
Sparse M odelling of 
N atural Im ages and 
C om pressive Sensing

Nassir Mohammad

School of Mathematics, Cardiff University, UK 

& Hewlett Packard Laboratories, Bristol, UK

A Thesis submitted for the degree of Doctor of Philosophy

Cardiff
U N I V E R S I T Y

P R I F Y S G O L

CaeRDY[§> [LABShp]

June 9, 2011



UMI Number: U585486

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585486
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



A bstract

This thesis concerns the study of the statistics of natural images and compressive 

sensing for two main objectives: 1) to extend our understanding of the regularities 

exhibited by natural images of the visual world we regularly view around us, and 2) 

to incorporate this knowledge into image processing applications.

Previous work on image statistics has uncovered remarkable behavior of the dis­

tributions obtained from filtering natural images. Typically we observe high kurtosis, 

non-Gaussian distributions with sharp central cusps, which are called sparse in the 

literature. These results have become an accepted fact through empirical findings us­

ing zero mean filters on many different databases of natural scenes. The observations 

have played an im portant role in com putational and biological applications, where re­

searchers have sought to understand visual processes through studying the statistical 

properties of the objects th a t are being observed. Interestingly, such results on sparse 

distributions also share elements with the emerging field of compressive sensing. This 

is a novel sampling protocol where one seeks to  measure a signal in already com­

pressed format through randomised projections, while the recovery algorithm consists 

of searching for a constrained solution with the sparsest transformed coefficients.

In view of prior art, we extend our knowledge of image statistics from the monochrome 

domain into the colour domain. We study sparse response distributions of filters 

constructed on colour channels and observe the regularity of the distributions across 

diverse datasets of natural images. Several solutions to image processing problems 

emerge from the incorporation of colour statistics as prior information. We give a 

Bayesian treatm ent to the problem of colorizing natural gray images, and formulate 

image compression schemes using elements of compressive sensing and sparsity. We 

also propose a denoising algorithm tha t utilises the sparse filter responses as a regular- 

isation function for the effective attenuation of Gaussian and impulse noise in images. 

The results emanating from this body of work illustrate how the statistics of natural 

images, when incorporated with Bayesian inference and sparse recovery, can have deep 

implications for image processing applications.



1

Declarations

Statem ent 1

This work has not previously been accepted in substance for any degree and is 

not being concurrently submitted in any candidature for any degree.

Signed

Date //  0 2 . 7 - 0  II

Statem ent 2

This thesis is the result of my own investigations, except where otherwise stated. 

Other sources are acknowledged by explicit references and a bibliography is 

supplied.

Signed

Date / / .  6 2 . 2- 01 !

Statem ent 3

I hereby consent for my thesis, if accepted, to be available for photocopying 

and inter-library loan, and for the title and summary to be made available to 

outside organisations.

Signed

Date

/ / £> 2. if



2

Acknowledgments

It has been a privilege to study for a research degree in the mathematical field of 

signal processing. My gratitude goes to Professor Alexander Balinsky for being 

such a knowledgeable and enthusiastic supervisor. Your patience, expertise and 

most importantly, guidance, has been invaluable.

My gratitude also extends to Dr Stephen Pollard and Andrew Hunter from 

Hewlett Packard Labs in Bristol for their supervision, guidance and experience 

of the industrial technology sector. At home I would like to thank my family 

for supporting me and allowing me to pursue this Doctorate with ease, comfort 

and peace. My appreciation and thanks also extends to all the people at the 

School of Mathematics in Cardiff University for making it such a pleasant and 

interesting place of learning.

I would like to acknowledge the various sources of funding that have allowed 

me to fulfill my PhD without financial restriction and hindrance. Your assistance 

has made my years as a student a tremendously enjoyable experience: EPSRC, 

Hewlett Packard Labs, The Smith Institute Knowledge Transfer Network and 

Cardiff University.



3

In precisely built mathematical structures, mathematicians find the same sort 

of beauty others find in enchanting pieces of music, or in magnificent architec­

ture. There is, however, one great difference between the beauty of mathematical 

structures and that of great art. Music by Mozart, for instance, impresses greatly 

even those who do not know musical theory; the cathedral in Cologne overwhelms 

spectators even if  they know nothing about Christianity. The beauty in mathe­

matical structures, however, cannot be appreciated without understanding of a 

group of numerical formulae that express laws of logic. Only mathematicians 

can read “musical scores” containing many numerical formulae, and play that 

“music” in their hearts...

Kiyosi Ito
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Chapter 1

Introduction

1.1 Objective

Our aim in this thesis is to understand the statistics of natural images and to 

use this knowledge in image processing. For the former task we study statistics 

of natural colour images to learn about the inherent structures and symmetries 

found within them. We aim to extend fundamental results of non-Gaussian im­

age statistics found in monochrome images, where the distributions are largely 

symmetric and exhibit high kurtosis, i.e. sparse. We also aim to incorporate 

ideas from the emerging field of compressive sensing to illustrate interesting con­

nections between the sparse statistical properties of natural images and the new 

sensing modality. Subsequent work looks to incorporate image statistics into 

mathematical models in order to increase the performance of image processing 

applications. Problems we will consider include sensing, compression, denoising 

and colorization.

1.2 Motivation

No time in human history has ever witnessed such explosive influence and im­

pact of image processing on society, the sciences and engineering [31]. Problems 

in this field occur in a host of diverse subjects due to the fact that vision plays
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such an important role in human endeavours. As a few examples we see that 

in medicine, imaging techniques axe utilised to non-invasively diagnose diseases 

and abnormalities in the human body. Security agencies utilise advances in 

imaging for gathering intelligence and identifying targets of interest. In astron­

omy image processing techniques are utilised to sense deep into space, while 

remote sensing is also utilised to monitor changes back on earth. The enter­

tainment, publishing and digital communication industries utilise techniques to 

create realistic graphics, movies, automated documents, and image enhance­

ment software. These examples illustrate that image processing has become an 

integral part of the current technological society.

As a branch of signal processing, image processing was initially built upon 

the machinery of Fourier and spectral analysis. Over recent years, there have 

emerged numerous novel competing methods and tools for successful image pro­

cessing. They include, for example, stochastic approaches based upon Gibbs/Markov 

random fields and Bayesian inference theory, variational methods incorporating 

various geometric regularities, linear and nonlinear partial differential equations, 

as well as applied harmonic analysis centered around wavelets [31].

Recently there has been a great deal of interest in the properties of a par­

ticular class of images called ‘natural images’, which has arisen from both a 

biological and computational point of view. Natural images are set apart from 

man-made images due to the ease with which humans are able to distinguish 

between the two. This fact arises from the particular types of structures that 

appear in natural scenes and whose texture and colour are not completely real­

isable through artificial efforts. However, a full definition as to what constitutes 

a natural image is yet to be defined. Furthermore, natural images are very rare 

in the space of all possible images that could occur. Even a modestly sized 

16 x 16 image composed of 256 gray levels gives rise to an astronomical 256256 

number of images that could possibly occur. In this enormous space there exist 

natural images where if we tried to randomly construct an image on a computer 

we would practically never realise a natural scene, or even a tree.

In this body of work we loosely define natural images to be those images
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which humans ‘see’ in their every day lives. Images of mountains, buildings, 

people, vegetation, animals, indoor rooms, etc. are all considered to be natural 

scenes. On the other hand images of random noise patterns, cartoons, video 

games, paintings, etc. are considered artificial. The classification is of course 

weak as a painting, once created, could be thought of as being a natural image 

since it has been visualised by the people viewing it. However, in our work we 

focus the meaning onto images that we ‘regularly’ see in our day to day lives, 

leaving aside an exact definition.

The fact that natural images appear to be non-random quantities motivates 

the drive to understand these images. This has led to the finding of some striking 

statistical symmetries and most notably the discovery that natural images dis­

play non-Gaussian image statistics, which is evident on virtually any histogram 

of the filter response images on virtually any database of natural images [64]. 

The single pixel intensity histograms constructed all essentially have kurtosis 

greater than that of the Gaussian distribution, typified by a sharp central cusp 

in the distribution. These distributions have taken the name of sparse due to 

connections with sparse coding.

Another interesting empirical finding has been the invariance of image statis­

tics to scale. This means that any local statistic calculated o n n x n  images and 

on block averaged 2n x 2n images should be the same. Although not exact, this 

result has been approximately confirmed on many large image databases. The 

reason this is exciting is that it implies that local image models describing the 

small-scale structures in images will work as global image models describing the 

large scale structures in images. This creates a surprising stability for image 

statistics [64].

The non-Gaussianity and scale invariance in natural images have been found 

to occur regardless of image content. The immediate benefits gained by the sta­

tistical properties have been appreciated in a host of scientific fields. From a 

visual perception or biological point of view the incorporation of the statistics 

of natural images has been viewed as a critical element in the optimisation goals 

of a visual system. The theory is based on construction of statistical models
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of images combined with Bayesian inference. This approach originates from 

the ideas that the visual world has a great influence on the physical design of 

biological creatures’ visual systems, with one of the most important aspects be­

ing the fluctuations of light intensity in the environments. It is in this signal 

that information about the surroundings are conveyed and Bayesian inference 

shows how we can use prior information on the structure of typical images to 

greatly improve image analysis, and statistical models are used for learning 

and storing that prior information [86]. Contributions in this area have shown 

how redundancy minimisation or decorrelation [38], maximisation of informa­

tion transmission [11], sparseness of the neural encoding [80], and minimising 

reconstruction error [65] can predict visual processes.

From a computational perspective image priors have been, and still are, be­

ing successfully used in many image processing tasks. Investigators have utilised 

the knowledge to invent more effective denoising [90] and deblurring [66] algo­

rithms, as well as improvements in realistic super-resolution [94], colorization [5] 

and inpainting [47] applications. The statistics of images have also been incor­

porated into various scene categorisation [97], object recognition, face detection 

and clutter classification tasks [92]. Additionally, models motivated by vision 

research have found applications in document processing in tasks for automatic 

keyword extraction, classification and registration [4].

The success of prior art in image processing motivates the main goals of the 

project: to  investigate m athem atically and statistica lly  som e internal 

features o f natural im ages and to  incorporate som e new  m athem atical 

tools and m ethods into real d igital devices.

1.3 Contributions

In the following paragraphs we concisely describe the novel findings of the thesis: 

Our first main result shows how non-linear filters operating on colour images 

display non-Gaussian and high kurtosis distributions. These statistics are then 

modelled using generalised Gaussian distributions whose shape parameters con­
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firm the distributions to indeed be sparse. This empirical finding is justified 

through the use of a diverse dataset of natural images, captured or compressed 

by arbitrary forms. Essentially the result categorises a particular form of regu­

larity exhibited by natural colour images with limited variability due to chang­

ing scenes. This is an extension and addition to the non-Gaussian behaviour of 

image statistics observed across monochrome images.

Subsequently, we develop a collection of applications which form connec­

tions with the emerging field of compressive sensing and sparse recovery: We 

begin by giving a novel Bayesian analysis for the problem of colorizing natural 

gray images. We show how this long standing problem in image processing can 

be solved using prior information provided by user interaction in the form of 

colour points, and utilisation of sparse priors. The derived non-convex opti­

misation problem is convexified using L1 optimisation, and transformed into a 

constrained linear program in line with the ideas of recovering sparse signals. 

The importance of the method is that it illustrates how sparse priors can be 

incorporated into colorizing natural images.

The next application we develop turns around the idea of colorization to 

present a colour image compression scheme where standard (e.g. JPEG) com­

pression is used for the monochrome component, while colour data is sampled 

and compressed using sparse binary random matrices. In the case of sampling 

‘seed’ pixels the novel contribution shows that L1 optimisation can be used as a 

decompression tool. Another main novelty is that compressive sensing measure­

ments can be made of the colour channels and reconstruction accomplished by 

L1 optimisation. The importance of this work is that it incorporates compres­

sive sensing in a first presentation of a colour image compression scheme which 

utilises gray level information for reconstruction.

In a further contribution we present an effective image denoising algorithm 

whose novelty lies in utilising the non-linear filter response on the colour chan­

nels of images as a regularization function. This leads to an optimisation scheme 

that seeks a solution image with the sparsest filter response while also being en­

couraged to be close to the noisy measurement. We observe effective attenuation
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(through the specified parameters) of noise in real images, as well as images ar­

tificially corrupted by white and impulse noise.

1.4 Outline of the thesis

The thesis is outlined in the following way: Chapter 2 reviews previous work 

on the statistics of natural images and presents the theories that have been 

proposed to model their behaviour: the generalised Gaussian distribution and 

the Bessel distributions. This chapter follows the works of [74, 60, 93, 46, 91]. 

Chapter 3 introduces the emerging field of compressive sensing from its basic 

underpinnings to some interesting new results that are utilised later in the thesis. 

This chapter follows the works of [21, 83, 10]. Chapter 4 presents the first of our 

contributions where we empirically show and model the non-linear filter response 

distributions of natural colour images. The following chapters then present 

various applications that exploit knowledge of image statistics. Chapter 5 gives 

a Bayesian analysis of the problem of colorizing natural gray images. Chapter 6 

describes a compression scheme that utilises the sparse nature of image statistics 

and elements from compressive sensing and colorization. Chapter 7 presents a 

denoising scheme for colour images that removes unwanted noise in real images, 

and images affected by white and impulse noise. Chapter 8 discusses the results 

obtained in the thesis and summarises directions for future research. Chapter 9 

give the tables, graphs and example images used throughout the thesis. Finally, 

the Bibliography provides all the references to this work.



Chapter 2

Statistics of Natural Images 

&; M odels

The study of natural scenes is an endeavour that seeks to find fundamental 

properties exhibited by natural images in order to aid us in understanding the 

visual world. This chapter presents some statistical properties of natural images 

which have aided technological advancements over the last few decades. These 

include the high redundancy found in image data [93], scale invariance [85] and 

non-Gaussianity [60] of image statistics, exhibition of symmetries, existence of 

transforms that can sparsely represent images for compression and models that 

have been proposed for fitting the observed distributions [92, 90].

The incorporation of image statistics arises through the formulation of vision 

problems as a problem in Bayesian inference [59, 73, 45]. This has become a 

widely established and accepted procedure in the computer vision community. 

However, the idea that the problem of recovering 3D  or 2D information from 

a 2D image is ill-posed and requires inference, can be traced back several hun­

dred years. The Arab scientist Ibn Al-Haytham (known to Europe as Alhazan) 

around the year 1000 [54] was the first to demonstrate that light rays are emit­

ted by an external source and travel in straight lines, reflecting and refracting 

with physical objects until they reach the eye. This information is then required
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to be interpreted in the human brain through a largely unconscious and very 

rapid inference process based on past visual experiences. This was a significant 

step in its time and did away with the conflicting theories that he had inherited 

from the Greeks. In modern times the inferences that underly visual perception 

have been intensely studied by several researchers, notable examples include H. 

Helmholtz, E. Brunswick and J.J. Gibson [74].

Following the work of [74], let us study this process through mathematics 

and Bayesian analysis, and take I to be static images of the visual world. This 

static assumption allows us to simplify the analysis, although it can be deemed 

a little unrealistic as living organisms are adapted to environments that require 

the handling of motion and changing scenes. The images I  then record the 

light intensity falling at each point position on the 2D  grid of pixels. Next we 

introduce variables w which stand for descriptors that describe objects, their 

textures, colour, shading, boundaries, orientation, etc. that generate images. 

This leads to two stochastic models which are learned from past experience: a 

prior model P(tu) specifying what scenes are likely in the visual world we live 

in, and an imaging model F(I/w)  which specifies what images should look like, 

given the scene.

Thus by Bayes’s rule we have,

P(w// )  =  p (j /« ) p M  OC P{I/w)P(w).  (2.0.1)

The above concisely asks the following. Fixing the observed value I, find that 

w which maximises the measure P{w/I)  or equivalently maximises F(I/w)p(w).  

