step in the protocol has been satisfied. PDA will cause the SMEP and STP 

to reflect blocking behaviour. The next step in the protocol run will not be 

executed till the previous step has reached an end.

SMEP and STP protocols are synchronous in nature. Synchronous ser­

vices are characterized by the client invoking a service and then waiting for 

a response to the request. The sender service will wait for the response from 

the receiving service before the execution of the next protocol step. How­

ever, the security token service can be extended to emulate asynchronous 

behaviour. W ith asynchronous services, the client invokes the service but 

does not or cannot wait for the response. When communicating with multi­

ple clients, STS will not require to complete the existing protocol run. STS 

can initiate multiple protocol runs simultaneously.

1.4 A ttack Model

It is assumed that A 1 and ‘B ’ are the two endpoints initiating a conver­

sation after establishing a secure session using WS-Security, WS-Trust and 

WS-SecureConversation. There is a possibility that an attacker can tam per 

with the contents of individual messages on their way from the source to the 

destination. In the presence of such an intruder with certain privileges, the 

aim is to validate whether the security specifications under study behave in 

a secure manner. Such tampering may go undetected, that is, the attacker 

may disguise itself as if it was the trusted source. The attacker may tamper 

with the message in order to achieve denial-of-service (DoS), replay attacks 

and initiate its own session with service lB \  Figure 1.3 illustrates the con­
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cept in more detail. In this figure Service A sends messages to Service B. An 

attacker intercepts the messages, tampers with them, and then forwards the 

modified messages to Seivice B. This kind of tampering may go undetected, 

resulting in denial-of-service, replay attacks, etc.

Service
A

Is Secure Conversation

13 13 13 13

>: 1 ampcrvd envHope*

------ ------- 7*
\ 2: .Sniffed envelope* f

\
\ 13 /

;13 \ 13/13 '!
1 13 \ /IS >
i 13 \ /is y

Service
B

•»••*••••* 3: ia m p rrrd  rnvelopei

>L_±_JL

Figure 1.3: Message tampering scenario in a secure session

It is assumed that the attacker in our model has abilities as specified by 

the Dolev-Yao model. These are the ability to:

• Overhear and intercept all the messages over the network.

• Modify the messages.

• Generate new messages using information from overheard messages and 

some prior information.

• Send a new or captured message to another entity in the system.

It is also assumed that the underlying cryptography cannot be broken.

Figure 1.4 shows an XML rewriting attack. The sender A  in this case 

is trying to send a fund transfer request to B. The message is intercepted
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by the intruder, and modified so that the funds beneficiary is changed from 

A  to ‘Intruder’. This attack was only possible because the message body 

was not correctly signed. Although the password of the sender has not been 

broken, nevertheless, the attack was still possible because only the body was 

rewritten and the encryption key had already been trusted by the receiver.

<Envelope>
■'Header'

-Security-

<UsemameTv>ken Id“ 2>
<Usernamc> A </>
<'N,oac*>cOxr8w2Ai»BUzuliLzDYl>oV w* ™ < S>  
<Crwte4>2008*08-04T 16:49:45Z</>

</lJseraamcT oken>
<Signature>

<SignedInfo>
Reference U RI- #1 xDigestValue^KgoO .</> 

'SignatuieV alue>vSBl)Jl'Wr8>kpAlaxCx2K<J\jZcc‘ </> 
<KeyInfo>

-SccurityTokenRefcrencexReferenee URI=#2/>

</S«curity> 
</Header> 

^Body Id=l>

: <TransferFunds>
; <beneficiary>! ’></>  

■ <amount> I unO</>

</Body>
</Envelope>

<Envelope>
•'Header>

<Security>

'UsernaineToken Id- 2>
'■Usemame>Alice </>

<Nonce>c<ixrXw2AnB( JzuhLzDYDoVw --=</>  

<Creatcd>20iJ8-0S-04T16:49:45Z<£>
</Usema«neToken>
"^Signature'

<SignedInfo>
-Reference URI ■> I > - DigestValue>Kgo<)...</> 

<SignatureValuc>sSB9Jl r/Wr8ykpAlaxCx2KdvjZcc-</> 
<KeyInfo>

'SecurityTokenRefercncexR eference URI=4#2/>

</Security> 
</Header> 

<Body Id=l>

<TransferFunds>
<beneficiarv>Lntrudei</> 

<amount>5 000</>

</Body>
</Envelope>

Figure 1.4: An XML rewriting attack

1.5 T hesis Overview

The rest of this thesis is organised as follows. Chapter 2 gives a review of 

the existing literature in the area. Chapter 3 defines the system model and 

gives the definitions for the WSBCPs used in this work. Chapter 4 contains 

the pushdown automaton model for the WSBCPs. Chapters 5 and 6 define 

the Promela models for the protocols and give simulation and verification 

results, respectively. Chapters 7 and 8 specify the XML injection attack
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model, and give the simulation and verification results. Chapter 9 presents 

the concluding remarks, contributions, limitations, and future work.
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CHAPTER 2

Literature Review

As the complexity of software and hardware systems increases over time, 

the adoption of formal methods for verifying the correctness of such systems 

becomes increasingly appealing. Software and hardware errors may not of­

ten threaten lives, but they sometimes have a serious financial impact -  it 

is all about money [BK08]. Society is becoming increasingly dependant on 

computer networking, which in turn has lead to the adoption of cryptog­

raphy in a variety of complex systems, e.g., financial transaction systems, 

online ticket reservation systems, Amazon, eBay, PayPal, etc. As systems 

grow more complex the threats to these system becomes manifold. Not only 

is it necessary to defend against intruders, but also against denial-of-service 

attacks and network traffic monitoring.

Over the course of the past two decades, researchers have been apply­
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ing formal methods techniques to cryptographic protocols for verifying the 

correctness of the protocols. For the purpose of modelling and verification, 

not only have general-purpose tools been developed but also tools for specific 

tasks have evolved.

This chapter first presents some emerging trends and issues for crypto­

graphic protocols and their analysis, and also presents research being done 

and gaps in this area. The current research directions and issues in the 

formal analysis of Web services based security protocols are then discussed. 

Cryptographic protocols use cryptography to distribute keys and data over a 

hostile network. A network is said to be hostile in the presence of an intruder 

who can read, modify and delete traffic.

In general, the types of formal methods used for analysing security pro­

tocols lie in following categories:

1. State exploration/model checking.

2. Theorem proving.

3. Ifype checking.

Model checking based approaches can be described as a sequential or an 

iterative process involving (i) modeling, (ii) specification and (Hi) verifica­

tion. In the modeling phase the system is presented in a formal notation in 

terms of a discrete finite set of states. The specification phase deals with 

presenting the formal system in a mathematical or logical way, for example, 

with temporal logic, predicates, finite state automata, and so on. The actual 

validation of the correctness of a model is done in the validation phase. Model
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of showing that the state space was sufficient to guarantee security.

Finite state modelling does not give proof of security for the entire set of 

possible states, however it allows unambiguous statements about the condi­

tions under which the deductions hold and an effective procedure for checking 

them. Finite state models are useful for analysing the security of crypto­

graphic protocols as they allow an analysis of possible paths of the intruder 

to be made, and also allows assumptions about the environment of the sys­

tem to be defined.

Theorem proving techniques are correlated to a process th a t shows that 

some statement is a logical consequence of a set of other statements. The 

finite state condition is loosened here. The system needs a precise description 

of the problem written in some logical form. On the other hand, type check­

ing aims to present the system elements in the form of data  types. The type 

variations in the system axe then considered as possible threats in the system. 

Similar to a model checking system, type checking is also fully automatic, 

and has an added advantage of handling infinite system states. However, 

the main drawback of type checking is that the type assertions have to be 

incorporated into the system at design time, making it a less scalable option. 

Relevant work on type checking can be found in [Aba99, GJ03].

Recent research trends have been in state exploration and theorem prov­

ing techniques based on Dolev and Yao’s model. Lowe [Low96a] showed that 

a gcncral-purposc model checker can be used to find attacks in the Needham- 

Schroeder public key protocol. Lowe used the FDR model checker to find 

man-in-the middle attacks, and was one of the first to use a general-purpose
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model checker for analysis of cryptographic protocols. This led to the appli­

cation of theorem provers [Pau98, DS97] and model checkers [DK99, MMS97] 

to the problem. Work was also done on the design of purpose-built model 

checkers [Hui99, MCJ97, SBP01]. Research is still being done to show that 

the finite search space for model checkers is sufficient under certain situations 

[SBP01, MCJ97, ALOO, FA01, MS01].

Millen developed CAPSL [DM00], a common authentication protocol lan­

guage. Thayer developed the Strand Space Model [FHG98], a graphical rep­

resentation of the Dolev and Yao model.

Paulson used the Isabelle theorem prover for analysis of cryptographic 

protocols. The main problem with theorem provers was the lack of coun­

terexamples generated [Mea03, MR00, CohOO, HS00].

Belief logic, on the other hand, is different from state exploration tech­

niques, and expresses the possible states of the system as a set of rules, or 

“beliefs” . Such a system could be thought of as an “expert system” which 

has a knowledge base consisting of rules in the system. This concept was 

first proposed by Burrow, Abadi and Needham in their work on BAN logic 

[BAN90]. The main theme proposed in BAN logic was th a t the “beliefs” 

or “trust” in the system are presented as rules in the system. As in more 

recent forms of expert systems, new rules can be inferred from the existing 

rules. The verification process is then simply to look for any rule violations. 

For example, if a key is believed to belong to a particular participant, say 

‘X’, then any message coming from ‘X’ signed by the same key is considered 

trustworthy. Whereas, if another participant, say ‘Y’, tried to use the same
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key for sending a message, then it is considered to be illogical, and hence is 

reported as rule violation.

State exploration techniques are stronger than BAN Logic [BAN90], as 

BAN logic works at a higher level of abstraction. W ith the improvement in 

state exploration techniques, interest in BAN logic subsided. State explo­

ration techniques are focused on exploring the possible paths in the system 

which could be taken by an intruder. The number of states must be kept suf­

ficiently small so that the analysis can be performed in a reasonable amount 

of time.

Belief logic systems make the big assumption that the rule-making process 

is free of errors. They are considered to be less effective than state explo­

ration systems [Mea03]. Lowe [HG01, Low97, Low96b] modelled protocols in 

CSP and applied a model checker to test its behaviour. These methods can 

detect attacks quickly but keeping the state space small requires assump­

tions which simplify the model and results in loss of accuracy. Paulson’s 

work [Pau97, Pau99] also used an inductive approach. The protocol was rep­

resented as an infinite number of statements as a set of traces. Due to the 

large number of inductive definitions, the resulting proofs were complicated, 

however, they presented a more rigorous analysis.

The most recent approach to cryptographic protocol analysis is type 

checking [Aba99, BCJS04]. Security problems are identified by assigning 

message channels types and identifying type violations. The main drawback 

of this approach is the consideration of security violations when writing the 

specification. However, in model checking security violations axe represented
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as temporal logic and axe independent of protocol specification.

Cryptographic protocols operate in different types of environments such 

as IKE[HC98] and SET[RRM], and thus are required to be more adaptable 

and complex. Increasing the complexity makes it difficult to verify the pro­

tocol. W ith the increase in types of threats, the analysis of these protocols 

becomes more critical. There are a number of different tools available for 

verifying safety properties, such as secrecy and authentication, for crypto­

graphic protocols. These tools axe based on the attacker model presented by 

Dolev and Yao. Due to the security of the protocol being an undecidable 

problem [EG83, HT96, CDL+99], the results of the tool are unsuccessful at 

times.

Some of the research gaps in the analysis of traditional cryptographic 

protocols include unbounded protocols, where the number of data fields is 

not limited. As the environment and the intruder behaviour become more 

complex there is a need for research into new threat models for protocols. 

Dolev and Yao’s intruder model needs to be extended to handle these new 

threats, such as denial-of-service attacks, or else new threat models need to 

be developed and embedded into the current analysis techniques. Current 

tools cannot be directly used for the detection of these types of attack. An­

other challenge faced by the research community is in formal analysis of Web 

services based cryptographic protocols, which axe more complex in nature, 

and not only encounter challenges in common with traditional protocols, but 

also possess their own set of problems.

W ith the advent of Web services, there has been an increase in the chal­
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lenges faced when designing security protocols. In Web services technologies, 

the WS-* stack has been used for ensuring Web services security. However, 

Web services based security protocols not only face the normal challenges 

of cryptographic protocols, but also additional ones. In order to make Web 

services available across different platforms, simple XML based standards 

are introduced. The main idea is to use simple text-based messages for 

communicating between different parties. The architecture of such systems 

requires tha t certain portions of the XML based SOAP envelopes be en­

crypted. This complicates the security process since the unencrypted por­

tions of a SOAP message leave it open to threats. WS-Security make use 

of XML Encryption and XML Signature to ensure general SOAP message 

safety, since these are the main security mechanisms for authentication and 

secrecy [Rea02, ERS01]. However, there have been certain enhancements 

to the basic WS-Security specification. The focus here is on trust estab­

lishment and session level security which is provided by W S-Trust and WS- 

SecureConversation [NGG+07, Aea05]. Further, only the work done in the 

area of formal analysis of the standards under discussion is presented.

Before the related work on the formal analysis of Web services is pre­

sented, it is important to discuss the use of the Dolev-Yao model for analysing 

the WS-* stack. Backes and Gob at IBM Research [BG05] have presented 

their findings on the use of the Dolev-Yao model for Web services security. 

They present a list highlighting the points which could be improved in the 

Dolev-Yao model assumptions when used for formal analysis of Web services 

security protocols. A similar set of guidelines was proposed by Meadows 

[Mea03] which pointed out new trends in security protocols and the abilities 

of attackers who are assumed to have more powers now than those assumed

38



2. Literature Review

in the Dolev-Yao model. One such ability of an attacker is cryptanalysis. 

Cryptanalysis is the study of methods for analysing and decyphering en­

crypted information [Jou09]. Backes’ work on the other hand gives a more 

focused discussion for Web services.

Most of the work done in formal analysis is based on work done by Dolev 

and Yao. Although the Dolev-Yao model has been widely adopted by the re­

search community for modelling the environment for cryptographic protocols, 

in the context of WSBCP, with their complex behaviour and the possibility 

of new attacks, there is now a need to modify the Dolev-Yao intruder model. 

Thus, the model needs to be tailored to W SBCP’s. We also believe that 

ignoring the low level details may result in missing necessary requirements. 

The Dolev-Yao model is suitable for a behavioural analysis of Web services 

based security protocols but for more detailed analysis the model needs to 

be extended.

Blanchet et al. [Bla02] have presented a performance analysis of differ­

ent security protocols. Their approach is to present the system in terms of 

belief logic, where rules for system transitions are presented in the form of 

predicates. They given a computational analysis of a number of rules needed 

for different security protocols, and the amount of time required to validate 

the rules. They have analysed both authentication protocols, Needham- 

Schroeder and Woo-Lam [WL93, Low96b, Sch98, BAN90], and the protocols 

involving session keys. Their results show tha t their fully automatic approach 

was able to detect flaws in protocols with no false alarms. However, the state 

space in their work is kept small, and the assumptions made in order to keep 

the model small results in less accuracy.
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Tobarra et al. [TCCD07] used a model checking approach to do a formal 

analysis of the WS-SecureConversation standard. In their work, they have 

used a high level formal language, HLPSL, for specifying system require­

ments. The requirements are then analyzed using one of four different veri­

fiers available in the AVISPA architecture [ABea05]. The capabilities of the 

attacker are in accordance with the Dolev-Yao model [DY81]. Their work 

has highlighted tha t when used with other complementary WS-standards, 

like WS-Addressing [Cea04] and WS-Security, WS-SecureConversation could 

eliminate certain threats including replay attacks and false password attacks.

Kleiner et al. modeled Web service security using CASPER and FDR 

[KR05]. After giving the model of Web service security, they present an ex­

tension of <j> (a mapping function from SOAP message to CASPER input) 

for modeling WS-SecureConversation. As in Tobarra et al. [TCCD07], they 

also conclude tha t including essential elements from WS-Addressing helps to 

control replay attacks. They also show that careless use of the Web Services 

Enhancement protocol (WSE), which allows developers to build secure Web 

services based on the latest Web services protocol specifications, may lead to 

denial-of-service attacks. The authors have commented th a t the correct au­

thentication of clients should be used rather than relying on the mechanism 

of the WSE suite to detect replay attacks. WSE considers any subsequent 

Request Security Token messages from the same client as replay attacks. 

However, the client may be trying to establish multiple sessions with the 

server. They have presented their solution to bind the Request Service To­

ken message with the client using negotiation. Their contribution is a formal 

translation of WS-SecureConversation to a traditional cryptographic proto­
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col. They have presented their model at a higher level of abstraction, thus 

excluding the detailed structure of tokens in WS-SecureConversation. This 

high level of abstraction may result in errors being undetected.

Gordon et al. in their early work introduced the concept of “spi calculus” 

for modelling SOAP security headers [GP02]. They present a theoretical 

model of web security abstractions. This work formed the basis of a later 

version of their work which specifically focused on the WS-* stack. In this 

work, they have presented the ground work that how object calculus can be 

used to present the primitives for creating and calling Web services. They 

gave their own implementation of the proposed model. In their later work 

[BCFG04], they have extended their approach and have presented the model 

in the their proposed language, called “TulaFale” [BF04].

Bhargavan et a l proposed TulaFale which is based on predicate calculus 

[BF04]. In this work, the authors have successfully applied the pi calculus 

based TulaFale model to represent WS-Security. The system is presented in 

the form of messages passed over either a public channel or a private chan­

nel. The start of a communication process is marked with a “begin” message 

and there is an “end” message at the end. The “begin” and “end” identi­

fiers are used to ensure the authentication and correlation requirements. The 

messages are expressed in the form of predicates. The authors show that 

in certain cases when time stamps are not signed, there could be replay at­

tacks. They have shown that their “TulaFale” model detects these variations 

in the original traffic. The main predicates arc presented in two forms. Con­

structor methods are used to apply some function to the given data, such as 

encryption. Destructors on the other hand do the reverse and extract the
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information from the given data, such as in the decryption process. A pred­

icate is defined as a logical combination of these constructor and destructor 

methods. Messages are created using “mkMsg” predicates and checked using 

“isMsg” predicates. The normal TulaFale messages are sent over the public 

channel, however, the secret keys are sent over the private channel. The pro­

tocol run is then analyzed using the ProVerif analyzer tool [BlaOl, Bla02]. 

This work sets the foundation for extending it further to analyse WS-Trust 

and WS-SecureConversation.

The work of Bhargavan et al on secure sessions for Web services applies 

the same model to WS-Trust and WS-SecureCoversation [BCFG04]. The 

model of these protocols is represented as a TulaFale language script. Their 

model pointed out certain vulnerabilities in the standards under study and 

proposed corrections. In a similar work, Bhargavan et al. use the “F # ” lan­

guage to model the WS-Security protocol and use ProVerif for verification 

purposes [BFG06, BFGT06]. The work in this thesis is primarily inspired by 

the TulaFale work. However, we believe that the model can be presented in 

a more dynamic and flexible way by using multi-stack pushdown automata 

for specifying system functionality.

One limitation to the pi calculus approach in [BF04, BCFG04, BFG06, 

BFGT06] is the modelling of non-determinism. The non-determinism in the 

pi calculus approach is controlled by the attacker. Their model does not of­

fer complete protection against replay attacks. A necessary addition to their 

work is that not only timestamps need to be signed, but also nonces should 

be signed for replay detection. Also, predicates satisfy properties by pattern 

matching and are sensitive to the structure of the message.
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Decision procedures have been proposed for analysis of cryptographic 

protocols, and Chevalier [Cea07] applies these to Web services based security 

protocols. We believe the flexible format of the XML structure and partial 

parsing of the SOAP message makes it difficult for modelling and analysis. 

They have modelled services using deduction rules and equations that reflect 

all the possible operations of the participants. Their work is complimentary 

to the Samoa project [Res]. The main contribution of their work is develop­

ment of a verification procedure that detects rewriting attacks.

Other prominent work on the formal analysis of Web services includes the 

Johnson model [JJLea04] for the Web service atomic transaction protocol in 

the TLA language and checked by the TLC model checker [LW09]. TLA 

fails to capture the WS-AtomicTransaction specification in detail. Backes 

[Bea06a] has conducted an analysis of WS-ReliableMessaging. Diaz et al. 

[DPC+06] have also approached this problem using model checking. Their 

work, however, focuses on time critical applications of Web services. They 

have discussed a realtime flight reservation system in which the transactions 

are time-bound. They have shown that the entire system state can be mod­

elled in the form of finite state automata with an additional tagging of time 

along the edges. The transition decisions are constrained by the time elapsed 

from a given point. The concept of timeout, however, is already available in 

the WS-* stack and could be used to our advantage. Their work does not 

focus on the security aspects of Web services based security protocols.

Huang [HM06] has made a brief survey of model checking technologies 

suitable for Web services. Various models, such as OWL-S, BPEL4WS and
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WSDL describe Web services, but are semi-formal. There is a need to gener­

ate formal models that axe mathematically rigorous as required by a model 

checker. WSAT [Fea04] is a front-end tool for translating guarded automata 

into Promela accepted by Spin [Hol03]. UPAAL [Bea04] accepts realtime 

models and checks for timing constraints. BLAST [Hea02] is used for model 

checking workflows. Blade [TP05] implements proof slicing techniques for 

model checking.

AVANTSSAR [AVA] project is an ongoing project which is follow-on 

project of AVISPA project discussed earlier. AVANTSSAR investigates ex­

tensively the different adversary models for compromising data. It highlights 

some of the possible extensions to Dolev-Yao model. The XML injection at­

tack discussed in the project focuses on the attack that a new node is inserted 

to the XML envelope by the intruder and does not include the attacks where 

additional information is added to the content of an XML message. When 

a node is inserted into an XML envelope it leads to some information being 

added to the message. Inserting a new node to the XML structure may go 

undetected by the destination service during parsing. Similarly, some con­

tent can be added to the SOAP message to change its meaning. Inserting 

some content in the message digest for signature or encryption will cause the 

message to fail authentication and will be rejected by the destination service 

during parsing. The models used in TSSAR project are independent of the 

security properties of a protocol and the channels explored by the project 

support different security properties such as confidentiality, authentication 

or both. However, once compromised, these channels can lead to complete 

control of the channel by the intruder. The main focus of their work is 

on securing channels by assigning them specific goals. Work described in
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[BCFG04] is based on only securing the protocol run itself.

A leading trend for modelling Web services security protocols is to use a 

form of pi calculus. Other possible technologies for modelling and analysis 

of Web services based security protocols need to be investigated which may 

yield better modelling and analysis results. Moreover, there is a need for 

a feasibility analysis on the application of traditional model checking tech­

nologies to Web services protocols. So far, the focus has been on designing 

protocols and finding attacks on them. Another possible approach is to show 

the lack of attacks against protocols based on Web services specifications.

Recent works in the application of formal methods have been towards the 

modelling and improving of workflows in web services [pol], [pot]. [NB11] 

studies scenarios where the composition process may lead to  failure due to 

incomplete specification of goal or unawareness on user’s side of the func­

tionality provide by the service. Kucukoguz [KS11] studies the modelling of 

artifact-centric data-aware workflow model. Fu [Full] proposed a logic based 

framework for formally specifying and reasoning about the implementation 

of privacy protection by a web application.

In other works, Christiansen [CC11] provides a first direct formalisation of 

the semantics of inclusive gateways described in Business Process Modelling 

Notation. Hee [HM11] concentrates on refinements of service composition 

using Petri nets. [ACN11] presents a methodology for passive testing based 

on invariants of distributed systems with time information. Properties under 

test are represented by invariants. When the tested system performs a re­

quested task, the behaviour is reflected in the invariant. The invariants work
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by checking the correctness of the logs recorded in each isolated system. 

Weidlich [WEW11] studies the behavioural consistency of process models 

representing different process perspectives. Formal models are being widely 

adopted for verifying not only the security but also the different aspects of 

web services such as composition and choreography.

The main objective of the modelling process has been to standardise Web 

service based security protocols so that they can be adopted widely. We be­

lieve tha t Web services security based protocols can be modelled in a better 

way using autom aton theory. Automaton theory will allow us to model in 

detail the XML based messages. In this thesis Web services based protocols 

are modelled in terms of Dolev Yao abstractions. The cryptographic oper­

ators are considered symbolically. Fully automated verification techniques 

are applied to the abstractions. We investigate whether the existing formal 

verification techniques provide adequate modelling and analysis features for 

security protocols based on Web services.

We propose the innovative approach of using Multistack Pushdown Au­

tomata [HMU06] for modelling Web services based security protocols, where 

each service has a dedicated ’function’ stack to be applied to the messages. 

We believe th a t such a model has more promising features and could easily 

detect any variations from the true model. We perform model building us­

ing pushdown automaton theory, and build the Web services based security 

protocols based on these automaton models using traditional cryptographic 

notations. The main benefit of using this approach is th a t the discussion can 

be extended beyond the Dolev-Yao model. As pointed out in Meadows’ and 

Backes’ work [Mea03, BG05], recent trends in network security infrastructure
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may require the attack model to be made more robust. However, we argue 

that a more flexible system is required to incorporate such an attack model. 

We start our analysis by assuming the attack model to be Dolev-Yao based. 

However, after completing our preliminary analysis we intend to add an XML 

Injection Attack to the Dolev-Yao framework. The work in this thesis tries 

to address vulnerabilities in the area of WS-* stack security.

The contributions of this thesis are in the application of automaton the­

ory to Web services based security protocols, in particular the novel approach 

to modelling WS-Security and WS-Trust by using pushdown automata. This 

thesis presents a transition system for the environment of these protocol runs. 

We believe th a t modelling using automaton theory makes the detection of 

variations to the XML based message easier. Also, finite state modelling 

is more suitable for modelling Web services as the state explosion problem 

can be controlled. State explosion is an exponential growth of state space 

in real world problems. Model checking tools axe faced with the state ex­

plosion problem. There are some approaches to resolve this problem, such 

as symbolic algorithms, bounded model checking algorithms, partial order 

reduction, abstraction and counter-example guided abstraction refinement. 

In this thesis partial order reduction is used to control the state explosion 

problem. Our approach is also more sensitive to content tampering. We 

show tha t our model is able to detect XML injection attacks. To the best of 

our knowledge this is the first attem pt to model WS-Security and WS-Trust 

based cryptographic protocols in Promela and Spin. Our preliminary ap­

proach allows the properties of the environment and the model to be defined 

in a more flexible and precise way using Linear Temporal Logic. We define 

authenticity and secrecy properties and present them in Linear Temporal
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Logic [KM08]. We also present an intruder model based on the Dolev-Yao 

abstraction for WS-Security and WS-Trust based protocols in Promela. The 

intruder model is extended to encompass XML injection attacks. Spin and 

Promela form an effective analysis tool for cryptographic protocols and fi­

nite state systems. We adopted Promela for our web services based protocol 

model and Spin for verification for this purpose.
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System Model

“Model checking is an automated technique that, given a finite 

state model of a system and a formal property, systematically 

checks whether this property holds for (a given state in) that 

model” [BK08].

3.1 Chapter Objectives

The aim of this chapter is to define a system model of protocols using WS- 

Security and WS-Trust. The chapter deal with two main topics: system  

properties and modelling protocols. The requirements will be modelled as 

linear temporal logic formulas and the system/protocol environment will be 

formalised as a state transition system. The combination of the property 

specification and system model will be input to the Spin model checker. The
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environment will be modelled for each of the protocols described. This chap­

ter lays the foundation for the following work on analysis.

3.2 M odel Checking

3.2.1 M odel Checking Process

Model checking is based on a collection of techniques for the automatic analy­

sis of a system. The model checker takes as input a description of the system 

and the properties of that system. The system in most cases is defined as a 

finite state system and its properties are expressed as temporal logic formu­

las. The model checker verifies whether the properties hold or not. In most 

cases if a property does not hold the model checker gives a counterexample. 

In practice, the model of the system being analysed is approximate, thus the 

results are limited as well. Errors in the model may still remain after the 

verification.

When applying model checking to a system design, three main phases 

may be identified, as described in [BK08]:

1. Modelling Phase. The modelling phase consists of (i) modelling the 

system in a language acceptable to the model checker being used, (ii) 

quick simulations on the model, and (Hi) using the property specifica­

tion language to formalise the property to be checked.

2. Running Phase. The system is checked to see if the properties defined 

using the model checker hold.
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3. Analysis Phase. This checks whether the properties specified are sat­

isfied or not. Depending on the result, the model is then refined, the 

properties re-designed, and the process repeated.

Figure 3.1 gives an overview of the model checking approach. The re­

quirements of the system under consideration are first identified and these 

requirements are then formalised in some property specification language. 

The system is then modelled in a language acceptable to the model checker. 

A combination of the model and the properties of the model are then fed 

into the model checker. The model checker outputs the results as ‘satisfied’ 

if no property is ‘violated’, or ‘violated’ if a property fails for the model.

To build any model for verification purposes there are recommendations 

that should be followed. Following these guidelines helps to model the sys­

tem under consideration correctly. The system reflects its desired properties.

3.3 M odelling Cryptographic Protocols

Before our protocol model is defined, there are certain guidelines for crypto­

graphic protocols that should be followed. Since Web services based security 

protocols are, in essence, XML based cryptographic specifications, we have 

tried to follow these guidelines in designing the system under consideration.
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Figure 3.1: Schematic view of Model Checking approach
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3.3.1 Guidelines for M odelling Cryptographic Proto­

cols

When writing a suitable protocol three main factors must be taken into 

account: the principles involved in designing the protocol, the goals of the 

protocol, and common attacks on the protocol. These three criteria will now 

be briefly reviewed.

Principles for D esigning Cryptographic Protocols

To design a good cryptographic protocol there are some principles found 

in the literature that should be satisfied [Sch95, StiO‘2, Sta95, For94]. The 

protocol must be efficient with no unnecessary encryption and no inclusion 

of unnecessary messages, for example, double encryption. Every message 

should say what it means: the interpretation of the message should depend 

only on its contents. It should be possible to write down a straightforward 

sentence describing what the message means. The conditions for a message 

to be acted upon should be clearly set out. If the identity of a principal is 

essential to the meaning of a message, it is prudent to mention the princi­

pal’s name in the message. It should be clear why encryption is being done. 

When a principal signs material that has already been encrypted, it should 

not be inferred that the principal knows the content of the message. It is 

necessary to be clear about what properties are assumed for nonces. The 

use of a predictable quantity can serve in guaranteeing newness, through a 

challenge-response exchange, but it should be protected so tha t an intruder 

cannot simulate a challenge and later replay the response. If timestamps 

are used as freshness guarantees then the difference between local clocks at
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various machines must be less than the allowable age of a message deemed to 

be valid. A key may have been used recently yet be quite old, and possibly 

compromised. If an encoding is used to present the meaning of a message, 

then it should be possible to tell which encoding is being used. The protocol 

designer should know which trust relations his protocol depends on, and why 

the dependence is necessary.

G oals o f Cryptographic Protocols

Each protocol is designed with a particular goal in mind. There are vari­

ous goals for security protocols, such as (1) security, (2) key establishment, 

(3) authentication, (4) key freshness, (5) key exclusivity where a key is only 

known to the principals of the protocols, and (6) good key where a key is 

both fresh and exclusive.

The goals for the protocol model put forward in this thesis axe based 

on a combination of a cryptographic protocol and Web services goals. For 

the protocol model based on WS-Security and the Simple Message Exchange 

Protocol, the goal is to maintain secrecy and authentication. For the second 

protocol based on WS-Trust and the Security Token Protocol, the goal is not 

only secrecy and authentication, but also establishment of a security context. 

The protocol goals are modelled in terms of Linear Temporal Logic. A com­

plete description is given in Section 3.7.
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A ttacks on Protocols

When defining goals for security protocols the hostile environment in which 

they will run should be kept in mind. Each protocol has a set of specific 

goals depending on the type of attacks it is most likely to face. When 

designing protocols, the types of attacks possible on the protocol must be 

considered. Traditional cryptographic protocols are faced with attacks such 

as eavesdropping, modification of messages, replay attack, man-in-middle 

attack, reflection attack, and so on. The effects of these attacks can be less­

ened with good encryption. In the case of attacks such as denial-of-service 

(DoS) and typing attacks, there is no particular solution. In DoS attacks, 

the server farms can be made to distribute traffic load when a DoS attack 

is detected. W ith an evolving protocol environment and the increasing com­

plexity of protocols, there are more and more types of attack emerging. Web 

services based security protocols axe similar to  traditional protocols, but have 

an added complexity. These protocols are not only susceptible to traditional 

cryptographic attacks, but also have their own targeted attacks, such as:

•  Forceful browsing, where the attack is aimed at discovering unpubli­

cised Web services.

• Dictionary attacks, where an attacker attem pts to break passwords to 

gain access.

•  Parameter tampering, where data passed as parameters to a Web ser­

vice is tampered with.

