
Formal Analysis of Security Protocols Based
on Web Services

Fatima Shabbir

August 8, 2011

UMI Number: U585480

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585480
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Contents

1 Introduction 1
1.1 Web S e rv ic e s ... 2

1.1.1 Web Services S e c u r i ty .. 3
1.1.2 The Xeed for New Security Specifications for Web Ser­

vices 6
1.1.3 XML-based Web Services Security Specifications 7
1.1.4 WS-* based Web Services Security Specifications . . . 10
1.1.5 Security R eq u irem en ts ..15
1.1.6 Vulnerabilities of WS-* Specifications............................... 16

1.2 Formal M ethods.. 19
1.2.1 Model Checking... 22
1.2.2 Spin Model Checker ..23

1.3 Problem Form ulation..24
1.3.1 Research Objectives ..24
1.3.2 Proposed Analysis ...25

1.4 Attack M o d e l ... 27
1.5 Thesis Overview... 29

2 L iterature R ev iew 31

3 System M od el 49
3.1 Chapter O b jec tiv es .. 49
3.2 Model C heck ing ...50

3.2.1 Model Checking P ro c e s s .. 50
3.3 Modelling Cryptographic P ro to c o ls ... 51

3.3.1 Guidelines for Modelling Cryptographic Protocols . . . 53
3.4 Security Protocol M odels...56

3.4.1 Simple Message Exchange P ro to c o l57
3.4.2 Security Token P r o to c o l .. 61

3.5 Environment Model for P ro to c o ls .. 65
3.5.1 Environment Model for S M E P ...67
3.5.2 Environment Model for S T P .. 71

3.6 Intruder Model for P ro toco ls.. 76
3.6.1 Manipulated Protocol Run for S M E P77
3.6.2 Manipulated Protocol Run for S T P 78

3.7 System P roperties ..79
3.7.1 Property Specification for S M E P ... 80
3.7.2 Property Specification for STP ...82

3.8 Concluding R e m a rk s ... 84

4 M od ellin g Protocols w ith A utom ata 87
4.1 Chapter O b jec tiv es ...87
4.2 Pushdown au tom aton ... 88
4.3 Simple Message Exchange P ro to c o l ... 90
4.4 Security Token P r o to c o l ... 102
4.5 Concluding R e m a rk s ... 116

5 Prom ela M odel 118
5.1 Chapter O b je c tiv e s ...119
5.2 Introduction to P r o m e la ... 121
5.3 System Modelling S t e p s ... 122

5.3.1 Simple Message Exchange P ro to c o l 125
5.3.2 Security Token P r o to c o l ... 139

5.4 Concluding R e m a rk s ..155

6 Sim ulation and Verification R esu lts 156
6.1 Chapter O b jec tiv es ...157
6.2 Simulation R e s u l t s ...158

6.2.1 Simple Message Exchange P ro to c o l 158
6.2.2 Security Token P r o to c o l ...167

6.3 Verification ..174
6.3.1 Simple Message Exchange P ro to c o l 177
6.3.2 Security Token P r o to c o l ...178

6.4 Concluding R e m a r k s ...179

ii

7 XM L Injection A ttack M odel 181
7.1 Simple Message Exchange P ro to c o l ...183

7.1.1 T y p e s ...183
7.1.2 C hannels... 184
7.1.3 Global Variables ...185
7.1.4 Principal P ro cesses ..185

7.2 Security Token P r o to c o l .. 191
7.2.1 T y p e s .. 192
7.2.2 C hannels..193
7.2.3 Global Variables ... 193
7.2.4 Principal P ro cesses ..194

7.3 Concluding R e m a rk s ...201

8 S im ulation and Verification for XM L Injection A ttack 202
8.1 Simulation R e s u l t s .. 202

8.1.1 Simple Message Exchange P ro to c o l202
8.1.2 Security Token P r o to c o l .. 208

8.2 Verification R e su lts .. 216
8.2.1 Simple Message Exchange P ro to c o l 216
8.2.2 Security Token P r o to c o l ..217

8.3 Concluding R e m a rk s ...217

9 C onclusions and Future Work 220

B ib liography 229

A ppendix: SM EP 242

A ppendix: S T P 245

List of Figures

1.1 Web Services Security Stack... 14
1.2 SOAP envelope incorporating W S-Security 15
1.3 Message tampering scenario in a secure session 28
1.4 An XML rewriting a t t a c k .. 29

3.1 Schematic view of Model Checking a p p ro ac h 52
3.2 Security Token P r o to c o l ... 66

4.1 Simple Message Exchange Protocol au to m ato n93
4.2 Security Token Protocol Protocol autom aton.................................107

5.1 Types of O b je c ts .. 120

6.1 Message sequence chart for A —>• B ..160
6.2 Message Sequence Chart for A—> 4 ...162
6.3 Message Sequence Chart for A —> I followed by 1(A) —> B. . . 164
6.4 Message Sequence Chart for I —>• B.. 165
6.5 Message Sequence Chart for I —► B followed by A —> 1(B). . . 167
6.6 Message Sequence Chart for A —► STS..169
6.7 Message Sequence Chart for I —► S T S ..171
6.8 Message Sequence Chart for 1(A) -» STS..................................... 173

8.1 Message Sequence Chart for SMEP XML Content Injection
A ttack... 205

8.2 Message Sequence Chart - SMEP XML Element Injection At­
tack..207

iv

8.3 Message Sequence Chart for an STP Username Token Injec­
tion Attack 211

8.4 Message Sequence Chart for an STP RST Content Injection
Attack... 213

8.5 Message Sequence Chart for an STP RST Element Injection
Attack..215

9.1 Proposed architecture ... 228

v

List of Tables

4.1 Stacks for Simple Message Exchange P r o to c o l 92
4.2 States and Transition Functions for SMEP...................................... 100
4.3 Stacks for Security Token P r o to c o l .. 106
4.4 States and Transition Functions for STP..114

5.1 Promela C onstructs..123
5.2 Simple Message Exchange Protocol Types.......................................126
5.3 Simple Message Exchange Protocol Global Variables................... 130
5.4 Security Token Protocol - Types ... 140
5.5 Security Token Protocol Global Variables146
5.6 Security Token Protocol Global Variables147

6.1 Simulation results for SMEP... 168
6.2 Simulation Result for S T P .. 174
6.3 Verification Results for SMEP.. 177
6.4 Verification Results for STP..178

7.1 Simple Message Exchange Protocol T y p e s184
7.2 Simple Message Exchange Protocol Global Variables...................186
7.3 Security Token Protocol Types ..192
7.4 Security Token Protocol Global Variables....................................... 195
7.5 Security Token Protocol Global Variables....................................... 196

8.1 Simulation Result for S M E P .. 208
8.2 Simulation Result for Security Token P ro to c o l 216
8.3 Verification Result for SMEP Under XML Injection Attack . . 216
8.4 Verification Result for STP Under XML Injection Attack . . . 218

vi

DECLARATION

This work has not previously been accepted in substance for any degree and
is not concurrently submitted in candidature for any degree.

Signed .. I?*.... (candidate)

STA T EM E N T 1
This thesis is being submitted in partial fulfillment of the requirements for
the degree of PhD.

Signed . (candidate)

D a te / O . . / A g . / 2 0 . / . /

ST A T E M E N T 2
This thesis is the result of my own work/investigations, except where
otherwise stated. Other sources are acknowledged by explicit references.

ST A T E M E N T 3
I hereby give consent for my thesis, if accepted, to be available for
photocopying and for inter-library loan, and for the title and summary to
be made available to outside organizations.

Signed ..

D a te

(candidate)

Signed .. (candidate)

D a te

ACKNOWLEDGEMENTS

I am thankful to my supervisors, Dr Coral Walker and Prof David Walker,
whose encouragement, guidance and support throughout my PhD has en­
abled me to develop a deeper understanding of the subject. This thesis
would not have been possible without their inspiration.

I also would like to thank my parents, Farrah and Shabbir Ahmed for all
their encouragement. I would also like to thank Hasan, Omer and Areeb for
their constant motivation and morale boosting.

Summary

This thesis examines the use of multi-stack pushdown autom ata to model

the behaviour and properties of Web services based cryptographic protocols.

The protocols are modelled in Promela and verified using the Spin model

checker. The Simple Message Exchange Protocol and the Security Token

Protocol are protocols that underlie the WS-Security and WS-Trust

specifications, respectively. These two protocols are tested for correctness in

the presence of an intruder tha t conforms to the Dolev-Yao model, i.e., it is

tested whether the required properties the protocols hold in the presence of

a Dolev-Yao intruder. The thesis also extends the Dolev-Yao intruder

model to encompass attacks targeted specifically at Web services. An

intruder model in Promela is created based on the Dolev-Yao abstraction

which is extended to incorporate an XML injection attack model. The

behaviour and properties of the Simple Message Exchange Protocol and the

Security Token Protocol are then examined when subjected to an XML

injection attack using this extended Dolev-Yao model.

CHAPTER 1

Introduction

Web Services are self-contained, modular applications th a t can be described,

published, located and invoked over a network, generally the World Wide

Web [Nei03].

The WS-* security specifications provide mechanisms for the security of

SOAP messages, which are the most common way of communicating with,

and between, Web services. The specification suite consists of various com­

ponents each addressing different security requirements. For example, WS-

Security, W S-Trust and WS-SecureConversation provide mechanisms to es­

tablish a shared security context to enable SOAP sessions. These specifi­

cations, however, are undergoing a process of maturation, and are therefore

vulnerable to various threats. This work tries to address such threats through

a formal analysis of these specifications.

1

1.1. W EB SERVICES 1. Introduction

1.1 Web Services

Rosenberg et al. [RR04] define Web services as follows:

“A Web service is an application that provides a Web API,

identified by a Universal Resource Identifier (URI), whose in­

terface and bindings are capable of being defined, described and

discovered as XML artifacts. A web service supports direct in­

teractions with other software agents using XML-based messages

exchanged via Internet-based protocols.”

For Web services to be widely adopted they have to be made secure. The

research community, together with industry, have introduced various specifi­

cations to make Web service platforms more secure. Different forms of these

security specifications arc available including WS-* based specifications and

XML based security specifications. The WS-* base security stack includes (i)

WS-Security, (ii) WS-Trust, (Hi) WS-SecureConversation, (iv) WS-Policy,

(v) WS-SecurityPolicy, (vi) WS-ReliableMessaging, (vii) WS-Federation, and

(viii) WS-Reliability (see Section 1.1.4). XML based security specifications

include (i) XML Signature, (ii) XML Encryption, (Hi) XACML, (iv) SAML

and (v) XKMS. Section 1.1.3 summarises these specifications.

These security specifications complement each other in order to improve

overall Web service security. For example, the initial proposed WS-Security

specification only addresses message level security and ignores various other

aspects of security including trust establishment, reliable message delivery,

and session level security. In order to address the establishment of trust, a

2

1.1. W EB SERVICES 1. Introduction

further extension, WS-Trust, was proposed.

Different categorizations of the security aspects for Web services have

been introduced. For example, Nezhad et al. [Nea05] have categorized Web

service security in terms of a five-dimensional space. These dimensions are:

(i) secure messaging, (ii) resource protection, (Hi) security properties bind­

ing, (iv) contractual interactions and (v) federated trust management. These

dimensions help in evaluating any particular security specification. For exam­

ple, the security requirements for messaging include confidentiality, integrity,

non-repudiation, authentication and session security. Different security spec­

ifications address these security requirements. For example, confidentiality

and integrity issues are both addressed by WS-Security. However these speci­

fications are in their early development phase, thus leaving room for improve­

ment. This work focuses on security involving WS-Security and WS-Trust.

1.1.1 W eb Services Security

The sharing of global information, generated on different platforms by dif­

ferent applications, has emerged as an active research area over the past

few years. Web services have developed as a globally accepted medium for

sharing diverse information from different platforms. Web services are a

transformational technology which is used to integrate resources inside and

outside of an organization. The wider adoption of Web services is dependent

on their security and reliability. Various efforts have been made by the re­

search community to improve the security of Web services and as a result

various security specifications have been introduced.

The following subsection presents some of the basic building blocks of

3

1.1. W EB SERVICES 1. Introduction

the Web services architecture. Following this, Sections 1.1.3 and 1.1.4 cover

the two main families of security specifications currently available for making

Web services platforms reliable and secure.

M essaging

Web Services employ SOAP messages for information exchange using the

H TTP protocol. These SOAP messages are in XML format, as defined by

the W3C SOAP Standard. SOAP defines many message exchange patterns

(MEPs), for example one-way and peer-to-peer, but there are two main MEPs

used in Web services: request and response. The general operation of Web

services can be seen as request-response communication between two end­

points. When a certain SOAP request is received by a Web service, it returns

a SOAP response after performing the corresponding operation.

D iscovery Process

Web services use the Web Service Description Language (WSDL) and the

Universal Description, Discovery and Integration (UDDI) service registry to

support the service discovery process. WSDL is used to define the interface

of a web service, whereas UDDI is used as a registry through which Web ser­

vices can be discovered. Each Web service is responsible for creating a WSDL

interface and may also enable dynamic binding. Using dynamic binding Web

services can communicate with each other and with newly-added Web ser­

vices. Web services can dynamically discover each other using UDDI.

Consider a service A looking for some operation O to be performed. Ser­

vice B is capable of providing this service O and has its WSDL interface

4

1.1. W EB SERVICES 1. Introduction

registered with a UDDI registry. The following steps take place in order to

discover service B:

1. Service B registers its WSDL interfaces with the UDDI registry so that

its services can be discovered by other services.

2. Service A queries the UDDI registry for a service providing an operation

O .

3. The UDDI registry returns the URI and details about accessing service

B.

4. Service A utilizes B for the desired operation.

P orta ls

Web portals provide user-friendly interfaces for end-users, particularly in the

context of a Service Oriented Architecture (SOA). Portals are platforms that

are accessed through a Web browser, and which can be used as interfaces to

a set of Web services. Instead of directly discovering the Web service, users

can go to a portal and simply request the portal for a particular service.

Some commonly-used web portals include Google, Amazon, and eBay. For

example, in the Google portal, users request a particular piece of information

and the portal finds the corresponding information (request) and returns the

results (response) to the end user.

R oles

There can be different roles associated with a Web service. A Web service can

act as (i) a provider, (ii) a requester, or (Hi) an intermediary. The requester

and provider roles are usually associated with endpoints. An intermediary

5

1.1. W EB SERVICES 1. Introduction

service is used to complete some overall task initiated by the requester. A

provider Web service provides a response based on a request initiated by the

requester Web service. It is also responsible for setting security requirements

for authentication, authorization, encryption and non-repudiation. When a

requester initiates a request, it can be its own request or on behalf of a another

party. The requesting Web service is responsible for setting the proper syntax

and security parameters required by the provider. Intermediary Web services

are invoked as part of a chain of Web services, for example, XML Gateways.

These roles are non-exclusive, th a t is, a service can be a requester at one

instance and may be an intermediary at another instance.

W eb Services Coordination

Web services can dynamically bind to each other in two different ways, (i)

Orchestration and (ii) Choreography. Web service orchestration is performed

within an organization. It allows the use of existing Web services to create

another Web service. It has a central architecture, and Web services are

invoked based on the decisions made by an orchestration engine. Web service

choreography is performed between multiple organizations. Its invocation

is more dynamic in nature and is based on relationships defined between

individual services. Web service choreography is distributed in nature since

there is no central control point.

1.1.2 The N eed for N ew Security Specifications for

W eb Services

The traditional security mechanisms are not enough to secure Web services.

Some of the reasons which give rise to the need to develop new security

specifications for Web seivices include:

6

1.1. W EB SERVICES 1. Introduction

1. SSL/TLS based mechanisms only ensure the security of a message while

the message is in the secure tunnel. The moment the message reaches

an intermediary node, it is decrypted and becomes vulnerable to attacks

(message contents become visible). SSL/TLS based security mecha­

nisms only allow encryption/decryption of the whole message, whereas

Web services may require the encryption of certain parts of messages.

It may not be desirable in Web services to make the whole content of

SOAP messages visible at intermediary points. Therefore, SSL/TLS

based security mechanisms are not enough for securing Web services

data.

2. When originally designed SOAP did not have any built-in mechanisms

for security. It was only intended to provide interoperability between

different platforms. The initial idea was that security should be added

as an extension to SOAP. As a result different security specifications

have been proposed to make SOAP messages secure.

3. A further complexity arises due to the fact th a t SOAP messages are

communicated using the HTTP (or HTTPs) protocol. Traditional fire­

wall filters may allow h ttp traffic to pass through undetected. Both

trusted and un-trusted users can initiate a Web service which passes

undetected through the firewall.

1.1.3 XM L-based Web Services Security Specifications

XML-based security specifications can be used for securing Web services

[NKHBM04]. For example, XML encryption is used to achieve the confiden­

tiality property for Web services. The following throws light on some of the

existing XML-based security specifications used for Web services security.

7

1.1. W EB SERVICES 1. Introduction

X M L Encryption

XML Encryption is a W3C security specification. XML data is text format

da ta and thus additional encryption is required. SSL/TLS security mech­

anisms also use encryption, however, selective encryption cannot be done

using SSL. XML Encryption on the other hand, allows selective encryption

which is desirable for Web services to ensure confidentiality. In the context of

Web services, XML Encryption [Nei03] allows the security principle of confi­

dentiality to be satisfied across more than just the context of a single SOAP

message. XML Encryption can also be used to keep the SOAP message en­

crypted even the message is processed by an intermediary Web service. XML

Encryption involves expressing encrypted data using XML and allowing por­

tions of the documents to be encrypted. Encryption can be performed on

XML elements and contents, on only XML contents, and on arbitrary data.

Encryption steps include: (i) selection of an encryption algorithm, (ii)

obtaining the encryption key, (Hi) serialisation of data, (iv) performing en­

cryption, and (v) specifying the data type. Decryption steps include: (i)

determining the algorithm, parameters and ds:KeyInfo, (ii) locating the key,

(Hi) decrypting the data, (iv) processing the XML elements or XML element

content, and (v) processing data tha t is not an XML element or XML element

content.

XM L Signature

XML Signature, introduced by W3C and IETF, facilitates the digital signing

of XML data, and is used to provide data integrity in Web services [Nei03].

XML Signature allows three types of document signing: (i) the whole docu­

ment can be signed, (ii) different parts of the document can be signed, and

8

1.1. W EB SERVICES 1. Introduction

(Hi) different parties can sign the same document. XML Signature is also

used for authentication and non-repudiation when used in conjunction with

identity-based security. WS-Security employs XML Signature and binds the

“security token” with the SOAP message. XML Signature may also be used

for integrity and non-repudiation of WSDL files. An XML Signature may be

used as: (i) an Enveloped Digital Signature, meaning th a t the signature is

contained within the signed document, (ii) an Enveloping Digital Signature

where the signed data is contained within the XML Signature structure itself,

and (Hi) a Detached Signature which is separate from the signed entities.

SA M L

Security Assertion Markup Language (SAML) [Nei03] is an XML standard

introduced by OASIS. It is used for exchanging authentication and autho­

rization data between an identity provider and a service provider. OASIS

SAML has three types of assertions: (i) authentication, (ii) attribute, and

(Hi) authorization. SAML is mainly concerned with access control for already

authenticated principals based on some pre-defined policies. The SAML ar­

chitecture has two roles: Policy Decision Point (PDP) for making decisions

based on a set of policies, and Policy Enforcement Point (PEP) for enforcing

the decisions. SAML also facilitates single sign-on for Web services.

X A C M L

XACML [Nei03] is used to control access to resources based on the character­

istics of the requester, request protocol and authentication context in XML

format. Access can be granted to resources by using (i) ACL (Access Control

Lists) and (ii) RBAC (Role-Based Access Control). XACML is composed of

different modules including (i) Policy Enforcement Point (PEP), (ii) Policy

9

1.1. W EB SERVICES 1. Introduction

Information Point (PIP), (in) Policy Retrieval Point (PRP), (iv) Policy De­

cision Point (PDP), and (v) Policy Administration Point (PAP). For more

details, readers are referred to [Nei03].

X K M S

XML Key Management Specification [Nei03] is service-oriented and, there­

fore, is implemented as a Web service. It supports management of public

keys for Web services, and defines two Web services for this purpose: (i)

the XML Key Registration Service specification manages functions related

to life-cycle management of public key credentials, and (ii) the XML Key

Information Service specification manages query operations th a t obtain and

validate public key credentials.

The following table summarizes the XML based security specifications

th a t are used for Web services.

X M L Specification U sage
XML Encryption WS-Security, confidentiality
XML Signature WS-Security, integrity, authentication

and non-repudiation
SAML WS-Trust, authentication and delega­

tion
XACML Authorization and privacy
XKMS WS-Trust, trust establishment

1.1.4 W S-* based Web Services Security Specifications

The WS-* security specifications were introduced by a set of organisations

including IBM, Microsoft, VeriSign, and many others. The WS-* family of

specifications include various definitions that each address a specific security

10

1.1. W EB SERVICES 1. Introduction

issue in Web services. In the following, some of these security specifications

are outlined, and their target applications are highlighted, we also summarise

the possible vulnerabilities mentioned in these specification.

W S-Security

WS-Security was introduced as a security specification for securing Web

services. It addresses the basic security requirements, and its further ex­

tensions address more specific requirements. The WS-Security specification

[NKHBM04] defines means of securing SOAP messages by means of secu­

rity tokens and digital signatures to allow secure message exchanges between

applications. It also provides a means of associating security tokens with

message contents.

W S-T rust

W S-Trust was introduced in order to address trust related issues for Web

services security. WS-Security only deals with securing the message contents

and does not address trust issues. The WS-Trust specification [NGG+07]

is an extension to WS-Security. It allows secure communication between

two parties, and focuses on two main aspects: (i) the issuing, renewing and

validating of security tokens, and (ii) ways to establish and manage trust

relationships and how to assess them.

W S-SecureC onversation

In order to address the problem of redundancy in the WS-Security and WS-

Trust specifications, a session-level security specification, WS-SecureConversation,

11

1.1. W EB SERVICES 1. Introduction

was introduced [Aea05]. The main idea here is to establish a shared security

context between two endpoints so that the reestablishment of security cre­

dentials for each message can be avoided. It defines how to provide secure

communication when multiple messages are exchanged. It provides a means

of establishing and sharing a security context and deriving keys from them.

W S-Federation

WS-Federation aims at providing a security solution not only between two

endpoints, but also between two organisations. The WS-Federation speci­

fication [LcaOG] defines mechanisms through which different security realms

can federate, i.e., control authorized access to resources in one realm to prin­

cipals whose identities and attributes are managed in other realm. It defines

mechanisms for the brokering of identity, attribute, authentication and au­

thorisation assertions between realms, and privacy of federated claims.

W S-R eliableM essaging

The reliable messaging extension of the WS-Security specification suite en­

sures the reliable delivery of messages between two endpoints. It does not

address issues specific to security, rather it aims at reliable delivery of mes­

sages. The WS-ReliableMesaging specification [Boa05] defines the reliable

delivery of messages between a source and a destination, and a SOAP bind­

ing required for interoperability. It provides a mechanism to identify, track

and manage the reliable delivery of messages.

12

1.1. W EB SERVICES 1. Introduction

W S -P o licy

The WS-Policy specification [Bea06b] provides a general-purpose model and

syntax for describing policies of a Web service. Security concerns involve

tampering with policies and assertions, which should be signed.

W S- S ecu rity Policy

WS-Security Policy [DLeaO-5] defines a framework for Web services to express

their constraints and requirements, which are represented as policy asser­

tions. This specification indicates the policy assertions for use with WS-

Policy. It can be applied to WS-Security, WS-Trust and WS-SecureConversation.

The following table summarizes the WS-* based security specifications

th a t are used for Web services.

W S -* B ased Specification S ecu rity R eq u ire m en ts A d d ressed
WS-Security Confidentiality, integrity, non­

repudiation, authentication
W S-Trust Trust establishment, trust proxying
WS-SecureConversation Confidentiality, integrity, non­

repudiation, authentication and
trust

WS-Federation Trust federation
WS-ReliableMessaging Security properties (availability)
WS-Security Policy Messaging security policies and trust

policy

WS-Security is a communication protocol providing a means of apply­

ing security to Web services. The protocol works at the application layer

and describes how to embed signatures and encryption headers in SOAP

13

1.1. WEB SERVICES 1. Introduction

messages. It does this by incorporating security features in the header of

SOAP messages. WS-Security alone only ensures message level security. In

order to meet other security requirements, such as the establishment of trust

and session level security, there are various complementary specifications for

WS-Security which, when used together, satisfy a broader range of security

requirements. Figure 1.1 shows the WS-* stack.

ws-
SecureConv

(' -■"v

W S-
Federation

WS-
Trust

Authorization

Privacy

W S-Security

SOAP Foundation

Figure 1.1: Web Services Security Stack.

Figure 1.2 shows a SOAP envelope incorporating WS-Security, with un­

necessary details omitted. The purpose of this example is to show how the

WS-* standards are deployed at the SOAP level. As can be seen in this ex­

ample, the security header is specified and has certain parameters which tell

end systems the necessary information. The information given in green rep­

resents the security token, and that given in purple represents data relevant

for a particular protocol run. For example, the “<nonce>” and “<created>”

sub-elements are used to defend against replay attacks. A ‘nonce’ is a unique

random value used once in a protocol run to help ensure that previous com-

14

1.1. WEB SERVICES 1. Introduction

munications cannot be re-used. In a replay attack valid data is transmit­

ted/delayed with malicious intent. A replay attack can be carried out by

either an initiator or an attacker in the middle of the protocol run.

<Envelope>
<Header>

<Security>

<UscmamcToken Id=2>
<Usemam e>U SER-N A M E</Uscm am e>
<Nonce>cGxr8\v2AnBUzuhLzDYDoV\v==</Nonce>
<Created>2008-08-04T 16 49:45Z</Created>

</Uscm am cTokcn>

</Security>
</Header>

<Body Id= 1 >... </Body>
</Envelope>

Figure 1.2: SOAP envelope incorporating WS-Security

In summary, some of the security challenges faced by Web services include

repudiation of transactions, secure issuance of credentials, insecure services,

the spread of viruses and trojan horses, denial-of-service attacks, incorrect

service implementation, and the lack of quality of service due to improper

design.

1.1.5 Security R equirem ents

Web services are popular because of their dynamic nature, platform inde­

pendence, interoperability, and greater access to data. However, there are

unresolved issues and problems, such as (i) data integrity and confidential­

ity of messages between end points and intermediaries, (ii) the integrity of

the Web service in question has to be established beforehand, and (Hi) the

15

1.1. W EB SERVICES 1. Introduction

availability of the Web service in case of attacks, such as denial-of-service.

Perimeter based technologies are unfit to protect Web services because (i)

they are dynamic and are not restricted or bound to one network, (ii) SOAP

is transferred over HTTP which passes unhindered through firewalls, (in)

TLS is inadequate for protection of SOAP messages as it provides end-to-end

security, but cannot accommodate Web services’ inherent ability to forward

messages to multiple Web services.

A combination of the security specifications discussed in Section 1.1.4 can

be applied to make Web service use secure over the network. Some security

techniques for Web services are as follows:

1. Web service confidentiality can be provided by means of XML Encryp­

tion.

2. The integrity of Web services can be ensured using XML Encryption.

3. Web service authentication and authorization can be performed by us­

ing SAML and XACML, as proposed by OASIS. Also, WS-Security can

be employed for the purpose of confidentiality and integrity of SOAP

messages, thus resulting in end-to-end SOAP message security,

4. PKI can be used for Web services using XKMS.

1.1.6 Vulnerabilities of W S-* Specifications

The WS-* specifications are in the process of maturation. WS-* specifi­

cations are not only vulnerable to threats specific to cryptographic pro­

tocols, but also to threats specifically targeted at them, such as WSDL

Scanning, XML Injection, and so on. We summarise the security concerns

16

1.1. W EB SERVICES 1. Introduction

mentioned in the WS-* specifications[NKHBM04] [NGG+07] [Aea05] [Lea06]

[Bea05] [Bea06b] [DLea05] respectively as follows:

1. WS-Security. There are certain flaws in WS-Security which limits its

deployment when used alone. As a result, further extensions have been

proposed and WS-Security is used in conjunction with these extensions

to provide a security solution. Some of the security concerns not ad­

dressed by WS-Security alone are: (i) freshness guarantee, (ii) protec­

tion of security tokens, (in) certificate verification, (iv) using passwords

without protection, (v) the use of randomness, (vi) man-in-the-middle

attacks, and (vii) PKI attacks.

2. WS-Trust. One of the main security issues of WS-Trust is that the

security token issuance messages are prone to tampering. To avoid

this they should be signed. XML Signature can be used to sign the to­

kens. Security token requests are also prone to denial-of-service attacks.

Symmetric keys and password-containing tokens should be sent to the

concerned parties only. Tokens containing personal information should

adhere to the security policy of the organisation. In multi-message ex­

changes, signatures are susceptible to attacks. To avoid this signature

confirmation methods should be used.

WS-Trust and WS-Security both work at the message level. The major

drawback of this approach is that the trust and security processes have

to be repeated for all the messages in a particular session between two

endpoints. This leads to degradation of quality-of-service.

3. WS-SecureConversation. Some of the security considerations are: (i)

replay attacks - to prevent replay attacks all relevant elements of a mes-

17

1.1. W EB SERVICES 1. Introduction

sage should be included in the signature, and security context estab­

lishment messages should be timestamped, (ii) security context estab­

lishment should contain all policies to prevent attacks like downgrading

in which an attacker tries to downgrade encrypted message content to

something that can be more easily exploited, such as clear text, and

(Hi) authenticating services are susceptible to denial-of-service attacks.

This, however, is not a complete list of possible attacks.

4. WS-Federation. Common attacks to WS-Federation and their pos­

sible prevention include: (i) message alteration (include signatures

of the message information using WS-Security), (ii) message disclo­

sure (encrypt sensitive data using WS-Security), (Hi) key integrity

(use strongest algorithms possible, by comparing WS-Policy and WS-

SecurityPolicy), (iv) authentication (WS-Security and W S-trust), (v)

accountability (strong symmetric keys or PKI signatures), (vi) avail­

ability (one form of attack is replay and countermeasure is WS-Security),

(vii) address spoofing (all addresses are signed) and replay (time-stamp

mentioned in WS-Security), (viii) meta-data alteration (include signa­

tures in meta-data or use secure channels for transfer), (ix) forged se­

curity tokens (Security Token Service must guard their keys to prevent

forging of tokens and requester identities), (x) privacy (Security Token

Service should not send requester’s personal information without con­

sent), and (xi) compromised services (if the Security Token Service is

compromised it must not be able to issue tokens outside the compro­

mised realm).

5. WS-ReliableMessaging. Common attacks to WS-ReliableMessaging

and their possible preventions include: (i) message alteration (include

18

1.2. FO RM AL METHODS 1. Introduction

signatures of the message information using WS-Security), (ii) mes­

sage disclosure (encrypt sensitive data using WS-Security), (Hi) key

integrity (use strongest algorithms possible), (iv) authentication (W S-

Security and WS-TYust), (iv accountability (strong symmetric keys or

PKI signatures), and (v) availability (one form of attack is replay and

countermeasure is WS-Security).

6. WS-Policy and WS-SecurityPolicy. Security concerns involve tamper­

ing of policies and assertions, which should be signed. Unsigned policies

should not be accepted.

1.2 Formal M ethods

Our everyday lives are being governed more and more by computerised sys­

tems, ranging from small systems, such as mobile phones, to large systems,

such as airplanes, industrial plants, and so forth. In critical systems, where

investments or human life are involved, the quality of the system becomes of

crucial importance. Such systems can be validated before deployment using

formal verification techniques. The system, or part of it, can be modelled

at an acceptable level of abstraction and checked for the properties that the

system is supposed to possess. Some of the most famous software failures

[BK08] which could have been avoided are the Intel Pentium II floating point

bug, which caused a loss of about $475 million, and a defect in the software

of the Mars Pathfinder spacecraft which had a disastrous effect. W ith proper

verification, these errors could have been avoided.

Formal methods are a combination of mathematical and logical mod­

els of a system and its requirements [ButOl]. Formal methods have not

19

1.2. FORM AL METHODS 1. Introduction

only been applied to software and hardware systems, but have also been

extended to cryptographic protocols. Cryptographic protocols are aimed at

providing security services across distributed systems. Some of the goals of

cryptographic protocols include secrecy, authentication, integrity, and non­

repudiation. The network is usually assumed to be hostile, in th a t it may

contain intruders who can read, modify, and delete traffic, and who may have

control of one or more network resources. As a result, security protocols are

used in order to make the communication between two nodes secure. How­

ever, the difficulty in designing and analysing security protocols has been

extensively debated over the past couple of decades. The factors responsible

for complicating the analysis process include:

• The properties they are supposed to exhibit are extremely subtle.

• The environment of the communication network is hostile.

• Knowing the capabilities of intruders beforehand is extremely difficult.

• Security protocols are concurrent in nature which makes the analysis

more challenging.

There has been a substantial amount of work done in the analysis of se­

curity protocols using formal methods. The need for this has arisen from the

fact tha t so-called secure protocols have been proved not-so-secure at some

later time. In order to increase trust in any security protocol the security

requirements and promises need to be verified, and formal methods can be

used in this regard. Some of the categories of formal methods are now briefly

described.

20

1.2. FORM AL METHODS 1. Introduction

Theorem Proving techniques correspond to a process where it is shown

that some statement is a logical outcome of a set of statements. The problem

is described in a logical form. Another technique is Type Checking, where

the system is presented in the form of datatypes. Any difference in the types

is considered as a threat to the system. Type checking is automatic and can

handle infinite system states. The main drawback of type checking is that

the type assertions have to be incorporated in the system at design time,

making it a less scalable option.

In Belief Logic the possible states of the system are expressed as a set of

rules, or “beliefs” . These systems can be thought of as an “expert system”

which has a knowledge base consisting of rules in the system. This concept

was first proposed by Burrow, Abadi and Needham in their work on BAN

logic [BAN90]. The main theme proposed in BAN logic is th a t the “beliefs”

or “tru st” in the system are presented as rules in the system. As in more

recent forms of expert systems, new rules can be inferred from the existing

rules. The verification process is then simply to look for any rule violations.

The work presented in this thesis is based on the Model Checking tech­

nique. The next two sub-sections describe the model checking process and

give an introduction to the Spin model checking tool used in this thesis.

Model checking is an automatic verification technique. The verification pro­

cess is an exhaustive search of all the possible states in the system. It is

fast and does not require mathematical proof. Model checking also generates

counterexamples for the model under consideration. Logic can be expressed

easily as temporal formulas. However, the main disadvantage of model check­

ing is the state explosion problem.

21

1.2. FORM AL METHODS 1. Introduction

1.2.1 M odel Checking

Model checking based approaches can be described as a sequential process

involving (i) modeling, (ii) specification, and (Hi) verification. In the mod­

elling phase we present the system in a formal notation having a finite set

of discrete states. The specification phase deals with presenting the formal

system in some form of mathematical or logical way, for example, temporal

logic, predicates, finite state automata, and so on. The actual validation

of the correctness of the model is done in the validation phase. The model

checking systems are also referred to as state exploration systems, where the

possible set of paths which an intruder may take are specified.

The model checking process consists of a system model describing the

behaviour of the system. The system is represented as a finite state model

and is automatically generated from a model description language, such as

Promela, pi calculus, etc. This thesis presents a system model of the proto­

cols used, and describes the environment these protocol will be active in. The

properties of the protocol are given as formulas in Linear Temporal Logic.

The protocol models are then translated into Promela and simulations and

verifications are performed on them.

In some cases, the system model is automatically generated from a model

description that is specified in some appropriate dialect of a programming

language. These system models are accompanied by algorithms that system­

atically explore all states of the system. This leads to different verification

techniques, such as model checking, simulation, or in testing in reality.

22

1.2. FORM AL METHODS 1. Introduction

In order to describe what the system ought to do, property specification

languages like Propositional Temporal Logic, or PTL, can be used. Such

languages are used to express correctness properties of a system. They are

extensions of propositional logic, and reason about the system in terms of

time.

1.2.2 Spin M odel Checker

This sub-section gives a brief description of the model checking tool used in

our research. Spin (Simple Promela Interpreter) [Hol03] has been used for

model checking various software systems. A verification model consists of a

set of facts about the system which we want to verify, and aspects of the

system which are needed to verify those facts. Spin can be used for veri­

fying the correctness of verification models. These verification models can

be described in a specification language. Spin is used in this thesis because

it counters the state explosion problem by using the partial order reduction

algorithms built into it, thus reducing the number of transitions and states in

the system. Spin can generate reduced state space, with only representatives

of classes of execution sequences that are indistinct for a given LTL prop­

erty. Partial order reduction [Hol03] works with commutative property of

concurrently executed traditions that result in the same state when executed

in different order.

The specification language that Spin takes as input is Promela. Spin can

be used in two modes: simulation and verification. Simulation provides a

representation of types of behaviour of the system model. Verification is per­

23

1.3. PROBLEM FORMULATION 1. Introduction

formed to prove some facts about a system. One way of representing these

facts is in the form of Linear Temporal Logic, as is explained in more detail

in Chapter 3. XSpin is a graphical interface to Spin tha t provides a visual

environment for the simulation runs.

Promela is an acronym for Process Meta-Language. Promela is a speci­

fication language used for describing abstractions of the system design, and

is not an implementation language. The focus of Promela is on modelling of

process synchronization and coordination, and not on computation.

1.3 Problem Formulation

“Security protocols are three-line programs tha t people still manage to get

wrong.” (Roger Needham).

1.3.1 Research Objectives

The main research objectives of this thesis are as follows:

(i) Can Web services based cryptographic protocols (WSBCPs) be modelled

using automata to reflect the 1operations ' and 1properties ’ the protocol is

supposed to satisfy?

(ii) Can the Dolev- Yao model be extended to cater for WSBCP-specific

attacks using traditional model checking techniques?

(iii) Can WSBCPs and their goals be accurately modelled and analysed

using existing model checkers, and can attacks based on the Dolev-Yao

model be detected?

24

1.3. PROBLEM FORMULATION 1. Introduction

The Dolev-Yao model is a formal model introduced by Dolev and Yao to

prove the properties of communicating protocols. The details of the Dolev-

Yao model are discussed in Section 1.4. A pushdown automaton is a finite

state automaton which uses a stack containing data to decide which transition

to take, as discussed further in Section 4.2.

1.3.2 Proposed Analysis

This thesis proposes to use a multi-stack pushdown automaton model to

map the ‘functionality’ and ‘properties’ of WSBCPs. Two stacks are used

for the two legitimate services A and B participating in the protocol run.

Each participating service is allocated its own stack. The number of stacks

depends on the services involved in the protocol. The stack contains the

operations th a t must be applied to the service before proceeding to the next

state in the protocol run. We deviate slightly from the traditional definition

of stack elements. Stack alphabets are defined as functions. The combination

of autom aton and the stack expounds the ‘functionality’ and ‘properties’ of

the WSBCPs tha t the protocol is supposed to satisfy- At the end of a suc­

cessful run, the stack is empty and the protocol ‘goals’ are satisfied. The

WSBCPs are modelled using traditional cryptographic notations (symbolic

cryptography) and present the protocol environment as a transition system.

Promela is used to model the protocol and its environment. Spin is used to

perform simulations and verify the models. A protocol run is said to be cor­

rect with respect to some property when at the end of the run the protocol

has satisfied th a t property throughout the run. For example, if the property

of the protocol is secrecy, then at the end of the run the message contents

should have remained secret thus implying a ‘correct’ run of the protocol.

This thesis examines two protocols: the Simple Message Exchange Proto­

25

1.3. PROBLEM FORMULATION 1. Introduction

col (SMEP), based on WS-Security, and the Security Token Protocol (STP),

based on WS-TYust. SMEP is said to be correct when it satisfies secrecy

and authentication goals. STP is said to be correct if at the end of a run

services agrees on a full security context, while maintaining authentication

and secrecy. Linear Temporal Logic is used to specify these properties of

WSBCPs for verification using Spin.

This thesis also studies the application of the Dolev-Yao model to WS­

BCPs, and extends the model to encompass attacks targeted at Web services.

An intruder model in Promela is created for the Dolev-Yao abstraction and

our proposed XML Injection attack model. SMEP and STP are subjected

to these attacks. This thesis studies the suitability of applying traditional

cryptographic model checking techniques to WSBCPs. The thesis models

and analyses WSBCPs using an existing model checker (Spin), and detects

attacks based on the Dolev-Yao model.

The focal point of the thesis is a methodology based on automaton theory

for modelling WS-* cryptographic protocols. The approach will allow us to

model the properties and the behaviour of the protocols in a singular model.

This approach can also be extended to protocols that are not described us­

ing WS-* specifications e.g TCP/IP, Needham and Schroeder protocol[NS78].

We use push-down automata to to model WSBCPs as the combination of

the input tape, automaton and the stack allows us to capture the behaviour

and properties of the protocols.

A blocking protocol is one where the protocol is blocked till the previous

26

1.4. ATTA C K MODEL 1. Introduction

step in the protocol has been satisfied. PDA will cause the SMEP and STP

to reflect blocking behaviour. The next step in the protocol run will not be

executed till the previous step has reached an end.

SMEP and STP protocols are synchronous in nature. Synchronous ser­

vices are characterized by the client invoking a service and then waiting for

a response to the request. The sender service will wait for the response from

the receiving service before the execution of the next protocol step. How­

ever, the security token service can be extended to emulate asynchronous

behaviour. W ith asynchronous services, the client invokes the service but

does not or cannot wait for the response. When communicating with multi­

ple clients, STS will not require to complete the existing protocol run. STS

can initiate multiple protocol runs simultaneously.