Thus the vision problem we have is now interpreted as a problem in Bayesian 

inference, and requires us to establish a theory of stochastic models that can 

express all the variable patterns that w and I  obey. This formulation also re­

quires a model that can learn from past experience and efficient computational 

methods for finding the maximum of ¥(w/1).  Bringing together these require­

ments into a fitting model enables accurate and efficient performance of vision 

orientated tasks. However, in this chapter we will largely concentrate on the 

building of stochastic models, with learning models and computing methods 

given via some of the image processing applications presented in later chapters.
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We can proceed with the study of images in a number of ways. However, 

one approach is to look at ensembles of images of particular categories, or large 

variable databases of images. In such schemes we construct datasets that are 

deemed large enough to sample the possible images which that set represents. 

We can then analyse images through the use of zero mean filters, individual 

and joint histograms and can build stochastic models P(7) which replicate the 

properties of natural scenes.

Before proceeding further, let us give some definitions that will prove useful 

in later sections. Let X  and Y  be two random variables on R with \l and a2 

representing the mean and variance of a random variable.

D efinition 2.0.1. (Kurtosis) We define the kurtosis of a random variable X to  

be

Kurtosis is a measure of the ‘peakedness’ of the probability distribution of 

a real-valued random variable. A higher value implies that the peak of the 

distribution is more pronounced while a lower value gives wider shoulders to 

the distribution. In addition, a higher kurtosis value implies that the tails of 

the distribution are heavier, and that more of the variance is due to infrequent 

extreme deviations. Kurtosis can also be taken to be one measure of non- 

Gaussianity, however, due to the sensitivity to outliers, care must be taken 

when using this as a measure.

D efinition 2.0.2. (Skewness) We define skewness of a random variable X  to 

be

Skewness is a measure of the asymmetry of the probability distribution of a 

real-valued random variable. Positive skew implies the right tail is longer, i.e. 

the mass of the distribution is concentrated on the left of the figure. Negative

(2 .0 .2)

S =  { E (X - /x )3}/(<t)3. (2.0.3)
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skew implies that the left tail is longer, the mass of the distribution is con­

centrated on the right of the figure. Skewness can also show the non-Gaussian 

nature of a distribution.

D efinition 2.0.3. (Covariance) We define the covariance between two random 

variables X  and Y, with E(X) =  p and E (y) =  u to be

Cov{X,  Y)  =  E{ { X -  p){Y -  i/)}, (2.0.4)

equivalently

Cov(X,  Y)  =  E{XY)  -  nu, (2.0.5)

where if X  and Y  are independent Cov(X,  Y)  =  0. Random variables whose 

covariance is zero are called uncorrelated.

In probability theory and statistics covariance is a measure of how two ran­

dom variables vary together. From the definition we can see that if two variables 

tend to vary together, then the covariance between the two variables will be pos­

itive. However, if they vary in opposite ways with respect to their means then

the covariance will pull towards negative.

2.1 Redundancy in Images

One of the earliest works on the study of natural images was performed by 

television engineers during the 1950’s. Concerned with the real application and 

gains that could be made in increasing compression and transmission rates, they 

studied natural scenes in order to gauge their levels of predictability. Kretzmer 

[57], for example, studied simple image statistics such as histograms of image 

intensity and the correlation of nearby pixels to increasing distance, and showed 

that as pixel distances increased, the correlation between pixels decreased. Such 

initial studies showed that natural images showed signs of redundancy. Other 

pointers to redundancy were proposed by Attneave [2] where images were par­

titioned off so that the rare transition edges that occur between objects can be 

thought of as the unexpected events, and hence, in line with ideas of information 

theory can be thought of as the information bearing elements of an image.
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The predictability of natural images was also studied experimentally by Ker- 

sten [58]. He was inspired by Shannon’s illustration of redundancy exhibited 

by the English language [88], and wanted to apply similar techniques to derive 

similar results on the predictability of natural scenes. His method involved the 

removal of portions of intensity values from pixel’s in an image, with humans 

subjects being asked to replace those values. The number of guesses until a 

correct response was tabulated to form a histogram and showed the single pixel 

redundancy to be within the range 67% to 81%.

In later work Ruderman [85] studied images of forest scenes in a first of 

several papers to study redundancy and scale invariance in natural images. He 

assumed that organisms have adapted to their environments and that they take 

advantage of the statistical regularities that the input signals display to enable 

efficient representation. Such quantities as local contrast in images were found 

to display scale invariance and exponential tails, while the power spectra of 

natural scenes also displayed non-trivial exponents, similar to the exponents 

found in phase transitions.

In further work Ruderman [86] computed the mutual information between 

pairs of pixels with increasing distance. The results confirmed earlier similar 

results that indicate information varying as a power law as separation distance 

between two pixels increases. His work calculated the redundancy in images to 

be around 10%, a much lower value than that obtained by Kersten [58] due to 

the wooded nature of his dataset from a forest environment.

Studies on the redundancy exhibited by images paved the way for future 

research into the statistical properties of natural scenes. Among several conse­

quences and applications were that the predictability showed how high levels of 

compression were theoretically achievable. Additionally, the coupling with bio­

logical vision showed how systems optimised for sparse linear codes of natural 

scenes developed a complete family of localized, oriented, bandpass receptive 

fields, similar to those found in the primary visual cortex [79]. These results 

support Barlow’s theory that the goal of natural vision is to represent the in­

formation in the natural environment with minimal redundancy [9]. They also
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provide insight and connections to some surprising empirical observations which 

we present in the following sections.

2.2 Scale Invariance and Implications

This section closely follows the work of [74] where we discuss the remarkable 

property of images that they show approximate invariance to scale. This prop­

erty can be described with the following example: Given 64 x 64 sized images 

from a database of images from the world we view around us, and a probability 

distribution model Pq4 {I) in the Euclidean space R4096 of all such images, we 

can form a new database of the same set of images except that each image has 

been reduced to a size of 32 x 32 pixels. This can be accomplished by simply 

taking the central 32 x 32 pixel region of each image, or by filtering each image 

using an averaging 2 x 2  filter. Thus the statement that images are from a scale 

invariant process implies that the two resulting marginal distributions on both 

databases of images are approximately the same, and this experimental result 

should happen for images of any size.

The phenomenon of scale invariance has attracted many researchers and 

several explanations have been put forward. One interesting proposition is that 

the world we live in consists of objects organised in collections of differing sizes. 

These objects are viewed at arbitrary distances and angles and their arrange­

ment leads to the scale invariance behaviour. For example, a picture of a room 

may contain a desk, which in turn may have books and papers, which in turn 

may have writing. Thus zooming into an image results in showing similar num­

bers of objects and which also occur with the same levels contrast.

The existence of scale invariant statistics has been found to be one of the 

most robust qualities of the visual world. This is a phenomenon that has been 

approximately found in different visual environments and experimental results 

indicate that it manifests itself the beyond second-order measure given by the 

power spectrum. A most surprising consequence of this observation is that 

researchers have found the property regardless of the types of image databases
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considered. Furthermore, datasets constructed such that no two images were 

ever from same environment have shown this remarkable behaviour [86].

The reason this is exciting is that it implies that local image models de­

scribing the small-scale structures in images will work as global image models 

describing the large scale structures in images. Furthermore, as the histograms 

obtained are scale-invariant then so are all expected moments of the filter re­

sponses [64]. Another surprising feature in the data of natural image scaling 

is invariance to choice of calibration. This implies that when images vary from 

raw uncalibrated pixel values, to calibrated luminance and to the logarithm of 

luminance, the scale invariant feature of natural images still holds [86].

A consequence of scale invariance is the law for the decay of power at high 

frequencies in the Fourier transform of images. It states that the expected power 

as a function of frequency should fall like:

E /(|/( |A ,^ )|2) *  C /(A2 +  /x2) =  C U 2, (2.2.1)

where /  =  y/ \ 2 +  p 2 is the spatial frequency [74].

One the earliest findings of power-law scaling in image power spectra was 

in 1957 by Deriugin [36] with regard to television signals. These findings were 

re-discovered in 1987 by Burton and Moorhead [20] and Field [42]. The ex­

periments conducted on databases of natural images over the decades point to 

the following conclusions: Databases containing images from certain categories 

such as forestry, mountains, cities, sky, etc. are found to have different powers 

of best fit. These can range from l / / 3 to 1 / /  but with a high concentration 

near l / / 2, and with a large variance [74, 46]. However, the ensemble power 

spectrum across large databases containing varieties of images follows the gen­

eral rule. In the following sections we will explore the power law phenomenon 

in greater detail in its equivalent form in the image domain under the context 

of non-Gaussian spatial statistics.

From a mathematical point of view the approximate invariance displayed by 

images have some interesting consequences with regard to the types of functions 

that can be used to model them. Indeed, images, due to their infinite resolution 

cannot be considered functions at all, but rather as ’generalised functions’. This
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is due to the obvious fact that the values at any point in an image do not, in 

the limit approach any defined value, as we zoom further into an image [48].

However, several researchers have proposed various function spaces for ran­

dom images. For example, Mumford and Shah [76] proposed that the observed

images are a sum:

I( i , j )  =  u(i, j )  +  v{i, j ),  (2.2.2)

where u is the piecewise smooth ‘cartoon’, representing the important content 

of the image, and v some L2 noise. This formulation leads to the function spaces 

of images to be the space of functions with bounded variation after the removal 

of noise, i.e. f  \VI\didj <  oo [74]. However, one disadvantage of this model is 

that texture and noise are considered as one, whereas in real images textures 

form an important part of an image.

Thus more recent models introduced by DeVore and Lucier [37] have pro­

posed that:

I( i , j )  =  u(i , j )  +  v(i, j )  +  (2.2.3)

where u is the cartoon, v the true texture and w is the noise. Here they state that 

the true image u + v  belongs to a suitable Besov space, i.e. the space of functions 

f ( i , j )  for which bounds are put on the LP norm of f ( i  +  h , j  +  k) — f ( i , j )  for 

(h, k) small. This approach was also simplified by Carasso [28] who hypothesises 

that images / ,  after removal of ‘noise’ should satisfy:

J  |I(i  +  h, j  +  k) -  I(i , j) \didj  < C(h2 +  fc2)“/ 2, (2.2.4)

for some a  as (/i, k) —* 0.

The noise that we see in captured images can be argued as being nothing 

more than mere ‘clutter’. This essentially describes certain masses of objects 

whose detail in a scene are too small to be fully resolved by the resolution of a 

given camera. Thus, what we describe as noise which does not usually follow 

any standard probability distribution are simply objects that have been blurred
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beyond recognition. An ideal camera would be one that has infinite resolution, 

however, due to sensor limitations in the real world it is not a realistic option to 

capture. However, in modelling ideal images, because of the infinite level detail 

it would carry it cannot be considered a function. This is because a function 

such as this would have more higher and higher frequency content as the sensors 

were refined. Hence, the total energy would diverge and not be in L2 in the 

limit. The labeling of objects, texture and noise in an image can also not be 

clearly made. In any given image, depending on the scale and context, a given 

object may be considered as being part of textural information, a little bit of 

noise or back to being an object [74]. (See [102] for an explicit study of this 

concept).

A final, perhaps simplest, model we can consider that includes both the 

properties of high kurtosis and scale invariance, is one proposed by Gidas and 

Mumford [48], called the random wavelet model:

A*«i) =  ^2i>a{erai -  ia ,eraj - j a). (2.2.5)
Q

Here (ra , ia , j a) is a uniform Poisson process in 3-space and are samples from 

the auxiliary ‘Levy process’, a distribution on the space of scale and position 

normalised elementary image constituents, which one may call mother wavelets 

or textons. The components xpa represent elementary parts of an image, which 

can be considered to be Gabor patches, edgelets, curvelets or more complex 

shapes such as ribbons [74].

2.3 Non-Gaussianity

It has become a well documented and striking empirical fact that image statis­

tics do not follow Gaussian distributions. Instead we often see distributions 

that have sharp central cusps and characterised by high values of kurtosis. This 

empirical result is observed when any linear filter F  with zero mean is applied to 

images, and results in the values x =  (F- I)( i , j )  of the filtered image following a 

distribution with kurtosis larger than 3. These sparse histograms obtained from
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the statistics of natural scenes have been observed by several early researchers, 

such as Daugman [35] and Field [43]. Other researchers Burr and Morrone [19] 

related the distributions to the sparsely occurring edges in natural images which 

are proposed to be the information bearing parts. Within the context of neural 

encoding of signals Field [42] expressed ideas that heavy tails correspond to the 

arrangements in the Fourier phases of natural images. This fundamental prop­

erty thus has the effect of producing only a sparse set of neural activity within 

the brain, and verifies experimental results concerning the nature of the signal 

encoding. On the other hand, drawing images from a Gaussian distribution 

results in distributions taking random phases, and these do not correspond to 

any structural properties exhibited by natural scenes [43, 84].

The non-Gaussian behaviour of images has continued to hold over several 

decades of research, and has also been studied by Ruderman [85], Simoncelli 

and Adelson [90], Moulin and Liu [77] and Wainwright and Simoncelli [99]. 

These studies often utilised small datasets of images, but continually confirmed 

the empirical finding. However, in a move to robustly verify the observations 

of non-Gaussianity in large calibrated datasets of natural images, Huang and 

Mumford [60] utilised a large database of images provided by J.H. van Hateren 

[61]. The availability of such a database allowed the precise and intensive statis­

tical studies of the local nature of images. Huang and Mumford reported results 

ranging from the simplest single pixel intensity to the joint distributions of 3 

Haar wavelet responses. We will review some of the results of this work as it 

ties in with distributions that have been proposed for modelling the behaviour 

of image statistics.

2.3.1 Single Pixel and Marginal Distributions

The database of J. H. van Hateren [61] is a large set of over 4000 calibrated 

images of size 1024x1536 pixels where the pictures were taken by digital camera. 

This set consists of images of cities and country taken in Holland with the images 

containing a diverse range of natural objects. These include mixtures of trees, 

rivers, stones, buildings, sky, roads and many more objects, often within a single
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image, with images taken from different angles. Use of such a large amount of 

data is aimed at stabilising and showing the robustness of the results that are 

obtained.

Calibrated datasets imply that images only measure light (intensity of light) 

in the world up to an unknown multiplicative constant in each image. Essen­

tially implying that the amount of light present in a scene varies from image to 

image due to the images being taken outdoors, dependent on the present con­

ditions. Note that the images are pure, in the sense that no further processes 

are applied to the measured intensity of light, e.g. gamma correction, which 

would render the images artificial. We only want to investigate systematically 

the exact statistics that underline natural images.

Figure 9.1 shows a few examples of the raw pictures taken from the van 

Hateren database. The images are very dark and interestingly show what a 

camera is really measuring before any further processes are applied. Indeed, 

figure 9.2 to shows the same set of images having been auto-corrected using 

Microsoft Picture Manager. Here we can observe some of the typical elements 

found within a scene.

To obtain results on these images or databases of images that are indepen­

dent of the varying amount of light, we are required to work with statistics that 

do not contain this multiplicative constant, now an additive constant, i.e. we 

work with statistics of the log-contrast of images such as

I(i, j )  =  ln{<f>{i,j))~ < ln(<j>) >, (2.3.1)

where I ( i , j ) are the calibrated gray level values at position (i, j )  in an image, 

is the camera recorded intensity value at pixel position (t,j), and the 

expectation < . > is taken over each image separately. We note that the statis­

tics we use will be of a similar nature to the above though expectation of image 

intensity may be replaced with the log intensity of another pixel. This process 

prevents the overall illumination present in a scene from affecting the statistics.

Figure 9.3 shows a plot of ln(histogram) of random variable ln(<f>(i,j)) - 

< (/n(</>)) >. The distributions are plotted with the logarithm of the probability,
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or frequency of occurrence. This is important when studying the distributions 

as simply plotting raw probabilities leads to distributions that look alike. How­

ever, on a log scale sparse distributions identify themselves against Gaussian 

distributions since /n(e- *2) =  —x2.

Some constants associated with the statistic in figure 9.3 are:

H =  0, a  =  0.79, S  =  0.22, k =  4.56. (2.3.2)

FYom the log plot and the skewness S  we see that this statistic is not symmetric. 

