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Abstract

Terpenoids represent the most structurally and stereochemically diverse family of 

natural products with more than 55,000 terpenoid structures discovered to date from 

all life forms. Sesquiterpenes are a class of the terpenoid family, and their formation 

from famesyl diphosphate is catalyzed by sesquiterpene synthases. This project 

focuses on trying to decipher the reaction mechanisms of two sesquiterpene synthases, 

6-cadinene synthase from Gossypium arboreum and (2s)-|3-famesene synthase from 

Mentha x piperita and to provide a method for the generation of unnatural terpenes 

with potential commercial applications in both the pharmaceutical and agrochemical 

industries.

Modifications by substitution of residues around the active site of 6-cadinene synthase 

did not lead to any functional divergence, indicating an unusual structural component 

that determines the product specificity of this enzyme. Domain-swapping experiments 

based on phylogenetic information suggested that the subdomain encoded by exon 4 

is most likely the key structure element controlling the product specificity of this 

enzyme. Manipulation of the active site volume of (£)-|3-famesene synthase by 

site-directed mutagenesis revealed a rigid active site cavity that is precisely defined 

for generating mainly acyclic products. The active site hybrid constructed by 

replacing the active surface of (£)-p-famesene synthase with the corresponding part 

from 6-cadinene synthase lost activity, suggesting the catalytic specificity of this 

enzyme is modulated at a distance by residues surrounding the active site, which may 

have a huge influence on the active site volume. Mechanistic studies utilizing a 

substrate analogue revealed a new reaction mechanism for (£)-P-famesene synthase. 

Functional approaches to explore the N-termini region of 6-cadinene synthase and 

(£)-p-famesene synthase provided direct evidence that suggested dual roles for this 

region.
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Chapter 1: Introduction



1.1 Terpenoids

Terpenoids represent the structurally and stereochemically most diverse family of 

natural products.’More than 55,000 terpenoids have been discovered to date from 

nature (7). The extraordinarily diverse carbon skeletons of terpenoids are formally 

derived from the branched C5 skeleton of isoprene (1) (2). Dimethylallyl diphosphate 

(DMAPP, 2) and isopentenyl diphosphate (IPP, 3) are biological equivalents of 

isoprene and are the universal precursors of the isoprenoids in all living organisms 

(Scheme 1.1) (5).

The most significant building reaction in the terpenoids pathway is a chain elongation 

reaction catalysed by isoprenyl diphosphate synthases to yield increasingly longer 

polyisoprenoid diphosphates, such as geranyl diphosphate (GDP CIO, 4), famesyl 

diphosphate (FDP C l5, 5) and geranylgeranyl diphosphate (GGDP C20, 6). In 

addition, longer acyclic intermediates, such as squalene (C30, 7), phytoene (C40, 8), 

all-trans polyprenyl diphosphates (C5n, 9) and czs-polyprenyl diphosphates (C5n, 10) 

can be further derived from either FDP or GGDP. All these acyclic precursors can 

then be modified to generate acyclic, monocyclic or multicyclic products (4-6).

Thus, terpenoids can be grouped based on the number of C5 units: hemiterpenes (C5), 

monoterpenes (CIO), sesquiterpenes (C l5), diterpenes (C20), triterpenes (C30) and so 

on. Different attachment patterns such as non-head-to-tail chain elongation or 

irregular conformations have also been discovered (Scheme 1.2). The biosynthesis of 

sterols and carotenoids goes through a cyclopropanation reaction as the first step in 

the specific pathway among eukarya, archaea and some bacteria (7, 8). A branching 

reaction has only been identified from a few plants (9) and a cyclobutanation reaction 

has only been reported in the study of mealybug mating pheromones (10).
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Scheme 1.1: Biogene tic scheme for the formation o f the main terpenoid series through the 
regular head to tail fusion.

The fundamental chain elongation of terpene biosynthesis involves condensations of 

DMAPP (2) with IPP (3), corresponding to the ionization of DMAPP (2) triggered by 

the enzyme’s metal cluster (Scheme 1.3) (11). The following electrophilic attack 

between the resulting carbocation and C3-C4 ji bond of IPP generates a tertiary 

carbocation at C3. GDP is formed after stereospecific elimination of the C2-H* proton



(77, 72)). Further chain elongations forming FDP and GGDP were suggested to share 

similar coupling mechanisms based on the crystal structures of both famesyl 

diphosphate synthase and geranylgeranyl diphosphate synthase (75 ,14). On the other 

hand, to form cyclobutanation, branching and cyclopropanation products, one 

molecule of IPP is replaced by DMAPP. These reactions also employ the allylic 

carbocation derived from DMAPP by allowing alternative trajectories of 

carbon-carbon bond formation (Scheme 1.3) (75).

OPP

OPP

Cyclobutanation

Branching

Cyclopropanation

H
PPO'

PPO

PPO

maconellyl
diphosphate

lavandulyl
diphosphate

chrysanthemyl
diphosphate

Scheme 1.2: Scheme for the formation o f non-head-to-tail conformation structures.

The enzymes that catalyse chain elongation can be divided into two subfamilies 

according to the stereochemistry of the newly formed double bond. Those that 

generate E double bond conformations usually synthesise shorter chain products (e.g. 

GDP, FDP and GGDP) found early in the pathway. Others that generate Z double 

bond conformations synthesize longer chain diphosphates (e.g. natural rubber).



Scheme 1.3: A dissociative electrophilic alkylation mechanism for chain elongation (A), 
cyclopropanation, branching and cyclobutanation (B).

1.2 Biological functions of terpenoids

Low molecular weight organic compounds produced by organisms are generally 

divided into two groups. The ones that are required for reproduction or growth are 

defined as primary metabolites, while those that have no apparent function in the 

basic processes of growth and development are defined as secondary metabolites (16). 

Very little was known about the functionality of terpenoids before the middle of the 

last century and the compounds were even defined as products of detoxification or 

overflow metabolism (16). However, since the 1970s, quite a few terpenoids were 

identified to be toxins, repellents or attractants (17).

1.2.1 Primary metabolites

Sterols, carotenoids, growth regulators and polyprenol substituents of dolichols, 

quinones and proteins are classified as primary metabolites (16). Generally, these 

terpenoids are important for membrane integrity, photoprotection and orchestration of



developmental programs and biochemical functions of specific membrane systems.

Sterols are an essential component for the formation of liquid-ordered membrane 

states (membrane fluidity), which has been suggested to be related to many important 

biological functions, such as signal transduction, cellular sorting, cytoskeleton 

reorganization, asymmetric growth and infectious disease (18). Sterols are widely 

dispersed among organisms and all of them contain the common sterol ring system, 

which is derived from C30 terpenene squalene (7) or its analogue squalene oxide. 

Animals employ cholesterol (11) as the major sterol; ergosterol (12) is found in fungi 

and more than 40 plant sterols have been discovered to contain more complex sterol 

compositions, in which the major constituents are stigmasterol (13) and sitosterol (14) 

(Scheme 1.4).

Cholesterol (11) was first isolated from gallstones and is an essential membrane 

component in higher eukaryotes. With the help of cholesterol (11), the cell membrane 

becomes semipermeable between cellular compartments and it also alters the 

functions of membrane proteins. In addition, it participates in several membrane 

trafficking and transmembrane signalling processes (19). Recent research indicates an 

important role for cholesterol (11) in several diseases, such as the pathogenesis of 

cardiac and brain vascular diseases, dementias, diabetes and cancer (20, 21).

Stigmasterol (13) and sitosterol (14) from plants are involved in the polarized growth 

of pollen tube and root hair. The asymmetric distribution of these components in the 

membrane causes the asymmetric growth of plant cells (18). These sterols are also 

suggested to have a temperature dependent ordering effect on membranes; in other 

words they have a significant disordering effect when temperatures are below the 

phase transition. In addition, plant sterols can lower the concentrations of cholesterol 

in serum (22). The appearance of plant sterols in the cell could reduce the absorption 

of cholesterol from the gut by a competition effect. This significant effect makes plant 

sterols useful drug candidates for cholesterol-lowering purposes.
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Scheme 1.4: Molecular structures o f animal, fungus and plant sterols.

The carotenoids are traditionally thought to be a group of natural plant pigments, 

although they have been identified also in animals and microorganisms. More than 

600 different carotenoids have been isolated and characterized from natural sources 

and they are all biosynthesized from two GGDP units (23). The basic acyclic and 

cyclic structures are illustrated by lycopene (15) and (3,(3-carotene (16) (Figure 1.1). A 

long chain of alternating double and single bonds forms the central part of the 

molecule and the variable structures can be further modified by cyclization at one or 

both ends. Also, modifications can be carried out by hydrogenation and addition of 

oxygen-containing functional groups. The conjugated polyene structure can determine 

many functions such as light absorption properties, photochemical properties, 

consequent light-harvesting and photoprotective action (25).

7



lycopene (15)

P,p-carotene (16)

Figure 1.1: (A) Structures o f an acyclic lycopene and a dicyclic f$,f$-carotene. (B) The seven 
different end groups found in natural carotenoids.

Carotenoids can also serve as antioxidants via the corresponding carotenoid radicals 

that react with oxidizing agents (24). The conjugated structure of carotenoids allows 

the unpaired electron to be highly delocalized over the whole structure, providing a 

stabilizing effect to facilitate subsequent reactions. The radicals can be removed by 

reacting with each other to generate harmless products or by disrupting the free 

radical chain reaction.

Quinones are another type of natural terpenoid compounds that play a role in nature as 

the electron transfer mediator in many essential biochemical phenomena, such as iron 

respiration by microorganisms and nutrient acquisition by plant and microorganisms 

(25, 26). More than a thousand different quinones are produced by bacteria, fungi, 

plants and insects, most of which contain a species-specific polyisoprene chain (27). 

Quinones can undergo facile and reversible electron transfer reactions, which profits 

from the unique structural characteristics (Figure 1.2) allowing resonance stabilization



of semiquinone radical intermediates during redox chemistry (28). The electron 

transfer reactions can also be irreversible due to side-reactions. Nowadays, quinone 

containing compounds are widely used for their antitumour and anticancer activity 

(27).

OH x / n  

plastoquinone

OH x , n 

menaquinone

(QH2) (QH-) (Q)

Figure 1.2: Structures o f  quinones in different redox conditions. (QH 2 ): Hydroquinone. 

(Q H #): semiquinone radical. (Q): Quinone.

1.2.2 Secondary metabolites

Many monoterpenes, sesquiterpenes and diterpenes are classified as secondary 

metabolites, which are important for ecological viability among organism. However, 

these substances have been demonstrated to play important roles among organisms 

and have valuable Applications in medicine, agriculture and industry (17).

Using genetically transformed organisms, in which certain terpenoids are 

overproduced without an effect on other traits, can test functions of terpenoids. In a 

recent example, an engineered Arabidopsis thaliana plant was used to emit large 

amounts of the monoterpene alcohol linalool (17) (Figure 1.3) (29). Compared with 

wild-type A. thaliana, the transgenic plants showed significantly increased repellent 

activity towards aphids, suggesting a defense function for this monoterpenoid.
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Plant terpenoids also have important roles in resistance to diseases caused by fungi 

and bacteria. A study of the function of triterpenoid saponins 18 was carried out by 

employing an oat species (Avena strigosa). Saponins are terpene glycosides that serve
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as detergents (Figure 1.3). They are toxic to fungi due to their ability to form 

complexes with sterols in fungal membranes, leading to the loss of membrane 

integrity (30). Compared with wild-type lines, mutants that are deficient in generating 

saponins are much more easily attacked by fungal pathogens (31).

Animals, especially insects, can employ terpenoids as protective substances, an 

example of which is the iridoid monoterpene 19 of leaf beetles (Figure 1.3) (32). The 

terpenoids can be directly sprayed at enemies as effective repellents for small 

predators such as fire ants.

Terpenoids may also function as defense agents in the marine world. The study of 

caulerpenyne (20) and certain diterpenes of marine algae revealed unusual defense 

effects by converting polyacetates into the potent feeding deterrent halimedatrial 

when algal tissue is wounded (Figure 1.3) (33). Other research showed some marine 

organisms employ terpenoids not only to combat predators and pathogens, but also to 

prevent their surfaces from being colonized by bacteria and fungi (34).

Based on the terpenoid defences present in nature, many have been further developed 

for medical use. Artemisinin (21) (Figure 1.3), a sesquiterpene lactone from Artemisia 

annua and its derivatives have been widely used as antimalarial drugs. The 

compounds can inhibit the growth of the sarco-endoplasmic reticulum in all asexual 

stages of the malarial parasite, leading to the death of the parasite (35). Another 

widely used medicine with a diterpene structure is the anticancer compound paclitaxel 

22 (Taxol) (Figure 1.3). This compound can kill tumour cells by binding to tubulin, 

which interferes with microtubule dynamics and arrests cell division during mitosis 

(3d).

As well as defense functions, terpenoids also play essential roles in interactions 

among organisms by acting as messengers. The most important reason for organisms 

to choose terpenoids (especially monoterpenes and sesquiterpenes) to exchange
li



information is due to their low molecular weight and lipophilic character with high 

vapour pressures at ordinary temperatures, which allow them to serve as good 

conveyors of information over distances. In addition, the significant structural variety 

of terpenes allows messages to be very specific.

Terpenoids are one of the major components of fruit and flower volatiles (57). Studies 

of Manduca sexta (the tobacco homworm) revealed that this pollinator contains a 

group of receptor cells that can respond to certain oxygenated monoterpenes and 

sesquiterpenes, such as geraniol (23), nerolidol (24) and famesol (25) (Figure 1.3) 

(38). In the other plants, emission of blends of terpenoid components has also been 

discovered when the foliage is under attack (39, 40). These compounds act as a ‘call 

for help’, attracting predators and parasitoids that feed on herbivores.

Terpenoids can also be employed by the underground parts of plants. The 

sesquiterpene (£)-|3-caryophyllene (26) was shown to be released by maize roots 

when the plant is under attack, which attracts nematodes that prey on insect larvae 

(Figure 1.3) (41). Nonvolatile terpenoids, such as strigol (27) and other strigolactones 

can be involved in underground communications (Figure 1.3). These compounds 

stimulate the growth of Arbuscular mycorrhizal fungi from mutualistic, which 

facilitates nutrient acquisition of the plant (41). In some cases, terpenoids released by 

plants may also help their enemies, such as herbivorous insects or parasitic plants, to 

locate their host. Guided by a blend of monoterpenes, seedlings of parasitic plant 

dodder (Cuscuta pentagona) grow toward nearby host tomato plants, while other 

parasitic plants may use strigolactones for a similar function (42, 43).

1.3 Biosynthesis of terpenoids

In the 19th century, the hemiterpene isoprene was believed to be the fundamental 

component for the generation of longer terpenoids, such as monoterpenes and 

sesquiterpenes. Isoprene itself was first isolated from the low boiling fraction of the

1 2



dry distillation of rubber in 1826 (44), while the term ‘isoprene’ was first used by 

Williams in 1860 (45). Based mainly on studies of monoterpenoids, Otto Wallach 

proposed the ‘isoprene rule’, which suggests that monoterpenoids are generated by 

attachment of two isoprene units either in a regular head to tail fashion or in an 

irregular sequence (46). The first formulation that supports the isoprene rule was 

provided in 1897, which was considered as an early example of a Diels-Alder 

condensation (Scheme 1.5). The corresponding organic synthesis of this theory was 

carried out in the same year (45). Until now, the isoprene rule has already been 

identified among more complex terpenoids structures, such as sesquiterpenoids and 

triterpenoids (45).

Scheme 1.5: Proposed mechanism for the formation o f monoterpene 
and sesquiterpene by isoprene units by Otto Wallach.

The isoprene unit can be identified in many terpenoid structures as an essential 

component and some simple terpenoids can be also chemically synthesized from it. 

However, it is not the biological precursor for terpenoids. DMAPP (2) and IPP (3) 

were found to correspond to the biological equivalents of isoprene and then defined as 

the universal precursors of terpenoids in all living organisms^ 7). The formation of 

the isoprene unit was first studied in liver tissues and in yeast in the 1950s, leading to 

the discovery of the well-known mevalonic acid (MVA) pathway (Scheme 1.6) (48). 

This pathway is widespread for production of polyisoprenoids and sterols in fungi, 

plants, animals, most other eukaryotes, archaea and some eubacteria.

1 3



o
A S-CoA HS-CoA

O
A S-CoA HS-CoA

O
A ,

o o
AA

S-CoA Acetoacetyl-CoA 

acetyl-CoA (28) acetoacetyl-CoA (29)

S-CoA HMG-CoA HO ^  v  S-CoA
synthase 3-hydroxy-3-Methylglutaryl-CoA

(30)

HMG-CoA
reductase

ADP ATP

O „

- P - 0 °

%
mevalonate-5-phosphate (32)

Mevalonate kinase

ATP

ADP A

HO o-p-o-p-oP 
%  %  

mevalonate-5-diphosphate (33)

Phosphomevalonate kinase

ATP ADP+P;+C02

O

Mevalonate diphosphate 
decarboxylase

IPP Isomeras

O O 
0 -p-o-p-oP

DMAPP (2)
°©  °©

r 2 NADPH 

2 NADP++ HS-CoA

n o A / x / ^ o n  

mevalonic Acid (31)

O O
o - p -o -p -o 0  

P© %
IPP (3)

Scheme 1.6: The mevalonate (MVA) pathway.

Acetyl-CoA (28) is first extended by a two carbon acetyl modules via a Claisen 

condensation reaction catalyzed by acetoacetyl-CoA thiolase (Scheme 1.6). Another 

similar chain extension is catalyzed by HMG-CoA synthase to form

3-hydroxy-3-methylglutaryl-CoA (30) via an aldol-type reaction. The most important 

precursor, mevalonic acid (31), is then formed by a reduction using 2 equivalents of 

NADPH. A diphosphate group is added onto the resulting acid from two ATP 

molecules and mevalonate diphosphate decarboxylase removes CO2 to yield IPP (3) 

after a second Pj is added. Isomerisation catalysed by IPP isomerase then leads to 

DMAPP (2).
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However, the MVA pathway is not the only pathway employed by organisms to 

produce isoprenoids. An alternative route toward biosynthesis of IPP and DMAPP 

was discovered during a study of the unique features of bacterial hopane triterpenoids
i  ^  n

using C-labeled acetate as the only carbon source (49). Incorporation of [1- C]- and

[2-13C]-acetate into the hopane series from three bacteria (Rhodopseudomonas

palustris, Rhodopseudomonas acidophila and Methylobacterium organophilum)

revealed an unusual labelling pattern observed in the isoprene unit that did not fit well

with a direct incorporation of acetate into the MVA pathway. A further investigation
1 ̂by incorporation of a whole series of C-labeled glucose isotopomers into hopanoids 

of the bacterium Zymomonas mobilis demonstrated that the carbon skeleton is derived 

from a C2 subunit formed from pyruvate (34) by decarboxylation and a C3 subunit 

derived from a triose phosphate derivative (Scheme 1.7) (50, 51). In addition,
1 O I

incorporation of doubly labelled [4,5- C2] glucose and uniformly labelled [U- C6] 

glucose showed that an intramolecular rearrangement was involved in the reaction 

(52). This rearrangement is incompatible with the MVA pathway. Incorporation of
n  1

C-labeled pyruvate and C-labeled glycerol using E. coli mutants, each lacking a 

single enzyme of the triose phosphate metabolism, showed that D-glyceraldehyde 

phosphate (GAP, 35) together with pyruvate (34) are the precursors of the alternative 

pathway (51).

The first step of this route is the formation of 1-deoxy-D-xylulose 5-phosphate (DXP, 

36) by the condensation of GAP and pyruvate catalyzed by the thiamine 

diphosphate-dependent DXP synthase (dxs). The second step of this biosynthetic 

pathway is catalysed by the DXP reductoisomerase (dxr). This enzyme converts DXP 

into 2-C-methyl-D-erythritol 4-phosphate (MEP, 37) through an acid catalyzed 

rearrangement coupled with an NADPH-dependent reduction. In the next step, a 

cytidyl moiety is introduced into MEP via a diphosphate bond to produce

4-diphosphocytidyl-2-C-methyl-D-erythritol (38) and in turn this reaction was 

catalysed by 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (ygbP). The 

resulting intermediate 38 is phosphorylated by 4-(cytidine



5’-diphospho)-2-C-methyl-D-erythritol kinase (ychB) and then cyclised to form 

2-C-methyl-D-erythritol 2,4-cyclodiphosphate (40) after loss of the cytidyl moity in a 

reaction catalysed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ygbB). 

The two final dehydration steps were catalyzed by the 2-C-methyl-D-erythritol 

2,4-cyclodiphosphate reductase (gcpE) and 4-hydroxy-3-methylbut-2-enyl 

diphosphate reductase (lytB), resulting DMAPP (2) and IPP (3) as final products.
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Scheme 1.7: Methylerythritolphosphate (MEP) pathway.
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The MVA pathway has been well-established to account for production of 

polyisoprenoids and sterols in fungi, plant cytoplasm, animals, most other eukaryotes, 

archaea and some bacteria. Much work towards the MVA pathway related enzymes 

has been carried out (53). These enzymes are essential for animals and human, 

therefore they have been identified as potentially useful drug targets for modulation of 

polyisoprenoid and sterol biosynthesis. Genetic work has also illustrated that 

disruption of genes encoding various enzymes in the MVA pathway showed positive 

effects on treatment of human pathogenic diseases (54).

The alternative MEP pathway of isoprenoid biosynthesis is widely distributed among 

pathogenic bacteria and is the predominant pathway (55). As exceptions, some 

bacteria possess both pathways (54, 56). Such bacteria utilise the MVA pathway for 

the production of isoprenoids classified as secondary metabolic products and the MEP 

pathway for the biosynthesis of essential isoprenoids that are classified as primary 

metabolic products. Genetic studies showed that the yeasts (Saccharomyces cerevisiae 

and Schizosaccharomyces pombe), the microsporidian intracellular parasite 

(Encephalitozoon cuniculi), the cryptomonad (Guillardia theta) and all completely 

sequenced animal species (Homo sapiens, Mus musculus, Rattus norvegicus, Danio 

rerio, Drosophila melanogaster, Anopheles gambiae, Caenorhabditis elegans) have 

complete sets of mevalonate genes, while genes of the MEP pathway are absent (55). 

The fact that animals exclusively use the MVA pathway makes the alternative 

pathway a valuable target for the development of new specific antibacterial and 

antiparasitic drugs.

1.4 Terpene synthases

The essential function of a terpene synthase is to catalyse the formation of terpenoid 

products from linear polyisoprenoid substrate(s) in a reaction that usually shows 

remarkable structural and stereochemical precision. Enzymatic terpenoid formation 

generally proceeds in three steps: generation of a highly reactive carbocation,
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transformation of the resulting carbocation and quenching of the terminal carbocation 

by a base (addition of a diphosphate group/hydroxyl group or deprotonation). In terms 

of the first reaction step, the terpenoid synthases can be divided into two classes (57). 

Most class I terpenoid synthases generate an allylic carbocation by the departure of 

the diphosphate group. The isoprenyl diphosphate synthases, monoterpene synthases 

and sesquiterpene synthases belong to this class. Class II terpenoid synthases generate 

the carbocation by the protonation of the carbon-carbon double bond or the 

corresponding epoxide ring. Enzymes from this class include the diterpene, triterpene 

and tetraterpene synthases.

Terpenoid synthases have similar physical and chemical properties, such as requiring 

a divalent metal ion for catalysis and the universal electrophilic reaction mechanism. 

As an exception, the presence of metal ions are not absolutely required for the class II 

terpenoid synthases (58). The specificity of the terpenoid synthase reaction can vary 

dramatically. High fidelity enzymes generate mostly one product with extraordinary 

structural and stereochemical precision. For example, 6-cadinene synthase from G. 

arboreum generates exclusively (+)-6-cadinene as the product (5P). In contrast, 

promiscuous enzymes could generate different structures such as y-humulene synthase, 

which generates 52 different cyclization products (60).

