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ABSTRACT

This study investigates the genetic and parasite diversity of two primate species living in the 

Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah, Malaysia. Based on non-invasive 

samples (faeces), the effects of forest fragmentation and geographical barriers, especially the 

Kinabatangan River, on these two species of primates with different social systems and dispersal 

abilities were examined. While the proboscis monkey is an endangered primate, the long-tailed 

macaque is considered one of the most successful invasive alien species. The genetic diversity 

and the potential effect of the Kinabatangan River on the population structure were examined 

using microsatellites and a microsatellite library specific for the proboscis monkey was developed 

during this study. High and moderate levels of genetic diversity were found for the long-tailed 

macaque and the proboscis monkey respectively. As predicted from the dispersed pattern of these 

primates, microsatellite analysis revealed low genetic differentiation among sites, suggesting high 

levels of gene flow as well as regional admixture with one genetically-based cluster inferred from 

Bayesian analyses. In addition to the neutral genetic marker, as a preliminary approach to study 

adaptive genetic variation in these populations, Mhc-DRB loci were identified in both species 

using generalist -DRB primers. High levels of diversity and evidence of positive selection were 

found in the long-tailed macaque sequences, which included representatives of several -DRB 

loci/lineages according to phylogenetic analyses. In contrast, only five -DRB sequences were 

detected in the proboscis monkey, all belonging to a single -DRB locus; although few, these are 

the first MHC reported sequences for this species. MHC variability is believed to be maintained 

by pathogen-driven selection, mediated either through heterozygote advantage or frequency- 

dependent selection. Using the same samples as for the genetic analysis, a survey of the 

gastrointestinal parasite fauna of both primates revealed 14 taxa. Parasite richness was higher in 

proboscis monkeys, and prevalence of particular parasites differed between the primates. 

Potential effects of natural and anthropomorphic mediated habitat fragmentation on parasite 

species richness, proportion of individuals with mixed infections and the prevalence of particular 

parasites between the two primate species were explored. Natural fragmentation (the 

Kinabatangan River) did not affect parasite distribution. Although it was expected that areas with 

high rates of human -  non-human primate contact would have a positive correlation with the 

assessed parameters this was not always the case as host-parasite dynamics are likely to be 

affected by complex interactions between environmental, and host demographic, behavioural 

and genetic factors.

The results of this study can be used as a baseline for conservation and management measures 

for the proboscis monkeys and long-tailed macaques of the LKWS.
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Chapter 1: Introduction

CHAPTER ONE 

Introduction
This study aims to assess the interaction between habitat loss and fragmentation on the 

population genetic structure (based on microsatellite markers and MHC genes) and endoparasite 

diversity of long-tailed macaques (Macaca fascicularis) and proboscis monkeys (Nasalis larvatus) 

in the Lower Kinabatangan Wildlife Sanctuary (LKWS). The Kinabatangan region in Sabah, 

Malaysia, is a major wildlife conservation area. Its broad habitat diversity harbours rare and 

endangered animals, including 10 primate species. Logging and changes in land use in the region 

led to the creation of the LKWS in an effort to preserve the natural resources and wildlife from 

further over-exploitation and extinction. As part of ongoing conservation efforts in the sanctuary, 

orang-utans, proboscis monkeys and long-tailed macaques have been studied at the population 

genetic level with the intention of incorporating the resulting data into long-term conservation 

management programs (Goossens et a/., 2005, 2006a; Jalil, 2007), already with success in the 

case of orang-utans (Orangutan Action Plan, Sabah Wildlife Department, 2010). However, these 

studies focused only on neutral genetic variation and, even in that context, are still incomplete for 

proboscis monkeys and long-tailed macaques. Given the need for an assessment of the viability 

of the remaining populations and their responsiveness to environmental pressures, studies 

regarding adaptive genetic variation and about specific selection pressures upon them, such as 

parasites, are more than pertinent. The geography, biodiversity of the LKWS, as well as the 

impact of habitat degradation on the study site are described in this chapter along with 

conservation measures taken. The ecology and previous genetic studies of the two primates are 

also reviewed. Additionally, the utility of different molecular markers and the suitability of non­

in vasive sources of DNA for population genetic studies are considered. In the context of 

conservation, the role of parasites as a cause of wildlife declines, with special emphasis on 

primates is also addressed in this section. Finally, the hypotheses I aimed to test and a description 

of the layout of the thesis are presented at the end of the chapter.

1.1 The Lower Kinabatangan Wildlife Sanctuary

The Kinabatangan River is the longest river in Sabah and its floodplain is of major importance as 

a wildlife conservation site. The region consists of a variety of habitats, such as riverine forest, 

seasonally flooded forest, swamp forest, dry dipterocarp forest, nipah palm and mangrove. Being 

so diverse, it is a key region for some of Southeast Asia's rarest animals, such as the Bornean 

elephant and the estuarine crocodile. It is also one of only two places on earth where 10 primate

1



Chapter 1: Introduction

species are known to live in sympatry (WWF -  Asia/Pacific, 2005). Over the past 40 years, the 

forest surrounding the Kinabatangan River has been extensively logged and replaced by oil palm 

plantations with notable effects on wildlife populations (e.g. Goossens et a/., 2005, 2006a). These 

activities could also pose new threats to these species in terms of the emergence of infectious 

diseases.

1.1.1 Geography

The Kinabatangan River is located in the state of Sabah, Malaysia, on the island of Borneo (Fig. 

1.1). Its catchment area covers almost 23% of the total area of Sabah. The main channel length 

is approximately 560 km and flows eastwards towards the Sulu Sea, draining an area of about 

16,800 km2, of which about 3,000 km2 forms the coastal plain and 13,800 km2 forms the upper 

catchment (Regip et a/., 2004). The Millian River and the Kuamut River are the main tributaries 

of the Kinabatangan. Its floodplain is the largest still forested in Sabah, and contains some of the 

most important remaining freshwater swamp rainforests and oxbow lakes in South East Asia, 

meaning that the river is geomorphologically active. The mean annual rainfall in the catchment is 

about 2500 mm, although some zones receive up to 3000 mm. Rainfall is heaviest during the 

north-east monsoon (October -  March) which results in substantial floodings. Daily temperatures 

fluctuate between 23°C to 32°C, with almost no monthly variation (Vaz, 1997). Both, climate and 

rainfall directly influence the diverse habitats and wildlife along the river.

Kinabatangan River Basin

MALAYSIA

Borneo

INOONESIA

SABAH

Kota

Figure 1.1. Map of the Kinabatangan River Basin (http://assets.panda.org/img/original/kinabatanganmap.
gif)
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Chapter 1: Introduction

1.1.2 Wildlife

The vegetation in the area is distributed according to its resistance to the frequency of flooding, 

salinity and waterlogging. Therefore, a variety of habitats can be found along the river and 

catchment area. The mouth of the river is predominantly covered by mangrove forests. Above 

the tidal and brackish waters, riverine forest develops along the main channel. Scattered across 

the floodplain, freshwater swamp forests develop on soils that are permanently or occasionally 

flooded. Additionally, about 30 oxbow lakes are distributed along the region (Davison, 2002). 

Limestone outcrops (karsts) from sparse higher elevation features throughout these lowlands. 

Away from the river, on drier land, the main primary vegetation is dryland forests comprising 

dipterocarp trees, however, these forests have been replaced by oil palm plantations almost 

entirely (Vaz, 1997) and what remains is heavily degraded and/or isolated as extensive logging 

and fires have spread in the region (Majail & Webber, 2006). Nevertheless, the broad habitat 

spectrum in the Lower Kinabatangan supports a high diversity of fish, birds, reptiles and 

mammals, some of which can only be found in Borneo. However, perhaps the most notable 

group of mammals in the region is the primates (Rautner et al., 2005).

The primate fauna of the Kinabatangan includes a strepsirrhine (slow loris), seven catarrhines 

(proboscis monkey, two species of macaques, three species of leaf monkeys (langurs), and a 

tarsier), one lesser ape (gibbon) and one great ape (orang-utan) (Davison, 2002). The tarsier 

(Tarsius bancanus) and slow loris (Nycticebus coucang) can be found in tall and secondary forest, 

and sometimes in gardens and cocoa plantations. Langurs have settled in different niches to 

equitably share resources. Red (Presbytis rubicunda) and Hose’s (P. hosei) langurs tend to 

occupy tall lowland dipterocarp forests (and are endemic to Borneo), while silvered langurs (P. 

cristata) tend to occupy secondary forests and swampy areas. Long-tailed and pig-tailed 

macaques (Macaca fascicularis and M. nemestrina) have adapted to surviving in secondary and 

logged forests, thus they are the most abundant primates in the region. In contrast to the 

macaques, the one colobine of the region, the proboscis monkey (Nasalis larvatus), is more 

affected by logging as its dietary requirements restricts it to riverine, peat swamp and mangrove 

forests. The apes of the region, the Bornean gibbon (Hylobates muelleri) and the orang-utan 

(Pongo pygmaeus), can be found in hill and lowland dipterocarp forests (Vaz, 1997), and seem 

to adapt well to logged and degraded forests (Ancrenaz et al., 2004; Ancrenaz et al., 2010, 

Rautner et al., 2005). However, all of these primates are threatened to some extent by habitat 

loss and other human activities.

3



Chapter 1: Introduction

1.1.3 Human activity and its consequences in the region

Human settlements and activities have been recorded for centuries in the Kinabatangan (Payne, 

1989). The river has traditionally been used for transport, trade and communication by the 

Orang Sungai (people from the river). Nowadays, Malaysia is the world’s leader in palm oil 

production and, consequently, the ecosystem has been drastically modified (Rautner et al.,

2005), especially in the Kinabatangan. Pollution and threat to wildlife due to habitat loss are 

some of the negative effects of such changes (Regip et al., 2004; WWF Malaysia, 2003). As a 

consequence, management plans for conservation and sustainable use of resources are now 

being developed and implemented (Payne, 1989; Davison, 2002; Regip et al, 2004).

Since the 1950s, the Kinabatangan forests have become degraded and have been largely 

replaced with oil palm plantations. Some forest reserves were established in the 1960s for 

selective logging and natural regeneration, but a decade later they were redesignated for 

conversion to permanent agriculture, except for a few small forest reserves (Vaz, 1997). From 

then on, the land has been used to plant oil palms, which makes the oil palm industry the second 

major stakeholder in the region along with the Orang Sungai (WWF Malaysia, 2003). Today, 

about 20,000 of the 65,000 ha susceptible to flooding have been cleared for agriculture and the 

Kinabatangan landscape now consists of patches of protected forest surrounded by oil palm 

plantations and secondary forest (Davison, 2002; Rautner et al, 2005). Habitat loss and 

fragmentation of forest habitat has resulted in many wildlife species being restricted to narrow 

riparian corridors. Consequently, conflict between wildlife and local people has increased, 

especially during flooding episodes when animals move to higher grounds (WWF Malaysia, 

2003). Conflicts include the destruction of property and plantation crops by elephants and the 

recurrent negative interactions (i.e. crop raiding) between people and primate fauna.

1.1.4 Conservation Programs

The Lower Kinabatangan Wildlife Sanctuary (LKWS) was fully gazetted in 2005 thus reflecting 

the conservation efforts made since the middle of the last century. From the 1930s to the 1970s 

some areas in the region were designated Virgin Jungle Forest Reserves (CAIMS, 2005), 

however, they were not connected. Hence, a proposal to establish a Kinabatangan Wildlife 

Sanctuary was made in the late 1980s (Payne, 1989). The aim was to create a large (44,300 ha) 

sanctuary including the virgin forest patches and other sites of special interest, and enhance the 

value of the area for conservation of (especially) large, wide-ranging animals. However, at that 

time the proposal did not succeed. Over the next decade efforts in creating a sanctuary continued 

and in 1999, 26,000 ha of the floodplain were designated as a “Gift to the Earth” by the State 

Government (WWF Malaysia, 2003). Efforts continued to create a “Corridor of Life” connecting
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10 disconnected forest patches (Lots), where “people, wildlife, nature based tourism, and forest 

industries thrive and support each other” (Pang & Prudente, 2003), and six of 10 proposed lots 

were gazetted as a Bird Sanctuary under the Land Ordinance (Environmental and Conservation 

Workgroup, 2001). In 2002, the proposed LKWS was gazetted under the Land Ordinance, 

comprising 10 lots (with lot 10 divided in A-C) (Pang et al., 2002), however the aim was to fully 

gazette the sanctuary under the Wildlife Conservation Enactment 1997. Work continued and 

habitat restoration began to re-join the forested areas by planting native trees to serve as 

corridors for the movement of some species of wildlife (Davison, 2002). In parallel, an Integrated 

River Basin Management Plan was proposed for the sustainable management of land and water 

resources to reduce the impact of erosion and flooding (Mathew, 2004). Finally, in 2005, the 10 

lots of the LKWS (26,103 ha) were completely re-gazetted under the Wildlife Conservation 

Enactment 1997 (Pang et al., 2005) (Figure 1.2). The vision for this sanctuary in terms of 

conservation is “the stabilization of wildlife populations” by 2020 (Majail & Webber, 2006).
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Figure 1.2. Map of the Lower Kinabatangan Wildlife Sanctuary (Courtesy of HUTAN). The ten Lots of the 
sanctuary (depitcted in darker green) are distributed along the North and South side of the Kinabatangan 
River (sinuous blue line).

In the case of primates, the necessity of establishing a monitoring system for detection of 

population trends over time has been already stated (Goossens et al., 2003a). Recent studies of 

some primate populations have led to the design and implementation of management measures 

necessary to ensure their long-term survival in the sanctuary (Ancrenaz et al., 2003; Goossens et 

al., 2005). In the case of orang-utans, molecular analysis of mitochondrial and nuclear DNA 

variation have clearly shown substantial genetic differentiation between populations on either
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side of the river (Goossens et al., 2005; Jalil, 2007; Jalil et al., 2008). Therefore to augment 

genetic diversity, there is a need to facilitate migration of orang-utan populations between lots in 

the sanctuary. To accomplish this, it has been proposed to restore forest corridors alongside the 

river banks and between lots, and also to translocate individuals from opposite sides of the river 

(Goossens, et al., 2005), thus reducing the chance of extinctions providing that the habitat is also 

maintained.

Although many metapopulation models show that increasing movement among populations 

reduces the chances of metapopulation extinction, epidemiological models indicate that 

increased contact among populations enhances the spread of disease and can trigger epidemics 

(Hess, 1996). This could be done by introducing diseases or parasites to previously naive 

subpopulations, or by lowering the fitness of recipient populations through the introduction of 

alleles that are maladapted to cope with such challenges, or by the breaking of coadapted gene 

complexes (Reed, 2004). With that in mind, it is important to also monitor the status of wildlife 

diseases in the LKWS.

1 .2 Study subjects

1.2.1 The long-tailed macaque (Macaca fascicularis Raffles, 1821)

The genus Macaca is the most widespread from the Cercopithecidae family. It is distributed from 

North Africa to Japan and it inhabits a broad range of habitats. Ten macaque species inhabit the 

Indonesian archipelago and according to geographical distribution are grouped in three distinct 

phylogenetic lineages: silenus-sylvanus, sinica-arctoides and fascicularis (see Abegg & Thierry,

2002). The long-tailed macaque (M fascicularis) is grouped in the fascicularis lineage along with 

the rhesus macaque (M. mulatto), the Formosan macaque (M. cyclopis) and the Japanese 

macaque (M. fuscata) (Abegg & Thierry, 2002). Adults are sexually dimorphic with males 

weighing 5 -  7 kg and females 3 -  4 kg (Aldrich-Blake, 1980; Harcourt & Schwartz, 2001).

Long-tailed macaques inhabit a variety of forest habitats throughout their native range, preferring 

edge habitats and riverine areas, but can also be found in village areas (i.e. disturbed habitat). 

They are considered a pest in some areas of the region because of their raids on fields and 

gardens and depredations on crops, and for that reason they are often killed (Long, 2003; van 

Schaik et al., 1996). They have been listed as one of the 100 most invasive alien species with 

successful invasions in Sulawesi, Lesser Sunda, Palau, Mauritius, Papua New Guinea and Hong 

Kong (Long, 2003; Lowe et al., 2000) as they are omnivorous and opportunistic feeders. These 

monkeys are well equipped to successfully disperse over water barriers, and rely mainly on
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riverine and coastal forests including mangroves. They often feed and sleep in preferred trees 

above rivers, high above ground as a protection against predators (Abegg and Thierry, 2002). 

They are diurnal and can be totally or semi-arboreal, moving through the forest canopy and on 

land quadrupedally, but are also considered good swimmers (Richard, 1985). In Sumatra, long­

tailed macaques occur at high densities in selectively logged forest, secondary forest and 

cultivated land (Supriatna et al, 1996).

The social structure of long-tailed macaques is usually a multimale-multifemale group, where 

females and juveniles tend to be related and organized in a hierarchical matriline (de Ruiter & 

Geffen, 1998) where dominant males appear to father the majority of offspring (de Ruiter et al. 

1994; Engelhardt et a l, 2006). However, dominant males also seem to share mate guarding and 

mating with the dominant male of adjacent groups (Engelhardt et al, 2006). Females are 

philopatric, while males migrate at maturity and join other groups, and dispersing males have 

been observed to swim across rivers in Sumatra (de Ruiter & Geffen, 1998). New groups may be 

formed by fission of a large group (implying female dispersal), which will be dominated by an 

alpha male (ibid).

In the Kinabatangan, Goossens et al (2003a) observed a social structure of multimale- 

multifemale with group sizes of 10-48 and occasionally up to 100 individuals; solitary males were 

also observed. They utilised a home range of 25-200 ha, with a population density of 6.34 

individuals/km2. Long-tailed macaques were seen ranging along riverbanks, particularly when 

water levels were low during the dry season where they can be seen fishing for crabs (hence their 

other common name, the crab-eating macaque). According to the same study the population size 

in the LKWS is approximately 3170 individuals, and this more likely be an underestimate than an 

overestimate (Goossens et al, 2003a).

1.2.2 The proboscis monkey (Nasalis larvatus van Wurmb, 1787)

Nasalis larvatus is a large, sexually dimorphic, arboreal monkey, endemic to the island of Borneo 

with no evidence that it has ever occurred elsewhere (Harcourt & Schwartz, 2001; Meijaard & 

Nijman , 2000; Payne & Francis, 1998). This species rarely ranges far from rivers, is restricted to 

lowlands and is typically associated with coastal forest, including mangroves, and riverine peat 

swamp and fresh water swamp forests (Kawabe & Mano, 1972; Meijaard & Nijman, 2000). It has 

been reported that the only large populations in Sabah occur in the fresh water wetlands of the 

Kinabatangan flood plain, and around Dewurst Bay in the Eastern Deltas (Meijaard & Nijman, 

2000), however, they also occur in other parts of the State as seen in Figure 1.3 (Sha et al, 

2008). Currently, the proboscis monkey is threatened by habitat destruction and hunting, and
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much of its former range has been reduced due to logging (e.g. in Kinabatangan), swamp 

reclamation, gold mining, shrimp farming and forest fires (Meijaard & Nijman, 2000; Sha et al., 

2008). Hunting is much in evidence in Sarawak and Kalimantan (Meijaard & Nijman, 2000). Its 

conservation status has changed over the past ten years from vulnerable to endangered 

according to IUCN (2010). It is currently listed in Appendix I of CITES (UNEP-WCMC, 2010) 

and is protected by law throughout its range (Meijaard & Nijman, 2000; Sha et al., 2008).
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Figure 1.3. Distribution of proboscis monkey in Sabah (taken from Sha et al. 2008, with permission from 
the authors). “Survey” indicates locations of sightings from that study, “Literature and interviews” indicate 
sightings from literature, interviews and other sources that were not verified in that study. “Boxed” areas 
are identified major centres of continuous distribution. Numbers correlate to those in Table 1 of the same 
study.

This species belongs to the sub-family Colobinae which includes at least 30 species classified into 

9 genera (Murai et al., 2007). These species are characterized by a multi-chambered stomach 

that is an adaptation to the digestion of foliage (ibid). Of all colobine monkeys, the proboscis 

monkey presents the most distinct sexual dimorphism. Adult males have the largest body size of 

all the colobine species, and their noses are long and overhang their mouth, while adult females 

are about half the weight of males and have much shorter noses (Murai, 2006).

Proboscis monkeys have a flexible social structure. Harems (consisting of a single male and 

several females with their offspring) are predominant, while young males usually emigrate from 

their natal groups, subsequently forming all-male groups (consisting of juveniles, adolescents and 

adult males); solitary males are rare (Bennett & Sebastian, 1988; Boonratana, 2000, 2002; Murai
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et al., 2007; Yeager, 1995). Males as young as 18 months will leave their natal group and join an 

all male group. In general, groups consist of three to 30 individuals and both types of groups (one 

male and all-male) usually come into close proximity during the evening as they migrate close to 

rivers to sleep in trees (Bennett & Sebastian, 1988). Non-breeding groups are loosely bonded, 

predominantly male groups with up to one female member (Boonratana, 2000). There is a 

secondary level of organization, the band, with fission-fusion of stable one-male groups within 

bands. Several one-male groups will often form a multilevel society, and male replacement seems 

relatively peaceful compared to other colobines, without any evidence of fighting (Murai, 2006).

In addition to male emigration, female transfer has also been confirmed by observed changes in 

group composition (Murai et al., 2007). Female transfer has been observed in several groups of 

folivorous primates (e.g. Alouatta sp. and the Colobinae). Proboscis monkeys’ adult females will 

sometimes leave their natal single male group to join another group, but may later re-join their 

original natal group (Bennett & Sebastian, 1988; Murai, 2006). Subadult and juvenile females 

are often found temporarily in otherwise all-male groups and will copulate with them (Murai et 

al., 2007). Resident adult males are indifferent to transfers of the subadult females; whereas they 

call out to adult females who move from their group to another, and recouping is not aggressive. 

This transfer behaviour suggests that females need to disperse from their natal groups before 

reaching full maturation in order to avoid inbreeding. Females have a tendency to transfer to a 

larger group, usually in close proximity to the original one, indicating that intra-group feeding 

competition is weak and has no bearing on female transfer in proboscis monkeys. Consequently, 

females of this species are not constrained in their transfer behaviour by food resources. 

Infanticide has been reported in Labuk Bay sanctuary, but avoidance of infanticide may not be 

an important factor in female transfer (Murai et al, 2007).

Groups generally move inland in the early morning, returning to trees next to the rivers before 

dusk. They avoid large areas lacking natural riverine vegetation or areas dominated by tall grass 

and scrub (Boonratana, 2000). The home ranges of various groups overlap extensively, sharing 

the same night trees, food sources and migration routes (Boonratana, 2000; Matsuda, 2008; 

Murai et al., 2007). This implies a high degree of intergroup tolerance and the absence of 

territorial behaviour. Ranging behaviour appears to be influenced by the location of river crossing 

points and the availability of foods, in particular fruits (Matsuda et al., 2009); scarce and 

unpredictable food supplies require individuals to travel over considerable distances (up to 2 km), 

which results in large range size (Boonratana, 2000; Matsuda et al., 2009). In addition to food 

availability, ranging behaviours, including the selection of sleeping sites, may be affected by 

predation pressure (Matsuda et al., 2009). According to Matsuda (2008), at least 800 m from 

both river banks is needed for the survival of the species.
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In the LKWS, in 2003(a) Goossens et al. reported about 3500 proboscis monkey individuals, 

with a population density of 6.86 individuals/km2, by 2008 the numbers had reduced by more 

than half (1450 individuals) (Sha et al;, 2008). Group sizes are about 4-20 individuals, with a 

home range of 900 ha (ibid). The social structure consists of one male-multifemale group, 

aggregating into multimale-multifemale, or all-male bachelor groups, which have been observed 

to associate; solitary males have not been observed. The proboscis monkey is one of the major 

tourist assets of the LKWS. However, their long-term survival is jeopardized by habitat 

fragmentation and land clearance, hunting and tourism activities. Despite considerable 

knowledge of this species, there is only one population genetic study of this endangered colobine 

(Jalil, 2007). It is therefore important to monitor the proboscis population along the 

Kinabatangan, as well as that of other primate species.

1.3 Primate population genetic studies in the LKWS

Previous population genetic analyses in primates of the LKWS have focused on neutral 

(demographically mediated) genetic variation. Both the long-tailed macaque and proboscis 

monkey showed high levels of genetic diversity based on mitochondrial DNA data (Jalil, 2007). 

However, further studies using more molecular markers are needed to complement the existing 

information and thus, sustain a more robust conservation management plan. Genetic studies 

were also performed in orang-utans and along with the proboscis monkeys populations they 

seem to have undergone historic demographic expansions (Jalil, 2007), which in the case of 

orang-utans correlates with the expansion of the lowland forest after the last glacial maximum 

(Jalileta/., 2008).

Using 14 microsatellite loci to characterize patterns of genetic diversity in orang-utans, Goossens 

et al. (2005) found evidence for recent/ongoing migration along the same side of the river, but 

limited /no gene flow across the river. This genetic differentiation was supported by Jalil et al. 

(2008), analysing the mtDNA control region, indicating that the river is a major barrier for 

dispersal of orang-utans in the LKWS. The remaining Kinabatangan populations show a 

reasonably high level of genetic diversity (average heterozygosity, He = 0.74) (Goossens et al,

2005) which is the remnant of an ancient large population and the result of recent population 

expansions by a few founder lineages (Jalil et al., 2008). Despite such levels of genetic diversity, 

Goossens et al. (2006a) detected evidence for a recent major population decline with no support 

for growing or even stable populations; this decline coincides with the first (colonial) forest 

exploitation and habitat degradation in the country. The same study estimates an extremely low 

population size, prone to be eliminated by genetic drift. However, these studies also showed that
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populations still exhibit high levels of genetic diversity and suggested plans to encourage 

migration of orang-utan populations between lots in the sanctuary to augment their genetic 

diversity and avoid the depletion of rare alelles. The genetic data of the studies (Goossens et al., 

2005, 2006a) are included in the Sabah Orang-utan Management Plan.

Previous genetic studies performed on long-tailed macaques and proboscis monkeys were solely 

based on mtDNA (Jalil, 2007). Long-tailed macaques showed high levels of genetic diversity and 

the inference was that the population has remained stable for a long period of time with no 

evidence of a major demographic expansion in the recent evolutionary past. This long term 

stability could be due to adaptability to different habitats and the opportunistic nature of these 

monkeys. However, there was some evidence of genetic differentiation on each side of the 

Kinabatangan River. This could be a consequence of the females being philopatric and, perhaps, 

by biases in demographic estimates reached using a maternally inherited molecular marker. It 

was therefore important to know if this inferred structure was confirmed or whether it needed to 

be modified when analysed with different molecular markers, such as microsatellites.

Proboscis monkey populations also showed high levels of genetic diversity possibly as a 

consequence of female biased dispersal and/or a large ancestral population that inhabited 

Borneo (Jalil, 2007). Three mitochondrial haplogroups were found to be assorting within the 

population and a lack of geographical partitioning might have been the product of secondary 

contacts from three separate refugia (Jalil, 2007) or simply ancestral lineage retention. Although 

this study implies that the proboscis monkey population in LKWS is not facing immediate danger, 

the present levels of genetic diversity might actually reflect past demography as deforestation 

might have forced widely dispersed populations to disperse into the Kinabatangan, as is the case 

for the orang-utan in this area (Goossens et al., 2006a). Furthermore, Jalil (2007) notes that a 

single molecular marker is insufficient to provide information for conservation purposes, and for 

that reason he suggested using a much faster evolving molecular marker, such as microsatellites, 

to incorporate male dispersal and accurately depict the genetic structure of the populations.

1 .4 Molecular markers suitable for population genetic studies

In conservation biology, knowledge of population structuring potentially provides valuable 

information for conservation strategies and management. Molecular tools are commonly used to 

investigate the genetic structuring of populations, addressing specific conservation questions 

regarding, and helping to guide, the establishment of management programs (Balloux & Lugon- 

Moulin, 2002). Neutral genetic markers have great potential for investigating processes such as 

disperal, migration or gene flow. Microsatellites have become the preferred neutral nuclear
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marker in many studies because of their high levels of variability, ease and reliability of scoring, 

codominant inheritance and short lengths, making them useful for studies of DNA from hair or 

faeces collected in the field (Luikart & England, 1999; Broquet et al. 2007). However, although 

being by far the most common class of genetic markers used, neutral genetic markers give limited 

insight into the specific adaptive variations and the population viability of a species, including the 

adaptive consequences of management of gene flow (Goossens et al., 2002; Holderegger et al.,

2006). Non-neutral genetic markers instead focus on genes and regulatory elements that have 

adaptive or selective significance. In contrast, natural selection will directly act on genotypes 

favouring the ones that might have a higher overall fitness, genome-wide (Holderegger et al.,

2006). The extant of individual variation at functionally important genes such as some loci in the 

Major Histocompatibility Complex (MHC) is thought to be a good candidate for adaptive 

significance. By investigating the extent of MHC variation for species which have undergone 

population bottlenecks, such as is likely to have happened in proboscis monkeys and seems 

certain to have happened in orang-utans, we can gain an indirect insight into their potential 

resistance against various diseases, which could be of great importance for the re-establishment 

of self-sustained populations.

1.4.1 Microsatellites

Microsatellites are also known as simple sequence length polymorphisms (SSLPs), short tandem 

repeats (STRs) or simple sequence repeats (SSRs). They are resolved as single copy nuclear DNA 

consisting of tandemly repeated short sequence motifs, each between one and 10 bp in length, 

such as (GACA)n, (TAT)n, or (CA)n (Beebe& Rowe, 2004; Bruford et al., 1998; Hancock, 

1999). They are widely scattered throughout the genome and are highly polymorphic due to 

variation in the number of repeat units at many of the loci so far studied (Bhargava & Fuentes, 

2010; Ellegren, 2004; Li et al., 2002; ). Therefore, microsatellites have found their application in 

areas such as linkage mapping, individual identification, forensics and in Hitchhiking mapping 

(Ellegren, 2004). These markers are inherited in a Mendelian fashion (as codominant, where 

alleles from both parents are traceable in the offspring) (Beebe & Rowe, 2004; Bhargava & 

Fuentes, 2010; Zhang & Hewitt, 2003) and the data generated are similar to that of the 

previously used allozyme markers, except that the number of alleles and heterozygosity revealed 

is almost always much higher (Chambers & MacAvoy, 2000; Ciofi et al., 1998).

Microsatellites are appropriate markers for many population and biodiversity studies for several 

reasons. They are believed to be largely selectively neutral with largely independent evolution 

and high mutation rates, ranging from 107 to 102 mutations per locus per generation in 

eukaryotes (Bhargava & Fuentes, 2010; Buschiazzo & Gemmel, 2006). Additionally, by
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combining many, highly variable, independent microsatellite loci a unique multilocus genotype 

can be obtained: a “molecular tag” or “fingerprint” for every individual in a population can be 

provided (Beebe & Rowe, 2004; McKelvey & Schwartz, 2004). Such characteristics make them 

useful for studying paternity and kinship, genetic variation, population genetic structure and gene 

flow, and to study recent population history (Bruford & Wayne, 1993; Jame & Lagoda, 1996; 

Kohn & Wayne, 1997; Zhang & Hewitt, 2003). Many markers now exist for many species and 

cross-species microsatellite amplification allows the use of many microsatellite markers for 

unstudied related species (Allendorf & Luikart, 2007; Beebe & Rowe, 2004; MacKelvey & 

Schwartz, 2004), making the protocols to develop new or additional microsatellites simpler and 

less time consuming. Moreover, material for microsatellite analysis can potentially be sampled 

non-invasively from free-living populations, which in the case of endangered species is essential 

(Broquet et at., 2007; Goossens & Bruford, 2009; Mills, 2007). Besides, the analytical methods 

(maximum likelihood, coalescent and Bayesian statistical approaches) for retrieving information 

from microsatellites allow more detailed inference about both evolutionary parameters and 

historical events (Allendorf & Luikart, 2007; Hedrick, 2001; Luikart & England, 1999). Such 

methodologies also generally provide more precise and accurate estimates of population 

parameters such as migration rates, effective population size, and intra- and interlocus 

disequilibrium. Moreover, it is also possible to identity a recently “bottlenecked” (or declining) 

population when no information exists on the current or historical population size and combined 

with other methods it is possible to simultaneously estimate the approximate date and rate of a 

recent reduction (or increase) in the effective population size (Allendrof & Luikart, 2007; Hedrick, 

2001; Luikart & England, 1999; Zhang & Hewitt, 2003).

Methods to identity and characterize highly polymorphic loci for primate population genetic 

studies have included isolation of novel microsatellites directly, and more recently linkage 

analysis from whole genome sequences (Raveendran et al, 2006). However, the screening of 

human primers with particular amplification conditions has proved that many loci are also 

informative in several non-human primates, including gorilla, chimpanzee, orang-utan, macaque 

and langur (Arandjelovic et at., 2009; Bayes et at., 2000; Bonhomme et at., 2005; Bradley et at., 

2000; Clifford et at., 1999; Coote & Bruford, 1996; Goossens et at., 2005; Hadfield et at., 2001; 

Launhardt et at., 1998; Little, 2003). Microsatellites have already been used to study the genetic 

structure of the orang-utan population in the LKWS, but not in long-tailed macaques and 

proboscis monkeys. More than 150 human primers have been already tested in Macaca 

fascicularis, and at least 70 markers have successfully cross-amplified (Bonhomme et at., 2005; 

Kikuchi et at., 2007). No microsatellite markers have been reported for Nasatis larvatus, but 

human microsatellites have been tested in other colobines (Coote & Bruford, 1996; Launhard et
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al, 1998; Little, 2003). For example, at least 20 markers have proved useful in paternity testing 

and relatedness analysis in Hanuman langurs (Presbytis entellus) (Launhardt et al., 1998; Little, 

2003).

Microsatellites therefore provide one of the most powerful and practical means currently available 

for analysing genetic diversity in threatened species. However it should be borne in mind that 

primers developed in some species may detect lower levels of variation among species that are 

not closely related due to ascertainment bias (Dakin & Avise, 2004; Primmer et al., 1996).

1.4.2 MHC

Genes of the Major Histocompatibility Complex are thought to be of important adaptive 

significance and have thus been used many times as indicators of adaptive genetic variation 

(Robinson et al., 2003). They have the highest known variation in any vertebrate genes, and are 

thought to influence many important biological traits including immune recognition, susceptibility 

to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, 

cooperation and pregnancy outcome (Penn & Potts 1999; Penn, 2002; Robinson et al., 2003; 

Schwensow et al, 2007; Sommer, 2005).

MHC-encoded molecules are transmembrane glycoproteins that bind antigens derived from non­

self molecules and present them to T lymphocytes, which in turn initiate the immune cascade. 

There are two major groups of MHC genes: class I and class II (Figure 1.4). MHC class I genes 

are expressed on virtually all nucleated somatic cells and their products are essential for immune 

protection from intracellular pathogens. MHC class II genes are only expressed on specific 

antigen-presenting cells such as B cells and macrophages, and their coding proteins bind and 

present peptides mainly stemming from extracellular parasites (Bematchez & Landry, 2003; 

Hughes et al, 1997; Hughes & Yeager, 1998; Schwensow et al, 2007; Sommer, 2005). Given 

the high number of alleles in both groups of MHC, they are sometimes functionally classified as 

supertypes depending on the overlapping of their peptide-binding specificities (Trachtenberg et 

al, 2003).

MHC Class I genes are divided into classical and non-classical. MHC-A, -B and -C are the 

classical genes and are highly polymorphic, while the non-classical genes MHC-E, -F and -G are 

more conserved. Exons 2 and 3 of the classical genes encode the peptide-binding region (PBR) 

and therefore contain the most variable site in the MHC I genes. It is the variability of the PBR 

which allows the presentation of a diverse array of peptides. All classical MHC I and the MHC-E 

molecules are expressed on the surface of nearly all cells. In contrast, MHC-G and -F expression 

is restricted to specific tissues, with MHC-G molecules limited mainly to trophoblasts, whereas
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MHC-F is preferentially expressed in lymphoid tissues (Hughes & Yeager, 1998; Lafont et al.,

2003).

The class II MHC genes of eutherian mammals are arranged in a number of separate regions 

within chromosome six. In humans (where MHC is commonly named HLA for human leucocyte 

antigen), there are three classical regions including the polymorphic class II loci, designated DR, 

DQ and DP. Each region contains multiple A or B loci. In addition to these regions, the -DMA, - 

DMB, -DNA and -DOB non-classical genes also map to the MHC class II region (Bontrop et al., 

1999; Hughes et al., 1997, Hughes & Yeager, 1998). In a number of other placental mammals, 

homologues of the human class II loci have been discovered, and these are usually named 

following their human homologues. The genes HLA-DPA1, -DPB1, -DQA1, -DQB1 and -DRB1 

exhibit a high degree of allelic variation (Penedo et al., 2005). The second exon of the DRB locus 

codes for parts of the functionally important antigen-binding sites (ABS) and is an analogue of 

the PBR of class I molecules. In a variety of species, the ABS is highly variable in both the overall 

number of alleles and the extent of sequence variation between alleles (Hughes & Yeager, 1998; 

Schwensow et al., 2007; Sommer, 2005).
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MHC variability is believed to be maintained by pathogen driven selection, mediated either 

through heterozygote advantage (overdominance hypothesis) or frequency dependent selection 

(Red Queen hypothesis) (Doherty & Zinkernagel, 1975; Hughes et al., 1997; Piertney & Oliver, 

2006; Sommer, 2005; Schmid-Hempel & Koella, 1994). It has been suggested that populations 

with reduced MHC variability would be particularly vulnerable to disease, an issue of particular 

concern for endangered species living in small, isolated populations facing already a significant 

threat of extinction from exposure to pathogens and parasites (Schwensow et al., 2007; Sommer, 

2005; Bematchez & Landry, 2003; Lukas et al., 2004). However, relatively recent studies have 

addressed MHC polymorphisms in wild populations and/or attempted to test for an association 

between such polymorphisms and parasite resistance under natural conditions (Bematchez & 

Landry, 2003; Lenz et al., 2009; Lukas et al., 2004; Meyer-Lucht et al., 2010; Oppelt et al., 

2010; Schad et al., 2004, 2005; Schensow et a l, 2007; Sommer, 2005; Tollenaere et a l, 2008).
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1.4.3 Primate MHC studies

Most primate MHC studies have had an evolutionary focus and are used as models to study 

human diseases. In non-human primates, MHC class I genes have been identified and used to 

understand co-evolution with pathogens and selection of new populations of viruses (Vogel et al., 

1999). In apes and old world monkeys (OWM), homologues of the classical HLA-A and -B loci 

are polymorphic, with a high rate of non-synonymous substitutions in the PBR (ibid). 

Homologues of the non-classical I HLA-E and -F loci have also been identified in orang-utans 

and macaques. Recently, MHC-E orthologues were identified in gorillas, chimpanzees, bonobos 

and vervet monkeys (Knapp et al., 1998). Class II regions DR, DQ and DP have been 

characterized in apes, old world and new world monkeys with the best characterizations made in 

the DR regions of chimpanzees, rhesus monkeys and cotton-top tamarins (Bontrop et al, 1999). 

The evolutionary analyses indicate that these genes evolve much faster than class I genes 

(Bontrop et al, 1999; Vogel et al, 1999). Although most alleles of the DR region have human 

equivalents, studies suggest that rhesus monkeys have unprecedented polymorphism and this 

may reflect an alternative strategy of this species to cope with pathogens (Doxiadis et al, 2000).

Studies on primate MHC variability are not only addressing evolutionary issues. Lukas et al. 

(2004) used DNA from faecal samples to characterize microsatellite loci as well as DRB exon 2 

haplotypes in two populations of wild gorillas, and their results showed similar levels of variation 

at the MHC locus between the two species. A study of the DRB exon 2 of a subdivided mouse 

lemur (Microcebus murinus) population indicated that variation in MHC-allele frequencies in 

forest fragments was linked to parasite load. Futhermore, certain alleles, which differed in a few 

amino acids in the ABS from other alleles, were associated with parasite resistance or 

susceptibility (Schad et al, 2004, 2005). In another study, a free-ranging fat-tailed dwarf lemur 

{Cheirogaleus medius) population was used as a model to investigate the role of neutral versus 

adaptive genetic variation in parasite resistance and to identity possible parasite-driven selection 

acting on the MHC under natural conditions (Schwensow et al, 2007). In the same study they 

tested for associations between the MHC-DRB exon 2 supertype constitution and different 

measures of parasite burden. Although they found no associations between neutral overall 

individual genetic diversity and parasite load, evidence for a specific MHC supertype that was 

linked to infected individuals, a higher number of different nematode infections and high intensity 

of infection per individual was identified. Moreover, the study revealed that one rare MHC 

supertype was advantageous with respect to parasite burden (ibid).
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MHC research in wild vertebrates could potentially reveal the effects of conditionally 

advantageous or deleterious alleles, discovered only in the presence of natural stress, such as 

spatially and temporally changes in climate, food availability, competition and parasitism. The 

studies of Shad et al (2004, 2005) and Schwensow et al (2007) suggest that MHC-variation 

might influence the long-term survival of small fragmented primate populations and indicate the 

functional importance of maintenance of MHC variability in declining or fragmented animal 

populations. Human impact on other vertebrate and parasite populations often causes a loss of 

genetic variation leading to short-term reduction of fitness and to an impaired ability to adapt to 

changing environments (Sommer, 2005). A major concern for demographically bottlenecked 

species is the maintenance of genetic diversity. Bottlenecks may reduce the amount of genetic 

variation which could be reflected in lower fitness, reduced potential for future adaptation and 

elevated extinction risk (Zhang et al, 2006). Moreover, when direct intervention (reintroduction 

or translocation) has been planned to increase the size of a post-bottlenecked population (as is 

the case for orang-utans in the LKWS) the genetic variation of the source population must be 

evaluated to provide an indication for the long-term fitness of the reintroduced populations (ibid).

The mechanism of how diseases affect hosts can be investigated by monitoring host population 

genetic structure, particularly genes that are under selective pressure from parasites. For example, 

it has been suggested there might be a relationship between variations in the orang-utan’s alpha- 

2 globin gene and malaria infection (Steiper et al, 2006.) Due to their function and their 

suggested evolutionary mechanisms, MHC genes are ideal candidates for monitoring these kinds 

of relationships. The link between MHC and malaria is an often cited example of the influence of 

MHC genes on the course of a disease. It has been reported that certain MHC haplotypes seem 

to confer resistance to Plasmodium falciparum to children in West Africa (Hill et al, 1991). In 

mice, the host’s MHC genotype had a strong effect on Plasmodium parasitemia and on blood cell 

counts (Wedekind et al, 2005). MHC Class I alleles have also been associated with increased 

resistance to malaria in wild bird populations (Bonneaud et al, 2006: Westerdahl et al, 2005). 

Yet few studies have examined variation in host genes in relation to susceptibility to infectious 

diseases in wild vertebrates. Previous studies have shown that specific MHC alleles could be 

associated with resistance or susceptibility to infectious diseases in the wild. Some examples are 

the resistance against strongyle nematodes in Soay sheep (Ouis aries) and the resistance of 

Atlantic salmon (Salmo salar) to Aeromonas salmonicida due to variations in MHC class II alleles 

(Langefors et al, 2001; Paterson et al, 1998). For conservation purposes, it is urgent to find out 

whether there are immunogenetic variants that may influence susceptibility to pathogens. There 

are still very few studies examining the genetic basis of resistance to naturally occurring 

pathogens in wild vertebrate populations or basal studies regarding the pathogens in themselves.
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1.5 Parasites as a cause of wildlife declines

Habitat degradation and climatic conditions are crucial parameters in terms of distribution, 

transmission and developmental success of parasites. Wildlife diseases are powerful selective 

agents in natural populations (Altizer et al., 2003) and their impact on primate populations is now 

recognized as a real extinction threat. For these reasons, it has been suggested that the ability to 

manage the spatial and genetic structure of host populations to minimize extinction risk by 

infectious diseases hinges upon better knowledge of host-parasite evolutionary dynamics in the 

wild (ibid). In the last two decades, research on wildlife emerging infectious diseases (EIDs) has 

shown the threat they pose to wild populations, especially if the animals are endangered 

(Chapman et al, 2005a; Cleaveland et al, 2001; Daszak et al, 2000, 2001, 2004; Thompson et 

al, 2009, 2010; Woodroffe, 1999). Examples of this are the mass mortality events and 

population declines in African primate fauna (Walsh et al, 2003; Leendertz et al, 2004; Leroy et 

al, 2004). Control measures for wildlife EIDs have been attempted to prevent spread to humans 

or domesticated animals. However, it has been suggested that future research must adopt a 

multidisciplinary approach (veterinarians, medical workers, public health researchers, ecologists, 

conservation biologists, and others) to identify the underlying causes of EIDs and to control their 

spread (Daszak et al, 2000; 2007).

Two major drivers of infectious disease emergence in wildlife have been identified, both of which 

are the result of human activities. The first is the “spill-over” of pathogens from domestic animals 

into wildlife populations and the other is the anthropogenic movement of pathogens into a new 

geographical location (Daszak et al, 2001). The impact of other anthropogenic environmental 

changes on wildlife EIDs has not thoroughly been studied. Historically, wildlife diseases have 

been considered important only when agriculture, aquaculture or human health have been 

threatened. However, because of recent incidents of severe outbreaks of disease in endangered 

species, increasing veterinary involvement and advances in host-parasite population biology, the 

threat of wildlife disease is now taken more seriously (Daszak et al, 2000; Pedersen, et al, 2007; 

Smith, et al, 2006, 2009; Thompson et al., 2010; Woodroffe, 1999).

Although most pathogens have subtle and less easily quantifiable effects on their hosts, rather 

than disastrous impacts, their consequences are greatly exacerbated when hosts are stressed by 

other factors. It has been proposed that habitat alteration, destruction or fragmentation, or an 

increase in host density (e.g. in zoos or rehabilitation centres), are likely to impact on disease 

emergence (Lafferty & Gerber, 2002). Furthermore, the complex interactions between hosts, 

vectors and changing environments may have severe consequences for disease emergence
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(Daszak et al., 2001). Additionally, disease may cause extinction by killing hosts more rapidly 

than they can breed or by suppressing the size or growth rates of the populations, making them 

more vulnerable to stochastic factors (Woodroffe, 1999). Alteration of ecosystems can create 

conditions which facilitate the appearance and spread of new diseases. As an example, the 

creation of artificial water holes in Etosha National Park in Namibia resulted in repeated cases of 

Anthrax in large wild mammals (Williams et al., 2002), and climate change might be a potential 

cause for the emergence of chytridiomycosis, responsible for amphibian population declines 

across Europe, America, Australia and New Zealand (Daszak et al., 1999; Williams et al., 2002). 

The interaction of wild and domestic species is another factor influencing EIDs. For instance, the 

extinction of Serengeti’s wild dogs (Lycaon pictus) and black-footed ferrets (Mustela nigripes) 

were concurrent with epizootics of canine distemper in domestic dogs (Williams et al, 1988; 

MacDonald, 1992). Movement of vectors can also contribute to the appearance of diseases. 

Hawaiian native bird species extinctions have been attributed to the introduction of avian malaria 

and mosquitoes to those islands (Atkinson et al., 1995, 2000). Apparently, in the cases where 

populations were driven to extinction the size of the population was small and the diseases were 

caused by generalist pathogens with a wide host range (Woodroffe, 1999).

In the case of primates, there is clear evidence that effects of disease interact with habitat loss and 

other stress factors, with often catastrophic consequences. Populations of howler monkeys 

(Alouatta palliata) have been reduced by 50%, or even disappeared completely, as a 

consequence of yellow fever epidemics in Panama (Chapman et al., 2005a; Nunn & Altizer, 

2006). Similarly, an 85% decline in the size of a population of red howler monkeys (Alouatta 

seniculus) occurred due to an outbreak of an unidentified agent (Nunn & Altizer, 2006). 

Mycobacterium bouis infected a troop of free-ranging chacma baboons (Papio ursinos) with a 

prevalence of up to 50% and a rapid progress of the disease (Keet et al., 2000). Both gorilla 

(Gorilla gorilla) and chimpanzee (Pan troglodytes) population declines in Central Africa have 

occurred due to Ebola and/or Anthrax outbreaks. Diseases, combined with the slow reproductive 

cycle of these apes, and hunting and poaching threats, may lead to the extinction of these hosts 

in western Central, and Equatorial, Africa (Leroy et al., 2004; Walsh et al, 2003; Leendertz et al., 

2004, 2006). Moreover, in general, as anthropogenic habitat change forces humans and primates 

into closer and more frequent contact, the risks of interspecific disease transmission might 

increase (Chapman et al., 2005a). The main routes of transmission of human diseases to apes 

seem to be respiratory and faecal-oral (Woodford et al., 2002). Chimpanzees of the Gombe 

National Park in Tanzania, have suffered from a polio-like virus and respiratory outbreaks. 

Although it was impossible to determine whether the disease was transmitted from humans, 

poliovirus was widespread in the local human population at that time, and so were colds,
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influenza and pneumonia (Wallis & Lee, 1999; Nunn & Altizer, 2006). Gorillas and chimpanzees 

have also suffered from scabies epidemics. Again, the source of the outbreak was not confirmed 

but it is thought to have arisen from contact with humans, as this is a common disease in local 

populations (Wallis, 2000; Wallis & Lee, 1999). A measles outbreak in the Virunga Mountains, 

Rwanda, caused the death of six female gorillas before a vaccination program was established 

(Wallis & Lee, 1999; Nunn & Altizer, 2006). It is thought primates living in natural habitats are 

free of measles, but are highly susceptible to transmission from humans (Wallis & Lee, 1999). In 

olive baboons (Papio hamadryas anubis), yaws (a public health problem in Africa) was spread as 

a venereal disease, and Schistosoma mansoni showed the highest prevalence in populations that 

had greatest contact with people (Wallis & Lee, 1999; Wallis, 2000). Other studies have 

demonstrated a greater prevalence and richness of gastrointestinal parasites in red-tail monkeys 

(Cercophithecus ascanius) in logged compared to undisturbed forest (Chapman et al., 2005b). It 

was also found that Ascaris spp. and Giardia spp. occurred in red colobus monkeys in forest 

fragments near human populations with high prevalence of these parasites; the same parasites 

were not found in monkeys dwelling in pristine areas where people and primates barely 

interacted (ibid).

There have been some attempts to reduce or avoid the disease risk in wildlife. Likewise, it has 

been noticed that despite the negative effects infectious diseases have over wildlife, there is a 

general lack of information about the pathogens that cause them (Daszak et al., 2001; Nunn & 

Altizer, 2006). Increased knowledge of host-parasite interactions might be the key for the 

development of protocols to track pathogens implicated in wildlife declines and minimize disease 

risks (Daszak et al., 2001; Lafferty & Gerber, 2002; Nunn & Altizer, 2006; Smith et al., 2009; 

Wolfe et al, 1998).

Lack of information on the occurrence and prevalence of parasites in wildlife populations have 

made it difficult to assess the effectiveness of past control measures and to design new measures 

(Smith et al, 2009; Thompson et al, 2010, Woodroffe, 1999). Therefore, the monitoring of 

diseases and the storage and use of that information is essential. Surveys of wildlife parasite and 

pathogen biodiversity are an essential tool for identifying the agents of wildlife EIDs and 

predicting their future emergence (Daszak et al, 2001). There is also a need to screen for 

diseases in wild and domestic species that may act as reservoir hosts (Cleaveland et al, 2002, 

Thompson et al, 2009, 2010). General research is also needed into the dynamics of pathogens 

infecting multiple hosts, and the consequences this has for disease control (Woodroffe, 1999, 

Cleaveland et al, 2002). For instance, understanding the transmission mechanisms of different 

parasites might be fundamental for disease control, for example, some vector-borne diseases 

may be impossible to eliminate without controlling the vectors (Nunn & Altizer, 2006). In
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summary, possibly the greatest need in the context of conservation and infectious disease, is to 

increase the knowledge about host-parasite interactions in natural systems.

To our knowledge, there have been no studies regarding parasite prevalence or abundance in 

long-tailed macaques or proboscis monkeys in the Kinabatangan. Furthermore, according to the 

Global Parasite Database (Nunn & Altizer, 2006), there are no reports of helminths in proboscis 

monkeys in Malaysia, and just a few reports of these parasites in long-tailed macaques but not for 

the island of Borneo, perhaps because they have not been investigated. As we will be using 

molecular scatology for microsatellites and MHC analyses, baseline information regarding the 

gastrointestinal parasite diversity of both primate species with also be gathered, taking full 

advantage of the available specimens.

1 .6 Non-invasive sampling in conservation genetics

Genetic data provide a very useful tool to elucidate the dynamics and social organization of wild 

populations and also yield invaluable information for species conservation. Formerly, genetic 

studies were based on blood or tissue samples but obtaining such samples from living wild 

animals not only involves a risk for the animals, it is also time consuming and difficult 

(Lathuilliere et al., 2001). Traditionally, sampling was destructive and led to the animal’s death, 

or was non-destructive but the animal had to be captured nonetheless (Taberlet et al., 1999). 

Advances in molecular biology now allow amplification of tiny amount of DNA and consequently 

non-invasive sampling techniques are being increasingly used as they produce genetic results 

comparable with those from blood or tissue samples (Bayes et al., 2000; Lathuilliere et al., 2001). 

In non-invasive sampling the source of the DNA is left behind by the animal and is an attractive 

method to field biologists because it allows genetic studies of free-ranging animals without having 

to catch, handle or even observe them (Taberlet et al., 1999; Broquet et al., 2007). The source of 

DNA can be shed hairs or feathers, faeces, urine, buccal cells from food wedges, skin and even 

bones and nails (Taberlet et al, 1999, Piggott & Taylor, 2003, Goossens & Bruford, 2009). The 

analysis of non-invasive genetic samples can provide individual identification, relatedness 

estimates, pedigree reconstruction, sex identification, estimates of census and effective population 

size, and the level of genetic polymorphism within or between populations (Goosens & Bruford, 

2009; Goossens et al, 2003b; Mills et al, 2000; Taberlet et al, 1999). Non-invasive sampling of 

DNA has been proposed or carried out for bears, humpback whales, coyotes, and a suite of mid­

level carnivores in North America, as well as primates, tigers, rhinoceros, elephants and pandas, 

just to mention a few (Arandjelovic et al, 2009; Bhagavatula & Singh, 2006; Gamier et al,
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2001; Johnson et al., 2007; Kohn & Wayne, 1997; Mills, 2007; Zhan et al., 2007; for a more 

exhaustive review see Goossens & Bruford, 2009).

1.6.1 Molecular scatology and its challenges

Molecular scatology has proved to be a powerful technique to study the genetics of free-ranging 

mammal populations (Goossens et al, 2003b; Kohn & Wayne, 1997; Taberlet et al, 1999). It is 

a convenient method especially for the study of primates and other arboreal species, where the 

necessity of climbing trees to collect hairs and the risk of mixing samples from different 

individuals in a nest pose a risk for researchers and the study per se (Goossens & Bruford, 2009). 

Consequently, collecting faecal samples on the floor under nests seems to have an advantage 

over hair since they are often abundant and the individual can also sometimes be identified. 

Faeces contain cells shed from the intestinal lining, thus DNA from the host itself can be isolated 

and analyzed. The information faeces can provide is diverse: number of offspring produced by 

individuals and the relationship of individuals in a social group to each other, estimates of 

population size, approximate dimensions of territories, assessments of effective population size, 

extent of genetic variation, relationships of populations to each other and the degree of gene flow 

that occurs between them, and a more precise identification of food and pathogen species 

(Broquet, et al, 2007; Kohn & Wayne, 1997; Piggot & Taylor, 2003; Taberlet et al, 1999). 

Furthermore, faecal samples are not subject to CITES constraints (Goossens et al, 2000). Despite 

its applications, several authors have underlined the risk of misinterpretations owing to the very 

low quantity and quality of DNA coming from faecal samples, which may yield spurious results 

(De Barba & Waits, 2009; Goossens et al, 2000; Goossens et al, 2003b; Lathuilliere et al, 

2001; Pompanon et al, 2005; Taberlet et al, 1996, 1999). Broquet et al. (2007) mention that 

less DNA (lng) may be extracted per single hair than from faeces (e.g. 38.4 ng per extract on 

average) and that amplification success and genotyping errors have been found to be sensible to 

template DNA concentration. These errors are principally: (i) the revelation of only one allele in 

the case of heterozygous individuals (allelic dropout, ADO); and (ii) the revelation of additional 

allele(s) (false allele, FA) problematic in the case of homozygous individuals (Valiere et al, 2002). 

Still, estimates for mean per locus error rates using faeces have ranged from 0.05 to 0.29 

compared to 0.14 to 0.35 in microsatellites amplified from hair extracts (Roon et al, 2005). 

However, using appropriate measures very accurate results may be obtained (Arandjelovic et al., 

2009; De Barba & Waits, 2009; Goossens, 2000; Morin et al, 2001; Roon et al, 2005; Taberlet, 

1996; Taberlet et al, 1999).