One important possible reason is the presence of sky that features in many 

images from the database, which is quite different from the rest of the parts of an 

image, always with a high intensity value. Hence it leads to a higher proportion 

of pixels having relatively larger intensity values. Another interesting feature is 

the linear tail in the left half. Obviously this statistic is non-Gaussian, although 

the centre part of the log plot does show a parabola shape. The kurtosis is 

bigger than 3 (the value for Gaussian’s) but not very large.

The single pixel statistic is however not very informative. This is because 

we can strongly modify the histogram of an image without affecting much of its 

perception. Hence, we move on to look at statistics involving nearby pixels. An 

important one we can study is the marginal distribution of horizontal deriva­

tives, which in the discrete case, is simply the difference between two adjacent 

pixels in a row, i.e. D =  ln{<t>{i,j)) — ln(<j>(i,j -I- 1)). Figure 9.4 shows the 

In(Histogram) of D, and here are some constants associated with it:

H =  0 ,a  =  0.260, S  =  0.085, k =  17.43. (2.3.3)

The statistic is observed to be symmetric but with very high kurtosis. We 

also observe the cr value to be of interest as it points to an analogy that a given 

image has approximately 75% stability across a line with 25% contributing to the 

variance [60]. It has also been noted in several articles that for large databases of 

natural images, the derivative statistic is surprisingly stable - consistent across 

different databases and categories of images [64].
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2.3.2 One Dimensional Long Range Correlation

Aside from studying statistics which concern single or nearby pixels, we are also 

interested in studying the relations between pixels at increasing distances and 

orientations. One of the meet important long range statistics is the covariance 

of two pixels, and in this section we extend on the results concerning the power 

spectrum of natural scenes to study correlations across spatial scales.

A key result states that the power spectrum of natural scenes takes the form 

of a power law in the spatial frequency. This scaling result can be expressed 

equally well in the spatial domain in terms of the function C (r) as:

C{r) =  - C 1 + C 2 \r\-'1, (2.3.4)

where r is the separation distance between pixels, 77 the same constant value as 

it did in the power spectrum, C\ and C2 constants [8 6 ].

The function is found experimentally as the expected product of the image 

at two pixels separated by a distance r:

C(r) = « <  0(xo)0(xo +  x) > 0 > £o> v  . (2.3.5)

This is the ‘one dimensional case’ of the covariance function. Here 4>(xq) is 

the image value at position x0 (a two vector), and the triple expectation value 

is over (from the outside inwards) all images <p, all initial positions xo and 

all displacement vectors x of length r  (parameterised by angle 9). This large 

expression can be written schematically as

C(r) = <  0(O)0(x) >, (2.3.6)

with the ensemble average, shift over positions and average over angles implied 

[86].

Our images are only well defined up to an ‘additive constant’, so we replace 

the covariance statistic by the following function,

D efinition 2.3.1. (One Dimensional Difference Function) We define the one 

dimensional difference function schematically to be

D{r) = <  |0(O) — (f>(x) \ 2 >, (2.3.7)
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with the ensemble average, shift over positions and average over angles implied, 

and with distance between two points of r.

The relation between C{r), the covariance, and the difference function, D(r), 

is simply

D(r) +  2C(r) =  constant, (2.3.8)

this is found by expanding the squared term in the expectation value of D(r)

[8 6 ]. From the above relation we have

D(r) +  2C(r) =  a  (constant)

D(r) +  2 [-C 1 +  C2\r \-T> ]= a ,

D{r) =  a  +  2Ci -  2C2\r\~r>.

Hence we have

D(r) =  D t -  DaM"’7, (2.3.9)

where D \ , D2 and rj are constants. A power law spectrum thus yields a power

law difference function, except for the presence of an added constant [8 6 ].

Calculation of the difference function is obtained by choosing pairs of n (e.g. 

n =  5 million) arbitrary pixels randomly in an image, of different distances and 

orientations and calculating the difference function by averaging D(r) for each 

distance x over the pairs corresponding to that distance x. In the case of the 

database image difference function we include in the averaging, all the ‘difference 

pairs calculated’ at the same distance but from all images. So for each distance 

we would have the intensity difference summed over all the images, and then 

divided over the number of pairs at that particular distance. After getting this 

difference function, D(r), the scaling model 2.3.9 is fitted.

2.3.3 Two Dimensional Long Range Correlation

In this section we generalise our one dimensional difference function to two 

dimensions.
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D efinition 2.3.2. (Two Dimensional Covariance Function) The two dimen­

sional covariance function is defined schematically to be

C {x,y) = <  0(x, y)0(0,0) >  . (2.3.10)

However, our images are samples of a distribution which is only well defined

up to an additive constant. Hence, as in the previous section we replace this

statistic by the ‘difference function’.

D efinition 2.3.3. (Two Dimensional Difference Function) We define the two 

dimensional difference function schematically to be

D(x, y ) = <  |,« x ,») -  m  0) | 2 >, (2.3.11)

which is related to the covariance by

D (x , y) +  2 C{x, y) =  constant, (2.3.12)

when both are well defined [60].

The explicit calculation of the two dimensional difference function is a little 

different to that of the one-dimensional version. The expectation here is over 

all images and displacements only, with (x,y) representing a vector from an 

arbitrary anchoring point 0(0,0). Therefore, (x ,y ) represents a vectorial dis­

placement: x units (positive or negative) from arbitrary anchoring point (0 , 0 ) 

and y units (positive or negative) from arbitrary anchoring point (0 , 0 ).

Calculation of the difference function on the whole van Hateren database by 

taking into account all possible pixel pairs within 500 pixels, results in a mesh 

plot and a contour plot (see figure 9.5). The statistics obtained are very stable 

and we can look more closely at the tail of the statistics, and even take delicate 

operations like derivatives on them. A relatively smooth 3-dimensional plane is 

achieved [60].

Taking cross sections through the origin (when x =  0, and when y =  0) 

of the mesh plot we have the horizontal and vertical cross sections. Graphs in 

figure 9.5 correspond to evaluating the difference functions below,
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D(x, 0) = <  |^>(x,0) — 0(0 ,0) | 2 >, (2.3.13)

and

D ( O , y ) = < l 0 ( O , v ) - 0 ( O , O ) | 2 > . (2,3.14)

A comparison between the graphs shows a notable result in that the cross 

section along the vertical direction grows much faster than that along the hor­

izontal direction, i.e. the average difference intensity along the vertical of the 

image changes more rapidly than the horizontal. One of the reasons put forward 

by Mumford [60] is that this is due to the fact that in many images from the 

van Hateren database there is a portion of sky at the top and ground at the 

bottom, and the large difference between the intensities contributes more to the 

difference function along the vertical direction.

Next we consider the positive part of the horizontal cross section of the mesh 

plot in figure 9.5, i.e. along y =  0, with only x displacements, and where x > 0.

i.e. we only consider intensity displacements that are positive in relation to the 

arbitrary anchoring points.

Shown in figure 9.6 is a log — log plot of the derivative of the positive part of 

the horizontal cross section. We have pixel distances in the range from 1 to 500. 

For pixel distances of 4 to 32, on the log scale we have 2 and 5. We observe that 

between 2 and 5 pixel distances the derivative is close to a straight line with a 

slope —1.19.

If we use the model

we find that rj =  0.19. This is obtained by the following method as done by 

Ruderman [8 6 ],

D(r) =  D X-  D2 \ t \~ \ (2.3.15)

{D(r)]f =  (~2C2) x ( - v ) | r r - \ (2.3.16)

taking logs we find the R.H.S to be

log(2C2 x  (77)) +  ( -7 7  -  1)/o<7|t*|, (2.3.17)
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recalling that the derivative between 4 and 32 pixel differences is close to a 

straight line we compare the above equation with a straight line,

log(y) =  —1.19 log{r) +  C. (2.3.18)

Equating coefficients we obtain —tj — 1 =  —1.19 = >  rj =  0.19.

In the work of Ruderman, the anomalous exponent 77 is found to take the 

value 0.19, where the one dimensional difference function is calculated (with 

random orientations) for his database of 45 images of size 256 x 256 pixels. 

In the work of Huang and Mumford a similar result is obtained for a slightly 

different calculation of the one dimensional difference function, namely using 

horizontal displacements via the cross section.

An interesting observation is that in the works of Ruderman and Huang and 

Mumford, both results find the anomalous dimension to be the same. This is 

in contrast to the diverse and different datasets that are used. These pointers 

also suggest that natural images are universal in some sense i.e. they exhibit 

properties and structures that are universal to all images. Such results are 

surprising, while we have observed the robustness of the anomalous exponent 

to large databases of a variety of image types, these results further display the 

remarkable property that correlations of light intensity do not seem to be related 

to information content in an image [8 6 ].

However, for larger distances it appears that a linear term dominates due 

to the log — log plot beginning to turn and becoming almost a horizontal line 

around log distance 8 . Hence we can model this better as

D/(r) =  £>1 -  D 2 \r \ - 11 +  Z>3 |r|. (2.3.19)

Thus the power-law term dominates the short-range behaviour, while the linear 

term dominates at large pixel distances [60].

2.3.4 Distribution of the anomalous exponents

In a separate study [46], the authors confirm the results of Huang and Mum­

ford [60] by calculating the one dimensional difference function using randomly
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chosen 5  million pairs of points in the images that are separated by distances 

between 0 and 32 pixels, and oriented in different directions. Figure 9.7 shows 

the obtained average difference function values along with a power law fitting 

over 1400 images from the van Hateren database. In their measurements they 

obtain a value of 77 =  0.19 when fitting the difference function. This value varies 

a little due to averaging over different numbers of images. In their measure­

ments it was of the order of A77 =  +_0.01. (For instance, for the first 1100 

images of the archive the value of 77 =  0.18 is obtained.)

An interesting point is that the results correspond to those of Huang and 

Mumford, who obtained the anomalous dimension to be 0.19 through the hori­

zontal cross section. A puzzling remark is that taking pairs of pixels in random 

orientations produces the same anomalous exponent as taking pairs of pixels 

oriented only in the horizontal direction. Another very interesting comparison 

is that Ruderman, with his relatively much smaller database of 45 images and 

size 256 x 256 pixels, obtains the anomalous exponent to be 0.19 whilst taking 

5 million pairs at all orientations for the database of images.

The next result we can consider is whether the behaviour of the database 

difference function is the same for each individual image difference function. 

Taking into account the expectation that the image difference function will be 

noisier due to the fact that we are averaging on much smaller sizes, we observe 

in figure 9.8 fittings for some images with their corresponding 77 values. Clearly, 

we can see that the exponent differs from image to image, however, the same 

characteristic power law behaviour is observed. Hence, we can ask whether 

the database exponent can be considered as a representation of the individual 

image exponents. Such a conclusion requires that the distribution of the image 

exponents should be narrow. However, as can be see from the distribution values 

of 77 over 1500 images shown in figure 9.9, two obvious features are a maximum 

in the vicinity of 77 =  0  and a rather wide distribution giving significant weight 

to relatively high values of 77. Hence, we can conclude that the database 77 

is not a representative of the image 77’s, and additionally we observe that the 

distribution is also non-Gaussian.
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2.4 Applications of Image Statistics

The statistics of natural images have been exploited in a number of diverse 

fields. In the subject of biological vision it has been used to explain some parts 

of the perceptual systems of humans through the assumption that such systems 

are designed to interpret scenes of the natural world. The sparse nature of the 

filter responses have also been exploited to increase image compression rates 

by capturing only a selection of the largest coefficients of a transformed image, 

while discarding the high number of lower coefficients without perceptual loss. 

Additionally, statistical regularities have been used to build models that seek to 

generate natural images, with applications in texture synthesis, image modelling 

and classification. In this section we will briefly detail some of these, and several 

more instances.

2.4.1 Biological Vision

The human visual system is capable of carrying out a host of image processing 

activities with relative ease. For example, filling in missing regions of images, 

extracting meaningful information from images and videos, matching shapes 

and objects from only a handful of views, are all tasks which humans are adept 

at doing. The way in which the human brain is able to carry out such tasks is of 

significant interest to researchers in the fields of artificial intelligence, biological 

and computer vision. For example, Shannon’s classical work on the exploita­

tion of redundancy in the English language led to Barlow [9] applying similar 

techniques to the study of images. He was one of the initiators to propose that 

the human visual system utilises fundamental redundancies exhibited by natu­

ral images from the earliest stages of visual interpretation right to the higher 

semantic levels.

The anatomical study of visual systems of mammals have illustrated that 

biological systems perform processes which take into account the statistical reg­

ularities of images. These studies point to the fact that the sensing of images in 

the brain is not merely conducted by storing point by point intensity values of



35

given images. Rather, it is hypothesisesd that cortical neurons encode the infor­

mation through their inherent selectivity towards features such as orientation, 

motion, colour and light intensity [62]. Thus the visual system is rather ex­

ploiting redundancy rather than trying to compress the data which it receives. 

Other works such as Field [42] and van der Schaff [98] have also supported 

the ideas that cortical neurons are tailored towards redundancy minimisation 

schemes. Field, for example, related the distributions of spatial frequencies 

obtained from natural images to the way in which cortical neurons activate. 

Interestingly, the patterns of excitation point towards redundancy exploitation 

being a memory mechanism for the information it is tasked to deal with.

Others have also applied the fundamental ideas of redundancy minimisation 

to visual systems. Linsker [6 8 ], for example, took concepts from information 

theory to further understand properties of the visual system, while Atick [38] 

sought to uphold the idea that living organisms had visual systems designed 

to handle the inherent structure’s found within natural images. Properties of 

images have also been further analysed to extract meaningful information, pat­

terns and regularities by Tolhurst et al. [95], Ruderman [85], Field [43] and 

Baddeley [8 ].

Recent works on the studies of natural images have tried to utilise properties 

held by cortical neurons in trying to design processes that give the required 

outputs which are obtained by physiological studies. Interesting works by Bell 

and Sejnowski [1 1 ], Olshausen and Field [80], van Hateren and van der Schaff [61] 

took ideas obtained from separation of a mixture of signals into their individual 

constituent components, and applied them to studies of images. They performed 

Independent Component Analysis on databases of patches of natural images 

to derive the constituent basis patches whose linear combinations produce the 

actual image patches. Their predictive results showed how histograms of spatial 

frequency bandwidth, orientation tuning bandwidth, aspect ratio and length of 

the receptive fields matched experimental results well [61]. Hence, the works 

point to cortical neurons being selective to the particular types of structures 

and patterns of light found within natural images.
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Researchers have made significant progress in understanding biological visual 

processes through the understanding of the images on which such systems are 

trained upon. However, although much work has been done in this area, our 

understanding is limited. With all the power of scientific innovation we are still 

far from a full understanding of how the human brain is able to perform vision 

orientated tasks e.g. tracking, recognition and matching with such apparent 

ease.

2.4.2 M odelling Filter Response Distributions and Appli­

cations

In the usual case of filtering natural images using zero mean filters, the resulting 

distributions display high kurtosis and sharp central cusps. In the case of images 

where the clutter is less and the filter is matched to typical image features (like 

edges) the peak is much more pronounced, while if the the clutter is greater or 

the filter has no geometric significance the peak is less pronounced. In general 

the responses all form distributions that have high values of kurtosis.

Two explicit models have been proposed for modelling the marginal distri­

butions of natural images e.g. figure 9.4. One being the generalised Gaussian 

distribution (GGD) proposed by Wainwright and Simoncelli [100] and the other 

being Bessel-K forms [51] developed by Grenander et al. In the former case the 

generic prior takes the form

C- e - l - r .  (2.4.1)

Here a  is in the range (0.5,1.0) and is called the shape parameter which can 

vary from image to image and between classes of images. C  is a normalizing 

constant [74].

The alternative model, Bessel-K forms, models images through taking into 

account of the image formation process itself. Bessel representations explain this 

phenomena via a fundamental hypothesis: that images are made up of objects. 