1.4.1 Isoprenyl diphosphate synthases

Isoprenyl diphosphate synthases (also known as prenyltransferases) catalyse 

isoprenoid chain elongations to generate prenyl diphosphates with various chain 

lengths using the C5 precursors DMAPP (2) and IPP (3) (11). The carbon chain 

length of linear terpenoids in nature varies from geranyl diphosphate (GDP, CIO) to 

natural rubber (C> 100,000) and many of these linear compounds can then be cyclized 

to generate cyclic or multicyclic products by terpene synthases.
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The isoprenyl diphosphate synthases can be divided into two subgroups based on their 

protein structure and product stereochemistry (61). (£)-isoprenyl diphosphate 

synthase catalyse the synthesis of all-fr<ms-prenyl diphosphates with various chain 

lengths from CIO to C50. On the other hand, (Z)-isoprenyl diphosphate synthases 

catalyze the successive c/s-condensation of IPP with the allylic diphosphate to 

generate more diverse long chain prenyl diphosphates, from ds-FDP (C l5) to natural 

rubber (C> 100,000).

The crystal structure of avian famesyl diphosphate synthase reveals the first view of a 

tertiary structure of sesquiterpenoid synthase (13). This enzyme is a homodimer with 

a hydrophobic active site surrounded by 10 a-helices. A more recent crystal structure 

of famesyl diphosphate synthase from E. coli complexed with substrate IPP and the 

nonreactive substrate analogue dimethylallyl-iS'-thiolodiphosphate (DMASPP) 

revealed two aspartate-rich DDXX(XX)D motifs on helices D and H liganded with a 

trinuclear magnesium cluster (Figure 1.4) (62). Mg2+A and Mg2+B each form 

six-membered ring chelate structures with two unesterified diphosphate oxygens. 

Asp 105 and A sp lll from E. coli famesyl diphosphate synthase make bidentate 

coordination interactions with Mg2+A and Mg2+c. Although the first aspartate-rich 

motif (D105DXXXXD1H) in the bacterial enzyme is different form that of the avian 

enzyme (DDXXD), the first and last aspartate residues of this motif in each enzyme 

make identical interactions with Mg2+A and Mg2+c. The third Mg2+B ion coordinates 

with the first aspartate in the second aspartate-rich motif (Asp244 of E. coli famesyl 

diphosphate synthase). Thus, both motifs together bind a trinuclear magnesium cluster 

that triggers the departure of the diphosphate group and the initial carbocation 

formation.
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DMSPP
D il l

D244

Figure 1.4: Cartoon representations o /E . coli fam esyl diphosphate synthase (PDB 1RQI) (A) 
and (B) the active site o f  the enzyme complexed with three magnesium ions (shown as green 
spheres), dimethylallyl-S-thiodiphosphate (DMASPP) and IPP. Chain A of the dimer is 
coloured cyan and chain B is green. Helices of chain B are labeled with capital letters. 
Aspartate residues from the two magnesium binding motifs are shown as sticks.

The tertiary enzyme-Mg2+-substrate complex observed from the crystal structure of 

famesyl diphosphate synthase suggests that the first step o f this chain elongation is 

the metal-triggered ionization o f DMAPP, forming an allylic carbocation intermediate. 

Alkylation from the distal double bond o f IPP to C l o f DMAPP generates a 10-carbon 

intermediate with a positive charge at C3 position. The first chain elongation that 

yields GDP is terminated by a stereospeciflc elimination o f the pro-R hydrogen (62). 

The second chain elongation reaction takes place by addition o f another molecule of 

IPP to GDP, forming famesyl diphosphate at the end of the catalytic cycle (Scheme 

1.1). The recently solved crystal structure o f geranylgeranyl diphosphate synthase

2 0



displays a similar overall enzyme structure as famesyl diphosphate synthase, which 

has been defined as the class I terpenoid synthase fold (14). In addition, they also 

share a similar coupling mechanism and a conformational change upon ligand binding 

was also observed by comparison of unliganded and liganded crystal structures of 

famesyl diphosphate synthase and geranylgeranyl diphosphate synthase (14, 62). A 

study of 35 isoprenyl diphosphate synthases that synthesize famesyl (C l5), 

geranylgeranyl (C20) and higher chain length isoprenoid diphosphate revealed that 

the size of the side chains of residues FI 12 and FI 13 (avian famesyl diphosphate 

synthase numbering) were crucial for determining the ultimate length of the 

hydrocarbon chains (63). Higher chain length synthases usually have amino acids 

with smaller and more flexible side chains at these positions. Substitutions in FI 12 

and FI 13 of avian famesyl diphosphate synthase with smaller residues also conferred 

the avian enzyme with ability of generating diphosphates in the C20 to C70 range 

(63).

1.4.2 Isoprene synthases

Isoprene represents the simplest structural unit of the terpene family. Roughly 100 Tg 

of isoprene is generated from natural sources each year (64) and it is suggested that 

isoprene emission protects against environmental stresses such as transiently high 

temperatures and oxidative damage (65, 66). According to the computational studies, 

isoprene helps stabilise lipid membranes against thermally induced phase transitions 

(67). It also influences the defense mechanisms of herbivore infested plants (68, 69). 

In addition, isoprene and its derivatives are currently being investigated for their 

industrial values in fuel science and materials science (70, 71).

Isoprene synthase (ISPS) catalyses the metal-dependent conversion from DMAPP (3) 

to isoprene (1). This simple elimination reaction catalysed by ISPS may go through an 

allylic carbocation intermediate as the initiation step proposed for most class I 

terpenoid synthases, or it could also proceed via concerted fashion. In either case, a
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proper active site base is required, while no such candidate residue was spotted in the 

active site that could function as the general base from analysis of the crystal structure 

of ISPS from gray poplar hybrid Populus*canescens (PcISPS). Surprisingly, analysis 

of the structure of PcISPS complex with DMASPP that serves as the inhibitor in the 

crystal structure studies, which suggests the diphosphate group itself could serve as 

the general base (Scheme 1.8) (72). Specifically, the PcISPS-DMASPP complex 

indicates that the substrate analogue binds to the enzyme with a favourable 

seven-membered-ring chair-like conformation, which brings one of the charged 

oxygen atom close to the C3 atom of DMASPP.

O
2-O3PC rp̂ O 0O 3 PO " 1

©O

H_©7 o
2-03PCrp̂ 0 e  

OH

OPP 

DMAPP (3)

ISPS

Mg2+

O isoprene (1 )ii
-03P 0 '^ 0

Scheme 1.8: Proposed catalytic mechanism for ISPS (72).

The crystal structure of PcISPS and the structure of its complex with the unreactive 

substrate analogue DMASPP and three Mg2+ ions were solved recently as 

homodimers (72). The PcISPS structure is constructed with two a-helical domains. 

Similar to the structure of famesyl diphosphate synthase, the C-terminal domain of 

PcISPS is functionally active and adopts the a-helical class I terpenoid synthase fold. 

The N-terminal domain adopts an a-barrel class II terpenoid synthase fold with no 

known catalytic activity (Figure 1.5). The aspartate-rich metal binding motif 

(D345DXXD) that is conserved in most class I terpene synthases was found on the
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helix D o f PcISPS and another characteristic NSE/DTE motif (N489DXXSXXXE) was 

observed on helix H (Figure 1.5). Both motifs chelate the trinuclear magnesium 

cluster, in which Mg2+A and Mg2+C are mainly coordinated by D345 and Mg2+e by 

E497 (Figure 1.5). The magnesium ions also coordinate with oxygen atoms of the 

DMASPP diphosphate group and this interaction could initiate the potential ionisation 

step.

Figure 1.5: Cartoon representations o f  chain B o f  PcISPS complexed with DMASPP (shown 
as sticks) (PDB 3N0G) (A) and the active site o f  the enzyme complexed with three magnesium 
ions (shown as green spheres) and DMASPP (B). The helices of monomer are labeled with 
primed capital letters. Residues from the two magnesium binding motifs are shown as sticks.
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1.4.3 Monoterpene synthases

Monoterpene synthases catalyze the metal-dependent formation of acyclic, 

monocyclic and bicyclic CIO olefins, alcohols, ethers and diphosphate esters (Scheme 

1.9). Monoterpenes have been isolated almost exclusively from plants, including 

angiosperms and gymnosperms. The enzymes from gymnosperms require monovalent 

cations such as K+ together with divalent cations Mn2+ or Fe2+ as cofactor, whereas 

the angiosperm synthases prefer Mg2+ without any requirement for monovalent 

cations (4).

myrcene (45) geraniol (47)

(Z)-J3-ocimene (46) linalool (48)
geranyl cation (42)

a-terpinyl cation (44)

linalyl diphosphate (43)

bomyl diphosphate
limonene (49) terpineol (50) cineole (51) (52) a-pinene (53)

Scheme 1.9: Biosynthesis o f representative monoterpenes from GDP.
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All monoterpene synthases follow a common carbocationic reaction mechanism 

initiated by the departure of diphosphate group to form a geranyl cation (42). From 

here, acyclic products are formed by proton loss or addition of water (Scheme 1.9). 

The formation of cyclic products, on the other hand, needs preliminary conversion of 

the geranyl cation to linalyl diphosphate (LDP, 43), facilitating the cyclization to a 

six-membered ring. Kinetic studies with LDP as an alternative substrate in 

combination with GDP support the intermediacy of LDP and also indicate the 

isomerization reaction as the slow step during catalysis (73). Subsequent electrophilic 

attack of Cl by the C6-C7 double bond of the cisoid conformer of LDP yields the 

universal monocyclic intermediate, a-terpinyl cation (44). From this intermediate, 

monoterpene synthases catalyse loss of protons, hydride shifts, water capture and 

internal cyclizations to form different structures (Scheme 1.9). The fact that the 

individual intermediate (44) may undergo multiple modifications suggests a rationale 

for the ability of monoterpene synthases to produce multiple products. Studies showed 

that the minor products of the monoterpene synthase have fewer cyclisations than the 

major product, suggesting that the minor products are formed from premature 

termination of the reaction cascade (74).

The first crystal structure of a monoterpene synthase was solved for the homodimeric 

(+)-bomyl diphosphate synthase (75). The monomer contains two a-helical domains 

(Figure 1.6). The C-terminal domain exhibits the characteristic class I terpenoid 

synthase fold, catalyzing the metal-dependent cyclization of GDP (Scheme 1.9) (75). 

The N-terminal domain is homologous to the glycosyl hydrolase domain and has no 

well-defined function; nevertheless, the N-terminal polypeptide segment caps the 

active site in the C-terminal domain upon ligand binding (57).

Two arginines (R55, R56 of (+)-bomyl diphosphate synthase) (Figure 1.6) have been 

found in many monoterpene synthases (75). Polypeptide deletion studies on the 

limonene synthase of Mentha spicata revealed that the enzyme activity was not 

affected by deletion of the N-terminal region before this tandem arginine motif.
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Deletion o f this motif rendered the limonene synthase unable to accept GDP as a 

substrate. However, LDP is still usable by the deletion mutant, suggesting that the 

arginine motif might participate in the isomerization of GDP to linalyl cation (76).

D496

Figure 1.6: Cartoon representations o f  chain A o f  bornyl diphosphate synthase complexed 
with diphosphate group (shown as orange sticks) (PDB 1N1Z) (A) and the active site o f  the 
enzyme complexed with three magnesium ions (shown as green spheres) and diphosphate 
group (PPJ (B). The helices of monomer are labeled with primed capital letters. Aspartate 
residues from the two magnesium binding motifs and the tandem arginines are shown as cyan 
sticks.

The structure o f (+)-bomyl diphosphate synthase complexed with PP; reveals the

important molecular recognition o f the diphosphate moiety involving a magnesium

cluster and several hydrogen bond interactions (Figure 1.6) (75). The first and last

aspartate residues in the DDXXD m otif o f helix D, Asp351 and Asp355 contact

Mg2+A and Mg2+c. The second magnesium binding m otif (NSE/DTE motif), Asp496,
26



Thr500 and Glu504, chelates M g2+B on the opposite site of the active site cleft. This 

pattern is very similar to that observed with E. coli famesyl diphosphate synthase and 

suggests a universal molecular recognition of isoprenoid diphosphates by class I 

terpenoid synthases. A variety of hydrophobic and aromatic residues were found in 

the active site cavity, which may contribute to the binding conformation of the 

substrate and carbocation intermediates.

2 1
A conformational change triggered by the formation of tertiary enzyme-PPj-Mg 3 

complex was observed, which would lead to a sequestered active site pocket that is 

isolated from bulk solvent (75). The N-terminus (E50-A63) and loop segments 

D227-D234, T500-D509 and F578-S583 are disordered in the unliganded structure, 

while all of these disordered regions become ordered and cap the active site in the 

enzyme-ligand complex. In addition, a single water molecule was found to be trapped 

in the active site cavity after the conformational change. This water molecule makes 

hydrogen bonding interactions with the diphosphate group, the backbone carbonyl of 

Ser451 and the side chain of Tyr426. Thus, it is docked firmly in the active site, 

which prevents it from reacting with carbocation intermediates to prematurely quench 

the reactions. However, it could still function as a diphosphate-assisted general base 

to generate cyclic olefin side products such as pinenes and limonene (77).

1.4.4 Sesquiterpene synthases

The formation of sesquiterpenes from FDP follows similar carbocation-based reaction 

mechanisms as those of monoterpene synthases. However, the longer carbon chain 

skeleton of FDP and the additional double bond greatly increase the structural 

diversity of products, many of which contain bicyclic structures. Often, the first step 

of sesquiterpene formation is believed to be the ionization of FDP to the 

corresponding transoid famesyl cation (54) (5). The reaction can be terminated here 

by proton abstraction or water capture to form acyclic products (Scheme 1.10).
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OH 

farnesol (63)

trans-humulyl cationP-caryophyllene trans-humulyl cation
(64)

OH

nerolidol (67)

a-bisabolene
(68)

bisabolyl cation
(59)

bergamotene (69)

OPP
FDP (5)

(E)-P-famesene (65)

Famesyl cation (54)

E.E-germacradienyl cation 
(55)

germacrene A 
(66)

OPP

nerolidyl diphosphate 
(transoid) (57)

rotation

OPP

humulyl cation (62)

y-humulene (71)

cycloheptenyl cation
(60)

Z,iT-germacradienyl cation
(61)

8-cadinene
(70)

Scheme 1.10: Biosynthesis o f representative sesquiterpenes from FDP.

From the resulting famesyl cation, the cyclization reactions can go through three

different pathways (Scheme 1.10). Reaction of the Cl cation with the distal double

bond could occur by two different pathways forming either 1 0 -membered

((£, £)-germacradieny 1 cation, 55) or 11-membered ((£)-humulyl cation, 56) rings.

However, due to the (E)-geometry of the C2-C3 double bond of FDP, a
28



1 ,6 -cyclization including the central double bond is precluded by steric constraints

(78). To accomplish 1,6-cyclizations, sesquiterpene synthases generate the famesyl 

cation (54) and recapture diphosphate group at C3 to form transoid nerolidyl 

diphosphate (57). A tightly bound cisoid nerolidyl diphosphate (58) is then formed via 

preliminary isomerization of the C2-C3 double bond. The cisoid conformer of the 

nerolidyl cation can then be cyclized from either the central or distal double bond to 

form 1,6-bisabolyl cation (59), 1,7-cycloheptanyl cation (60),

l,10-(Z,£)-germacradienyl cation (61) or l,ll-(Z)-humulyl cation (62) products. 

Subsequent cyclisations can involve electrophilic attack on either of two remaining 

double bonds. In addition to cyclization, the diverse modifications of the 

sesquiterpene skeletons also include hydride shifts, methyl migrations or 

rearrangements prior to termination of the reaction by deprotonation or nucleophile 

capture. Generally, the sesquiterpene synthases require divalent metal ions Mg2+ or 

Mn2+ as cofactor (79, 80).

Aristolochene synthase (AS) is the only known sesquiterpene synthase that does not 

follow the famesyl cation (54) mechanism (Scheme 1.11). This was shown using 

fluorinated FDP analogues, mechanism based inhibitors and site-directed mutagenesis

(81, 82).

©

FDP (5)
germacrene A (66)germacradienyl cation 

(55)

H

(+)-aristolochene (73) eudesmane cation
(72)

Scheme 1.11: AS-mediated conversion o f FDP to (+)-aristolochene.
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The mechanistic studies by employing substrate analogue 12,13-difluoro-FDP (74) 

rule out the possible existence of the famesyl cation in the enzymatic reaction 

catalysed by AS from both Penicillium roqueforti and Aspergillus terreus (81, 82). 

Due to the electronic effects of fluoro substituents, the electrophilic attack of Cl by 

the CIO, Cl 1 Jt-bond would be inhibited if famesyl cation was generated in the first 

place. In this case, the accumulation of the 12,13-difluorofamesyl cation would go 

through an elimination, forming 12,13-difluoro-(3£, 6 is)-a-famesene (75) and 

12,13-difluoro-(£)-|3-famesene (76) instead (Figure 1.7). However, the observation 

that 74 acts as an competitive inhibitor of AS indicates that the formation of the 

germacradienyl cation (55) takes place in a concerted reaction, in which famesyl 

diphosphate ionisation is accompanied by electrophilic attack of Cl by the CIO, Cl 1 

jt-bond. In addition, another fluorinated substrate analogue, 2-fluoro-FDP (77) has 

been shown to be a weak substrate (81), also suggesting the absence of famesyl cation 

during the cyclisation pathway.

. , ŝ i'CH2F
pp9=h2c^

12,13-difluoro-FDP (74)

B

OPP

© ^ ^ c h 2f  
f h 2c

© I  H

c h 2f
f h 2c

12,13-d ifluoro-(3£,6£)-a-farnesene 
(75)

CH2F
f h 2c

12,13-difluoro-(£)-p-farnesene 
(76)

r
2-fluoro-FDP (77) aza-analogue (78)

Figure 1.7: (A) Outcome o f the hypothetical mechanism for the conversion o f  
12,13-difluoro-FDP (74) through an initial ionization step. (B) Structure o f 2-fluoro-FDP (77) 
and the aza-analogue (78) that mimics the eudesmane cation (72).

Further investigations toward understanding the reaction mechanism of AS were
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performed to identify the intermediates during the catalysis. Mutagenesis studies of 

aromatic residues Y92, FI 12 and F I78 (83-85) suggest these residues play an 

important role in anchoring the distal double bond in the precatalytic conformation of 

FDP and hence influence formation of the neutral intermediate, germacrene A (6 6 ). 

Replacement of Y92 of P. roqueforti aristolochene synthase (PR-AS) with residues of 

decreasing steric bulk (e.g. Phe, Val, Cys and Ala) led to a increasing production of 

acyclic sesquiterpene products. The site-specific mutant AS-F112A produces 36% 

(£)-|3-famesene and 53.5% (3E,6 fs)-a-famesene as the major products. Another 

mutant AS-F178V generates 50% germacrene A as the major product, which strongly 

suggests the appearance of germacrene A as an intermediate in the catalytic pathway. 

A recent study (86) further evaluated the contributions of aromatic residues by amino 

acid replacements in positions 8 8 , 89 and 108 of PR-AS. These residues may have the 

potential to interact with the three aromatic residues described above (Y92, FI 1 2  and 

F I78). The substitution of either V8 8  or T89 by the bulkier phenylalanine led to an 

increase in germacrene A production. Replacement of LI 08 with serine or alanine led 

to a suppression of the native aristolochene synthase activity. Instead, the enzymatic 

reaction gave a mixture of (fs)-{3-, (3E,6E)-a- and (3Z, 6 fs)-a-famesene as the 

predominant reaction products. These results demonstrated the existance of the 

germacrene A intermediate and the involvement of the aromatic and aliphatic residues 

around the active site of PR-AS.

The existence of eudesmane cation (72) had been probed for a long time with little 

evidence to support its existence. Our group recently provided an approach to identify 

72 by employing the aza analogue (78) that effectively mimics the topological and 

electrostatic properties of the eudesmane cation (72) (87). 78 acted as a competitive 

inhibitor with a K[ value (0.35 ± 0.12 pM) similar to the Michaelis constant (KM = 

0.53 ± 0.21 pM)) determined for PR-AS. This observation greatly supports the 

intermediacy of eudesmane cation as an intermediate in AS catalysis. Mutagenetic 

approaches further demonstrated that the indole ring of active site residue W334 of 

PR-AS is responsible for stabilisation of the eudesmane cation (72) through cation-jc
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interactions (88). Substitutions of residues without aromatic side chains (e.g. Leu) 

greatly altered the product specificity towards the neutral intermediate germacrene A. 

Replacement of tryptophan by para-substituted phenylalanines with strong 

electron-withrawing groups (e.g. Cl, CF3 and NO2) had only minor effects on the Km 

values but led to 30-250 folds reduction on the Âat values and the main product 

distribution of these mutants shifted from aristolochene to germacrene A.

Bacterial and fungal sesquiterpene synthases such as aristolochene synthase from 

Aspergillus terreus and Penicillium roqueforti, pentalenene synthase from 

Streptomyces UC5319 and trichodiene synthase from Fusarium sporotrichioides are 

usually active as single domain enzymes (89, 90). Plant sesquiterpene synthases such 

as epj-aristolochene synthase from Nicotiana tabacum and S-cadinene synthase from 

gossypium arboretum contain an additional N-terminal domain (91). The C-terminal 

domain of sesquiterpene synthases from bacteria, fungi and plants adopt the 

characteristic class I terpenoid synthase fold. This type of enzyme usually contains the 

aspartate-rich DDXXD(E) and another NSE/DTE metal ion binding motifs, 

suggesting the binding of the trinuclear magnesium cluster is required for catalysis. 

The additional N-terminal domain presents a fold most related to that of the glycosyl 

hydrolases and weakly homologous to the class II terpenoid synthase fold (92).

The crystal structure of aristolochene synthase from Aspergillus terreus is employed 

here to present the important tertiary structural features from microbial sesquiterpene 

synthases (93). Aristolochene synthase adopts the a-helical class I terpene synthase 

fold and is reported to be a monomer in solution (94). The crystal structure reveals the 

assembly of two dimers in the asymmetric unit to form a tetramer (Figure 1.8). The 

observed attenuation of enzyme activity at high concentrations (greater than 27 nM) 

could be due to the oligomerization (95).
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Figure 1.8: Cartoon representation o f  tetramer o f  aristolochene synthase from A. terreus 
(PDB 20A6). Chain A is coloured tint, chain B is magenta, chain C is cyan and chain D is 
green.

The tertiary structure o f A. terreus aristolochene synthase contains 13 a-helices, 

connected by short loops. The aspartate-rich D90DXXE motif is located on helix D on 

the upper wall o f the active site cleft; the other metal binding motif, N219S223E227 

motif, is located on helix H on the opposite wall o f the active site cleft. The 

enzyme-Mg2+3 -PPj complex was only observed in subunit D (Figure 1.9). In this 

complex, Asp90 was observed to coordinate directly to Mg2+A and M g 2+c . Asp91 

makes a salt bridge interaction with Arg314, which donates a hydrogen bond to PPj.  

M g 2+A and M g 2+c  are also coordinated by P P j  and water molecules. The NSE motif 

coordinates to Mg2+B in a fashion identical to that observed in bomyl diphosphate 

synthase (see section 1.4.3). In addition to the metal coordination interactions 

mentioned above, the PPi anion also makes hydrogen bonds with some basic residues, 

including A rgl75, Lys226, Arg314 and also aromatic residue Tyr315.
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Figure 1.9: Cartoon representations o f  chain D o f  aristolochene synthase (PDB 20A6) (A), 
the active site o f  the enzyme complexed with three magnesium ions (shown as green spheres) 
and PP, (shown as sticks) (B) and magnesium ions (shown as green nb spheres) coordinated 
with PP, and water molecules (shown as red nb spheres) (C). The helices of the monomer are 
labeled with capital letters. Residues from the two magnesium binding motifs and the ones 
ordinated with PP* are shown as sticks.

The binding o f Mg2+3 -PPj to monomer D triggers a significant conformational change, 

which causes helices C l, D l, F, G1 and H to shift inward and the previously 

disordered H-a-1 loop becomes ordered (Figure 1.10) (93). This conformational 

change leads to a closed active site, bringing ligand-binding residues closer together 

and sequestering the active site from bulk solvent.
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Figure 1.10: Superposition o f  unliganded (tint) and 
liganded (green) tertiary structures aristolochene synthase.

The aristolochene synthase from Penicillium roqueforti catalyses the same cyclisation 

from FDP to aristolochene, but also produces minor amounts o f intermediate 

germacrene A (7.5%) and the side-product valencene (1%). However, Aspergillus 

terreus aristolochene synthase generate exclusive aristolochene as the only product. 

The overall structure o f both enzymes is very similar and they share 61% amino acid 

sequence identity. The majority o f amino acid substitutions between the two enzymes 

are found on the protein surfaces, while most active site residues are highly conserved 

(93). This fact suggests that formation of the minor products may arise either from an 

adjustments o f residues surrounded the active site (to change the active site shape and 

volume), or by rearrangements o f hydrogen bond networks.