•  XML injection attacks, where some information is added to alter the 

meaning of a message
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To be able to widely deploy Web services, it is necessary to be able to 

defend against malicious attacks. Therefore, there is a need to develop and 

formalise intruder models for Web services based security protocols.

This thesis defines two such security protocols based on Web services 

specifications. The first of these is the Simple Message Exchange Protocol 

(SMEP), based on WS-Security. The goal of SMEP is to authenticate se­

curely between two services. The second protocol, Security Token Protocol 

(STP), is developed using the WS-Trust specification. STP aims at reaching 

a secure agreement on a security context between two services while correctly 

authenticating them to each other. These protocols are defined in the next 

section.

3.4 Security Protocol M odels

WS-Security and WS-Trust provide the syntax for a broad range of protocols, 

but do not define the protocols themselves. This lack of protocol definition 

provides flexibility for the end user. As a result, the security protocols need 

to be defined along with their goals. These goals have to be carefully specified 

and then validated. This section defines a protocol for a system employing 

only WS-Security. Later another protocol model based on WS-Trust will 

be included. A difficulty arises from modelling the XML based protocols in 

Promela, a language acceptable to the Spin model checker. Promela and 

Spin will be discussed in the next chapter.
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3.4.1 Sim ple M essage Exchange Protocol

The Simple Message Exchange Protocol (SMEP), a message exchange pro­

tocol employing the WS-Security specification [NKHBM04], will now be de­

scribed. The goals of the protocol are that both participants are able to 

authenticate each other and the message is kept secret in the presence of 

an attacker, that is, secrecy and authentication. These goals can be accom­

plished by using a combination of XML Signature and XML Encryption. 

The message is kept secret by encrypting the contents of the message using 

XML Encryption and authentication is achieved by signing the message us­

ing XML Signature.

The protocol has two participants, service A and service B. Each partici­

pant is associated with a RSA key pair (a public and a private key). A’s key 

pair is represented by (pk_A, sk_A), and likewise for B we have (pk_B, sk_B), 

where pk_A represents the public key of A and sk_A represents the secret or 

private key of A, and similarly for B. It is assumed tha t the public key of B 

is known to A and the public key of A is known to B prior to the protocol 

run. It is also assumed that the private keys of both A and B are kept secret 

and are only known to A and B.

Service A sends a request to service B, and B sends a response to A. The 

request message contains the timestamp (TS), the nonce (N_A), the identity 

of A, and REQ, which represents a request. TS, N_A and REQ are signed 

by A for purposes of authentication using RSA-SHA1 with sk_A, and for the 

purpose of secrecy the message is encrypted using a symmetric key, which in 

turn  is encrypted using the public key of B, pkJB. B sends a response to A. It 

signs the response (RES, original message from A) using sk_B and encrypts 

the response using a fresh symmetric key under pk_A.
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A simple authentication protocol should have a client A sending a mes­

sage to B with sufficient information for authentication. The timestamp (TS) 

and nonce are used to verify that the message exchange is for the current 

traffic, i.e the message is not replayed from an older session. The value of 

TS changes with each message exchange, i.e., for each protocol step TS is 

assigned a fresh value. XML Signature is used to authenticate the sender’s 

identity, and encryption is used for the purpose of secrecy. In the following, 

sign_Y(X) denotes the digest of the data X encrypted with the private key 

of entity Y.

(1) A —► B : sign_A(TS, REQ, N_A) | pk_B(syramkey_A) | symmkey_A(TS, REQ, N_A), 

M_1

(2) B —> A : sign_B(TS, RES, N_B) | pk_A(symmkey_B) | symmkey_B(TS, RES, NJB) | 

M_1

Step 1: The message, M_l, sent by service A has three parts. In the 

above “|” represents concatenation. Service A sends the data REQ to B, it 

signs the timestamp TS, REQ, and nonce of A using its secret key. Service 

A generates a symmetric key (to be used in subsequent communication with 

B) and encrypts this using the public key of B. Service A then encrypts TS, 

REQ, and N_A using the symmetric key.

Step 2: On receiving the message from A, service B uses its private key 

to extract the symmetric key. Service B then uses this symmetric key to de­

crypt the third part of the message, thereby extracting TS, REQ, and N_A. 

Service B then authenticates the identity of A by checking the signature, 

sign_A(TS,REQ,N_A), and checks the timestamp. After this service B sends
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a response (RES) to A as a four-part message. It signs TS, RES, and N_B, 

where TS is a fresh timestamp, and then encrypts TS, RES, and N_B using 

the symmetric key (note that symmkey_A =  symmkey_B). Service B also 

encrypts the symmetric key using the public key of A, which allows A to 

check th a t this is the same symmetric key that it originally sent to B. It also 

sends the original message M_1 that it received from Service A. Service A 

can compare this with the message it originally sent to allow the detection 

of message tampering.

Next a variation to the above protocol is presented with the aim of show­

ing a simple message exchange between two services, which do not share 

symmetric keys. This initial protocol run will now be modelled.

(1) A -> B : A, B, N.A, TS | pkJB(REQ, sign_A(A, N_A, REQ, TS))

(2) B -* A : B, A, N_B, N_A, TS | pk_A(RES, sign_B(B, N_B, A, N_A, RES, TS))

(3) A -+ B : A, B, N_A, N_B, TS | pk_B(ACCEPT, sign_A(B, N_A, N_B, A, ACCEPT, 

TS))

In the first message exchange between service A and service B, the first 

part of the message, (A, B, N_A, TS), contains the identity of the sending 

service A, the identity of the intended receiving service B, a freshly generated 

random value (the nonce N_A), and a timestamp for the message, TS. The 

second part of the message, pk_B(REQ, sign_A(A, N_A, REQ, TS)), encrypts 

the data  REQ, and a signature for A, N_A, REQ, TS, with the public key of 

B, pk_B. This signature is the digest of the data A, N_A, REQ, TS encrypted 

with the private key of A.

On receiving the message service B uses its private key to decrypt and
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extract REQ and sign_A(A, N_A, REQ, TS), and checks the signature of A 

and the freshness of the timestamp. In the second step of the message ex­

change, service B then sends a message back to service A to  indicate that it 

has authenticated service A. It returns (B, A, N_B, N_A, TS) which includes 

its identity B, the identity of the sending party A, its nonce N_B, the nonce 

it received from service A, N^A, and a newly generated timestamp, TS. The 

second part of the message, pk_A(RES, sign_B(B, N_B, A, N_A, RES, TS)), 

encrypts with the public key of A the data RES, and the signature of the 

identities, their nonces, the RES data, and the timestamp.

On receiving the message from service B, service A uses its private key to 

decrypt and extract RES and sign_B(B, N_B, A, N_A, RES, TS), and checks 

the signature of B and the freshness of the timestamp. If these are acceptable 

then in the last part of the message exchange, service A sends the following 

response to service B to indicate that it has authenticated service B. The first 

part of the message (A, B, N_A, N_B, TS ) contains the identity of both the 

services, and the timestamp TS and nonce NJB it received from service B. 

In the second part of the message, pk_B(ACCEPT, sign_A(B, N_A, A, N_B, 

ACCEPT, TS)), service B encrypts the data ACCEPT and sign_A(B, N_A, 

NJB, A, ACCEPT, TS) with the public key of B. It should be noted tha t in 

this message the nonce of A, N_A, and the timestamp, TS, are freshly gen­

erated. After service B has received and accepted this message then services 

A and B are mutually authenticated.

The SMEP protocol is applied when service A sends a message to service 

B. The message contains the identity of A and its nonce, in the form of a 

UsernameToken, as used in WS-Security. The message also contains a times­
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tamp token which provides a mechanism to determine the freshness of the 

message. The UsernameToken and REQ, representing some data, is signed 

by A for the purposes of authentication. The REQ and the signed content is 

then encrypted by the recipient’s public key.

Service B processes the message sent by A as follows. It decrypts the 

message using its private key, and validates the message by confirming that 

the contents are signed by the sender A. This can be done by decrypting 

the message with the key information provided in the message and compar­

ing the result with the original message. If the signature values match, the 

message is authentic. Once the message has been authenticated, it sends a 

response to A. The response contains its UsernameToken, consisting of the 

identity of B and its nonce, N_b. It also returns the sender information, i.e., 

the sender’s name and nonce. It signs its UsernameToken, A and RES. It 

encrypts REQ and the signed information with the public key of sender A. 

A process the message as before. If all checks pass, A sends an ACCEPT 

response to B.

3.4.2 Security Token Protocol

WS-Trust provides a framework for issuing security tokens, renewing security 

tokens and brokering trust relationships [NGG+07]. WS-Trust depends on 

a Security Token Service, STS, which is a dedicated service for evaluating 

requests for tokens and issuing tokens. A security token (ST) is a collection 

of claims, where a claim is a statement made about a client, for example, 

name, identity, key, etc. A Security Context (SC) is a concept referring to an 

established authentication state and negotiated keys, and a Security Context
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Token (SCT) is a tangible representation of the SC concept [Aea05].

A simple three-message exchange protocol for issuing a security token 

will now be presented. The messages are exchanged between sender A and 

a Security Token Service, STS. The goal of the protocol is to establish a 

security context between the two processes while maintaining secrecy and 

authenticity. A Security Context Token points to a shared context between 

a client and a Web service. Keys can be derived using the contents of the 

Security Context Token, which in turn are used to protect communication 

between participants. Readers are referred to WS-SecureConversation for a 

detailed description of the usage of security context tokens [Aea05].

Service A sends a Request Security Token (RST) to the Security To­

ken Service (STS). Service A requests the issuance of a security token for 

communication between itself and the Security Token Service. The Secu­

rity Token Service processes the request and, upon accepting it, agrees on a 

partial security context (partial SC). The Security Token Service responds 

with a Request Security Token Response (RSTR) token. After the accep­

tance of the RSTR, both parties should agree on a full security context (SC). 

WS-Security is used for protection of envelopes carrying requests for security 

token elements and Request Security Token response elements.

(1) A -¥  STS : A, N_A, STS, RST, TS | sign_A(A, N_A, RST, tokenType, 

requestType, appliesTo, clientEntropy, entropicMode) |pk_STS(N_A, RST, 

tokenType, requestType, appliesTo, clientEntropy, entropicMode)

(2) STS A : A, N_A, STS, N_STS, RSTR, TS | sign_STS(RSTR, SC, 

SCTJD , tokenType, requestType, appliesTo, serverEntropy, clientEntropy,
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entropicMode,created, expires, ComputedKey) | pk_A(N_A, N_STS, SC, 

SCTJD , tokenType, requestType, appliesTo, serverEntropy, clientEntropy , 

entropicMode, created, expires, ComputedKey)

(3) A -> STS : SCTJD  | sign_A(SCTJD) | pk_STS(SCTJD)

The first message is sent from service A to the Security Token Service. 

The request security token consists of three part,s. The first, part of the mes­

sage, A, N_A, STS, RST, TS, contains the identity of A, nonce N_A , the 

identity of the service it wants to talk to, the type of the message (RST) 

and the timestamp (TS). The second part of the message contains signed 

information sign_A(A, N_A, RST, tokenType, requestType, appliesTo, clien­

tEntropy, entropicMode). Service A signs its identity, nonce and request 

(RST). It also signs all the elements of the Request Security Token includ­

ing, TokenType (the type of token being requested), RequestType (request 

for issuance of security token), AppliesTo (the service where it will be used 

for communication), clientEntropy (its base64 encoded value) and entropic­

Mode (the mode of calculating the entropy). In the last part of the message, 

pk_STS(N_A, RST, tokenType, requestType, appliesTo, clientEntropy, en­

tropicMode), it encrypts the information with the Security Token Service’s 

public key.

The second message is the request security token response (RSTR), which 

is the response from the Security Token Service after it has validated the re­

quest. The first part of the message, A, N_A, STS, N_STS, RSTR, TS, con­

tains the identity and nonce information of A. It also contains the Security 

Token Service provider identity and nonce, STS and N_STS. The second part 

of the message, sign_STS(RSTR, SC, SCTJD , tokenType, requestType, ap­

pliesTo, serverEntropy, clientEntropy, entropicMode, created, expires, Com-
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putedKey), contains the signed information. It signs the information that 

was present in the original request, TokenType, AppliesTo, RequestType, 

clientEntropy and entropicMode. It now also returns additional information 

about calculating the keys. It sends its entropy, serverEntropy, and how 

the key is to be computed in the ComputedKey element. It also returns 

the unique security context id, SCTJD. In the last part of the message, 

pk_A(N_A, N_sts, SC, SCTJD, tokenType, requestType, appliesTo, server­

Entropy, clientEntropy, entropicMode, created, expires, ComputedKey), the 

Security Token Service encrypts all the information signed by it before, and 

sends the message to the requestor.

The last message is sent by the service A to STS. It contains the unique 

identity of the security token. It signs the SCTJD, sign_A {SCTJD }, and en­

crypts it, pkJSTS(SCTJD) with the public key of the Security Token Service.

Both the client and the Security Token Service include a fresh random 

value called entropy, which is used to calculate the key. This key is used 

to establish a context key between services and is used as a session key. A 

session key is used when two services are involved in a session with each 

other. The session key is shared between these two services for encrypting 

the messages exchanged between them.

Service A sends a message to the Security Token Service. The message is 

authenticated using the mechanism established in SMEP and the request for 

a security token will be accepted only if STS knows it is talking to A and has 

a fresh N_A. After the STS validates the request for a security token, there 

should be a partial agreement represented by partialSC. partialSC consists
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of appliesTo, entropicMode, tokenType and requestType. Here, the partial 

entropy mode is being used, where the requester and the Security Token Ser­

vice both provide entropy to  calculate the context key. The Security Token 

Service sends a response to service A, and A validates the message. When 

the message Request Security Token Response (RSTR) is accepted both pro­

cesses should have agreed on a full security context. This Security Context 

contains an identity for the security context token, SCT-ID, which is unique 

to the Security Context and is known to parties using the Security Con­

text, clientEntropy  and serverEntropy , and computerKey, entropicMode, 

appliesTo, tokenType, requestType and expires are the other elements con­

tained in the Request Security Token Response element.

Figure 3.2 gives a graphical representation of the Security Token Protocol. 

A sender service sends a request for a security token (RST) envelope. The 

Security Token Service processes the request and, if successful, returns the 

requested security token (RSTR).

3.5 Environm ent M odel for Protocols

When defining a protocol, the environment in which the protocol will run 

must be considered. This environment needs to be represented formally so 

it can not only be easily mapped into a model checking framework, but also 

reflects accurately the environmental context. In this thesis the environment 

is modelled as a transition system, defining the changes involved in each part 

of the protocol run.

Transition systems are often used to describe the behaviour of a system,
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Figure 3.2: Security Token Protocol

and are defined with action names for the transitions and atomic propositions 

for the states. An atomic proposition (AP) is one whose tru th  or falsity does 

not depend on the truth or falsity of any other proposition. Action names are 

used for describing communication mechanisms between processes. Atomic 

propositions express simple known facts about the state of the system and 

are used to formalise temporal characteristics. A simple choice is to let the 

state names act as AP, i.e., L(s) = s for any state s. The equation 3.1 de­

scribes a transition system.

T S  = {s ,A c t,-+ ,I,A P ,L ) (3.1)
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where,

s is a set of states,

Act is a set of actions,

—> Q s x Act x s is a transition relation, and (si, a , s2 ) E—> is denoted 

by Si 7?a'2. This means that there is a transition from state sx to state 

S2 associated with action a.

I  ^  s is a set of initial states,

AP is a set of atomic propositions,

L: s -* 2ap  is a labelling function th a t relates a set L(s) E 2^p of 

atomic propositions to any state s.

L(s) stands for exactly those atomic propositions a E A P  which are satisfied 

by state s. Given $  is a propositional logic formula, then s satisfies the 

formula <I> if the evaluation induced by L(s) makes the formula true, that 

is

s |= $  L(s) |= $

where s f= $  should be read as “the state s models the propositional logic 

formula 4>”. This means that when all the atomic propositions for a state s 

can be obtained from the propositional logic formula then we say that s 

satisfies/ formula <f>, and vice versa.

3.5.1 Environment M odel for SM EP

The model for the environment of the Simple Message Exchange Protocol 

will now be given. The principal services involved in the environment, the
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sender, receiver, and intruder services, and all possible transitions between 

the services are presented. The environment is described as a transition sys­

tem.

A finite state transition model of the Simple Message Authentication Pro­

tocol, or SMEP consists of six states representing the protocol run at various 

stages. The sender sends a message to the receiver over an insecure channel. 

The message is encrypted at the sender’s side before being sent on the chan­

nel, and is decrypted at the receiver’s end. The intruder can listen to these 

messages and can replay them or start their own conversation. The sender 

and receiver roles can be adopted by service A or B, depending on which 

service is initiating a protocol run.

Below a transition system for the Simple Message Exchange Protocol is 

described. Equation 3.3 for SMEP represents the complete transition of the 

system as described in Eq. 3.1. S denotes the Sender Service and R the Re­

ceiver Service. IC is the insecure channel on which the message is passed.
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S M E P  = ((S, Sign/Encrypt, IC, Intruder, Decrypt/VerifySign, R),

(encrypt jmsg, decrypt -mag, sendjmsg, recvjmsg, listen jmsg),
---------------------------------------̂   y

(S encrypt-msg Sign/Encrypt), (Sign/Encrypt sendjmsg IC),

(IC decrypt jmsg Decrypt/Verify Sign), (Decrypt/Verify Sign recvjms/j R),

(I sendjmsg IC), (IC sendjmsg I), S,

(secrecy, authentication),

(L(S) =  {</>}, L(IC) =  {</>}, L(Intruder) =  {</>}, L(R) =  {</>},

L(Sign/Encrypt) =  {<j)}, L(Decrypt/VerifySign) =  {secrecy, authenticatitftofy)

(3-3)

In the above the set of states is {S, Sign/Encrypt, IC, I, Decrypt/Veri- 

fySign, R}, where:

1. S: waiting for the sender to take some action.

2. R: waiting for the receiver to take some action.

3. I: waiting for the intruder to take some action.

4. Encrypt/Sign: represents the state when the message is encrypted and 

signed.

5. Decrypt/VerifySign: represents the state when the message has been 

received, but has not yet had its signature verified or been decrypted.

6. IC: represents the state when the message is travelling on the insecure

channel.

In a Simple Message Exchange Protocol run the set of possible actions is 

{encrypt_msg, decrypt_msg, send_msg, recv_msg, listen_msg}. ‘encrypt_msg’
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represents the encryption of the message, ‘decrypt_msg’ represents the de­

cryption of the message, ‘send_msg’ and ‘recv_msg’ symbolize sending and 

receiving of messages between the sender service and the receiver service, 

and ‘listen_msg’ represents the Intruder action of listening on the message 

channel and intercepting the messages.

The set of atomic propositions of a system represents simple facts about 

the system, and are used for formalizing the system properties. In their sim­

plest form, they can be represented by the name of the states in the protocol 

environment model. The atomic propositions for the environment of the Sim­

ple Message Exchange Protocol are ‘Secrecy’ and ‘Authentication’. ‘Secrecy’ 

and ‘Authentication’ illustrate that the message has been kept secret during 

the run over the channel by means of encryption and ‘Authentication’ refers 

to verification of the sender’s identity by confirming th a t the message was 

correctly signed by the sender service. Thus, the set of atomic propositions 

is {Secrecy, Authentication}.

The set of transitions is:

------------------y
•  S encrypt jmsg  Sign/Encrypt,

•  Sign/Encrypt sendjmsg IC,

• IC decrypt jmsg  Decrypt/Verify Sign,

•  Decrypt/VerifySign recvjm s$ R,

•  I sendjmsg IC),

 ►
•  IC sendjmsg I,
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For example, the first of these represents the transition of the system from 

state S to state Sign/Encrypt caused by the action encrypt_msg.

L: S  —► 2ap is a labelling function, which defines the properties that a 

state is supposed to satisfy. L(S)={<£}, L(IC)={<£}, L(I)={<^}, L(Sign/Encrypt) 

= {(/>} and L(R)={</>} give the states which do not need to satisfy any atomic 

propositions. L(Decrypt/VerifySign) =  {secrecy, authentication} represents 

the state ‘Decrypt/VerifySign’ which must satisfy the properties of ‘Secrecy’ 

and ‘Authentication’.

3.5.2 Environment M odel for STP

This section models the environment for the Security Token Protocol (STP). 

The environment model is built on top of the one for SMEP described in the 

previous section, but the complexity of the environment for issuing security 

tokens to Web services is added. A sender service, a Security Token Service 

and an intruder communicate over an insecure channel. The sender service 

requests the Security Token Service to issue a security token. The request for 

the security token is created, the resulting message is signed and encrypted, 

and sent over the insecure channel IC. On the receiver end the request is pro­

cessed and the Security Token Service agrees on a partial security context.

It then sends its complete information for calculating the security context 

back to the sender over the same insecure channel. S denotes the sender 

service, I the intruder, and STS the Security Token Service service. IC is the 

insecure channel on which the message is passed. Equation 3.4 symbolizes 

the transition system of the Security Token Protocol environment.
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STP  =  ((S, RST, RST Sign/Encrypt, IC, RST-Decrypt/Verify Sign, PartialSC, STS,

RSTR, RSTRJSign/Encrypt, RSTRJDecrypt/VerifySign, FulLSC, I),

(create-RST, EncJtST, Send-RST, RecvJiST, Decrypt-RST, Partial-SC,

Create-RSTR, EncJRSTR, Send-RST R, RecvJiSTR, Decrypt-RSTR, SC-RST)

((S C rea teS S 't  RST), (RST Enc-RS^ RST S ign/E ncrypt) ,

(RSTSign/Encrypt Send-RSlt IC), (IC Recv-RS'f' RST-Decrypt/VerifySign),

(RST-Decrypt/VerifySign Decrypt/VerifySign-RSlt Partial-SC),

(P artia lSC  PartialSC S s i  STS), (STS CreateMSTlk RSTR),

(RSTR Enc-RSTA RSTRSign/Encrypt), (RSTRSign/Encrypt Send-RSTh IC),

(IC Recv-RST A RSTR-Decrypt/Verify Sign),

(RST R-Decrypt/Verify Sign Decrypt/Veri f y  Sign-RST A Full-SC),

(F u llS C  SC-RST& S)), {S'},

(Secrecy, Authentication, partial SC, SC),

(L(S) =  {<£}, L(RST) =  {<£}, L(RST.Sign/Encrypt) =  {</>},

L(IC) =  {</>}, L(I) =  {</>}, L(RST.Decrypt/VerifySign)  =  {Secrecy, Authentication}, 

L(PartiaLSC) =  {partialSC}, L(STS) =  {(f)}, L(RSTR) =  {(f>},

L(RST RSign/Encrypt) — {(f)}, L(RSTR-Decrypt/VerifySign) =  {Secrecy, Authentication} 

L(FulLSC) =  {SC})) (3.4)

In the above specification of the Security Token Protocol the set of states is 

as follows:

1. S: waiting for the sender to take some action.

2. RST: represents the state when the request for a security token has 

been generated.

3. RST_Sign/Encrypt: represents the state when the request for a security 

token has been encrypted and signed.
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4. IC: represents the state when the message is travelling on the insecure 

channel.

5. RST .Decrypt/VerifySign: represents the state when the request for a 

security token has been received, but has not yet had its signature 

verified or been decrypted

6. Partial-SC: represents the state when a partial security context has 

been established between the sender and the Security Token Service. 

This means the Security Token Service has authenticated the sender 

and accepted their request for a security token, but has not yet re­

sponded to establish a full security context.

7. STS: waiting for the Security Token Service to take some action.

8. RSTR: represents the state when the response to the security token 

request has been generated.

9. RSTR_Sign/Encrypt: represents the state when the response to the 

security token request has been encrypted and signed.

10. RSTR_Decrypt/VerifySign: represents the state when the response to 

the security token request has been received by the sender, but has not 

yet had its signature verified or been decrypted.

11. FulLSC: represents the state when a full security context has been 

established between the sender and the Security Token Service.

12. I: waiting for the intruder to take some action.

In a Security Token Protocol run the set of possible actions is {Create_RST 

, Enc_RST, Send_RST, Recv_RST, Decrypt_RST, Partial-SC, Create_RSTR,
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Enc_RSTR, Send_RSTR, RecvJRSTR, Decrypt_RSTR, SC_RST)}. ‘Cre- 

ateJRST’, ‘EncJRST’ and ‘Send-RST’ represent actions which are performed 

on the sender side when creating, signing, encrypting, and sending a request 

for a security token. ‘Recv_RST’, ‘Decrypt_RST’ and ‘Partial-SC’ denotes 

actions on the STS end of the request for a security token message. The re­

quest is received, deciypted, the signature verified and an agreement is made 

on a partial security context. The Security Token Service then performs the 

following actions to create, sign, encrypt and send a request security token 

response message: ‘Create_RSTR’, ‘Enc_RSTR’ and ‘Send_RSTR’. The re­

quest security response is received by the sender: ‘Recv_RSTR’. It is then 

decrypted and its signature is verified by the action ‘ Decrypt _RSTR’. A se­

curity context is then established by the sender represented by the following 

action: ‘SC-RST’.

The set of atomic propositions for the Security Token Protocol environ­

ment is {Secrecy, Authentication, partialSC, SC}. ‘Secrecy’ and ‘Authen­

tication’ represent that the request security token message and the request 

security token response message are kept encrypted and are digitally signed. 

‘partialSC’ denotes the property of agreement on a partial security context 

by the Security Token Service, i.e., when the request for a security token is 

acceptable to the Security Token Service. ‘SC’ shows the property that the 

security context has been agreed on by the sender. This property is fulfilled 

when the sender has agreed on the security token provided in the request 

security token response message.

The set of transitions is:

•  S Create- R s f n S T ,
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•  RST Enc-RS'i' RST_Sign/Encrypt,

• RST_Sign/Encrypt Send-RS'ft IC,

• IC R e c v -R s f  RST_Decrypt/Verify Sign,

• RST .Decrypt/VerifySign D ecryp t/V erifyS igri-R ST  Partial-SC),

• Partial_SC PartialSC  M S $  STS,

• STS C rea te .R ST h  RSTR,

• RSTR Enc-R ST  A RSTR_Sign/Encrypt,

•  RSTR-Sign/Encrypt Send-RST  A IC,

• IC Recv-RSTA RSTR_Decrypt/VerifySign,

• RSTR_Decrypt/VerifySign D ecryp t/V erifyS igri-R STA Full_SC),

• Full-SC S C .R S T  A S
For example, the transition ‘S CreateJRS'A RST’ represents a transition from 

state S to state RST when action CreateJFtST is performed.

L is a labelling function, which defines the AP properties that* a state has 

to satisfy. L(S) =  {<£}, L(RST) =  {<£} , L(RST_Sign/Encrypt) -  {<£}, L(IC)

-  {<£}, L(I) =  {0}, L(STS) =  {</>}, L(RSTR) =  {<£}, L(RSTR_Sign/Encrypt)

— {^} } represents that the states do not need to satisfy the atomic proposi­

tions described above. L(RST_Decrypt/VerifySign) =  {Secrecy, Authentica­

tion}, L(PartiaLSC) =  {partialSC}, L(RSTR_Decrypt/VerifySign) =  {Secrecy, 

Authentication}, L(FulLSC) =  {SC} } denotes the states which satisfy atomic 

propositions. L(RST-Decrypt/VerifySign) =  {Secrecy, Authentication} means
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tha t the state ’RST-Decrypt/VerifySign’ should satisfy the property of ’Se­

crecy’ and ’Authentication’. Similarly, L(FulLSC) =  {SC} means that the 

state ’Full.SC’ satisfies the property of ’SC’, meaning an agreement has been 

reached on a security context.

We also assume that during a protocol run there is no message loss, the

message is delivered to the end point correctly.

The preceding discussion has established environment models for the 

SMEP and STP protocols, and also has given a formal description of the 

possible states and transitions involved in each environment. The properties 

of the intruder, and the possible ways an intruder can interact with the en­

vironment, will now be discussed in detail.

3.6 Intruder M odel for Protocols

This section defines the properties of the intruder and the attack model. It 

is assumed that the attacker in the model has abilities as specified by the 

Dolev-Yao model. The ability to: .

•  Overhear and intercept all the messages on the network.

• Modify the messages.

• Generate new messages using the information from overheard messages 

and some beforehand information.

• Send a new or captured message to another entity in the system.
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In addition, it is assumed that the underlying cryptography cannot be broken.

The behaviour of the intruder can be modelled in two ways: (1) the 

intruder intercepts messages, and (ii) the intruder sends messages. In the 

second case the intruder can send two types of messages on the network. He 

or she can replay an old message, or create a new message from information 

learned so far.

3.6.1 M anipulated Protocol Run for SM EP

There are four possible ways the intruder can take part in the protocol ses­

sion and interact with the participants. Here, —> represents initiation of a 

protocol run from the service at right to left, i.e, A —tB  is read as A initiates 

a conversation with service B.

I —> B : The intruder I behaves like a legitimate user of the system. S/he 

initiates a session with B and sends a message to B. The aim of the intruder 

is to learn as much information as possible from service B. In this run, the 

intruder is able to learn the nonce, a randomly generated value from B. S/he 

can use this nonce to initiate message exchange with service A, acting as B.

A —t I : A talks to I. Service A assumes I is a legitimate service. Intruder 

service I completes a successful run with the A. I learns as much information 

as possible. Service I learns the nonce of A and can use it to pretend to be A.

A -* 1(B) : A starts a message exchange with service B. However, the in­

truder service intercepts the message and pretends to be service B itself. I
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can only do this once it knows the nonce of B, which has not been used in a 

message exchange before between service A and service B.

1(A) —► B : Service I initiates a run with service B, pretending to be service 

A. It can only start a message exchange with service B if it has access to the 

nonce of A, which has not been used before in any exchange between service 

A and service B.

The intruder can initiate a protocol run with service A and service B. 

During these runs the intruder learns the nonces for A and B. It can use 

these to  initiate further runs as an impostor. Protocol runs being executed 

after it learns the nonces are A  —> I ( B ) and I{A) —> B.

3.6.2 M anipulated Protocol Run for ST P

This section defines the possible interactions of the intruder service with the 

Security Token Service. There are two possible scenarios where an intruder 

can interact with the Security Token Service.

I  —¥ S T S  : The intruder acts as a legitimate user of the environment. The 

intruder initiates a message exchange with the Security Token Service and 

requests a security token used for establishing a session with another service. 

The Security Token Service believes service I to be a legitimate user and 

issues a security token to it.

1(A) —y S T S  : Service I can initiate a message exchange with the Secu­

rity Token Service pretending to be service A. The intruder may have gained
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information from a previous interaction with service A. It can use the in­

formation, such as the nonce of A, to act as A and gain a security token. 

Service I behaves as an impostor.

3.7 System  Properties

This last two sub-sections have defined the capabilities of the intruder for 

both the Simple Message Exchange Protocol and Security Token Protocol. 

The possible ways the protocols can interact with the environment have been 

described. This section describes the properties of the protocols in the form 

of Linear Temporal Logic.

The behaviour of a system may be modelled as formulas in Linear Tem­

poral Logic (LTL). Temporal Logic is the branch of logic which allows one 

to reason about the causal and temporal relations of properties [Hol03]. The 

properties of a protocol run can be formalized unambiguously and concisely 

with the help of temporal operators. Linear Temporal Logic is a dominant 

formalism in verification, and can be applied to finite and infinite runs of a 

system.

The next two subsections define the LTL operators used in defining sys­

tem properties. The square operator, Dp, defines tha t a property p will 

remain true throughout a run. The operator □  is read as always. The dia­

mond operator, <0>p: defines that the property p is guaranteed to become true 

at least once in a run. The operator <0> is read as eventually. X  is the next 

operator, and X(p) is read as “Next p” . —> represents the boolean operator
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for logical implication. ! represents a logical operator for negation.

3.7.1 Property Specification for SM EP

The goal of the Simple Message Exchange Protocol, as discussed earlier, is 

authentication and secrecy. If A talks to B and is satisfied that it is commu­

nicating with B, and B is satisfied that it is communicating with A, and, if 

intruder I has not learned the nonce of A or B, then it is said that A and 

B have successfully completed a run of the protocol. This property of the 

system can be modelled in temporal logic. A well-formed temporal formula 

is a combination of state formulae and temporal operators. This formula is 

input to the Spin model checker, along with the system model. The authen­

tication between A and B can be modelled as shown below.

status A —y InonceB 

statusB —> ! nonce A

X (0  SenderBindAB —> □  (SenderBindAB A RecvrChallengeAB))

X( <0 RecvrBindAB —> □  (RecvrBindAB A SenderChallengeAB))

The global LTL variables represents,

•  statusA : is an LTL variable that is updated when service A does not 

know nonce of B. Its value is changed at the start of the protocol run.

• nonceB : represents the knowledge of nonce of B by service A.
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• statusB : Is updated when service B initially does not know nonce of 

A. It represents the knowledge of nonce of A by service B

• nonce A: It represents the knowledge if a nonce by Service B

• SenderBindAB : A global LTL variable updated by a function executed 

by service A when it is ready to commit to service B

• RecvrChallengeAB : A global LTL variable updated at the receiver 

end (service B) when it knows it is talking to service A. This is achieved 

by verifying the identity of service A.