This can be illustrated by using the following example from [91]: For an image 

I  let us study the histogram of differences in the values of the (horizontally)
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neighboring pixels. If two neighboring pixels have equal or similar intensities 

then their difference is small and it adds to the histogram bin containing zero 

(which also happens to be the median value). On the other hand, if the two 

neighboring values are quite different, as is the case for vertical edges, then the 

difference is high and it adds to the histogram at the tails. In general, regions 

with horizontal homogeneity add to the the central peak and the sharp, distinct 

edges map to the tails. It implies that for images with large objects with smooth, 

homogeneous foregrounds and sharp, distinct edges, the difference-histograms 

will have a sharp central peak and decaying tails. On the other hand, images 

with lots of blurred objects in the scene will have difference-histograms that 

are close to Gaussian (through central limit theorem). Object-based models for 

images allow for both the homogeneous regions and the edges in an image and 

hence can explain the observed non-Gaussianity.

The object based approach results in the following model given by Bessel 

functions:

C -e -W " -K ,( \x \) ,  (2.4.2)

where K a is the ‘modified Bessel function’ and 0 < s <  0.5. Setting aside the 

theory of Bessel functions, this distribution is best understood as the Fourier 

transform of 1 / ( 1  +  f 2)*+0-5. Although both these distributions seem alike, the 

GGD has larger tails when a < 1 while the Bessel ones are all asymptotically 

like In the case of deciding which model really fits the data well there is

difficulty. This is because both models differ mostly in the tails where addition­

ally the data is most noisy [74]. However, the two imaging models have been 

utilised in a host of image processing applications and analysis. Next we present 

a selection of successful applications that have made use of such knowledge and 

other related statistics of natural images.

Texture Synthesis

Texture synthesis is the process of accurately replicating a given patch of image 

that displays regular patterns. Following the review of [91] we observe that
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newer statistical models have revolutionised this area by utilising the marginals 

of filtered images. For example, Faugeras et al. [41] used this approach for 

representing textures, while Bergen and Landy [13], Chubb et al. [33], and 

Heeger and Bergen [52] also advocated the use of histograms. In [106] Zhu et 

al. illustrated the sufficient characterisation of homogeneous textures by using a 

collection of filters and their respective marginal distributions. This approach of 

using the frequencies of occurrence suggests that information from histograms 

is sufficient while location information can be discarded. The representation 

of an image can thus be accomplished by extracting features using wavelet 

decompositions at several scales and orientations, and exploiting the periodicity 

of such patches. Other attempts that have utilised the statistics of natural 

images have involved the use of joint statistics of filter responses where the 

measured correlations of raw coefficients, as well as their magnitudes, have been 

used to develop an efficient algorithm for synthesizing random images [81].

Im age D enoising and Deblurring

A traditional procedure in image denoising is to perform transformations, such 

as the wavelet transform, upon an image that allows the approximate sparse 

representation of an image. One can then perform soft or hard thresholding in 

order to shrink the desired coefficients towards zero with the resulting inverse 

transformation giving a more visually pleasing result [16, 40]. In the statistical 

approach Bayesian or (Maximum a-priori) MAP techniques are used. Here 

Simoncelli and Adelson [90] utilised prior models on the filter response of images 

within a Baysian framework to successfully advance the state of image denoising 

algorithms. Additionally Moulin and Liu [77] were able to incorporate the 

generalised Gaussian distribution model into their denoising schemes.

Many pyramid based approaches to image denoising have been developed due 

to the fact that the marginal statistics are easier to characterise than that of 

whole images. In such schemes images are decomposed into multi-scale represen­

tations and statistics of coefficients are used for denoising [81, 67] in individual 

frequency bands [91].
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In other works of image recovery the sparse distributions have been success­

fully utilised as prior information within a Bayesian framework for deblurring 

[6 6 ]. Results here exceed classical approaches such as the Richardson-Lucy al­

gorithm and the algorithms that assume Gaussian priors for deblurring gray 

images. This technique of using sparse priors has also been successfully used for 

the simultaneous deblurring and denoising of colour images [56].

Super-resolution

Filters exhibiting localised, oriented and bandpass characteristics, such as the 

Gabor filters, applied to natural images result in the classical sharply peaked 

distributions with high kurtosis. This phenomenon of regular sparse distribu­

tions across a wide category of imagery motivated their use within an image 

super-resolution scheme that incorporates the prior knowledge into graphical 

models to infer latent information. Specifically, factor graphs were used and 

derivative filters exploited to estimate a high resolution image from a single 

low resolution image. The resulting high resolution images gained good image 

quality with sharp edges and low reconstruction error. Techniques such as these 

have also been successfully exploited in the closely related problem of image 

demosaicing [94].

Image Classification

Problems in image understanding require us to develop models that are able to 

perform vision oriented tasks based on contextual and physical information. For 

example, in the problems of facial recognition the schemes are required to extract 

features of interest and match against representations within a database collec­

tion. These problems can be tackled from two perspectives, lower and higher 

level vision. The former case requires the building and analysis of individual 

constituents of an object, such as points, edges and shapes that can integrate to­

gether to create objects of interest. The latter approach see’s one starting from 

know shapes and characteristics of objects and performing matching while tak­

ing into account the various nuisance variables such as occlusion, points of view
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and clutter objects. This latter approach which relies upon physical principles 

has been successfully used for classical problems in image processing through 

the use of prior knowledge, such as facial recognition, pose estimation and ob­

ject tracking. Naturally, such a scheme is inherently restricted by the number 

of known objects, or the often called targets of interest (TOI).

The issue of TOI appearing in an image together with sets of objects that 

add to the difficulty in performing tasks pose significant challenges for any 

image processing approach or algorithm. These variables, often termed nuisance 

variables or clutter objects, can appear in all parts and contexts of an image, 

and any model that wishes to gracefully handle such observances needs to be 

able model the characteristics of the TOI and the types of clutter they can often 

be associated with.

In the case of modelling clutter types Bessel K forms have been successfully 

utilised for establishing the types of clutter found in the problems of automated 

target recognition (ATR). In such situations, e.g. recognising a tank from its 

remotely sensed image, one requires automated recognition of the TOI amongst 

clutter objects. Knowledge of the clutter types, e.g. grass, sand, buildings, etc. 

can significantly aid algorithmic performance when searching. The procedure 

consists of utilising a host of filters, each tuned for selectivity and whose re­

sponses are then modelled using the Bessel-K forms. These distributions are 

parameterised, making pairwise comparisons and hence classifying the clutter 

types from their spectral images against known types of clutter efficient [51].

Pruning for H ypotheses Testing

This application deals with the problem of pruning a database of possible can­

didates that may match the features of a given object. Such pre-processing can 

significantly aid the speed at which matching can be performed. In the case of 

recognising people from their frontal infrared images of the faces, a natural way 

to proceed is to develop 3D polygonal meshes of the faces along with thermal 

values at each point. The objective is then to search over these physical rep­

resentations for given test images. Recognition of objects from their observed
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images corresponds to the selection hypothesis (mesh template) in the pres­

ence of nuisance variables. The hypothesis selection is performed using detailed 

models involving physical geometries, thermal variables, pose, and motion [92].

Pruning the possible candidates places significant probability only on a small 

subset of the possible targets and Bessel representations can be utilised in such 

situations. We follow the procedure of [92] outlined in the following: Let A be 

the set of objects in an image that we are interested in, and let S be the group 

of nuisance variables such as pose, translation and thermal variables. Define a 

probability mass function on A according to, for an a  € A

P (a |/) =  ~  exp( -m in s£S d(Pabs’ Cabs’Pa?a. <%}9)2 /D ), (2.4.3)
3 = 1

where Z  is a normaliser, d a suitably defined metric (or pseudo-metric) and D 

controls our confidence (analogous to the temperature in simulated annealing) 

in this probability. Here (p ^ , c^ 3) are the estimated Bessel parameters for the 

filtered image and (pa,*,Ca,*) are the estimated Bessel parameters for the 

filter F &  and the target a  rendered at the nuisance variable s € S. Note that 

(Pah’cabs) can be precomputed offline for all a  € A, j  G {1,2,..., J}, and a 

finite subset of S. With the goal of pruning for hypothesis selection in mind, on 

a database of images all objects with P (o\I) greater than some threshold can 

be short listed as candidates for classification.

Several other techniques have also been widely utilised for purposes of di­

mension reduction. For example, principle component analysis (PCA) and in­

dependent component analysis (ICA) have been widely used to obtain lower 

dimensional approximations of images. These approaches incorporate higher 

order statistical structures and decompose a given image into their respective 

constituents and discard ones that do not lead to significant loss of detail. Ex­

periments in [92] indicate that Bessel K  forms result in the best recognition rate 

among the three methods under general test conditions, and are typically less 

computationally expensive to implement.
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Im age Com pression

The concepts of redundancy minimisation and human perception have impor­

tant consequences with regards to image compression. Two popular image com­

pression standards, JPEG and JPEG 2000, specifically utilise techniques that 

exploit these particularities. In the former case due to the densities of colour 

and brightness sensitive receptors in the human eye, humans can see consider­

ably more fine detail in the brightness of an image than in the hue and colour 

saturation of an image. Using this knowledge, encoders can be designed to 

compress images more efficiently by for example converting an RGB  image to 

a luminance-chrominance space such as YU V  and down sampling the chroma 

channels. Redundancy exploitation is also highlighted by the usage and stan­

dardisation of JPEG 2000 as an image compression scheme. This format shows 

how once an image has been transformed into the wavelet domain, there are 

statistical properties that can be obtained from the corresponding coefficients. 

Most important is the finding that the distributions of these coefficients are 

highly non-Gaussian. This can be best exploited when using wavelets which 

produce few high amplitude coefficients and many small amplitude coefficients 

[72], thus allowing one to keep only the largest coefficients. Compression at high 

rates of orders of magnitude can be achieved with minimal perceptual loss.



Chapter 3

Compressive Sensing

Traditional methods of capturing signals or images follow the Shannon/Nyquist 

theorem, that to avoid losing information when capturing a signal, the sam­

pling rate must be at least twice the maximum frequency present in the signal. 

This principle governs nearly all signal acquisition protocols, and indeed the 

Nyquist rate can be so high that too many samples result, making compression 

a necessary prior to storage or transmission [10]. There is already an extensive 

body of literature concerning data compression. In the context of imaging, the 

processes underlying the schemes rely upon transformations into an appropri­

ate basis and then encoding only the important expansion coefficients. Two of 

the most notable representations of images have utilised sinusoids and wavelets, 

these transforms underly the classical JPEG and modern JPEG 2000 compres­

sion standards, respectively.

However, developments concerning the capture and representation of com­

pressible signals at a rate significantly lower than the Nyquist rate have recently 

been emerging. This form of sampling, called compressive sensing [25], [83], [21], 

seeks to acquire a compressed signal representation without going through the 

intermediate stage of acquiring all samples. Here one exploits the idea that 

signals of interest exhibit redundancy (and are hence compressible) and can be 

expressed sparsely in some appropriate basis. This protocol aims to overcome 

the usual sampling method of acquiring large amounts of data and then per­
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forming compression, by directly arriving at a compressed representation of the 

signal. In the following we give a concise treatment of this new sensing modality 

and show some surprising consequences of the theory.

3.1 Image Sampling and Sparse Representation

To settle the notation and generalise the notion of sampling an image, consider 

a real-valued finite dimensional discrete-time signal X . Here X  can be thought 

of as an N  x 1 column vector in RN with elements X (n), n =  1,2,..., N. This 

signal structure equally applies to images where we would simply rasterise the 

image, row by row, to obtain one column vector. In the usual imaging setting 

one may collect points of the image at unique spatial locations or obtain averages 

over spatial areas such as pixels. However, we can generalise to consider a set of 

measurements yk obtained by taking inner products between X  and a different 

function 0 *:

2/1 =  (^ . <t>l) > 2/2 =  (X , <fo) , ••••, 2/m =  (A, 0m) • (3.1.1)

Here the notion of the test functions dictate the type of measurements we are 

acquiring. If we take 0* to be sinusoids at different frequencies we are implying 

that we are measuring Fourier coefficients. If on the other hand they are taken 

to be delta ridges, then we are obtaining line integrals while in the case of a 

standard digital camera we would take the functions to be indicators on squares 

[83].

Next we consider the representation of signals of interest: Any signal in RN 

can be represented in terms of a basis of N  x 1 vectors {0i}£Lx. For simplicity 

we take the basis to be orthonormal and using N  x N  basis matrices =  

[0 1 0 2 ••••0n] with the vectors {0(} as columns, a signal X  can be expressed as 

follows:

N

X =  ^ 5 i 0 i  or X  =  VS.
i= 1

(3.1.2)
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Here S  is the N  x 1 column vector of weighting coefficients Si =  (X , V>») =  X , 

and T denotes transposition. In an appropriate basis we note that many 

signals of interest, such as natural images, can be expressed using few coefficients 

Si where the 5* occur sparsely or the sorted magnitudes display quickening 

decay. Precisely, we can say that a signal is K  sparse if it is a linear combination 

of only K  non-zero Si coefficients in 3.1.2 and (N  — K ) are zero. In order for 

compressive sensing to be used as a practical tool, we are concerned with the 

scenarios where K  «  N.

A simple example concerning the wavelet basis can illustrate the ideas more 

clearly. Consider a digital image composed of pixel values which are almost all 

non-zero. However, expressing an image X  in the wavelet basis leads to coeffi­

cients that are mostly close to zero with only a relatively few large coefficients 

that capture the essential information. This is a typical real life situation where 

the signals of interest, when expressed in an appropriate basis are not exactly 

sparse, but only approximately sparse. Hence, one can now see that when such 

a representation exists in an alternative basis one can compactly represent the 

original signal by discarding much of the smaller coefficients while keeping the 

fewer larger ones without significant perceptual loss [2 1 ].

This process of transform coding also displays some obvious drawbacks where 

one can see that the sampling has required taking a large number of N  samples, 

even though the desired number of samples A  is a much smaller set. Further­

more, such a process also requires that Si coefficients be computed even though 

only K  are to be kept, while the larger coefficients are also required to be adap­

tively encoded [10]. However, we will begin to see in the text how the notion 

of sparsity has deep implications for dealing with the acquisition process itself. 

Sparsity determines how efficiently we can acquire signals using a predetermined 

set of linear measurements non-adaptively, and which are orders of magnitude 

smaller than the total size of the signal.
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3.2 Incoherent Sampling

Suppose we are given a pair of orthobases ($, \&) of M.N where the basis $  is 

used for sensing the image X  while is used to represent X . Then we have the 

following definition:

Definition 3.2.1. The coherence between the sensing basis $  and the represen­

tation 9  is

=  V^-maxi<*j<jv||(0*,V>j)||. (3.2.1)

In other words, the coherence measures the largest correlation between any 

two elements of $  and It follows from linear algebra that /z($, 4') € [1, VN]. 

If $  and 4' contain correlated elements, the coherence is large, otherwise it is 

small [2 1 ].

Compressive sensing is concerned with low coherent pairs of {$ , 4'}. As an 

example consider the pairs of bases, $  in which <f>k{yi) =  6 ( t—k) (spike basis) and 

4' in which if>j{t) =  7i~V 2e,27rJt/n (Fourier basis). Since $  is the sensing matrix 

this corresponds to the classical sampling scheme in time or space. The time- 

frequency pairs obey //($ , '£) =  1 and therefore we have maximal incoherence. 

Furthermore, spikes and sinusoids are maximally incoherent in any dimensions, 

e.g. two, three, etc [2 1 ].

One part of the central problem in compressed sensing is the design of stable 

measurement matrices $  that allow the reconstruction of the length-N signal X  

from m  <  N  measurements. This problem appears ill-conditioned. However, if 

X  is K-sparse and the K  locations of the nonzero coefficients in S  are known, 

then the problem can be solved provided m > K . This brings us to the next 

important definition that has proved useful in the study of the general robustness 

of compressive sensing: the restricted isometry property (RIP) [23].

D efinition 3.2.2. For each integer K  =  1,2,.... define the isometry constant 

6k  of a matrix A as the smallest number such that
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holds for all K-sparse vectors X .