Multiple methods have been used to extract faecal DNA. Currently the most commonly used 

method for extracting DNA from faecal samples is silica-binding extraction kits (Qiagen)
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(Goossens & Bruford, 2009; Waits & Paetkau, 2005). A major limitation in this step is the 

quantity and quality of the extracted DNA. Usually the total amount of DNA is often in the 

picogram range, and it might be degraded or accompanied by PCR inhibitors (especially in 

faeces that contain plant remnants) (Broquet et al., 2007; Little, 2003). Furthermore, this low 

quantity DNA may be damaged due to exposure to moisture, heat, and ultraviolet radiation 

encountered during non-invasive sample collection (McKelvey & Schwartz, 2004). Besides, 

contamination from humans (particularly for primate species) and cross contamination between 

samples are common during the extraction and amplification process (Goossens & Bruford, 

2009; Taberlet et al., 1999). However, the quality of the samples can be greatly improved by 

collecting them just after the animal leaves them behind. If the samples remain in the field several 

weeks before collection, then the DNA could become more degraded and more difficult to 

amplify (DeBarba & Waits, 2009). Contamination and degradation, however, can be minimized 

by carefully conduced collection and preservation techniques; contamination can also be 

minimized by focusing on laboratory cleanliness and good lab technique (Goossens & Bmford, 

2009; Goosens et al., 2003b; Taberlet et al., 1999; Waits & Paetkau, 2005).

Although working with faecal samples can be very demanding, it has a number of advantages. It 

can increase the number of animals that can be sampled in secretive species, and thus make 

feasible the estimation of important population parameters. It also offers a better way of studying 

demographic characteristics of rare or hard-to-capture species, which include avoiding stress and 

contact with endangered populations. Finally, it is convenient in situations in which capturing the 

individuals of interest is not conceivable (for example in the case of a small endangered 

population, or in behavioural studies where capturing animals would disturb the system) 

(Goossens & Bruford, 2009; Mills, 2007; Taberlet et al., 1999).

The study of endangered species requires approaches that minimize the handling of animals for 

acquisition of samples. Molecular scatology is ideal to study endangered species because being 

protected by law, invasive sampling is not allowed. Moreover, the use of faecal samples has 

proved to give excellent results in a number of species, including primates such as gorillas, 

chimpanzees, baboons and langurs (Bayes et al., 2000; Bradley et al., 2000; Launhardt et al., 

1998; Little, 2003; Morin et al., 2001). All the primate genetic studies carried out in the LKWS 

have been done through non-invasive collection of samples with very successful results 

(Goossens et al., 2005; 2006b). In particular, the mtDNA studies on proboscis and macaques 

were performed on DNA extracted from faecal samples (Jalil, 2007), hence this approach was 

selected to conduct the present study.

24



Chapter 1: Introduction

1.7 Hypotheses

Previous population genetic analyses of primates in the LKWS have focused on neutral 

(demographically mediated) genetic variation. In the case of orang-utans, mitochondrial and 

nuclear (microsatellites) DNA studies have clearly shown genetic differentiation between 

populations on either side of the river (Goossens et ai, 2005; Jalil et al., 2008). Population 

differentiation was also observed for long-tailed macaques (Jalil, 2007), however this species is 

known to be a good swimmer so this pattern is probably a result of differences among social 

groups between populations. In contrast, proboscis monkeys’ showed no structuring, which 

correspond very well to their dispersal behaviour and swimming ability (Jalil, 2007).

As the long-tailed macaque and proboscis monkey studies were carried out using a maternally 

inherited marker, bi-parentally inherited markers might be expected to reveal a different 

population structure, especially in the case of long-tailed macaques. If contemporary patterns of 

neutral variation (microsatellites) depend primarily on dispersal, in species with female biased 

dispersal, estimates of population structure derived from microsatellite data analyses are expected 

to be similar to that obtained from mtDNA analyses. Additionally, the genetic signatures of 

natural selection may be superimposed on the signatures of drift and/or gene flow (features that 

affect neutral variation). Therefore, a modified population structure pattern could be expected 

from adaptive genetic variation compared to neutral variation, especially neutral nuclear DNA 

(microsatellites). MHC genes are under localised selection while microsatellites evolve by the 

means of (mainly) genetic drift. If the primate populations in the Kinabatangan have undergone 

recent habitat-mediated contraction, the separation of populations might be too short to leave a 

signal at neutral loci so that differences between populations will only be detectable at genes 

under selection.

Habitat loss has been suggested to change the behaviour and abundance of wildlife which in turn 

affects parasite transmission and distribution (Chapman et ai, 2005a, b, 2006a, b; Gillespie et 

ai, 2005b; Hudson et al., 2006; Nunn et ai, 2003). Furthermore, as human population density 

continues to increase, speeding the reduction and fragmentation of primate habitats, greater 

human-primate contact is inevitable and even higher rates of parasite transmission are likely 

between humans and monkeys and between monkey species (Gillespie, 2006; Goldberg et ai, 

2008). When moving between forest patches and because of the proximity to human settlements 

and to domestic animals, primates may be exposed to a wider range of parasitic vectors and/or 

intermediate hosts (Trejo-Macfas et ai, 2007). Therefore, parasite diversity and frequency of co- 

infections could depend on the primate host species. For instance, in the LKWS, although the 

proboscis monkey and the long-tailed macaque share habitat (several groups of primates were
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observed to use the same sleeping trees day after day -  Goossens, et al. 2003a), the macaques 

are known to come closer to human habitation and to domestic fauna. This behaviour might 

increase their chances of having higher parasite diversity and harbouring a mixed infection. 

Additionally, the fragmentation of the habitat might impact the parasite species richness, the 

proportion of individuals carrying a mixed infection and the prevalence of particular parasites.

All these conditions allow the following hypotheses to be tested:

I) In long-tailed macaques, which exhibit male- biased dispersal, the pattern of 

population structure is expected to be less pronounced than that obtained by 

previous mtDNA analysis. In contrast, the female-transfer behaviour of the proboscis 

monkey is expected to reveal a pattern of genetic structure similar to that reported by 

Jalil (2007) from mtDNA.

II) A more pronounced spatial genetic structure between river sides or forest fragments 

(for instance, higher Fst value) is expected when analysing MHC (linked to positive 

selection), than when analysing microsatellites (linked to gene-flow).

III) Long-tailed macaques are expected to have higher parasite diversity and to harbour 

more mixed infections than proboscis monkeys.

IV) Both primate species are known swimmers, thus no effect is expected from the 

natural barrier presented by the Kinabatangan River. Contrarily, it is predicted that in 

areas of the sanctuary with higher rates of human activities, the parasite richness, the 

frequency of co-infections and the prevalence of particular parasites will be higher in 

both primate species, compared to areas with less human activity.

As the LKWS is bisected along its length by the Kinabatangan River, this site provided the 

opportunity to study the impact of this natural potential geographical barrier on the population 

structure of the two primates and their parasitic fauna. This project supplements the genetic 

datasets for proboscis monkeys and long-tailed macaques by genotyping microsatellites which in 

the former had not been previously attempted (Chapters Two and Three). Technical difficulties 

prevented comparison of neutral and adaptive genetic diversity and potential differences in 

spatial genetic structuring with the two types of markers. Nonetheless, MHC genes were identified 

in both species as a first step towards the resolution of these questions (Chapter Four). Moreover, 

this study has established baseline data regarding the endoparasite (helminth) diversity in the two 

primate species by measuring richness, co-infections and prevalence; these factors were then 

correlated to fragmentation (natural and anthropomorphic-mediated) of the habitat (Chapter 

Five). In the final Chapter (Six), the data from Chapters Three, Four and Five are assimilated and
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discussed in the context of a conservation strategy for these primates in the LKWS. Each chapter 

is self contained, and Chapter Two has been published in Conservation Genetic Resources 

(Salgado-Lynn, et al., 2010).
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CHAPTER TWO 

Microsatellite markers for the proboscis monkey (Nasalis 
larvatus)

Salgado-Lynn M1, Stanton DWG1, Sakong R2, Cable J1, Goossens B1’3, Bruford MW1

School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK 
2 Red Ape Encounters, Kinabatangan Orangutan Conservation Project, PO Box 3109, 90734 Sandakan,

Sabah, Malaysia
3Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah,

Malaysia

This chapter was published (August 2010) as a technical note in Conservation Genetics 
Resources: therefore it is presented in a slightly different format compared to the other data

chapters.

Abstract

We describe eight polymorphic microsatellite loci for the proboscis monkey (Nasalis larvatus). 

These markers were tested with 33 samples, collected from Sabah and exhibited a mean of 6.25 

alleles per locus and a mean expected heterozygosity of 0.674. All but one locus were in Hardy- 

Weinberg equilibrium, and no evidence for linkage disequilibrium was detected between any loci. 

Another 30 loci were isolated but remain to be fully examined. These markers should be useful 

for the future study of population genetic diversity and genetic structure in this emblematic 

species.

Classified as endangered by IUCN (2010) and listed in Appendix I of CITES (UNEP-WCMC, 

2010), the proboscis monkey (Nasalis larvatus van Wurmb 1787) is endemic to the island of 

Borneo. Its distribution is restricted to lowland coastal and riverine forests, mangrove, and peat 

swamp. With a declining population, major threats include hunting, fire and, most importantly, 

anthropogenic habitat loss and fragmentation (Meijaard & Nijman, 2000; Sha et ai, 2008). 

Despite its uniqueness and conservation status, limited research on genetic variation in proboscis 

monkeys has been carried out due to a lack of reliable genetic markers and challenging sample 

collection (Jalil, 2007). Here, we describe the isolation and characterization of microsatellite 

markers which can be used for individual and population-level genetic analyses, suitable for both 

invasive and non-invasive samples, for the conservation of this species.
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Muscle samples were opportunistically collected from two deceased proboscis monkeys at Lok 

Kawi Wildlife Park, and from two road killed animals, in Sabah, Malaysia; the former were used 

for the isolation of microsatellite loci. Faecal samples from another 29 wild individuals, also from 

Sabah, were collected as part of a population study and were used for characterizing the markers 

along with the tissue samples. Stool samples were stored in 70% ethanol, and muscle samples in 

a -70°C freezer. Faecal DNA was extracted via the DNA Stool Mini Kit (Qiagen GMBH, 

Germany) using a previously described protocol (Goossens et al., 2005). Tissue samples were 

extracted with DNeasy Blood & Tissue Kit (Qiagen GMBH, Germany) following the 

recommendations of the manufacturer, with minor modifications during elution (namely, 5 min 

incubation at 70°C with buffer AE, which was also preheated at the same temperature). To verify 

the existence of primate DNA from faecal extracts, a partial mitochondrial Control Region 

fragment was amplified using species specific primers (Jalil, 2007) while DNA from the muscle 

samples was visualized in agarose gels (1.5%) and quantified by spectrofluorometry (Invitrogen’s 

Quant-iT™ PicoGreen® Kit microtiter assay, Molecular Devices’ SOFTmax Pro®).

Genomic libraries were constructed based on the protocol from Glenn and Schable (2005). DNA 

was digested overnight with Rsal (New England BioLabs) and the products were subsequently 

ligated to Super SNX24 linkers. Linker-ligated DNA was electrophoresed in a 1.5% agarose gel 

and fragments between 300 and 800 bp were electroeluted, precipitated with 3M NaOAc-ethanol 

and resuspended in TE Buffer (Bruford et al, 1992). Fragments containing microsatellites were 

captured using biotinylated oligonucleotides (see mix 2 in Glenn & Schable, 2005), and the 

biotinylated probe-DNA complex was enriched by hybridization to streptavidin-coated magnetic 

beads (Dynabeads M-280, Invitrogen). Nonspecific DNA was removed by subsequent washes 

with SSC-SDS buffers as described in the same protocol, and recovery was performed by PCR 

using the forward SuperSNX-24 primer. Enriched libraries were constructed using a TA Cloning 

Kit according to the manufacturer’s protocol (Invitrogen) and positive colonies were amplified 

using universal M13 forward and reverse primers (M13F: 5’-GTAAAACGACGGCCAG-3’; M13R: 

5’-CAGGAAACA- GCTATGAC-3’). Fragments between 500 and 1200bp were sequenced using 

the BigDye terminator kit v l . l  (Applied Biosystems. Sequences were assembled and edited in 

Mega 4.0 (Tamura et al., 2007) and visually checked for microsatellite repeats. Two libraries were 

constructed and a mean of 33% of sequenced clones yielded microsatellite motifs. Unique 

sequences with sufficient flanking DNA and at least five (trinucleotide) or ten (dinucleotide) 

repeat units were selected for primer design using Primer 3 in msatcommander (Faircloth, 2008). 

Ninety one primer pairs were designed with melting temperatures between 50 and 66°C and 

length of PCR products between 100 and 300 bp.
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The tissue samples were used to optimize the PCR conditions for 46 unlabelled primer pairs. PCR 

reactions consisted of IX Master Mix (QIAGEN, Multiplex Kit), OA/iq/fA BSA (New England 

BioLabs), 0.2 /aM of each primer, and 200 pg of template DNA to a total volume of 10 (A and 

were performed in a GeneAmp® PCR System 9700 (Applied Biosystems). The amplification 

conditions were as follows: 95°C for 15 min, 45 cycles at 94°C for 30 s, 48-63°C for 90 s, 72°C 

for 90 s and a final extension at 72 °C for 30 min. Thirty eight primers, which produced a single 

target band, were further optimized by amplifying 29 dung samples with a multi-tube approach 

(Taberlet et al., 1996) using the above PCR protocol but with 2ul of DNA template and the 

optimized annealing temperatures (TJ shown in Table 2.1.

Table 2.1. Primer and motif sequences of isolated microsatellite loci for the proboscis monkey. Sizes are 
based on the sequenced allele.

Size GenBank
Locus Primers (F-forward; R-reverse) Motif T„CC) (bp) ID
NIB5 ° F-CCCATCACCTCATGTAGTTACC 

R-CCT GAAATTT GCTAAGGG AGT
(GT)10 57 107 HM588998

NID10 F-TGTCCTTCTCCACTGCCTCT
R-TGCAATTTCATTACACCAATGAT

(CT)10 54 209 HM588999

NID5 F-TGATTTTGCTCTCACCCTTG
R-CCGATTCTCTGTTGGAGGAA

(CA)6AA(CA)6TG(CA)6 54 171 HM589000

NIE10 F-CCATCACACCTGGCTGCTTA
R-ATGCCTTGTTGGGAAGACAG

(GT)16 58 169 HM589001

NIF1 F-GCCAATGTTGTAAACTCTATACCC
R-TTTATCAACCTGGCCTTTGA

(AC) 10AT (AC)TC(AC)8 52 176 HM589002

NIG8a F-GGAAATCCAAAGCCTACTGC
R-CAGGAAATGTGAAATGGAGGA

(GT) 14 54 226 HM589003

NIP1A6 F-TCTCACTGGTAAAGAAATGTGGA
R-CGGACTCTCTGGCTnTCAG

(AAC)7 54 158 HM589004

NIP1C3 F-CGACCCTCCAGGTTTAAGTG
R-ACGCTTGTAATCCCACCTTG

(GAT)10 54 229 HM589005

NIP1C5 F-AGGCCACTGAAGGCTGTCTA
R-TGAGTCTAGCTTGGGCAACA

(GT)15 54 204 HM589006

NIP1C8“ F-CCAAATGGTTATTTTGCGAGA
R-TTTTGGAAACACCAAAAATGG

(GT)20 60 2 2 1 HM589007

NtPlE9° F-GCTGGCCTGCATACTCAAAT
R-CAGACCAGTAGGGGGAGACA

(GT)19 54 218 HM589008

NIP1F2° F-TGCAGTGAACCTAAACCTGCT
R-CTCTGACTTGTGCCAGTGGA

(AG)17 58 240 HM589009

N iPlF5 F-CCTATCACTTCAAGGGCATAAAA
R-TGGCTTGGAGATGCATTTATT

(GT) 16 52 234 HM589010

N tP lG 7a F-GGAGCTGGTGCTTCTACAGG
R-GGCACCATAGCTTTCTATTCAA

(GTT)9 52 160 HM589011

NIP2B8° F-GAGGTGGTCAGCTGGTCATAA
R-GTGCACTGGCTCACTCATGT

(GT)20 56 234 HM589012

NIP2B9 F-CGATTGAGTTCAGGTATCTTTTG
R-TTCAATAATGATGGAAGAATACCG

(GT)17 52 209 HM589013

NIP2C12 F-CCACAAAACACCATCTCCAA
R-TGCTTCATGTCAAGGGATTG

(AC)16 52 191 HM589014

NlP2C5a F-TCCTTTTGAATTGCCAAGTTTT
R-AAGGCACCATGGTCTCAAAG

(AC)21 58 184 HM589015

NIP2D6 F-AGGGGAAAACACATTTGCAG
R-TTTTCCACTCCTCGTTTTGG

(GT) :7 54 160 HM589016

N1P2E2° F-TTGAGGCCTACCTGGTCAAC 
R-GCACTGAATT GCAT CCAG AA

(C T )2o 60 247 HM589017

NIP2F3 F-CAGAACATTTTGCCCAACAG
R-GTGGGCAGAAAAGAGAATCG

(AC)21 58 191 HM589018

NIP2F7° F-CATTCAGACTCACTGGATTAAAAA (AG)17 56 150 HM589019
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Locus Primers (F-forward; R-reverse) M otif r„rc)
Size
(bp)

GenBank
ID

NIP3A12°
R-AGATAGAGCCAGAACCTTTCCA
F-CTGTGGCCAAACAGTTCATC (GT)17 50 246 HM589020

N1P3B2
R-CAGCAGTGGTTTTATTCA'ITITTG
F-GCAATTTTGCTGAATTTGCTC (GT)23 58 165 HM589021

NIP3B40
R-GGCATCGAATTGAAAAGGAA
F-TTCCAGCTATCAAAATAGTGGCTA (AC)18 54 185 HM589022

NIP3B6"
R-GAAGTGGCTTGCCTTACAGC
F-ATCATTTCTGGGCCTGTTTT (AC)22 58 237 HM589023

NIP3C11°
R-CCTGCGGAACAAGAGTGAA
F-TCCATCCCCTTTTTATGATACTT (AC)2o 54 199 HM589024

NIP3EV
R-AGGTATGCAGCCAAGCAAAG
F-ACTGGGCATCAGAGTCATCC (GAT) jo 54 208 HM589025

N1P3E7
R-TCCATGCAATGGCACATAGT
F-GGAGAGGTGGCCTTTGAACT (GAT)5 52 151 HM589026

NIP3E8a
R-TGTTCAGCAAACAATATAGAGCTAA
F-CAAATGAAAAATGCCTCTAACAGA (ATCT)12 56 223 HM589027

NIP3G2
R-CAGAGCATGCAAGAAAGAGAGA
F-TCCCATGTTTATTGCAGCAC (AC) 23 58 250 HM589028

NlP3H5a
R-TCAGTGCCTGGCTGATTTTA
F-CATTGTGAGAAAACTTGCTTCTG (AG)16 50 167 HM589029

NIP4B1
R-CCCATCAACTTCAGAATACACA
F-TTCCATGGTTTCCAGAGTCC (AC)j6 58 158 HM589030

NIP4B2
R-AGAAATGGATGGGGCAGAG
F-TCAGGTGAATTGCTGGCATA (GT)15 54 199 HM589031

NIP4C11
R-GCATCCAAACTGGAAAGGAA 
F - CT CCACAGT CCTGTG ACCAA (GT)^ 54 248 HM589032

NIP4C6
R-TGCAGAAAGCCAAAAGGATT
F-TGTTGAAAATTCTTGCATTTGTG (GTT)7 52 160 HM589033

NIP4E1O0
R-TCTTCCCCAAAACTGAGGAT
F-CAAACCTGCATGTTCTCCAC (AC)^ 56 218 HM589034

NIP4E6
R-GCTGGGAAACAATCAGTCCT 
F-CAAGG AAGAATT GT GCCAAGA (GT)j9 54 234 HM589035
R-GGCATTCCCAAACCTCATAA

a Denotes poor amplification in faecal DNA extracts

Twenty primers which successfully (>80%) amplified in faecal samples were fluorescently labeled 

(5’- FAM, HEX, or NED) and assembled in 4 multiplexes. Although amplification of the tissue 

samples with the multiplex systems was successful (100%), consistent amplification of the dung 

samples with the multiplex approach was not possible. The limited volume of the faecal DNA 

extracts allowed thorough characterization of only eight markers (singleplex) with the 29 dung 

samples and the four tissue samples under the conditions previously described. For genotyping, 

PCR products were electrophoresed along with GeneScan ROX 350, or GS-400 HD LIZ, in a 

Prism 3700 Genetic Analyzer (Applied Biosystems) and fragment lengths were scored using 

GeneMapper® ID 3.2 (Applied Biosystems).
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Table 2.2 Characteristics of 20 proboscis monkey microsatellite loci suitable for invasive and non-invasive 
genetic studies. Genetic diversity of eight microsatellite loci is based on genotypes of 33 individuals. A- 
Number of alleles per locus; refers to markers tested only with four tissue samples.

Locus Label A Range (bp) H 0 h e

M ultiplex 1 (Ta 54°C) 
NID10  HEX 6 177-189 0.848 0.581
NIP4C11 HEX 6 241-259 0.757 0.786
NIP1C3 FAM 1 230 - -

NID5 FAM 2 163-169 - -

M ultiplex 2  (Ta 54°C) 
NIP2D6 HEX 5 146-160 0.636 0.655
NIP1A6 NED 4 146-158 0.575 0.581
NIP1C5 FAM 7 177-205 0.696 0.685
NIP4B2 HEX 2 185-201 - -

NIP4E6 FAM 3 237-241 - -

M ultiplex 3  (Ta 58°C) 
NIE10 NED 8 153-205 0.484 0.651
NIP2F3 FAM 5 175-187 0.575 0.662
NIP3B2 FAM 4 158-172 0.727 0.793
NIP4B1 HEX 3 152-156 - -

NIP3G2 HEX 3 200-204 - -

M ultiplex 4 (Ta 52°C) 
NIP3E7 NED 1 152
NIP2B9 HEX 3 212-218 - -

NIP4C6 HEX 2 156-162 - -

NIP IF5 FAM 2 235-237 - -

NIP2C12 FAM 4 186-194 - -

NIF1 HEX 3 171-175 - -

Allele diversity and size ranges of all 20 markers are included in Table 2.2, along with other 

details for the eight loci. Exact Hardy-Weinberg probabilities were assessed, and linkage 

disequilibrium was tested using GENEPOP version 4.0.10 (Raymond & Rousset, 1995; Rousset,

2008). Significance levels were adjusted using Bonferroni corrections for multiple testing (P < 

0.006 in our dataset). All loci were in Hardy-Weinberg equilibrium except N1D10 (P < 0.001), 

and no evidence was found for linkage disequilibrium between any pair of loci. Observed and 

expected heterozygosities were calculated using ARLEQUIN version 3.5.1.2 (Excoffier & Lischer, 

2010). The mean expected heterozygosity was 0.674 (range 0.581-0.793) and mean observed 

heterozygosity was 0.662 (range 0.484-0.848). The mean number of alleles was 6.25 (range 4-9) 

for the eight fecal-tested markers and 2.41 (range 1-4) for the other 12 loci. Deviation from 

Hardy-Weinberg equilibrium for some loci might be due to samples coming from three distant 

sites and the wildlife park individuals whose origin was unknown. It is also possible that balancing 

selection (i.e. heterozygote advantage) is acting on locus N1D10 or that this microsatellite is near a 

region under selection pressure. Large-scale testing on individuals from a single population is
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needed for locus N1D10. The eight polymorphic microsatellite loci will be useful for the future 

study of individual identification, population genetic diversity and genetic structure in the 

proboscis monkey.
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CHAPTER THREE 
Genetic diversity and gene flow  in two sympatric primate 

species o f the Lower Kinabatangan Wildlife Sanctuary
Salgado-Lynn M1, Cable J1, Bruford MW1, Goossens B1,2

School o f Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK 
2Danau Cirang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah,

Malaysia

3.0  Abstract

The genetic diversity and the potential effect of the Kinabatangan River on the population 

structure of the proboscis monkey (Nasalis larvatus) and long-tailed macaques (Macaca 

fascicularis) in the Lower Kinabatangan Wildlife Sanctuary, northern Borneo, were examined. 

Cross amplification of 15 human microsatellite primers in 109 long-tailed macaque faecal 

samples revealed high levels of genetic diversity (mean HE= 0.8) and gene flow (Fsr= 0.005). 

Sixty seven proboscis monkey stool samples were screened with eight species-specific 

microsatellite markers and the levels of genetic diversity and gene flow were also relatively high 

(mean HE= 0.68, Fsr= 0.012). Bayesian clustering analyses revealed no influence of the 

Kinabatangan River on the population structure of either species, in accordance with the dispersed 

behaviour observed in both species. Significant departures from Hardy-Weinberg Equlibrium 

were detected particularly for long-tailed macaques (mean FIS= 0.3) which can be explained by 

the presence of null alleles across the loci screened, which could not be eliminated by PCR 

optimisation. The results of this study can nonetheless be used as a baseline for conservation and 

management measures for the proboscis monkeys and long-tailed macaques of the LKWS.

3.1 Introduction

Genetic diversity plays a strategic role in the maintenance of adaptive evolutionary potential and 

the reproductive fitness of species (Allendorf & Luikart, 2007; Frankham et al, 2002). Hence, for 

the last 20 years, the International Union for Conservation of Nature (IUCN) has included genetic 

diversity as a conservation priority in endangered species management plans. A threat to genetic 

variation can arise from restricted gene flow caused by habitat fragmentation. Moderate to high 

rates of gene flow among subpopulations prevent inbreeding depression, thereby preserving 

genetic variation. Hence, for the management of endangered species living in fragmented 

habitats it is essential to understand the role of gene flow, or migration of individuals and the 

subsequent transfer of genes among subpopulations (Allendorf & Luikart, 2007; Frankham et al, 

2002; Storfer, 1999). The Lower Kinabatangan Wildlife Sanctuary (LKWS), in Sabah, Malaysia,
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is an example of a fragmented habitat harbouring endangered species. Renowned for its rich 

primate diversity, the sanctuary was created as a response to the logging and change of land use 

in the region (Pang, 2005; WWF -  Asia/Pacific, 2005). Besides the anthropomorphic-mediated 

habitat fragmentation (ten forest fragments -Lots), the sanctuary is bisected lengthways by the 

Kinabatangan River, posing another potential (natural) barrier for the dispersal of wildlife, and 

consequently for gene flow.

Landscape genetics, an amalgamation of population genetics and landscape ecology, aims to 

provide information on how landscape and environmental factors influence gene flow and 

population structure (Manel et al, 2003; Storfer et al, 2007). In that context, the role of riverine 

barriers in speciation in the tropics, and especially with reference to primate diversity, has a long 

history of study and has been both heavily advocated and criticised over the past twenty years 

(Anthony et a l, 2007; Eriksson et al, 2004; Gascon et al, 2000; Gonder et at., 1997, 2006; Salo 

et al, 1986). Although many instances have now come to light which emphasise the role of 

riverine barriers in primate diversification, evidence is beginning to accumulate that rivers do not 

always play such a role, as some primate groups seem to be more affected than others (Ayres & 

Clutton-Brock, 1992; Clifford et al, 2004; Collins & Dubach, 2000). In South America, 

Amazonian rivers are a boundary for capuchin and titi monkeys (Ayres & Clutton-Brock, 1992), 

tamarins (Vallinoto, et al, 2006) and night monkeys (Couette, 2007). In Africa, rivers have 

played a role shaping the genetic diversity of mandrills (Telfer et al, 2003), bonobos (Eriksson et 

al, 2004), chimpanzees (Gonder et al, 1997, 2006), and gorillas (Anthony et al, 2007). An 

Asian example comes from the orang-utans, where rivers are a barrier and have influenced 

subspeciation of this ape (Jalil et al, 2008; Warren et al, 2001). Contrastingly, Clifford et al 

(2004) did not find either the Sanaga or the Cross Rivers to delineate boundaries of western 

lowland gorillas. A similar result was obtained by Craul et al (2008) where Madagascan rivers 

did not influence gene flow entirely for lepilemurs. Thus, the ‘riverine-barrier hypothesis’ (Salo et 

at., 1986) cannot be generalized for primates, although they are likely to be an obstacle for gene 

flow in some species.

Long-tailed macaques (Macaca fascicularis) and proboscis monkeys (Nasalis larvatus) are two of 

the 10 primate species that occur together in sympatry in the LKWS. These species differ in their 

social structure, home ranges and conservation status. Macaques are organized in multimale -  

multifemale groups, under a hierarchical matriline and a dominant male (de Ruiter et al, 1994; 

de Ruiter & Geffen, 1998, Engelhardt et al, 2006). Females are philopatric while males migrate 

joining other groups, dispersing males have also been observed to swim across rivers in Sumatra 

(de Ruiter & Geffen, 1998), and the Kinabatangan (personal obs and Jalil, 2007). New groups 

may be formed by fission of a large group (implying female dispersal) (de Ruiter & Geffen,
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1998). Home ranges depend on the quality of the forest, 25-50 ha in primary forest and up to 

200 ha in secondary or degraded forest (de Ruiter & Geffen, 1998; Wolfheim, 1983).

The long-tailed macaque has been listed as one of the 100 most invasive alien species inhabiting 

a variety of forest habitats, preferring edge habitats and riverine areas, but can also be found in 

villages (i.e. disturbed habitat), often raiding crops and where they may be classified as a pest 

(van Schaik et a l, 1996; Abegg & Thierry, 2002). In contrast, the proboscis monkey is endemic 

to Borneo. They occur in two types of social group: harems consisting of a single dominant male 

and several females and all-male groups (Murai, 2004). However, larger bands of individuals 

comprising both types of social groups often co-habit with overlapping home ranges (Kawabe & 

Mano, 1972; Bennett & Sebastian, 1988). Female transfer between harems is frequent and is 

more common in subadult them adult females (Murai et al., 2007). They are excellent swimmers 

and have been found swimming from riverside to riverside; if frightened while swimming they 

can dive for several minutes (Bennett & Gombek, 1993; Fleagle, 1998). Home range sizes vary 

depending on the availability of food, with estimates that fluctuate between 137 ha in Kalimantan 

to 900 ha in Sarawak (Bennet & Davies, 1994). Currently, the proboscis monkey is threatened 

by habitat destruction and hunting, and much of its former range has been reduced by logging 

(e.g. in the Kinabatangan), swamp reclamation, gold mining, shrimp farming and forest fires 

(Meijaard & Nijman, 2000; Sha et al, 2008). Hunting is much in evidence in Sarawak and 

Kalimantan (Meijaard & Nijman, 2000). Its conservation status has changed over the past ten 

years from vulnerable to endangered according to IUCN (2010). The proboscis monkey is 

currently listed in Appendix I of CITES (UNEP-WCMC, 2010) and is protected by law throughout 

its range (Meijaard & Nijman, 2000; Sha et al, 2008).

Comparative phylogeography analyses geographic patterns of genetic variation across species in 

order to find general patterns of evolutionary history within biogeographic regions. It also aims to 

reveal the evolutionary processes behind these patterns (Avise 2000, 2008; Hickerson et al, 

2010). The applications of comparative phylogeography provide a powerful tool for 

understanding evolutionary history and strengthening conservation efforts, but most studies to 

date have been based on mtDNA or chloroplast DNA (cpDNA) (Hickerson et al, 2010). For 

example, Jalil (2007) studied the effect of the Kinabantangan River on the genetic structure of the 

long-tailed macaque and the proboscis monkey using mitochondrial control region DNA 

(mtDNA) data. The study revealed that Kinabatangan long-tailed macaques have a stable 

population and high level of genetic diversity. Evidence of some genetic differentiation was 

detected between long tail macaque populations on each side of the Kinabatangan River, which 

the author attributed to be the product of their social systems. Proboscis monkeys exhibit high 

haplotype diversity without any apparent geographical partitioning, probably because this species
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is not as philopatric as the long-tailed macaque and also because they are excellent swimmers 

(Bennett & Gombek, 1993). Jalil (2007) acknowledged that although informative, the exclusive 

use of mtDNA in his long-tailed macaque and proboscis monkey study was limited. The use of 

markers such as mtDNA or cpDNA implies the analysis of only one locus which could be linked 

to selection, could present introgression, or might not be possible to identify its dispersion 

between populations as a consequence of behavioural or ecological differences between males 

and females or between species (Avise, 2008; Domfnguez-Domfnguez & Vazquez-Domfnguez,

2009). For this reason, phylogeography has expanded its focus to nuclear markers with which to 

obtain more precise parameters from multi-locus data (Hickerson et a l, 2010).

In the current study, the genetic diversity, gene flow and, consequently, population structure, of 

the LKWS proboscis monkey and long-tailed macaque populations previously analysed by Jalil 

(2007) were re-examined using microsatellite data. As the previous study was based on a 

maternally inherited marker, bi-parentally inherited markers might be expected to reveal a 

different population structure, especially in the case of long-tailed macaques. In species with 

female biased dispersal, estimates of population structure of a population are expected to be 

similar to that obtained from mtDNA analyses. However, in species such as the long-tailed 

macaque, which exhibits male- biased dispersal, the pattern of population structure pattern is 

expected to be less pronounced than that obtained by mtDNA analysis. In contrast, the female- 

transfer behaviour of the proboscis monkey is expected to reveal a pattern of genetic structure 

similar to that previously reported by Jalil (2007) from mtDNA.

3.2 Methods

3.2.1 Collection and preservation of faecal samples

Sampling was divided in two seasons to cover different areas of the LKWS. The first sampling 

season was carried out between October 2007 and March 2008, focusing in Lots 1-4 of the 

sanctuary. The second sampling season covered Lots 5-10 between June and November 2008 

(Figure 3.1). As long-tailed macaques and proboscis monkeys use riverine trees for sleeping sites, 

the Kinabatangan River was used as a transect to perform a census of the primates during their 

inactive periods (particularly at sunset and early night). A total of —330 km was covered, 

equalling 660 km of riverbank including smaller tributaries. Expeditions lasted from five to ten 

days, with teams of 2-5 people. Faeces were collected at dawn to ensure freshness, and 

occasionally at dusk. GPS (Garmin eTrex Vista HCx) coordinates of collected samples were 

noted for subsequent localisation of groups and populations (Appendix One; detailed list of 

samples analysed in this study are found in Appendices Seventeen (long-tailed macaque) and
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Eighteen (proboscis monkey)). Samples were stored in 50 ml Falcon tubes with 70% ethanol 

following the protocol described by Goossens et al. (2003b) to avoid contamination. Within the 

constraints of time and logistics, we attempted to sample as widely as possible within each 

population seen in the riparian forest; because individual recognition was not always possible, 

and being unhabituated primates, some individuals may have been sampled more than once 

(Table 3.1).
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Figure 3.5. Stool sampling of long-tailed macaques and proboscis monkeys in the LKWS. Limits of the Lots 
conforming the sanctuary are delineated in red, the blue line represents the Kinabatangan River. Green 
marks correspond to long-tailed macaque samples and yellow marks correspond to proboscis monkey 
samples.

In addition to the samples collected in the LKWS, eight proboscis monkey stool samples were 

donated by Dr. Henry Bernard (Unit for Primate Studies Borneo, Institute of Tropical Biology 

and Conservation, Universiti Malaysia Sabah). These samples were collected along the Garama 

River in Klias (Northern Sabah), and were stored in 95% ethanol. LKWS samples for preliminary 

microsatellite screening (58 long-tailed macaque and 80 proboscis monkey DNA faecal extracts) 

were kindly provided by Dr. Faius Jalil (hereafter referred to as Jalil’s samples). These samples 

varied in volume and DNA quantity, most of which had very low amounts when determined by 

mtDNA amplification (Jalil personal communication).

3.2.2 Blood and tissue samples

Four samples of DNA from B-lymphocytes of long-tailed macaques (‘Pedro’, ‘Hippo’, ‘Tresbella’ 

and ‘Yabaa’) were provided by INPRIMAT (EU FP5 ID: QLRI-CT-2002-01325) and used as
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positive controls in PCR reactions. Tissue samples (muscle) from two proboscis monkeys were 

donated by Lok Kawi Wildlife Park. These originated from a deceased juvenile female (Lily) and 

a new bom (Baby -gender unspecified), Lily’s sample was collected a week after the death and 

stored in 95% ethanol and at 4°C, while Baby’s sample was collected immediately after death 

and stored at -70°C. Skin and hair from both individuals were also donated and were 

subsequently stored at -70°C. Additionally, samples (muscle, liver and spleen) from two road- 

killed male proboscis monkeys (Male and Male2) were donated by Sepilok Orangutan 

Rehabilitation Centre (Sabah, Malaysia). All proboscis monkey tissue samples were obtained 

after a year and a half of initiating the project and they were stored in 95% ethanol and kept at 

-70°C.

3.2.3 DNA Extractions

DNA was extracted from each sample in duplicate (unless stated otherwise; see Appendix One) 

using the QIAamp DNA Stool Mini Kit (QIAGEN GMBH, Germany) following the manufacturer’s 

protocol for “Isolation of DNA from stool for pathogen detection” (Table 3.1, Appendix One). 

This protocol was previously used by Goossens et al. (2000) with a modification in the last step, 

where DNA was eluted in 100 /A instead of 200 fA, and was subsequently concentrated to ca.70 

(A (Jalil, 2007). Sample concentration was performed in a lyophilizer (Concentrator Eppendorf 

5301) using the manufacturer’s protocol “Aqueous liquids mode”. Tissue samples were extracted 

with DNeasy Blood & Tissue Kit (QIAGEN GMBH, Germany) following the recommendations of 

the manufacturer, with minor modifications during elution (namely, 5 min incubation at 70°C 

with buffer AE, which was also preheated at the same temperature). These types of samples were 

used as positive controls in PCR reactions. To evaluate possible contamination, DNA was 

extracted from hair of the author (referred to hereafter as Human DNA) according to a protocol 

described by Jalil (2007).
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Table 3.15. Number of collected and extracted stool samples of long-tailed macaques and proboscis 
monkeys of the LKWS. Samples belonged to populations on the north and south of the Kinabatangan 
River, conformed by different groups and Lots of the sanctuary.

Riverbank Lot Groups

LTM

Collected Extracted Groups

PM

Collected Extracted
1 7 27 27 5 65 31
3 17 80 43 11 199 76

South 6 15 83 38 7 31 28
9 11 46 27 - - -

Outside 1 6 3 - - -
2 9 59 31 8 87 42
4 11 33 31 17 89 27
5 10 54 28 6 72 31

North 7 8 39 27 14 85 39
8 6 32 26 - - -

10(A-C) 10 33 28 4 33 29
Total 105 492 309 72 661 303

LTM -  long-tailed macaque, PM- proboscis monkey

To verify the existence of primate DNA from faecal extracts, a partial mitochondrial control 

region fragment was amplified using species-specific primers (Table 3.2) (Jalil, 2007) and 

visualized in agarose gels (1.5%). All PCR reactions consisted of IX Master Mix (QIAGEN, 

Multiplex Kit), IX Q-Solution (QIAGEN, Multiplex Kit), 0.5 /uM of each primer, and 2 /d of DNA, 

to a total volume of 10 /d. The cycling parameters comprised an initial denaturation step of 15 

min, 95°C, followed by 45 cycles of 30 sec at 94°C, and 90 sec at 55°C (annealing) and 72°C 

(extension) in each temperature, and a final extension step of 10 min at 72°C.

Table 3.2. Species-specific mtDNA Control Region primers described by Jalil (2007). 
Species Prim er code Primer Sequence

Mf-5’ 5’-GCA ACT ACT TTC TGC ACT-3’
Long-tailed macaque

Mf-3 5’-GAA CAA GGG ATT CCT AAG-3’

Nl-5’ 5’-CGT AAA CCA GAA ACG GAT-3’
Proboscis monkey

Nl-3’ 5’-TAA TGG GAA TAT CCG TGC-3’

DNA from the muscle/hair samples was visualized in agarose gels (1.5%) and quantified by 

spectrofluorometry. The Quant-iT™ PicoGreen® (Invitrogen) assay was performed as stipulated 

by the manufacturer, except that all volumes were scaled 10-downfold to make the assay suitable 

for microtitration. Microtiter plates were read using a SpectraMAX GEMINI XS 

spectrofluorometer (Molecular Devices) and DNA concentrations were calculated using the 

SOFTmax® Pro software (Molecular Devices).
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3.2.4 Microsatellite screening

3.2.4.1 Cross-amplification of human microsatellite markers in long-tailed macaques 

Human primers (available in the laboratory) were used to test a total of 25 microsatellite loci in 

long-tailed macaques (Table 3.3). Initial PCR methods were based on Bonhomme et al. (2005) 

and Kikuchi et al. (2007) to screen nine loci using the QIAGEN Multiplex Kit and different primer 

concentrations depending on each protocol (Table 3.3). As a template, 2 pi of two Jalil’s samples 

were used, and negative (H20  only) and contamination/positive controls (Human DNA) were 

included for all loci. Thermal profile for PCR amplification was used as follows: 95°C for 15 min, 

followed by 36 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 90 s (54°C for 

D3S1768 and for D3S1768), extension at 72°C for 90 s, and a final extension at 72°C for 10 

min. All reactions were carried out in a GeneAmp PCR System 9700 (Applied Biosystems).

________ Table 3.3 Human microsatellite primers tested in Macaca fascicularis.________
Reported allele size ranged

Locus Repeat motif Long-tailed macaque 
(Macaca fascicularis)

Human 
(Homo sapie

D1S2073 (CA)n 126-158 142-170

DlS548b (GATA)n 191-215 148-172

D1S550 (GATA)n ND 179

D3S17660 (GATA)n ND 208-232

D3S1768ab (GATA)n 170-250 186-206

D4S243ab (AGAT)n 182-282 173

D5S820b (GATA)n 169-225 190-218

D5S1457 (GATA)n 108-131 151-159

D6S265a (CA)n 113-137 83-183

D6S271 (CA)n 180-200 166-208

D6S291 (CA)n ND 168-219

D6S2883 (CA)n 65,67, 236-268 203-303

D7S503 (CA)n ND 170

D7S2204 (GATA)n 216-256 217-269

D8S1106 (GATA)n 130-174 131-151

D10S611a (GATA)n 164-202 146-158

D llS925a (CA)n 225-239 172-199
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Locus Repeat motif

Reported allele size ranged
Long-tailed macaque 
(Macaca fascicularis)

Human 
(Homo sapiens)

D12S67 (GATA)n ND 233-273

D12S39T (GATA)n ND 211-251

D13S765 (GATA)n 208-240 193

D14S255C (CA)n ND 197-207

D14S306 (GATA)n 165-200 190-210

D16S420 (CA)n ND 179-201

DXS571 (CA)n 133-153 129-130

DXS6799 (TATC)n(ATCC) 171-195 241-261

DXS6810b (GATA)n 171-210 208-223

MIB (CA)n 185-215 226-256

ND-Not determined.
a Primers tested under Kikuchi et al. (2007) protocol (primer concentration = 0.33 pM). 
b Primers tested under Bonhomme et al. (2005) protocol (primer concentration = 0.15 pM, 
except D1S5468 and D3S1768 which were used at 0.1 pM). 
c Primers not tested in the genus Macaca.
d Bonhomme et al., 2005; Clisson et al., 2000; Hadfield et al., 2001; Kikuchi et al., 2007; 
Roeder et al., 2009.

Additional optimisation of all primers was carried out using the QIAGEN Multiplex PCR Kit and 

with the multi-tubes PCR repetition approach (Taberlet et al., 1996). All PCR reactions were 

performed in 10 pi total volume, containing 500 pg of template (INPRIMAT samples) or 2 pi of 

DNA (13 faecal extracts, including at least one per Lot of the LKWS), and 0.2 pM of each primer. 

PCR amplification was as described above but temperature gradients were performed during the 

annealing step in a Robocycler Gradient 96 thermocycler (Stratagene). Optimised annealing 

temperatures were verified in a GeneAmp PCR System 9700 (Applied Biosystems). All PCR 

products were electrophoresed in 3.0% agarose-0.5X TBE gels, and visualized using 1.5 ng/ml 

EtBr in a GelDoc-IT™ Imaging System (UVP). Loci which had not been previously described 

were genotyped to obtain approximate size ranges. Fluorescently labelled (5’- FAM, HEX, or 

NED), undescribed markers were electrophoresed along with GeneScan ROX 350, an internal 

size standard, in a Prism 3700 Genetic Analyzer (Applied Biosystems) and fragment lengths were 

scored using GeneMapper® ID version 3.2 (Applied Biosystems).

Seventeen microsatellite loci, consisting of both di- and tetra-nucleotide repeats, which produced 

a single target band and consistently amplified DNA from faeces, were assembled in five 

multiplexes (named Ml to M5: Table 3.4). Multiplexes Ml to M4 were assembled taking into
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account the primers’ annealing temperature, the allele sizes (from the original and this study), 

and the non-overlap of fragment sizes for loci labelled with the same fluorescent dyes. M5 was 

assembled by combining PCR products from singleplex amplification. Genotyping was performed 

as described above. After the screening process, two tetra-nucleotide loci (D10S611 and 

D5S1457) were removed from the study because of difficulties in amplification.

Table 3.4. Human microsatellite loci screened via multiplex in 
LKWS long-tailed macaques

Locus Label Range (bp)
Repeat
motif Ta

Ml
D8S1106 FAM 124-174 GATA 54°C
D7S2204 HEX 213-265 GATA 54°C
D12S673 NED 138-216 GATA 54°C
DXS571 HEX 117-167 GATA 54°C

M2
D7S503a NED 129-185

CA

CA 56°C
D10S611 HEX 164-202 GATA 56°C
D5S1457a FAM 121-140 GATA 56°C
D11S925 FAM 225-239 CA 56°C
D6S2883 HEX 107-139 CA 56°C

M3
D1S548 NED 145-209

CA

GATA 60°C
D3S1768 HEX 185-233 GATA 60°C
D16S420a FAM 198-244 CA 60°C

M4
D1S207 HEX 125-158

CA
CA
CA 63°C

D3S1766a FAM 209-265 GATA 63°C
D5S820 NED 176-200 GATA 63°C

M5
D1S5503 FAM 138-182 GATA 51°C
D6S291a HEX 199-219 CA 63°C

a-allele size ranges for Macaca fascicularis determined in this study

3.2.4.2 Cross-amplification of human microsatellite markers in proboscis monkeys 

Human primers were used to screen 39 loci in 46 proboscis monkeys DNA faecal extracts (Table 

3.5). Primer selection was based on the amplification success (polymorphic loci) in langurs 

[Semnopithecus entellus, Trachypithecus francoisi, and Presbytis melalophos nobilis) 

(Bonhomme et al., 2005; Coote & Bruford, 1996; Launhardt et al., 1998; Little, 2003; Roeder et 

al., 2009), and primer availability in the laboratory. PCR optimisation was carried out for each 

locus separately in 10 pX reactions, testing different conditions: IX Master Mix (QIAGEN Multiplex 

PCR Kit), ± 0.5X Q-Solution (included in Multiplex Kit), forward and reverse primers (0.2, 0.4 or 

0.6 /iM), and 1 or 2 pX of DNA extract. Initial amplifications were carried out in a Robocycler 

Gradient 96 thermocycler (Stratagene), testing two profiles: 1) initial denaturation at 95°C for 15
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min, 40 cycles of 94°C for 30 sec, 50-61°C for 90 sec, 72°C for 90 sec, and a final extension of 

72°C for 10 min; 2) 95°C for 15, 40 cycles of 94°C for 30 sec, 48-59°C for 120 sec, and a final 

extension of 72°C for 30 min. Further optimisations were carried out in a GeneAmp PCR System 

9700 (Applied Biosystems), under the following profile: 95°C for 15, 40 cycles of 94°C for 30 sec, 

optimised annealing temperature for 105 sec, and a final extension of 60°C for 30 min. Negative 

(H20  only) and contamination/positive controls (Human DNA) were included for all loci, and all 

PCR products were electrophoresed in 3 % agarose-0.5X TBE gels, and visualized using 1.5 

ng/ml Ethidium Bromide in a GelDoc-IT™ Imaging System (UVP).

For initial genotyping, positive PCR products were run individually on an Applied Biosystems 

3130x1 Genetic Analyzer using a 50 cm capillary array with POP-7 polymer; the 

electropherograms were analyzed with PeakScanner V1.0 (Applied Biosystems).

Table 3.5. Human microsatellite primers tested in Nasalis larvatus
Reported allele size range

Locus Repeat motif Humans Langurs
D1S207 CA 133-170 131-153

D1S533 GATA 193-225 ND

D1S548 CTAT 148-172 191-211

D1S550 GATA 179 ND

D2S1326 GATA 233-268 ND

D2S434 GATA 173 138-146

D3S1766 GATA 208-232 ND

D3S1768 GATA 186-206 162-166

D4S2365 GATA 284-304 282-290

D4S2366 GATA 120-140 98-106

D4S243 GATA 173 138-146

D5S1457 GATA 151-159 ND

D5S820 GATA 169-225 197-201

D6S271 CA 166-208 172-178

D6S287 CA 143-171 136-140

D6S2883 CA 203-303 183-193

D6S291 CA 168-219 149-151

D6S2972 CA 122-150 122-130

D6S311 CA 229-276 234-238

D7S2204 GATA 217-269 223-239

D7S503 CA 149-171 151-167

D8S1106 GATA 131-151 114-138

D10S611 GATA 146-158 ND
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Reported allele size range
Locus Repeat motif Humans Langurs

D11S871 CA 186 ND

D11S925 CA 182-212 182-212

D12S375 GATA 175-176 ND

D12S391 GATA 211-251 ND

D12S67 GATA 233-273 134-146

D13S159 CA 168-203 136-140

D13S317 GATA 175-199 ND

D13S765 GATA 193 198-202

D14S306 GATA 190-210 ND

D16S420 CA 195-201 164-184,195-201

D17S791 CA 165-199 146-168,118-130

DXS571 CA 129-130 119-125

DXS6799 (TATC)n(ATCC) 241-261 187-191

DXS6810 TCTA 208-223 226-295

MIB CA 326-256 177-192

SCA-1 CAG 199-232 145-157

ND- Not Described

3.2A.3 Microsatellite screening in proboscis monkeys

Full optimisation of any human-derived microsatellite marker could not be achieved for the 

proboscis monkeys, hence the need to develop species-specific primers, which are described in 

Chapter Two (Salgado-Lynn et al., 2010). Eight polymorphic microsatellite loci, consisting of 

both di- and tri-nucleotide repeats, were amplified in singleplex and subsequently combined in 

multiplexes for final genotyping. PCR mixes consisted of IX Master Mix (QIAGEN, Multiplex 

PCR Kit), OApg/pl BSA (New England BioLabs), 0.2 pM of each primer, 200 pg (positive 

controls and Human DNA) or 2 pi (faecal extracts) of template DNA to a total volume of 10 p\ 

and were performed in a GeneAmp® PCR System 9700 (Applied Biosystems). The amplification 

conditions were as follows: 95°C for 15 min, 45 cycles at 94°C for 30 s, Ta for 90 s, 72°C for 90 s 

and a final extension at 72°C for 30 min. The PCR products of the three multiplexes (Ml, M2 

and M3) (Table 3.6) were electrophoresed along internal size standards GeneScan ROX 350 or 

GS-400 HD LIZ, in a Prism 3700 Genetic Analyzer (Applied Biosystems) and fragment lengths 

were scored using GeneMapper® ID 3.2 (Applied Biosystems).
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Table 3.6. Microsatellite loci screened via multiplex in LKWS 
proboscis monkeys_____________________________________

Locus Label Range (bp)
Repeat
motif Ta

Ml
N1P1A6
N1P4C11
N1P3B2

NED
HEX
FAM

146-158
241-259
158-172

(AAC)7
(GT)23
(GT)23

54°C
54°C
58°C

M2
N1E10
N1D10
N1P1C5

NED
HEX
FAM

153-205
177-189
177-205

(GT)16
(CT)10
(GT)15

58°C
54°C
54°C

M3
N1P2D6
N1P2F3

HEX
FAM

146-160
175-187

(GT)17
(AG)17

54°C
58°C

3.2.4A  Genotyping criteria

Specific conditions were followed for genotyping. Given the initial number of extracted DNA 

samples (roughly 300 samples for each primate species), time and financial considerations 

prevented us from typing each individual as many times as recommended by Taberlet et al., 

(1996) when genotyping nuclear loci of very low DNA samples (up to 7 positive PCR repeats to 

confirm homozygosity). In the case of long-tailed macaque samples, the simulation program 

GEMINI v. 1.4.1 (Valiere et al, 2002) was used to determine the number of positive PCR 

repetitions needed to obtain a reliable genotype. To run GEMINI, allele frequencies for a subset 

of the macaque samples (40) were calculated using GENEPOP 4.0.10 (Raymond & Rousset, 

1995; Rousset, 2008) and error rates were calculated with PEDANT v. 1.0 (Johnson & Haydon, 

2007, 2009). PEDANT estimates allelic dropout (ADO) and false allele (FA) error rates in the 

absence of reference data by comparing duplicate genotypes based on the frequency and nature 

of mismatches. With the allele frequencies and the error rates, a consensus threshold test was 

performed with GEMINI. General parameters included 1000 simulation replicates, the 

heterozygosity rate was selected as not constrained within the population parameters, the 

sampling parameters included the use of the non-invasive model and a probability of capture 

uniform over individuals, genotyping parameters allowed double errors and not uniform error 

rates over loci, also the range of repetition number was set from 2 to 12. After calculating the 

consensus threshold, a PCR repetition test was performed using the same parameters but 

including the calculated consensus to the repetition parameters. This test determined that four 

PCR repetitions were sufficient per locus to achieve a high probability of identity (> 94%), and 

consensus genotypes were determined using the per locus consensus threshold calculated also by 

GEMINI, meaning that a genotype had to be observed a particular number of times out of four to
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be confirmed (Table 3.7). Finally, for a sample to be included in the final analysis it had to have 

at least three positive PCR results for eight out of the 15 loci (Table 3.8).

Table 3.7. Genotyping consensus threshold for loci screened in Macaca fascicularis of the LKWS.

Locus Consensus threshold Locus Consensus threshold

D11S925 2 D5S820 3
D12S67 3 D6S2883 2
D16S420 2 D6S291 3
D1S207 2 D7S2204 3
D1S548 3 D7S503 2
D1S550 3 D8S611 2
D3S1766 2 DXS571 2
D3S1768 2

In the case of proboscis monkey samples, since multiplexing was not possible, the volume of the 

samples (ca. 70 /d/extract) was an additional constraint for a full multi-tube approach (Taberlet et 

al., 1996). An individual was typed as heterozygous if both alleles appeared at least twice within 

four replicates, and a homozygous was typed if it appeared as such at least three times. As with 

the macaques, for a proboscis monkey sample to be included in subsequent analyses at least 3 

positive PCR results were required in five out of the eight loci screened (Table 3.8).

Table 3.8. Total samples tested and included in the genetic analyses. Two populations at each side of the 
river (South and North) divided by lot of the LKWS for each primate species, and amplification success.

South L o ti Lot 3 Lot 6 Lot 9 Outside Total

T S T S T S T S T S T S T S % A
LTM 16 9 15 11 15 10 15 12 1 1 62 43 69.35
PM 15 6 27 8 20 8 - - - - 62 22 35.48

North Lot 2 Lot 4 Lot 5 Lot 7 Lot 8 Lot 10
LTM 16 7 15 13 15 12 15 14 15 11 15 9 91 66 72.53
PM 15 1 15 13 15 12 15 10 - - 14 9 74 45 59.46

LTM -  long-tailed macaque, PM- proboscis monkey, T- total samples tested, S-total number of samples 
screened in this study, %A- PCR amplification success.
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3.2.5. Estimation of error rates and null alleles

Genotyping errors, such as null alleles, allelic dropout, and scoring of stutter peaks, were assessed 

statistically using MICROCHECKER, version 2.2.3 (van Oosterhout et al., 2004). Additionally, 

the probabilities of genotyping error for homozygotes and heterozygotes, as well as false allele 

and allelic dropout rates were calculated by the method described by Zhan et al. (2009). Null 

allele frequencies were additionally calculated using the software FREENA, which uses the 

algorithm by Dempster, Laird & Rubin (1977) and has previously been found to perform better 

than other null allele frequency estimators (Chapuis & Estoup, 2007). However, this software 

calculates null allele frequencies for all the locus/population combinations and does not take into 

account that heterozygote deficits may be due to other possible causes.

3.2.6. Genetic diversify analysis

GENETIX 4.05 (Belkhir et al, 1996-2004) was used to perform all standard population genetic 

analyses: mean number of alleles per locus and per population, allele frequencies at each locus, 

and expected (HE) and observed heterozygosity (H0) per population. HE and H0 were estimated 

per locus using ARLEQUIN version 3.5.1.2 (Excoffier & Lischer, 2010). Genotypic linkage 

disequilibrium (LD) was also estimated using ARLEQUIN using 10000 permutations. Significance 

levels were adjusted using Bonferroni corrections for multiple testing (P < 0.01). Heterozygote 

deficiency was tested, as compared to Hardy-Weinberg equilibrium for each locus. Deviation 

from Hardy-Weinberg equilibrium were tested calculating Weir & Cockerham’s estimate of FIS 

(Weir & Cockerham, 1984) for each locus and also globally, using GENETIX with 10000 

permutations. Significant positive values of F,s indicate heterozygote deficiency, and significant 

negative values indicate heterozygote excess.