• Sender Challenge AB: Global variable which is updated by a function at 

the sender end when it starts a protocol run with service A

• RecvrBindAB : is updated when service B is ready to commit to ser­

vice A. The variable is updated when the protocol satisfies the goals, 

i.e authentication and confidentiality •

Variables nonceB, nonce A, SenderBindAB, RecvrBindAB, Sender Chal- 

lengeAB and RecvrChallengeAB are global variables used for modelling the 

properties in temporal logic, and are input to the model checker during 

verification of the protocols. Initially, A and B do not know the nonces 

of each other. The SenderBindAB variable eventually becomes true when 

SenderBindAB  and RecvrChallengeAB are always true. RecvrChallengeAB
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becomes true only when B is talking to A and SenderBindAB  becomes true 

when A commits to a session with B. Next RecvrBindAB eventually becomes 

true when RecvrBindAB and Sender ChallengeA B  are always true. Sender- 

ChallengeAB becomes true when A knows it is talking to B and RecvrBindAB 

becomes true when B commits to a session with A. At the end of the run, A 

and B will know the nonces of each other.

3.7.2 Property Specification for STP

The goal of the protocol is to exchange a Security Context between a sender 

service A and a Security Token Service STS. A security context establishes an 

authenticated state between the two services and negotiated keys which have 

additional security properties. SenderBindAS, SenderChallengeAS, Recvr- 

ChallengeAS, SenderChallengeAS are global variables used in Promela, a 

modelling language for Spin. The specification properties for the Security 

Token Protocol are modelled as follows

( 0  SenderBindAS -+ □  (SenderBindAS A RecvrChallengeAS)

X( 0  RecvrBindAS —>• □  (RecvrBindAS A SenderChallengeAS)

X( 0  PartialSC -* □  (AppliesTo A TokenType A Request Type A 
EntropicMode A clientEntropy)

X( <C> SC —¥ □  (partialSC A server Entropy A ComputedKey A expires A 
SCID)

The global LTL variables represents,
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• PartialSC : is an LTL variable updated when security token service (sts) 

agrees with the information sent by the requestor for requesting for a 

security token.

• AppliesTo: is updates if the sts agrees service the token the applicable 

for.

• TokenType : is updated when the type of token being requested is 

valid, i.e, security context token.

•  RequestType : is updated when it is a request for issuing a security 

token.

•  EntropicMode: is updated when both services agree to use partial en­

tropy. This is used for calculating keys.

• clientEntropy : represents the entropic value provided by the client for 

calculating the keys.

•  SC: represents the security context which is used by the requestor to 

establish a session with the desired service.

• serverEntropy : represents the value provided by the server to calculate 

the keys.

•  ComputedKey : represents how the keys will be computed and is up­

dated accordingly.

• expires: represents how long the security context token is valid for.

• SCID: is the unique ID for the security context token.

The authentication properties must be satisfied first, as explained in Sec­

tion 3.7.1. Next ‘PartialSC’ eventually will be true when the Security Token
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Service STS agrees on ‘AppliesTo’ (which service the token is valid for), 

and ‘TokenType’ (the type of token being requested). ‘RequestType’ defines 

what is requested by the initiator, e.g., a request for issuing a security con­

text token. ‘EntropicMode’ defines whether both the initiator and the service 

provider will be providing entropies to compute a key used by the sender, 

and ‘clientEntropy’ is the entropic value provided by the client.

Next ‘SC’ will eventually be true when there is an agreement on ‘par­

tialSC’, ‘serverEntropy’ (provided by the server), ‘ComputedKey’ (tells how 

the key is to be computed), ‘expires’ (when the token is valid till), and the 

‘SCID’ (the unique identifier for the security context token).

3.8 Concluding Remarks

This chapter has presented the building blocks for the model to be used sub­

sequently. Two protocols have been defined: the Simple Message Exchange 

Protocol (SMEP) and the Security Token Protocol (STP). The goals for each 

protocol have been stated: SMEP aims to achieve authentication and secrecy, 

whereas STP aims to establish a security context. The hostile environment 

for both the protocols are modelled as transition systems, in which all possi­

ble principals and transitions involved in the protocol run arc defined. The 

correctness properties for each protocol have been defined in terms of Linear 

Temporal Logic. These LTL properties can be used to verify the correctness 

requirements for the protocols. The next chapter defines the XML envelopes 

for protocols SMEP and STP as multi-stack pushdown automata. Each au­

tomaton captures the detailed work of the protocol run and the functions
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applicable to the XML elements of the messages. We believe such a model 

can be more beneficial in detecting XML based attacks. An XML injection 

attack will also be modelled, and simulations run against our model. The 

autom ata are modelled with the modelling language Promela and analyzed 

using the Spin model checker.

These protocols can be extended over multiple services, and each service 

will be allocated its own stack. The protocol are blocking and synchronous. 

The services will wait for the response after a request before they can move 

on to the next run. The stack provides unlimited memory, this will allow us 

to model complex protocols with increased functionality. However, increas­

ing the number of states in the model may lead to state explosion problem. A 

possible solution is to divide the protocols in subsets and then analyse their 

working separately. SMEP and STP are mainly designed for two services. 

In the situation where multiple services are involved, there will be no extra 

impact on the stacks as each service has its own stack. In the case of SMEP, 

multiple services involved in the protocol run can be classified as sending and 

receiving services. For example, suppose we have four services involved in a 

protocol run A,B, C and D. We will get a the following set of sending and re­

ceiving services {A,B}, {B,C},{C,D}. In the first set, A is the sending service 

and B is the receiving service, then in the second set, B becomes the sending 

service and C the receiving service and finally, in the last set, C the send­

ing service and D is the receiving service. We describe two protocols based 

on WS-Security(Simple Message Exchange Protocol) and WS-Trust(Security 

Token Protocol). These protocols were selected as they represent the sim­

plest functionality between two services, sending and receiving messages and 

requesting a security token from a security token service. They can be later

85



3.8. CONCLUDING REM ARK S 3. System Model

extended to encompass more complexity.

Works described in [Bla02] [TCCD07] [KR05] [GP02] [BF04] focusses on 

modelling the functionality/working of the WS-* based security protocols. 

Our work allows modelling the functionality and the goals of protocols in a 

single model.

In practice, our approach will allow the end users to  analyse the correct­

ness of a large security system during simulation runs instead of verifying 

the correctness in the later verification phase.

We use push-down autom ata to model WSBCPs as the combination of 

the input tape, automaton and the stack allows us to  capture the behaviour 

and properties of the protocols. The PKI standards are employed by WS- 

* during protocol runs for the purpose of security, e.g. WS-Trust employs 

X.509 certificates for the purpose of authentication. It is used by the services 

to validate the identity of the service represented by the certificate.
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CHAPTER 4

Modelling Protocols with Automata

Chapter 3 presented two protocols models: the Simple Message Exchange 

Protocol based on WS-Security, and the Security Token Protocol based on 

WS-Trust. The goals of the Simple Message Exchange Protocol were defined 

as authentication and secrecy, and the goal of the Security Token Protocol is 

the establishment of a security context. In Chapter 3 the hostile environment 

was modelled for both the protocols as a transition system. Linear Temporal 

Logic was used to define the goals of the protocols.

4.1 Chapter O bjectives

This chapter presents pushdown autom ata for the Simple Message Exchange 

Protocol and Security Token Protocol defined in Section 3.4. These models
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reflect the behaviour of the protocols and the properties they are supposed

to satisfy. The Simple Message Exchange Protocol pushdown automaton 

satisfies the properties of authentication and secrecy. The Security Token 

Protocol automaton satisfies the property of establishing a security context.

4.2 Pushdown autom aton

A formal notation of the two-stack pushdown autom ata (PDA) model will 

now be given. Note that the definition can be extended to include more 

stacks. A two-stack PDA is defined by the following notation:

Q is a finite set of internal states of the control unit, 

is the input alphabet, 

r  is a finite set of symbols called the stack alphabet,

5 is a mapping of Q x (]P U{A}) x r  x r  to finite subsets of (Q x r* x r*).

6 is called the transition function, A denotes teh empty string, and r* 

is a finite list of elements in r.

(4.1)

where
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qo £ Q is the initial state of the control unit, 

y  E r  is the first stack start symbol,

2  G r  is the second stack start symbol,

F  C Q is the set of final states.

Every transition from one state to another in the automaton is made by 

observing both stacks. Initially, the system is in state qo and both stacks 

have symbols y and z  at the top. The stack language r  contains stack sym­

bols (stack alphabets will be treated as strings rather than as alphabets). If 

the final state is reached with both the stacks empty, the input is accepted 

as valid. A transition function, 6, is represented as {^2, pop r ,  pop r , push 

r , push t} . The first pair of pop and push applies to the first stack, and the 

second pair of pop and push applies to the second stack in the PDA. In order 

to keep the discussion focused on the problem at hand, minor details of the 

workings of a PDA are omitted here. For more details readers are referred 

to [Lin06].

A two-stack pushdown automaton for modelling both the Simple Mes­

sage Exchange Protocol and Security Token Protocol will now be presented. 

In the model, each participant service is assigned a stack, e.g., service A 

is assigned stack Service A. Each stack contains the functions necessary for 

completing a protocol run.
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4.3 Simple M essage Exchange Protocol

The Simple Message Exchange Protocol (SMEP), defined in Section 3.4, ex­

changes messages between two services, service A and service B. The goals 

of the protocol are secrecy and authentication, as explained in Chapter 3. 

SMEP is modelled as a pushdown automaton to reflect these goals. Fig­

ure 4.1 illustrates the pushdown automaton model for SMEP, and Table 4.1 

shows the stacks used in the model.

A pushdown automaton reads information from a tape and executes a 

transition from one state to another based on the information read from the 

tape. The input alphabet of the tape represents actions which are to be 

conducted during message exchange between service A and service B in the 

Simple Message Exchange Protocol. The steps involved in a complete run of 

the Simple Message Exchange Protocol are encoded as input alphabet sym­

bols of the tape. The input alphabet symbols for the complete consumption 

of a message between a sender and receiver service for the Simple Message 

Exchange Protocol is { sChallenge, TS, SIGN, ENCRYPT, Send/Recv_Msg, 

DECRYPT, TS, vSIGN, RecvChal, TS, SIGN, ENCRYPT, Send/Recv_Msg, 

DECRYPT, TS, SIGN, sBIND, TS, SIGN, ENCRYPT, Send/Recv_Msg, DE­

CRYPT, TS, vSIGN, rBIND}. These input variables illustrate steps involved 

during a message exchange in a single protocol run between the sender and re­

ceiver processes. When each alphabet symbol is read some process is executed 

from the stacks of the sender and receiver processes. ‘sChallenge’ represents 

the sender service initiating a run with the receiver service and updating the 

sender challenge variable. ‘TS’ stands for the allocation of a timestamp value 

to a message to guarantee freshness. ‘SIGN’ represents initiating the signing 

of the message and embedding the signature information needed to validate
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it. ‘ENCRYPT’ represents integrating the necessary encryption information 

in the message and encrypting the message with the receiver’s public key. 

‘Send/Recv_Msg’ represents the act of sending or receiving the message on 

the insecure channel. ‘DECRYPT’ represents the decryption process at the 

receiver’s end using its private key. ‘TS’ represents the validation of the 

timestamp values in the message received over the channel. ‘vSIGN’ repre­

sents the verification of the signature information on the receiver service end. 

‘RecvChal’ denotes the receiver process updating its receiver challenge vari­

ables. ‘TS’ stands for the creation of a timestamp values for the message to 

be send back to the sender service. ‘SIGN’ and ‘ENCRYPT’ initiates assign­

ing the signature information to the message and encrypting the message, 

respectively. ‘Send/Recv_Msg’ illustrates the sending of the message over the 

channel. ‘DECRYPT’, ‘TS’, ‘SIGN’ represents the decryption, validating the 

timestamp, and the signature information at the sender service end. ‘sBIND’ 

denotes the commitment of the sender service to the receiver service. ‘TS’, 

‘SIGN’, ‘ENCRYPT’ and ‘Send/Recv_Msg’ represent the allocation of the 

timestamp and signature information to the message, encrypting with the 

receiver’s public key, and sending the message on the channel. ‘DECRYPT’, 

‘TS’, ‘vSIGN’ denotes the decryption of the message by the receiver’s public 

key, and validating the timestamp and signature information, respectively. 

‘rBIND’ denotes the binding of the receiver to the sender service. Each time 

input is read, a stack function is executed and a transition is made to a new 

state.

The Simple Message Exchange Protocol model consists of three main 

steps common to service A and service B before the message is sent on the 

channel. Stepl: the message is allocated a timestamp value, which shows
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Table 4.1: Stacks for Simple Message Exchange Protocol

S tack  A S tack  B
SenderChallenge(A,B) decrypt (priv(B))
cTimeStamp() vTimeStamp ()
sign(A) vSign(A)
encrypt (pub (B)) RecvrChallenge(A,B)
decrypt (priv( A)) cTimeStamp
vTimeStamp sign(B)
vSign(B) encrypt (pub (A))
SenderBind(A,B) decrypt (priv(B))
cTimeStampO vTimeStamp()
sign(A) vSign(A)
encrypt (pub (B)) RecvrBind(A,B))
y z

when the message was created and when the message expires. Step2: the 

message is then signed by the sending service and the signature structure 

is embedded into the message. Step3: the message is encrypted by the re­

ceiver’s public key and sent over the channel. When the message is received 

by the service on the other end, three steps are performed in general. Stepl: 

the message is decrypted using the private key of the receiver service. Step2: 

the freshness of the message is checked by validating the timestamp. Step3: 

the signature is validated -  it should match the signature for the sending 

service.

Before the protocol run is described, the stacks used in the SMEP in 

Table 4.1 will be discussed. An added advantage of a pushdown automaton 

is the infinite memory it provides in the form of a stack. This feature is 

beneficial in designing complex protocols where multiple goals have to be 

satisfied during a single protocol run. This leads to increase in functionality.
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Figure 4.1: Simple Message Exchange Protocol automaton
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The infinite stack memory provides the services with the ability to add more 

functionality.

The stacks are used to advantage to store the behaviour of the proto­

col in the form of functions. The Simple Message Exchange Protocol has 

two main stacks, representing the functions performed at Service A and Ser­

vice B. These functions can be categorised as ‘assembler’, ‘disassembler’, and 

‘property’ functions. The assembler functions are called for creating message 

elements, for example, cTimeStamp() is an assembler function that allocates 

a timestamp value to the <Tim eStam p> element. Similarly, the sign(A) 

function signs a message with service A ’s signature, and encrypt (pub (A)) 

encrypts the message with the public key of service A. The disassembler 

functions do the opposite of the assemblers -  they process the message re­

ceived. For example, vTimeStampQ verifies the timestamp on the message, 

vSign(A) verifies the message is signed by service A, decrypt(priv(A)) de­

crypts the message using the private key of service A. The ‘property’ func­

tions for the Simple Message Exchange Protocol are the ‘authentication’ 

functions: SenderChallenge(A,B), RecvrChallenge(A,B), SenderBind(A,B) 

and RecvrBind(A,B). The authentication functions SenderChallenge(A,B) 

and RecvrChallenge(A,B) are executed at the start of the message exchange 

between service A and service B. These functions are passed the identities of 

the services, A and B. The SenderBind(A,B) and RecvrBind(A,B) functions 

are executed when service A and service B have authenticated themselves 

successfully to each other. Having gained an understanding of the stack 

functions, the pushdown automaton model for the Simple Message Exchange 

Protocol will now be discussed.
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Figure 4.1 defines the pushdown automaton for the Simple Message Ex­

change Protocol. A transition function is represented as a set of symbols 

involving input from the tape and functions on the stack. A transition func­

tion is denoted as {input symbol, pop first stack function, pop second stack 

function, push first stack function, push second stack function}. Suppose 

Service A wants to exchange some message with another service B. ‘qO’ and 

‘q l4 ’ are the initial and accept states of the protocol run. Service A reads 

the first input symbol, sChallenge, from the input tape, and functions are 

popped from both the stacks. The function SenderChallenge(A,B) is popped 

from Service A’s stack. The function is executed as soon as it is popped 

from the stack. The function decrypt (pub (B)) is popped from Service B’s 

stack. Nothing is pushed back onto Service A’s stack. However in the case 

of Service B, the function is pushed back on the stack, as we do not want 

any action to be performed on Service B’s stack while the message is being 

composed by service A. This transition is presented as {sChallenge, Sender- 

Challenge(A,B), decrypt(priv(B)), *, decrypt(priv(B))}. The first element 

of the transition function is the input that is read, the second is the func­

tion tha t is popped from Service A’s stack, the third element represents the 

function popped from Service B’s stack, the fourth represents the element 

pushed onto service stack A (“*” means tha t no action is performed), the 

fifth element represents the function pushed onto Service B’s stack. A tran­

sition from state ‘qO’ to state ‘q l ’ has now been made. Next TS is read from 

the input tape and a timestamp is assigned to the message. The following 

transition function represents a transition from ‘q l ’ to ‘q2’: {TS, cTimeS- 

tam p(), decrypt (pub (B)), *, decrypt(pub(B))}. cTimeStamp() is executed 

from Service A’s stack and no action is performed on Service B’s stack. For a 

transition to the next state ‘q3’, SIGN is read from the input tape and the fol­
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lowing transition function is performed: {SIGN, sign(A), decrypt(priv(B)), 

*, decrypt(priv(B))}. sign(A) is executed from Service A’s stack, and at the 

end of the transition Service B’s stack remains unchanged. The last step be­

fore sending the message on the channel is to  encrypt it. The {ENCRYPT, 

encrypt (pub (B)), decrypt (priv(B)), *, decrypt (priv(B))} transition is made 

to move to state ‘q4’. The function encrypt(pub(B)) is popped and executed, 

resulting in the message being symbolically encrypted with Service B’s public 

key. The message is then sent on the insecure channel. Send/Recv_Msg is 

read from the tape.

At Service B the message is received from the channel. At the receiver 

end functions from Service B’s stack are executed and no action is performed 

on Service A’s stack. DECRYPT is read from the input tape and the fol­

lowing transition is performed to move from state ‘q4’ to ‘q5’: {DECRYPT, 

decrypt(priv(A)), decrypt(priv(B)), decrypt(priv(A)), *}. If there are mul­

tiple transition functions to choose from between two states, one transition 

function is selected based on the values on the top of the stack. The mes­

sage is decrypted by calling the ‘decrypt(priv(B))’ function, i.e., Service B 

uses its private key to perform symbolic decryption. After the message has 

been decrypted, TS is read to move to the next state, ‘q6’, and the mes­

sage timestamp is checked. The {TS, decrypt (priv (A)), vTimeStamp(), de­

crypt (priv( A)), *} transition is executed. vTimeStampQ is popped from the 

stack to verify the freshness of the message. Service B reads the next ele­

ment on the input tape, vSIGN, and moves to state ‘q7’ once the signature 

is verified by the following transition: {vSIGN, decrypt(priv(A)), vSign(A), 

decrypt(priv(A)), *}. vSign(A) is popped and executed from service B’s 

stack -  it is passed the identity of Service A to verify the signature elements
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for Service A. The next alphabet symbol read from the input tape is Recvr- 

Chal to shift from state ‘q7’ to ‘q8\ The transition function is{RecvChal, 

decrypt (priv (A)), RecvChallenge( A,B), decrypt (priv (A)), *}, and the effect 

is that Service B updates the receiver challenge variables. Service B creates 

a response message by executing the following sequence of events. Service 

B moves from state ‘q8’ to ‘q9’ by reading TS and executing { TS, de­

crypt (priv (A)), cTimeStampO, decrypt (priv (A)), *}. The resulting message 

is assigned a timestamp value for creation and expiration by the cTimeS- 

tamp() function. SIGN is read from the tape and the state transitions 

from ‘q9’ to ‘qlO’ after the transition { SIGN, decrypt(priv(A)), sign(B), 

decrypt(priv(A)), *} is performed. sign(B) is popped and executed resulting 

in Service B signing the message. ENCRYPT is then read and the state 

advances from ‘qlO’ to ‘q l l ’, after executing the transition {ENCRYPT, de­

crypt (priv (A)), encrypt (pub (A)), decrypt (priv( A)), *}, resulting in encrypt­

ing the message by running encrypt (pub (A)). The message is sent on the 

channel.

The message is received by Service A, and it performs the following ac­

tions: decryption, validation of freshness, verification of signature, and bind­

ing to Service B. First, DECRYPT is read from the tape in order to pro­

ceed from ‘q4’ to ‘q l l ’, and the following transition function is executed: 

{DECRYPT, decrypt(priv(A)), decrypt(priv(B)), * , decrypt(priv(A))}. de­

crypt (priv (A)) is popped from Service A’s stack and executed resulting in the 

message being decrypted with the private key of Service A. The next symbol 

read from the tape is TS and the state shifts from ‘q l l ’ to ‘q l2 ’ with tran­

sition function {TS, vTimeStamp(), decrypt(priv(B)), *, decrypt(priv(B))}. 

vTimeStampQ is popped from Service A’s stack and is run to validate the
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timestamp of the message. To move from ‘q l2 ’ to ‘q l3 ’ SIGN is read from the 

input tape, and the transition function {SIGN, vSign(B), decrypt(priv(B)), 

*, decrypt (priv(B))} is executed. As a consequence vSign(B) is popped from 

Service A’s stack and executed to verify the signature of Service B. sBIND is 

the next input symbol read to proceed from ‘q l3 ’ to ‘q l ’. The transition func­

tion is {sBIND, SenderBind(A,B), decrypt (priv (B)), *, decrypt (priv(B))}. 

SenderBind(A,B) is popped and executed, and as a result Service A binds 

to Service B. At this stage Service A has partially authenticated to Ser­

vice B, and the last step of the message exchange is the authentication by 

Service B. Service A sends a response to B. It assembles the message by per­

forming transitions in the following sequence. Service A reads TS from the 

input tape and moves to state ‘q2’. On executing {TS, cTimeStamp(), de­

crypt (priv(B)), *, decrypt(priv(B))}, cTimeStampQ is popped and executed 

from Service A’s stack which results in Service A assigning a fresh timestamp 

to the message. Next it reads the SIGN input symbol from the tape in order 

to proceed to state ‘q3’. On executing {SIGN, sign(A), decrypt(priv(B)), *, 

decrypt(priv(B))}, sign(A) is popped and executed, and consequently Ser­

vice A signs the message with its signature. Service A reads ENCRYPT 

from the tape and moves to state ‘q4’. On executing the transition func­

tion {ENCRYPT, encrypt (pub (B)), decrypt (priv(B)), *, decrypt (priv(B))}, 

encrypt (pub (B)) is popped from service A’s stack and executed, resulting 

in the message being encrypted by Service B’s public key. Now the stack 

of Service A is empty or contains the starting symbol y. All the processing 

steps required for Service A has been fulfilled. The message is sent on the 

channel for the last time.

Service B receives this last message from Service A. Before it authenti­
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cates to Service A, it executes the steps: decrypting the message, validating 

the timestamp and signature, and binding to Service A. DECRYPT is read 

from the input tape to move from state ‘q4’ to ‘q5’ by executing transi­

tion {DECRYPT, *, decrypt(priv(B)), *, *}. decrypt(priv(B)) is popped 

from Service B’s stack, and the message is decrypted with the private key 

of Service B. Service B reads TS from the tape to progress to state ‘q6\ 

The transition executed is {TS, *, vTimeStamp(), *, *}. vTimeStamp() is 

popped from Service B’s stack and run, resulting in the message freshness 

being verified. The next symbol on the tape is vSIGX. Before moving to 

state ‘q7’, the following transition is executed: {vSIGN, *, vSign(A), *, *}. 

vSign(A) is popped from the stack and run, resulting in Service A’s signa­

ture being verified. The last transition from state cq7’ to £q l4 ’ is done when 

rBIND is read from the tape and transition {rBIND, *, RecvrBind(A,B), *, 

*} is executed. RecvBind(A,B) is popped from Service B’s stack and run 

which causes Service B to authenticate the identity of Service A. When state 

‘q l4 ’ is reached and both the stacks of Service A and Service B are empty, 

or contain the initial elements, y and z, respectively, then it is said that a 

successful run of the Simple Message Exchange Protocol has been performed. 

Table 4.2 summarizes the above. The table represents the transition func­

tion executed at each state to move to the next state.

Each function in Table 4.1 represents functionality that is to be per­

formed on Signature. Encryption and TimeStamp elements defined in the 

SMEP run. The XML syntax is extracted from WS-Security and WS-Trust 

which is used to model SMEP and STP. The functions inTable 4.1 are ap­

plied to the XML structures described below to either verify or create them 

in our model. These XML elements are described below.
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Table 4.2: States and Transition Functions for SMEP.

States Transition Functions <5
qO—»ql (sChallenge, SenderChallenge(A,B), Decrypt(priv(B)), *, decrypt(priv(B))}
q l—»q2 (TS, cTimeStampQ, decrypt(pub(B)), *, decrypt(pub(B))}
q2-*q3 (SIGN, sign(A), decrypt(priv(B)), *, decrypt(priv(B))}
q3->q4 (ENCRYPT, encrypt (pub(B)), decrypt (priv (B)), *, decrypt(priv(B))}
q4—»q4 (Send/Recv_Msg,*,*,*,*}
q4—»q5 (DECRYPT, decrypt(priv(A)), decrypt(priv(B)),decrypt(priv(A)), *}
q5—»q6 (TS, decrypt(priv(A)), vTimeStamp(), decrypt(priv(A)), *}
q6-»q7 (vSIGN, decrypt(priv(A)), vSign(A), decrypt (priv( A)), *}
q7—>q8 (RecvChal, decrypt(priv(A)), RecvChallenge(A,B), decrypt(priv(A)), *}
q8-»q9 (TS, decrypt(priv(A)), cTimeStamp(), decrypt(priv(A)), *}
q9—►qlO (SIGN, decrypt(priv(A)), sign(B), decrypt(priv(A)), *}
qlO—»q4 (ENCRYPT, encrypt(pub(B)), decrypt(priv(B)), *, decrypt(priv(B))}
q4-»q4 (Send/Recv_Msg,*,*,*,*}
q4—>qll (DECRYPT, decrypt (priv( A)), decrypt (priv(B)), *, decrypt (priv (A))}
q l l—>ql2 (TS, vTimeStamp(), decrypt(priv(B)), *, decrypt(priv(B))}
ql2-+ql3 (SIGN, vSign(B), decrypt(priv(B)), *, decrypt (priv(B))}
ql3—»ql (sBIND, SenderBInd(A,B), decrypt (priv(B)), *, decrypt (priv (B))}
ql->q2 (TS, cTimeStamp(), decrypt(pub(B)), *, decrypt(pub(B)}
q2—»q3 (SIGN, sign(A), decrypt(priv(B)), *, decrypt(priv(B))}
q3—̂q4 (ENCRYPT, encrypt (pub(B)), decrypt (priv (B)), *, decrypt (priv(B))}
q4—>q4 (Send/Recv_Msg,*,*,*,*}
q4-»q5 (DECRYPT, *, decrypt(priv(B)), *, *}
q5—»q6 (TS, *, vTimeStarap(), *, *}
q6-*q7 (vSIGN, *, vSign(A), *, *}
q7—>ql4 (rBIND, *, RecvrBind(A,B), *, *}
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<wsu:Timestamp>

< wsu: Created > createdStamp< /  wsu: Createt >

< wsu: Expires > expiry Stamp < /  wsu: Expires >

</wsu:Timestamp>

<wsse:UsernameToken>

<wsse:Username> usernameValue </wsse:Username>

<wsse:Password> passwordDigestValue </wsse:Password> 

<wsse:Nonce>nonce</wsse:Nonce>

<wsu:Created>ustCreatedStamp< /  Created>

< /  wsse:UsernameToken>

<ds:Signature>

<ds:SignedInfo>

<ds:CanonicalizationMethod>... </ds:CanonicalizationMethod> 

<ds:SignatureMethod>... < /ds:SignatureMethod>

< ds: Reference >. . .< /ds:Reference>

< /ds:SignedInfo>

<ds:SignatureValue>signatureValue< /  ds:SignatureValue>

<ds:KeyInfo>... </ds:KeyInfo>

< /ds:Signature>

The above elements are modelled in the Promela language. Each message 

structure is defined by using the Promela ‘typedef’ construct, which is used 

for defining complex data types. The stack functions for Service A and Ser­

vice B are executed on these structures. The Promela models are discussed 

in Chapter 5.

<xenc:EncryptedKey>
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<xenc:EncryptionMethod>. . .< /  xenc:EncryptionMethod> 

<ds:KeyInfo>

< Key Value>.... < Key Value >

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue> . . .</  xenc:CipherValue> 

</xenc:CipherData>

<xenc:ReferenceList>

<xenc:DataReference>... < /xenc:DataReference>

< /xenc:ReferenceList>

<xenc:EncryptionProperties>.. .<xenc:EncryptionProperties> 

</xenc:EncryptedKey>

< xenc: Encry ptedData>

<xenc: CipherData>

<xenc:CipherValue> . . .</  xenc:CipherValue>

< /xenc:CipherData>

</xenc:EncryptedData>

4.4 Security Token Protocol

The intended purpose of the Security Token Protocol, defined in Section 3.4, 

is to issue a security context. Service A sends a request for issuance of a se­

curity token to a Security Token Service (STS). The Security Token Service, 

after processing the request, sends a request security token response message 

to Service A. The response message contains a security token. More details 

can be read in Chapter 3. The Security Token Protocol behaviour and its 

goals are modelled with a pushdown automaton.
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The protocol consists of the following main sequence of steps. At Service 

A, a request for the security token is generated. The request for security 

token message is timestamped, and the request security token message is 

signed by Service A. The request security token message is encrypted with 

the public key of the Security Token Service and is sent to the Security To­

ken Service over an insecure channel. The request security token message is 

received by the Security Token Service which decrypts the message with its 

private key, validates the timestamp, and verifies whether the signature of 

the request message th a t of service A. The STS then creates a response to 

security token request message containing the security context token. STS 

sends the response to security token request message back to Service A, which 

processes it and accepts the security token. Service A then sends the security 

context token’s unique identity back to the STS. The STS receives the mes­

sage containing the security context identity and checks the unique identity 

to see if the security context identity is the same as tha t sent in the response 

to security token request message to Service A.

A pushdown autom aton is comprised of three main components: the in­

put tape, the stack, and the automaton. The input tape representing the 

steps involved in a complete Security Token Protocol run, from initiating a 

request for a security token to the acceptance of the security context between 

Service A and the Security Token Service, consists of following input symbols: 

{sChallenge, RST, TS, SIGN, ENCRYPT, Send/Recv_Msg, DECRYPT, TS, 

vSIGN, RecvChal, RSTR, TS, SIGN, ENCRYPT, Send/Recv_Msg, DECRYPT, 

TS, SIGN, sBIND, SC, TS, SIGN, ENCRYPT, DECRYPT, TS, vSIGN, 

rBIND, SCTID}. As the input symbols are read, some function is performed 

on the stack and a transition is made from one state to another, until the
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final state is reached or the tape is empty. ‘sChallenge’ results in Service A 

updating the sender challenge global variables. ‘RST’ represents the creation 

of the request for a security token. ‘TS’, ‘SIGN’ and ‘ENCRYPT’ represents 

assigning a timestamp to the message, signing the message with Service A’s 

signature, and encrypting the message with the public key of the Security 

Token Service, respectively. ‘Send/Recv_Msg’ denotes sending or receiving 

the message. ‘DECRYPT’, ‘TS’, ‘vSIGN’ and ‘RecvChallenge’ denote de­

crypting the request for security token with the private key of the Security 

Token Service, validating the timestamp of the request message, verifying 

the signature of Service A, and updating the receiver challenge variables 

at the Security Token Service, respectively. ‘RSTR’ illustrates the creation 

of a response to security token request message a t the Security Token Ser­

vice, containing security context information. ‘TS’, ‘SIGN’, ‘ENCRYPT’ and 

‘Send/Recv_Msg’ represent assigning a timestamp to the response to security 

token request message, signing the message with the Security Token Service 

signature, encrypting the message with Service A’s public key, and sending 

the response to security token request message to  Service A, respectively. 

‘DECRYPT, ‘TS’,‘SIGN’ and ‘sBIND’ denote decryption of the response to 

security token request message with the private key of Service A, validating 

the timestamp of the received message, verifying the Security Token Service 

signature on the response to security token request message, and binding to 

the Security Token Service, respectively. ‘SC’ represents the agreement of 

Service A on the security context token sent by the Security Token Service. 