We will loosely state that a matrix A obeys the RIP of order K  if 6k  is 

not too close to one. When this property holds, A approximately preserves 

the Euclidean length of K  sparse signals, which in turn implies that K  sparse 

vectors cannot be in the null space of A. This is needed as otherwise there would 

be no hope of reconstructing these vectors. In order to view the connection 

between RIP and compressive sensing, consider acquiring if-sparse signals with 

A. Taking 62K to be sufficiently smaller than one implies that all pairwise 

distances between if-sparse signals must be well preserved in the measurement 

domain. Hence we have,

(1 -  «2K )ll*i -  <  IIAX, -  AX 2 Hf, < (1 +  ijxJHX, -  X2||?2> (3.2.3)

holds for all if-sparse vectors X \ and X^. This preservation of distances en­

ables the existence of efficient and robust algorithms for discriminating if-sparse 

signals based on their compressive measurements [2 1 ].

Surprisingly, the construction of a measurement matrix $  such that it sat­

isfies the related properties of incoherency and RIP with high probability is to 

select random matrices [25]. As an example, let fa be independent and identi­

cally distributed (iid) random variables from a Gaussian distribution with mean 

zero and variance 1/N.  In this case our sampling procedure simply involves tak­

ing random linear combinations of the elements of X.  This Gaussian matrix is 

observed to have two interesting properties [1 0 ]:

1. The matrix $  is incoherent with the basis 4> =  /  of delta spikes with high 

probability. More specifically an m x N  iid Gaussian matrix can be shown 

to have the RIP with high probability if m > cK log(N /if), with c a small 

constant.

2 . The matrix $  is universal in the sense that 0  =  will be iid Gaussian 

and thus have the RIP with high probability regardless of the choice of 

orthonormal basis 4'.
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Having measured an image using a random matrix to form y =  =

OS, we now need to design a reconstruction algorithm that takes as input m 

linear measurements, the random matrix $  and the basis \I>. Since we are 

sampling a -sparse vector S  we can invert the measurement process and solve 

an optimisation problem:

mins>{i : S'(i) ^  0} subject to 0 5 ' =  y. (3.3.1)

The objective term is a measure of the number of nonzero elements in the 

candidate solution S', and is often called the L° norm in the literature. This 

optimisation scheme can recover a K-sparse signal exactly with high probability 

from only m  =  K  + 1  iid Gaussian measurements. However, while easily stated, 

this problem is both numerically unstable and a NP-hard problem, requiring an 

exhaustive enumeration of all (N , K )  possible locations of the nonzero entries 

in K  [23].

Alternatively, we could propose to minimise other norms of the reconstruc­

tion error. Defining the LP norm of the vector S  as (||5 ||p)p =  J2iLi |*S'<|P we 

could propose to find the vector in the translated null space with the smallest 

L2 norm (energy) by solving

orpmtri5 /||S ,,||2  subject to Q S '=  y. (3.3.2)

This optimisation has the convenient closed form solution S' =  0 T( 0 0 T)_1t/,

but L2 minimisation will unfortunately almost never find a K-sparse solution, 

returning instead a non-sparse S' with many non-zero elements [10].

However, surprisingly optimisation based on the Ll norm can exactly re­

cover if-sparse signals and closely approximate compressible signals with high 

probability using only m  > cK log(N /K ) iid Gaussian measurements:

arpmm5 / ||5 '||i subject to QS' =  y. (3.3.3)

Although we appear to have only substituted the sum of magnitudes in



49

place of size of support, this has yielded a convex optimisation problem that 

can be expressed as a linear program and solved using a variety of modern 

techniques. However, though they are not solvable as effectively as quadratic 

minimisation schemes there have been recent waves of activity trying to solve 

such optimisation programs as efficiently as possible. This still remains an area 

of active research that is continually propelling new algorithms.

One of the most important facets of this reconstruction scheme is that it 

enables us to apply theoretical ideas of sparse recovery to real world problems. 

Here we are able to sense in already compressed format, a signal, using only 

linear combinations of its elements. Furthermore, the measurement process is 

universal in the sense that we do not even have to know in what basis the signal 

is sparse in. This knowledge is postponed to the recovery phase when trying 

to reconstruct the original signal from its compressed representation. Hence in 

future if we are able to find a new and more useful basis representation of a 

signal, we can simply use this knowledge for reconstruction [83].

3.4 Geometry of Ll optimisation

The geometry of compressive sensing in RN helps intuitively to visualise why 

L2 reconstruction fails to find the sparse solution identified by L1 optimisation. 

This is illustrated by the sketches in figure 9.10 which show the case in R2. 

Figure 9.10(a) shows the equidistant measurement ball of L 1 with radius r. 

Here any points on the edge of the ball are observed to have the same ‘distance’ 

from the origin. Similarly Figure 9.10(c) shows the metric ball distance created 

by the L2 norm. Note that the L1 ball is ‘pointy’ along the axis (anisotropic) 

compared to the L2 ball which is spherical and hence isotropic.

To show how the L 1 algorithm finds the sparsest solution compared to L2, 

observe the figure in 9.10(b). Here we pictorially show the recovery program in 

R2 where the point labeled do is a sparse vector (only one of its components 

are nonzero) of which we make one measurement. The line H is the set of all 

a  such that $ d  =  y. Now, we wish to obtain the sparsest solution which by
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definition lies on a point on the axes. Thus the point with minimal L1 norm is 

found to be the intersecting point ao due to the anisotropy of the L1 ball, and 

the flatness of the space //-precisely where sparse vectors are located.

On the other hand the point of minimal L2 norm is found to be the inter­

secting point a t*2 which is not generally a sparse solution. In higher dimensions 

this difference in solution becomes more pronounced and illustrates that two 

very seemingly similar measures of distance, sum of magnitudes and sum of 

magnitudes squared, are indeed quite different metrics.

Finally, we want to outline some reasoning (which is concreted in [23], [39] 

and [96]) to show that if ao is sparse, then for all a' with ||a '||i < ||ao||i we have 

$ a ' ^  $ao- From figure 9.10 we can see that the program 3.3.3 will recover ao 

if the line H  does not cut through the L1 ball at ao- Another way to say this 

is that for every h in the cone of descent from the facet of the L1 ball on which 

ao lives (meaning ||ao +  /i||i <  ||ao||i we will have $>h ^  0. The key here is 

that all descent vectors h are concentrated on the same (relatively small) set as 

ao, with the pointedness of the L 1 ball at the low-dimensional facet on which 

ao lies severely constraining how descent vectors can behave [83].

3.5 Compressive Sensing in Practice

In the practical case we are not interested in reconstructing signals that are 

themselves exactly sparse, but signals which are approximately sparse when 

transformed into some known basis. This transformation is accomplished by 

the following simple procedure. Given the random measurements y =  &X, 

instead of solving 3.3.3 we solve

argminx'W'V*X'\\i subject to $ X '  =  y. (3.5.1)

In words we are searching for the length N  signal with the sparsest transform 

that explains the measurements we have already observed. Here 'fr* represents 

an orthonormal transform in which we expect our signals of interest to be com­

pressible or sparse. In the case of images this may correspond to the DCT,
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DFT, wavelet transform or replacement of the objective by a Total-Variation 

function.

In the practical case we also never observe completely pure signals. Instead, 

signals are always corrupted by some degree of noise and it is important that 

the compressive sensing scheme is able to be robustly handle such signals. For 

application in the real world we must, at the very least, be able to handle noise 

in the data such that small perturbations only lead to small perturbations in 

the reconstruction. Together with the imperfect sparseness of practical signals 

there is a natural concern that the recovery algorithm would be unstable due 

to its nonlinearity. However, the L1 optimisation program is able to accurately 

recover signals that are only approximately sparse [23], [24]. Furthermore, when 

the measurements y are perturbed there are various ways to relax [23], [26], 

[96] the program 3.5.1 so that the recovery error is on the same order as the 

measurement error. These facts enable compressive sensing to be used as a 

practical and robust sensing scheme that is able to effectively handle noisy 

signals and those which are also not necessarily sparse in their original forms 

[83].

3.6 Extensions of Measurement Matrices

In the preceding work we have shown how measurement matrices constructed 

from e.g. Gaussian distributed entries can be used to compressively sense im­

ages. However, these matrices are extremely dense and even for modestly sized 

images of size 256 x 256, the resulting matrices can become far too large to solve 

or store explicitly. Indeed, choosing m  =  5481 (approximately 8.5% of 65536) 

would make the measurement matrix itself requiring almost 3 gigabytes of mem­

ory if stored in double precision. Thus in practice using these dense matrices 

directly is not computationally feasible when reconstructing high dimensional 

signals such as images by convex programming [27].

Instead of creating the measurement matrix explicitly, we can provide func­

tion handles that take a vector X , and return AX. However, in view of work
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in later chapters we can also consider the alternative use of matrices that are 

themselves sparse. As an example, we can create sparse binary {0 ,1 } random 

(SBRM) matrices as measurement matrices. An m  x N  matrix A would be 

generated by assigning d « m  random ones to each column of A , and leaving 

all the other entries at zero. This allows storage of such matrices as sparse 

identities, hence the drastically reduced storage requirements. In [12] it is also 

shown that SBRM can be used effectively as measurement matrices and satisfy 

a weaker iRI P  — 1 ’ property, but nonetheless are essentially as ‘good’ as the 

dense ones. At the same time, they provide additional benefits, such as reduced 

encoding and decoding time. This is due to the fact that a typical LP is solved 

using the interior-point method, which repeatedly performs the matrix-vector 

multiplication.



Chapter 4

Non-Linear Filter Response 

Distributions of Natural 

Images

Statistical analysis of natural luminance images have revealed an interesting 

property: non-Gaussian behaviour of image statistics, i.e. high kurtosis, and 

sharp central cusps (see e.g. [60], [72], [105], [99], [79], [43]). This property 

has been extensively studied via the empirical distributions on large databases 

of natural images, establishing image statistics, under common representations 

such as wavelets or subspace bases (PCA, ICA, Fishers etc.), as non-Gaussian. 

For example, a popular mechanism for decomposing natural images locally, in 

space and frequency, using wavelet transforms leads to coefficients that are quite 

non-Gaussian with the histograms displaying rapidly decaying tails and sharp 

cusps at the median [91]. In this chapter we present results showing that this 

striking phenomenon readily follows across to natural colour images [6 ].
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4.1 Filter Construction

Given an RGB image we convert it to the colour space YUV. (The chromacity 

images U and V are similar and so we only explain our workings for the U 

component, where analysis of the V component is obtained by substitution.) 

Our filter takes as input the chromacity channel U and the intensity image Y, 

the proposed filter is given below,

F((/)(r) =  U(r) -  £  w (y )„ U (s). (4.1.1)
eeN (r)

Here r represents a two dimensional point, N( r) a neighborhood (e.g. 3x3 

window) of points around r, and w (Y )ra a weighting function.

For our purpose we define two weights:

w (Y )ra cx c-0'(r)-»r(»))a/2*raj (4.L2)

and

w (Y)r, «  1 +  -^(K (r) -  M r)(Y(s) -  Mr), (4.1.3)
ar

where fxT and <j\  are the weighted mean and variance of the intensities in a 

window around r.

The proposed filter thus takes a point r in U and subtracts a weighted 

average of chromacity values in the neighborhood of r. The w (Y )ra is a weight­

ing function that sums to one over s, large when Y(r) is similar to Y(s), and 

small when the two intensities are different. The filters are compatible with the 

hypothesis that the essential geometric contents of an image are contained in 

its level lines (see [29] for more details). These types of filters arose from the 

colorization problem by Levin et al. [63], where the authors wanted to auto­

matically colorize a gray image through user interaction (see section 5). Their 

algorithm was developed under the assumption that areas of similar luminance 

should have similar colours and resulted in convincing colour extrapolation.
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4.2 Filter response distributions

Figure 9.11 shows a sample of 8  natural colour images from our dataset of 25 

images which are all bitmap uncompressed, captured using a Canon digital SLR 

camera, and were chosen to cover a wide spectrum of natural scenes in order 

to give some measure of robustness to our findings. We did not pay too much 

attention to the methods of capture, or any subsequent re-calibration as we 

wish to work with colour images captured via any mode, and believe that when 

images are considered to be natural this will have little effect on the general 

properties of the filter response.

Applying the non-linear filter on each of the colour channels, U and V, in 

the image outputs an intensity matrix on which we compute a histogram. We 

note that application of the filter is only possible within a boundary of the 

original image, dependent on the size of the neighborhoods used in the filter 

construction. In our case the filter was not computed on a one pixel boundary 

of the image. However, for applications the filter response of pixels on boundary 

points can be taken by using its neighboring pixels only.

Outputs of the filter using weighting function (4.1.2) on both the colour 

channels for two of our sample images, ‘balloons’ and ‘objects’, are shown in 

Figure 9.12 as gray-scale intensity images. These have additionally been nor­

malised to a [0,1] range for viewing. The histograms of the single pixel intensity 

values of these response images is shown by the dots in figures 9.13 and 9.14. 

With the vertical axis on a log scale we clearly observe a distribution that is 

non-Gaussian and exhibiting high kurtosis.

4.3 Modeling sparse distributions

Considering filter responses of natural images, two models have been proposed 

for modelling their sparse behaviour. One is the Bessel distributions [51] which 

are derived analytically and have parametric forms that match the non-Gaussianity 

of image statistics. The derivation stems from the assumption of a fundamental 

hypothesis that images are made up of smooth objects that have intensity jumps
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at edges. Another, more commonly utilised model is the ‘Generalised Gaussian 

Distribution’ (GGD). Experimental evidence elucidating which model best fits 

and describes the non-Gaussian distributions have not been satisfactorily made. 

The difficulty lies in the fact that both models differ most in the tails where the 

data is also most noisy.

However, for our purposes and especially due to its simplicity, we utilise the 

latter model:

Ja (x) =  (4.3.1)

where Z  is a normalising constant so that the integral of Ja {x) is 1, s the scale 

parameter and a  the shape parameter. The GGD gives a Gaussian or Laplacian 

distribution when a  =  2 or 1, respectively. When a  < 1 we have a distribution 

which we call sparse.

The scale parameter and shape parameters are directly related to the vari­

ance and kurtosis by:

*■■£$ " d * - W
Figures 9.13 and 9.14 show the histograms of the filter response (using 

weighting function (4.1.2)) on each chromacity channel, U,V, for two of our 

sample images, with the GGD fitting overlaid. The responses are typically con­

centrated around zero and highly non-Gaussian, exhibiting large kurtosis and 

rapidly decaying tails, as compared with the normal distribution (see figure 

9.15).

Table 9.1 shows the associated parameters for each filtered image using the 

first weighting function (4.1.2). We observe that kurtosis is greater than that of 

the normal distribution for all the images considered, a  is seen to lie within the 

range [0 , 1], with the parameter varying from image to image, the only exception 

being the distribution of the U-filtered response for image: ‘indoors’. This was 

the only component of an image to show a  >  1 in our diverse dataset of images. 

Generally, responses also exhibit some degree of skewness and have very low 

variance. Table 9.2 shows the statistics obtained by filtering the same set of 8
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images, but using the second weighting function. Results are similar and show 

again that the filter response is highly non-Gaussian.

We next discuss the observed GGD distribution in relation to the filter re­

sponse and structure. This is important for understanding the particularities of 

the distribution and for applications to image processing problems. An exam­

ple illustrates the relationship clearly. In general, the filter response of a pixel 

chosen centrally in the 3 x 3  window of regions with colour homogeneity add to 

the central peak, and regions where colour differs from the central pixel map to 

the tails. The deviance from the median is large where colour contrasts together 

with luminance, as is usually assumed to be the case for natural images, and 

greatest where there is colour contrast but homogeneous intensity. The impli­

cation here is that images with smooth homogeneous objects of colour will have 

a sharp central peak and display high kurtosis. On the other hand, images with 

lots of objects in the scene with their variety of changing colours will tend to 

have histograms that are less peaked and give more probability in the tails. The 

GGD is able use its parameters obtained from histograms of the filter response 

to adaptively model these changes in natural images.

We also note here that the JPEG standard of image compression and storage 

is common place and hence we wanted to see how the filter holds under this form 

of compression. In order to do this we converted samples of the bitmap images 

from our dataset to the jpeg standard and filtered the images. Additionally, 

we used several standard test images in a variety of file forms from the image 

processing literature for further evaluation of the filter responses. Results were 

again the same: non-Gaussian, high kurtosis distributions of the filter response 

on both the chromacity channels of natural images.