3.2.7. Population structure analysis

Genetic differentiation and gene flow among populations were estimated using the FST analogue 

(theta) of Weir and Cockerham (1984) implemented by GENETIX. The same program was used 

to explore patterns of genetic differentiation between individuals sampled on the north and south 

of the Kinabatangan River using Factorial Correspondence Analysis (FCA) based on allele 

frequencies (Belkhir et al., 1996-2004). Additionally, as suggested by Pearse & Crandall (2004), 

two different Bayesian clustering methods were used to investigate the spatial genetic structure of 

the long-tailed macaque and the proboscis monkey in the LKWS. First, the software 

STRUCTURE (version 2.3.1; Falush et al, 2003, 2007; Hubisz et al, 2009; Pritchard et al, 

2000) was used because the variety of modelling options available make it well suited to the
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detection of various patterns of population genetic structure and it incorporates null alleles 

present in the dataset (Carlsson, 2008; Evanno et al. 2005; Falush et al., 2007; Latch et al. 

2006). The second approach incorporates spatial information through the inclusion of 

coordinates for each sample into the model and is implemented in GENELAND 3.1.5 (Guillot et 

al., 2005a, b; Guillot, 2008) an extension of the program R (version 2.10.1; R Development Core 

Team, 2010).

To infer the number of genetically differentiated clusters (subpopulations, K), STRUCTURE was 

run for a range of K values between one and five using 10 independent runs of 1’000,000 

iterations (plus a bum-in of 100,000 iterations) for each K value. Runs were performed with the 

“admixture model” and the “correlated allele frequency” model without prior information and 

with an initial alpha value set to 1.0. Null alleles were considered as recessive to all other alleles, 

where the non-amplified samples were coded as homozygotes for the recessive allele (null allele). 

The maximum K value was chosen as the number of sampled subpopulations (north and south 

riverbanks) plus three, as suggested by Evanno et al. (2005). The most probable K value was 

estimated by using the model choice criterion implemented in STRUCTURE that is the maximal 

value estimate of posterior probability of the data for a given K,Pr(X|K) (Pritchard et al., 2000). 

Individuals were assigned to one cluster if their proportion of membership {q^ to that cluster was 

equal to or larger than 0.600, considering that if more than half the genome of an individual is 

assigned to the same genetic group then this individual can be assigned to this group with 

reasonable confidence; the individuals with maximum inferred ancestry < 0.6 were not assigned 

to any group (Coulon et al., 2008; Quemere et al., 2009).

To infer the number of K in GENELAND, as suggested in Guillot et al. (2005a), a preliminary 

series of 10 runs of 100,000 MCMC iterations were performed to infer the most probable number 

of genetic groups (K), where K was allowed to vary. The number of subpopulations was set from 

1 to 12, using a matrix of genotypes, spatial coordinates for each individual, and 1000 stored 

MCMC iterations (100,000 iterations, thinning 100). Allele frequencies were drawn from 

independent Dirichlet distributions (Pritchard et al. 2000) as this model has been shown to 

perform better than the alternative model (F-model; Guillot et al. 2005a). The amount of 

uncertainty to spatial coordinates was set at 0.3 and the maximum rate of the Poisson process 

was set to 100, a value close to the number of individuals in the datasets as suggested by Guillot 

et al. (2005a). This parameter controls the number of polygons in the geographical area under 

study, and the value used herein corresponds to strongly fragmented partitions and weak 

dependence on the spatial organization of populations. In the spatially explicit GENELAND 

model, subpopulations are assumed to be spatially organized through the Poisson-Voronoi 

tessellation (Dupanloup et al. 2002); the maximum number of nuclei within this tessellation was
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set to 300 (3 times the maximum rate as suggested by Guillot et al. 2005a). Next, we inferred the 

number of subpopulations from the modal K of these 10 runs, and ran MCMC 5 more times with 

K fixed to this num ber and other parameters unchanged. For each of the 5 runs with fixed K, the 

posterior probability of subpopulation membership was computed for each pixel of the spatial 

domain (100 x 100 pixels), using a bum-in of 100 iterations. Finally, the most probable number 

of clusters (K) was found comparing the histograms across the 5 runs.

3.3 Results

3.3.1. Genetic diversity in long-tailed macaques of the LKW S

A total of 109 long-tailed m acaque individuals from the north (n=66) and south of the 

Kinabatangan River (n=  43) were genotyped using 15 microsatellite loci (Appendix Two). 

Genetic diversity was measured as the mean number of alleles per locus (MNA), and observed 

(H0) and expected (HE) heterozygosities. In total, 202 different alleles were observed with a MNA 

of 13.5 (SD=3.2), ranging from eight (D5S820) to 21 (D7S507) (Figure 3.2). The level of 

polymorphism per population was also high, with a mean num ber of alleles of 11.2, being 11.6 

for the north bank and 10.8 for the south bank (Table 3.9). The frequencies of the alleles 

generally showed multimodal distributions with more than two common alleles and a range of 

other alleles at low frequencies, except for the locus D12S67, which had a single common allele 

with high mean frequency of 78 % over both populations. Allele frequency distribution by locus 

and population is shown in Appendix Three.

25 ■ North
21

South
20

■ Total 17

Locus
Figure 3.2. Total number of alleles per locus across both populations (to the north and south of the 
Kinabatangan River) of long-tailed macaques.
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The mean HE and H0 per population were high: at 0.8 (HE) for both subpopulations and H0 

values of 0.59 and 0.53 in the north and south populations respectively (Table 3.9). Across all 

loci, He varied from 0.41 (D12S67) to 0.9 (D7S503), and H0 varied from 0.23 (D12S67) to 0.86 

(D6S2883). High FK values were also observed for most loci, ranging from 0.001 (D6S2883, 

north) to 0.592 (D3S1766, south). Most of these loci exhibited highly significant deviation from 

Hardy-Weinberg equilibrium (HWE) proportions for both populations (Table 3.9).

Table 3.9. Average number of alleles across populations (NJ, observed (H0) and expected (HE) 
heterozygosities and departures from Hardy-Weinberg proportions (FIS) for sampled populations 
and all loci of long-tailed macaques.

Locus
Population 

North South Na Locus
Population 

North South Na
D11S925 He 0.85 0.84 D5S820 He 0.80 0.80

Ho 0.51 0.38 13 H0 0.53 0.39 11

FIS 0.409 0.553 F,s 0.346 0.528
**♦ *** *** ***

D12S67 He 0.41 0.34 D6S2883 He 0.86 0.85

H0 0.23 0.19 10 H0 0.86 0.63 11

FIS 0.454 0.446 F,s 0.001 0.266
*** *** NS ***

D16S420 He 0.83 0.72 D6S291 He 0.84 0.83

H0 0.52 0.46 14 Ho 0.67 0.77 10

F is 0.381 0.378 Fis 0.203 0.087
*** *** *** NS

D1S207 He 0.86 0.86 D7S2204 He 0.82 0.83
Ho 0.77 0.70 14 Ho 0.54 0.61 11

F,s 0.116 0.203 Fis 0.353 0.287
** *** *** ***

D1S548 He 0.63 0.69 D7S503 He 0.90 0.86

H0 0.40 0.44 7 H0 0.75 0.56 20

Fis 0.369 0.380 F,s 0.175 0.357
*** ** *** ***

D1S550 He 0.74 0.74 D8S1106 He 0.86 0.86
H0 0.44 0.57 10 H0 0.74 0.64 11
Fis 0.41 0.244 F,s 0.152 0.266

*** ** ** **

D3S1766 He 0.83 0.86 DXS571 He 0.85 0.83

H0 0.52 0.36 10 H0 0.65 0.62 12

Fis 0.376 0.592 F,s 0.25 0.268
♦♦♦ *** *** ***

D3S1768 He 0.87 0.86

H0 0.69 0.63 13
F,s 0.369 0.38

*** ***
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Table 3.9. Continued
Total North South

He 0.80 0.80
(SD) 0.13 0.13

H0 0.59 0.53
(SD) 0.17 0.15

Fis 0.269 0.338
*** ***

MNA 12 11
MNA -  mean number of alelles per locus.
NS- non significant, ** - P  <0.01, *** - P  <0.001.

Significant linkage disequilibrium (P< 0.05) was found between some loci and in both 

populations (Appendix Four). Pairs of loci comprising D7S2204, D7S503, D16S420, D3S1766 

and D5S820 exhibited the most significant LD values, ranging from 5.5 to 6.5 across populations 

(SD ranges 0 - 2.12).

DNA degradation, low DNA concentrations and primer-site mutations may also result in the 

incorrect assignment of microsatellite genotypes, biasing population genetic analyses. Assessment 

of genotyping errors using MICROCHECKER (van Oosterhout et al., 2004) gave no evidence for 

large allelic dropout but notified scoring errors due to stuttering in two loci (DXS571 and 

D11S925) of the north population and one locus (D1S550) of the south population. The 

presence of null alleles due to a general excess of homozygotes for most allele size classes was 

also notified. Both populations were probably in Hardy Weinberg equilibrium but 14 loci of each 

population showed evidence of null alleles (excepting D6S28883 on the north and D6S291 on 

the south). Genotyping errors calculated by the method of Zhan et al. (2009) gave an allelic 

dropout (ADO) error rate of 0.25, and a false allele (FA) error rate of 0.1, however the mean 

probability of genotyping error was 0.05. Null allele frequencies calculated with Dempster et al. 

(1977) algorithm using FREENA were in the range 0.115-0.811, this program calculated null 

allele frequencies for all locus/populations that presented heterozygote deficits and no 

locus/population combinations had null frequencies equal to zero. This excess of homozygotes 

very likely explains the high FIS values, departures from HWE, and some of the LD between loci. 

Although the calculated null allele frequencies (see Appendix five) were generally non negligible, 

analysis of population structure was nonetheless carried out with the 15 loci, with adjustments 

made to account for the presence of null alleles (Carlsson, 2008; Falush et al., 2007).

3.3.2. Population structure in long-tailed macaques of the LKWS

Despite the high FIS values, little structure was observed from the Factorial Correspondance 

Analysis (FCA) plot of individual microsatellite genotypes (Figure 3.3). Using GENETIX, FST was
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equal to 0.005 [P> 0.01) with a number of migrants per generation (Nm) of 43, indicating high 

levels of gene flow. However, the Bayesian clustering performed using STRUCTURE considering 

the null alleles as recessive, estimated a log likelihood of the data, In Pr(X | K), maximal at K = 2 

(Table 3.10). When K increased (K = 3-5), the results showed a similar pattern as with K = 2 

(Figure 3.4).

Table 3.10. Inference for the number of populations (K) of long-tailed 
macaques with STRUCTURE. The posterior probability of the number of 
populations was maximum with K = 2

K 1 2 3 4 5
In Pr(X | K) -6340.3 -6 1 2 0 .0  -6141.9 -6411.8 -6202.6

Axe 1 (2.91 %)
Figure 3.3 Factorial Correspondence Analysis (FCA) showing the relationship among multilocus genotypes 
of individual long-tailed macaques from the north (yellow) and south (blue) of the Kinabatangan River in 
the LKWS.

One cluster (II) grouped together the population sampled on the north bank of the Kinabatangan 

River (q,= 0.646). In contrast, the population to the south of the river comprised individuals from 

both clusters and, as a whole, this population could not be assigned to any cluster (q,= 0.434 

and qn= 0.566), indicating admixture. The proportions of membership of each sampled 

population in the two inferred clusters are shown in Table 3.11. The unassigned individuals were 

assigned to both clusters (I and II) with probability lower than 0.600, indicating that they are 

admixed (Randi et al., 2003). Potential migrants observed within the population sampled to the 

north of the river are the number of individuals assigned with a probability larger than 0.600 in 

the opposite cluster (62% of the individuals of that population were assigned to cluster II, while 

19 individuals averaging qj= 0.751 were assigned to cluster I). These potential migrants belonged 

mainly to Lot 5 (42%) and Lot 7 (37%). However, when each Lot was analysed in STRUCTURE

53



Chapter 3: Genetic diversity and gene flow in two sympatric primate species in the Lower Kinabatangan
Wildlife Sanctuary.

as an independent population, two dusters were still recognized by the program but no 

population met the condition of q,> 0.600 to be assigned to either cluster (Appendix Six).

Table 3.11. Bayesian clustering analysis in long-tailed macaques performed with STRUCTURE. The table 
shows the proportion of membership (q) of each predefined sampled population in each of 2 inferred 
clusters. The number (in parentheses) and percentage of total individuals assigned (including migrants) 
are indicated. Proportions of membership of potential migrants are indicated with their original cluster (I) 
(see text for details), n = population size.

Cluster Potential Unassigned % of total
ql qll Migrants individuals assigned

North(66) 0.354(0) 0.646(41) 0.751(19)1 6 90.91

South (43) 0.434(12) 0.566(20) - 11 74.42

In the 10 runs performed with GENELAND to estimate K, the posterior density and the log- 

likelihood levels reached a plateau well before the end of the MCMC runs, indicating that they 

had reached convergence. In seven runs the modal number of genetic groups (K) was one, 

whereas the other three runs showed two clusters. Therefore, subsequent runs were performed 

with K fixed to 1. The 5 runs selected on the basis of their posterior also reached convergence. In 

all cases, the 109 individuals were assigned to one spatially defined population (Figure 3.5).
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North South
Figure 3.4. Long-tailed macaque clustering results (K = 2) for both sampled sites, according to 
STRUCTURE analysis. Each individual is represented as a vertical line partitioned into coloured segments. 
Sampled sites are separated by black vertical line and labelled below the figure.
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Figure 3.5. Spatial genetic clustering analysis of long-tailed macaques with GENELAND. a) Histogram 
showing the posterior density distribution of the number of clusters estimated from GENELAND analysis, 
b) The contour map shows the posterior probability for all long-tailed macaque individuals to belong to 
one cluster. Contour maps represent polygons that approximate the true pattern of population spread 
across space, each of them belongs to one the K population determined by GENELAND and is represented 
with a different colour (the yellow area in this case).

3.3.3. Genetic diversity in proboscis monkeys o f the LKWS

A total of 67 proboscis monkey individuals from the north (n= 45) and south of the 

Kinabatangan River (n= 22) were genotyped using eight microsatellite loci (Appendix Seven). 

Seventy different alleles were observed in the whole sample with a mean number of alleles per 

locus of 8.8 (SD= 2.4), ranging from seven (DIO, P1A6, P2F3) to 14 (E10) (Figure 3.6). The 

level of polymorphism per population was high, with a mean number of alleles of 6 .5 , being 6.2 

for the north bank and 6.7 for the south bank (Table 3.12). The frequencies of the alleles 

generally showed bimodal distributions with two common alleles and a range of other alleles at 

lower frequencies. Allele frequency distribution by locus and population is shown in Appendix 

Eight.

The mean HE and H0 per population were relatively high, with 0.68 (HE) for both subpopulations 

and observed values of 0.65 and 0.70 in the north and south populations respectively (Table 

3.12). Across all loci, HE was high and varied from 0.55 (N1D10) to 0.82 (N1E10), and H0 varied 

from 0.26 (N1E10) to 0.82 (N1D10). High FIS values were also observed for most of the loci, 

ranging from -0.323 (N1D10, north) to 0.693 (N1E10, south), although this was non-significant for
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the northern population (Table 3.12). All but N1P2D6 exhibited significant deviation from Hardy- 

Weinberg equilibrium (HWE) proportions for both populations (Table 3.12).

•  North

South

£L° ^ \? \&  t̂ «p4CU- Locus

Figure 3.6. Total number of alleles per locus across both populations of proboscis monkeys

Significant linkage disequilibrium (P< 0.05) was found between some loci and in both 

populations (Appendix Nine). Within the northern population, loci N1P1C5 and N1P2D6 were 

linked (P=0.001), while locus NIE10 was the most common among linked pairs (four) in the 

southern population.

Assessment of genotyping errors using MICROCHECKER (van Oosterhout et al., 2004) gave no 

evidence for large allelic dropout. Scoring errors due to stuttering and the presence of null alleles 

due to a general excess of homozygotes was notified for the locus N1P2F3 of the north 

population. The presence of null alleles was also notified for the locus N1P4C11 in the population 

to the south of the river and for locus N1E10 in both populations. Both populations were found to 

be possibly in Hardy Weinberg equilibrium. Genotyping errors (calculated by Zhan et al. (2009)’s 

method) gave an ADO error rate of 0.24, and a FA error rate of 0.07, however the mean 

probability of genotyping error was 0.04. Null allele frequencies calculated FREENA (Chapuis & 

Estoup, 2007) were in the range 0.04-0.737 (Appendix Five).
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Table 3.12. Average number of alleles across populations (Na), observed (H0) and expected 
(He) heterozygosities and departures from Hardy-Weinberg proportions (FIS) for sampled 
populations and all loci of proboscis monkey.

Population Population
Locus North South Locus North South Ns

D10 He- 0.62 0.55 P2D6 He. 0.64 0.74

H0 0.82 0.40 6 H0 0.64 0.68 7

Fis -0.323
NS

0.306
*

F,s 0.020
NS

0.105
NS

E10 He. 0.63 0.82 P2F3 He. 0.64 0.68

H0 0.43 0.26 9 H0 0.50 0.63 5

F,s 0.338
***

0.693
***

F,s 0.235
**

0.092
NS

P1A6 He. 0.58 0.69 P3B2 He. 0.71 0.70
H0 0.69 0.55 5 H0 0.62 0.60 8
Fis -0.175

NS
0.222

*
fk 0.141

*
0.176

*

P1C5 He- 0.72 0.71 P4C11 He. 0.68 0.74

H0 0.62 0.59 6 Ho 0.69 0.47 8
F,s 0.146

*
0.200

*
F,s -0.011

NS
0.388

***

Total North South
He. 0.65 0.70

(SD) 0.05 0.08

Ho 0.63 0.52
(SD) 0.12 0.14

F,s 0.053 0.282
NS ***

MNA 6 7
MNA- mean number of alleles per locus.
NS- non significant, ** - P<  0.01, *** - P< 0.001.

3.3.4. Population structure in proboscis monkeys of the LKWS

Despite the significant F|S values, little structure was observed from the FCA plot of individual

microsatellite genotypes (Figure 3.7). Twenty migrants per generation were detected and Fsr was 

equal to 0.012 (P> 0.01) indicating high levels of gene flow. As with the macaque populations, 

the Bayesian clustering performed using STRUCTURE considering the null alleles as recessive, 

estimated a log likelihood of the data, In Pr(X | K), maximal at K = 2 (Table 3.13). When K

increased (K = 3-5), the results showed a similar pattern as with K = 2 (Figure 3.8).
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Table 3.13. Proboscis monkey inferred number of populations (K) by 
STRUCTURE. The posterior probability of the number of populations was 
maximal at K -  2.   =_______

K 1 2 3 4 5
In Pr(X 1 K) -1655.3 -1 6 2 0 .3  -1625.6 -1784.3 -1814.6

2

o£ 1

a

0

■1

■1 1

Figure 3.7. Factorial Correspondance Analysis (FCA) of individual proboscis monkeys. The relationship 
among multilocus genotypes of north (yellow) and south (blue) individuals is shown.

Following the same parameters as with the long-tailed macaques, one cluster (I) grouped together 

the population sampled on the south bank of the Kinabatangan River (q,= 0.647). The 

population to the north of the river seems to be admixed since it was comprised of individuals 

from both clusters and, as a whole, the population could not be assigned to any one cluster (qj= 

0.41 and q„= 0.59). The proportions of membership of each sampled population in the two 

inferred clusters are shown in Table 3.14. Within the population sampled to the south of the 

river, seven potential migrants were identified (average qn= 0.768) and which mainly belong to 

Lot 6 (57%). However, when each Lot was ran in STRUCTURE as an independent population, 

two clusters were still recognized by the program but only Lot 1 (qn), Lot 4 (q,) and Lot 10 (qt) 

met the condition of qt> 0.600 and could be assigned to either cluster (Appendix Ten).

Table 3.14. Bayesian clustering analysis in proboscis monkeys performed with STRUCTURE. The table 
shows the proportion of membership (q) of each predefined sampled population in each of the two 
inferred clusters. The number in parenthesis and percentage of total individuals assigned (including 
migrants) are indicated. Proportions of membership of potential migrants are indicated with their original 
cluster (II) (see text for details), n = population size.

Pnm 11 Ini Cluster Potential Unassigned % of totali upuidLiuii
ql qll Migrants individuals assigned

North(45) 0.41(13) 0.59(25) - 7 84.44
South(22) 0.647(15) 0.353(0) 0.768(7)11 0 100
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Figure 3.8. Proboscis monkey clustering results (K=2) for both sampled sites, according to STRUCTURE 
analysis. Each individual is represented as a vertical line partitioned into coloured segments. Sampled sites 
are separated by a black vertical line and labelled below the figure.

In the 10 runs performed with GENELAND, the posterior density and the log-likelihood levels 

quickly reached a plateau, indicating convergence. In eight runs, the modal number of genetic 

groups (K) was one, whereas the other two runs showed two clusters. Therefore, subsequent runs 

were performed with K fixed to 1. The 5 runs selected on the basis of their posterior probability 

reached also convergence. In all cases, the 67 individuals were assigned to one spatially defined 

population (Figure 3.9).
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Figure 3.9. Spatial genetic clustering analysis of proboscis monkeys with GENELAND. a) Histogram 
showing the posterior density distribution of the number of clusters estimated from GENELAND analysis, 
b) The contour map shows the posterior probability to belong to one cluster (depicted in yellow here).

3 .4  D iscussion

This is the first population genetic study, based on microsatellite markers and using non-invasive 

sampling, on free-ranging long-tailed macaques and proboscis monkeys. Both species present 

high levels of genetic diversity and gene flow despite the presence of a potential natural barrier: 

the Kinabatangan River. Bayesian clustering analyses showed population admixture for both 

species, which is congruent with their ecology. However, null alleles and rates of allelic dropout 

above 20% were detected within both datasets. Since genotyping errors can bias population 

genetic studies (Dewoody et al, 2006, Hoffman & Amos, 2005; Roon et al., 2005), potential 

causes for the estimated errors in this study are also discussed.

Long-tailed macaques, sampled from both sides of the Kinabatangan River within the Lower 

Kinabatangan Wildlife Sanctuary, appear to maintain a high level of genetic variability (MNA=

13.5, SD= 3.2 and mean HE= 0.8; Table 3.9). These diversity values are higher than those 

observed in the few studies available for other wild long-tailed macaque populations. For 

example, Perwitasari-Farajallah et al. (2010) collected blood samples of 55 long-tailed macaque 

individuals from seven groups of Tinjil Island, Indonesia, and reported moderate genetic 

variability (H0= 0.485, HE was not reported). However, only three human-derived microsatellite
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markers were used (D1S548, D3S1768 and D2S1777) and MNA was not mentioned; the 

authors indicate polymorphism only in D1S548 and D3S1768, this last one showing 24 alleles. 

These two loci were also used in the current study showing nine and 15 alleles respectively. 

Another study in wild long-tailed macaques was conducted in the Island of Mauritius (Kawamoto 

et al., 2007) using blood samples of 82 individuals. Using ten polymorphic loci (sharing only one 

primer pair with the current study), allelic diversity was half (6.3) that found in the Kinabatangan 

macaques and expected and observed heterozygosities were about 66% each. The genetic 

variability found in the LKWS macaques is also higher than those observed in the few studies 

available for other wild macaque species. Both von Segesser et al (1999) and Modolo et al. 

(2008) found a mean gene diversity of 55-65% and allelic diversities within the range of 4.4 -  8.3 

in Barbary macaques (Macaca sylvanus), using five and 14 microsatellite loci respectively. Only 

the study from Modolo et al. (2008) was performed mostly with non-invasive samples. Another 

study with Sulawesi macaques (M. tonkeana and M. Maura) found a similar allelic diversity (12 

alleles/locus) but no other measures of genetic variability were considered (Evans et al, 2001). 

Although the genetic variability of the long-tailed macaques of the LKWS seems higher than that 

of other localities/species, these comparisons should be treated cautiously because of differences 

in the sampling design influencing the extent and resolution of the data (Storfer, 2007).

High levels of genetic diversity were also found in proboscis monkeys of the LKWS (MNA= 8.8, 

SD= 2.4 and mean HE= 0.68; Table 3.12) despite the low estimated number of individuals (c.a. 

1500) and the recognised decreasing trend in their population size (Goossens et al., 2003a; Sha 

et al., 2008). Within the “odd-nosed colobines” (Kirkpatrick, 2007) only the Yunnan snub-nosed 

monkey (Rhinopithecus bieti) has been subjected to a non-invasive population genetic study on 

wild individuals (n= 203) (Liu et al., 2009). Using ten microsatellite loci, they report an overall 

mean H0 and HE of 0.614 and 0.703 respectively, and allelic richness across loci being 7.5. Pan 

et al. (2005) also performed a population genetic study on an endangered odd-nosed colobine, 

the Sichuan golden monkey (Rhinophithecus roxellana) but relying on invasively collected 

samples (n=32). Mean expected and observed heterozygosities were of 0.64 and 0.613 

respectively, and allelic diversity was of 3.9 across 14 loci. In a study with approx. 150 wild 

Hanuman langurs (Semnopithecus entellus), five microsatellites yielded similar results (MNA= 

4.8, He= 5.9, H0= 0.63) (Launhardt et al., 1998), also using faecal material. Hence, the results 

obtained for the proboscis monkey here are similar to those reported for other free-ranging Asian 

colobines.

This high genetic diversity for both primate species is congruent with Jalil’s (2007) mtDNA study 

and similar research on orang-utans’ within the same area (Goossens et al., 2005). Between 

1950 and 2000, a third to one half of the original forest area has been cleared in Sabah
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(McMorrow & Talip, 2001), and this habitat loss continues. As mentioned by Goossens et al. 

(2005) this trend could have forced primate groups into the Kinabatangan forests from other 

areas (adjacent forest), concentrating the surviving individuals in the forest patches along river, 

explaining the high values of genetic diversity (Jalil, 2007; current study).

Linkage Disequilibrium (LD) was found in some of the loci for both primate species. LD can be 

due to a variety of factors, including physical linkage, admixture and demographic fluctuation. 

Migration and admixture among two or more populations can generate LD, for example after 

recent introgression of novel haplotypes into a population, recombination may not have had time 

to break down LD (Hedrick, 1985, Slatkin, 2008). Changes in population size, particularly an 

extreme reduction in size (a population bottleneck), can also increase LD (Slatkin, 2008). 

Epistatic interactions between loci can also maintain LD, but this explanation seems less likely 

with supposedly neutral microsatellites markers. Hence, the significant LD found in this study 

might suggest admixture between groups of populations and/or population structure (Pfaff et al., 

2001; Pritchard et al., 2010; Slatkin, 2008).

As the Kinabatangan River is only 200 m wide (Goossens et al., 2005), it was not expected to be 

a barrier for both long-tailed macaques and proboscis monkeys. Indeed, high levels of gene flow 

were detected for the two primate species. Fst values for populations to the north and south of 

the Kinabantangan River were of 0.005 and 0.012 for the long-tailed macaques and proboscis 

monkeys respectively (P> 0.01). The number of migrants (Nm) calculated by GENETIX was 

above 15 also for both species. According to Frankham et al. (2002), an FST above about 0.15 is 

considered to be an indication of significant differentiation among fragments and more than 10 

immigrants per generation are needed to prevent differentiation. The FST and Nm values were 

supported by the FCAs in GENETIX (Figs. 3.3 and 3.7) where no clear partition of populations 

was observed. The outputs from GENETIX were congruent with the results from GENELAND 

spatial where only one cluster was detected for each of the primate species (Figs. 3.5 and 3.9) 

inferring that the populations to the north and south of the Kinabatangan River are admixed. 

These results were predicted due to the known mobility of both species. Dispersal of long-tailed 

macaque males across rivers has been reported in Indonesia (de Ruiter, 1994; de Ruiter & 

Geffen, 1998) and also witnessed in the Kinabatangan (Jalil personal communication and 

personal observation). Proboscis monkeys are excellent swimmers (Fleagle, 1998) and have been 

found on many occasions swimming from riverside to riverside, also if frightened while swimming 

they can dive for several minutes (Bennett & Gombek, 1993). The proboscis monkey is indeed 

the most aquatic of all primates with several unique adaptations, including interdigital webbing 

on their feet and upturned nostrils (Davies & Oates, 1994; Fleagle, 1998). In addition to male 

emigration, female and infant transfer has also been confirmed by observed changes in group
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composition (Matsuda 2008; Murai et al., 2007). Anecdotally, a female with a baby was seen 

recently (August 2010) crossing the Kinabatangan River near Lots 5 and 6 of the LKWS 

(Gilmoore Belongon personal communication).

It was thus surprising to find apparent evidence of partitioning with STRUCTURE for both long­

tailed macaques and proboscis monkeys (Tables 3.11 and 3.14, and Figs. 3.4 and 3.8). 

However, Pritchard et al. (2010) recommends re-evaluation of the results whenever (a) the 

proportion of the sample assigned to each cluster is roughly symmetric (~ 1/K in each inferred 

cluster) and, (b) there is no clear biological interpretation for the assignments. Both of these 

points do apply to the datasets of long-tailed macaques and proboscis monkeys since the clusters 

inferred by the program did not clearly delimit populations to the north and south of the river. 

Yet, the assignment of clusters was perhaps a reflection of human-mediated habitat 

fragmentation (Appendices Six and Ten). Genetic variation will be shared for some period of 

time between populations which have recently separated, even in the absence of gene exchange 

(Hey, 2006; Waples & Gaggiotti, 2006). Therefore, genetic differences due to a migration-drift 

balance will render a FST value which, by itself, cannot be distinguished from that yielded by an 

accumulation of genetic changes over time in completely isolated populations (Waples & 

Gaggiotti, 2006). These two scenarios could be distinguished by a non-equilibrium method such 

as the Isolation and Migration (IM) model developed by Hey and Nielsen (2004). The IM model 

allows variation in populations sizes over time and they are not assumed to be in migration-drift 

equilibrium (Hey & Nielsen, 2004; 2007). The current study did not evaluate this method due to 

time constraints, nevertheless it would be important to explore it further.

The current microsatellite results from STRUCTURE regarding the long-tailed macaques are 

somewhat comparable to those of Jalil (2007) where analysis of molecular variance from mtDNA 

data indicated restricted gene-flow between populations on the north and south side of the 

Kinabatangan River. However, Jalil (2007) stressed that a component of this genetic structure 

probably also arises due to the high level of genetic partitioning between demes associated with 

the social system of the long-tailed macaque, (de Ruiter et al., 1994; de Ruiter & Geffen, 1996). 

For example, restriction enzyme analysis revealed that toque macaques in Polonnaruwa, Sri 

Lanka, exhibit two highly divergent haplotypes which occupied adjacent habitats (Hoelzer et al., 

1994). These two haplogroups were distinct despite a lack of known geographic barriers, but the 

distribution of these two haplotypes is consistent with known history of group fission (ibid). In 

contrast, the proboscis monkey results from STRUCTURE do not compare with the findings of 

Jalil (2007). Three distinct mitochondrial lineages were detected but there was no support for 

geographic partitioning between these lineages and no indication of any form of restricted gene 

flow across the Kinabatangan River. These results are more in agreement with the results of gene
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flow and GENELAND clustering for proboscis monkeys obtained in this study. In addition, a 

possibility exist that distinct primate populations occurred at both sides of the Kinabatangan 

River. Animals often select habitats based on suitability (i.e. food availability and predation risk) 

(Weisser, 2001) and until 60 years ago, the forests at both sides of the Kinabatangan River 

should have offered enough resources, thus making dispersal across the river unnecessary or very 

limited. Deforestation implies restricted foraging areas and increased densities, conditions which 

might increase mobility between riversides despite crocodile predation risk. Thus the possibility 

that the clusters detected by STRUCTURE are a reflection of previous population structuring 

cannot be discarded.

With an apparent lack of population structuring it was unexpected to have positive significant 

values of F1S across every loci and sampled populations of long-tailed macaques (Table 3.9), 

indicating homozygotes excess. Positive FIS values were also found in the proboscis monkey 

dataset, but they were not statistically significant for all loci affected (Table. 3.12). According to 

Allendorf & Luikart (2007) and Dewoody et at. (2006) demographic or non-random mating 

system processes, such as a Wahlund effect or inbreeding, are expected to result in excess 

homozygosity at all loci, whereas errors due to stuttering, large-allele dropout and null alleles 

should affect only a subset of loci. In a study of kit foxes, Ralls et at. (2001) found positive F!S 

values indicating a significant deficit of heterozygotes, similar to what was found for the long­

tailed macaques. These levels were posteriorly explained by an inadvertent sampling bias as 

foxes living on adjacent home ranges tended to be more closely related than foxes that did not, 

largely because females on such ranges were often closely related. Ralls et at. (2001) suggested 

that this can be viewed as sampling across subpopulations at a very fine scale, thus creating a 

heterozygote deficiency due to the Wahlund effect. This explanation might also be plausible for 

the macaques, where all samples analysed came from one or a few individuals pertaining to 

different social groups whose ranges might have overlapped. With phylopatric females and the 

creation of new social groups by fission, the scenario presented by the macaques is akin to the 

one described for the foxes. A study including more individuals for each social group could 

resolve this incognita. Nevertheless, the homozygote excess can also be explained by genotyping 

errors and presence of null alleles common problems when working with faecal samples and 

heterologous primers.

Non-invasive genetic sampling (NGS) of wildlife populations is a powerful tool for assessing 

demography, gene flow, and population structure (Goossens & Bruford, 2009). However, a 

major issue relevant to the application of this technique is the reliability of the genotypes 

obtained and the amplification success of the markers by PCR. DNA extracted from faeces is 

usually of poor quality (possibly degraded or accompanied by PCR inhibitors, especially in faeces
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that contains plant, bacterial and protozoan remnants, characteristic of folivorous primates such 

as the proboscis monkey) and quantity (often in the picogram range) (Broquet et al., 2007; 

Launhardt, 1998; Monteiro et al., 1997, Morin et al, 2001; Vallet et al, 2008, Taberlet et al, 

1999). Furthermore, this low quantity DNA may be damaged due to exposure to moisture, heat 

and ultraviolet radiation encountered during collection (McKelvey & Schwartz, 2004) or be 

negatively influenced by the age of the sample and the season in which it is collected (Piggott, 

2004).

All the samples tested in this study gave positive PCR amplification for mtDNA using species 

specific primers, a method regularly used by our group to verify DNA extraction success. 

However, we were able to reliably amplify nuclear DNA (at least 3 positive PCRs) from only 71% 

of the long-tailed macaque samples, and 47% of the proboscis monkey samples. Interestingly, 

most of the samples which gave amplification problems came from individuals sampled south of 

the Kinabatangan River (v.g. 35% of success for proboscis monkey samples from that side of the 

river vs. 61% from the north; x2= 7.68, df= 1, P<0.01). As a comparison, several recent non- 

invasive studies obtained lower success rates, e.g., 57% in gorilla (Bergl & Vigilant, 2007) and 

38% for the giant panda (He et al, 2008), but our results were lower than that for golden- 

crowned sifakas (94%, Quemere et al ,2009) where the extraction protocol of Vallet et al. (2007) 

was used. This protocol is based on the use of CTAB an extensively used compound for plant 

DNA extractions (Bhattacharjee et al, 2009; Murray & Thompson, 1980; Porebsky et al, 1997). 

Vallet et al. (2007) mentions that “acquired experience from a species is not easily reproducible 

to another species because not all protocols are equally efficient in all species”. In a similar way, 

this might also be the case between the different DNA types amplified in this study. The 

extraction protocol used in this study was the same as the one used by Jalil (2007), who 

mentioned the difficulties of amplifying mtDNA and hence the need of concentrating the DNA 

after elution (personal communication). This step of the protocol might be suitable for 

mitochondrial genes, where the high copy numbers can compensate for the also concentrated 

levels of PCR inhibitors, but it might be less suitable for single copy nuclear genes. Perhaps an 

extraction method like Vallet et al. (2007) would have yielded better amplification results, 

especially for proboscis monkeys since their diet consists mostly of leaves (188 plant species, 

Matsuda, 2008). Attempts were made to re-extract DNA from a few (6) DNA samples, using 

CTAB/PCI and CTAB/QIAGEN DNeasy Plant Kit, with apparently better results for a mixed 

Stool/CTAB/Plant QIAGEN Kits but not enough samples could be re-tested using this method 

(data not shown). It would be interesting to test this method systematically and compare the 

results, especially between the two river sides since differences in dietary components might be 

inferred. On the other hand, the difference in amplification success could also be the result of the
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nature of the markers used (species-specific vs. heterologous primers). Nevertheless the difference 

of markers could be more related to genotyping errors (ADO and FA) and the presence of null 

alleles since the microsatellite primers used for proboscis monkeys were species-specific and yet 

PCR amplification success was actually lower than that of the macaques’.

The genotyping error rates (overall 16-33% and 15-28% for the dropout allele for macaques and 

proboscis respectively) were comparable to those reported in other studies using faeces 

(Bhagavatula & Singh, 2006; Morin et al. 2001; Hansen et al. 2008; Quemere et al., 2009), but 

also higher than some others (Mondol et al., 2009, Zhan et al., 2009). To minimize these 

stochastic errors and improve the confidence in the individual genotypes, Taberlet et al. (1996) 

proposed a multi-tubes procedure consisting of several independent PCR amplifications for each 

sample and locus. However, because this approach is very expensive, time-consuming and 

requires higher template volume, it might not always be feasible (Valiere et al., 2002). Hence, 

different approaches have been suggested recently (Frantz et al., 2003, Valiere et al., 2002) and 

applied with success (Hansen et al, 2008; Piggott et al, 2006; Quemere et al, 2009; Valiere et 

al, 2007). In the current study, the simulation method (GEMINI) of Valiere et al. (2002) was 

used for the macaque dataset to determine the number of PCR repetitions needed to obtain an 

accurate genotype. Although 94% of genotyping accuracy was calculated by GEMINI, error rates 

were still high (see above). This could be due to the “pre-error rates” calculated by PEDANT 

(Johnson & Haydon, 2007) since GEMINI requires error rates for the input files prior to the 

determination of PCR repeats to obtain an accurate genotype. A pilot study using the original 

Taberlet et al. (1996) approach to determine the “pre-error rates” might have given a different 

result regarding the error rates and hence the number of PCR repetitions needed to obtain an 

accurate genotype. Comparatively, neither the Taberlet et al. (1996) nor the Valiere et al. (2002) 

methods were used for the proboscis monkey dataset, due to constrains of samples volume, and 

still the error rates were similar to those estimated for the macaques, whereas the estimation of 

null alleles differed between species.

The screening of human primers with particular amplification conditions has shown that many 

loci are also informative in several non-human primates, including gorilla, chimpanzee, orang­

utan, macaque and langur (Roeder et al, 2009). However, there are known difficulties with 

cross-amplification between divergent taxonomic species (Chapuis & Estoup, 2007; Clisson, et 

al, 2000). Null alleles result from polymorphism (substitution and indel mutations) in the 

annealing sites of microsatellite locus primers and they have been found in a wide range of taxa 

(Chapuis & Estoup, 2007; Dakin & Avise, 2004). The current results from MICROCHECKER 

suggest that null alleles exist in every loci screened on the long-tailed macaques. This result was 

unexpected as 14 out of the 15 loci screened in this study had been used either in long-tailed
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macaques or in other species of the same genus confidently (Tables 3.3 and 3.4). However, the 

divergence time between hominoids and cercopithecids is 25 mya (Kumar & Hedger, 1998; Page 

& Goodman, 2001) hence it is highly probable that modifications on the molecular structure of 

regions surrounding the microsatellites occurred (although they were not sequenced as part of 

this study). A notable case of null alleles is that reported by Deucher et al (2010), where a case 

of non-maternity was due to a single transversion in the primer annealing site and was solved by 

redesigning the primers. Additionally, ten percent of the studies revised by Dakin and Avise 

(2004) report the redesign of primers in order to solve the problem of null alleles. This is 

congruent with our proboscis monkey results since after testing almost 40 human derived 

microsatellite primers (Table 3.5) and obtaining spurious results the problem was solved when 

the markers were redesigned. Only three of the eight loci screened in the proboscis monkey 

showed evidence for null alleles, but this could be an effect of allelic dropout rather than true null 

alleles and this explanation cannot be overruled for the macaques either. In any case, the impact 

of null alleles was attempted to be minimized by taking them into consideration when performing 

the Bayesian clustering analyses (STRUCTURE), as previously recommended and applied (see 

metods section; Carlsson, 2008; Chapuis & Estoup, 2007; Seabra et al., 2009).

Altogether, the results of the current study suggest that the level of genetic diversity in proboscis 

monkeys and long-tailed macaques is relatively high and that the Kinabatangan River is not a 

barrier for gene flow in the LKWS. This last result contrasts with data on orang-utans in the same 

area (Goossens et a l, 2005; Jalil et al, 2008). Future studies should investigate the role played 

by human barriers such as oil palm plantations, riparian villages, or roads in the development of 

genetic differentiation between remaining forest patches. For instance, the Sandakan-Lahad Datu 

bridge (as shown on Fig. 3.1) may provide a significant barrier to current and future gene flow, 

especially for proboscis monkeys since Jalil (2007) was able to collect proboscis monkey samples 

throughout the area between the road and Lot 10 whereas we (only four years later) did not find 

any individual up to Lot 10. Future studies might also benefit from the use of a different DNA 

extraction method, such as the one of Vallet et al. (2007) or the mixed approach (QIAGEN Stool 

Kit/CTAB/QIAGEN Plant Kit) that we started testing. Additionally, the use of species-specific 

markers could resolve the problem of null alleles/allelic dropout; a new set of 499 microsatellite 

markers is now available for Macaca fascicularis (see Higashino et al, 2009). Furthermore, a 

redesign of the sampling strategy, trying to cover more individuals within social groups and 

bearing in mind the possibility of neighbour mating (Fogelqvist et al, 2010; Schwartz & 

McKelvey, 2008), might also contribute to a better detection of population substructuring. Despite 

all these problems, molecular studies are useful to identify threats to genetic diversity in order to
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determine appropriate intervention strategies to maintain gene flow and diversity. The results of 

this study can be used as a baseline for conservation and management measures for the 

proboscis monkeys and long-tailed macaques of the LKWS.
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4 .0  Abstract

Knowledge of a population’s genetic diversity often provides valuable information for 

conservation strategies and management. In vertebrates, growing evidence suggests that genetic 

diversity is particularly important at the Major Histocompatibility Complex (MHC) because its 

gene products play an important role in immune function. Thus, identification of MHC genes can 

provide a core component for genetic studies examining fitness and adaptation to fragmented 

ecosystems. In this preliminary study, PCR, sequencing and haplotype reconstruction identified 

Mhc-DRB sequences from 15 wild proboscis monkeys (Nasalis larvatus) and 36 long-tailed 

macaques {Macaca fascicularis) from Sabah, Malaysia. Using generic DRB primers, five proboscis 

monkey -DRB {.Nala-DRB) and 47 long-tailed macaque sequences (Mafa-DRB) were identified. 

This represents the first MHC sequences reported for proboscis monkeys, and only one of the 

sequences detected in the macaques had been previously described. In neighbour-joining 

phylogenetic trees, the Nala-DRB sequences form a monophyletic group likely belonging to the 

Mhc-DRB5 locus, while the Mafa-DRB sequences represent four -DRB loci and at least six 

different lineages. Evidence for positive selection was found for the long-tailed macaque 

sequences but not in the proboscis monkey, possibly due to the limited number of sequences 

analysed. This study represents a first step towards understanding the effects of habitat 

fragmentation on fitness of long-tailed macaques and proboscis monkeys of the Lower 

Kinabatangan Wildlife Sanctuary.

4.1 Introduction

Genetic diversity is important for the maintenance of population viability and essential for 

preserving the evolutionary and adaptive potential of species (Holderegger et al, 2006). 

Traditionally such diversity has been routinely measured using quasi-neutral molecular markers, 

particularly mitochondrial DNA (mtDNA), microsatellites or single nucleotide polymorphisms
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(SNPs; Holderegger et al, 2006; Kohn et al, 2006). Such data provides valuable information for 

demographic analysis, and allows us to examine factors such as population size fluctuations, 

dispersal patterns, genetic structure (and hence gene flow), and to classify individuals by 

relatedness and paternity analyses (examples in Allendorf & Luikart, 2007 and Frankham et al, 

2002). However, variation at neutral loci cannot provide direct information on selective processes 

involving the interaction of individuals with their environment, or on their capacity for future 

adaptive change (Meyers & Bull, 2002). Both issues are of particular relevance for conservation 

therefore the use of adaptive molecular markers has been advocated (Crandall et al, 2000; 

DeSalle & Amato, 2004; Vemesi et al, 2008). In addition, research on a variety of taxa in 

different contexts and situations has revealed that evolution can occur over rapid timescales, 

often within decades (summarised in Stockwell et al, 2003). In some cases, the time span 

between the separation of populations might even be too short to leave a signal at neutral loci so 

that differences between populations are only detectable at genes under selection (Cohen, 2002), 

such as those of the Major Histocompatibility Complex (MHC) (Sommer, 2005).

The MHC is central to the vertebrate immune system, being a multigene family that encodes key 

receptor molecules that recognise and bind foreign peptides for presentation to specialist immune 

cells and subsequent initiation of an immune response (Piertney & Oliver, 2006). The MHC has 

key biological functions with respect to resistance to infectious diseases, mate choice, kin 

recognition and reproductive success (Bematchez & Landry 2003; Piertney & Oliver 2006). The 

genes of the MHC represent one of the most well-established systems available in vertebrates to 

investigate how natural selection can promote local adaptation at the DNA level (Bematchez & 

Landry, 2003). Two major subfamilies, denoted class I and class II, which differ in levels of 

expression, structure of the encoded protein and function, control the immunological self/non-self 

recognition (Hughes, 2008; Penn & Ilmonen, 2005). MHC class I genes are expressed on 

virtually all nucleated somatic cells and their products are essential for immune protection from 

intracellular pathogens. MHC class II genes are only expressed on specific antigen-presenting cells 

such as B cells and macrophages, and their coding proteins bind and present peptides mainly 

stemming from extracellular parasites (Bematchez & Landry, 2003, Piertney & Oliver, 2006; 

Knapp, 2005a; Penn & Ilmonen, 2005; Hughes, 2008).

The two MHC classes have the highest known variation of any functional vertebrate genes 

(Robinson et al, 2003). In the codons encoding the peptide-binding region (PBR) of both class I 

and class II MHC molecules, a highly unusual pattern of nucleotide substitution is observed 

(Garamszegi et al, 2009; Hughes & Nei, 1988, 1989). The ratio of non-synonymous (amino acid 

altering) to synonymous (silent) nucleotide substitutions per non-synonymous and synonymous 

site {d^/ds) can be used to detect selection at any gene region (Hughes & Yeager, 1998).
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Synonymous mutations do not affect amino-acid composition and are therefore effectively 

neutral, non-synonymous mutations, however, that do alter amino acid composition, are more 

likely to be under selection (reviewed by Piertney & Oliver, 2006). If selection favours diversity at 

some genes, advantageous non-synonymous mutations will be retained and a high ratio of non- 

synonymous to synonymous substitutions will be observed (Hughes & Nei, 1988). The PBR 

codons are under various types of selection (e.g. Bematchez & Landry 2003; van Oosterhout,

2009) which increases genetic diversity at MHC loci and enables a wider recognition of parasites 

(Klein, 1986). Functional MHC loci are characterised by an extensive repertoire of alleles in 

virtually all natural populations investigated so far (Garamszegi et al., 2009). This variation 

suggests that there has been evolutionary pressure for organisms to combat a wide range of 

immunological challenges (Hughes, 2008; Hughes & Nei, 1998).

In humans (where the MHC is referred to as the human leucocyte antigen, HLA) the MHC II 

molecule is a heterodimer consisting of transmembrane chains a  and P coded by distinct genes. 

These genes include three classical regions designated -DR, -DQ and -DP, each containing 

multiple A or B loci (Bontrop, 2006). In particular, the second exon of the HLA-DRB encodes the 

a l  /p i domains, comprising four functional loci (-DRB1, 3, 4, and 5), that form the functionally 

important antigen-binding sites (ABS) or PBR. In addition to the functional loci, five pseudogene 

loci have been identified (-DRB2, 6, 7, 8 and 9) (Hughes, 2008; Hughes & Yeager, 1998; 

Hughes & Nei, 1989; Marsh et al, 2005). Each -DRB locus is further divided into phylogenetic 

lineages or clusters based on nucleotide and amino acid sequence motifs (i.e. HLA-DRB1*01, - 

DRB1*02, etc.) and, to date (September 2010), a total of 902 HLA-DRB sequences have been 

described (IMGT/HLA Sequence Database; see Robinson et al, 2003). The Mhc-DRB gene also 

appears to be polymorphic in all non-human primate species studied thus far (Bontrop, 2006). 

For instance, many of the -DRB alleles of Macaca sp. belong to loci/lineages that are shared 

between humans and macaques: namely, -DRB1, -DRB3, -DRB4, and -DRB5, as well as DRB6, 

with the latter appearing to be a pseudogene in all primate species studied. In addition, 

loci/lineages for which no human equivalent is known are present in macaques. These are named 

-DRB*W, and various -DRB*W loci/lineages have been defined (IPD-MHC; see Robinson et al, 

2005, 2010).

Humans and rhesus macaques have been the primary focus of primate MHC research, thus 

information on Mhc-DRB of other Old World monkeys is limited. Most of the information is 

restricted to other macaque species {M. arctoides, M. fascicularis, M. fuscata, M. nemestrina and 

M. silenus), two baboon species (Papio hamadiyas and P. ursinus), a drill (Mandrillus sphinx) 

and the vervet monkey (Chlorocebus aethiops) (see IPD-MCH database, Robinson et al, 2005,

2010). As pointed out by Lukas et al (2004), most of this information was based on studies using
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captive individuals. -DRB  information on wild non-human primates is limited (but see Lukas et 

al., 2004 and O’Connor et al., 2007) perhaps due to problems associated with obtaining suitable 

samples from feral animals. Taking blood samples is impossible without disturbing behaviour and 

potentially compromises the welfare of wild primates and other endangered animals. However, 

this has led to the development of techniques utilizing DNA obtained from non-invasively 

collected samples such as faeces or hair (reviewed in Goossens & Bruford, 2009). In the current 

study, DNA obtained from faecal samples was used to characterize variation at the -DRB loci of 

the MHC class II complex in two free-ranging primates: the proboscis monkey (Nasalis larvatus) 

and the long-tailed macaque (Macaca fascicularis).

Long-tailed macaques and proboscis monkeys are sympatric primates of the Lower 

Kinabatangan Wildlife Sanctuary (LKWS), in Sabah, Malaysia. While the former inhabits a 

variety of habitats and is sometimes classified as a pest (van Schaik et al., 1996; Abegg & 

Thierry, 2002), proboscis monkeys are endemic to Borneo and are classified as endangered by 

IUCN (IUCN, 2010; Meijaard & Nijman, 2000; Sha et al., 2008). Population genetic studies 

using mtDNA data revealed high levels of genetic diversity in both species (Jalil, 2007). Due to 

the quasi-neutral nature of this marker, little can be inferred about genetic components of fitness 

for these two species. While molecular studies have shown that long-tailed macaque Mafa-DRB 

loci cure highly variable, there is no information on the MHC variability of proboscis monkeys. To 

date, 171 Mafa-DRB sequences have been identified (Blancher et al., 2006; Doxiadis et al., 

2006, 2010; Kriener et al., 2000; Leuchte et al., 2004; O’Connor et al, 2007) and assigned locus 

and lineage designations based on their similarity to human sequences. O’Connor et al. (2007) 

reported sequences from wild M. fascicularis, identifying 12 new Mafa-DRB sequences.

This preliminary study aimed to (1) identify and characterize Mhc-DRB alleles in proboscis 

monkeys, (2) determine variation within the Mhc-Mafa-DRB loci in long-tailed macaques of the 

LKWS and (3) to consider the ratio of synonymous (ds) to non-synonymous (dN) nucleotide 

substitutions within and outside the antigen binding site (ABS) for evidence of selection 

processes.

4 .2  Methods

4.2.1 Study site

In 2005, the state government of Sabah gazetted almost 27 000 ha of forest in the Lower 

Kinabatangan flood plain (5°20’ — 5°45’ N, 117°40’ — 118°30’ E) as a wildlife sanctuary under 

the Wildlife Conservation Enactment 1997. The Lower Kinabatangan Wildlife Sanctuary
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comprises 10 sectors or Lots (Lots 1-10, with Lot 10 divided into 10A-C) linking seven patches 

of protected forests (Virgin Jungle Forest Reserves, VJFR) totalling about 15 000 ha. They are 

connected with 10 000 ha of state and private forests at various stages of degradation (Ancrenaz 

et al., 2004).

4.2.2 Collection and preservation of faecal samples

Sampling covered all Lots of the LKWS in two seasons (October 2007-March 2008, June- 

November 2008). The behaviour of proboscis monkeys and long-tailed macaques allows the 

Kinabatangan River to be used as a transect to perform censuses of the primates during their 

inactive periods (particularly at sunset and early night). A total of —660 km of riverbank including 

smaller tributaries were covered in expeditions that lasted from five to ten days, with teams of 2 

to 5 people. Faeces were collected at dawn to ensure freshness, and occasionally at dusk. GPS 

(Garmin eTrex Vista HCx) coordinates of collected samples were noted for subsequent 

localisation of groups and populations (Appendix One). Samples were stored in 50 ml Falcon 

tubes with 70% ethanol following the protocol described by Goossens et al. (2003b) to avoid 

contamination. Within the constraints of time and logistics, we attempted to sample as widely as 

possible within each population seen in the riparian forest; because individual recognition was 

not always possible, and being unhabituated primates, some individuals may have been sampled 

more than once.

In addition to the LKWS samples, eight proboscis monkey stool samples were donated by Dr. 

Henry Bernard (Unit for Primate Studies Borneo, Institute of Tropical Biology and Conservation, 

Universiti Malaysia Sabah). These samples were collected along the Garama River in Klias 

(Northern Sabah), and were stored in 95% ethanol.

4.2.3 Blood and tissue samples

Four samples of DNA from B-lymphocytes of long-tailed macaques were provided by INPRIMAT 

(EU FP5 ID: QLRI-CT-2002-01325) and used as positive controls in PCR reactions. Tissue 

samples (muscle), skin and hair from a deceased juvenile female and a new bom proboscis 

monkeys were donated by Lok Kawi Wildlife Park. Additionally, samples (muscle, liver and 

spleen) from two road-killed male proboscis monkeys were donated by Sepilok Orangutan 

Rehabilitation Centre (Sabah, Malaysia). All proboscis monkey tissue samples were stored in 

95% ethanol and kept at -70°C.

74



Chapter four: Characterisation and diversity of M hc-DRB  sequences of proboscis monkey (Nasalis larvatus)
and long-tailed macaque (Macaca fascicularis) from Malaysia

4.2.4 DNA Extractions

DNA was extracted using the QIAamp DNA Stool Mini Kit (QIAGEN GMBH, Germany) 

following a protocol previously used by Goossens et al. (2000) with a modification in the last 

step, where DNA was eluted in 100 yid instead of 200 /A, and was subsequently concentrated to 

ca.70 /A (Jalil, 2007). Sample concentration was performed in a lyophilizer (Concentrator 

Eppendorf 5301) using the manufacturer’s protocol “Aqueous liquids mode”. Tissue samples 

were extracted with DNeasy Blood & Tissue Kit (QIAGEN) following the recommendations of the 

manufacturer, with minor modifications during elution (namely, 5 min incubation at 70°C with 

buffer AE, which was also preheated at the same temperature). These types of samples were used 

as positive controls in PCR reactions. To evaluate possible contamination, DNA was extracted 

from hair of the author (referred to hereafter as Human DNA) according to a protocol describe 

by Jalil (2007).

Successful DNA extractions from faeces were assessed by PCR amplification of a partial 

mitochondrial control region fragment using species specific primers under a previously described 

protocol (Jalil, 2007). DNA from the muscle/hair samples was quantified by microtiter 

spectrofluorometry (Quant-iT™ PicoGreen®, Invitrogen), and DNA concentrations were 

calculated using the SOFTmax® Pro software (Molecular Devices). In addition, all PCR products 

were visualized in agarose gels (1.5%).

Although over 300 samples were available for each primate species after DNA extraction, only 44 

long-tailed macaque and 33 proboscis monkey samples were selected to characterize DRB 

alleles. This decision was made given the problems to consistently amplify microsatellite loci (15 

and eight loci for long-tailed macaque and proboscis monkey respectively; Chapter Three) from 

the same samples. Only samples that produced three positive PCR reactions with consistent 

microsatellite genotypes were used (Table 4.1).