1.4 A ttack Model

It is assumed that A 1 and ‘B ’ are the two endpoints initiating a conver­

sation after establishing a secure session using WS-Security, WS-Trust and

WS-SecureConversation. There is a possibility that an attacker can tam per

with the contents of individual messages on their way from the source to the

destination. In the presence of such an intruder with certain privileges, the

aim is to validate whether the security specifications under study behave in

a secure manner. Such tampering may go undetected, that is, the attacker

may disguise itself as if it was the trusted source. The attacker may tamper

with the message in order to achieve denial-of-service (DoS), replay attacks

and initiate its own session with service lB \ Figure 1.3 illustrates the con­

27

1.4. ATTACK MODEL 1. Introduction

cept in more detail. In this figure Service A sends messages to Service B. An

attacker intercepts the messages, tampers with them, and then forwards the

modified messages to Seivice B. This kind of tampering may go undetected,

resulting in denial-of-service, replay attacks, etc.

Service
A

Is Secure Conversation

13 13 13 13

>: 1 ampcrvd envHope*

------ ------- 7*
\ 2: .Sniffed envelope* f

\
\ 13 /

;13 \ 13/13 '!
1 13 \ /IS >
i 13 \ /is y

Service
B

•»••*••••* 3: ia m p rrrd rnvelopei

>L_±_JL

Figure 1.3: Message tampering scenario in a secure session

It is assumed that the attacker in our model has abilities as specified by

the Dolev-Yao model. These are the ability to:

• Overhear and intercept all the messages over the network.

• Modify the messages.

• Generate new messages using information from overheard messages and

some prior information.

• Send a new or captured message to another entity in the system.

It is also assumed that the underlying cryptography cannot be broken.

Figure 1.4 shows an XML rewriting attack. The sender A in this case

is trying to send a fund transfer request to B. The message is intercepted

28

1.5. THESIS OVERVIEW 1. Introduction

by the intruder, and modified so that the funds beneficiary is changed from

A to ‘Intruder’. This attack was only possible because the message body

was not correctly signed. Although the password of the sender has not been

broken, nevertheless, the attack was still possible because only the body was

rewritten and the encryption key had already been trusted by the receiver.

<Envelope>
■'Header'

-Security-

<UsemameTv>ken Id“ 2>
<Usernamc> A </>
<'N,oac*>cOxr8w2Ai»BUzuliLzDYl>oV w* ™ < S>
<Crwte4>2008*08-04T 16:49:45Z</>

</lJseraamcT oken>
<Signature>

<SignedInfo>
Reference U RI- #1 xDigestValue^KgoO .</>

'SignatuieV alue>vSBl)Jl'Wr8>kpAlaxCx2K<J\jZcc‘ </>
<KeyInfo>

-SccurityTokenRefcrencexReferenee URI=#2/>

</S«curity>
</Header>

^Body Id=l>

: <TransferFunds>
; <beneficiary>! ’></>

■ <amount> I unO</>

</Body>
</Envelope>

<Envelope>
•'Header>

<Security>

'UsernaineToken Id- 2>
'■Usemame>Alice </>

<Nonce>c<ixrXw2AnB(JzuhLzDYDoVw --=</>

<Creatcd>20iJ8-0S-04T16:49:45Z<£>
</Usema«neToken>
"^Signature'

<SignedInfo>
-Reference URI ■> I > - DigestValue>Kgo<)...</>

<SignatureValuc>sSB9Jl r/Wr8ykpAlaxCx2KdvjZcc-</>
<KeyInfo>

'SecurityTokenRefercncexR eference URI=4#2/>

</Security>
</Header>

<Body Id=l>

<TransferFunds>
<beneficiarv>Lntrudei</>

<amount>5 000</>

</Body>
</Envelope>

Figure 1.4: An XML rewriting attack

1.5 T hesis Overview

The rest of this thesis is organised as follows. Chapter 2 gives a review of

the existing literature in the area. Chapter 3 defines the system model and

gives the definitions for the WSBCPs used in this work. Chapter 4 contains

the pushdown automaton model for the WSBCPs. Chapters 5 and 6 define

the Promela models for the protocols and give simulation and verification

results, respectively. Chapters 7 and 8 specify the XML injection attack

29

1.5. THESIS O VERVIEW ______________________________1. Introduction

model, and give the simulation and verification results. Chapter 9 presents

the concluding remarks, contributions, limitations, and future work.

30

CHAPTER 2

Literature Review

As the complexity of software and hardware systems increases over time,

the adoption of formal methods for verifying the correctness of such systems

becomes increasingly appealing. Software and hardware errors may not of­

ten threaten lives, but they sometimes have a serious financial impact - it

is all about money [BK08]. Society is becoming increasingly dependant on

computer networking, which in turn has lead to the adoption of cryptog­

raphy in a variety of complex systems, e.g., financial transaction systems,

online ticket reservation systems, Amazon, eBay, PayPal, etc. As systems

grow more complex the threats to these system becomes manifold. Not only

is it necessary to defend against intruders, but also against denial-of-service

attacks and network traffic monitoring.

Over the course of the past two decades, researchers have been apply­

31

2. Literature Review

ing formal methods techniques to cryptographic protocols for verifying the

correctness of the protocols. For the purpose of modelling and verification,

not only have general-purpose tools been developed but also tools for specific

tasks have evolved.

This chapter first presents some emerging trends and issues for crypto­

graphic protocols and their analysis, and also presents research being done

and gaps in this area. The current research directions and issues in the

formal analysis of Web services based security protocols are then discussed.

Cryptographic protocols use cryptography to distribute keys and data over a

hostile network. A network is said to be hostile in the presence of an intruder

who can read, modify and delete traffic.

In general, the types of formal methods used for analysing security pro­

tocols lie in following categories:

1. State exploration/model checking.

2. Theorem proving.

3. Ifype checking.

Model checking based approaches can be described as a sequential or an

iterative process involving (i) modeling, (ii) specification and (Hi) verifica­

tion. In the modeling phase the system is presented in a formal notation in

terms of a discrete finite set of states. The specification phase deals with

presenting the formal system in a mathematical or logical way, for example,

with temporal logic, predicates, finite state automata, and so on. The actual

validation of the correctness of a model is done in the validation phase. Model

32

2. Literature Review

of showing that the state space was sufficient to guarantee security.

Finite state modelling does not give proof of security for the entire set of

possible states, however it allows unambiguous statements about the condi­

tions under which the deductions hold and an effective procedure for checking

them. Finite state models are useful for analysing the security of crypto­

graphic protocols as they allow an analysis of possible paths of the intruder

to be made, and also allows assumptions about the environment of the sys­

tem to be defined.

Theorem proving techniques are correlated to a process th a t shows that

some statement is a logical consequence of a set of other statements. The

finite state condition is loosened here. The system needs a precise description

of the problem written in some logical form. On the other hand, type check­

ing aims to present the system elements in the form of data types. The type

variations in the system axe then considered as possible threats in the system.

Similar to a model checking system, type checking is also fully automatic,

and has an added advantage of handling infinite system states. However,

the main drawback of type checking is that the type assertions have to be

incorporated into the system at design time, making it a less scalable option.

Relevant work on type checking can be found in [Aba99, GJ03].

Recent research trends have been in state exploration and theorem prov­

ing techniques based on Dolev and Yao’s model. Lowe [Low96a] showed that

a gcncral-purposc model checker can be used to find attacks in the Needham-

Schroeder public key protocol. Lowe used the FDR model checker to find

man-in-the middle attacks, and was one of the first to use a general-purpose

34

2. Literature Review

model checker for analysis of cryptographic protocols. This led to the appli­

cation of theorem provers [Pau98, DS97] and model checkers [DK99, MMS97]

to the problem. Work was also done on the design of purpose-built model

checkers [Hui99, MCJ97, SBP01]. Research is still being done to show that

the finite search space for model checkers is sufficient under certain situations

[SBP01, MCJ97, ALOO, FA01, MS01].

Millen developed CAPSL [DM00], a common authentication protocol lan­

guage. Thayer developed the Strand Space Model [FHG98], a graphical rep­

resentation of the Dolev and Yao model.

Paulson used the Isabelle theorem prover for analysis of cryptographic

protocols. The main problem with theorem provers was the lack of coun­

terexamples generated [Mea03, MR00, CohOO, HS00].

Belief logic, on the other hand, is different from state exploration tech­

niques, and expresses the possible states of the system as a set of rules, or

“beliefs” . Such a system could be thought of as an “expert system” which

has a knowledge base consisting of rules in the system. This concept was

first proposed by Burrow, Abadi and Needham in their work on BAN logic

[BAN90]. The main theme proposed in BAN logic was th a t the “beliefs”

or “trust” in the system are presented as rules in the system. As in more

recent forms of expert systems, new rules can be inferred from the existing

rules. The verification process is then simply to look for any rule violations.

For example, if a key is believed to belong to a particular participant, say

‘X’, then any message coming from ‘X’ signed by the same key is considered

trustworthy. Whereas, if another participant, say ‘Y’, tried to use the same

35

2. Literature Review

key for sending a message, then it is considered to be illogical, and hence is

reported as rule violation.

State exploration techniques are stronger than BAN Logic [BAN90], as

BAN logic works at a higher level of abstraction. W ith the improvement in

state exploration techniques, interest in BAN logic subsided. State explo­

ration techniques are focused on exploring the possible paths in the system

which could be taken by an intruder. The number of states must be kept suf­

ficiently small so that the analysis can be performed in a reasonable amount

of time.

Belief logic systems make the big assumption that the rule-making process

is free of errors. They are considered to be less effective than state explo­

ration systems [Mea03]. Lowe [HG01, Low97, Low96b] modelled protocols in

CSP and applied a model checker to test its behaviour. These methods can

detect attacks quickly but keeping the state space small requires assump­

tions which simplify the model and results in loss of accuracy. Paulson’s

work [Pau97, Pau99] also used an inductive approach. The protocol was rep­

resented as an infinite number of statements as a set of traces. Due to the

large number of inductive definitions, the resulting proofs were complicated,

however, they presented a more rigorous analysis.

The most recent approach to cryptographic protocol analysis is type

checking [Aba99, BCJS04]. Security problems are identified by assigning

message channels types and identifying type violations. The main drawback

of this approach is the consideration of security violations when writing the

specification. However, in model checking security violations axe represented

36

2. Literature Review

as temporal logic and axe independent of protocol specification.

Cryptographic protocols operate in different types of environments such

as IKE[HC98] and SET[RRM], and thus are required to be more adaptable

and complex. Increasing the complexity makes it difficult to verify the pro­

tocol. W ith the increase in types of threats, the analysis of these protocols

becomes more critical. There are a number of different tools available for

verifying safety properties, such as secrecy and authentication, for crypto­

graphic protocols. These tools axe based on the attacker model presented by

Dolev and Yao. Due to the security of the protocol being an undecidable

problem [EG83, HT96, CDL+99], the results of the tool are unsuccessful at

times.

Some of the research gaps in the analysis of traditional cryptographic

protocols include unbounded protocols, where the number of data fields is

not limited. As the environment and the intruder behaviour become more

complex there is a need for research into new threat models for protocols.

Dolev and Yao’s intruder model needs to be extended to handle these new

threats, such as denial-of-service attacks, or else new threat models need to

be developed and embedded into the current analysis techniques. Current

tools cannot be directly used for the detection of these types of attack. An­

other challenge faced by the research community is in formal analysis of Web

services based cryptographic protocols, which axe more complex in nature,

and not only encounter challenges in common with traditional protocols, but

also possess their own set of problems.

W ith the advent of Web services, there has been an increase in the chal­

37

2. Literature Review

lenges faced when designing security protocols. In Web services technologies,

the WS-* stack has been used for ensuring Web services security. However,

Web services based security protocols not only face the normal challenges

of cryptographic protocols, but also additional ones. In order to make Web

services available across different platforms, simple XML based standards

are introduced. The main idea is to use simple text-based messages for

communicating between different parties. The architecture of such systems

requires tha t certain portions of the XML based SOAP envelopes be en­

crypted. This complicates the security process since the unencrypted por­

tions of a SOAP message leave it open to threats. WS-Security make use

of XML Encryption and XML Signature to ensure general SOAP message

safety, since these are the main security mechanisms for authentication and

secrecy [Rea02, ERS01]. However, there have been certain enhancements

to the basic WS-Security specification. The focus here is on trust estab­

lishment and session level security which is provided by W S-Trust and WS-

SecureConversation [NGG+07, Aea05]. Further, only the work done in the

area of formal analysis of the standards under discussion is presented.

Before the related work on the formal analysis of Web services is pre­

sented, it is important to discuss the use of the Dolev-Yao model for analysing

the WS-* stack. Backes and Gob at IBM Research [BG05] have presented

their findings on the use of the Dolev-Yao model for Web services security.

They present a list highlighting the points which could be improved in the

Dolev-Yao model assumptions when used for formal analysis of Web services

security protocols. A similar set of guidelines was proposed by Meadows

[Mea03] which pointed out new trends in security protocols and the abilities

of attackers who are assumed to have more powers now than those assumed

38

2. Literature Review

in the Dolev-Yao model. One such ability of an attacker is cryptanalysis.

Cryptanalysis is the study of methods for analysing and decyphering en­

crypted information [Jou09]. Backes’ work on the other hand gives a more

focused discussion for Web services.

Most of the work done in formal analysis is based on work done by Dolev

and Yao. Although the Dolev-Yao model has been widely adopted by the re­

search community for modelling the environment for cryptographic protocols,

in the context of WSBCP, with their complex behaviour and the possibility

of new attacks, there is now a need to modify the Dolev-Yao intruder model.

Thus, the model needs to be tailored to W SBCP’s. We also believe that

ignoring the low level details may result in missing necessary requirements.

The Dolev-Yao model is suitable for a behavioural analysis of Web services

based security protocols but for more detailed analysis the model needs to

be extended.

Blanchet et al. [Bla02] have presented a performance analysis of differ­

ent security protocols. Their approach is to present the system in terms of

belief logic, where rules for system transitions are presented in the form of

predicates. They given a computational analysis of a number of rules needed

for different security protocols, and the amount of time required to validate

the rules. They have analysed both authentication protocols, Needham-

Schroeder and Woo-Lam [WL93, Low96b, Sch98, BAN90], and the protocols

involving session keys. Their results show tha t their fully automatic approach

was able to detect flaws in protocols with no false alarms. However, the state

space in their work is kept small, and the assumptions made in order to keep

the model small results in less accuracy.

39

2. Literature Review

Tobarra et al. [TCCD07] used a model checking approach to do a formal

analysis of the WS-SecureConversation standard. In their work, they have

used a high level formal language, HLPSL, for specifying system require­

ments. The requirements are then analyzed using one of four different veri­

fiers available in the AVISPA architecture [ABea05]. The capabilities of the

attacker are in accordance with the Dolev-Yao model [DY81]. Their work

has highlighted tha t when used with other complementary WS-standards,

like WS-Addressing [Cea04] and WS-Security, WS-SecureConversation could

eliminate certain threats including replay attacks and false password attacks.

Kleiner et al. modeled Web service security using CASPER and FDR

[KR05]. After giving the model of Web service security, they present an ex­

tension of <j> (a mapping function from SOAP message to CASPER input)

for modeling WS-SecureConversation. As in Tobarra et al. [TCCD07], they

also conclude tha t including essential elements from WS-Addressing helps to

control replay attacks. They also show that careless use of the Web Services

Enhancement protocol (WSE), which allows developers to build secure Web

services based on the latest Web services protocol specifications, may lead to

denial-of-service attacks. The authors have commented th a t the correct au­

thentication of clients should be used rather than relying on the mechanism

of the WSE suite to detect replay attacks. WSE considers any subsequent

Request Security Token messages from the same client as replay attacks.

However, the client may be trying to establish multiple sessions with the

server. They have presented their solution to bind the Request Service To­

ken message with the client using negotiation. Their contribution is a formal

translation of WS-SecureConversation to a traditional cryptographic proto­

40

2. Literature Review

col. They have presented their model at a higher level of abstraction, thus

excluding the detailed structure of tokens in WS-SecureConversation. This

high level of abstraction may result in errors being undetected.

Gordon et al. in their early work introduced the concept of “spi calculus”

for modelling SOAP security headers [GP02]. They present a theoretical

model of web security abstractions. This work formed the basis of a later

version of their work which specifically focused on the WS-* stack. In this

work, they have presented the ground work that how object calculus can be

used to present the primitives for creating and calling Web services. They

gave their own implementation of the proposed model. In their later work

[BCFG04], they have extended their approach and have presented the model

in the their proposed language, called “TulaFale” [BF04].

Bhargavan et a l proposed TulaFale which is based on predicate calculus

[BF04]. In this work, the authors have successfully applied the pi calculus

based TulaFale model to represent WS-Security. The system is presented in

the form of messages passed over either a public channel or a private chan­

nel. The start of a communication process is marked with a “begin” message

and there is an “end” message at the end. The “begin” and “end” identi­

fiers are used to ensure the authentication and correlation requirements. The

messages are expressed in the form of predicates. The authors show that

in certain cases when time stamps are not signed, there could be replay at­

tacks. They have shown that their “TulaFale” model detects these variations

in the original traffic. The main predicates arc presented in two forms. Con­

structor methods are used to apply some function to the given data, such as

encryption. Destructors on the other hand do the reverse and extract the

41

2. Literature Review

information from the given data, such as in the decryption process. A pred­

icate is defined as a logical combination of these constructor and destructor

methods. Messages are created using “mkMsg” predicates and checked using

“isMsg” predicates. The normal TulaFale messages are sent over the public

channel, however, the secret keys are sent over the private channel. The pro­

tocol run is then analyzed using the ProVerif analyzer tool [BlaOl, Bla02].

This work sets the foundation for extending it further to analyse WS-Trust

and WS-SecureConversation.

The work of Bhargavan et al on secure sessions for Web services applies

the same model to WS-Trust and WS-SecureCoversation [BCFG04]. The

model of these protocols is represented as a TulaFale language script. Their

model pointed out certain vulnerabilities in the standards under study and

proposed corrections. In a similar work, Bhargavan et al. use the “F # ” lan­

guage to model the WS-Security protocol and use ProVerif for verification

purposes [BFG06, BFGT06]. The work in this thesis is primarily inspired by

the TulaFale work. However, we believe that the model can be presented in

a more dynamic and flexible way by using multi-stack pushdown automata

for specifying system functionality.

One limitation to the pi calculus approach in [BF04, BCFG04, BFG06,

BFGT06] is the modelling of non-determinism. The non-determinism in the

pi calculus approach is controlled by the attacker. Their model does not of­

fer complete protection against replay attacks. A necessary addition to their

work is that not only timestamps need to be signed, but also nonces should

be signed for replay detection. Also, predicates satisfy properties by pattern

matching and are sensitive to the structure of the message.

42

2. Literature Review

Decision procedures have been proposed for analysis of cryptographic

protocols, and Chevalier [Cea07] applies these to Web services based security

protocols. We believe the flexible format of the XML structure and partial

parsing of the SOAP message makes it difficult for modelling and analysis.

They have modelled services using deduction rules and equations that reflect

all the possible operations of the participants. Their work is complimentary

to the Samoa project [Res]. The main contribution of their work is develop­

ment of a verification procedure that detects rewriting attacks.

Other prominent work on the formal analysis of Web services includes the

Johnson model [JJLea04] for the Web service atomic transaction protocol in

the TLA language and checked by the TLC model checker [LW09]. TLA

fails to capture the WS-AtomicTransaction specification in detail. Backes

[Bea06a] has conducted an analysis of WS-ReliableMessaging. Diaz et al.

[DPC+06] have also approached this problem using model checking. Their

work, however, focuses on time critical applications of Web services. They

have discussed a realtime flight reservation system in which the transactions

are time-bound. They have shown that the entire system state can be mod­

elled in the form of finite state automata with an additional tagging of time

along the edges. The transition decisions are constrained by the time elapsed

from a given point. The concept of timeout, however, is already available in

the WS-* stack and could be used to our advantage. Their work does not

focus on the security aspects of Web services based security protocols.

Huang [HM06] has made a brief survey of model checking technologies

suitable for Web services. Various models, such as OWL-S, BPEL4WS and

43

2. Literature Review

WSDL describe Web services, but are semi-formal. There is a need to gener­

ate formal models that axe mathematically rigorous as required by a model

checker. WSAT [Fea04] is a front-end tool for translating guarded automata

into Promela accepted by Spin [Hol03]. UPAAL [Bea04] accepts realtime

models and checks for timing constraints. BLAST [Hea02] is used for model

checking workflows. Blade [TP05] implements proof slicing techniques for

model checking.

AVANTSSAR [AVA] project is an ongoing project which is follow-on

project of AVISPA project discussed earlier. AVANTSSAR investigates ex­

tensively the different adversary models for compromising data. It highlights

some of the possible extensions to Dolev-Yao model. The XML injection at­

tack discussed in the project focuses on the attack that a new node is inserted

to the XML envelope by the intruder and does not include the attacks where

additional information is added to the content of an XML message. When

a node is inserted into an XML envelope it leads to some information being

added to the message. Inserting a new node to the XML structure may go

undetected by the destination service during parsing. Similarly, some con­

tent can be added to the SOAP message to change its meaning. Inserting

some content in the message digest for signature or encryption will cause the

message to fail authentication and will be rejected by the destination service

during parsing. The models used in TSSAR project are independent of the

security properties of a protocol and the channels explored by the project

support different security properties such as confidentiality, authentication

or both. However, once compromised, these channels can lead to complete

control of the channel by the intruder. The main focus of their work is

on securing channels by assigning them specific goals. Work described in

44

2. Literature Review

[BCFG04] is based on only securing the protocol run itself.

A leading trend for modelling Web services security protocols is to use a

form of pi calculus. Other possible technologies for modelling and analysis

of Web services based security protocols need to be investigated which may

yield better modelling and analysis results. Moreover, there is a need for

a feasibility analysis on the application of traditional model checking tech­

nologies to Web services protocols. So far, the focus has been on designing

protocols and finding attacks on them. Another possible approach is to show

the lack of attacks against protocols based on Web services specifications.

Recent works in the application of formal methods have been towards the

modelling and improving of workflows in web services [pol], [pot]. [NB11]

studies scenarios where the composition process may lead to failure due to

incomplete specification of goal or unawareness on user’s side of the func­

tionality provide by the service. Kucukoguz [KS11] studies the modelling of

artifact-centric data-aware workflow model. Fu [Full] proposed a logic based

framework for formally specifying and reasoning about the implementation

of privacy protection by a web application.

In other works, Christiansen [CC11] provides a first direct formalisation of

the semantics of inclusive gateways described in Business Process Modelling

Notation. Hee [HM11] concentrates on refinements of service composition

using Petri nets. [ACN11] presents a methodology for passive testing based

on invariants of distributed systems with time information. Properties under

test are represented by invariants. When the tested system performs a re­

quested task, the behaviour is reflected in the invariant. The invariants work

45

2. Literature Review

by checking the correctness of the logs recorded in each isolated system.

Weidlich [WEW11] studies the behavioural consistency of process models

representing different process perspectives. Formal models are being widely

adopted for verifying not only the security but also the different aspects of

web services such as composition and choreography.

The main objective of the modelling process has been to standardise Web

service based security protocols so that they can be adopted widely. We be­

lieve tha t Web services security based protocols can be modelled in a better

way using autom aton theory. Automaton theory will allow us to model in

detail the XML based messages. In this thesis Web services based protocols

are modelled in terms of Dolev Yao abstractions. The cryptographic oper­

ators are considered symbolically. Fully automated verification techniques

are applied to the abstractions. We investigate whether the existing formal

verification techniques provide adequate modelling and analysis features for

security protocols based on Web services.

We propose the innovative approach of using Multistack Pushdown Au­

tomata [HMU06] for modelling Web services based security protocols, where

each service has a dedicated ’function’ stack to be applied to the messages.

We believe th a t such a model has more promising features and could easily

detect any variations from the true model. We perform model building us­

ing pushdown automaton theory, and build the Web services based security

protocols based on these automaton models using traditional cryptographic

notations. The main benefit of using this approach is th a t the discussion can

be extended beyond the Dolev-Yao model. As pointed out in Meadows’ and

Backes’ work [Mea03, BG05], recent trends in network security infrastructure

46

2. Literature Review

may require the attack model to be made more robust. However, we argue

that a more flexible system is required to incorporate such an attack model.

We start our analysis by assuming the attack model to be Dolev-Yao based.

However, after completing our preliminary analysis we intend to add an XML

Injection Attack to the Dolev-Yao framework. The work in this thesis tries

to address vulnerabilities in the area of WS-* stack security.

The contributions of this thesis are in the application of automaton the­

ory to Web services based security protocols, in particular the novel approach

to modelling WS-Security and WS-Trust by using pushdown automata. This

thesis presents a transition system for the environment of these protocol runs.

We believe th a t modelling using automaton theory makes the detection of

variations to the XML based message easier. Also, finite state modelling

is more suitable for modelling Web services as the state explosion problem

can be controlled. State explosion is an exponential growth of state space

in real world problems. Model checking tools axe faced with the state ex­

plosion problem. There are some approaches to resolve this problem, such

as symbolic algorithms, bounded model checking algorithms, partial order

reduction, abstraction and counter-example guided abstraction refinement.

In this thesis partial order reduction is used to control the state explosion

problem. Our approach is also more sensitive to content tampering. We

show tha t our model is able to detect XML injection attacks. To the best of

our knowledge this is the first attem pt to model WS-Security and WS-Trust

based cryptographic protocols in Promela and Spin. Our preliminary ap­

proach allows the properties of the environment and the model to be defined

in a more flexible and precise way using Linear Temporal Logic. We define

authenticity and secrecy properties and present them in Linear Temporal

47

2. Literature Review

Logic [KM08]. We also present an intruder model based on the Dolev-Yao

abstraction for WS-Security and WS-Trust based protocols in Promela. The

intruder model is extended to encompass XML injection attacks. Spin and

Promela form an effective analysis tool for cryptographic protocols and fi­

nite state systems. We adopted Promela for our web services based protocol

model and Spin for verification for this purpose.

48

CHAPTER 3

System Model

“Model checking is an automated technique that, given a finite

state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that

model” [BK08].

3.1 Chapter Objectives

The aim of this chapter is to define a system model of protocols using WS-

Security and WS-Trust. The chapter deal with two main topics: system

properties and modelling protocols. The requirements will be modelled as

linear temporal logic formulas and the system/protocol environment will be

formalised as a state transition system. The combination of the property

specification and system model will be input to the Spin model checker. The

49

3.2. MODEL CHECKING 3. System Model

environment will be modelled for each of the protocols described. This chap­

ter lays the foundation for the following work on analysis.

3.2 M odel Checking

3.2.1 M odel Checking Process

Model checking is based on a collection of techniques for the automatic analy­

sis of a system. The model checker takes as input a description of the system

and the properties of that system. The system in most cases is defined as a

finite state system and its properties are expressed as temporal logic formu­

las. The model checker verifies whether the properties hold or not. In most

cases if a property does not hold the model checker gives a counterexample.

In practice, the model of the system being analysed is approximate, thus the

results are limited as well. Errors in the model may still remain after the

verification.

When applying model checking to a system design, three main phases

may be identified, as described in [BK08]:

1. Modelling Phase. The modelling phase consists of (i) modelling the

system in a language acceptable to the model checker being used, (ii)

quick simulations on the model, and (Hi) using the property specifica­

tion language to formalise the property to be checked.

2. Running Phase. The system is checked to see if the properties defined

using the model checker hold.

50

3.3. MODELLING CRYPTOGRAPHIC PROTOCOLS 3. System Model

3. Analysis Phase. This checks whether the properties specified are sat­

isfied or not. Depending on the result, the model is then refined, the

properties re-designed, and the process repeated.

Figure 3.1 gives an overview of the model checking approach. The re­

quirements of the system under consideration are first identified and these

requirements are then formalised in some property specification language.

The system is then modelled in a language acceptable to the model checker.

A combination of the model and the properties of the model are then fed

into the model checker. The model checker outputs the results as ‘satisfied’

if no property is ‘violated’, or ‘violated’ if a property fails for the model.

To build any model for verification purposes there are recommendations

that should be followed. Following these guidelines helps to model the sys­

tem under consideration correctly. The system reflects its desired properties.

3.3 M odelling Cryptographic Protocols

Before our protocol model is defined, there are certain guidelines for crypto­

graphic protocols that should be followed. Since Web services based security

protocols are, in essence, XML based cryptographic specifications, we have

tried to follow these guidelines in designing the system under consideration.

51

3.3. MODELLING CRYPTOGRAPHIC PROTOCOLS 3. System Model

Figure 3.1: Schematic view of Model Checking approach

3.3. MODELLING CRYPTOGRAPHIC PROTOCOLS 3. System Model

3.3.1 Guidelines for M odelling Cryptographic Proto­

cols

When writing a suitable protocol three main factors must be taken into

account: the principles involved in designing the protocol, the goals of the

protocol, and common attacks on the protocol. These three criteria will now

be briefly reviewed.

Principles for D esigning Cryptographic Protocols

To design a good cryptographic protocol there are some principles found

in the literature that should be satisfied [Sch95, StiO‘2, Sta95, For94]. The

protocol must be efficient with no unnecessary encryption and no inclusion

of unnecessary messages, for example, double encryption. Every message

should say what it means: the interpretation of the message should depend

only on its contents. It should be possible to write down a straightforward

sentence describing what the message means. The conditions for a message

to be acted upon should be clearly set out. If the identity of a principal is

essential to the meaning of a message, it is prudent to mention the princi­

pal’s name in the message. It should be clear why encryption is being done.

When a principal signs material that has already been encrypted, it should

not be inferred that the principal knows the content of the message. It is

necessary to be clear about what properties are assumed for nonces. The

use of a predictable quantity can serve in guaranteeing newness, through a

challenge-response exchange, but it should be protected so tha t an intruder

cannot simulate a challenge and later replay the response. If timestamps

are used as freshness guarantees then the difference between local clocks at

53

3.3. MODELLING CRYPTOGRAPHIC PROTOCOLS 3. System Model

various machines must be less than the allowable age of a message deemed to

be valid. A key may have been used recently yet be quite old, and possibly

compromised. If an encoding is used to present the meaning of a message,

then it should be possible to tell which encoding is being used. The protocol

designer should know which trust relations his protocol depends on, and why

the dependence is necessary.

G oals o f Cryptographic Protocols

Each protocol is designed with a particular goal in mind. There are vari­

ous goals for security protocols, such as (1) security, (2) key establishment,

(3) authentication, (4) key freshness, (5) key exclusivity where a key is only

known to the principals of the protocols, and (6) good key where a key is

both fresh and exclusive.

The goals for the protocol model put forward in this thesis axe based

on a combination of a cryptographic protocol and Web services goals. For

the protocol model based on WS-Security and the Simple Message Exchange

Protocol, the goal is to maintain secrecy and authentication. For the second

protocol based on WS-Trust and the Security Token Protocol, the goal is not

only secrecy and authentication, but also establishment of a security context.

The protocol goals are modelled in terms of Linear Temporal Logic. A com­

plete description is given in Section 3.7.

54

3.3. MODELLING CRYPTOGRAPHIC PROTOCOLS 3. System Model

A ttacks on Protocols

When defining goals for security protocols the hostile environment in which

they will run should be kept in mind. Each protocol has a set of specific

goals depending on the type of attacks it is most likely to face. When

designing protocols, the types of attacks possible on the protocol must be

considered. Traditional cryptographic protocols are faced with attacks such

as eavesdropping, modification of messages, replay attack, man-in-middle

attack, reflection attack, and so on. The effects of these attacks can be less­

ened with good encryption. In the case of attacks such as denial-of-service

(DoS) and typing attacks, there is no particular solution. In DoS attacks,

the server farms can be made to distribute traffic load when a DoS attack

is detected. W ith an evolving protocol environment and the increasing com­

plexity of protocols, there are more and more types of attack emerging. Web

services based security protocols axe similar to traditional protocols, but have

an added complexity. These protocols are not only susceptible to traditional

cryptographic attacks, but also have their own targeted attacks, such as:

• Forceful browsing, where the attack is aimed at discovering unpubli­

cised Web services.

• Dictionary attacks, where an attacker attem pts to break passwords to

gain access.

• Parameter tampering, where data passed as parameters to a Web ser­

vice is tampered with.

• XML injection attacks, where some information is added to alter the

meaning of a message

55

3.4. SE C U R ITY PROTOCOL MODELS 3. System Model

To be able to widely deploy Web services, it is necessary to be able to

defend against malicious attacks. Therefore, there is a need to develop and

formalise intruder models for Web services based security protocols.

This thesis defines two such security protocols based on Web services

specifications. The first of these is the Simple Message Exchange Protocol

(SMEP), based on WS-Security. The goal of SMEP is to authenticate se­

curely between two services. The second protocol, Security Token Protocol

(STP), is developed using the WS-Trust specification. STP aims at reaching

a secure agreement on a security context between two services while correctly

authenticating them to each other. These protocols are defined in the next

section.

3.4 Security Protocol M odels

WS-Security and WS-Trust provide the syntax for a broad range of protocols,

but do not define the protocols themselves. This lack of protocol definition

provides flexibility for the end user. As a result, the security protocols need

to be defined along with their goals. These goals have to be carefully specified

and then validated. This section defines a protocol for a system employing

only WS-Security. Later another protocol model based on WS-Trust will

be included. A difficulty arises from modelling the XML based protocols in

Promela, a language acceptable to the Spin model checker. Promela and

Spin will be discussed in the next chapter.

56

3A. SEC U RITY PROTOCOL MODELS 3. System Model

3.4.1 Sim ple M essage Exchange Protocol

The Simple Message Exchange Protocol (SMEP), a message exchange pro­

tocol employing the WS-Security specification [NKHBM04], will now be de­

scribed. The goals of the protocol are that both participants are able to

authenticate each other and the message is kept secret in the presence of

an attacker, that is, secrecy and authentication. These goals can be accom­

plished by using a combination of XML Signature and XML Encryption.

The message is kept secret by encrypting the contents of the message using

XML Encryption and authentication is achieved by signing the message us­

ing XML Signature.

The protocol has two participants, service A and service B. Each partici­

pant is associated with a RSA key pair (a public and a private key). A’s key

pair is represented by (pk_A, sk_A), and likewise for B we have (pk_B, sk_B),

where pk_A represents the public key of A and sk_A represents the secret or

private key of A, and similarly for B. It is assumed tha t the public key of B

is known to A and the public key of A is known to B prior to the protocol

run. It is also assumed that the private keys of both A and B are kept secret

and are only known to A and B.

Service A sends a request to service B, and B sends a response to A. The

request message contains the timestamp (TS), the nonce (N_A), the identity

of A, and REQ, which represents a request. TS, N_A and REQ are signed

by A for purposes of authentication using RSA-SHA1 with sk_A, and for the

purpose of secrecy the message is encrypted using a symmetric key, which in

turn is encrypted using the public key of B, pkJB. B sends a response to A. It

signs the response (RES, original message from A) using sk_B and encrypts

the response using a fresh symmetric key under pk_A.

57

3.4. SE C U R ITY PROTOCOL MODELS 3. System Model

A simple authentication protocol should have a client A sending a mes­

sage to B with sufficient information for authentication. The timestamp (TS)

and nonce are used to verify that the message exchange is for the current

traffic, i.e the message is not replayed from an older session. The value of

TS changes with each message exchange, i.e., for each protocol step TS is

assigned a fresh value. XML Signature is used to authenticate the sender’s

identity, and encryption is used for the purpose of secrecy. In the following,

sign_Y(X) denotes the digest of the data X encrypted with the private key

of entity Y.

(1) A —► B : sign_A(TS, REQ, N_A) | pk_B(syramkey_A) | symmkey_A(TS, REQ, N_A),

M_1

(2) B —> A : sign_B(TS, RES, N_B) | pk_A(symmkey_B) | symmkey_B(TS, RES, NJB) |

M_1

Step 1: The message, M_l, sent by service A has three parts. In the

above “|” represents concatenation. Service A sends the data REQ to B, it

signs the timestamp TS, REQ, and nonce of A using its secret key. Service

A generates a symmetric key (to be used in subsequent communication with

B) and encrypts this using the public key of B. Service A then encrypts TS,

REQ, and N_A using the symmetric key.

Step 2: On receiving the message from A, service B uses its private key

to extract the symmetric key. Service B then uses this symmetric key to de­

crypt the third part of the message, thereby extracting TS, REQ, and N_A.

Service B then authenticates the identity of A by checking the signature,

sign_A(TS,REQ,N_A), and checks the timestamp. After this service B sends

58

3.4. SEC U RITY PROTOCOL MODELS 3. System Model

a response (RES) to A as a four-part message. It signs TS, RES, and N_B,

where TS is a fresh timestamp, and then encrypts TS, RES, and N_B using

the symmetric key (note that symmkey_A = symmkey_B). Service B also

encrypts the symmetric key using the public key of A, which allows A to

check th a t this is the same symmetric key that it originally sent to B. It also

sends the original message M_1 that it received from Service A. Service A

can compare this with the message it originally sent to allow the detection

of message tampering.

Next a variation to the above protocol is presented with the aim of show­

ing a simple message exchange between two services, which do not share

symmetric keys. This initial protocol run will now be modelled.

(1) A -> B : A, B, N.A, TS | pkJB(REQ, sign_A(A, N_A, REQ, TS))

(2) B -* A : B, A, N_B, N_A, TS | pk_A(RES, sign_B(B, N_B, A, N_A, RES, TS))

(3) A -+ B : A, B, N_A, N_B, TS | pk_B(ACCEPT, sign_A(B, N_A, N_B, A, ACCEPT,

TS))

In the first message exchange between service A and service B, the first

part of the message, (A, B, N_A, TS), contains the identity of the sending

service A, the identity of the intended receiving service B, a freshly generated

random value (the nonce N_A), and a timestamp for the message, TS. The

second part of the message, pk_B(REQ, sign_A(A, N_A, REQ, TS)), encrypts

the data REQ, and a signature for A, N_A, REQ, TS, with the public key of

B, pk_B. This signature is the digest of the data A, N_A, REQ, TS encrypted

with the private key of A.

On receiving the message service B uses its private key to decrypt and

59

3.4. SEC U RITY PROTOCOL MODELS 3. System Model

extract REQ and sign_A(A, N_A, REQ, TS), and checks the signature of A

and the freshness of the timestamp. In the second step of the message ex­

change, service B then sends a message back to service A to indicate that it

has authenticated service A. It returns (B, A, N_B, N_A, TS) which includes

its identity B, the identity of the sending party A, its nonce N_B, the nonce

it received from service A, N^A, and a newly generated timestamp, TS. The

second part of the message, pk_A(RES, sign_B(B, N_B, A, N_A, RES, TS)),

encrypts with the public key of A the data RES, and the signature of the

identities, their nonces, the RES data, and the timestamp.

On receiving the message from service B, service A uses its private key to

decrypt and extract RES and sign_B(B, N_B, A, N_A, RES, TS), and checks

the signature of B and the freshness of the timestamp. If these are acceptable

then in the last part of the message exchange, service A sends the following

response to service B to indicate that it has authenticated service B. The first

part of the message (A, B, N_A, N_B, TS) contains the identity of both the

services, and the timestamp TS and nonce NJB it received from service B.

In the second part of the message, pk_B(ACCEPT, sign_A(B, N_A, A, N_B,

ACCEPT, TS)), service B encrypts the data ACCEPT and sign_A(B, N_A,

NJB, A, ACCEPT, TS) with the public key of B. It should be noted tha t in

this message the nonce of A, N_A, and the timestamp, TS, are freshly gen­

erated. After service B has received and accepted this message then services

A and B are mutually authenticated.

The SMEP protocol is applied when service A sends a message to service

B. The message contains the identity of A and its nonce, in the form of a

UsernameToken, as used in WS-Security. The message also contains a times­

60

3.4. SEC U RITY PROTOCOL MODELS 3. System Model

tamp token which provides a mechanism to determine the freshness of the

message. The UsernameToken and REQ, representing some data, is signed

by A for the purposes of authentication. The REQ and the signed content is

then encrypted by the recipient’s public key.

Service B processes the message sent by A as follows. It decrypts the

message using its private key, and validates the message by confirming that

the contents are signed by the sender A. This can be done by decrypting

the message with the key information provided in the message and compar­

ing the result with the original message. If the signature values match, the

message is authentic. Once the message has been authenticated, it sends a

response to A. The response contains its UsernameToken, consisting of the

identity of B and its nonce, N_b. It also returns the sender information, i.e.,

the sender’s name and nonce. It signs its UsernameToken, A and RES. It

encrypts REQ and the signed information with the public key of sender A.

A process the message as before. If all checks pass, A sends an ACCEPT

response to B.

3.4.2 Security Token Protocol

WS-Trust provides a framework for issuing security tokens, renewing security

tokens and brokering trust relationships [NGG+07]. WS-Trust depends on

a Security Token Service, STS, which is a dedicated service for evaluating

requests for tokens and issuing tokens. A security token (ST) is a collection

of claims, where a claim is a statement made about a client, for example,

name, identity, key, etc. A Security Context (SC) is a concept referring to an

established authentication state and negotiated keys, and a Security Context

61

3.4. SEC U RITY PROTOCOL MODELS 3. System Model

Token (SCT) is a tangible representation of the SC concept [Aea05].

A simple three-message exchange protocol for issuing a security token

will now be presented. The messages are exchanged between sender A and

a Security Token Service, STS. The goal of the protocol is to establish a

security context between the two processes while maintaining secrecy and

authenticity. A Security Context Token points to a shared context between

a client and a Web service. Keys can be derived using the contents of the

Security Context Token, which in turn are used to protect communication

between participants. Readers are referred to WS-SecureConversation for a

detailed description of the usage of security context tokens [Aea05].