Unlike microbial sesquiterpene synthases, all plant sesquiterpene synthases contain 

two domains. The first plant sesquiterpene synthase for which a crystal structure was 

solved was c/?/'-aristolochene synthase from Nicotiana tabacum, which displayed two 

a-helical domains (Figure 1.11) (91).
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Figure 1.11: Cartoon representation o f  5-epi-aristolochene synthase 
(PDB 5EAS). The C-terminal domain is coloured green and all the 
helices from C-terminal domain are labeled with capital letters. The 
N-terminal domain is coloured cyan.

The crystal structure o f e/?z-aristolochene synthase complexed with famesyl 

hydroxyphosphonate (Figure 1.12) showed that Asp301 and Asp305 from helix D (the 

first and the last residues from DDXXD motif) are liganded with M g 2+A and M g 2+c ,  

which is different from coordination interactions observed from trichodiene synthase 

but identical to that o f (+)-bomyl diphosphate synthase. M g 2+B is liganded by Asp444, 

Thr448 and Glu452 from the NSE/DTE motif (on the helix H) following the same 

pattern as had been observed for (+)-bomyl diphosphate synthase and trichodiene 

synthase. The variety o f metal ions coordination with diphosphate group among these 

terpenoid synthases indicates a strategy for the evolution of divergent cyclization 

products in each enzyme active site. In addition, two arginines, R441 and R264, seem 

to facilitate binding of the diphosphate group by providing positive charge localized at 

the opening o f the active site. The active site closure upon ligand binding was also 

observed, in which the movement o f the A-C loop could promote ionization of FDP 

by interaction with R264. The movement o f J-K loop and N-terminal region may also 

help to close the active site.
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D305

Figure 1.12: Cartoon representation o f  the active site o f  
5-epi-aristolochene synthase complexed with three magnesium 
ions (shown as green spheres) and substrate analogue famesyl 
hydroxyphosphonate (FHP) (PDB 5EAT). Residues from the 
two magnesium binding motifs and two arginines are shown as 
sticks.

1.4.4.1 S-Cadinene synthase

6-Cadinene synthase (DCS) is a sesquiterpene cyclase that catalyses the cyclization of 

FDP to 6-cadinene (79). Most genes coding for DCS have been isolated from the 

cotton species (59, 96-100). In addition, another DCS gene has been isolated from 

melon (Cucumis melo L.) (101). In cotton plants, 6-cadinene is the biosynthetic 

precursor o f gossypol (80), which consists o f two highly oxygenated forms of 

6-cadinene joined together by a binaphthyl linkage (Scheme 1.12). Gossypol is an 

important secondary metabolite among cotton plants, which defends the plant from 

bacterial and fungal pathogens (16). It accumulates in lysigenous glands found in 

stems, leaves and the cotyledons o f seeds, resulting in cotton plants being much more 

resistant to microbe and insect predation. In addition, gossypol reduces the growth of 

cancer cells (102) and inhibits male fertility in humans (99). Desoxyhemigossypol (81) 

and hemigossypol (82) also accumulate in wild type cotton plants, serving as 

phytoalexins or defense compounds against microbial infection.
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HO

HO-

OPP
desoxyhemigossypol (81)FDP (5) 8-cadinene (79)

OH
CH OH

HO
OH

HO

gossypol (80)

CH OH

hemigossypol (82) 

Scheme 1.12: Biosynthesis o f gossypol from 6-cadinene.

The biosynthetic mechanism of generating 8 -cadinene from FDP has been 

investigated by several groups (PP, 104-109). It has been proposed that the 

mechanism begins with formation of NPP (57), followed by rotation of the C2, 

C3-bond to bring Cl within bonding distance of CIO (107) (Scheme 1.13). NPP then 

undergoes a Cl-CIO ring closure to generate c/'s-germacradienyl cation (61) with the 

stereochemistry found in 8 -cadinene. Prior to the second ring closure, the carbocation 

has to be repositioned within the macrocycle by a 1,3-hydride shift. The reaction is 

terminated by deprotonation from C6  to release 8 -cadinene (79).

OPP 
FDP (5)

5-cadinene (79)

Popp
farnesyl cation (54)

rotaion

OPP

NDP (transoid) (57) NDP (cisoid) (58)

I

cadinenyl cation (83) cis-germacradienyl cation 
(61)

Scheme 1.13: Proposed catalytic mechanism for 6-cadinene synthase via NDP as 
intermediate.
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In agreement with the proposed mechanism, NPP (57) has been shown to be a 

substrate of DCS (104,105) and its formation within the active site of the enzyme has 

been demonstrated by [l,2 -13C2]acetate and [2-14C] and [4-14C]mevalonate labelled 

feeding experiments (108,110).

The biosynthesis of cadinene-type sesquiterpenes could also be achieved via a

1,10-cyclisation but without going through NPP (57) as intermediate (107) (Scheme 

1.14). In this alternative pathway, the first ring closure goes through a direct 

displacement of the diphosphate group by the distal double bond of FDP, forming a 

toms-germacradienyl cation (55). The neutral germacrene D (84) is formed by a

1,3-hydride shift and deprotonation from C15 (105). The second ring closure upon 

reprotonation of germacrene D leads to the formation of cadinanyl cation (83), as in 

the NDP pathway, followed by deprotonation to form the final product.

-►

trans-germacradienyl cation
OPP

FDP (5) germacrene D (84)

I I I

cadinenyl cation (83)

©H

germacrene D (84)8-cadinene (79)

Scheme 1.14: Proposed catalytic mechanism for 5-cadinene synthase via germacrene D as 
intermediate.

Formation of 6 -cadinene (79) via this proposed mechanism was first suggested by 

Arigoni (107) based on mechanistic studies of avocettin formation via y-cadinene 

(107). Tritium-labelling experiments showed that all-is-FDP was not isomerized to the

2,3-Z isomer. Instead, a 1,3-hydride shift was observed, which led to the postulation 

of the intermediacy of germacrene D. In this mechanism, there is no interconversion
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between (2E, 6 £)-FDP and its Z-isomer NDP, while the conversion of the is-double 

bond to a Z-double bond is achieved by a ring flip of germacrene D.

However, a recent investigation of the catalytic mechanism of DCS using a variety of 

substrate analogues strongly challenged the mechanisms described above (109). The 

catalytic mechanism of DCS involving germacrene D as an intermediate was ruled out 

by investigating the hypothetical protonation step. Since formation of 5-cadinene 

along this pathway would require protonation of the exocyclic double bond of 

germacrene D, the reaction cascade is expected to be pH-dependent. An isotopic 

exchange with the medium is also expected. However, the production of 6 -cadinene 

was shown not to be pH-dependent and the isotopic exchange with the media was not 

observed either by incubations of DCS with FDP and [15-2H3]FDP (85) (Figure 1.13) 

in deuterated and aqueous buffer respectively.

[15-2H3]FDP (85) (2Z.6E)-2F-FDP (86)

(2E, 6E)-2F-FDP (87) 6F-FDP (88)

Figure 1.13: Structures o f FDP analogues.

Investigation of the NDP pathway was first carried out by employing fluorinated 

substrate analogues. (2Z,6FT)-2F-FDP (8 6 ) and (2£,6£)-2F-FDP (87) that contain a 

fluorine atom on C2 would greatly prevent the initial ionization step via depletion of 

electron density in the allylic moiety (111). Indeed, 8 6  and 87 acted as efficient 

inhibitors, suggesting the involvement of NDP (57) during the catalysis. Another 

fluorinated compound 6 F-FDP (8 8 ) was designed to inhibit the second ring closure 

and this compound has been demonstrated to disrupt the catalytic cycle of AS (112)
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and TEAS (113). Thus, if the catalytic mechanism of DCS goes through intermediates 

61 and then 83, the corresponding deprotonated forms of 61 (89, 90 and 91) would be 

expected (Scheme 1.15). While, incubation of 6 F-FDP (8 8 ) with DCS generates no 

sesquiterpene product, suggesting an early involvement of the central C6 , C7 double 

bond in the catalysis.

iPPO

6F-FDP (88)

DCS-----

I
l

6F-helminthogermacrene A 6F-germacrene C6F-germacrene D
(89) (90) (91)

Scheme 1.15: Outcome o f the hypothetical derailment o f the DCS catalytic cycle with 
6F-FDP at the germacrene cation stage.

Additional evidence supporting the possible 1,6-ring closure as the first ring closure 

step in 8 -cadinene biosynthesis was obtained from incubations with (2Z,6£)-FDP (92). 

Substrate analogue 92 can be recognised as the isomer of all-tran FDP and cisoid 

NDP, thus it should present as cisoid famesyl cation after ionisation by DCS, which 

will greatly facilitate either 1,6 or 1,10 ring closure. DCS convert 92 into a mixture of 

the bisabolenes (93, 94 and 95) and 8 -cadinene (40%) (Scheme 1.16), which is 

comparable to that observed with feeding NDP directly to DCS.
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+

Z-a-bisabolene (95)

+

p-bisabolene (94)Z-y-bisabolene (93)

PPO

(2Z,6E>FDP (92) +

5-cadinene (79)

Scheme 1.16: Hydrocarbons generated by incubation o f DCS with (2Z,6E)-FDP.

These results, especially the inhibition of the enzyme by 6 F-FDP, indicate a 1 ,6 -ring 

closure mechanism via NPP (58) and a-bisabolyl cation (96) as a plausible means in 

6 -cadinene biosynthesis (Scheme 1.17).

a-bisabolyl cation (96)

PPO'"

cisoid-NDP (58)

PPO

v

6-cadinene (79) cadinenyl cation (83)

Scheme 1.17: Possible biosynthesis o f 6-cadinene via NDP and a-bisabolyl cation.
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1.4.4.1.1 Characterisation o f DCS

The cDNA encoding DCS for our study was obtained from Gossypium arboretum  

(tree cotton) (59). The gene encodes 554 amino acids corresponding to a protein with 

a molecular weight o f 64096. The crystal structure o f this protein has recently been 

solved, revealing a two domain overall structure (Figure 1.14) (114).

Figure 1.14: Cartoon representation o f  8-cadinene synthase (PDB 3G4D).
The C-terminal domain is coloured green and the N-terminal domain is 
coloured cyan.

The C-terminal domain is defined as the catalytically active domain, which adopts the 

a-helical class I terpenoid synthase fold. The active site consists o f six a-helices, 

which form an 18 A deep active site cleft (Figure 1.15). The crystal structure confirms 

that the characteristic aspartate-rich motif (D307DTYD331) is located on helix D, which 

interacts with Mg2+A and Mg2+c- However, the typical second magnesium binding 

m otif (NSE/DTE) is replaced by a unique second aspartate-rich motif, D451DVAE455 

that chelates Mg2+B. In terms of this feature, DCS is more similar to the famesyl 

diphosphate synthase, which also contains two aspartate-rich motifs, rather than the 

majority o f class I terpenoid synthases. The additional N-terminal domain o f DCS 

adopts an a-helical fold, which shows some similarity to a class II terpenoid synthase 

fold (92). The function o f this domain is still unknown, although it has been proposed 

to cap the active site during catalysis (57).
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D311R448D452
D307

E455
>308

D451

R270

Figure 1.15: Cartoon representation o f  the active site o f  6-cadinene 
synthase complexed with three magnesium ions (shown as green 
spheres) and substrate analogue 2F-FDP (shown as orange sticks)
(Chain A, PDB 3G4F). Residues from the two magnesium binding 
motifs are shown as sticks. Two arginine residues that have contact 
with diphosphate group are shown as sticks.

DCS is a dimer in the crystal structure, although size exclusion chromatography 

experiments show that DCS is a monomer in solution, suggesting that the 

crystallographic dimer is not biologically relevant (106). In monomers A and B, 

several polypeptide regions are disordered and excluded from the final model, 

including the N-termini (M1-K24 and M1-P29, respectively) and the loop segments 

K42-I44 and K42-D45, F460-D464 and F460-D464, and G530-T534 and Y533-V536, 

respectively (Figure 1.16). Most o f these segments are adjacent to the entrance of the 

active site in the C-terminal domain except the segments K42-I44 or K42-D45. 

According to previous studies o f monoterpene and sesquiterpene synthases, one or 

more such disordered polypeptide segments become ordered upon ligand binding and 

the conformational change leads to the closure o f active site that shields the active site 

pocket from bulk solvent (7, 57).
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Figure 1.16: Cartoon representations o f  6-cadinene synthase (left) (PDB 3G4D) and the 
enzyme complexed with substrate analogue 2F-FDP (right) (PDB 3G4F). The C-terminal 
domain is coloured green. The helices of C-terminal domain of unliganded enzyme are labeled 
with capital letters. The N-terminal domain is coloured cyan. Substrate analogue 2F-FDP is 
shown as orange sticks.

In the case o f DCS, binding of the magnesium cluster and the substrate analogue 

2F-FDP do not lead to an obvious conformational change; the N-terminal region 

M1-K24, loop segments K42-I44, F460-D464 and G530-T534 remain disordered (the 

structures o f these polypeptides did not show up in the electron-density map) in each 

monomer (Figure 1.16) (114). This suggests that the conformational changes between 

liganded and unliganded catalytic domains o f plant enzymes are relatively smaller 

than those observed from fungal enzymes, which may relate to the additional 

N-terminal domain.

The binding o f the substrate analogue 2F-FDP to each monomer is similar. Some 

differences are related to the formation o f hydrogen bonds. In monomer A, an oxygen 

atom of the diphosphate group appears to form a hydrogen bond with R448 and 

another charged oxygen atom donates a hydrogen bond to a water molecule, which 

accepts a hydrogen bond from R270 (Figure 1.15). In monomer B, the corresponding 

interactions are too long to be defined as hydrogen bonds.
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1.4.4.2 (E)-(5-Farnesene synthase

(£)-P-Famesene synthase (EBFS) is a sesquiterpene synthase that catalyzes the 

formation of the acyclic sesquiterpene (2s)-|3-famesene (57) from FDP (Scheme 1.18). 

(£)-p-Famesene is widely distributed among animals and plants. More than 600 

research papers have reported the appearance of this natural product with unique 

functions in chemical communication (115). (£)-p-Famesene is found in the essential 

oil of hundreds of plant species of both gymnosperms, such as Torreya taxifolia 

(Florida torreya) and Larix leptolepis (larch) and angiosperms, such as Robinia 

pseudoacacia (black locust), Medicago sativa (alfalfa), Chamomilla recutita 

(chamomile), Vitis vinifera (grapes), Cannabis sativa (hemp), Zea mays (com), Piper 

nigrum (black pepper), Daucus carota (carrot) and Mentha x piperita (peppermint), as 

reviewed (115).

In insects and plants, (£)-p-famesene serves as a semiochemical in most cases. It was 

found as a pheromone (chemical substances could trigger a social response in 

members of the same species) in the urine of male mice (116) and is also emitted by 

andrenid bees (117) and by several genera of ants (118) to serve both as a defensive 

allomone (chemical substance that produced and released by an individual of one 

species of organism that affect the behaviour of a member of another species to 

benefit of the emitter) and as a trail pheromone. As an allomone, it functions as a 

feeding stimulant to the sand fly Lutzomyia longipalpis, which is an important vector 

of the blood disease leishmaniasis (119). The compound can serve as a prey-finding 

kairomone (chemical substances that are emitted by an organism in a way that 

benefits an individual of another species which receives it, without benefiting the 

emitter) among several species of predatory carabid beetles (120).

(£)-P-Famesene also plays an important role in chemical communication of plants 

and animals. The compound stimulates kairomonal oviposition of the European com 

borer when emitted by com (121). Increasing amounts of (£)-P-famesene were
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produced and released by com when it was attacked by lepidopterans. (7s)-p-famesene 

then serves as a synomone (chemical substances that are producted by one organism 

that affects the behaviour of a member of another species) and can be detected by the 

parasitic wasp to locate the hosts (122).

The most significant role of (7s)-|3-famesene in plant-insect interactions is as an alarm 

pheromone in aphids (123). Aphids are one of the most destructive pests in agriculture, 

often causing plant vims infections in their host. Because of the development of 

insecticide resistance and the ability of some species to reproduce asexually, it is hard 

to control their population. Aphids become agitated and disperse from their host plant 

when exposed to (7s)-|3-famesene (124), preventing colonization. High concentrations 

of (£)-p-famesene can also be toxic to aphids (725). However, little progress has been 

made in controlling aphid population by application of (7s)-|3-famesene to plants, 

mainly due to its volatility and instability. The unsaturated carbon chain structure can 

be easily oxidized in air.

In common with most sesquiterpenes, the formation of (£)-p-famesene catalysed by 

EBFS was proposed to be initiated by loss of the diphosphate group, leaving an allylic 

carbocation with positive charge delocalized between Cl and C3 (775). The reaction 

is then terminated by proton abstraction from the C l5 methyl group to yield 

(£)-P~famesene (Scheme 1.18).

OPP

(iO-P-famesene (57)

OPP

FDP (5)

Scheme 1.18: Proposed catalytic mechanism for (E)-/3-farnesene synthase.
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During the last 15 years, cDNAs encoding EBFS have been isolated from Mentha x 

piperita (115), Citrus junos (126), Artemisia annua (127), Pseudotuga menziesii (128), 

Zea mays (129). The enzymes from Citrus junos, Artemisia annua and Pseudotuga 

menziesii generate essentially one product from FDP, while the enzyme from Mentha 

x piperita generates (£)-p-famesene (65) (~85%) along with (Z)-P~famesene (97) 

(8 %), 6 -cadinene (79) (5%) and another three unidentified minor products and the 

maize (Zea mays) enzyme produces (F)-(3-famesene (-50%), (£)-a-bergamotene (98) 

(-30%) and the other four minor products (94, 99, 100 and 101) (Figure 1.17). 

Formation of multiple products by a single enzyme is a common feature of terpenoid 

synthases and this fact may be caused by the typical electrophilic reaction mechanism. 

A number of highly reactive carbocationic intermediates were generated during 

enzymatic reaction, which would increase the chance of side reactions to produce 

minor products (78).

(£)-a-ber|arnotene sesquisabinene (99) zingibereue (100) p-bisaboleue (94) sesquiphellandrene (101)

Figure 1.17: Structure o f  hydrocarbons generated by EBFS from Mentha x piperita (A) and 
Zea mays (B).

Comparison of the amino acid sequence of EBFS from A. annua with EBFSs from 

other sources reveals an identity/similarity between 21/39% and 42/61%. However, 

the amino acid sequence of EBFS from A. annua shows considerably high similarity 

to other sesquiterpene synthases from the same plant (the four Artemisia

A

(£)-P-famesene (65) (Z)-P-famesene (97) 5-cadinene (79)
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sesquiterpene synthases show an identity/similarity between 47/65% and 59/78% 

(727)). This fact suggests that the level of amino acid sequence similarity between the 

sesquiterpene synthases containing identical catalytic specificities from different 

species can be lower than the similarity between sesquiterpene synthases catalysing 

completely different reactions but from the same plant.

The cDNA encoding EBFS from peppermint (Mentha x piperita) was utilized in our 

studies. The 1653 bp open reading frame encodes a protein of 550 amino acids with 

deduced molecular mass of 63829. Like most other known class I terpenoid synthases, 

the magnesium-binding aspartate-rich (D301DXXD305) and N ^ S 4 4 ^ 452 motifs are 

present (57).

The deduced amino acid sequence of EBFS is quite similar to some other plant 

sesquiterpene synthases (see Appendix). The primary structure of EBFS is most 

similar to that of e/?z'-aristolochene synthase from tobacco (exhibiting 

identity/similarity of 49/62%). It also closely resembles three other angiosperm 

sesquiterpene synthases: vetispiradiene synthase from Hyoscyamus muticus, 

6 -cadinene synthase from cotton and germacrene C synthase from tomato (showing 

an identity/similarity between 34/57% and 40/63%) (775).

Interestingly, peppermint EBFS exhibits a comparable degree of similarity to both 

angiosperm and gymnosperm terpenoid synthases. For example, peppermint EBFS 

shows an identity/similarity of 30/51% with limonene synthase from spearmint and 

29/50% with sabinene synthase from culinary sage. It also resembles terpenoid 

synthases from the gymnosperm Abies grandis with identity/similarity of 28/49% for 

monoterpene synthases, 29/53% for sesquiterpene synthases and 28/51% for diterpene 

synthases (775). These amino acid sequence-based relationships indicate a bifurcation 

in the evolution of the monoterpene synthases from the higher terpenoid synthases 

that is as ancient as the separation between the angiosperms and gymnosperms.
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1.4.5 Diterpene synthases

Diterpene synthases catalyze the cyclization of geranylgeranyl diphosphate (C20) to 

form a variety of cyclic and polycyclic products. Plant diterpene synthases are 

triple-domain enzymes, which makes them the largest terpenoid synthases (800-900 

residues) (130). The three domains have been suggested to be formed by fusion of 

single-domain and double-domain bacterial diterpene synthases (131).

The first crystal structure of diterpene synthase was solved for taxadiene synthase 

from Taxus brevifolia in 2011 (130). Taxadiene synthase contains three a-helical 

domains including both class I and class II terpenoid synthase folds (Figure 1.18). The 

conserved motifs (DDXXD and (N,D)XX(S,T)XXXE) were identified in the 

C-terminal domain, suggesting that it functions as a class I terpenoid synthase. The 

N-terminal domain (M107-I135 and S349-Q552) together with the insertion domain 

(S136-Y348) adopt the class II terpenoid synthase fold with the unique double 

a-barrel fold tertiary structures, but the conserved DXDD motif among class II 

terpenoid synthases was absent in taxadiene synthase. The unique insertion domain 

was found in most plant diterpene synthases with conserved amino acid sequence and 

position (132). However, the absence of the characteristic DXDD motif and an active 

site cavity makes it a non-functional domain. On the other hand, the C-terminal 

domain was determined to be the functional active domain and the analysis of 

N-terminal truncation variants showed an essential role for the N-terminal domain in 

catalysis too (133).
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N-terminus

Active site

C-terminus

Figure 1.18: Cartoon representation o f taxadiene synthase (PDB 
3P5R). The C-terminal domain is coloured green, the N-terminal 
domain is coloured cyan and the insertion domain is coloured orange.

Investigations with different substrate analogues suggest a cyclization mechanism 

(133-135), in which the C14-C15 double bond, the C10-C11 double bond and the 

diphosphate leaving group are optimally aligned for departure o f the diphosphate 

group before the formation o f a verticillen-12-yl carbocation intermediate (102). 

Subsequent modification steps involve a proton transfer and a ring closure, followed 

by a deprotonation terminating step to yield taxa-4(5),l l(12)-diene (105) (Scheme 

1.19).
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GGDP (6)

OPP

verticillen-12-yl cation (102)

H

taxa-4,11-diene (105)
B

taxen-4-yl cation (104) verticillen-8-yl cation (103)

Scheme 1.19: Biosynthesis o f taxa-4,11-diene from GGDP.

The crystal structure of taxadiene synthase complexed with the substrate analogue 

2-fluoro-geranylgeranyl diphosphate reveals a similar magnesium cluster-diphosphate 

moiety binding fashion as other class I terpenoid synthases (Figure 1.19) (130). 

Asp613 and Asp617 (the first and the last aspartate residues from DDXXD motif) 

coordinate with M g2+A and M g2+c; M g2+B ion is chelated by N757, T761 and E765 

from the other magnesium binding motif on the opposite side of the active site. The 

diphosphate moiety can also form a hydrogen bond with R754 and makes 

water-mediated hydrogen bonds with Y688, E691, Y835, S713, R768 and Q770, 

which would possibly further stabilize the diphosphate group upon binding in the 

active site. In addition, the conformational change initiated by ligand binding that has 

been observed for the other class I terpenoid synthases is also proposed for the active 

site conformation of taxadiene synthase (130). The active site volume of taxadiene 

synthase is determined to be larger than the volume of the product taxadiene and this 

could explain the promiscuity of the enzyme since the shape of the active site contour 

should be more product-like for high fidelity terpenoid synthases.
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Figure 1.19: Cartoon representation o f  the active site o f  taxadiene 
synthase complexed with three magnesium ions (shown as green 
spheres) and substrate analogue 2-fluoro-geranylgeranyl diphosphate 
(2F-GGDP) (PDB 3P5R). Residues from the two magnesium binding 
motifs are shown as sticks.