Table 4.1. Summary of primate stool samples selected to characterize Mhc-DRB alleles. The number of 
tested (T) and sequenced (S) samples are shown per primate and location._______________ ___________

Primate
South Kinabatangan 
LI L3 L6 L9 L2 L4

North Kinabatangan 

L5 L7 L8 L10 (A-C) Klias Total

T/S T/S T/S T/S T/S T/S T/S T/S T/S T/S T/S T/S
LTM 3/1 6/5 6/6 8/8 4/3 4/4 3/3 3/3 4/4 3/3 0 44/40
PM 3/0 7/5 5/4 0 2/1 5/4 3/3 2/1 0 2/1 4/2 33/21

L- Lot inside the LKWS, to the north or south of the Kinabatangan River. 
LTM -  long-tailed macaque, PM -  proboscis monkey.
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4.2.5 Mhc-DRB amplification

PCR optimisation was performed with the DNA extracted from the INPRIMAT and the proboscis 

monkey tissue samples. Reactions were made to a total volume of 15 pi, containing lng of 

template, with final concentrations of 1.5 mM MgCl2 (Promega), 0.25 mM of each 

deoxyribonucleotide triphosphates (dNTPs), IX GoTaq® Colorless Flexi Buffer (Promega), 0.02 

U/pl GoTaq® Hot Start Polymerase (Promega) and 0.5 pM of each oligonucleotide primer of the 

pairs (1) MDRB5 and 3’DRBseq, for long-tailed macaque samples, and (2) 5’DRB(Sa/I) and 

3’DRB(XbaI), for proboscis monkey samples (Table 4.2). The first primer pair has successfully 

amplified Mhc-DRB alleles in Macaca fascicularis (see Leuchte et al., 2004) and the other has 

been used to characterize alleles in M. mulatto (see Doxiadis et al., 2003). This second pair was 

selected to screen the proboscis monkey samples as it has successfully amplified langur samples 

(Doxiadis personal communication, unpublished). The amplification conditions were as follows: 

95°C for 2 min, 35 cycles at 94°C for 30 s, 50-65°C for 60 s, 72°C for 60 s and a final extension 

at 72°C for 10 min, and were performed in a Veriti® 96-Well Thermal Cycler (Applied 

Biosystems). After PCR, 5 pi of the product was electrophoresed in 2.0% agarose-0.5X TBE gels, 

and visualized using 1.5 ng/ml EtBr in a GelDoc-IT™ Imaging System (UVP) to confirm 

successful amplification of DNA samples.

Table 4.2 Oligonucleotide primers used to amplify and sequence Mhc-DRB alleles, with optimized 
annealing temperatures (TA).
Name Sequence (5’ - 3 ’) Optimized TA

MDRB5 GCCTCGAGTGTCCCCCCAGCACGTTTC
62°C

3’DRBseq T GTAAAACG ACGGCCAGTCACCT CGCCGCTGCACT GT

5’DRB(Sa/I) CCGGTCGACTGTCCCCCCAGCACGTTTC
58°C

3’DRB(XbaI) T CTAG AT CACCT CG CCG CT GCACT GT

DRBseq® TCGAGTGTCCCCCCAGCA n/a

M13 forward (-20)b GTAAAACGACGGCCAG n/a

a Leuchte et al., 2004; b McGinnis et al., 1995

Optimal PCR conditions for faecal samples were as described above, save for the optimized 

annealing temperatures (Table 4.2) and with an increase in the cycling parameter to 45. In 

addition, in an attempt to minimize allelic dropout, an approach similar to Taberlet et al.’s (1996) 

was used. In brief: at least two independent PCR reactions were performed for each tested 

sample followed by two independent forward and reverse copies from a single PCR product.

4.2.6 Mhc-DRB sequencing

Forty long-tailed macaque and 21 proboscis monkey samples produced a detectable amplicon of 

the appropriate size (approx. 300 bp; Table 4.1). Unattached primers, primer-dimers and
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unincorporated dNTPs were removed prior to sequencing with an enzymatic reaction. In brief: 

seven pi of PCR product were mixed with 0.25 U of Shrimp Alkaline Phosphatase (SAP) and 2.5 

U of Exol to a total volume of 10 pi, and incubated at 37°C for 1 h, followed by inactivation of 

the enzymes at 80°C for 15 min. Cleaned products were sequenced using either a forward 

(DRBseq for macaques or 5’DRB(Sa/I) for proboscis) or a reverse primer (M13 (-20) for 

macaques and 3’DRB(XbaI)) (Table 4.2). Sequencing reactions were performed in a final volume 

of 8 pi, containing 2pl of purified PCR product, 2.5pl Better Base (Web Scientific), 0.5pl BigDye 

Terminator V.1.1 (Applied Biosystems), and 0.2pM of primer. PCR was then carried out 

following an initial denaturation for 5 min at 96°C followed by 25 cycles at 96°C for 15 s, 50°C 

for 10 s and 2 min of extension at 60°C. Products were subsequently precipitated by adding 12 pi 

ultrapure H20 , 5 pi of 125 mM EDTA and 60 pi of 100% ethanol. The reactions were mixed by 

gentle inversion, left to stand for 1 hr, and then centrifuged for 45 min at 2000 g. The 

supernatant was decanted and tubes were centrifuged upside down for 1 min at 200 rpm to 

eliminate ethanol residuals. Sixty pi of 70% ethanol were added to each PCR tube followed by 

centrifugation for 20 min at 2000 g. Ethanol residuals were eliminated as in the previous step 

plus tubes were also left standing open for an hour or until no odour was detected. PCR products 

were run individually on an Applied Biosystems 3130x1 Genetic Analyzer using a 50 cm capillary 

array with POP-7 polymer.

4.2.7 Sequence analysis and haplotype reconstruction

Electropherograms were analyzed using SEQUENCHER 4.9 (Genecodes Corp), and corrected 

by eye. As a biparentally inherited gene, the forward and reverse sequences of every individual 

were treated as independent sequences and contigs were created to detect unique alleles. Contigs 

were converted into consensus sequences and all unique alleles were exported in FASTA format 

in separate files for each primate species. Every sequence was compared to those reported in 

GenBank®, using the Basic Local Alignment Search Tool (BLAST) of the National Center for 

Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov/Blast.cgi), to verify they 

corresponded to Mhc-DRB genes.

Sequences with ambiguities were resolved using a Bayesian statistical method for reconstructing 

haplotypes. To identify phase ambiguities, a preliminary sequence alignment was performed in 

MEGA 5.0 Beta (Tamura et al, 2007) using Clustal W and default parameters. Once the 

ambiguities were localised, reconstruction of alleles was performed in PHASE 2.1.1 (Stephens et 

al, 2001; Stephens and Donnelly, 2003). As suggested by Stephens et al (2004), to obtain 

reliable results the algorithm was applied five independent times with different seeds for the 

random number generator (784, 1328, 2509, 2831, and 3844, generated from 1 to 5000 by
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RANDOM.ORG, www.random.org). The number of MCMC iterations was set to 1000 with a 

thinning of 100 and a bum-in of 1000. The haplotype frequency estimates and the goodness-of- 

fit measures were checked for consistency across runs. With consistency achieved, final 

haplotypes were predicted on a second step, where PHASE was set to automatically run three 

independent times, the results corresponded to the run with the best average goodness-of-fit 

measure. Finally, repeated sequences were detected by DAMBE 5.0.47 (Xia, 2000; Xia & Xie, 

2001).

4.2.8 Construction o f phylogenetic trees

Phylogenetic trees were constructed by neighbour-joining/Jukes-Cantor method using MEGA 5.0 

Beta (Kumar et al., 2007), to infer evolutionary history and distances respectively. Published -  

DRB sequences were obtained from the Immuno Polymorphism Database (IPD, see Robinson et 

al, 2005, 2010). Proboscis monkey sequences were compared by Clustal W alignment to 

selected -DRB  published sequences different taxa (Table 4.3). Long-tailed macaque sequences 

were aligned with all the published Mafa-DRB sequences (171 to July 2010), some selected 

sequences from other macaque species, and a few sequences from old world monkeys (Table 

4.3). The analyses were based on 265 nucleotides, and all ambiguous positions were removed 

for each sequence pair. Bootstrap analyses using 1000 replications were performed to determine 

the repeatability of sequence-clustering patterns.

Table 4.16. Summary of published -DRB sequences that were aligned to 
putative proboscis monkey (PM) and long-tailed macaque (LTM) -DRB 
sequences._____________________________________________________

-DRB Primate Species/Common name Aligned with

NWM

Pipi- Pithecia pifhecia/White-faced Saki PM

Saoe- Saguinus oedipus/Cotton-top Tamarin PM

OWM

Chae- Chlorocebus aethiopsNervet monkey PM

Mafa- Macaca fascicularis/Long-tailed macaque PM/LTM

Mamu- Macaca mulatto/ Rhesus macaque PM/LTM

Maar- Macaca arctoides/Stump-tailed macaque PM/LTM

Mane- Macaca nemestrina/Pig-tailed macaque PM/LTM

Masi- Macaca silenus/Lion-tailed macaque PM/LTM

Mafu- Macaca fuscata/Japanese macaque PM/LTM

Masp- Mandrillus sphinx/Mandrill PM/LTM
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-DRB Primate Species/Common name Aligned with

Paur- Papio ursinus/Chacma baboon PM/LTM

Paha- Papio hamadryas/Hamadryas baboon PM/LTM

Aoes

Popy- Pongo pygmaeus/ Orang-utan PM

Papa- Pan paniscus/Bonobo PM

Patr- Pan troglodytes/Chimpanzee PM

Gogo- Gorilla gori//a/Gorilla PM

NWM-new world monkeys, OWM-old world monkeys

4.2.9 Statistical analyses

Patterns of nucleotide substitution were also analysed with MEGA 5.0 Beta (Tamura et al., 

2007). Seventeen variable amino acid positions, presumed to represent the ABS (Brown et al., 

1988, 1993), were assigned as for rhesus macaques (positions 11, 13, 23, 26, 28, 30 and 37 of 

the P sheet and 57, 61, 67, 70, 71, 73, 74, 77, 78 and 86 of the a  helix, Slierendregt et al, 

1992). Rates of non-synonymous (dN) and synonymous (ds) substitutions within the ABS and 

non-ABS were calculated according to Nei and Gojobori (1986), with the Jukes and Cantor 

(1969) correction. Significance levels were determined using a  Z test (P< 0.05) in MEGA 5.0 

Beta.

4.3 Results

4.3.1 Amplification, sequencing and identification of proboscis monkey -DRB alleles

Mamu-DRB primers, 5’DRB(SalI) and 3’DRB(XbaI), successfully amplified Nala-DRB (Nasalis 

larvatus) alleles. Twenty one samples produced a PCR product of the expected size, however 

sequencing reactions were only successful for 15 (two from Klias and the remainder from the 

LKWS). Five different Nala-DRB (Nala-DRB*AHelel to 5) sequences, 265 nucleotides in length, 

were identified by direct sequencing in two heterozygote and 13 homozygote individuals (full 

sequences in Appendix Eleven). None of these alleles was found in published sequences from the 

aligned taxa; predicted nucleotide and amino acid sequences are presented in Figures. 4.1 and

4.2.
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HLA-DRB1*010101
10

TIG IGG CAG CIT AAG ITT
20

GAA TGI CAT TTC TTC ART GGG ACG GAG CGG GIG CGG TIG CTG GAA AGA
30 

TGC AIC TAT AAC CAA GAG GAG
Hala-DRB*A11 e le l ----  AA- ---- GA--------- -A- —G ---- ------------ ----  —C ----------------------A ---- ---------c ---- C-C — -A T---- c----------------------------
Kala-DRB*Allcle2 ----  AA- ---- GA--------- -A- —G ----------------- ----  —C ----------------------- ------ ---------c ---- C-C ---- -A T---- c---------------------------
Hala-DRB*Allele3 ----  AA- ---- GA--------- -A- —G ----------------- c--------c --------------------- A ---- ---------c ---- C-C — - A l ---- c----------------------------
Nala-DRB*AUele4 ----  AA- ---- GA--------- -A- —G ----------- ----  —C ----------------------A ---- ---------c ---- C-C —G -A T ---- C---------------------------
Hala-DRB*Allele5 ----  AA- ---- C-C ---- -A------- C----------------------------

40 50 60
HLA-DRB 1*010101 TCC GTG CGC TTC GAC AGC GAC GTG GGG GAG TAC CGG GCG GTG ACG GAG CTG GGG CGG CCT GAT GCC GAG TAC TGG AAC AGC CAG AAG
Hala-DRB*Allelel GA------C-------------------------------------------------------------------------------------------------------------------—C --------------------T C ------------------------
Hala-DRB*Allele2 G&- -C-----------------------------------------------------------------------------------------------------------------G- ACC------------------------------------------------
Hala-DRB*Allele3 GA- -C---------------------------------------------------------------------------------------------------------------------- C -------------------T C ------------------------
Hala-DRB*Allele4 GA- -C-----------------------------------------------------------------------------------------------------------------G- -C C ------------------------------------------------
Hals-ORB *A llele5 AA------------------------------------------------------------------------------------------------------------------------G- -C C ------------------------------------------------

70 80 90
HLA-DRB 1*010101 GAC CTC CTG GAG CAG AGG CGG GCC GCG GIG GAC ACC TIC TGC AGA CAC AAC TAC GGG GTT GGT GAG AGC TTC ACA GIG C1G CGG CGA
Hala-DRB*Allelel ----  A-------------------------------------------- A------------------- A GIG----------------------------------------------T G ------------------------------------------------
Hala-0RB*A llele2---------------------------------------------------- 1  A G IG --------------------------------------------- IT---------------------------------------------------
Kala-0RB*ALlele3 —  A------------------------------------------- A-------------------A GIG----------------------------------------------TG ------------------------------------------------
Hala-ERB*A11 ele4  —  A------------------------------------------- A------------------- A GIG----------------------------------------------T G ------------------------------------------------
Hala-DRB*Allele5 ----  A-------------------------------------------- A A G IG --------------------------------------------- IT---------------------------------------------------

HLA-DRB 1*010101 GGT gag CGC GGC
Hala-DRB*Allelel ---- —T -IA -A*
Hala-DRB*Allele2 ---- —T -TA -A*
Hala-DRB*Allele3 — —T -TA -A*
Hala-DRB*Allele4 — —T -TA -A*
Hila-DRB*AlleleS — —T -TA -A*

Figure 4.6. Nucleotide sequence of proboscis monkey DRB (exon 2). Codon numbering is shown above 
the consensus of -DRB sequences. Identity to consensus is shown by dashes (-) and asterisks (*) denote 
unsequenced nucleotides).

10 20 30 40 SO 60 70 80 90

HLA-DRB1*010101 L8QLKFECHF FHGTEKVRLL
i

ERCIYHOEES VRFDSDVGEY RAVTELGRPD AEYWH9QRDL
1

LEQRRAAVDT YCRHNYGVGE SFTVQRRjGER
Hala-DRB*A1lelel -K-D-Y---------------------f- H-Y-H----- D A---------------------------------------F—-----1 --------- E---- V-------— V- ------------ DL
Hala-DRB*All«le2 -K-D-Y---------------------F- H-Y-H----- D A-----------------------------R T --------- ------- --------- V— V-------— F- ------------ DL
Hala-DRB*A1lele3 -K-D-Y------L-------------F- H-Y-H----- D A---------------------------------------F—-----1 --------- E---- V-------— V- ------------ DL
Hala-DRB*A1lele4 -K-D-Y---------------------F- H-Y-H- ---- D A---------------------------- RA--------- --- 1 --------- E---- V-----— V- ------------ DL
Nala-DRB*Allele5 -K-D-Y---------------------F- H-Y-H----N ---------------------- RA---------- 1 --------- E--- v-----— F- ---------DL

Figure 4.7. Predicted amino acid sequences of proboscis monkey DRB (exon 2). Numbering of amino 
acids is shown above the consensus of -DRB sequences. Red typeface indicates inferred ABS sites. Identity 
to consensus is shown by dashes (-) while unsequenced regions are denoted by asterisks (*).

Phylogenetic analysis of the Nala-DRB sequences was performed to identity the potential locus 

and lineage of each sequence. The neighbour-joining tree included the new sequences and 

selected Mhc-DRB sequences from New World (NWM), Old World monkeys (OWM) and apes. 

The five Nala-DRB sequences seem to be monophyletic and clustered within the -DRB5  locus 

(Fig. 4.3).
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Figure 4.3. Phylogenetic tree of five 
Nala-DRB sequences (♦ ) and other 
selected taxa (see Table 4.3 for 
details). The tree configuration was 
derived from 51 nucleotide sequences 
using the neighbour-joining and Jukes- 
Cantor methods in MEGA 5.0 Beta. 
Numbers on the branches refer to 
confidence probability values.
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4.3.2 Amplification, sequencing and identification of Mafa-DRB alleles

Exon 2 Mafa-DRB sequences were amplified using MDRB5 and 3’DRBseq primers. Successful 

sequencing reactions occurred for 36 out of 40 individuals screened. Direct sequencing identified 

13 different sequences, 265 nucleotides in length, corresponding to 13 homozygote individuals. 

Haplotype reconstruction by PHASE 2.1.1 identified 36 more sequences in the remaining 23 

heterozygote individuals. Subsequent analysis on DAMBE 5.0.47 revealed a total of 47 different 

sequences in the 36 individuals (Table 4.4; full sequences in Appendix Twelve). When aligned 

with the published Mhc-Mafa-DRB sequences, only one positive match was found, corresponding 

to the allele Mhc-Mafa-DRB4*0110. Predicted nucleotide and amino acid sequences are 

presented in Appendix Thirteen and Figure 4.4 respectively. Phylogenetic analysis of the LKWS 

Mafa-DRB sequences was performed to identify potential locus and lineage of each sequence. 

Neighbour-joining trees included the new sequences and the published Mafa-DRB sequences 

plus other selected Macaca spp. and old world monkey sequences. Figure 4.5 includes the 47 

sequences found in the LKWS long-tailed macaques and some of the published Mafa-DRB 

sequences; an extended tree including all Mafa-DRB sequences and the other taxa is presented in 

Appendix Fourteen. LKWS Mafa-DRB representatives of -DRB1, -DRB3, -DRB4 and -DRB*W 

loci and lineages were recognised. Thirty sequences clustered together with the lineages -  

DRB1 *03 (n= 5), -DRB1*04 (n= 10), -DRB1*07 (n= 3), -DRB3*04 (n= 3), -DRB*W31 (n= 5), 

-DRB*W601 (n= 2) and -DRB*W63 (n= 2). Other single sequences clustered with other -  

DRB*W sequences.

Table 4.4. Summary of LKWS Mafa-DRB sequences and typing techniques to identify each gene
Name Technique Name Technique Name Technique Name Technique

DRB*Allelel S/P DRB*AUele20 S/P DRB*AUeIe31 S/P DRB*AiIele42 S

DRB*AllelelO S/P DRB*Allele21 S/P DRB*Allele32 S/P DRB*AIlele43 S/P

DRB'Allelell S/P DRB*AUele22 S/P DRB*Allele33 S/P DRB*Allele44 S/P

DRB*Allelel2 S/P DRB*Allele23 S/P DRB*Allele34 S DRB*Allele45 S

DRB*Allelel3 S/P DRB*AIlele24 S/P DRB*Allele35 S/P DRB*Allele46 S/P

DRB*Allelel4 S/P DRB*Allele25 S/P DRB*AUele36 s DRB*Allele5 S/P

DRB*Allelel5 S/P DRB*Allele26 S DRB*Allele37 S/P DRB*Allele6 S/P

DRB*AIlelel6 S/P DRB*Allele27 S/P DRB*Allele38 S/P DRB*Allele7 S/P

DRB*Allelel7 S DRB*Allele28 S/P DRB*Allele39 s DRB*Allele8 S

DRB*Allelel8 S DRB*Allele29 S DRB*Allele4 S/P DRB*Allele9 S

DRB*Allelel9 S DRB*Allele3 S/P DRB*Allele40 S/P DRB4*0110 S

DRB*Allele2 S/P DRB*Allele30 S/P DRB*Allele41 S/P

S- direct sequencing; S/P -  direct sequencing plus haplotype reconstruction with PHASE 2.1.1
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10 20 30 40 SO 60 70 80 90
i i

HLA-DRB1*010101
■ i i i i i i i ■

LRQLKFECBF FHGTERVRLL ERCIYRQEES VRFDSDVGEY RAVTELGRPD AEYWHSQKDL L\AEAGRGGH \\CRHHYGVG ESFTVQRR
M afa-D R B *A lle le l -EYSTS------- -------------- F -  D-YF---------Y ------------------ ----------------- ----------------1 - \ ------------ Q \ \ —Y—R-------------------
M afa-D R B *A llelelO -EEC-YK----- -------------- f -  v - r r ---------y ----------------r ----------------- -------- G---------- \RQ---------- \ \ ------------v --------------
M afa -D R B * A lle le ll -EED-Y------- — N-----R-------- \ -------P-----
M afa-D R B *A lle le l2 • • • • • g _ ——— -------------- F -  D-YF---------Y i,---------------- ----------------- ---------- R— I  - \ ------------Q \ \ — y ------------------------
M afa-D R B *A lle le l3 • • * • • 5 ____ -------------- F -  D-Y---------- H — H---------- F - \ -------------- \ \ -------- R-------------------
M afa-D R B *A lle le l4 -E -V -H ------- -------------- F -  D-FF---------F ----------------r --------------RH ----------------F - \-H -D -------
M afa-D R B *A lle le lS -E -V -Y ------- --------------F-------LF---------F 1 --------------p ----------------- — S-----R-------- E\Q---------- \ \ ------------------------------
M afa-D R B *A lle le l6 -E -V -Y ------- -------------- F-------LF-------- F ----------------r ----------------- — S-----R-------- E\Q---------- \ \ ------------------------------
M afa-D R B *A lle le l7 -E -A -R ------- --------------F -  D-YFH-------Y A--------------F -V---------- RS ----------------F - \-G -D -----Q \ \ ------------------------------
M afa-D R B *A lle le l8 -GHA-S------- -------------- F -  Q-Y-----------L ----------------F ----------------v — S-----R— F - \ - G — P----- \ \ ---------- G V --------------
M afa-D R B *A lle le l9 -----A-G------- --------------Y-------YF---------F ----------------r ----------------v ---------- X,— x - \ -------------- VW-YD-----V --------------
M afa-D R B *A ll« le2 -EYSTS------- -------------- F -  D-YF---------Y ------------------ -----S---------- — H-----R— I  - \ ------------ Q \ \ -------- R-------------------
M afa-D R B *A llele20 -E-A-RK----- --------------F -  H-HF---------Y A--------------F ----------------v ----------------F - \ -----DL— Q \ \ -------- R - V --------------
M afa-D R B *A llele21 -E-A -G ------- -------------- Y - B-HFH-------F ----------------F --------------RS — R---------- F - \ - G -------- Q \ \ ------------V -------------
M afa-D R B *A llele22 ******____ --------------F -  D-YF---------F ----------------F -----S---------- ----------------F - \ -------P-'.Q \ \ — Y— R-------------------
M afa-D R B *A llele23 * * * * * * ____ --------------Y - H-YF---------Y ----------------F -----S---------- -----F---------F - \ -------P----- \ \ — 1Y— R -.......................
M afa-D R B *A llele24 -EYSTS------- -------------- F -  D-YF---------Y ------------------ -----S-------RS -------- D-----1 -\R H ---------- \ \ -------- R I-----------------
M afa-D R B *A lle le25 -EYSTS------- -------------- F -  D-YF---------Y ------------------ -----S-------RS -------- G----- F -\RQ ---------- \ \ -------- R I-----------------
Maf a -D R B * A lle le2 6 -E -A -S — \ \ --------------Y- D-Y-H-------F ----------------F ----------------v — 5— G-----1 - \ -------------- \ \ ------------F --------------
M afa-D R B *A lle le27 -K-A-D ------- --------------F-------HF---------Y ----------------F --------------RS -Q -F------ GY - \ - Q ---------- \ \ ------------V --------------
M afa-D R B *A llele28 -K-V-A------- --------------F-------HF-------- Y ----------------F --------------RS -----F-------GY - \ -------------- \ \ ------------V --------------
M afa-D R B *X Ilele29 FEYCTH------- --------------Y- V -F F --R --Y -------h-------r 0 -------------- E -------- G---------- \EG---------- \ \ ------------V --------------
M afa-D R B *A lle le3 -E -ST S------- --------------F -  D-HF---------Y — Y------------ ----------------- ----------------i  _ \Tq---------- \ \ — Y— R-------------------
M afa-D R B *A lle le30 -E -A -C ------- --------------F -  D-YF---------Y A--------------F ------------------ ----------------F - \ - D -------- Q \ \ ------------------------------
| |>  f  . _ n f } B t l  1 1 . 1  . 4 4 ________ n  V f t i ________ V ____ _____* \ __A \ \ _________ __________flA £l'ilK ovA l l e i 6 J l _________ j^_ ----------------z \ \ --------  ------
M afa-D R B *A llele32 -G -G -R------- --------------F -  D-YF---------F ----------------F ----------------v — RL— R— Y - \ - G ---------- \ \ — y -------- ----------------
M afa-D R B *X llele33 -G -A -R------- --------------F -  D-YF---------F ----------------F ----------------v — H-----R— Y - \ - G ---------Q \ \ — Y------------------------
M afa-D R B *A llele34 -EYSTS------- --------------F -  D-YF---------Y ------------------ ----------------- -------- G -E -I -\R R ---------- \ \ ------------r --------------
M afa-D R B *A llele35 -EYC---------- ------------ QY- I-Y F -------- Y — c ------------ - p -------------- -------- G---------- \ -------------- \ \ ------------V --------------
M afa-D R B *A llele36 -E -A -R ------- --------------F -  D-YFH-------Y A-------------- F --------------RS ----------------F - \-G -D -----Q \ \ ------------------------------
M afa-D R B *A llele37 -E -A -S ------- --------------Y- H-Y---------- Y ----------------H -----------s -------- G-----1 - \T P ---------Q \ \ — Y— R-------------------
M afa-D R B *A llele38 -E -S T S ------- --------------F -  H-YF---------Y ----------------H -----S-------RS —R-----R— I  - \ - P ---------- V \— Y— R - F -------------
M afa-D R B *A llele39 -EYSTS------- -------------- F -  D-YF---------Y A---------------- ------------- RS -------- G----- 1 -\R R ---------- \ \ -------- R I-----------------
M afa-D R B *A llele4 -E -V -Y ------- -------------- F-------YF---------Y ------------------ ------------------ ----------------F - \G — EP-IQ  \ \ ------------ V --------------
M afa-D R B *A llele40 -----D-AK----- -------------- Y-------HF---------L ------------------ -----s ---------V — R— G-----Y - \ ---------- -Q \ \ .............. ................... .......
M afa-D R B *A lle le41 -----A-AK----- -------------- Y-------HF---------L ---------------- F -----s ---------V — R— G-----Y - \ ------------ Q \ \ ------------------------------
M afa-D R B *A llele42 -E -A -S ------- -------------- F -  D-Y-H-------R L-------------- F ------------------ ----------------F - \ -------------- \ \ ---------- A V --------------
M afa-D R B *A llele43 -EYCTS------- -------------- F -  R-YF---------Y ------------------ ------------------ -------- G----- 1 -\T H ---------- \ \ -------- R I V --------------
M afa-D R B *A llele4  4 -EYCT--------- -------------- F -  V-YF---------Y ------------------ -------------- RS -------- G-----------\ - R ---------- \ \ -------- r i -----------------
M afa-D R B *A lle l«45 -E -A -S ------- -------------- F -  D-Y-----------Y ----------------u -------------- RS -------- G----- 1 - \R P ----------- \ \ — Y— R - F --------------
M afa-D R B *A lle le46 -E -V -C ------- -------------- F -  D-YF---------Y A-------------- F --------------------- --------------------- _ \ ---------------- * * * * * * * * * *  ********
M afa-D R B *A llele5 -E -V -Y ------- -------------- F------- YF---------F --------------------- -----s -------RS -Q S— G— GI - \ -----DP----- \ \ -------------- y --------------
H afa-D R B *A lle le6 -E -V -Y — R - — R---------F -------HF---------F ------------ L— F ------------------ —Q—L--------------E-Q— P----- y g — • • • • • •  * * • • * • • •
M afa-D R B *A llele7 -K-V-H— R - -------------- Y- Q-HFH-------F -H-------L— F --------------------- -Q -L --------------E-Q— P----- TS— ****** ********
M afa-D R B *A llele8 -E -V -H ------- -------------- F -  D-YF---------Y ----------------1 -\RQ — P----- W -K -------- V --------------
M afa-D R B *A llele9 -EYC---------- ------------ QY- I-Y F ---------Y — y --------------- --------------------- ------— G------- —\ ------------ — \ \ ------------ V --------------
Mafa-DRB4*0110 -----G-A------- -------------- Y- I -Y -----------H A---------------- --------------------- -------- G-----------\ -------------- \ \ — Y------------------------------

Figure 4.4. Predicted amino acid sequences of long-tailed macaque DRB (exon 2). Numbering of amino 
acids is shown above the consensus of -DRB sequences. Red typeface indicates inferred ABS sites. Identity 
to consensus is shown by dashes (-), indels are indicated by inverse slash (\), a stop codon is indicated by 
an exclamation mark (!), and unsequenced regions are denoted by asterisks (*).
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4.3.3 Patterns of nucleotide substitution
Most nucleotide substitutions were confined to residues representing the antigen binding site 

(ABS). In the long-tailed macaque, the variable residues (three or more) were at positions 11, 13, 

26, 28, 30 and 37 of the p sheet and 57, 61, 67, 70, 71, 73, 74, 77, 78 and 86 of the a  helix, 

while for proboscis monkey the variability was confined to a single position (57) (Fig. 4.6).
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Figure 4.6. Amino acid variability plot for proboscis monkey (Nala-) and long-tailed macaque 
alleles. The most variable sites in the rhesus macaque MHC (Slierendregt et al., 1992) are 
arrows.
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Estimated rates of non-synonymous and synonymous substitutions within the ABS and non-ABS 

were also examined. In the macaques, the ABS (Table 4.5) contained significantly more non- 

synonymous changes than synonymous changes (Z test= 2.02, P =  0.02). However, the region 

outside the ABS contained fewer non-synonymous than synonymous substitutions, and this 

difference was not significant. For the proboscis monkey, non-synonymous changes either 

outside or within the ABS were not significantly higher than synonymous substitutions (Table 

4.5).

Table 4.5. Estimated rates of non-synonymous (dN) and synonymous (ds) substitutions for protein binding 
(ABS) and non-protein binding (Non-ABS) regions for DRB exon 2 of long-tailed macaque (LTM) and

Primate Positions #  of codons dN ds dN/ds P

ABS 17 0.24±0.03 0.14±0.05 1.66 <0.05
LTM Non-ABS 73 0.21±0.01 0.28±0.04 0.76 ns

Overall 90 0.21±0.01 0.25±0.03 0.86 ns

ABS 17 0.2±0.03 0.13±0.08 1.5 ns
PM Non-ABS 73 0.22±0.01 0.01±0.01 18.3 ns

Overall 90 0.22±0.01 0.03±0.01 6.6 ns
P -  significance level, ns-not significant
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4.4 Discussion

In this preliminary study, the genetic variability of the functionally important MHC gene -DRB 

(exon 2) was investigated in an endemic primate (the proboscis monkey) and in a more widely 

distributed primate (the long-tailed macaque). This is the first report of MHC sequences for 

proboscis monkeys. Novel Mhc-DRB sequences were also detected in long-tailed macaques 

despite the nature of the sample (faeces) and the small number of typing techniques used. 

Furthermore, evidence of positive selection was found in the macaque sequences. The 

procedures employed here could be enhanced and applied to examine future population 

genetics in these primate species.

As with the study on gorilla MHC by Lukas et al. (2004), the current project also relied on non- 

invasive samples to assess the Mhc-DRB variability in proboscis monkeys and long-tailed 

macaques. As anticipated, the use of DNA templates extracted from faeces made the acquisition 

of MHC variation challenging, especially for the proboscis monkey. Five Mhc-Nala-DRB 

sequences were obtained from 15 individuals (45% of the tested samples). Failure of PCR 

reactions could have been due to the presence of plant inhibitors in the DNA extractions or low 

DNA concentration (see Chapter Three; Broquet et al, 2007). In a study of long-tailed macaque 

-DRB genes, Blancher et al. (2006) noted that generic primers are not all equally suitable for 

every -DRB gene so that amplification of some exon 2 genes (or alleles) can be favoured. If such 

a situation pertains in macaques, it is likely to occur in other taxa (Babik, 2010). For instance, 

phylogenetic analysis of the Nala-DRB samples (Fig. 4.3) suggests that the five detected 

sequences belong exclusively to the -DRB5 locus. While it may be possible that the proboscis 

monkey possesses only this -DBR  locus, representatives from missing loci/lineages may be 

uncovered through further study of additional individuals from the LKWS and/or different 

populations in Borneo. Furthermore, MHC typing techniques such as cloning and sequencing 

might distinguish more alleles in these samples (Knapp, 2005b). Unfortunately, finite DNA 

availability did not allow the testing of such methodologies, the use of combining generic -DRB 

primers, or the development of species-specific primers.

The limited number of -DRB sequences detected in the proboscis monkeys might account for the 

apparent low amino acid variation in the positions involved in antigen recognition (ABS). Brown 

et al. (1988, 1993) identified 17 positions as most variable (i.e. four or more amino acid changes) 

and were assumed to make direct contact with peptides. The variable residues were at positions 

11, 13, 23, 26, 28, 30 and 37 of the p sheet and 57, 61, 67, 70, 71, 73, 74, 77, 78 and 86 of the 

a helix. In the proboscis monkey the highest number of amino acids in any given position was 

three, and this only occurred in position 57 which forms part of the ABS (Fig. 4.6). According to
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Hughes and Nei (1989), non-synonymous substitutions, or changes that alter encoded amino 

acids within the ABS should be more frequent than synonymous (non-altering) changes in 

functioning Mhc-DRB alleles. Concomitantly, a greater rate of non-synonymous substitution 

would be indicative of positive selection. In this study, no evidence of positive selection was 

found for Nala-DRB alleles (Table 4.5). Again, the analysis of more proboscis monkey sequences 

should reveal whether the amino acid polymorphism in the ABS is higher and consequently, 

whether there is indeed no positive selection acting over the proboscis monkey Mhc-DRB loci.

In contrast to the proboscis monkey data, 47 Mafa-DRB sequences were obtained from 36 long­

tailed macaque samples, representing 80% of the tested samples. These sequences were 

identified either through direct sequencing or with a combined approach using an algorithm for 

haplotype reconstruction (PHASE 2.1.1, Stephens et al, 2001; Stephens and Donnelly, 2003). 

The Mhc-DRB variability of the LKWS macaques seems to be slightly higher than that reported in 

other Mafa-DRB studies. For instance in 253 individuals from Mauritius and Indonesia, Blancher 

et al. (2006) reports 50 sequences, 28 previously described. However, those individuals were 

captive-bred and whether the original animals came from different populations within each 

country is unclear. Therefore, the variability observed by Blancher et al. (2006) could be slightly 

overrepresented. Doxiadis et a/.’s (2010), found 118 alleles (28 novel) in 230 captive individuals, 

of which 162 had a Malaysian/Indonesian origin (two to six generations back), but the origin of 

the remaining animals was unknown. In a study using samples of over 100 wild Mauritian long­

tailed macaques, O’Connor et al. (2007) found 34 alleles, 12 being unrecorded. Although the 

study from O’Connor et al. (2007) was the first to evaluate Mafa-DRB variability in wild animals, 

there is no indication that the individuals belonged to a single population. Hence, the current 

study is likely to be the first to assess Mhc-DRB variability in a single population of long-tailed 

macaques.

The 47 Mafa-DRB alleles found in the current study appear to belong to different loci and 

lineages (Fig 4.5 and Appendix Fourteen). Using the same generalist primers (MDRB5 and 

3’DRBSeq), Leuchte et al. (2004) found representatives of 17 allelic lineages in the 33 sequences 

found. Therefore, it was expected to find different loci/lineages in the Kinabatangan samples. 

However, no evidence of sequences belonging to the —DRB5 locus was found. As discussed 

above, the generic primers might not have been suitable to detect this particular locus. Variability 

in the long-tailed macaque sequences followed the assumptions by Brown (1988, 1993) 

regarding the amino acid variation in the ABS. These positions are directly comparable to those 

described for rhesus macaques by Slierendregt et al. (1992) (Fig. 4.6). In addition, the analyses of 

nucleotide substitution support Hughes and Nei’s (1989) selection model (Table 4.5). As 

expected, the Mhc-DRB ABS contained significantly more non-synonymous than synonymous
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substitutions (Z test, P <  0.05). Therefore, positive selection may be a major force in maintaining 

sequence diversity in LKWS long-tailed macaque -DRB genes.

Overall, the results from this preliminary study suggest higher levels of Mhc-DRB diversity in long­

tailed macaques than in proboscis monkeys. However, different types and number of samples, 

typing techniques and primer combinations might have rendered different results. For instance, a 

common feature in previous long-tailed macaque studies is the presence of one to six alleles per 

individual. In the current study, only one or two Mhc-DRB alleles per individual were detected in 

both the long-tailed macaques and the proboscis monkeys. As stated by Knapp (2005c) 

identification of MHC alleles in any species is a complicated undertaking, no matter what type of 

sample is collected, and determination of haplotypes and homozygosity can be extremely 

problematic when using non-invasive samples. Unlike the current study, none of the previous 

macaque studies had been performed using non-invasive samples. A common problem when 

working with non-invasive samples is allelic dropout (ADO) (reviewed by Goossens & Bmford, 

2009), which might explain the lack of alleles per individual despite the multi-tube approach 

(methods).

An alternative explanation for low intra-individual MHC variation is the typing technique used. 

Primate Mhc-DRB alleles are in general expected to be 270 bp long (Doxiadis, per. 

communication). In this study it was noted that some of the samples analysed presented an 

amplicon of such size when analysed in agarose gels, but the signal of the electropherograms was 

corrupted by noise. Such noise was almost as strong as the signal, this strongly suggests the 

presence of more than two alleles in the same sample. Due to lack of sequence resolution, those 

samples were not included in the analyses. Future studies should take this into account and for 

these kind of samples apply a different typing technique. Cloning and sequencing are essentially 

the ‘gold standard’ for MHC allele identification in novel species. However, this approach might 

be impractical when many individuals must be typed (Knapp, 2005b). Conformation-based 

mutation-detection techniques such as denaturing gradient gel electrophoresis (DGGE) and 

single-stranded conformation polymorphism (SSCP) have also been traditionally used for MHC 

typing, but these methodologies require significant amounts of optimization before maximal 

separation of various alleles can be achieved reliably (Babik, 2010; Knapp, 2005b). This can be a 

limitation when working with finite samples such as those obtained non-invasively. Recent studies 

on MHC variation suggest that sequence-based typing may also be applied because it is possible 

to correctly reconstruct haplotypes from diploid chromatograms containing heterozygous 

positions using the Bayesian inference method implemented in PHASE (Stephens et al., 2001; 

Stephens and Donnelly, 2003; reviewed in: Bos et al., 2007, Babik, 2010; Garrick et al., 2010). 

While not widely used yet, examples of MHC reconstruction by PHASE can be found for
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humans, artyodactiles, birds and fish (Lee et al., 2006; Mona et al., 2008; Silva et al, 2009; 

Turner et al., 2009). In this study, PHASE was useful to clarify base uncertainties, with a mean 

confidence of 90%. However, the issue of having more than two alleles per sample still needs to 

be addressed and perhaps a more adequate approach will include cloning or a conformation- 

based mutation-detection technique.

Although the methodologies presented in this study have to be refined, non-invasive samples 

could provide suitable material for the assessment of MHC variation in proboscis monkeys and 

long-tailed macaques. Human impact (e.g. habitat fragmentation, degradation, isolation, 

urbanisation, pollution) often causes a loss of genetic variation leading to short-term reduction of 

fitness components and to an impaired ability to adapt to changing environments, which in turn 

influences evolutionary outcomes (Sommer, 2005; Young & Clarke, 2000). The results from this 

study represent a first step towards understanding the effects of habitat fragmentation on the 

fitness of long-tailed macaques and proboscis monkeys of the Lower Kinabatangan Wildlife 

Sanctuary. As the LKWS is a highly fragmented habitat, the study of MHC diversity will be a 

useful indicator of the fitness of these two primate species and will ultimately aid their 

conservation and management.
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5.0 Abstract

A non-invasive survey of the gastrointestinal parasite fauna of free-ranging long-tailed macaques 

(Macaca fascicularis) and proboscis monkeys (Nasalis larvatus) in the Lower Kinabatangan 

Wildlife Sanctuary revealed 14 taxa. These included three trematodes (an unidentified 

dicrocoeliid, Clonorchis sp. and Fasciola sp.), two cestodes (Taenia sp. and Dipylidium-like 

morph), one unidentified acanthocephalan, seven nematodes (Strongyloides sp., Trichuris sp., 

Anatrichosoma sp., Ascaris sp., strongylids, oxyurids and an oxyurid-like morph) and an 

unidentifiable parasite. Parasite richness was higher in proboscis monkeys, and prevalence of 

particular parasites differed between the primates. In particular, Trichuris sp. was 2.2 times more 

prevalent in proboscis monkeys while strongylids were twice as common in long-tailed macaques. 

Potential effects of natural and anthropomorphic mediated habitat fragmentation on parasite 

species richness, proportion of individuals with mixed infections and the prevalence of particular 

parasites between the two primate species were explored. Natural fragmentation (the 

Kinabatangan River) did not affect parasite distribution. Although it was expected that areas with 

high rates of human -  non-human primate contact would have a positive correlation with 

parasite diversity, prevalence of particular parasites, or with the proportion of individuals 

presenting a co-infection, this was not always the case as host-parasite dynamics are likely to be 

affected by complex interactions between environmental, and host demographic, behavioural 

and genetic factors. Nonetheless, the results of this study provide a baseline for future work 

regarding parasite-host ecology in primates of the LKWS.

5.1 Introduction

Parasites represent one of the most successful life forms on the planet and as such are an 

important component of the biological diversity of tropical forests (Nunn & Altizer, 2006; Trejo- 

Macfas et al., 2007). Research on parasitic fauna can potentially add a new dimension to the
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understanding of ecological interactions, host distribution patterns and to the complex history of 

regions and habitats (Perez-Ponce De Leon & Garcfa-Prieto, 2001). Parasite infections can 

critically influence endangered species conservation as they can have major impacts on host 

abundance and evolution (May, 1988; Nunn et al, 2003; Pedersen et al., 2007; Scott, 1988; 

Smith et al, 2009). They have been linked increasingly with dramatic local and global declines of 

wildlife species, including lions, black-footed ferrets, Hawaiian forest birds and many amphibian 

species (e.g., Daszak et al., 2000; Dobson & Grenfell, 1995; Packer et a l, 1999). Therefore, it is 

essential to obtain accurate data on parasite diversity and abundance at local levels in order to 

understand the role of infectious agents in wildlife endangerment, declines and extinctions (Smith 

et al, 2009; Thompson et al, 2010). Furthermore, the study of parasites in wild primate 

populations provides knowledge for evaluating the health and the infection risk in populations, 

and identifies general principles governing parasite occurrence which is critical for managing 

vulnerable wildlife populations and mitigating risks to human health (Chapman et al, 2006a; 

Gillespie et al, 2005a).

Primates are vulnerable to the effects of many parasitic infections because they often live in close 

social groups that facilitate parasite transmission (Stoner, 1996). Long term behavioural field 

observations and studies of endemic parasites in wild primate populations have provided direct 

and indirect evidence that infectious diseases can cause or contribute to death in primate hosts, 

such as vervet monkeys, chacma baboons and chimpanzees (for a more detailed list of hosts and 

infectious agents see Table 1.1 in Nunn & Altizer, 2006). Some of the most striking evidence of 

infectious disease comes from population declines associated with epidemics in African apes 

(Leendertz et a l, 2004; Leroy et al, 2004; Walsh et al, 2003). In many cases parasites may 

increase host susceptibility to predation or decrease the competitive fitness of the individual 

(Scott, 1998), and might be more prevalent in populations living in human modified habitats 

(Nunn et al, 2003). Whereas the gastrointestinal parasite fauna of wild populations of African 

apes, baboon, and neotropical howler monkeys is comparatively well studied (reviewed by 

Gillespie 2006), the parasites in other primate taxa remain poorly known. Based on the IUCN 

Red List, Southeast Asia harbours a relatively large number of threatened primates (Cowlishaw & 

Dunbar, 2000). However, the Global Mammal Parasite Database, reveals a major gap in our 

knowledge of parasites from threatened primates in this area (Nunn & Altizer, 2005, 2006).

Long-tailed macaques (Macaca fascicularis) and proboscis monkeys (Nasalis laruatus) are two of 

the ten primate species that live in sympatry in the Lower Kinabatangan Wildlife Sanctuary 

(LKWS), in Sabah, Malaysia. The long-tailed macaque is listed as one of the 100 most invasive 

alien species inhabiting a variety of forest habitats, preferring edge habitats and riverine areas, 

but can also be found in villages (i.e. disturbed habitat), often raiding crops and where they may
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be classified as a pest (van Schaik et al, 1996; Abegg & Thierry, 2002). Endemic to Borneo, 

proboscis monkeys were considered to prefer habitats within riverine areas, peat swamps, 

mangroves and nipa dominated mangrove forests (Kawabe & Mano, 1972; Meijaard & Nijman, 

2000). However, more recent data have shown that proboscis monkeys are more widely 

distributed, occurring throughout Borneo (Meijaard & Nijman, 2000). Classified as endangered 

by IUCN (2010), this primate is threatened by habitat destruction and hunting, and much of its 

former range has been reduced due to logging (e.g. in Kinabatangan), swamp reclamation, gold 

mining, shrimp farming and forest fires (Meijaard & Nijman, 2000; Sha et al, 2008). Despite the 

implications for human health (potential zoonoses in the case of the macaques) and the 

conservation status of the proboscis monkey, little is known of the parasitic fauna of these two 

species. According to the last update of the Global Mammal Parasite Database (August 2008; 

www.mammalparasites.org), there was not a single report regarding proboscis monkey parasites, 

while the reports for Macaca fascicularis in the Eurasian region include three groups of bacteria, 

seven viruses, and nine species of protozoa and helminths (Nunn & Altizer, 2005). However, 

these numbers are likely to be an underestimate since there is at least one report of a proboscis 

monkey helminth (Hasegawa et al., 2003) which is not included in the mentioned database but is 

included in the Natural History Museum Host-Parasite Database (2010; 

www.nhm.ac.uk/reseeirch-curation/resarch/projects/host-parasites/database/). There are no 

reports on the parasitic fauna of long-tailed macaques and proboscis monkeys of the 

Kinabatangan region, where the habitat has been subjected to different degrees of disturbance.

Habitat destruction, human population growth and tourism contribute to increased pressure on 

wildlife (Hahn et al., 2003). Most primates today live in anthropogenically disturbed habitat 

mosaics of farmland, human settlements, forest fragments and isolated protected areas 

(Chapman et a l, 2005a). Such a landscape lowers the viability of primate populations in tropical 

forests (Chapman & Peres, 2001; Mittermeier et al, 2009). Habitat loss can also change the 

behaviour and abundance of wildlife which in turn affects parasite transmission and distribution 

since they are influenced by host ranging patterns, density, intraspecific and interspecific contact 

rates, and host diet (Chapman et al, 2005a, b, 2006a, b; Gillespie et al, 2005b; Hudson et al, 

2006; Nunn et al, 2003). Furthermore, as human population density continues to increase, 

speeding the reduction and fragmentation of primate habitats, greater human-primate contact is 

inevitable and even higher rates of parasite transmission, between primates and between 

primates and humans, are likely (Gillespie, 2006; Goldberg et al, 2008). For instance, arboreal 

monkeys in small fragmented habitats may have to come to the ground to move from one forest 

patch to another with the possibility of acquiring new parasites. Additionally, when moving 

between forest patches and because of the proximity to human settlements and to domestic
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animals, they may also be exposed to a wider range of parasitic vectors and/or intermediate hosts 

(Trejo-Macfas et a l, 2007). Although some primate species, such as yellow and olive baboons 

(Papio cynocephalus and P. anubis), can persist or even temporarily increase in the face of 

human encroachment, routine contact with people, their livestock, pets and refuse may introduce 

new diseases into a previously naive population (Hahn et al, 2003). Additionaly, generalist 

parasites that can infect multiple host species, including domesticated animals, can be relatively 

benign in one host species but may depress the density of other hosts for which they are more 

pathogenic (Altizer et a l, 2007, Smith et al, 2009). In general, the effects of fragmentation on the 

dynamics of pathogen transmission between primates and other species, including humans, 

remain largely unexplored (Goldberg et al, 2008).

Because of increasing human encroachment into previously pristine forests and the potential for 

disease transmission between human and non-human primate populations, further detailed 

investigations of primate ecological parasitology are warranted, especially at sites for which we 

currently have no information regarding parasite diversity and prevalence (Muehlenbein, 2005). 

Understanding how forest fragmentation and associated land-use changes affect parasite 

transmission among primates, humans and domestic animals is critical for designing rational 

intervention strategies to conserve wild primates, as well safeguarding human and animal health 

(Goldberg et al., 2008). In addition, considering the evolutionary and ecological linkages 

between primates and their parasites (Stuart & Strier, 1995), parasites could be viewed as 

indicator species, potentially alerting us to imminent threats to primate conservation (Gillespie, 

2006).

The aim of this study was to non-invasively survey the gastrointestinal parasite fauna of long­

tailed macaques and proboscis monkeys in the LKWS. Parasite diversity and prevalence, 

presence of mixed infections and levels of environmental contamination (measured as parasite 

eggs per gram of faeces) were compared between the two species of primates. Compared to 

proboscis monkeys, long-tailed macaques have been observed to come closer to human 

habitation in the LKWS. Thus, it is expected for the macaques to be infected with a higher 

parasite diversity and a larger proportion of individuals are likely to carry mixed infections 

compared to proboscis monkeys. Additionally, effects of habitat fragmentation on parasite 

species richness, proportion of individuals with mixed infections and the prevalence of particular 

parasites were explored. Both primate species are known to be efficient swimmers, thus no effect 

is expected in terms of parasite diversity, prevalence or infection risk arising from the natural 

barrier of the Kinabatangan River. In contrast, these factors might be influenced by human- 

mediated habitat fragmentation. It is predicted that areas with higher rates of human contact and
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activity will result in primates having higher parasite richness and increased frequency of mixed 

infections, as well as a  higher prevalence of particular parasite species.

5.2 Methods

5.2.1 Study site

Located in eastern Sabah, Malaysia, the Lower Kinabatangan flood plain (5°20’ -  5°45’ N, 

117°40’ — 118°30’ E) comprises different habitat types and a  waim and humid climate. 

Temperatures range between 21°-34°C and annual precipitation arverages 3000 mm (Ancrenaz 

et al., 2004). Low-stature forests and grasslands occur in backswamp areas while riparian and 

mixed lowland dipterocarp forests are found in drier zones located along the banks of the rivers 

and higher terraces: seasonally flooded forest, nipa palms, and mangrove are also common in 

the area (Azmi, 1998). However, since the mid 1950s (but especially during the past 25 years), 

most of the dry lowland forest has been subjected to large-scale commercial timber exploitation 

or has been cleared for oil-palm development, resulting in a highly fragmented forest structure 

(McMorrow & Talip, 2001).

In 2005, the state government of Sabah gazetted almost 27 000 ha of these forests as a wildlife 

sanctuary under the Wildlife Conservation Enactment 1997, with the ultimate aim of creating a 

corridor for wildlife along the Lower Kinabatangan flood plain, between the remaining virgin 

forest reserves. The Lower Kinabatangan Wildlife Sanctuary comprises 10 sectors or Lots (Lots 

1-10, with Lot 10 divided into 10A-C) linking seven patches of protected forests (Virgin Jungle 

Forest Reserves, VJFR) totalling about 15 000 ha, and they are connected with 10 000 ha of 

state and private forests in various stages of degradation (Ancrenaz et ad., 2004). Three villages 

(Abai, Sukau and Bilit) and most touristic activities (more than ten tour lodges) are located in 

Lots 1-4 (hereafter referred to as Area 1). In contrast, Lots 5-7 (Area 2) are quieter in terms of 

human activities (only one village -  Batu Putih, one community based organization -  Mescot, 

and one research centre -  Danau Girang Field Centre). In addition, a major bridge crosses the 

Kinabatangan River, creating another potential barrier for wildlife dispersal, and separates Lots 8- 

10 (Area 3) from the rest of the sanctuary. This area includes several small human settlements but 

no tour operators are based here (M. Salgado-Lynn, pers. obs). Thus, human activity in this area 

is lower than in Area 1, but slightly higher than in Area 2 (Figure 5.1).
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Figure 5.1. Map of the Lower Kinabatangan Wildlife Sanctuary. Courtesy of HUTAN/KOCP.

5.2.2. Sampling

Sampling in LKWS was divided in two seasons; the first covered Lots 1-4 between October 2007 

and March 2008, and the second covered Lots 5-10 between June and November 2008. As 

long-tailed macaques and proboscis monkeys use riverine trees for sleeping sites, the 

Kinabatangan River was used as a transect to census the primates during their inactive periods 

(particularly at sunset and early night). Expeditions lasted from 5-10 days, with teams of 2-5 

people covering —330 km, equalling 660 km of riverbank including smaller tributaries. Faeces 

were collected at dawn to ensure freshness, and occasionally at dusk. GPS (Garmin eTrex Vista 

HCx) coordinates of collected samples were noted for subsequent localisation of groups and 

populations. Within the constraints of time and logistics, we attempted to sample as widely as 

possible within each population seen in the riparian forest; because individual recognition was 

not always possible, and being unhabituated primates, some individuals may have been sampled 

more than once.

A total of 1153 faecal samples were collected for molecular and parasitological analysis with 

those screened for parasites being selected on their size, as many samples were large enough for 

DNA extraction but not sufficient to be subjected to a flotation technique (see below). Therefore, 

a total of 290 faecal samples were screened for parasites, 144 for macaques and 146 for 

proboscis monkeys. These represent 22.1% of the proboscis monkey samples and 29.3% of the
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macaque samples collected. Screened samples were grouped into Areas (as described above), 

based on the characteristics of human activities in the Lots of the Sanctuary (Table 5.1).

Table 5.17. Summary of primate stool samples screened for parasites.
Area 1 Area 2 Area 3

Primate Loti Lot2 Lot3 Lot4 Lot5 Lot6 Lot7 Lot8 Lot9 LotlO OS Total

PM C ~65 87 199 89 ~12 31 85 "O 0 33 0 6 6 F

S 17 23 26 16 17 11 27 0 0 9 0 146

LTM C 27 59 80 33 54 83 39 32 46 33 6 492

S 4 19 17 6 11 27 14 12 17 14 3 144

PM-proboscis monkey, LTM- long-tailed macaque, C-number of collected samples, S-number of 
screened samples, OS- samples from outside the sanctuary on the south of the Kinabatangan river.

5.2.3. Parasite isolation
Faecal samples were weighed and stored in 15 ml falcon tubes with 4 ml of 0.15% sodium azide 

(storing solution) according to Harmon et al. (2007a). All samples were processed within 15 days, 

with the majority (70%) processed the same day of collection. Helminth eggs were isolated using 

a modified McMaster-Wisconsin Rotation technique (Dryden et al., 2005; Egwang & Slocombe, 

1982; FAO, 2007). Faecal material was stirred with 15 ml of storing solution until broken down, 

and subsequently filtered through a small strainer (mesh size 3 mm). The faecal suspension was 

homogenized and centrifuged at 400 G for 2 min. The supernatant was discarded and the pellet 

was resuspended in 15 ml of distilled water to be washed again under the same conditions but 

then filtered through a finer mesh (0.5 mm). The pellet was gently resuspended in 2 ml of 

flotation fluid (saturated sucrose solution, specific gravity 1.26), and 13 ml of flotation fluid were 

gradually added for a total of 15 ml. The tube was inverted slowly to thoroughly mix the sample, 

avoiding the formation of bubbles. One ml of the mix was withdrawn and used to quantify eggs 

using a McMaster chamber. Parasites categorised according to morphology were counted and the 

results were multiplied by conversion factors (depending on the original weight of each sample, 

Appendix one) to give the number of eggs per gram (EPG) of faeces. Rotation fluid was added to 

the remaining sample to form a positive meniscus in the tube, which was afterwards covered with 

a 22x22 mm coverslip and left to stand for 1 h. The coverslip was carefully removed and placed 

on a slide, which was screened using a compound microscope (Olympus BX51 or PRIOR 

PX033) at 100, 200 and 400x to identify particular morphological features of parasite 

eggs/larvae. Each slide was systematically analysed by screening the entire area under the
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coverslip in progressive vertical motions, with all objects being recorded as encountered. All 

morphotypes were photographed for subsequent identification using an Eye-Piece Microscope 

EM-300M BigCatch™ camera and the software ScopePhoto 3.0 (ScopeTek). Parasite images 

were compared with electronic keys (DPDx; Fox; Sullivan, 1999) and/or images from Ash & 

Orihel (2007). The size of parasite eggs and larvae were measured using the softwares 

analySISGetlT 5.0 and measurelT 5.1 (Olympus Soft Imaging Solutions GmbH). No 

coproculture was used to match parasite eggs to larvae for positive identification, hence 

morphological classification was only possible to genus level. Parasite identification was 

independently confirmed by Prof. Michael Muehlenbein (Dept. Anthropology, Indiana 

University).