‘TS’,‘SIGN’ and ‘ENCRYPT represent assigning a timestamp to the new re­

ply message containing the security context token’s unique identity, signing 

the message with Service A’s signature, and encrypting it with the Security 

Token Service’s public key. ‘DECRYPT’, ‘TS’,‘vSIGN’ and ‘rBIND’ repre­
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sent the steps at the Security Token Service. These steps decrypt the message 

with the private key of the Security Token Service, validate the timestamp 

of the reply message, verify the signature of Service A, and bind to Service 

A. ‘SCTID’ denotes the Security Token Service acknowledging the security 

token unique identity that the Security Token Service previously sent to Ser­

vice A.

The stack is another part of a pushdown automaton. There are two stacks 

which are used in the Security Token Protocol model presented in Table 4.3. 

Each service (Service A and the Security Token Service) is allocated its own 

stack. These stacks contain the functions th a t are executed when the input 

tape is read. The functions can be divided into three main categories: ‘as­

semblers’, ‘disassemblers’ and ‘property’ functions. The assemblers are used 

when constructing a message and disassemblers are used when processing 

the message at the receiver service. The ‘property’ functions validate the 

properties of the Security Token Protocol. The assembler functions consist 

of cTimeStamp(), which is used for creating a timestamp for a message. The 

function sign(X) is used for signing a message -  it is passed the signature val­

ues of Service A or the Security Token Service. The function encrypt (pub (X)) 

represents the encryption of the message with the public key of the receiver 

service. The disassemblers are used when processing the message. vTimeS­

tamp () is used for validating the freshness of a message, and vSign(X) is used 

for verifying the signature of a message. vSign(X) takes as a parameter ‘X’, 

the identity of the service (either Service A or the Security Token Service) 

whose signature is to be verified. The function decrypt(priv(X)) is used for 

decrypting the message received -  the message is decrypted with the private 

key of the receiver service, X. The ‘property functions’ consist of the au-
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Table 4.3: Stacks for Security Token Protocol

S tack  A S tack  STS
Sender Challenge (A, STS) decrypt (priv (B))
partialSC() vTimeStamp()
cTimeStampQ vSign(A)
sign(A) RecvrChallenge(A, STS)
encrypt (pub (STS)) partialSC()
decrypt (priv (A)) security .context
vTimeStamp () cTimeStamp
vSign(STS) sign(STS))
SenderBind(A,STS) encrypt (pub (A))
security .context () decrypt (priv(STS))
SCTID () vTimeStamp ()
cTimeStamp() vSign(A)
sign(A) RecvrBInd (A, STS)
encrypt (pub (STS)) SCTID ()
y z

thentication functions: SenderChallenge(A,STS), RecvrChallenge(A, STS), 

RecvrBind(A,STS) and SenderBind(A, STS), which have been discussed in 

the previous section. In addition to the authentication functions, the prop­

erty functions also contain functions related to processing security contexts. 

The functions partialSC(), security .context () and SCTIDQ are the security- 

context functions. The partialSC() function is executed to create a request 

security token and to  verify a partial security context. The security.contextQ 

function is used for generating a security context after the Security Token 

Service agrees on the partial context. The SCTID() function is used to ex­

tract the unique security context identity from the security context received 

and to validate it against the one sent in the response to security token re­

quest message.
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Figure 4.2: Security Token Protocol Protocol automaton.
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Figure 4.2 describes the automaton model for the Security Token Pro­

tocol. Service A initiates a request for a security token. Initially, the ser­

vice is in state ‘qO\ Service A first reads from the tape the input symbol 

sChallenge and executes the SenderChallenge(A,STS) function from its stack. 

The transition is represented as {sChallenge, SenderChallenge(A, STS), de- 

crypt(pub(STS)), *, decrypt(pub(STS))}. On completion of the transition 

function, Service A moves from ‘qO’ to ‘q l ’. When sChallenge is read from 

the input tape, SenderChallenge(A, STS) is popped from the stack of Ser­

vice A and executed; the decrypt (pub (STS)) is also popped but not exe­

cuted. “*” denotes that nothing is pushed back onto Service A’s stack, and 

decrypt (pub (STS)) is pushed back onto the stack of the Security Token Ser­

vice. The transition from one state to the other is made by observing both 

stacks. The next input read from the tape is RST. {RST, partialSC(), de­

crypt (pub(STS)), *, decrypt (pub (STS))} is the transition function to the 

next state, ‘q2’. paritalSC() is popped from Service A’s stack and executed. 

The request for security token elements of the message are created and pop­

ulated. After completing the generation of the request security token infor­

mation, Service A reads TS from the tape, and then executes the transition 

function {TS, cTimeStampQ, decrypt (pub (STS)) , *, decrypt(pub(STS))}. 

cTimeStampO is popped from Service A’s stack and run, resulting in assign­

ing the timestamp values for creation and expiration to the request security 

token message, and proceeding to state ‘q3’. Service A reads the next in­

put from the tape, SIGN, and the transition function {SIGN, sign(A), de­

crypt (priv (STS)), *, decrypt(priv(STS))} is performed. sign(A) is popped 

from the stack and run, resulting in signing the request message with Service 

A’s signature and progressing to  state ‘q4’. The last step before sending the 

request to the Security Token Service is to encrypt the message with the
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public key of the Security Token Service. This is accomplished by reading 

ENCRYPT from the input tape, resulting in the execution of the transi­

tion function {ENCRYPT, encrypt (pub (STS)), decrypt(priv(STS)), *, de­

crypt (priv(STS))}. encrypt (pub (STS)) is popped from Service A’s stack and 

executed, which results in a move to state ‘q5’ on completion. The message 

is now ready to be sent over the channel by the following transition function: 

{Send/Recv_Msg, *, *, *, *}.

The request security token message from Service A is now received by the 

Security Token Service. The Security Token Service processes the request to 

issue a security token and sends a response to security token request message 

back to Service A. The request security token message is decrypted first. 

DECRYPT is read from the input tape by the Security Token Service and 

the transition function {DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), 

decrypt (priv (A)), *} is performed. decrypt(priv(STS)) is popped from stack 

of the STS and executed. The STS decrypts the message using its pri­

vate key. As a result of the transition a state change occurs to ‘q6’. The 

STS reads TS from the tape input. Here the service has the option to ex­

ecute two transition functions, but only the one where the functions on the 

top of the stack match will be executed. The transition function {TS, de­

crypt (priv( A)), vTimeStamp(), decrypt(priv(A)), *} is run. The vTimeS­

tamp () function is popped from the STS stack and run. The service verifies 

the timestamp values of the request security token message, and continues 

to state ‘q7’. The STS verifies the signature of Service A on the message 

for a request security token, reads vSIGN from the tape and executes the 

transition function {vSIGN, decrypt(priv(A)), vSign(A), decrypt (priv (A)), 

*}. vSign(A) is popped from stack of the STS and executed. The signature
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of Service A is validated, resulting in a shift to the next state, ‘q8\ The STS 

updates its receiver challenge variables. It reads RecvChal from the input 

tape and runs transition function {RecvChal, decrypt (priv(A)), RecvChal- 

lenge(A,STS),decrypt(priv(A)),*}. RecvChallenge(A,STS) is popped from 

the STS stack and executed. The function updates the challenge variables 

for the Security Token Service, and as a result the service progresses to state 

‘q9\ The STS creates a response to security token request message for Ser­

vice A containing the security context information, it reads RSTR from the 

tape and executes the following transition {RSTR, decrypt(priv(A)), secu­

rity .context(), decrypt(priv(A)), *}. security_context() is popped from the 

STS stack and executed causing the request security token response informa­

tion to be populated. The STS progresses to state ‘qlO’. The STS reads TS 

from the input tape, and the transition function {TS, decrypt(priv(A)),cTimeStamp(), 

decrypt(priv(A)), *} is performed. cTimeStamp() is popped from the STS 

stack and run, and the function allocates the timestamp values to the re­

sponse to security token request message, and results in a state change to 

‘q l l ’. SIGN is read from the input tape, and the transition function {SIGN, 

decrypt(priv(A)), sign(STS), decrypt(priv(A)), *} is performed. sign(STS) 

is popped from the STS stack and executed, which allows the request secu­

rity token response message to be signed by the Security Token Service. At 

the end of the transition progress is made to state ‘q l2 ’. The last symbol to 

be read from the tape by the Security Token Service before sending the re­

quest security token response message to service A is ENCRYPT. This leads 

to the transition function {ENCRYPT, decrypt (priv( A)), encrypt (pub (A)), 

decrypt (priv( A)), *} being performed, encrypt (pub (A)) is popped from the 

stack and run. The function symbolically encrypts the response to security 

token request message with the public key of A, thus causing a state change
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to state ‘q5\

The response to security token request message is received by Service A, 

and is first decrypted. DECRYPT is read from the input tape, and the tran­

sition function {DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), *, de- 

crypt(priv(STS))} is performed. The decrypt (priv (A)) function is executed, 

and the message is symbolically decrypted using the private key of Service

A. decrypt(priv(STS)) is pushed back on the stack of the Security Token 

Service and the state is progressed to state ‘q l3 ’. No actions are performed 

on the STS stack, and the function popped is pushed back on to the stack 

without being executed. Service A reads TS from the tape, and transition 

function {TS, vTimeStamp(), decrypt(priv(STS)), *, decrypt(priv(STS))} is 

performed. vTimeStamp() is popped from Service A’s stack and executed, 

and the state is changed to ‘q l4 ’. SIGN is read from the input tape. The 

read initiates transition function {SIGN, vSign(STS), decrypt(priv(STS)), *, 

decrypt(priv(STS))}. vSign(STS) is popped from Service A’s stack and run. 

The function verifies the signature of the Security Token Service. The transi­

tion causes the state to be modified to 'q l5 \ Service A reads the next symbol 

on the tape, sBIND, and this leads to the the transition function {sBIND, 

SenderBind(A,STS), decrypt(priv(STS)), *, decrypt(priv(STS))} being per­

formed. SenderBind(A,STS) is popped from Service A’s stack and executed. 

The function updates the sender bind variables on Service A’s side. After the 

completion of the transition the state is changed to ‘q l6 ’. The last part of the 

Security Token Protocol involves Service A sending the unique identity of the 

security context back to the STS. This is done to let the STS know that the se­

curity context received by Service A was the same as that sent by the Security 

Token Service. A message is created containing the security context identity
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sent by the STS, SC is read from the input tape and the transition function 

{SC, cSCTID(), decrypt(priv(STS)), *, decrypt(priv(STS))} is performed. 

The security context identity is extracted and the state is adjusted to the next 

state in the system, ‘q2 \ The message is then timestamped, signed by Service 

A and encrypted with the public key of the STS before being sent on the chan­

nel. The following transitions and state changes are made respectively. {TS, 

vTimeStampQ, decrypt(priv(STS)), *, decrypt(priv(STS))}: state change 

to ‘q3’. {SIGN, sign(A), decrypt(priv(STS)), *, decrypt(priv(STS))}: state 

change to ‘q4’. {ENCRYPT, encrypt(pub(STS)), decrypt(priv(STS)), *, de- 

crypt(priv(STS))}: state change to ‘q5\ The message is sent to the STS.

The message is then received by the STS. The service reads DECRYPT 

from the input tape, causing the transition function {DECRYPT, *, de­

crypt (priv (STS)), *, *} to be performed, decrypt(priv(STS)) is popped from 

the STS stack and run. The function symbolically decrypts the message 

with its private key. At the end of the transition progress is made to state 

‘q6 \ TS is read from the input tape, resulting in transition function {TS, *, 

vTimeStamp(), *, *} being performed. vTimeStamp() is popped from the 

STS stack, the freshness of the message is validated, and the state is adjusted 

to ‘q7 \ STS reads vSIGN from the tape, and as a consequence the transition 

function {vSIGN, *, vSign(A), *, *} is performed. vSign(A) is popped from 

the stack and run, and the signature of Service A on the message is vali­

dated and the state changes to ‘q8\ The service reads rBIND next, causing 

the transition function {rBIND, *, RecvrBind(A,STS),*, *} to be performed. 

RecvrBind(A,STS) is popped from the STS stack and executed, the function 

updates the receiver bind variables at the STS, and as a result of the tran­

sition the state is changed to *q!7\ The last symbol on the input tape SC
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is read by the Security Token Service, and as a consequence the transition 

function {SCTID0, *, sctid(), *, *} is performed. sctidQ is popped from 

the STS stack and run. This function validates the unique identifier for the 

security context, and the final state ‘q l8 ’ is reached. This concludes a sin­

gle complete run of the Security Token Protocol. The above transitions and 

state changes are summarized in Table 4.4.

Each function in Table 4.3 represents functionality that is to be per­

formed on Signature, Encryption, TimeStamp , Request Security Token, and 

Response to Security Token Request XML elements defined in the Security 

Token Protocol run. These structures are extracted from the WS-Trust stan­

dard. The functions defined in table 4.3 are applied to these XML structures 

during each step of the protocol run.The TimeStamp, Signature, Encryption 

structure has been described in Section 4.3.

The Request Security Token structure is embedded in the WS-Security 

structure when requesting a security token. Below is a structure for re­

questing a STS to issue a security token used in our Security Token Service 

Protocol. <TokenType> represents the type of token being requested, repre­

sented as a URL <RequestType> defines a URI that represents the function 

being requested. <AppliesTo> defines a scope for which the token is valid.

<wst:RequestSecurityToken>

<wst:TokenType> . . .</  wst :TokenType>

< wst: RequestType >... < /  wst: Request Type>

< wsp: AppliesTo>. . .< /  wsp: AppliesTo>

<wst:Entropy>

< wst rBinary Secret >... < /wst :Binary Secret >
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Table 4.4: States and Transition Functions for STP.

States Transition Functions S
qO—»ql (sChallenge, SenderChallenge(A, STS), decrypt(pub(STS)), *, decrypt(pub(STS))}
ql-»q2 (RST, partialSC(), decrypt(pub(STS)), *, decrypt(pub(STS))}
q2—»q3 (TS, cTiraeStam(), decrypt(pub(STS)) , *, decrypt(pub(STS))}
q3—>q4 (SIGN, sign(A), decrypt(priv(STS)), *, decrypt(priv(STS))}
q4—>q5 (ENCRYPT, encrypt(pub(STS)), decrypt(priv(STS)), *. decrypt(priv(STS))}
q5—>q5 (Send/Recv_Msg, * , * , * ,  *}
q5->q6 (DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), decrypt(priv(A)), *}
q6-»q6 (TS, decrypt(priv(A)), vTimeStampQ, decrypt(priv(A)), *}
q7—»q8 (vSIGN, decrypt (priv (A)), vSign(A), decrypt (priv( A)), *}
q8—»q9 (RecvChal, decrypt(priv(A)), RecvChallenge(A,STS),decrypt(priv(A)),*}
q9—>qlO (RSTR, decrypt(priv(A)), security_context(), decrypt(priv(A)), *}
qlO-Kjll (TS, decrypt(priv(A)),cTimeStarap(), decrypt(priv(A)), *}
q l l—»ql2 (SIGN, decrypt(priv(A)), sign(STS), decrypt(priv(A)), *}
ql2—»q5 (ENCRYPT, decrypt(priv(A)), encrypt(pub(A)), decrypt(priv(A)), *}
q5-»q5 ( Send/Recv_Msg, * , * , * ,  *}
q5—fql3 (DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), *, decrypt(priv(STS))}
ql3-*ql4 (TS, vTimeStampQ, decrypt (priv (STS)), *, decrypt(priv(STS))}
ql4—>ql5 (SIGN, vSign(STS), decrypt(priv(STS)), *, decrypt(priv(STS))}
ql5->ql6 (sBIND, SenderBind(A,STS), decrypt(priv(STS)), *, decrypt(priv(STS))}
ql6—>q2 (SC, cSCTID(), decrypt(priv(STS)), *, decrypt(priv(STS))}
q2—>q3 (TS, cTimeStam(), decrypt(pub(STS)) , *, decrypt(pub(STS))}
q3—»q4 (SIGN, sign(A), decrypt(priv(STS)), *, decrypt(priv(STS))}
q4—»q5 (ENCRYPT, encrypt(pub(STS)), decrypt(priv(STS)), *. decrypt(priv(STS))}
q5—̂q5 ( Send/RecvJMsg, * , * , * ,  *}
q5->q6 (DECRYPT, *, decrypt (priv (STS)), *, *}
q6—>q7 (TS, *, vTimeStampQ, *, *}
q7—>q8 (vSIGN, *, vSign(A), *, *}
q8—>ql7 (rBIND, *, RecvrBind(A,STS),*, *}
ql7—̂ ql8 (SCTIDQ, *, sctidQ, *, *}
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< /wst:Entropy>

<wst:Lifetime>

< wsu: Created > . . .</  wsu: Created>

< wsu:Expires> . . .< /wsu:Expires>

< /  wst:Lifetime>

< /  wst:RequestSecurityToken>

Entropy defines the value to be used in creating a key. The value should be 

<xenc:EncryptedKey> or <wst:BinarySecret>. The BinarySecret element 

specifies a base64 encoded sequence of octets representing the requestor’s 

entropy. The <wst:Lifetime> is similar to the < wst:TimeStamp> reflecting 

the same information when the token was created and when it expires. They 

are used interchangeably while designing protocols.

A structure for a response from a STS for the request to issue a se­

curity token will now be given. The response should contain all the ele­

ments originally present in the request except the requestor’s entropy and 

the token requested. The keys are calculated using partial entropy, i.e., 

both the Security Token Service and the requestor provide entropies. This 

entropy is used to  calculate the keys. When keys resulting from a token 

request are not directly returned and must be computed, the computed 

keys are represented using a <wst:ComputedKey> element placed inside a 

<wst:RequestedProofToken>. The <wst:ComputedKey> element returns 

how the key is to be computed, e.g., SHA-1. The value of the computed key 

returned is in the form of a URI.

<wst:RequestSecurityTokenResponse>

< wst :TokenType>... < /  wst :TokenType>

< wsp: AppliesTo>. . .< /  wsp: AppliesTo>
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< wst: Reques tTy pe >... < /  wst: Request Type >

<wst:RequestedProofToken>

< wst: ComputedKey > ...</  wst: ComputedKey >

< /  wst:RequestedProofToken>

<wst:Entropy>

< wst: B inary Secret >. ..</  wst: B inary Secret >

< /wst:Entropy>

<wst:Lifetime>

< wsu: Created > ...< /wsu: Created>

< wsu: Expires >... < /■wsu: Expires >

< /wst:Lifetime>

< /  wst: RequestSecurity TokenResponse>

4.5 Concluding Remarks

This chapter has presented an automaton model of the Simple Message Ex­

change Protocol and the Security Token Protocol, described in Chapter 3. 

The automaton model describes the behaviour of the protocols in an explicit 

way. The next step is the verification of the model using Spin. The protocols 

will be expressed in the Promela language, and Service A, Service B and the 

Service Token Service will be defined as the participants of the protocols.

Other automaton based work includes Diaz [DPC+06] who has mod­

elled web services into timed automata by applying time restrictions and 

Fu [Fea04] use guarded finite state automata to represent web services. Both 

focuses on composite web services while our work focus on protocols for stan­

dard web services and the finding of new approach that can combine both 

behaviour and the properties of a protocol in a single model.
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Increasing the number of requesting services in STP run might degrade 

the performance causing delayed responses or packet loss. Each requesting 

party can be allocated a separate thread to process the request, thus allowing 

the security token service to continue with the other pending requests.

SMEP and STP are mainly designed for two services. In the situation 

where multiple services are involved, there will be no extra impact on the 

stacks as each service has its own stack. In the case of SMEP, multiple 

services involved in the protocol run can be classified as sending and receiving 

services.
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CHAPTER 5

Promela Model

A system is correct if it meets its design requirements. However, this state­

ment is not enough to prove the correctness of concurrent systems. The real 

test for these systems is that they do not fail to meet the specified require­

ments.

General-purpose model checking tools can be used for verification of a 

system model, or tools can be built th a t are targeted for the verification 

of the particular model, such as Tulafale [BF04]. This thesis uses Spin, a 

general-purpose model checker, for verification of the model. The specifica­

tion language accepted by Spin is Promela, which allows the facts about a 

transition system to be modelled while hiding the lower-level details about 

the system. Spin is a state exploration model checker and has algorithms 

for state space reduction, thus controlling the size of the state space. Spin is
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used to verify the correctness requirements for the concurrent system. There 

are two ways Spin can be used for model checking: (i) using Spin to con­

struct the verification model for the system at hand, or (ii) starting from 

the implementation and converting critical parts of the implementation into 

a verification model which is then analysed using Spin.

The modelling language for Spin is called Promela. In Promela it is very 

difficult to specify any computations that are not rudimentary. This allows 

for specifying the infrastructure and mutual dependency of concurrently ex­

ecuting processes.

5.1 Chapter Objectives

This chapter presents the translation of the system model presented in Chap­

ter 4 for the Simple Message Exchange Protocol and the Security Token 

Protocol, and their Linear Temporal Logic properties, into the Promela lan­

guage. The basic components that form the Promela model are defined for 

the Simple Message Exchange Protocol and Security Token Protocol. The 

purpose of the model checking exercise is not to build and analyse verification 

models that are as detailed as possible, but to find and build the smallest 

sufficient model to describe the essential elements of the system design.
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Figure 5.1: Types of Objects 
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5.2 Introduction to  Prom ela

Promela is used for modelling systems for purposes of analysis and verifica­

tion. Figure 5.1 presents the type of objects used when modelling a system 

with Promela. Global variables, which are accessible to all the processes in 

the system, may be defined, and their values can be updated by any process 

in the model. Processes define the functionality of the system, and have a 

database of local variables, only available locally. These variables are defined 

within the process to limit their scope. The processes can communicate with 

each other using message channels. The set of basic statements in Promela is 

small and consists of six elements: (1) assignments, (2) assertions, (3) print 

statements (4,5) send or receive statements, and (6) Promela’s expression 

statement.

Table 5.1 presents a summary of the Promela language constructs used in 

the model for the Simple Message Exchange Protocol and the Security Token 

Protocol. The ‘global database’ in Figure 5.1 is composed of constants, vari­

able declarations, mtypes, typedefs, etc., and these constructs are accessible 

to all the processes in the system.

A ‘Process’ can bo defined using a ’proctype’ declaration, which defines 

the behaviour of an executing process. They can be composed of keywords, 

constants, atomic statements, selection statements, channels, etc. The syn­

tax of Promela is similar to the C language, with keywords representing 

some defined functionality, such as if statements, loops, etc. Constants can 

be defined. A constant is a sequence representing a decimal integer. Macros, 

or mtypes, can also be used for defining constants. Promela supports unary 

and binary expressions, and comparators such as >, > = , = = , ! = , etc. These
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operators are used in defining conditional expressions, in ‘if’ statements and 

in loop constructs. The ‘in it’ process is the instantiation process. It is the 

first process to be executed in a Promela model, and is used for preparing 

an initial state for the system.

Processes communicate with each other over message channels. There are 

two types of channel in Promela: buffered and rendezvous channels. Buffered 

channels have the ability to store messages, unlike rendezvous channels. A 

channel can be defined as ‘chan send =  [0] of {mtype}’. A message can be 

sent on the channel as follows, ‘send ! x ’, and is received on a channel with 

‘send ? x ’. A channel can be defined globally or in a process declaration. 

More information on Promela can be found in [Ger].

5.3 System  M odelling Steps

Promela models of the Simple Message Exchange Protocol and the Secu­

rity Token Protocol have been described previously in Chapter 4, which also 

describes the steps in modelling the protocols. The Simple Message Ex­

change Protocol is a ‘three step’ message exchange model. Service A sends 

a first message to Service B. The functions for encryption, decryption and 

assigning timestamps are applied to  the message before sending it off on 

the channel. The second message is received at Service A from Service B. 

Service B decrypts and validates the message, and then creates and sends 

a third message on the channel. Each step of the protocol is modelled for 

Service A and Service B as atomic transactions, and each atomic transac­

tions contains the functions applied to the messages at each state. Service
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Table 5.1: Promela Constructs

Keywords atomic, bool, typedef, do. od, if, fi, mtype, proc- 
type, skip, else chan, bit

Constant Can be defined as macro, or using keyword mtype, 
e.g. #define MAX 5

Expressions Unary and Binary Operators or/and functions can 
be used to build expressions

Conditional Expressions (exprl —» expr2 : expr3)
Declarations Processes, channels, variables must be declared be­

fore being used.
Variables bit, bool, byte, short or int
Arrays The same concept as in the C language
Symbolic Constants Declared using mtype, e.g., mtype =  {OK, 

READY, ACK}
Message Channels Channels are used for communicating between pro­

cesses, e.g., chan send =  [o] of mtype
Channel Operators Send and receive, e.g., send ! x; and send ? x; 

respectively
Structures User defined data types, e.g., typedef msg{byte a; 

bool x;} msg m l [2];
Processes Defined using key word proctype, e.g, proctypc 

serviceQ {statements}
Init Process Used to  prepare the initial state of the system, init 

{statements}
atomic Executes statement in one indivisible step, e.g., 

atomic {statements}
Selection Select one amongst its options, when the first 

statem ent (guard) is true, e.g., if :: statements :: 
statements fi
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B performs two steps. It receives the first message from Service A and pro­

cesses it, then sends a second message off to the sender. Service A, and waits 

for the response. On receiving a valid response, it authenticates to Service A.

The Security Token Protocol is also a ‘three step’ message exchange pro­

tocol. The first message consists of a request generated for a security token 

to be issued (RST), which is sent from Service A to a Security Token Service 

(STS). Service A waits for a response from the Security Token Service in 

the form of a security context. Service A then validates the second message 

containing the security token by applying a combination of functions to the 

message. Once it has validated the message it sends a third message back 

to the Security Token Service. This completes the protocol run on Service 

A’s side. On the STS side, the STS waits for the first message -  the request 

for a security token. It then processes the message and creates a response 

-  the response to security token request (RSTR) message. A second mes­

sage then sends this off to Service A. The Security Token Service waits for 

a third message containing the final acknowledgement, the security context 

identity, which was originally sent to Sservice A in the request security to­

ken response message. The protocol run completes on the STS side after 

the Security Token Service validates the response. These steps are modelled 

as ‘atomic’ steps. Each atomic step consists of a set of functions which are 

applied to the message at each state. The detailed model of these protocols 

will be presented in the next two subsections.

The system is modelled by breaking it into the following parts. First the 

‘types’ used in the model are defined. These can be constants, datatypes, 

etc. Then the ‘channel’ used for communication between processes is defined.
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The next step is defining the ‘global variables’ used in the Linear Temporal 

Logic Formula and the protocol environment. The ‘processes’ for the prin­

cipals or services involved in the protocol environment are then presented. 

For each step a description of the protocol rules and of the protocol instance, 

and a description of the intruder behaviour, is provided.

5.3.1 Sim ple M essage Exchange Protocol

The Simple Message Exchange Protocol is based on WS-Security for the ex­

change of messages between two services. The main goal of the protocol is 

authentication and secrecy between the participating principals. The Simple 

Message Exchange Protocol has been described in detail in Chapter 3.

T ypes

The constants used by the Simple Message Exchange Protocol model will now 

be defined. These are divided into ‘general-purpose’ constants, ‘WS-Security’ 

constants, ‘XML Signature’ constants, ‘XML Encryption’ constants, and 

‘TimeStamp’ constants. The constants used in the Simple Message Exchange 

Protocol are presented in Table 5.2. The general-purpose constants include 

the participating services ‘A’ and ‘B ’, and an intruder service ‘I’. ‘A’, ‘B’ 

and ‘I’ represent the username, or identity, of these services. ‘REQ’, ‘ACK’, 

‘ACCEPT’, ‘DECLINE’ are used in the messages to identify the message 

exchange state in the protocol run. The nonces, ‘nonceA’, ‘nonceB’ and 

‘noncel’ represent the freshly generated nonce values for Service A, Service 

B and the intruder. The constants used for symbolic cryptographic repre­

sentation for XML Signature and XML Encryption will now be presented.
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Table 5.2: Simple Message Exchange Protocol Types.

General Purpose A, B , I , REQ, ACK, nonce A, nonceB, noncel, 
ACCEPT,DECLINE

XML Signature cl4n, shal, sigvalA, sigvalB, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKeyA, pubKeyB, pubKeyl, privKeyA, 

privKeyB, privKeyl
TimeStamp CREATED, EXPIRES

Constants ‘c l4n’, ‘sh a l’, ‘X509v3’ are symbolic cryptographic representa­

tions for XML Signature, and constants ‘tripleDES’, ‘base64encoded’, ’CD’, 

etc., are symbolic cryptographic representations for XML Encryption. The 

‘WS-Security’ constants include public and private key pairs for each service 

A, B and intruder I. The public keys are known to all the services in the 

model, but the private keys are kept secret. Lastly, the TimeStamp constant 

representations, ‘CREATED’ and ‘EXPIRES’, are the constants for creation 

and expiration of the message.

Channels

Channels are used by processes to communicate with each other. Service 

A, Service B and the intruder service use channels to send messages to each 

other. Two type of channel are declared for the Simple Message Exchange Se­

curity Protocol, and are classified according to the type of messages used for 

exchanging data. The first channel sends messages of type ‘M sgl’: {Sender, 

Sender_Nonce, Receiver, REQ, TimeStamp, Signaturelnfo, EncryptedData, 

pubKey(Receiver)}. This message consists of the username of the sender, 

the nonce of the sender, the username of the receiver to identify the receiver 

process at both sides of the message exchange, the status of the message,
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e.g., REQ, ACK, ACCEPT or DECLINE, the timestamp associated with 

the message, the signature information, the encrypted data information, and 

the public key of the receiver process, which indicates that the message has 

been encrypted by the sender service using the receiver’s public key. The sec­

ond channel is used to pass messages of type ‘Msg2’: {Sender, Sender .Nonce, 

Receiver, Receiver .Nonce, RES/ACCEPT, TimeStamp, Signaturelnfo, En- 

cryptedData, pubKey(Receiver)}. The message contains the sender’s name 

and nonce, the receiver’s name and nonce, the message status, ’TimeStamp’, 

’Signaturelnfo’ and ’EncryptedData’, and the public key representing the 

symbolic encryption done using the public key of the receiver.

A non-buffered rendezvous channel is defined for each message type. 

chanONE is used for sending message ‘M sgl’, and chanTwo is used for send­

ing the message ‘Msg2’. The declarations are listed below:

chan chanONE =  [0] of (mtype, mtype, mtype, mtype, TimeStamp, Signature, 

EncryptedData, mtype};

chan chanTWO = [0] of (mtype, mtype, mtype, mtype, mtype, mtype, TimeStamp, 

Signature, EncryptedData, mtype};

G lobal Variables

Linear Temporal Logic (LTL) is used to define the properties the system is 

supposed to satisfy. The Simple Message Exchange Protocol satisfies the 

properties of authentication and secrecy, and so these properties are mod­

elled with LTL. Various other global variables are used to track the message 

exchange in the SMEP model.

Four variables are used for checking the LTL properties: ‘ SenderChol-
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lengeAB\ ’ SenderBind,A B \ ‘ Recr Challenge A B' and 4 RecvrBindA B1. ‘Sender- 

ChallengeAB’ is set to true when the sender Service A initiates a run with 

Service B .4 Recvr Challenge AB’ is set to true when Service B knows it is talk­

ing to Service A. 4SenderBindAB’ is true when Service A commits to Service 

B, in other words, when Service B authenticates to Service A. Similarly, 

4RecvrBindAB’ is true when Service B binds or commits to Service A. This 

model can be adopted for session key establishment. The four variables are 

defined as follows:

bit SenderChallengeAB=0;

bit SenderBindAB=0;

bit RecvrChallengeAB=0;

bit RecvrBindAB=0;

The SMEP properties are now mapped to  the LTL formalism which is 

then directly input to the Spin model checker.

In the LTL property below, ‘O’ represents □ , meaning “always”. T is 

used for negation, 4||’represents “or” , and 4U’ represents “until” . The prop­

erty reads as follows: 4SenderBindAB’ is always false, or is not true until 

4 Recvr Challenge AB’ is true. Similarly, 4RecvrBindAB’ is always false, or is 

not true until 4SenderChallengeAB’ is true.

[] ( ([] ISenderBindAB) || (ISenderBindAB U RecvrChallengeAB) )

[] ( ([] IRecvrBindAB) || (IRecvrBindAB U SenderChallengeAB) )

TimeStamp, XML Signature, XML EncryptedData and EncryptedKey 

are complex structures and are defined using Typedef structures which are
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listed in Table 5.3. Each element of the typedef structure represents an ele­

ment of the XML structure. The values assigned to these structures represent 

the contents of the elements.

Other global variables used can be found in Appendix SMEP. 

P ro cesses  of P rin c ip a ls  in  th e  N e tw o rk

The Simple Message Exchange Protocol consists of three principals or ser­

vices. Service A and Service B represent the legitimate users of the system, 

and the intruder service represents the actions of an intruder. These ser­

vices are modelled as three processes: ’SenderA’, ’ReceiverB’ and ’P I’ (the 

intruder process). An ‘init’ process to  instantiate the model is also defined.