Chapter 5

Colorization of Natural 

Images via L1 Optimisation

Colorization of natural images has been a long standing problem in image pro­

cessing. The initial process was invented by Wilson Markle and Brian Hunt and 

first used in 1970 to add colour to monochrome footage of the moon from the 

Apollo mission [18]. Early processes required an artist to begin by segmenting 

regions in an image and then choosing colours to fill these regions. This resulted 

in the time consuming tasks of image segmentation as the algorithms for this 

process were difficult to implement on natural images that typically have com­

plex and fuzzy region boundaries. The techniques for colorization often gave 

images that were pale, flat and with washed out colour.

However, research in this area has been continuing over the past few decades 

and has resulted in significant advancements in the technology. Contemporary 

techniques used by the industrial sector are little known about in the public 

domain, but are still thought to rely on defining regions and tracking them 

between frames [89]. BlackMagic is an example of a commercial software for 

colorizing still images [78]. It provides the user with useful brushes and colour 

palettes, however the segmentation task is still left entirely to the user, and 

thus the desired automation of the process is still lacking. In response to this
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problem Welsh et al. [101] described a semi-automatic technique for colorizing 

a grayscale image by transferring colour from a reference colour image. This 

resulted in the colour choosing aspect of the problem to instead be directed 

to finding a suitable image for colour transfer. Their approach examines the 

luminance values in the neighborhood of each pixel in the target image and 

transfers the color from pixels with matching neighborhoods in the reference 

image. This technique works well on images where differently colored regions 

give rise to distinct luminance clusters, or possess distinct textures. In other 

cases, the user must direct the search for matching pixels by specifying swatches 

indicating corresponding regions in the two images. Furthermore, the technique 

does not explicitly enforce spatial continuity of the colours, and in some images 

it may assign vastly different colours to neighboring pixels that have similar 

intensities [63].

In a bid to increase the accuracy and ease of colorization, a seminal approach 

that utilises ‘scribbles’ from a user was proposed by Levin et. al [63]. Here col­

orization is performed by optimization, and exploits a fundamental hypothesis 

that areas of similar luminance should have similar colours. This assumption, 

together with additional colour scribbles placed on the interior regions of ob­

jects in the gray image, is used to propagate colour to the rest of the image 

by minimisation of a quadratic cost function. The result is a visually pleasing 

image with a reduction in user interaction.

A number of recent advancements have since been made to improve the 

quality and efficiency of the colorization process. These works can roughly be 

divided into scribble based and example-based colorization. The former tech­

nique is used in [103] where a computationally simple, yet effective, approach 

is presented which works very fast and can be conveniently used ‘on the fly’, 

permitting the user to promptly get the desired results after providing a set 

of chrominance scribbles. [82] presents an interactive colorization system that 

makes it easy to colorize natural images of complex scenes. Their energy op­

timization propagates colour labels to intensity-continuous and texture-similar 

regions that may be far apart in image space and disconnected. This labeling
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scheme drastically reduces the amount of interaction in scribbling the strokes. 

The paper [55] develops the method of transferring colour from a segmented 

example image, and uses the method in [63] to produce the finished colorized 

image. This method has the advantage of not relying upon the user’s skill or 

experience in choosing suitable colours and strokes for a convincing colorization.

5.1 Bayesian Analysis of the Colorization Prob­

lem

Partially inspired by the work [63], in this chapter we give a Bayesian analysis 

of the colorization problem [5]: We begin with a gray level natural image in 

the RGB  colour space where a user has placed their own points of colour. 

Converting to the YU V  colour space we now have the gray image Y  and points 

U0 on a subset of pixels S  in the U channel which the user has marked (the 

procedure is similar for both U and V channels so we only explain for one). 

Now the problem is to find an estimate U' on the whole image s.t.

(cl) U'\s =  U0,

(c2) and the resulting colour image looks natural.

Formally we have the following: For any A let us denote by Py{A) the con­

ditional probability P(A\Y). Then we wish to maximise Py{U'\U0). Applying 

Bayes’ formula results in maximising Py(U0\U') ■ Py (£/'), or equivalently to find

arg max Py (£/'), (5.1.1)
u>

under condition (cl).

To model the prior Py(U') we utilise the sparse filter response of (4.1.1), 

which we modelled using a GGD. Hence we have the expression

iV ( t / ' ) c x e -£  \F*-uV t (5.1.2)

where F* is the filter operating on the i ’th pixel in the image. Taking logs leads
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to an equivalent minimisation objective,

axgmin Y \ ( F i  ■ U')\a s.t. U'\S =  U0. (5.1.3)
u> V

Here the parameter a  now details the form of the prior assumed for the 

filter response. Taking a  =  2 gives the same optimisation problems solved 

in [63] which illustrates that their approach effectively assumed a Gaussian 

response of the filter F{. However, the analysis and modeling of natural images 

in chapter 4 has shown that a  is almost always less than one. Hence we arrive 

at the correct optimisation problem. Solving (5.1.3) for this case leads to a 

non-convex optimization problem that unlike least squares regression has no 

explicit formula for the solution. Instead we convexity the problem using L1 

optimization which often gives the same results for sparse signals [22].

Taking a  =  1 we can rewrite the objective term of (5.1.3) in the vectorial 

form

\\AU' ||i, (5.1.4)

where || • ||i represents the Ll norm. A is an N  x N  matrix where the i ’th row

corresponds to the filter response of the i ’th pixel in the image. The constraint

term of (5.1.3) is incorporated into a matrix B  of size |S| x N  and with a column 

vector b holding the values of the marked pixels, Ua. This allows the problem to 

be written as a Linear Program (LP) through the addition of two slack variables 

Vi and fa:

M in^2i vi +  fa 

s.t. AU' +  v -  n =  0 (5.1.5)

BU' =  b 

> 0

The objective function and the first constraint allow us to find the smallest 

pairwise addition i\  +  fa, such that their difference is equal to b(i) — A ^ U '. 

This occurs precisely when one of the i or fa are zero and the other equal to 

b(i) — and allows us to handle both the positive and negative cases.
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5.2 Colorization Examples

We solve the linear programs using the package LIPSOL [104] which is available 

through high-level programming environments Scilab and Matlab. Images in the 

region of 250 x 250 pixels each take a few minutes to colorize, hence our method 

is slower than the solvers used in [63]. However, our goal here is not to efficiently 

solve such problems, but only to state the correct optimization problem and to 

show that when such a problem is solved, the resulting colorized image is of a 

higher quality.

The results shown in the figures compare the quality of the colorization using 

L1 optimisation against the approach of Levin et. al (L2 optimization). Marking 

large regions of pixels gives similar results, however, using a much smaller set 

of marked pixels highlights the differences between the two methods. (We note 

here that since we are only concerned with the correct propagation of colour, 

and not the choosing of colour, we use the original colour channels of the images 

for marking colour points.)

Figure 9.16 shows an example where we colorize using a sparse set of marked 

pixels placed arbitrarily on the image regions, (a) shows the gray image with 

the marked colour pixels and (b) the original image for reference, (d) shows the 

improvement in colorization using L1 optimization over the L2 approach in (c). 

We observe more vibrancy in the colours in (d) against the general ‘washed out’ 

look of the colorization in (c). Colour blending is also apparent, especially in 

the green leaves (at the bottom and centre left) which have taken a red tinge 

from the pink petals and the red roses. Overall we have a sharper result and not 

an oversmoothed output as usually is the case for assuming a Gaussian prior.

Figure 9.17 shows another example where L1 minimisation gives a sharper 

colorization compared to the L2 approach. Here the latter method incorrectly 

colorizes the red balloon in the centre of the picture as purple. We also observe 

more vibrancy in the colours in (d) over (c).

Figure 9.18 shows similar results where colorization using L2 optimization 

produces artifacts of ‘washed out’ colour against the sharper results of the L1 

approach. Here we see for example that the central red pepper has its colour
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blended with the surrounding green peppers resulting in an incorrectly colorized 

image. L1 has given an almost indistinguishable image from the original.

Figure 9.19 shows an example image taken from the paper [63] where we now 

colorize using a sparse set of marked pixels. Again we observe an overall ‘washed 

out’ result using the L2 approach against the L1 minimisation. As examples 

we see that the cushion in the background has had its blue colour blended with 

the brown from the boys hair and the yellow from the t-shirt. The child’s left 

eye is also incorrectly colorized brown instead of blue, this has all resulted in an 

overall loss of colour vibrancy.

Finally Figure 9.20 illustrates the oversmoothed output obtained using a 

Gaussian prior against the L1 optimization. We observe in particular that the 

blue feathers of the bird on the left have had their colours blended with the 

green and yellow, also the red feathers of the bird on the right exhibit much 

more colour vibrancy. The example illustrates the colour sharpness and vibrancy 

obtained when using L1 optimization over L2.

Interestingly our findings coincide with the results obtained in [15], where 

the authors explore the use of colorization as a means for compression. Here the 

gray image and colour seed pixels are stored as a compressed representation of 

the original image. Levin et. al’s algorithm is then used for decompression by 

colorizing the gray image. Good levels of compression are achieved but at the 

cost of ‘washed out’ colour artifacts. Similarly in [32] and [53] the given examples 

illustrate these artifacts when using colorization as a tool for compression.

Our technique has some interesting consequences where few seed pixels are 

chosen for colorization. As a means for compression this is an interesting and 

natural avenue to pursue and develop. However, at present the effectiveness of 

the L1 approach still needs to be improved. While we obtain sharper results 

in areas where colour information is sufficient, we also observe incorrect colour 

artifacts in regions where not enough colour information has been given. This is 

opposed to the L2 approach which simply results in washed out colour artifacts. 

These areas then require additional colour markings in order to give convincing 

colorizations. In future it would also be useful to look into automatically select­
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ing the required colour points in a given image, or automatically obtaining the 

information from reference images, and combining all this with the effectiveness 

of the L1 approach. This would reduce the amount of labour and skill required 

for placing and choosing colours, and also lead to more natural looking images.



Chapter 6

Image Compression using 

Elements of Sparsity

The advent of digital imaging has led to an explosion in the amounts of data 

people are capturing, storing and transmitting across the world. A key ele­

ment in these activities is compression. Compression algorithms are able to 

reduce data by many orders of magnitude and allow the efficient management 

of images. Of particular interest are lossy compression schemes, such as the 

popular JPEG standard, which aim for high data reduction with minimal per­

ceptual loss. These schemes often take advantage of the sparse representation 

of images in a suitable basis, keeping the largest coefficients that capture the 

essential information whilst discarding the rest. In line with this philosophy of 

lossy compression, in this chapter we explore a method that uses elements of 

compressive sensing and colorization, as a tool for compression [7].

This atypical approach to colour compression was first explored, to the best 

of our knowledge, by the authors of [15]. Here they operate in the YUV  colour 

space and use a variable grid of points to sample the colour information of the 

pixels at the intersections. Decompression is performed by using the sampled 

colour information as seeds for the colorization algorithm used in [63]. This 

optimisation scheme propagates colour by assuming pixels with similar intensity
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should have similar colour, and consists of minimising a quadratic cost function 

constrained by the given colour information.

Colour compression was also proposed in [53] where chromatic information 

is sampled by generating a set of rectangular boxes in the CIELAB colour space. 

Pixel distribution is covered with the regular lattice points inside the min-max 

colour ranges of the distribution, and seeds chosen from each body center from 

equally divided unit boxes. Decompression is performed by utilizing two as­

sumptions of natural images: Firstly, that if two arbitrary points in an im­

age are close in the Euclidean distance, then the chrominance distance Aab is 

small. Secondly, that pixels with similar intensity should have similar colour. 

A weighted combination of distance functions incorporating these assumptions 

is then used for the propagation of colour.

The authors in [32] also experimented using colorization for compression 

where they sample colour information from a few representative pixels to learn 

a model which predicts colour on the rest of the pixels. A graph based inductive 

semi-supervised learning module is then used for the colorization, and a simple 

active learning strategy to choose the representative pixels.

With view of the previous work, we utilise the statistics of natural images and 

elements of compressive sensing to measure and reconstruct colour information. 

The following sections describe our measurement and subsequent reconstruction 

processes.

6.1 Sampling using Sparse Matrices

In the following schemes the U (and V) elements are sampled using random pixel 

selection or a random linear combination of the pixel values. Both processes can 

be approximately expressed as measurements in the compressive sensing frame­

work using a sparse binary random matrix (SBRM) [12]. Beginning with the 

direct pixel selection in the spatial domain, we create a SBRM 6 of size m x N  

(m < <  N) which only has one unique element {1} in each row correspond­

ing to sampling m pixels from each of the chroma channels. The parameter
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m  describes the rate of compression where smaller values imply less sampling 

and higher values more sampling. The rasterised chroma components are then 

multiplied by 6 and the obtained measurements stored as our compressed data. 

This process can be considered within the compressive sensing framework with 

reconstruction accomplished in a similar fashion. However, for 8 to truly be a 

measurement matrix it needs to satisfy the Restricted Isometry Property (RIP) 

[22] for accurate reconstruction using LP.

The second sampling scheme we consider is a SBRM matrix f  of size m x N  

formed in the following way: for each column, d random values between 1 and 

m are generated, and l ’s are placed in that column, in rows corresponding 

to the d numbers. If the d numbers are not distinct, the generation for the 

columns is repeated until they are (this is not really an issue when d «  m). 

We chose to use d =  8 and store the measurements z =  ipU as our coded colour 

data. By sampling random linear combinations of pixel elements this method 

increases the probability of our measurement matrices being suitable within the 

framework of compressive sensing and sparse recovery. Indeed, the matrix ip 

has been shown to satisfy a weaker form of the RIP [12].

6.2 Decompression by Sparse Recovery

The reconstruction process involves solving a convex optimisation problem where 

we seek the solution to the program,

argmin V  ||(F* • t/')lli s.t. (j>U' =  z  =  <£t/, (6.2.1)
u> V

where Fi is the filter (4.1.1) operating on the i’th pixel and <f> is the measurement 

matrix which is either 0 or if. In words (6.2.1) is searching for the AT-pixel 

image with the sparsest filter response that explains the measurements we have 

observed. This problem is similar to the one (indeed, identical when <f> =  9) 

solved in the Bayesian analysis of the colorization problem outlined in chapter 5, 

where the formulation leads to solving (5.1.3) for the convex case a  =  1. Hence, 

(6.2.1) can be written in a vectorial form and solved using LP as in chapter 5. 

The reconstruction process exploits the fact that the filter responses of natural
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images observed in Chapter 4 have a sparse distribution. Hence the U (and V) 

component is compressible using the random matrices and reconstructible using 

L1 optimisation.

6.3 Compression Examples

Figure 9.21 shows examples where an uncompressed bitmap image is compressed 

using randomised seed selection and compressive sensing. Here the monochrome 

image is stored in uncompressed format and colour information sampled at a rate 

of around 5% of the original image. Further compression can be achieved with 

visually indistinguishable results by storing the gray component using JPEG. 

Sampling at lower rates resulted in increased artifacts in the decompressed im­

ages. The results show that convincing reconstructions can be made from a 

small amount of compressed data using L1 optimisation. The PSNR values 

quantify the results and show acceptable values for a lossy compression scheme.

We note here that the compression scheme sampling seed pixels at a rate 

of 5% gives similar results when decompressing using L2 or L1 optimisation. 

Reducing the rate further leads to washed out colour artifacts with the former 

method and incorrect colours using the latter. However, with results from sec­

tion 5, in future it would be useful to incorporate the selection of as few seed 

pixels as possible together with L1 optimisation in order to increase the rate of 

compression. In the case of compressively sensing the chroma components, L2 

reconstruction fails as it almost never returns a sparse solution.



Chapter 7

Chroma Reconstruction  

from Inaccurate 

M easurements

Denoising is a fundamental problem in image processing due to the fact that 

images, no matter their content, usually contain some degree of noise. This 

is often regarded as a form of image degradation and the goal of denoising 

algorithms are to form an estimate x' of the the original image x given the 

observed noisy version x*, modeled as

x * = x  +  n, (7.0.1)

where n is the matrix of the random noise pattern.