5.2.4. Data analysis

For this study, parasite richness was defined as the number of unique helminth species (or 

morphotypes) documented from individual hosts’ faecal samples (Muehlenbein, 2005). 

Prevalence was measured as the percent of host individuals infected with a particular parasite 

(Margolis et a/., 1982; Bush et al., 1997). Exact ("Clopper-Pearson") binomial confidence 

intervals (95%) were computed using an online web-based calculator (Pezzullo’s “Interactive 

Statistical Calculations”). Parasite egg production is often highly variable and it may not be 

indicative of actual infection intensity, yet it is useful as an indication of environmental 

contamination. Environmental contamination (EC) is a correlate of infection risk or potential for 

“spill-over” to individuals of the same and different species (Chapman et al., 2005b; Gillespie, 

2006; Greiner & McIntosh, 2009). This parameter (EC) was estimated as the average number of 

EPG (eggs per gram) of faeces in infected individuals.

For the whole LKWS, prevalence of each parasite type was compared between the two species of 

primates by a Pearson’s %2 test with Yates continuity correction (R package version 2.10.1). The 

same test was used to compare the proportion of mixed infections between primate species. 

Parasite species richness was compared between the two types of monkeys by a Mann-Whitney 

U test (Minitab® 15.1.30.0). Environmental contamination was compared between primates only 

for those parasite species whose prevalence was > 25% (lower prevalences imply reduced sample 

size, rendering statistical comparisons invalid), this comparison was also performed by a Mann- 

Whitney U test.

To assess whether parasite richness, prevalence and environmental contamination area were 

affected by host or locality, these associations were examined using generalised linear models 

(GLMs) (R package version 2.10.1). All models were initially run as a mixed model, using the
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package ASReml v3 via the R statistical package interface with primate social group and faecal 

sample size (in grams) fitted as a spline in th e  random term. The random model was reduced 

after assessment of the log-likelihood, followed by minimization of the fixed model using the 

Wald statistic. Random terms were found to  be of no significance, so all models were then 

reduced to a GLM and a minimal model w as reached using stepwise deletions. Details of all 

terms and their interactions, incorporated in  the initial models are described in Table 5.2. In 

particular, two localities were tested, A) river side (north/south of the Kinabatangan River) and B) 

area in the sanctuary (Areas 1-3, as described above); a GLM was used to assess each locality 

(Model A and Model B respectively). Again, prevalence and environmental contamination were 

only examined for parasites whose prevalence was above 25%.

Table 5.18. Terms initially included in the diversity and distribution models.
Dependent variable Independent continuous (c) / categorical (v) 

variables
Richness Primate species (c)

Locality3 (c)
Sizeb of faecal sample (v) 
Primate species X locality 
Primate species X sample size 
Locality X sample size

Mixed infections Primate species (c)
Locality (c)
Size of faecal sample (v) 
Primate species X locality 
Primate species X sample size 
Locality X sample size

Prevalence of Ascaris sp./ Primate species (c)
Trichuris sp./ strongylid Locality (c)

Richness (c)
Size of faecal sample (v) 
Primate species X locality 
Primate species X sample size 
Primate species X richness 
Locality X sample size 
Locality X richness 
Richness X sample size

Environmental contamination Primate species (c)
of Ascaris sp./Trichuris sp./ Locality (c)
strongylid Richness (c)

Size of faecal sample (v) 
Primate species X locality 
Primate species X sample size 
Primate species X richness 
Locality X sample size 
Locality X richness 
Richness X sample size

a -  two different models for each locality were run, Model A) north and south of 
Kinabatangan River, Model B) 3 areas in the LKWS. 
b -  in grams.
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Depending on the data, GLMs were run with different error distributions and link functions. Initial 

richness models, with a Gamma error distribution and Log link, revealed normal residuals 

(Appendix Fifteen). Prevalence and mixed infection models used a binomial error distribution 

and a logit link function. Histograms of environmental contamination showed highly skewed 

distributions, so transformations (log, loglO, square root, exponential) were applied directly to the 

data without success. GLMs were then tested with several error structures (Negative binomial, 

Poisson, Quasi Poisson) and link functions (log, log10, square root), but models still revealed non­

normal residuals (some examples in Appendix Fifteen). Hence, the associations between 

environmental contamination and the variables described in Table 5.2 were not explored further.

5.3 Results

5.3.1. Gastro-intestinal helminth parasite fauna in long-tailed macaques and proboscis monkeys 
of the Lower Kinabatangan Wildlife Sanctuary

Fourteen helminth parasite morphs were recovered from 144 long-tailed macaque samples and 

146 proboscis monkey samples. Morphs detected from the samples include: three trematodes 

(dicrocoeliid, Clonorchis sp. and Fasciola sp.), two cestodes (Taenia sp. and Dipylidium-like 

morph), one unidentified acanthocephalan, seven nematodes (Strongyloides sp., Trichuris sp., 

Anatrichosoma sp., Ascaris sp., strongylids, oxyurids, and an oxyurid-like morph), and a thus-far 

unidentified parasite (Unknown Morph). Descriptions, images and faecal egg counts (FEC) for 

each parasitic type are presented in Appendix Sixteen. For the whole LKWS mean parasite 

richness was higher in proboscis monkeys than in long-tailed macaques (Mann-Whitney, W= 

19706, d.f.= 288, P= 0.03) (Figure 5.2). Ten parasite morphotypes were common to both 

primate species (dicrocoeliid, Dipylidium-like, Taenia sp., acanthocephalan, oxyurid, strongylid, 

Strongyloides sp., and Trichuris sp.), the remainder were found only in the long-tailed macaque 

samples.
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Figure 5.8. Parasite richness of long-tailed macaques (LTM) and 
proboscis monkeys (PM) of the LKWS.
* indicates a difference at P <  0.05 (Mann-Whitney U Test)

There was no significant difference in overall parasite prevalence between long-tailed macaques 

(95.1 -4.9/+2.9%) and proboscis monkeys (96.6 -4.39/+2.3%). The most prevalent parasites 

(>10%) were Taenia sp., Trichuris sp., Ascaris sp., strongyles and Strongyloides sp.; the first two 

were significantly more common in proboscis monkeys {%2= 34.8 and 67.7 respectively, d.f.= 1, 

P< 0.001) and the last two occurred more frequently in long-tailed macaques (%2= 56 and 8.1 

respectively, d.f= 1, P< 0.01) (Table 5.3). For the whole LKWS, 86.1% (-6.94/+5.3%) of long­

tailed macaques and 89.7% (-6.11/+4.4%) of proboscis monkeys were infected with multiple 

parasite species, but this was not significantly different [%2= 3.0037, df= 1, P> 0.05). On 

average, 2.4 different parasites were found co-infecting each primate species (range of infection 1 

to 5 different parasite types). Environmental contamination (mean EPG) differed between the 

two primate species in a fashion similar to that of prevalence (Fig. 5.3). The mean EPG of Ascaris 

sp. (LTM= 46, PM= 100), Taenia sp. (LTM= 5, PM= 174) and Trichuris sp. (LTM= 79, PM= 

690) were significantly higher in the proboscis monkey than in the long-tailed macaque (W= 

17211, 16593 and 20678 respectively, d.f.= 247, P <0.001), while strongylids (LTM= 290, 

PM= 135) had a higher mean EPG in long-tailed macaques (W= 11078, d.f.= 247, P <0.001).
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Table 5.3. Prevalence ±  0.95 confidence limits (%) of gastrointestinal parasite infections in long­
tailed macaques (LTM) and proboscis monkeys (PM) from the Lower Kinabatangan Wildlife 
Sanctuary (sample size is in parentheses following species name).______________________________

Parasite type
LTM
(144)

PM
(146) Significance

Diqneans
Dicrocoeliid 2 .80 -2 .04 /+4 .10 2.05 -1 .62/+3.84 NS
Clonorchis sp. 1.40 -1 .23/+3.53 0.00 -
Fasciola sp. 4 .90 -2 .92 /+4 .86 0.00 -
Cestodes
Dipylidium-like 4.90  -2 .92 /+ 4 .86 9.59 -4 .25/+5.98 NS
Taenia sp. 2.80  -2 .04 /+ 4 .10 28.77 -7 .19/+8.06 ***

Acanthocephalan
Unknown sp. 0 .70 -0.68/+3.11 2.74  -1 .99/+4.13 NS

Nematodes
Anatrichosoma  sp. 2 .10  -1 .67/+3.87 2.05 -1 .62 /+3 .84 NS

Ascaris sp. 62.94 -8.891+1A S 67.12 -8 .25 /+ 7 .54 NS
Oxyurid 2.10 -1 .67/+3.87 4.11 -2 .59/+4.62 NS

Oxyurid-like 2.80 -2 .04/+4.10 0.00 -

Strongylid 88.11 -7 .14/+4.31 45.21 -8 .25 /+ 8 .44 ***

Strongyloides sp. 16.78 -5 .80/+7.00 5.48 -3 .09/+5.03 **

Trichuris sp. 53.85 -15 .67 /+1 .17 91.78 -5 .70 /+ 3 .90 ***

Unknown Moroh 1.40 -1 .23/+3.53 0.00 -

Overall 95.14 -4 .9 0 /+ 2 .8 8 96.58 -4 .39 /+ 2 .30 NS
*P< 0 05, **P< 0  01, ***p< 0 001, N S >  0.05; -  no chi-square test performed as one primate species had zero 
prevalence.
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Figure 5.9. Environmental contamination with parasites found in long-tailed macaques and proboscis 
monkeys from the LKWS. All parasite intensities were significantly different (Mann-Whitney U Test, P <  
0.001) between primate species (see text for details).
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5.3.2. Parasite diversity and distribution models

The minimal model for each dependent variable is presented in Table 5.4.

Table 5.4. Minimal GLMs revealing categorical and continuous variables which are predicted to be 
significantly (P<0.05) associated with parasite richness, presence of mixed infections and parasite 
prevalence._____________________________________________________________________________
1) Parasite richness Model A 6) Ascaris sp. prevalence Model B
Model term F-statistic d.f. P Model term x2 d.f P
Dung size 23.7 1 ,265 <0.001 Locality 6.19 2 <0.05
Primate species 5.54 1 ,262 0.019 Primate species 11.25 1 <0.001
X locality X richness
2) Parasite richness Model B 7) Strongylid prevalence Model A
Model term F-statistic d.f. P Model term x2 d.f P
Dung size 8.49 1 ,263 <0.01 Richness 43.61 1 <0.001
Primate species 4.44 2 ,263 0.012 Primate species 9.5 1 <0.01
X locality X dung size
3) Mixed infections Model A 8) Strongylid prevalence Model B
Model term X2 d.f. P Model term x2 d.f P
Primate species 4.18 1 <0.05 Primate species 25.95 2 <0.001
X dung size X locality
4) Mixed infections Model B Richness 23.32 1 <0.001
Model term X2 d.f. P Dung size 6.9 1 <0.01
Dung size 11.82 1 <0.001 9) Trichuris sp. prevalence Model A
Primate species 11.12 1 <0.001 Model term x2 d.f p
Locality 9.7 2 <0.001 Primate species 6.43 

X richness
1 0.011

5) Ascaris sp. prevalence Model A 10) Trichuris sp. Prevalence Model B
Model term X2 Model term x2 d.f p
Primate species 16.188 1 <0.001 Primate species 14.2 2 <0.001
X richness X locality

Richness 88.6 1 <0.001
Model A -  Locality set as North or South of the Kinabatangan River. 
Model B -  Locality set as Area 1, Area 2 or Area 3 of the LKWS.
X - denotes interaction between variables.

5.3.2.1. Species richness with relation to river bank, sanctuary area and primate species 

As shown by both models, species richness is influenced by faecal sample size, such that larger 

faecal samples have a higher parasite diversity (Fig. 5.4 a). To control for faecal size in 

subsequent models, contrasts were made holding faecal size at its mean value. Model A (testing 

the natural geographical barrier) showed that on the north side of the Kinabatangan River, 

proboscis monkeys have a higher parasite diversity than long-tailed macaques (contrast= -0.63 

±SE= 0.16, t=  -4.01, d.f.= 265, P< 0.001). However, there was no difference between river 

banks for proboscis monkeys (contrast= 0.3 ±SE= 0.18, t=  1.72 d.f= 265, P>0.05) or for 

macaques (contrast=-0.26 ±SE= 0.16, t=  -1.60, d.f. = 265, P> 0.5; Fig. 5.4 b). Model B 

(testing anthropomorphically created barriers) showed different partitioning regarding parasite 

diversity. Proboscis monkeys had a higher parasite diversity than the macaques in Areas 2 

(contrast = -0.66 ±SE= 0.18, t=  -3.64, d.f.= 263, P< 0.001) and 3 (contrast = -0.92 ±SE= 

0.34 ,t= -2.67, d.f.= 263, P< 0.01). Additionally, proboscis monkeys in Area 1 had significantly
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lower parasite diversity than those in Areas 2 (contrast= -0.72 ±SE= 0.18, t=  -3.91, d.f.= 263, 

P< 0.001) and 3 (contrast= -0.85 ±SE= 0.37, t=  -2.31, d.f.= 263, P<  0.05) (Fig. 5.4 c).
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Figure 5.4. a) Predicted effect on parasite richness depending on the size (in grams) of the dung sample 
analysed. Dotted lines represent 95% confidence intervals, b) Predicted effect on parasite richness 
depending on the side of the river bank and primate species; 95% confidence intervals are shown, c) 
Predicted effect on parasite richness depending on sanctuary area and primate species where found; 95% 
confidence intervals are shown as solid bars.

5.3.2.2. Presence of mixed infections with relation to river bank, sanctuary area and primate 
species

As in the previous models, the size of the faecal sample effected the detection of mixed infections. 

From Model A, in particular, an interaction between the size of the sample and the primate 

species is positively associated with the presence of mixed infections; the reason for the 

interaction is that the trend of that relationship is subtly different between the two primate species 

(Fig. 5.5 a). However, the presence of mixed infections was not influenced by the Kinabatangan 

River. When the data was compared in terms of areas (Model B), mixed infections in each area 

were more common in proboscis monkeys than in long-tailed macaques. They were also more 

common in Area 2 for each primate (Fig. 5.5 b).
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5.3.2.3. Prevalence o f Ascaris sp. in relation to river bank, sanctuary area and primate species 

An interaction between primate species and parasite richness was found in both models ((A) 

comparing river sides or (B) comparing areas in the sanctuary) to have a significant effect on the 

prevalence of Ascaris sp. Similar to the effect of dung size on the mixed infection models, the 

interaction detected in the Ascaris sp. prevalence models reflects a subtly different trend in the 

association between prevalence and richness between the two primate species (to exemplify, 

Area 1 is depicted in Fig. 5.6 a). Model A did not show an effect of the Kinabatangan River on 

the prevalence of Ascaris sp. On the other hand, Model B indicates a higher prevalence of this 

parasite in Area 2 than in the other areas of the sanctuary for long-tailed macaques. The 

prevalence is also higher in Area 2 than in Area 1 for proboscis monkeys (Fig. 5.6 b).
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Figure 5.6. a) Predicted effect of parasite richness on Ascaris sp. prevalence. The red lines represent 
proboscis monkeys and the black lines represent long-tailed m acaques. 95% confidence intervals are 
represented by dotted lines, b) Predicted effect of area of the sanctuary over Ascaris sp. prevalence. 95%  
confidence intervals are represented by solid bars.
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5.3.2.4. Prevalence o f strongylids in relation to river bank, sanctuary area and primate species 

Minimal models showed that richness was significantly associated with the prevalence of 

strongylids, such that as richness increased the probability of these parasites being present also 

increased (Fig. 5.7 a). Prevalence of strongylids was also positively associated with the size of the 

faecal sample, either in interaction with the primate species (Model A) or as a single term (Model 

B) in a similar trend to that shown in Figures 5.4 a and 5.5 a. Hence, contrasts for Model B were 

performed holding size at its mean value (2.887), and Richness at 2, a value close to the mean 

(2.4). The river did not affect the prevalence of strongylids for either primate species. However, 

the prevalence of this parasite was influenced by an interaction between the primate species and 

the area of the sanctuary (Model B). In Area 1, the prevalence of hookworms was higher in long­

tailed macaques than in proboscis monkeys (contrast= 5.18 ±SE= 0.87, t=  5.94, d.f.= 262, 

P<  0.001). At the same time, for proboscis monkeys, the prevalence of these parasites was 

higher in Area 2 than in Area 1 (contrast= -4.43 ±SE =  0.78, t=  -5.65, d.f.= 262 P<  0.001).
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Figure 5.7. a) Predicted effect of parasite richness over strongylid prevalence. The red lines represent 
proboscis monkeys and the black lines represent long-tailed macaques. 95% confidence intervals are 
represented by dotted lines, b) Predicted effect of area of the sanctuary over strongylid prevalence. 95% 
confidence intervals are represented by solid bars.

5.3.2.5. Prevalence o f Trichuris sp. in relation to river bank, sanctuary area and primate species 

As for Ascaris sp. and strongylids, there was no significant difference in the prevalence of 

Trichuris sp. in primates from the North and South sides of the river (P> 0.05). Model A shows 

that the interaction between the primate species and the richness has a positive association with 

the prevalence of this parasite. Again the interaction shows that the trend is slightly different for 

the two monkey species in a manner similar to that of the Ascaris sp. and strongylid prevalence 

(Figs 5.6 and 5.7 a). This was also shown by Model B where as richness increased then the 

probability of Trichuris sp. being present in the sample also increased. This model also indicated 

that the prevalence of the whipworms was influenced by the primate species and area of the 

sanctuary interaction. Contrasts between these two variables (holding richness at 2 and size at its

105



Chapter 5: Parasite richness and prevalence in two primate species of the Lower Kinabantangan Wildlife
Sanctuary: effects of habitat fragmentation

mean) indicated that the prevalence of Trichuris sp. was higher in proboscis monkeys than in 

long-tailed macaques in Area 1 (contrast= -3.9 ±SE= 0.7, t= -5.57, d.f.= 283, P< 0.001), and 

in Area 2 (contrast= -2.49 ±SE= 0.71, t= -3.48, d.f.= 283, P< 0.001). At the same time, a 

gradient in the prevalence of this parasite was detected in proboscis monkeys, where prevalence 

was higher in Area 1 than in Area 2 (contrast= 1.98 ±SE= 0.87, t= 2.27, d.f.= 283, P< 0.05) 

or Area 3 (contrast= 5.19 ±SE= 1.13, t= 4.60, d.f. = 283, P< 0.001), and also was significantly 

higher in Area 2 compared with Area 3 (contrast = 3.21 ±SE= 1.06, t= 3.02, d.f.= 283, P= 

0.002) (Fig. 5.8).
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Figure 5.8. Predicted effect of the area of the sanctuary and the primate species over Trichuris sp. 
prevalence. 95% confidence intervals are represented by solid bars.

5.4. Discussion
To our knowledge, this is the first comprehensive survey of the gastrointestinal helminth parasites 

of wild proboscis monkeys and the first in Malaysia of free-ranging long-tailed macaques. 

Compared to other studies, parasite diversity was high for both primate species, and more than 

50% of the parasite taxa were common to both hosts. Additionally, the results reveal significant 

differences (in terms of diversity, prevalence and incidence of co-infections) between the two 

primate species and between different areas of the LKWS.

Fourteen helminths were detected in the long-tailed macaques of the LKWS (Table 5.3, 

Appendix Sixteen). In a study on semi-wild Vietnamese cynomolgus macaques, Son (2002) 

reports five helminths which included Trichuris trichura, Strongyloides fulleborni, 

Trychostrongylus sp., Ancylostoma duodenale and Oesophagostomum sp.. Between three to four 

of these taxa (Trichuris sp., Stronglyloides sp., strongylidae - Ancylostoma sp. and/or 

Oesophagostomum sp.) were also found in the current study, but whilst the most prevalent 

parasite in Son’s (2002) study was Trichuris trichura, in the Kinabatangan macaques hookworms 

were the most prevalent. Another study in natural populations of long-tailed macaques in 

Mauritius recovered only Strongyloides sp. and Trichuris sp. (see Matsubayashi et al. 1992).
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Studies on other wild macaque species also reported only a few parasite species. For instance, 

Ekanayake et al. (2006), Gotho (2000), Gotho et al. (2001), Horii et al. (1982) and Hernandez et 

al. (2009), report 4 -6  helminth parasite species in toque (M. sinica), Japanese (M. fuscata) and 

Sulawesi (M. hecki/tonkeana) macaques. Together, these studies report ten parasite taxa. Of 

these, Anatrichosoma sp., Enterobious sp. (Oxyuridae), Oesophagostomum sp. (Strongylidae), 

Strongyloides sp., and Trichuris sp. were are also found in LKWS M. fascicularis. Although the 

number of parasite species found in the macaques of the LKWS seems higher than those 

reported in other wild macaque populations, these comparisons should be treated with caution 

because of differences in the parasite isolation technique and the number of samples analyzed.

Ten helminths were detected in the proboscis monkeys of the LKWS, all of them shared with the 

macaques of the same region. This parasite diversity is similar that reported for wild African 

colobines, but lower them those reported for free-ranging Asian colobines. Gillespie et al. (2005a) 

detected between 3-9 helminths in three colobines (Piliocolobus tephrosceles, Colobus guereza, 

C. angolensis) from Kibale National Park, in Ugemda. Mbora & Munene (2006) also reported 

nine helminths in Procolobus rufomitratus from the forest around the Tana River in Kenya, while 

Teichroeb et al. (2009) identified six helminths in Colobus vellerosus in Ghana. Seven of the 

parasites reported in these previous studies were also detected in the current study {Ascaris sp., 

ColobenterobiuslEnterobius sp. (Oxyuridae), Dicrocoeliidae sp., Oesophagostomum sp. and 

other strongylids, Strongyloides sp., and Trichuris sp.). In Asian colobines, Rajendran et al.

(2004) reported four helminth species in Nilgiri langurs (Semnopithecus johnii), while Do (2009) 

reported only one for wild Delacour’s langurs Trachypithecus delacouri. Of all the parasites 

reports in Asian colobines, Trichuris sp., Strongyloides sp. and strongylids were also present in 

the current study.

Despite sharing 10 parasite taxa, there were still significant differences in parasite richness, 

prevalence of some parasites taxa, and levels of environmental contamination between long­

tailed macaques and proboscis monkeys across the LKWS. The total parasite species richness 

was higher in the long-tailed macaques than in proboscis monkeys (14 compared to 10 taxa, 

respectively). This supports previous observations that total parasite species richness is lower in 

threatened compared to non-threatened primates (Altizer et al., 2007). However, individual 

mean species richness was higher in proboscis monkeys than in long-tailed macaques (Fig. 5.2). 

In a comparative study of parasite species richness in primates, Nunn et al. (2003) report body 

mass as one of the strongest predictors of helminth species richness. With proboscis monkey 

males weighing on average 20 kg (Bennet & Gombek, 1993) and macaque adult males 

averaging 5.4 kg (Thierry, 2007) this host trait might explain the current difference in parasite 

richness between host species.
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The most prevalent gastro-intestinal parasites (>25%) in proboscis monkeys and long-tailed 

macaques were Ascaris sp., strongyles and Trichuris sp. (Table 5.3). The latter two parasite 

groups have also been the most prevalent in previous studies (Ekanayake et al., 2006; Gotho, 

2000; Gotho et al., 2001; Horii et al., 1982; Hernandez et al., 2009; Matsubayashi et al., 1992; 

Son, 2002). These three parasites have a direct life cycle, and are usually referred to as soil- 

transmitted helminths (Ash & Orihel, 2007; Bethony et al., 2006). Although proboscis monkeys 

have been reported to seldom travel on the ground (Bennet & Gombek, 1993), during the 

sampling for the current study it was common to find these primates walking (perhaps foraging), 

or even resting, on the shores of the Kinabatangan River, especially around Lots 6 and 7. Such 

behaviour may explain the presence of soil-transmitted helminths in a primate described as 

typically arboreal. Yet, the difference in prevalence between the two primate species regarding 

Trichuris sp. and strongyles is interesting. Given their transmission mode, their status as generalist 

parasites and the relatively high levels of environmental contamination found for each (Fig 5.3), 

no difference would be expected in the prevalence of these parasites between both primate 

species, as is the case for Ascaris sp. (where a difference in infection risk between the two types of 

primates was observed). Future work could test the parasite avoidance hypothesis (that primates 

should avoid recently used sleeping sites to reduce the possibility of parasitic infection from 

contact with accumulated faeces below sleeping sites, Hausfater & Meade, 1982), since a 

possible explanation for this difference in prevalence might rely on the structure of the parasite 

eggs, and the tree usage of the monkeys. Trichuris eggs can survive for extended periods in the 

environment compared to hookworm eggs and larvae (Speare et al, 2006), so if the proboscis 

monkeys do not change their sleeping sites frequently this combination could explain the high 

prevalence of Trichuris sp. in this primate. Another explanation could be ‘self-medication’ in 

which primates rely on the selective use of dietary items with antiparasitic properties. For 

example, in African apes and monkeys condensed tannins from the diet negatively affect the 

presence of particular parasites (Huffman, 1997; Rothman et al, 2009).

The prevalence of Taenia sp., a parasite group typical of pigs and cows, also differed between 

proboscis monkeys and long-tailed macaques. Taenia spp. also have a direct mode of 

transmission, and hosts become infected by the ingestion of contaminated vegetation (Ash & 

Orihel, 2007; DPDx). Again, the presence of this parasite implies host movement on the ground, 

thus it is interesting that proboscis monkeys harbour a higher prevalence (> 25%) than the 

macaques (< 3%, Table 5.3). Domestic pigs are not common in the LKWS (located in a Muslim 

country) however the bearded pig, or wild boar, (Sus barbatus) is abundant in this area, and it 

could be the main host for this parasite and the main reservoir for infection in primates.
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In terms of human gastro-intestinal infections, the three most prevalent parasites in the current 

study (Ascaris sp., strongylids and Trichuris sp.) also occur at high frequency in humans in 

Malaysia (Singh & Cox-Singh, 2001), and are present in local orang-utans (R. Sakong personal 

communication). Consequently, zoonotic, epizootic, and/or anthropozoonotic transmission may 

occur and be promoted by various forms of anthropogenic disturbance. In the LKWS, there is 

greatest opportunity for contact between monkeys and humans in Area 1 (Lots 1-4), thus it was 

expected to find more parasite diversity, mixed infections, and higher prevalences in this area 

compared to the other two, especially for the macaques. This was not the case, as parasite 

diversity in long-tailed macaques was similar throughout the LKWS, while lower parasite diversity 

was found in Lots 1-4 than in Lots 5-10 for proboscis monkeys (Fig. 5.4 c). Additionally, a higher 

proportion of individuals carrying a mixed infection (more than one parasite species) was found 

in proboscis monkeys than in long-tailed macaques (Fig. 5.5 b), and most of them were found in 

Area 2 (Fig. 5.5 c), the area with lowest human activity. Area 2 also presented the highest 

prevalence of Ascaris sp. for both primate species (Fig. 5.6 b), and a higher prevalence of 

stongylids when compared to Area 1 for the proboscis monkeys (Fig. 5.7 b). However, between 

long-tailed macaques and proboscis monkeys strongylid prevalence was higher in Area 1 for the 

macaques (Fig. 5.7 b). With regards to Trichuris sp., proboscis monkeys presented a higher 

prevalence than long-tailed macaques in Areas 1 and 2, and for the proboscis monkey alone a 

clear gradient was apparent in Trichuris sp. prevalence (highest in Areal and lowest in Area 3; 

Fig. 5.8).

A single explanation for these results is unlikely as several factors could be involved. Certainly, 

host population density affects parasite species richness in many systems, with diversity 

increasing with greater host density (Nunn et a l, 2003, but see Chapman et al, 2005b and 

Gillespie & Chapman, 2006). To our knowledge, the densities of proboscis monkeys and long­

tailed macaques in the different areas of the LKWS have not been reported to date but, for both 

hosts, densities in the riparian forest seemed highest in Area 2 (personal observation). Changes in 

the nutritional status of the host could also influence their ability to resist parasite infections. 

Studies on baboons (Papio anubis) in Kenya and Nigeria (Eley et a l, 1989; Weyher, 2009; 

Weyher et al, 2006) suggested that primates that raid agricultural crops and rubbish (as long­

tailed macaques do) may reduce their parasite loads as they gain a higher nutritional status that 

might facilitate a more effective immune response. Another factor to consider is the forest quality 

(i.e. tree density) as logging may result in higher foliage density which in turn may result in a 

greater surface area exposed to falling faeces (Gillespie et a l, 2005b; Gillespie & Chapman,

2006). Being a folivorous primate, it is likely that the proboscis monkey consumes a higher 

volume of resources than do macaques as frugivores and may therefore ingest more parasites if
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more leaves are contaminated. Finally, Nunn et al. (2003) suggests that animals with a larger 

home range that travel a longer distance per day should encounter more parasite species. The 

home range of the proboscis monkeys is 900 ha (Sha et al., 2008) compared with 200 ha 

reported for macaques (Goossens et al., 2003a), hence this difference might also account for the 

differences in parasite fauna between the primate species encountered in this study.

In addition, there were no overall differences detected in parasite fauna from primates located on 

either side of the Kinabatangan River. This result was expected given that both primate species 

are good swimmers and have been reported to cross rivers, including the Kinabantangan (Bennet 

& Gombek, 1993; de Ruiter & Geffen, 1998; Jalil, 2007; personal observation). A difference was 

detected, though, between the long-tailed macaques and the proboscis monkeys in the north side 

of the river, where the latter had higher parasite richness than the former (Fig. 5.4 b), but there is 

no obvious explanation for this.

Gastrointestinal parasite classification by faecal analyses alone is limited; however, it is the only 

ethical method for surveying threatened species (Gillespie, 2006). Some studies have stressed the 

possibility of increased parasite transmission between primates and humans via ecotourism, 

primate research and the human encroachment in primate habitats (Chapman et al., 2005a; 

Goldberg et al., 2007). Although there was no link between human activity and non-human 

primate parasite diversity in the current study, this association may be apparent for other types of 

parasites that were not surveyed (i.e. Amoebas, Cryptosporidium, malaria). Unfortunately, 

sampling in the different areas of the sanctuary could not be carried out during the same season 

and the differences observed may also reflect temporal variation in parasite abundance and 

distribution. For instance, the prevalence of Trichuris sp. in the proboscis monkeys appears to be 

a gradient, where Area 1 has the greatest prevalence of the three areas examined 

(Areal>Area2>Area 3, Fig. 5.8), and this could be an effect biased by the sampling scheme 

(covering each area in different seasons), and the sample sizes (82 in Areal, 55 in Area2 and 9 in 

Area3). In future studies samples should be collected at least over the course of an annual cycle 

to assess the effects of climate, host activity, and life and physiological stages of both parasite and 

primate on infections. Molecular analysis (such as sequencing and Q-PCR) could also be used to 

improve the classification and quantification of the gastrointestinal parasites (Chapman et al., 

2009; Prichard & Tait, 2001; Zarlenga & Higgins, 2001). Molecular methods may enhance the 

sensitivity and specificity of the detection process and also reduce much of the subjectivity 

inherent in interpreting morphological data. For example, multiplex PCRs can substantially 

simplify analyses of mixed parasite populations, as described by Zarlenga et al. (2001) to 

differentiate gastrointestinal parasites in cattle. In addition, the final PCR product in a “real-time” 

assay can be used to deduce the starting number of target molecules in a given sample. If the
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target molecule is parasite-derived, Q-PCR assays can be developed to ascertain parasite levels in 

infected hosts (Harmon et al, 2007b; Zarlenga & Higgins, 2001). This could be done directly 

using the DNA extracted from the faeces and will be advantageous compared to time-consuming 

and relatively imprecise morphological identification and egg counting, but species-specific 

primers would need to be developed. Lacking this, coprocultures should be performed to identify 

parasite species, and plant/fruit parasite identification keys should also be considered to identify 

cryptic taxa (i.e. the ‘oxyurid-like’, 'Dipylidium-like’ and the ‘Unknown Morph’, found in the 

current study). In a study on howler monkey parasites (Allouata pigra) in Mexico, some 

unidentified morphs were subsequently identified as plant or fruit parasites (Diana Ramirez, 

personal communication).

In conclusion, parasite richness, prevalence and mixed infections, are likely to be affected by 

complex interactions among environmental, demographic, behavioural and genetic factors 

(Gillespie et al, 2005), therefore an explanation for the variations found in this study is difficult. 

Identifying differences in parasites harboured by threatened and non-threatened host taxa 

represents one crucial step towards understanding the role of infectious agents in animal 

conservation (Altizer et al, 2007). Hence, the results of this study represent a baseline for future 

work regarding parasite-host ecology in primates of the LKWS, and could be used in 

conservation and management plans.
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CHAPTER SIX  

General D iscussion
Two important topics addressed in conservation biology are genetic variation and the role of 

infectious diseases in the management of fragmented wild populations of threatened species 

(Frankham, 2009; Smith et al., 2009). Genetic impacts (particularly genetic variation, inbreeding 

and extinction risk) of population fragmentation depend critically upon connectivity and gene- 

flow among fragments (Frankham, 2006). Most of these parameters have been evaluated on the 

basis of neutral markers which are not expected to accurately capture the adaptive variation 

necessary for populations to thrive both in the short and long term, given changing 

environmental conditions. Therefore, current discussions in evolutionary ecology and 

conservation genetics have re-emphasized the importance of including markers of coding genes 

to identify adaptive and evolutionary relevant processes (Bruford, 2009; Hauffe & Sbordoni, 

2009; Kohn et al., 2006; Wayne & Morin; 2004). In addition, the reduced genetic diversity 

caused by habitat fragmentation may potentially increase susceptibility to infectious disease 

(Frankham, 2006). In situations where host populations aggregate into remaining patches of a 

fragmented landscape, the transmission success of pathogens may increase and this may lead to 

increases in the prevalence of some of them (McCallum & Dobson, 2006). In the case of 

primates, habitat fragmentation poses a severe threat to populations around the world 

(Cowlishaw & Dunbar, 2000; Mittermeier et al., 2009), with clear evidence that effects of disease 

interact with habitat loss and other stress factors, with often catastrophic consequences (Nunn & 

Altizer, 2006; some examples in Chapter One).

The current research project attempted to address the questions of genetic variation, gene flow 

and parasite ecology for two primate species, the proboscis monkey (Nasalis larvatus) and the 

long tailed macaque (Macaca fascicularis). The Lower Kinabatangan Wildlife Sanctuary (LKWS) 

in Sabah, offers an ideal environment with which to test the effects of natural and 

anthropomorphic mediated habitat fragmentation on neutral and adaptive genetic diversity and 

on host-parasite ecology. In particular, the high primate diversity in the LKWS allows 

comparisons to be made between primates with different social systems and dispersal patterns. In 

this final Chapter, the outcomes of the proposed hypotheses (Chapters Three, Four and Five) are 

discussed in the context of the LKWS landscape, the previous primate population genetic studies 

in the area, the biology of the primates studied and in relation to the conservation and 

management of the area with recommendations for future studies.
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It was hypothesised that long-tailed macaques, which exhibit male- biased dispersal, would have 

a less pronounced population structure than that obtained by previous mtDNA analysis (Jalil, 

2007). In contrast, the female-transfer behaviour of the proboscis monkey was expected to reveal 

a pattern of genetic structure similar to that reported by Jalil (ibid) from mtDNA. Both species 

present high levels of genetic diversity (mean HE= 0.8 and 0.68 for long-tailed macaques and 

proboscis monkeys respectively) and gene flow (FST= 0.005 and 0.012, respectively) despite the 

presence of a potential natural barrier: the Kinabatangan River. No population structuring for 

either primate species was detected by Genetix 4.05 (Belkhir et al., 1996-2004) and GENELAND 

3.1.5 (Guillot et al., 2005a, b; Guillot, 2008). However, STRUCTURE (version 2.3.1; Falush et 

al., 2003, 2007; Hubisz et al., 2009; Pritchard et al., 2000) weakly assigned two different 

populations (for both primate species), perhaps a reflection of recent human-mediated habitat 

fragmentation (Appendices Six and Ten). These results are somewhat comparable to those of 

Jalil (2007) where analysis of molecular variance from mtDNA data indicated restricted gene-flow 

between populations of M. fascicularis on the north and south side of the Kinabatangan River. 

Genetic variation will be shared for some period of time between populations which have 

recently separated, even in the absence of gene exchange (Hey, 2006; Waples & Gaggiotti,

2006). Therefore, genetic differences due to a migration-drift balance will render a FST value 

which, by itself, cannot be distinguished from that yielded by an accumulation of genetic changes 

over time in completely isolated populations (Waples & Gaggiotti, 2006). These two scenarios 

could be distinguished by a non-equilibrium method such as the Isolation and Migration (IM) 

model developed by Hey and Nielsen (2004). The IM model allows variation in populations sizes 

over time and they are not assumed to be in migration-drift equilibrium (Hey & Nielsen, 2004;

2007). The current study did not evaluate this method due to time constraints, nevertheless it 

would be interesting to explore it further.

Rates of allelic dropout above 20% were detected within the datasets of both primate species. 

Such genotyping errors can bias population genetic studies (Dewoody et al, 2006, Hoffman & 

Amos, 2005; Roon et al., 2005) and, with an apparent lack of population structuring, it was 

unexpected to have positive significant values of FIS (indicating homozygotes excess) across every 

loci of long-tailed macaques (Table 3.9). These excesses can be explained by genotyping errors 

and presence of null alleles common problems when working with faecal samples and 

heterologous primers. DNA extracted from faeces is usually of poor quality (possibly degraded or 

accompanied by PCR inhibitors, especially in faeces that contains plant, bacterial and protozoan 

remnants, characteristic of folivorous primates such as the proboscis monkey) and quantity (often 

in the picogram range) (Broquet et al., 2007; Launhardt, 1998; Monteiro et al., 1997, Morin et 

al., 2001; Vallet et al, 2008, Taberlet et al., 1999). Reliable amplification of nuclear DNA (at least

113



Chapter Six: General discussion

3 positive PCRs) was possible for 71% of the long-tailed macaque samples, and for only 47% of 

the proboscis monkey samples. Samples were stored in 70% ethanol, a protocol previously used 

for primates in this area (Goossens et a l, 2003b; Jalil, 2007), however, DNA degradation might 

have occurred. A double step of ethanol-silica gel has proved useful (95.2% extraction rate 

success) for other primate species (Nsubuga et al., 2004) and could be tested in future studies. 

Additionally, an extraction protocol based on the use of CTAB, an extensively used compound 

for plant DNA extractions (Bhattacharjee et al., 2009; Murray & Thompson, 1980; Porebsky et 

al., 1997; Vallet et al. 2007), should be used in the future to increase extraction success rates (i.e. 

94%, Quemere et al., 2009), especially when working with folivorous primates such as the 

proboscis monkey. Additionally, rates of overall genotyping error rates and allelic drop were 16- 

33% and 15-28% for macaques and proboscis respectively. Various methods have been 

proposed to limit genotyping errors in non-invasive studies and the most accepted is the “multi­

tubes” technique (Taberlet et al. 1996). However, this approach is very expensive, time- 

consuming and requires higher template volume, thus its application was not feasible for the 

current study. The simulation method (GEMINI) of Valiere et al. (2002) was used for the 

macaque dataset to determine the number of PCR repetitions needed to obtain an accurate 

genotype. Although 94% of genotyping accuracy was predicted by GEMINI, error rates were still 

high (see above). GEMINI requires error rates for the input files prior to the determination of PCR 

repeats to obtain an accurate genotype, these “pre-error rates” were calculated by PEDANT 

(Johnson & Haydon, 2007) instead of through a pilot study using the “multi-tube” approach. A 

pilot study using the original Taberlet et al. (1996) approach to determine the “pre-error rates” 

might have given a different result regarding the error rates and hence the number of PCR 

repetitions needed to obtain an accurate genotype might have been different as well. 

Comparatively, neither the Taberlet et al. (1996) nor the Valiere et al. (2002) methods were used 

for the proboscis monkey dataset, due to constrains of samples volume, and still the error rates 

were similar to those estimated for the macaques, whereas the estimation of null alleles differed 

between those two species.

Results from MICROCHECKER (version 2.2.3, van Oosterhout et al., 2004) suggest that null 

alleles exist in every loci screened on the long-tailed macaques. This result was unexpected as 14 

out of the 15 loci screened in this study had been used either in long-tailed macaques or in other 

species of the same genus confidently (Tables 3.3 and 3.4). The divergence time between 

hominoids and cercopithecids is 25 mya (Kumar & Hedger, 1998; Page & Goodman, 2001) 

hence it is highly probable that modifications on the molecular structure of regions surrounding 

the microsatellites occurred (although they were not sequenced as part of this study). Ten percent 

of the studies revised by Dakin and Avise (2004) report the redesign of primers in order to solve
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the problem of null alleles. This is congruent with our proboscis monkey results since after testing 

almost 40 human derived microsatellite primers (Table 3.5) and obtaining spurious results the 

problem was solved when the markers were redesigned (Chapter Two). Only three of the eight 

loci screened in the proboscis monkey showed evidence for null alleles, but this could be an effect 

of allelic dropout rather than true null alleles and this explanation cannot be overruled for the 

macaques either. A new set of 499 microsatellite markers is now available for Macaca fascicularis 

(see Higashino et al., 2009) and should be used in subsequent studies.

To date, previous population genetic analyses in primates of the LKWS have focused on neutral 

(demographically mediated) genetic variation (Goossens et al., 2005 & 2006; Jalil, 2007, et al,

2008). If the primate populations in the Kinabatangan have undergone recent habitat-mediated 

contraction, the separation of populations might be too short to leave a signal at neutral loci so 

that differences between populations might only be detectable at genes under selection. 

Therefore, this study presented the hypothesis that a more pronounced population structuring 

between river sides (or forest fragments) would be rendered through the analyses of a non­

neutral molecular marker, such as the MHC. The genetic signatures of natural selection may be 

superimposed on the signatures of drift and/or gene flow (features that affect neutral variation). 

This hypothesis was not tested due to the technical difficulties encounter while performing the 

microsatellite analyses (low amplification success and high genotyping errors), and to the finite 

DNA availability. According to Knapp (2005c) identification of MHC alleles in any species is a 

complicated undertaking, no matter what type of sample is collected, and determination of 

haplotypes and homozygosity can be extremely problematic when using non-invasive samples 

since more errors can be introduced by the presence of few, damaged templates. In order to have 

a more accurate MHC allele identification, only samples from the microsatellite analysis that 

produced three positive PCR reactions with consistent genotypes were used (Table 4.1). 

Although over 300 samples were available for each primate species after DNA extraction, only 36 

long-tailed macaque and 15 proboscis monkey samples were useful to characterize DRB alleles. 

The samples number was then inadequate to sustain a population genetic study and test the 

second hypothesis outlined in the introduction of this thesis. However, to take advantage of the 

available samples, the study was then made a preliminary one, where the genetic variability of 

the functionally important MHC gene -DRB (exon 2) was investigated on proboscis monkeys and 

long tailed macaques.

Future studies should investigate the role played by human barriers such as oil palm plantations, 

riparian villages, or roads in the development of genetic differentiation between remaining forest 

patches of the LKWS. Habitat fragmentation/connectivity is a fundamental concern in 

conservation biology as it affects extinction risk. To maintain connectivity, the creation of
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corridors to increase the movement of both individuals and their genes is a popular approach in 

conservation management (Haddad & Tewsbury, 2006). Since the mid 1950s (but especially 

during the past 25 years), most of the Kinabatangan forest has been subjected to large-scale 

commercial timber exploitation or has been cleared for oil-palm development, resulting in a 

highly fragmented forest structure (McMorrow & Talip, 2001). Thus the aim of the LKWS is to 

create a corridor linking forest fragments isolated from one another by a wasteland of scrubland, 

agriculture and human settlements. To date, some of the fragments are partially connected by 

riparian corridors of variable width (some being as small as 20 m wide). In addition to the patchy 

landscape, the sanctuary is bisected along its length by the Kinabatangan River, and two major 

roads create extra partitioning, especially between Lots 8 - 1 0  and the remainder (see Fig. 5.1 in 

Chapter Five).

The effects of the LKWS geographical mosaic over the genetic diversity and structure of the 

orang-utan (Goossens et al., 2005, 2006; Jalil et al., 2008), the proboscis monkey and long tailed 

macaque (Jalil, 2007; current study) have been investigated using two classes of neutral 

molecular marker. High levels of genetic diversity are suggested by the studies based on mtDNA 

(Jalil, 2007; et al., 2008), and microsatellites (Goossens et al., 2005; Chapter Three, current 

study). The long-tailed macaques show the highest level of nuclear genetic diversity (HE= 0.8), 

followed by the orang-utan (HE= 0.74, Goossens et al., 2005) and the proboscis monkey (HE= 

0.68). The preliminary Mhc-DRB analysis from this study also suggests higher levels of nuclear 

genetic diversity in the macaques them in the proboscis monkey, where surprisingly only five -  

DRB sequences were identified. However only a few proboscis monkey individuals were 

screened with just one set of generalist -DRB  primers (Chapter Four). In contrast, the control 

region mtDNA analysis revealed a higher genetic diversity in the proboscis monkeys than in the 

other two species (Jalil, 2007). These results however probably reflect the different dispersal 

mechanisms of these primates, the ancestral populations that inhabited Borneo and/or the recent 

human-mediated habitat contraction. For instance, Jalil (2007) explains that proboscis monkey’s 

female biased dispersal and the size of the harem could have contributed to the establishment of 

large numbers of mtDNA lines during the Pliocene. At the end of that era, severed cold phases led 

to contraction of suitable habitat that was likely to reduce the population sizes of this species. As 

mtDNA is inherited by females only, Jalil (2007) suggests that the high level of mtDNA diversity 

in proboscis monkeys is proportioned to the large numbers of breeding females in the ancestral 

population before the onset of the glaciations. In the case of orang-utans, Goossens et al. (2005,

2006) suggest that recent anthropogenic environmental changes are the main cause of the 

population decline, and that this recent habitat loss and degradation may have led to the 

concentration of the surviving individuals in the remaining forest patches along the Kinabatangan
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River, hence accounting for the high levels of genetic variation. In addition, Goossens et al.

(2005) suggests that the very large numbers of orang-utans thought to have existed in the last 

centuries and millennia throughout the Kinabatangan area, together with the long generation 

time and lifespan of this species, might have allowed populations to retain diversity for long 

periods after habitat loss. Thus, the recent habitat contraction and the ancient population 

numbers could also explain the high levels of neutral and adaptive genetic diversity estimated for 

the long-tailed macaques in the current study.

Genetic methods such as FST, assignment tests, and coalescence can define the extent of 

connectivity and infer rates of gene flow between populations (Frankham, 2006). This allows 

rational scientific management of threatened species in the wild. In a highly fragmented 

ecosystem, such as the LKWS, it is important to determine whether there are barriers to gene 

flow, particularly for endangered species such as the orang-utan and the proboscis monkey. 

Goossens et al. (2005) and Jalil et al. (2008) demonstrated the importance of the river in shaping 

the genetic structure of the declining orang-utan populations in the LKWS. Gene flow is the rule 

rather than the exception between forest fragments from the same side of the river, despite the 

fragmentation, but gene flow was limited or not existent across the river. In contrast, the river did 

not pose a barrier to gene flow for proboscis monkey when assessed by mtDNA (Jalil, 2007) or 

microsatellite data (Chapter Three), in accordance with the swimming behaviour of this species. 

Perhaps surprisingly, Jalil (2007) found slight evidence of the river acting as a dispersal barrier for 

the long tailed macaques and with many of the closely related mtDNA haplotypes distributed on 

the same side of the river. In the current study, no evidence was found regarding a partitioning 

by the river of the long tailed macaque populations. Results by STRUCTURE suggest the 

presence of two populations, for both the proboscis monkey and the macaque, but not 

necessarily delimited by the river. This pattern could be a reflection of the recent human- 

mediated habitat fragmentation (Appendices Six and Ten) and should be explored further with 

an Isolation-Migration model approach (see above). Nevertheless, the results of both Jalil (2007) 

and the current study suggest that the LKWS supports admixed populations of both, proboscis 

monkeys and long tailed macaques. In species which do not follow a classical riverine-restricted 

pattern of genetic structure, the question therefore arises as to what determines their genetic 

structure. In particular, while neutral patterns of genetic structure may show limited 

differentiation, non-neutral markers may show a different pattern, sometimes of greater 

conservation significance (e.g. Bonin & Bematchez, 2009; Bonin et al., 2007; Aguilar et al., 

2004). Hence, information regarding adaptive genetic variation is still needed.

Bruford et al. (2010) incorporated the genetic data from Goossens et al. (2005, 2006) and Jalil et 

al. (2008) into a population viability analysis (PVA) for the LKWS orang-utan populations. A
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combination of modest translocation rates (one female every 20 years) and corridor 

establishment is suggested to enable even the most isolated subpopulations to retain 

demographic stability and constrain localised inbreeding levels. As the natural demographic 

isolation between the populations north and south of the river has already been demonstrated 

(Goossens et al 2005; Jalil et al., 2008), Bruford et al. (2010) recommended to maintain riverside 

populations as separate Management Units, as long as this is practically feasible, given the 

significantly greater FST values among riversides than within. An assessment such as this is 

needed for the proboscis monkey population in the LKWS. If translocations were required, the 

results from Jalil (2007) and the current study suggest that movement of individuals could 

potentially be performed between populations from both sides of the river or from distant forest 

patches without disrupting the gene-pools. However, better characterization of the fragmented 

subpopulations, for instance the number of individuals and densities in each Lot, or forest quality 

assessments are needed. Goossens et al. (2003a) determined a density of 6.9 and 6.3 proboscis 

monkey and long-tailed macaque individuals/km2 respectively for the LKWS. However, those 

estimations are based on a survey that covered only a portion of Lots 2, 3 and 4, and 

observations during the current study (5 years later) suggest that densities are much higher in the 

region of Lots 5 - 7  and much lower in Lots 8 -  10. In particular, proboscis monkeys were absent 

from Batu Putih bridge (the division between Lots 7 and 8) up to Lok Kan River, and not many 

groups were observed in that locality either, when only four years ago, Jalil (2007) recorded the 

presence of several groups in Lots 8-10, including Lok Kan. The causes of this decline are 

unknown, but could be attributed to inadequate forest quality/food supplies, additional habitat 

loss, hunting, or disease, and should be investigated further.

Diseases are important when considering the conservation of endangered species (Cunningham, 

1996; McCallum & Dobson, 2006, Smith et al., 2009). Reserves created to protect animals from 

habitat loss and poaching could carry costs of increased disease risk, in part because these 

reserves may maintain populations at higher densities, especially in the absence of top carnivores 

or hunting by humans. Corridors that facilitate movement between populations could represent 

poorer-quality habitats and might also expose animals to parasites from domesticated animals, 

humans and other wildlife species that also use the corridors (Nunn & Altizer, 2006). 

Furthermore, as human population density continues to increase, speeding the reduction and 

fragmentation of primate habitats, greater human-primate contact is inevitable and even higher 

rates of parasite transmission cure likely between humans and monkeys and between monkey 

species (Gillespie, 2006; Goldberg et al., 2008). When moving between forest patches and 

because of the proximity to human settlements and to domestic animals, primates may be 

exposed to a wider range of parasitic vectors and/or intermediate hosts (Trejo-Macfas et al.,
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2007). These features are common characteristics of the LKWS that need to be considered in the 

management plans of the area. In addition, when animals are translocated they may "import" 

new parasites or immunologically naive animals may be released into an area where potentially- 

pathogenic parasites are endemic (Cunningham, 1996). Since translocation has already been 

advised for the orang-utan, it is important to identify host-parasite ecological patterns in the 

region. It was hypothesised that long-tailed macaques would have higher parasite diversity and to 

harbour more mixed infections than proboscis monkeys, since they are known to come closer to 

human habitation and to domestic fauna. Another hypothesis was that given the swimming 

ability of both primate species, no effect was expected from the natural barrier presented by the 

Kinabatangan River. Contrarily, it was predicted that areas of the sanctuary with higher rates of 

human activities, the parasite richness, the frequency of co-infections and the prevalence of 

particular parasites would be higher in both primate species, compared to areas with less human 

activity.

The parasite survey in the current study (Chapter Five) suggests that most of the gastro-intestinal 

parasites found are ubiquitous in the sanctuary, perhaps in agreement with the patterns of 

dispersal and gene flow detected in the hosts. The Kinabatangan River did not affect parasite 

diversity, or prevalence of particular parasites, or the proportion of individuals carrying a mixed 

infection. However, mapping of the parasite’s distributions revealed that a few taxa were 

confined to particular areas of the LKWS (Taenia sp. in Lots 1-4, oxyurids in Lots 5-7, and 

oxyurid-like in Lots 8-10, data not shown), so future landscape epidemiology studies should be 

encouraged. A clearer pattern was distinguished for Trichuris sp. in proboscis monkeys, where 

the prevalence of this parasite was predicted to decrease gradually from downriver (Area 1 -  Lots 

1-4, see methods in Chapter Five) to upriver (Area 3), but caution must be applied since the 

number of samples differed between areas (82 in Areal, 55 in Area2 and 9 in Area3). In a 

hypothetical situation, if translocations of proboscis monkeys were needed given the low 

numbers of individuals present in Lots 8-10, translocating animals from Lots 5-7 would not pose 

an issue according to population genetics analyses, but they could cause a problem regarding 

disease transmission by increasing levels of environmental contamination. Yet, it must be noted 

that this prevalence gradient and the distributions above mentioned could be biased by the 

sampling scheme. Future studies on host-parasite ecology in the LKWS should cover (at least) the 

course of an annual cycle to assess the effects of climate, host activity, and life and physiological 

stages of both parasite and primate on infections.

It was expected that areas with high rates of human -  non-human primate contact would have a 

positive correlation with parasite diversity, or prevalence of particular parasites, or the proportion 

of individuals carrying a mixed infection, but this was not always the case as host-parasite

119



Chapter Six: General discussion

dynamics are likely to be affected by complex interactions between environmental, and host 

demographic, behavioural and genetic factors. Future studies could evaluate in a more direct 

way the effects of humans (including tourists and researchers) and livestock on the parasite 

communities of LKWS primates. Moreover, surveys including more parasite and host taxa are 

desirable. For instance, the unidentified morph present in the macaque samples was also 

observed in a sample that presumably belonged to an otter (not shown) that was 

opportunistically collected in the current study. Another example comes from malaria, where 

Plasmodium knowlesi (the macaque malaria parasite) has been found in humans in Sabah 

(Singh et al., 2004, Symposium on zoonosis & emerging diseases, 2008), but no research has 

been done to identify whether any of the human Plasmodium spp. infect non-human primates in 

this region (an interesting fact on the light of recent evidence on P. falciparum originating from 

gorillas, Liu et al., 2010). In Uganda, Goldberg et al. (2008) found evidence that the forest 

fragmentation is a cause of bacterial transmission among humans, non-human primates and 

livestock, and the genetic similarity of the parasite between the three taxa increased as the 

anthropogenic disturbance within forest fragments increased. In addition, Goldberg et al. (2007) 

found that chimpanzees harboured bacteria genetically more similar to those of humans 

employed in chimpanzee-directed research and tourism than to those of humans from a local 

village. Hence, and also because different strains of parasites may vary in their virulence, parasite 

genetics should also be evaluated to determine levels of zoononsis/anthropozonoosis in the area. 

Additionally, some guidelines for primate ecotourism are presented by Muehlenbein & Ancrenaz 

(2009) and should be implemented or adapted to the conditions in the LKWS.

Reserve design requires improved understanding of how edge effects, logging, and fragmentation 

impact patterns of parasitism (Nunn & Altizer, 2006). Therefore, future research on parasites in 

the LKWS could also address host densities and edge effects. For example, in a study on recently 

immigrated African colobines into the same forest fragment Chapman et al. (2005b) noticed that 

the richness of parasite communities did not increase with increased host density, but the 

population numbers of red colobus increased when the prevalence and intensity of Trichuris sp. 

decreased while the numbers of the black-and-white colobus decreased as the prevalence and 

intensity of this parasite remained high. Chapman et al. (2006b) also noticed that the proportion 

of individuals with multiple infections was greater in edge than forest interior groups and that 

primates that raided agricultural corps had less severe infections compared to those individuals 

that did not. Finally, Gillespie and Chapman (2006) and Gillespie et al. (2005b) demonstrated 

that various forms of anthropogenic disturbance, specifically selective logging and forest 

fragmentation, alter the dynamics of gastrointestinal parasite infection in the human and 

nonhuman primate populations in the region of Kibale National Park, Uganda. Therefore, the
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identification of physical (i.e., size, location, and topography) and biological (i.e., tree diversity, 

tree density, stump density, and primate and other reservoir hosts density) attributes than can be 

used to predict parasite infection dynamics in the LKWS primate populations should also be 

attempted in future studies.