Service A sends a Request Security Token (RST) to the Security To­

ken Service (STS). Service A requests the issuance of a security token for

communication between itself and the Security Token Service. The Secu­

rity Token Service processes the request and, upon accepting it, agrees on a

partial security context (partial SC). The Security Token Service responds

with a Request Security Token Response (RSTR) token. After the accep­

tance of the RSTR, both parties should agree on a full security context (SC).

WS-Security is used for protection of envelopes carrying requests for security

token elements and Request Security Token response elements.

(1) A -¥ STS : A, N_A, STS, RST, TS | sign_A(A, N_A, RST, tokenType,

requestType, appliesTo, clientEntropy, entropicMode) |pk_STS(N_A, RST,

tokenType, requestType, appliesTo, clientEntropy, entropicMode)

(2) STS A : A, N_A, STS, N_STS, RSTR, TS | sign_STS(RSTR, SC,

SCTJD , tokenType, requestType, appliesTo, serverEntropy, clientEntropy,

62

3.4. SEC U RITY PROTOCOL MODELS 3. System Model

entropicMode,created, expires, ComputedKey) | pk_A(N_A, N_STS, SC,

SCTJD , tokenType, requestType, appliesTo, serverEntropy, clientEntropy ,

entropicMode, created, expires, ComputedKey)

(3) A -> STS : SCTJD | sign_A(SCTJD) | pk_STS(SCTJD)

The first message is sent from service A to the Security Token Service.

The request security token consists of three part,s. The first, part of the mes­

sage, A, N_A, STS, RST, TS, contains the identity of A, nonce N_A , the

identity of the service it wants to talk to, the type of the message (RST)

and the timestamp (TS). The second part of the message contains signed

information sign_A(A, N_A, RST, tokenType, requestType, appliesTo, clien­

tEntropy, entropicMode). Service A signs its identity, nonce and request

(RST). It also signs all the elements of the Request Security Token includ­

ing, TokenType (the type of token being requested), RequestType (request

for issuance of security token), AppliesTo (the service where it will be used

for communication), clientEntropy (its base64 encoded value) and entropic­

Mode (the mode of calculating the entropy). In the last part of the message,

pk_STS(N_A, RST, tokenType, requestType, appliesTo, clientEntropy, en­

tropicMode), it encrypts the information with the Security Token Service’s

public key.

The second message is the request security token response (RSTR), which

is the response from the Security Token Service after it has validated the re­

quest. The first part of the message, A, N_A, STS, N_STS, RSTR, TS, con­

tains the identity and nonce information of A. It also contains the Security

Token Service provider identity and nonce, STS and N_STS. The second part

of the message, sign_STS(RSTR, SC, SCTJD , tokenType, requestType, ap­

pliesTo, serverEntropy, clientEntropy, entropicMode, created, expires, Com-

63

3.4. SEC U RITY PROTOCOL MODELS 3. System Model

putedKey), contains the signed information. It signs the information that

was present in the original request, TokenType, AppliesTo, RequestType,

clientEntropy and entropicMode. It now also returns additional information

about calculating the keys. It sends its entropy, serverEntropy, and how

the key is to be computed in the ComputedKey element. It also returns

the unique security context id, SCTJD. In the last part of the message,

pk_A(N_A, N_sts, SC, SCTJD, tokenType, requestType, appliesTo, server­

Entropy, clientEntropy, entropicMode, created, expires, ComputedKey), the

Security Token Service encrypts all the information signed by it before, and

sends the message to the requestor.

The last message is sent by the service A to STS. It contains the unique

identity of the security token. It signs the SCTJD, sign_A {SCTJD }, and en­

crypts it, pkJSTS(SCTJD) with the public key of the Security Token Service.

Both the client and the Security Token Service include a fresh random

value called entropy, which is used to calculate the key. This key is used

to establish a context key between services and is used as a session key. A

session key is used when two services are involved in a session with each

other. The session key is shared between these two services for encrypting

the messages exchanged between them.

Service A sends a message to the Security Token Service. The message is

authenticated using the mechanism established in SMEP and the request for

a security token will be accepted only if STS knows it is talking to A and has

a fresh N_A. After the STS validates the request for a security token, there

should be a partial agreement represented by partialSC. partialSC consists

64

3.5. EN VIRO N M EN T MODEL FOR PROTOCOLS 3. System Model

of appliesTo, entropicMode, tokenType and requestType. Here, the partial

entropy mode is being used, where the requester and the Security Token Ser­

vice both provide entropy to calculate the context key. The Security Token

Service sends a response to service A, and A validates the message. When

the message Request Security Token Response (RSTR) is accepted both pro­

cesses should have agreed on a full security context. This Security Context

contains an identity for the security context token, SCT-ID, which is unique

to the Security Context and is known to parties using the Security Con­

text, clientEntropy and serverEntropy , and computerKey, entropicMode,

appliesTo, tokenType, requestType and expires are the other elements con­

tained in the Request Security Token Response element.

Figure 3.2 gives a graphical representation of the Security Token Protocol.

A sender service sends a request for a security token (RST) envelope. The

Security Token Service processes the request and, if successful, returns the

requested security token (RSTR).

3.5 Environm ent M odel for Protocols

When defining a protocol, the environment in which the protocol will run

must be considered. This environment needs to be represented formally so

it can not only be easily mapped into a model checking framework, but also

reflects accurately the environmental context. In this thesis the environment

is modelled as a transition system, defining the changes involved in each part

of the protocol run.

Transition systems are often used to describe the behaviour of a system,

65

3.5. ENVIRONMENT MODEL FOR PROTOCOLS 3. System Model

Figure 3.2: Security Token Protocol

and are defined with action names for the transitions and atomic propositions

for the states. An atomic proposition (AP) is one whose tru th or falsity does

not depend on the truth or falsity of any other proposition. Action names are

used for describing communication mechanisms between processes. Atomic

propositions express simple known facts about the state of the system and

are used to formalise temporal characteristics. A simple choice is to let the

state names act as AP, i.e., L(s) = s for any state s. The equation 3.1 de­

scribes a transition system.

T S = {s ,A c t,-+ ,I,A P ,L) (3.1)

66

3.5. ENVIRO NM ENT MODEL FOR PROTOCOLS 3. System Model

where,

s is a set of states,

Act is a set of actions,

—> Q s x Act x s is a transition relation, and (si, a , s2) E—> is denoted

by Si 7?a'2. This means that there is a transition from state sx to state

S2 associated with action a.

I ^ s is a set of initial states,

AP is a set of atomic propositions,

L: s -* 2ap is a labelling function th a t relates a set L(s) E 2^p of

atomic propositions to any state s.

L(s) stands for exactly those atomic propositions a E A P which are satisfied

by state s. Given $ is a propositional logic formula, then s satisfies the

formula <I> if the evaluation induced by L(s) makes the formula true, that

is

s |= $ L(s) |= $

where s f= $ should be read as “the state s models the propositional logic

formula 4>”. This means that when all the atomic propositions for a state s

can be obtained from the propositional logic formula then we say that s

satisfies/ formula <f>, and vice versa.

3.5.1 Environment M odel for SM EP

The model for the environment of the Simple Message Exchange Protocol

will now be given. The principal services involved in the environment, the

67

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

sender, receiver, and intruder services, and all possible transitions between

the services are presented. The environment is described as a transition sys­

tem.

A finite state transition model of the Simple Message Authentication Pro­

tocol, or SMEP consists of six states representing the protocol run at various

stages. The sender sends a message to the receiver over an insecure channel.

The message is encrypted at the sender’s side before being sent on the chan­

nel, and is decrypted at the receiver’s end. The intruder can listen to these

messages and can replay them or start their own conversation. The sender

and receiver roles can be adopted by service A or B, depending on which

service is initiating a protocol run.

Below a transition system for the Simple Message Exchange Protocol is

described. Equation 3.3 for SMEP represents the complete transition of the

system as described in Eq. 3.1. S denotes the Sender Service and R the Re­

ceiver Service. IC is the insecure channel on which the message is passed.

68

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

S M E P = ((S, Sign/Encrypt, IC, Intruder, Decrypt/VerifySign, R),

(encrypt jmsg, decrypt -mag, sendjmsg, recvjmsg, listen jmsg),
---------------------------------------̂ y

(S encrypt-msg Sign/Encrypt), (Sign/Encrypt sendjmsg IC),

(IC decrypt jmsg Decrypt/Verify Sign), (Decrypt/Verify Sign recvjms/j R),

(I sendjmsg IC), (IC sendjmsg I), S,

(secrecy, authentication),

(L(S) = {</>}, L(IC) = {</>}, L(Intruder) = {</>}, L(R) = {</>},

L(Sign/Encrypt) = {<j)}, L(Decrypt/VerifySign) = {secrecy, authenticatitftofy)

(3-3)

In the above the set of states is {S, Sign/Encrypt, IC, I, Decrypt/Veri-

fySign, R}, where:

1. S: waiting for the sender to take some action.

2. R: waiting for the receiver to take some action.

3. I: waiting for the intruder to take some action.

4. Encrypt/Sign: represents the state when the message is encrypted and

signed.

5. Decrypt/VerifySign: represents the state when the message has been

received, but has not yet had its signature verified or been decrypted.

6. IC: represents the state when the message is travelling on the insecure

channel.

In a Simple Message Exchange Protocol run the set of possible actions is

{encrypt_msg, decrypt_msg, send_msg, recv_msg, listen_msg}. ‘encrypt_msg’

69

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

represents the encryption of the message, ‘decrypt_msg’ represents the de­

cryption of the message, ‘send_msg’ and ‘recv_msg’ symbolize sending and

receiving of messages between the sender service and the receiver service,

and ‘listen_msg’ represents the Intruder action of listening on the message

channel and intercepting the messages.

The set of atomic propositions of a system represents simple facts about

the system, and are used for formalizing the system properties. In their sim­

plest form, they can be represented by the name of the states in the protocol

environment model. The atomic propositions for the environment of the Sim­

ple Message Exchange Protocol are ‘Secrecy’ and ‘Authentication’. ‘Secrecy’

and ‘Authentication’ illustrate that the message has been kept secret during

the run over the channel by means of encryption and ‘Authentication’ refers

to verification of the sender’s identity by confirming th a t the message was

correctly signed by the sender service. Thus, the set of atomic propositions

is {Secrecy, Authentication}.

The set of transitions is:

------------------y
• S encrypt jmsg Sign/Encrypt,

• Sign/Encrypt sendjmsg IC,

• IC decrypt jmsg Decrypt/Verify Sign,

• Decrypt/VerifySign recvjm s$ R,

• I sendjmsg IC),

 ►
• IC sendjmsg I,

70

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

For example, the first of these represents the transition of the system from

state S to state Sign/Encrypt caused by the action encrypt_msg.

L: S —► 2ap is a labelling function, which defines the properties that a

state is supposed to satisfy. L(S)={<£}, L(IC)={<£}, L(I)={<^}, L(Sign/Encrypt)

= {(/>} and L(R)={</>} give the states which do not need to satisfy any atomic

propositions. L(Decrypt/VerifySign) = {secrecy, authentication} represents

the state ‘Decrypt/VerifySign’ which must satisfy the properties of ‘Secrecy’

and ‘Authentication’.

3.5.2 Environment M odel for STP

This section models the environment for the Security Token Protocol (STP).

The environment model is built on top of the one for SMEP described in the

previous section, but the complexity of the environment for issuing security

tokens to Web services is added. A sender service, a Security Token Service

and an intruder communicate over an insecure channel. The sender service

requests the Security Token Service to issue a security token. The request for

the security token is created, the resulting message is signed and encrypted,

and sent over the insecure channel IC. On the receiver end the request is pro­

cessed and the Security Token Service agrees on a partial security context.

It then sends its complete information for calculating the security context

back to the sender over the same insecure channel. S denotes the sender

service, I the intruder, and STS the Security Token Service service. IC is the

insecure channel on which the message is passed. Equation 3.4 symbolizes

the transition system of the Security Token Protocol environment.

71

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

STP = ((S, RST, RST Sign/Encrypt, IC, RST-Decrypt/Verify Sign, PartialSC, STS,

RSTR, RSTRJSign/Encrypt, RSTRJDecrypt/VerifySign, FulLSC, I),

(create-RST, EncJtST, Send-RST, RecvJiST, Decrypt-RST, Partial-SC,

Create-RSTR, EncJRSTR, Send-RST R, RecvJiSTR, Decrypt-RSTR, SC-RST)

((S C rea teS S 't RST), (RST Enc-RS^ RST S ign/E ncrypt) ,

(RSTSign/Encrypt Send-RSlt IC), (IC Recv-RS'f' RST-Decrypt/VerifySign),

(RST-Decrypt/VerifySign Decrypt/VerifySign-RSlt Partial-SC),

(P artia lSC PartialSC S s i STS), (STS CreateMSTlk RSTR),

(RSTR Enc-RSTA RSTRSign/Encrypt), (RSTRSign/Encrypt Send-RSTh IC),

(IC Recv-RST A RSTR-Decrypt/Verify Sign),

(RST R-Decrypt/Verify Sign Decrypt/Veri f y Sign-RST A Full-SC),

(F u llS C SC-RST& S)), {S'},

(Secrecy, Authentication, partial SC, SC),

(L(S) = {<£}, L(RST) = {<£}, L(RST.Sign/Encrypt) = {</>},

L(IC) = {</>}, L(I) = {</>}, L(RST.Decrypt/VerifySign) = {Secrecy, Authentication},

L(PartiaLSC) = {partialSC}, L(STS) = {(f)}, L(RSTR) = {(f>},

L(RST RSign/Encrypt) — {(f)}, L(RSTR-Decrypt/VerifySign) = {Secrecy, Authentication}

L(FulLSC) = {SC})) (3.4)

In the above specification of the Security Token Protocol the set of states is

as follows:

1. S: waiting for the sender to take some action.

2. RST: represents the state when the request for a security token has

been generated.

3. RST_Sign/Encrypt: represents the state when the request for a security

token has been encrypted and signed.

72

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

4. IC: represents the state when the message is travelling on the insecure

channel.

5. RST .Decrypt/VerifySign: represents the state when the request for a

security token has been received, but has not yet had its signature

verified or been decrypted

6. Partial-SC: represents the state when a partial security context has

been established between the sender and the Security Token Service.

This means the Security Token Service has authenticated the sender

and accepted their request for a security token, but has not yet re­

sponded to establish a full security context.

7. STS: waiting for the Security Token Service to take some action.

8. RSTR: represents the state when the response to the security token

request has been generated.

9. RSTR_Sign/Encrypt: represents the state when the response to the

security token request has been encrypted and signed.

10. RSTR_Decrypt/VerifySign: represents the state when the response to

the security token request has been received by the sender, but has not

yet had its signature verified or been decrypted.

11. FulLSC: represents the state when a full security context has been

established between the sender and the Security Token Service.

12. I: waiting for the intruder to take some action.

In a Security Token Protocol run the set of possible actions is {Create_RST

, Enc_RST, Send_RST, Recv_RST, Decrypt_RST, Partial-SC, Create_RSTR,

73

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

Enc_RSTR, Send_RSTR, RecvJRSTR, Decrypt_RSTR, SC_RST)}. ‘Cre-

ateJRST’, ‘EncJRST’ and ‘Send-RST’ represent actions which are performed

on the sender side when creating, signing, encrypting, and sending a request

for a security token. ‘Recv_RST’, ‘Decrypt_RST’ and ‘Partial-SC’ denotes

actions on the STS end of the request for a security token message. The re­

quest is received, deciypted, the signature verified and an agreement is made

on a partial security context. The Security Token Service then performs the

following actions to create, sign, encrypt and send a request security token

response message: ‘Create_RSTR’, ‘Enc_RSTR’ and ‘Send_RSTR’. The re­

quest security response is received by the sender: ‘Recv_RSTR’. It is then

decrypted and its signature is verified by the action ‘ Decrypt _RSTR’. A se­

curity context is then established by the sender represented by the following

action: ‘SC-RST’.

The set of atomic propositions for the Security Token Protocol environ­

ment is {Secrecy, Authentication, partialSC, SC}. ‘Secrecy’ and ‘Authen­

tication’ represent that the request security token message and the request

security token response message are kept encrypted and are digitally signed.

‘partialSC’ denotes the property of agreement on a partial security context

by the Security Token Service, i.e., when the request for a security token is

acceptable to the Security Token Service. ‘SC’ shows the property that the

security context has been agreed on by the sender. This property is fulfilled

when the sender has agreed on the security token provided in the request

security token response message.

The set of transitions is:

• S Create- R s f n S T ,

74

3.5. ENVIRONM ENT MODEL FOR PROTOCOLS 3. System Model

• RST Enc-RS'i' RST_Sign/Encrypt,

• RST_Sign/Encrypt Send-RS'ft IC,

• IC R e c v -R s f RST_Decrypt/Verify Sign,

• RST .Decrypt/VerifySign D ecryp t/V erifyS igri-R ST Partial-SC),

• Partial_SC PartialSC M S $ STS,

• STS C rea te .R ST h RSTR,

• RSTR Enc-R ST A RSTR_Sign/Encrypt,

• RSTR-Sign/Encrypt Send-RST A IC,

• IC Recv-RSTA RSTR_Decrypt/VerifySign,

• RSTR_Decrypt/VerifySign D ecryp t/V erifyS igri-R STA Full_SC),

• Full-SC S C .R S T A S
For example, the transition ‘S CreateJRS'A RST’ represents a transition from

state S to state RST when action CreateJFtST is performed.

L is a labelling function, which defines the AP properties that* a state has

to satisfy. L(S) = {<£}, L(RST) = {<£} , L(RST_Sign/Encrypt) - {<£}, L(IC)

- {<£}, L(I) = {0}, L(STS) = {</>}, L(RSTR) = {<£}, L(RSTR_Sign/Encrypt)

— {^} } represents that the states do not need to satisfy the atomic proposi­

tions described above. L(RST_Decrypt/VerifySign) = {Secrecy, Authentica­

tion}, L(PartiaLSC) = {partialSC}, L(RSTR_Decrypt/VerifySign) = {Secrecy,

Authentication}, L(FulLSC) = {SC} } denotes the states which satisfy atomic

propositions. L(RST-Decrypt/VerifySign) = {Secrecy, Authentication} means

75

3.6. INTRUDER MODEL FOR PROTOCOLS 3. System Model

tha t the state ’RST-Decrypt/VerifySign’ should satisfy the property of ’Se­

crecy’ and ’Authentication’. Similarly, L(FulLSC) = {SC} means that the

state ’Full.SC’ satisfies the property of ’SC’, meaning an agreement has been

reached on a security context.

We also assume that during a protocol run there is no message loss, the

message is delivered to the end point correctly.

The preceding discussion has established environment models for the

SMEP and STP protocols, and also has given a formal description of the

possible states and transitions involved in each environment. The properties

of the intruder, and the possible ways an intruder can interact with the en­

vironment, will now be discussed in detail.

3.6 Intruder M odel for Protocols

This section defines the properties of the intruder and the attack model. It

is assumed that the attacker in the model has abilities as specified by the

Dolev-Yao model. The ability to: .

• Overhear and intercept all the messages on the network.

• Modify the messages.

• Generate new messages using the information from overheard messages

and some beforehand information.

• Send a new or captured message to another entity in the system.

76

3.6. INTRUDER MODEL FOR PROTOCOLS 3. System Model

In addition, it is assumed that the underlying cryptography cannot be broken.

The behaviour of the intruder can be modelled in two ways: (1) the

intruder intercepts messages, and (ii) the intruder sends messages. In the

second case the intruder can send two types of messages on the network. He

or she can replay an old message, or create a new message from information

learned so far.

3.6.1 M anipulated Protocol Run for SM EP

There are four possible ways the intruder can take part in the protocol ses­

sion and interact with the participants. Here, —> represents initiation of a

protocol run from the service at right to left, i.e, A —tB is read as A initiates

a conversation with service B.

I —> B : The intruder I behaves like a legitimate user of the system. S/he

initiates a session with B and sends a message to B. The aim of the intruder

is to learn as much information as possible from service B. In this run, the

intruder is able to learn the nonce, a randomly generated value from B. S/he

can use this nonce to initiate message exchange with service A, acting as B.

A —t I : A talks to I. Service A assumes I is a legitimate service. Intruder

service I completes a successful run with the A. I learns as much information

as possible. Service I learns the nonce of A and can use it to pretend to be A.

A -* 1(B) : A starts a message exchange with service B. However, the in­

truder service intercepts the message and pretends to be service B itself. I

77

3.6. INTRUDER MODEL FOR PROTOCOLS 3. System Model

can only do this once it knows the nonce of B, which has not been used in a

message exchange before between service A and service B.

1(A) —► B : Service I initiates a run with service B, pretending to be service

A. It can only start a message exchange with service B if it has access to the

nonce of A, which has not been used before in any exchange between service

A and service B.

The intruder can initiate a protocol run with service A and service B.

During these runs the intruder learns the nonces for A and B. It can use

these to initiate further runs as an impostor. Protocol runs being executed

after it learns the nonces are A —> I (B) and I{A) —> B.

3.6.2 M anipulated Protocol Run for ST P

This section defines the possible interactions of the intruder service with the

Security Token Service. There are two possible scenarios where an intruder

can interact with the Security Token Service.

I —¥ S T S : The intruder acts as a legitimate user of the environment. The

intruder initiates a message exchange with the Security Token Service and

requests a security token used for establishing a session with another service.

The Security Token Service believes service I to be a legitimate user and

issues a security token to it.

1(A) —y S T S : Service I can initiate a message exchange with the Secu­

rity Token Service pretending to be service A. The intruder may have gained

78

3.7. SYSTE M PROPERTIES 3. System Model

information from a previous interaction with service A. It can use the in­

formation, such as the nonce of A, to act as A and gain a security token.

Service I behaves as an impostor.

3.7 System Properties

This last two sub-sections have defined the capabilities of the intruder for

both the Simple Message Exchange Protocol and Security Token Protocol.

The possible ways the protocols can interact with the environment have been

described. This section describes the properties of the protocols in the form

of Linear Temporal Logic.

The behaviour of a system may be modelled as formulas in Linear Tem­

poral Logic (LTL). Temporal Logic is the branch of logic which allows one

to reason about the causal and temporal relations of properties [Hol03]. The

properties of a protocol run can be formalized unambiguously and concisely

with the help of temporal operators. Linear Temporal Logic is a dominant

formalism in verification, and can be applied to finite and infinite runs of a

system.

The next two subsections define the LTL operators used in defining sys­

tem properties. The square operator, Dp, defines tha t a property p will

remain true throughout a run. The operator □ is read as always. The dia­

mond operator, <0>p: defines that the property p is guaranteed to become true

at least once in a run. The operator <0> is read as eventually. X is the next

operator, and X(p) is read as “Next p” . —> represents the boolean operator

79

3.7. SYSTEM PROPERTIES 3. System Model

for logical implication. ! represents a logical operator for negation.

3.7.1 Property Specification for SM EP

The goal of the Simple Message Exchange Protocol, as discussed earlier, is

authentication and secrecy. If A talks to B and is satisfied that it is commu­

nicating with B, and B is satisfied that it is communicating with A, and, if

intruder I has not learned the nonce of A or B, then it is said that A and

B have successfully completed a run of the protocol. This property of the

system can be modelled in temporal logic. A well-formed temporal formula

is a combination of state formulae and temporal operators. This formula is

input to the Spin model checker, along with the system model. The authen­

tication between A and B can be modelled as shown below.

status A —y InonceB

statusB —> ! nonce A

X (0 SenderBindAB —> □ (SenderBindAB A RecvrChallengeAB))

X(<0 RecvrBindAB —> □ (RecvrBindAB A SenderChallengeAB))

The global LTL variables represents,

• statusA : is an LTL variable that is updated when service A does not

know nonce of B. Its value is changed at the start of the protocol run.

• nonceB : represents the knowledge of nonce of B by service A.

80

3.7. SYSTEM PROPERTIES 3. System Model

• statusB : Is updated when service B initially does not know nonce of

A. It represents the knowledge of nonce of A by service B

• nonce A: It represents the knowledge if a nonce by Service B

• SenderBindAB : A global LTL variable updated by a function executed

by service A when it is ready to commit to service B

• RecvrChallengeAB : A global LTL variable updated at the receiver

end (service B) when it knows it is talking to service A. This is achieved

by verifying the identity of service A.

• Sender Challenge AB: Global variable which is updated by a function at

the sender end when it starts a protocol run with service A

• RecvrBindAB : is updated when service B is ready to commit to ser­

vice A. The variable is updated when the protocol satisfies the goals,

i.e authentication and confidentiality •

Variables nonceB, nonce A, SenderBindAB, RecvrBindAB, Sender Chal-

lengeAB and RecvrChallengeAB are global variables used for modelling the

properties in temporal logic, and are input to the model checker during

verification of the protocols. Initially, A and B do not know the nonces

of each other. The SenderBindAB variable eventually becomes true when

SenderBindAB and RecvrChallengeAB are always true. RecvrChallengeAB

81

3.7. SYSTE M PROPERTIES 3. System Mode1

becomes true only when B is talking to A and SenderBindAB becomes true

when A commits to a session with B. Next RecvrBindAB eventually becomes

true when RecvrBindAB and Sender ChallengeA B are always true. Sender-

ChallengeAB becomes true when A knows it is talking to B and RecvrBindAB

becomes true when B commits to a session with A. At the end of the run, A

and B will know the nonces of each other.

3.7.2 Property Specification for STP

The goal of the protocol is to exchange a Security Context between a sender

service A and a Security Token Service STS. A security context establishes an

authenticated state between the two services and negotiated keys which have

additional security properties. SenderBindAS, SenderChallengeAS, Recvr-

ChallengeAS, SenderChallengeAS are global variables used in Promela, a

modelling language for Spin. The specification properties for the Security

Token Protocol are modelled as follows

(0 SenderBindAS -+ □ (SenderBindAS A RecvrChallengeAS)

X(0 RecvrBindAS —>• □ (RecvrBindAS A SenderChallengeAS)

X(0 PartialSC -* □ (AppliesTo A TokenType A Request Type A
EntropicMode A clientEntropy)

X(<C> SC —¥ □ (partialSC A server Entropy A ComputedKey A expires A
SCID)

The global LTL variables represents,

82

3.7. SYSTE M PROPERTIES 3. System Model

• PartialSC : is an LTL variable updated when security token service (sts)

agrees with the information sent by the requestor for requesting for a

security token.

• AppliesTo: is updates if the sts agrees service the token the applicable

for.

• TokenType : is updated when the type of token being requested is

valid, i.e, security context token.

• RequestType : is updated when it is a request for issuing a security

token.

• EntropicMode: is updated when both services agree to use partial en­

tropy. This is used for calculating keys.

• clientEntropy : represents the entropic value provided by the client for

calculating the keys.

• SC: represents the security context which is used by the requestor to

establish a session with the desired service.

• serverEntropy : represents the value provided by the server to calculate

the keys.

• ComputedKey : represents how the keys will be computed and is up­

dated accordingly.

• expires: represents how long the security context token is valid for.

• SCID: is the unique ID for the security context token.

The authentication properties must be satisfied first, as explained in Sec­

tion 3.7.1. Next ‘PartialSC’ eventually will be true when the Security Token

83

3.8. CONCLUDING REM ARK S 3. System Model

Service STS agrees on ‘AppliesTo’ (which service the token is valid for),

and ‘TokenType’ (the type of token being requested). ‘RequestType’ defines

what is requested by the initiator, e.g., a request for issuing a security con­

text token. ‘EntropicMode’ defines whether both the initiator and the service

provider will be providing entropies to compute a key used by the sender,

and ‘clientEntropy’ is the entropic value provided by the client.

Next ‘SC’ will eventually be true when there is an agreement on ‘par­

tialSC’, ‘serverEntropy’ (provided by the server), ‘ComputedKey’ (tells how

the key is to be computed), ‘expires’ (when the token is valid till), and the

‘SCID’ (the unique identifier for the security context token).

3.8 Concluding Remarks

This chapter has presented the building blocks for the model to be used sub­

sequently. Two protocols have been defined: the Simple Message Exchange

Protocol (SMEP) and the Security Token Protocol (STP). The goals for each

protocol have been stated: SMEP aims to achieve authentication and secrecy,

whereas STP aims to establish a security context. The hostile environment

for both the protocols are modelled as transition systems, in which all possi­

ble principals and transitions involved in the protocol run arc defined. The

correctness properties for each protocol have been defined in terms of Linear

Temporal Logic. These LTL properties can be used to verify the correctness

requirements for the protocols. The next chapter defines the XML envelopes

for protocols SMEP and STP as multi-stack pushdown automata. Each au­

tomaton captures the detailed work of the protocol run and the functions

84

3.8. CONCLUDING REM ARKS 3. System Model

applicable to the XML elements of the messages. We believe such a model

can be more beneficial in detecting XML based attacks. An XML injection

attack will also be modelled, and simulations run against our model. The

autom ata are modelled with the modelling language Promela and analyzed

using the Spin model checker.

These protocols can be extended over multiple services, and each service

will be allocated its own stack. The protocol are blocking and synchronous.

The services will wait for the response after a request before they can move

on to the next run. The stack provides unlimited memory, this will allow us

to model complex protocols with increased functionality. However, increas­

ing the number of states in the model may lead to state explosion problem. A

possible solution is to divide the protocols in subsets and then analyse their

working separately. SMEP and STP are mainly designed for two services.

In the situation where multiple services are involved, there will be no extra

impact on the stacks as each service has its own stack. In the case of SMEP,

multiple services involved in the protocol run can be classified as sending and

receiving services. For example, suppose we have four services involved in a

protocol run A,B, C and D. We will get a the following set of sending and re­

ceiving services {A,B}, {B,C},{C,D}. In the first set, A is the sending service

and B is the receiving service, then in the second set, B becomes the sending

service and C the receiving service and finally, in the last set, C the send­

ing service and D is the receiving service. We describe two protocols based

on WS-Security(Simple Message Exchange Protocol) and WS-Trust(Security

Token Protocol). These protocols were selected as they represent the sim­

plest functionality between two services, sending and receiving messages and

requesting a security token from a security token service. They can be later

85

3.8. CONCLUDING REM ARK S 3. System Model

extended to encompass more complexity.

Works described in [Bla02] [TCCD07] [KR05] [GP02] [BF04] focusses on

modelling the functionality/working of the WS-* based security protocols.

Our work allows modelling the functionality and the goals of protocols in a

single model.

In practice, our approach will allow the end users to analyse the correct­

ness of a large security system during simulation runs instead of verifying

the correctness in the later verification phase.

We use push-down autom ata to model WSBCPs as the combination of

the input tape, automaton and the stack allows us to capture the behaviour

and properties of the protocols. The PKI standards are employed by WS-

* during protocol runs for the purpose of security, e.g. WS-Trust employs

X.509 certificates for the purpose of authentication. It is used by the services

to validate the identity of the service represented by the certificate.

86

CHAPTER 4

Modelling Protocols with Automata

Chapter 3 presented two protocols models: the Simple Message Exchange

Protocol based on WS-Security, and the Security Token Protocol based on

WS-Trust. The goals of the Simple Message Exchange Protocol were defined

as authentication and secrecy, and the goal of the Security Token Protocol is

the establishment of a security context. In Chapter 3 the hostile environment

was modelled for both the protocols as a transition system. Linear Temporal

Logic was used to define the goals of the protocols.

4.1 Chapter O bjectives

This chapter presents pushdown autom ata for the Simple Message Exchange

Protocol and Security Token Protocol defined in Section 3.4. These models

87

4.2. PUSHDOWN AUTOM ATON 4. Modelling Protocols with Automata

reflect the behaviour of the protocols and the properties they are supposed

to satisfy. The Simple Message Exchange Protocol pushdown automaton

satisfies the properties of authentication and secrecy. The Security Token

Protocol automaton satisfies the property of establishing a security context.

4.2 Pushdown autom aton

A formal notation of the two-stack pushdown autom ata (PDA) model will

now be given. Note that the definition can be extended to include more

stacks. A two-stack PDA is defined by the following notation:

Q is a finite set of internal states of the control unit,

is the input alphabet,

r is a finite set of symbols called the stack alphabet,

5 is a mapping of Q x (]P U{A}) x r x r to finite subsets of (Q x r* x r*).

6 is called the transition function, A denotes teh empty string, and r*

is a finite list of elements in r.

(4.1)

where

88

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

qo £ Q is the initial state of the control unit,

y E r is the first stack start symbol,

2 G r is the second stack start symbol,

F C Q is the set of final states.

Every transition from one state to another in the automaton is made by

observing both stacks. Initially, the system is in state qo and both stacks

have symbols y and z at the top. The stack language r contains stack sym­

bols (stack alphabets will be treated as strings rather than as alphabets). If

the final state is reached with both the stacks empty, the input is accepted

as valid. A transition function, 6, is represented as {^2, pop r , pop r , push

r , push t} . The first pair of pop and push applies to the first stack, and the

second pair of pop and push applies to the second stack in the PDA. In order

to keep the discussion focused on the problem at hand, minor details of the

workings of a PDA are omitted here. For more details readers are referred

to [Lin06].

A two-stack pushdown automaton for modelling both the Simple Mes­

sage Exchange Protocol and Security Token Protocol will now be presented.

In the model, each participant service is assigned a stack, e.g., service A

is assigned stack Service A. Each stack contains the functions necessary for

completing a protocol run.

89

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

4.3 Simple M essage Exchange Protocol

The Simple Message Exchange Protocol (SMEP), defined in Section 3.4, ex­

changes messages between two services, service A and service B. The goals

of the protocol are secrecy and authentication, as explained in Chapter 3.

SMEP is modelled as a pushdown automaton to reflect these goals. Fig­

ure 4.1 illustrates the pushdown automaton model for SMEP, and Table 4.1

shows the stacks used in the model.

A pushdown automaton reads information from a tape and executes a

transition from one state to another based on the information read from the

tape. The input alphabet of the tape represents actions which are to be

conducted during message exchange between service A and service B in the

Simple Message Exchange Protocol. The steps involved in a complete run of

the Simple Message Exchange Protocol are encoded as input alphabet sym­

bols of the tape. The input alphabet symbols for the complete consumption

of a message between a sender and receiver service for the Simple Message

Exchange Protocol is { sChallenge, TS, SIGN, ENCRYPT, Send/Recv_Msg,

DECRYPT, TS, vSIGN, RecvChal, TS, SIGN, ENCRYPT, Send/Recv_Msg,

DECRYPT, TS, SIGN, sBIND, TS, SIGN, ENCRYPT, Send/Recv_Msg, DE­

CRYPT, TS, vSIGN, rBIND}. These input variables illustrate steps involved

during a message exchange in a single protocol run between the sender and re­

ceiver processes. When each alphabet symbol is read some process is executed

from the stacks of the sender and receiver processes. ‘sChallenge’ represents

the sender service initiating a run with the receiver service and updating the

sender challenge variable. ‘TS’ stands for the allocation of a timestamp value

to a message to guarantee freshness. ‘SIGN’ represents initiating the signing

of the message and embedding the signature information needed to validate

90

4.3. SM E PROTOCOL 4. Modelling Protocols with Automata

it. ‘ENCRYPT’ represents integrating the necessary encryption information

in the message and encrypting the message with the receiver’s public key.

‘Send/Recv_Msg’ represents the act of sending or receiving the message on

the insecure channel. ‘DECRYPT’ represents the decryption process at the

receiver’s end using its private key. ‘TS’ represents the validation of the

timestamp values in the message received over the channel. ‘vSIGN’ repre­

sents the verification of the signature information on the receiver service end.

‘RecvChal’ denotes the receiver process updating its receiver challenge vari­

ables. ‘TS’ stands for the creation of a timestamp values for the message to

be send back to the sender service. ‘SIGN’ and ‘ENCRYPT’ initiates assign­

ing the signature information to the message and encrypting the message,

respectively. ‘Send/Recv_Msg’ illustrates the sending of the message over the

channel. ‘DECRYPT’, ‘TS’, ‘SIGN’ represents the decryption, validating the

timestamp, and the signature information at the sender service end. ‘sBIND’

denotes the commitment of the sender service to the receiver service. ‘TS’,

‘SIGN’, ‘ENCRYPT’ and ‘Send/Recv_Msg’ represent the allocation of the

timestamp and signature information to the message, encrypting with the

receiver’s public key, and sending the message on the channel. ‘DECRYPT’,

‘TS’, ‘vSIGN’ denotes the decryption of the message by the receiver’s public

key, and validating the timestamp and signature information, respectively.

‘rBIND’ denotes the binding of the receiver to the sender service. Each time

input is read, a stack function is executed and a transition is made to a new

state.

The Simple Message Exchange Protocol model consists of three main

steps common to service A and service B before the message is sent on the

channel. Stepl: the message is allocated a timestamp value, which shows

91

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

Table 4.1: Stacks for Simple Message Exchange Protocol

S tack A S tack B
SenderChallenge(A,B) decrypt (priv(B))
cTimeStamp() vTimeStamp ()
sign(A) vSign(A)
encrypt (pub (B)) RecvrChallenge(A,B)
decrypt (priv(A)) cTimeStamp
vTimeStamp sign(B)
vSign(B) encrypt (pub (A))
SenderBind(A,B) decrypt (priv(B))
cTimeStampO vTimeStamp()
sign(A) vSign(A)
encrypt (pub (B)) RecvrBind(A,B))
y z

when the message was created and when the message expires. Step2: the

message is then signed by the sending service and the signature structure

is embedded into the message. Step3: the message is encrypted by the re­

ceiver’s public key and sent over the channel. When the message is received

by the service on the other end, three steps are performed in general. Stepl:

the message is decrypted using the private key of the receiver service. Step2:

the freshness of the message is checked by validating the timestamp. Step3:

the signature is validated - it should match the signature for the sending

service.

Before the protocol run is described, the stacks used in the SMEP in

Table 4.1 will be discussed. An added advantage of a pushdown automaton

is the infinite memory it provides in the form of a stack. This feature is

beneficial in designing complex protocols where multiple goals have to be

satisfied during a single protocol run. This leads to increase in functionality.

92

4.3. SME PR 4. Modelling Protocols

m

• OcryWpuWB))

| ENCWVPT,<rcfyi)Himo(Bl> 4»CfK<(pn̂B)).*Ldicqflqpffv(B))

q13
4

q12

/■N q11if \ jp
^ - r',i| |^ . [P^gg^a»gg« |pn |^^O agg iK P |r» |fB ^d |ic^ |i^ |^40 jj^

‘ k

| ENCRYPT,(HcrypXpiM*)).

q10

qg ,
4

TS.dacrypl(pr4w(B)).cTan»StampQ.(Mcryp«(pnv(B)).*

V

q5

TSAvTimaStaropn. *.

q6

q7 i

RBcvC*m,dw>p((piMA)), R«cyCh*Wnge<A B). U

q14̂

Figure 4.1: Simple Message Exchange Protocol automaton

93

4.3. SM E PROTOCOL 4. Modelling Protocols with Automata

The infinite stack memory provides the services with the ability to add more

functionality.

The stacks are used to advantage to store the behaviour of the proto­

col in the form of functions. The Simple Message Exchange Protocol has

two main stacks, representing the functions performed at Service A and Ser­

vice B. These functions can be categorised as ‘assembler’, ‘disassembler’, and

‘property’ functions. The assembler functions are called for creating message

elements, for example, cTimeStamp() is an assembler function that allocates

a timestamp value to the <Tim eStam p> element. Similarly, the sign(A)

function signs a message with service A ’s signature, and encrypt (pub (A))

encrypts the message with the public key of service A. The disassembler

functions do the opposite of the assemblers - they process the message re­

ceived. For example, vTimeStampQ verifies the timestamp on the message,

vSign(A) verifies the message is signed by service A, decrypt(priv(A)) de­

crypts the message using the private key of service A. The ‘property’ func­

tions for the Simple Message Exchange Protocol are the ‘authentication’

functions: SenderChallenge(A,B), RecvrChallenge(A,B), SenderBind(A,B)

and RecvrBind(A,B). The authentication functions SenderChallenge(A,B)

and RecvrChallenge(A,B) are executed at the start of the message exchange

between service A and service B. These functions are passed the identities of

the services, A and B. The SenderBind(A,B) and RecvrBind(A,B) functions

are executed when service A and service B have authenticated themselves

successfully to each other. Having gained an understanding of the stack

functions, the pushdown automaton model for the Simple Message Exchange

Protocol will now be discussed.

94

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

Figure 4.1 defines the pushdown automaton for the Simple Message Ex­

change Protocol. A transition function is represented as a set of symbols

involving input from the tape and functions on the stack. A transition func­

tion is denoted as {input symbol, pop first stack function, pop second stack

function, push first stack function, push second stack function}. Suppose

Service A wants to exchange some message with another service B. ‘qO’ and

‘q l4 ’ are the initial and accept states of the protocol run. Service A reads

the first input symbol, sChallenge, from the input tape, and functions are

popped from both the stacks. The function SenderChallenge(A,B) is popped

from Service A’s stack. The function is executed as soon as it is popped

from the stack. The function decrypt (pub (B)) is popped from Service B’s

stack. Nothing is pushed back onto Service A’s stack. However in the case

of Service B, the function is pushed back on the stack, as we do not want

any action to be performed on Service B’s stack while the message is being

composed by service A. This transition is presented as {sChallenge, Sender-

Challenge(A,B), decrypt(priv(B)), *, decrypt(priv(B))}. The first element

of the transition function is the input that is read, the second is the func­

tion tha t is popped from Service A’s stack, the third element represents the

function popped from Service B’s stack, the fourth represents the element

pushed onto service stack A (“*” means tha t no action is performed), the

fifth element represents the function pushed onto Service B’s stack. A tran­

sition from state ‘qO’ to state ‘q l ’ has now been made. Next TS is read from

the input tape and a timestamp is assigned to the message. The following

transition function represents a transition from ‘q l ’ to ‘q2’: {TS, cTimeS-

tam p(), decrypt (pub (B)), *, decrypt(pub(B))}. cTimeStamp() is executed

from Service A’s stack and no action is performed on Service B’s stack. For a

transition to the next state ‘q3’, SIGN is read from the input tape and the fol­

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

lowing transition function is performed: {SIGN, sign(A), decrypt(priv(B)),

*, decrypt(priv(B))}. sign(A) is executed from Service A’s stack, and at the

end of the transition Service B’s stack remains unchanged. The last step be­

fore sending the message on the channel is to encrypt it. The {ENCRYPT,

encrypt (pub (B)), decrypt (priv(B)), *, decrypt (priv(B))} transition is made

to move to state ‘q4’. The function encrypt(pub(B)) is popped and executed,

resulting in the message being symbolically encrypted with Service B’s public

key. The message is then sent on the insecure channel. Send/Recv_Msg is

read from the tape.