The structure o f taxadiene synthase could generally illustrate the structure-function 

relationships in other diterpene synthases that contain catalytically active class II 

terpenoid synthase domains. For example, the bifunctional diterpene synthase 

abietadiene synthase from the grand fir tree is constructed from both class I and class 

II terpenoid synthase functional domains (136). The cyclization of GGDP is first 

carried out in the class II terpenoid synthase domain by protonation to form 

(+)-copalyl diphosphate as an intermediate and the class I terpenoid synthase can then 

catalyze the ionization dependent cyclization o f (+)-copalyl diphosphate to generate 

abietadiene (137) (Scheme 1.20). In another diterpene synthase, copalyl diphosphate 

synthase, only the class II terpenoid synthase is functional; the class I terpenoid 

synthase domain has even lost the signature metal ion binding motifs (138).
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(+)-copalyl diphosphate (106)

abietadiene (107)

'OPP 'OPP

levopimaradiene (108)

++

neoabietadiene (109)

Scheme 1.20: Biosynthesis o f (+)-copalyl diphosphate and abietadiene from GGDP.

1.4.6 Triterpene synthases

Triterpene synthases catalyze the cyclization of the linear C30 substrates squalene or

2,3-oxidosqualene to generate various fused-ring compounds (139, 140). The 

triterpene synthases are defined as class II terpenoid synthases due to their unique 

double a-barrel fold tertiary structures, which are distinct from the characteristic 

a-helical fold of class I terpenoid synthases (92). The reaction cascade was initiated 

by protonation of a carbon-carbon double bond in squalene or by epoxide protonation 

and ring opening in squalene oxide (57). Although triterpene synthases catalyse



cyclisations by employing a longer substrate than monoterpene synthases and 

sesquiterpene synthases, they can also generate products with high structural and 

stereochemical precision. A key structure among triterpene synthases is the 

aspartate-rich motif (DXDD), which does not chelate metal ions as for class I 

terpenoid synthase, but functions as the proton donor to initiate the cyclization. For 

example, squalene-hopene synthase catalyses the cyclization of squalene (7) to form 

the pentacyclic hydrocarbon hopene (110) (Scheme 1.21).

Squalene-hopene
synthase

Hopene (110)Squalene (7)

Scheme 1.21: Biosynthesis o f hopene from squalene.

The crystal structure of squalene-hopene synthase from Alicyclobacillus 

acidocaldarius reveals a dimeric enzyme and each subunit contains two domains 

(Figure 1.20) (141). Domain 1 adopts a double ot6-barrel fold with helices within each 

barrel parallel to each other. Domain 2 contains a similar a -a  barrel fold but each 

layer arranges in an irregular pattern. Some long loops from the inner barrels of both 

domains form a small (3 structure and enclose a central hydrophobic active site cavity 

(141). Eight QW-sequence motifs were discovered from the amino acid sequence of 

squalene-hopene synthase, in which seven of the eight motifs assume virtually 

identical polypeptide conformations. The side chains of the Q and W sequences can 

form hydrogen bonds with the amino end group of the adjacent outer barrel helix and 

with the carbonyl end moiety of the preceding outer barrel helix respectively, thus 

stabilizing the whole protein (142).
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C-terminu! N-terminus

Domain 1

Active site-

Domain 2

Figure 1.20: Cartoon representation o f  squalene-hopene synthase (PDB 
2SQC). The external barrel helices are coloured red, the internal barrel 
helices are coloured green, the ^-sheets are coloured yellow and the 
QW-motifs are coloured blue.

The active site o f squalene-hopene synthase contains a variety o f hydrophobic and 

aromatic residues, defining a hydrophobic active site template. The crystal structure 

o f the enzyme complex with the nonreactive substrate analogue 

3,6,9,12-tetraoxaicosan-l-ol showed a product-like binding, suggesting the active site 

template is able to enforce the pre-catalytically productive conformation of the large, 

flexible substrate squalene (Figure 1.21) (143). The aspartate motif (DXDD) has been 

identified at the polar top o f the active site cavity. The catalytic function of this motif 

in squalene-hopene synthase has been established by site-directed mutagenesis studies, 

in which Asp376 (the second aspartate residue o f the motif) seems to help protonate 

the C3 atom o f substrate squalene. The mutation D376E reduces the catalytic activity 

by 10-fold and the D376G and D376R mutants are inactive (144).

Since the pKa o f the aspartate side chain is around 4 and the enzymatic reaction was 

performed in the sodium citrate buffer system (pH 6), the Asp374, Asp376 and 

Asp377 were expected to be in their deprotonated form. However, in the crystal
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structure o f squalene-hopene synthase, Asp374 and Asp377 are hydrogen-bonded (2.6 

A distance) and this structure is close to another hydrogen-bonded pair (Asp376 and 

His 451). It was proposed that the Asp374:Asp377 hydrogen bonded pair carries a 

negative charge that stabilises the positive charge on the Asp376:His451 hydrogen 

bonded pair and thus the Asp376 could be stabilised in its protonated form (141).

3,6,9,12-tetraoxaico san-1

Figure 1.21: Cartoon representation o f  the active site o f
squalene-hopene synthase complexed with substrate analogue 
3,6,9,12-tetraoxaicosan-l-ol (shown as sticks) (PDB 2SQC). Residues 
from the aspartate-rich motif are shown as sticks.

Notably, the amino acid residues in the upper region o f the active site (i.e., the polar 

Asp376 region) are more conserved than the ones in the lower region compared to 

other triterpene synthases. This suggests that the protonation step common to squalene 

and oxidosqualene synthases occurs in the conserved region o f the cavity. The 

divergence o f amino acid composition in the lower region o f the active site cavity 

among triterpene cyclases will thus determine the divergent biosynthetic reactions 

(141).
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1.4.7 Genomic organization of plant terpenoid synthase

It has been suggested that the precursors and pathways for the generation of natural 

products most likely arose from mutations of enzymes involved in the synthesis of 

primary metabolites (145). The natural products evolved to increase the survival 

fitness of the producing organism under the pressure of natural selection (146). 

However, it is hard to address the evolutionary origins of natural products and their 

complex biosynthetic pathway due to the remarkable diversity of compounds, lack of 

relevant biosynthetic enzymes and the inability to distinguish between compounds 

involved in primary and secondary metabolism based on structure alone.

The evolution of the terpenoid synthase gene family can serve as an instructive model 

to present the origins of natural products since terpenoids are the largest class of 

natural products and play a variety of roles in primary and secondary metabolism. A 

study based on 21 terpenoid synthases gene proposed that the ancestral terpenoid 

synthase contains 12-14 introns and 13-15 exons (Figure 1.22) (145). It was also 

pointed out that the plant terpene synthases involved in secondary metabolism have a 

common ancestral origin from a terpenoid synthase involved in primary metabolism 

and terpenoid synthases went through gene duplication and divergence several times 

to create enzymes of both primary and secondary metabolism. The structural variation 

among the terpenoid synthase genes is consistent with an experimentally 

demonstrated process of concerted intron loss, thus providing a possible explanation 

for the derivation of terpenoid synthases of natural products biosynthesis from those 

of primary metabolism (147).
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Exon 
number

Plastidial targeting Conifer diterpene internal Glycosyl hydrolase-like domain Active site domain
Sequence region sequence domain

Figure 1.22: General structure o f  plant terpene synthase genes (145). Introns 1-14 (Roman 
numerals in figure) are represented by black vertical bars and exons 1-15 are depicted by 
coloured boxes.

Repeated duplication o f the ancestral gene and divergence by functional and structural 

specialization have been proposed as the common evolutionary process for the 

derivation o f large gene families (148, 149). In addition, it seems most reasonable to 

assume that the precursors and pathways for the generation o f secondary metablic 

products arose from mutations o f enzymes involved in the synthesis o f primary 

metabolites (148). Under the pressure o f natural selection, secondary metabolic 

products evolved as compounds with important ecological functions, which increased 

the chance o f survival o f the organism. This assumption provides an explanation for 

the mechanism o f the origin and evolutionary relationship o f plant terpenoid synthase 

genes and their encoded enzymes.

In addition, the analysis suggests that the genes encoding terpenoid synthases from 

both gymnosperms and angiosperms derive from a common ancestor (145). The 

subsequent ancestral gene products diverged in function under the pressure o f natural 

selection to generate the large family o f terpenoid synthases involved in both primary 

and secondary metabolic pathways. Although speculative, it is plausible that the early 

terpenoid synthase ancestors were designed to be less specific enzymes, able to utilize 

different sized prenyl diphosphate substrates for the production o f multiple products. 

The subfamilies o f terpenoid synthases such as monoterpene synthases, sesquiterpene 

synthases and diterpene synthases were developed much later during evolution. In

1 T ‘  1fl I T b 10 11 12 | l 3 |  14 1 15
1

DDXXD
motif
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summary, the gene organization may have played an essential role in divergence of 

terpenoid structures and the ecological interactions that they mediate. Although the 

evolutionary connections are unclear, the absence of the conifer diterpene internal 

sequence domain in the angiosperm and gymnosperm monoterpene and sesquiterpene 

synthase could be significant for terpene structural diversification. Further more, the 

genetic changes are closely related with an important structural aspect of the terpene 

synthases. Thus, considerable genetic variation occurs in the N-terminal region (with 

no known function) of the terpene synthase genes, whereas the C-terminal region 

(formation of the active site) remains highly conserved in organization and catalytic 

function.

Phylogenetic analysis of the deduced amino acid sequences of 33 terpenoid synthases 

from both angiosperms and gymnosperms allows subdivision of the terpenoid 

synthase (Tps) gene family into six subfamilies, designated Tpsa through Tpsf, each 

distinguished by sharing a minimum of 40% identity among members (132). The 

majority of terpene synthases analysed produce secondary metabolites, including 

members of subfamilies Tpsa (sesquiterpene and diterpene synthases from 

angiosperms), Tpsb (monoterpene synthases from angiosperms of the Lamiaceae), 

Tpsd (11 gymnosperm monoterpene, sesquiterepene and diterpene synthases) and the 

distant and possibly ancient Tpsf branch containing linalool synthase. The other three 

subfamilies, Tpsc, Tpse and Tpsf, are represented by the single angiosperm terpene 

synthase types copalyl diphosphate synthase, kaurene synthase and linalool synthase, 

respectively. The first two subfamilies are diterpene synthases involved in early steps 

of gibberellin biosynthesis. These two are grouped into a single clade and are 

involved in primary metabolism.

1.5 Aims

Comparison of the deduced amino acid sequences of the isolated plant sesquiterpene

synthases reveals significant conservation among them, which can be explained by the
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conserved exon organization observed between their genes. The derivation of this 

large gene family was proposed to be related to functional mutations that had been 

retained during gene duplication by natural selection. This proposal provides a 

reasonable explanation for the mechanism of origin and evolutionary relationship of 

plant sesquiterpene synthase genes and their encoded enzymes.

This project consisted of three parts. The first part of the study focused on DCS, 

which was aimed to ascribe functional roles for particular amino acid positions and 

subdomains encoded by conserved exons. A homology model of DCS based on the 

crystal structure of epi-aristolochene synthase (PDB 5EAT) was created using the 

SWISS-MODEL automated homology modelling server. The mutagenesis studies 

mainly relied on this model because the crystal structure of DCS was solved two years 

after this work had been started (114). Mutational replacement of variable residues 

within and surrounding the active site between DCS and germacrene C synthase (GCS) 

was intended to provide an insight into the relationship between the chemical 

environment of the active site and the product outcome. The role of the DDXXD 

motif was also investigated by site-directed mutagenesis studies. In addition, the 

critical structural elements in defining product outcome were to be determined by 

domain swap experiments.

The second part of the project was aimed at examining the influence of the active site 

volume of EBFS on the product outcome. A homology model of EBFS based on the 

crystal structure of DCS (PDB 3G4F) was created using the SWISS-MODEL 

automated homology modelling server and the mutagenesis studies mainly relied on 

this model. Mutants with enlarged or refined active site were designed to try to 

facilitate cyclization reactions in the modified active site pocket. The active site cavity 

was further modified by swapping residues from the active site of EBFS with 

corresponding ones from DCS to demonstrate the importance of active site volume.

The final part of the project was aimed to investigate the function of N-terminal
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domains of EBFS and DCS, which were previously defined as non-catalytic domains. 

Truncated mutants, chimeras and site-directed mutants were designed to determine 

the role of N-terminal domain in catalysis.
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Chapter 2: Materials and Methods
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2.1 Materials

All chemicals were purchased from Sigma-Aldrich UK, Fisher Scientific Ltd or 

Melford, unless otherwise stated. FDP (150% 2F-FDP (112% 2F-GDP (151) and 

(J£)-p-2-fluoro-famesene (112,135) were synthesised by Dr. Juan A. Faraldos and Dr. 

David J. Miller (Cardiff University). [1-3H]-FDP (20 Ci/mmol) was purchased from 

American Radiolabeled Chemicals, Inc. DEAE anion exchange resins were purchased 

from GE Healthcase. Amicon YM30 membranes were purchased from Millipore. 

EcoScint scintillation fluid was purchased from National Diagnostics. All restriction 

enzymes were purchased from New England Biolabs or Promega. All chemicals were 

used in accordance with their material safety data sheets, COSHH and risk 

assessments. All oligonucleotides were purchased from Operon Technologies 

(Cologne, Germany). The wild type gene encoding 8-cadinene synthase was obtained 

from Dr. Xiao-Ya Chen (100) and subcloned into pET21d by Dr. Susan E. Taylor 

(University of Birmingham). The wild type cDNA of (£)-p-famesene synthase was 

obtained from Dr Linda M. Field (Rothamsted Research, UK) and subcloned into 

pET32b by Dr. Athina Deligeorgopoulou (University of Birmingham).

2.2 M edia

2.2.1 Luria-Bertani medium

LB medium was prepared by dissolving 10 g tryptone, 10 g NaCl, 5 g bacto-yeast 

extract in 1L deionised water and adjusted the pH. to 7. The solution was sterilised in 

an autoclave at 121 °C, 15 lb.(sq. in)'1 for 20min.

2.2.2 LB agar

LB agar plates were made up by mixing 7.5 g of agar with 500 mL of LB media. The 

solution was autoclaved and cooled to under 50 °C and 100 mg of ampicillin was 

added. The mixture was then divided into Petri dishes (around 20 mL per dish) and 

left to solidify. The plates were stored at 4 °C.
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2.3 Sterile solutions

2.3.1 Antibiotics

Ampicillin was dissolved in ethanol (50% v/v) to a concentration of 100 mg/mL. The 

solution was sterilised using a 0.2 pm syringe filter, aliquoted and stored at -20 °C. A 

working concentration of 0.1 mg/mL was used.

2.3.2 Isopropyl-f3-D-l-thiogalactopyranoside (IPTG)

IPTG (360 mg) was dissolved in 1 mL of deionised water for use at a working 

concentration of 0.12 mg/mL. The solution was sterilised using a 0.2 pm syringe filter, 

aliquoted and stored at -20 °C.

2.3.3 Ethylenediaminetetraacetic acid (EDTA)

EDTA (1.46 g) was added to 450 mL deionised water. The solid was dissolved by 

adjusting the pH to 8.0 with 5 M sodium hydroxide and the total volume taken to 500 

mL with deionised water. The solution was sterilised using a 0.2 pm syringe filter and 

stored at room temperature. Stock and working concentrations were 10 mM and 0.1 

mM respectively for enzyme storage.

2.3.4 Dithiothreitol (DTT)

DTT (154 mg) was dissolved in 100 mL deionised water to give a stock concentration 

of 10 mM. The solution was sterilised using a 0.2 pm syringe filter and stored at 4 °C. 

The working concentration was 1 mM for enzyme storage.
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2.3.5 Competent cell solutions

2.3.5.1 Rubidium chloride preparation o f competent cells

Rubidium chloride solution 1 (Rbl) was prepared by dissolving potassium acetate 

(294 mg, 30 mM), rubidium chloride (1.21 g, 100 mM), calcium chloride (110.98 mg, 

10 mM), manganese chloride (692 mg, 55 mM) and glycerol (15% v/v) in 80 mL of 

deionised water. The pH was adjusted to 5.8 with dilute acetic acid and the total 

volume adjusted to 100 mL with deionised water. The solution was sterilised using a 

0.2 pm syringe filter and stored at 4 °C.

Rubidium chloride solution 2 (Rb2) was prepared by dissolving 3-(N-morpholino) 

propanesulfonic acid (MOPS) (209 mg, 10 mM), rubidium chloride (121 mg, 1 mM), 

calcium chloride (832 mg, 7.5 mM) and glycerol (15% v/v) in 80 mL of deionised 

water. The pH was adjusted to 6.5 with dilute sodium hydroxide and the total volume 

adjusted to 100 mL with deionised water. The solution was sterilised using a 0.2 pm 

syringe filter and stored at 4 °C.

2.4 Non-sterile solutions

2.4.1 dNTPs

Stock solutions of each dNTP were purchased 

were diluted to a working concentration of 10 

and stored at -20 °C.

2.4.2 Ethidium bromide

8.1 g of ethidium bromide was dissolved in 100 mL of deionised water to make a 25 

pM stock solution and stored in the dark at 4 °C. Immediately prior to gel staining, a 

working concentration of 6 pM was prepared by diluting 48 pL of stock solution into 

200 mL of deionised water.

at a concentration of 100 mM. These 

mM using deionised water, aliquoted
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2.4.3 lOx DNA loading dye

Bromophenol blue (2.5 mg) and sucrose (400 mg) were dissolved in 1 mL of 

deionised water and store at room temperature. This gave stock concentrations of 3.7 

mM and 1.2 mM respectively. The dye was diluted 1:9 with each DNA sample 

immediately prior to use.

2.4.4 TAE buffer stock (50x) for agarose gels

0.5 M EDTA solution was prepared by dissolving 14.61 g EDTA in 80 mL of 

deionised water. The pH was adjusted to 8.0 with 5 M NaOH and the total volume 

was adjusted to 100 mL.

Tris base (242 g, 2 M), glacial acetic acid (57.1 mL, 7.5 M) and 0.5 M EDTA solution 

(100 mL) were mixed with 800 mL of deionised water. The total volume was adjusted 

to 1 L with deionised water after the entire Tris base was completely dissolved. The 

solution was stored at room temperature and was diluted 50 fold with deionised water 

prior to use.

2.4.5 SDS stacking buffer

Tris base (6 g, 0.5 M) was dissolved in 80 mL of deionised water and the pH adjusted 

to 6.8 with 6 M HC1. The total volume was adjusted to 100 mL with deionised water 

and stored at 4 °C.

2.4.6 SDS resolving buffer

Tris base (27.23 g, 1.5 M) was dissolved in 100 mL of deionised water and the pH 

adjusted to 8.8 with 6 M HC1. The total volume was adjusted to 150 mL with 

deionised water and stored at 4 °C.
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2.4.7 10% (w/v) Sodium dodecyl sulfate (SDS)

Sodium dodecyl sulfate (10 g) was dissolved in 90 mL of deionised water. After the 

solid was fully dissolved, the total volume was adjusted to 100 mL and the solution 

was stored at room temperature.

2.4.8 10% (w/v) Ammonium persulfate

Ammonium persulfate (100 mg) was dissolved in 1 mL of deionised water. The 

solution was stored at 4 °C.

2.4.9 SDS electrode running buffer (lOx)

Tris base (30.3 g, 250 mM), glycine (150 g, 2 M) and sodium dodecyl sulfate (10.0 g) 

were fully dissolved in 900 mL of deionised water. The total volume was adjusted to 

1 L and stored at 4 °C. The concentrated solution was diluted 10 fold prior to use with 

deionised water.

2.4.10 SDS gel stain solution

Coomassie brilliant blue (0.25 mL) and glacial acetic acid (10 mL) were fully 

dissolved with 40 mL deionised water and 45 mL ethanol. The total volume was 

adjusted to 100 mL with deionised water and the solution was stored at room 

temperature.

2.4.11 SDS gel destain solution

Glacial acetic acid (100 ml) and isopropanol (120 ml) were mixed with 750 mL 

deionised water. The total volume was adjusted to 1 L and stored at room 

temperature.
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2.4.12 Protein purification lysis buffers

The lysis buffer for purification of wild-type DCS was prepared by adding Tris base 

(2.42 g, 20 mM), EDTA (1.75 g, 6 mM) and |3-mercaptoethanol (350 pL) to 900 mL 

deionised water. The pH was adjusted to 8 with 5 M NaOH and the total volume 

adjusted to 1 L with deionised water.

The lysis buffer for purification of wild-type EBFS was prepared by adding MOPS 

(4.2 g, 20 mmol), EDTA (1.75 g, 6 mM) and p-mercaptoethanol (350 pL) to 900 mL 

deionised water. The pH was adjusted to 7.2 with 5 M NaOH and the total volume 

adjusted to 1 L with deionised water.

Both lysis buffers were degassed via vacuum pumping (Vacuubrand GmbH +CO KG, 

MD4C, Wertheim, Germany) and stored at room temperature.

2.4.13 Protein dialysis buffer

For wild-type DCS, Tris-base (4.8 g, 10 mM) and p-mercaptoethanol (1.4 mL) were 

added to 3.8 L deionised water. The pH was adjusted to 7.5 with 5 M NaOH and the 

total volume adjusted to 4 L with deionised water.

For wild-type EBFS, MOPS (8.4 g, 10 mM) and (3-mercaptoethanol (1.4 mL) were 

added to 3.8 L deionised water. The pH was adjusted to 7.2 with 5 M NaOH and the 

total volume adjusted to 4 L with deionised water.

Both dialysis buffers were prepared fresh each time and dialysis was performed at 

4 °C.
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2.4.14 DNA miniprep buffers

2.4.14.1 Buffer PI (suspension buffer)

Tris-HCl (157.6 mg 50 mM), EDTA (58.448 mg, 10 mM) and RNase A (50 p,g/mL 

final concentration) were dissolved in 15 mL of deionised water. The pH was adjusted 

to 8.0 and the total volume adjusted to 20 mL with deionsed water. The solution was 

stored at 4 °C.

2.4.14.2 Buffer P2 (lysis buffer)

NaOH (4 g, 0.4 M) and SDS (5 g, 2% w/v) were dissolved separately in 200 mL of 

deionised water. Both solutions were combined and the total volume was adjusted to 

500 mL. The solution was stored at room temperature.

2.4.14.3 Buffer N3 (neutralization and binding buffer)

Guanidine hydrochloride (7.6 g, 4 M) and potassium acetate (981.4 mg, 0.5 M) were 

dissolved in 15 mL of deionised water. The pH was adjusted to 4.2 and the total 

volume was adjusted to 20 mL with deionised water and the solution was stored at 

room temperature.

2.4.14.4 Buffer PB (wash buffer)

Guanidine hydrochloride (9.5 g, 5M), Tris-HCl (63.0 mg, 20 mM) and ethanol (7.6 

mL, 38% v/v) were added to 8 mL of deionised water. The pH was adjusted to 6.6 and 

the total volume was adjusted to 20 mL with deionised water. The solution was stored 

at room temperature.

2.4.14.5 Buffer PE (wash buffer)

NaCl (23.4 mg, 20 mM), Tris-HCl (6.3 mg, 2 mM) and ethanol (16 mL, 80% v/v) 

were added to 2 mL of deionised water. The pH was adjusted to 7.5 and the total
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volume was adjusted to 20 mL with deionised water. The solution was stored at room 

temperature.

2.4.14.6 Buffer EB (Elution buffer)

Tris-HCl (32 mg, 10 mM) was dissolved in 15 mL of deionised water. The pH was 

adjusted to 8.5 and the total volume was adjusted to 20 mL with deionised water. The 

solution was stored at room temperature.

2.4.15 Agarose gel DNA isolation buffers

2.4.15.1 Buffer QG (gel solubilisation buffer)

Guanidine thiocyanate (13 g, 5.5 M) and Tris-HCl (6.3 mg, 20 mM) were dissolved in 

15 mL of deionised water. The pH was adjusted to 6.6 and the total volume was 

adjusted to 20 mL with deionised water. The solution was stored at room temperature.

2.4.15.2 Buffer PE (wash buffer)

NaCl (23.4 mg, 20 mM), Tris-HCl (6.3 mg, 2 mM) and ethanol (16 mL, 80% v/v) 

were added to 2 mL of deionised water. The pH was adjusted to 7.5 and the total 

volume was adjusted to 20 mL with deionised water. The solution was stored at room 

temperature.