In it  P rocess: The ‘in it’ process contains the instantiation statement for 

all three processes. It allows the sender to  initiate a protocol run with either 

Service B or Service I, and starts the intruder process and the receiver pro­

cesses. The ‘init’ process is described below.

init { 

if

:: run SenderA(A,B,nonceA)

:: run SenderA(A,I,nonceA) 

fi

run ReceiverB(B,nonceB) 

run PI(I, noncel)

}
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Table 5.3: Simple Message Exchange Protocol Global Variables.

TimeStamp

typedef TimeStamp{ 
mtype Created; 
mtype Expires; 

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanoncalizationMethod; 
mtype SignatureMethod; 
mtype Reference; 
mtype SignatureValue; 
mtype Keylnfo;

}; Signature sig[6];

XML Encryption - Encrypted Data

typedef EncryptedData{
mtype EncryptionMethod; 
mtype CipherData; 
mtype CipherValue; 
mtype ReferenceList; 
mtype DataReference; 
mtype Keylnfo;

}; EncryptedData edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
mtype EncryptionMethod; 
mtype CipherData; 
mtype CipherValue; 
mtype ReferenceList; 
mtype DataReference; 
mtype Keylnfo;

}; EncryptedKey ek[6];
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Sender Process: The sender process initiates communication with the 

receiver process ‘ReceiverB’ or with the intruder process ‘P I’. It takes three 

arguments on instantiation: its identity A, the nonceA, and the process it 

communicates with. The sender process executes the ‘SenderChallenge(X,Y)’ 

function, and sets the ‘SenderChallengeAB’ to true if it is starting a run with

B. Before sending the message over the channel, it populates the XML Sig­

nature, XML Encryption, and TimeStamp structures. It then sends the 

message on channel ‘chanONE’. After that, the sender process waits for a 

response from the receiver process on ‘chanTWO’. When it receives this mes­

sage it decrypts the message with its private key and checks for the symbolic 

TimeStamp values, verifies the signature elements of the message, and then 

calls the ‘SenderBind(X,Y)’ function. If it is in a run with B, it will set its 

‘SenderBindAB’ to true and sends an ACCEPT message back to the service. 

The following is a definition of the sender process.

proctype SenderA(mtype me; mtype recvr; mtype my .nonce)

{
atomic {

Sender Challenge (me, recvr);

chanONE ! me,my .nonce,recvr,REQ,ts[0],sig[0],edata[0],pubKey

}
atomic {

chanTWO ? recvr ,recvr_nonce,me,my .nonce, ACK,ts[3],sig[3],edata[3],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness (ts [3]. Created, ts[3]. Expires);

VerifySignature(sig[3] .CanoncalizationMethod, sig[3] .SignatureMethod, 

sig[3].Reference, sig [3]. Signature Value, sig[3].Key Info);

SenderBind(me,recvr);

sig [0]. Reference =  ACCEPT;

chanTWO ! me,my .nonce,recvr,recvr .nonce, ACCEPT,ts [0],
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sig[0], edata[0], pubKey;

}
}

‘ Sender Challenge (X,Y)’ and ’SenderBind(X,Y)’ are macros used for au­

thentication between the sender and the receiver. These macros are called by 

the sending service to update the values of the LTL global variables ‘Sender- 

ChallengeAB’ and ‘SenderBindAB’. In order to explain this part, it is neces­

sary to explain the technique used for property specifications, which is similar 

to the one presented in [Low96a]. The fact tha t a responder with identity 

B correctly authenticates to an initiator with identity A can be expressed 

by the following proposition: A commits to a session with B only if B has 

indeed taken part in a run of the protocol with A. A similar proposition ex­

presses the reciprocal property, i.e., the fact tha t an initiator with identity A 

correctly authenticates to a responder with identity B. Each one of the basic 

propositions involved in the above properties can be represented in Promela 

by means of a global boolean variable which becomes true at a particular 

stage of a protocol run. These macros are defined as follows:

#define SenderChallenge(x,y) if

:: (x——A && y==B) —» Sender Challenge AB=1 

:: (x==A && y==I) SenderChallengeAI=l 

:: (x==I && y==B) —► SenderChallengeIB=l 

:: else skip 

fi

#define SenderBind(x,y) if
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:: ((x==A)&&(y==B)) —> SenderBindAB=1 

:: ((x==A)&&(y==I)) -> SenderBindAI=l 

:: ((x==i)&&(y==B)) —> SenderBindIB=l 

:: else skip 

fi

R eceiver Process: The receiving service B is limited to receiving mes­

sages. It cannot start a conversation but can receive and process messages 

from Service A and the intruder service, PI. The receiver process is mod­

elled as follows. Firstly, Service B waits for a message on ‘chanONE’. On 

receiving the message it symbolically decrypts the message with its private 

key privB’, verifies the freshness of the message and the signature on the 

message, and calls the ‘RecvrChallenge(X,Y)’ routine to update the global 

variables. Then it sends a response back to the sending service. Next Service 

B waits for a response from the sending service on ‘chanTWO’, decrypts the 

message, verifies the freshness of the message and the signature, and finally 

binds to the sending service. The definition of the receiver process is listed 

as follows.

proctype ReceiverB (mtype me; mtype my_nonce){ 

atomic {

chanONE?sender,sender_nonce,eval(me),msg_type,ts[l], 

sig[l], edata[l], pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [1]. Created, ts [1] .Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[l].SignatureMethod, 

sig[l].Reference, sig[l].Signature Value, sig[l].Keylnfo);

RecvrChallenge(sender ,me);

chanTWOIme,my _nonce,sender,sender _nonce,ACK,ts[2],
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sig[2] ,edata[2] ,pubKey

}
atomic {

chanTWO ? eval(sender) ,eval (sender_nonce) ,eval (me), 

eval(my_nonce),ACCEPT,ts[4],sig[4],edata[4] ,pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [4]. Created, ts [4] .Expires);

VerifySignature(sig[4].CanoncalizationMethod, sig[4].SignatureMethod, 

sig[4] .Reference, sig[4].Signature Value, sig [4]. Key Info);

RecvrBind(sender,me);

}
}

The receiver process has its own ‘RecvrChallenge(X,Y)’ and ‘RecvrBind(X,Y)’ 

macros. They are similar to the ones described for the sender macros and 

are updated in the same manner.

P I Process: The process ‘PI’ is the intruder process, and is based on 

the Dolev-Yao model for an intruder. The intruder process has the capability 

to overhear and intercept any message sent on the channel between Service 

A and Service B, and can create new messages based on the information 

learned. The Dolev-Yao model assumes that cryptography cannot be broken 

during a protocol run. The intruder can start a conversation with either 

Service A or Service B. The intruder can behave like a normal service, thus 

allowing other participants to initiate a protocol run with it, or vice versa.

The intruder can start a fresh conversation with either A or B as a valid 

user. By doing so, the intruder is able to learn the nonces for Service A and 

Service B.
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The behaviour of the intruder depends on the knowledge it originally has 

and the knowledge it will acquire during protocol runs with the participants. 

For example, the intruder’s knowledge might include the intruder’s identity, 

its public and private key, the identities of other participating agents, their 

public keys and any other secrets shared between the intruder and partici­

pants.

There are four basic message runs the intruder can perform:

1. I —>-B: the intruder can talk to B as a new user and learn its nonce.

2. A —>1: the intruder can interact with A and learn its nonce.

3. A—>-(I)B: A can start a conversation with the intruder masquerading 

as Service B.

4. 1(A) —y B: the intruder, masquerading as Service A, can staxt a con­

versation with Service B.

These last two runs, in which the intruder behaves as either Service B or 

Service A can be performed only when the intruder has sufficient knowledge 

obtained during previous runs.

The intruder already knows the public keys of A and B. When it learns 

the nonces of A and B, it updates its knowledge base using the macro defined 

below.

#define k(xl) if

:: (xl = =  nonceA)—► learn_kNa =  1;

:: (xl = =  nonceB)—> learn_kNb =  1;

:: else skip 

fi
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The intruder process PI is an always running process. It is either listening 

on the channel or is sending a message on the channel.

In the first of the four cases above the intruder initiates a run with Service 

B, as a legitimate user, i.e., I—>B. The intruder updates its global variables 

for SenderChallenge, populates the Signature and Encryption information, 

sends the message on ‘chanONE’ to Service B, and waits for a response. On 

receiving the response, it decrypts the message, verifies its freshness, vali­

dates the Signature, and learns the nonce of Service B. The intruder then 

sends a message back to service B. Once the intruder has learned the nonce 

of B it can now use this in a protocol run between Service A and itself acting 

as Service B. Similarly, in the second of the four cases above, the intruder 

can have a message run with Service A and learn its nonce. The intruder, 

after learning the nonce, acts as an impostor and can participate in message 

exchanges pretending to be Service B or Service A. A segment of the intruder 

model for I—)-B is given as follows :

atomic {

SenderChallenge(me, B);

chanONE ! me,my_nonce,B,REQ,ts[l],sig[l],edata[l],pubKeyB ;

chanTW 0?recvr ,recvr_nonce,me,my_nonce, ACK ,ts [5] ,sig[5] ,edata[5] ,pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [5]. Created, ts [5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, 

sig [5]. Reference, sig [5]. Signature Value, sig[5] .Keylnfo);

SenderBind(sender, me);

sig[l]. Reference =  ACCEPT;

chanTWO !me,my_nonce,recvr,recvr_nonce,ACCEPT,ts[l],sig[l],edata[l],pubKey;
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The second of the four cases above Service A takes the intruder to be a legitimate 

service and initiates a run with it, i.e., A—>1. The intruder interacts with Service A and 

learns its nonce. The following model lists the behaviour of the intruder for this scenario.

atomic {

chanONE?sender,sender_nonce,eval(me) ,msg_type,ts [5] ,sig[5] ,edata[5] ,pubKey; 

Decryption (pubKey, privateKey);

Verify Freshness(ts [5] .Created, ts [5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, sig[5] .Reference, 

sig[5].SignatureValue, sig[5].Keylnfo);

RecvrChallenge(sender,me);

chanTWOIme, my _nonce, sender, sender .nonce, ACK,ts[l],sig[l],edata[l],pubKeyA; 

chanTWO?eval(sender) ,eval(sender_nonce) ,eval(me) ,eval(my_nonce), ACCEPT, 

ts [5] ,sig[5] ,edata[5],pubKey;

Decryption(pubKey, privateKey);

Verify Freshness(ts[5]. Created,ts [5] .Expires);

VerifySignature(sig[5] .CanoncalizationMethod, sig[5].SignatureMethod, 

sig[5] .Reference, sig [5]. Signature Value, sig [5]. Keylnfo);

}

In the third of the four cases above the intruder acts as Service B and 

talks to Service A. This option sequence is only executed if the intruder has 

already gained knowledge of the nonce of Service B. The intruder intercepts 

the messages from Service A to Service B. The intruder cannot decrypt the 

message, however, it can use all the information which is not encrypted and 

signed, such as the identity of the sender and the nonce. Using this infor­

mation it can call the receiver challenge and receiver bind functions. It can 

update the global variables and attem pt to bind to Service A. The following 

lists the intruder model for this behaviour.
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if

:: learn_kNb==l—̂ -atomic {

chanONE?sender,sender_nonce ,claim_B,msg_type,ts[5],sig[5],edata[5],pubKey; 

Decryption(pubKey, privateKey);

Verify Freshness(ts [5]. Created,ts[5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, 

sig[5].Reference, sig [5]. Signature Value, sig[5].Key Info);

if

::(learn_kNb = =  1)—>■ claim_nonceB =  nonceB

fi;

Rec.vrChallenge(sender,claim_B);

RecvrBind(sender, B); 

k (sender .nonce);

chanT W O! claim_B ,claim_nonceB, sender,sender .nonce, ACK ,ts [2] ,sig [2], 

edata[2],pubKey A; 

chanTWO ? eval(sender),eval(senderjionce),claim_B,

eval(claim_nonceB), ACCEPT,ts [5] ,sig[5] ,edata[5],pubKey; 

Decryption(pubKey, privateKey);

Verify Freshness (ts [5]. Created,ts [5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, 

sig[5].Reference, sig [5]. Signature Value, sig [5]. Key Info);

}
::else skip

fi;

In the last of the four cases above the intruder pretends to be Service A 

and initiates a run with Service B. This scenario can only be executed once 

the intruder has sufficient knowledge about Service A, i.e., its nonce. It then 

attem pts to authenticate to Service B. The following model fragment lists 

this functionality.

atomic {
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if

:: (learn_kNa==l)

-> chanONE! A,nonce A ,B, REQ ,ts [0] ,sig [0] ,edata[l],pubKey B ;

SenderChallenge(A, B);

chanTWO?recvr,recvr _nonce,claim_A,claim_nonceA,ACK,ts[5],sig[5],edata[5], pubKey; 

Decryption (pubKey, privateKey);

VerifyFreshness (ts [5]. Created, ts [5]. Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, sig[5] .Reference, 

sig[5] .SignatureValue, sig[5] .Keylnfo); 

k (recvr .nonce);

SenderBind(claim_A,recvr);

chanTWO! claim_A, claim_nonceA, recvr, recvr .nonce, ACCEPT, ts [5] ,sig[5] ,edata[5],pubKey; 

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, sig[5].Reference, 

sig[5] .SignatureValue, sig[5].Keylnfo);

::else skip

fi:

}

5.3.2 Security Token Protocol

The Security Token Protocol is a simple three-message exchange protocol 

for issuing a security token between an agent and a Security Token Service.

In the Security Token Protocol the participants agree on a ‘Security Con­

tex t’. A security token is a collection of claims made about a client, such 

as statements about its identity, key, etc., and a security context refers to 

an authenticated state and negotiated keys. A security context token is a 

manifestation of this concept. The constructs that make up the Promela 

model for the Security Token Protocol will now be defined.
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Table 5.4: Security Token Protocol -  Types

General-purpose A, STS, I, nonceA, nonceS, noncel, DENIED
XML Signature cl4n, shal, sigvalA, sigvalSTS, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKeyA, privKeyA, pubKeySTS, privKeySTS, 

pubKeyl, privKeyl, dsSig
WS-Trust paxtialSC, SCT, ISSUE, claims A, claimsS, RST, 

RSTR, SC, created, expires, client .entropy, 
server_entropy, partialEntropy, SCTJD

TimeStamp CREATED, EXPIRES

Types

Table 5.4 represents the ‘mtypes’ used in the Security Token Protocol. The 

general-purpose mtype definitions are given for constants used in the User- 

nameToken profile, together with other general constants used in the model. 

‘A’ represents the username of Service A, ‘STS’ represents the username of 

the Security Token Service, and ‘I’ represents the intruder of the system. 

Nonces are listed for each service: Service A is assigned ‘nonceA’, STS is as­

signed ‘nonceS’, and the intruder service has its own nonce, ‘noncel’. Nonces 

are important for defence against replay attacks, to avoid reuse of old com­

munication. The mtype ‘DENIED’ is used to indicate whether the authen­

tication failed between the participating agents. For the constants used in 

XML Signature [ERS01], ‘cl4n’ and ‘sh a l’ represent the algorithms employed 

by the model for the symbolic signing of the envelopes. ‘sigvalA’, ‘sigvalSTS’ 

and ‘sigvall’ represent the signature values for Service A, the Security Token 

Service, and the intruder service, respectively. ‘X509v3’ represents the cer­

tificate version used in the signature. The XML Encryption constants used 

in the model are defined similarly. ‘tripleDES’ is the encryption algorithm 

used. For details about working with XML Signature and its algorithms
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please refer to [TCM02]. The WS-Security Security Token Protocol contains 

the constant values of the public key and private key pairs used by Service 

A, the Security Token Service, and the intruder.

The mtype constants representing the WS-Trust specification parame­

ters include ‘partialSC’ and ‘SCT’, which represent the partial context and 

full security context agreed on by the participants. ‘claimsA’ and ‘claimsS’ 

axe claims made by Service A and the Security Token Service. ‘RST’ and 

‘RSTR’ represent the Request Security Token and Response to Security To­

ken Request in the envelopes, ‘created’ and ‘expires’ represent when the 

token was created and when the token will become invalid. These values 

represent the freshness values for the token, but not the message. The fresh­

ness of the message is represented by TimeStamp values. ‘client_entropy’ and 

‘server.entropy’ axe provided by the client and server, respectively, for calcu­

lating keys. The client and server entropies are used to establish a context 

key between services and are used as a session key. ‘S C T JD ’ represents the 

unique identity of the security context token.

Channels

Service A, the Security Token Service, and the intruder service use three 

channels to communicate with each other. The channel ‘rstChan’ is used 

by Service A to send request security token messages to the Security To­

ken Service. The channel sends/receives messages of type {UsernameToken, 

recvr, Signature, RST, RequestSecurityToken, TimeStamp, EncryptedData, 

publicKey}. UsernameToken, Signature, RequestSecurityToken, TimeStamp 

and EncryptedData represent the ‘typedef’ structure explained in the global
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variables section below, ‘recvr’ represents the username of the receiving en­

tity, which is the Security Token Service. The ‘publicKey’ is the public key 

used for symbolic encryption of the message. The message is symbolically 

encrypted with the Security Token Service’s public key. ‘RST’ is used as a 

message identifier for the request for security token.

The second channel ‘rstrC han’ is used by the Security Token Service 

to send the response to the security token request. The channel sends/re- 

ceives messages of the form {UsernameToken, UsernameToken, RSTR, Signa­

ture, SC, RequestSecurityTokenResponse, TimeStamp, EncryptedData, pub­

licKey}. ‘UsernameToken’ represents the username of the requesting service, 

the second ‘UsernameToken’ represents the Security Token Service. ‘Signa­

ture’, ‘RequestSecurityTokenResponse’, ‘TimeStamp’ and ‘EncryptedData’ 

represent the parameters for WS-Security and WS-Trust. ‘RSTR’ and ‘SC’ 

are the message identifier for the response to security token request and the 

security context. ‘pubKey’ represents the public key used for encryption.

The third channel, ‘ackChan’, is used by the requesting service to send 

the unique security token identifier back to  the Security Token Service. This 

is done to allow the Security Token Service to verify the identity of the se­

curity context token it sent to the requesting service. The definitions of the 

channels are listed as follows.

chan rstChan =  [0] of {UsernameToken, mtype, Signature, mtype,

RequestSecurityToken, TimeStamp, EncryptedData, mtype};

chan rstrChan =  [0] of {UsernameToken, UsernameToken, mtype, Signature, mtype, 

RequestSecurityTokenResponse, TimeStamp, EncryptedData, mtype};
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chan ackChan =  [0] of {mtype};

Global Variables

Global variables are used to represent the properties of the system. The 

properties of the Security Token Protocol, are represented as Linear Tempo­

ral Logic formulas. The protocol aims to issue a security token, ‘typedef’ 

complex structures used in our model are also defined.

There are six global variables used for checking the properties of the sys­

tem: ‘SenderBindA_S’, ‘SenderChallengeA_S’, ‘RecvrBindA_S’, ‘RecvChal- 

lengeA-S’, ‘partiaLSC’ and ‘security.context’. When Service A initiates a 

message exchange with the Security Token Service, ‘SenderChallengeAJSTS’ 

is set to true when Service A knows it is talking to the Security Token Ser­

vice. Similarly, on the Security Token Service side, ‘RecvrChallengeA.STS’ 

is set to true when the Security Token Service knows it is talking to Service

A. The initial messages confirm for both Service A and the Security Token 

Service tha t they are in a run with each other. Only when Service A is 

ready for further exchange of messages with the Security Token Service does 

it set ‘SenderBindA_S’ to true. Similarly, after confirming the identity of the 

sender the Security Token Service commits to it, and sets ‘RecvrBindA_S’ to 

true. ‘partiaLSC’ is the global variable, updated once by the Security Token 

Service, indicating whether an agreement has been reached on claims made 

by the requesting service. ‘partiaLSC’ represents a combination of elements, 

such as ‘AppliesTo’ (the service the security token is valid for, in our case 

the Security Token Service), ‘TokenType’ (the type of token being requested, 

the security context token), ‘RequestType’ (the type of request, issuing a se­

curity token), ‘EntropicMode’ (entropic mode used for calculating keys -  we
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use partial entropy where both the requestor service and Security Token Ser­

vice provide their entropies), and ‘client.entropy’ (the entropy provided by 

the client for computing keys). The global variable ‘Security.Context’ is true 

on the requestor side when it agrees on the security context information pro­

vided by the Security Token Service. It is set true when the ‘partiaLSC’ is 

true and the Security Token Service has provided additional information, i.e., 

‘server_entropy’ (the entropic value provided by the server to calculate the 

security context key), ‘expires’ (how long the token is valid for), ‘stsnonce’ 

(nonces are freshly generated random values), the Security Token Service’s 

identity, the requestor’s identity, and a unique identifier for the security con­

text token. The values of these variables are updated using macros in the

model. The updated values are then used for verifying the correctness prop­

erties of the system.

We now model the above global variables with Linear Temporal Logic 

formula.

\\ ( (0 IsenderbindAS) || (IsenderbindAS U recvr challenge AS) )

fl  (  ( D  LecvrbindAS) || (IrecvrbindAS U senderchallengeAS) )

D ( (Q isecuritycontext) || (isecuritycontext U partialSC) )

The above formulas represent the property requirements the system is to 

satisfy. The formula reads as (i) ‘senderbindAS’ is always false or ‘senderbindAS’ 

is false until ‘recvrchallengeAS’ becomes true; and (ii) ‘recvrbindAS’ is always 

false or ‘recvrbindAS’ remains false until ‘senderchallengeAS’ becomes true. 

Initially, the ‘securitycontext’ is always false, or ‘securitycontext’ becomes 

true when there is an agreement on a partial context ‘partialSC’ between a
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requestor and a Security Token Service.

Tables 5.5 and 5.6 represent typedef structures used in the Security To­

ken Protocol. Table 5.5 contains complex structures for XML Signature, 

XML Encryption, TimeStamp and UsernameToken. Table 5.6 represents 

the complex structures for requesting a security token and for the response 

to a security token request.

P rin c ip a l P ro cesses

The Security Token Protocol consists of three principals, a token requesting 

service (Service A), a Security Token Service (service STS), and an intruder 

service. The Promela model of the Security Token Service consists of four 

processes in total: the ‘in it’ process, ‘sender’ process, ‘STS’ process and ‘in­

truder’ process.

In it  p rocess: The ‘in it’ process contains the instantiation statements for 

the ‘sender’, ’STS’ and ‘intruder’ processes. The model alternates between 

an ‘intruder’ process and a ‘sender’ process at a given time. The STS process 

is always running and awaiting token issuance requests from the requestor. 

The intruder process has three parameters passed to it: the identity of the 

intruder, the service it wants to  communicate with (in this case the Security 

Token Service), and its nonce, noncel. Similarly, the ‘sender’ process passes 

its username A, the service it wants to talk to, ‘STS’, and its freshly gener­

ated nonce, nonceA. The ‘STS’ service is passed its username STS and its 

freshly generated nonce, nonceS.
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Table 5.5: Security Token Protocol Global Variables

TimeStamp

typedef TimeStamp{ 
mtype Created; 
mtype Expires; 

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanonicalizationMethod ; 
mtype SignatureMethod ; 
mtype Reference ; 
mtype SignatureValue ; 
mtype Keylnfo;

}; Signature sig[6];

XML Encryption - Encrypted D ata

typedef EncryptedD ataj
mtype EncryptionMethod ; 
mtype CipherData ; 
mtype Cipher Value ; 
mtype ReferenceList ; 
mtype DataReference ; 
mtype Keylnfo;

}; EncryptedData edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
mtype EncryptionMethod ; 
mtype CipherData ; 
mtype CipherValue ; 
mtype ReferenceList ; 
mtype DataReference ; 
mtype Keylnfo;

}; EncryptedKey ek[6];

U sernameToken

typedef UsernameToken { 
mtype Username; 
mtype Nonce;

}; UsernameToken ust [T];
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Table 5.6: Security Token Protocol Global Variables

RequestSecurityToken

typedef RequestSecurityToken{ 
mtype TokenType ; 
mtype RequestType ; 
mtype AppliesTo; 
mtype Entropy; 
mtype EntropicMode; 
mtype rst.created; 
mtype rst.expires;

}; RequestSecurityToken rst [2];

RequestSecurityToken

typedef typedef RequestSecurityTokenResponse! 
mtype TokenType ; 
mtype RequestType ; 
mtype AppliesTo; 
mtype Entropy; 
mtype EntropicMode; 
mtype ComputedKey; 
mtype rstr.created; 
mtype rstr.expires; 
mtype set Jd ;

}; RequestSecurityTokenResponse rs[2];
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init {

if

::run Intruder (I, STS, noncel);

::run Sender (A, STS, nonceA);

fi;

run sts(STS, nonceS);

}

’Sender’ Process: The ‘sender’ process is a security token requestor 

service. The ‘sender’ process sends a request to the Security Token Service, 

to issue a security token. The request for a security token comprises of three 

main steps as described in the autom aton model in the Chapter 4. First, the 

‘sender’ creates a request for a security token and sends it to  the Security 

Token Service. Second, it waits for the response for issuing the security token 

and processes the response when it arrives. Third, if it accepts the security 

context token, it sends a security context id back to the Security Token Ser­

vice; otherwise it sends a ‘M SG-REJ’ to the Security Token Service.

The ‘sender’ sends a request for issuing a security token to the ‘STS’ pro­

cess. It populates the ‘typedef’ structures specified in Tables 5.5 and 5.6. It 

sends its UsernameToken containing its username, and its nonce to the re­

ceiver process ’STS’, as well as the XML Signature information used to sign 

the request. The request contains all the information to obtain a partial se­

curity context agreement between Service A and the Security Token Service. 

The message required also contains the TimeStamp information, as well as 

information used to encrypt the data. The message is encrypted using the 

public key of the Security Token Service.
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The ‘sender’ process waits for the response from ‘STS’ on ‘rstrChan’. It 

receives its own UsernameToken and the ‘STS’ UsernameToken, along with 

the response to  the security token request. The XML Signature and XML 

Encryption information are used to sign and encrypt the message by the re­

questing service. The ‘sender’ processes the incoming message. It decrypts 

the message using its private key, and checks the TimeStamp token as well as 

the Encryption and Signature information. It validates tha t it is an RSTR 

packet, and then commits to the session between ‘STS’ and itself, if it vali­

dates that it is in a run with ‘STS’, and finally agrees on a security context 

agreement. The security context agreement is reached if both the parties 

agree the on following information: AppliesTo, TokenType, RequestType, 

EntropicMode, Entropy of both server and client, ComputedKey, Expiry of 

the token, and the freshness of the nonces.

proctype Sender(mtype me; mtype recvr; mtype my_nonce)

{
atomic {

(recvr = =  STS)—► pubKey =  pubKeySTS

SenderChallenge(me, recvr);

rst Chan! ust [0],recvr, sig [0], RST, rst [0] ,ts [0] ,edata[0],pubKey ;

}
atomic {

rstrChan?ust[4],ust[3],rstr,sig[3],SC, rs[l],ts[3],edata[3],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts [3]. Created, ts [3] .Expires);

VerifySignature(sig[3].CanoncalizationMethod, sig[3].SignatureMethod, 

sig [3]. Reference, sig [3]. Signature Value, sig[3].Keylnfo);

AuthenticateResponse(rstr);

SenderBind(ust [4] .Username, ust[3] .Username);

SCAgreement(rs[l].AppliesTo, rs[l].TokenType, rs[l].RequestType,
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rs [ 1 ]. EntropicMode, rst [0]. Entropy, rs [1].Entropy,rs [1] .ComputedKey, 

rs[l].rstr.expires, ust[3].Nonce, ust[3].Username, ust[4].Username, rs[l].sct_id);

}
bit FLAG =  1; 

mtype msg; 

if

:: (Security .Context = =  FLAG) -> msg =  SC 

:: (Security.Context != FLAG) —> msg =  MSG-REJ

fi;

ackChanlmsg;

}

‘S T S ’ P ro cess : The ‘STS’ process is a Security Token Service issuing 

process. The ‘STS’ process is responsible for listening for security token re­

quests and relaying a security token response back to the requestor. The 

Security Token Service listens for requests for a security token on ‘rstChan’. 

When the Security Token Service receives a request it decrypts the message, 

verifies the freshness of the message, and the signature information of the 

sender, updates it global variables, and agrees on a partial security context. 

It creates a response th a t is to  be sent back to the requester. It assigns values 

to the ‘typedef’ structures listed in Tables 5.5 and 5.6. It creates a request 

security token response, containing the security token, and sends it to the 

sender service on channel ‘rstrC han’. The Security Token Service then waits 

for an acknowledgement containing the security context ID on ‘ackChan’. 

The ‘STS’ process is listed as follows.

proctype sts(mtype me; mtype my .nonce)

{
atomic {

rstChan?ust[l],eval(me),sig[l],req,rst[l],ts[l] edata[l],pubKey;
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Decryption(pubKey, privateKey);

Verify Freshness (ts[l]. Created, ts[l]. Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[l].SignatureMethod, 

sig[l]. Reference, sig[l].Signature Value, sig[l]. Key Info);

RecvrChallenge(ust[1].Username, me);

AuthenticateRequest(req);

RecvrBind(ust[l].Username, me);

PartialSCAgreement(rst.AppliesTo, rst.TokenType, rst. Request Type, 

rst.EntropicMode, rst.Entropy);

if

:: (ust[1].Username = =  A)—► pubKey =  pubKeyA 

:: (ust[1].Username = =  I) -> pubKey =  pubKeyl

fi;

rstrChan!ust[l],ust[2], RSTR, sig[2], SC, rs[0],ts[0],edata[2], pubKey;

}
mtype x;

ackChan? x

}

‘In tru d e r ’ P ro cess : The intruder behaves in the following ways. It can 

act as a new user and gather information represented by ‘I —>STS’. It can 

block and intercept a message from sender A, and pass it to the Security 

Token Service ‘1(A) —► STS’. In this scenario no signature or information is 

leaked to the intruder.

The intruder is a constantly running process. When the intruder process 

is initiated, it populates the ‘typedef’ structures in Tables 5.5 and 5.6. It 

assigns values to all structures apart from ‘RequestSecurityTokenResponse’. 

In ‘I ->STS’, the intruder acts as a legitimate user of the system and sends 

a request for a security context token to the Security Token Service on chan­

nel ‘rstChan’. It then waits for a response from the Security Token Service
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on channel ‘rstrChan’. It processes the request and establishes a security 

context. It then sends the security context identity back to the sender on 

‘ackChan’. This security context can be later used in establishing a session 

with other unsuspecting services.

The intruder learns Username token information from runs with Service 

A and sends requests to the Security Token Service: ’I (A) —► STS’. The 

intruder blocks messages sent from Service A and forwards them to the Se­

curity Token Service. It then waits for a response from the Security Token 

Service. If the message is authenticated at the server end, it receives a secu­

rity context token, or if the attack is identified it receives a message reject 

response from the server. The intruder process is listed as follows.

proctype Intruder(mtype me; mtype recvr; mtype my .nonce) { 

do

:: atomic { 

atomic {

pubKey =  pubKey STS;

SenderChallenge(me, recvr);

rstChan!ust[5],recvr, sig[4],RST,rst[0],ts[0],edata[4],pubKey ;

}
atomic {

rstrChan?ust[5] ,ust[6],rstr,sig[5], SC, rs[l],ts[l],edata[5], pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts[l]. Created, ts[l]. Expires);

VerifySignature(sig[5].CanonicalizationMethod, sig[5].SignatureMethod, 

sig[5] .Reference, sig [5]. Signature Value, sig [5]. Keylnfo);

AuthenticateResponse(rstr);

SenderBind(ust[5] .Username, ust [6] .Username);

SC Agreement (rs[l]. AppliesTo, rs[l]. TokenType, rs[l]. RequestType,
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rs[1].EntropicMode, rst[0] .Entropy, rs[l] .Entropy,rs[l] .ComputedKey, 

rs[l].rstr_expires, ust[6].Nonce, ust[6].Username, ust[5].Username, rs[l].sct_id);

}
bit FLAG5 =  1; mtype msg5; 

if

:: ((Security_Context_I = =  FLAG5) &;& (valid_DecryptI = =  FLAG5))-> msg5 = SC 

:: (Security_Context_I != FLAG5) —> msg5 =  MSG-REJ

fi;

ackChan!msg5;

}
:: atomic { 

atomic {

pubKey =  pubKey STS;

Sender Challenge (ust [0]. U ser name, recvr);

rstChanlust [0], recvr,sig[4],RST,rst [0] ,ts[0] ,edata[4],pubKey;

}
atomic {

rstrChan?ust[5],ust[6],rstr,sig[5],SC,rs[l],ts[l],edata[5],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts[l].Created,ts[l] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, 

sig[5].Reference, sig [5]. Signature Value, sig [5]. Key Info);

AuthenticateResponse(rstr);

SenderBind(ust [5] .Username, ust [6] .Username); 

bit FLAG4 =  1; mtype msg4; 

if

::((valid_dsSigA = =  FLAG4)&&(valid_DecryptA = =  FLAG4))

—►SCAgreement(rs[l].AppliesTo, rs[l].TokenType, rs[l].RequestType, rs[l].EntropicMode, 

rst[0].Entropy, rs[l].Entropy,rs[l].ComputedKey, rs[l].rstr_expires, 

ust [3]. Nonce, ust [3]. User name, ust [4]. User name, rs[l].sct_id);

::else —> ackChan!MSG_REJ

fi;

if
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:: (Security.Context = =  FLAG4) —> ackChan! SC;

fi;

}
}
od

}

Macros are used in the Security Token Protocol to update the values of the 

global variables used in the Linear Temporal Logic formulas. The ‘Sender- 

Challenge(X,Y)’, ‘SenderBind(X,Y)’, ‘RecvrChallenge(X,Y)’ and ‘RecvrBind(X,Y)’ 

macros work in the same way as the ones described for the Simple Message 

Exchange Protocol. Two new macros are introduced here: ‘ PartialSC Agree­

m ent^,b,c,x,y)’ and ‘SCAgreement(at,tt,rt,em,ce,se,ck,ex,stsn,sts,sdr,scid)’.