At Service B the message is received from the channel. At the receiver

end functions from Service B’s stack are executed and no action is performed

on Service A’s stack. DECRYPT is read from the input tape and the fol­

lowing transition is performed to move from state ‘q4’ to ‘q5’: {DECRYPT,

decrypt(priv(A)), decrypt(priv(B)), decrypt(priv(A)), *}. If there are mul­

tiple transition functions to choose from between two states, one transition

function is selected based on the values on the top of the stack. The mes­

sage is decrypted by calling the ‘decrypt(priv(B))’ function, i.e., Service B

uses its private key to perform symbolic decryption. After the message has

been decrypted, TS is read to move to the next state, ‘q6’, and the mes­

sage timestamp is checked. The {TS, decrypt (priv (A)), vTimeStamp(), de­

crypt (priv(A)), *} transition is executed. vTimeStampQ is popped from the

stack to verify the freshness of the message. Service B reads the next ele­

ment on the input tape, vSIGN, and moves to state ‘q7’ once the signature

is verified by the following transition: {vSIGN, decrypt(priv(A)), vSign(A),

decrypt(priv(A)), *}. vSign(A) is popped and executed from service B’s

stack - it is passed the identity of Service A to verify the signature elements

96

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

for Service A. The next alphabet symbol read from the input tape is Recvr-

Chal to shift from state ‘q7’ to ‘q8\ The transition function is{RecvChal,

decrypt (priv (A)), RecvChallenge(A,B), decrypt (priv (A)), *}, and the effect

is that Service B updates the receiver challenge variables. Service B creates

a response message by executing the following sequence of events. Service

B moves from state ‘q8’ to ‘q9’ by reading TS and executing { TS, de­

crypt (priv (A)), cTimeStampO, decrypt (priv (A)), *}. The resulting message

is assigned a timestamp value for creation and expiration by the cTimeS-

tamp() function. SIGN is read from the tape and the state transitions

from ‘q9’ to ‘qlO’ after the transition { SIGN, decrypt(priv(A)), sign(B),

decrypt(priv(A)), *} is performed. sign(B) is popped and executed resulting

in Service B signing the message. ENCRYPT is then read and the state

advances from ‘qlO’ to ‘q l l ’, after executing the transition {ENCRYPT, de­

crypt (priv (A)), encrypt (pub (A)), decrypt (priv(A)), *}, resulting in encrypt­

ing the message by running encrypt (pub (A)). The message is sent on the

channel.

The message is received by Service A, and it performs the following ac­

tions: decryption, validation of freshness, verification of signature, and bind­

ing to Service B. First, DECRYPT is read from the tape in order to pro­

ceed from ‘q4’ to ‘q l l ’, and the following transition function is executed:

{DECRYPT, decrypt(priv(A)), decrypt(priv(B)), * , decrypt(priv(A))}. de­

crypt (priv (A)) is popped from Service A’s stack and executed resulting in the

message being decrypted with the private key of Service A. The next symbol

read from the tape is TS and the state shifts from ‘q l l ’ to ‘q l2 ’ with tran­

sition function {TS, vTimeStamp(), decrypt(priv(B)), *, decrypt(priv(B))}.

vTimeStampQ is popped from Service A’s stack and is run to validate the

97

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

timestamp of the message. To move from ‘q l2 ’ to ‘q l3 ’ SIGN is read from the

input tape, and the transition function {SIGN, vSign(B), decrypt(priv(B)),

*, decrypt (priv(B))} is executed. As a consequence vSign(B) is popped from

Service A’s stack and executed to verify the signature of Service B. sBIND is

the next input symbol read to proceed from ‘q l3 ’ to ‘q l ’. The transition func­

tion is {sBIND, SenderBind(A,B), decrypt (priv (B)), *, decrypt (priv(B))}.

SenderBind(A,B) is popped and executed, and as a result Service A binds

to Service B. At this stage Service A has partially authenticated to Ser­

vice B, and the last step of the message exchange is the authentication by

Service B. Service A sends a response to B. It assembles the message by per­

forming transitions in the following sequence. Service A reads TS from the

input tape and moves to state ‘q2’. On executing {TS, cTimeStamp(), de­

crypt (priv(B)), *, decrypt(priv(B))}, cTimeStampQ is popped and executed

from Service A’s stack which results in Service A assigning a fresh timestamp

to the message. Next it reads the SIGN input symbol from the tape in order

to proceed to state ‘q3’. On executing {SIGN, sign(A), decrypt(priv(B)), *,

decrypt(priv(B))}, sign(A) is popped and executed, and consequently Ser­

vice A signs the message with its signature. Service A reads ENCRYPT

from the tape and moves to state ‘q4’. On executing the transition func­

tion {ENCRYPT, encrypt (pub (B)), decrypt (priv(B)), *, decrypt (priv(B))},

encrypt (pub (B)) is popped from service A’s stack and executed, resulting

in the message being encrypted by Service B’s public key. Now the stack

of Service A is empty or contains the starting symbol y. All the processing

steps required for Service A has been fulfilled. The message is sent on the

channel for the last time.

Service B receives this last message from Service A. Before it authenti­

98

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

cates to Service A, it executes the steps: decrypting the message, validating

the timestamp and signature, and binding to Service A. DECRYPT is read

from the input tape to move from state ‘q4’ to ‘q5’ by executing transi­

tion {DECRYPT, *, decrypt(priv(B)), *, *}. decrypt(priv(B)) is popped

from Service B’s stack, and the message is decrypted with the private key

of Service B. Service B reads TS from the tape to progress to state ‘q6\

The transition executed is {TS, *, vTimeStamp(), *, *}. vTimeStamp() is

popped from Service B’s stack and run, resulting in the message freshness

being verified. The next symbol on the tape is vSIGX. Before moving to

state ‘q7’, the following transition is executed: {vSIGN, *, vSign(A), *, *}.

vSign(A) is popped from the stack and run, resulting in Service A’s signa­

ture being verified. The last transition from state cq7’ to £q l4 ’ is done when

rBIND is read from the tape and transition {rBIND, *, RecvrBind(A,B), *,

*} is executed. RecvBind(A,B) is popped from Service B’s stack and run

which causes Service B to authenticate the identity of Service A. When state

‘q l4 ’ is reached and both the stacks of Service A and Service B are empty,

or contain the initial elements, y and z, respectively, then it is said that a

successful run of the Simple Message Exchange Protocol has been performed.

Table 4.2 summarizes the above. The table represents the transition func­

tion executed at each state to move to the next state.

Each function in Table 4.1 represents functionality that is to be per­

formed on Signature. Encryption and TimeStamp elements defined in the

SMEP run. The XML syntax is extracted from WS-Security and WS-Trust

which is used to model SMEP and STP. The functions inTable 4.1 are ap­

plied to the XML structures described below to either verify or create them

in our model. These XML elements are described below.

99

4.3. SME PROTOCOL 4. Modelling Protocols with Automata

Table 4.2: States and Transition Functions for SMEP.

States Transition Functions <5
qO—»ql (sChallenge, SenderChallenge(A,B), Decrypt(priv(B)), *, decrypt(priv(B))}
q l—»q2 (TS, cTimeStampQ, decrypt(pub(B)), *, decrypt(pub(B))}
q2-*q3 (SIGN, sign(A), decrypt(priv(B)), *, decrypt(priv(B))}
q3->q4 (ENCRYPT, encrypt (pub(B)), decrypt (priv (B)), *, decrypt(priv(B))}
q4—»q4 (Send/Recv_Msg,*,*,*,*}
q4—»q5 (DECRYPT, decrypt(priv(A)), decrypt(priv(B)),decrypt(priv(A)), *}
q5—»q6 (TS, decrypt(priv(A)), vTimeStamp(), decrypt(priv(A)), *}
q6-»q7 (vSIGN, decrypt(priv(A)), vSign(A), decrypt (priv(A)), *}
q7—>q8 (RecvChal, decrypt(priv(A)), RecvChallenge(A,B), decrypt(priv(A)), *}
q8-»q9 (TS, decrypt(priv(A)), cTimeStamp(), decrypt(priv(A)), *}
q9—►qlO (SIGN, decrypt(priv(A)), sign(B), decrypt(priv(A)), *}
qlO—»q4 (ENCRYPT, encrypt(pub(B)), decrypt(priv(B)), *, decrypt(priv(B))}
q4-»q4 (Send/Recv_Msg,*,*,*,*}
q4—>qll (DECRYPT, decrypt (priv(A)), decrypt (priv(B)), *, decrypt (priv (A))}
q l l—>ql2 (TS, vTimeStamp(), decrypt(priv(B)), *, decrypt(priv(B))}
ql2-+ql3 (SIGN, vSign(B), decrypt(priv(B)), *, decrypt (priv(B))}
ql3—»ql (sBIND, SenderBInd(A,B), decrypt (priv(B)), *, decrypt (priv (B))}
ql->q2 (TS, cTimeStamp(), decrypt(pub(B)), *, decrypt(pub(B)}
q2—»q3 (SIGN, sign(A), decrypt(priv(B)), *, decrypt(priv(B))}
q3—̂q4 (ENCRYPT, encrypt (pub(B)), decrypt (priv (B)), *, decrypt (priv(B))}
q4—>q4 (Send/Recv_Msg,*,*,*,*}
q4-»q5 (DECRYPT, *, decrypt(priv(B)), *, *}
q5—»q6 (TS, *, vTimeStarap(), *, *}
q6-*q7 (vSIGN, *, vSign(A), *, *}
q7—>ql4 (rBIND, *, RecvrBind(A,B), *, *}

100

4.3. SM E PROTOCOL 4. Modelling Protocols with Automata

<wsu:Timestamp>

< wsu: Created > createdStamp< / wsu: Createt >

< wsu: Expires > expiry Stamp < / wsu: Expires >

</wsu:Timestamp>

<wsse:UsernameToken>

<wsse:Username> usernameValue </wsse:Username>

<wsse:Password> passwordDigestValue </wsse:Password>

<wsse:Nonce>nonce</wsse:Nonce>

<wsu:Created>ustCreatedStamp< / Created>

< / wsse:UsernameToken>

<ds:Signature>

<ds:SignedInfo>

<ds:CanonicalizationMethod>... </ds:CanonicalizationMethod>

<ds:SignatureMethod>... < /ds:SignatureMethod>

< ds: Reference >. . .< /ds:Reference>

< /ds:SignedInfo>

<ds:SignatureValue>signatureValue< / ds:SignatureValue>

<ds:KeyInfo>... </ds:KeyInfo>

< /ds:Signature>

The above elements are modelled in the Promela language. Each message

structure is defined by using the Promela ‘typedef’ construct, which is used

for defining complex data types. The stack functions for Service A and Ser­

vice B are executed on these structures. The Promela models are discussed

in Chapter 5.

<xenc:EncryptedKey>

101

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

<xenc:EncryptionMethod>. . .< / xenc:EncryptionMethod>

<ds:KeyInfo>

< Key Value>.... < Key Value >

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue> . . .</ xenc:CipherValue>

</xenc:CipherData>

<xenc:ReferenceList>

<xenc:DataReference>... < /xenc:DataReference>

< /xenc:ReferenceList>

<xenc:EncryptionProperties>.. .<xenc:EncryptionProperties>

</xenc:EncryptedKey>

< xenc: Encry ptedData>

<xenc: CipherData>

<xenc:CipherValue> . . .</ xenc:CipherValue>

< /xenc:CipherData>

</xenc:EncryptedData>

4.4 Security Token Protocol

The intended purpose of the Security Token Protocol, defined in Section 3.4,

is to issue a security context. Service A sends a request for issuance of a se­

curity token to a Security Token Service (STS). The Security Token Service,

after processing the request, sends a request security token response message

to Service A. The response message contains a security token. More details

can be read in Chapter 3. The Security Token Protocol behaviour and its

goals are modelled with a pushdown automaton.

102

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

The protocol consists of the following main sequence of steps. At Service

A, a request for the security token is generated. The request for security

token message is timestamped, and the request security token message is

signed by Service A. The request security token message is encrypted with

the public key of the Security Token Service and is sent to the Security To­

ken Service over an insecure channel. The request security token message is

received by the Security Token Service which decrypts the message with its

private key, validates the timestamp, and verifies whether the signature of

the request message th a t of service A. The STS then creates a response to

security token request message containing the security context token. STS

sends the response to security token request message back to Service A, which

processes it and accepts the security token. Service A then sends the security

context token’s unique identity back to the STS. The STS receives the mes­

sage containing the security context identity and checks the unique identity

to see if the security context identity is the same as tha t sent in the response

to security token request message to Service A.

A pushdown autom aton is comprised of three main components: the in­

put tape, the stack, and the automaton. The input tape representing the

steps involved in a complete Security Token Protocol run, from initiating a

request for a security token to the acceptance of the security context between

Service A and the Security Token Service, consists of following input symbols:

{sChallenge, RST, TS, SIGN, ENCRYPT, Send/Recv_Msg, DECRYPT, TS,

vSIGN, RecvChal, RSTR, TS, SIGN, ENCRYPT, Send/Recv_Msg, DECRYPT,

TS, SIGN, sBIND, SC, TS, SIGN, ENCRYPT, DECRYPT, TS, vSIGN,

rBIND, SCTID}. As the input symbols are read, some function is performed

on the stack and a transition is made from one state to another, until the

103

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

final state is reached or the tape is empty. ‘sChallenge’ results in Service A

updating the sender challenge global variables. ‘RST’ represents the creation

of the request for a security token. ‘TS’, ‘SIGN’ and ‘ENCRYPT’ represents

assigning a timestamp to the message, signing the message with Service A’s

signature, and encrypting the message with the public key of the Security

Token Service, respectively. ‘Send/Recv_Msg’ denotes sending or receiving

the message. ‘DECRYPT’, ‘TS’, ‘vSIGN’ and ‘RecvChallenge’ denote de­

crypting the request for security token with the private key of the Security

Token Service, validating the timestamp of the request message, verifying

the signature of Service A, and updating the receiver challenge variables

at the Security Token Service, respectively. ‘RSTR’ illustrates the creation

of a response to security token request message a t the Security Token Ser­

vice, containing security context information. ‘TS’, ‘SIGN’, ‘ENCRYPT’ and

‘Send/Recv_Msg’ represent assigning a timestamp to the response to security

token request message, signing the message with the Security Token Service

signature, encrypting the message with Service A’s public key, and sending

the response to security token request message to Service A, respectively.

‘DECRYPT, ‘TS’,‘SIGN’ and ‘sBIND’ denote decryption of the response to

security token request message with the private key of Service A, validating

the timestamp of the received message, verifying the Security Token Service

signature on the response to security token request message, and binding to

the Security Token Service, respectively. ‘SC’ represents the agreement of

Service A on the security context token sent by the Security Token Service.

‘TS’,‘SIGN’ and ‘ENCRYPT represent assigning a timestamp to the new re­

ply message containing the security context token’s unique identity, signing

the message with Service A’s signature, and encrypting it with the Security

Token Service’s public key. ‘DECRYPT’, ‘TS’,‘vSIGN’ and ‘rBIND’ repre­

104

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

sent the steps at the Security Token Service. These steps decrypt the message

with the private key of the Security Token Service, validate the timestamp

of the reply message, verify the signature of Service A, and bind to Service

A. ‘SCTID’ denotes the Security Token Service acknowledging the security

token unique identity that the Security Token Service previously sent to Ser­

vice A.

The stack is another part of a pushdown automaton. There are two stacks

which are used in the Security Token Protocol model presented in Table 4.3.

Each service (Service A and the Security Token Service) is allocated its own

stack. These stacks contain the functions th a t are executed when the input

tape is read. The functions can be divided into three main categories: ‘as­

semblers’, ‘disassemblers’ and ‘property’ functions. The assemblers are used

when constructing a message and disassemblers are used when processing

the message at the receiver service. The ‘property’ functions validate the

properties of the Security Token Protocol. The assembler functions consist

of cTimeStamp(), which is used for creating a timestamp for a message. The

function sign(X) is used for signing a message - it is passed the signature val­

ues of Service A or the Security Token Service. The function encrypt (pub (X))

represents the encryption of the message with the public key of the receiver

service. The disassemblers are used when processing the message. vTimeS­

tamp () is used for validating the freshness of a message, and vSign(X) is used

for verifying the signature of a message. vSign(X) takes as a parameter ‘X’,

the identity of the service (either Service A or the Security Token Service)

whose signature is to be verified. The function decrypt(priv(X)) is used for

decrypting the message received - the message is decrypted with the private

key of the receiver service, X. The ‘property functions’ consist of the au-

105

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

Table 4.3: Stacks for Security Token Protocol

S tack A S tack STS
Sender Challenge (A, STS) decrypt (priv (B))
partialSC() vTimeStamp()
cTimeStampQ vSign(A)
sign(A) RecvrChallenge(A, STS)
encrypt (pub (STS)) partialSC()
decrypt (priv (A)) security .context
vTimeStamp () cTimeStamp
vSign(STS) sign(STS))
SenderBind(A,STS) encrypt (pub (A))
security .context () decrypt (priv(STS))
SCTID () vTimeStamp ()
cTimeStamp() vSign(A)
sign(A) RecvrBInd (A, STS)
encrypt (pub (STS)) SCTID ()
y z

thentication functions: SenderChallenge(A,STS), RecvrChallenge(A, STS),

RecvrBind(A,STS) and SenderBind(A, STS), which have been discussed in

the previous section. In addition to the authentication functions, the prop­

erty functions also contain functions related to processing security contexts.

The functions partialSC(), security .context () and SCTIDQ are the security-

context functions. The partialSC() function is executed to create a request

security token and to verify a partial security context. The security.contextQ

function is used for generating a security context after the Security Token

Service agrees on the partial context. The SCTID() function is used to ex­

tract the unique security context identity from the security context received

and to validate it against the one sent in the response to security token re­

quest message.

106

4.4. ST PROTOCOL 4. Modelling Protocols with Automata

w x b p A s t s d . • (XcrySpmxSTS

SC. cSCTlO().d«c<yp((pi1v
(STSir.dWYpttprMSTS))

«INO. S*rdef8ind(A,STS).<l#CTyD<(pnv
(STS)).‘4wyp«pn*(STS))

q15

*

♦

P3

q14

SCN.ugw*). McfyMpMSTS)).
\<tecrypt(priv<STS))

4
q4

ENCRYPT,weypHpulrtSTSM. Me
(STSiiAdeayptftSfv®)

j TS, »T«n«SlampO,atcfypHp<w(STS)).*.dgaypl(pnv(STS)) ^

q13 i
r

DECRYPT,4ftaypt(pnv(A)). <tacrypt(pnv(STS)). *,dacrypl(priv(STS)} k

DECRYPT.*, deaypt(pnv

 ESftV___
| e n c r y p t ,d»ow «(p iM *». * "gypqput(A)) [DECRYPT, d«ctypKpnv(A)). OtcrypKp>iv(STS)),depypKpnv(A)). * | |

q6

q11 I
4

[TS^TJ^>mpaV|

q?

TS,Oeoypt(|yw(A)).cT»neSump(),a»pyp>(prt»<A)).* |

RSTR,deoypt(prMA)),
secunty_conteji(). deoyp((poy

(A)).*

| VSK3N.1)). vSigf<A).flecrypt(privlA)).1

RecvChal.Pecrypt(prv<A)),

q 9

SCTID-.scM O, *,*

I

q17

Figure 4.2: Security Token Protocol Protocol automaton.

107

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

Figure 4.2 describes the automaton model for the Security Token Pro­

tocol. Service A initiates a request for a security token. Initially, the ser­

vice is in state ‘qO\ Service A first reads from the tape the input symbol

sChallenge and executes the SenderChallenge(A,STS) function from its stack.

The transition is represented as {sChallenge, SenderChallenge(A, STS), de-

crypt(pub(STS)), *, decrypt(pub(STS))}. On completion of the transition

function, Service A moves from ‘qO’ to ‘q l ’. When sChallenge is read from

the input tape, SenderChallenge(A, STS) is popped from the stack of Ser­

vice A and executed; the decrypt (pub (STS)) is also popped but not exe­

cuted. “*” denotes that nothing is pushed back onto Service A’s stack, and

decrypt (pub (STS)) is pushed back onto the stack of the Security Token Ser­

vice. The transition from one state to the other is made by observing both

stacks. The next input read from the tape is RST. {RST, partialSC(), de­

crypt (pub(STS)), *, decrypt (pub (STS))} is the transition function to the

next state, ‘q2’. paritalSC() is popped from Service A’s stack and executed.

The request for security token elements of the message are created and pop­

ulated. After completing the generation of the request security token infor­

mation, Service A reads TS from the tape, and then executes the transition

function {TS, cTimeStampQ, decrypt (pub (STS)) , *, decrypt(pub(STS))}.

cTimeStampO is popped from Service A’s stack and run, resulting in assign­

ing the timestamp values for creation and expiration to the request security

token message, and proceeding to state ‘q3’. Service A reads the next in­

put from the tape, SIGN, and the transition function {SIGN, sign(A), de­

crypt (priv (STS)), *, decrypt(priv(STS))} is performed. sign(A) is popped

from the stack and run, resulting in signing the request message with Service

A’s signature and progressing to state ‘q4’. The last step before sending the

request to the Security Token Service is to encrypt the message with the

108

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

public key of the Security Token Service. This is accomplished by reading

ENCRYPT from the input tape, resulting in the execution of the transi­

tion function {ENCRYPT, encrypt (pub (STS)), decrypt(priv(STS)), *, de­

crypt (priv(STS))}. encrypt (pub (STS)) is popped from Service A’s stack and

executed, which results in a move to state ‘q5’ on completion. The message

is now ready to be sent over the channel by the following transition function:

{Send/Recv_Msg, *, *, *, *}.

The request security token message from Service A is now received by the

Security Token Service. The Security Token Service processes the request to

issue a security token and sends a response to security token request message

back to Service A. The request security token message is decrypted first.

DECRYPT is read from the input tape by the Security Token Service and

the transition function {DECRYPT, decrypt(priv(A)), decrypt(priv(STS)),

decrypt (priv (A)), *} is performed. decrypt(priv(STS)) is popped from stack

of the STS and executed. The STS decrypts the message using its pri­

vate key. As a result of the transition a state change occurs to ‘q6’. The

STS reads TS from the tape input. Here the service has the option to ex­

ecute two transition functions, but only the one where the functions on the

top of the stack match will be executed. The transition function {TS, de­

crypt (priv(A)), vTimeStamp(), decrypt(priv(A)), *} is run. The vTimeS­

tamp () function is popped from the STS stack and run. The service verifies

the timestamp values of the request security token message, and continues

to state ‘q7’. The STS verifies the signature of Service A on the message

for a request security token, reads vSIGN from the tape and executes the

transition function {vSIGN, decrypt(priv(A)), vSign(A), decrypt (priv (A)),

*}. vSign(A) is popped from stack of the STS and executed. The signature

109

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

of Service A is validated, resulting in a shift to the next state, ‘q8\ The STS

updates its receiver challenge variables. It reads RecvChal from the input

tape and runs transition function {RecvChal, decrypt (priv(A)), RecvChal-

lenge(A,STS),decrypt(priv(A)),*}. RecvChallenge(A,STS) is popped from

the STS stack and executed. The function updates the challenge variables

for the Security Token Service, and as a result the service progresses to state

‘q9\ The STS creates a response to security token request message for Ser­

vice A containing the security context information, it reads RSTR from the

tape and executes the following transition {RSTR, decrypt(priv(A)), secu­

rity .context(), decrypt(priv(A)), *}. security_context() is popped from the

STS stack and executed causing the request security token response informa­

tion to be populated. The STS progresses to state ‘qlO’. The STS reads TS

from the input tape, and the transition function {TS, decrypt(priv(A)),cTimeStamp(),

decrypt(priv(A)), *} is performed. cTimeStamp() is popped from the STS

stack and run, and the function allocates the timestamp values to the re­

sponse to security token request message, and results in a state change to

‘q l l ’. SIGN is read from the input tape, and the transition function {SIGN,

decrypt(priv(A)), sign(STS), decrypt(priv(A)), *} is performed. sign(STS)

is popped from the STS stack and executed, which allows the request secu­

rity token response message to be signed by the Security Token Service. At

the end of the transition progress is made to state ‘q l2 ’. The last symbol to

be read from the tape by the Security Token Service before sending the re­

quest security token response message to service A is ENCRYPT. This leads

to the transition function {ENCRYPT, decrypt (priv(A)), encrypt (pub (A)),

decrypt (priv(A)), *} being performed, encrypt (pub (A)) is popped from the

stack and run. The function symbolically encrypts the response to security

token request message with the public key of A, thus causing a state change

110

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

to state ‘q5\

The response to security token request message is received by Service A,

and is first decrypted. DECRYPT is read from the input tape, and the tran­

sition function {DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), *, de-

crypt(priv(STS))} is performed. The decrypt (priv (A)) function is executed,

and the message is symbolically decrypted using the private key of Service

A. decrypt(priv(STS)) is pushed back on the stack of the Security Token

Service and the state is progressed to state ‘q l3 ’. No actions are performed

on the STS stack, and the function popped is pushed back on to the stack

without being executed. Service A reads TS from the tape, and transition

function {TS, vTimeStamp(), decrypt(priv(STS)), *, decrypt(priv(STS))} is

performed. vTimeStamp() is popped from Service A’s stack and executed,

and the state is changed to ‘q l4 ’. SIGN is read from the input tape. The

read initiates transition function {SIGN, vSign(STS), decrypt(priv(STS)), *,

decrypt(priv(STS))}. vSign(STS) is popped from Service A’s stack and run.

The function verifies the signature of the Security Token Service. The transi­

tion causes the state to be modified to 'q l5 \ Service A reads the next symbol

on the tape, sBIND, and this leads to the the transition function {sBIND,

SenderBind(A,STS), decrypt(priv(STS)), *, decrypt(priv(STS))} being per­

formed. SenderBind(A,STS) is popped from Service A’s stack and executed.

The function updates the sender bind variables on Service A’s side. After the

completion of the transition the state is changed to ‘q l6 ’. The last part of the

Security Token Protocol involves Service A sending the unique identity of the

security context back to the STS. This is done to let the STS know that the se­

curity context received by Service A was the same as that sent by the Security

Token Service. A message is created containing the security context identity

111

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

sent by the STS, SC is read from the input tape and the transition function

{SC, cSCTID(), decrypt(priv(STS)), *, decrypt(priv(STS))} is performed.

The security context identity is extracted and the state is adjusted to the next

state in the system, ‘q2 \ The message is then timestamped, signed by Service

A and encrypted with the public key of the STS before being sent on the chan­

nel. The following transitions and state changes are made respectively. {TS,

vTimeStampQ, decrypt(priv(STS)), *, decrypt(priv(STS))}: state change

to ‘q3’. {SIGN, sign(A), decrypt(priv(STS)), *, decrypt(priv(STS))}: state

change to ‘q4’. {ENCRYPT, encrypt(pub(STS)), decrypt(priv(STS)), *, de-

crypt(priv(STS))}: state change to ‘q5\ The message is sent to the STS.

The message is then received by the STS. The service reads DECRYPT

from the input tape, causing the transition function {DECRYPT, *, de­

crypt (priv (STS)), *, *} to be performed, decrypt(priv(STS)) is popped from

the STS stack and run. The function symbolically decrypts the message

with its private key. At the end of the transition progress is made to state

‘q6 \ TS is read from the input tape, resulting in transition function {TS, *,

vTimeStamp(), *, *} being performed. vTimeStamp() is popped from the

STS stack, the freshness of the message is validated, and the state is adjusted

to ‘q7 \ STS reads vSIGN from the tape, and as a consequence the transition

function {vSIGN, *, vSign(A), *, *} is performed. vSign(A) is popped from

the stack and run, and the signature of Service A on the message is vali­

dated and the state changes to ‘q8\ The service reads rBIND next, causing

the transition function {rBIND, *, RecvrBind(A,STS),*, *} to be performed.

RecvrBind(A,STS) is popped from the STS stack and executed, the function

updates the receiver bind variables at the STS, and as a result of the tran­

sition the state is changed to *q!7\ The last symbol on the input tape SC

112

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

is read by the Security Token Service, and as a consequence the transition

function {SCTID0, *, sctid(), *, *} is performed. sctidQ is popped from

the STS stack and run. This function validates the unique identifier for the

security context, and the final state ‘q l8 ’ is reached. This concludes a sin­

gle complete run of the Security Token Protocol. The above transitions and

state changes are summarized in Table 4.4.

Each function in Table 4.3 represents functionality that is to be per­

formed on Signature, Encryption, TimeStamp , Request Security Token, and

Response to Security Token Request XML elements defined in the Security

Token Protocol run. These structures are extracted from the WS-Trust stan­

dard. The functions defined in table 4.3 are applied to these XML structures

during each step of the protocol run.The TimeStamp, Signature, Encryption

structure has been described in Section 4.3.

The Request Security Token structure is embedded in the WS-Security

structure when requesting a security token. Below is a structure for re­

questing a STS to issue a security token used in our Security Token Service

Protocol. <TokenType> represents the type of token being requested, repre­

sented as a URL <RequestType> defines a URI that represents the function

being requested. <AppliesTo> defines a scope for which the token is valid.

<wst:RequestSecurityToken>

<wst:TokenType> . . .</ wst :TokenType>

< wst: RequestType >... < / wst: Request Type>

< wsp: AppliesTo>. . .< / wsp: AppliesTo>

<wst:Entropy>

< wst rBinary Secret >... < /wst :Binary Secret >

113

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

Table 4.4: States and Transition Functions for STP.

States Transition Functions S
qO—»ql (sChallenge, SenderChallenge(A, STS), decrypt(pub(STS)), *, decrypt(pub(STS))}
ql-»q2 (RST, partialSC(), decrypt(pub(STS)), *, decrypt(pub(STS))}
q2—»q3 (TS, cTiraeStam(), decrypt(pub(STS)) , *, decrypt(pub(STS))}
q3—>q4 (SIGN, sign(A), decrypt(priv(STS)), *, decrypt(priv(STS))}
q4—>q5 (ENCRYPT, encrypt(pub(STS)), decrypt(priv(STS)), *. decrypt(priv(STS))}
q5—>q5 (Send/Recv_Msg, * , * , * , *}
q5->q6 (DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), decrypt(priv(A)), *}
q6-»q6 (TS, decrypt(priv(A)), vTimeStampQ, decrypt(priv(A)), *}
q7—»q8 (vSIGN, decrypt (priv (A)), vSign(A), decrypt (priv(A)), *}
q8—»q9 (RecvChal, decrypt(priv(A)), RecvChallenge(A,STS),decrypt(priv(A)),*}
q9—>qlO (RSTR, decrypt(priv(A)), security_context(), decrypt(priv(A)), *}
qlO-Kjll (TS, decrypt(priv(A)),cTimeStarap(), decrypt(priv(A)), *}
q l l—»ql2 (SIGN, decrypt(priv(A)), sign(STS), decrypt(priv(A)), *}
ql2—»q5 (ENCRYPT, decrypt(priv(A)), encrypt(pub(A)), decrypt(priv(A)), *}
q5-»q5 (Send/Recv_Msg, * , * , * , *}
q5—fql3 (DECRYPT, decrypt(priv(A)), decrypt(priv(STS)), *, decrypt(priv(STS))}
ql3-*ql4 (TS, vTimeStampQ, decrypt (priv (STS)), *, decrypt(priv(STS))}
ql4—>ql5 (SIGN, vSign(STS), decrypt(priv(STS)), *, decrypt(priv(STS))}
ql5->ql6 (sBIND, SenderBind(A,STS), decrypt(priv(STS)), *, decrypt(priv(STS))}
ql6—>q2 (SC, cSCTID(), decrypt(priv(STS)), *, decrypt(priv(STS))}
q2—>q3 (TS, cTimeStam(), decrypt(pub(STS)) , *, decrypt(pub(STS))}
q3—»q4 (SIGN, sign(A), decrypt(priv(STS)), *, decrypt(priv(STS))}
q4—»q5 (ENCRYPT, encrypt(pub(STS)), decrypt(priv(STS)), *. decrypt(priv(STS))}
q5—̂q5 (Send/RecvJMsg, * , * , * , *}
q5->q6 (DECRYPT, *, decrypt (priv (STS)), *, *}
q6—>q7 (TS, *, vTimeStampQ, *, *}
q7—>q8 (vSIGN, *, vSign(A), *, *}
q8—>ql7 (rBIND, *, RecvrBind(A,STS),*, *}
ql7—̂ ql8 (SCTIDQ, *, sctidQ, *, *}

114

4.4. S T PROTOCOL 4. Modelling Protocols with Automata

< /wst:Entropy>

<wst:Lifetime>

< wsu: Created > . . .</ wsu: Created>

< wsu:Expires> . . .< /wsu:Expires>

< / wst:Lifetime>

< / wst:RequestSecurityToken>

Entropy defines the value to be used in creating a key. The value should be

<xenc:EncryptedKey> or <wst:BinarySecret>. The BinarySecret element

specifies a base64 encoded sequence of octets representing the requestor’s

entropy. The <wst:Lifetime> is similar to the < wst:TimeStamp> reflecting

the same information when the token was created and when it expires. They

are used interchangeably while designing protocols.

A structure for a response from a STS for the request to issue a se­

curity token will now be given. The response should contain all the ele­

ments originally present in the request except the requestor’s entropy and

the token requested. The keys are calculated using partial entropy, i.e.,

both the Security Token Service and the requestor provide entropies. This

entropy is used to calculate the keys. When keys resulting from a token

request are not directly returned and must be computed, the computed

keys are represented using a <wst:ComputedKey> element placed inside a

<wst:RequestedProofToken>. The <wst:ComputedKey> element returns

how the key is to be computed, e.g., SHA-1. The value of the computed key

returned is in the form of a URI.

<wst:RequestSecurityTokenResponse>

< wst :TokenType>... < / wst :TokenType>

< wsp: AppliesTo>. . .< / wsp: AppliesTo>

115

4.5. CONCLUDING REM ARKS 4. Modelling Protocols with Automata

< wst: Reques tTy pe >... < / wst: Request Type >

<wst:RequestedProofToken>

< wst: ComputedKey > ...</ wst: ComputedKey >

< / wst:RequestedProofToken>

<wst:Entropy>

< wst: B inary Secret >. ..</ wst: B inary Secret >

< /wst:Entropy>

<wst:Lifetime>

< wsu: Created > ...< /wsu: Created>

< wsu: Expires >... < /■wsu: Expires >

< /wst:Lifetime>

< / wst: RequestSecurity TokenResponse>

4.5 Concluding Remarks

This chapter has presented an automaton model of the Simple Message Ex­

change Protocol and the Security Token Protocol, described in Chapter 3.

The automaton model describes the behaviour of the protocols in an explicit

way. The next step is the verification of the model using Spin. The protocols

will be expressed in the Promela language, and Service A, Service B and the

Service Token Service will be defined as the participants of the protocols.

Other automaton based work includes Diaz [DPC+06] who has mod­

elled web services into timed automata by applying time restrictions and

Fu [Fea04] use guarded finite state automata to represent web services. Both

focuses on composite web services while our work focus on protocols for stan­

dard web services and the finding of new approach that can combine both

behaviour and the properties of a protocol in a single model.

116

4.5. CONCLUDING REM ARKS 4. Modelling Protocols with Automata

Increasing the number of requesting services in STP run might degrade

the performance causing delayed responses or packet loss. Each requesting

party can be allocated a separate thread to process the request, thus allowing

the security token service to continue with the other pending requests.

SMEP and STP are mainly designed for two services. In the situation

where multiple services are involved, there will be no extra impact on the

stacks as each service has its own stack. In the case of SMEP, multiple

services involved in the protocol run can be classified as sending and receiving

services.

117

CHAPTER 5

Promela Model

A system is correct if it meets its design requirements. However, this state­

ment is not enough to prove the correctness of concurrent systems. The real

test for these systems is that they do not fail to meet the specified require­

ments.

General-purpose model checking tools can be used for verification of a

system model, or tools can be built th a t are targeted for the verification

of the particular model, such as Tulafale [BF04]. This thesis uses Spin, a

general-purpose model checker, for verification of the model. The specifica­

tion language accepted by Spin is Promela, which allows the facts about a

transition system to be modelled while hiding the lower-level details about

the system. Spin is a state exploration model checker and has algorithms

for state space reduction, thus controlling the size of the state space. Spin is

118

5.1. CHAPTER OBJECTIVES 5. Promela Model

used to verify the correctness requirements for the concurrent system. There

are two ways Spin can be used for model checking: (i) using Spin to con­

struct the verification model for the system at hand, or (ii) starting from

the implementation and converting critical parts of the implementation into

a verification model which is then analysed using Spin.

The modelling language for Spin is called Promela. In Promela it is very

difficult to specify any computations that are not rudimentary. This allows

for specifying the infrastructure and mutual dependency of concurrently ex­

ecuting processes.

5.1 Chapter Objectives

This chapter presents the translation of the system model presented in Chap­

ter 4 for the Simple Message Exchange Protocol and the Security Token

Protocol, and their Linear Temporal Logic properties, into the Promela lan­

guage. The basic components that form the Promela model are defined for

the Simple Message Exchange Protocol and Security Token Protocol. The

purpose of the model checking exercise is not to build and analyse verification

models that are as detailed as possible, but to find and build the smallest

sufficient model to describe the essential elements of the system design.

119

5.1. CHAPTER OBJECTIVES 5. Promela Model

Global
Database

Message ChannelsProcess

S ' S ' "X
1 flfyi > ^ L n r s ilS

Database Database

Figure 5.1: Types of Objects

120

5.2. INTRODUCTION TO PROM ELA 5. Promela Model

5.2 Introduction to Prom ela

Promela is used for modelling systems for purposes of analysis and verifica­

tion. Figure 5.1 presents the type of objects used when modelling a system

with Promela. Global variables, which are accessible to all the processes in

the system, may be defined, and their values can be updated by any process

in the model. Processes define the functionality of the system, and have a

database of local variables, only available locally. These variables are defined

within the process to limit their scope. The processes can communicate with

each other using message channels. The set of basic statements in Promela is

small and consists of six elements: (1) assignments, (2) assertions, (3) print

statements (4,5) send or receive statements, and (6) Promela’s expression

statement.

Table 5.1 presents a summary of the Promela language constructs used in

the model for the Simple Message Exchange Protocol and the Security Token

Protocol. The ‘global database’ in Figure 5.1 is composed of constants, vari­

able declarations, mtypes, typedefs, etc., and these constructs are accessible

to all the processes in the system.

A ‘Process’ can bo defined using a ’proctype’ declaration, which defines

the behaviour of an executing process. They can be composed of keywords,

constants, atomic statements, selection statements, channels, etc. The syn­

tax of Promela is similar to the C language, with keywords representing

some defined functionality, such as if statements, loops, etc. Constants can

be defined. A constant is a sequence representing a decimal integer. Macros,

or mtypes, can also be used for defining constants. Promela supports unary

and binary expressions, and comparators such as >, > = , = = , ! = , etc. These

121

5.3. SYSTEM MODELLING STEPS 5. Promela Model

operators are used in defining conditional expressions, in ‘if’ statements and

in loop constructs. The ‘in it’ process is the instantiation process. It is the

first process to be executed in a Promela model, and is used for preparing

an initial state for the system.

Processes communicate with each other over message channels. There are

two types of channel in Promela: buffered and rendezvous channels. Buffered

channels have the ability to store messages, unlike rendezvous channels. A

channel can be defined as ‘chan send = [0] of {mtype}’. A message can be

sent on the channel as follows, ‘send ! x ’, and is received on a channel with

‘send ? x ’. A channel can be defined globally or in a process declaration.

More information on Promela can be found in [Ger].

5.3 System M odelling Steps

Promela models of the Simple Message Exchange Protocol and the Secu­

rity Token Protocol have been described previously in Chapter 4, which also

describes the steps in modelling the protocols. The Simple Message Ex­

change Protocol is a ‘three step’ message exchange model. Service A sends

a first message to Service B. The functions for encryption, decryption and

assigning timestamps are applied to the message before sending it off on

the channel. The second message is received at Service A from Service B.