The principal causes of noise in digital images arise during image acquisition 

(digitization) and/or transmission. This can be caused by several factors such 

as low light levels, sensor temperature, electrical interference, malfunctioning 

pixels and interference in the channels used for transmission. The distribution 

of noise can be several, such as white, impulse or multiplicative, each giving its 

own characteristic form of degradation [49].

Various algorithms have been introduced with success over the past few
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decades for denoising images. The proposals, in their original form, have sparked 

an abundant literature resulting in many improvements in quality and speed. 

These algorithms can be categorized into several groups including Wavelets, Bi­

lateral filtering, Anisotropic diffusion, Total variation and Non-local methods. 

Readers are advised to see [17] and [71] for comprehensive reviews and compar­

isons of the best available versions together with powerful novel approaches.

Some recent algorithms to mention include [70] where the authors pro­

pose a unified framework for two tasks: automatic estimation and removal of 

colour noise from a single image using piecewise smooth image models. Their 

segmentation-based denoising algorithm is claimed to outperform current meth­

ods. This paper also contains an interesting introduction that discusses the 

current state of the art methods for image denoising. Another recent algorithm 

which claims to lead to excellent results is C-BM3D [34]. In this scheme the au­

thors propose an effective colour image denoising method that exploits filtering 

in a highly sparse local 3D transform domain in each channel of a luminance- 

chrominance colour space. For each image block in each channel, a 3D array 

is formed by stacking together blocks similar to it. The high similarity be­

tween grouped blocks in each 3D array enables a highly sparse representation 

of the true signal in a 3D transform domain, thus a subsequent shrinkage of the 

transform spectra results in effective noise attenuation.

The importance of denosing in image processing has also led to many com­

mercial and freely available software. These include Neat Image, Noise Ninja, 

DenoiseMyImage, Photoshop, Topaz Denoise, Gimp and many more. The pro­

grams often incorporate a host of image enhancement tools to collectively re­

move typical forms of image degradation. A full evaluation of so many programs 

is difficult, especially since each has parameters which a user can change for sub­

jective suitability. However, from general usage and reading it has been found 

that Noise Ninja and Neat Image are among the best used noise reduction pro­

grams. DenoiseMylmage is also a current alternative that uses a modified form 

of the state of the art non-local means method. Readers may view [3] for a 

comprehensive user comparison of current software.
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Denoising algorithms are usually fed a noisy RGB  image corrupted in each 

channel. Most methods have been formulated as a channel by channel or vec­

torial model. In the former case the RGB  values are mapped to a colour space 

such as YU V  or Lab or any other suitable space to separate the luminance 

and chroma, with the denoising algorithm usually applied to each band. Since 

the lu m in a n ce  channel contains the main structural information and chroma 

noise is more objectionable to human vision (as opposed to the film grain ap­

pearance of luminance noise), separation allows more intensive denoising of the 

chroma channels without too much loss of detail. These models take into ac­

count the human perception of colour and allow us to handle the particular 

characteristics of the noise affecting each component. Methods based on their 

luminance-chromatic decomposition are well known for their excellent results 

with [34] being a recent example. Furthermore, in the process of transmission, 

the reduction of bandwidth for the chroma allows errors and artifacts to be more 

easily compensated for than using a typical RGB  model.

In this chapter we propose a novel algorithm for removing noise from real 

images and also white and impulse noise from the chroma channels of an image in 

the colour space Y U V , where a good version of the Y  component is obtainable. 

(Due to the similarity of the colour components, from here on we interchangeably 

mention either the U or V channel, where analysis of the other is obtained by 

substitution). Algorithms such as those in [34], [44] and [14] have successfully 

exploited the information in the luminance channel for effectively filtering the 

chroma components. In line with this philosophy our approach utilises the non­

linear filter response distributions observed in chapter 4 as a regularization term 

(a prior, in Bayesian analysis) to penalize solutions that don’t give a desired 

sparse solution when filtered.

7.1 Reconstruction Procedure

We consider real noisy RGB  images that have been corrupted by unknown noise 

which are then transformed to the YU V  colour space. Due to the properties
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of the underlying natural colour images, such as high correlation between R, 

G, and B  channels, we note that Y  has higher SNR than U and V and that 

it contains most of the valuable information such as edges, shades, objects, 

texture patterns, etc. The U and V  contain mostly low-frequency information 

with iso-luminant regions, i.e. variation in only U and V, being unlikely. Thus 

removing chroma noise through knowledge of gray information is plausible. We 

chose to use Neat Image or DenoiseMylmage when appropriate to denoise the 

Y  channel when needed. We additionally used them as a benchmark for testing 

our algorithm. Furthermore, our algorithm is also tested against images in the 

YUV  space suffering from impulse noise only in the chroma channels.

Thus, given the noisy chroma component U* and a denoised gray image Y, 

our task is to recover a good approximation U' of the original element U. This 

model results in the following optimisation scheme,

argminu. ||F  • V ||i +  \\\U ’ -  U*\\d. (7.1.1)

Given an n x m image, (we abuse the notation a little and have) F here is an 

nm x nm  matrix whose rows correspond to filtering a single pixel where V  and 

U* are nm  x 1 column first rasterized vectors. V  is the estimate we seek of U, 

while U* is the noisy observation of U.

The first term is our penalizing function which takes small values for desir­

able solutions and the second is the fidelity term. The parameter d is taken 

to be either 2 or 1 reflecting the norms proposed in the measurement of the 

distance between the two vectors. In words, this optimisation scheme searches 

for the estimate image U’ with the sparsest filter response and with the second 

term encouraging the solution to be close to a noisy chroma measurement U*.

For an image assumed to be corrupted by Gaussian noise our reconstruction 

process involves solving (7.1.1) with d =  2, where the fidelity term encourages 

solutions to be close to the noisy version in the L2 sense. When the noise is taken 

to be impulsive and affecting the image at random points by taking extrema 

values, we solve (7.1.1) with d =  1. Modifying the fidelity term to d =  1 (i.e. 

L1 norm) has been studied with success within the Total Variation framework, 

as reviewed in [30].
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An important parameter in our algorithm is the value of A which controls 

the relative weight of the difference between the noisy channel and the solution. 

Too small a value and the optimisation results in an overly smoothed output, 

while too high a value results in a solution that is too close to its noisy version. 

We found experimentally that A 6 (0,5] gave the best results, with half-integer 

increments for optimality.

7.2 Denoising Examples

Our optimisation problem was solved using CVX [50] which is a convex pro­

gramming package implemented in Matlab. The images that we used are of 

sizes in the region of 200 x 200 pixels, which took up to a couple of minutes 

to denoise. However, our aim here is not to pose a fast algorithm but only to 

show the applicability of such a scheme for denoising chroma channels. The 

algorithm is parameterised by the value of A whose value is given in the text 

accompanying the figures.

Fig. 9.22(a) shows an example RGB  image which is made severely noisy 

by adding Gaussian noise of mean zero and variance 0.01 to all the channels as 

shown in (b). (c) shows the denoised image obtained using Neat Image and (d) 

the result obtained using DenoiseMylmage. Neat Image was used at maximum 

setting while DenoiseMylmage was used at an adjusted medium level to obtain 

the best results. Neat image still left considerable noise like artifacts in the 

image, while DenoiseMylmage gave a less noisy but much smoother output. 

The result using our algorithm is shown in (e) where we used DenoiseMylmage 

to denoise the gray component. Visually comparing the results shows that our 

algorithm gives an intermediate result which is better than using Neatlmage, 

while the colours are much more vibrant and appear sharper than when using 

DenoiseMylmage. This is also further justified by the peak signed to noise ratios 

(PSNR) which quantify the results, and shows our algorithm having a higher 

but similar value.

The next examples focus on real world images where the type of noise af­
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fecting the image is unknown. We begin with Fig. 9.23(a) which shows an 

image that is severely affected by colour noise. This is typical of an image taken 

in low light conditions with high ISO settings, (b) shows the image having 

been denoised using Neat Image. This program requires a suitable region to 

be selected for noise estimation, after which luminance and chrominance noise 

reduction can be individually adjusted. We required 100% noise reduction on 

all components due to the high amount of noise present in the image, (c) shows 

our algorithm where the luminance channel was denoised using Neat Image and 

the filter matrix F constructed from it for reconstructing the chroma channels.

(d) shows the result of using DenoiseMylmage. We observe that our algorithm 

gives similar noise reduction compared to the existing methods.

Fig. 9.24(a) has been taken from some examples given on the Neat Image 

website. This is a crop of a television frame captured with a computer TV card. 

The image has strong colour banding visible across all the image caused by the 

electric interference in the computer circuitry. Similar banding is sometimes 

observed in digital camera images (caused by interference too). The banding 

degradation does not affect the luminance, however all channels still show grain 

like noise, (b) shows the best Neat Image result obtainable by denoising the 

chroma and luminance at 100%. However, the banding is still evident in the 

result, (c) is the result of our algorithm which clearly removes the noise, (d) is 

the best result obtainable using DenoiseMylmage which is still unable to remove 

the banding noise.

Our algorithm is able to remove this type of noise by filtering only the chroma 

channels and using Neat Image for clearing the fine grain luminance noise. The 

result is free of the colour banding and (f) shows that the V  channel does not 

display any of this degradation against the V  channel when using Neat Image

(e). We are able to attain this result as we are filtering the chroma channels 

through taking account of the underlying gray level structure. Since the colour 

banding is not appearing in the luminance, minimisation of the filter response 

favours areas of homogeneous colours while the fidelity term bounds the colours 

to being close to the original.



75

The final two examples illustrate the flexibility of the model in handling 

chroma noise taking a different distribution. Fig. 9.25 shows an example of 

a clean image (a) which is transformed to the YU V  colour space and impulse 

noise of density 0.05 added to the U and V  channels only. Our algorithm with 

the fidelity term measuring L1 norm is able to denoise such that the recombined 

RGB  image shown in (b) is visually identical to the original. The detailed look 

of the chroma components reveals no sign of the impulse noise, while the PSNR 

is of a good value.

Fig. 9.25 shows another example of an image that has been corrupted by 

impulse noise and reconstructed, (a) shows the original image, (b) the RGB  

image with noise having been added to only the chroma channels and (c) shows 

our reconstructed image. The results illustrate again that noise has been suc­

cessfully removed to a very high standard with good PSNR values, and this is 

further justified by looking at the chroma channels which have had their im­

pulse noise removed. Neat Image and DenoiseMylmage are unable to effectively 

denoise the images affected by impulse noise. Instead we obtain a ‘washed out’ 

look with the impulse points still remaining. An example is shown by (d).

We have illustrated how knowledge of the statistics of natural images can be 

incorporated into an effective denoising scheme. Our objective was to propose 

a novel algorithm for removing chroma noise from digital images by operating 

in a luminance-chrominance colour space. The flexibility of the model was also 

shown by its ability to handle different types of noise very effectively. This was 

accomplished by altering the fidelity term to measure L1 or L2 norm as required, 

and shows concentration on gray level denoising gives sufficient information for 

colour channel reconstruction. In future it would be most useful to robustly test 

this approach across diverse datasets of images and also in other colour spaces 

where we may observe increased performance. We are also looking at algorithms 

for solving the optimisation scheme much more quickly and looking at applying 

the approach to denoising hyperspectral images.



Chapter 8

Discussion

This thesis has acquainted us with the fact that images of the natural world 

around us are far from random entities. They are predictable, as shown by 

the high redundancy which they exhibit. They also display non-Gaussian, high 

kurtosis distributions and the statistics of ensembles of natural images have 

been observed to be approximately scale invariant. These properties of natural 

images give us a certain level of regularity and provide stable platforms for 

image modelling. In this chapter we will summarise the main contributions of 

the thesis and present an outlook for future work, as well as possible applications 

in other related areas of signal processing.

The sparse distributions observed across databases of grayscale and colour 

images have been shown to increase the performance of image processing appli­

cations. This has been accomplished by utilising Bayesian analysis and incor­

porating the image statistics as prior information. In our work we showed how 

non-linear filtering of colour images produces highly kurtotic responses which 

build upon previous decades of work showing the sparse nature of image statis­

tics. This was empirically found to hold on our diverse dataset of images and 

also on arbitrarily chosen images obtained from standard test datasets and the 

Internet. The finding that the distributions are sparse was an important step, 

however, we also observe large variability in the shape value a  across different 

types of images. Here we can note that second order statistics involving the
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power spectra of natural scenes has already been utilised for scene classification 

objectives [97]. Additionally, it has been observed that the marginal distribu­

tions across different categories of databases have shown to exhibit similar, yet 

particular types of distributions [64]. Hence it would be interesting and useful 

to explore the average distributions, and their respective a  values, of the filter 

responses for categories of images. This information could be utilised for im­

proving the image processing applications presented in this thesis. In future we 

will also study the filter under the context of the human visual system. This 

is due to the success researchers have had with the Laplacian of Gaussian and 

Gabor filters in modelling early vision.

Our approach to colorization has been the first to couple sparse image statis­

tics and L1 optimisation for this long standing problem in image processing. 

The L 1 optimisation scheme enables users to place fewer colour scribbles on a 

grayscale image, while also producing colorization results that display sharpness 

and colour vibrancy. In future we will be looking to overcome some of the draw­

backs of the method. Namely, we would like to increase the speed of the solvers 

and automatically choose and reduce the number of points in which a user is 

required to place colour scribbles. The former problem is already being tack­

led by many researchers due to its relation to the L1 sparse recovery problem 

in compressive sensing. Already, the tool of Bregman iterations is being used 

to give fast, accurate iterations for constrained L1-like minimization problems, 

and to improve the regularization quality of nonsmooth regularizers such as L1, 

total variation, and their variants.

The presentation of a compression scheme for colour images has clearly 

shown the high redundancy found in colour data. Our algorithm utilised ear­

lier elements of the sparse nature of the non-linear filter response distributions, 

together with elements of colorization and compressive sensing. We were able 

to present two similar, but quite different, compression schemes that utilised 

sparse random binary matrices (SBRM). The first simply turned around the 

idea of colorizing a natural gray image, by storing few colour points as our 

compressed data and effectively using colorization as a mode to decompress
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the images. The second approach took compressive sensing measurements us­

ing SBRM, and utilised L1 constrained sparse recovery for the decompression 

stage. This atypical approach to compression will need to be studied further 

and it shows most promise in compressing hyperspectral images where currently 

the data transfer streams are too high for efficient processing.

The final application we presented deals with the classical problem of re­

moving unwanted noise from natural images. Here, working in a luminance- 

chrominance colour space we were able to show how information from the gray 

level image can be utilised to effectively denoise the chroma channels of an im­

age. The model utilised the sparse nature of the statistics of natural images 

as a regularisation function, and enabled us to form an L1 constrained optimi­

sation scheme. This problem was again interpretable as a linear program or a 

convex optimisation scheme and the solution showed how real images corrupted 

by noise could be effectively denoised. We also experimented with images artifi­

cially corrupted by Gaussian and impulse noise and the flexibility of the model 

to handle different noise distributions was illustrated. In future we will look to 

increase the performance of the application and explore its use in alternative 

colour spaces such as Lab.

Although substantial progress has been made over recent decades in under­

standing the complex statistical properties of natural images, we are still quite 

far from a full probability model. As an example, the existing models do not 

allow us to accurately capture the variety and complexity of natural images by 

drawing from the sample distributions. Beyond the univariate and bivariate 

densities of image statistics the computational burden of the models increases 

exponentially. Many of the models concerning natural images have described 

statistical behaviour on ensembles of images, however, their applications for 

analysis of individual images need to be clarified. Furthermore, aside from the 

applications presented in the thesis there remain many outstanding problems 

where developments in statistical understanding will be important [91].

The work presented in the thesis is a starting point for exploring filters on 

colour channels and their applications to image processing. In future the explo-
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ration of image statistics in general, and in particular, colour image statistics 

will be made. We will look to further understand natural images and propose 

models that can be utilised in a host of applications.