These macros update the values of global variables ‘ partial _SC’ and ‘Secu- 

rity_Context\ The macro ‘PartialSC Agreement (a,b,c,x,y)’ is used to reach 

an agreement on a partial security context, based on the elements AppliesTo, 

TokenType, RequestType, EntropicMode and Entropy. If all the elements 

are fulfilled, it sets ‘partial_SC’ to true. Similarly,the macro ‘SCAgree- 

ment(at,tt,rt,em,ce,se,ck,ex,stsn,sts,sdr,scid)’ is used for an agreement on a 

full security context. The full context is agreed if AppliesTo, TokenType, 

RequestType, EntropicMode, ClientEntropy, ServerEntropy, ComputedKey, 

Expires, UsernameToken for STS and A, and SC id are valid, in which case 

‘ Security-context ’ is set to true. Other macros are also used in the Security 

Token Protocol.

#define PartialSCAgreement(a,b,c,x,y) if

:: ((a== STS)&&(b== SCT)&&(c== ISSUE)&&(x== partialEntropy)&&

(y== client_entropy)) —> partial_SC=l 

:: else skip
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fi

# define SCAgreement(at,tt,rt,em,ce,se,ck,ex,stsn,sts,sdr,scid) if

:: ((at = =  STS)&&(tt = =  SCT)&&(rt = =  ISSUE)&&(em = =  partialEntropy)&& 

(ce = =  client_entropy)&&(se = =  server .entropy )&&(ck = =  shal)&&

(ex = =  expires)&&(stsn = =  nonceS)&&(sts = — STS)

&&(sdr = =  A)&&(scid = =  SCTJD)) —> Security-Context=1 

::else skip; 

fi

5.4 Concluding Remarks

This chapter has dealt with the modelling into Promela of the protocols de­

fined earlier. The behaviour of the principals involved in the protocol run, 

i.e., Service A, Service B, and the Security Token Service, have been identi­

fied. An intruder model based on the Dolev-Yao model has been presented in 

Promela. In the next chapter simulations are performed to verify the general 

behaviour of the protocols by inputting these models to XSpin, a graphical 

interface to the Spin model checker.
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CHAPTER 6

Simulation and Verification Results

To understand the behaviour of the model of a system, and the properties the 

model captures, simulations are performed on the model. Simulation allows 

the detection of any deviation from the expected behaviour of the system. 

Prototypes have been developed for the Simple Message Exchange Protocol 

and the Security Token Protocol, and Spin [Hol03, BK08] has been used for 

rapid prototyping.

XSpin, the graphical interface to Spin, is used for simulation and verifica­

tion purposes. It runs Spin commands in the background. XSpin is used for 

model checking the Simple Message Exchange Protocol and the Security To­

ken Protocol. XSpin provides three simulation modes: random, guided and 

interactive simulation. Random simulation is carried out using a predefined 

seed value. Different runs can be obtained by changing the seed value. The
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guided simulation requires the presence of a ‘pan.trail’ file, produced during 

the verification run. In this thesis interactive simulation is used to resolve 

manually non-deterministic choices in the model. A choice is offered when 

there are different directions the execution can proceed in.

There are four basic types of output that can be requested: (i) Message 

Sequence Charts, (ii) Time Sequence, (in) Data Value, and (iv) Execution 

Bar. Briefly, a message sequence chart displays send and receive actions, 

connecting matching pairs with arrows. The Time Sequence option shows 

text output of the simulation run. The Data Value option shows the most 

recent values assigned to the variables in the model. The Execution Bar 

option gives a dynamically updated bar-chart of the number of statement 

executions in each running process.

6.1 Chapter Objectives

This chapter deals with two things: simulation and verification of the pro­

tocol models. Simulations are performed for each scenario discussed in Sec­

tion 3.6 for the Simple Message Exchange Protocol and the Security Token 

Protocol. Simulation allows us to analyse the behaviour of the model and 

correct any mistakes for further verification. Message Sequence Charts and 

Data Values were selected as the output modes for simulation runs. Using 

message sequence charts and data values enables the tracking of the exchange 

of messages between protocol participants.

Verification of the protocol models is performed to show that the system 

satisfies certain properties. The properties of secrecy and authentication are
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verified for the Simple Message Exchange Protocol. In the case of the Secu­

rity Token Protocol the properties of secure agreement of a security context 

while maintaining secrecy and authentication goals are verified. These prop­

erties are represented in Linear Temporal Logic formulas.

6.2 Simulation Results

6.2.1 Simple Message Exchange Protocol

The Simple Message Exchange Protocol (SMEP) exchanges three messages 

between two services, a requestor service and a responder service. At the end 

of a valid run, the two services have securely authenticated to each other. 

The challenge is to achieve the authenticated state under the presence of an 

active intruder. The possible manipulated protocol runs are modelled for 

SMEP as described in Chapter 3. The intruder service can interact with 

other services in the following possible ways. First, the intruder service I, 

can initiate a conversation with Service B in order to learn information about 

Service B: ’I—>-B\ Secondly, the intruder service can act as a legitimate user 

and be involved in a protocol run with Service A: A  —>1. Thirdly, the intruder 

service after learning information about Service B can act as service B, and 

be involved in a protocol run with Service A: A—>I(B). Fourthly, the intruder 

service can act as Service A and initiate a run with service B: I(A)-»B. Simu­

lation is performed for a behavioural analysis of the protocol, and we suggest 

changes accordingly. Results are presented in the following sections.
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A  B

A  correct Simple Message Exchange Protocol run is successfully achieved 

when Service A and Service B axe able to authenticate to each other. Fig­

ure 6.1 represents a snapshot of a message sequence chart for the protocol 

run. The processes representing Service A, Service B and the intruder service 

are represented as boxes, and the numbers represent the execution steps in 

the simulation run. The message sequence chart shows send and receive ac­

tions, connecting matching pairs with arrows. Sender A sends a message {A, 

nonceA, B, REQ, ts [0], sig[0], edata[0], pubKeyB} to Service B in execution 

step 40. ‘ts[0]\ ‘sig[0]’ and ‘edata[0]’ represent the timestamp, signature and 

encryption information for Service A. Sender A updates its global variable 

‘senderchallengeAB’ to 1. The message is processed at the receiver, Service 

B. The receiver updates the global variable ‘recvchallengeAB’ to 1 before 

sending a response back to Service A. The message sent is {B, nonceB, A, 

nonceA, ACK, ts [2], sig[2], edata[2], pubKeyA}in step 53. ‘ts[2]’, ‘sig[2]’ and 

‘edata[2]’ represent the timestamp, signature and encryption information for 

Service B. Service A validates the message and the identity of Service B, and 

then updates ‘senderbindAB’ to 1. It then creates an acknowledgement mes­

sage for Service B. The message contains {A, nonceA, B, nonceB, ACCEPT, 

TimeStamp, Signaturelnfo, EncryptedData, pubKey(B)}, and is sent in exe­

cution step 67. The receiver processes the message and validates the identity 

of the sender and authenticates it by updating ‘recvrbindAB’ to 1. The 

successful run in the end shows the values of all the global variables ‘sender- 

challengeAB’, ‘senderbindAB’, ‘recvrchallengeAB’ and ‘recvrbindAB’ to be 

1. The global variables are updated using macros defined in the Promela 

model as explained in Chapter 5. Service A binds to a session with Service B 

only when it is engaged in a session with B. Similarly, B only binds to A, when
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rTinJ

1111

Figure 6.1: Message sequence chart for A —> B

it knows that it is engaged in a run with A. Global variables called ‘secrecy’ 

variables are defined. Their values are updated when the XML Encryption 

and XML Signature values are satisfied. ‘valid_DecryptA’ is updated to 1 

when all the information necessary to decrypt the message received from B 

is present in the message. Similarly, ‘validJDecryptB’ is updated to 1 when 

the message can be decrypted by the corresponding symbolic decryption val­

ues of B. ‘valid.TimeStamp’ is a timestamp variable, whose value is updated 

when the TimeStamp attributes are present in the message.

A -+ I

Intruder I acts a legitimate user of the protocol. Service A initiates an SMEP 

run with service I, thinking it is legitimate user. It sends a message {A, non­

ceA, I, REQ, TimeStamp, Signaturelnfo, EncryptedData, pubKeyl} to ser­
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vice I. The intruder process receives the message, learns the nonce of Service 

A, and saves it for later use. It then sends a message {I, noncel, A, nonceA, 

ACK, TimeStamp, Signaturelnfo, EncryptedData, pubKey(I)} back to the 

sender. Service A processes the message, and binds with the intruder ser­

vice. It sends an acknowledgement back to the intruder service {A, nonceA, 

I, noncel, ACCEPT, TimeStamp, Signaturelnfo, EncryptedData, pubKeyl}. 

The intruder service also commits to further communication with Service A. 

The global variables ‘ sender challenge AT, ‘senderbindAI’, ‘recvrchallengeAI’ 

and ‘recvr bind AT are the authentication variables for this scenario. These 

variables are not part of the Linear Temporal Logic but allow us to track 

the steps for the run of the Simple Message Exchange Protocol. If the values 

of the above global variables are all 1, the protocol run has been success­

ful and the intruder service has had a successful run with Service A as a 

legitimate user. The other global variables monitored are ‘valid-DecryptA’, 

‘validJDecryptF and ‘TimeStamp’. Their values are all updated to 1 af­

ter a successful run. When the intruder process learns the nonce of Service 

A, it updates its knowledge base and sets the global variable ‘learn_kNa’ to 1.

Figure 6.2 gives a snapshot message sequence chart for the run. ‘init’, 

‘SenderA’, ‘ReceiverB’ and ‘P I’ are the four processes represented in the 

figure. In execution step 45 a message {A, nonceA, I, REQ, ts [0], sig[0], 

edata[0], pubKeyl} is sent from SenderA to PI. The intruder processes the 

message, and in execution step 56 it sends the message {I, noncel , A, non­

ceA, ACK, ts[l], sig[l], edata[l], pubKeyA} to SenderA. SenderA processes 

the request and in execution step 75 sends the message {A,nonceA, I, non­

cel, ACCEPT, t s [0], sig[0], edata[0], pubKeyl} to the intruder process. The 

structures ‘ts[index]’, ‘sig[index]’ and ‘edatafindex] ’ represent the timestamp,
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llA ,noac«A, I,IE Q , CASHED, EXPIRES, e l k r3, tn p le P E fX a , bise6kncoded,RL,MSG, X509v3, pubKeyl
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Figure 6.2: Message Sequence Chart for A—d  

signature and encryption values for the different services.

A -> I followed by  1(A) —> B

The first part of this scenario is similar to the one above, and Service A 

interacts with the intruder service, assuming it to be a legitimate user of the 

system. During this run, the intruder process learns the nonce of Service A 

and immediately initiates an attack on Service B, pretending to be Service A. 

The intruder can only execute this sequence of events if its knowledge base 

contains the nonce of Service A, i.e., its ‘learn_kNa’ is set to 1. The intruder 

creates the following message to send to Service B on the channel: {A, non­

ceA, B, REQ, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB}. The 

receiver processes the request, and it sees the fresh timestamp and a unique
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nonce of Service A, and sends a response back to the sender service, {B, 

nonceB, A, nonceA, ACK, TimeStamp, Signaturelnfo, EncryptedData, pub- 

KeyA}. The intruder only has access to the unencrypted information -  the 

username and nonce of the message. It then sends the final acknowledgement 

back to Service B, {A, nonceA, B, nonceB, ACCEPT, TimeStamp, Signature­

lnfo, EncryptedData, pubKeyl}. We are interested in the global variables 

updated in the second part of the run: ‘senderchallengeABYsenderbindAB’, 

‘recvrchallengeAB5 and ‘recvrbindAB’. The values of these variables are up­

dated to 1, as Service B believes the intruder service to be Service A. The 

simulation run shows th a t if the intruder learns the nonce of Service A, it can 

make Service B believe tha t it is authenticating to Service A. The Decrypt 

variables are updated, and the intruder service acting as 1(A) sends the mes­

sage it has intercepted from A to Service B. Service B decrypts the message 

using its private key and updates ‘valid_DecryptB’ to 1. Service B creates 

a response for 1(A), and encrypts the message with A’s public Key. The 

intruder, on receiving the message from B is unable to decrypt the message 

as it has no knowledge of A’s private key. It can save the message or discard it.

Figure 6.3 gives a snapshot of the scenario. Execution steps 45, 56 and 75 

are similar to the ones explained in the previous section. The intruder sends a 

message (A, nonceA, B ,REQ, ts [0], sig[0], edata[l], pubKeyB } to ReceiverB 

acting as Service A in step 85. ReceiverB processes the request and sends 

the message (B, nonceB, A, nonceA, ACK, ts[2], sig[2], edata[2], pubKeyA} 

back to the intruder (which is pretending to be service A) in execution step 

100. The intruder sends a response message {A, nonceA, B, nonceB, AC­

CEPT, TimeStamp, Signaturelnfo, EncryptedData, pubKey(B)} in step 114.
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Figure 6.3: Message Sequence Chart for A —>• I followed by 1(A) —>• B.

I -> B

The intruder service masquerades as a legitimate service, and initiates a Sim­

ple Message Exchange Protocol run with Service B. The intruder sends the 

message {I, noncel, B, REQ, TimeStamp, Signaturelnfo, EncryptedData, 

pubKeyB} to Service B. Service B sends a response to the intruder thinking 

it as a valid service. It sends {B, nonceB, I, noncel, ACK, TimeStamp, Sig­

naturelnfo, EncryptedData, pubKeyl} back to the intruder service, and the 

intruder returns the final accept message back to Service B, (I, noncel, B, 

nonceB, ACCEPT, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB}, 

resulting in Service B committing to further message exchange with the in­

truder service. Figure 6.4 shows a message sequence chart for the run. The 

intruder service learns the nonce of Service B, and updates ‘learnJcNb’ to 1.
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Figure 6.4: Message Sequence Chart for I —> B.

Figure 6.4 shows a snapshot of the message exchange between the in­

truder and Service B. In step 28, ‘PI’ sends a message {I, noncel, B, REQ, 

ts[l], sig[l], edata[l], pubKeyB} to ‘ReceiverB’. ‘ReceiverB’ processes the 

message and sends a response message {B, nonceB, A, noncel, ACK, ts[2], 

sig[2], edata[2], pubKeyl} back to ‘PI’ assuming it to be a non-threatening 

service. ‘P I’ ends the protocol run in execution step 58 by sending a final 

accept message (I, noncel, B, nonceB, ACCEPT, ts[l], sig[l], edata[l], pub­

KeyB} back to ‘ReceiverB’.

I —> B followed by  A -* 1(B)

This scenario is similar to ‘A—Y I followed by 1(A) -> B’, but in this case, the 

intruder process learns information about Service B by initiating a Simple 

Message Exchange Protocol run, and subsequently imitates Service B. The 

intruder intercepts and processes any messages for Service B from Service A, 

and masquerades as Service B itself. Sender A sends a message (A, nonceA,
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B, REQ, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB} to Service

B. The intruder intercepts the message and then sends {B, nonceB, A, non- 

ceA, ACK, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB} back to 

Service A. The sender service A, assuming the message to be from Service B, 

binds to it and sends the accept message back for further message exchange: 

{A, nonceA, B, nonceB, ACCEPT, TimeStamp, Signaturelnfo, Encrypted­

Data, pubKeyA}. Global variables ‘senderchallengeAB5, ‘senderbindAB’, 

‘recvrchallengeAB’ and ‘recvrbindAB’ are updated to 1 as the intruder is 

able to successfully attack the protocol. During run ‘A —> 1(B)’, the decryp­

tion variable DecryptB is not updated, as the intruder does not possess the 

private key of B to decrypt the messages. The validJDecryptB value repre­

sents the last updated value during the run T —>• B’.

Figure 6.5 shows a snapshot of the message sequence chart for the run. 

Steps 45, 58 and 75 are same as the ones described in the last scenario. Steps 

87, 105 and 119 show a run of the protocol under attack.

The simulation results are summarised in Table 6.1 for the Simple Mes­

sage Exchange Protocol. The table lists the values of the global variables 

‘senderBindAB’, ‘ recvrBindAB’, ‘learn_kNa’ and ‘learn_kNb’. The value 0 

for ‘senderBindAB’ and ‘recvrBindAB’ represents failure in authentication 

between Service A and Service B. The values of ‘learn_kNa’ and ‘learn_kNb’ 

when set to 0 shows that the intruder has not learned the nonce of Service 

A and Service B, respectively. ‘Encryption’ is set to 0 when encryption has 

not been broken. It can be seen that for each run in which the principals are 

involved with the intruder, the intruder learns the nonces. The intruder then 

uses these nonces and the identity of the principal to bind to another protocol
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Figure 6.5: Message Sequence Chart for I —> B followed by A —> 1(B).

participant. It can also be seen that the encryption remain unbroken, as the 

intruder does not have the capability to break the encryption. It can be seen 

that encrypting the UsernameToken can prevent the intruder from learning 

nonce information. However, in some cases it may lead to unforeseen com­

plications, and so it may not be desirable to encrypt such information.

6.2 .2  S ecu rity  Token P rotoco l

This section presents the results obtained during simulation runs for the Se­

curity Token Protocol (STP). The participants for this protocol are process 

A, process I, and a Security Token Service, STS. The STS process cannot 

initiate any message exchange. Its sole purpose is to issue security tokens 

based on requests made by processes A and I. Process A is a legitimate user
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Table 6.1: Simulation results for SMEP.

Scenario senderBindAB recvrBindAB learn_kNa learn_kNb Encryption
A-*B 1 1 0 0 0
A—>1 0 0 1 0 0
A—>1, 1(A)— 1 1 1 0 0
I—>B 0 0 0 1 0
I -> B, A—>I(B) 1 1 1 1 0

of the protocol model. It requests a security token to be issued by the Se­

curity Token Service. In this case, the request for the security token is for 

the Security Token Service itself. However, it can be for any service with 

which A wants to establish a session. In this scenario the security context is 

represented in the form of a Request Security Token, as this seems logical in 

wanting to build towards WS-SecureConversation. There are three possible 

simulation scenarios for this protocol model, as discussed below.

A  STS

Figure 6.6 represents a snapshot of a message sequence chart for a valid run 

of the Security Token Protocol. The requested token is a security context 

token for establishing a session between Service A and the Security Token 

Service. The sender process sends a message of the form {UsernameToken, 

STS, Signature, RST, RequestsecurityToken, TimeStamp, EncryptedData, 

publicKeySTS} to the Security Token Service in step 43. The username to­

ken contains the username and the fresh nonce for Service A. The message 

contains all the information needed to establish a partial security context 

on the Security Token Service end. The Security Token Service returns a 

message containing the security token requested by the sender process in
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Figure 6.6: Message Sequence Chart for A —>■ STS.

step 71. The message contains { UsernameToken(A, nonceA), UsernameTo- 

ken(STS, nonceS), RSTR, Signature, SC, RequestSecurityTokenResponse, 

TimeStamp, EncryptedData, publicKeyA}. The sender service agrees on a 

full security context and sends the unique security context ID, {SC}, back 

to the Security Token Service in step 89.

There are four types of global variables of relevance in this scenario. 

The (i) authentication and (ii) secrecy variables, as discussed before, and
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the (Hi) message type and (iv) security context agreement global variables. 

The authentication and secrecy variables are updated as discussed previ­

ously. In the simulation results it can be seen tha t they are updated cor­

rectly: ‘RecvrBindA_STS\ ‘RecvrChallengeA_STS\ ‘SenderBindA_STS’ and 

‘SenderChallengeA_STS’ are set to 1. The message type variables are up­

dated when (i) the request is a request security token with MsgType_RST, 

and (ii) when the response from the Security Token Service is a Response 

to Security Token Request message. The security context agreement vari­

ables are updated when Service A and the Security Token Service reach an 

agreement on a security context. The ‘partial.SC ’ variable is updated to 1 

when the Security Token Service accepts the partial security context. ‘Secu­

rity-Context’ is updated to  1 on the requester side A when Service A agrees 

on the full context.

I -> STS

Figure 6.7 shows a snapshot of a message sequence chart for an intruder/im­

postor requesting a security token. The Security Token Service treats the 

intruder as a legitimate process and issues it a security token. The in­

truder process sends a request for a security token, {UsernameToken(I, non- 

cel), STS, Signature, RST, RequestSecurityToken, TimeStamp, Encrypted­

Data, publicKeySTS}, in step 45. The Security Token Service processes 

the request and assumes the intruder to  be a legitimate user and issues it 

a security context token. The Security Token Service sends the message 

{UsernameToken(I ,noncel), UsernameToken(STS, nonce), RSTR, Signature, 

SC, RequestSecurityTokenResponse, TimeStamp, EncryptedData, publicK- 

eyl} to the intruder service in step 73. The intruder service returns the
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Figure 6.7: Message Sequence Chart for I —> STS

identity of the security context received, {SC}, to the Security Token Ser­

vice in step 90. The simulation results show a correct run between I and STS.

It can be seen from the global variables that the model runs correctly. 

The authentication, secrecy and message type variables for tracking the mes­

sage exchange between the intruder and the Security Token Service are up­

dated to 1 (‘SenderChallengeLSTS’, ‘SenderBindLSTS’, ‘RecvrBindLSTS’ 

and ‘RecvrChallengeLSTS’). It can be seen from ‘partial-SC’ that partial
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agreement is reached between the intruder service and the Security Token 

Service. It can also be seen th a t there is a full security context agreement, 

‘Security_Context_I\ The intruder can request a security context token to 

establish a session for another source, X, and utilise the resources.

1(A) -► STS

In this scenario an intruder, I, acts as an impostor of Service A and requests a 

security token from the Security Token Service. The intruder has knowledge 

of the nonce of Service A and tries to  establish a security context between it­

self and the Security Token Service. The intruder sends a request to the Secu­

rity Token Service in simulation step 45, (UsernameToken(A,nonceA), STS, 

Signature, RST, RequestSecurityToken, TimeStamp, EncryptedData, pub- 

licKeySTS}. The Security Token Service agrees on the partial security con­

text, but is unable to establish a full security context and sends a reply back 

to the sender, {UsernameToken(A, nonceA), UsernameToken(STS, nonceS), 

RSTR, Signature, SC, RequestSecurityTokenResponse, TimeStamp, Encrypted­

Data, publicKeyA}, in step 73. The intruder masquerading as Service A fails 

to establish a security context with the Security Token Service, and sends 

{MSG-REJ} in step 87. This is indicated by the value of the global variable 

‘ Security .Context ’ which is not updated to  1 as the encryption remains un­

broken and the intruder is unable learn the encrypted security context sent.

It can be seen th a t even though there is an authenticated state between the 

Security Token Service and the intruder service, the unbroken encryption pre­

vents the intruder from learning the security context. A message sequence 

chart for a run between I, acting as A, and the Security Token Service service 

is shown in Fig. 6.8.
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Figure 6.8: Message Sequence Chart for 1(A) —» STS.

The simulation results for Security Token Protocol are summarised in Ta­

ble 6.2, which shows the three global variables ‘senderBindAJSTS’, ‘recvrbindAJSTS’ 

and 4 Security-.Context’. When ‘sender Bind A_STS’ and ‘recvrbindA_STS’ are 

set to 1, both Service A and the Security Token Service have authenticated to 

each other successfully. ‘Security-Context’ is set to 1 when a full agreement 

has been reached on a security context between Service A and the Security 

Token Service. It can be seen in 1(A) STS, that when the intruder has
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Table 6.2: Simulation Result for STP

Scenario senderB ind A_S TS recvrbindA_STS S ecuri ty _Cont ext
A  -> S T S 1 1 1
I  -¥ S T S 0 0 0
1(A) -> S T S 1 1 0

knowledge of the nonce of A, it can act as a principal A and authenticate to 

the Security Token Service. However, it can only establish a partial context, 

and is not able to establish a full security context.

6.3 Verification

The goal of system verification is to establish what is possible and what is 

not. System verification is used to dem onstrate certain properties that the 

model ought to  possess. It is said th a t the system is “correct” when it satis­

fies all properties th a t obtain to  it. A verification model not only deals with 

the behaviour of the system, but also its correctness requirements.

In practice, ‘peer reviewing’ and ‘testing’ are used as software verification 

techniques. A peer review is a scrutiny of software carried by software engi­

neers without running the code. On the other hand, testing involves running 

the software. Peer reviewing and testing catch different errors at different 

cycles of development, and thus are often used together. These software ver­

ification approaches are used in a number of software projects.

When building a model for software verification it is tempting to build 

large complicated models which are as close to the problems as possible.
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However, the most feasible approach to  software verification is to keep the 

model in its simplest form, which represents the key attributes of the model 

for analysis. This approach helps in controlling the complexity of the model. 

An aim of model checking is to keep the model simple rather than building 

detailed models so th a t the essential features of the system are represented 

as a smallest sufficient model. The model can evolve if required. The type 

of abstraction for a model is dependant on the logical properties that are to 

be proved, and on the resource limits of the verification system.

In distributed system design, there are two main types of correctness 

claim: Safety and Liveness.

“Safety is defined as the set of properties tha t the system may 

not violate, while liveliness is defined as the set of properties that 

the system must satisfy. Safety is concerned with the bad things 

tha t should be avoided, while liveliness defines the good things 

th a t capture the required functionality of the system” [Hol03].

The liveness properties of a system are modelled as Linear Temporal Logic 

formulas. The liveness properties of the Simple Message Exchange Protocol 

and the Security Token protocol, as modelled with Linear Temporal Logic 

formulas, has been presented previously, and in this chapter these properties 

are verified.

The working of Spin  can be summarised as follows. Starting with a high- 

level verification model of a system, interactive and random simulation are 

performed using XSpin to  check whether the model has the intended proper­

ties. A Promela correctness claim is generated from Linear Temporal Logic.
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Spin is used to generate an on-the-fiy optimised verification program from 

the high-level specification. This verification program is compiled and is ex­

ecuted to perform the verification. If any counterexamples of the correctness 

claims are detected, these can be fed back into the Spin simulator. The sim­

ulation trail can then be inspected in detail to determine the cause of any 

correctness violations.

Performing verification is an iterative process with increasingly detailed 

models. Each new model is verified under different assumptions about the 

environment and correctness properties. Selective data  hiding can be used. 

When a verification run completes Spin provides hints on how to proceed, 

depending on the results. In the case of no hints, a clean run has been per­

formed, tha t is, an exhaustive search th a t did not reveal any errors has been 

done.

To understand the verification results, it is necessary to be familiar with 

the output from the verification engine. The following terms which are rele­

vant here. ‘State vector’ represents the size of a single state. ‘Depth reached’ 

represents the longest execution path. Error 0 means tha t the property was 

satisfied. If there are errors, these represent a violation of the Linear Tempo­

ral Logic property. ‘S tate Stored’ is the to tal number of states, i.e., the state 

space. These values can be used for comparison between the application of 

model checkers to Web services based security protocols.
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Tabic 0.3: Verification Results for SMEP.

Scenario State Size Transitions
Satisfied 232 bytes 1659
Violated 252 bytes 6349

6.3.1 Sim ple M essage E xchange Protocol

A Simple Message Exchange Protocol run is successful if Service A and Ser­

vice B are able to  bind to  each other successfully in the presence of an active 

intruder. The properties of the Simple Message Exchange Protocol are ex­

pressed as Linear Temporal Logic formulas, and verification is performed 

using the following Linear Temporal Logic property. The verification found 

a Linear Temporal Logic property violation -  the intruder was successfully 

able to exchange messages between services. The property was violated for 

‘I -* B followed by A 1(B)’ and ‘A -* I followed by 1(A) —> B ’. This viola­

tion can be corrected by encrypting the nonces for all messages sent between 

services -  this will prevent the intruder from using these values for further 

communication. The results are summarised in Table 6.3, which shows the 

state sizes for the model and the number of transitions it took to find the 

property violation. ‘Transitions’ represents the number of progressions Spin 

took to identify the violations in the Linear Temporal Logic property when 

it was satisfied or violated. ‘S tate Size’ shows the memory in bytes used for 

storing states.
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Tabic 6.4: Verification Results for STP.

Scenario State Size Transitions
Satisfied 300 bytes 9250
Violated 300 bytes 4558

6.3.2 Security Token P rotocol

A Security Token Protocol run is successful if an agreement can be reached on 

a security context between a requestor and a Security Token Service. These 

properties of the Security Token Protocol run are specified in the form of 

Linear Temporal Logic, as described below. It can be seen th a t the property 

is satisfied, i.e., Service A and the Security Token Service reach an agreement 

on a security context for ‘A —» STS’. It can also be seen tha t a security con­

text is not established for ‘1(A) —> STS’, where the Security Token Protocol 

is subjected to an attack from the intruder service, masquerading as Service 

A. The number of changes occurring is represented by the ‘Transitions’ made 

by Spin to recognise satisfied/violated Linear Temporal Logic properties in 

the model. The memory used to  store all states during the run is recorded 

as ‘State Size’.

The results obtained are summarised in Table 6.4. The table gives the 

number of bytes used for storing th a t state space and the transitions for both 

cases, where the LTL property is violated and when it is satisfied.

It can be seen th a t the Promela model represents the behaviour of the 

system. Simulation enables the detection of any anomaly in the behaviour of 

the model. In our case, a behavioural analysis is performed, and simulation 

provides the required results. The verification result for our model has also
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been obtained.

6.4 C oncluding R em arks

Simulations of the pushdown autom aton model of the Simple Message Ex­

change Protocol have been carried out. The three steps of SMEP have been 

modelled as a pushdown autom aton in Promela, as mentioned in Chapter 4. 

It can be seen from the simulation results th a t when these steps are exe­

cuted successfully, Service A and Service B bind to each other, as shown 

in Table 6.1. A correct protocol run is accomplished on completion of the 

three steps resulting in Service A and Service B binding to each other. The 

behaviour of the SMEP pushdown autom aton model is verified and results 

are summarised in Table 6.3. Representing the protocols using pushdown 

autom ata allows the behaviour of the protocol and the participating services 

to be modelled. On deviation from the steps, SMEP failed to  bind success­

fully, as was shown by the values of the global variables.

Simulations for the Security Token Protocol were conducted, modelled as 

a three step pushdown autom aton, as described earlier in Chapter 4. Each 

step of the protocol, when executed successfully, leads to a correct run of 

the STP protocol. Any variation in the steps leads to an incorrect run. An 

incorrect run means th a t a requesting service fails to bind to the STS or the 

service fails to  agree on a security context. The pushdown automaton model 

for STP allows us to  m ap the  behaviour of the protocol and the participating 

services. The behavioural analysis of the STP is summarised in Tables 6.2 

and 6.4.
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The results for the simulation and verification for each scenario of the 

protocol runs for SMEP and STP may be summarised as follows. The simu­

lation results showed the behaviour of the protocols in the active presence of 

an intruder. For each protocol scenario, the message sequence chart and the 

values of the global variables have been shown, in Table 6.1 for SMEP and 

in Table 6.2 for STP. The verification results are summarised in Tables 6.3 

and 6.4 for SMEP and STP, respectively. It may be concluded th a t the Sim­

ple Message Exchange Protocol and the Security Token Protocol can be made 

more secure by encrypting the nonces. We suggest th a t all sensitive infor­

mation be encrypted, and as little im portant information as possible should 

be left unencrypted. In the next chapter an extended intruder model, based 

on the Dolev-Yao model, for an XML Injection attack will be presented.
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CHAPTER 7

XML Injection Attack Model

The Dolev-Yao th reat model has been widely used in the past for analysis and 

verification of cryptographic protocols. Recently, the threat model has been 

adopted for the study and validation of Web services based cryptographic 

protocols. However, a ttack  capabilities have increased over time resulting in 

new threats. The original Dolev-Yao model does not sufficiently address the 

potential of the attacker and the  new threats th a t have arisen. To demon­

strate the new behaviour of the intruder and the threat it introduces, the 

threat model must be extended. A wish-list has been suggested by Backes 

[BG05] on how to  improve the model in accordance with Web services, but a 

model has not yet been produced. This chapter extends the Dolev-Yao model 

for Web services based cryptographic protocols by adding to the model an 

attacker capable of carrying out an XML injection attack.
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A  logic of an XML service can be influenced or undermined by XML injec­

tion, a type of command injection attack. In an XML injection attack[Con] 

some logic is inserted into a service to  hinder the abilities of the service 

as defined by ’’The Web Application Security Consortium” and ’’Web Ser­

vices Interoperability O rganization” . The insertion of XML content or XML 

structure into a document alters the intended rationale of the service. Fur­

thermore, XML injection can cause the insertion of malicious content into the 

resulting message. These attacks can occur when user input is passed directly 

into an XML message stream . These attacks can be controlled/overcome by 

encrypting and /or signing parts of the document. If the content is injected 

into a signed XML document, it will be rejected by the service on verification.