Service B decrypts and validates the message, and then creates and sends

a third message on the channel. Each step of the protocol is modelled for

Service A and Service B as atomic transactions, and each atomic transac­

tions contains the functions applied to the messages at each state. Service

122

5.3. SYSTEM MODELLING STEPS 5. Promela Model

Table 5.1: Promela Constructs

Keywords atomic, bool, typedef, do. od, if, fi, mtype, proc-
type, skip, else chan, bit

Constant Can be defined as macro, or using keyword mtype,
e.g. #define MAX 5

Expressions Unary and Binary Operators or/and functions can
be used to build expressions

Conditional Expressions (exprl —» expr2 : expr3)
Declarations Processes, channels, variables must be declared be­

fore being used.
Variables bit, bool, byte, short or int
Arrays The same concept as in the C language
Symbolic Constants Declared using mtype, e.g., mtype = {OK,

READY, ACK}
Message Channels Channels are used for communicating between pro­

cesses, e.g., chan send = [o] of mtype
Channel Operators Send and receive, e.g., send ! x; and send ? x;

respectively
Structures User defined data types, e.g., typedef msg{byte a;

bool x;} msg m l [2];
Processes Defined using key word proctype, e.g, proctypc

serviceQ {statements}
Init Process Used to prepare the initial state of the system, init

{statements}
atomic Executes statement in one indivisible step, e.g.,

atomic {statements}
Selection Select one amongst its options, when the first

statem ent (guard) is true, e.g., if :: statements ::
statements fi

123

5.3. SYSTEM MODELLING STEPS 5. Promela Model

B performs two steps. It receives the first message from Service A and pro­

cesses it, then sends a second message off to the sender. Service A, and waits

for the response. On receiving a valid response, it authenticates to Service A.

The Security Token Protocol is also a ‘three step’ message exchange pro­

tocol. The first message consists of a request generated for a security token

to be issued (RST), which is sent from Service A to a Security Token Service

(STS). Service A waits for a response from the Security Token Service in

the form of a security context. Service A then validates the second message

containing the security token by applying a combination of functions to the

message. Once it has validated the message it sends a third message back

to the Security Token Service. This completes the protocol run on Service

A’s side. On the STS side, the STS waits for the first message - the request

for a security token. It then processes the message and creates a response

- the response to security token request (RSTR) message. A second mes­

sage then sends this off to Service A. The Security Token Service waits for

a third message containing the final acknowledgement, the security context

identity, which was originally sent to Sservice A in the request security to­

ken response message. The protocol run completes on the STS side after

the Security Token Service validates the response. These steps are modelled

as ‘atomic’ steps. Each atomic step consists of a set of functions which are

applied to the message at each state. The detailed model of these protocols

will be presented in the next two subsections.

The system is modelled by breaking it into the following parts. First the

‘types’ used in the model are defined. These can be constants, datatypes,

etc. Then the ‘channel’ used for communication between processes is defined.

124

5.3. SYSTE M MODELLING STE P S 5. Promela Model

The next step is defining the ‘global variables’ used in the Linear Temporal

Logic Formula and the protocol environment. The ‘processes’ for the prin­

cipals or services involved in the protocol environment are then presented.

For each step a description of the protocol rules and of the protocol instance,

and a description of the intruder behaviour, is provided.

5.3.1 Sim ple M essage Exchange Protocol

The Simple Message Exchange Protocol is based on WS-Security for the ex­

change of messages between two services. The main goal of the protocol is

authentication and secrecy between the participating principals. The Simple

Message Exchange Protocol has been described in detail in Chapter 3.

T ypes

The constants used by the Simple Message Exchange Protocol model will now

be defined. These are divided into ‘general-purpose’ constants, ‘WS-Security’

constants, ‘XML Signature’ constants, ‘XML Encryption’ constants, and

‘TimeStamp’ constants. The constants used in the Simple Message Exchange

Protocol are presented in Table 5.2. The general-purpose constants include

the participating services ‘A’ and ‘B ’, and an intruder service ‘I’. ‘A’, ‘B’

and ‘I’ represent the username, or identity, of these services. ‘REQ’, ‘ACK’,

‘ACCEPT’, ‘DECLINE’ are used in the messages to identify the message

exchange state in the protocol run. The nonces, ‘nonceA’, ‘nonceB’ and

‘noncel’ represent the freshly generated nonce values for Service A, Service

B and the intruder. The constants used for symbolic cryptographic repre­

sentation for XML Signature and XML Encryption will now be presented.

125

5.3. SYSTEM MODELLING STEPS 5. Promela Model

Table 5.2: Simple Message Exchange Protocol Types.

General Purpose A, B , I , REQ, ACK, nonce A, nonceB, noncel,
ACCEPT,DECLINE

XML Signature cl4n, shal, sigvalA, sigvalB, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKeyA, pubKeyB, pubKeyl, privKeyA,

privKeyB, privKeyl
TimeStamp CREATED, EXPIRES

Constants ‘c l4n’, ‘sh a l’, ‘X509v3’ are symbolic cryptographic representa­

tions for XML Signature, and constants ‘tripleDES’, ‘base64encoded’, ’CD’,

etc., are symbolic cryptographic representations for XML Encryption. The

‘WS-Security’ constants include public and private key pairs for each service

A, B and intruder I. The public keys are known to all the services in the

model, but the private keys are kept secret. Lastly, the TimeStamp constant

representations, ‘CREATED’ and ‘EXPIRES’, are the constants for creation

and expiration of the message.

Channels

Channels are used by processes to communicate with each other. Service

A, Service B and the intruder service use channels to send messages to each

other. Two type of channel are declared for the Simple Message Exchange Se­

curity Protocol, and are classified according to the type of messages used for

exchanging data. The first channel sends messages of type ‘M sgl’: {Sender,

Sender_Nonce, Receiver, REQ, TimeStamp, Signaturelnfo, EncryptedData,

pubKey(Receiver)}. This message consists of the username of the sender,

the nonce of the sender, the username of the receiver to identify the receiver

process at both sides of the message exchange, the status of the message,

126

5.3. SYSTEM MODELLING STEPS 5. Promela Model

e.g., REQ, ACK, ACCEPT or DECLINE, the timestamp associated with

the message, the signature information, the encrypted data information, and

the public key of the receiver process, which indicates that the message has

been encrypted by the sender service using the receiver’s public key. The sec­

ond channel is used to pass messages of type ‘Msg2’: {Sender, Sender .Nonce,

Receiver, Receiver .Nonce, RES/ACCEPT, TimeStamp, Signaturelnfo, En-

cryptedData, pubKey(Receiver)}. The message contains the sender’s name

and nonce, the receiver’s name and nonce, the message status, ’TimeStamp’,

’Signaturelnfo’ and ’EncryptedData’, and the public key representing the

symbolic encryption done using the public key of the receiver.

A non-buffered rendezvous channel is defined for each message type.

chanONE is used for sending message ‘M sgl’, and chanTwo is used for send­

ing the message ‘Msg2’. The declarations are listed below:

chan chanONE = [0] of (mtype, mtype, mtype, mtype, TimeStamp, Signature,

EncryptedData, mtype};

chan chanTWO = [0] of (mtype, mtype, mtype, mtype, mtype, mtype, TimeStamp,

Signature, EncryptedData, mtype};

G lobal Variables

Linear Temporal Logic (LTL) is used to define the properties the system is

supposed to satisfy. The Simple Message Exchange Protocol satisfies the

properties of authentication and secrecy, and so these properties are mod­

elled with LTL. Various other global variables are used to track the message

exchange in the SMEP model.

Four variables are used for checking the LTL properties: ‘ SenderChol-

127

5.3. SYSTEM MODELLING STEPS 5. Promela Model

lengeAB\ ’ SenderBind,A B \ ‘ Recr Challenge A B' and 4 RecvrBindA B1. ‘Sender-

ChallengeAB’ is set to true when the sender Service A initiates a run with

Service B .4 Recvr Challenge AB’ is set to true when Service B knows it is talk­

ing to Service A. 4SenderBindAB’ is true when Service A commits to Service

B, in other words, when Service B authenticates to Service A. Similarly,

4RecvrBindAB’ is true when Service B binds or commits to Service A. This

model can be adopted for session key establishment. The four variables are

defined as follows:

bit SenderChallengeAB=0;

bit SenderBindAB=0;

bit RecvrChallengeAB=0;

bit RecvrBindAB=0;

The SMEP properties are now mapped to the LTL formalism which is

then directly input to the Spin model checker.

In the LTL property below, ‘O’ represents □ , meaning “always”. T is

used for negation, 4||’represents “or” , and 4U’ represents “until” . The prop­

erty reads as follows: 4SenderBindAB’ is always false, or is not true until

4 Recvr Challenge AB’ is true. Similarly, 4RecvrBindAB’ is always false, or is

not true until 4SenderChallengeAB’ is true.

[] (([] ISenderBindAB) || (ISenderBindAB U RecvrChallengeAB))

[] (([] IRecvrBindAB) || (IRecvrBindAB U SenderChallengeAB))

TimeStamp, XML Signature, XML EncryptedData and EncryptedKey

are complex structures and are defined using Typedef structures which are

128

5.3. SYSTEM MODELLING STEP S 5. Promela Model

listed in Table 5.3. Each element of the typedef structure represents an ele­

ment of the XML structure. The values assigned to these structures represent

the contents of the elements.

Other global variables used can be found in Appendix SMEP.

P ro cesses of P rin c ip a ls in th e N e tw o rk

The Simple Message Exchange Protocol consists of three principals or ser­

vices. Service A and Service B represent the legitimate users of the system,

and the intruder service represents the actions of an intruder. These ser­

vices are modelled as three processes: ’SenderA’, ’ReceiverB’ and ’P I’ (the

intruder process). An ‘init’ process to instantiate the model is also defined.

In it P rocess: The ‘in it’ process contains the instantiation statement for

all three processes. It allows the sender to initiate a protocol run with either

Service B or Service I, and starts the intruder process and the receiver pro­

cesses. The ‘init’ process is described below.

init {

if

:: run SenderA(A,B,nonceA)

:: run SenderA(A,I,nonceA)

fi

run ReceiverB(B,nonceB)

run PI(I, noncel)

}

129

5.3. SYSTEM MODELLING STEPS 5. Promela Model

Table 5.3: Simple Message Exchange Protocol Global Variables.

TimeStamp

typedef TimeStamp{
mtype Created;
mtype Expires;

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanoncalizationMethod;
mtype SignatureMethod;
mtype Reference;
mtype SignatureValue;
mtype Keylnfo;

}; Signature sig[6];

XML Encryption - Encrypted Data

typedef EncryptedData{
mtype EncryptionMethod;
mtype CipherData;
mtype CipherValue;
mtype ReferenceList;
mtype DataReference;
mtype Keylnfo;

}; EncryptedData edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
mtype EncryptionMethod;
mtype CipherData;
mtype CipherValue;
mtype ReferenceList;
mtype DataReference;
mtype Keylnfo;

}; EncryptedKey ek[6];

130

5.3. SYSTEM MODELLING STEPS 5. Promela Model

Sender Process: The sender process initiates communication with the

receiver process ‘ReceiverB’ or with the intruder process ‘P I’. It takes three

arguments on instantiation: its identity A, the nonceA, and the process it

communicates with. The sender process executes the ‘SenderChallenge(X,Y)’

function, and sets the ‘SenderChallengeAB’ to true if it is starting a run with

B. Before sending the message over the channel, it populates the XML Sig­

nature, XML Encryption, and TimeStamp structures. It then sends the

message on channel ‘chanONE’. After that, the sender process waits for a

response from the receiver process on ‘chanTWO’. When it receives this mes­

sage it decrypts the message with its private key and checks for the symbolic

TimeStamp values, verifies the signature elements of the message, and then

calls the ‘SenderBind(X,Y)’ function. If it is in a run with B, it will set its

‘SenderBindAB’ to true and sends an ACCEPT message back to the service.

The following is a definition of the sender process.

proctype SenderA(mtype me; mtype recvr; mtype my .nonce)

{
atomic {

Sender Challenge (me, recvr);

chanONE ! me,my .nonce,recvr,REQ,ts[0],sig[0],edata[0],pubKey

}
atomic {

chanTWO ? recvr ,recvr_nonce,me,my .nonce, ACK,ts[3],sig[3],edata[3],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness (ts [3]. Created, ts[3]. Expires);

VerifySignature(sig[3] .CanoncalizationMethod, sig[3] .SignatureMethod,

sig[3].Reference, sig [3]. Signature Value, sig[3].Key Info);

SenderBind(me,recvr);

sig [0]. Reference = ACCEPT;

chanTWO ! me,my .nonce,recvr,recvr .nonce, ACCEPT,ts [0],

131

5.3. SYSTEM MODELLING STEPS 5. Promela Model

sig[0], edata[0], pubKey;

}
}

‘ Sender Challenge (X,Y)’ and ’SenderBind(X,Y)’ are macros used for au­

thentication between the sender and the receiver. These macros are called by

the sending service to update the values of the LTL global variables ‘Sender-

ChallengeAB’ and ‘SenderBindAB’. In order to explain this part, it is neces­

sary to explain the technique used for property specifications, which is similar

to the one presented in [Low96a]. The fact tha t a responder with identity

B correctly authenticates to an initiator with identity A can be expressed

by the following proposition: A commits to a session with B only if B has

indeed taken part in a run of the protocol with A. A similar proposition ex­

presses the reciprocal property, i.e., the fact tha t an initiator with identity A

correctly authenticates to a responder with identity B. Each one of the basic

propositions involved in the above properties can be represented in Promela

by means of a global boolean variable which becomes true at a particular

stage of a protocol run. These macros are defined as follows:

#define SenderChallenge(x,y) if

:: (x——A && y==B) —» Sender Challenge AB=1

:: (x==A && y==I) SenderChallengeAI=l

:: (x==I && y==B) —► SenderChallengeIB=l

:: else skip

fi

#define SenderBind(x,y) if

132

5.3. SYSTEM MODELLING STEPS 5. Promela Model

:: ((x==A)&&(y==B)) —> SenderBindAB=1

:: ((x==A)&&(y==I)) -> SenderBindAI=l

:: ((x==i)&&(y==B)) —> SenderBindIB=l

:: else skip

fi

R eceiver Process: The receiving service B is limited to receiving mes­

sages. It cannot start a conversation but can receive and process messages

from Service A and the intruder service, PI. The receiver process is mod­

elled as follows. Firstly, Service B waits for a message on ‘chanONE’. On

receiving the message it symbolically decrypts the message with its private

key privB’, verifies the freshness of the message and the signature on the

message, and calls the ‘RecvrChallenge(X,Y)’ routine to update the global

variables. Then it sends a response back to the sending service. Next Service

B waits for a response from the sending service on ‘chanTWO’, decrypts the

message, verifies the freshness of the message and the signature, and finally

binds to the sending service. The definition of the receiver process is listed

as follows.

proctype ReceiverB (mtype me; mtype my_nonce){

atomic {

chanONE?sender,sender_nonce,eval(me),msg_type,ts[l],

sig[l], edata[l], pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [1]. Created, ts [1] .Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[l].SignatureMethod,

sig[l].Reference, sig[l].Signature Value, sig[l].Keylnfo);

RecvrChallenge(sender ,me);

chanTWOIme,my _nonce,sender,sender _nonce,ACK,ts[2],

133

5.3. SYSTEM MODELLING STEPS 5. Promela Model

sig[2] ,edata[2] ,pubKey

}
atomic {

chanTWO ? eval(sender) ,eval (sender_nonce) ,eval (me),

eval(my_nonce),ACCEPT,ts[4],sig[4],edata[4] ,pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [4]. Created, ts [4] .Expires);

VerifySignature(sig[4].CanoncalizationMethod, sig[4].SignatureMethod,

sig[4] .Reference, sig[4].Signature Value, sig [4]. Key Info);

RecvrBind(sender,me);

}
}

The receiver process has its own ‘RecvrChallenge(X,Y)’ and ‘RecvrBind(X,Y)’

macros. They are similar to the ones described for the sender macros and

are updated in the same manner.

P I Process: The process ‘PI’ is the intruder process, and is based on

the Dolev-Yao model for an intruder. The intruder process has the capability

to overhear and intercept any message sent on the channel between Service

A and Service B, and can create new messages based on the information

learned. The Dolev-Yao model assumes that cryptography cannot be broken

during a protocol run. The intruder can start a conversation with either

Service A or Service B. The intruder can behave like a normal service, thus

allowing other participants to initiate a protocol run with it, or vice versa.

The intruder can start a fresh conversation with either A or B as a valid

user. By doing so, the intruder is able to learn the nonces for Service A and

Service B.

134

5.3. SYSTEM MODELLING STEPS 5. Promela Model

The behaviour of the intruder depends on the knowledge it originally has

and the knowledge it will acquire during protocol runs with the participants.

For example, the intruder’s knowledge might include the intruder’s identity,

its public and private key, the identities of other participating agents, their

public keys and any other secrets shared between the intruder and partici­

pants.

There are four basic message runs the intruder can perform:

1. I —>-B: the intruder can talk to B as a new user and learn its nonce.

2. A —>1: the intruder can interact with A and learn its nonce.

3. A—>-(I)B: A can start a conversation with the intruder masquerading

as Service B.

4. 1(A) —y B: the intruder, masquerading as Service A, can staxt a con­

versation with Service B.

These last two runs, in which the intruder behaves as either Service B or

Service A can be performed only when the intruder has sufficient knowledge

obtained during previous runs.

The intruder already knows the public keys of A and B. When it learns

the nonces of A and B, it updates its knowledge base using the macro defined

below.

#define k(xl) if

:: (xl = = nonceA)—► learn_kNa = 1;

:: (xl = = nonceB)—> learn_kNb = 1;

:: else skip

fi

135

5.3. SYSTEM MODELLING STEPS 5. Promela Model

The intruder process PI is an always running process. It is either listening

on the channel or is sending a message on the channel.

In the first of the four cases above the intruder initiates a run with Service

B, as a legitimate user, i.e., I—>B. The intruder updates its global variables

for SenderChallenge, populates the Signature and Encryption information,

sends the message on ‘chanONE’ to Service B, and waits for a response. On

receiving the response, it decrypts the message, verifies its freshness, vali­

dates the Signature, and learns the nonce of Service B. The intruder then

sends a message back to service B. Once the intruder has learned the nonce

of B it can now use this in a protocol run between Service A and itself acting

as Service B. Similarly, in the second of the four cases above, the intruder

can have a message run with Service A and learn its nonce. The intruder,

after learning the nonce, acts as an impostor and can participate in message

exchanges pretending to be Service B or Service A. A segment of the intruder

model for I—)-B is given as follows :

atomic {

SenderChallenge(me, B);

chanONE ! me,my_nonce,B,REQ,ts[l],sig[l],edata[l],pubKeyB ;

chanTW 0?recvr ,recvr_nonce,me,my_nonce, ACK ,ts [5] ,sig[5] ,edata[5] ,pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [5]. Created, ts [5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod,

sig [5]. Reference, sig [5]. Signature Value, sig[5] .Keylnfo);

SenderBind(sender, me);

sig[l]. Reference = ACCEPT;

chanTWO !me,my_nonce,recvr,recvr_nonce,ACCEPT,ts[l],sig[l],edata[l],pubKey;

136

5.3. SYSTEM MODELLING STEPS 5. Promela Model

The second of the four cases above Service A takes the intruder to be a legitimate

service and initiates a run with it, i.e., A—>1. The intruder interacts with Service A and

learns its nonce. The following model lists the behaviour of the intruder for this scenario.

atomic {

chanONE?sender,sender_nonce,eval(me) ,msg_type,ts [5] ,sig[5] ,edata[5] ,pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts [5] .Created, ts [5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, sig[5] .Reference,

sig[5].SignatureValue, sig[5].Keylnfo);

RecvrChallenge(sender,me);

chanTWOIme, my _nonce, sender, sender .nonce, ACK,ts[l],sig[l],edata[l],pubKeyA;

chanTWO?eval(sender) ,eval(sender_nonce) ,eval(me) ,eval(my_nonce), ACCEPT,

ts [5] ,sig[5] ,edata[5],pubKey;

Decryption(pubKey, privateKey);

Verify Freshness(ts[5]. Created,ts [5] .Expires);

VerifySignature(sig[5] .CanoncalizationMethod, sig[5].SignatureMethod,

sig[5] .Reference, sig [5]. Signature Value, sig [5]. Keylnfo);

}

In the third of the four cases above the intruder acts as Service B and

talks to Service A. This option sequence is only executed if the intruder has

already gained knowledge of the nonce of Service B. The intruder intercepts

the messages from Service A to Service B. The intruder cannot decrypt the

message, however, it can use all the information which is not encrypted and

signed, such as the identity of the sender and the nonce. Using this infor­

mation it can call the receiver challenge and receiver bind functions. It can

update the global variables and attem pt to bind to Service A. The following

lists the intruder model for this behaviour.

137

5.3. SYSTE M MODELLING STEPS 5. Promela Model

if

:: learn_kNb==l—̂ -atomic {

chanONE?sender,sender_nonce ,claim_B,msg_type,ts[5],sig[5],edata[5],pubKey;

Decryption(pubKey, privateKey);

Verify Freshness(ts [5]. Created,ts[5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod,

sig[5].Reference, sig [5]. Signature Value, sig[5].Key Info);

if

::(learn_kNb = = 1)—>■ claim_nonceB = nonceB

fi;

Rec.vrChallenge(sender,claim_B);

RecvrBind(sender, B);

k (sender .nonce);

chanT W O! claim_B ,claim_nonceB, sender,sender .nonce, ACK ,ts [2] ,sig [2],

edata[2],pubKey A;

chanTWO ? eval(sender),eval(senderjionce),claim_B,

eval(claim_nonceB), ACCEPT,ts [5] ,sig[5] ,edata[5],pubKey;

Decryption(pubKey, privateKey);

Verify Freshness (ts [5]. Created,ts [5] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod,

sig[5].Reference, sig [5]. Signature Value, sig [5]. Key Info);

}
::else skip

fi;

In the last of the four cases above the intruder pretends to be Service A

and initiates a run with Service B. This scenario can only be executed once

the intruder has sufficient knowledge about Service A, i.e., its nonce. It then

attem pts to authenticate to Service B. The following model fragment lists

this functionality.

atomic {

138

5.3. SYSTEM MODELLING STEPS 5. Promela Model

if

:: (learn_kNa==l)

-> chanONE! A,nonce A ,B, REQ ,ts [0] ,sig [0] ,edata[l],pubKey B ;

SenderChallenge(A, B);

chanTWO?recvr,recvr _nonce,claim_A,claim_nonceA,ACK,ts[5],sig[5],edata[5], pubKey;

Decryption (pubKey, privateKey);

VerifyFreshness (ts [5]. Created, ts [5]. Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, sig[5] .Reference,

sig[5] .SignatureValue, sig[5] .Keylnfo);

k (recvr .nonce);

SenderBind(claim_A,recvr);

chanTWO! claim_A, claim_nonceA, recvr, recvr .nonce, ACCEPT, ts [5] ,sig[5] ,edata[5],pubKey;

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod, sig[5].Reference,

sig[5] .SignatureValue, sig[5].Keylnfo);

::else skip

fi:

}

5.3.2 Security Token Protocol

The Security Token Protocol is a simple three-message exchange protocol

for issuing a security token between an agent and a Security Token Service.

In the Security Token Protocol the participants agree on a ‘Security Con­

tex t’. A security token is a collection of claims made about a client, such

as statements about its identity, key, etc., and a security context refers to

an authenticated state and negotiated keys. A security context token is a

manifestation of this concept. The constructs that make up the Promela

model for the Security Token Protocol will now be defined.

139

5.3. SYSTEM MODELLING STEPS 5. Promela Model

Table 5.4: Security Token Protocol - Types

General-purpose A, STS, I, nonceA, nonceS, noncel, DENIED
XML Signature cl4n, shal, sigvalA, sigvalSTS, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKeyA, privKeyA, pubKeySTS, privKeySTS,

pubKeyl, privKeyl, dsSig
WS-Trust paxtialSC, SCT, ISSUE, claims A, claimsS, RST,

RSTR, SC, created, expires, client .entropy,
server_entropy, partialEntropy, SCTJD

TimeStamp CREATED, EXPIRES

Types

Table 5.4 represents the ‘mtypes’ used in the Security Token Protocol. The

general-purpose mtype definitions are given for constants used in the User-

nameToken profile, together with other general constants used in the model.

‘A’ represents the username of Service A, ‘STS’ represents the username of

the Security Token Service, and ‘I’ represents the intruder of the system.

Nonces are listed for each service: Service A is assigned ‘nonceA’, STS is as­

signed ‘nonceS’, and the intruder service has its own nonce, ‘noncel’. Nonces

are important for defence against replay attacks, to avoid reuse of old com­

munication. The mtype ‘DENIED’ is used to indicate whether the authen­

tication failed between the participating agents. For the constants used in

XML Signature [ERS01], ‘cl4n’ and ‘sh a l’ represent the algorithms employed

by the model for the symbolic signing of the envelopes. ‘sigvalA’, ‘sigvalSTS’

and ‘sigvall’ represent the signature values for Service A, the Security Token

Service, and the intruder service, respectively. ‘X509v3’ represents the cer­

tificate version used in the signature. The XML Encryption constants used

in the model are defined similarly. ‘tripleDES’ is the encryption algorithm

used. For details about working with XML Signature and its algorithms

140

5.3. SYSTEM MODELLING STEPS 5. Promela Model

please refer to [TCM02]. The WS-Security Security Token Protocol contains

the constant values of the public key and private key pairs used by Service

A, the Security Token Service, and the intruder.

The mtype constants representing the WS-Trust specification parame­

ters include ‘partialSC’ and ‘SCT’, which represent the partial context and

full security context agreed on by the participants. ‘claimsA’ and ‘claimsS’

axe claims made by Service A and the Security Token Service. ‘RST’ and

‘RSTR’ represent the Request Security Token and Response to Security To­

ken Request in the envelopes, ‘created’ and ‘expires’ represent when the

token was created and when the token will become invalid. These values

represent the freshness values for the token, but not the message. The fresh­

ness of the message is represented by TimeStamp values. ‘client_entropy’ and

‘server.entropy’ axe provided by the client and server, respectively, for calcu­

lating keys. The client and server entropies are used to establish a context

key between services and are used as a session key. ‘S C T JD ’ represents the

unique identity of the security context token.

Channels

Service A, the Security Token Service, and the intruder service use three

channels to communicate with each other. The channel ‘rstChan’ is used

by Service A to send request security token messages to the Security To­

ken Service. The channel sends/receives messages of type {UsernameToken,

recvr, Signature, RST, RequestSecurityToken, TimeStamp, EncryptedData,

publicKey}. UsernameToken, Signature, RequestSecurityToken, TimeStamp

and EncryptedData represent the ‘typedef’ structure explained in the global

141

5.3. SYSTEM MODELLING STEPS 5. Promela Model

variables section below, ‘recvr’ represents the username of the receiving en­

tity, which is the Security Token Service. The ‘publicKey’ is the public key

used for symbolic encryption of the message. The message is symbolically

encrypted with the Security Token Service’s public key. ‘RST’ is used as a

message identifier for the request for security token.

The second channel ‘rstrC han’ is used by the Security Token Service

to send the response to the security token request. The channel sends/re-

ceives messages of the form {UsernameToken, UsernameToken, RSTR, Signa­

ture, SC, RequestSecurityTokenResponse, TimeStamp, EncryptedData, pub­

licKey}. ‘UsernameToken’ represents the username of the requesting service,

the second ‘UsernameToken’ represents the Security Token Service. ‘Signa­

ture’, ‘RequestSecurityTokenResponse’, ‘TimeStamp’ and ‘EncryptedData’

represent the parameters for WS-Security and WS-Trust. ‘RSTR’ and ‘SC’

are the message identifier for the response to security token request and the

security context. ‘pubKey’ represents the public key used for encryption.

The third channel, ‘ackChan’, is used by the requesting service to send

the unique security token identifier back to the Security Token Service. This

is done to allow the Security Token Service to verify the identity of the se­

curity context token it sent to the requesting service. The definitions of the

channels are listed as follows.

chan rstChan = [0] of {UsernameToken, mtype, Signature, mtype,

RequestSecurityToken, TimeStamp, EncryptedData, mtype};

chan rstrChan = [0] of {UsernameToken, UsernameToken, mtype, Signature, mtype,

RequestSecurityTokenResponse, TimeStamp, EncryptedData, mtype};

142

5.3. SYSTE M M ODELLING STEP S 5. Promela Model

chan ackChan = [0] of {mtype};

Global Variables

Global variables are used to represent the properties of the system. The

properties of the Security Token Protocol, are represented as Linear Tempo­

ral Logic formulas. The protocol aims to issue a security token, ‘typedef’

complex structures used in our model are also defined.

There are six global variables used for checking the properties of the sys­

tem: ‘SenderBindA_S’, ‘SenderChallengeA_S’, ‘RecvrBindA_S’, ‘RecvChal-

lengeA-S’, ‘partiaLSC’ and ‘security.context’. When Service A initiates a

message exchange with the Security Token Service, ‘SenderChallengeAJSTS’

is set to true when Service A knows it is talking to the Security Token Ser­

vice. Similarly, on the Security Token Service side, ‘RecvrChallengeA.STS’

is set to true when the Security Token Service knows it is talking to Service

A. The initial messages confirm for both Service A and the Security Token

Service tha t they are in a run with each other. Only when Service A is

ready for further exchange of messages with the Security Token Service does

it set ‘SenderBindA_S’ to true. Similarly, after confirming the identity of the

sender the Security Token Service commits to it, and sets ‘RecvrBindA_S’ to

true. ‘partiaLSC’ is the global variable, updated once by the Security Token

Service, indicating whether an agreement has been reached on claims made

by the requesting service. ‘partiaLSC’ represents a combination of elements,

such as ‘AppliesTo’ (the service the security token is valid for, in our case

the Security Token Service), ‘TokenType’ (the type of token being requested,

the security context token), ‘RequestType’ (the type of request, issuing a se­

curity token), ‘EntropicMode’ (entropic mode used for calculating keys - we

143

5.3. SYSTE M M ODELLING STE P S 5. Promela Model

use partial entropy where both the requestor service and Security Token Ser­

vice provide their entropies), and ‘client.entropy’ (the entropy provided by

the client for computing keys). The global variable ‘Security.Context’ is true

on the requestor side when it agrees on the security context information pro­

vided by the Security Token Service. It is set true when the ‘partiaLSC’ is

true and the Security Token Service has provided additional information, i.e.,

‘server_entropy’ (the entropic value provided by the server to calculate the

security context key), ‘expires’ (how long the token is valid for), ‘stsnonce’

(nonces are freshly generated random values), the Security Token Service’s

identity, the requestor’s identity, and a unique identifier for the security con­

text token. The values of these variables are updated using macros in the

model. The updated values are then used for verifying the correctness prop­

erties of the system.

We now model the above global variables with Linear Temporal Logic

formula.

\\ ((0 IsenderbindAS) || (IsenderbindAS U recvr challenge AS))

fl ((D LecvrbindAS) || (IrecvrbindAS U senderchallengeAS))

D ((Q isecuritycontext) || (isecuritycontext U partialSC))

The above formulas represent the property requirements the system is to

satisfy. The formula reads as (i) ‘senderbindAS’ is always false or ‘senderbindAS’

is false until ‘recvrchallengeAS’ becomes true; and (ii) ‘recvrbindAS’ is always

false or ‘recvrbindAS’ remains false until ‘senderchallengeAS’ becomes true.

Initially, the ‘securitycontext’ is always false, or ‘securitycontext’ becomes

true when there is an agreement on a partial context ‘partialSC’ between a

144

5.3. SYSTE M MODELLING STE P S 5. Promela Model

requestor and a Security Token Service.

Tables 5.5 and 5.6 represent typedef structures used in the Security To­

ken Protocol. Table 5.5 contains complex structures for XML Signature,

XML Encryption, TimeStamp and UsernameToken. Table 5.6 represents

the complex structures for requesting a security token and for the response

to a security token request.

P rin c ip a l P ro cesses

The Security Token Protocol consists of three principals, a token requesting

service (Service A), a Security Token Service (service STS), and an intruder

service. The Promela model of the Security Token Service consists of four

processes in total: the ‘in it’ process, ‘sender’ process, ‘STS’ process and ‘in­

truder’ process.

In it p rocess: The ‘in it’ process contains the instantiation statements for

the ‘sender’, ’STS’ and ‘intruder’ processes. The model alternates between

an ‘intruder’ process and a ‘sender’ process at a given time. The STS process

is always running and awaiting token issuance requests from the requestor.

The intruder process has three parameters passed to it: the identity of the

intruder, the service it wants to communicate with (in this case the Security

Token Service), and its nonce, noncel. Similarly, the ‘sender’ process passes

its username A, the service it wants to talk to, ‘STS’, and its freshly gener­

ated nonce, nonceA. The ‘STS’ service is passed its username STS and its

freshly generated nonce, nonceS.

145

5.3. SYSTE M MODELLING STE P S 5. Promela Model

Table 5.5: Security Token Protocol Global Variables

TimeStamp

typedef TimeStamp{
mtype Created;
mtype Expires;

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanonicalizationMethod ;
mtype SignatureMethod ;
mtype Reference ;
mtype SignatureValue ;
mtype Keylnfo;

}; Signature sig[6];

XML Encryption - Encrypted D ata

typedef EncryptedD ataj
mtype EncryptionMethod ;
mtype CipherData ;
mtype Cipher Value ;
mtype ReferenceList ;
mtype DataReference ;
mtype Keylnfo;

}; EncryptedData edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
mtype EncryptionMethod ;
mtype CipherData ;
mtype CipherValue ;
mtype ReferenceList ;
mtype DataReference ;
mtype Keylnfo;

}; EncryptedKey ek[6];

U sernameToken

typedef UsernameToken {
mtype Username;
mtype Nonce;

}; UsernameToken ust [T];

146

5.3. SY ST E M M ODELLING STEPS 5. Promela Model

Table 5.6: Security Token Protocol Global Variables

RequestSecurityToken

typedef RequestSecurityToken{
mtype TokenType ;
mtype RequestType ;
mtype AppliesTo;
mtype Entropy;
mtype EntropicMode;
mtype rst.created;
mtype rst.expires;

}; RequestSecurityToken rst [2];

RequestSecurityToken

typedef typedef RequestSecurityTokenResponse!
mtype TokenType ;
mtype RequestType ;
mtype AppliesTo;
mtype Entropy;
mtype EntropicMode;
mtype ComputedKey;
mtype rstr.created;
mtype rstr.expires;
mtype set Jd ;

}; RequestSecurityTokenResponse rs[2];

147

5.3. SY ST E M MODELLING STEPS 5. Promela Model

init {

if

::run Intruder (I, STS, noncel);

::run Sender (A, STS, nonceA);

fi;

run sts(STS, nonceS);

}

’Sender’ Process: The ‘sender’ process is a security token requestor

service. The ‘sender’ process sends a request to the Security Token Service,

to issue a security token. The request for a security token comprises of three

main steps as described in the autom aton model in the Chapter 4. First, the

‘sender’ creates a request for a security token and sends it to the Security

Token Service. Second, it waits for the response for issuing the security token

and processes the response when it arrives. Third, if it accepts the security

context token, it sends a security context id back to the Security Token Ser­

vice; otherwise it sends a ‘M SG-REJ’ to the Security Token Service.

The ‘sender’ sends a request for issuing a security token to the ‘STS’ pro­

cess. It populates the ‘typedef’ structures specified in Tables 5.5 and 5.6. It

sends its UsernameToken containing its username, and its nonce to the re­

ceiver process ’STS’, as well as the XML Signature information used to sign

the request. The request contains all the information to obtain a partial se­

curity context agreement between Service A and the Security Token Service.

The message required also contains the TimeStamp information, as well as

information used to encrypt the data. The message is encrypted using the

public key of the Security Token Service.

148

5.3. SY ST E M MODELLING STEPS 5. Promela Model

The ‘sender’ process waits for the response from ‘STS’ on ‘rstrChan’. It

receives its own UsernameToken and the ‘STS’ UsernameToken, along with

the response to the security token request. The XML Signature and XML

Encryption information are used to sign and encrypt the message by the re­

questing service. The ‘sender’ processes the incoming message. It decrypts

the message using its private key, and checks the TimeStamp token as well as

the Encryption and Signature information. It validates tha t it is an RSTR

packet, and then commits to the session between ‘STS’ and itself, if it vali­

dates that it is in a run with ‘STS’, and finally agrees on a security context

agreement. The security context agreement is reached if both the parties

agree the on following information: AppliesTo, TokenType, RequestType,

EntropicMode, Entropy of both server and client, ComputedKey, Expiry of

the token, and the freshness of the nonces.

proctype Sender(mtype me; mtype recvr; mtype my_nonce)

{
atomic {

(recvr = = STS)—► pubKey = pubKeySTS

SenderChallenge(me, recvr);

rst Chan! ust [0],recvr, sig [0], RST, rst [0] ,ts [0] ,edata[0],pubKey ;

}
atomic {

rstrChan?ust[4],ust[3],rstr,sig[3],SC, rs[l],ts[3],edata[3],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts [3]. Created, ts [3] .Expires);

VerifySignature(sig[3].CanoncalizationMethod, sig[3].SignatureMethod,

sig [3]. Reference, sig [3]. Signature Value, sig[3].Keylnfo);

AuthenticateResponse(rstr);

SenderBind(ust [4] .Username, ust[3] .Username);

SCAgreement(rs[l].AppliesTo, rs[l].TokenType, rs[l].RequestType,

149

5.3. SY ST E M M ODELLING STEPS 5. Promela Model

rs [1]. EntropicMode, rst [0]. Entropy, rs [1].Entropy,rs [1] .ComputedKey,

rs[l].rstr.expires, ust[3].Nonce, ust[3].Username, ust[4].Username, rs[l].sct_id);

}
bit FLAG = 1;

mtype msg;

if

:: (Security .Context = = FLAG) -> msg = SC

:: (Security.Context != FLAG) —> msg = MSG-REJ

fi;

ackChanlmsg;

}

‘S T S ’ P ro cess : The ‘STS’ process is a Security Token Service issuing

process. The ‘STS’ process is responsible for listening for security token re­

quests and relaying a security token response back to the requestor. The

Security Token Service listens for requests for a security token on ‘rstChan’.

When the Security Token Service receives a request it decrypts the message,

verifies the freshness of the message, and the signature information of the

sender, updates it global variables, and agrees on a partial security context.

It creates a response th a t is to be sent back to the requester. It assigns values

to the ‘typedef’ structures listed in Tables 5.5 and 5.6. It creates a request

security token response, containing the security token, and sends it to the

sender service on channel ‘rstrC han’. The Security Token Service then waits

for an acknowledgement containing the security context ID on ‘ackChan’.

The ‘STS’ process is listed as follows.

proctype sts(mtype me; mtype my .nonce)

{
atomic {

rstChan?ust[l],eval(me),sig[l],req,rst[l],ts[l] edata[l],pubKey;

150

5.3. SY ST E M M ODELLING STEPS 5. Promela Model

Decryption(pubKey, privateKey);

Verify Freshness (ts[l]. Created, ts[l]. Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[l].SignatureMethod,

sig[l]. Reference, sig[l].Signature Value, sig[l]. Key Info);

RecvrChallenge(ust[1].Username, me);

AuthenticateRequest(req);

RecvrBind(ust[l].Username, me);

PartialSCAgreement(rst.AppliesTo, rst.TokenType, rst. Request Type,

rst.EntropicMode, rst.Entropy);

if

:: (ust[1].Username = = A)—► pubKey = pubKeyA

:: (ust[1].Username = = I) -> pubKey = pubKeyl

fi;

rstrChan!ust[l],ust[2], RSTR, sig[2], SC, rs[0],ts[0],edata[2], pubKey;

}
mtype x;

ackChan? x

}

‘In tru d e r ’ P ro cess : The intruder behaves in the following ways. It can

act as a new user and gather information represented by ‘I —>STS’. It can

block and intercept a message from sender A, and pass it to the Security

Token Service ‘1(A) —► STS’. In this scenario no signature or information is

leaked to the intruder.

The intruder is a constantly running process. When the intruder process

is initiated, it populates the ‘typedef’ structures in Tables 5.5 and 5.6. It

assigns values to all structures apart from ‘RequestSecurityTokenResponse’.

In ‘I ->STS’, the intruder acts as a legitimate user of the system and sends

a request for a security context token to the Security Token Service on chan­

nel ‘rstChan’. It then waits for a response from the Security Token Service

151

5.3. SYSTEM MODELLING STEPS 5. Promela Model

on channel ‘rstrChan’. It processes the request and establishes a security

context. It then sends the security context identity back to the sender on

‘ackChan’. This security context can be later used in establishing a session

with other unsuspecting services.