2.4.15.3 Buffer EB (Elution buffer)

Tris-HCl (32 mg, 10 mM) was dissolved in 15 mL of deionised water. The pH was 

adjusted to 8.5 and the total volume was adjusted to 20 mL with deionised water. The 

solution was stored at room temperature.
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2.5 E. coli strains and their preparation

2.5.1 Cloning strain

XL 1-Blue competent cells (Stratagene, CA, USA) with genotype (recAl endAl 

gyrA96 thi-1 hsdR17 supE44 relAl lac [F' proAB lacIqZAM15 TnlO (Tetr)]) were 

used for routine cloning purposes, such as following site-directed mutagenesis. High 

quality miniprep DNA could also be produced from this strain for sequencing 

purposes.

2.5.2 Expression strains

BL21(DE3) competent cells (Stratagene, CA, USA) with genotype (E. coli B F' dcm 

ompT hsdS(rB' mB’) gal A,(DE3)) were used for expression of wild-type DCS, whilst 

BL21-CodonPlus(DE3)-RP competent cells (Stratagene, CA, USA) with genotype (E. 

coli B F' ompT hsdS(rB‘ mB') dcm+ Tetr gal X,(DE3) endA Hte [argU proL Camr]) 

were used for expression of wild-type EBFS. BL21-CodonPlus(DE3)-RIL competent 

cells (Stratagene, CA, USA) with genotype (E. coli B F' ompT hsdS(rB' mB') dcm+ 

Tetr E. coli gal X (DE3) endA Hte [argU ileY leuW Camr]) were used for expression 

of N-terminal region chimera D24AAE. All strains contain the XDE3 lysogen that 

carries the gene encoding T7 RNA polymerase under the control of the lacUV5 

promoter.

2.5.3 Preparation of competent cells

Competent cells were streaked on a non-selective plate by a wire loop. The same 

competent cells were also streaked on an ampicillin plate as a negative control. Both 

plates were incubated at 37 °C overnight. 5 mL of LB medium without antibiotics was 

inoculated with a single colony from the non-selective plate and incubated at 37 °C 

until an optical density at 600 nm of 0.6 was reached. The cultures were then cooled 

down on ice for 15 min. Cells were harvested in a Thermo IEC 243 Centra CL3R 

centrifuge (Thermo Fisher Scientific Inc, USA) at 4000 RPM and 4 °C for 10 min and
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the supernatant discarded. The cell pellet was resuspended in 5 mL Rbl solution 

(Section 2.3.2), incubated on ice for 20 min and the centrifugation step repeated. The 

resulting cell pellet was resuspended with 6 mL Rb2 solution, aliquoted (50 pL) into 

sterile Eppendorf tubes and flash frozen in liquid nitrogen for storage at -80 °C.

2.5.4 Transformation protocol and controls

The frozen competent cells were allowed to thaw on ice for about 5 min. 2 pL of 

ice-cold DNA solution was mixed with the competent cells using a pipette tip under 

sterile conditions. The cell/DNA mixture was incubated on ice for 20 min, heat 

shocked at 42 °C in a water bath for 40 s and returned to ice for a minimum of 2 min. 

500 pL of LB medium without antibiotics was added to the cell/DNA mixture and 

incubated at 37 °C for 1 hr. Cells were harvested by centrifugation for 1 min at 15,700 

RPM (Eppendorf centrifuge 5415) and the supernatant discarded. The cell pellet was 

resuspended in 100 pL of LB medium, plated on agar plates containing the 

appropriate antibiotic and incubated at 37 °C overnight. A negative control was 

always included by replacing the DNA solution with sterile water. A positive control 

was also included by transforming cells with wild-type DNA.

2.6 DNA manipulation

2.6.1 Polymerase chain reaction (PCR)

The gene amplification and site-directed mutagenesis work was carried out by 

employing the Polymerase Chain Reaction (PCR) using short oligonucleotide primers. 

For all cloning work described here, Pfu polymerase from the bacterium Pyrococcus 

furiosus was used at 72 °C. This enzyme has a 3’ to 5’ proofreading activity and 

produces blunt-ended PCR products. The low error rate of this polymerase in PCR is 

roughly 106 per base pair duplicated (152).

The double stranded template DNA (dsDNA) was first denatured at 95 °C to form
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two single stranded DNA (ssDNA) molecules. The temperature was then lowered to 

between 45-65 °C to allow primers to anneal to the template ssDNA. DNA 

polymerases synthesised new DNA strands complementary to the template DNA by 

adding dNTPs that were complementary to the template in a 5’ to 3’ fashion. The 

primers would be extended along the whole length of the DNA template and a 

‘daughter’ DNA duplex was formed and the cycle could start again. A final 

elongation step was applied after the last cycle to finish synthesis of any partially 

completed fragments.

The primers were designed according to the instruction manual of the 

QuikChangeTM Site-Directed Mutagenesis Kit. Both primers (forward and reverse) 

must contain the desired mutation and anneal to the same sequence on complementary 

strands of the DNA. The primers should contain between 25 and 45 bases and the 

desired mutation should be in the middle of the primer. The percentage of GC should 

be at least 40%.

To amplify genes of interest and to make site mutations, a general PCR recipe was 

used (Tables 2.1 and 2.2).

Table 2.1: Components o f the PCR reaction.

Component Volume (pL)

dNTPs (40 mM total, 10 mM each NTP) 1

Forwards primer (100 pM) 4

Backwards primer (100 pM) 4

Template dsDNA (-0.01 pmol) 1

lOx Pfu buffer 5

MgSC>4 (50 mM stock, 1.0 mM working concentration) 1

Pfu polymerase (2-3U/pL) 1

Deionised water 33
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Table 2.2: Temperature and duration o f the PCR cycles.

PCR cycles Temperature (°C) Time (min)

Initial denaturation 95 2

Denaturation 95 1

Annealing -55 0.5

Primer extension 72 2 min per kilobase

Final extension 72 5

Dpnl restriction enzyme (target sequence: 5’-GATC-3’ with methylated alanine) was 

used to digest template DNA following site directed mutagenesis, ensuring only 

mutated DNA was left intact. The digestion was performed immediately after site 

directed mutagenesis at 37 °C for 1 hr.

2.6.2 Restriction digestion of DNA and controls

For each restriction digest, the manufacturer’s guidelines were followed with regard 

to operating buffers, temperatures and denaturation steps. £coRI and Sacl were used 

sequentially for excision of the aristolochene synthase gene from pET21 vector when 

required. Both restriction endonucleases were incubated at the same temperature 

(37 °C) for 6 hours and then were heated inactivated at 65 °C for 20 minutes. NheI 

and BamHl were used sequentially for excision of the C-terminal EBFS gene from 

pET32 vector when required. Both restriction endonucleases were incubated at the 

same temperature (37 °C) for 6 hours and then were heated inactivated at 65 °C for 20 

minutes.

2.6.3 DNA visualisation, isolation and purification

Agarose gels were prepared by w/v ratio (usually 1%) with lxTAE buffer (Section 

2.4.3). Agarose gel electrophoresis was run at a constant electric current of 100 mA 

for 60 min and stained in diluted ethidium bromide solution for 10 min. DNA bands
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were visualised using a Syngene GeneFlash UV light box (Syngene, UK). The size of 

sample bands was estimated by comparison to a lkb DNA ladder. For agarose gel 

purification, the appropriate bands were excised from the gel using a clean scalpel 

blade and stored in a sterile eppendorf tube. DNA extraction was performed using the 

QIAquick gel extraction kit (QIAGEN, UK) according to the manufacturer’s 

instructions and stored at -20 °C.

For the determination of the concentration of DNA, a UV/VIS spectrophotometer was 

used. Nucleic acid, has a strong ultraviolet absorption at 280 nm, however absorbs 

much more strongly at 260 nm. Most proteins exhibit a characteristic ultraviolet light 

absorption at 280 nm due to the presence of tyrosine and tryptophan. An A260nm 

value of 1.0 indicates an approximate concentration of 50 pg ml-1 double stranded 

DNA, 40pg ml-1 single stranded DNA or 20pg ml-1 single stranded oligonucleotides. 

The ratio OD260nm / OD280nm is indicative of the purity of the DNA sample. Thus, 

when this ratio takes values between 1.8 and 2.0, the sample is pure, whilst lower 

values indicate contamination with proteins and/or lipids.

2.6.4 Constructions of DNA hybrids and truncated mutants

2.6.4.1 DCS-hybridl

The construct of DCS-hybridl was prepared by replacing the native GGT codon of 

G276 with TTC by site-directed mutagenesis. Together with the codon GAA that 

encodes amino acid E275, this mutation creates an £coRI restriction site. Another 

Sad  restriction site located after the stop codon was also employed to form the hybrid 

construct. The gene encoding aristolochene synthase was amplified from the genomic 

DNA via PCR using short complementary oligonucleotide primers designed to flank 

the gene of interest and provide overhanging EcoRl and Sad  restriction sites at the 5’ 

and 3’ end respectively. The restriction sites were introduced immediately prior to the 

start codon and immediately after the stop codon. The gene fragment that encodes the 

C-terminal domain of DCS was removed from the mutated plasmid by a double
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digestion with EcoBl and Sacl restriction enzymes. The opened plasmid was then 

ligated with the newly formed DNA fragment encoding aristolochene synthase, 

creating a plasmid containing the gene encoding DCS-hybridl.

2.6.4.2 DCS-hybrid2

The gene of DCS-hybrid2 was constructed using two native Sad  restriction sites 

identified in the plasmid containing the gene encoding DCS; one Sad  restriction site 

sequence encodes amino acids E318 and L319 and the other Sad  restriction site is 

located after the stop codon. A synthetic DNA fragment was designed to encode the 

amino acid sequence from E311 to the stop codon of GCS, with Sad  restriction sites 

at both the 5’ and 3’ end. The plasmid containing the gene encoding DCS was 

digested with Sad  restriction enzyme, dephosphorylated with Calf Intestinal Alkaline 

Phosphatase (CIP) and the longer DNA fragment was purified by agarose gel 

electrophoresis. The longer opened plasmid was then ligated with the synthetic DNA 

fragment encoding the 3’-terminal portion of the GCS gene.

2.6.4.3 EBFS active site hybrid

The construct of the hybrid was created by mutating the native codon TAT that 

encodes amino acid Y271 to AGC; together with the codon GCT that encodes amino 

acid A270, this mutation creates a NheI restriction site. A synthetic DNA fragment 

was designed to encode the amino acid sequence after V272 of EBFS with all the 

chosen mutations and constructed with Nhel and BamHl restriction sites at the 5’ and 

3’ end respectively. Double digestion of the mutated plasmid with Nhel and BamHl 

restriction enzymes and subsequent ligation with the synthetic DNA fragment formed 

a plasmid containing the gene encoding the hybrid.

2.6.4.4EBFSA14

The full-length cDNA for EBFS (1.6 kb) was initially cloned into the vector pET32b 

(5.9 kb) with an Ncol restriction site at the 5’ end. To construct the gene of EBFS A14,
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another Ncol restriction site was introduced into the DNA sequence of the wild-type 

enzyme. The foreign Ncol restriction site was formed by replacing the DNA fragment 

S’-GTAAGGCCA^’ that encodes Vail 4, Argl5 and Pro 16, with 

5’-GCCATGGCA-3’ using site-directed mutagenesis. The mutated plasmid was then 

treated with Ncol and the resulting large DNA fragment was intramolecularly ligated 

to give the desired plasmid.

2.6.4.5 EBFSA24

This mutant was prepared following a similar method to that used for constructing 

EBFSA14, by introducing an Ncol restriction site into the DNA sequence of the 

wild-type EBFS. The mutated plasmid was then treated with Ncol and the resulting 

large DNA fragment was intramolecularly ligated to give the desired plasmid.

2.6.4.6 D24AAE

The cDNA of D24AAE was created by ligation of the DNA encoding EBFSA24 

following Ncol digestion with a DNA fragment encoding the chosen amino acids 

from DCS. The smaller DNA fragment was designed to anneal with Ncol restriction 

sites at both ends.

2.6.4.7 E24AAD

The cDNA of E24AAD was prepared by ligation of the DNA encoding DCSA30 

(constructed by Dr. Veronica Gonzalez in our group) following Ncol digestion with a 

DNA fragment encoding the first 24 amino acids of EBFS. The insert DNA fragment 

was designed to anneal with the Ncol restriction sites at both ends.
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2.6.5 Plasmid purification

5 mL of ampicillin selective LB medium was inoculated by a single colony that was 

picked from an ampicillin selective plate containing the appropriate transformed cells. 

The mixture was incubated at 37 °C overnight, whilst shaking at 150 rpm in an 

Innova® 43 shaker (New Brunswick Scientific, UK). Cells were harvested by 

centrifugation for 10 min at 5000 RPM (Eppendorf centrifuge 5415R). Isolation of 

pure plasmid was performed using the QIAprep spin miniprep kit (QIAGEN, UK), 

following the manufacturer’s instructions.

2.6.6 DNA sequencing

Usually, the standard plasmid purification procedure described in Section 2.6.3 will 

give pure DNA at a concentration of ~50 pg/pL. DNA sequencing of plasmid 

constructs and site-directed mutagenesis products was performed by Lark 

Technologies (Cogenics, UK) and in the School of Biosciences, Cardiff University.

2.7 Protein production and purification

2.7.1 Small scale test expression

Prior to large scale production of any protein (Section 2.7.2), a small scale test 

expression was performed to ensure cells could be brought to an optical density of 0.6 

AU at 600 nm and the expression could be induced by IPTG. 100 mL of ampicillin 

selective LB medium was inoculated with 1 mL of overnight culture and allowed to 

grow at 37 °C to an optical density of 0.6 AU at 600 nm. IPTG (0.5 mM) was used to 

induce gene expression, which was allowed to grow at optimised temperature. Protein 

production was monitored by taking a 200 pL sample every hour for SDS-PAGE 

analysis (Section 2.7.8).

7 9



2.7.2 Large scale expression

For protein production, the selected strain of competent cells (Section 2.5.2) were 

transformed with the appropriate DNA solution and incubated overnight on ampicillin 

selective agar plates at 37 °C. A single colony was picked and used to inoculate 100 

mL of ampicillin selective LB medium by incubating at 37 °C overnight whilst 

shaking at 150 rpm in an Innova® 43 shaker (New Brunswick Scientific, UK). The 

overnight pre-culture was used to inoculate ampicillin selective LB medium (5 mL 

per 500 mL final culture) and incubated at 37 °C whilst shaking as previously 

described until an optical density of 0.6 AU at 600 nm was reached. IPTG (0.5 mM) 

was then added into cells culture. For the expression of wild-type DCS, the cell 

culture was allowed to grow for another 4 hr at 37 °C. For the expression of wild-type 

EBFS, the cell culture was allowed to grow for another 7 hr at 16 °C.

Large scale protein production used 1.5 L of culture. Cells were harvested by 

centrifugation in a Sorvall RC5C Plus centrifuge (Thermo Fisher Scientific, USA) 

using an SLA-3000 rotor at 9000 RPM for 10 min and stored at -20 °C.

2.7.3 Glycerol stocks

0.8 ml of an overnight culture containing the plasmid of interest was aseptically 

transferred to a sterile 1.5 ml eppendorf. 0.15 ml of sterile glycerol was added and the 

resultant mixture was vortexed briefly and stored at -  80 ° C. Prior to use, the 

glycerol stock should be defrosted on ice and by the use of a sterile inoculating loop 

the sample was streaked on an agar plate containing proper antibiotics.

2.7.4 Base extraction

Frozen cell pellets (-10 g per 1.5 L culture) (See section 2.7.2) were allowed to thaw

on ice. Cells were resuspended in -100 ml protein purification lysis buffer (Section

2.4.9) and lysed by sonication on ice (3 sec sonication period followed by a 3 sec rest

period, repeated for a total of 5 min). The lysate was centrifuged at 12,000 RPM
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(Sorvall RC5C Plus centrifuge, Thermo Fisher Scientific Inc, USA, using an SS-34 

rotor) for 30 min and the supernatant solution discarded. The pellets were 

resuspended in 150 mL of fresh lysis buffer and titrated on ice with 5 M NaOH until 

the solution became clear (about pH 12). After stirring on ice for 30 min, the pH was 

lowered to 7.2 with 1 M HC1 and (3-mercaptoethanol was added to a final 

concentration of 5 mM. The resulting solution was stirred for 30 min on ice and 

centrifuged at 12,000 RPM (Sorvall RC5C Plus centrifuge, Thermo Fisher Scientific, 

Inc, USA, using an SS-34 rotor) for 30 min at 4 °C, after which the protein was found 

in the supernatant solution.

2.7.S Anion exchange chromatography

Ion-exchange chromatography, which separates compounds based on their net surface 

charge, is often used in protein purification. The stationary phase contains charged 

functional groups, of which there are four main types: strong acidic (e.g. sulfonic acid 

groups), strong basic (e.g. quaternary amino groups), weak acid (e.g. carboxylic acid 

groups) and weak basic (e.g. primary, secondary and/or tertiary amino groups).

The crude cell extract is prepared in a buffer of pH at least one unit above (for anion 

exchange) or below (for cation exchange) its isoelectric point (pi) and passed over the 

stationary phase resin. The desired protein and other molecules of appropriate charge 

are retained on the resin, while other molecules are eluted. After all the non-binding 

molecules have been washed through, the buffer conditions are changed in order to 

elute the target protein. The buffer conditions can be modified by adjusting the pH or 

the ionic strength. For this work, diethylaminoethyl (DEAE), a weakly basic 

anion-exchange resin that remains charged in a range of pH 3-9, was used.

The protein solution was loaded onto a diethylaminoethyl (DEAE) anion exchange 

column (column volume (CV) ~75 ml). The column was washed for at least 2 CV
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until baseline absorbance was reached and the flow-through was collected. A 

two-stage NaCl gradient was applied to the column, from 0-0.5 M NaCl over 4 CV, 

followed by 0.5-1 M NaCl over 1 CV. The column was then washed by another 1 CV 

lysis buffer with 1 M NaCl solution. The absorbance was monitored at 280 nm. To 

remove the NaCl used to elute the protein, the solution was dialyzed using MediCell 

membranes Size 3500/2 (cut-off of 3500) against buffer that contained 10 mM Tris 

and 5 mM p-mercaptoethanol at pH 7.5, without NaCl.

2.7.6 Concentration of the dialysed protein using Amicon ultrafiltration

The dialysate was transferred to a 50 ml Amicon™ ultracentrifugation apparatus 

containing a 44.5 mm Millipore 30 kDa cutoff ultrafiltration membrane and 

concentrated at a pressure of 1.5 bar at 4 °C.

2.7.7 Size exclusion chromatography

The apparent molecular weight of the wild-type EBFS was determined by size 

exclusion chromatography. Typical commercially available resins for sizing column 

include crosslinked compounds such as dextran and epichlorohydrin (e.g. sepharose), 

dextran covalently bound to agarose (e.g. superdex), highly crosslinked agarose (e.g. 

superose) and Zu's-acrylamide/detran copolymers (e.g. sephacryl). The packed resin in 

the sizing column would retard different proteins in the mixture to different degrees 

whilst passing through the column based on their molecular size. Larger molecules 

will be retarded much less than the smaller ones due to their inability to enter the 

small pores of the particles in the gel matrix. Smaller molecules will be trapped in the 

pores while diffusion happens between the stationary and mobile phase, which leads 

to a longer retention time. Therefore, the separation is dependent on the length and 

density of the column, the type of resin used, the sample volume and the flow rate 

applied.
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1 mL of concentrated protein solution was applied to a Superdex™ 200 size exclusion 

column (CV ~24 mL), which had been previously equilibrated with 2 CV of protein 

purification lysis buffer with 150 mM NaCl. The column was then washed with 

another 2 CV of the equilibration buffer. The absorbance was monitored at 280 nm 

and the fractions were analysed by SDS-PAGE.

2.7.8 Determination of protein concentration

Sodium phosphate buffer (5 mM, pH 7) in the presence of 50 mM sodium sulfate was 

filtered and degassed using a vacuum pump (MD4C, Vacuubrand GMBH + CO KG, 

Germany) prior to use in protein concentration determination. Purified protein was 

dialysed against dialysis buffer (4L) overnight before the measurement. The 

spectrometer was blanked with 1 mL of buffer. Then, 10 pL of the dialysed protein 

sample was mixed with 1 mL of phosphate buffer and a blank sample was prepared 

by mixing 1 - 10 j^L of the dialysis buffer with 1 mL of phosphate buffer. Both 

samples were prepared immediately before use by gently pipetting several times. The 

increase in absorption at 205 nm was noted once the readings were stable. This 

process was then repeated at 280 nm using a 10 times more concentrated sample. To 

ensure the accuracy of measurements, the abosorbance was kept down to no more 

than 0.5. The extinction coefficient at 205 nm was calculated by the formula:

S  2056 mL' -  27 + 120 x (A280/A205)

where: e = extinction coefficient, A = absorbance at given wavelength

The Beer-Lambert law was used to calculate the concentration (mg/mL) of the protein 

solution.

A = sxcxl and therefore c = Axdf/exl
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where: e = extinction coefficient, A = absorbance at given wavelength, c = sample 

concentration in mg/mL and 1 = pathlength of cuvette in cm and df is the dilution

factor. The calculated protein concentration can be used to recalculate the E™ and the

value of this S™ can be used to determine the concentration of the same protein 

sample next time.

2.7.9 SDS-PAGE protocol

Monomer solutions were prepared by mixing reagents as described in Table 2.3. The 

gels were cast between two glass plates. 100 pL- of 10% APS and 10 pL of 

NJVJP JST -tetramethylenediamine (TEMED) were added to both resolving and 

stacking gels immediately prior to pouring the gel. Solutions were mixed gently by 

pipetting to initiate polymerization. The resolving gel solution was covered with a 

layer of isopropanol when it was poured and allowed to polymerize. Isopropanol was 

removed with blotting paper once the resolving gel was set. The stacking gel solution 

was poured and a comb was inserted to create wells for sample loading. Typically, a 

9% stacking and 13% resolving gel were used in my experiments.

Table 2.3: SDS-PAGE monomer solutions.

Gel (%) dH20  (mL) 30% Degassed 
Acrylamide-Bis (mL)

Gel Buffer 
(mL)

10% (w/v) 
SDS (mL)

6 5.4 2.0 2.5 0.1

7 5.1 2.3 2.5 0.1

8 4.7 2.7 2.5 0.1

9 4.4 3.0 2.5 0.1

10 4.1 3.3 2.5 0.1

11 3.7 3.7 2.5 0.1

12 3.4 4.0 2.5 0.1

13 3.1 4.3 2.5 0.1

14 2.7 4.7 2.5 0.1

15 2.4 5.0 2.5 0.1

16 2.1 5.3 2.5 0.1
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2.8 Enzyme characterization

2.8.1 Enzyme kinetics

Enzyme kinetics is the study of the chemical reactions that are catalysed by enzymes. 

In enzyme kinetics, the reaction rate is measured and the effects of varying the 

conditions of the reaction are investigated as well. Studying an enzymes’s kinetics can 

reveal the catalytic mechanism of this enzyme.

In biochemistry, Michaelis-Menten kinetics is one of the most frequently used model 

of enzyme kinetics. Most of the biochemical reactions are bimolecular reactions 

involving two reactants, substrate ‘S’ and enzyme ‘E’. In all enzymatic reactions, the 

enzyme is recycled and not consumed in the reactions. Before proceeding the in vitro 

experiments, some conditions must be met to ensure the resulting data is valid. As 

long as initial velocity is considered, the concentration of product can be neglected 

(compared to that of the substrate) and the concentration of substrate is in large excess 

over that of the enzyme. Here is a simple model of enzyme reaction:

k l  k c a t

E  +  S  < > E S  -----------> E  +  P
k - i

In this model, the substrate S reversibly associates with the enzyme E in a first step 

and some of the resulting complex ES is allowed to break down and yield the product 

P and the free enzyme back. Michaelis-Menten made three assumptions to derive and 

explain the kinetics of an enzyme reaction.

Assumption 1: reaction is in equilibrium.

In the above reaction once the product is formed, it does not go back to substrate, the 

reaction is in equilibrium.
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Assumption 2: Steady-state assumption.

In a steady state, the concentration of the intermediates [ES] is constant even if the 

concentration [S] and [P] are changing. This steady state occurs when the rate of 

formation and breakdown of ES complex are equal.

Assumption 3:

Maximal rate is obtained when the catalytic sites on the enzyme are saturated with the 

substrate.