This chapter builds an XML injection attack model in Promela, and runs 

this attack against the Simple Message Exchange Protocol and the Security 

Token Protocol. The purpose is to  add to  the capabilities of the Dolev-Yao 

intruder model and allow the  intruder to  simulate an XML injection attack. 

The integrity of the message is validated by checking if the message has been 

altered.

The XML injection a ttack  model is built on the model presented in Chap­

ter 5. The workings of the  Simple Message Exchange Protocol and the Se­

curity Token Protocol are the  same as described in Chapter 3.
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7.1 Sim ple M essage Exchange Protocol

The Simple Message Exchange Protocol is subjected to an XML Injection 

attack. ‘Sender’ and ‘Receiver’ are two legitimate services, and ‘P I’ is an 

intruder service. The Sender process sends a message to Receiver. The mes­

sage is intercepted by the intruder process which has the choice of either 

altering the content or injecting a new element into the message. It sends 

the message off to the receiver service after the message has been altered. 

The Promela model for a Simple Message Exchange Protocol run under an 

XML injection attack is described as follows.

7.1.1 T ypes

This section describes the message types used in the Simple Message Ex­

change Protocol run. ‘m type’ is used for defining symbolic names of numer­

ical constants. There are six ‘m type’ declarations for the Simple Message 

Exchange Protocol, as listed in Table 7.1. The ‘General Purpose’, ‘XML 

Signature’, ‘XML Encryption’, ‘W S-Security’ and ‘Tim eStam p’ mtypes are 

similar to  the  ones explained earlier in Section 5.3.1. The ‘XML Injection’ 

category is added to  the model. This consists of the ‘AX’ and ‘IN JJN F O ’ 

mtypes. ‘AX’ represents alteration to  the username token ‘content’ informa­

tion in the message, and ‘IN JJN F O ’ represents the ‘injected’ element in the 

Signature portion of the message.
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Table 7.1: Simple Message Exchange Protocol Types

General Purpose A, B, I, REQ, ACK, nonceA, nonceB, noncel, 
A CCEPT, DECLINE

XML Signature cl4n, sha l, sigvalA, sigvalB, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKey A, pubKeyB, pubKeyl, privKeyA, 

privKeyB, privKeyl
XML Injection AX, IN JJN F O
TimeStamp CREATED, EXPIRES

7.1.2 C hannels

Channels are used for communication between processes. Service A and Ser­

vice B can communicate over two types of channels based on the type of 

message being sent. The first type, ‘M sg l’, represents the message {sender, 

sender_nonce, receiver, m sg.type, Tim eStam p, Signature, EncryptedData, 

pubKey}, which contains the username of the sender, a fresh nonce, the re­

ceiver username, the type of message (such as REQ), TimeStamp values, 

signature information, encrypted d a ta  and the public key of the receiver. 

The second type, ‘Msg2’, represents {sender, sender_nonce, receiver, re- 

ceiver_nonce, msg_type, Tim eStam p, Signature, EncryptedData, publicKey}. 

The message contains all fields present in M sgl, with the addition of re­

ceiver _nonce. Both channel ‘chanO N E’ and ‘chanTW O’ are defined as non­

buffered channels and arc listed as follows:

chan chanONE =  [0] of (mtype, mtype, mtype, mtype, TimeStamp, Signature,

EncryptedData, mtype}; 

chan chanTWO =  [0] of (mtype, mtype, mtype, mtype, mtype, TimeStamp, Signature,

EncryptedData, mtype};
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7.1.3 G lobal V ariables

Global variables are used for formulating the Linear Temporal Logic for­

mulas. These variables are similar to  the ones defined in Section 5.3.1, 

‘SenderBindAB’, ‘SenderChallengeAB’, ‘RecvrChallengeAB’ and ‘RecvrbindAB’. 

‘SenderChallengeAB’ and ‘RecvrChallengeAB’ are updated by Service A and 

Service B when initiating a run with each other. When both Service A 

and Service B have authenticated successfully, they bind to each other, and 

‘SenderBindAB’ and ‘RecvrBindAB’ are set to  1. The Linear Temporal Logic 

property for this model is the same as defined in previous chapters:

\\ ( ([] ISenderBindAB) || (ISenderBindAB U RecvrChallengeAB) )

[](([] IRecvrBindAB) || (IRecvrBindAB U SenderChallengeAB) )

The ‘typedef’ structures used in the Simple Message Exchange Protocol 

consist of the XML based Tim eStam p, Signature and Encryption information 

for the protocol. All the complex structures indicating the injected element 

information and the XML Signature structure are given in Table 7.2.

7.1.4 P rincipal P rocesses

There are three principals for the  Simple Message Exchange Protocol: a 

‘Sender’ process representing Service A, a ‘Receiver’ process representing 

Service B, and ‘P I’ symbolising the intruder service. Each service is repre­

sented as a Prom ela processes. Service A is modelled as process ‘SenderA’, 

service B is presented as process ‘ReceiverB’, and the intruder service is de­

fined as process ‘P I ’. These services communicate with each other over shared 

channels.
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Table 7.2: Simple Message Exchange Protocol Global Variables.

TimeStamp

typedef TimeStamp{ 
mtype Created; 
mtype Expires; 

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanoncalizationMethod ; 
mtype SignatureMethod ; 
m type Reference ; 
mtype SignatureValue ; 
m type Keylnfo;

}; Signature sig[6];

Signature Injection

typedef typedef SignatureInjection{ 
mtype CanoncalizationMethod ; 
m type SignatureMethod ; 
mtype Reference ; 
m type SignatureValue ; 
m type Keylnfo; 
mtype Injectedlnfo;

}; Signaturelnjection iSig[l];

XML Encryption - Encrypted D ata

typedef EncryptedD ataj
mtype EncryptionMethod ; 
m type CipherData ; 
m type Cipher Value ; 
m type ReferenceList ; 
mtype DataReference ; 
mtype Keylnfo;

}; EncryptedD ata edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
mtype EncryptionMethod ; 
mtype CipherData ; 
mtype Cipher Value ; 
mtype ReferenceList ; 
mtype DataReference ; 
mtype Keylnfo;

}; EncryptedKey ek[6];
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In it  P ro c e ss  The ‘in it’ process contains all the information th a t needs to 

be instantiated a t the beginning of the run. This process contains other pro­

cesses or statem ents. The in it’ process is defined as follows:

init {

run SenderA(A, B, nonceA); 

run ReceiverB(B, nonceB); 

run PI(I, noncel)

}

All three processes are instantiated  a t the beginning of the execution 

with their respective initialisation param eters. ‘SenderA’ is initialised with 

its identity A, random  nonce value nonceA, and the receiver process it wants 

to communicate with, B. The ‘ReceiverB’ process is initialised with its iden­

tity  B and a random  nonce value nonceB. The receiver process is not an 

initiator process, it can only receive messages and reply. ‘P I’, the intruder 

process, is initialised with its identity I and its random nonce I.

S en d e r P ro c e ss  The Sender Process initiates a three-step message ex­

change with other communicating services. In the first step, the sender pop­

ulates its local and global variables for Signature, Encryption, and TimeS­

tam p, and assigns the SenderChallengeAB global variable by calling Sender- 

Challenge(me, recvr), and then sends the message on ‘chanONE’. The mes­

sage contains {A, nonceA /noncel, B /I, REQ, TimeStamp, Signature, En­

cryptedData, pubK eyB/ pubK eyl}. In the second step, the sender waits for 

a response from the receiver service on ‘chanTW O’ of the form {B/I, nonce- 

B/noncel, A, nonceA, A CK /D ECLIN E, TimeStamp, Signature, Encrypted-
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Data, pubKeyA}. It decrypts the message, verifies TimeStamp, validates 

Signature and binds to  the service. In the third step, if the run is success­

ful, the sender sends an acknowledgement back to  the receiver, {A, nonceA,

B /I, nonceB/I, A CCEPT, Tim eStam p, Signature, EncryptedData, pubKey- 

B/pubK eyl }, or else it does not retu rn  any message back to  the receiver.

The sender process is similar to  the  one in Section 5.3.1. The ‘SenderA’ 

process is defined as follows.

proctype SenderA(mtype me; mtype recvr; mtype my .nonce)

{
atomic {

senderchallenge(me, recvr); 

pubKey =  pubKeyB;

chanONE ! me, my .nonce, recvr, REQ, ts[0],sig[0],edata[0], pubKey;

}
atomic {

chanTWO?recvr,recvr .nonce,me,my _nonce,msg_type,ts[3], sig[3], edata[3],pubKey; 

Decryption(pubKey, privateKey);

Verify Freshness(ts [3]. Created,ts [3] .Expires);

VerifySignature(sig[3].CanoncalizationMethod, sig[3].SignatureMethod, 

sig [3]. Reference, sig [3]. Signature Value, sig[3].Key Info); 

sender bind (me,recvr); 

if

:: (msg.type = =  ACK) —» sig[0].Reference =  ACCEPT;

chanTWO! me,my .nonce, recvr, recvr .nonce, ACCEPT, ts [0] ,sig[0] ,edata[0], pubKey; 

:: else skip

fi;

}
}
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R ece iv e r P ro c e ss  The receiver process is always waiting for incoming 

messages. ‘Receiver’ is a three-step process. First, it waits for messages from 

services on channel ‘chanO N E’. On receiving a message of type {A/I, non- 

ceA/noncel, B, REQ, Tim eStam p, Signature, EncryptedData, pubKeyB} it 

symbolically decrypts the  message with its private key, verifies the fresh­

ness of the message, validates the signature, and updates the global variable 

RecvrChallengeAB by calling recvrchallenge(sender, me). Secondly, the re­

ceiver creates a response message to  send back to  the service. It populates its 

local and global database of variables, representing Encryption, Signature, 

and TimeStamp information, and sends a response of type {B, nonceB, A/I, 

nonceA/noncel, ACK /D ECLIN E, Tim eStam p, Signature, EncryptedData, 

pubkeyA/pubKeyl} on ‘chanTW O ’. Thirdly, the receiver goes into awaiting 

state until a response from the  initiator process is received on ‘chanTWO’. 

Service B receives the message of the form {A/I, nonceA/noncel, B, non­

ceB, ACCEPT, Tim eStam p, Signature, EnncryptedData, pubkeyB}. The 

service decrypts the message, verifies the TimeStamp and the Signature in­

formation, and then updates the Linear Temporal Logic global variables by 

invoking recvr bind (sender, me). The ‘ReceiverB’ process is listed as follows.

proctype ReceiverB (mtype me; mtype my_nonce)

{
atomic {

chanONE?sender,sender_nonce,eval(me),msg_type,ts[l],sig[l], edatafl],pubKey; 

atomicf
Decryption(pubKey, privateKey);

Verify Freshness (ts[l]. Created, ts[l].Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[1].SignatureMethod, 

sig[l]. Reference, sig[l].Signature Value, sig[l]. Keylnfo);

recvrchallenge (sender, me);
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pubKey =  pubKey A;

chanTWOlme, my .nonce, sender, sender _nonce,msg_type,ts[2],sig[2],edata[2], pubKey;

}
}
atomic {

chanTW 0?eval (sender) ,eval (sender _nonce) ,eval(me) ,eval(my_nonce) ,msg_type, 

ts[4],sig[4],edata[4],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts[4] .Created,ts[4] .Expires);

VerifySignature(sig[4] .CanoncalizationMethod, sig[4] .SignatureMethod, 

sig[4] .Reference, sig[4] .SignatureValue, sig[4] .Keylnfo);

recvrbind (sender,me);

}
}

In tru d e r  P ro c e ss  The intruder is an extension of the Dolev-Yao model 

with the capability of an XML Injection attack. The intruder has the ability 

to inject content into the  message, or it can inject an element into the Sig­

nature element. It listens on ‘chanO N E’ for any messages between Service 

A and Service B. W hen a message is sent from Service A to Service B, it 

intercepts the message. It either injects ‘content’ or ‘element’ into the mes­

sage. Altering the message ‘content’ or ‘element’ causes the message to be 

rejected by Service B. W hen injecting ‘element’ into the message, ‘iSig’ of 

type ‘Signaturelnjection’ is sent w ith the same element contents as well as 

‘Injectedlnfo’. The intruder can alter the ‘content’, for example, by changing 

the username in the message by adding ‘X ’ to  the username to cause authen­

tication to fail. The in truder can replay two types of message, {A, nonceA,

B, REQ, Tim eStam p, Signaturelnjection, EncryptedData, pubKey} repre­

senting an ‘elem ent’ alteration, and {AX, nonceA, B, REQ, TimeStamp, 

Signature, EncryptedD ata, pubkeyB} representing a ‘content’ alteration to
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the username token.

proctype PI(mtype me; mtype my_nonce)

{
do

-atomic {

chanONE? sender,sender _nonce,recvr ,msg_type,ts[5] ,sig[5] ,edata[5] ,pubKey; 

sender =  A;

chanONE! sender, sender .nonce,recvr,REQ,ts[5],iSig[0],edata[5],pubKey;

}
:: atomic {

chanONE?sender,sender .nonce,recvr,msg_type,ts[5],sig[5],edata[5],pubKey; 

sender =  AX;

chanONE!sender,sender_nonce,recvr,REQ,ts[5],sig[5],edata[5],pubKey;

}
od

}

So far the building blocks have been presented for a Simple Message Ex­

change Protocol in term s of Prom ela constructs for an XML injection attack.

7.2 Security Token P rotoco l

In this section the Security Token Protocol is subjected to an XML injection 

attack. The model consists of a ‘Sender’, ‘STS’ (representing the Security 

Token Service), and an ‘In truder’ process. The sender and the Security Token 

Service process behave in the same m anner as described in Chapter 5. The 

intruder process intercepts the request for a security token from the sender 

service. The intruder is capable of changing ‘content’ in the Username Token
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Table 7.3: Security Token Protocol Types

General Purpose A, B, I, REQ, ACK, nonceA, nonceB, noncel, 
A CCEPT, DECLINE

XML Signature cl4n, sha l, sigvalA, sigvalB, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKeyA, pubKeyB, pubKeyl, privKeyA, 

privKeyB, privKeyl
XML Injection AX, IN JJN F O , SCTX, ISSUEX
TimeStamp CREATED, EXPIRES

and Request Security Token (RST) or it can add ‘element’ to the RST. The 

message is then sent to  the Security Token Service for processing. The alter­

ations to the message can result in authentication failures or security context 

agreement failures. The Prom ela version of the model is listed below.

7.2.1 T ypes

Table 7.3 lists all the message types used in the model. In the table there 

are two more ‘m type’ entries in addition to  the ones defined in Section 5.3.2. 

‘AX’ is used to  alter content information in the XML message. ‘IN JJN F O ’ 

represents the injected element in the  Signature portion of the message. The 

intruder is allowed the capability to  alter the RST. The intruder can alter the 

‘TokenType’ and ‘RequestType’ elements in the issuance request to ‘SCTX’ 

and ‘ISSUEX’ respectively.
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7.2.2 C hannels

The Security Token Protocol uses three channels th a t are similar to those 

described in Section 5.3.2. The channels are identified by the type of message 

they can support. There are three types of messages in the Security Token 

Protocol: ‘M sgl’ is of the form {UsernameToken, receiver, Signature, RST, 

Request Security Token, Tim eStam p, EncryptedD ata, pubKey}; ‘Msg2’ is of 

the form {UsernameToken, UsernameToken, RSTR, Siganture, SC, Request- 

SecurityTokenResponse, Tim eStam p, EncryptedD ata, pubKey}; and ‘Msg3’ 

is of the form {SC/M SGJREJ}.

chan rstChan =  [0] of (UsernameToken, mtype, Signature, mtype, RequestSecurityToken, 

TimeStamp, EncryptedData, mtype}; 

chan chanTWO =  [0] of (UsernameToken, UsernameToken, mtype, Signature, mtype,

RequestSecurityTokenResponse, TimeStamp, EncryptedData, mtype}; 

chan ackChan =  [0] of (mtype};

7.2.3 G lobal V ariables

The global variables used are similar to  those defined in Section 5.3.2. There 

are six basic global variables used for the Linear Temporal Logic formulas:

‘SenderBindA_S’, ‘SenderChallengeA_S\ ‘RecvrChallengeA_S’, ‘RecvrbindA_S’, 

‘partial_SC’ and ‘security-context’. The Linear Temporal Logic formula used 

for verification is:

D (  ( D  ! sender bind AS) || (IsenderbindAS U recvrchallengeAS) )

0 ( (0 IrecvrbindAS) || (IrecvrbindAS U senderchallengeAS) )
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[](([] Isecuritycontext) || (! security context U partialSC) )

Tables 7.4 and 7.5 contain the complex structures for ‘TimeStamp’, ‘Sig­

nature’. ‘E ncryptedD ata’, ‘EncryptedK ey’, ‘UsernameToken’, ‘RequestSe- 

curityToken’, ‘RequestSecurityTokenResponse’ and ‘Injected RequestSecu- 

rityToken’. The ‘iRequestSecurityToken’ structure is used by the intruder 

when the message is injected with an XML Element. It is similar to the 

‘RequestSecurityToken’ structure but w ith the addition of an ‘Injectedlnfo’ 

element. ‘Injectedlnfo’ represents any element data  introduced to the request 

security token structure. The value of the ‘Injectedlnfo’ is set to ‘IN JJN FO ’.

7.2.4 Principal P rocesses

The principal processes for the  Security Token Protocol under XML Injection 

attack are defined as follows.

In it  P ro c e ss : The ‘in it’ process instantiates all three processes with their

respective data  values. The ‘In truder’ is initialised with its identity I, the 

username of the service it will communicate with (i.e., the Security Token 

Service), and its nonce, noncel. The ‘Sender’ process is initialised with its 

identity A, the identity of the  Security Token Service to  which it will send the 

request for a security token, and its fresh nonce, nonceA. The ‘STS’ is a se­

curity token issuing process. It is initialised with its identity STS and nonceS.

init {

run Intruder (I, STS, noncel); 

run Sender(A, STS, nonceA);

194



7.2. SE C U R IT Y  T O K E N  PRO TO C O L  7. XM L Injection A ttack Model

Table 7.4: Security Token Protocol Global Variables.

TimeStamp

typedef TimeStamp{ 
mtype Created; 
mtype Expires; 

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanoncalizationMethod ; 
mtype SignatureMethod ; 
m type Reference ; 
mtype SignatureValue ; 
m type Keylnfo;

}; Signature sig[6];

XML Encryption - Encrypted D ata

typedef EncryptedData{
mtype EncryptionMethod ; 
mtype CipherData ; 
m type Cipher Value ; 
m type ReferenceList ; 
m type DataReference ; 
m type Keylnfo;

}; EncryptedD ata edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
m type EncryptionMethod ; 
m type CipherData ; 
m type Cipher Value ; 
m type ReferenceList ; 
m type DataReference ; 
m type Keylnfo;

}; EncryptedKey ek[6];

U sernameToken

typedef UsernameToken { 
mtype Username; 
mtype Nonce;

}; UsernameToken ust[7];
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Table 7.5: Security Token Protocol Global Variables.

RequestSecurityToken

typedef RequestSecurityToken{ 
m type TokenType ; 
m type RequestType ; 
m type AppliesTo; 
m type Entropy; 
mtype EntropicMode; 
mtype rst.created; 
mtype rst.expires;

}; RequestSecurityToken rst [2];

Injected RequestSecurityToken

typedef iRequestSecurityToken{ 
m type TokenType ; 
m type RequestType ; 
m type AppliesTo; 
m type Entropy; 
mtype EntropicMode; 
mtype rst.created; 
m type rst.expires; 
m type Injectedlnfo 

};iRequestSecurityToken irst[l];

RequestSecurityToken

typedef RequestSecurityTokenResponse{ 
m type TokenType ; 
m type RequestType ; 
m type AppliesTo; 
m type Entropy; 
m type EntropicMode; 
m type ComputedKey; 
m type rstr.created; 
m type rstr.expires; 
mtype set Jd;

}; Request Security TokenResponse rs[2];
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run sts(STS, nonceS);

}

S e n d e r  P ro ce ss : The sender process performs a three-step message run

between itself and the  Security Token Service. First, it populates the ‘type­

def’ structures with its Encryption, Signature, TimeStamp and Request for 

Security Token values. It invokes ‘SenderChallenge(me, recvr)’ and sends the 

message {UsernameToken(A, nonceA), STS, Signature, RST, RequestSecu­

rityToken, TimeStamp, EncryptedD ata, pubKeySTS} on channel ‘rstChan’. 

Secondly, it waits for the  message {UsernameToken(STS, nonceS), User- 

nameToken(A, nonceA), RSTR, Signature, SC, RequestSecurityTokenRe- 

sponse, TimeStamp, EncryptedD ata, pubKeyA} from the Security Token 

Service on ‘rstrC han’. The message is decrypted, the tim estam p is verified, 

the signature and authentication information is validated, and the sender 

binds to the Security Token Service and agrees on a security context after 

processing the security context information received from the Security Token 

Service. Thirdly, the sender process sends an acknowledgement response mes­

sage, {SC/MSG_REJ}, to  the  security token service on channel ‘ackChan’. 

The Sender process is listed as follows:

proctype Sender(mtype me; mtype recvr; mtype my_nonce)

{
atomic {

SenderChallenge(me, recvr);

rstChan!ust[0],recvr,sig[0],RST,rst[0],ts[0],edata[0],pubKey ;

}
atomic {

rstrChan?ust[4],ust[3],rstr,sig[3],SC,rs[l],ts[3],edata[3],pubKey; 

Decryption(pubKey, privateKey);
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Verify Freshness(ts[3]. Created, ts[3]. Expires);

VerifySignature(sig[3].CanoncalizationMethod, sig[3].SignatureMethod, 

sig[3].Reference, sig[3].Signature Value, sig[3].Keylnfo);

AuthenticateResponse(rstr);

SenderBind(ust [4] .Username, ust [3] .Username);

SC Agreement (rs[l]. AppliesTo, rs[l].TokenType, rs[l] .RequestType,

rs[l].EntropicMode, rst[0].Entropy, rs[l].Entropy,rs[l].ComputedKey, 

rs[l].rstr_expires, ust[3].Nonce, ust[3].Username, ust[4].Username, rs[l].sctJd);

}
if

:: (Security-Context = =  FLAG) —> msg =  SC

:: (Security_Context != FLAG) —> msg =  MSG-REJ

fi;

ackChanlmsg

}

R ece iv e r P ro ce ss : The receiver process is the Security Token Service lis­

tening for requests for tokens on ‘rstC han5. First, the Security Token Service 

awaits a the request message of the form {UsernameToken(A, nonceA), STS, 

Signature, RST, RequestSecurityToken, TimeStamp, EncryptedData, pub- 

KeySTS}. On receiving the  message the  Security Token Service symbolically 

decrypts it w ith its private key, verifies the freshness, validates the signature 

and authenticates the request, invokes ‘RecvrChallenge(sender, receiver)’, 

and finally agrees on a partia l security context. Secondly, the Security To­

ken Service populates its RequestSecurityResponse complex data structure 

with the appropriate requested token information and sends the response on 

‘rstrC han’. The response message contains {UsernameToken(A, nonceA), 

UsernameToken(STS, nonceS), RSTR, Signature, SC, RequestSecurityTo- 

kenResponse, Tim eStam p, EncryptedD ata, publicKeyA}. If the Security 

Token Service fails to  authenticate, or is unable to reach an agreement on
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a partial security context, it sends a request security token response token 

with NULL fields bu t returns the original values in the request back to the 

requester. Thirdly, the Security Token Service waits for an acknowledgement 

from the requestor service either as R E J or SC on ‘ackChan’. The process is 

represented as follows:

proctype sts(mtype me; mtype my_nonce)

{
atomic {

r8tChan?ust[l],eval(me),sig[l],msg_type,rst[l],ts[l],edata[l],pubKey; 

Decryption(pubKey, privateKey);

Verify Freshness(ts[l] .Created, ts[l] .Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[l].SignatureMethod, 

sig[l].Reference, sig[l].Signature Value, sig[l]. Keylnfo);

RecvrChallenge(ust[1] .Username, me);

AuthenticateRequest(msg_type);

RecvrBind(ust[l].Username, me);

PartialSCAgreement(rst [1].AppliesTo, rst [1 ].TokenType, rst[1].RequestType, 

rst[1].EntropicMode, rst[1] .Entropy); 

rstrChanlust [1] ,ust [2] ,RSTR,sig[2], SC,rs [0] ,ts [0] ,edata[2],pubKey;

}
ackChan?x;

}

Intruder Process: The in truder process is always active. It listens for

messages on channel ‘rstC h an ’, and intercepts and alters them. The intruder 

on start-up populates its local variables and ‘typedef’ structures. The in­

truder can alter messages by ‘content’ injection or by ‘element’ injection to 

the message. It inserts ‘content’ into the  UsernameToken by adding ‘X’ to 

the username, where ‘X ’ represents any arbitrary data. The intruder sends
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the message off on ‘rstC h an ’ to  the  Security Token Service. This alteration 

to the requestor’s username causes failure in authentication. When the in­

truder alters the content of the request for a security token, it adds ‘X’ to 

‘RequestType’ or to  ‘TokenType’, thus causing a failure in establishment of 

a partial context or a full security context. The intruder’s other capability 

is to inject an ’elem ent’ into the request security token message structure 

and send the message forward to  the Security Token Service. The intruder 

process is represented as follows:

proctype Intruder (mtype me; mtype recvr ; mtype my_nonce)

{
do

:: atomicf

rstChan? ust [0],recvr ,sig[4], RST,rst [2] ,ts [0] ,edata[4],pubKey; 

ust [0]. User name =  AX;

rstChanlust [0],recvr ,sig[4],RST,rst [2] ,ts[0] ,edata[4],pubKey;

}
:: atomic{

rstChan?ust [0],recvr ,sig[4],RST,rst [2] ,ts [0] ,edata[4],pubKey; 

rst [2] .TokenType =  SCTX; 

rst [2]. RequestType =  ISSUEX;

rstChanlust [0] ,recvr,sig[4],RST,rst [2] ,ts[0] ,edata[4],pubKey;

}
:: atomic!

rstChan?ust [0],recvr,sig[4],RST,rst [2] ,ts [0] ,edata[4],pubKey; 

rstChanlust [0], recvr, sig[4], RST, irst[0],ts[0],edata[4], pubKey;

}
od

}
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7.3 C oncluding R em arks

In this chapter a model to  expose the Simple Message Exchange Protocol 

and the Security Token Protocol to  an XML injection attack has been built. 

The basic definitions of the legitim ate user involved in the protocol run axe 

similar to those in C hapter 5. The intruder model of Dolev-Yao is extended 

to encompass XML injection attacks. There are two ways the intruder at­

tacks the messages in the  protocol run -  either by altering the contents of 

the elements or by adding an element to  the message. In the next chapter, 

simulations of the Simple Message Exchange Protocol and Security Token 

Protocol models for analysing behaviour are run.
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CHAPTER 8

Simulation and Verification for XML Injection Attack

This chapter presents the  results of the  simulation and verification of both the 

Simple Message Exchange Protocol and the Security Token Protocol under 

an XML injection attack. The simulation results are presented in the form 

of snapshots of message sequence charts and the global variables output. 

Verification is performed for both  the protocols, which are checked for the 

same Linear Temporal Logic properties th a t were described in Section 3.7.

8.1 S im ulation  R esu lts

8.1.1 S im ple M essage E xchange Protocol

The simulation results for the Simple Message Exchange Protocol will now 

be given. The protocol is subjected to two different types of XML injection 

attack. The first type of attack  alters the ‘content’ of the element in the

202



8.1. SIM U LA TIO N  RE SU LTS 8. XM L Injection Attack

message, and the second type of attack adds an element to  the element 

structure represented by complex ‘typedef’ structures. Thus, two simulation 

scenarios are presented. In the first XML content is injected, i.e., the values 

are the elements are modified in some way. In the second an element is added 

to one of the W S-Security structures.

XM L C on ten t In jectio n

Service A sends a message to  Service B. The message is intercepted by the 

intruder who is listening on the  same channel, ‘chanONE’. The intruder adds 

an ‘X’ to the usernam e and sends it off to  Service B. ‘X’ represents any arbi­

trary  piece of d a ta  th a t can be added to  the content of the element. Service 

B receives the message and tries to  authenticate with A but fails to do so 

because of the alteration to  the  UsernameToken of the requesting service, A, 

and sends the message back to  Service A.

It can be seen from the  global variables th a t services A and B fail to bind 

with each other. Service A updates the  global variable ‘senderchallengeAB’ 

to 1 before sending the  message on ‘chanONE’. The message is intercepted 

by the intruder service, which adds to  the content of the username token, and 

sends it to  Service B. Service B starts  its authentication process by trying to 

update ‘recvrchallengeAB’ bu t is unable to  update it to 1. This leads to  the 

end of the simulation and the  end of the  protocol run.

Figure 8.1 represents a snapshot of a message sequence chart when content 

is altered in the message stream . The values in the yellow boxes represent 

the processes in the  Simple Message Exchange Protocol model. ‘init::0’ in 

the first column represents the ‘in it’ process which initialises all the func­
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tions. ‘SenderA :l’ in the second column represents the Sender process. ‘Re- 

ceiverB:3’ in the th ird  column represents the receiver process, and ‘PI:2’ in 

the fourth column represents the intruder process. SenderA sends a message 

to ReceiverB containing {A, nonceA, B, REQ, ts[0], sig[0], edata[0], pub- 

KeyB}.The values for Tim eStam p, XML Signature and XML Encryption for 

SenderA are described using *ts[0]’, ‘sig[0]’ and ‘edata[0]\ ‘A’, ‘nonceA’ and 

‘B’ are the unencrypted inform ation in the message. The message is inter­

cepted by the intruder, which alters the username ‘content’ of the message 

to {AX, nonceA, B, REQ, ts[0], sig[0], edata[0], pubKeyB}, and sends the 

message to the original intended recipient, B. ReceiverB receives and pro­

cesses the message. The alteration to  the username of SenderA causes the 

message to  be rejected by ReceiverB. ReceiverB sends the following message 

{B, nonceB, AX, nonceA, DECLINE, t s [2], sig[2], edata[2], pubKeyA}. The 

message contain the ReceiverB values for TimeStamp, XML Signature and 

XML Encryption represented by ‘ts[2]’, *sig[2]’ and ‘edata[2]\ respectively. 

The protocol run term inates after the message is received by SenderA.

XM L E lem en t In jectio n

Service A sends a message to  Service B on ‘chanONE’. The intruder, as al­

ways, is listening on the channel. It intercepts the message and adds an 

element ’IN JJN F O ’ to  the  Signature element. The intruder then forwards 

the message to  Service B. Service B processes the message. It successfully 

authenticates the message and sends an ‘A CCEPT’ to Service A.

It can be seen th a t the global authentication variables are updated suc­

cessfully for authentication. Service A binds to Service B, and Service B
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Figure 8.1: Message Sequence Chart for SMEP XML Content Injection At­
tack.
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binds to service A w ithout being aware th a t an extra element has been in­

jected. Service A updates ‘senderchallengeAB’ to 1 when it initiates a run 

with Service B, and Service B validates the username token of Service A 

and updates ‘recvchallengeAB’. Once both the identities of the services are 

corroborated, ‘senderbindAB’ and ‘recvrbindAB’ are updated to 1 by the 

respective services.

Figure 8.2 shows a snapshot of a simulation run between Service A and 

Service B when the in truder adds an element to the Signature structure, 

‘init::0’ in the first column is the initialising process. ‘SenderA:l’ in the sec­

ond column represents sender A. ‘ReceiverB:2’ in the third column represents 

service B, and ‘P I:3’ in the  fourth column represents an intruder. ‘SenderA’ 

sends the message {A, nonceA, B, REQ, ts [0], sig[0], edata[0], pubKeyB } 

to Service B. ‘ts[0]\ ‘sig[0]’ and ‘edata[0]’ represent the TimeStamp, XML 

Signature and XML Encryption d a ta  for Service A. The message is inter­

cepted by ‘P I’. The in truder adds an element to  the Signature structure and 

sends the message {A, nonceA, B, REQ, ts[0], iSig[0], edata[0], pubKeyB} 

to receiver B. ‘iSig[0]’ represents the Signature structure when it is injected 

with the ‘Injectedlnfo’ element. ‘ReceiverB’ processes the message and sends 

an acknowledgement message {B, nonceB, AX, nonceA, ACK, ts[2], sig[2], 

edata[2], pubKeyA } back to  ‘SenderA’. ‘ts[2]\ ‘sig[2]’ and ‘edata[2]’ repre­

sent the Tim eStam p, XML Signature and XML Encryption values for the 

receiver, B. ‘ReceiverB’ fails to  identify the presence of an element injection 

attack. ‘SenderA’ receives the  message, processes it and sends a reply {A, 

nonceA, B, nonceB, A C CEPT, ts[0], sig[0], edata[0], pubKeyB} to Service B.