The intruder learns Username token information from runs with Service

A and sends requests to the Security Token Service: ’I (A) —► STS’. The

intruder blocks messages sent from Service A and forwards them to the Se­

curity Token Service. It then waits for a response from the Security Token

Service. If the message is authenticated at the server end, it receives a secu­

rity context token, or if the attack is identified it receives a message reject

response from the server. The intruder process is listed as follows.

proctype Intruder(mtype me; mtype recvr; mtype my .nonce) {

do

:: atomic {

atomic {

pubKey = pubKey STS;

SenderChallenge(me, recvr);

rstChan!ust[5],recvr, sig[4],RST,rst[0],ts[0],edata[4],pubKey ;

}
atomic {

rstrChan?ust[5] ,ust[6],rstr,sig[5], SC, rs[l],ts[l],edata[5], pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts[l]. Created, ts[l]. Expires);

VerifySignature(sig[5].CanonicalizationMethod, sig[5].SignatureMethod,

sig[5] .Reference, sig [5]. Signature Value, sig [5]. Keylnfo);

AuthenticateResponse(rstr);

SenderBind(ust[5] .Username, ust [6] .Username);

SC Agreement (rs[l]. AppliesTo, rs[l]. TokenType, rs[l]. RequestType,

152

5.3. SYSTE M MODELLING STEPS 5. Promela Model

rs[1].EntropicMode, rst[0] .Entropy, rs[l] .Entropy,rs[l] .ComputedKey,

rs[l].rstr_expires, ust[6].Nonce, ust[6].Username, ust[5].Username, rs[l].sct_id);

}
bit FLAG5 = 1; mtype msg5;

if

:: ((Security_Context_I = = FLAG5) &;& (valid_DecryptI = = FLAG5))-> msg5 = SC

:: (Security_Context_I != FLAG5) —> msg5 = MSG-REJ

fi;

ackChan!msg5;

}
:: atomic {

atomic {

pubKey = pubKey STS;

Sender Challenge (ust [0]. U ser name, recvr);

rstChanlust [0], recvr,sig[4],RST,rst [0] ,ts[0] ,edata[4],pubKey;

}
atomic {

rstrChan?ust[5],ust[6],rstr,sig[5],SC,rs[l],ts[l],edata[5],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts[l].Created,ts[l] .Expires);

VerifySignature(sig[5].CanoncalizationMethod, sig[5].SignatureMethod,

sig[5].Reference, sig [5]. Signature Value, sig [5]. Key Info);

AuthenticateResponse(rstr);

SenderBind(ust [5] .Username, ust [6] .Username);

bit FLAG4 = 1; mtype msg4;

if

::((valid_dsSigA = = FLAG4)&&(valid_DecryptA = = FLAG4))

—►SCAgreement(rs[l].AppliesTo, rs[l].TokenType, rs[l].RequestType, rs[l].EntropicMode,

rst[0].Entropy, rs[l].Entropy,rs[l].ComputedKey, rs[l].rstr_expires,

ust [3]. Nonce, ust [3]. User name, ust [4]. User name, rs[l].sct_id);

::else —> ackChan!MSG_REJ

fi;

if

153

5.3. SYSTEM MODELLING STEPS 5. Promela Model

:: (Security.Context = = FLAG4) —> ackChan! SC;

fi;

}
}
od

}

Macros are used in the Security Token Protocol to update the values of the

global variables used in the Linear Temporal Logic formulas. The ‘Sender-

Challenge(X,Y)’, ‘SenderBind(X,Y)’, ‘RecvrChallenge(X,Y)’ and ‘RecvrBind(X,Y)’

macros work in the same way as the ones described for the Simple Message

Exchange Protocol. Two new macros are introduced here: ‘ PartialSC Agree­

m ent^,b,c,x,y)’ and ‘SCAgreement(at,tt,rt,em,ce,se,ck,ex,stsn,sts,sdr,scid)’.

These macros update the values of global variables ‘ partial _SC’ and ‘Secu-

rity_Context\ The macro ‘PartialSC Agreement (a,b,c,x,y)’ is used to reach

an agreement on a partial security context, based on the elements AppliesTo,

TokenType, RequestType, EntropicMode and Entropy. If all the elements

are fulfilled, it sets ‘partial_SC’ to true. Similarly,the macro ‘SCAgree-

ment(at,tt,rt,em,ce,se,ck,ex,stsn,sts,sdr,scid)’ is used for an agreement on a

full security context. The full context is agreed if AppliesTo, TokenType,

RequestType, EntropicMode, ClientEntropy, ServerEntropy, ComputedKey,

Expires, UsernameToken for STS and A, and SC id are valid, in which case

‘ Security-context ’ is set to true. Other macros are also used in the Security

Token Protocol.

#define PartialSCAgreement(a,b,c,x,y) if

:: ((a== STS)&&(b== SCT)&&(c== ISSUE)&&(x== partialEntropy)&&

(y== client_entropy)) —> partial_SC=l

:: else skip

154

5.4. CONCLUDING REM ARKS 5. Promela Model

fi

define SCAgreement(at,tt,rt,em,ce,se,ck,ex,stsn,sts,sdr,scid) if

:: ((at = = STS)&&(tt = = SCT)&&(rt = = ISSUE)&&(em = = partialEntropy)&&

(ce = = client_entropy)&&(se = = server .entropy)&&(ck = = shal)&&

(ex = = expires)&&(stsn = = nonceS)&&(sts = — STS)

&&(sdr = = A)&&(scid = = SCTJD)) —> Security-Context=1

::else skip;

fi

5.4 Concluding Remarks

This chapter has dealt with the modelling into Promela of the protocols de­

fined earlier. The behaviour of the principals involved in the protocol run,

i.e., Service A, Service B, and the Security Token Service, have been identi­

fied. An intruder model based on the Dolev-Yao model has been presented in

Promela. In the next chapter simulations are performed to verify the general

behaviour of the protocols by inputting these models to XSpin, a graphical

interface to the Spin model checker.

155

CHAPTER 6

Simulation and Verification Results

To understand the behaviour of the model of a system, and the properties the

model captures, simulations are performed on the model. Simulation allows

the detection of any deviation from the expected behaviour of the system.

Prototypes have been developed for the Simple Message Exchange Protocol

and the Security Token Protocol, and Spin [Hol03, BK08] has been used for

rapid prototyping.

XSpin, the graphical interface to Spin, is used for simulation and verifica­

tion purposes. It runs Spin commands in the background. XSpin is used for

model checking the Simple Message Exchange Protocol and the Security To­

ken Protocol. XSpin provides three simulation modes: random, guided and

interactive simulation. Random simulation is carried out using a predefined

seed value. Different runs can be obtained by changing the seed value. The

156

6.1. CHAPTER. OBJECTIVES 6. Simulation and Verification Results

guided simulation requires the presence of a ‘pan.trail’ file, produced during

the verification run. In this thesis interactive simulation is used to resolve

manually non-deterministic choices in the model. A choice is offered when

there are different directions the execution can proceed in.

There are four basic types of output that can be requested: (i) Message

Sequence Charts, (ii) Time Sequence, (in) Data Value, and (iv) Execution

Bar. Briefly, a message sequence chart displays send and receive actions,

connecting matching pairs with arrows. The Time Sequence option shows

text output of the simulation run. The Data Value option shows the most

recent values assigned to the variables in the model. The Execution Bar

option gives a dynamically updated bar-chart of the number of statement

executions in each running process.

6.1 Chapter Objectives

This chapter deals with two things: simulation and verification of the pro­

tocol models. Simulations are performed for each scenario discussed in Sec­

tion 3.6 for the Simple Message Exchange Protocol and the Security Token

Protocol. Simulation allows us to analyse the behaviour of the model and

correct any mistakes for further verification. Message Sequence Charts and

Data Values were selected as the output modes for simulation runs. Using

message sequence charts and data values enables the tracking of the exchange

of messages between protocol participants.

Verification of the protocol models is performed to show that the system

satisfies certain properties. The properties of secrecy and authentication are

157

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

verified for the Simple Message Exchange Protocol. In the case of the Secu­

rity Token Protocol the properties of secure agreement of a security context

while maintaining secrecy and authentication goals are verified. These prop­

erties are represented in Linear Temporal Logic formulas.

6.2 Simulation Results

6.2.1 Simple Message Exchange Protocol

The Simple Message Exchange Protocol (SMEP) exchanges three messages

between two services, a requestor service and a responder service. At the end

of a valid run, the two services have securely authenticated to each other.

The challenge is to achieve the authenticated state under the presence of an

active intruder. The possible manipulated protocol runs are modelled for

SMEP as described in Chapter 3. The intruder service can interact with

other services in the following possible ways. First, the intruder service I,

can initiate a conversation with Service B in order to learn information about

Service B: ’I—>-B\ Secondly, the intruder service can act as a legitimate user

and be involved in a protocol run with Service A: A —>1. Thirdly, the intruder

service after learning information about Service B can act as service B, and

be involved in a protocol run with Service A: A—>I(B). Fourthly, the intruder

service can act as Service A and initiate a run with service B: I(A)-»B. Simu­

lation is performed for a behavioural analysis of the protocol, and we suggest

changes accordingly. Results are presented in the following sections.

158

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

A B

A correct Simple Message Exchange Protocol run is successfully achieved

when Service A and Service B axe able to authenticate to each other. Fig­

ure 6.1 represents a snapshot of a message sequence chart for the protocol

run. The processes representing Service A, Service B and the intruder service

are represented as boxes, and the numbers represent the execution steps in

the simulation run. The message sequence chart shows send and receive ac­

tions, connecting matching pairs with arrows. Sender A sends a message {A,

nonceA, B, REQ, ts [0], sig[0], edata[0], pubKeyB} to Service B in execution

step 40. ‘ts[0]\ ‘sig[0]’ and ‘edata[0]’ represent the timestamp, signature and

encryption information for Service A. Sender A updates its global variable

‘senderchallengeAB’ to 1. The message is processed at the receiver, Service

B. The receiver updates the global variable ‘recvchallengeAB’ to 1 before

sending a response back to Service A. The message sent is {B, nonceB, A,

nonceA, ACK, ts [2], sig[2], edata[2], pubKeyA}in step 53. ‘ts[2]’, ‘sig[2]’ and

‘edata[2]’ represent the timestamp, signature and encryption information for

Service B. Service A validates the message and the identity of Service B, and

then updates ‘senderbindAB’ to 1. It then creates an acknowledgement mes­

sage for Service B. The message contains {A, nonceA, B, nonceB, ACCEPT,

TimeStamp, Signaturelnfo, EncryptedData, pubKey(B)}, and is sent in exe­

cution step 67. The receiver processes the message and validates the identity

of the sender and authenticates it by updating ‘recvrbindAB’ to 1. The

successful run in the end shows the values of all the global variables ‘sender-

challengeAB’, ‘senderbindAB’, ‘recvrchallengeAB’ and ‘recvrbindAB’ to be

1. The global variables are updated using macros defined in the Promela

model as explained in Chapter 5. Service A binds to a session with Service B

only when it is engaged in a session with B. Similarly, B only binds to A, when

159

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

rTinJ

1111

Figure 6.1: Message sequence chart for A —> B

it knows that it is engaged in a run with A. Global variables called ‘secrecy’

variables are defined. Their values are updated when the XML Encryption

and XML Signature values are satisfied. ‘valid_DecryptA’ is updated to 1

when all the information necessary to decrypt the message received from B

is present in the message. Similarly, ‘validJDecryptB’ is updated to 1 when

the message can be decrypted by the corresponding symbolic decryption val­

ues of B. ‘valid.TimeStamp’ is a timestamp variable, whose value is updated

when the TimeStamp attributes are present in the message.

A -+ I

Intruder I acts a legitimate user of the protocol. Service A initiates an SMEP

run with service I, thinking it is legitimate user. It sends a message {A, non­

ceA, I, REQ, TimeStamp, Signaturelnfo, EncryptedData, pubKeyl} to ser­

160

6.2. SIM ULATION RESULTS 6. Simulation and Verification Results

vice I. The intruder process receives the message, learns the nonce of Service

A, and saves it for later use. It then sends a message {I, noncel, A, nonceA,

ACK, TimeStamp, Signaturelnfo, EncryptedData, pubKey(I)} back to the

sender. Service A processes the message, and binds with the intruder ser­

vice. It sends an acknowledgement back to the intruder service {A, nonceA,

I, noncel, ACCEPT, TimeStamp, Signaturelnfo, EncryptedData, pubKeyl}.

The intruder service also commits to further communication with Service A.

The global variables ‘ sender challenge AT, ‘senderbindAI’, ‘recvrchallengeAI’

and ‘recvr bind AT are the authentication variables for this scenario. These

variables are not part of the Linear Temporal Logic but allow us to track

the steps for the run of the Simple Message Exchange Protocol. If the values

of the above global variables are all 1, the protocol run has been success­

ful and the intruder service has had a successful run with Service A as a

legitimate user. The other global variables monitored are ‘valid-DecryptA’,

‘validJDecryptF and ‘TimeStamp’. Their values are all updated to 1 af­

ter a successful run. When the intruder process learns the nonce of Service

A, it updates its knowledge base and sets the global variable ‘learn_kNa’ to 1.

Figure 6.2 gives a snapshot message sequence chart for the run. ‘init’,

‘SenderA’, ‘ReceiverB’ and ‘P I’ are the four processes represented in the

figure. In execution step 45 a message {A, nonceA, I, REQ, ts [0], sig[0],

edata[0], pubKeyl} is sent from SenderA to PI. The intruder processes the

message, and in execution step 56 it sends the message {I, noncel , A, non­

ceA, ACK, ts[l], sig[l], edata[l], pubKeyA} to SenderA. SenderA processes

the request and in execution step 75 sends the message {A,nonceA, I, non­

cel, ACCEPT, t s [0], sig[0], edata[0], pubKeyl} to the intruder process. The

structures ‘ts[index]’, ‘sig[index]’ and ‘edatafindex] ’ represent the timestamp,

161

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

llA ,noac«A, I,IE Q , CASHED, EXPIRES, e l k r3, tn p le P E fX a , bise6kncoded,RL,MSG, X509v3, pubKeyl

211,noncel,A ,nono * , ACK, 0 ,0 ,c l ' M E S rO ribw w tencoded , RL.KSG, X509v3,pubXeyA

21A, nonceA, I , nonceI, ACCEPT i09»: ,CD,base64encoded,RL,MSG,X509v3,pubKeyl

Figure 6.2: Message Sequence Chart for A—d

signature and encryption values for the different services.

A -> I followed by 1(A) —> B

The first part of this scenario is similar to the one above, and Service A

interacts with the intruder service, assuming it to be a legitimate user of the

system. During this run, the intruder process learns the nonce of Service A

and immediately initiates an attack on Service B, pretending to be Service A.

The intruder can only execute this sequence of events if its knowledge base

contains the nonce of Service A, i.e., its ‘learn_kNa’ is set to 1. The intruder

creates the following message to send to Service B on the channel: {A, non­

ceA, B, REQ, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB}. The

receiver processes the request, and it sees the fresh timestamp and a unique

162

6.2. SIM ULATION RESULTS 6. Simulation and Verification Results

nonce of Service A, and sends a response back to the sender service, {B,

nonceB, A, nonceA, ACK, TimeStamp, Signaturelnfo, EncryptedData, pub-

KeyA}. The intruder only has access to the unencrypted information - the

username and nonce of the message. It then sends the final acknowledgement

back to Service B, {A, nonceA, B, nonceB, ACCEPT, TimeStamp, Signature­

lnfo, EncryptedData, pubKeyl}. We are interested in the global variables

updated in the second part of the run: ‘senderchallengeABYsenderbindAB’,

‘recvrchallengeAB5 and ‘recvrbindAB’. The values of these variables are up­

dated to 1, as Service B believes the intruder service to be Service A. The

simulation run shows th a t if the intruder learns the nonce of Service A, it can

make Service B believe tha t it is authenticating to Service A. The Decrypt

variables are updated, and the intruder service acting as 1(A) sends the mes­

sage it has intercepted from A to Service B. Service B decrypts the message

using its private key and updates ‘valid_DecryptB’ to 1. Service B creates

a response for 1(A), and encrypts the message with A’s public Key. The

intruder, on receiving the message from B is unable to decrypt the message

as it has no knowledge of A’s private key. It can save the message or discard it.

Figure 6.3 gives a snapshot of the scenario. Execution steps 45, 56 and 75

are similar to the ones explained in the previous section. The intruder sends a

message (A, nonceA, B ,REQ, ts [0], sig[0], edata[l], pubKeyB } to ReceiverB

acting as Service A in step 85. ReceiverB processes the request and sends

the message (B, nonceB, A, nonceA, ACK, ts[2], sig[2], edata[2], pubKeyA}

back to the intruder (which is pretending to be service A) in execution step

100. The intruder sends a response message {A, nonceA, B, nonceB, AC­

CEPT, TimeStamp, Signaturelnfo, EncryptedData, pubKey(B)} in step 114.

163

6.2. SIMULATION 6. Simulation and Verification

icAl

• e i (encoded, RL,MSG,X5Q9v3,pubKejl

2 11, nonce l, A,noocnA.ACX, 0 ,0 , e l ‘ iiencoded, RL,MSG,X509v3, pubXeyA

i09v: I, CO,ba*«64encoded,RL, MSG,X509v3, pubXeyl

.ripleDES,CD, based (encoded , RL,MSG,X509v3,psbKeyB

I, CD,baso64 encoded, RL, HSG, X5 09v3, pubKeyA

I,CD,base 6deocoded, RL, MSG, X50 9v3, puhXeyB

X27

127

127

Figure 6.3: Message Sequence Chart for A —>• I followed by 1(A) —>• B.

I -> B

The intruder service masquerades as a legitimate service, and initiates a Sim­

ple Message Exchange Protocol run with Service B. The intruder sends the

message {I, noncel, B, REQ, TimeStamp, Signaturelnfo, EncryptedData,

pubKeyB} to Service B. Service B sends a response to the intruder thinking

it as a valid service. It sends {B, nonceB, I, noncel, ACK, TimeStamp, Sig­

naturelnfo, EncryptedData, pubKeyl} back to the intruder service, and the

intruder returns the final accept message back to Service B, (I, noncel, B,

nonceB, ACCEPT, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB},

resulting in Service B committing to further message exchange with the in­

truder service. Figure 6.4 shows a message sequence chart for the run. The

intruder service learns the nonce of Service B, and updates ‘learnJcNb’ to 1.

164

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

PX:2

i, 0 , c 14n, s h a l , R E fe M fv ttB ; * 5 0 9 v > ,t r ipleDESI I I ,n o n c e l ,B ,R E Q , CO, b a se6 4encoded,R L , MSG, X509*3, pubKeyB

2 IB, nonceB , I ,n o n c e l , I C K ,0 ,0 ,c U n ,« h a i , ACK,|e i ^ v ilB<' i, b a se6 4 en co d ed , RL, KSG, X509v3, pubKey I

2 1 1 ,n o n c e l ,B ,n o n c e B ,A C a P T ,0 ,0 ,c l4 n ,g h » :

i i n i t i t O

70

Figure 6.4: Message Sequence Chart for I —> B.

Figure 6.4 shows a snapshot of the message exchange between the in­

truder and Service B. In step 28, ‘PI’ sends a message {I, noncel, B, REQ,

ts[l], sig[l], edata[l], pubKeyB} to ‘ReceiverB’. ‘ReceiverB’ processes the

message and sends a response message {B, nonceB, A, noncel, ACK, ts[2],

sig[2], edata[2], pubKeyl} back to ‘PI’ assuming it to be a non-threatening

service. ‘P I’ ends the protocol run in execution step 58 by sending a final

accept message (I, noncel, B, nonceB, ACCEPT, ts[l], sig[l], edata[l], pub­

KeyB} back to ‘ReceiverB’.

I —> B followed by A -* 1(B)

This scenario is similar to ‘A—Y I followed by 1(A) -> B’, but in this case, the

intruder process learns information about Service B by initiating a Simple

Message Exchange Protocol run, and subsequently imitates Service B. The

intruder intercepts and processes any messages for Service B from Service A,

and masquerades as Service B itself. Sender A sends a message (A, nonceA,

165

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

B, REQ, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB} to Service

B. The intruder intercepts the message and then sends {B, nonceB, A, non-

ceA, ACK, TimeStamp, Signaturelnfo, EncryptedData, pubKeyB} back to

Service A. The sender service A, assuming the message to be from Service B,

binds to it and sends the accept message back for further message exchange:

{A, nonceA, B, nonceB, ACCEPT, TimeStamp, Signaturelnfo, Encrypted­

Data, pubKeyA}. Global variables ‘senderchallengeAB5, ‘senderbindAB’,

‘recvrchallengeAB’ and ‘recvrbindAB’ are updated to 1 as the intruder is

able to successfully attack the protocol. During run ‘A —> 1(B)’, the decryp­

tion variable DecryptB is not updated, as the intruder does not possess the

private key of B to decrypt the messages. The validJDecryptB value repre­

sents the last updated value during the run T —>• B’.

Figure 6.5 shows a snapshot of the message sequence chart for the run.

Steps 45, 58 and 75 are same as the ones described in the last scenario. Steps

87, 105 and 119 show a run of the protocol under attack.

The simulation results are summarised in Table 6.1 for the Simple Mes­

sage Exchange Protocol. The table lists the values of the global variables

‘senderBindAB’, ‘ recvrBindAB’, ‘learn_kNa’ and ‘learn_kNb’. The value 0

for ‘senderBindAB’ and ‘recvrBindAB’ represents failure in authentication

between Service A and Service B. The values of ‘learn_kNa’ and ‘learn_kNb’

when set to 0 shows that the intruder has not learned the nonce of Service

A and Service B, respectively. ‘Encryption’ is set to 0 when encryption has

not been broken. It can be seen that for each run in which the principals are

involved with the intruder, the intruder learns the nonces. The intruder then

uses these nonces and the identity of the principal to bind to another protocol

166

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

2 ! I ,o o ic e I , l ,JoeaB,ACCEPT,Q, U U u h a l , !

2 11 ,BOOaA,I,aosceB,ACCEPT CR£A7ED,£XPII

45
:ripieD ^S , CD, base64eacoded, RL,MSG, X509v3, pubKeyB

rCD.biEeC(encoded,IL,H96,I50J t3, pnb lc fI

i, CB, base5(encoded, RL,KSG,X509t3 ,pubKeyB

>4encoded, RL, MSG,1509v 3; publeyI

>4encoded, RL.M5G,X509v3lpubIeyA

i , CO,base64enco4ed, RL,KSG, X509v3,pabXeyl

Figure 6.5: Message Sequence Chart for I —> B followed by A —> 1(B).

participant. It can also be seen that the encryption remain unbroken, as the

intruder does not have the capability to break the encryption. It can be seen

that encrypting the UsernameToken can prevent the intruder from learning

nonce information. However, in some cases it may lead to unforeseen com­

plications, and so it may not be desirable to encrypt such information.

6.2 .2 S ecu rity Token P rotoco l

This section presents the results obtained during simulation runs for the Se­

curity Token Protocol (STP). The participants for this protocol are process

A, process I, and a Security Token Service, STS. The STS process cannot

initiate any message exchange. Its sole purpose is to issue security tokens

based on requests made by processes A and I. Process A is a legitimate user

167

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

Table 6.1: Simulation results for SMEP.

Scenario senderBindAB recvrBindAB learn_kNa learn_kNb Encryption
A-*B 1 1 0 0 0
A—>1 0 0 1 0 0
A—>1, 1(A)— 1 1 1 0 0
I—>B 0 0 0 1 0
I -> B, A—>I(B) 1 1 1 1 0

of the protocol model. It requests a security token to be issued by the Se­

curity Token Service. In this case, the request for the security token is for

the Security Token Service itself. However, it can be for any service with

which A wants to establish a session. In this scenario the security context is

represented in the form of a Request Security Token, as this seems logical in

wanting to build towards WS-SecureConversation. There are three possible

simulation scenarios for this protocol model, as discussed below.

A STS

Figure 6.6 represents a snapshot of a message sequence chart for a valid run

of the Security Token Protocol. The requested token is a security context

token for establishing a session between Service A and the Security Token

Service. The sender process sends a message of the form {UsernameToken,

STS, Signature, RST, RequestsecurityToken, TimeStamp, EncryptedData,

publicKeySTS} to the Security Token Service in step 43. The username to­

ken contains the username and the fresh nonce for Service A. The message

contains all the information needed to establish a partial security context

on the Security Token Service end. The Security Token Service returns a

message containing the security token requested by the sender process in

168

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

lil,M M «k,8B fcl4a,>kal,MC, igT«I*rI5C»t3,»ST,SCT,ISOT,ST5,cli«at w trop M , (D U B , trifleBn,CD,bai«(4aaoed*4,IL,K6,Z509T] ,pobley5B

2n1MDMi,sn,«*«s,isn,c:<i,jiJi,isn lifnMrisOHK.n, NMtadrwftM M C T_ID ,aU R D ,EV H eSrtrip ^ ieS ,C 9 JbiM«l«Kodad,ll.MSC,I509fJ.p<Merl

Figure 6.6: Message Sequence Chart for A —>■ STS.

step 71. The message contains { UsernameToken(A, nonceA), UsernameTo-

ken(STS, nonceS), RSTR, Signature, SC, RequestSecurityTokenResponse,

TimeStamp, EncryptedData, publicKeyA}. The sender service agrees on a

full security context and sends the unique security context ID, {SC}, back

to the Security Token Service in step 89.

There are four types of global variables of relevance in this scenario.

The (i) authentication and (ii) secrecy variables, as discussed before, and

169

6.2. SIM ULATION RESU LTS 6. Simulation and Verification Results

the (Hi) message type and (iv) security context agreement global variables.

The authentication and secrecy variables are updated as discussed previ­

ously. In the simulation results it can be seen tha t they are updated cor­

rectly: ‘RecvrBindA_STS\ ‘RecvrChallengeA_STS\ ‘SenderBindA_STS’ and

‘SenderChallengeA_STS’ are set to 1. The message type variables are up­

dated when (i) the request is a request security token with MsgType_RST,

and (ii) when the response from the Security Token Service is a Response

to Security Token Request message. The security context agreement vari­

ables are updated when Service A and the Security Token Service reach an

agreement on a security context. The ‘partial.SC ’ variable is updated to 1

when the Security Token Service accepts the partial security context. ‘Secu­

rity-Context’ is updated to 1 on the requester side A when Service A agrees

on the full context.

I -> STS

Figure 6.7 shows a snapshot of a message sequence chart for an intruder/im­

postor requesting a security token. The Security Token Service treats the

intruder as a legitimate process and issues it a security token. The in­

truder process sends a request for a security token, {UsernameToken(I, non-

cel), STS, Signature, RST, RequestSecurityToken, TimeStamp, Encrypted­

Data, publicKeySTS}, in step 45. The Security Token Service processes

the request and assumes the intruder to be a legitimate user and issues it

a security context token. The Security Token Service sends the message

{UsernameToken(I ,noncel), UsernameToken(STS, nonce), RSTR, Signature,

SC, RequestSecurityTokenResponse, TimeStamp, EncryptedData, publicK-

eyl} to the intruder service in step 73. The intruder service returns the

170

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

2:i,M B O iI,IB >iB io a S ,m]l,c iti.ilia llx)» ,ii9 * ilsn ,I5 C 9v),K ,S C r

I i t r a b r : !

vppmm,
a

«w CUUBD, E U iaa , t ripleXS ,CD,bneMeocoded, RL, XK. B0H3 .pubterl

Figure 6.7: Message Sequence Chart for I —> STS

identity of the security context received, {SC}, to the Security Token Ser­

vice in step 90. The simulation results show a correct run between I and STS.

It can be seen from the global variables that the model runs correctly.

The authentication, secrecy and message type variables for tracking the mes­

sage exchange between the intruder and the Security Token Service are up­

dated to 1 (‘SenderChallengeLSTS’, ‘SenderBindLSTS’, ‘RecvrBindLSTS’

and ‘RecvrChallengeLSTS’). It can be seen from ‘partial-SC’ that partial

171

6.2. SIM U LATIO N RESU LTS 6. Simulation and Verification Results

agreement is reached between the intruder service and the Security Token

Service. It can also be seen th a t there is a full security context agreement,

‘Security_Context_I\ The intruder can request a security context token to

establish a session for another source, X, and utilise the resources.

1(A) -► STS

In this scenario an intruder, I, acts as an impostor of Service A and requests a

security token from the Security Token Service. The intruder has knowledge

of the nonce of Service A and tries to establish a security context between it­

self and the Security Token Service. The intruder sends a request to the Secu­

rity Token Service in simulation step 45, (UsernameToken(A,nonceA), STS,

Signature, RST, RequestSecurityToken, TimeStamp, EncryptedData, pub-

licKeySTS}. The Security Token Service agrees on the partial security con­

text, but is unable to establish a full security context and sends a reply back

to the sender, {UsernameToken(A, nonceA), UsernameToken(STS, nonceS),

RSTR, Signature, SC, RequestSecurityTokenResponse, TimeStamp, Encrypted­

Data, publicKeyA}, in step 73. The intruder masquerading as Service A fails

to establish a security context with the Security Token Service, and sends

{MSG-REJ} in step 87. This is indicated by the value of the global variable

‘ Security .Context ’ which is not updated to 1 as the encryption remains un­

broken and the intruder is unable learn the encrypted security context sent.

It can be seen th a t even though there is an authenticated state between the

Security Token Service and the intruder service, the unbroken encryption pre­

vents the intruder from learning the security context. A message sequence

chart for a run between I, acting as A, and the Security Token Service service

is shown in Fig. 6.8.

172

6.2. SIMULATION RESULTS 6. Simulation and Verification Results

111, r a n t , n , c l (i , i t i l , l H ,u (n l M M H B T ,K ! , ! f f iH ,S I S ,c l u t a t r o f j .p i r t i i

2!l,Mml,n,iORCtl,IRI,cl«i,ilil,ia,iipilinl13M<},IC,KI,] t .U ,C B lID ,E V I in <trtpldlS,CD,b<M itHCoM ,ll,IGC,UW «]lp ^ l q l

Figure 6.8: Message Sequence Chart for 1(A) —» STS.

The simulation results for Security Token Protocol are summarised in Ta­

ble 6.2, which shows the three global variables ‘senderBindAJSTS’, ‘recvrbindAJSTS’

and 4 Security-.Context’. When ‘sender Bind A_STS’ and ‘recvrbindA_STS’ are

set to 1, both Service A and the Security Token Service have authenticated to

each other successfully. ‘Security-Context’ is set to 1 when a full agreement

has been reached on a security context between Service A and the Security

Token Service. It can be seen in 1(A) STS, that when the intruder has

173

6.3. VERIFICATIO N 6. Simulation and VerWcation Results

Table 6.2: Simulation Result for STP

Scenario senderB ind A_S TS recvrbindA_STS S ecuri ty _Cont ext
A -> S T S 1 1 1
I -¥ S T S 0 0 0
1(A) -> S T S 1 1 0

knowledge of the nonce of A, it can act as a principal A and authenticate to

the Security Token Service. However, it can only establish a partial context,

and is not able to establish a full security context.

6.3 Verification

The goal of system verification is to establish what is possible and what is

not. System verification is used to dem onstrate certain properties that the

model ought to possess. It is said th a t the system is “correct” when it satis­

fies all properties th a t obtain to it. A verification model not only deals with

the behaviour of the system, but also its correctness requirements.

In practice, ‘peer reviewing’ and ‘testing’ are used as software verification

techniques. A peer review is a scrutiny of software carried by software engi­

neers without running the code. On the other hand, testing involves running

the software. Peer reviewing and testing catch different errors at different

cycles of development, and thus are often used together. These software ver­

ification approaches are used in a number of software projects.

When building a model for software verification it is tempting to build

large complicated models which are as close to the problems as possible.

174

6.3. VERIFICATIO N 6. Simulation and VerWcation Results

However, the most feasible approach to software verification is to keep the

model in its simplest form, which represents the key attributes of the model

for analysis. This approach helps in controlling the complexity of the model.

An aim of model checking is to keep the model simple rather than building

detailed models so th a t the essential features of the system are represented

as a smallest sufficient model. The model can evolve if required. The type

of abstraction for a model is dependant on the logical properties that are to

be proved, and on the resource limits of the verification system.

In distributed system design, there are two main types of correctness

claim: Safety and Liveness.

“Safety is defined as the set of properties tha t the system may

not violate, while liveliness is defined as the set of properties that

the system must satisfy. Safety is concerned with the bad things

tha t should be avoided, while liveliness defines the good things

th a t capture the required functionality of the system” [Hol03].

The liveness properties of a system are modelled as Linear Temporal Logic

formulas. The liveness properties of the Simple Message Exchange Protocol

and the Security Token protocol, as modelled with Linear Temporal Logic

formulas, has been presented previously, and in this chapter these properties

are verified.

The working of Spin can be summarised as follows. Starting with a high-

level verification model of a system, interactive and random simulation are

performed using XSpin to check whether the model has the intended proper­

ties. A Promela correctness claim is generated from Linear Temporal Logic.

175

6.3. VERIFICATIO N 6. Simulation and Verification Results

Spin is used to generate an on-the-fiy optimised verification program from

the high-level specification. This verification program is compiled and is ex­

ecuted to perform the verification. If any counterexamples of the correctness

claims are detected, these can be fed back into the Spin simulator. The sim­

ulation trail can then be inspected in detail to determine the cause of any

correctness violations.

Performing verification is an iterative process with increasingly detailed

models. Each new model is verified under different assumptions about the

environment and correctness properties. Selective data hiding can be used.

When a verification run completes Spin provides hints on how to proceed,

depending on the results. In the case of no hints, a clean run has been per­

formed, tha t is, an exhaustive search th a t did not reveal any errors has been

done.

To understand the verification results, it is necessary to be familiar with

the output from the verification engine. The following terms which are rele­

vant here. ‘State vector’ represents the size of a single state. ‘Depth reached’

represents the longest execution path. Error 0 means tha t the property was

satisfied. If there are errors, these represent a violation of the Linear Tempo­

ral Logic property. ‘S tate Stored’ is the to tal number of states, i.e., the state

space. These values can be used for comparison between the application of

model checkers to Web services based security protocols.

176

6.3. VERIFIC ATIO N 6. Simulation and Verification Results

Tabic 0.3: Verification Results for SMEP.

Scenario State Size Transitions
Satisfied 232 bytes 1659
Violated 252 bytes 6349

6.3.1 Sim ple M essage E xchange Protocol

A Simple Message Exchange Protocol run is successful if Service A and Ser­

vice B are able to bind to each other successfully in the presence of an active

intruder. The properties of the Simple Message Exchange Protocol are ex­

pressed as Linear Temporal Logic formulas, and verification is performed

using the following Linear Temporal Logic property. The verification found

a Linear Temporal Logic property violation - the intruder was successfully

able to exchange messages between services. The property was violated for

‘I -* B followed by A 1(B)’ and ‘A -* I followed by 1(A) —> B ’. This viola­

tion can be corrected by encrypting the nonces for all messages sent between

services - this will prevent the intruder from using these values for further

communication. The results are summarised in Table 6.3, which shows the

state sizes for the model and the number of transitions it took to find the

property violation. ‘Transitions’ represents the number of progressions Spin

took to identify the violations in the Linear Temporal Logic property when

it was satisfied or violated. ‘S tate Size’ shows the memory in bytes used for

storing states.

177

6.3. VERIFIC ATIO N 6. Simulation and Verification Results

Tabic 6.4: Verification Results for STP.

Scenario State Size Transitions
Satisfied 300 bytes 9250
Violated 300 bytes 4558

6.3.2 Security Token P rotocol

A Security Token Protocol run is successful if an agreement can be reached on

a security context between a requestor and a Security Token Service. These

properties of the Security Token Protocol run are specified in the form of

Linear Temporal Logic, as described below. It can be seen th a t the property

is satisfied, i.e., Service A and the Security Token Service reach an agreement

on a security context for ‘A —» STS’. It can also be seen tha t a security con­

text is not established for ‘1(A) —> STS’, where the Security Token Protocol

is subjected to an attack from the intruder service, masquerading as Service

A. The number of changes occurring is represented by the ‘Transitions’ made

by Spin to recognise satisfied/violated Linear Temporal Logic properties in

the model. The memory used to store all states during the run is recorded

as ‘State Size’.

The results obtained are summarised in Table 6.4. The table gives the

number of bytes used for storing th a t state space and the transitions for both

cases, where the LTL property is violated and when it is satisfied.

It can be seen th a t the Promela model represents the behaviour of the

system. Simulation enables the detection of any anomaly in the behaviour of

the model. In our case, a behavioural analysis is performed, and simulation

provides the required results. The verification result for our model has also

178

6.4. CONCLUDING R E M A R K S 6. Simulation and VerWcation Results

been obtained.

6.4 C oncluding R em arks

Simulations of the pushdown autom aton model of the Simple Message Ex­

change Protocol have been carried out. The three steps of SMEP have been

modelled as a pushdown autom aton in Promela, as mentioned in Chapter 4.

It can be seen from the simulation results th a t when these steps are exe­

cuted successfully, Service A and Service B bind to each other, as shown

in Table 6.1. A correct protocol run is accomplished on completion of the

three steps resulting in Service A and Service B binding to each other. The

behaviour of the SMEP pushdown autom aton model is verified and results

are summarised in Table 6.3. Representing the protocols using pushdown

autom ata allows the behaviour of the protocol and the participating services

to be modelled. On deviation from the steps, SMEP failed to bind success­

fully, as was shown by the values of the global variables.

Simulations for the Security Token Protocol were conducted, modelled as

a three step pushdown autom aton, as described earlier in Chapter 4. Each

step of the protocol, when executed successfully, leads to a correct run of

the STP protocol. Any variation in the steps leads to an incorrect run. An

incorrect run means th a t a requesting service fails to bind to the STS or the

service fails to agree on a security context. The pushdown automaton model

for STP allows us to m ap the behaviour of the protocol and the participating

services. The behavioural analysis of the STP is summarised in Tables 6.2

and 6.4.

179

6.4. CONCLUDING R E M A R K S 6. Simulation and VerWcation Results

The results for the simulation and verification for each scenario of the

protocol runs for SMEP and STP may be summarised as follows. The simu­

lation results showed the behaviour of the protocols in the active presence of

an intruder. For each protocol scenario, the message sequence chart and the

values of the global variables have been shown, in Table 6.1 for SMEP and

in Table 6.2 for STP. The verification results are summarised in Tables 6.3

and 6.4 for SMEP and STP, respectively. It may be concluded th a t the Sim­

ple Message Exchange Protocol and the Security Token Protocol can be made

more secure by encrypting the nonces. We suggest th a t all sensitive infor­

mation be encrypted, and as little im portant information as possible should

be left unencrypted. In the next chapter an extended intruder model, based

on the Dolev-Yao model, for an XML Injection attack will be presented.

180

CHAPTER 7

XML Injection Attack Model

The Dolev-Yao th reat model has been widely used in the past for analysis and

verification of cryptographic protocols. Recently, the threat model has been

adopted for the study and validation of Web services based cryptographic

protocols. However, a ttack capabilities have increased over time resulting in

new threats. The original Dolev-Yao model does not sufficiently address the

potential of the attacker and the new threats th a t have arisen. To demon­

strate the new behaviour of the intruder and the threat it introduces, the

threat model must be extended. A wish-list has been suggested by Backes

[BG05] on how to improve the model in accordance with Web services, but a

model has not yet been produced. This chapter extends the Dolev-Yao model

for Web services based cryptographic protocols by adding to the model an

attacker capable of carrying out an XML injection attack.

181

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

A logic of an XML service can be influenced or undermined by XML injec­

tion, a type of command injection attack. In an XML injection attack[Con]

some logic is inserted into a service to hinder the abilities of the service

as defined by ’’The Web Application Security Consortium” and ’’Web Ser­

vices Interoperability O rganization” . The insertion of XML content or XML

structure into a document alters the intended rationale of the service. Fur­

thermore, XML injection can cause the insertion of malicious content into the

resulting message. These attacks can occur when user input is passed directly

into an XML message stream . These attacks can be controlled/overcome by

encrypting and /or signing parts of the document. If the content is injected

into a signed XML document, it will be rejected by the service on verification.

This chapter builds an XML injection attack model in Promela, and runs

this attack against the Simple Message Exchange Protocol and the Security

Token Protocol. The purpose is to add to the capabilities of the Dolev-Yao

intruder model and allow the intruder to simulate an XML injection attack.

The integrity of the message is validated by checking if the message has been

altered.

The XML injection a ttack model is built on the model presented in Chap­

ter 5. The workings of the Simple Message Exchange Protocol and the Se­

curity Token Protocol are the same as described in Chapter 3.

182

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

7.1 Sim ple M essage Exchange Protocol

The Simple Message Exchange Protocol is subjected to an XML Injection

attack. ‘Sender’ and ‘Receiver’ are two legitimate services, and ‘P I’ is an

intruder service. The Sender process sends a message to Receiver. The mes­

sage is intercepted by the intruder process which has the choice of either

altering the content or injecting a new element into the message. It sends

the message off to the receiver service after the message has been altered.

The Promela model for a Simple Message Exchange Protocol run under an

XML injection attack is described as follows.

7.1.1 T ypes

This section describes the message types used in the Simple Message Ex­

change Protocol run. ‘m type’ is used for defining symbolic names of numer­

ical constants. There are six ‘m type’ declarations for the Simple Message

Exchange Protocol, as listed in Table 7.1. The ‘General Purpose’, ‘XML

Signature’, ‘XML Encryption’, ‘W S-Security’ and ‘Tim eStam p’ mtypes are

similar to the ones explained earlier in Section 5.3.1. The ‘XML Injection’

category is added to the model. This consists of the ‘AX’ and ‘IN JJN F O ’

mtypes. ‘AX’ represents alteration to the username token ‘content’ informa­

tion in the message, and ‘IN JJN F O ’ represents the ‘injected’ element in the

Signature portion of the message.

183

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

Table 7.1: Simple Message Exchange Protocol Types

General Purpose A, B, I, REQ, ACK, nonceA, nonceB, noncel,
A CCEPT, DECLINE

XML Signature cl4n, sha l, sigvalA, sigvalB, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKey A, pubKeyB, pubKeyl, privKeyA,

privKeyB, privKeyl
XML Injection AX, IN JJN F O
TimeStamp CREATED, EXPIRES

7.1.2 C hannels

Channels are used for communication between processes. Service A and Ser­

vice B can communicate over two types of channels based on the type of

message being sent. The first type, ‘M sg l’, represents the message {sender,

sender_nonce, receiver, m sg.type, Tim eStam p, Signature, EncryptedData,

pubKey}, which contains the username of the sender, a fresh nonce, the re­

ceiver username, the type of message (such as REQ), TimeStamp values,

signature information, encrypted d a ta and the public key of the receiver.

The second type, ‘Msg2’, represents {sender, sender_nonce, receiver, re-

ceiver_nonce, msg_type, Tim eStam p, Signature, EncryptedData, publicKey}.