Maintaining the ability of wild populations to respond evolutionarily to parasite-mediated 

selection could be one of the best long-term strategies for mitigating the risks of infectious 

diseases (Crandall et al., 2000). Two main types of pathogen-driven modes of selection 

('heterozygote advantage hypothesis' and 'frequency-dependence selection') have been suggested 

as important in retaining high levels of genetic diversity at the MHC in humans and vertebrates 

(reviewed in Bematchez & Landry, 2003; Sommer, 2005; Spurgin & Richardson, 2010; but see 

vein Oosterhout, 2009). The heterozygote advantage hypothesis (Doherty & Zinkemagel, 1975) 

proposes that individuals heterozygous at MHC loci are able to respond to a greater range of 

pathogen peptides than homozygotes and, consequently, benefit from increased resistance to 

pathogens. Heterozygotes are, therefore, more likely to have higher relative fitness and, as a 

result, on average more MHC alleles will persist in the population. The rare allele advantage 

hypothesis assumes that MHC diversity is maintained through frequency-dependent 

coevolutionary processes between hosts and parasites (Takahata and Nei, 1990). The most 

resistant allele will be favoured and spread through the population. However, it will not go into 

fixation because when the resistant allele becomes common, this increases selection on parasites 

to evade the recognition by this common allele. In the end this leads to an increased variability 

within a population. In a  population subject to heterozygote advantage, one may therefore 

expect to observe associations between MHC heterozygosity and between both pathogen load 

and diversity (Spurgin & Richardson, 2010). The current study suggests that parasite richness 

and proportion of individuals carrying a mixed infection is higher in the proboscis monkey than 

in the long-tailed macaque (Chapter Five) and that MHC diversity/heterozygosity is lower in the 

proboscis monkeys compared to the macaques (Chapter Four). Could this be an indication of 

selection through the “heterozygote advantage” hypothesis? The answer to this question is 

beyond the scope of the current study, but it clearly poses a research line that should be explored 

in the future. Other studies regarding MHC diversity and pathogens should look for 

immunogenetic variants that result disadvantage/advantageous with respect to parasite burden 

and whether they are influenced by habitat fragmentation. For example, Schwensow et al. 

(2007) found evidence for a specific MHC supertype that was linked to infected individuals, a 

higher number of different nematode infections and high intensity of infection per individual, at 

the same time one rare supertype was revealed to be advantageous with respect to parasite
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burden. This type of information could be used in the LKWS to identify vulnerable populations 

likely to be at risk from new pathogens.

The future of the primates in Kinabatangan depends on the adequate management of the 

sanctuary. The current study was challenging in many aspects, thus no full answers can be given 

to the posed hypothesis yet. However, even with its limitations, this study provides useful 

baseline information regarding neutral and adaptive genetic diversity, and host-parasite ecology 

of proboscis monkeys and long-tailed macaques of the LKWS. Moreover, it identifies lines for 

future research to answer questions on genetic structure, fitness and disease risk on these 

primates. The inclusion of these data and that from future studies is needed in order to have a 

complete management plan that will ensure the long-term survival of the proboscis monkey and 

the long-tailed macaque in the Kinabatangan floodplain.
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Appendix One: Nasalis larvatus and Macaca fascicularis samples database

APPENDIX ONE

Description of samples collected for proboscis monkeys (PM -  Nasalis larvatus) and long-tailed 
macaques (Mafa -  Macaca fascicularis) of the Lower Kinabatangan Wildlife Sanctuary. Additional 
samples are included from a  few orangutans (Popy- Pongo pygmeaus), pig-tailed macaques 
(Mane -  Macaca nemestrina), and elephants (Elma -  Elephas maximus borneensis). Each sample 
has a unique identifier ‘name’ with GPS coordinates of the collection site on the day of 
collection. The weight of the faecal sample (g) is cited along with the conversion factor 
(equivalent to the total volume of flotation fluid divided by the volume counted in the McMaster 
chamber multiplied times the weight of the faeces, i.e. 15 ml / 0.3 ml x weight) to calculate the 
eggs per gram (epg) of faeces in each sample (multiply the number of eggs counted times the 
conversion factor). DNA was extracted from most samples twice (‘duplicate’) and date of 
extraction is also given. The storage details of these samples are presented and whether mtDNA 
was amplified from one or both replicates. Finally, it is indicated whether or not a sucrose 
floatation was performed for detection of parasite eggs in the faecal samples.

Name
Location 

GPS coordinates
Collection

date Weight

Conversion 
factor (to 

obtain epg 
faeces) Extracted

Extraction
date

Stored at - 
70°C MWB 

lab
(mt)DNA
presence

Sucrose
Rotation

PM 3-1-1 N5°31.467\ E118°17.774' 231007 2.18 23.58 Duplicate 05/11/07 Box 2 Nala Y (Both) Y
PM 3-1-2 N5°31.467', E118°17.774' 231007 1.54 32.47 Duplicate 05/11/07 Box 2 NaJa Y (Few B) Y
PM 3-1-3 N5°31.467', E118°17.774' 231007 0.46 108.70 Duplicate 05/11/07 Box 2 Nala Y (Only B) Y
PM 3-1-4 N5°31.467', E118°17.774' 231007 0.48 104.17 Duplicate 05/11/07 Box 2 Nala N (Few B) Y
PM 3-1-5 N5°31.467', E118°17.774' 231007 0.85 58.82 Duplicate 05/11/07 Box 2 Nala Y (Both) Y
PM 3-1-6 N5°31.467, E118°17.774' 231007 1.75 28.57 Duplicate 05/11/07 Box 2 Nala Y (Both) Y
PM 3-1-7 N5°31.467', E118°17.774' 231007 2 . 1 23.81 Duplicate 05/11/07 Box 2 Nala Y (Both) Y
PM 2-1-1 N5°33.196', E118°19.371' 231007 0 . 2 250.00 Duplicate 05/11/07 Box 1 Nala Y (Both) Y
PM 2-1-2 N5°33.196', E118°19.371' 231007 0.84 59.52 Duplicate 05/11/07 Box 1 Nala Y (Both) Y
PM 2-1-3 N5°33.196', E118°19.371' 231007 3.66 13.66 Duplicate 05/11/07 Box 1 Nala YWeirdA Y
PM 2-1-4 N5°33.196', E118°19.371' 231007 0.82 60.98 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 2-1-5 ^ “33.196', E118°19.371' 231007 0 . 0 2 2500.00 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 2-2-1 N5°33.422', E118°20.188' 231007 1.26 39.68 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 2-2-2 N5°33.422', E118°20.188' 231007 0.55 90.91 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 2-2-3 N5°33.422', E118°20.188' 231007 1.77 28.25 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 2-2-4 N5°33.422', E118°20.188' 231007 2.04 24.51 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
Popy 3-1-1 N5°33.498\ E118°19.736' 231007 7.45 6.71 Duplicate 06/11/07 Box 7 Mafa Y
PM 1-1-1 N5°40.025', E118°23.134' 251007 1.07 46.73 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 1-1-2 N5°40.025', E118°23.134' 251007 1.24 40.32 Duplicate 06/11/07 Box 1 Nala Y (A?) Y
PM 1-1-3 N5°40.025', E118°23.134' 251007 0.13 384.62 Duplicate 06/11/07 Box 1 Nala Y (B?) Y
PM 1-1-4 N5°40.025', E118°23.134' 251007 1.35 37.04 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 1-1-5 N5°40.025', E118°23.134' 251007 0.74 67.57 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 1-1-6 N5°40.025', E118°23.134' 251007 1.46 34.25 Duplicate 06/11/07 Box 1 Nala Y (Few A) Y
PM 1-1-7 N5°40.025', E118°23.134' 251007 1.45 34.48 Duplicate 06/11/07 Box 1 Nala Y (Few B) Y
PM 1-1-8 N5°40.025', E118°23.134' 251007 1.23 40.65 Duplicate 06/11/07 Box 1 Nala Y (Both) Y

PM 2-3-1 N5°39.528\ E118°22.098' 251007 0 . 8 62.50 Duplicate 06/11/07 Box 1 Nala Y (Both) Y
PM 2-3-2 N5°39.528', E118°22.098’ 251007 0.83 60.24 Duplicate 07/11/07 Box 1 Nala Y (Both) Y
PM 2-3-3 N5°39.528', E118°22.098' 251007 0 . 2 2 227.27 Duplicate 07/11/07 Box 1 Nala Y (Both) Y

PM 2-4-1 N5°39.528', E118°22.098' 251007 0.72 69.44 Duplicate 07/11/07 Box 1 Nala Y (Both) Y
PM 2-4-2 N5°39.528', E118°22.098' 251007 0 . 8 62.50 Duplicate 07/11/07 Box 1 Nala N Y

PM 2-4-3 N5°39.528', E118°22.098' 251007 0.59 84.75 Duplicate 07/11/07 Box 2 Nala Y (Both) Y

PM 2-4-4 N5°39.528', E118°22.098' 251007 1.46 34.25 Duplicate 07/11/07 Box 2 Nala Y (Both) Y

PM 2-4-5 N5°39.528', E118°22.098' 251007 1.54 32.47 Duplicate 07/11/07 Box 2 Nala Y (Both) Y
PM 4-1-1 N5°28.859’, E118°15.446' 271007 Duplicate 07/11/07 Box 3 Nala Y (Few A) N

PM 4-1-2 N5°28.859', E118°15.446' 271007 1.62 30.86 Duplicate 07/11/07 Box 3 Nala Y (Both) Y

PM 4-1-3 N5°28.859\ E118°15.446' 271007 1.71 29.24 Duplicate 07/11/07 Box 3 Nala Y (Few A) Y
Mane Gomantong Caves 271007 -6.64 -7.53 Duplicate 07/11/07 Box 1 Mafa Y
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PM 3-2-1 N5°33.497', E118°19.668' 121107 0.321 155.76 Duplicate 28/12/07 Box 2 Nala Y (Only A) Y
PM 3-3-1 N5°33.526\ E118°19.821' 121107 0.291 171.82 Duplicate 26/12/07 Box 2 Nala Y (Only B) Y
PM 3-3-2 N5°33.526\ E118°19.82r 121107 0 . 2 2 227.27 Only A 26/12/07 Box 2 Nala Y Y
PM 3-3-3 N5°33.526', E118°19.821' 121107 0.474 105.49 Duplicate 26/12/07 Box 2 Nala Y (Both) Y
PM 3-3-4 N5°33.526', E118°19.821' 121107 0.7926 63.08 Duplicate 26/12/07 Box 2 Nala Y (Few A) Y
Mane 3-1-1 N5°33.033\ E118°20.076' 121107 1.125 4 4  4 4 4 4 4 4 Y
Mane 3-1-2 N5°33.033\ E118°20.076' 121107 0.541 92.421442 Y
Elma 2-1-1 N5°32.719\ E118°18.726’ 121107 0.408 122.54902 Y
Elma 2-1-2 N5°32.719\ E118°18.726' 121107 0.549 91.074681 Y
PM 1-3-1 N5°33.172\ E118°20.335' 131107 Duplicate 26/12/07 Box 1 Nala Y (Both) Y
Mafa 3-1-1 N5°33.240', E118°19.979' 131107 Duplicate 31/12/07 Box 1 Mafa Y (Both) N
Mafa 3-2-1 N5°31.789\ E118°17.607' 141107 Duplicate 26/12/07 Box 1 Mafa Y (Both) Y
Mafa 2-1-1 N5°31.831', E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa N (Few A) Y
Mafa 2-1-2 N5°31.831', E118°17.464' 141107 N
Mafa 2-1-3 N5°31.831', E118°17.464' 141107 N
Mafa 2-1-4 N5°31.831’> E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa Y (Few B) Y
Mafa 2-1-5 N5°31.831\ E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa Y (Both) Y
Mafa 2-1-6 N5°31.831', E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa Y (Few A) Y
Mafa 2-1-7 N5°31.831', E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa Y (Few B) Y
Mafa 2-1-8 N5031.831', E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa Y (Few B) Y
Mafa 2-1-9 N5°31.831', E118°17.464' 141107 Duplicate 26/12/07 Box 1 Mafa N (Few A) Y
Mafa 2-1-10 N5°31.831', E118°17.464' 141107 Y
PM 2-5-1 N5°32.999\ E118°18.993' 141107 Duplicate 27/12/07 Box 2 Nala Y (Both) Y
PM 3-4-1 N5°33.228\ E118°19.536' 141107 Duplicate 26/12/07 Box 2 Nala Y (Both) Y
PM 3-4-2 N5°33.228\ E118°19.536' 141107 Duplicate 26/12/07 Box 2 Nala Y (Both) Y
PM 3-4-3 N5°33.228\ E118°19.536' 141107 N
PM 1-2-1 N5°33.134\ E118°20.058’ 141107 Duplicate 26/12/07 Box 1 Nala Y (Few 2) N
PM 1-2-2 N5°33.134', E118°20.058' 141107 Duplicate 26/12/07 Box 1 Nala Y (Few B) N
PM 1-2-3 N5°33.134', E118°20.058’ 141107 N
PM 1-2-4 N5°33.134\ El 18°20.058' 141107 Duplicate 26/12/07 Box 1 Nala Y (Both) Y
PM 1-2-5 N5°33.134‘, E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Few A) Y
PM 1-2-6 N5°33.134\ E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Both) N
PM 1-2-7 N5°33.134', E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Both) Y
PM 1-2-8 N5°33.134', E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Both) Y
PM 1-2-9 N5°33.134', E118°20.058' 141107 N
PM 1-2-10 N5°33.134', E118°20.058’ 141107 N

PM 1-2-11 N5°33.134', E118°20.058' 141107 N
PM 1-2-12 N5°33.134', E118°20.058’ 141107 N

PM 1-2-13 N5°33.134', E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Both) Y

PM 1-2-14 N5°33.134’, E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Both) Y
PM 1-2-15 N5°33.134', E118°20.058' 141107 N

PM 1-2-16 N5°33.134', E118°20.058' 141107 Duplicate 27/12/07 Box 1 Nala Y (Both) N

Mafa 2-2-1 N5°34.201', E118°19.867' 141107 0.16 312.50 Duplicate 26/12/07 Box 1 Mafa Y (Both) Y

Mafa 3-3-1 N5°32.119\ E118°17.544' 141107 0.36 138.89 Duplicate 26/12/07 Box 1 Mafa Y (Both) Y

Mafa 2-3-1 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-2 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-3 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-4 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-5 N5°35.226\ E118°19.665' 151107 N

Mafa 2-3-6 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-7 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-8 N S ^ ^ # , E118°19.665' 151107 0.96 52.08 Duplicate 27/12/07 Box 1 Mafa Y (Both) Y

Mafa 2-3-9 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-10 N5°35.226\ E118°19.665' 151107 Duplicate 31/12/07 Box 1 Mafa Y (Both) N

Mafa 2-3-11 N5°35.226', E118°19.665' 151107 N

Mafa 2-3-12 N5°35.226', E118°19.665' 151107 Duplicate 31/12/07 Box 1 Mafa Y (Both) N

Mafa 2-3-13 N5°35.226', E118°19.665' 151107 Duplicate 27/12/07 Box 1 Mafa Y (Both) N
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Mafa 2-3-14 N5S35.226', E118°19.665' 151107 Duplicate 31/12/07 Box 1 Mafa Y (Both) N
Elma 1-1-1 N5°35.042', E118°19.780l 241007 N
PM 2-6-1 N5°33.908\ E118°20.012' 151107 N
PM 2-6-2 N5°33.908’, E118°20.012' 151107 N
PM 2-6-3 N5-33.908', E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-4 N5°33.908\ E118°20.012' 151107 N
PM 2-6-5 N5°33.908\ E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-6 N5°33.908', E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-7 N5°33.908', E118°20.012' 151107 Single 03/01/08 Box 2 Nala N N
PM 2-6-8 N5°33.908\ E118°20.012' 151107 Sinqle 03/01/08 Box 2 Nala N N
PM 2-6-9 N5°33.908\ E118°20.012' 151107 1.56 32.05 Duplicate 27/12/07 Box 2 Nala Y (Only B) Y
PM 2-6-10 N5°33.908', E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-11 N5°33.908’, E118°20.012' 151107 N
PM 2-6-12 N5°33.908', E118°20.012' 151107 N
PM 2-6-13 N5°33.908', E118°20.012' 151107 N
PM 2-6-14 N5°33.908', E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-15 N5°33.908', E118°20.012' 151107 N
PM 2-6-16 N5°33.908\ E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-17 N5°33.908\ E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-18 N5°33.908\ E118°20.012' 151107 N
PM 2-6-19 N5°33.908\ E118°20.012' 151107 N
PM 2-6-20 N5°33.908', E118°20.012' 151107 N
PM 2-6-21 N5°33.908', E118°20.012' 151107 N
PM 2-6-22 NS-SS.gOS’, E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-23 N5°33.908\ E118°20.012’ 151107 N
PM 2-6-24 N5°33.908\ E118°20.012' 151107 N
PM 2-6-25 N5°33.908\ E118°20.012' 151107 Single 03/01/08 Box 2 Nala FEW N
PM 2-6-26 N5°33.908\ E118°20.012' 151107 N
PM 2-6-27 N5°33.908', E118°20.012' 151107 N
PM 2-6-28 N5°33.908\ E118°20.012' 151107 N
PM 2-6-29 N5°33.908', E118°20.012' 151107 N
PM 2-6-30 N5°33.908', E118°20.012' 151107 N
PM 2-6-31 N5°33.908', E118°20.012’ 151107 N
PM 2-6-32 N5°33.908', E118°20.012' 151107 N
PM 2-6-33 N5°33.908', E118°20.012' 151107 N
PM 2-6-34 N5°33.908', E118°20.012' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-6-35 N5°33.908', E118°20.012' 151107 N
PM 2-6-36 N5°33.908\ E118°20.012' 151107 N
PM 2-6-37 N5°33.908', E118°20.012’ 151107 Single 03/01/08 Box 2 Nala Y (Few) N
PM 2-6-38 N5°33.908', E118°20.012' 151107 N
PM 2-6-39 N5°33.908‘, E118°20.012' 151107 N
PM 2-6-40 N5°33.908', E118°20.012' 151107 0 . 8 6 58.14 Duplicate 27/12/07 Box 2 Nala Y (Both) Y
PM 2-7-1 N5°32.999\ E118°18.993' 151107 N
PM 2-7-2 N5°32.999\ E118°18.993' 151107 N
PM 2-7-3 N5°32.999\ E118°18.993' 151107 Single 04/01/08 Box 2 Nala Y N
PM 2-7-4 N5,,32.999\ E118°18.993' 151107 N
PM 2-7-5 N5°32.999\ E118°18.993' 151107 Single 03/01/08 Box 2 Nala Y N
PM 2-7-6 N5°32.999\ E118°18.993' 151107 0 . 6 6 75.76 Duplicate 28/12/07 Box 2 Nala Y (Both) Y
PM 2-7-7 N5°32.999\ E118°18.993' 151107 N
PM 2-7-8 N5°32.999', E118°18.993' 151107 Single 04/01/08 Box 2 Nala Y N
PM 2-7-9 N5°32.999\ E118°18.993' 151107 N
PM 2-7-10 N5°32.999\ E118°18.993' 151107 N

PM 2-7-11 N5°32.999\ E118°18.993' 151107 N
PM 2-7-12 N5°32.999', E118°18.993' 151107 N
PM 2-5-2 N5°32.999', E118°18.993' 151107 Single 04/01/08 Box 1 Nala N N
PM 2-5-3 N5°32.999', E118°18.993' 151107 N
PM 2-5-4 N5°32.999', E118°18.993' 151107 0.76 65.79 Duplicate 28/12/07 Box 2 Nala Y (Few A) Y
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PM 2-5-5 N5°32.999\ E118°18.993' 151107 N
PM 2-5-6 N5°32.999\ E118°18.993' 151107 N
PM 2-5-7 N5°32.999\ E118°18.993’ 151107 N
PM 2-5-8 N5°32.999, E118°18.993' 151107 N
PM 2-5-9 N5°32.999\ E118°18.993' 151107 N
PM 2-5-10 N5°32.999, E118°18.993' 151107 N
PM 2-5-11 N5°32.999, E118°18.993' 151107 N
PM 2-5-12 N5°32.999', E118°18.993' 151107 Single 04/01/08 Box 2 Nala Y N
Mafa 2-4-1 N5°32.999\ E118°18.993' 151107 1.36 36.76 Duplicate 27/12/07 Box 1 Mafa Y (Both) Y
Mafa 2-4-2 N5°32.999, E118°18.993' 151107 N
Mafa 2-4-3 N5°32.999, E118°18.993' 151107 N
Mafa 1-1-1 N5°33.289, E118°20.417’ 161107 Duplicate 28/12/07 Box 1 Mafa Y (Both) N
Mafa 3-4-1 N5°33.124', E118°20.028' 161107 1.26 39.68 Duplicate 28/12/07 Box 1 Mafa Y (Both) Y
Mafa 3-4-2 N5°33.124', E118°20.028' 161107 N
Mafa 3-4-3 N5°33.124\ E118°20.028' 161107 N
Mafa 3-4-4 N5°33.124l> E118°20.028’ 161107 N
Mafa 3-4-5 N5°33.124', E118°20.028' 161107 N
Mafa 3-4-6 N5033.124', E118°20.028' 161107 N
Mafa 3-4-7 N5°33.124', E118°20.028' 161107 N
Mafa 3-4-8 N5°33.124', E118°20.028' 161107 Single 02/01/08 Box 1 Mafa N N
Mafa 1-2-1 N5°33.134', E118°20.058' 161107 Single 300609 Box 7 Mafa Y N
Mafa 1-2-2 N5°33.134', E118°20.058' 161107 Single 02/01/08 Box 1 Mafa N N
Mafa 1-2-3 N5033.134', E118°20.058' 161107 Single 300609 Box 7 Mafa Y N
Mafa 1-2-4 N5°33.134', E118°20.058' 161107 1.56 32.05 Duplicate 28/12/07 Box 1 Mafa Y (Both) Y
Mafa 1-2-5 N5°33.134', E118-20.058' 161107 Duplicate 31/12/07 Box 1 Mafa Y (Only A) N
Mafa 1-2-6 N5°33.134', E118°20.058' 161107 Single 300609 Box 7 Mafa N N
Mafa 1-2-7 N5°33.134', E118°20.058' 161107 Single 02/01/08 Box 1 Mafa N N
Mane 1-1-1 N5°33.134', E118°20.058' 161107 N
Mane 1-1-2 N5-33.134', E118°20.058' 161107 0.26 192.31 Y
Mafa 2-4-4 N5°32.999, E118°18.993' 161107 0.46 108.70 Duplicate 27/12/07 Box 1 Mafa Y (Both) Y
Mafa 2-4-5 N5°32.999, E118°18.993' 161107 N
Mafa 2-4-6 N5°32.999, E118°18.993' 161107 N
Mafa 2-4-7 N5°32.999, E118°18.993' 161107 Single 02/01/08 Box 1 Mafa N N
Mafa 2-4-8 N5°32.999, E118°18.993' 161107 N
Mafa 3-5-1 N5°32.479l, E118°18.554' 161107 N
Mafa 3-5-2 N5°32.479, E118°18.554' 161107 N
Mafa 3-5-2 N5°32.479, E118°18.554' 161107 N
Mafa 3-5-4 N5°32.479, E118°18.554' 161107 0.96 52.08 Duplicate 27/12/07 Box 1 Mafa Y (Both) Y
Mafa 3-5-5 N5°32.479, E118°18.554' 161107 N
Mafa 3-5-6 N5°32.479, E118°18.554' 161107 Single 02/01/08 Box 1 Mafa N N
Mafa 3-5-7 N5°32.479, E118°18.554' 161107 N
PM 3-5-1 N5°31.473', E118°17.767' 181107 N
PM 3-5-2 N5°31.473', E118°17.767' 181107 Single 04/01/08 Box 2 Nala Y N
PM 3-5-3 N5°31.473', E118°17.767' 181107 N

PM 3-5-4 N5°31.473', E118°17.767' 181107 N
PM 3-5-5 N5°31.473', E118°17.767' 181107 N

PM 3-5-6 N5-31.473', E118°17.767' 181107 N

PM 3-5-7 N5°31.473', E118°17.767' 181107 Sinqle 04/01/08 Box 2 Nala N N

PM 3-5-8 N5°31.473', E118°17.767' 181107 N

PM 3-5-9 N5°31.473', E118°17.767' 181107 N

PM 3-5-10 N5°31.473', E118°17.767' 181107 N

PM 3-5-11 N5°31.473', E118°17.767' 181107 Single 05/01/08 Box 2 Nala Y N

PM 3-5-12 N5°31.473', E118°17.767' 181107 N

PM 3-5-13 N5-31.473', E118°17.767' 181107 N

PM 3-5-14 N5°31.473', E118°17.767' 181107 Single 04/01/08 Box 2 Nala N N

PM 3-5-15 N5°31.473', E118°17.767' 181107 Single 04/01/08 Box 2 Nala Y N

PM 3-5-16 N5°31.473', E118°17.767' 181107 N
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PM 3-5-17 N5°31.473', E118°17.767' 181107 Sinqle 05/01/08 Box 2 Nala Y N
PM 3-5-18 N5°31.473\ E118°17.767' 181107 1.46 34.25 Duplicate 28/12/07 Box 2 Nala Y (Both) Y
PM 3-5-19 N5°31.473\ E118°17.767' 181107 N
PM 3-5-20 N5°31.473', E118°17.767’ 181107 Sinqle 05/01/08 Box 2 Nala Y N
PM 3-5-21 N5-31.473', E118°17.767’ 181107 N
PM 3-5-22 N5°31.473', E118°17.767' 181107 Sinqle 05/01/08 Box 3 Nala Y N
PM 3-5-23 N5°31.473', E118°17.767' 181107 Sinqle 05/01/08 Box 2 Nala Y N
PM 3-5-24 N5°31.473', El 18-17.767’ 181107 N
PM 3-5-25 N5-31.473', E118-17.767' 181107 N
PM 3-5-26 N5-31.473’, El 18-17.767' 181107 N
PM 3-5-27 N5-31.473', E118-17.767’ 181107 N
PM 3-5-28 N5-31.473’, E118-17.767' 181107 N
PM 3-5-29 N5-31.473', El 18-17.767' 181107 N
PM 3-5-30 N5-31.473', El 18-17.767' 181107 Sinqle 04/01/08 Box 2 Nala Y N
PM 3-5-31 N5-31.473’, El 18-17.767' 181107 N
PM 3-5-32 N5-31.473', El 18-17.767' 181107 N
PM 3-5-33 N5-31.473', El 18-17.767' 181107 N
PM 3-5-34 N5-31.473', E118-17.767' 181107 N
PM 3-5-35 N5-31.473’, E118-17.767' 181107 N
PM 3-5-36 N5-31.473', E118-17.767’ 181107 N
PM 3-5-37 N5-31.473’, E118-17.767' 181107 Sinqle 04/01/08 Box 3 Nala Y N
PM 3-5-38 N5-31.473', El 18-17.767' 181107 N
PM 3-5-39 N5-31.473', El 18-17.767' 181107 N
PM 3-5-40 N5-31.473', E118-17.767' 181107 N
PM 3-5-41 N5-31.473', El 18-17.767' 181107 N
PM 3-5-42 N5-31.473', El 18-17.767' 181107 N
PM 3-5-43 N5-31.473', El 18-17.767 181107 N
PM 3-5-44 N5-31.473', E118-17.767' 181107 2 . 6 6 18.80 Duplicate 28/12/07 Box 3 Nala Y (Both) Y
PM 3-5-45 N5-31.473', E118-17.767' 181107 Sinqle 05/01/08 Box 3 Nala Y N
PM 3-5-46 N5-31.473', El 18-17.767' 181107 N
PM 3-5-47 N5-31.473', El 18-17.767' 181107 N
PM 3-2-2 N5-33.497, E118°19.668 181107 N
PM 3-2-3 N5-33.497', E118“19.668 181107 N
PM 3-2-4 N5-33.497', E118°19.668 181107 N
PM 3-2-5 N5-33.497', E118°19.668' 181107 N
PM 3-2-6 N5-33.497', E118°19.668' 181107 N
PM 3-2-7 N5-33.497’, E118°19.668' 181107 1 . 6 6 30.12 Duplicate 28/12/07 Box 2 Nala Y (Both) Y
PM 3-2-8 N5-33.497', E118°19.668' 181107 N
PM 3-2-9 N5-33.497', E118°19.668' 181107 Sinqle 03/01/08 Box 2 Nala Y N
PM 3-2-10 N5-33.497', E118°19.668 181107 N
PM 3-2-11 N5-33.497’, E118°19.668’ 181107 N
PM 3-2-12 N5-33.497', E118°19.668' 181107 N
PM 3-2-13 N5-33.497', E118°19.668’ 181107 N
PM 3-2-14 N5-33.497', E118°19.668’ 181107 Single 03/01/08 Box 2 Nala Y N
PM 3-2-15 N5-33.497', EU8°19.668’ 181107 N
PM 3-2-16 N5-33.497’, E118°19.668' 181107 N
PM 3-2-17 N5-33.497', E118“19.668' 181107 Sinqle 03/01/08 Box 2 Nala Y N
PM 3-2-18 N5-33.497', E118°19.668 181107 Sinqle 03/01/08 Box 2 Nala Y N
PM 3-2-19 N5-33.497’, E118°19.668' 181107 N
Mafa 3-6-1 N5-28.709, El 18-13.472' 181107 Duplicate 28/12/07 Box 1 Mafa Y (Both) N
Mafa 3-6-2 N5°28.709\ El 18-13.472' 181107 Duplicate 28/12/07 Box 1 Mafa Y (Both) N

PM 3-6-1 N5-27.937', E118°14.821' 191107 N

PM 3-6-2 N5-27.937', E118°14.821' 191107 N
PM 3-6-3 N5-27.937', E118°14.821' 191107 N

PM 3-6-4 N5-27.937, E118“14.821’ 191107 N

PM 3-6-5 N5-27.937', E118°14.821' 191107 2.442 20.48 Duplicate 02/01/08 Box 3 Nala Y (Only A) Y
PM 3-6-6 N5-27.937', E118°14.821’ 191107 N
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PM 3-6-7 N5°27.937', E118°14.821’ 191107 N
PM 3-6-8 N5°27.937\ E118°14.821' 191107 Single 07/01/08 Box 3 Nala Y N
PM 3-6-9 N5°27.937\ E118°14.821' 191107 N
PM 3-6-10 N5°27.937\ E118°14.821' 191107 N
PM 3-6-11 N5°27.937\ E118°14.821' 191107 N
PM 3-6-12 N5°27.937\ E118°14.821' 191107 Sinqle 07/01/08 Box 3 Nala Y N
PM 3-6-13 N5°27.937\ E118°14.821' 191107 Sinqle 05/01/08 Box 3 Nala Y N
PM 3-6-14 N5°27.937\ E118°14.821' 191107 N
PM 3-6-15 N5°27.937\ E118°14.821' 191107 N
PM 3-6-16 N5°27.937\ E118°14.821' 191107 N
PM 3-6-17 N5°27.937\ E118°14.821' 191107 Sinqle 07/01/08 Box 3 Nala Y N
PM 3-6-18 N5°27.937\ E118°14.821’ 191107 2.774 18.02 Duplicate 28/12/07 Box 3 Nala Y (Both) Y
PM 3-6-19 N5°27.937', E118°14.821' 191107 Sinqle 07/01/08 Box 3 Nala Y N
PM 3-6-20 N5°27.937', E118°14.821' 191107 N
PM 3-6-21 N5-27.937', E118"14.821' 191107 Sinqle 0 5 /0 1 / 0 8 Box 3 Nala Y N
PM 3-6-22 N5°27.937', E118°14.821' 191107 N
PM 3-6-23 N5°27.937\ E118°14.821' 191107 N
PM 3-6-24 N5°27.937', E118°14.821' 191107 N
PM 3-6-25 N5°27.937', E118°14.821' 191107 Sinqle 05/01/08 Box 3 Nala Y N
PM 3-6-26 N5°27.937l, E118°14.821’ 191107 Sinqle 05/01/08 Box 3 Nala Y N
PM 3-6-27 N5°27.937', E118014.821' 191107 N
PM 3-6-28 N5°27.937', E118°14.821' 191107 N
PM 3-6-29 N5°27.937, E118°14.821’ 191107 Sinqle 07/01/08 Box 3 Nala Y N
PM 3-6-30 N5°27.937\ E118°14.821’ 191107 N
PM 3-6-31 N5°27.937’, E118°14.821’ 191107 N
PM 3-6-32 N5°27.937\ E118°14.821' 191107 Sinqle 07/01/08 Box 3 Nala Y N
PM 3-6-33 N5°27.937\ E118°14.821' 191107 N
PM 3-6-34 N5°27.937, E118°14.821' 191107 N
Mafa 3-7-1 N5°29.285', E118°13.445' 191107 Duplicate 28/12/07 Box 1 Mafa Y (Only A) N
Mafa 3-7-2 N5°29.285', E118°13.445' 191107 Duplicate 28/12/07 Box 1 Mafa Y (Both) N
Mafa 3-7-3 N5°29.285', E118°13.445' 191107 Duplicate 28/12/07 Box 1 Mafa Y (Only A) N
Mafa 3-8-1 N5°28.302\ E118°12.884' 191107 Duplicate 28/12/07 Box 1 Mafa Y (Both) N
Mafa 3-8-2 N5°28.302', E118°12.884' 191107 Duplicate 28/12/07 Box 1 Mafa Y (Both) N
Mafa 3-9-1 N5°28.428\ E118013.255' 191107 N
Mafa 3-9-2 N5°28.428', E118°13.255’ 191107 N
Mafa 3-9-3 N5°28.428\ E118°13.255’ 191107 Sinqle 02/01/08 Box 1 Mafa N N
Mafa 3-9-4 N5°28.428\ E118°13.255' 191107 N
Mafa 3-9-5 N5°28.428', E118°13.255' 191107 N
Mafa 3-9-6 N5°28.428', E118°13.255' 191107 Sinqle 02/01/08 Box 2 Mafa N N
Mafa 3-9-7 N5°28.428', E118°13.255' 191107 N
Mafa 3-9-8 N5°28.428', E118°13.255’ 191107 1.106 45.21 Duplicate 31/12/07 Box 1 Mafa Y (Both) Y
Popy 2-1-1 N5°35.292\ E118°19.668' 191107 2 . 6 6 18.80 Duplicate 02/01/08 Box 7 Mafa Y
PM 1-4-1 N5o40.028', E118°23.146' 201107 N

PM 1-4-2 N5°40.028', E118°23.146' 201107 N

PM 1-4-3 N5°40.028', E118°23.146' 201107 N

PM 1-4-4 N5°40.028\ E118°23.146' 201107 N

PM 1-4-5 N5°40.028\ E118°23.146' 201107 N

PM 1-4-6 N5°40.028\ E118°23.146' 201107 N

PM 1-4-7 N5°40.028\ E118°23.146' 201107 N

PM 1-4-8 N5°40.028', E118°23.146' 201107 1.96 25.51 Duplicate 28/12/07 Box 1 Nala Y (Both) Y

PM 1-4-9 N5°40.028\ E118°23.146' 201107 N

PM 1-4-10 N5°40.028\ E118°23.146’ 201107 N

PM 1-4-11 N5°40.028, E118°23.146' 201107 N

PM 1-4-12 N5-40.028', E118°23.146' 201107 N

PM 1-4-13 N5o40.028\ E118°23.146' 201107 Sinqle 07/01/08 Box 1  Nala Y N

PM 1-4-14 N5°40.028', E118°23.146' 201107 Sinqle 07/01/08 Box 1 Nala Y N

PM 1-4-15 N5o40.Q28', E118°23.146' 201107 Sinqle 07/01/08 Box 1 Nala Y N
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PM 1-4-16 N5°40.028', E118°23.146’ 201107 Single 07/01/08 Box 1 Nala Y N
PM 1-4-17 N5°40.028\ E118°23.146' 201107 Single 07/01/08 Box 1 Nala Y N
PM 1-4-18 N5°40.028\ E118°23.146' 201107 N
PM 1-4-19 N5°40.028\ E118°23.146' 201107 N
PM 1-4-20 N5°40.Q28\ E118°23.146' 201107 N
PM 1-4-21 N5°40.028', E118°23.146' 201107 N
Popy 1-1-1 N5°39.382\ E118°22.194' 201107 2.26 2 2 . 1 2 Duplicate 02/01/08 Box 7 Mafa Y
PM 1-5-1 N5°38.361\ E118°21.572' 201107 N
PM 1-5-2 N5°38.361\ E118°21.572' 201107 N
PM 1-5-3 N5°38.361\ E118°21.572' 201107 N
PM 1-5-4 N5°38.361', E118°21.572' 201107 N
PM 1-5-5 N5038.361', E118°21.572' 201107 N
PM 1-5-6 N5°38.361', E118°21.572' 201107 N
PM 1-5-7 N5°38.361', E118°21.572‘ 201107 Single 04/01/08 Box 1 Nala N N
PM 1-5-8 N5°38.361', E118°21.572' 201107 N
PM 1-5-9 N5°38.361’, E118°21.572' 201107 N
PM 1-5-10 N5°38.361', El 18°21.572' 201107 3.06 16.34 Duplicate 28/12/07 Box 1 Nala Y (Both) Y
PM 1-5-11 N5°38.361', E118°21.572l 201107 N
PM 1-5-12 N5°38.361', E118°21.572' 201107 Single 04/01/08 Box 1 Nala Y N
PM 1-5-13 N5°38.361', E118°21.572’ 201107 Single 07/01/08 Box 1 Nala Y N
PM 1-5-14 N5°38.361', El 18°21.572' 201107 N
PM 1-5-15 N5°38.361\ E118°21.572’ 201107 N
PM 1-5-16 N5°38.361', E118°21.572' 201107 N
PM 1-5-17 N5°38.361', E118°21.572' 201107 N
PM 1-5-18 N5°38.361\ E118°21.572' 201107 Single 07/01/08 Box 1 Nala Y N
PM 1-5-19 N5°38.361', E118°21.572' 201107 Single 07/01/08 Box 1 Nala Y N
PM 2-9-1 N5<>3 8 .8 ir, E118°21.927' 201107 N
PM 2-9-2 N5°38.811', E118°21.927' 201107 N
PM 2-9-3 N5°38.811', E118°21.927' 201107 N
PM 2-9-4 N5Q38.8H', E118°21.927' 201107 Single 04/01/08 Box 2 Nala Y N
PM 2-9-5 N5°38.8ir, E118°21.927' 201107 0.36 138.89 Duplicate 28/12/07 Box 2 Nala Y (Few A) Y
PM 2-9-6 N5°38.8H’, E118°21.927' 201107 N
PM 2-9-7 N5°38.8H', E118°21.927' 201107 N
Mafa 1-3-1 N5°34.852', E118°19.864’ 201107 Single 02/01/08 Box 2 Mafa N N
Mafa 1-3-2 N5°34.852', E118°19.864' 201107 Single 30/06/09 Box 7 Mafa Y N
Mafa 1-3-3 N5°34.852’, E118°19.864' 201107 Single 30/06/09 Box 7 Mafa Y N
Mafa 1-3-4 N5°34.852’, E118°19.864' 201107 Single 02/01/08 Box 2 Mafa N N
Mafa 1-3-5 N5°34.852', E118°19.864’ 201107 Single 30/06/09 Box 7 Mafa Y N
Mafa 1-3-6 N5°34.852', E118°19.864' 201107 Single 30/06/09 Box 7 Mafa Y N
Mafa 1-3-7 N5°34.852\ E118°19.864’ 201107 1.06 47.17 Duplicate 31/12/07 Box 1 Mafa Y (B?) Y
Mafa 1-3-8 N5°34.852', E118°19.864’ 201107 Single 30/06/09 Box 7 Mafa Y N
Mafa 1-3-9 N5°34.852', E118°19.864' 201107 Single 30/06/09 Box 7 Mafa Y N

Mafa 1-4-1 N5°38.361', E118°21.572' 201107 Single 30/06/09 Box 7 Mafa Y N
Mafa 1-4-2 N5°38.361', E118°21.572' 201107 Single 02/01/08 Box 2 Mafa N N
Mafa 1-4-3 N5°38.361', E118°21.572' 201107 1.16 43.10 Duplicate 31/12/07 Box 1 Mafa N Y
PM 3-7-1 N5°27.153', E118°15.040' 221107 N
PM 3-7-2 N5°27.153’, E118°15.04a 221107 2.06 24.27 Duplicate 02/01/08 Box 3 Nala Y (Both) Y

PM 3-7-3 N5°27.153', E118°15.040' 221107 N

PM 3-7-4 N5°27.153', E118°15.040' 221107 N

PM 3-7-5 N5°27.153', E118°15.040' 221107 Single 04/01/08 Box 3 Nala Y N

PM 3-7-6 N5°27.153', E118°15.040' 221107 N

PM 3-7-7 N5°27.153', E118°15.040' 221107 Single 07/01/08 Box 3 Nala Y N

PM 3-7-8 N5°27.153', E118°15.040' 221107 N
PM 3-7-9 N5°27.153', E118°15.040' 221107 N
PM 3-7-10 N5°27.153', E118°15.040' 221107 N

PM 3-7-11 N5°27.153', E118°15.040' 221107 N

PM 3-7-12 N5°27.153\ E118°15.040' 221107 N
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PM 3-7-13 N5°27.153\ E118°15.040' 221107 N
PM 3-7-14 N5°27.153\ E118°15.040' 221107 2.16 23.15 Duplicate 02/01/08 Box 3 Nala Y (Both) Y
PM 3-7-15 N5°27.153\ E118°15.040' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-7-16 N5°27.153\ E118°15.040' 221107 N
PM 3-7-17 N5°27.153', E118°15.040' 221107 N
PM 3-7-18 N5°27.153\ E118°15.040' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-7-19 N5°27.153\ E118°15.040' 221107 N
PM 3-7-20 N5°27.153\ E118°15.040' 221107 N
PM 3-7-21 N5°27.153', E118°15.040' 221107 N
PM 3-7-22 N5°27.153', E118°15.040' 221107 N
PM 3-7-23 N5°27.153', E118°15.040' 221107 N
PM 3-7-24 N5°27.153\ E118°15.040' 221107 N
PM 3-7-25 N5°27.153', E118°15.040' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-7-26 N5°27.153', EllS-lSM O 1 221107 N
PM 3-7-27 N5°27.153', E118°15.040‘ 221107 Single 04/01/08 Box 3 Nala Y N
PM 3-7-28 N5°27.153', E118°15.040' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-7-29 N5°27.153', E118°15.040' 221107 N
PM 3-7-30 N5°27.153', E118°15.040' 221107 N
PM 3-7-31 N5°27.153', E118°15.040' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-7-32 N5°27.153', E118°15.040' 221107 N
PM 3-7-33 N5°27.153', E118°15.040' 221107 N
PM 3-7-34 N5°27.153\ E118°15.040' 221107 1.96 25.51 Duplicate 02/01/08 Box 3 Nala Y (Few A) Y
PM 3-7-35 N5°27.153', E118°15.040’ 221107 N
PM 3-7-36 N5°27.153', E118°15.0401 221107 Single 07/01/08 Box 3 Nala N N
PM 3-7-37 N5°27.153', E118°15.040l 221107 Single 07/01/08 Box 3 Nala Y N
Mafa 3-10-1 N5°27.482', E118°15.139 221107 Single 02/01/08 Box 2 Mafa N N
Mafa 3-10-2 N5°27.482', E118°15.139' 221107 N
Mafa 3-10-3 N5°27.482,) E llS 0̂ . ^ 221107 Single 02/01/08 Box 1 Mafa N N
Mafa 3-10-4 N5°27.482\  E118°15.139' 221107 N
Mafa 3-10-5 N5°27.482', E118°15.139 221107 N
Mafa 3-10-6 N5°27.482', E118°15.139' 221107 1 . 8 6 26.88 Duplicate 31/12/07 Box 1 Mafa Y (Both) Y
Mafa 3-10-7 N5°27.482', E118°15.139' 221107 Single 02/01/08 Box 1 Mafa N N
Mafa 3-10-8 N5°27.482', E118°15.139’ 221107 Single 02/01/08 Box 1 Mafa N N
Mafa 3-10-9 N5‘’27.482', E118°15.139' 221107 Single 02/01/08 Box 2 Mafa N N
Mafa 3-10-10 N5°27.482', E i m S .^ 221107 Single 02/01/08 Box 2 Mafa N N
Mafa 3-10-11 N5°27.482', E llS I S .^ 221107 N
Mafa 3-10-12 N5°27.482', E l^ lS .m 221107 N
Mafa 3-10-13 N5°27.482', E118°15.139' 221107 N
Mafa 3-10-14 N5°27.482\ E118°15.139' 221107 N
PM 3-8-1 N5°27.740\ E118°15.180' 221107 N
PM 3-8-2 N5°27.740\ E118°15.180‘ 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-8-3 N5°27.74a, E118°15.180' 221107 N
PM 3-8-4 N5°27.740', E118°15.180’ 221107 Single 04/01/08 Box 3 Nala Y N
PM 3-8-5 N5°27.740\ E118°15.180' 221107 N

PM 3-8-6 N5°27.740', E118°15.180' 221107 N
PM 3-8-7 N5°27.740\ E118°15.180' 221107 N
PM 3-8-8 N5°27.740,1 E118°15.180' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-8-9 N5°27.740\ E118°15.180’ 221107 N
PM 3-8-10 N5°27.740\ E118°15.180' 221107 Single 07/01/08 Box 3 Nala FEW N
PM 3-8-11 N5°27.740', E118°15.180' 221107 N

PM 3-8-12 N5°27.740', E118°15.180' 221107 Single 04/01/08 Box 3 Nala Y N
PM 3-8-13 N5o27.740‘, E118°15.180' 221107 1.96 25.51 Duplicate 02/01/08 Box 3 Nala Y (Both) Y

PM 3-8-14 N5°27.740', E118°15.180' 221107 N

PM 3-8-15 N5°27.740\ E118°15.180l 221107 N

PM 3-8-16 N5°27.740\ E118°15.18ff 221107 N

PM 3-8-17 N5°27.740', E l^ lS .lS O 1 221107 N

PM 3-8-18 N5°27.740', E118°15.180' 221107 Single 03/01/08 Box 3 Nala Y N
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PM 3-8-19 N5°27.740\ E118°15.180' 221107 N
PM 3-8-20 N5°27.740\ E118°15.180' 221107 N
PM 3-8-21 N5°27.740\ E118°15.180' 221107 Single 04/01/08 Box 3 Nala N N
PM 3-8-22 N5°27.740\ E118°15.180’ 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-8-23 N5°27.740\ E118°15.180’ 221107 N
PM 3-8-24 N5°27.740\ E118°15.180' 221107 1.96 25.51 Duplicate 02/01/08 Box 3 Nala Y Weird A Y
PM 3-8-25 N5°27.740\ E118°15.180' 221107 Single 03/01/08 Box 3 Nala Y N
PM 3-8-26 N5°27.740', E118°15.180' 221107 N
PM 3-8-27 N5°27.740\ E118°15.180' 221107 N
PM 3-8-28 N5°27.740', E118°15.180' 221107 Single 04/01/08 Box 3 Nala Y N
PM 3-8-29 N5°27.740\ E118°15.180' 221107 Single 04/01/08 Box 3 Nala Y N
PM 3-8-30 N5°27.740\ E118°15.180l 221107 N
PM 3-8-31 N5°27.740', E118°15.180' 221107 N
PM 3-8-32 N5°27.740\ E118°15.180’ 221107 N
PM 3-8-33 N5°27.740', E118°15.180' 221107 N
PM 3-8-34 N5°27.740', E118°15.180' 221107 N
PM 3-8-35 N5°27.740\ E118°15.180' 221107 N
PM 3-8-36 N5°27.740\ E118°15.180' 221107 Single 07/01/08 Box 3 Nala Y N
PM 3-8-37 N5o27.740\ E118°15.180' 221107 N
PM 3-8-38 N5°27.740', E118°15.180l 221107 N
Mafa 3-11-1 N5-27.740', E118°15.18a 221107 N
Mafa 3-11-2 N5°27.740', E118°15.180' 221107 N
Mafa 3-11-3 N5°27.740', E118°15.180' 221107 N
Mafa 3-11-4 N5°27.740\ E118°15.180' 221107 N
Mafa 3-11-5 N5°27.740’, E118°15.18a 221107 Single 02/01/08 Box 2 Mafa N N
Mafa 3-11-6 N5°27.740l, E118°15.180' 221107 1.26 39.68 Duplicate 31/12/07 Box 1 Mafa Y (Both) Y
Mafa 3-11-7 N5°27.740', E118°15.180' 221107 Sinqle 02/01/08 Box 2 Mafa N N
PM 3-9-1 N5°27.854', E118°15.175' 221107 N
PM 3-9-2 N5°27.854', E118°15.175’ 221107 1.46 34.25 Duplicate 02/01/08 Box 3 Nala N Y
PM 3-9-3 N5°27.854\ E118°15.175' 221107 Single 07/01/08 Box 3 Nala FEW N
PM 3-9-4 N5°27.854', E118°15.175' 221107 N

PM 3-9-5 N5°27.854', E118°15.175' 221107 N

Mafa 4-1-1 N5°28.065', E118°15.113' 240108 Duplicate 07/02/08 Box 2 Mafa N N

PM 4-2-1 N5°28.020l, E118015.113' 240108 N

PM 4-2-2 N5°28.020\ E118°15.113' 240108 N

PM 4-2-3 N5°28.020', E118°15.113' 240108 N

PM 4-2-4 N5°28.020', E118°15.113' 240108 N

PM 4-2-5 N5°28.02ff, E118°15.113' 240108 N

PM 4-2-6 N5°28.020\ E118°15.113' 240108 N

PM 4-2-7 N5°28.020\ E118015.113' 240108 1.487 33.62 Duplicate 09/02/08 Box 3 Nala Y (Both) Y

PM 4-2-8 N5°28.020\ E118°15.113' 240108 N

PM 4-2-9 N5°28.020', E118°15.113' 240108 N

PM 4-2-10 N5°28.020', E118°15.113' 240108 Duplicate 24/06/09 Box 3 Nala Y (Both) N

PM 4-2-11 N5°28.020', E118°15.113' 240108 N

PM 4-2-12 N5°28.020\ E118°15.113' 240108 N

PM 4-2-13 N5°28.020', E118°15.113' 240108 N

PM 4-2-14 N5°28.020\ E118°15.113' 240108 N

PM 4-2-15 N5°28.020\ E118°15.113' 240108 N

PM 4-2-16 N5°28.020\ E118°15.113' 240108 3.038 16.46 Duplicate 08/02/08 Box 3 Nala Y (Both) Y

PM 4-2-17 N5°28.020\ E118°15.113' 240108 N

PM 4-2-18 N5°28.020', E118°15.113' 240108 N

PM 4-2-19 N5°28.020', E118°15.113' 240108 N

Mafa 4-2-1 N5°28.932', E118°14.306' 250108 Duplicate 07/02/08 Box 2 Mafa N? N

PM 4-3-1 N5°28.932', E118°14.306' 250108 N

PM 4-3-2 N5°28.932', E118°14.306' 250108 N

PM 4-3-3 N5-28.932’, E118°14.306' 250108 N

PM 4-3-4 N5°28.932', E118°14.306' 250108 N
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PM 4-3-5 N5°28.932\ E118°14.306' 250108 N
PM 4-3-6 N5°28.932\ E118°14.306’ 250108 2.514 19.89 Duplicate 08/02/08 Box 4 Nala as 4-3-1 Y
PM 4-3-7 N5°28.932\ E118°14.306’ 250108 N
PM 4-4-1 N5°28.616', E118°16.249' 250108 N
PM 4-4-2 ^ “28.616', E118°16.249' 250108 N
Mafa 4-3-1 N5°28.616', E118°16.249' 250108 Duplicate 07/02/08 Box 2 Mafa N? N
PM 4-5-1 N5°29.464\ E118°16.700' 250108 N
PM 4-5-2 N5°29.464', E118°16.700' 250108 Duplicate 08/02/08 Box 3 Nala Y (Both) N
PM 4-6-1 N5°30.565\ E118°13.775’ 250108 Duplicate 08/02/08 Box 3 Nala Y (Both) N
PM 4-6-2 N5°30.565', E118°13.775' 250108 N
Mane 4-1-1 N5°29.880\ E118°14.167‘ 250108 N
PM 4-7-1 N5°30.189\ E118°15.649' 260108 Single 09/02/08 Box 3 Nala Y N
PM 4-8-1 N5°29.841', E118°15.194' 260108 3.189 15.68 Duplicate 09/02/08 Box 3 Nala Y (Both) Y
PM 4-9-1 N5°30.170', E118°15.595' 260108 N
PM 4-9-2 N5°30.170', E118°15.595' 260108 4.65 10.75 Duplicate 09/02/08 Box 3 Nala Y (Both) Y
PM 4-9-3 N5°30.170', E118°15.595' 260108 N
PM 4-9-4 N5°30.170', E118°15.595’ 260108 N
PM 4-9-5 N5°30.170\ E118°15.595' 260108 2.818 17.74 Duplicate 09/02/08 Box 3 Nala Y (Both) Y
PM 4-9-6 N5°30.170\ E118°15.595' 260108 N
PM 4-9-7 N5°30.170', E118°15.595' 260108 Duplicate 24/06/09 Box 4 Nala Y (Both) N
PM 4-9-8 N5o30.170', E118°15.595' 260108 N
PM 3-10-1 N5°33.198', E118°20.007' 260108 N
Popy 3-2-1 N5°32.494', E118°18.563' 260108 4.807 10.40 Duplicate 08/02/08 Box 7 Mafa Y
PM 4-10-1 N5°30.287', El 18°16.366' 260108 Duplicate 09/02/08 Box 4 Nala Y (Only B) N
PM 4-10-2 N5°30.287', E118°16.366’ 260108 N
PM 4-11-1 N5°30.272', E118°16.29r 260108 4.033 12.40 Duplicate 09/02/08 Box 4 Nala Y (Both) Y
PM 4-11-2 N5°30.272', E118°16.291' 260108 N
PM 4-11-3 N5°30.272', E118°16.291' 260108 N
PM 4-11-4 N5°30.272', E118°16.29r 260108 N
PM 4-11-5 N5°30.272', E118°16.29r 260108 N
PM 4-11-6 N5°30.272', E118°16.291' 260108 N
PM 4-11-7 N5°30.272', E118°16.291' 260108 N
PM 4-11-8 N5°30.272', E118°16.291' 260108 N
PM 4-11-9 N5-30.272’, E118°16.291’ 260108 3.626 13.79 Duplicate 09/02/08 Box 4 Nala Y (Only B) Y
PM 4-11-10 N5°30.272', E118°16.291' 260108 Duplicate 24/06/09 Box 4 Nala Y (Both) N
PM 4-11-11 N5°30.272', E118°16.291' 260108 N
PM 4-12-1 N5°29.579\ E118°14.769' 260108 N
PM 4-12-2 N5°29.579\ E118°14.769' 260108 Duplicate 09/02/08 Box 4 Nala N (Few B) N
PM 4-12-3 N5°29.579\ E118°14.769’ 260108 N
Mafa 4-4-1 N5°29.351', E118°17.316' 270108 1.908 26.21 Duplicate 08/02/08 Box 2 Mafa N? Y
Mafa 4-4-2 N5°29.351', E118°17.316' 270108 Duplicate 08/02/08 Box 2 Mafa Y (B?) N

Mafa 4-4-3 N5°29.351', E118°17.316' 270108 Duplicate 08/02/08 Box 2 Mafa Y (Both) N
Popy 4-1-1 N5°29.028', E118°16.983' 270108 3.373 14.82 Duplicate 11/02/08 Box 7 Mafa Y
Mafa 4-5-1 N5°28.050', E118°15.022' 280108 Duplicate 08/02/08 Box 2 Mafa Y (B?) N

Mafa 4-5-2 N5°28.050', E118°15.022I 280108 Duplicate 08/02/08 Box 2 Mafa N? N

Mafa 4-5-3 N5-28.050', E118°15.022' 280108 0.902 55.43 Duplicate 08/02/08 Box 2 Mafa N? Y
Mafa 4-5-4 N5°28.050\ E118°15.022' 280108 Duplicate 08/02/08 Box 2 Mafa Y (Both) N

PM 4-13-1 N5°28.050', E118°15.022' 280108 Single 09/02/08 Box 4 Nala Y N
PM 4-14-1 N5°29.046') E118°15.407' 280108 N

PM 4-14-2 N5°29.046', E118°15.407' 280108 N

PM 4-14-3 N5°29.046', E118°15.407' 280108 N

PM 4-14-4 N5°29.046', E118°15.407' 280108 1.173 42.63 Duplicate 11/02/08 Box 4 Nala Y (Both) Y