The simulation results for the Simple Message Exchange Protocol are
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Figure 8.2: Message Sequence Chart - SMEP XML Element Injection Attack.
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Table 8.1: Simulation Result for SMEP

Scenario senderBindAB recvrbindAB
XML Content Injection 0 0
XML Elem ent Injection 1 1

summarized in Table 8.1 for ‘content’ injection and ‘element’ injection. When 

the Simple Message Exchange Protocol is subjected to a ‘content’ injection 

attack, Service A and Service B fail to  authenticate to each other, and the 

global variables for authentication remain 0. However, when the Simple 

Message Exchange Protocol is subjected to  an ‘element’ injection attack the 

sender and receiver fail to  identify the injected information and successfully 

authenticate to  each other.

8.1.2 S ecurity  Token P rotoco l

The simulation results axe next presented for the Security Token Protocol 

under the presence of an intruder capable of carrying out an XML injection 

attack. The intruder can change the contents of the elements. He can modify 

the username in UsernameToken or he can modify the values in the Request 

Security Token. The intruder can also inject an element into the Request 

Security Token. Each scenario is described in detail in the following sections.

X M L  C o n te n t  In je c t io n

U se rn a m e  T o k en  In je c t io n  Figure 8.3 shows a snapshot for an XML con­

tent injection attack, ‘in it’, ‘Sender’, ‘STS’ and ‘Intruder’ are the four pro­

cesses in the model. T he numbers represent the sequence of steps in the sim­

ulation run. In step 48 ‘Sender’ directs a message {ust[0], STS, sig[0], RST,
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rst[0], t s [0], edata[0], pubKeySTS} to  the Security Token Service. ‘ust[0]\ 

‘STS’, ‘sig[0]’, ‘R S T ’, ‘r s t [0]’, ‘ts[0]’ and ‘edata[0]’ represent the Username­

Token, the receiver username, the signature information of the sender, the 

type of message, the request security token information, TimeStamp and En­

cryption information for the  ‘Sender’ process. The message is intercepted by 

the intruder service. The intruder service only changes the username content 

of Service A and sends the  message {ust[0], recvr, sig[4], RST, rs t[2], ts[0], 

edata[4], pubKey} to  the  Security Token Service, as shown in execution step 

50. The Signature, Encryption, Request Security Token and timestamp in­

formation remains unchanged. The ‘STS’ process receives the message and 

sends the response {ust[l], u s t[2], msg'type, sig[2], SC, rs[0], ts[0], edata[2], 

pubKey} to  the Sender process in step 77. The response contains the partial 

security context and inform ation on how to establish a security context be­

tween ‘AX’ and the  ‘STS’ service. ‘Sender’ processes the message and fails 

to  authenticate its usernam e token, and sends a {MSGJREJ} message.

Service A sends a request for a security token to the Security Token Ser­

vice provider, the  ‘STS’ process. The intruder listens for the request on the 

channel ’rstC han’. It intercepts this message and modifies the ‘Username’ in 

the Username Token structure by adding ‘X’ to  it and then sends it off to 

the Security Token Service, ’STS’. The Security Token Service processes the 

message and fails to  bind with Service A. When Service A initiates a proto­

col run with the Security Token Service ‘SenderChaJlengeAJSTS’ is updated 

to 1. On the receiver end, the Security Token Service fails to validate the 

‘AX’ username and does not update ‘RecvrChallengeA_STS’ to 1. This leads 

to the failure of authentication between Service A and the Security Token 

Service. The Security Token Service processes the rest of the message and
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sends a security context token back to  Service A. Service A rejects this token 

as the token contains the  username ‘AX’.

R S T  In je c tio n  Figure 8.4 shows a snapshot of a message sequence ex­

change chart for Service A and the Security Token Service in the presence of 

a content injection attack  on values in the request security token structure. 

Service A sends a request {ust[0], recvr, sig[0], RST, rst[0], ts[0], edata[0], 

pubKeySTS} to  ’STS’ in execution step 48. The message is intercepted by 

the intruder, which alters the contents of the request security token structure.

The intruder is only allowed to  tam per with TokenType and RequestType.

It then sends the message {ust[0], recvr, sig[4], RST, rs t[2], ts [0], edata[4], 

pubKey} back on the  channel to  the Security Token Service in execution 

step 51. The Security Token Service is able to  authenticate the sender, but 

is unable to  agree on a partia l context with Service A. In step 79 it sends a 

response |u s t[l]  , u s t[2] , RSTR, sig[2], SC, rs[0], ts[0], edata[2], pubKeyA} 

with all NULL values back to  the  requestor, Service A. Service A, upon pro­

cessing the request, is unable to  establish a security context and sends a 

{M SG.REJ} response.

The global variables ‘SenderChallengeA_STS’, ‘RecvrChallengeA_STS’,

‘SenderBindA_STS’ and ‘RecvrBindA_STS’ are updated accordingly to 1.

But both the context establishm ent variables, ‘partiaLSC’ and ‘Security.Context’, 

fail. The Security Token Service fails to  accept ‘TokenType’ and ‘Request­

Type’ in the request to  the Security Token Service. It sends the request 

security token response back to Service A, containing ’NULL’ fields, thus 

leading to  a failure in establishing a security context with a valid Service A.
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Figure 8.3: Message Sequence Chart for an STP Username Token Injection
Attack.
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XM L E lem en t In jection

Figure 8.5 presents a snapshot of a message sequence chart for Service A and 

the Security Token Service in the presence of an intruder capable of an XML 

element injection attack. The intruder intercepts the message on channel 

‘rstC han’ and adds IN JJN F O  to  the request security token. It sends the 

message to  the ’STS’ process. The Security Token Service authenticates the 

service and establishes a ‘partiaLSC ’ with Service A. It fails to recognise the 

presence of an element injection attack, and sends the security token response 

information to  Service A. Service A processes the request successfully and 

reaches an agreement on a security context. Execution step 56 shows the 

{ust[0], recvr, sig[0], RST, rst[0], t s [0], edata[0], pubKeySTS} message sent 

by the ‘Sender’. Execution step 59 shows the message sent by the intruder 

after injecting an element: {ust[0], recvr, sig[4], RST, irst[0], ts[0], edata[4], 

pubKeySTS}, where ‘irs t[0]’ represents the request security token with the 

injected element. In step 87 the Security Token Service sends the message 

{ust[l] , u s t[2] , RSTR, sig[2], SC, rs[0], ts[0], edata[2], pubKeyA} to the 

‘Sender’ process. Step 105 illustrates the message {SC} exchange between 

‘Sender’ and ‘STS’.

The outcome can be seen from the values of the global variables. The 

global variables ‘SenderChallengeA_STS’, ‘RecvrChallengeA_STS’, ‘SenderBindAJSTS’ 

and ‘RecvrBindA_STS’ are updated to  1, as both the services are able to val­

idate the username token of each other. The Security Token Service is able 

to agree on a partia l security context agreement and updates ‘partiaLSC’ 

to 1. The inform ation required to  reach this agreement is not altered. The
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Figure 8.4: Message Sequence Chart for an STP RST Content Injection 
Attack.
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Security Token Service fails to  identity the injected element in the request. 

The Security Token Service sends the security context back to the requestor, 

Service A, containing all the fields in the original request. Service A processes 

the required elements to  reach a security context and agrees on the context. 

Both Service A and the Security Token Service fail to identify the element 

injection attack.

Table 8.2 summarises the  results for the simulation of the Security Token 

Protocol under an XML injection attack. In the case of an XML injection 

attack on the content of the username token it can be seen from the values 

of the global variables SenderBindA_STS and RecvrBindA_STS that Service 

A and the Security Token Service are unable to  bind to each other. It can be 

seen see th a t a partial security context is established on the Security Token 

Service side, but bo th  services fail to  establish a full security context because 

of authentication failure. In the case of an XML injection attack on the 

content of the Request Security Token it can be seen from the values of the 

global variables SenderBindA_STS and RecvrBindA_STS th a t both Service 

A and the Security Token Service bind to  each other successfully. However, 

both services fail to  establish a partial security context, and as a result fail to 

establish a full security context. In the last case of an XML element injection 

attack it can be seen th a t Service A and the Security Token Service bind to 

each other successfully and are able to  establish a full security context. The 

model fails to  identify the attack.
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Figure 8.5: Message Sequence Chart for an STP RST Element Injection 
Attack.
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Table 8.2: Simulation Result for Security Token Protocol

Scenario SenderBindA_STS RecvrBindA_STS partial_SC Security .Context
XML Content Injection UST 0 0 1 0
XML Content Injection RST 1 1 0 0
XML Element Injection 1 1 1 1

Table 8.3: Verification Result for SMEP Under XML Injection Attack

Scenario State Size Transitions
XML Content Injection 260 bytes 55311
XML Elem ent Injection 260 bytes 48

8.2 V erification R esu lts

8.2.1 S im ple M essage E xchange P rotocol

This subsection presents verification results obtained with the Linear Tem­

poral Logic property:

0 ( (0 ISenderBindAB) || (ISenderBindAB U RecvrChallengeAB) )

D ( (Q IRecvrBindAB) || (IRecvrBindAB U SenderChallengeAB) )

The Linear Temporal Logic property was violated in the case of an XML 

content injection attack. Spin  was able to detect content injection to the 

message and generated an error. In the case of element injection to the mes­

sage, the property was satisfied, showing th a t Spin was unable to identify 

the illegal element injected into the message. The rest of the results, the 

depth reached and the  memory used, are summarized in Table 8.3.

216



8.3. CONCLUDING R E M A R K S 8. XM L Injection Attack

8.2.2 S ecu rity  Token P rotoco l

The following Linear Temporal Logic property for the Security Token Pro­

tocol was fed into the Spin  verification engine:

[](([]  !senderbindAS)|| (IsenderbindAS U recvr challenge AS) )

D (  ( D  IrecvrbindAS) || (IrecvrbindAS U senderchallengeAS) )

[](([]  Isecuritycontext) || (! security context U partialSC) )

It can be seen th a t there is a violation of the Linear Temporal Logic 

property in case of content injection. The authentication variables are zero 

and the security context fails to  be established. Similarly, in case of a re­

quest security token attack, where the  TokenType and Request Type values 

are changed, it can be seen th a t there is a violation of the Linear Temporal 

Logic property. Service A and Service B are able to authenticate to each 

other but fail to  agree on a security context. In the case of an XML Injection 

attack on the Security Token Protocol it can be seen th a t there is a violation 

of the Linear Temporal Logic property, and an invalid verification result is 

obtained. Spin  is unable to  detect this type of attack. Table 8.4 summarises 

the memory used and the  depth  reached results for the Security Token Pro­

tocol under an XML injection attack. The results can be employed when 

analysing the application of various model checkers to Web services based 

cryptographic protocol.

8.3 C oncluding R em arks

Simulations have been conducted on pushdown autom ata models of the Sim­

ple Message Exchange Protocol under an XML injection attack. The Simple
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Tabic 8.4: Verification Result for STP Under XML Injection Attack

Scenario State Size Transistions
XML UST Content Injection 328 bytes 65309
XML RST Content Injection 328 bytes 31604
XML Elem ent Injection 336 bytes 297

Message Exchange Protocol is modelled as a three-step protocol as described 

in Chapter 4. Any deviation from the  steps of the protocol results in a change 

to the expected behaviour of the protocol. Such changes can be seen from the 

values of the global variables. It has been shown tha t modelling a protocol 

in terms of a pushdown autom aton not only captures the behaviour of the 

protocol and its participants, but it also allows the detection of any changes 

to the correct working of the protocol.

An analysis of the  pushdown autom aton model of the Security Token 

Protocol as a three-step protocol has been carried out, as explained in Chap­

ter 4. It was shown th a t if the  Security Token Protocol executed all the 

three steps for the protocol run successfully, the requesting service was able 

to bind to the Security Token Service. The requesting service was also able 

to establish a full security context. Any deviation from the defined behaviour 

of the Security Token Protocol resulted in failure to achieve binding and/or 

establishment of full security context.

Pushdown au tom ata allow us to  capture the behaviour of the protocols, 

and for additional analysis and verification of the behaviour Linear Tempo­

ral Logic properties were used. First, simulations of the pushdown automata 

model w ithout the Linear Temporal Logic properties were fed into Spin. It
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was shown th a t if a correct protocol run was successfully executed, i.e., all 

the steps of the run were completed, it was possible to detect any deviations 

from the correct behaviour from the global variables. This shows the push­

down autom aton was able correctly to  express the behaviour of the Simple 

Message Exchange Protocol and the Security Token Protocol and can be used 

for conducting a behavioural analysis of any protocol.

Simulation on the  XML injection attack model was performed using Spin, 

and the results were summarised in Tables 8.1 and 8.2. Message sequence 

charts for the protocol runs were presented, and it was shown that the model 

is able to  detect an XML content injection attack, but fails to identify an 

XML element injection attack. It was found th a t Spin was able to  detect 

any content injection attacks on the Simple Message Exchange Protocol and 

the Security Token Protocol, bu t it was unable to  detect element injection 

attacks on either protocol. For modelling Web services based cryptographic 

protocols and related attacks we suggest th a t future model checkers should 

be designed for Web services, and we plan to  extend Spin for modelling such 

protocols in future work.
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CHAPTER 9

Conclusions and Future Work

This thesis has studied the  design and analysis of Web Services Based Crypto­

graphic Protocols (W SBCPs) as pushdown autom aton (PDA) systems, with 

the aim of using PDAs to  model the correct operation of WSBCPs, and to 

effectively reflect the  properties of these protocols. Automaton based mod­

els for W SBCPs have been developed, and we suggest th a t modelling such 

protocols using au tom ata  may be more suitable for Web services based mod­

els, as they allow more detailed tracking of the protocol behaviour and the 

detection of alterations to  this behaviour. PDAs allow the properties of the 

WSBCPs to  be m apped, which allows the verification of the properties of the 

system w ithout specifying them  in another language, such as Linear Tempo­

ral Logic or pi-calculus. An intruder model for the Simple Message Exchange 

Protocol and the  Security Token Protocol has been developed based on the 

classic Dolev-Yao model. Both these protocols were subjected to attacks by
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an intruder. An extension to  the Dolev-Yao model has been given encom­

passing XML injection attacks. We have listed the results of this model, and 

verified our model using Spin, a general-purpose model checker.

The approach presented in this thesis allows feasible modelling techniques 

for theoretically and practically modelling Web services based protocols. This 

conclusion is supported by the  following activities and outcomes presented 

in this thesis:

•  The development of two novel W SBCP’s based on the WS-Security and 

W S-Trust specifications. These protocols are based on rules suggested 

for modelling cryptographic protocols. The goals for these protocols 

have been defined and their properties modelled as Linear Temporal 

Logic formulas.

• The modelling of the  environment for these protocols as transition sys­

tems. The environment depicts all the possible actions that can be 

taken by the  principals. The environment is susceptible to attacks 

based on a Dolev-Yao intruder.

• The modelling of the  W S-Security and WS-Trust based protocols as 

two-stack pushdown autom ata. Automaton models for W SBCP’s de­

scribe the behaviour in detail. Two-stack pushdown autom ata are used 

to map the correct operations of the protocols.

• We argue for the suitability of applying a general-purpose model checker 

to W SBCPs. The autom aton models are translated into Promela, the 

input language to  Spin. To the best of our knowledge the Promela 

models presented in this thesis are the first for WSBCPs.
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•  Both the protocols have been verified for authentication and secrecy 

in the presence of an intruder. For the WS-Trust based protocol, the 

establishment of a security context has been verified. The intruder is 

allowed to  learn certain information and on the basis of it acts as an 

impostor, or performs blocking attacks on these protocols.

•  We have extended the capabilities of the Dolev-Yao intruder model. 

The intruder is not only able to  perform the basic Dolev-Yao operations, 

but also is able to  carry out basic XML injection attacks on the Simple 

Message Exchange Protocol and the Security Token Protocol.

•  XML injection attacks can be classified as (i) content alteration attacks, 

and (ii) element alteration attacks. The intruder is allowed to alter the 

content of some parts of the  message. He is also allowed to add an 

element to  the message. The Simple Message Exchange Protocol and 

the Security Token Protocol have been subjected to this attack model.

C oncluding R em arks

The behavious of W SBCPs can be modelled using multi-stack pushdown au­

tomata. The PDA model not only reflects the working of the protocols, but 

also the properties these protocols are supposed to  possess. The modelling 

technique can be used to  specify the properties of the protocol under study 

without the need for a property specification language. The PDA model for 

WSBCPs also allows us to  detect any deviation from the expected behaviour 

of the protocols.

We modelled the SM EP and STP protocols in terms of Promela. To 

the best of our knowledge this is the first attem pt to model WSBCPs in
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Promela. We produced an intruder model for the Simple Message Exchange 

Protocol and the Security Token Protocol based on the Dolev-Yao model, 

specifically targeted for W SBCPs. The Simple Message Exchange Protocol 

and the Security Token Protocol were subjected to Dolev-Yao intruder at­

tacks and verified.

The Dolev-Yao model should be extended for WSBCPs and formalised. 

The model should be extended to  reflect the attacks specific to Web services, 

i.e.,

1. Attacks on confidentiality. The objective of a confidentiality attack 

is to force the targeted application to disclose information that the 

attacker is not authorised to  see, including sensitive information and 

private information. The XML Encryption, WS-Security, and HTTPS 

standards provide confidentiality protection for Web services. WS- 

Security and H TTPS are generally used to protect the confidentiality 

of SOAP messages in transit, leaving data  at rest vulnerable to attack.

2. Attacks on integrity. The objective of an integrity attack is to exploit 

the targeted application to  make unauthorised changes to  information 

accessed/handled by the application. Web service standards for pro­

tecting the integrity of d a ta  include WS-Security and XML Signature.

3. Command injection. In a command injection executable logic is in­

serted into non-executable tex t strings submitted to  a Web service. 

The main types of command injection are SQL injection targeting Web 

service-enabled database applications, and XML injection targeting 

Web services.

4. Reconnaissance attacks. Reconnaissance attacks have the objective of
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collecting information about an application and its execution environ­

ment to better target other types of attacks at that application. There 

are no standards for preventing reconnaissance attacks, e.g., dictionary 

attacks, WSDL scanning, sniffing, etc.

5. Privilege escalation attack. The objective of privilege escalation at­

tacks is to  enable the attacker to  change the privilege level of a process, 

thereby taking control of th a t now-compromised process to bypass se­

curity controls th a t would otherwise limit the attacker’s access to the 

Web service’s functionality, data, resources, and environment. For ex­

ample, format string attacks and exploiting unprotected administrative 

interfaces.

6. Denial-of-Service, malicious code attacks, etc. W ith the increasing ca­

pabilities of the intruder, unbroken encryption can no longer be as­

sumed.

We have presented an extension to  the Dolev-Yao model targeted specif­

ically for W SBCPs by adding the capability to carry out XML injection 

attacks. To the best of our knowledge this is the first formal extension of the 

Dolev-Yao model for XML injection attacks.

We conclude th a t, although general-purpose model checkers can anal­

yse and verify the  general working of WSBCPs, for detailed analysis and 

verification of the behaviour of W SBCPs work needs to be done on model 

checkers specific to  Web services based security protocols. We have presented 

a Promela model for the Simple Message Exchange Protocol and the Security 

Token Protocol, along with an intruder model. We have performed simula­

tions and verification of our model using Spin and presented the results in
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Chapter 6.

L im itations o f  our M o d el

This subsection reviews the  complications in modelling the pushdown au­

tom aton based protocol models (the Simple Message Exchange Protocol and 

the Security Token Protocol) in the Promela language. Our approach devi­

ates from traditional approaches to  modelling automaton using languages. 

Instead, we model the  Simple Message Exchange Protocol and the Security 

Token Protocol as steps. The set of steps in the protocol run is represented 

by an ‘atomic’ structure, embedded with functions applied in th a t step. We 

faced difficulty in modelling the input tape environment. The input tape is 

presented as a combination of symbols read from the messages on the chan­

nel and hard-coded input reads. We divide some functionality of the services 

into smaller parts, so they  can be used when the model is extended to in­

corporate XML injection attacks. We were also unable to  map the dynamic 

nature of the XML envelope. The XML structures could only be modelled 

as static ‘typedef’ structures.

We extended the Dolev-Yao model to  carry out XML injection attacks. 

We saw th a t the Prom ela model did not allow us to detect element injection 

attacks in some cases. Our future work will allow us to address this issue. 

To counter the current lim itations of our work, we propose to  work on the 

extension of both  the  Dolev-Yao model and the Spin model checker.
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Future W ork

The Dolev-Yao model has been adopted for analysis of a large number of 

cryptographic protocols. W ith  the emergence of new types of attacks and 

the nature of the Web services based cryptographic protocols, the model 

should be expanded. There have been some proposed suggestions but no 

formal work has been proposed to  the best of our knowledge. We propose 

to continue our work on an extension of the Dolev-Yao model for WSBCPs 

encompassing various attacks (Command Injection, Attacks on Confidential­

ity, and Attacks on Integrity ) targeted for WSBCPs. We will work towards 

developing a formalism for this.

As a next step we also propose to  work on a Web services protocol model 

checker. The idea is to  allow W SBCPs to  be modelled using pushdown au­

tom ata th a t reflect their operation and properties. Wc give a brief overview 

of the framework for the  model in Figure 9.1. All implementation modules 

are C-based codes. The XML parser module, as its name suggests, parses 

a given SOAP docum ent containing the  XML signatures. The purpose of 

this parser is to  autom atically extract relevant information from the SOAP 

traffic and obtain the corresponding WS-* security tags for further process­

ing. The input of this module is the SOAP messages carrying the WS-* 

traffic, and its ou tpu t is the  populated data  structures which are required 

in subsequent stages for making the autom aton. This module extracts the 

rule set from the given security specification which we want to analyse. This 

module is semi-autom atic as some manual rule extraction is required to get 

the exhaustive lists. The purpose of this module is to generate the security 

requirements. The requirem ents are presented in files in a format which our 

autom aton modules can understand. The PDA Module is the core module
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in which we generate the proposed multi-stack pushdown automaton for a 

given Web service traffic scenario. The outputs of the XML Parser mod­

ule and the Design module are used as inputs in this stage. The output of 

this stage is an autom ated pushdown autom aton which represents the Web 

service traffic along with any loopholes which may be part of the security 

specification. The PDA m odule’s ou tpu t is then subjected to the validation 

module which verifies the security requirements. The validation engine will 

convert the model into Prom ela and will be fed into Spin for verification. 

This module will also point out any security vulnerabilities present in the 

specification. The Reporting module is a standard reporting module which 

populates necessary logs and suggests possible courses of action where re­

quired. The results from the  model checker will be fed into Spin to verify 

the results.
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Automaton

XML Parser
Engine

Figure 9.1: Proposed architecture
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Appendix: SMEP

This appendix presents the macros and global variables used in the Promela 
model of the Simple Message Exchange Protocol.

SM EP M acros
^define senderchallenge(x,y) if
:: (X= = A  &;& y = = B ) —> senderchallengeAB =1
:: (x= = A  &&; y = = I)  —> senderchallengeAI=l
:: (x = = I &;& y = = B ) —>• senderchallengeIB=l
:: else skip
fi
#  define senderbind(x,y) if 
:: ((x= = A )& & (y = = B ))—>• senderbindA B=l 
:: ((x==A )& & ;(y==I)) —► senderbindAI—1 
:: ((x= = I)& & (y = = B ))—> senderbindIB=l 
:: else skip 
fi
# define recvrchallenge(x,y) if
::((x==A ) &;& (y = = B )) —>> recvrchallengeAB^l
::((x==A ) &;& (y = = I)) —► recvrchallengeAI=l
:;((x= = I) &:& (y = —B)) —> recvrchallengeIB=l
: : else skip
fi
#define recvrbind(x.y) if 
:: ((x= = A )& & (y= = B ))-+  recvrbindAB=:l
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:: ((x==A)&&;(y= = !))—y recvrbindA I=l 
:: ((x==B)& & ;(y==d)) —* recvrbindIB=l 
:: else skip 
fi
#  define Decryption (pub,priv) if
:: ((pub = =  pubKeyA)&&;(priv = =  privKeyA))-* valid_DecryptA =1 
:: ((pub = =  pubKeyB)&&(priv = =  privKeyB))—► valid_DecryptB =1 
:: ((pub = =  pubKeyI)&&;(priv = =  privKeyA))—>• valid_DecryptI =1 
:: else skip 
fi
#  define k (x l) if
:: (x l = =  nonce A ) k N a  =  1 ;learn_kNa =  1;
:: (x l = =  nonceB) —̂  kNb =  1; learnJcNb =  1;
:: else skip 
fi
#define VerifySignature(a,b.c,x,y) if
:: ( (a = =  cl4n)& ;& (b== shal)& ;& (c== REQ)&& (x== sigvalA)&&;(y== 
X509v3)) —► valid_dsSigA_REQ=l
:: ( (a = =  c l4n)& & (b= =  shal)& & (c==  ACCEPT)& & (x== 
sigvalA)&&(y== X509v3)) —> valid_dsSigA_ACK=l 
:: ( (a = =  cl4n)&;&;(b== shal)& & (c=— ACK)&&;(x== sigvalB)&&(y—= 
X509v3)) -> valid_dsSigB=l
:: ( (a = =  cl4n)&;&:(b== shal)& & (c==  REQ)&& (x== sigvall)&&(y== 
X509v3)) —yvalid_dsSigI _REQ =1
:: ( (a = =  cl4n)& & (b= =  shal)& & (c==  ACCEPT)& & (x==
sigvall)& & (y== X509v3)) —> valid_dsSigI_ACCEPT=l
:: ( (a = =  c l4n)& & (b= =  shal)& & (c==  ACK)&&(x== sigvall)&&(y==
X509v3)) valid_dsSigI_ACCEPT=l
:: else skip
fi
^define isEncrypted(em,cd,cv,rl,dr,ki) if
:: ((em = =  tripleD ES)& & (cd== CD)& & (cv== base64encoded)&&(rl== 
RL)&& (d r= — M SG )& & (ki== X509v3))-» isEncrypted =  isEncrypted 4- 1 
:: else skip 
fi
^define Verify Freshness (cr,ex) if
:: ((cr = =  CREATED)&&(ex = =  EX PIRES))-* valid_TimeStamp =1 
:: else skip 
fi
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SM E P G lobal Variables
bit senderchallengeAB=0;
bit senderbindAB=0;
bit recvrchallengeAB=0;
bit recvrbindAB=0;
bit senderchallengeAI=0;
bit senderbindAI=0;
bit recvrchallengeAI=0;
bit recvrbindAI=0;
bit senderchallengeIB=0;
bit senderbindIB=0;
bit recvrchallengeIB=0;
bit recvrbindIB=0;
bit valid_DecryptA =  0;
bit valid_DecryptB =  0;
bit validJDecryptl =0;
int isEncrypted =  0;
bit valid_TimeStamp =0;
bit valid_dsSigA_REQ= 0;
bit valid_dsSigA_ACK= 0;
bit valid_dsSigB =  0;
bit valid_dsSigI_REQ= 0;
bit valid_dsSigI_ACK= 0;
bit valid_dsSigI_ACCEPT= 0;
bit learn_kNa =  0;
bit learn JcNb =  0;
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Appendix: STP

This appendix presents the macros and global variables used in the Promela 
model of the Security Token Protocol.

STP M acros
^define SenderChallenge(x,y) if 
:: (X= = A  &;&; y= =S T S ) —> Sender Challenge A_STS=1 

(x——I &;& y= = S T S ) —> SenderChallengeI_STS=l 
:: else skip 
fi
^define AuthcnticatcRcqucst(x) if 
:: (X= = R S T ) -+ MsgType_RST=1 
:: else skip 
fi
^define SenderBind(x,y) if
:: (x—=A  &&; y= = S T S ) —►SenderBindA_STS=l
:: (X= = I  &&: y= = S T S ) -> SenderBindI_STS=l
:: else skip
fi
^define RecvrChallenge(x,y) if
:: (X= = A  &&; y= =S T S ) —>• RecvrChallengeA_STS=l 
:: (x = = I &;& y= = S T S ) —► RecvrChallengeI_STS=l 
:: else skip 
fi
#  define AuthenticateResponse(x) if
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:: (x== R S T R ) -+ MsgType_RSTR= 1 
:: else skip 
fi
#define RecvrBind(x,y) if
::((x==A ) && (y==STS)) —> R£cvrBindA_STS=l 
::((x==I) && (y= =S T S )) -+RecvrBindI_STS=l 
:: else skip 
fi
#dcfinc VcrifySignaturc(a,b.c.x,y) if
:: ( (a = =  cl4n)&:&;(b== shal)&&:(c== RST)&&;(x== sigvalA)&&(y== 
X509v3)) -> valid_dsSigA=l
:: ( (a = =  c l4n)& & (b= =  shal)& & (c==  RSTR)& & (x==
sigvalSTS)&&(y== X509v3)) -+ valid_dsSigSTS=l
:: ( (a= =  cl4n)& & :(b== shal)&;&;(c== RST)& & (x== sigvall)&&(y==
X509v3)) —> valid_dsSigI=l
:: else skip
fi
#  define Decryption (pub,priv) if
:: ((pub = =  pubKeyA) &;& (priv = =  privKeyA))—> valid_DecryptA =1 
:: ((pub = =  pubKeySTS)&&;(priv = =  privKeySTS))—> valid_DecryptSTS 
=1
:: ((pub = =  pubKeyI)&&(priv = =  privKeyl))—» valid_DecryptI =1 
:: else skip 
fi
#  define VerifyKey(x) if
:: (x = =  pubKeyA )—> valid.pubKeyA =1 
:: (x = =  pubKeySTS)-* valid.pubKeySTS =1 
:: (x = =  pubKeyA) —* valid_pubKeyI =1 
:: else skip 
fi
#define PartialSCAgreement(a,b,c,x,y) if
:: ((a = =  STS)& & (b==  S C T )& & (c =  IS S U E )& & (x=
partialEntropy)&& (y = =  client entropy)) —> partial_SC=l
:: else skip
fi
#define SCAgreement(at,tt,rt,em.ce,se,ck,ex,stsn.sts,sdr,scid) if 
:: ((at = =  STS)& & (tt = =  SCT)&&(rt = =  ISSUE)&&(em = =  
p a r t i a l E n t r o p y ) ( c e  = =  client*entropy)&&(se = =  server’entropy)&&:(ck 
= =  shal)&& (ex = =  expires)&&(stsn = =  nonceS)&&(sts = =  STS)&&(sdr 
= =  A)&& (scid = =  S C T JD )) ->• Security_Context=l 
:: ((at = =  STS)& & (tt = =  SCT)&&(rt = =  ISSUE)&&(em = =
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partialEntropy)&:&; (ce = =  client'entropy)&&(se = =  server'entropy)&&(ck 
= =  shal)& &  (ex = =  expires)&;&;(stsn = =  nonceS )&&(sts = =  STS)&&(sdr 
= =  I)&& (scid = =  SC T JD )) —> Security .Context J = 1  
::else skip; 
fi
#define isEncrypted (em,cd,cv,rl,dr,ki) if
:: ((em = =  tripleDES)&;&;(cd== CD)&&(cv== base64encoded)&&(rl== 
RL) & & (dr==  MSG)&&;(ki== X509v3))-» isEncrypted =  isEncrypted +  1 
:: else skip 
fi
#  define Verify Freshness (cr, ex) if
:: ((cr = =  CREATED)&&;(ex = =  EXPIRES))—> valid_TimeStamp =1 
:: else skip 
fi

STP G lobal Variables
bit SenderChallengeA_STS=0; 
bit SenderBindA_STS=0; 
bit RecvrChallengeA_STS=0; 
bit RecvrBindA_STS=0; 
bit SenderChallengeI_STS=0; 
bit SenderBindI_STS=0; 
bit RecvrChallengeI_STS=0; 
bit RecvrBindI_STS=0; 
bit MsgType_RST =  0; 
bit MsgType_RSTR =  0; 
bit valid_dsSigA =  0; 
bit valid_dsSigSTS =  0; 
bit valid_dsSigI =  0; 
bit partialJSC =  0; 
bit Security_Context=0; 
bit Security_Context _I=0; 
int isEncrypted =  0; 
bit valid-TimeStamp =0; 
bit Imposter_FLAG =  0; 
bit valid_DecryptA =  0; 
bit valid_DecryptSTS =  0; 
bit valid_DecryptI =0;
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