2.8.1.1 Buffers for kinetics

Kinetic parameters of DCS based proteins were determined in 20 mM Tris buffer 

containing 1 mM DTT and 5 mM MgCk at pH 7.5. Kinetic parameters of EBFS based 

proteins were determined in 20 mM MOPS buffer containing 1 mM DTT and 5 mM 

MgCb at pH 7.2. Buffers were made freshly for each experiment.

2.8.1.2 Activity assays o f column fractions

The aim of this assay was to quantify the product formed by the enzyme from 

different fractions of the chromatography column, when incubated with [1-3H] FDP. 

The substrate remained in the aqueous phase while the cyclic products went into the 

organic solvent (hexane) used for the extraction. Constant amounts of substrate were 

incubated at 22 °C with constant amounts of enzyme eluted at different times from the 

chromatography column in activity buffer. The final volume for the reaction was 250 

pi. The reaction was quenched by the addition of 100ml EDTA (100 mM). Products 

were extracted with 3x700 pL hexane. The organic solution was then passed through 

a small silica column (typically containing 500 mg of silica) and mixed with 15 mL
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EcoScint™ (National Diagnostics) scintillation fluid before analysis on a scintillation 

counter (Packard 2500 TR™) in 3H mode for 4 min per sample. The percentage 

conversion of [1- H] FDP to radioactive hexane extractable products was determined 

by comparing the observed radioactivity with a known concentration of [1-3H]FDP 

and with control samples with no enzyme.

2.8.1.3 Steady state kinetics

Steady state kinetics were performed by radioactive assays using tritiated FDP ([1-3H] 

FDP) as substrate. Reactions (250 pL) were initiated by addition increasing 

concentrations of labeled FDP to a constant concentration of enzyme solution. The 

highest concentration of FDP should reach the saturation state for each enzyme. The 

reaction time and enzyme concentration were optimized to ensure the reaction was in 

the initial linear phase and was not reaching saturation during the experiment. The 

incubation temperature was 22 °C for all measurements. The reactions were quenched 

by addition of 100 pL of 100 mM EDTA. Products were extracted with 3x700 pL 

hexane. The organic solution was then passed through a small silica column (typically 

containing 500 mg of silica) and mixed with 15 mL EcoScint™ (National Diagnostics) 

scintillation fluid before analysis on a scintillation counter (Packard 2500 TR™) in 3H 

mode for 4 min per sample. The percentage conversion of tritiated FDP to radioactive 

hexane extractable products was determined by comparing the observed radioactivity 

level with a known concentration of tritiated FDP without enzyme in scintillation 

fluid. Data were fitted to the Michaelis-Menten equation,

V — ( v  max [SJ)/(Km + [S]) 

using Systat SigmaPlot 10. kcm was calculated by the formula:

kcat ~  V m a x / ( A  X  t X  [E] )
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where: A is the specifici activity of substrate (counts per min corresponding to 1 pM 

FDP). t is the reaction time (s). [E] is the enzyme concentration (pM).

2.8.2 GC-MS

Product profiles were determined by incubating 10 pM of purified enzyme with 1 mM 

(£,£)-FDP in the present of 5 mM Mg2+. Reactions were overlaid with 700 pL HPLC 

grade pentane and typically left over two nights. Sesquiterpene products were 

extracted using 3x700 pL pentane (HPLC grade) and pentane extracts were passed 

through a small silica column (containing approximately 500 mg silica). According to 

the previously reported methods (114), the resulting solutions were then analysed by 

GC-MS using a Hewlett-packard 6890 gas chromatography fitted with a J&W 

Scientific DB-5MS column and a Micromass GCT Premiere detecting in the range of 

m/z 50-800 in EI+ mode.

‘Relative abundance’ of GC or MS readings was defined as the ion current. The 

presented data has been normalized to that the maximum value displayed equals 100.

2.8.3 Circular dichroism spectroscopy

All circular dichroism spectroscopy was performed on a Chirascan™ 

spectrophotometer (Applied Photophysics Ltd, UK). Potassium phosphate buffer (10 

mM, pH 7) was used for all the measurements. A scan of the buffer alone was taken 

before every actual run as a blank. In the experiment, the appropriate amount of 

enzyme was mixed with the potassium phosphate buffer to give a final enzyme 

concentration of 10 pM.

Converting the signal obtained from CD experiments into mean residue ellipticity 

(MRE) was performed by the formula:
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© m r e  = 0/lOxnxcxl

where: 0  = CD signal in millidegree, n = number of backbone peptide bond, c = 

molar concentration of sample and 1 = path length of cuvette used in cm.

Typically, a 0.1 cm path length cuvette was used and the CD spectrum was recorded 

usually from 190-400 nm.

2.8.4 Errors and their propagation

2.8.4.1 Standard deviation and standard error o f the mean

The errors in this work are described as the standard error of the mean ( o s e m )  that is 

defined as the standard deviation (a) of the values in the sample divided by the square 

root of the sample size.

where: X = each value measured in the sample, M = mean of the sample, n = sample 

size.

2.8.4.2 Propagation o f errors

The propagation of the errors for kcJK u  was calculated as follow,

a
o SEM -

Z = X/Y
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where X and Y represent independent values directly measured experimentally, AX 

and AY are their errors, Z is the calculated value and AZ is its propagated error.

2.9 Amino acid sequence(s) alignment

Program ClustalX was used for two or multiple amino acid sequence(s) alignment. 

Sequences (and profiles) are input using the FILE menu. Invalid options will be 

disabled. All sequences must be in 1 file, one after another. 7 formats are 

automatically recognised: NBRF/PIR, EMBL/SWISSPROT, Pearson (Fasta), Clustal 

(*.aln), GCG/MSF (Pileup), GCG9 RSF and GDE flat file. All non-alphabetic 

characters (spaces, digits, punctuation marks) are ignored except which is used to 

indicate a GAP ("." in MSF/RSF).

Table 2.4: Default parameters for protein sequence(s) alignment.

Fast pairwise alignment parameters

K-tuple (word) size 1

Window size 5

Scoring method percentage

Number of top diagonals 5

Multiple alignment parameters

Wight matrix blosum

Gap opening penalty 10.0

Gap extension penalty 0.05

Hydrophilic gaps on

Hydrophilic residues GPSNDQERK

Residue-specific gap penalties on
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Chapter 3: 6-Cadinene Synthase
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3.1 Characterisation of the wild-type 6-cadinene synthase (WT-DCS)

As described in Section 1.5, a considerable amount o f work has previously been 

devoted to investigating both the mechanistic and the structural characteristic of DCS 

(104-110 , 114). To provide a benchmark for our mutagenesis and cloning studies, 

some basic experiments were repeated to characterize DCS from Gossypium  

arboreum  (tree cotton).

3.1.1 Purification o f W T-D C S

A cDNA o f W T-DCS (Gossypium arboreum ) was previously subcloned into the 

expression vector pET21d by Dr. S. Taylor. E. coli BL21(DE3) cells transformed with 

the resulting plasmid were used for protein production. After cell lysis, the protein 

was isolated from the insoluble fraction and refolded using the base extraction 

protocol (Section 2.7.3) (Figure 3.1).

1 2 3 4 5 6 Pronin
marker
116.0 k

66.2 k

45.0 k

35.0 k

25.0 k 

18.4 k

Figure 3.1: 13% SDS-PAGE analysis o f  DCS purification from BL21(DE3) cells. Lane 1: 
supernatant solution after sonication and centrifugation. Lane 2: pellet after sonication and 
centrifugation. Lane 3: protein markers. Lane 4: supernatant solution after base extraction and 
centrifugation. Lane 5: pellet after base extraction and centrifugation. Lane 6: DCS fractions 
after concentration by Amicon.

The refolded protein mixture was loaded onto a DEAE column and a 0-1 M NaCl 

gradient was applied to elute the bound proteins. Two peaks could be identified from
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the FPL chromatogram (Figure 3.2A). Based on the SDS-PAGE analysis of the 

purified protein, the first peak contained the majority of the protein with the correct 

molecular weight representing DCS (Figure 3.2B). The fractions that contained pure 

protein were pooled and dialyzed against 4 L dialysis buffer overnight. The dialysate 

was concentrated to approximately 5 ml using an Amicon™ ultrafiltration apparatus 

(Figure 3.1).

1000

300 - - 750

- 500

100
- 250

400

116.0 k 
66.2 k
45.0 k
35.0 k

Figure 3.2: (A) Chromatogram for DEAE purification o f wild-type DCS.
(B) 13% SDS-PAGE analysis o f the purified protein. Lane 1 to 6: eluent 
fractions from the first peak. Lane 7 and 8: eluent fractions from the second 
peak. Lane M: protein marker.

3.1.2 Structural characterisation of WT-DCS by CD spectroscopy

The studies of the crystal structure of WT-DCS revealed an overall a-helical fold 

(114) and this was confirmed by the circular dichroism spectrum of the protein with 

two minima at 208 and 222 nm (Figure 3.3). The a-helicity was calculated to be 44% 

at 20 °C using K2d software (753).
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Figure 3.3: CD spectrum o f  DCS at 20 °C in potassium phosphate buffer (10 mM, pH  7).

3.1.3 Analysis of the hexane extractable products and kinetic studies

In agreement with a previous study (59), incubation o f purified DCS with FDP in the 

presence o f  cofactor M g2+ gave only the bicyclic compound S-cadinene (Figure 3.4). 

The identity o f the product was confirmed by comparing the mass spectrum with the 

Wiley database available on the mass spectrometer software (154).
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Figure 3.4: (A) GC trace fo r  hexane-extractable products following incubation o f  10 pM  
wild-type DCS with 1 mM  FDP in the presence o f  5 mM  Mg2\  (B) El-mass spectrum o f  
5-cadinene peak.
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Most of the compounds formed by sesquiterpene synthases from FDP are 

hydrophobic. Saturation of these compounds in the reaction buffer will reduce the rate 

of release of newly formed products from the active site. To determine the optimal 

reaction time, incubations were carried out using 0.2 pM wild-type enzyme with 5 

|xM [1-3H]FDP (0.1 Ci/mmol) in 20 mM Tris, 5 mM Mg2+ and 1 mM DTT at pH 7.5 

for variable amounts of time (Figure 3.5). A reaction time of 20 min was chosen from 

the initial linear region.

1 2 0 0 0

8000

6000

4000

2000

0 10 30 40 50 6020
Time / min

Figure 3.5: Plot o f radioactivity level in hexane-extracted 
products formed by 0.2 pM  wild-type DCS versus reaction 
time.

Some sesquiterpene synthases aggregate at high concentrations. This situation has 

been shown to lower the activity of the enzymes, as exemplified by studies with 

aristolochene synthase (95). In order to find the optimal enzyme concentration for 

measuring the kinetic parameters of DCS, the radioactivity level in the products was 

determined at variable enzyme concentrations. A concentration of 0.26 pM was found 

as the optimal concentration from the initial linear region (Figure 3.6).
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Figure 3.6: Plot o f radioactivity level in products formed in 20 min 
by wild-type DCS versus enzyme concentration.

Kinetic assays were subsequently carried out by incubating 0.26 pM WT-DCS with 

variable concentrations of [1-3H]FDP (from 1 to 40 pM) (Figure 3.7). Km and vmax 

values for each individual run were calculated using the program SigmaPlot 10 by 

fitting to the Michaelis-Menten equation, v = (v™* [S])/(KM + [S]).

20000

15000 ■

o
10000

o 5000

504020 30100
[FPP] / pM

Figure 3.7: Michaelis-Menten plot for o f wild-type DCS, incubation of 
0.26 pM  enzyme with different concentrations o f [1-HJFDP in the 
presence o f 5 mMMg2+.
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Based on five individual kinetic runs, the KM value was calculated to be 9.82 ± 0.33 

piM and the Âat value 0.0155 ± 0.0005 s'1 (based on the equation, kcat = 

vmax/(AxTx[E]), (section 2.8.1.2)). Both kc&t and Km value are comparable to the 

published data (7 pM for KM and 0.039 s’1 for kc&t) (100).

3.2 Mutagenesis studies of DCS

3.2.1 Introduction

Promiscuous enzyme activities are believed to have divergently evolved to acquire 

higher specificity and activity (755). This process is usually carried out by a small 

number of amino acid substitutions (156). Some studies have reported the importance 

of contributions from residues within and surrounding the active site (84, 157-159). 

For example, Deligeorgopoulou et al. observed that a single amino acid substitution 

within the active site of aristolochene synthase was sufficient to change the product 

spcificity more towards the acyclic sesquiterpene (7s)-P-famesene (84). Active site 

saturation mutagenesis of y-humulene synthase, a promiscuous sesquiterpene synthase 

generating more than 50 products, created mutants that generated alternative 

predominant products by substitution of only three to five active site residues at a time 

(155).

Recently, Greenhagen et al. accomplished a systematic interconversion of Nicotiana 

tabacum 5 -epi-aristolochene synthase (TEAS) and Hyoscyamus muticus 

premnaspirodiene synthase (HPS) activities, which established a minimal set of 

residues responsible for the divergent biosynthetic properties in these two enzymes 

(160). Molecular comparisons of TEAS and HPS, two plant sesquiterpene synthases 

that share 72% amino acid identity and similar enzymatic mechanism (Scheme 3.1), 

have shown to be useful in identifying structural elements for determining product 

specificity (161).
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FDP (5) eudesmyl cation (72)

TEAS

H \

epi-aristolochene (70)
H

premnaspirodiene (111)

Scheme 3.1: Proposed catalytic mechanisms for TEAS and HPS via the common eudesmyl 
cation as intermediate.

To have a more systematic investigation of identifying functional residues, a contact 

mapping strategy was developed by using three-dimensional coordinates of TEAS 

complexed with an unreactive FDP analogue, famesylhydroxy-phosphonate (FHP). 

This strategy created concentric tiers of amino acid residues that have contact with 

each carbon atom of FHP (Figure 3.8). The first tier of the active site of TEAS was 

defined as the residues within van der Waals radii (3.5 A) of FHP and ten residues 

were identified in this tier. The second tier was constructed by the next 18-residues 

shell of contact. A three-dimensional model of HPS was created based on the TEAS 

template structure. By comparing the amino acid composition of both enzymes, the 

first tier residues of TEAS and HPS are identical, while only 4 different residues were 

spotted in the second tier. Experiments by mutating these residues of TEAS to the 

corresponding ones of HPS resulted in a growth of premnaspirodiene production, but 

not a full transmutation of activity. In this case, another five residues differing 

between TEAS and HPS within 12.5 A of the active site center that may have 

potential to contribute to the reaction were targeted for further analysis. Sequential 

mutagenesis at these five positions on the previously obtained quadruple mutant

9 8



showed a gradual growth of premnaspirodiene production. The mutant with all nine 

amino acids mutated catalyses the formation of 75% premnaspirodiene and the 

catalytic efficiency of this mutant is comparable to the wild type HPS. Since all of the 

sesquiterpene synthases share the same class I terpenoid fold, this successful 

interconversion could serve as a model for sesquiterpene synthases to identify amino 

acids within and surrounding the active site that make direct and indirect contributions 

to catalysis.

438

7 a

V372T402

Y406

/  
S436

V516

L V291
A274

Figure 3.8: Identity and spatial relationships o f residues that 
distinguish TEAS and HPS activitys. FHP and selected residues are 
shown as sticks.

The aim of our mutagenesis work was to convert DCS to germacrene C synthase 

(GCS) by analogy. The amino acid sequence of DCS (from Gossypium arboretum) 

shows 68% similarity and 50% identity with that of GCS (from Lycopersicon 

esculentum), which is the closest homologue of DCS (59). Thus, GCS would be the 

most suitable target to perform the transmutation of activity from DCS and hence to 

identify structural elements underlying the evolution of product selectivity.

A homology model of DCS based on the crystal structure of epi-aristolochene 

synthase (PDB 5EAT) was created using the SWISS-MODEL automated homology 

modelling server. The mutagenesis studies mainly relied on this model because the
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crystal structure of DCS was solved two years after this work had been started {114). 

The tertiary structure alignment between the homology model and the crystal 

structure reveals very little difference in the overall conformation (Figure 3.9), 

demonstrating that the structural rationale behind all of the mutagenesis studies 

performed here was robust.

Figure 3.9: Cartoon representation of the tertiary structure 
alignment between the homology model generated for this work 
(coloured yellow) and the x-ray crystal structure o f DCS (coloured 
green) (PDB 3G4F{114)).

The substrate FDP was docked into the active site by the program FlexX and the 

residues within and surrounding the active site of DCS were defined here as the ones 

that in the first tier {i.e. within van der Waals radii (about 3.5 A) of the substrate 

carbon atoms) and second tier {i.e. within van der Waals radii of the first tier residues) 

of the active site sequence alignment to identify the corresponding residues was 

carried out using ClustalX with the default parameters {162). The proposed active site 

residues of DCS were then compared with corresponding ones of GCS and 7 different 

residues between DCS and GCS were identified, which potentially have the ability to 

affect the enzymatic reaction (Table 3.1). The contribution of these residues to the 

proposed active site was later confirmed by the crystal structure of DCS {114); the
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tertiary structure alignment revealed that these residues were positioned in a similar 

fashion in both homology model and crystal structure (Figure 3.10).

Table 3.1: Comparison o f wild-type DCS active site contact residues with corresponding 
residues from GCS. Residue differences between DCS and GCS are shown as bold characters.

X 2nd 1st 2nd 2nd 1st 1st 1st 2ncl 2nd 2nd
\ tier tier tier tier tier tier tier tier tier tier

DCS F27 R270 R272 G276 W279 V283 1300 S304 D308 L378

GCS F15 R263 R265 C269 W272 V276 L293 S297 D301 L371

X 2nd 1st 2nd nd 1st 1st 2nd 2nd 1st 2 nd
x ^ tier tier tier tier tier tier tier tier tier tier

DCS Y382 E385 T407 C408 Y410 L413 S443 1446 R448 E455

GCS Y275 E378 S401 A402 Y404 1407 S437 1440 R442 G449

1st tier 2nd tier 2nd tier 1st tier 1st tier 1st tier 1st tier

DCS L519 V522 M523 L526 Y527 D531 Y533

GCS L513 V516 A517 L520 Y521 D525 Y527

E455

C408,

'  >
M523

h f
i j 407

BOO 
-

*  f
L413 G276

Figure 3.10: Cartoon representation for the comparison o f active site contact residues (shown 
as sticks) between the homology model (coloured yellow) and the x-ray crystal structure 
(coloured green) (PDB 3G4F (714)).
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Substitution of DCS active site residues to the corresponding residues in GCS was 

performed to identify the essential set of residues responsible for divergent 

biosynthetic properties in DCS.

3.2.2 Expression and purification of active site mutants

Active site mutations were constructed by site-directed mutagenesis. The native and 

the substituted codons for each mutation are listed in Table 3.2. The presence of the 

mutations was verified by DNA sequencing.

Table 3.2: Comparison of native codons from wild-type DCS with substituted codons for the 
active site contact residues.

G276C BOOL T407S C408A L413I E455G M523A

Native
codon

GGT ATA ACT TGT CTT GAA ATG

Substituted
codon

TGT AAT AGT GCT ATT GGA GCG

Stepwise mutagenesis of the active site of DCS started from the first tier residues. 

L413 of DCS, located deep in the middle of the active site, was mutated to lie. The 

constructed single mutant DCS-L413I (Ml) was subsequently modified by addition of 

another mutation BOOL to form a double mutant DCS-D00L/L413I (M2). BOO sits 

close to L413 in the active pocket and both residues point toward the centre of the 

active site. Ml and M2 were produced and purified by the same method as the 

wild-type DCS (Figure 3.11). Typically, 12 mg and 35 mg of purified Ml and M2 

were obtained per litre of culture respectively.
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Figure 3.11: Chromatograms for DEAE purification o f Ml (A) and M2 (C) and 13% 
SDS-PAGE analyses o f each purification (B) and (D). Lane 1-6: eluent fractions for Ml. Lane 
7-14: eluent fractions for M2. Lane M: protein marker.

Mutational replacement of the second tier residues of DCS to the corresponding 

residues of GCS was carried out by sequential addition of the other five mutations 

onto the double mutant M2. First, E455 of DCS was mutated to the corresponding Gly 

residue of GCS to form a triple mutant DCS-I300L/L413I/E455G (M3). Next, the 

mutant DCS-I300L/T407S/C408A/L413I/E455G (M5) was constructed by combining 

another two mutations T407S and C408A with M3. As these two residues are adjacent 

to one another, this mutagenesis was performed in a single step and no mutant M4 

was generated. E455, T407 and C408 are located near the entrance of the active site. 

In addition to the contribution of forming active site contour, these residues may also 

involve in stabilizing the magnesium ion and diphosphate moiety. The mutants M3 

and M5 were produced and purified following the same method as wild-type DCS 

(Figure 3.12).
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Figure 3.12: Chromatograms for DEAE purification o f M3 (A) and M5 (C) and 13% 
SDS-PAGE analyses o f each purification (B) and (D). Lane 1-8: eluent fractions for M3. Lane 
9-16: eluent fractions for M5. Lane M: protein marker.

Typically, 25 mg and 30 mg of purified M3 and M5 were obtained from per litre of 

culture respectively. The mutant M5 was subsequently modified by addition with 

another mutation M523A to form a new variant 

DCS-I300L/T407S/C408A/L413I/E455G/M523A (M6). The last mutant

DCS-G276C/I300L/T407S/C408A/L413I/E455G/M523A (M7) was prepared by 

introducing the mutation G276C into the mutant M6. The mutants M6 and M7 were 

produced and purified based on the same method as wild-type DCS (Figure 3.13). 

Typically, 15 mg and 10 mg of purified M6 and M7 were obtained from per litre of 

culture respectively.
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Figure 3.13: Chromatograms for DEAE purification o f M6 (A) and M7 (C) and 13% 
SDS-PAGE analyses o f each purification (B) and (D). Lane 1-7: eluent fractions for M6. Lane 
8-15: eluent fractions for M7. Lane M: protein marker.

3.2.3 Analysis of the sesquiterpene products and kinetic studies

All the in vitro reactions were performed by incubating 10 jiM enzyme and 1 mM 

FDP in 20 mM Tris buffer containing 5 mM Mg2+ and 1 mM DTT at pH 7.5. All the 

kinetic assays were carried out using radiolabelled [1-3H]FDP and the same Tris 

buffer system as for in vitro reactions. The incubation time and the enzyme 

concentration for the kinetic assays were optimized before the actual runs (See section

2.8.1.2 for details).

The mutagenesis studies related to the active site of DCS revealed a totally different 

pattern of the function of active site residues from those previously reported 

mutagenesis studies of other sesquiterpene synthases (e.g. AS, TEAS and y-humulene 

synthase). It has been shown that active site modification by substitutions of active 

site residues of terpene synthases had a significant influence on the product profile 

and/or catalytic efficiency (84, 155,157-159). However, all of the mutants within and 

surrounding the active site of DCS gave 6-cadinene as the exclusive sesquiterpene 

product (Figure 3.14).
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Figure 3.14: Product profiles for incubation o f FDP with M l (A), M2 (B), M3 (C), M5 (D), 
M6 (E) and M7 (F).

In addition to the unchanged product outcome, the mutants that contain modification(s) 

in the first tier of the active site even showed similar kinetic parameters to the 

wild-type enzyme. Kinetic assays revealed a ^at value of 0.0203 ± 0.0009 s'1 and a 

Km value of 13.34 ± 2.56 pM for the mutant Ml (Figure 3.15). The catalytic 

efficiency (k^JKu) of this mutant (1.52 ± 0.31 s'1 mM’1) was very similar to that of 

the wild-type DCS (1.58 ± 0.07 s'1 mM'1).
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Figure 3.15: Kinetic analysis o f  M l. (A) Time course (0.26 pM enzyme, 5 pM FDP); (B) 
Plot o f radioactivity level against enzyme concentration (5 pM FDP, 20 min incubation time); 
(C) Michaelis-Menten plot (incubation o f 0.26 pM enzyme with radiolabelled substrate for 20 
min at 22 °C).

The double mutant M2 was found to be an even more efficient enzyme. A k^i value of 

0.0223 ± 0.0037 s '1 and a Km value of 2.89 ± 0.94 pM were obtained from the assay 

(Figure 3.16). The decrease of the Km value leads to a roughly 5-fold improvement of 

catalytic efficiency comparing to the wild-type DCS.
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Figure 3.16: Kinetic analysis o f  M2. (A) Time course (0.062 pM enzyme, 5 pM FDP); (B) 
Plot o f radioactivity level against enzyme concentration (5 pM FDP, 10 min incubation time); 
(C) Michaelis-Menten plot (incubation o f 0.062 pM enzyme with radiolabelled substrate for 
10 min at 22 °C).