PM 4-4-3 N5°28.616', E118°16.249 280108 N

PM 4-4-4 N5°28.616', E118°16.249' 280108 N

PM 4-4-5 N5°28.616', E118°16.249' 280108 N

PM 4-4-6 N5°28.616', E118°16.249' 280108 N

PM 4-4-7 N5°28.616', E118°16.249' 280108 1.05 47.62 Duplicate 08/02/08 Box 3 Nala Y (Both) v
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PM 4-4-8 N5°28.616', E118°16.249’ 280108 N
PM 4-4-9 N5°28.616\ E118°16.249' 280108 N
PM 4-4-10 N5°28.616', E118°16.249' 280108 N
PM 4-4-11 N5°28.616\ E118°16.2491 280108 N
PM 4-4-12 N5°28.616\ E118“16.249' 280108 N
Mafa 4-3-2 N5°28.616', E118°16.249' 280108 Duplicate 07/02/08 Box 2 Mafa N? N
Mafa 4-3-3 N5°28.616\ E118°16.249' 280108 N
Mafa 4-3-4 N5°28.616', E118°16.249‘ 280108 N
Mafa 4-3-5 N5°28.616', E118016.249‘ 280108 Sinqle 07/02/08 Box 2 Mafa N? N
PM 4-15-1 N5°29.220', E118°16.114' 280108 N
PM 4-15-2 N5°29.220', E118°16.114' 280108 N
PM 4-15-3 N5°29.220\ E118°16.114' 280108 0.823 60.75 Duplicate 11/02/08 Box 4 Nala Y (Both) Y
PM 4-15-4 N5°29.220\ E118°16.114' 280108 Y
PM 4-16-1 N5°28.052', E118°15.138' 280108 N
PM 4-16-2 N5°28.052\ E118°15.138' 280108 N
PM 4-16-3 N5°28.052', E118°15.138' 280108 N
PM 4-16-4 N5°28.052', E118°15.138' 280108 3.551 14.08 Duplicate 11/02/08 Box 4 Nala Y (Only B) Y
PM 4-16-5 N5°28.052', E l^ lS .lS S 1 280108 Duplicate 24/06/09 Box 4 Nala Y (Only A) N
Mafa 4-6-1 N5°28.052', E118°15.138' 280108 Duplicate 08/02/08 Box 2 Mafa N? N
Mafa 4-7-1 N5°28.538\ E118°16.190' 280108 Duplicate 08/02/08 Box 2 Mafa Y (A?) N
PM 4-17-1 N5°28.348\ E118°15.980' 280108 Duplicate 24/06/09 Box 4 Nala Y (Only A) N
PM 4-17-2 N5028.348\ E118°15.980' 280108 N
PM 4-17-3 N5°28.348\ E118°15.980' 280108 N
PM 4-17-4 N5°28.348\ E118°15.980’ 280108 3.209 15.58 Duplicate 11/02/08 Box 4 Nala Y Y
PM 6-1-1 N5°24.592\ EU8°01.734’ 210708 1.81 27.62 Duplicate 90908 Box 4 Nala Y (both) Y
PM 6-1-2 N5°24.592', E118°01.734' 210708 Duplicate 250609 Box 4 Nala Y (both)
PM 6-1-3 N5°24.592', E118°01.734' 210708 Duplicate 240609 Box 4 Nala Y (Only A)
PM 6-1-4 N5°24.592', E118°01.734' 210708 Single 120908 Box 5 Nala Y
PM 6-1-5 N5-24.592', E118°01.734' 210708
PM 6-1-6 N5°24.592', E118°01.734’ 210708 2.62 19.08 Duplicate 90908 Box 5 Nala FEW Y
PM 6-1-7 N5°24.592', E118°01.734’ 210708 Duplicate 240609 Box 5 Nala Y (both)
PM 7-1-1 N5°23.908\ E118°00.821' 210708
PM 7-1-2 N5°23.908\ E118°00.821' 210708 Single 120908 Box 5 Nala Y
PM 7-1-3 N5°23.908\ E118°00.821' 210708 2.99 16.72 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-1-4 N5°23.908', E118°00.821' 210708
Mafa 7-1-1 N5°24.273', E117°59.497 210708 Single 170908 Box 3 Mafa Y
PM 7-2-1 N5°24.273', E117°59.497' 210708 1.84 27.17 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-2-2 N5°24.273', E117°59.497' 210708 2.07 24.15 Duplicate 90908 Box 5 Nala Y (few A) Y/NC
PM 7-2-3 N5°24.273', E117°59.497’ 210708 1.84 27.17
Mafa 6-11-1 N5°24.245', E117059.923' 210708 1.08 46.30 Y/NC
Mafa 6-11-2 N5°24.245', E117°59.923' 210708 2.08 24.04 Y/NC

Mafa 6-11-3 N5°24.245', E117°59.923' 210708 2.41 20.75 Y/NC
Mafa 6-11-4 N5°24.245\ E117059.923' 210708
Mafa 6-11-5 N5°24.245,> E117°59.923' 210708
Mafa 6-11-6 N5“24.245', E117°59.923' 210708 Single 170908 Box 4 Mafa Y
Mafa 6-2-1 N5°24.405', E117°58.548’ 210708
Mafa 6-2-2 N5°24.405', E117°58.548' 210708
Mafa 6-2-3 N5°24.405\ E i n ^ ^ S 1 210708
Mafa 6-2-4 N5°24.405’, E117°58.548’ 210708 Single 170908 Box 4 Mafa Y
Mafa 6-2-5 N5°24.405', E117058.548' 210708
Mafa 6-2-6 N5°24.405’, E117°58.548' 210708 4.72 10.59 Duplicate 100908 Box 3 Mafa Y (both) Y/NC

Mafa 6-2-7 N5°24.405', E117°58.548* 210708
Mafa 6-2-8 N5°24.405', El 17°58.548' 210708 Single 170908 Box 4 Mafa Y
Mafa 6-2-9 N5°24.405', E117°58.548' 210708
Mafa 6-2-10 N5°24.405\ E117°58.548‘ 210708 1.43 34.97 Duplicate 100908 Box 3 Mafa Y (both) Y

Mafa 6-3-1 N5°24.895', E118°02.149 210708 Sinqle 170908 Box 4 Mafa Y

PM 7-3-1 N5°24.090\ E117°58.994' 220708

162



Appendix One: Nasalis larvatus and Macaca fascicularis samples database

Name
Location 

GPS coordinates
Collection

date Weight

Conversion 
factor (to 

obtain epg 
faeces) Extracted

Extraction
date

Stored at 
70-CMWB 

lab
(mt)DNA
presence

Sucrose
Flotation

PM 7-3-2 N5-24.090', E117°58.994' 220708 2.4 20.83 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-3-3 N5°24.090\ E117058.994' 220708
PM 7-3-4 N5°24.090', E117°58.994' 220708
PM 7-3-5 N5°24.090\ E117“58.994' 220708 Single 120908 Box 5 Nala Y
PM 7-3-6 N5°24.090', E117°58.994' 220708 Single 120908 Box 5 Nala Y
PM 7-3-7 N5°24.090', E117°58.994' 220708 2.46 20.33 Duplicate 90908 Box 5 Nala WEIRD Y/NC
PM 7-3-8 N5°24.090\ E117°58.994' 220708
PM 7-3-9 N5°24.090', E117°58.994' 220708
PM 7-3-10 N5°24.090', El 17-58.994' 220708
PM 7-3-11 N5°24.09a, El 17-58.994' 220708 3.12 16.03 Duplicate 90908 Box 5 Nala WEIRD Y/NC
PM 7-4-1 N5-24.068*, El 17-59.030' 220708
PM 7-4-2 N5°24.068\ E117-59.030' 220708
PM 7-4-3 N5-24.068’, El 17-59.030' 220708 4.44 11.26 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-4-4 N5-24.068’, El 17°59.030' 220708 3.99 12.53 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-4-5 N5-24.068', El 17-59.030' 220708 3.45 14.49 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-4-6 N5-24.068', El 17-59.030' 220708 Single 220908 Box 5 Nala Y
PM 7-4-7 N5-24.068', E117-59.030' 220708
PM 7-4-8 N5-24.068’, El 17-59.030’ 220708
PM 7-4-9 N5-24.068', E ll7-59.030' 220708
PM 7-4-10 N5-24.068’, Ein-Sg.OSO 220708
PM 7-4-11 N5-24.068’, El 17-59.030' 220708 5.2 9.62 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-4-12 N5-24.068', El 17-59.030’ 220708
PM 7-4-13 N5-24.068', E117-59.030' 220708 5.57 8.98 Duplicate 90908 Box 5 Nala Y (both) Y/NC
PM 7-4-14 N5-24.068', El 17-59.030' 220708
PM 74-15 N5°24.068\ E117-59.030' 220708
PM 7-4-16 N5-24.068', El 17-59.030' 220708 3.7 13.51 Duplicate 90908 Box 5 Nala Y (both) Y/NC
Mafa 6-4-1 N5°24.118\ E117-59.332' 220708 Single 170908 Box 4 Mafa Y
Mafa 64-2 N5°24.118\ E117-59.332' 220708
Mafa 6-4-3 N5°24.118\ E117-59.332' 220708 3.15 15.87 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 6-44 N5-24.118', E117-59.332' 220708
Mafa 6-4-5 N5-24.118', E117-59.332’ 220708
Mafa 6-4-6 N5-24.118', E117-59.332' 220708 Single 170908 Box 4 Mafa Y
Mafa 6-4-7 N5-24.118', E117-59.332' 220708 2 . 8 17.86 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 6-4-8 N5-24.118’, E117-59.332' 220708
Mafa 7-2-1 N5-24.415', E118-01.393' 220708 1.91 26.18 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 7-2-2 N5-24.415', El 18-01.393' 220708
PM 7-5-1 N5-24.415’, El 18°01.393' 220708
Mafa 6-5-1 N5-24.202', El 18-00.693' 220708 Single 170908 Box 4 Mafa Y
Mafa 6-5-2 N5-24.202', El 18-00.693’ 220708 0.83 60.24 Duplicate 100908 Box 3 Mafa Y (both) N

PM 5-1-1 N5-24.786'. E118-02.798' 230708
PM 5-1-2 N5-24.786', E118°02.798' 230708 1.95 25.64 Duplicate 90908 Box 4 Nala Y (both) Y/NC

PM 5-1-3 N5-24.786', E118°02.798' 230708
PM 5-14 N5-24.786', E118-02.798' 230708
PM 5-1-5 N5-24.786', E118°02.798' 230708
PM 5-1-6 N5-24.786', E118°02.798’ 230708 1 . 8 8 26.60 Duplicate 90908 Box 4 Nala Y (both) Y/NC

PM 5-1-7 N5-24.786', E118°02.798' 230708 Single 220908 Box 4 Nala Y
PM 5-1-8 N5-24.786', E118°02.798' 230708
PM 5-1-9 N5-24.786', E118°02.798' 230708
PM 5-1-10 N5-24.786', E118“02.798' 230708 2.54 19.69 Duplicate 90908 Box 4 Nala Y (both) Y/NC

PM 5-1-11 N5-24.786', E118°02.798’ 230708 Single 220908 Box 4 Nala Y

PM 5-1-12 N5-24.786', E118°02.798' 230708
PM 5-1-13 N5-24.786’, E118°02.798' 230708 2.23 22.42 Duplicate 90908 Box 4 Nala Y (both) Y/NC

PM 5-2-1 N5-24.803’, El 18-04.547' 230708
PM 5-2-2 N5-24.803', El 18-04.547’ 230708
PM 5-2-3 N5-24.803', El 18-04.547' 230708 1.57 31.85 Duplicate 90908 Box 4 Nala Y (both) Y/NC

PM 5-24 N5-24.803', El 18-04.547' 230708 4.14 12.08 Duplicate 90908 Box 4 Nala Y (both) Y/NC

PM 5-2-5 N5-24.803', El 18-04.547' 230708
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PM 5-2-6 N5°24.803\ E118°04.547' 230708
PM 5-2-7 N5°24.803\ E118°04.547' 230708
PM 5-2-8 N5°24.803', E118°04.547' 230708 Single 220908 Box 4 Nala Y
PM 5-2-9 N5°24.803\ E118°04.547' 230708 Single 220908 Box 4 Nala Y
PM 6-2-1 N5°24.895\ E118°02.149' 230708
Mafa 6-6-1 N5°24.293\ E118°00.455' 230708
Mafa 6-6-2 N5°24.293\ E118°00.455' 230708
Mafa 6-6-3 N5°24.293\ E118°00.455' 230708 1.5 33.33 Single 170908 Box 4 Mafa Y Y/NC
Mafa 6-6-4 N5°24.293\ E118o00.455• 230708
Mafa 6-7-1 N5°24.295\ E118°00.375' 230708
Mafa 6-7-2 N5°24.295', E118°00.375' 230708 Single 170908 Box 4 Mafa Y
Mafa 7-3-1 N5“24.355', E118°00.357' 230708 1.32 37.88 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 7-3-2 N5°24.355', E118°00.357' 230708
PM 7-6-1 N5°24.355', E118°00.357' 230708 1 50.00 Duplicate 110908 Box 5 Nala ? N
Otter? 7-1-1 N5°24.355', E118°00.357' 230708 2.62 19.08 Y/NC
Mafa 6-8-1 N5°24.253\ EU8°00.087' 230708 Single 180908 Box 4 Mafa Y
Mafa 6-8-2 N5°24.253', E118°00.087' 230708 1 . 1 1 45.05 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 6-8-3 N5°24.253’, E118°00.087’ 230708 Single 180908 Box 4 Mafa EMPTY
Mafa 6-9-1 N5°24.238\ E117°59.838’ 230708 0.97 51.55 Duplicate 100908 Box 3 Mafa Y (both) Y
Mafa 6-9-2 N5°24.238\ E117059.838’ 230708
PM 6-3-1 N5°24.238\ E117°59.838' 230708 1.65 30.30 Duplicate 110908 Box 5 Nala Y Weird A Y
Mafa 6-10-1 N5°24.788\ E118°02.302' 240708
Mafa 6-10-2 N5°24.788', E118°02.302' 240708
Mafa 6-10-3 N5°24.788\ E118°02.302' 240708
Mafa 6-10-4 N5°24.788\ E118°02.302' 240708
Mafa 6-10-5 N5°24.788\ E118°02.302' 240708 0.93 53.76 Duplicate 100908 Box 3 Mafa Y (both) Y
Mafa 6-10-15 N5°24.788', E118°02.302' 240708
Mafa 6-10-16 N5°24.788', E118°02.302' 240708 4.26 11.74 Duplicate 100908 Box 3 Mafa Y (both) N
Mafa 6-10-17 N5°24.788', E118°02.302' 240708
Mafa 5-1-1 N5°24.828\ E118°04.476' 240708 Single 180908 Box 4 Mafa Y
Mafa 5-1-2 N5°24.828\ E118°04.476' 240708
Mafa 5-1-3 N5°24.828', E118°04.476' 240708
Mafa 5-1-4 N5°24.828\ E118°04.476' 240708 1.5 33.33 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 5-1-5 N5°24.828', E118°04.476' 240708 Single 180908 Box 4 Mafa Y
Mafa 5-2-1 N5°24.40r, El 18°05.069' 240708
Mafa 5-2-2 N5°24.401', E118°05.069' 240708
Mafa 5-2-3 N5°24.40r, E118°05.069' 240708 Single 180908 Box 4 Mafa Y
Mafa 5-2-4 N5°24.401\ E118°05.069' 240708 Single 180908 Box 4 Mafa Y

Mafa 5-3-1 N5°25.267', E118°02.119' 250708
Mafa 5-3-2 N5°25.267', E118°02.119' 250708 Single 180908 Box 4 Mafa Y
Mafa 5-3-3 N5°25.267', E118o02.119' 250708
Mafa 5-3-4 N5°25.267', E118°02.119' 250708
Mafa 5-3-5 N5°25.267\ E118o02.119, 250708
Mafa 5-3-6 N5°25.267', E118°02.119' 250708 2 . 2 1 22.62 Duplicate 100908 Box 3 Mafa Y (both) Y

Mafa 5-3-7 N5°25.267’, E118°02.119’ 250708
Mafa 5-3-8 N5°25.267', EU8°02.119' 250708
Mafa 5-3-9 N5°25.267', E118°02.119' 250708 Single 180908 Box 4 Mafa Y

Mafa 5-3-10 N5°25.267\ E118o02.119' 250708 2 . 1 2 23.58 Duplicate 100908 Box 3 Mafa Y (Only A) Y

Mafa 5-3-11 N5°25.267', E118o02.119' 250708
Mafa 5-4-1 N5°25.439l, E118°02.504’ 250708
Mafa 5-4-2 N5°25.439', E118°02.504' 250708 0.52 96.15 Duplicate 100908 Box 3 Mafa Y (both) Y/NC

Mafa 5-4-3 N5°25.439, E118°02.504' 250708 Single 180908 Box 4 Mafa Y

Mafa 5-4-4 N5°25.439\ E118°02.504' 250708 Single 180908 Box 4 Mafa Y

Mafa 5-4-5 N5°25.439', E118°02.504' 250708 1.97 25.38 Duplicate 100908 Box 3 Mafa Y (both) N

Mafa 5-5-1 N5°25.024', E118°03.427' 250708 Single 180908 Box 4 Mafa Y

Mafa 5-5-2 N5°25.024', E118°03.427' 250708 Single 180908 Box 4 Mafa Y

Mafa 5-5-3 N5°25.024', E118°03.427' 250708
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Mafa 5-5-4 N5°25.024\ E118°03.427’ 250708
Mafa 6-10-6 N5°24.788\ E118°02.302' 250708
Mafa 6-10-7 N5°24.788\ E118°02.302’ 250708 2.06 24.27 Duplicate 100908 Box 3 Mafa Y (both) Y/NC
Mafa 6-10-8 N5°24.788\ E118<>02.302’ 250708
Mafa 6-10-9 N5°24.788', E118°02.302' 250708
Mafa 6-10-10 N S ^JS S 1, E118°02.302' 250708 1.29 38.76 Duplicate 100908 Box 3 Mafa Y (both) Y
PM 7-7-1 N5°24.706', E118°01.352' 250708 2 25.00 Duplicate 110908 Box 5 Nala Y (few A) Y/NC
PM 7-7-2 N5°24.706\ E118°01.352' 250708
PM 7-7-3 N5°24.706', E118°01.352' 250708 1 50.00 Duplicate 110908 Box 5 Nala Y (both) Y/NC
PM 7-7-4 N5°24.706', E118°01.352' 250708
PM 7-7-5 N5°24.706', E118°01.352' 250708
PM 7-7-6 N5°24.706', E118°01.352' 250708
PM 7-7-7 N5°24.706', E118°01.352' 250708 2 25.00 Duplicate 110908 Box 5 Nala Y (both) Y/NC
PM 7-8-1 N5°24.444', E118°O1.370 250708 2 25.00 Duplicate 110908 Box 6  Nala Y (both) Y/NC
Mafa 5-7-1 N5°27.531', E118°09.552' 290708 Single 180908 Box 4 Mafa Y
Mafa 5-6-1 N5°27.943', E118°08.324' 290708 Single 180908 Box 4 Mafa Y
Mafa 5-6-2 N5°27.943’, E118°08.324’ 290708
Mafa 5-6-3 N5°27.943', E118°08.324' 290708 Single 180908 Box 4 Mafa EMPTY
PM 5-3-1 N5°27.569', El 18°11.700’ 300708 Single 220908 Box 4 Nala Y
PM 5-3-2 N5°27.569\ E118°11.700' 300708
PM 5-3-3 N5°27.569\ E118°11.700' 300708 Single 220908 Box 4 Nala Y
PM 5-3-4 N5°27.569\ El 18°11.700 300708
PM 5-3-5 N5°27.569\ E118°H.700P 300708
PM 5-3-6 N5°27.569\ El 18°11.700' 300708
PM 5-3-7 N5°27.569’, E118°11.700’ 300708 1.75 28.57 Duplicate 110908 Box 4 Nala Y (both) Y
PM 5-3-8 N5°27.569\ E118°11.700' 300708
PM 5-3-9 N5°27.5691, E118°11.700' 300708
PM 5-3-10 N5°27.569', El 18°11.700 300708
PM 5-3-11 N5°27.569\ El 18°11.700' 300708 1.71 29.24 Duplicate 110908 Box 4 Nala Y (both) Y
PM 5-3-12 N5°27.569, El 18°11.700 300708
PM 5-3-13 N5°27.569‘, El 18°11.700 300708
PM 5-3-14 N5°27.569\ El 18°11.700' 300708
PM 5-3-15 N5°27.569', El 18°11.700 300708 Single 220908 Box 4 Nala Y
PM 5-4-1 N5°27.212'1 E118°11.174' 300708 3.45 14.49 Duplicate 110908 Box 4 Nala Y (few A) Y
PM 5-4-2 N5°27.212', E118°11.174' 300708 2.27 22.03 Duplicate 110908 Box 4 Nala Y (both) Y
PM 5-4-3 N5°27.212', E118°11.174' 300708
PM 5-4-4 N5°27.212', E118°11.174' 300708
PM 5-4-5 N5°27.212', El 18°11.174' 300708
PM 5-4-6 N5°27.212', El 18°11.174’ 300708 Single 220908 Box 4 Nala Y
PM 5-4-7 N5°27.212', E118°11.174' 300708 4.82 10.37 Duplicate 110908 Box 4 Nala Y (both) Y
PM 5-4-8 N5°27.212\ El 18°11.174' 300708
PM 5-4-9 N5°27.212', E118°11.174' 300708
PM 5-4-10 N5°27.212', E118°11.174' 300708 Single 220908 Box 4 Nala Y
PM 5-4-11 N5°27.212', El 18°11.174’ 300708
PM 5-4-12 N5°27.212'1 E118°11.174' 300708 2.52 19.84 Duplicate 110908 Box 4 Nala Y (both) Y
PM 5-4-13 N5°27.212', E118°11.174' 300708
PM 5-4-14 N5°27.212', E118°11.174' 300708
PM 5-4-15 N5°27.212’, E118°11.174' 300708
Mafa 3-12-1 N5°27.182', E118°10.345' 300708 Single 180908 Box 4 Mafa Y
PM 3-11-1 N5°27.566', E118°07.328' 300708 Single 220908 Box 3 Nala Y
PM 3-11-2 N5°27.566', E118°07.328' 300708 2.42 2 0 . 6 6 No EtOH! Y

PM 3-11-3 N5°27.566', E118°07.328' 300708
PM 3-11-4 N5°27.566', E118°07.328' 300708 Duplicate 110908 Box 3 Nala Y (both)

PM 5-5-1 N5°27.649‘, E118°07.338' 300708 1 . 8 6 26.88 Duplicate 110908 Box 4 Nala Y (both) Y

PM 5-5-2 N5°27.649\ E118°07.338' 300708 Single 220908 Box 4 Nala Y
PM 5-5-3 N5°27.649\ E118°07.338' 300708
PM 5-5-4 N5°27.649, E118°07.338' 300708
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PM 5-5-5 N5°27.649\ E118°07.338' 300708 Sinqle 220908 Box 4 Nala Y
Mafa 6-10-11 N5°24.788’, E118°02.302’ 300708 1.46 34.25 Duplicate 100908 Box 3 Mafa Y (both) Y
Mafa 6-10-12 N5°24.788\ E118°02.302' 300708
Popy 6-1-1 N5°224.728', E118°02.398' 10808 6.49 7.70 Duplicate 120908 Box 7 Mafa Y
Mafa 6-10-13 N5°24.788\ E118°02.302' 60808 2.9 17.24 Y
Mafa 6-10-14 N5°24.788', E118°02.302' 60808 3.9 12.82 Y
Mafa 6-1-1 N5°24.607', E118°01.699' 80808 Sinqle 180908 Box 4 Mafa Y
Mafa 6-1-2 N5°24.607', E118°01.699' 80808 4.1 1 2 . 2 0 Duplicate 100908 Box 3 Mafa Y (both) Y
PM 6-4-1 N5°23.970\ E118°01.155' 80808 Sinqle 220908 Box 5 Nala Y
PM 6-4-2 N5°23.970\ E118°01.155' 80808 Single 220908 Box 5 Nala Y
PM 6-4-3 N5°23.970', E118°01.155' 80808 Duplicate 110908 Box 5 Nala Y Weird A
PM 6-4-4 N5°23.970\ E118°01.155' 80808 Duplicate 240609 Box 5 Nala Y (few A)
PM 6-5-1 N5°24.868', E118°02.193’ 80808 3.1 16.13 Duplicate 110908 Box 5 Nala N Y
PM 6-5-2 N5°24.868', E118°02.193' 80808 2 . 2 22.73 Duplicate 110908 Box 5 Nala N (FEW B) Y
PM 7-9-1 N5°24.514', E117°58.635' 150808
PM 7-9-2 N5°24.514\ E117°58.635' 150808 Sinqle 220908 Box 5 Nala Y
PM 7-9-3 N5°24.514', E117°58.635' 150808
PM 7-9-4 N5°24.514', E117°58.635' 150808 3.21 15.58 Duplicate 110908 Box 6  Nala Y (both) Y
PM 7-9-5 N5°24.514', E117°58.635' 150808 1.4 35.71 Duplicate 110908 Box 6  Nala Y (both) Y
Mafa 7-4-1 N5°24.942\ E117°56.906' 150808
Mafa 7-4-2 N5°24.942', E117o56.906’ 150808 2.75 18.18 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 7-4-3 N5°24.942', E117°56.906' 150808 Sinqle 180908 Box 5 Mafa Y
Mafa 7-4-4 N5°24.942', E117,>56.906, 150808 Single 180908 Box 5 Mafa Y
Mafa 7-4-5 N5°24.942', E117°56.906' 150808 3.42 14.62 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 7-4-6 N5“24.942', E117°56.906’ 150808 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 7-4-7 N5°24.942', E117°56.906' 150808 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 7-4-8 N5°24.942', E117°56.906' 150808
Mafa 7-4-9 N5°24.942', E117°56.906’ 150808 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 7-4-10 N5°24.942', E117°56.906' 150808 2.37 2 1 . 1 0 Duplicate 130908 Box 3 Mafa Y (Both) Y
PM 7-10-1 N5°24.744\ El 17°57.394' 150808
PM 7-10-2 N5°24.744', E117°57.394' 150808
PM 7-10-3 N5°24.744', E117°57.394' 150808 Sinqle 220908 Box 6  Nala FEW
Mafa 6-12-1 N5°24.378', E117°58.273' 150808 3.13 15.97 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 6-12-2 N5°24.378', E117°58.273' 150808
Mafa 6-12-3 N5°24.378', E117°58.273’ 150808 2.89 17.30 Duplicate 130908 Box 3 Mafa Y (both) Y

Mafa 6-124 N5°24.378', E117°58.273' 150808
Mafa 6-12-5 N5°24.378', E117°58.273' 150808
Mafa 6-12-6 N5°24.378', E117°58.273' 150808 Sinqle 180908 Box 5 Mafa Y

Mafa 6-12-7 N5°24.378', E117<’58.273' 150808 3.4 14.71 Duplicate 130908 Box 3 Mafa Y (both) Y

Mafa 6-12-8 N5-24.378', E117°58.273' 150808 Sinqle 190908 Box 5 Mafa Y
Mafa 6-12-9 N5°24.378\ E117°58.273' 150808
Mafa 6-12-10 N5-24.378', E117°58.273' 150808
Mafa 6-12-11 N5°24.378\ E117°58.273' 150808
Mafa 6-12-12 N5°24.378', E117°58.273’ 150808
PM 7-11-1 N5°24487\ E117°58.588’ 150808
PM 7-11-2 N5°24.487', E117°58.588’ 150808
PM 7-11-3 N5°24.487', E117°58.588' 150808 Sinqle 220908 Box 6  Nala Y

PM 7-114 N5°24.487, E117°58.588' 150808 2.38 2 1 . 0 1 Duplicate 110908 Box 6  Nala Y (both) Y

PM 7-11-5 N5°24.487', E117°58.588' 150808 Sinqle 220908 Box 6  Nala Y

PM 7-11-6 N5°24.487', E117°58.588' 150808 5.11 9.78 Duplicate 120908 Box 6  Nala Y (both) Y

PM 7-11-7 N5°24.487', E117°58.588’ 150808
PM 7-11-8 N5°24.487', E117<’58.588' 150808 5.15 9.71 Duplicate 120908 Box 6  Nala Y (both) Y

PM 7-11-9 N5°24487', E117058.588' 150808
PM 7-11-10 N5°24487', E117°58.588' 150808
PM 7-11-11 N5°24.487\ E117°58.588' 150808
PM 7-11-12 N5°24.487', E117°58.588' 150808 5.24 9.54 Duplicate 120908 Box 6  Nala Y (both) Y

PM 7-11-13 N5°24.487', E117°58.588' 150808
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PM 7-11-14 N5°24.487\ E117°58.588' 150808
PM 7-11-15 N5024.487\ E117°58.588' 150808
PM 7-11-16 N5°24.487\ E117058.588, 150808 5.93 8.43 Duplicate 120908 Box 6  Nala Y (both) Y
PM 7-11-17 N5°24.487\ E117°58.588' 150808
PM 7-11-18 N5°24.487, E117°58.588' 150808 Single 220908 Box 6  Nala Y
PM 7-11-19 N5<>24.487', E117°58.588' 150808
PM 7-11-20 N5°24.487\ E117°58.588' 150808
PM 7-11-21 N5°24.487, E117°58.588' 150808
PM 7-11-22 N5°24.487, E117°58.588' 150808
PM 7-11-23 N5°24.487, E117°58.588' 150808
PM 7-11-24 N5°24.487', E117°58.588' 150808
PM 7-11-25 N5°24.487', E117°58.588’ 150808 Single 230908 Box 6  Nala Y
PM 7-11-26 N5°24.487', E117°58.588’ 150808 5.84 8.56 Duplicate 120908 Box 6  Nala Y (both) Y
Mafa 7-5-1 N5°24.633\ E117°58.801' 170808 4.7 10.64 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 7-5-2 N5°24.633’. E117°58.801’ 170808 Single 190908 Box 5 Mafa Y
Mafa 7-5-3 N5°24.633', E117°58.801’ 170808
Mafa 7-5-4 N5°24.633\ E117°58.801' 170808 Single 190908 Box 5 Mafa Y
Mafa 7-5-5 N5°24.633', E117°58.801' 170808 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 7-5-6 N5°24.633', E117°58.801' 170808 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 7-5-7 N5°24.633', E117°58.801’ 170808 5.25 9.52 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 7-5-8 N5°24.633', E117°58.801' 170808 Duplicate 300609 Box 7 Mafa Y (both)
PM 7-12-1 N5°24.155\ E117°58.925' 170808 2 . 6 19.23 Single 230908 Box 6  Nala Y
PM 7-12-2 N5°24.155', E117°58.925' 170808 Duplicate 120908 Box 6  Nala FEW
Mafa 6-13-1 N5°24.043', E117°59.196' 170808 2.5 2 0 . 0 0 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 6-13-2 N5°24.043', E117°59.196' 170808 Single 190908 Box 5 Mafa Y
PM 7-13-1 N5°24.109\ E117°59.184' 170808 2.33 21.46 Y
Mafa 7-6-1 N5°24.341', E118°00.555' 170808 Single 190908 Box 5 Mafa Y
Mafa 7-6-2 N5°24.341', E118°00.555' 170808 Single 190908 Box 5 Mafa Y
Mafa 7-6-3 N5°24.341', E118°00.555' 170808 1.4 35.71 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 7-6-4 N5°24.341', E118°00.555' 170808 1.69 29.59 Y
Mafa 5-8-1 N5°25.228', E118°02.055’ 180808
Mafa 5-8-2 N5°25.228', E118°02.055' 180808 Duplicate 130908 Box 3 Mafa Y (both)
Mafa 5-8-3 N5°25.228', E118o02.055' 180808 2.59 19.31 Single 190908 Box 5 Mafa FEW Y
Mafa 5-8-4 N5°25.228', E118°02.055' 180808 Single 190908 Box 5 Mafa Y

Mafa 5-8-5 N5°25.228', E118°02.055' 180808 2.05 24.39 Duplicate 130908 Box 3 Mafa Y (both) Y
Mafa 5-8-6 N5°25.228', E118°02.055' 180808
Mafa 5-9-1 N5°24.929\ E118°02.959' 180808 Single 190908 Box 5 Mafa Y

Mafa 5-9-2 N5°24.929\ E118°02.959' 180808
Mafa 5-9-3 N5°24.929', E118°02.959' 180808 3.15 15.87 Duplicate 130908 Box 3 Mafa Y (both) Y

Mafa 5-9-4 N5°24.929\ E118°02.959' 180808 Single 190908 Box 5 Mafa Y

Mafa 5-9-5 N5°24.929\ E118°02.9591 180808 4.29 1 1 . 6 6 Duplicate 130908 Box 3 Mafa Y (both) Y

Mafa 5-9-6 N5°24.929\ E118°02.959' 180808
Mafa 5-9-7 N5°24.929\ E118°02.959' 180808
Mafa 5-9-8 N5024.929*, E118°02.959' 180808
Mafa 5-10-1 N5°25.029\ E118°03.418’ 180808 3.61 13.85 Duplicate 130908 Box 3 Mafa Y (both) Y

Mafa 5-10-2 N5o25.029\ E118°03.418' 180808
Mafa 5-10-3 N5°25.029\ E118°03.418' 180808 2.79 17.92 Duplicate 150908 Box 3 Mafa Y (both) Y

Mafa 5-10-4 N5°25.029\ E118°03.418' 180808 2.93 17.06 Duplicate 150908 Box 3 Mafa Y (both) Y

Mafa 5-10-5 N5°25.029\ E118°03.418' 180808
Mafa 5-10-6 N5°25.029\ E118°03.418' 180808
Mafa 5-10-7 N5°25.029*, E118°03.418' 180808
PM 5-6-1 N5°25.029\ E118°03.418' 180808
PM 5-6-2 N5°25.029', E118°03.418' 180808
PM 5-6-3 N5°25.029\ E118°03.418' 180808
PM 5-6-4 N5-25.029’, E118°03.418' 180808 4.58 10.92 Duplicate 120908 Box 4 Nala Y (both) Y

PM 5-6-5 N5°25.029\ E118°03.418l 180808 Single 230908 Box 4 Nala Y

PM 5-6-6 N5°25.029', E118°03.418’ 180808
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PM 5-6-7 N5°25.029\ E118°03418' 180808 Single 230908 Box 4 Nala Y
PM 5-6-8 N5°25.029\ E118°03418' 180808
PM 5-6-9 N5°25.029l, E118o03.418’ 180808 3.76 13.30 Duplicate 120908 Box 4 Nala Y (both) Y
PM 5-6-10 N5°25.029\ E118°03418' 180808 3.78 13.23 Duplicate 120908 Box 4 Nala Y (both) Y
PM 5-6-11 N5°25.029\ E118°03.418' 180808
PM 5-6-12 N5°25.029\ E118°03418' 180808 Single 230908 Box 4 Nala N
PM 5-6-13 N5°25.029\ E118°03418' 180808 4.68 1 0 . 6 8 Duplicate 120908 Box 4 Nala Y (both) Y
PM 5-6-14 N5°25.029\ E118°03418' 180808
PM 5-6-15 N5°25.029\ E118°03418' 180808
PM 6-6-1 N5°24.451', E118°04.711' 190808 3.32 15.06 Duplicate 120908 Box 5 Nala Y (both) Y
PM 6-6-2 N5°24.451', E118°04.711' 190808 3.74 13.37 Duplicate 120908 Box 5 Nala Y (both) Y
PM 6-6-3 N5°24451', E118o04.711' 190808 5.02 9.96 Duplicate 120908 Box 5 Nala Y (both) Y
PM 6-6-4 N5°24.451', E118°04.711' 190808 Duplicate 240609 Box 5 Nala Y (both)
PM 6-6-5 N5°24.451', E118o04.711' 190808 Duplicate 250609 Box 5 Nala Y (both)
PM 6 -6 - 6 N5°24.451', E118c04.711' 190808 3.76 13.30 Duplicate 120908 Box 5 Nala Y (both) Y
PM 6-6-7 N5°24.451l, E118°04.711' 190808 Duplicate 250609 Y (both)
PM 6 -6 - 8 N5°2445r, E118°04.711’ 190808
PM 6-6-9 N5°24.451', E118°04.711' 190808 Single 230908 Box 5 Nala Y
PM 6-6-10 N5°24451', E118°04.711' 190808 Single 230908 Box 5 Nala Y
PM 6-6-11 N5°24.451', E118°04.711l 190808 Duplicate 240609 Box 5 Nala Y (few A)
PM 6-7-1 N5°24.935', E118°04.086’ 190808 3.95 1 2 . 6 6 Duplicate 120908 Box 5 Nala N (FEW B) Y

PM 6-7-2 N5°24.935', E118°04.086' 190808 2.57 19.46 Duplicate 120908 Box 5 Nala
few (weird 
B) Y

PM 6-7-3 N5°24.935', E118°04.086' 190808 Duplicate 250609 Box 5 Nala N
PM 6-7-4 N5°24.935', E118o04.086, 190808 Duplicate 250609 Box 5 Nala N
PM 6-7-5 N5°24.935', E118°04.086' 190808 Single 230908 Box 5 Nala Y
Mafa 6-14-1 N5°24.641', E118°04.016' 190808 3.86 12.95 Duplicate 150908 Box 3 Mafa Y (both) Y
Mafa 6-14-2 N5°24.641\ E118°04.016' 190808 4.44 11.26 Duplicate 150908 Box 3 Mafa Y (both) Y
Mafa 6-14-3 N5°24.641', E118°04.016' 190808 3.9 12.82 Duplicate 150908 Box 3 Mafa Y (both) Y
Mafa 6-144 N5°24.641', E118°04.016' 190808
Mafa 6-14-5 N5°24.641', E118°04.016' 190808
Mafa 6-14-6 N5°24.641', E118°04.016' 190808
Mafa 6-14-7 N5°24.641\ E118°04.016' 190808
Mafa 6-14-8 N5°24.641', E118°04.016' 190808
Mafa 6-15-1 N5°24.609\ E118°01.837' 200808 3.94 12.69 Duplicate 150908 Box 4 Mafa Y (both) Y
Mafa 6-15-2 N5°24.609', E118°01.837' 200808
Mafa 6-15-3 N5°24.609\ E118°01.837' 200808 3.6 13.89 Duplicate 150908 Box 4 Mafa Y (both) Y

Mafa 6-154 N5°24.609\ E118°01.837' 200808
Mafa 6-15-5 N S^.eog1, E118°01.837' 200808 Single 190908 Box 5 Mafa Y

Mafa 6-15-6 N5°24.609\ E118°01.837' 200808
Mafa 6-15-7 N5°24.609\ E118°01.837’ 200808 4.2 11.90 Duplicate 150908 Box 4 Mafa Y (both) Y

Mafa 7-7-1 N5°24495', E118°01.306' 200808
Mafa 7-7-2 N5°24495', E118°01.306’ 200808 3.06 16.34 Duplicate 150908 Box 4 Mafa Y (both) Y

Mafa 7-7-3 N5°24495', E118°01.306' 200808
Mafa 7-74 N5°24.495\ E118°01.306' 200808
Mafa 7-7-5 N5°24495', E118°01.306' 200808 3.94 12.69 Duplicate 150908 Box 4 Mafa Y (both) Y

Mafa 7-7-6 N5°24495', E llS‘01.306' 200808 Single 190908 Box 5 Mafa Y

PM 7-14-1 N5°23.865', E118°00.827' 200808 Single 230908 Box 6  Nala Y

PM 7-14-2 N5°23.865', E118°00.82T 200808 2 . 1 2 23.58 Y

PM 7-14-3 N5°23.865', E118°00.827' 200808 Single 230908 Box 6  Nala Y

PM 7-144 N5°23.865', E118°00.827' 200808 2.79 17.92 Y

Mafa 7-8-1 N5°24.225', E118°00.772' 200808 7.36 6.79 Duplicate 150908 Box 4 Mafa N Y

Mafa 7-8-2 N5°24.225\ E118°00.772' 200808 Single 190908 Box 5 Mafa Y

Mafa 7-8-3 N5°24.225', E118°00.772’ 200808 5.5 9.09 Duplicate 150908 Box 4 Mafa N (FEW B) Y

Mafa 7-84 N5°24.225', E118°00.772' 200808
Mafa 7-8-5 N5°24.225', E118°00.772' 200808
Mafa 7-8-6 N5-24.225', E118°00.772’ 200808 2.03 24.63 Y

Mafa 2-5-1 N5-31.888', E118°17454' 280808 Single 190908 Box 5 Mafa Y
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Mafa 2-6-1 N5°32.252', E118"17.607' 280808 2 . 6 8 18.66 Duplicate 150908 Box 4 Mafa Y (both) Y
Mafa 2-6-2 N5°32.252\ E118°17.607' 280808 3.92 12.76 Duplicate 150908 Box 4 Mafa Y (both) Y
Mafa 2-6-3 N5°32.252', E118°17.607' 280808 2.77 18.05 Duplicate 150908 Box 4 Mafa Y (both) Y
Mafa 2-6-4 N5°32.252\ E118°17.607' 280808 Single 190908 Box 5 Mafa Y
Mafa 2-6-5 N5°32.252\ E118°17.607' 280808
Mafa 2-6-6 N5°32.252\ E118°17.607’ 280808
Mafa 2-6-7 N5°32.252', E118°17.607' 280808
Mafa 2-7-1 N5°33.004\ E118°19.00r 280808 3.13 15.97 Single 190908 Box 5 Mafa Y Y
Mafa 2-7-2 N5°33.004\ E118°19.001' 280808 Single 190908 Box 5 Mafa Y
Mafa 2-7-3 N5°33.004', E118°19.001' 280808 Single 190908 Box 5 Mafa Y
Mafa 2-7-4 N5°33.004', E118°19.00r 280808 Single 190908 Box 5 Mafa Y
Mafa 2-7-5 N5°33.004', E118°19.001' 280808
Mafa 2-7-6 N5°33.004', E118°19.00r 280808 3.1 16.13 Duplicate 160908 Box 4 Mafa Y (both) Y
Mafa 2-7-7 N5°33.004', E118°19.001' 280808 4.92 10.16 Duplicate 160908 Box 4 Mafa Y (both) Y
Mafa 2-7-8 N5°33.004', E118°19.001' 280808
Mafa 2-7-9 N5o33.004', E118°19.001' 280808
Mafa 2-7-10 N5°33.004', E118°19.00r 280808
Mafa 2-7-11 N5°33.004', E118°19.001' 280808
Mafa 2-7-12 N5°33.004', E118°19.001' 280808 Single 190908 Box 5 Mafa Y
Mafa 2-7-13 N5o33.004', E118°19.00r 280808
Mafa 2-7-14 N5°33.004\ E118°19.001' 280808
Popy 6-2-1 N5°24.846', E118°02.286' 240808 3.44 14.53 Duplicate 120908 Box 7 Mafa Y
Mafa 1-5-1 N5°35.981', E118°20.222' 290808 Single 200908 Box 5 Mafa Y
Mafa 1-5-2 N5°35.981', E118°20.222' 290808 Single 200908 Box 5 Mafa Y
Mafa 1-5-3 N5°35.981', E118°20.222' 290808 Single 200908 Box 5 Mafa Y
Mafa 1-6-1 N5°36.142', E118°19.597' 290808 Single 200908 Box 5 Mafa N
Mafa 1-6-2 N5036.142', E118°19.597' 290808 1.75 28.57 Duplicate 160908 Box 4 Mafa Y (both) Y
Mafa 2-8-2 N5°35.069\ E118°19.697' 290808 Single 200908 Box 5 Mafa Y
Mafa 2-8-1 N5°35.069\ E118°19.697' 290808 Single 200908 Box 5 Mafa Y
Mafa 1-7-1 N5°34.792', E118°19.875' 290808 Single 200908 Box 5 Mafa Y
Mafa 1-7-2 N5°34.792', E118°19.875' 290808 Single 200908 Box 5 Mafa Y

Mafa 3-17-1 N5°27.830', E118°15.20r 300808
Mafa 3-17-2 N5°27.830', E118°15.20r 300808 3.93 12.72 Duplicate 160809 Box 4 Mafa Y (both) Y
Mafa 3-17-3 N5°27.830l, E118°15.201' 300808 6.47 7.73 Duplicate 160809 Box 4 Mafa Y (both) Y

Mafa 3-17-4 N5°27.830', E118°15.201' 300808
Mafa 3-17-5 N5°27.830\ E118°15.201' 300808 4.69 1 0 . 6 6 Duplicate 160908 Box 4 Mafa Y (both) Y
Mafa 3-17-6 N5°27.830\ E118°15.201’ 300808
Mafa 3-17-7 N5°27.830', E118°15.201' 300808
Mafa 3-17-8 N5°27.830', E118°15.201' 300808 Single 200908 Box 5 Mafa Y
Mafa 3-17-9 N5°27.830', E118°15.201' 300808
Mafa 3-17-10 N5°27.830\ E118°15.201' 300808
Mafa 3-17-11 N5°27.830', E118°15.201' 300808 3.44 14.53 Duplicate 160908 Box 4 Mafa Y (both) Y

Mafa 3-13-1 N5°29.764', E118°12.415' 310808 Single 200908 Box 5 Mafa Y

Mafa 3-13-2 N5029.764', E118°12.415' 310808 Single 210908 Box 5 Mafa Y

Mafa 3-13-3 N5°29.764', E118°12.415' 310808 1.94 25.77 Duplicate 160908 Box 4 Mafa Y (both) Y

Mafa 3-14-1 N5°29.041’, E118°12.920' 310808 3.68 13.59 Duplicate 160908 Box 4 Mafa Y (both) Y

Mafa 3-15-1 N5°29.281', E118°13.456' 310808
Mafa 3-15-2 N5°29.281', E118°13.456' 310808
Mafa 3-15-3 N5°29.281', E118°13.456' 310808 3.59 13.93 Duplicate 160908 Box 4 Mafa Y (both) Y

Mafa 3-15-4 N5°29.281', E118°13.456' 310808 5.11 9.78 Duplicate 170908 Box 4 Mafa Y (both) Y

Mafa 3-16-1 N5°28.36r, E118°13.185' 310808 Single 210908 Box 5 Mafa Y

Mafa 3-16-2 N5°28.361', E118°13.185' 310808
Mafa 3-16-3 N5°28.361', E118°13.185' 310808 3.5 14.29 Duplicate 170908 Box 4 Mafa Y (both) Y

Mafa 3-164 N5°28.36r, E118°13.185' 310808 Single 210908 Box 5 Mafa Y

Mafa 3-16-5 N5°28.361', E l^W .lS ff 310808 4.88 10.25 Duplicate 170908 Box 4 Mafa Y (both) Y

Mafa 3-16-6 N5°28.361\ E118°13.185' 310808
Mafa 4-8-1 N5°29.109\ E118°14.090' 310808 Single 210908 Box 5 Mafa Y
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Mafa 4-8-2 N5°29.109\ E118°14.090' 310808 Single 210908 Box 5 Mafa Y
Mafa 4-8-3 N5°29.109', E118°14.090' 310808 1.91 26.18 Duplicate 170908 Box 4 Mafa Y (both) Y
Mafa 4-8-4 N5'’29.109', E118°14.09a 310808 Single 300609 Box 7 Mafa Y
Mafa 4-9-1 N5°28.05r, E118°15.076' 310808 Single 210908 Box 5 Mafa Y
Mafa 4-9-2 NS^S.OSl', E118°15.076' 310808 1.5 33.33 Duplicate 170908 Box 4 Mafa FEW Y
Mafa 4-9-3 N5°28.051\ E118°15.076' 310808 Single 210908 Box 5 Mafa
Mafa 2-9-1 N5°30.314\ E118c16.400’ 10908 3.69 13.55 Duplicate 170908 Box 4 Mafa N (FEW B) Y
Mafa 2-9-2 N5°30.314', E118°16.40a 10908
Mafa 4-10-1 N5°30.105', E118°15.547' 10908 Single 210908 Box 5 Mafa Y
Mafa 4-10-2 N5°30.105', E118°15.547' 10908 Single 210908 Box 5 Mafa Y
Mafa 4-10-3 N5°30.105', E118°15.547' 10908 4.21 1 1 . 8 8 Duplicate 170908 Box 4 Mafa Y (both) Y
Mafa 4-10-4 N5°30.105', E118°15.547' 10908 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 4-10-5 N5°30.105', E118°15.547' 10908 Single 210908 Box 5 Mafa Y
Mafa 4-11-1 N5°29.453', E118°17.273' 10908 Duplicate 300609 Box 7 Mafa
Mafa 4-11-2 N5°29.453', E118°17.273' 10908 Single 210908 Box 5 Mafa Y
Mafa 4-11-3 N5°29.453', E118°17.273' 10908 5.4 9.26 Duplicate 170908 Box 4 Mafa Y (both) Y
Mafa 4-11-4 N5°29.453', E118°17.273' 10908 Duplicate 300609 Box 7 Mafa Y (both)
Mafa 4-11-5 N5°29.453', E118°17.273' 10908 Single 210908 Box 5 Mafa Y
PM lOc-1-1 N5°26.542', E117°43.575' 121008 Single 281008 Box 6  Nala Y
PM 10c-l-2 N5°26.542', E117°43.575' 121008 Single 281008 Box 6  Nala Y
PM 10c-l-3 N5°26.542', E117°43.575' 121008
PM 10c-l-4 N5°26.542\ E117°43.575' 121008 Duplicate 250609 Box 6  Nala N
PM 10c-l-5 N5°26.542', E117°43.575' 121008 6 8.33 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-2-l N5°26.436', E117°43.952' 121008 Duplicate 281008 Box 6  Nala Y (both)
PM 10c-2-2 N5°26.436', E117<,43.952' 121008 4.05 12.35 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-2-3 N5°26.436', E117°43.952' 121008 Single 281008 Box 6  Nala Y
PM 10c-2-4 N5-26.436', E117°43.952' 121008 Duplicate 250609 Box 6  Nala Y (both)
PM 10c-2-5 N5°26.436\ E117°43.952' 121008
Mafa 10b-1-1 N5°26.502', E117°44.243' 131008 Single 31108 Box 5 Mafa Y
Mafa 1 Ob-1-2 N5°26.502', E117°44.243' 131008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 1 Ob-1-3 N5°26.502', E117°44.243' 131008 4.77 10.48 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10b-l-4 N5°26.502’, E117°44.243' 131008 5.83 8.58 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 1 Ob-1-5 N5o26.502‘, E117°44.243' 131008 3.92 12.76 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 1 Ob-1-6 N5°26.502', E117°44.243' 131008 Single 31108 Box 5 Mafa Y

Mafa 1 Ob-1-7 N5°26.502', E117°44.243' 131008 Duplicate 260609 Box 7 Mafa Y (both)

Mafa 1 Ob-1-8 N5°26.502', E117°44.243' 131008
Mafa 1 Ob-1-9 N5°26.502', E117°44.243' 131008
Mafa 10b-l-10 N5°26.502', E117°44.243' 131008 Single 31108 Box 5 Mafa Y
Mafa lOb-1-11 N5°26.502', E117°44.243' 131008 Duplicate 260609 Box 7 Mafa Y (both)

Mafa 1 Ob-1-12 N5°26.502', E117°44.243' 131008 3.81 13.12 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 1 Ob-1-13 N5°26.502', E117044.243' 131008
PM 10c-3-l N5°26.482', E117044.215' 131008 Single 281008 Box 6  Nala Y

PM 10c-3-2 N5°26.482', E117°44.215' 131008 5.44 9.19 Duplicate 281008 Box 6  Nala Y (both) Y

PM 10c-3-3 N5°26.482', E117°44.215’ 131008 281008

PM 10c-3-4 N5°26.482\ E117°44.215' 131008
PM 1 Ob-1-1 N5°26.446', E117°44.960' 131008 Duplicate 250609 Box 6  Nala Y (both)

PM 10b-l-2 N5°26.446\ E117°44.960' 131008 Single 281008 Box 6  Nala Y

PM 10b-1-3 N5°26.446', E117o44.960, 131008 Single 281008 Box 6  Nala Y

PM 10b-l-4 N5°26.446', E117°44.960' 131008 Duplicate 281008 Box 6  Nala Y (both)

PM 1 Ob-1-5 N5°26.446', E117o44.960' 131008 5.17 9.67 Duplicate 281008 Box 6  Nala Y (both) Y

Mafa 10b-2-l N5°26.308', E117°43.689' 131008 2.48 20.16 Duplicate 291008 Box 6  Mafa Y (both) Y

Mafa 9-1-1 N5°25.380\ E117°45.638* 141008
Mafa 9-1-2 N5°25.380\ E117°45.638 141008
Mafa 9-1-3 N5°25.380', E117°45.638' 141008
Mafa 9-14 N5°25.380\ El 1745.638' 141008 Single 31108 Box 5 Mafa Y

Mafa 9-1-5 N5-25.380', E117°45.638' 141008 Single 31108 Box 5 Mafa Y

Mafa 9-1-6 N5°25.380\ E117°45.638’ 141008 5.32 9.40 Duplicate 291008 Box 6  Mafa Y (both) Y
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Mafa 9-1-7 N5°25.380\ E117°45.638' 141008 6.25 8 . 0 0 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 9-2-1 N5°24.795\ E117°46.176' 141008
Mafa 9-2-2 N5°24.795', E117°46.176' 141008 5.76 8 . 6 8 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 9-2-3 N5°24.795\ E117°46.176' 141008 5.94 8.42 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10a-l-l N5°24.656’, E117°46.446' 141008
Mafa 10a-l-2 N5°24.656\ E117°46.446' 141008 Single 31108 Box 5 Mafa Y
Mafa 10a-l-3 N5°24.656\ E117°46.446' 141008 2 . 2 2 22.52 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10a-l-4 N5°24.656', E117046.446' 141008
Mafa 10a-2-l N5°24.567', E117°46.544' 141008 4.08 12.25 Duplicate Box 6  Mafa Y (both) Y
Mafa 9-3-1 N5°24.907', E117°47.276' 141008 Duplicate Box 6  Mafa Y (both)
Mafa 10a-3-l N5°25.066', E117°47.016' 141008 Single 31108 Box 5 Mafa Y

Mafa 10a-3-2 N5°25.066\ E117°47.016'. 141008 Single 31108 Box 5 Mafa Y
Popy 10a-l-l N5°24.879*, E117°46.245' 141008 5.62 8.90 Duplicate 281008 Box 7 Mafa Y
Mafa 10a-4-l N5025.599\ EllT^.OOg1 141008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 10a-4-2 N5°25.599\ E117°45.009' 141008 Single 31108 Box 5 Mafa Y
Mafa 10a-4-3 N5°25.599, Ein^S.OO? 141008 3.59 13.93 Duplicate Box 6  Mafa Y (both) Y
Mafa 10a-4-4 N5°25.599', E117°45.009' 141008 4.31 11.60 Duplicate Box 6  Mafa Y (both) Y
Mafa 10a-5-l N5°25.141', E117°47.050' 141008 Duplicate Box 6  Mafa Y (both)
Mafa 10a-6-l N5°25.038', E117°46.996' 141008 3.8 13.16 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10a-7-l N5°24.828', E117°46.938' 141008 4.44 11.26 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10a-7-2 N5°24.828', E117°46.938' 141008 4.37 11.44 Duplicate 291008 Box 6  Mafa Y (both) Y
Popy 10a-2-l N5°24.932\ E117°46.156' 141008 6.65 7.52 Duplicate 281008 Box 7 Mafa Y
PM 10c-4-l N5°26.154', E117°42.986' 151008 Single 281008 Box 6  Nala Y
PM 10c-4-2 N5°26.154', E117°42.986' 151008 Single 281008 Box 6  Nala Y
PM 10c-4-3 N5°26.154', E117°42.986' 151008 Duplicate 300609 Box 6  Nala Few both
PM 10c-4-4 N5°26.154', E117042.986' 151008 5.44 9.19 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-4-5 N5°26.154', El 17°42.986' 151008 6.13 8.16 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-2-6 N5°26.436', EU7°43.952' 151008 Duplicate 250609 Box 6  Nala Few both
PM 10c-2-7 N5°26.436\ E117°43.952' 151008 4.05 12.35 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-2-8 N5°26.436', E117°43.952' 151008 3.54 14.12 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-2-9 N5°26.436', E117°43.952' 151008 Duplicate 250609 Box 6  Nala N
PM 10c-2-10 N5°26.436', E117°43.952' 151008 Duplicate 300609 Box 6  Nala Y (Only A)
PM 10c-2-ll N5°26.436', E117°43.952' 151008 Single 281008 Box 6  Nala Y
PM 10c-2-12 N5°26.436\ E117°43.952' 151008 3.74 13.37 Duplicate 281008 Box 6  Nala Y (both) Y
PM 10c-2-13 N5°26.436’, E117°43.952' 151008 Duplicate 281008 Box 6  Nala Y (both)
Mafa lOc-1-1 N5°25.930', E117°44.276' 151008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 10c-l-2 N5°25.930', E117°44.276' 151008 6.79 7.36 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10c-l-3 N5°25.930', E117°44.276' 151008 4.71 10.62 Duplicate 291008 Box 6  Mafa Y (both) Y
Mafa 10c-l-4 N5°25.930\ E117°44.276' 151008 Single 31108 Box 5 Mafa Y

Mafa OutS-1-1 N5°25.425', E117°44.122' 151008
Mafa OutS-1-2 N5°25.425’, E117°44.122' 151008
Mafa OutS-1-3 N5°25.425', E117°44.122' 151008 3.74 13.37 Duplicate 301008 Box 6  Mafa Y (both) Y

Mafa OutS-1-4 N5°25.425’, E l l T ^ . ^ ’ 151008
Mafa OutS-1-5 N5°25.425', E117°44.122' 151008 4.76 10.50 Duplicate 301008 Box 6  Mafa Y (both) Y

Mafa OutS-1-6 N5°25.425', E117°44.122' 151008 3.29 15.20 Single 31108 Box 5 Mafa Y Y

PM 10c-4-6 N5°26.154\ E117°42.986' 151008 Duplicate 281008 Box 6  Nala Y (both)

Mafa 9-4-1 N5°28.988\ E117°52.491' 151008
Mafa 9-4-2 N5°28.988\ E117°52.491' 151008 Single 31108 Box 5 Mafa Y

Mafa 9-4-3 N5°28.988', E117°52.491' 151008 5.21 9.60 Duplicate 301008 Box 6  Mafa Y (both) Y

Mafa 8-1-1 N5°29.933', E117°55.039 151008 Duplicate 250609 Box 7 Mafa Few both N

Mafa 8-1-2 N S ^ ^ ' ,  E117°55.039’ 151008 4.28 1 1 . 6 8 Duplicate 301008 Box 6  Mafa Y (both) Y

Mafa 8-1-3 N5°29.933\ Ein^S.OSg1 151008 Duplicate 250609 Box 7 Mafa Y

Mafa 8-1-4 N5°29.933\ E117°55.039' 151008 5 1 0 . 0 0 Duplicate 301008 Box 6  Mafa Y (FEW B) Y

Mafa 8-1-5 N5°29.933\ E117°55.039 151008
Mafa 8-1-6 N5°29.933', E117°55.039' 151008 3.82 13.09 Duplicate 301008 Box 6  Mafa Y (both) Y

Mafa 8-1-7 N5°29.933', E117°55.039' 151008 Duplicate 250609 Box 7 Mafa Y (only B)

Mafa 8-1-8 N5°29.933’, E117°55.039' 151008 4.95 1 0 . 1 0 Duplicate 301008 Box 6  Mafa Y (FEW B) Y
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Mafa 8-1-9 N5°29.933\ E117°55.039' 151008 Duplicate 250609 Box 7 Mafa Y (both)
Mafa 8-1-10 N5°29.933\ E117°55.039' 151008 4.95 1 0 . 1 0 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-1-11 N5-29.933', E117°55.039' 151008 Duplicate 250609 Box 7 Mafa Y (both)
Mafa 8-1-12 N5°29.933\ E117°55.039' 151008 Duplicate 260609 Box 7 Mafa N
Mafa 8-2-1 N5°29.730\ E117°55.2ir 151008 5.16 9.69 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-2-2 N5°29.730\ E117°55.2ir 151008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 8-2-3 N5°29.730', E117°55.2ir 151008 Single 31108 Box 5 Mafa Y
Mafa 8-3-1 N5°28.666', E117°54.843' 151008 Single 31108 Box 5 Mafa Y
Mafa 8-3-2 N5°28.666\ E117054.843’ 151008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 8-3-3 N5°28.666\ E117°54.843’ 151008 5.54 9.03 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-3-4 N5°28.666\ E117°54.843’ 151008
Mafa 8-3-5 N5°28.666', E117°54.843' 151008 5.15 9.71 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-3-6 N5°28.666', E117°54.843' 151008
Mafa 8-3-7 N5°28.666', E117°54.843' 151008
Mafa 8-3-8 N5028.666', E117°54.843' 151008 5.4 9.26 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-3-9 N5°28.666', E117°54.843' 151008
Mafa 8-3-10 N5°28.666', E117°54.843' 151008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 8-3-11 N5°28.666', E117°54.843' 151008 Duplicate 260609 Box 7 Mafa Y (both)
Mafa 8-4-1 N5°28.459\ E117°55.129' 161008 4.67 10.71 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-5-1 N5°24.413', E117°56.287' 161008 Single 31108 Box 5 Mafa Y
Mafa 8-5-2 N5°24.413\ E117°56.287' 161008
Mafa 8-5-3 N5°24.413', E117°56.287' 161008 2.09 23.92 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-6-1 N5°25.990', E117°55.461' 161008 3.99 12.53 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 8-6-2 N5°25.990', E117°55.461' 161008 Single 31108 Box 5 Mafa Y
Mafa 9-5-1 N5°29.098', E i n ^ S .m 171008
Mafa 9-5-2 N5°29.098\ E117°55.139' 171008 3.66 13.66 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 9-5-3 N5°29.098\ E117°55.139' 171008 3.47 14.41 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 9-5-4 N5°29.098', E117°55.139' 171008
Mafa 9-5-5 N5°29.098\ E117°55.139' 171008 Single 31108 Box 5 Mafa Y
Mafa 9-6-1 N5°28.857', E117°54.941' 171008 5.09 9.82 Duplicate 301008 Box 6  Mafa Y (Only A) Y
Mafa 9-6-2 N5°28.857', E117°54.941' 171008
Mafa 9-6-3 N5°28.857\ E117°54.941' 171008 5.54 9.03 Duplicate 301008 Box 6  Mafa Y (both) Y
Mafa 9-7-1 N5°28.6901, E117°54.778' 171008 Single 31108 Box 5 Mafa Y
Mafa 9-7-2 N5°28.690\ E117°54.778' 171008
Mafa 9-7-3 N5°28.690\ E117°54.778' 171008 4.74 10.55 Duplicate 301008 Box 6  Mafa Y (both) Y

Mafa 9-7-4 N5°28.690\ E117°54.778' 171008
Mafa 9-7-5 N5°28.690', E117°54.778' 171008
Mafa 9-7-6 N5°28.69a, E117054.778' 171008
Mafa 9-7-7 N5°28.690', E117°54.778' 171008 4.45 11.24 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-7-8 N5°28.690\ E117°54.778' 171008 Single 31108 Box 2 Mafa Y
Mafa 9-7-9 N5°28.690', E117°54.778' 171008
Mafa 9-8-1 N5°28.178', E117°54.744' 171008 4.85 10.31 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-8-2 N5°28.178\ E117°54.744' 171008
Mafa 9-8-3 N5°28.178', E117°54.744' 171008
Mafa 9-8-4 N5°28.178', E117°54.744' 171008 4.15 12.05 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-8-5 N5°28.178', E117°54.744' 171008 Single 31108 Box 2 Mafa Y

Mafa 9-8-6 N5°28.178\ E117°54.744' 171008
Mafa 9-9-1 N5°27.504', E117°55.044' 171008 3.48 14.37 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-10-1 N5°27.377', E117°55.069' 171008 5.55 9.01 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-10-2 N5°27.377', E117°55.069' 171008 Duplicate 31108 Box 5 Mafa Y (both)

Mafa 9-10-3 N5°27.377', E117°55.069' 171008
Mafa 9-10-4 N5°27.377', E117o55.069' 171008
Mafa 9-10-5 N5°27.377\ E117°55.069' 171008
Mafa 9-10-6 N5027.377', E117°55.069' 171008 5.27 9.49 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-11-1 ^ “26.293', E117°54.489' 171008 2.67 18.73 Duplicate 31108 Box 5 Mafa Y (both) Y

Mafa 9-11-2 N5°26.293’, E117°54.489’ 171008 Duplicate 31108 Box 5 Mafa Y (both)
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APPENDIX TWO
Long-tailed macaque genotypes. Fifteen microsatellites used on the sampled populations 
at the north and south of the Kinabatangan River
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Appendix two: Long-tailed macaque genotypes.
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Appendix two: Long-tailed m acaque genotypes.
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Appendix Three: Allele frequency distributions by locus and population of long-tailed macaques

APPENDIX THREE

Long-tailed macaque allele frequency distribution by locus and population
Locus North South
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Appendix Three: Allele frequency distributions by locus and population of long-tailed macaques

Locus North South
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Appendix Four: Linkage disequilibrium (LD) tests of loci screened in long-tailed macaques

APPENDIX FOUR

Linkage disequilibrium (LD) tests of loci screened in long-tailed macaques. LD was measured 
using the correlation coefficient. The significance at P < 0.05 by pair of loci and for each 
population is represented with *. NS = non significant.