Chapter 9

List of Tables and Figures

This chapter gives examples and tables of results that have been used throughout 

the thesis. See the corresponding text in the chapters for additional details on 

each of the tables, sketches, graphs and images.
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(c)

Figure 9.1: A sample of raw images taken from the van Hateren database. These are the 

images actually recorded by the camera before any artificial processes are applied such as 

gamma correction. The images are very dark, and may not be of sufficient contrast when 

printed.
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(c)

Figure 9.2: Here are the same pictures in figure 9.1, but after performance of auto-correction 

using Microsoft Picture Manager, where we are able to see much more detail in the images.
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Figure 9.3: We show here the single pixel distribution of intensity values over the whole van 

Hateren database. The plot is of the ln(histogram) of random variable ln(<j>(i,j)) - <  (ln(<j>)) > . 

We observe this database statistic to  be non-Gaussian-explained by the linear tail on the left 

and the jagged tail on the right. The kurtosis value is also observed to be higher than that of 

the Gaussian (see text). (Figure obtained from [60]).

-14

-18

-20.

Figure 9.4: We plot here the random variable D  =  ln(<j>(i,j)) — ln(<f>(i,j +  1)). This is the 

log difference of the intensity between two adjacent pixels in a row, and is computed across 

the whole image and for all images from the van Hateren database. We observe the often seen 

high kurtosis non-Gaussian distribution which has been commonly found to hold over many 

different datasets of natural images. (Figure obtained from [60]).
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Figure 9.5: The above graphs plot the difference function D (x ,y) = <  y )  — <£(0 , 0)|2 >  

and also illustrate a pair of cross sections. The top left shows the contour map of the 

differences, while the top right image shows us the three dimensional mesh plot formed. 

Taking the horizontal and vertical cross sections we obtain the bottom two graphs which 

show that the cross section along the vertical falls much more steeply than that along 

the horizontal. These plots correspond to evaluating the following difference functions, 

D (x,0) = <  \<f>(x, 0) -  <£(0,0) | 2  >  and D (0,y) = <  |<£(0,y) -  <£(0,0) | 2  > . (Figure obtained 

from [60]).
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Figure 9.6: This graph shows the plot of the horizontal cross section of figure 9.5. It is 

plotted on a log-log scale. For pixel distances of 4 to 32, on the log scale we have 2 and 5, we 

observe that the derivative is close to  a straight line with a slope —1.19. For larger distances 

the log — log plot begins to turn and becomes almost a horizontal line around log  distance 8. 

(Figure obtained from [60]).
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Figure 9.7: We plot the average value of the one dimensional difference function over the 

pixel range 0 — 32 and over 5 million pixels from the van Hateren database using 1400 images. 

The line of best fit is made using model 2.3.9 and the value of rj is found to be 0.19. (Figure 

obtained from [46]).
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Figure 9.8: We plot here the average one dimensional difference function values obtained for 

four single images over the pixel range 0 — 32. We obtain a power law fitting for each of the 

images although the individual eta values for the images vary. FYom top left and clockwise: 

Image 1401, rj =  —0.2, Image 262, eta =  —0.05, Image 712, e ta  =  1.01, Image 59, eta =  0.04. 

(Figure obtained from [46]).
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Figure 9.9: The histogram of the individual image r? values is shown. We observe a relatively 

wide distribution giving more weight to relatively higher values of 7), and a maximum in the 

vicinity of 7/ =  0. We can also conclude that the database 77 value is not representative at 

all of the image 77’s with the distribution of the anomalous dimension being non-Gaussian. 

The following statistics are associated: Mean =  0.155, Variance =  0.21, Skewness =  —0.28, 

Kurtosis =  2.9, Kurtosis Excess =  —0.1. (Figure obtained from [46]).
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Table 9.1: Statistics of the non-linear filter response for our sample images using the first 

weighting function (4.1.2).___________________________________________________

Image U filtered response V filtered response

ocu ku Su a y ky S y

balloons 0.695 11.23 -0.17 0.624 14.23 0.03

indoors 1.11 5.22 -0.05 0.619 14.45 0.16

houses 0.624 14.18 -0.39 0.633 13.74 0.68

sky 0.344 94.00 0.64 0.328 114.87 -2.58

objects 0.54 20.35 0.68 0.662 12.43 -0.08

seaside 0.539 20.44 0.63 0.491 26.60 0.09

night 0.944 6.52 0.03 0.561 18.37 0.13

nature 0.745 9.76 -0.11 0.826 8.11 0.26

Table 9.2: Statistics of the non-linear filter response for our sample images using the second 

weighting function (4.1.3).

Image U filtered response V filtered response

Ctu ku Su a y ky Sy

balloons 0.685 11.57 -0.19 0.624 14.19 -0.01

indoors 1.094 5.31 -0.07 0.599 15.62 0.16

houses 0.61 14.98 -0.41 0.607 15.14 0.76

sky 0.339 99.38 0.78 0.321 126.27 -2.48

objects 0.534 21.02 0.62 0.654 12.79 -0.07

seaside 0.54 20.39 0.60 0.489 26.84 0.14

night 0.931 6.66 0.07 0.556 18.85 0.18

nature 0.736 10.00 -0.07 0.811 8.37 0.26
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Figure 9.10: Geometry of L 1 and L 2  recovery algorithms, (a) shows the L 1 ball of radius 

r with the orange region defining the area where a  €  K2  such that |a ( l)  4 - a (2 )| <  r. (b) 

illustrates the solution of the L 1 minimisation scheme 3.3.3 which recovers sparse vectors such 

that 4>c*o =  y- We clearly observe that the anisotropy of the L1 ball intersects the space H  

(of points a  : <$a =  y ) at »o- Note that the descent vectors h  pointing into the L1 ball from 

ao will be concentrated on the support of a<). In (c) we see that finding the intersecting point 

with the space H  that has minimum L 2  norm results in the solution which is not generally 

sparse. (Figures obtained from [83]).
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Figure 9.11: Here we display a sample of 8  pictures taken from our dataset of 25 images. 

In order to give a measure of robustness to our findings we chose pictures covering a wide 

spectrum of natural scenes, ranging from natural landscapes to urban environments. Images 

shown here are all truecolour RGB obtained by a Canon digital SLR camera of varying reso­

lutions in uncompressed bitmap format, and reduced to sizes in the region of 2 0 0 x2 0 0  pixels 

using Adobe photoshop.
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(a) balloons U (b) balloons V

(c) objects U (d) objects V

Figure 9.12: Filter response of each of the colour channels, U and V, of two of our sample 

images, ‘balloons’ and ‘objects’, using the first weighting function (4.1.2).
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Figure 9.13". Distribution of the filter response for both chromacity channels U and V for 

the image ‘balloons’ from figure 9.11 using the first weighting function (4.1.2).
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Figure 9 .14: Distribution of the filter response for both chromacity channels U and V for the 

image ‘objects’ from figure 9.11 using the first weighting function (4.1.2). The non-Gaussian, 

high kurtosis distribution is clearly observed and is typical of the images used in our dataset.
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Figure 9.15: Here we show in blue the histogram of the filter response of the U  component of 

image ‘balloons’. This distribution is typical of natural images and is shown with the vertical 

axis on a log scale to better show the nature of the tails. Fitted to the data is the GGD 

distribution that takes the form of a sparse distribution function. For comparison we have 

also overlaid the parabola shaped Gaussian distribution which illustrates the difference in the 

tails between the two models.
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(a) (b)

(c) (d)

Figure 9.16: Colorization example, (a) The gray image marked by a sparse set of colour 

pixels; (b) the original image for reference; (c) colorization using L2  optimization; (d) L 1 

optimization. Here we have colorized using a sparse set of arbitrarily placed marked pixels. 

We observe more vibrancy in the colours in (d) against the general ‘washed out’ look of the 

colorization in (c). Colour blending is also apparent, especially in the green leaves (at the 

bottom and centre left) which have taken a red tinge from the pink petals and the red roses. 

Overall we have a sharper result and not an oversmoothed output as usually is the case for 

assuming a Gaussian prior.



Figure 9.17: Colorization example. Here we have a comparison of the visual quality pro­

duced by L1 and L 2 optimization, (a) is an example gray image marked by a sparse set of 

coloured pixels arbitrarily placed; (b) the original colour image for reference; (c) shows col­

orization using L2  optimization; (d) L 1 optimization. We observe a more accurate colorization 

in (d), e.g. the red balloon in the centre of the image is correctly colorized against the purple 

colorization in (c). We also observe more vibrant and sharper colours in (d) over (c).
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(c) (d)

Figure 9.18: Here we compare the visual quality produced by L 1 and L 2  optimization, (a) 

is a gray image marked by a sparse set of coloured pixels arbitrarily placed; (b) the original 

colour image; (c) shows colorization using L 2 optimization; (d) L 1 optimization. We observe 

colour blending between the red and green in the L 2 approach whilst L 1 colorization creates 

an almost indistinguishable image from the original.
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(c) (d)

Figure 9.19: Here we have an image from the paper by Levin where we now colorize using 

a sparse set of marked pixels, (a) is the marked gray image; (b) the original colour image 

for reference; (c) shows colorization using L2 optimization; (d) L1 optimization. Again we 

observe an overall ‘washed out’ result using the L2 approach against the sharper and more 

accurate result using L1 minimisation. As examples we see that the cushion in the background 

has had its blue colour blended with the brown from the boys hair and the yellow from the 

t-shirt. The child’s left eye is also incorrectly colorized brown instead of blue. There is an 

overall loss of colour vibrancy in the image.
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(c) (d)

Figure 9.20: Here we compare the visual quality produced by L 1 and L 2 optimization, (a) 

is a gray image marked by a sparse set of coloured pixels arbitrarily placed; (b) the original 

colour image for reference; (c) shows colorization using L 2 optimization; (d) L1 optimization. 

We observe in particular that the blue feathers of the bird on the left have had their colours 

blended with the green and yellow, also the red feathers of the bird on the right exhibit much 

more colour vibrancy. This example illustrates the colour sharpness and vibrancy obtained 

using L 1 optimization over L 2.
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(e) (f)
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(g) (h)

Figure 9.21: Chromacity channel compression, (a) the original image; (b) reconstruction 

from 5% of random seed measurements, (c), (e) and (g) original images; (d),(f) and (h) 

reconstruction from 5% of compressive sensing measurements. PSNR: (b) 31.81, (d) 38.91, 

(f) 31.87, (h) 32.76.
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(d) (e)

Figure 9.22: Denoising example, (a) shows the original image, (b) the image with Gaussian 

noise added to all R G B  channels, (c) is the result using Neat Image at maximum filtering, 

(d) shows the denoising result using DenoiseMylmage. (e) is the result obtained using our 

algorithm. PSNR: (c) 26.69, (d) 26.35, (e) 27.20 (A =  5)
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Figure 9.23: Real image denoising example, (a) is an image that has been affected by severe 

chroma noise resulting in the appearance of ‘blotches’ of colour, (b) shows the denoised image 

obtained using Neat Image and (c) is obtained using our algorithm, (d) is the result obtained 

using DenoiseMylmage. We observe that all the reconstructions Eire visually similar. (A =  0.5)



104

(a) (b)

M
(c) (d)

(e) (f)

Figure 9.24: Real image denoising example, (a) shows an example image affected by chroma 

noise that appears as bands in the colour channels, (b) is the result obtained using Neat Image 

which still leaves evident colour banding, (c) is our result which is able to remove the noise 

leaving a clean image as the colour banding does not correlate with the luminance structure,

(d) is the best result obtained using DenoiseMylmage. (e) shows the banding still remaining 

in the V  channel of the image when using Neat Image, while (f) clearly shows that the banding 

structure has been removed in our reconstructed V  channel. (A =  0.1)
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(d) (e) (f)

Figure 9.25: Impulse noise removal example, (a) shows the original image and (c) and (e) 

illustrate the colour channels with impulse noise added, (b) is the reconstructed image which 

does not display the impulse noise and is visually identical to the original, (d) and (f) shows 

the denoised chroma channels which have had their noise successfully removed. PSNR: (b) 

37.68. (A =  0.5)
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(d) (e) (f)

Figure 9.26: Impulse noise removal example, (a) shows an original colour image and (b) a 

noisy version that has had impulse noise added to the chroma channels in the Y U V  space, (c) 

is our reconstructed image which is virtually identical to the original, (d) is a typical result 

obtained using Neat Image or DenoiseMylmage. The impulse noise affecting the chroma is 

illustrated by (e) while the success of our algorithm for impulse removal is shown by (f). 

PSNR: (c) 42.20. (A =  0.5)
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Short details

• AES operates on a 4+4 array of bytes.
• For encryption, each round of AES (except the last round) consists of four stages: AddRoundKey, 

Subbytes, Shift rows and Mix columns.
• At each stage, the bytes are manipulated and processed for the next level.

Crytography API: Next G eneration(CN G )

CNG provides a set of APIs that are used for performing basic cryptographic operations, such as 
creating hashes, encrypting, and decrypting data.

Each algorithm class in CNG is represented by a primitive router. Applications making use of the 
primitive APIs will link to the router binary (Bcrypt.dll in user mode, or Ksecdd.sys in kernel mode), and 
make calls to the various CNG primitive functions. All of the algorithm primitives are managed by 
various router components. These routers keep track of each algorithm implementation that has been 
installed on the system. The router will route each function call to the appropriate primitive provider 
module.

The following illustration shows the design and function of the CNG cryptographic primitives.

Win32 application Protocol providers
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CNG provides primitives for the following classes of algorithms:

• Random Number Generator: This class is used to represent pluggable random number generation 
(RNG).

• Hashing: This dass represents algorithms used for hashing, such as SHA1 and SHA2.
• Symmetric encryption: This dass represents algorithms used for symmetric encryption. Some 

examples are AES, 3DES, and RC4.
• Asymmetric encryption: This dass represents asymmetric (public key) algorithms that support 

encryption, like RSA.
• Signature: This dass represents signature algorithms such as DSA and ECDSA. This class can also 

be used with RSA.
• Secret Agreement: This class represents secret agreement algorithms such as Diffie-Hellman 

(DH) and elliptical curve Diffie-Hellman (ECDH).

U s i n g  t h e  c o d e

Using a RSA CryptoService Provider (CAPI)

In CAPI, all cryptographic algorithms are predefined in wincrypt.h which makes it very difficult to 
extend cryptographic functionality to suit your application's need. Adding a custom symmetric algorithm 
is not easy. Secondly the CAPI requires Microsoft to sign the implementation, so that it can be a part 
of a security namespace.

Encrypt and Decrypt in a traditional way, with RSACryptoServiceProvider.

R SA C ryptoServiceProvider MyAsymmetricAlgorithm 
byt e [ ] P la in T extB ytes  ; 
by te  I] C ipherT extB ytes;

El Collapse | Copy Code 

new R S A C ryptoServiceP rovider( ) ;

p r iv a te  v o id  E n cry p t()

{
P la in T extB ytes  « System .T ext.E ncoding.U T F8.G etB ytes(T extB oxO riginal.Text) ; 
C ipherT extB ytes -  MyAsytmnetricAlgorithm.Encrypt (P la inT ex tB y tes, t r u e ) ;
TextB oxEncrypted.Text -  TextBoxEncrypted.Text +
+ C onvert .ToB aseS4String(CipherTextBytes) ;

Show PublicPrivate( ) ;
/ /  r e s t  o f  th e  code removed fo r  b r e v i t y

}
p r iv a te  v o id  Decrypt 0  

{
P la in T extB ytes  « MyAsymmetricAlgorithm.Decrypt (C ipherT extB ytes, t r u e ) ;  
T ex tB oxO rig inal. Text -  System. T ex t. Encoding. UTF8 .G e tS tr in g  
(P lainT extB ytes) ;

}
p r iv a te  v o id  Show PublicPrivate!)

{
RSAParameters MyParameters = new RSAParameters( ) ;
M yParameters = M yA sym m etricA lgorithm .ExportParam eters(true) ; 
TextBoxPrivateK ey.Text « C onvert.ToB ase64String(M yParam eters.D ) ; 
TextBoxPublicKey.Text « C onvert.ToB ase64String(M yParam eters.M odulus);

&
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