Generally, the mutants containing mutations in both the first and the second tier of the 

active site experienced a reduction in catalytic activity. The t value of M3 was 

determined to be (0.04 ± 0.012) x 10'3 s'1, which was reduced by about 400 fold 

compared to the wild-type enzyme. The Km value was increased to 4.65 ± 1.63 pM 

(Figure 3.17). The catalytic efficiency was therefore reduced by about 200 fold.
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Figure 3.17: Kinetic analysis o f  M3. (A) Time course (1 pM enzyme, 5 pM FDP); (B) Plot of 
radioactivity level against enzyme concentration (5 pM FDP, 20 min incubation time); (C) 
Michaelis-Menten plot (incubation o f 1 pM enzyme with radiolabelled substrate for 20 min at 
22 °C).

The &cat value of M5 was found to be (0.009 ± 0.0008) x 10'3 s '1 which represented the 

lowest catalytic activity among all the mutants. However, this mutant showed a much 

stronger substrate binding affinity compared to wild-type DCS. The Ku value was 

determined to be 0.84 ± 0.04 pM, which was roughly 12 times smaller than that of 

wild-type DCS (Figure 3.18). Overall, the catalytic efficiency was reduced by about 

140 fold compared to the wild-type enzyme.
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Figure 3.18: Kinetic analysis o/M 5. (A) Time course (2 pM enzyme, 5 pM FDP); (B) Plot of 
radioactivity level against enzyme concentration (5 pM FDP, 60 min incubation time); (C) 
Michaelis-Menten plot (incubation of 2 pM enzyme with radiolabelled substrate for 60 min at 
22 °C).

The &cat value of M6 was found to be (0.035 ± 0.0003) x 10'3 s'1 and the Km value was 

1.86 ± 0.31 pM (Figure 3.19). The catalytic efficiency of this mutant (0.019 ± 0.003 

s'1 mM'1) is comparable to that of the mutants M3 (0.009 ± 0.004 s'1 mM'1) and M5 

(0.011 ±0.004) s '1 mM"1).
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Figure 3.19: Kinetic analysis ofM 6. (A) Time course (2 pM enzyme, 5 pM FDP); (B) Plot of 
radioactivity level against enzyme concentration (5 pM FDP, 60 min incubation time); (C) 
Michaelis-Menten plot (incubation o f 2 pM enzyme with radiolabelled substrate for 60 min at 
22 °C).

The mutant M7, containing all seven chosen mutations, showed a &cat value of (0.030 

± 0.006) x 10'3 s '1 and a Km value of 0.52 ± 0.07 pM (Figure 3.20). Compared to the 

wild-type enzyme, the catalytic efficiency of this mutant is only reduced 27 fold.
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Figure 3.20: Kinetic analysis ofM 7. (A) Time course (1 pM enzyme, 5 pM FDP); (B) Plot of 
radioactivity level against enzyme concentration (5 pM FDP, 60 min incubation time); (C) 
Michaelis-Menten plot (incubation o f 1 pM enzyme with radiolabelled substrate for 60 min at 
22 °C).

The residues identified from the proposed active site of DCS were based on the 

crystal structure of epi-aristolochene synthase. However, modification of the active 

site surface showed no influence on the product specificity, leading to a speculation 

that the enzymatic reaction catalysed by DCS may not take place in the proposed 

active site. The recently solved crystal structure of DCS (114) provides some 

indications to support this assumption. An obviously different orientation of the 

famesyl chain moiety can be identified by comparing the binding conformations of 

the substrate analogue 2F-FDP in DCS and famesyl hydroxyl phosphonate (FHP) in
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epi-aristolochene synthase (91,114) (Figure 3.21).

Figure 3.21: Cartoon representation for the comparison of 2F-FDP (shown as magenta sticks) 
bound in the crystal structure of DCS (coloured green) (PDB 3G4F, Chain A; (114)) and 
famesyl hydroxyl phosphonate (shown as orange sticks) bound in the crystal structure of 5-epi 
aristolochene synthase (coloured cyan) (PDB 5EAT; (91)). Tertiary structures of DCS and 
5-epi aristolochene synthase were aligned using the Pymol program.

For epi-aristolochene synthase, the famesyl chain of FHP is docked deeply into the 

active site pocket, adopting a conformation conductive to the cyclization between Cl 

and CIO. This kind of productive substrate binding fashion can be found in most of 

the crystal structures that have been solved including monoterpene, sesquiterpene and 

diterpene synthases (57, 130). However, the famesyl chain of the substrate analogue 

2F-FDP was observed binding more towards the entrance of the active site in the 

crystal structure of DCS. The actual initial binding conformation of substrate FDP 

may be different from the observed conformation for 2F-FDP because the distal 

double bond of 2F-FDP is not in close proximity to Cl, therefore precluding the 

proposed Cl-CIO ring closure. Nevertheless, it suggests that the native substrate FDP 

may not be docked deeply into the active site as observed for 5-epi aristolochene 

synthase.

The kinetic data (summarized in Table 3.3) also provide some support for this
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argument. According to the crystal structure of DCS, residues 1300 and L413 are 

found in the middle of the active site and the hydrophobic side chains are positioned 

toward the centre of the active site cavity. They are proposed to be in a close 

proximity to the substrate and contribute directly to the active site surface. However, 

the catalytic activity of both Ml and M2 were comparable to wild-type DCS, 

suggesting a considerable distance between the substrate and these residues.

Table 3.3: Summary o f kinetic data for the active site mutants o f DCS.

Protein Jfcc/lOr3 *-1 KmI pM kcat/Km / s'1 mRf1

WT-DCS 15.5 ± 0 .5 9.82 ± 0.33 1.58 ±0.07

M l (DCS-L413I) 20.3 ± 0.9 13.34 ± 2 .56 1.52 ±0.31

M2 (M1-I300L) 22.3 ± 3 .7 2.89 ± 0.94 7.7 ±2 .8

M3 (M2-E455G) 0.04 ±0.012 4.65 ±1.63 0.009±0.004

M5 (M3-T407S/C408A) 0.009 ± 0.0008 0.84 ± 0.04 0.011±0.004

M6 (M5-M523A) 0.035 ± 0.0003 1.86 ±0.31 0.019±0.003

M7 (M6-G276C) 0.03 ± 0.006 0.52 ± 0.07 0.058±0.014

E455 of DCS was defined to be outside of active site. The triple mutant M3, 

constructed by introducing mutation E455G into the double mutant M2, leads to a 

huge catalytic activity reduction. This is because the E455 is part of the second 

magnesium binding motif. This mutation could directly compromise the magnesium 

ion binding affinity, which may also lead to the mispositioning of the famesyl chain 

and thus affect catalytic activity. The role of E455 related to the magnesium ion 

binding has been explained in the crystal study of DCS and the E455A single mutant 

also shows a significant catalytic activity reduction (114).

T407 and C408 of DCS are two residues that also form unique structures in the crystal 

structure of DCS. T407 makes a water-mediated hydrogen bond with the diphosphate 

moiety, which would further stabilize the diphosphate group upon binding in the
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active site (114). C408 and C477 were observed to form a disulfide linkage in the 

crystal structure of DCS between helices G and H (114). The function of this disulfide 

linkage has not been identified, but this bond could possibly stabilize the two helices 

and so help to form a well-defined active site contour. These two structures were both 

compromised in the mutant M5. The changes did not allow any new sesquiterpene 

hydrocarbons to be formed. In addition, it led to a further four-fold reduction in 

catalytic activity compared to M3.

G276 and M523 of DCS are found in the middle of the active site pocket. Similar to 

the function of residues 1300 and L413, these two residues may also contribute to the 

overall active site shape and volume. The catalytic activities of mutants M6 and M7 

were better than that of M5 and this was most likely because the modified active site 

could serve as a better template to direct substrate binding into a suitable 

conformation for catalysis. On the other hand, the catalytic activities of mutants M6 

and M7 were similar to that of M3, suggesting the activity loss caused by disturbance 

of magnesium binding area cannot be re-established by manipulating the structure of 

the active site contour.

Generally, the major catalytic activity loss among the mutants was caused by the 

mutation E455G. Other modifications to the proposed active site did not make an 

obvious difference in terms of catalytic activity. In addition, the KM values were 

found to be smaller in most of the mutants compared to the wild-type DCS. This 

suggests the overall structure change allowed the mutants to have better binding 

affinity towards substrate FDP.

Similar results have been reported by manipulating active site residues of

amorphadiene synthase (163). In this study, the author compared the active site amino

acid composition between amorphadiene synthase and TEAS. The only different

residue in the active site pocket of the two enzymes was F525 in amorphadiene

synthase that corresponds to Y527 in TEAS. In addition, the modelling study revealed
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a different positioning of the W271 of amorphadiene synthase in comparison to the 

corresponding W273 of TEAS and this residue may be essential for positioning of the 

substrate FDP in the active site of amorphadiene synthase. The different conformation 

of this tryptophane residue can be caused by the surrounding structures, including 

residues F514 and Q518 from amorphadiene synthase. Mutagenesis studies toward 

F514, Q518 and F525 of amorphadiene synthase were carried out, but the 

substitutions replacing the original amino acid for the corresponding amino acid from 

TEAS did not lead to any new sesquiterpene product. Only reductions or complete 

losses of activities were observed among those mutants. These results are in 

agreement with our findings, suggesting the differences in product specificity of 

amorphadiene synthase and DCS are not only determined by the core of active sites. 

To find out the essential component that controls the product specificity of DCS, four 

chimeras were designed and analysed in the following experiments.

3.3 Domain-swapping studies

Generally, the functional domain of a terpenoid synthase could provide a template 

that binds flexible isoprenoid substrate(s) with proper orientation and conformation, 

especially for high-fidelity enzymes. Thus, the closed active site cavity could enforce 

the generation of reactive carbocations and specific intermolecular or intramolecular 

carbon-carbon bond forming reactions.

The proposed active site for DCS is in the C-terminal domain. However, mutagenesis 

studies by sequential substitution of the active site surface showed an unchanged 

product profile for all the mutants (Section 3.2.3). These results may lead to two 

hypotheses. One possibility is that the enzymatic reaction catalysed by DCS does not 

take place in the proposed active site. In this case, the mutations that were introduced 

into the enzyme may only bring some minor influence to the conformation of the real 

reaction cavity rather than affecting the substrate or intermediates directly. This could 

explain the observed activity loss from mutants. The other possibility is that the
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product specificity of DCS is determined by an unidentified structure rather than the 

proposed active site contour if the C-terminal domain is the catalytically active 

domain. Domain-swapping studies were therefore performed to clarify the functional 

domain of DCS and the residues or subdomain responsible for determining the 

product specificity.

3.3.1 N-Terminal domain hybrid

The first speculation that arose from the unexpected mutagenesis results was that the 

N-terminal domain of DCS might catalyse the enzymatic reaction. It has been shown 

that class I and class II terpenoid synthase folds can be combined in multidomain 

terpenoid synthases to form larger active site cavities or even bifunctional enzymes 

(7). For example, squalene-hopene synthase is formed by joining two class II domains 

together in ‘face-to-face’ fashion, which form a large active site pocket to 

accommodate the C30 substrate (141). The plant sesquiterpene synthase 5-epi 

aristolochene synthase contains a catalytically active class I terpenoid synthase 

domain and an inactive class II terpenoid synthase domain (91), while the plant 

diterpene synthase abietadiene synthase, which is structurally homologous to 5-epi 

aristolochene synthase and taxadiene synthase, is constructed with both domains 

showing catalytic activity and catalysing tandem cyclization reactions (57).

To characterize the function of the N-terminal domain of DCS, a hybrid (hybrid 1) 

was prepared by substitution of the C-terminal domain of DCS with that of the fungal 

sesquiterpene synthase aristolochene synthase (from Penicillium roqueforti) (Figure 

3.22). Aristolochene synthase is active as a single domain, which is homologous to 

the C-terminal domain of DCS (164). Therefore, if the N-terminal domain of DCS is 

catalytically active, the product profile of this hybrid should give both 6-cadinene and 

aristolochene as enzymatic products.
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synthase
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Figure 3.22: Schematic diagram o f the N-terminal domain-swapping test (A) and cartoon 
representation o f homology model o f d-cadinene synthase (B), crystal structure o f 
aristolochene synthase (C) and homology model o f hybridl (D). Line drawings depict 
composite diagrams for wild-type DCS (the insert of DCS is coloured white and the vector 
part is coloured gray), wild-type aristolochene synthase (coloured black) and hybrid 1 genes. 
The N-terminal domain of DCS is coloured cyan and the C-terminal is green. The structure of 
AS is coloured orange.

The construct of hybrid 1 was prepared by replacing the native GGT codon of G276 

with TTC by site-directed mutagenesis. Together with the codon GAA that encodes 

amino acid E275, this mutation creates an EcoRl restriction site. Another Sacl 

restriction site located after the stop codon was also employed to form the hybrid 

construct. The gene encoding aristolochene synthase was amplified from the genomic 

DNA via PCR using short complementary oligonucleotide primers designed to flank 

the gene of interest and provide overhanging EcoRl and Sacl restriction sites at the 5’
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and 3’ end respectively. The restriction sites were introduced immediately prior to the 

start codon and immediately after the stop codon (Figure 3.23).

1 2 M 3 4 5 6 M

8.0 kb---
6.0 kb— |

1.0 kb--

Figure 3.23: 1% Agarose gel analyses o f  the hybrid 1 cDNA construct preparation. Lane 1 
and 6: Plasmid encoding the mutated gene encoding DCS after double digestion by both 
iscoRI and Sacl restriction enzymes. Lane 2 and 5: The mutated insert gene after digestion by 
EcoRl restriction enzyme. Lane 3: Aristolochene synthase 3’ PCR product. Lane 4: Gene 
encoding hybrid 1 after digestion by iscoRI restriction enzyme. Lane M: 1 kb DNA ladder.

The gene fragment that encodes the C-terminal domain o f DCS was removed from the 

mutated plasm id by a double digestion with iscoRI and Sacl restriction enzymes. The 

opened plasmid was then ligated with the newly formed DNA fragment encoding 

aristolochene synthase, creating a plasmid containing the gene that encodes hybrid 1. 

Formation o f the constructed plasmid was checked by a single digestion with iscoRI 

(Figure 3.23) and the correct construct was confirmed by DNA sequencing.

Hybrid 1 was produced and purified in the same manner as wild-type DCS (Figure 

3.24), typically yielding 20 mg o f purified enzyme per litre o f culture. The in vitro 

assay was carried out by incubating 10 pM of purified enzyme with 1 mM of FDP in 

the same buffer system used for wild-type DCS. GC-MS analysis of the hexane 

extractable products showed a nearly identical product profile to wild-type 

aristolochene synthase and no S-cadinene was observed (Figure 3.25).
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Figure 3.24: (A) Chromatogram for DEAE purification of hybrid 1. (B) 13% 
SDS-PAGE analysis. Lane 1-7: eluent fractions. Lane M: protein marker.
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Figure 3.25: Product profiles for incubation of FDP with wild-type aristolochene synthase (A) 
and hybrid 1 (B).

The study of hybrid 1 showed that the N-terminal domain of DCS is unlikely to be 

responsible for the conversion of FDP to 6-cadinene. The C-terminal domain of DCS 

must therefore be the catalytically active domain. In this case, it is very likely that the 

previously proposed active site contour is not the key component for determining the 

product specificity of DCS. Further experiments were therefore performed to aid 

identification of the essential component that controls the specific formation of
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S-cadinene by DCS.

3.3.2 C-Terminal domain hybrid

Comparison of a number of fungal and plant genes encoding terpene synthases reveals 

a nearly identical intron/exon organization of genomic DNA for all plant 

sesquiterpene synthases, while very little similarity is observed between DNA 

sequences of the fungal and plant sesquiterpene synthases (145,164). One implication 

of the conserved exon organization observed among plant sesquiterpene synthase 

genes is that these conserved exon regions may correspond to functional subdomains 

that may determine the product specificity. The relationship between functional 

subdomains and product specificities was demonstrated by swapping regions 

approximating exons between a 5-epi aristolochene synthase gene and a 

vetispiradiene synthase gene (161). The results from characterization of the resulting 

hybrids showed that exon 4 of 5-epi aristolochene synthase gene conferred specificity 

for the production of 5-epi aristolochene, while exon 6 of vetispiradiene synthase 

gene conferred specificity for the production of vetispiadiene.

Based on the domain swapping studies of 5-epi aristolochene synthase and 

vetispiradiene synthase, a similar experiment was prepared for DCS to identify the 

functional domain responsible for product specificity. The gene encoding the chimeric 

protein (hybrid 2) was designed by substituting the gene regions of DCS that 

approximate exons 5, 6 and 7 with the corresponding gene regions for GCS (Figure

3.26).

766 bp 1126 bp 1375 bp 1665 bp1 bp

5’

NH,+

E xon  1 ,2  & 3 4 5 6 7

985 bp 
(329 aa)

-  3’

coo-

Figure 3.26: Genomic organization o f DCS gene (145).
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The gene of hybrid 2 was constructed using two native Sacl restriction sites (Figure

3.26) identified in the plasmid containing the gene encoding DCS; one Sacl restriction 

site sequence encodes amino acids E318 and L319 and the other Sacl restriction site is 

located after the stop codon. A synthetic DNA fragment was designed to encode the 

amino acid sequence from E311 to the stop codon of GCS, with Sacl restriction sites 

at both the 5’ and 3’ end (Figure 3.27).

DCS 5 ’-
N H 3"

CM

709 bp 
(237 aa)

Sacl 
 I____

I
952 bp  
(318 aa)

1665 bp 
(554 aa)

Sacl

f d -  3 ’
COO

Sacl Sacl
Synthetic gene fragment
encoding part o f  GCS I

NH3+ 729 bp c o °
(238 aa)

Stop codon
Hybrid2 v - .  - .........   — .— »— 3’

^  1671 ip coo
(556 aa)

Stop codon

Hybrid3 v - i    -....— ............... | ( j ■ -  3 ’
N H 3+  , COOT  

990 bp 
(329 aa)

F ig u re  3 .2 7 : Schematic diagram o f  the C-terminal domain-swapping tests. L ine drawings 

depict co m p o site  d iagram s for w ild -ty p e  D C S  (co lou red  w h ite), the synthetic gen e fragm ent 

en cod in g  part o f  G C S  (sh o w n  as b lack  arrow), hybrid 2  and hybrid  3 gen es.

The plasmid containing the gene encoding DCS was digested with Sacl restriction 

enzyme, dephosphorylated with Calf Intestinal Alkaline Phosphatase (CIP) and the 

longer DNA fragment was purified by agarose gel electrophoresis (Figure 3.28). The 

longer opened plasmid was then ligated with the synthetic DNA fragment encoding 

the 3’-terminal portion of the GCS gene. Formation of the constructed plasmids were 

checked by a single digestion with Clal restriction enzyme, which cuts the resulting 

plasmid only once (Figure 3.28).
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Figure 3.28: 1% Agarose gel analyses o f  the hybrid2 and hybrid3 cDNA construct 
preparation. Lane 1: The plasmid containing the gene encoding DCS after digestion by Sacl 
restriction enzyme. Lane 2 and 3: The ligation products after digestion by Clal restriction 
enzyme. Lane M: 1 kb DNA ladder.

Since both 5 ’ and 3 ’ restriction sites employed the same Sacl site, the synthetic DNA 

fragment can be ligated into the open insert gene in two different manners (Figure

3.27). The desired gene construct for hybrid 2 was confirmed by DNA sequencing. 

The other construct was also identified, in which the synthetic DNA fragment was 

ligated into the insert vector in a reverse pattern. The gene sequence o f this chimeric 

protein (hybrid 3) contains a stop codon after that encoding N329 amino acids, 

truncating the protein at that position.

Hybrid 2 was produced and purified by the same method as wild-type DCS (Figure

3.29). Typically, 15 mg o f purified protein can be obtained per litre o f culture. The in 

vitro  assay was carried out by incubating 10 pM  purified enzyme with 1 mM FDP in 

the same buffer system used for wild-type DCS. GC-MS analysis o f the hexane 

extractable products revealed 6-cadinene as the sole sesquiterpene product (Figure

3.30).
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Figure 3.29: (A) Chromatogram for DEAE purification of hybrid 2. 
(B) 13% SDS-PAGE analysis. Lane 1-9: eluent fractions. Lane M: 
protein marker.
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Figure 3.30: GC trace representing product profile for incubation o f FDP with hybrid 2.

For the kinetic study of hybrid 2, the reaction time and the enzyme concentration were 

optimized to be 1 hr and 1 pM respectively before the actual run. A &cat value of 

(0.025 ± 0.002) x 10'3 s '1 and a KM value of 0.44 ± 0.04 pM were obtained from the
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kinetic assay (Figure 3.31). In order to get a valid Km value for an enzyme using 

Michaelis-Menten, the enzyme concentration used in the reaction must be much lower 

than the actural KM value (ATm/[E]>10). In this case, the Km value for the hybrid2 was 

approximated.
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Figure 3.31: Kinetic analysis o f  hybrid 2. (A) Time course (1 pM enzyme, 10 pM FDP); (B) 
Plot o f radioactivity level against enzyme concentration (10 pM FDP, 60 min incubation 
time); (C) Michaelis-Menten plot (Incubation o f 1 pM enzyme with radiolabelled substrate 
for 60 min at 22 °C).

In hybrid 2, roughly 2/3 of the functional C-terminal domain structure of DCS has 

been swapped with the corresponding structure of GCS, in which the original second 

magnesium binding motif (D451DXXE455) has been substituted with an unusual 

^450q 454£458 motif The unchanged product profile revealed the protein structure 

encoded by exon 5, 6 and 7 is not related to product specificity. In addition, the 

observed kinetic parameters for hybrid 2 were comparable to the mutants that contain 

mutations in the second magnesium binding motif (Section 3.2.3). Thus, it seems the 

loss of catalytic efficiency of the hybrid 2 could be mainly due to the alteration of the 

second magnesium binding motif rather than the overall structural change.

It has been shown in hybrid 1 that the N-terminal domain of DCS, encoded by exon 1, 

2 and most of exon 3, does not contribute to the product specificity. The result from 

hybrid 2 indicates that amino acids from E318 to L554 of DCS, corresponding to 

exons 5, 6 and 7, do not determine the product specificity either. These results 

strongly suggest that exon 4 of the DCS gene confers specificity for the production of

S-cadinene.
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Hybrid 3 was produced and purified by the same method as wild-type DCS (Figure 

3.32A). The protein with a molecular weight around 38,000 Da was identified by the 

SDS-PAGE analysis (Figure 3.32B). Typically, 15 mg of purified protein can be 

obtained per litre of culture.

Figure 3.32: (A) Chromatogram for DEAE purification o f hybrid 3. (B)
13% SDS-PAGE analysis. Lane 1-9: eluent fractions. Lane M: protein 
marker.

Hybrid 3 can be defined as a truncated mutant of DCS; roughly 2/3 of the C-terminal 

domain has been removed from the original protein structure, resulting in a protein 

that encoded by exons 1 to 4. This mutant was expected to be inactive because the 

truncated active site is very likely exposed to the solvent and unable to protect the 

cationic intermediates. Surprisingly, the in vitro assays of this mutant with FDP 

suggest a different story. In total, eight individual protein productions and 

purifications were performed for hybrid 3. Half of these purifications yielded enzyme 

that showed catalytic activity towards FDP, with 6-cadinene as the only product 

according to GC-MS analysis (Figure 3.33); while half of the time, the hybrid 3 was
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inactive.
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Figure 3.33: Product profiles for incubation o f FDP with hybrid 3.

Hybrid 3 from batches that showed activity toward FDP was employed in the 

subsequent kinetic experiments. An optimised incubation time of 1 hr and an enzyme 

concentration of 1 pM were determined to meet the requirements for 

Michaelis-Menten kinetic assay before the actual run (Figure 3.34). The £cat and Km 

were determined to be (0.073 ± 0.013) x 10'3 s"1 and 0.43 ±0.13 pM respectively. 