The message contains all fields present in M sgl, with the addition of re­

ceiver _nonce. Both channel ‘chanO N E’ and ‘chanTW O’ are defined as non­

buffered channels and arc listed as follows:

chan chanONE = [0] of (mtype, mtype, mtype, mtype, TimeStamp, Signature,

EncryptedData, mtype};

chan chanTWO = [0] of (mtype, mtype, mtype, mtype, mtype, TimeStamp, Signature,

EncryptedData, mtype};

184

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

7.1.3 G lobal V ariables

Global variables are used for formulating the Linear Temporal Logic for­

mulas. These variables are similar to the ones defined in Section 5.3.1,

‘SenderBindAB’, ‘SenderChallengeAB’, ‘RecvrChallengeAB’ and ‘RecvrbindAB’.

‘SenderChallengeAB’ and ‘RecvrChallengeAB’ are updated by Service A and

Service B when initiating a run with each other. When both Service A

and Service B have authenticated successfully, they bind to each other, and

‘SenderBindAB’ and ‘RecvrBindAB’ are set to 1. The Linear Temporal Logic

property for this model is the same as defined in previous chapters:

\\ (([] ISenderBindAB) || (ISenderBindAB U RecvrChallengeAB))

[](([] IRecvrBindAB) || (IRecvrBindAB U SenderChallengeAB))

The ‘typedef’ structures used in the Simple Message Exchange Protocol

consist of the XML based Tim eStam p, Signature and Encryption information

for the protocol. All the complex structures indicating the injected element

information and the XML Signature structure are given in Table 7.2.

7.1.4 P rincipal P rocesses

There are three principals for the Simple Message Exchange Protocol: a

‘Sender’ process representing Service A, a ‘Receiver’ process representing

Service B, and ‘P I’ symbolising the intruder service. Each service is repre­

sented as a Prom ela processes. Service A is modelled as process ‘SenderA’,

service B is presented as process ‘ReceiverB’, and the intruder service is de­

fined as process ‘P I ’. These services communicate with each other over shared

channels.

185

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

Table 7.2: Simple Message Exchange Protocol Global Variables.

TimeStamp

typedef TimeStamp{
mtype Created;
mtype Expires;

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanoncalizationMethod ;
mtype SignatureMethod ;
m type Reference ;
mtype SignatureValue ;
m type Keylnfo;

}; Signature sig[6];

Signature Injection

typedef typedef SignatureInjection{
mtype CanoncalizationMethod ;
m type SignatureMethod ;
mtype Reference ;
m type SignatureValue ;
m type Keylnfo;
mtype Injectedlnfo;

}; Signaturelnjection iSig[l];

XML Encryption - Encrypted D ata

typedef EncryptedD ataj
mtype EncryptionMethod ;
m type CipherData ;
m type Cipher Value ;
m type ReferenceList ;
mtype DataReference ;
mtype Keylnfo;

}; EncryptedD ata edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
mtype EncryptionMethod ;
mtype CipherData ;
mtype Cipher Value ;
mtype ReferenceList ;
mtype DataReference ;
mtype Keylnfo;

}; EncryptedKey ek[6];

186

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

In it P ro c e ss The ‘in it’ process contains all the information th a t needs to

be instantiated a t the beginning of the run. This process contains other pro­

cesses or statem ents. The in it’ process is defined as follows:

init {

run SenderA(A, B, nonceA);

run ReceiverB(B, nonceB);

run PI(I, noncel)

}

All three processes are instantiated a t the beginning of the execution

with their respective initialisation param eters. ‘SenderA’ is initialised with

its identity A, random nonce value nonceA, and the receiver process it wants

to communicate with, B. The ‘ReceiverB’ process is initialised with its iden­

tity B and a random nonce value nonceB. The receiver process is not an

initiator process, it can only receive messages and reply. ‘P I’, the intruder

process, is initialised with its identity I and its random nonce I.

S en d e r P ro c e ss The Sender Process initiates a three-step message ex­

change with other communicating services. In the first step, the sender pop­

ulates its local and global variables for Signature, Encryption, and TimeS­

tam p, and assigns the SenderChallengeAB global variable by calling Sender-

Challenge(me, recvr), and then sends the message on ‘chanONE’. The mes­

sage contains {A, nonceA /noncel, B /I, REQ, TimeStamp, Signature, En­

cryptedData, pubK eyB/ pubK eyl}. In the second step, the sender waits for

a response from the receiver service on ‘chanTW O’ of the form {B/I, nonce-

B/noncel, A, nonceA, A CK /D ECLIN E, TimeStamp, Signature, Encrypted-

187

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

Data, pubKeyA}. It decrypts the message, verifies TimeStamp, validates

Signature and binds to the service. In the third step, if the run is success­

ful, the sender sends an acknowledgement back to the receiver, {A, nonceA,

B /I, nonceB/I, A CCEPT, Tim eStam p, Signature, EncryptedData, pubKey-

B/pubK eyl }, or else it does not retu rn any message back to the receiver.

The sender process is similar to the one in Section 5.3.1. The ‘SenderA’

process is defined as follows.

proctype SenderA(mtype me; mtype recvr; mtype my .nonce)

{
atomic {

senderchallenge(me, recvr);

pubKey = pubKeyB;

chanONE ! me, my .nonce, recvr, REQ, ts[0],sig[0],edata[0], pubKey;

}
atomic {

chanTWO?recvr,recvr .nonce,me,my _nonce,msg_type,ts[3], sig[3], edata[3],pubKey;

Decryption(pubKey, privateKey);

Verify Freshness(ts [3]. Created,ts [3] .Expires);

VerifySignature(sig[3].CanoncalizationMethod, sig[3].SignatureMethod,

sig [3]. Reference, sig [3]. Signature Value, sig[3].Key Info);

sender bind (me,recvr);

if

:: (msg.type = = ACK) —» sig[0].Reference = ACCEPT;

chanTWO! me,my .nonce, recvr, recvr .nonce, ACCEPT, ts [0] ,sig[0] ,edata[0], pubKey;

:: else skip

fi;

}
}

188

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

R ece iv e r P ro c e ss The receiver process is always waiting for incoming

messages. ‘Receiver’ is a three-step process. First, it waits for messages from

services on channel ‘chanO N E’. On receiving a message of type {A/I, non-

ceA/noncel, B, REQ, Tim eStam p, Signature, EncryptedData, pubKeyB} it

symbolically decrypts the message with its private key, verifies the fresh­

ness of the message, validates the signature, and updates the global variable

RecvrChallengeAB by calling recvrchallenge(sender, me). Secondly, the re­

ceiver creates a response message to send back to the service. It populates its

local and global database of variables, representing Encryption, Signature,

and TimeStamp information, and sends a response of type {B, nonceB, A/I,

nonceA/noncel, ACK /D ECLIN E, Tim eStam p, Signature, EncryptedData,

pubkeyA/pubKeyl} on ‘chanTW O ’. Thirdly, the receiver goes into awaiting

state until a response from the initiator process is received on ‘chanTWO’.

Service B receives the message of the form {A/I, nonceA/noncel, B, non­

ceB, ACCEPT, Tim eStam p, Signature, EnncryptedData, pubkeyB}. The

service decrypts the message, verifies the TimeStamp and the Signature in­

formation, and then updates the Linear Temporal Logic global variables by

invoking recvr bind (sender, me). The ‘ReceiverB’ process is listed as follows.

proctype ReceiverB (mtype me; mtype my_nonce)

{
atomic {

chanONE?sender,sender_nonce,eval(me),msg_type,ts[l],sig[l], edatafl],pubKey;

atomicf
Decryption(pubKey, privateKey);

Verify Freshness (ts[l]. Created, ts[l].Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[1].SignatureMethod,

sig[l]. Reference, sig[l].Signature Value, sig[l]. Keylnfo);

recvrchallenge (sender, me);

189

7.1. SM E PRO TO C O L 7. XM L Injection A ttack Model

pubKey = pubKey A;

chanTWOlme, my .nonce, sender, sender _nonce,msg_type,ts[2],sig[2],edata[2], pubKey;

}
}
atomic {

chanTW 0?eval (sender) ,eval (sender _nonce) ,eval(me) ,eval(my_nonce) ,msg_type,

ts[4],sig[4],edata[4],pubKey;

Decryption (pubKey, privateKey);

Verify Freshness(ts[4] .Created,ts[4] .Expires);

VerifySignature(sig[4] .CanoncalizationMethod, sig[4] .SignatureMethod,

sig[4] .Reference, sig[4] .SignatureValue, sig[4] .Keylnfo);

recvrbind (sender,me);

}
}

In tru d e r P ro c e ss The intruder is an extension of the Dolev-Yao model

with the capability of an XML Injection attack. The intruder has the ability

to inject content into the message, or it can inject an element into the Sig­

nature element. It listens on ‘chanO N E’ for any messages between Service

A and Service B. W hen a message is sent from Service A to Service B, it

intercepts the message. It either injects ‘content’ or ‘element’ into the mes­

sage. Altering the message ‘content’ or ‘element’ causes the message to be

rejected by Service B. W hen injecting ‘element’ into the message, ‘iSig’ of

type ‘Signaturelnjection’ is sent w ith the same element contents as well as

‘Injectedlnfo’. The intruder can alter the ‘content’, for example, by changing

the username in the message by adding ‘X ’ to the username to cause authen­

tication to fail. The in truder can replay two types of message, {A, nonceA,

B, REQ, Tim eStam p, Signaturelnjection, EncryptedData, pubKey} repre­

senting an ‘elem ent’ alteration, and {AX, nonceA, B, REQ, TimeStamp,

Signature, EncryptedD ata, pubkeyB} representing a ‘content’ alteration to

190

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

the username token.

proctype PI(mtype me; mtype my_nonce)

{
do

-atomic {

chanONE? sender,sender _nonce,recvr ,msg_type,ts[5] ,sig[5] ,edata[5] ,pubKey;

sender = A;

chanONE! sender, sender .nonce,recvr,REQ,ts[5],iSig[0],edata[5],pubKey;

}
:: atomic {

chanONE?sender,sender .nonce,recvr,msg_type,ts[5],sig[5],edata[5],pubKey;

sender = AX;

chanONE!sender,sender_nonce,recvr,REQ,ts[5],sig[5],edata[5],pubKey;

}
od

}

So far the building blocks have been presented for a Simple Message Ex­

change Protocol in term s of Prom ela constructs for an XML injection attack.

7.2 Security Token P rotoco l

In this section the Security Token Protocol is subjected to an XML injection

attack. The model consists of a ‘Sender’, ‘STS’ (representing the Security

Token Service), and an ‘In truder’ process. The sender and the Security Token

Service process behave in the same m anner as described in Chapter 5. The

intruder process intercepts the request for a security token from the sender

service. The intruder is capable of changing ‘content’ in the Username Token

191

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

Table 7.3: Security Token Protocol Types

General Purpose A, B, I, REQ, ACK, nonceA, nonceB, noncel,
A CCEPT, DECLINE

XML Signature cl4n, sha l, sigvalA, sigvalB, sigvall, X509v3
XML Encryption tripleDES, CD, base64encoded, RL
WS-Security pubKeyA, pubKeyB, pubKeyl, privKeyA,

privKeyB, privKeyl
XML Injection AX, IN JJN F O , SCTX, ISSUEX
TimeStamp CREATED, EXPIRES

and Request Security Token (RST) or it can add ‘element’ to the RST. The

message is then sent to the Security Token Service for processing. The alter­

ations to the message can result in authentication failures or security context

agreement failures. The Prom ela version of the model is listed below.

7.2.1 T ypes

Table 7.3 lists all the message types used in the model. In the table there

are two more ‘m type’ entries in addition to the ones defined in Section 5.3.2.

‘AX’ is used to alter content information in the XML message. ‘IN JJN F O ’

represents the injected element in the Signature portion of the message. The

intruder is allowed the capability to alter the RST. The intruder can alter the

‘TokenType’ and ‘RequestType’ elements in the issuance request to ‘SCTX’

and ‘ISSUEX’ respectively.

192

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

7.2.2 C hannels

The Security Token Protocol uses three channels th a t are similar to those

described in Section 5.3.2. The channels are identified by the type of message

they can support. There are three types of messages in the Security Token

Protocol: ‘M sgl’ is of the form {UsernameToken, receiver, Signature, RST,

Request Security Token, Tim eStam p, EncryptedD ata, pubKey}; ‘Msg2’ is of

the form {UsernameToken, UsernameToken, RSTR, Siganture, SC, Request-

SecurityTokenResponse, Tim eStam p, EncryptedD ata, pubKey}; and ‘Msg3’

is of the form {SC/M SGJREJ}.

chan rstChan = [0] of (UsernameToken, mtype, Signature, mtype, RequestSecurityToken,

TimeStamp, EncryptedData, mtype};

chan chanTWO = [0] of (UsernameToken, UsernameToken, mtype, Signature, mtype,

RequestSecurityTokenResponse, TimeStamp, EncryptedData, mtype};

chan ackChan = [0] of (mtype};

7.2.3 G lobal V ariables

The global variables used are similar to those defined in Section 5.3.2. There

are six basic global variables used for the Linear Temporal Logic formulas:

‘SenderBindA_S’, ‘SenderChallengeA_S\ ‘RecvrChallengeA_S’, ‘RecvrbindA_S’,

‘partial_SC’ and ‘security-context’. The Linear Temporal Logic formula used

for verification is:

D ((D ! sender bind AS) || (IsenderbindAS U recvrchallengeAS))

0 ((0 IrecvrbindAS) || (IrecvrbindAS U senderchallengeAS))

193

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

[](([] Isecuritycontext) || (! security context U partialSC))

Tables 7.4 and 7.5 contain the complex structures for ‘TimeStamp’, ‘Sig­

nature’. ‘E ncryptedD ata’, ‘EncryptedK ey’, ‘UsernameToken’, ‘RequestSe-

curityToken’, ‘RequestSecurityTokenResponse’ and ‘Injected RequestSecu-

rityToken’. The ‘iRequestSecurityToken’ structure is used by the intruder

when the message is injected with an XML Element. It is similar to the

‘RequestSecurityToken’ structure but w ith the addition of an ‘Injectedlnfo’

element. ‘Injectedlnfo’ represents any element data introduced to the request

security token structure. The value of the ‘Injectedlnfo’ is set to ‘IN JJN FO ’.

7.2.4 Principal P rocesses

The principal processes for the Security Token Protocol under XML Injection

attack are defined as follows.

In it P ro c e ss : The ‘in it’ process instantiates all three processes with their

respective data values. The ‘In truder’ is initialised with its identity I, the

username of the service it will communicate with (i.e., the Security Token

Service), and its nonce, noncel. The ‘Sender’ process is initialised with its

identity A, the identity of the Security Token Service to which it will send the

request for a security token, and its fresh nonce, nonceA. The ‘STS’ is a se­

curity token issuing process. It is initialised with its identity STS and nonceS.

init {

run Intruder (I, STS, noncel);

run Sender(A, STS, nonceA);

194

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

Table 7.4: Security Token Protocol Global Variables.

TimeStamp

typedef TimeStamp{
mtype Created;
mtype Expires;

}; TimeStamp ts [6];

XML Signature

typedef Signature {
mtype CanoncalizationMethod ;
mtype SignatureMethod ;
m type Reference ;
mtype SignatureValue ;
m type Keylnfo;

}; Signature sig[6];

XML Encryption - Encrypted D ata

typedef EncryptedData{
mtype EncryptionMethod ;
mtype CipherData ;
m type Cipher Value ;
m type ReferenceList ;
m type DataReference ;
m type Keylnfo;

}; EncryptedD ata edata[6];

XML Encryption - Encrypted Key

typedef EncryptedKey {
m type EncryptionMethod ;
m type CipherData ;
m type Cipher Value ;
m type ReferenceList ;
m type DataReference ;
m type Keylnfo;

}; EncryptedKey ek[6];

U sernameToken

typedef UsernameToken {
mtype Username;
mtype Nonce;

}; UsernameToken ust[7];

195

7.2. S E C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

Table 7.5: Security Token Protocol Global Variables.

RequestSecurityToken

typedef RequestSecurityToken{
m type TokenType ;
m type RequestType ;
m type AppliesTo;
m type Entropy;
mtype EntropicMode;
mtype rst.created;
mtype rst.expires;

}; RequestSecurityToken rst [2];

Injected RequestSecurityToken

typedef iRequestSecurityToken{
m type TokenType ;
m type RequestType ;
m type AppliesTo;
m type Entropy;
mtype EntropicMode;
mtype rst.created;
m type rst.expires;
m type Injectedlnfo

};iRequestSecurityToken irst[l];

RequestSecurityToken

typedef RequestSecurityTokenResponse{
m type TokenType ;
m type RequestType ;
m type AppliesTo;
m type Entropy;
m type EntropicMode;
m type ComputedKey;
m type rstr.created;
m type rstr.expires;
mtype set Jd;

}; Request Security TokenResponse rs[2];

196

7.2. S E C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

run sts(STS, nonceS);

}

S e n d e r P ro ce ss : The sender process performs a three-step message run

between itself and the Security Token Service. First, it populates the ‘type­

def’ structures with its Encryption, Signature, TimeStamp and Request for

Security Token values. It invokes ‘SenderChallenge(me, recvr)’ and sends the

message {UsernameToken(A, nonceA), STS, Signature, RST, RequestSecu­

rityToken, TimeStamp, EncryptedD ata, pubKeySTS} on channel ‘rstChan’.

Secondly, it waits for the message {UsernameToken(STS, nonceS), User-

nameToken(A, nonceA), RSTR, Signature, SC, RequestSecurityTokenRe-

sponse, TimeStamp, EncryptedD ata, pubKeyA} from the Security Token

Service on ‘rstrC han’. The message is decrypted, the tim estam p is verified,

the signature and authentication information is validated, and the sender

binds to the Security Token Service and agrees on a security context after

processing the security context information received from the Security Token

Service. Thirdly, the sender process sends an acknowledgement response mes­

sage, {SC/MSG_REJ}, to the security token service on channel ‘ackChan’.

The Sender process is listed as follows:

proctype Sender(mtype me; mtype recvr; mtype my_nonce)

{
atomic {

SenderChallenge(me, recvr);

rstChan!ust[0],recvr,sig[0],RST,rst[0],ts[0],edata[0],pubKey ;

}
atomic {

rstrChan?ust[4],ust[3],rstr,sig[3],SC,rs[l],ts[3],edata[3],pubKey;

Decryption(pubKey, privateKey);

197

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

Verify Freshness(ts[3]. Created, ts[3]. Expires);

VerifySignature(sig[3].CanoncalizationMethod, sig[3].SignatureMethod,

sig[3].Reference, sig[3].Signature Value, sig[3].Keylnfo);

AuthenticateResponse(rstr);

SenderBind(ust [4] .Username, ust [3] .Username);

SC Agreement (rs[l]. AppliesTo, rs[l].TokenType, rs[l] .RequestType,

rs[l].EntropicMode, rst[0].Entropy, rs[l].Entropy,rs[l].ComputedKey,

rs[l].rstr_expires, ust[3].Nonce, ust[3].Username, ust[4].Username, rs[l].sctJd);

}
if

:: (Security-Context = = FLAG) —> msg = SC

:: (Security_Context != FLAG) —> msg = MSG-REJ

fi;

ackChanlmsg

}

R ece iv e r P ro ce ss : The receiver process is the Security Token Service lis­

tening for requests for tokens on ‘rstC han5. First, the Security Token Service

awaits a the request message of the form {UsernameToken(A, nonceA), STS,

Signature, RST, RequestSecurityToken, TimeStamp, EncryptedData, pub-

KeySTS}. On receiving the message the Security Token Service symbolically

decrypts it w ith its private key, verifies the freshness, validates the signature

and authenticates the request, invokes ‘RecvrChallenge(sender, receiver)’,

and finally agrees on a partia l security context. Secondly, the Security To­

ken Service populates its RequestSecurityResponse complex data structure

with the appropriate requested token information and sends the response on

‘rstrC han’. The response message contains {UsernameToken(A, nonceA),

UsernameToken(STS, nonceS), RSTR, Signature, SC, RequestSecurityTo-

kenResponse, Tim eStam p, EncryptedD ata, publicKeyA}. If the Security

Token Service fails to authenticate, or is unable to reach an agreement on

198

7.2. SE C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

a partial security context, it sends a request security token response token

with NULL fields bu t returns the original values in the request back to the

requester. Thirdly, the Security Token Service waits for an acknowledgement

from the requestor service either as R E J or SC on ‘ackChan’. The process is

represented as follows:

proctype sts(mtype me; mtype my_nonce)

{
atomic {

r8tChan?ust[l],eval(me),sig[l],msg_type,rst[l],ts[l],edata[l],pubKey;

Decryption(pubKey, privateKey);

Verify Freshness(ts[l] .Created, ts[l] .Expires);

VerifySignature(sig[l].CanoncalizationMethod, sig[l].SignatureMethod,

sig[l].Reference, sig[l].Signature Value, sig[l]. Keylnfo);

RecvrChallenge(ust[1] .Username, me);

AuthenticateRequest(msg_type);

RecvrBind(ust[l].Username, me);

PartialSCAgreement(rst [1].AppliesTo, rst [1].TokenType, rst[1].RequestType,

rst[1].EntropicMode, rst[1] .Entropy);

rstrChanlust [1] ,ust [2] ,RSTR,sig[2], SC,rs [0] ,ts [0] ,edata[2],pubKey;

}
ackChan?x;

}

Intruder Process: The in truder process is always active. It listens for

messages on channel ‘rstC h an ’, and intercepts and alters them. The intruder

on start-up populates its local variables and ‘typedef’ structures. The in­

truder can alter messages by ‘content’ injection or by ‘element’ injection to

the message. It inserts ‘content’ into the UsernameToken by adding ‘X’ to

the username, where ‘X ’ represents any arbitrary data. The intruder sends

199

7.2. S E C U R IT Y T O K E N PRO TO C O L 7. XM L Injection A ttack Model

the message off on ‘rstC h an ’ to the Security Token Service. This alteration

to the requestor’s username causes failure in authentication. When the in­

truder alters the content of the request for a security token, it adds ‘X’ to

‘RequestType’ or to ‘TokenType’, thus causing a failure in establishment of

a partial context or a full security context. The intruder’s other capability

is to inject an ’elem ent’ into the request security token message structure

and send the message forward to the Security Token Service. The intruder

process is represented as follows:

proctype Intruder (mtype me; mtype recvr ; mtype my_nonce)

{
do

:: atomicf

rstChan? ust [0],recvr ,sig[4], RST,rst [2] ,ts [0] ,edata[4],pubKey;

ust [0]. User name = AX;

rstChanlust [0],recvr ,sig[4],RST,rst [2] ,ts[0] ,edata[4],pubKey;

}
:: atomic{

rstChan?ust [0],recvr ,sig[4],RST,rst [2] ,ts [0] ,edata[4],pubKey;

rst [2] .TokenType = SCTX;

rst [2]. RequestType = ISSUEX;

rstChanlust [0] ,recvr,sig[4],RST,rst [2] ,ts[0] ,edata[4],pubKey;

}
:: atomic!

rstChan?ust [0],recvr,sig[4],RST,rst [2] ,ts [0] ,edata[4],pubKey;

rstChanlust [0], recvr, sig[4], RST, irst[0],ts[0],edata[4], pubKey;

}
od

}

200

7.3. CONCLUDING R E M A R K S 7. XM L Injection A ttack Model

7.3 C oncluding R em arks

In this chapter a model to expose the Simple Message Exchange Protocol

and the Security Token Protocol to an XML injection attack has been built.

The basic definitions of the legitim ate user involved in the protocol run axe

similar to those in C hapter 5. The intruder model of Dolev-Yao is extended

to encompass XML injection attacks. There are two ways the intruder at­

tacks the messages in the protocol run - either by altering the contents of

the elements or by adding an element to the message. In the next chapter,

simulations of the Simple Message Exchange Protocol and Security Token

Protocol models for analysing behaviour are run.

201

CHAPTER 8

Simulation and Verification for XML Injection Attack

This chapter presents the results of the simulation and verification of both the

Simple Message Exchange Protocol and the Security Token Protocol under

an XML injection attack. The simulation results are presented in the form

of snapshots of message sequence charts and the global variables output.

Verification is performed for both the protocols, which are checked for the

same Linear Temporal Logic properties th a t were described in Section 3.7.

8.1 S im ulation R esu lts

8.1.1 S im ple M essage E xchange Protocol

The simulation results for the Simple Message Exchange Protocol will now

be given. The protocol is subjected to two different types of XML injection

attack. The first type of attack alters the ‘content’ of the element in the

202

8.1. SIM U LA TIO N RE SU LTS 8. XM L Injection Attack

message, and the second type of attack adds an element to the element

structure represented by complex ‘typedef’ structures. Thus, two simulation

scenarios are presented. In the first XML content is injected, i.e., the values

are the elements are modified in some way. In the second an element is added

to one of the W S-Security structures.

XM L C on ten t In jectio n

Service A sends a message to Service B. The message is intercepted by the

intruder who is listening on the same channel, ‘chanONE’. The intruder adds

an ‘X’ to the usernam e and sends it off to Service B. ‘X’ represents any arbi­

trary piece of d a ta th a t can be added to the content of the element. Service

B receives the message and tries to authenticate with A but fails to do so

because of the alteration to the UsernameToken of the requesting service, A,

and sends the message back to Service A.

It can be seen from the global variables th a t services A and B fail to bind

with each other. Service A updates the global variable ‘senderchallengeAB’

to 1 before sending the message on ‘chanONE’. The message is intercepted

by the intruder service, which adds to the content of the username token, and

sends it to Service B. Service B starts its authentication process by trying to

update ‘recvrchallengeAB’ bu t is unable to update it to 1. This leads to the

end of the simulation and the end of the protocol run.

Figure 8.1 represents a snapshot of a message sequence chart when content

is altered in the message stream . The values in the yellow boxes represent

the processes in the Simple Message Exchange Protocol model. ‘init::0’ in

the first column represents the ‘in it’ process which initialises all the func­

203

8.1. SIM U LA TIO N RE SU LTS 8. XM L Injection Attack

tions. ‘SenderA :l’ in the second column represents the Sender process. ‘Re-

ceiverB:3’ in the th ird column represents the receiver process, and ‘PI:2’ in

the fourth column represents the intruder process. SenderA sends a message

to ReceiverB containing {A, nonceA, B, REQ, ts[0], sig[0], edata[0], pub-

KeyB}.The values for Tim eStam p, XML Signature and XML Encryption for

SenderA are described using *ts[0]’, ‘sig[0]’ and ‘edata[0]\ ‘A’, ‘nonceA’ and

‘B’ are the unencrypted inform ation in the message. The message is inter­

cepted by the intruder, which alters the username ‘content’ of the message

to {AX, nonceA, B, REQ, ts[0], sig[0], edata[0], pubKeyB}, and sends the

message to the original intended recipient, B. ReceiverB receives and pro­

cesses the message. The alteration to the username of SenderA causes the

message to be rejected by ReceiverB. ReceiverB sends the following message

{B, nonceB, AX, nonceA, DECLINE, t s [2], sig[2], edata[2], pubKeyA}. The

message contain the ReceiverB values for TimeStamp, XML Signature and

XML Encryption represented by ‘ts[2]’, *sig[2]’ and ‘edata[2]\ respectively.

The protocol run term inates after the message is received by SenderA.

XM L E lem en t In jectio n

Service A sends a message to Service B on ‘chanONE’. The intruder, as al­

ways, is listening on the channel. It intercepts the message and adds an

element ’IN JJN F O ’ to the Signature element. The intruder then forwards

the message to Service B. Service B processes the message. It successfully

authenticates the message and sends an ‘A CCEPT’ to Service A.

It can be seen th a t the global authentication variables are updated suc­

cessfully for authentication. Service A binds to Service B, and Service B

204

8.1. SIMULATION RESULTS 8. XML Injection Attack

'B.m.anT̂QPIin'Clin.ahal'Ue, tr ip ldK S ,S B , baaeSieacoded, E .U 6 ,1 5 B U , publtyB

,tripleO EB,C D ,batridaicoded. tL.MSG,I509t3 publtejB

. sh a L iCR, s i f t t l B , I50i 73 , t » p l i C B . CD, b ifW i« i:o d c d , H M K i, I50 jv3 , puMtyA2 .B,Baaeefi,AZ,naace&,DGCLII

Figure 8.1: Message Sequence Chart for SMEP XML Content Injection At­
tack.

205

8.1. SIM U LA TIO N RE SU LTS 8. XM L Injection Attack

binds to service A w ithout being aware th a t an extra element has been in­

jected. Service A updates ‘senderchallengeAB’ to 1 when it initiates a run

with Service B, and Service B validates the username token of Service A

and updates ‘recvchallengeAB’. Once both the identities of the services are

corroborated, ‘senderbindAB’ and ‘recvrbindAB’ are updated to 1 by the

respective services.

Figure 8.2 shows a snapshot of a simulation run between Service A and

Service B when the in truder adds an element to the Signature structure,

‘init::0’ in the first column is the initialising process. ‘SenderA:l’ in the sec­

ond column represents sender A. ‘ReceiverB:2’ in the third column represents

service B, and ‘P I:3’ in the fourth column represents an intruder. ‘SenderA’

sends the message {A, nonceA, B, REQ, ts [0], sig[0], edata[0], pubKeyB }

to Service B. ‘ts[0]\ ‘sig[0]’ and ‘edata[0]’ represent the TimeStamp, XML

Signature and XML Encryption d a ta for Service A. The message is inter­

cepted by ‘P I’. The in truder adds an element to the Signature structure and

sends the message {A, nonceA, B, REQ, ts[0], iSig[0], edata[0], pubKeyB}

to receiver B. ‘iSig[0]’ represents the Signature structure when it is injected

with the ‘Injectedlnfo’ element. ‘ReceiverB’ processes the message and sends

an acknowledgement message {B, nonceB, AX, nonceA, ACK, ts[2], sig[2],

edata[2], pubKeyA } back to ‘SenderA’. ‘ts[2]\ ‘sig[2]’ and ‘edata[2]’ repre­

sent the Tim eStam p, XML Signature and XML Encryption values for the

receiver, B. ‘ReceiverB’ fails to identify the presence of an element injection

attack. ‘SenderA’ receives the message, processes it and sends a reply {A,

nonceA, B, nonceB, A C CEPT, ts[0], sig[0], edata[0], pubKeyB} to Service B.

The simulation results for the Simple Message Exchange Protocol are

206

8.1. SIMULATION RESULTS 8. XML Injection Attack

EQ,3(£ATID.UPIItU,cl4n.ilul,BEQ,«ic , t ripleMS, CD, bueatencDdtd, E , IGllBMvJ , pobKsyfi

. t ip iU tfM .W jm , t r ip l e ® , CD, b*ieS4encoded, KL ilifiS, I509v3

ripl>C C 8|C Pi bm » t< H c t)d ed |IL |)IS 6 il5 3 9 T j, p f lU 'jA

l , lS M r i , t r i y l« CK | f l l |b iH t ie i ie i id e i | t t ,K 8 S ,I 5 0 i i3 ,p i iM q B2 !A, n w e l , B, nonceB, ACCIPT, C K A H f t H W t t M U M W

Figure 8.2: Message Sequence Chart - SMEP XML Element Injection Attack.

207

8.1. SIM U LA TIO N RE SU LTS 8. XM L Injection Attack

Table 8.1: Simulation Result for SMEP

Scenario senderBindAB recvrbindAB
XML Content Injection 0 0
XML Elem ent Injection 1 1

summarized in Table 8.1 for ‘content’ injection and ‘element’ injection. When

the Simple Message Exchange Protocol is subjected to a ‘content’ injection

attack, Service A and Service B fail to authenticate to each other, and the

global variables for authentication remain 0. However, when the Simple

Message Exchange Protocol is subjected to an ‘element’ injection attack the

sender and receiver fail to identify the injected information and successfully

authenticate to each other.

8.1.2 S ecurity Token P rotoco l

The simulation results axe next presented for the Security Token Protocol

under the presence of an intruder capable of carrying out an XML injection

attack. The intruder can change the contents of the elements. He can modify

the username in UsernameToken or he can modify the values in the Request

Security Token. The intruder can also inject an element into the Request

Security Token. Each scenario is described in detail in the following sections.

X M L C o n te n t In je c t io n

U se rn a m e T o k en In je c t io n Figure 8.3 shows a snapshot for an XML con­

tent injection attack, ‘in it’, ‘Sender’, ‘STS’ and ‘Intruder’ are the four pro­

cesses in the model. T he numbers represent the sequence of steps in the sim­

ulation run. In step 48 ‘Sender’ directs a message {ust[0], STS, sig[0], RST,

208

8.1. SIM U LA TIO N RESU LTS 8. XM L Injection Attack

rst[0], t s [0], edata[0], pubKeySTS} to the Security Token Service. ‘ust[0]\

‘STS’, ‘sig[0]’, ‘R S T ’, ‘r s t [0]’, ‘ts[0]’ and ‘edata[0]’ represent the Username­

Token, the receiver username, the signature information of the sender, the

type of message, the request security token information, TimeStamp and En­

cryption information for the ‘Sender’ process. The message is intercepted by

the intruder service. The intruder service only changes the username content

of Service A and sends the message {ust[0], recvr, sig[4], RST, rs t[2], ts[0],

edata[4], pubKey} to the Security Token Service, as shown in execution step

50. The Signature, Encryption, Request Security Token and timestamp in­

formation remains unchanged. The ‘STS’ process receives the message and

sends the response {ust[l], u s t[2], msg'type, sig[2], SC, rs[0], ts[0], edata[2],

pubKey} to the Sender process in step 77. The response contains the partial

security context and inform ation on how to establish a security context be­

tween ‘AX’ and the ‘STS’ service. ‘Sender’ processes the message and fails

to authenticate its usernam e token, and sends a {MSGJREJ} message.

Service A sends a request for a security token to the Security Token Ser­

vice provider, the ‘STS’ process. The intruder listens for the request on the

channel ’rstC han’. It intercepts this message and modifies the ‘Username’ in

the Username Token structure by adding ‘X’ to it and then sends it off to

the Security Token Service, ’STS’. The Security Token Service processes the

message and fails to bind with Service A. When Service A initiates a proto­

col run with the Security Token Service ‘SenderChaJlengeAJSTS’ is updated

to 1. On the receiver end, the Security Token Service fails to validate the

‘AX’ username and does not update ‘RecvrChallengeA_STS’ to 1. This leads

to the failure of authentication between Service A and the Security Token

Service. The Security Token Service processes the rest of the message and

209

8.1. SIM U LA TIO N RESU LTS 8. XM L Injection Attack

sends a security context token back to Service A. Service A rejects this token

as the token contains the username ‘AX’.

R S T In je c tio n Figure 8.4 shows a snapshot of a message sequence ex­

change chart for Service A and the Security Token Service in the presence of

a content injection attack on values in the request security token structure.

Service A sends a request {ust[0], recvr, sig[0], RST, rst[0], ts[0], edata[0],

pubKeySTS} to ’STS’ in execution step 48. The message is intercepted by

the intruder, which alters the contents of the request security token structure.

The intruder is only allowed to tam per with TokenType and RequestType.

It then sends the message {ust[0], recvr, sig[4], RST, rs t[2], ts [0], edata[4],

pubKey} back on the channel to the Security Token Service in execution

step 51. The Security Token Service is able to authenticate the sender, but

is unable to agree on a partia l context with Service A. In step 79 it sends a

response |u s t[l] , u s t[2] , RSTR, sig[2], SC, rs[0], ts[0], edata[2], pubKeyA}

with all NULL values back to the requestor, Service A. Service A, upon pro­

cessing the request, is unable to establish a security context and sends a

{M SG.REJ} response.

The global variables ‘SenderChallengeA_STS’, ‘RecvrChallengeA_STS’,

‘SenderBindA_STS’ and ‘RecvrBindA_STS’ are updated accordingly to 1.

But both the context establishm ent variables, ‘partiaLSC’ and ‘Security.Context’,

fail. The Security Token Service fails to accept ‘TokenType’ and ‘Request­

Type’ in the request to the Security Token Service. It sends the request

security token response back to Service A, containing ’NULL’ fields, thus

leading to a failure in establishing a security context with a valid Service A.

210

8.1. SIMULATION RESULTS 8. XML Injection Attack

l!l,MM«lIB leU i,A illIR rt i |n l l B 09T3l)tn,9CTlISSISlS B ,e lilM n fT ,|B rtia U 4 (% lcre3tedpezpi rei.OUlD.KlPOBS.triplAS.CS,] aseUocoM.lL.lK.ISSM.pilfQSlS

i.7eatej:eipirss,CRUED,II0B .tripLeDK5,CD,baseS4eieodsi,]tl,)6fl.l5l9v3.pilCe^1Sl!ll,ia M i,S R ,e li i ,sk il |lin ls i jn lJ i lS I M lltSI,SCTi SSIK,SIS,d ic it_ e s tr tff ,

r,sbM mM dT« fu te fSC?_IDl(3S11D,K]PIias,tripldS5lCI),kaseijescod«ir)tLlNSe,S39T3,piUtefl2:U.Mtoell8BlisiceS,IIST,cliiiSkal,llSSI,sigfall1S.ISI9T3lSCrICIlIS S ir!

Figure 8.3: Message Sequence Chart for an STP Username Token Injection
Attack.

211

8.1. SIM U LA TIO N RESU LTS 8. XM L Injection Attack

XM L E lem en t In jection

Figure 8.5 presents a snapshot of a message sequence chart for Service A and

the Security Token Service in the presence of an intruder capable of an XML

element injection attack. The intruder intercepts the message on channel

‘rstC han’ and adds IN JJN F O to the request security token. It sends the

message to the ’STS’ process. The Security Token Service authenticates the

service and establishes a ‘partiaLSC ’ with Service A. It fails to recognise the

presence of an element injection attack, and sends the security token response

information to Service A. Service A processes the request successfully and

reaches an agreement on a security context. Execution step 56 shows the

{ust[0], recvr, sig[0], RST, rst[0], t s [0], edata[0], pubKeySTS} message sent

by the ‘Sender’. Execution step 59 shows the message sent by the intruder

after injecting an element: {ust[0], recvr, sig[4], RST, irst[0], ts[0], edata[4],

pubKeySTS}, where ‘irs t[0]’ represents the request security token with the

injected element. In step 87 the Security Token Service sends the message

{ust[l] , u s t[2] , RSTR, sig[2], SC, rs[0], ts[0], edata[2], pubKeyA} to the

‘Sender’ process. Step 105 illustrates the message {SC} exchange between

‘Sender’ and ‘STS’.

The outcome can be seen from the values of the global variables. The

global variables ‘SenderChallengeA_STS’, ‘RecvrChallengeA_STS’, ‘SenderBindAJSTS’

and ‘RecvrBindA_STS’ are updated to 1, as both the services are able to val­

idate the username token of each other. The Security Token Service is able

to agree on a partia l security context agreement and updates ‘partiaLSC’

to 1. The inform ation required to reach this agreement is not altered. The

212

8.1. SIMULATION RESU 8. XML Injection

, c r e j te i , a p ix « t, CS£UB .EIHBZS , t r ipleDtS ,CD, kueMeaeoded, IL. MK, »0*»3, pthlejSK

M i l l , l i t ,U]*aU lllS09T3lISTlficn ,lSS aK lrE K ,e lia t_ e k tr9 fT lp irt] ,C D ,k iieM aa4ei|IL ,K C ,& 09i3 ,|ike jS 1S

311, lOKd, Ift, r a c e ! , U9 ,c!4i,cki 1 ,UB, li jmISK, B09r3, tC, ,t DIKES, tiip l^ E S ,CD. b u e64eteaded, XL ,WS, XS09v3 , f ihKqk

Figure 8.4: Message Sequence Chart for an STP RST Content Injection
Attack.

213

8.1. S IM U LA TIO N RE SU LTS 8. XM L Injection Attack

Security Token Service fails to identity the injected element in the request.

The Security Token Service sends the security context back to the requestor,

Service A, containing all the fields in the original request. Service A processes

the required elements to reach a security context and agrees on the context.

Both Service A and the Security Token Service fail to identify the element

injection attack.

Table 8.2 summarises the results for the simulation of the Security Token

Protocol under an XML injection attack. In the case of an XML injection

attack on the content of the username token it can be seen from the values

of the global variables SenderBindA_STS and RecvrBindA_STS that Service

A and the Security Token Service are unable to bind to each other. It can be

seen see th a t a partial security context is established on the Security Token

Service side, but bo th services fail to establish a full security context because

of authentication failure. In the case of an XML injection attack on the

content of the Request Security Token it can be seen from the values of the

global variables SenderBindA_STS and RecvrBindA_STS th a t both Service

A and the Security Token Service bind to each other successfully. However,

both services fail to establish a partial security context, and as a result fail to

establish a full security context. In the last case of an XML element injection

attack it can be seen th a t Service A and the Security Token Service bind to

each other successfully and are able to establish a full security context. The

model fails to identify the attack.

214

8.1. SIMULATION RESU 8. XML Injectio

l!l,ui(d,S8rdli,<kil,IST,ti]nU , a e a t e i , o f » e s lC JIl® ,E IP D i£ S ltr ip leC £ S t iD lta se4< « tcod rflt t 1l6 6 lI 5 J h 3 lfillIeyS!S

U l.io ic tliS fS .c lJ i . s k j l .R S T .S ig r d i i .R S T .S C T , SSUB,StSrc l i e a t _ a t r ,parti l ln m S , t r i p l d K 1Q , l « s e J (u c o i « d , a lI K l I5 0 h 3

.SCT̂.aiKUED.ElFliaS.tripldKS.ai.batêacodel.XL.NSS.XSOM.inMcyl,RSSlcl4il>kallRS1R,iifTa] ISSH.SKj w ^ ,]

Figure 8.5: Message Sequence Chart for an STP RST Element Injection
Attack.