Locusl Locus 2 North South Locusl Locus 2 North South Locusl Locus 2 North South

D8S1106 D7S2204 NS He D12S67 D3S1766 NS * D6S2883 D3S1768 NS NS

D8S1106 D12S67 NS * D12S67 D5S820 NS NS D6S2883 D16S420 NS NS

D8S1106 DXS571 NS * D12S67 D1S550 NS NS D6S2883 D1S207 NS *

D8S1106 D7S503 * NS D12S67 D6S291 NS NS D6S2883 D3S1766 NS NS

D8S1106 D11S925 NS NS DXS571 D7S503 NS NS D6S2883 D5S820 NS NS

D8S1106 D6S2883 NS NS DXS571 D11S925 NS NS D6S2883 D1S550 NS NS

D8S1106 D1S548 NS NS DXS571 D6S2883 NS NS D6S2883 D6S291 NS NS

D8S1106 D3S1768 * NS DXS571 D1S548 * NS D1S548 D3S1768 NS NS

D8S1106 D16S420 NS NS DXS571 D3S1768 NS NS D1S548 D16S420 NS NS

D8S1106 D1S207 NS NS DXS571 D16S420 NS NS D1S548 D1S207 NS NS

D8S1106 D3S1766 NS NS DXS571 D1S207 Hi NS D1S548 D3S1766 NS Hi

D8S1106 D5S820 NS NS DXS571 D3S1766 NS NS D1S548 D5S820 NS H

D8S1106 D1S550 NS NS DXS571 D5S820 NS NS D1S548 D1S550 NS NS

D8S1106 D6S291 * NS DXS571 D1S550 NS NS D1S548 D6S291 NS NS

D7S2204 D12S67 NS NS DXS571 D6S291 NS NS D3S1768 D16S420 Hi NS

D7S2204 DXS571 NS * D7S503 D11S925 Hi NS D3S1768 D1S207 NS Hi

D7S2204 D7S503 NS * D7S503 D6S2883 NS NS D3S1768 D3S1766 Hi NS

D7S2204 D11S925 NS NS D7S503 D1S548 * D3S1768 D5S820 NS NS

D7S2204 D6S2883 NS NS D7S503 D3S1768 NS NS D3S1768 D1S550 H Hi

D7S2204 D1S548 * * D7S503 D16S420 NS * D3S1768 D6S291 NS NS

D7S2204 D3S1768 * NS D7S503 D1S207 NS * D16S420 D1S207 NS *

D7S2204 D16S420 NS * D7S503 D3S1766 * D16S420 D3S1766 * Hi

D7S2204 D1S207 NS * D7S503 D5S820 Hi * D16S420 D5S820 Hi NS

D7S2204 D3S1766 * NS D7S503 D1S550 NS NS D16S420 D1S550 H NS

D7S2204 D5S820 * * D7S503 D6S291 NS NS D16S420 D6S291 NS NS

D7S2204 D1S550 * Hi D11S925 D6S2883 NS NS D1S207 D3S1766 NS NS

D7S2204 D6S291 NS NS D11S925 D1S548 * NS D1S207 D5S820 NS *

D12S67 DXS571 NS NS D11S925 D3S1768 NS D1S207 D1S550 NS NS

D12S67 D7S503 NS NS D11S925 D16S420 Hi * D1S207 D6S291 NS NS

D12S67 D11S925 NS NS D11S925 D1S207 NS NS D3S1766 D5S820 He He

D12S67 D6S2883 NS NS D11S925 D3S1766 He Hi D3S1766 D1S550 NS NS

D12S67 D1S548 NS NS D11S925 D5S820 NS NS D3S1766 D6S291 NS NS

D12S67 D3S1768 NS * D11S925 D1S550 Hi NS D5S820 D1S550 Hi NS

D12S67 D16S420 NS NS D11S925 D6S291 NS NS D5S820 D6S291 Hi NS

D12S67 D1S207 NS NS D6S2883 D1S548 NS NS D1S550 D6S291 Hi NS
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Appendix Five: Null allele frequencies

APPENDIX FIVE

Null allele frequencies in loci screened in long-tailed macaque samples and proboscis monkeys.

Table 19 Long-tailed macaque null allele 
frequencies

Locus
Population 

North South
D8S1106 0.253 0.359
D7S2204 0.460 0.361
D12S67 0.774 0.811
DXS571 0.327 0.368
D7S503 0.264 0.380
D11S925 0.459 0.615
D6S2883 0.115 0.352
D1S548 0.600 0.560
D3S1768 0.276 0.339
D16S420 0.474 0.543
D1S207 0.231 0.302
D3S1766 0.477 0.640
D5S820 0.458 0.576
D1S550 0.561 0.401
D6S291 0.317 0.229

Table 20. Proboscis monkey null allele 
frequencies_________________________

Population 
Locus North South
N1P1A6 0.299 0.357
N1P3B2 0.381 0.400
N1P4C11 0.310 0.462
N1E10 0.600 0.737
N1P1C5 0.378 0.097
N1D10 0.206 0.104
N1P2D6 0.364 0.040
N1P2F3 0.500 0.368
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Appendix Six: Number of subpopulations of long-tailed macaques, when comparing the 10 Lots of the 
LKWS

APPENDIX SIX

Number of genetically differentiated clusters (subpopulations, K=2) of long-tailed macaques 
determined by STRUCTURE, comparing the 10 Lots of the LKWS as unique sampled 
subpopulations. K values were set between 1-11 using 5 independent runs of 100,000 iterations 
(plus a bum-in of 20,000 iterations) for each K value. Runs were performed with the “admixture 
model” and the “correlated allele frequency” model without prior information and with an initial 
alpha value set to 1.0. Null alleles were considered as recessive to all other alleles. Individuals 
were assigned to one cluster if their proportion of membership (qf5) to that cluster was equal to or 
larger than 0.600, the individuals with maximum inferred ancestry < 0.6 were not assigned to 
any group, which was the case for all sampled populations.

K 1 2 3 4 5 6 7 8 9 10 11
LnP(X|K) -6340 -6120 -6168 -6503 -6228 -6322 -6476 -6698 -6423 -7109 -7681

Given Inferred clusters Given Inferred clusters
population ql_______qll_______population ql_____ qll

Loti 0.415 0.585 Lot 6 0.513 0.487
Lot 2 0.508 0.492 Lot 7 0.522 0.478
Lot 3 0.491 0.509 Lot 8 0.499 0.501
Lot 4 0.532 0.468 Lot 9 0.525 0.475
Lot 5 0.478 0.522 Lot 10 0.48 0.52

s . 7 « 9 >» k =11
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Appendix Seven: Proboscis monkey genotypes

APPENDIX SEVEN

Proboscis monkey genotypes. Eight microsatellites used on the sampled populations at the north 
and south of the Kinabatangan River.

P1A6 P3B2 P4C11 E10 P1C5 D10 P2D6 P2F3
NORTH

PM lOb-1-1 Ml-1 152155 0 0 0 0 0 0 241241 0 0 0 0 0 0 2 0 1 2 2 1 179183 156156 177185
PM 1 Ob-1-4 Ml-1 155155 162164 241241 0 0 0 0 0 0 197197 181183 160160 177185
PM 10c-2-l Ml-1 155155 162162 241241 0 0 0 0 0 0 189189 179183 0 0 0 0 0 0 183183
PM 10c-2-12 Ml-1 155158 162166 241241 167169 197205 181183 150158 183183
PM 10c-2-13 Ml-1 152155 158166 249251 167167 201205 181183 158160 183183

PM 10c-2-7 Ml-1 155158 165165 241241 169169 0 0 0 0 0 0 181183 160160 183185

PM 10c-2-8 Ml-1 155158 162162 241241 167167 197205 181183 160160 183183
PM lQc-3-2 Ml-1 0 0 0 0 0 0 166166 241241 155169 197197 183183 160160 183183

PM 10c-4-6 Ml-1 155158 164166 241251 155167 197205 0 0 0 0 0 0 150158 177183

PM 2-5-1 Ml-1 155155 162164 249253 167167 197197 0 0 0 0 0 0 150156 177187

PM 4-10-1 Ml-1 0 0 0 0 0 0 162165 241255 167167 2 0 1 2 0 1 0 0 0 0 0 0 146160 177183

PM 4-11-1 Ml-1 155155 162166 241255 167175 197197 181183 150160 183183

PM 4-11-9 Ml-1 146158 162166 241251 175175 197201 181183 150160 183183

PM 4-1-3 Ml-1 155158 162166 241251 167167 197205 0 0 0 0 0 0 150150 177183

PM 4-14-4 Ml-1 155158 164165 241249 167175 197205 181183 150158 177183

PM 4-15-3 Ml-1 155158 162165 249251 167175 197205 181183 150158 177185

PM 4-16-4 Ml-1 155155 162165 245249 205205 197201 181183 150160 183183

PM 4-17-4 Ml-1 155158 162166 241245 167167 0 0 0 0 0 0 181183 150160 177183

PM 4-2-16 Ml-1 155158 165166 241255 167167 201205 181185 150160 177183

PM 4-2-7 Ml-1 155158 0 0 0 0 0 0 241255 167175 197201 0 0 0 0 0 0 158160 183183

PM 4-4-7 Ml-1 155158 166166 241251 167173 197201 0 0 0 0 0 0 150160 177177

PM 4-8-1 Ml-1 158158 165170 241249 173173 201205 183189 150150 185185

PM 4-9-5 Ml-1 152158 162162 241241 169205 0 0 0 0 0 0 0 0 0 0 0 0 160160 0 0 0 0 0 0

PM 5-1-10 Ml-1 155155 165165 241251 167167 177197 183183 150150 177177

PM 5-1-2 Ml-1 155158 162162 241259 0 0 0 0 0 0 197201 183187 150150 177183

PM 5-1-6 Ml-1 155155 165168 241255 167167 197205 181185 150160 183185

PM 5-3-11 Ml-1 155158 162165 245249 167167 205205 181185 150160 185185

PM 5-3-7 Ml-1 158158 165166 241249 169175 205205 181183 158160 183183

PM 5-4-7 Ml-1 0 0 0 0 0 0 162166 249251 167167 197197 183183 150160 183183

PM 5-5-1 Ml-1 158158 162162 241241 0 0 0 0 0 0 201205 181185 150158 177181

PM 5-5-5 Ml-1 155158 165165 0 0 0 0 0 0 0 0 0 0 0 0 189189 181185 150154 0 0 0 0 0 0

PM 5-6-10 Ml-1 158161 0 0 0 0 0 0 241241 155167 201205 181183 150150 177177

PM 5-6-13 Ml-1 0 0 0 0 0 0 166166 241249 0 0 0 0 0 0 2 0 1 2 0 1 183183 150150 177185

PM 5-6-4 Ml-1 0 0 0 0 0 0 165166 241241 0 0 0 0 0 0 0 0 0 0 0 0 181185 150160 177177

PM 5-6-9 Ml-1 152158 165165 241249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150160 177177

PM 7-11-26 Ml-1 155158 162162 245251 169169 197205 181183 160160 183183

PM 7-11-4 Ml-1 155155 162165 241255 167167 197205 183183 160160 177183

PM 7-11-8 Ml-1 155158 162164 241259 167169 0 0 0 0 0 0 0 0 0 0 0 0 150160 183183

PM 7-12-1 Ml-1 155158 162168 0 0 0 0 0 0 167175 189197 181183 150158 177185
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Appendix Seven: Proboscis monkey genotypes

P1A6 P3B2 P4C11 E10 P1C5 D10 P2D6 P2F3
PM 7-14-1 Ml-1 155158 162165 249249 169175 187197 0 0 0 0 0 0 150158 177183

PM 7-2-2 Ml-1 155158 162166 253255 175175 0 0 0 0 0 0 181183 150160 183183
PM 7-4-11 Ml-1 152158 165165 249249 167167 197197 181183 160160 175187

PM 7-4-5 Ml-1 152155 162162 0 0 0 0 0 0 167169 2 0 1 2 0 1 183183 160160 177181

PM 7-7-3 Ml-1 0 0 0 0 0 0 162162 241249 0 0 0 0 0 0 2 0 1 2 0 1 181183 150160 0 0 0 0 0 0

PM 7-9-4 Ml-1 155155 162165 241249 167167 0 0 0 0 0 0 0 0 0 0 0 0 150160 177183

SOUTH

PM 1-2-13 Ml-1 152158 0 0 0 0 0 0 241241 0 0 0 0 0 0 0 0 0 0 0 0 183183 154156 177177

PM 1-4-15 Ml-1 155155 165168 241251 167167 197205 183183 158160 177183

PM 1-4-16 Ml-1 155158 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2 1 1 189189 0 0 0 0 0 0 160160 177183

PM 1-4-17 Ml-1 155176 165165 241241 167167 197201 0 0 0 0 0 0 160160 177183

PM 1-4-8 Ml-1 152158 0 0 0 0 0 0 241241 167167 0 0 0 0 0 0 0 0 0 0 0 0 150160 177185

PM 1-5-19 Ml-1 155155 164164 241241 169169 197201 0 0 0 0 0 0 156160 0 0 0 0 0 0

PM 3-11-1 Ml-1 155158 162172 245255 167173 185205 183183 150156 177185

PM 3-11-4 Ml-1 155155 160162 251255 153169 197205 181183 150160 177183

PM 3-5-18 Ml-1 152155 162162 249249 169169 197197 179183 150150 183185

PM 3-5-22 Ml-1 155155 160162 0 0 0 0 0 0 183183 197201 181183 150150 183185

PM 3-5-37 Ml-1 155158 160162 249251 151151 0 0 0 0 0 0 0 0 0 0 0 0 150158 183183

PM 3-5-44 Ml-1 155158 162162 249249 167167 197205 181183 150150 183183

PM 3-6-5 Ml-1 155155 0 0 0 0 0 0 241241 173173 2 0 1 2 0 1 181185 158160 185185

PM 3-8-28 Ml-1 155176 162162 241241 147157 0 0 0 0 0 0 0 0 0 0 0 0 150156 183183

PM 6-3-1 Ml-1 158158 0 0 0 0 0 0 237259 0 0 0 0 0 0 197197 177177 160162 0 0 0 0 0 0

PM 6-4-3 Ml-1 152158 162165 241249 161167 197197 177183 150150 177183

PM 6-5-1 Ml-1 158158 152160 0 0 0 0 0 0 0 0 0 0 0 0 197201 177177 154160 0 0 0 0 0 0

PM 6-6-10 Ml-1 149176 162166 0 0 0 0 0 0 183183 197201 183183 150160 177183

PM 6-6-2 Ml-1 0 0 0 0 0 0 162162 241249 155167 0 0 0 0 0 0 183183 150158 183183

PM 6 -6 - 6  Ml-1 158158 162164 245251 167167 197205 183183 150160 183185

PM 6-7-2 Ml-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 183183 189189 183183 166166 173177

PM 6-7-5 Ml-1 152152 0 0 0 0 0 0 231231 155155 189189 0 0 0 0 0 0 160166 173173
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Appendix Eight: Allele frequency distributions by locus and population of proboscis monkeys

APPENDIX EIGHT

Proboscis monkey allele frequency distribution by locus and population
Locus North South
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Appendix Eight: Allele frequency distributions by locus and population of proboscis monkeys

Locus North South
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Appendix Nine: Linkage disequilibrium (LD) tests of loci screened in proboscis monkeys

APPENDIX NINE

Linkage disequilibrium (LD) tests of loci screened in proboscis monkey. LD was measured using 
the correlation coefficient. The significance at P < 0.05 by pair of loci and for each population is 
represented with *. NS = non significant.

Locus 1 Locus 2 North South
P1A6 P3B2 NS NS

P4C11 NS NS
E10 NS NS
P1C5 NS NS
DIO NS NS
P2D6 NS NS
P2F3 NS NS

P3B2 P4C11 NS *

E10 NS NS
P1C5 NS NS
DIO NS NS
P2D6 NS *

P2F3 NS *

P4C11 E10 NS *

P1C5 NS *

DIO NS NS
P2D6 NS NS
P2F3 NS NS

E10 P1C5 NS *

DIO NS *

P2D6 NS NS
P2F3 NS *

P1C5 DIO NS NS
P2D6 * NS
P2F3 NS NS

DIO P2D6 NS NS
P2F3 NS NS

P2D6 P2F3 NS NS
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Appendix Ten: Number of subpopulations of proboscis monkey, when comparing the 10 Lots of the LKWS

APPENDIX TEN

Number of genetically differentiated clusters (subpopulations, K=2, but note value of K=3) of 
proboscis monkeys determined by STRUCTURE, comparing the 10 Lots of the LKWS as unique 
sampled subpopulations. K values were set between 1-11 using 5 independent runs of 100,000 
iterations (plus a burn-in of 20,000 iterations) for each K value. Runs were performed with the 
“admixture model” and the “correlated allele frequency” model without prior information and 
with an initial alpha value set to 1.0. Null alleles were considered as recessive to all other alleles. 
Individuals were assigned to one cluster if their proportion of membership (qj  to that cluster was 
equal to or larger than 0.600, the individuals with maximum inferred ancestry < 0.6 were not 
assigned to any group. Lot 1 was assigned to cluster I, while Lot 4 and Lot 10 were assigned to 
Cluster II.

K 1 2 3 4 5 6 7 8 9 10 11
lnP(X|K

) -1655 -1623.7 -1628.2 -1827.2 -1829.6 -1964.4 -1842.1 -1868.7 -1978.8 -2083.2 -2057.8

Given Inferred clusters Given Inferred clusters
population qi qll population ql qll

Loti 0.308 0.692 Lot 5 0.52 0.48
Lot 2 0.35 0.65 Lot 6 0.403 0.597
Lot 3 0.402 0.598 Lot 7 0.589 0.411
Lot 4 0.683 0.317 Lot 10 0.615 0.385

K=2

K=3

K=4

K=5

n

*

™  1

■hi:

K=6

K=10

K=ll
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Appendix Eleven: Proboscis monkey M hc-DRB  sequences

APPENDIX ELEVEN

Mhc-Nala-DRB sequences

>Nala-DRB*Allelel
TCCGGTCGACTGTCCCCCCAGCACGTTTCTTGAAGCAGGATAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGAGTGCG
GTTCCTGCACAGATATATCCATAACCAAGAGGAGGACGCGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGG
AGCTGGGGCGGCCTGACGCCGAGTACTTCAACAGCCAGAAGGACATCCTGGAGCAGAGGCGGGCCGAGGTGGACACAGTG
TGCAGACACAACTACGGGGTTGTGGAGAGCTTCACAGTGCAGCGGCGAGGTGATCTAGAAA
> Nala-DRB*Allele2
CCGGTCGACTGTCCCCCCAGCACGTTTCTTGAAGCAGGATAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCG
GTTCCTGCACAGATATATCCATAACCAAGAGGAGGACGCGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGG
AGCTGGGGCGGCGTACCGCCGAGTACTGGAACAGCCAGAAGGACCTCCTGGAGCAGAGGCGGGCCGTGGTGGACACAGT
GTGCAGACACAACTACGGGGTTTTTGAGAGCTTCACAGTGCAGCGGCGAGGTGATCTAGAA

> Nala-DRB*Allele3
CCGGTCGACTGTCCCCCCAGCACGTTTCTTGAAGCAGGATAAGTATGAGTGTCATTTCCTCAACGGGACGGAGCGAGTGCG
GTTCCTGCACAGATATATCCATAACCAAGAGGAGGACGCGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGG
AGCTGGGGCGGCCTGACGCCGAGTACTTCAACAGCCAGAAGGACATCCTGGAGCAGAGGCGGGCCGAGGTGGACACAGTG
TGCAGACACAACTACGGGGTTGTGGAGAGCTTCACAGTGCAGCGGCGAGGTGATCTAGA

> Nala-DRB*Allele4
GGTCGACTGTCCCCCCAGCACGTTTCTTGAAGCAGGATAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGAGTGCGGTT
CCTGCACAGGTATATCCATAACCAAGAGGAGGACGCGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGC
TGGGGCGGCGTGCCGCCGAGTACTGGAACAGCCAGAAGGACATCCTGGAGCAGAGGCGGGCCGAGGTGGACACAGTGTG
CAGACACAACTACGGGGTTGTGGAGAGCTTCACAGTGCAGCGGCGAGGTGATCTAGA

> Nala-DRB*Allele5
CCGGTCGACTGTCCCCCCAGCACGTTTCTTGAAGCAGGATAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCG
GTTCCTGCACAGATACATCCATAACCAAGAGGAGAACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGG
AGCTGGGGCGGCGTGCCGCCGAGTACTGGAACAGCCAGAAGGACATCCTGGAGCAGAGGCGGGCCGAGGTGGACACAGT
GTGCAGACACAACTACGGGGTTTTTGAGAGCTTCACAGTGGAGCGGCGAGGTGATCTAGAA
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Appendix Twelve: Long-tailed macaque M hc-DRB  sequences

APPENDIX TWELVE

Mhc-Mafa-DRB sequences

> Mafa-DRB*Allelel
TTGGAGTACTCTACATCTGAGTGTCACTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAAGA
GGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTGG
AACAGTCAGAAGGACATCCTGGAGCAGAAGCGGGCCGGGGTGGACAACTACTGCAGATACAACTACCGGGTTGGTGAGAGC
TTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele2
TTGGAGTACTCTACATCTGAGTGTCACTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGTCGGAGCTGGGGCGGCCTGACGCCGAGAACTG
GAACAGTCGGAAGGACATCCTGGAGCAGAGGCGGGCCGGGGTGGACAACTACTGCAGACACAACTACCGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*AlleIe3
TTGGAGCAGTCTACATCTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGACACTTCTATAACCAGG
AGGAGTACGTGCGCTATGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACAGCCAGAAGGACATCCTGGAACACAGGCGGGCCGCGGTGGACACCTACTGCAGATACAACTACCGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele4
TTGGAGCAGGTTAAGTATGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGAGAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACAGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACAGCCAGAAGGACTTCCTGGAGGAGAAGCGGAGCCCGGTTGACAACTACTGCAGACACAACTACGGGGTTGTGGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele5
TTGGAGCAGGTTAAGTATGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGAGAGATACTTCTATAACCAGG
AGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGTCGGAGCTGGGGCGGCGTAGCGCCCAGTCCTG
GAACGGCCAGAAGGGCATCCTGGAGCAGAGGCGGACCCAGGTGGACACCTACTGCAGACACAACTACGGGGTTGTGGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele6
TTGGAGCAGGTTAAGTATGAGTGTCGTTTCTTCAACAGGACGGAGCGGGTGCGGTTCCTGGAGAGACACTTCTATAACCAGG
AGGAGTTCGTGCGCTTCGACAGTGACCTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCCAGTACTTG
AACAGTCAGAAGGACCTCCTGGAAGCACAGGCGGGCCCGGGTGGACACACTAGCTGCAGACA

> Mafa-DRB*Allele7
TTGAAGCAGGTTAAACATGAGTGTCGTTTCTTCAACGGGACGGAGCGGGTGCGGTACCTGCAGAGACATTTCCATAACCAAG
AGGAGTTCGTGCACTTCGACAGTGACCTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCCAGTACTTG
AACAGTCAGAAGGACCTCCTGGAAGCACAGGCGGGCCCGGGTGGACACACTAGCTGCAGACA

> Mafa-DRB*Allele8
TTGGAGCAGGTTAAACATGAGTGTCACTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCTGAGTACTG
GAACAGCCAGAAGGACATCCTGGAAGACAGGCGGGCCCAGGTGGACACCGTGTGCAAACACAACTACGGGGTTGTGGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele9
TTAGAGTACTGTAAGTTTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCAGTACCTGATCAGATACTTCTATAACCAAGA
GGAGTACGTGCGCTACGACAGCGACGTCGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTGG
AACGGCCAGAAGGACCTCCTGGAGCAGAGGCGGGCCGAGGTGGACACCGTGTGCAGACACAACTACGGGGTTGTTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*AllelelO
TTGGAGGAGTGTAAATATAAATGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGTCAGATTCTTCTATAACCAAGA
GGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTGG
AACGGTCAGAAGGACCTCCTGGAAGACAGGCGGGCCGAGGTGGACACCGTGTGCAGACACAACTACGGGGTTGTTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allelel 1
TTGGAGGAGGATAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGAGAGACTCTTCTATAACCAGG
AGGAGTTCGTGCGCTTCGACAGCGACGTCGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGTCGCCGAGAACTG
GAACAGCCGGAAGGACCTCCTGGAGCAGAGGCGGGCCCAGGTGGACACCGTGTGCAGACACAACTACGGGGTTGTTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allelel2
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TCTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGGAGGAGTACCTGCGCT
TCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTGGAACAGCCGGAAGGA
CATCCTGGAGCAGAGGCGGGCCGCGGTGGACAACTACTGCAGATACAACTACGGGGTTGGTGAGAGCTTCACAGTGCAGC
GGCGAG

> Maf a-DRB* Allelel 3
TCTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACATCTATAACCAGGAGGAGAACGTGCGCT
TCGACAGCGACGTGGGGGAGTTCCGGGCGGTGTCGGAGCTGGGGCGGCCTGACGCCGAGAACTGGAACAGTCAGAAGGA
CTTCCTGGAGCAGAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACCGGGTTGGTGAGAGCTTCACAGTGCAGC
GGCGAG

> Mafa-DRB*Allelel4
TTGGAGCAGGTTAAACATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATTCTTCTATAACCAGG
AGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCGTAACGCCGAGTACTG
GAACAGCCAGAAGGACTTTCTGGAGCACACGCGGACCGAGGTGGACACCTA

> Mafa-DRB*Allelel5
TTGGAGCAGGTTAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGAGAGACTCTTCTATAACCAGG
AGGAGTTCCTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTCCTG
GAACAGTCGGAAGGACCTCCTGGAAGACAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allelel6
TTGGAGCAGGTTAAGTATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGAGAGACTCTTCTATAACCAGG
AGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTCCTG
GAACAGTCGGAAGGACCTCCTGGAACACAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*AUelel7
TTGGAGCAGGCTAAACGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCCATAACCAGG
AGGAGTACGCGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGTGGTGACGGAGCTGGGGCGGCGTAGCGCGGAGTACTG
GAACAGCCAGAAGGACTTTCTGGAGCAGGCGCGGACCGCGGTGGACAACTACTGCAGACACAACTACGGGGTTGGCGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allelel8
CTGGGGCATGCTAAGTCAGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGCAGAGATACATCTATAACCAGG
AGGAGTTGGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGTCGCCGAGTCCTG
GAACAGTCGGAAGGACTTCCTGGAGCGGGAGCGGGCCCAGGTGGACACCTGCAGACACAACTACGGGGGTGTGGAGAGCT
TCACAGTGCAGCGGCGAG

> Mafa-DRB*Allelel9
TTGTGGCAGGCTAAGGGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTACCTGGAGAGATACTTCTATAACCAG
GAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGTCGCCGAGTACT
GGAACAGCCTGAAGGACATCCTGGAGCGGAGGCGGGCCGTGGTGGACACCTGCAGATACGACTACGGGGTTGTGGAGAGC
TTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele20
TTGGAGCAGGCTAAACGTAAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGCACAGACACTTCTATAACCAGG
AGGAGTACGCGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGTCGCCGAGTACTG
GAACAGCCAGAAGGACTTCCTGGAGCAGAGGCGGACCTCGGTGGACAATTACTGCAGACACAACTACAGGGTTGTGGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele21
TTGGAGCAGGCTAAGGGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTACCTGCACAGACACTTCCATAACCAG
GAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTAACGGAGCTGGGGCGGCGTAGCGCGGAGAACT
GGAACAGCCAGAAGGACTTTCTGGAGCAGGCGCGGGCCGCGGTGGACAACTACTGCAGACACAACTACGGGGTTGTGGAG
AGCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele22
GAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGGAGGAGTTCGTGCGCTTC
GACAGCGACGTGGGGGAGTTCCGGGCGGTGTCGGAGCTGGGGCGGCCTGACGCCGAGTACTGGAACAGTCAGAAGGACT
TCCTGGAGCAGAGGCGGGCCCCGGTTGACAACTACTGCAGATACAACTACCGGGTTGGTGAGAGCTTCACAGTGCAGCGGC
GAG

> Mafa-DRB*Allele23
GAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTACCTGCACAGATACTTCTATAACCAGGAGGAGTACGTGCGCTTC
GACAGCGACGTGGGGGAGTTCCGGGCGGTGTCGGAGCTGGGGCGGCCTGACGCCGAGTACTTCAACAGTCAGAAGGACTT
CCTGGAGCAGAGGCGGGCCCCGGTGGACACCTACTGCAGATACAACTACCGGGTTGGTGAGAGCTTCACAGTGCAGCGGC
GAG

> Mafa-DRB*Allele24
TTGGAGTACTCTACATCTGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGTCGGAGCTGGGGCGGCGTAGCGCCGAGTACTG
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GAACGACCAGAAGGACATCCTGGAAGACACGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACCGGATTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele25
TTGGAGTACTCTACATCTGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGTCGGAGCTGGGGCGGCGTAGCGCCGAGTACTG
GAACGGCCAGAAGGACTTCCTGGAAGACAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACCGGATTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele26
TTGGAGCAGGCTAAGTCTGAGTGTCACTTCAATGGGACGGAGCGGGTGCGGTACCTGGACAGATACATCCATAACCAGGAG
GAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGTCGCCGAGTCCTGGA
ACGGCCAGAAGGACATCCTGGAGCGGAAGCGGGCCGAGGTGGACACCGTGTGCAGACACAACTACGGGGTTTTTGAGAGC
TTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele27
TTGAAGCAGGCTAAGGATGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGAGAGACACTTCTATAACCAG
GAGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCGTAGCGCCCAGTACT
TCAACAGCCAGAAGGGCTACCTGGAGCACAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGTGGAG
AGCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele28
TTGAAGCAGGTTAAGGCTGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGAGAGACACTTCTATAACCAG
GAGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCGTAGCGCCGAGTACT
TCAACAGCCAGAAGGGCTACCTGGAGCAGAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTGTGGAG
AGCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele29
TTCGAGTACTGTACGCATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTACCTAGTCAGATTTTTCTATAACCGAGA
GGAGTATGTGCGCTTCGACAACGACGTGGGGGAGTTCCAGGCGGTGACGGAGCTGGGGCGGCCTGAAGCCGAGTACTGGA
ACGGCCAGAAGGACCTCCTCGAGAAGGTGCGGGCCGAGGTGGACATCTGCAGACACAACTACGGTGTTGTGGAGAGCTTCA
CAGTGCAGCGGCGAG

> Mafa-DRB*Allele30
TTGGAGCAGGCTAAATGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGCGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACAGCCAGAAGGACTTTCTGGAGCAGACGCGGGCCGAGGTGGACAACTACTGCAGACACAACTACGGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele31
TTGGAGCACGCTAAATGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCCATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCGTGACGCCGAGTACTG
GAACAGCCAGAAGGACTTCCTGGAGCAGGCGCGGACCGCGGTGGACAACTACTGCAGACACAACTACGGGGTTGGCGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele32
TTGGGGCAGGGTAAACGTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAG
GAGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAACTGGGGAGGCCTGTCGCCGAGAACTT
GAACAGTCGGAAGGACTACCTGGAGCAGGCGCGGGCCGCGGTGGACACCTACTGCAGATACAACTACGGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele33
TTGGGGCAGGCTAAACGTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTTCGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGTCGCGGAGAACTG
GAACAGCCGGAAGGACTACCTGGAGCAGGCGCGGGCCGCGGTGGACAATTACTGCAGATACAACTACGGGGTTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele34
TTGGAGTACTCTACATCTGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTCGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACGGCCAGGAGGACATCCTGGAAGACGCGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGTTTTTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele35
TTAGAGTACTGTAAGTTTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCAGTACCTGATCAGATACTTCTATAACCAAGA
GGAGTACGTGCGCTGCGACAGCGACGTCGGGGAGTACCGGCCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTGG
AACGGCCAGAAGGACCTCCTGGAGCAGAGGCGGGCCGAGGTGGACACCGTGTGCAGACACAACTACGGGGTTGTTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele36
TTGGAGCAGGCTAAACGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCCATAACCAGG
AGGAGTACGCGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCGTAGCGCGGAGTACTG
GAACAGCCAGAAGGACTTTCTGGAGCAGGCGCGGACCGCGGTGGACAACTACTGCAGACACAACTACGGGGTTGGCGAGA
GCTTCACAGTGCAGCGGCGAG
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> Mafa-DRB*Allele37
TTGGAGCAGGCTAAGTCTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTACCTGCACAGATACATCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGCACCGGGCGGTGACGGAGCTGGGGCGGCCTAGCGCCGAGTACTG
GAACGGCCAGAAGGACATCCTGGAACACCAGCGGGCCGCGGTGGACAACTTCTGCAGATACAACTACCGGGTTGGTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele38
TTGGAGCAGTCTACATCTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGCACAGATACTTCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGCACCGGGCGGTGTCGGAGCTGGGGCGGCGTAGCGCCGAGAACTG
GAACAGTCGGAAGGACATCCTGGAGCACCAGCGGGCCGCGGTGGACACCTTCTGCAGATACAACTACCGGGTTTTTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele39
TTGGAGTACTCTACATCTGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGCGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCGTAGCGCCGAGTACTG
GAACGGCCAGAAGGACATCCTGGAAGACGCGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACCGGATTGGTGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*AUele40
TTGTGGCAGGATAAGGCTAAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTACCTGGAGAGACACTTCTATAACCAG
GAGGAGTTAGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGTCGGAGCTGGGGCGGCCTGTCGCCGAGAACT
GGAATGGCCAGAAGGACTACCTGGAGCAGAAGCGGGCCGCGGTGGACAACTACTGCAGACACAACTACGGGGTTGGTGAG
AGCTTCACAGTGCAGCGGCGAG

> Mafa-DRB* AUele41
TTGTGGCAGGCTAAGGCTAAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTACCTGGAGAGACACTTCTATAACCAG
GAGGAGTTAGTGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGTCGGAGCTGGGGCGGCCTGTCGCCGAGAACT
GGAATGGCCAGAAGGACTACCTGGAGCAGAAGCGGGCCGCGGTGGACAACTACTGCAGACACAACTACGGGGTTGGTGAG
AGCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele42
TTGGAGCAGGCTAAGTCTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGATAGATACATCCATAACCAAG
AGGAGAACCTGCGCTTCGACAGCGACGTAGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACAGCCAGAAGGACTTCCTGGAGCAGAGGCGGGCCGCGGTGGACACCTACTGCAGACACAACTACGGGGCTGTGGAGA
GCTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele43
TTGGAGTACTGTACATCTGAGTGTCACTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGAACAGATACTTCTATAACCAAG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACGGCCAGAAGGACATCCTGGAACACACGCGGGCCGAGGTGGACACCTACTGCAGACACAACTACCGGATTGTTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*AUeIe44
TTAGAGTACTGTACGTTTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGTCAGATACTTCTATAACCAGGA
GGAGTACGTGCGCTTCGACAGCGACGTCGGGGAGTACCGGGCGGTGACGGAGCTGGGGCGGCGTAGCGCCGAGTACTGG
AACGGCCAGAAGGACCTCCTGGAGCACGGGCGGGCCGCGGTGGACACCGTGTGCAGACACAACTACCGGATTGGTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele45
TTGGAGCAGGCTAAGTCTGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGACAGATACATCTATAACCAGG
AGGAGTACGTGCGCTTCGACAGCGACGTGGGGGAGCACCGGGCGGTGACGGAGCTGGGGCGGCGTAGCGCCGAGTACTG
GAACGGCCAGAAGGACATCCTGGAAGACCAGCGGGCCGCGGTGGACACCTTCTGCAGATACAACTACCGGGTTTTTGAGAG
CTTCACAGTGCAGCGGCGAG

> Mafa-DRB*Allele46
TTGGAGCAGGTTAAATGTGAGTGTCATTTCTTCAATGGGACGGAGCGGGTGCGGTTCCTGGACAGATACTTCTATAACCAGG
AGGAGTACGCGCGCTTCGACAGCGACGTGGGGGAGTTCCGGGCGGTGACGGAGCTGGGGCGGCCTGACGCCGAGTACTG
GAACAGCCAGAAGGACCTCCTGGAGCAGAGGCGGGCCGAGGTGGACACCTA
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APPENDIX THIRTEEN

Alignment of long-tailed m acaque sequences to DRB (exon 2) consensus. Codon 
num bering is shown above the consensus of Mafa-DRB sequences. Identity to 
consensus is shown by dashes (-). An indel is shown by (\) and asterisks (*) denote 
unsequenced nucleotides.
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Appendix Thirteen: Alignment of long-tailed macaque sequences to DRB (exon 2) consensus.
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Appendix Thirteen: Alignment of long-tailed macaque sequences to DRB (exon 2) consensus.
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Appendix Thirteen: Alignment of long-tailed macaque sequences to DRB (exon 2) consensus.
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Appendix Fourteen: Phylogenetic tree of LKWS Mafa-DRB  sequences

APPENDIX FOURTEEN
Phylogenetic tree of 47 LKWS Mafa- (♦ )  and other published Mafa- 
derived from 305 nucleotide sequences sequences using the neighbour- 
on the branches refer to confidence probability values.

and Macaca sp. -DRB sequences. The tree configuration was 
■joining and Jukes-Cantor methods in MEGA 5.0 Beta. Numbers
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Appendix Fifteen: GLM standardized residuals

APPENDIX FIFTEEN

Examples of GLM standardized residuals.

Richness Model A (Locality: North and South of the Kinabatangan River

H istogram  o f  a re s  Normal Q-Q P lo t

2c 1-1

Richness Model B (Locality: 3 different areas in the LKWS)

Histogram of v s s Normal Q-Q Plot

5.1 2.C

TtaC-'eDCSS OuSRNtS

Strongylid (hookworms) frequency data

(EPG faeces)
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Appendix Fifteen: GLM standardized residuals

Strongylid environmental contamination Model A (with a negative binomial error)

Strongylid environmental contamination Model B (with a quasipoisson error)

Histogram o< sras Normal O Q  Plot

i *
i
I

25

i3

TH*5reX»s Cvt:

280 4C8 858 ! « 5  12SC

203



204

Taxonomic Parasite type Description Experimental observation FEC range
group________________ _ ______________________________ _________________________________________________________________

Taenia sp. eggs were identified based on size and morphology 
(spherical with thick striated shell) and measured (44.9 ± 0.4 x 
42.9 ± 0.2 ixm [n=2]). They were found in both primate 
species but prevalence was higher in proboscis monkeys than in 
long-tailed macaques (x2= 34.7692, df = 1, P < 0.001) (Table 
5.3).

Cestoda

Eggs that resemble Dipylidium sp. (spherical or oval with 5-15 
eggs (or more) enclosed in a sac or capsule) were found in both 
primate species and measured (40.8 ± 1.0 x 32.2 ± 1.0 ixm 
[n=7]). The size of the packet is smaller than the one reported 

Dipylidium-like in the literature (capsule usually ranges in size from 58 /xm to 60
ixm x 170 /xm -  DPDx), hence the classification of this morph 
(Dipylidium-like) is based solely on the shape of the eggs and 
must be taken cautiously. Prevalence of Dipylidium-like morphs 
did not differ among primate species (P>0.1) (Table 5.3)

2 0  /xm

PM:1-133 
LTM: 2-11

PM: 3-38 
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G
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Trematoda

Dicrocoeliid

Clonorchis sp.

Fasciola sp.

A dicrocoeliid liver fluke was identified based on egg size and 
morphology (thick shelled, ellipsoid and operculated). Eggs 
were found in the faeces of both primate species (38.2 ± 1.4 x 
20.9 ± 2.3 /xm [n=3]), however these eggs may represent 
Dicrocoelium sp., Brodenia sp., and/or Concinnum sp. since 
they cannot be differentiated to the genus level based on egg 
morphology alone. This was the only trematode shared among 
primate species and it presented a similar prevalence between 
them (P>0.5) (Table 5.3).

Clonorchis sp. was identified based on egg morphology and 
size (small, ovoidal or elongated, with broad rounded posterior 
end and a convex operculum, "knob" on posterior end was 
observed occasionally). This trematode was only found in long­
tailed macaques (measuring 24.4 ± 1.7 x 16.5 ± 1.2 /xm 
[n=2]) and prevalence was very low (1.4 %) (Table 5.2).

Egg morphology and size (large size, broadly oval, thin shell, 
with small, indistinct operculum) were used to identify Fasciola 
sp.. This species was also only found in Macaca fascicularis 
(measuring 140.5 ± 2.6 x 77.4 ± 5.3 yum [n=2]) and 
prevalence was slightly higher (4.9 %) than Clonorchis sp. 
(Table 5.3).
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Nematoda

Strongyloides sp.

Strongylid

Trichuris sp.

Strongyloides sp. was identified based on egg size and 
morphology (ellipsoid, with a thin wall resembling strongyle 
eggs in appearance but slightly smaller in size). Eggs were 
present in both primate species (measuring 51.8 ± 0.8 x 31.4 
±1 .9  /xm [n=5]), and the presence of rhabditoid larvae was 
also used for inference on the presence of this parasite. 
Prevalence was higher on long-tailed macaques than on 
proboscis monkeys (%2= 8.138, df = 1, P< 0.005) (Table 5.3).

Unidentified strongylid eggs (measuring 74.3 ± 1.7 x 52.4 ± 2 
/x m [n=10]), were found in the faeces of both primate species. 
These strongyles may represent Necator sp., Ancylostoma sp., 
and/or Oesophagostomum sp.; however, coprocultures were 
not performed, limiting the identification of these parasites to 
the genus level. Prevalence of unidentified strongyles was high 
on both primate species, but it was higher on macaques than 
proboscis monkeys (x2= 56.0885, df = 1, P< 0.001) (Table 
5.3).

Trichuris sp. was identified based on egg size and morphology 
(barrel-shape, yellow-brown coloration, and bipolar plugs). 
Eggs measured 56.7 ± 1.4 x 26.2 ± 0.4 /xm [n=3] and were 
present in both primate species. Prevalence of Trichuris sp. was 
significantly higher in proboscis monkeys (> 90%) than in 
macaques (53.8%, %2= 67.6835, df = 1, P<0.001) (Table 
5.3).
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Nematoda

Eggs resembling Trichuris sp. and Capillaria sp. were identified 
as Anatrichosoma sp. based on size and morphology (barrel 
shaped with bipolar plugs, containing a larva, thick and golden- 

Anatrichosoma sp. brown shell, with a roughened or textured surface). Present in 
both monkey species, eggs measured 75.6 ± 0.8 x 51.6 ± 2.5 
pm [n=3]. No primate species had a higher prevalence of this 
parasite than the other (P>0.5) (Table 5.3).

Ascaris sp. was identified based on egg size and morphology 
(round or oval, thick-shelled and mammillated albuminous 

Ascaris sp. covering). Eggs were found in faeces of both primates and 
measured 59.3 ± 3.5 x 53.9 ± 2.6 pm [n=9]. Prevalence of 
Ascaris sp. was over 60% in both primate species but no 
different between each other (P>0.1) (Table 5.3).

Identification of Oxyuridae. was based on size and morphology 
of eggs (smooth and thin eggshell, elongated and asymmetrical 

Oxyurid wjth one gj^g flattened, other side convex). Eggs measured 72.3
± 0.8 x 29.8 ± 1.0 jam [n=4] and were equally prevalent in 
both types of monkeys (P>0.1) (Table 5.3).
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Nematoda

Acanthocephala

Unidentified

Eggs that resemble Oxyuridae were found in long-tailed 
macaque samples. However, size ranges doubled those 

Oxyurid-like reported for the aforementioned species (measuring 124.2 ± 
3.8 x 47.8 ± 1.8 /xm [n=3]). Prevalence was overall low 
(2.8%) (Table 5.3).

Eggs of what could be a member of the Phylum 
Acanthocephala were identified based on size and morphology 
(elongated, oval, with a thick clear shell which appeared 

“Acanthocephala” textured on different focal planes). Since only two eggs 
(measuring 98.8 ± 1.2 x 50.8 ± 2.1 /xm) were found in all the 
samples (n=290), identification of this parasite-like object must 
be taken cautiously. Prevalence did not differ between the two 
primate species (P>0.1) (Table 5.3).

Unidentified objects, resembling parasite-like eggs were found 
in faeces of long-tailed macaques. “Eggs” measured 270 ±1.3 

Unknown Morph x 170.8 ± 2.5 [n=3] and were dark, oval, with a capped end 
and the shell was thin and smooth. Appearing in only one 
sample, prevalence was very low (1.4%) (Table 5.3).
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APPENDIX SEVENTEEN

Long-tailed macaque samples analysed for microsatellites (STR), MHC or parasites.
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Sample ID Lot Side STR MHC Parasites Sample ID Lot Side STR MHC Parasites Sample ID Lot Side STR MHC Parasites
Mafa 2-6-1

2 South < / Mafa 6-10-10 6 South ✓ ✓ «/ Mafa 9-10-6 9 South
✓

Mafa 2-6-2 2 South «/ Mafa 6-10-11 6 South ✓ Mafa 9-11-1 9 South ✓

Mafa 2-6-3 2 South ✓ Mafa 6-10-13 6 South ✓ Mafa 9-1-6 9 South y / ✓

Mafa 2-7-1 2 South < / ✓ > / Mafa 6-10-14 6 South ✓ Mafa 9-1-7 9 South ✓ ✓ ✓

Mafa 2-7-6 2 South < / </ Mafa 6-10-5 6 South ✓ Mafa 9-2-2 9 South ✓

Mafa 2-7-7 2 South < / </ Mafa 6-10-7 6 South * Mafa 9-2-3 9 South ✓

Mafa 2-8-1 2 South ✓ Mafa 6-11-1 6 South < / Mafa 9-4-3 9 South ✓

Mafa 2-8-2 2 South ✓ Mafa 6-11-2 6 South ✓ Mafa 9-5-2 9 South ✓ ✓ ✓

Mafa 2-9-1 2 South ✓ Mafa 6-11-3 6 South Mafa 9-5-3 9 South y / V

Mafa 3-10-6 3 South </ ✓ Mafa 6-1-2 6 South *< < / Mafa 9-6-1 9 South y /

Mafa 3-11-6 3 South ✓ Mafa 6-12-1 6 South ✓ «/ Mafa 9-6-3 9 South ✓ ✓

Mafa 3-13-3 3 South ✓ Mafa 6-12-3 6 South ✓ Mafa 9-7-3 9 South y / ✓ ✓

Mafa 3-14-1 3 South ✓ ✓ Mafa 6-12-7 6 South V Mafa 9-7-7 9 South < / ✓ ✓

Mafa 3-15-3 3 South < / ✓ Mafa 6-13-1 6 South ✓ < / Mafa 9-8-1 9 South y / ✓

Mafa 3-15-4 3 South ✓ Mafa 6-14-1 6 South ✓ ✓ ✓ Mafa 9-8-4 9 South y / ✓

Mafa 3-16-3 3 South ✓ Mafa 6-14-2 6 South ✓ Mafa 9-9-1 9 South ✓ ✓ < /

Mafa 3-16-5 3 South ✓ ✓ Mafa 6-14-3 6 South </ Mafa OutS-1-3 South ✓ y /

Mafa 3-17-11 3 South ✓ Mafa 6-15-1 6 South ✓ ✓ Mafa OutS-1-5 South ✓

Mafa 3-17-2 3 South </ ✓ ✓ Mafa 6-15-3 6 South Mafa OutS-1-6 South y /

Mafa 3-17-3 3 South ✓ Mafa 6-15-7 6 South < / Mafa 10a-1-3 10 North y /

Mafa 3-17-5 3 South Mafa 6-2-10 6 South ✓ ✓ Mafa 10a-2-l 10 North ✓ y /

Mafa 3-2-1 3 South ✓ ✓ Mafa 6-2-6 6 South ✓ Mafa 10a-4-3 10 North y /

Mafa 3-3-1 3 South y / Mafa 6-4-3 6 South ✓ Mafa 10a-4-4 10 North ✓ y /

Mafa 3-4-1 3 South ✓ ✓ Mafa 6-4-7 6 South < / ✓ Mafa 10a-6-l 10 North ✓ ✓ y /

Mafa 3-5-4 3 South < / Mafa 6-6-3 6 South y/ Mafa 10a-7-l 10 North y/

Mafa 3-7-2 3 South ✓ ✓ Mafa 6-8-2 6 South ✓ Mafa 10a-7-2 10 North y /
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Appendix seventeen: Long-tailed macaque samples analysed in this study.
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APPENDIX EIGHTEEN

Proboscis monkey samples analysed for microsatellites (STR), MHC or parasites.
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Appendix eighteen: Proboscis monkey samples analysed in this study.
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Sample ID Lot Side STR MHC Parasites Sample ID Lot Side STR MHC Parasites Sample ID Lot Side STR MHC Parasites
PM 3-2-1 3 South </ PM 6-1-1 6 South </ SK019 Klias

PM 3-2-7 3 South PM 6-1-6 6 South ✓ T1S2 Klias «/

PM 3-3-1 3 South ✓ PM 6-3-1 6 South ✓ ✓

Appendix 
eighteen: Proboscis 

m
onkey 

sam
ples 

analysed 
in 

this 
study.