215

8.2. V E R IF IC A TIO N RESU LTS 8. XM L Injection Attack

Table 8.2: Simulation Result for Security Token Protocol

Scenario SenderBindA_STS RecvrBindA_STS partial_SC Security .Context
XML Content Injection UST 0 0 1 0
XML Content Injection RST 1 1 0 0
XML Element Injection 1 1 1 1

Table 8.3: Verification Result for SMEP Under XML Injection Attack

Scenario State Size Transitions
XML Content Injection 260 bytes 55311
XML Elem ent Injection 260 bytes 48

8.2 V erification R esu lts

8.2.1 S im ple M essage E xchange P rotocol

This subsection presents verification results obtained with the Linear Tem­

poral Logic property:

0 ((0 ISenderBindAB) || (ISenderBindAB U RecvrChallengeAB))

D ((Q IRecvrBindAB) || (IRecvrBindAB U SenderChallengeAB))

The Linear Temporal Logic property was violated in the case of an XML

content injection attack. Spin was able to detect content injection to the

message and generated an error. In the case of element injection to the mes­

sage, the property was satisfied, showing th a t Spin was unable to identify

the illegal element injected into the message. The rest of the results, the

depth reached and the memory used, are summarized in Table 8.3.

216

8.3. CONCLUDING R E M A R K S 8. XM L Injection Attack

8.2.2 S ecu rity Token P rotoco l

The following Linear Temporal Logic property for the Security Token Pro­

tocol was fed into the Spin verification engine:

[](([] !senderbindAS)|| (IsenderbindAS U recvr challenge AS))

D ((D IrecvrbindAS) || (IrecvrbindAS U senderchallengeAS))

[](([] Isecuritycontext) || (! security context U partialSC))

It can be seen th a t there is a violation of the Linear Temporal Logic

property in case of content injection. The authentication variables are zero

and the security context fails to be established. Similarly, in case of a re­

quest security token attack, where the TokenType and Request Type values

are changed, it can be seen th a t there is a violation of the Linear Temporal

Logic property. Service A and Service B are able to authenticate to each

other but fail to agree on a security context. In the case of an XML Injection

attack on the Security Token Protocol it can be seen th a t there is a violation

of the Linear Temporal Logic property, and an invalid verification result is

obtained. Spin is unable to detect this type of attack. Table 8.4 summarises

the memory used and the depth reached results for the Security Token Pro­

tocol under an XML injection attack. The results can be employed when

analysing the application of various model checkers to Web services based

cryptographic protocol.

8.3 C oncluding R em arks

Simulations have been conducted on pushdown autom ata models of the Sim­

ple Message Exchange Protocol under an XML injection attack. The Simple

217

8.3. CONCLUDING R E M A R K S 8. XM L Injection Attack

Tabic 8.4: Verification Result for STP Under XML Injection Attack

Scenario State Size Transistions
XML UST Content Injection 328 bytes 65309
XML RST Content Injection 328 bytes 31604
XML Elem ent Injection 336 bytes 297

Message Exchange Protocol is modelled as a three-step protocol as described

in Chapter 4. Any deviation from the steps of the protocol results in a change

to the expected behaviour of the protocol. Such changes can be seen from the

values of the global variables. It has been shown tha t modelling a protocol

in terms of a pushdown autom aton not only captures the behaviour of the

protocol and its participants, but it also allows the detection of any changes

to the correct working of the protocol.

An analysis of the pushdown autom aton model of the Security Token

Protocol as a three-step protocol has been carried out, as explained in Chap­

ter 4. It was shown th a t if the Security Token Protocol executed all the

three steps for the protocol run successfully, the requesting service was able

to bind to the Security Token Service. The requesting service was also able

to establish a full security context. Any deviation from the defined behaviour

of the Security Token Protocol resulted in failure to achieve binding and/or

establishment of full security context.

Pushdown au tom ata allow us to capture the behaviour of the protocols,

and for additional analysis and verification of the behaviour Linear Tempo­

ral Logic properties were used. First, simulations of the pushdown automata

model w ithout the Linear Temporal Logic properties were fed into Spin. It

218

8.3. CONCLUDING R E M A R K S 8. XM L Injection Attack

was shown th a t if a correct protocol run was successfully executed, i.e., all

the steps of the run were completed, it was possible to detect any deviations

from the correct behaviour from the global variables. This shows the push­

down autom aton was able correctly to express the behaviour of the Simple

Message Exchange Protocol and the Security Token Protocol and can be used

for conducting a behavioural analysis of any protocol.

Simulation on the XML injection attack model was performed using Spin,

and the results were summarised in Tables 8.1 and 8.2. Message sequence

charts for the protocol runs were presented, and it was shown that the model

is able to detect an XML content injection attack, but fails to identify an

XML element injection attack. It was found th a t Spin was able to detect

any content injection attacks on the Simple Message Exchange Protocol and

the Security Token Protocol, bu t it was unable to detect element injection

attacks on either protocol. For modelling Web services based cryptographic

protocols and related attacks we suggest th a t future model checkers should

be designed for Web services, and we plan to extend Spin for modelling such

protocols in future work.

219

CHAPTER 9

Conclusions and Future Work

This thesis has studied the design and analysis of Web Services Based Crypto­

graphic Protocols (W SBCPs) as pushdown autom aton (PDA) systems, with

the aim of using PDAs to model the correct operation of WSBCPs, and to

effectively reflect the properties of these protocols. Automaton based mod­

els for W SBCPs have been developed, and we suggest th a t modelling such

protocols using au tom ata may be more suitable for Web services based mod­

els, as they allow more detailed tracking of the protocol behaviour and the

detection of alterations to this behaviour. PDAs allow the properties of the

WSBCPs to be m apped, which allows the verification of the properties of the

system w ithout specifying them in another language, such as Linear Tempo­

ral Logic or pi-calculus. An intruder model for the Simple Message Exchange

Protocol and the Security Token Protocol has been developed based on the

classic Dolev-Yao model. Both these protocols were subjected to attacks by

220

9. Conclusions and Future Work

an intruder. An extension to the Dolev-Yao model has been given encom­

passing XML injection attacks. We have listed the results of this model, and

verified our model using Spin, a general-purpose model checker.

The approach presented in this thesis allows feasible modelling techniques

for theoretically and practically modelling Web services based protocols. This

conclusion is supported by the following activities and outcomes presented

in this thesis:

• The development of two novel W SBCP’s based on the WS-Security and

W S-Trust specifications. These protocols are based on rules suggested

for modelling cryptographic protocols. The goals for these protocols

have been defined and their properties modelled as Linear Temporal

Logic formulas.

• The modelling of the environment for these protocols as transition sys­

tems. The environment depicts all the possible actions that can be

taken by the principals. The environment is susceptible to attacks

based on a Dolev-Yao intruder.

• The modelling of the W S-Security and WS-Trust based protocols as

two-stack pushdown autom ata. Automaton models for W SBCP’s de­

scribe the behaviour in detail. Two-stack pushdown autom ata are used

to map the correct operations of the protocols.

• We argue for the suitability of applying a general-purpose model checker

to W SBCPs. The autom aton models are translated into Promela, the

input language to Spin. To the best of our knowledge the Promela

models presented in this thesis are the first for WSBCPs.

221

9. Conclusions and Future Work

• Both the protocols have been verified for authentication and secrecy

in the presence of an intruder. For the WS-Trust based protocol, the

establishment of a security context has been verified. The intruder is

allowed to learn certain information and on the basis of it acts as an

impostor, or performs blocking attacks on these protocols.

• We have extended the capabilities of the Dolev-Yao intruder model.

The intruder is not only able to perform the basic Dolev-Yao operations,

but also is able to carry out basic XML injection attacks on the Simple

Message Exchange Protocol and the Security Token Protocol.

• XML injection attacks can be classified as (i) content alteration attacks,

and (ii) element alteration attacks. The intruder is allowed to alter the

content of some parts of the message. He is also allowed to add an

element to the message. The Simple Message Exchange Protocol and

the Security Token Protocol have been subjected to this attack model.

C oncluding R em arks

The behavious of W SBCPs can be modelled using multi-stack pushdown au­

tomata. The PDA model not only reflects the working of the protocols, but

also the properties these protocols are supposed to possess. The modelling

technique can be used to specify the properties of the protocol under study

without the need for a property specification language. The PDA model for

WSBCPs also allows us to detect any deviation from the expected behaviour

of the protocols.

We modelled the SM EP and STP protocols in terms of Promela. To

the best of our knowledge this is the first attem pt to model WSBCPs in

222

9. Conclusions and Future Work

Promela. We produced an intruder model for the Simple Message Exchange

Protocol and the Security Token Protocol based on the Dolev-Yao model,

specifically targeted for W SBCPs. The Simple Message Exchange Protocol

and the Security Token Protocol were subjected to Dolev-Yao intruder at­

tacks and verified.

The Dolev-Yao model should be extended for WSBCPs and formalised.

The model should be extended to reflect the attacks specific to Web services,

i.e.,

1. Attacks on confidentiality. The objective of a confidentiality attack

is to force the targeted application to disclose information that the

attacker is not authorised to see, including sensitive information and

private information. The XML Encryption, WS-Security, and HTTPS

standards provide confidentiality protection for Web services. WS-

Security and H TTPS are generally used to protect the confidentiality

of SOAP messages in transit, leaving data at rest vulnerable to attack.

2. Attacks on integrity. The objective of an integrity attack is to exploit

the targeted application to make unauthorised changes to information

accessed/handled by the application. Web service standards for pro­

tecting the integrity of d a ta include WS-Security and XML Signature.

3. Command injection. In a command injection executable logic is in­

serted into non-executable tex t strings submitted to a Web service.

The main types of command injection are SQL injection targeting Web

service-enabled database applications, and XML injection targeting

Web services.

4. Reconnaissance attacks. Reconnaissance attacks have the objective of

223

9. Conclusions and Future Work

collecting information about an application and its execution environ­

ment to better target other types of attacks at that application. There

are no standards for preventing reconnaissance attacks, e.g., dictionary

attacks, WSDL scanning, sniffing, etc.

5. Privilege escalation attack. The objective of privilege escalation at­

tacks is to enable the attacker to change the privilege level of a process,

thereby taking control of th a t now-compromised process to bypass se­

curity controls th a t would otherwise limit the attacker’s access to the

Web service’s functionality, data, resources, and environment. For ex­

ample, format string attacks and exploiting unprotected administrative

interfaces.

6. Denial-of-Service, malicious code attacks, etc. W ith the increasing ca­

pabilities of the intruder, unbroken encryption can no longer be as­

sumed.

We have presented an extension to the Dolev-Yao model targeted specif­

ically for W SBCPs by adding the capability to carry out XML injection

attacks. To the best of our knowledge this is the first formal extension of the

Dolev-Yao model for XML injection attacks.

We conclude th a t, although general-purpose model checkers can anal­

yse and verify the general working of WSBCPs, for detailed analysis and

verification of the behaviour of W SBCPs work needs to be done on model

checkers specific to Web services based security protocols. We have presented

a Promela model for the Simple Message Exchange Protocol and the Security

Token Protocol, along with an intruder model. We have performed simula­

tions and verification of our model using Spin and presented the results in

224

9. Conclusions and Future Work

Chapter 6.

L im itations o f our M o d el

This subsection reviews the complications in modelling the pushdown au­

tom aton based protocol models (the Simple Message Exchange Protocol and

the Security Token Protocol) in the Promela language. Our approach devi­

ates from traditional approaches to modelling automaton using languages.

Instead, we model the Simple Message Exchange Protocol and the Security

Token Protocol as steps. The set of steps in the protocol run is represented

by an ‘atomic’ structure, embedded with functions applied in th a t step. We

faced difficulty in modelling the input tape environment. The input tape is

presented as a combination of symbols read from the messages on the chan­

nel and hard-coded input reads. We divide some functionality of the services

into smaller parts, so they can be used when the model is extended to in­

corporate XML injection attacks. We were also unable to map the dynamic

nature of the XML envelope. The XML structures could only be modelled

as static ‘typedef’ structures.

We extended the Dolev-Yao model to carry out XML injection attacks.

We saw th a t the Prom ela model did not allow us to detect element injection

attacks in some cases. Our future work will allow us to address this issue.

To counter the current lim itations of our work, we propose to work on the

extension of both the Dolev-Yao model and the Spin model checker.

225

9. Conclusions and Future Work

Future W ork

The Dolev-Yao model has been adopted for analysis of a large number of

cryptographic protocols. W ith the emergence of new types of attacks and

the nature of the Web services based cryptographic protocols, the model

should be expanded. There have been some proposed suggestions but no

formal work has been proposed to the best of our knowledge. We propose

to continue our work on an extension of the Dolev-Yao model for WSBCPs

encompassing various attacks (Command Injection, Attacks on Confidential­

ity, and Attacks on Integrity) targeted for WSBCPs. We will work towards

developing a formalism for this.

As a next step we also propose to work on a Web services protocol model

checker. The idea is to allow W SBCPs to be modelled using pushdown au­

tom ata th a t reflect their operation and properties. Wc give a brief overview

of the framework for the model in Figure 9.1. All implementation modules

are C-based codes. The XML parser module, as its name suggests, parses

a given SOAP docum ent containing the XML signatures. The purpose of

this parser is to autom atically extract relevant information from the SOAP

traffic and obtain the corresponding WS-* security tags for further process­

ing. The input of this module is the SOAP messages carrying the WS-*

traffic, and its ou tpu t is the populated data structures which are required

in subsequent stages for making the autom aton. This module extracts the

rule set from the given security specification which we want to analyse. This

module is semi-autom atic as some manual rule extraction is required to get

the exhaustive lists. The purpose of this module is to generate the security

requirements. The requirem ents are presented in files in a format which our

autom aton modules can understand. The PDA Module is the core module

226

9. Conclusions and Future Work

in which we generate the proposed multi-stack pushdown automaton for a

given Web service traffic scenario. The outputs of the XML Parser mod­

ule and the Design module are used as inputs in this stage. The output of

this stage is an autom ated pushdown autom aton which represents the Web

service traffic along with any loopholes which may be part of the security

specification. The PDA m odule’s ou tpu t is then subjected to the validation

module which verifies the security requirements. The validation engine will

convert the model into Prom ela and will be fed into Spin for verification.

This module will also point out any security vulnerabilities present in the

specification. The Reporting module is a standard reporting module which

populates necessary logs and suggests possible courses of action where re­

quired. The results from the model checker will be fed into Spin to verify

the results.

227

9. Conclusions and Future Work

Automaton

XML Parser
Engine

Figure 9.1: Proposed architecture

228

Bibliography

[Aba99]

[ABea05]

[ACN11]

[Aea05]

[ALOO]

M. Abadi. Secrecy by typing in security protocols. J. ACM ,

46(5):749-786, 1999.

A. Armando, D. Basin, and et al. The AVISPA tool for the au­

tom ated validation of internet security protocols and applica­

tions. In Proceedings o f C A V ’2005, LNCS 3576, pages 281—285.

Springer-Verlag, 2005.

C. Andres, M. E. Cambronero, and M. Nunez. Passive Testing

of Web Services. Lecture Notes in Computer Science, 6551:56-

+, 2011.

S. Anderson and et al. Web services secure conversation

language (ws-secureconversation). Technical report, OASIS,

February 2005.

R M. Amadio and D. Lugiez. On the reachability problem

in cryptographic protocols. In Proceedings of the 11th Inter­

229

BIBLIO G RAPH Y

[AVA]

[BAN90]

[BCFG04]

[BCJS04]

[Bea04]

[Bea05]

[Bea06a]

national Conference on Concurrency Theory, CONCUR ’00,

pages 380-394, London, UK, 2000. Springer-Verlag.

AVANTSSAR. A utom ated validation of trust and security-

oreinted architectures.

M. Burrows, M. Abadi, and R. Needham. A logic of authenti­

cation. A C M Trans. Comput. Syst., 8:18-36, February 1990.

K. Bhargavan, R. Corin, C. Fournet, and A. Gordon. Secure

sessions for web services. In S W S *04: Proceedings of the 2004

workshop on Secure web service, pages 56-66, New York, NY,

USA, 2004. ACM Press.

F. Butler, I. Cervesato, A. Jaggard, and A. Scedrov. A formal

analysis of some properties of kerberos 5 using msr, 2004.

G. Behrm ann and et al. A tutorial on uppaal. In Fourth In­

ternational School on Formal Methods for the Design of Com­

puter, Communication, and Software Systems, pages 200-236.

Springer, 2004.

R. Bilorusets and et al. Web services reliable messaging pro­

tocol (ws-reliablemessaging). Technical report, BEA Systems,

IBM, Microsoft Corporation, Inc, and TIBCO Software Inc..,

February 2005.

M. Backes and et al. Symbolic and cryptographic analysis of

the secure ws-reliablemessaging scenario. In In Foundations of

Software Science and Computation Structures, pages 428-445.

Springer-Verlag, 2006.

230

BIBLIOGRAPHY

[Bea06b]

[BF04]

[BFG06]

[BFGT06]

[BG05]

[BK08]

[BlaOl]

[Bla02]

S. B ajaj and et al. Web services policy 1.2 - framework (ws-

policy). Technical report, W3C, April 2006.

K. Bhargavan and C. Fournet. Tulafale: A security tool for

web services, 2004.

K. Bhargavan, C. Fournet, and A. Gordon. Verified reference

im plem entations of ws-security protocols. In In 3rd Interna­

tional Workshop on Web Services and Formal Methods (WS-

FM 2006), volume 41 $4 o f LNCS, pages 88-106. Springer, 2006.

K. Bhargavan, C. Fournet, A. Gordon, and S. Tse. Verified

interoperable implementations of security protocols. In CSFW

’06: Proceedings o f the 19th IEEE workshop on Computer Secu­

rity Foundations, pages 139-152, Washington, DC, USA, 2006.

IEEE Com puter Society.

M. Backes and T. Gro/3. Tailoring the dolev-yao abstraction

to web services realities. In SW S ’05: Proceedings of the 2005

workshop on Secure web services, pages 65-74, New York, NY,

USA, 2005. ACM.

C. Baier and J-P. Katoen. Principles o f Model Checking (Rep­

resentation and M ind Series). The MIT Press, 2008.

B. Blanchet. An efficient cryptographic protocol verifier based

on prolog rules. Computer Security Foundations Workshop,

2001. Proceedings. 14th IEEE , pages 82-96, 2001.

B. Blanchet. From secrecy to authenticity in security protocols.

In In 9th International Static Analysis Symposium (SAS02,

pages 342-359. Springer, 2002.

231

BIBLIO G RAPH Y

[ButOl]

[CC11]

[CDL+99]

[Cea04]

[Cea07]

[CohOO]

[Con]

[DK99]

R. W. Butler. W hat is formal methods?, 2001.

D. Christiansen and M. Carbone. Formal semantics and im­

plem entation of bpmn 2.0 inclusive gateways. In Proceedings

o f the 7th international conference on Web services and formal

methods, W S-FM ’10, pages 146-160, Berlin, Heidelberg, 2011.

Springer-Verlag.

I. Cervesato, N. A. Durgin, R D. Lincoln, J. C. Mitchell, and

A. Scedrov. A m eta-notation for protocol analysis. In Proceed­

ings o f the 12th IEE E workshop on Computer Security Foun­

dations,, CSFW ’99, pages 55-69, Washington, DC, USA, 1999.

IEEE Com puter Society.

E. Christensen and et al. Web services addressing (ws-

addressing). Technical report, BEA Systems, IBM, Microsoft

Corporation, Inc, and TIBCO Software Inc.., August 2004.

Y. Chevalier and et al. Towards an automatic analysis of web

service security. In Proceedings of the 6th international sym­

posium on Frontiers o f Combining Systems, FroCoS ’07, pages

133-147, Berlin, Heidelberg, 2007. Springer-Verlag.

E. Cohen. Taps: a first-order verifier for cryptographic pro­

tocols. In Computer Security Foundations Workshop, 2000.

C SF W -13. Proceedings. 13th IEEE , pages 144 -158, 2000.

The Web Application Security Consortium. Xml injection at­

tack.

Z. Dang and R A. Kemmerer. Using the astral model checker

to analyze mobile ip. In Proceedings o f the 21st international

232

BIBLIOGRAPHY

[DLea05]

[DMOO]

[DPC+06]

[DS97]

[DY81]

[EG83]

conference on Software engineering, ICSE ’99, pages 132-141,

New York, NY, USA, 1999. ACM.

G. Della-Libera and et al. Web services security policy language

(WS-SecurityPolicy), July 2005.

G. Denker and J. Millen. Capsl integrated protocol environ­

ment. In In Proc. o f DARPA Information Survivability Con­

ference (D ISC EX 2000), pp 207-221, IEEE Computer Society,

pages 207-221. IEEE Computer Society, 2000.

G. Diaz, J-J Pardo, M. Cambronero, V. Valero, and F. Cuar-

tero. Verification of web services with timed automata. Elec­

tronic Notes in Theoretical Computer Science, 157(2): 19-34,

2006.

B. D utertre and S. Schneider. Using a pvs embedding of csp to

verify authentication protocols. In Elsa Gunter and Amy Felty,

editors, Theorem Proving in Higher Order Logics, volume 1275

of Lecture Notes in Computer Science, pages 121-136. Springer

Berlin / Heidelberg, 1997. 10.1007/BFb0028390.

D. Dolev and A. C. Yao. On the security of public key protocols.

In Proceedings o f the 22nd Annual Symposium on Foundations

o f Computer Science, pages 350-357, Washington, DC, USA,

1981. IEEE Com puter Society.

S. Even and O. Goldreich. On the security of multi-party ping-

pong protocols. In Proceedings o f the 24th Annual Symposium

on Foundations o f Computer Science, pages 34-39, Washing­

ton, DC, USA, 1983. IEEE Computer Society.

233

BIBLIOGRAPHY

[ERS01]

[FAOl]

[Fea04]

[FHG98]

[For94]

[Full]

[Ger]

[GJ03]

D. Eastlake, 3rd, J. Reagle, and D. Solo. Xml-signature syntax

and processing, 2001.

M. Fiore and M. Abadi. Computing symbolic models for veri­

fying cryptographic protocols. In In Proc. of the 14th Com­

puter Security Foundation Workshop (CSFW14, pages 160-

173. IEEE, Com puter Society Press, 2001.

X. Fu and et al. W sat: A tool for formal analysis of web

services. In the Proc. o f 16th Int. Con}, on Computer Aided

Verification (CAV, pages 510-514. Springer, 2004.

F. J.T . Fabrega, J.C. Herzog, and J.D. Guttm an. Strand spaces:

why is a security protocol correct? In Security and Privacy,

1998. Proceedings. 1998 IEEE Symposium on, pages 160 -171,

May 1998.

W. Ford. Computer communications security: principles, stan­

dard protocols and techniques. Prentice-Hall, Inc., Upper Sad­

dle River, N J, USA, 1994.

Xiang Fu. Conformance verification of privacy policies. In Pro­

ceedings o f the 7th international conference on Web services

and form al methods, W S-FM ’10, pages 86-100, Berlin, Heidel­

berg, 2011. Springer-Verlag.

R. G erth. Concise promela reference.

A. Gordon and A. Jeffrey. Authenticity by typing for security

protocols. J. Comput. Secur., 11(4):451—519, 2003.

234

BIBLIOG RAPH Y

[GP02]

[HC98]

[Hea02]

[HG01]

[HM06]

[HM11]

[HMU06]

A. Gordon and R. Pucella. Validating a web service security

abstraction by typing. In XM LSEC ’02: Proceedings of the

2002 A C M workshop on XM L security, pages 18-29, New York,

NY, USA, 2002. ACM.

D. Harkins and D. Carrel. The internet key exchange (ike),

1998.

T. Henzinger and et al. Lazy abstraction. In In POPL , pages

58-70. ACM Press, 2002.

M.L Hui and Gavin. Fault-preserving simplifying transforma­

tions for security protocols. Journal o f Computer Security,

9 (l/2):3 -46 , 2001.

H. Huang and R. Mason. Model checking technologies for web

services. Software Technologies for Future Embedded and Ubiq­

uitous System s, and International Workshop on Collaborative

Computing, Integration, and Assurance, The IEEE Workshop

on, 0:217-224, 2006.

K M. Hee and A J. Mooij. Soundness-preserving refinements

of service compositions. In Proceedings o f the 7th international

conference on Web services and formal methods, WS-FMT0,

pages 131-145, Berlin, Heidelberg, 2011. Springer-Verlag.

J E. Hopcroft, R Motwani, and J D. Ullman. Introduction to

Autom ata Theory, Languages, and Computation (3rd Edition).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2006.

235

BIBLIOGRAPHY

[Hol03]

[HSOO]

[HT96]

[Hui99]

[JJLea04]

[Jou09]

[KM08]

[KR05]

[KS11]

G. Holzmann. The Spin model checker: primer and reference

manual. Addison-Wesley Professional, 2003.

J. H eather and S. Schneider. Towards automatic verification of

authentication protocols on an unbounded network, 2000.

N. Heintze and J. D Tygar. A model for secure protocols and

their compositions. IEE E Transactions on Software Engineer­

ing, 22:2-13, 1996.

A. Huima. Efficient infinite-state analysis of security protocols.

In Proc. F L O C ’99 Workshop on Formal Methods and Security

Protocols, 1999.

J. Johnson, J. Johnson, D. Langworthy, and et al. Formal

specification of a web services protocol. In University o f Pisa,

pages 147-158. Elsevier, 2004.

A. Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC,

2009.

F. Krger and S. Merz. Temporal Logic and State Systems (Texts

in Theoretical Computer Science. An EATCS Series). Springer

Publishing Company, Incorporated, 1 edition, 2008.

E. Kleiner and A.W . Roscoe. On the relationship between web

services security and traditional protocols, 2005.

Esra Kucukoguz and Jianwen Su. On lifecycle constraints of

artifact-centric workflows. In Proceedings of the 7th interna­

tional conference on Web services and formal methods, WS-

FM ’10, pages 71-85, Berlin, Heidelberg, 2011. Springer-Verlag.

236

BIBLIOGRAPHY

[Lea06]

[Lin06]

[Low96a]

[Low96b]

[Low97]

[LW09]

[MCF87]

[MCJ97]

H. Lockhart and et al. WS-Federation 1.1. Technical report,

OASIS, December 2006.

P. Linz. A n introduction to formal languages and automata.

Jones and B artle tt Publishers Inc., London, U.K., 2006.

G. Lowe. Breaking and fixing the needham-schroeder public-

key protocol using fdr. In Tiziana Margaria and Bernhard

Steffen, editors, Tools and Algorithms for the Construction and

Analysis o f Systems, volume 1055 of Lecture Notes in Computer

Science, pages 147-166. Springer Berlin / Heidelberg, 1996.

G. Lowe. Breaking and fixing the needham-schroeder public-

key protocol using fdr. In In Tools and Algorithms for the Con­

struction and Analysis o f Systems, pages 147-166. Springer-

Verlag, 1996.

G. Lowe. A hierarchy of authentication specifications. IEEE

Computer Security Foundations Workshop, 0:31, 1997.

M. L ittle and A. Wilkinson. Web services atomic transaction

(W S-AtomicTransaction) version 1.2. Technical report, OA­

SIS, February 2009.

J.K . Millen, S.C. Clark, and S.B. Freedman. The interrogator:

Protocol secuity analysis. Software Engineering, IEEE Trans­

actions on,, SE-13(2):274 - 288, feb. 1987.

W. Marrero, E. Clarke, and S. Jha. A model checker for au­

thentication protocols. In Rutgers University, 1997.

237

BIBLIOGRAPHY

[Mea92]

[MeaOO]

[Mea03]

[MMS97]

[MROO]

[MSOl]

[NB11]

[Nea05]

C. Meadows. Applying formal methods to the analysis of a key

management protocol. Journal o f Computer Security, 1, 1992.

C. Meadows. Open issues in formal methods for cryptographic

protocol analysis. In In Proceedings of DISC E X 2000, pages

237-250. IEEE Computer Society Press, 2000.

C. Meadows. Formal methods for cryptographic protocol anal­

ysis: emerging issues and trends. Selected Areas in Communi­

cations, IE E E Journal on, 21(l):44-54, Jan 2003.

J.C . Mitchell, M. Mitchell, and U. Stern. Automated analysis

of cryptographic protocols using mur phi;. In Security and

Privacy, 1997. Proceedings., 1997 IEEE Symposium on, pages

141-151, May 1997.

J. Millen and H. Rue. Protocol-independent secrecy. In In 2000

IE E E Symposium on Security and Privacy. IEEE Computer

Society, pages 110-119. Society Press, 2000.

J. Millen and V. Shmatikov. Constraint solving for bounded-

process cryptographic protocol analysis, 2001.

D. Nadkarni and S. Basu. Failure analysis for composition of

web services represented as labeled transition systems. In Pro­

ceedings o f the 7th international conference on Web services

and form al methods, W S-FM’10, pages 161-175, Berlin, Hei­

delberg, 2011. Springer-Verlag.

H. Nezhad and et al. Securing service-based interactions: Issues

and directions. IEE E Distributed Systems Online, 2005.

238

BIBLIOGRAPHY

[Nei03]

[NGG+07]

[NKHBM04]

[NS78]

[Pau97]

[Pau98]

[Pau99]

[pol]

[pot]

[Rea02]

M. Neill. Web Services Security. McGraw-Hill/Osborne, 2003.

A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and

H. Granqvist. W S-Trust 1.3. Technical report, OASIS, March

2007.

A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. Web

services security: SOAP message security 1.0 (WS-Security

2004). Technical report, OASIS, March 2004.

Roger M. Needham and Michael D. Schroeder. Using encryp­

tion for authentication in large networks of computers. Com-

mun. AC M , 21:993-999, December 1978.

L. Paulson. Proving properties of security protocols by induc­

tion. In In 10th IE E E Computer Security Foundations Work­

shop, pages 70-83. IEEE Computer Society Press, 1997.

L C. Paulson. The inductive approach to verifying crypto­

graphic protocols. J. Comput. Secur., 6:85-128, January 1998.

L. Paulson. Inductive analysis of the internet protocol tls (tran­

script of discussion). In Proceedings o f the 6th International

Workshop on Security Protocols, pages 13-23, London, UK,

1999. Springer-Verlag.

J. Reagle. XML encryption requirements. Technical report,

W 3C, March 2002.

239

BIBLIOGRAPHY

[Res]

[RR04]

[RRM]

[SBP01]

[Sch95]

[Sch98]

[Sta95]

[Sti02]

[TCCD07]

Microsoft Research. Samoa: Formal tools for securing web

services.

J. Rosenberg and D. Remy. Securing Web Services with WS-

Security: Demystifying WS-Security, WS-Policy, SAML, XML

Signature, and XM L Encryption. Pearson Higher Education,

2004.

M. Rennhard, S. Rafaeli, and L. Mathy. From set to pset - the

pseudonymous secure electronic transaction protocol.

D Song, S Berezin, and A Perrig. Athena: a novel approach

to efficient autom atic security protocol analysis. Journal of

Computer Security, 9:2001, 2001.

B. Schneier. Applied cryptography (2nd ed.): protocols, algo­

rithms, and source code in C. John Wiley & Sons, Inc., New

York, NY, USA, 1995.

S. Schneider. Verifying authentication protocols in csp. Soft­

ware Engineering, IEEE Transactions on, 24(9):741-758, Sep

1998.

W. Stallings. Network and internetwork security: principles

and practice. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1995.

D. Stinson. Cryptography: Theory and Practice,Second Edition.

CRC/C& H , 2nd edition, 2002.

L. Tobarra, D. Cazorla, F. Cuartero, and G. Diaz. Analysis of

web services secure conversation with formal methods. Internet

240

BIBLIOGRAPHY

[TCM02]

[TP05]

[WEW11]

[WL93]

and Web Applications and Services, 2007. IC IW ’07. Second

International Conference on, pages 27-27, May 2007.

I. Takeshi, A. Clark, and H. Maruyama. A stream-based imple­

m entation of xml encryption. In Proceedings of the 2002 ACM

workshop on XM L security, XMLSEC ’02, pages 11-17, New

York, NY, USA, 2002. ACM.

W. Tsai and R. Paul. Proof slicing with application to model

checking web services. In Proceedings of the Eighth IEEE Inter­

national Symposium on Object-Oriented Real-Time Distributed

Computing, ISORC ’05, pages 292-299, Washington, DC, USA,

2005. IEEE Com puter Society.

M atthias Weidlich, Felix Elliger, and Mathias Weske. Gener­

alised com putation of behavioural profiles based on petri-net

unfoldings. In Proceedings o f the 7th international conference

on Web services and formal methods, WS-FM’10, pages 101-

115, Berlin, Heidelberg, 2011. Springer-Verlag.

T. Woo and S. Lam. A semantic model for authentication

protocols, 1993.

241

Appendix: SMEP

This appendix presents the macros and global variables used in the Promela
model of the Simple Message Exchange Protocol.

SM EP M acros
^define senderchallenge(x,y) if
:: (X= = A &;& y = = B) —> senderchallengeAB =1
:: (x= = A &&; y = = I) —> senderchallengeAI=l
:: (x = = I &;& y = = B) —>• senderchallengeIB=l
:: else skip
fi
define senderbind(x,y) if
:: ((x= = A)& & (y = = B))—>• senderbindA B=l
:: ((x==A)& & ;(y==I)) —► senderbindAI—1
:: ((x= = I)& & (y = = B))—> senderbindIB=l
:: else skip
fi
define recvrchallenge(x,y) if
::((x==A) &;& (y = = B)) —>> recvrchallengeAB^l
::((x==A) &;& (y = = I)) —► recvrchallengeAI=l
:;((x= = I) &:& (y = —B)) —> recvrchallengeIB=l
: : else skip
fi
#define recvrbind(x.y) if
:: ((x= = A)& & (y= = B))-+ recvrbindAB=:l

242

APPENDIX: SMEP

:: ((x==A)&&;(y= = !))—y recvrbindA I=l
:: ((x==B)& & ;(y==d)) —* recvrbindIB=l
:: else skip
fi
define Decryption (pub,priv) if
:: ((pub = = pubKeyA)&&;(priv = = privKeyA))-* valid_DecryptA =1
:: ((pub = = pubKeyB)&&(priv = = privKeyB))—► valid_DecryptB =1
:: ((pub = = pubKeyI)&&;(priv = = privKeyA))—>• valid_DecryptI =1
:: else skip
fi
define k (x l) if
:: (x l = = nonce A) k N a = 1 ;learn_kNa = 1;
:: (x l = = nonceB) —̂ kNb = 1; learnJcNb = 1;
:: else skip
fi
#define VerifySignature(a,b.c,x,y) if
:: ((a = = cl4n)& ;& (b== shal)& ;& (c== REQ)&& (x== sigvalA)&&;(y==
X509v3)) —► valid_dsSigA_REQ=l
:: ((a = = c l4n)& & (b= = shal)& & (c== ACCEPT)& & (x==
sigvalA)&&(y== X509v3)) —> valid_dsSigA_ACK=l
:: ((a = = cl4n)&;&;(b== shal)& & (c=— ACK)&&;(x== sigvalB)&&(y—=
X509v3)) -> valid_dsSigB=l
:: ((a = = cl4n)&;&:(b== shal)& & (c== REQ)&& (x== sigvall)&&(y==
X509v3)) —yvalid_dsSigI _REQ =1
:: ((a = = cl4n)& & (b= = shal)& & (c== ACCEPT)& & (x==
sigvall)& & (y== X509v3)) —> valid_dsSigI_ACCEPT=l
:: ((a = = c l4n)& & (b= = shal)& & (c== ACK)&&(x== sigvall)&&(y==
X509v3)) valid_dsSigI_ACCEPT=l
:: else skip
fi
^define isEncrypted(em,cd,cv,rl,dr,ki) if
:: ((em = = tripleD ES)& & (cd== CD)& & (cv== base64encoded)&&(rl==
RL)&& (d r= — M SG)& & (ki== X509v3))-» isEncrypted = isEncrypted 4- 1
:: else skip
fi
^define Verify Freshness (cr,ex) if
:: ((cr = = CREATED)&&(ex = = EX PIRES))-* valid_TimeStamp =1
:: else skip
fi

243

APPENDIX: SMEP

SM E P G lobal Variables
bit senderchallengeAB=0;
bit senderbindAB=0;
bit recvrchallengeAB=0;
bit recvrbindAB=0;
bit senderchallengeAI=0;
bit senderbindAI=0;
bit recvrchallengeAI=0;
bit recvrbindAI=0;
bit senderchallengeIB=0;
bit senderbindIB=0;
bit recvrchallengeIB=0;
bit recvrbindIB=0;
bit valid_DecryptA = 0;
bit valid_DecryptB = 0;
bit validJDecryptl =0;
int isEncrypted = 0;
bit valid_TimeStamp =0;
bit valid_dsSigA_REQ= 0;
bit valid_dsSigA_ACK= 0;
bit valid_dsSigB = 0;
bit valid_dsSigI_REQ= 0;
bit valid_dsSigI_ACK= 0;
bit valid_dsSigI_ACCEPT= 0;
bit learn_kNa = 0;
bit learn JcNb = 0;

244

Appendix: STP

This appendix presents the macros and global variables used in the Promela
model of the Security Token Protocol.

STP M acros
^define SenderChallenge(x,y) if
:: (X= = A &;&; y= =S T S) —> Sender Challenge A_STS=1

(x——I &;& y= = S T S) —> SenderChallengeI_STS=l
:: else skip
fi
^define AuthcnticatcRcqucst(x) if
:: (X= = R S T) -+ MsgType_RST=1
:: else skip
fi
^define SenderBind(x,y) if
:: (x—=A &&; y= = S T S) —►SenderBindA_STS=l
:: (X= = I &&: y= = S T S) -> SenderBindI_STS=l
:: else skip
fi
^define RecvrChallenge(x,y) if
:: (X= = A &&; y= =S T S) —>• RecvrChallengeA_STS=l
:: (x = = I &;& y= = S T S) —► RecvrChallengeI_STS=l
:: else skip
fi
define AuthenticateResponse(x) if

245

APPENDIX: STP

:: (x== R S T R) -+ MsgType_RSTR= 1
:: else skip
fi
#define RecvrBind(x,y) if
::((x==A) && (y==STS)) —> R£cvrBindA_STS=l
::((x==I) && (y= =S T S)) -+RecvrBindI_STS=l
:: else skip
fi
#dcfinc VcrifySignaturc(a,b.c.x,y) if
:: ((a = = cl4n)&:&;(b== shal)&&:(c== RST)&&;(x== sigvalA)&&(y==
X509v3)) -> valid_dsSigA=l
:: ((a = = c l4n)& & (b= = shal)& & (c== RSTR)& & (x==
sigvalSTS)&&(y== X509v3)) -+ valid_dsSigSTS=l
:: ((a= = cl4n)& & :(b== shal)&;&;(c== RST)& & (x== sigvall)&&(y==
X509v3)) —> valid_dsSigI=l
:: else skip
fi
define Decryption (pub,priv) if
:: ((pub = = pubKeyA) &;& (priv = = privKeyA))—> valid_DecryptA =1
:: ((pub = = pubKeySTS)&&;(priv = = privKeySTS))—> valid_DecryptSTS
=1
:: ((pub = = pubKeyI)&&(priv = = privKeyl))—» valid_DecryptI =1
:: else skip
fi
define VerifyKey(x) if
:: (x = = pubKeyA)—> valid.pubKeyA =1
:: (x = = pubKeySTS)-* valid.pubKeySTS =1
:: (x = = pubKeyA) —* valid_pubKeyI =1
:: else skip
fi
#define PartialSCAgreement(a,b,c,x,y) if
:: ((a = = STS)& & (b== S C T)& & (c = IS S U E)& & (x=
partialEntropy)&& (y = = client entropy)) —> partial_SC=l
:: else skip
fi
#define SCAgreement(at,tt,rt,em.ce,se,ck,ex,stsn.sts,sdr,scid) if
:: ((at = = STS)& & (tt = = SCT)&&(rt = = ISSUE)&&(em = =
p a r t i a l E n t r o p y) (c e = = client*entropy)&&(se = = server’entropy)&&:(ck
= = shal)&& (ex = = expires)&&(stsn = = nonceS)&&(sts = = STS)&&(sdr
= = A)&& (scid = = S C T JD)) ->• Security_Context=l
:: ((at = = STS)& & (tt = = SCT)&&(rt = = ISSUE)&&(em = =

246

APPENDIX: STP

partialEntropy)&:&; (ce = = client'entropy)&&(se = = server'entropy)&&(ck
= = shal)& & (ex = = expires)&;&;(stsn = = nonceS)&&(sts = = STS)&&(sdr
= = I)&& (scid = = SC T JD)) —> Security .Context J = 1
::else skip;
fi
#define isEncrypted (em,cd,cv,rl,dr,ki) if
:: ((em = = tripleDES)&;&;(cd== CD)&&(cv== base64encoded)&&(rl==
RL) & & (dr== MSG)&&;(ki== X509v3))-» isEncrypted = isEncrypted + 1
:: else skip
fi
define Verify Freshness (cr, ex) if
:: ((cr = = CREATED)&&;(ex = = EXPIRES))—> valid_TimeStamp =1
:: else skip
fi

STP G lobal Variables
bit SenderChallengeA_STS=0;
bit SenderBindA_STS=0;
bit RecvrChallengeA_STS=0;
bit RecvrBindA_STS=0;
bit SenderChallengeI_STS=0;
bit SenderBindI_STS=0;
bit RecvrChallengeI_STS=0;
bit RecvrBindI_STS=0;
bit MsgType_RST = 0;
bit MsgType_RSTR = 0;
bit valid_dsSigA = 0;
bit valid_dsSigSTS = 0;
bit valid_dsSigI = 0;
bit partialJSC = 0;
bit Security_Context=0;
bit Security_Context _I=0;
int isEncrypted = 0;
bit valid-TimeStamp =0;
bit Imposter_FLAG = 0;
bit valid_DecryptA = 0;
bit valid_DecryptSTS = 0;
bit valid_DecryptI =0;

247