Again, since the enzyme concentration value used in this reaction is bigger than the 

calculated Km value, the calculated KM value is only approximated here.
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Figure 3.34: Kinetic analysis o f hybrid 3. (A) Time course (1 pM enzyme, 10 pM FDP); (B) 
Plot o f radioactivity level against enzyme concentration (10 pM FDP, 60 min incubation 
time); (C) Michaelis-Menten plot (Incubation o f 1 pM enzyme with radiolabelled substrate 
for 60 min at 22 °C).
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The approximate Km value was reduced by roughly 20 fold than that of wild-type 

DCS and the &cat value was 3 times greater than that of the hybrid 2, indicating the 

activity observed from hybrid 3 was not due to the contamination either from 

wild-type enzyme or the hybrid 2. The unpredictable catalytic activity of hybrid 3 

may be because of the unstable tertiary structure. The remaining C-terminal domain 

and the N-terminal domain may adjust their orientations to form an enclosed space 

that could catalyze the cyclization from FDP to 6-cadinene. On the other hand, the 

formation of the active conformation of hybrid 3 may not be easily achieved, thus the 

mutant sometimes behaves as an inactive enzyme probably due to the inappropriate 

tertiary structure. In any case, the active form of hybrid 3 provides further evidence to 

support the theory that exon 4 of the DCS gene confers specificity for the production 

of S-cadinene. However, more truncated mutants could be designed to verify this 

result conclusively.

3.4 Mutagenesis o f the first aspartate rich motif

The gene sequence encoding the aspartate rich D307DTYD311 motif was identified in
^  I ^  j

the exon 4 and this motif was proposed to interact with the putative Mg A and Mg c 

ions (57, 145). To further probe the role of this magnesium binding motif, three 

aspartate residues were substituted with alanine respectively.

All the three mutants D307A, D308A and D311A were prepared by substitution of the 

native codon that encodes the relevant Asp residue with a GCG codon of Ala by 

site-directed mutagenesis. These mutants were produced and purified in the same way 

as wild-type DCS (Figure 3.35). Typically, 20 mg of purified protein was obtained per 

litre of culture for each mutant. The in vitro assays followed the standard method in 

that 10 pM of the purified mutant was incubated with 1 mM FDP overnight.

6-Cadinene was identified as the sole hexane extractable product for all three mutants 

by GC-MS analysis (Figure 3.36).
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Figure 3.35: Chromatograms for DEAE purification o f DCS-D307A (A), DCS-D308A (C) and DCS-D311A (E) and 13% SDS-PAGE analyses o f each 
purification (B), (D) and (E). Lane 1-5: eluent fractions for DCS-D307A. Lane 7-12: eluent fractions for DCS-D308A. Lane 14-19: eluent fractions for 
DCS-D311A. Lane 6, 13 and 20: wild-type DCS sample.
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Figure 3.36: Product profiles for incubation o f FDP with DCS-D307A (A), DCS-D308A (B) 
and DCS-D311A (C).

The D307A and D311A mutants were found to be much less active than the wild-type 

DCS but all produced 6-cadinene as the only product. The steady-state kinetic 

parameters for catalysis by DCS-D307A and DCS-D311A could not be measured 

accurately. The rate of radiolabelled 6-cadinene production was so low that it was 

beyond the capacity of the kinetic assays to be measured. The huge catalytic activity 

loss that determined for D307A and D311A substitutions is consistent with the 

observation in the crystal structure that residues D307 and D311 coordinate with 

Mg2+A and Mg2+c {114). The kinetic assay for the other mutant DCS-D308A was 

carried out by Dr. Veronica Gonzalez from our group. A Âat value of 0.012 ± 0.002 s'1 

and a KM value of 43 ± 16 pM were obtained from the kinetic assay {114). The 

unaffected suggests the residue D308 contributes very little to metal ion binding, 

while it may have some influence on the active site contour, as reflected by the 

decreased substrate binding affinity. The crystal structure of DCS also confirmed that 

D308 is not involved in the interactions that chelate the magnesium ions {114).
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3.5 Conclusions

Wild-type DCS from Gossypium arboretum was shown to be constructed with an 

overall a-helical fold by CD spectroscopy and confirmed to be a high-fidelity enzyme 

by producing 6-cadinene as the sole product. The relationship between the product 

specificity and the protein structure was investigated first by mutagenesis studies 

based on the sequence alignment and homology modelling. Seven residues from the 

proposed active site were chosen to be substituted by the corresponding residues of 

GCS and to study a possible enzyme activity interconversion between DCS and GCS 

for this study. However, the product profiles displayed by all the variants were the 

same as WT-DCS, suggesting that the active site contour was not the key component 

for determining the product specificity of DCS.

In addition, the determined kinetic constants for the mutants suggest most of these 

mutations did not make obvious contributions to catalysis. The catalytic activities of 

mutants Ml and M2 were comparable to wild-type DCS. Mutant M3 showed a 

significant catalytic activity reduction of three orders of magnitude compared to 

wild-type DCS. The observed activity loss of M3 was caused by the newly introduced 

mutation E455G. This mutation would greatly compromise the interaction between 

the second magnesium binding motif and the Mg2+B. A further catalytic activity 

reduction was observed in the mutant M5, probably due to the additional mutation 

T407S. This mutation may compromise the potential water-mediated hydrogen bond 

between T407 and the diphosphate moiety. The mutants M6 and M7 contain 

additional modifications in the proposed active site, while the catalytic activities of 

both mutants are comparable to that of M3.

Generally, the mutations were sequentially introduced into the wild-type DCS, but the 

mutations are non-additive in terms of &cat- The major activity loss was caused by 

alteration of the magnesium binding motif rather than amino acid substitution of the
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proposed active site surface. These results suggest that the product specificity of DCS 

is possibly determined by an unidentified structure rather than the immediate active 

site contour.

The possibility that the N-terminal domain of DCS is the major catalytically active 

domain was ruled out by characterising the function of hybrid 1. Hybrid 1 contains 

the C-terminal domain from aristolochene synthase and the N-terminal domain from 

DCS. The product profile of hybrid 1 is identical to that of aristolochene synthase, 

indicating the enzymatic reaction of DCS should take place in the C-terminal domain. 

Nevertheless, it is still possible that the N-terminal domain of DCS could catalyse the 

conversion from FDP to 6-cadinene, but in a very slow rate.

As the above studies showed that either the active site contour or the N-terminal 

domain could not affect the product specificity of DCS; thus, the product specificity 

was expected to be related to a specific region from the C-terminal domain. The study 

of hybrid 2 suggested that the structure of amino acid sequence from E318 to L554 of 

DCS did not contribute in regard to product specificity, since hybrid 2 was 

constructed by substitution of this region with the corresponding region of GCS and 

the mutant converted FDP into 6-cadinene exclusively. The C-terminal domain is 

mainly encoded by exons 4 to 7 and the examined region from E318 to L554 of DCS 

is encoded by exons 5, 6 and 7. Therefore, the exon 4 of DCS gene most likely 

confers the specificity for the production of 6-cadinene. This assumption was 

supported by the result from hybrid 3 which was a truncated mutant encoded only by 

exons 1 to 4. This mutant was able to convert FDP into 6-cadinene, indicating that 

either the protein structure encoded by exon 4 was the key component for controlling 

specificity, or this partial C-terminal domain combining with the whole N-terminal 

domain could form a new active site, which also possesses the catalytic activity to 

convert FDP into 6-cadinene.

The role of the first aspartate rich motif was confirmed by alanine substitutions. The
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significantly catalytic activity loss of D307A and D311A mutants indicated the 

reactions between these two residues with magnesium ions. This is consistent with the 

observation in the crystal structure that residues D307 and D311 coordinate with 

Mg2+A and Mg2+c. The unaffected catalytic activity of D308A suggests that Mg2+A 

and Mg2+c are only chelated by D307 and D311, which is also confirmed in the 

crystal structure.
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Chapter 4: (£)-p-Farnesene Synthase
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4.1 C haracterisation of the wild-type (£)-p-farnesene synthase 

(WT-EBFS)

This chapter aim ed at exam ining the influence o f  the active site volume of EBFS on 

the product outcome. M utants w ith enlarged or refined active site were designed to try 

to facilitate cyclization reactions in the modified active site pocket. The active site 

cavity was further m odified by swapping residues from the active site of EBFS with 

corresponding ones from  DCS to demonstrate the importance o f active site volume.

4.1.1 Expression and purification of WT-EBFS

The cDNA clone o f  W T-EBFS was previously subcloned into the expression vector 

pET32b by Dr A thina D eligeorgopoulou with Nco\ and BamWl restriction sites at the 

5’ and 3’ ends. The gene was expressed in BL21-CodonPlus(DE3)-RP cells. To 

optimise the expression conditions, different expression temperatures were 

investigated. Cells w ere grown at 37 °C to an OD6oo o f 0.6 before expression was 

induced by addition o f  IPTG (0.1 mg/ml) at 16 °C and 37 °C, respectively (Figure 

4.1). As indicated from  the SDS gel, very little WT-EBFS was observed at 37 °C until 

7 hr, but a large am ount o f  the protein was produced at 16 °C after 7 hr.

Protein
1 2^ 3 4 M 5 marker

i  I  116.0 k

Figure 4.1: 13% SDS-PAGE analysis o f  wild-type EBFS production in comparison to total 
protein production in E. coli BL21-CodonPlus(DE3)-RP at 16 and 37 °C respectively. Lanes 
1 to 3: 2, 4 and 7 hr at 16 °C after induction of expression. Lanes 4 and 5: 37 °C immediately 
prior to induction of expression. Lane 6 and 7: 2 and 7 hr at 37 °C after induction of 
expression.
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The inclusion bodies that formed during protein production were pelleted by 

centrifigation. Refolding of inclusion body proteins followed the same base extraction 

protocol as described for wild-type DCS (Section 2.7.3). The refolded protein was 

purified on a DEAE column. Three peaks can be identified from the FPL 

chromatogram (Figure 4.2A). According to the SDS gel, the first two peaks contained 

the majority of the enzyme with the correct molecular weight (Figure 4.2C).
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Figure 4.2: (A) Chromatogram for DEAE purification of wild-type EBFS. (B) Activity of 
fractions from DEAE purification of wild-type EBFS. (C) 13% SDS-PAGE analyses of the 
purified protein. Lane 6 to 14: eluent fractions from the first peak. Lane 15 to 30: eluent 
fractions from the second peak. Lane 37 and 38: eluent fractions from the third peak. Lane M: 
protein marker.

Monitoring the enzymatic activity of the eluted fractions utilizing [1-3H]FDP (Figure 

4.2B) revealed that, while the first and the third peak turned over FDP slowly, the 

second peak contained most of the active protein. To remove NaCl, the protein 

solution from the second peak was combined and dialyzed using MediCell 

membranes Size 3500/2 (cut-off of 0-3500) against buffer that contained 10 mM 

MOPS and 5 mM (3-mercaptoethanol at pH 7.2. The dialysate was concentrated to
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approximately 5 ml using an Amicon™  ultrafiltration apparatus containing a 

Millipore 30 k cutoff membrane, at a pressure o f 1.5 bar at 4 °C (Figure 4.3).

116.0 k

66.2 k

45.0 k
35.0 k

25.0 k

Figure 4.3: 13% SDS-PAGE analysis o f  EBFS purification. S: supernatant solution after 
sonication. PI: pellet after sonication. R: supernatant solution after base. P2: pellet after base 
extraction. M: protein marker. FI: flow-through from the DEAE column after injection of 
EBFS. A: EBFS fractions after concentration by Amicon. F2: flow-through from Amicon. C: 
protein after further concentration by spin column.

4.1.2 Structural characterisation of WT-EBFS by CD spectroscopy

Based on amino acid sequences homology and the crystal structures o f several 

sesquiterpene synthases (57, 93, 114, 165), EBFS was predicted to have an overall 

a-helical fold like all other sesquiterpene synthases. The circular dichroism (CD) 

spectrum o f the protein confirm ed a typical a-helical spectrum with two minima at 

208 and 222 nm (Figure 4.4). The a-helicity was calculated to be 34% at 20 °C using 

K2d software (753).
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Figure 4.4: CD spectrum o f  EBFS at 20 °C in potassium phosphate buffer 
(10 mM, p H  7).
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4.1.3 Determination of the apparent molecular mass of WT-EBFS

The apparent molecular weight of the wild-type enzyme was determined by size 

exclusion chromatography, which is commonly used as a final step in a series of 

chromatographic procedures. The retention times of protein standards (Bio-Rad) 

thyroglobulin, bovine gamma-globulin, chicken ovalbumin and equine myoglobin on 

a Superdex™ 200 column were determined in 20 mM MOPS buffer with 150 mM 

NaCl at pH 7.2 by monitoring the absorption of the eluent at 280 nm (Figure 4.5, 

Table 4.1). The dependence of the log of the molecular mass on a retention time was 

determined by linear regression (Figure 4.6).
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Figure 4.5: Chromatogram for elution of molecular mass standards (50 ill) from a 
Superdex™ 200 size exclusion column at 20 °C in MOPS buffer (20 mM MOPS, 150 mM 
NaCl, pH 7.2). (A) thyroglobulin (20 pM). (B) bovine gamma-globulin (80 pM). (C) chicken 
ovalbumin (300 pM). (D) equine myoglobin (400 pM).

Table 4.1: Retention times of molecular weight standards on a Superdex™ 200 column in 20 
mM MOPS buffer with 150 mM NaCl at pH 7.2.

MW-Standard MW logjo MW 'R (ml)

(A) Thyroglobulin 670000 5.826 9.49

(B) Bovine gamma-globulin 158000 5.199 12.71

(C) Chicken ovalbumin 44000 4.643 15.1

(D) Equine myoglobin 17000 4.23 16.87
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Figure 4.6: Retention times (in ml) of molecular weight standards and EBFS on a
Superdex™ 200 column in 20 mM MOPS buffer with 150 mM NaCl at pH 7.2. (A) 
thyroglobulin. (B) bovine gamma-globulin. (C) chicken ovalbumin. (D) equine myoglobin.

A 160

olume

B 8 9 10 11 12 13 14 15 16 17 18 19 20

66.2 k

45.0 k

Figure 4.7: (A) Chromatogram for Superdex™ 200 purification of wild-type 
EBFS. (B) 13% SDS-PAGE analysis of the purified protein. Lane 8 to 20: 
fractions from 8 to 20 (1 ml per fraction). Lane M: protein marker.

Figure 4.7 showed the purification of EBFS when 100 pi of 250 pM enzyme was 

loaded onto the size exclusion column. Different concentrations (20, 40, 250 and 600
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|*M) of EBFS all showed the same retention time of 14.56 ml and eluted as a single 

major peak. This retention time corresponds to a molecular weight of 56781 for EBFS. 

Since the monomeric molecular weight of EBFS determined from the amino acid 

sequence is 63830, EBFS apparently is a monomer at 20 °C in 20 mM MOPS buffer 

with 150 mM NaCl at pH 7.2 as expected.

4.1.4 Analysis of the hexane extractable products

Incubation of purified EBFS with FDP in the presence of 5 mM Mg2+ gave 

(£)-P-famesene (65, 95%) as the dominant product, along with a small amount of 

three other acyclic sesquiterpenes, (Z)-p-famesene (97, 1.5%), (3Z, 67s)-a-famesene 

(112, 1.3%) and (3£,6£)-a-famesene (113, 0.2%) (Figure 4.8 and 4.9). The identity 

of the peaks for (£)-p-famesene, (3Z, 67T)-a-famesene and (37s, 67s)-a-famesene were 

confirmed by comparing the retention times in the GC and the MS spectra with 

chemically synthetic samples (Figure 4.10 and 4.11) that were synthesized from 

famesyl acetate by Dr Juan Faraldos (86). (Z)-p-Famesene was identified by 

comparing the mass spectrum with the Wiley database available on the mass 

spectrometer software. Another 5 sesquiterpene products (<2% in total) were also 

detected by GC-MS (Figure 4.9), but the MS spectra of these compounds could not 

match any standard provided by the Wiley database (Table 4.2). Nevertheless, these 

unidentified sesquiterpene structures are very likely to be cyclic products, since all the 

acyclic sesquiterpene products had been identified. The observed product profile is 

different to that published for partially purified EBFS, which yielded (7s)-j3-famesene 

(97, 85%), (Z)-(3-famesene (112, 8%) and 6-cadinene (79, 5%), as well as three other 

minor cadinene-type products (less than 1% each) based on mass spectrometry (MS) 

(775).
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(£)-P-famesene (65) (Z)-P-faraesene (97) OZ.SEKt-famesene (3£,6£)-a-farnesenc 

Figure 4.8: Acyclic sesquiterpene products generated by WT-EBFS from substrate FDP.
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Figure 4.9: GC trace for hexane-extractable products following incubation of 
10 pM WT-EBFS with 1 mM FDP in the presence of 5 mM Mg2+. Peaks 1 to 5: 
5 unknown sesquiterpene products.
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Figure 4.10: Overlay of the chromatograms for wild-type EBFS incubation 
products (blue) with chemically synthetic (E)-f-farnesene, 
(3Z,6E)-a-farnesene and (3E,6E)-a-famesene samples (red).
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Figure 4.11: El-mass spectrum o f  (E)-f-farnesene from incubation (A) and standard (B). 
El-mass spectrum o f  (3Z,6E)-a-farnesene from  incubation (C) and standard (D). El-mass 
spectrum o f  (3E,6E)-a-farnesene from  incubation (E) and standard (F).

EBFS has been reported to catalyze the conversion o f GDP to several monoterpene 

olefins. According to the previous research (115), major products were the cyclic 

monoterpenes limonene (49, 48%), terpinolene (117, 15%) and the acyclic 

monoterpene m yrcene (45, 15%). The other minor products were y-terpinene (116, 

7%), (Z)-ocimene (46, 6%), (£)-ocim ene (114, 7%) and sabinene (115, 3%) (Figure 

4.12). This observation is dramatically different from our result. As expected, mainly 

acyclic monoterpenes were confirm ed as products (Figure 4.13). Myrcene (45, 38.3%),
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as the main product, together with (Z)-ocimene (46, 18.9%) and (£)-ocimene (114, 

29.4%) were determined to make up to more than 87% of total product. Lesser 

amounts of cyclic monoterpenes were identified, limonene (49, 7.2%), y-terpinene 

(116, 1.1%), terpinolene (117, 3%), a-terpinene (118, 0.9%) and another unknown 

monoterpene (Figure 4.12). Monoterpene products (Table 4.3) were confirmed by 

comparing the retention times of GC and MS spectrum with authentic samples that 

were purchased from Sigma-Aldrich, Alfa Aesar, Fluka and TCI Europe.

OPP

GDP (4) myrcene (45) (Z)-ocimene (46) limonene (49) (£>ocimene (114)

sabinene (115) y-terpinene (116) terpinolene (117) a-terpinene (118) 

Figure 4.12: M onoterpene products generated by WT-EBFS from  substrate GDP.
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Figure 4.13: GC trace fo r  the hexane extractable products following incubation 
o f  10 m M  EB F S with 1 m M  GDP. All monoterpene products have been labeled.
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Table 4.2: GC-MS analysis o f  the sesquiterpene products from the incubation of wild-type 
EBFS with FDP.

Retention time / min Product Percentage %

23.24 unknown-1 trace

23.54 (Z)-|3-famesene (97) 1.5

24.34 (£)-p-famesene (65) 95

25.22 unknown-2 trace

25.50 (3Z, 6£)-a-fam esene (112) 1.3

25.79 unknown-3 trace

25.91 (3£'J6^)-a-famesene (113) 0.2

26.10 unknown-4 trace

26.37 unknown-5 trace

Table 4.3: GC-MS analysis o f  the sesquiterpene products from the incubation of wild-type 
EBFS with GDP.

Retention time / min Product Percentage %

8.32 unknown 1.2

8.86 Myrcene (45) 38.3

9.69 a-terpinene (118) 0.9

10.08 limonene (49) 7.2

10.41 (Z)-ocimene (46) 18.9

10.76 (£)-ocimene (114) 29.4

11.12 Y-terpinene (116) 1.1

12.14 terpinolene (117) 3

4.1.5 Kinetic studies of WT-EBFS

All the kinetic assays were carried out using radiolabelled [1-3H]FDP and MOPS 

buffer system (20 mM MOPS, 5 mM MgCl2 and 5 mM P-mercaptoethanol at pH 7.2).
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To determine the optimal incubation time, the reaction was carried out by incubating 

0.06 pM wild-type enzyme with 10 pM [1-3H]FDP for variable amounts of time 

(Figure 4.14A). A reaction time of 15 min was chosen for the actual kinetic runs since 

it is in the initial region of the graph and a relatively good radioactivity level was 

obtained in this time. The optimal enzyme concentration was determined by plotting 

variable enzyme concentrations against radioactivity level of product formation. As a 

result, the concentration of 0.06 pM was defined as the optimal concentration from 

the initial linear region (Figure 4.14B) and this result also confirmed that the time 

course was carried out with the optimised enzyme concentration conditions.
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Figure 4.14: Plots o f radioactivity level in products formed by 0.06 pM  WT-EBFS versus 
incubation time (A) and in 15 min versus concentration o f WT-EBFS (B).

Previous studies showed a slight substrate inhibition when the substrate concentration 

went over 10 pM (775). To make sure the inhibition was not caused by the cofactor 

(Mg2+) or the inorganic diphosphate released during reaction (as the aqueous solution 

was covered by hexane during reaction, most of the organic products would go into 

the organic phase and diphosphate is therefore the only product that could accumulate 

in the aqueous phase), a set of kinetic assays were carried out in the presence of 

variable MgCk and diphosphate concentrations (Figure 4.15). No inhibition was 

observed up to Mg2+ concentration of 200 mM or for diphosphate concentrations of 

up to 400 pM.
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Figure 4.15: Plots o f  radioactivity level in products formed in 15 min formed by 0.06 mM 
WT-EBFS and 10 mM [1-H ]F D P  against Mg2+ (A) and inorganic diphosphate (B) 
concentration.

Kinetic assays were subsequently carried out by incubating 0.06 pM wild-type EBFS 

with variable concentrations of radiolabelled FDP (from 0.1 to 120 pM) (Figure 4.16). 

Km and £cat values for each individual run were calculated using the programme 

SigmaPlot 10 by fitting the data to the Michaelis-Menten equation, v = (vmax [S])/(Km

+ [S]).
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Figure 4.16: Michaelis-Menten profile o f WT-EBFS, incubation of 
0.06 pM  enzyme with different concentrations o f radiolabelled FDP 
in the presence o f  5 mM Mg2+.
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Based on five individual kinetic runs, the Km value was calculated to be 6.4 ±1.7 pM 

and the &cat value 0.015 ± 0.004 s '1. The Km value was higher than the previously 

reported value of 0.6 pM (115) but very close to the value of 5 pM that was 

determined for the EBFS from maritime pine (166). The kcat value (calculated based 

on the equation, kcat = vmax/(AxTx[E]), (section 2.8.1.2)) obtained here is in the 

normal range for plant sesquiterpene synthases (167).

4.1.6 Investigation of the reaction mechanism using the substrate analogues 
2F-FDP and 2F-GDP

Previous research into EBFS has proposed an enzymatic reaction mechanism via the 

ionization of trans-trans-famQsyl diphosphate and formation of (E)-p-famesene (65) 

(Scheme 1.18) (115). 2F-FDP (8 6 ) should be a good inhibitor for producing both 

products because the fluorine at C2 position can greatly inhibit the formation of allylic 

cation (Scheme 4.1).

It has recently been shown that 2F-FDP (8 6 ) is an inhibitor of DCS and the crystal 

structure of the complex of DCS with 2F-FDP has been solved (114). In contrast, 8 6  

is a very good substrate for EBFS. The product, (is)-p-2F-famesene (119) (Figure

4.17), was confirmed by comparing retention time and MS spectrum with an authentic 

sample that was synthesized by Dr Juan Faraldos (112, 135). Under identical 

conditions (10 pM enzyme, 1 mM substrate, 5 mM Mg2+), EBFS produces 

approximately twice as much (£)-p-famesene as (£)-|3-2F-famesene based on the 

peak intensity in the GC-MS spectrum (Figure 4.17).

©OPP
2F-FDP (86)

Scheme 4.1: Inhibition step o f  forming 2F-transoid allylic cation.
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The proposed mechanism of forming both 6 -cadinene and (7s)-p-famesene goes 

through the same intermediate, transoid allylic cation (54) (775). To form 6 -cadinene, 

this cation is converted to NDP and then to the bicyclic product (114). The C2 

fluorine can strongly inhibit the formation of transoid allylic cation through an 

inductive electron withdrawing effect. In this case, 1, 6  ring closure can hardly happen 

and therefore, 6 -cadinene is unlikely to be formed. The fact that EBFS converts 

2F-FDP into (£)-|3-2F-famesene strongly suggests that the transoid allylic cation is 

not an intermediate in (7s)-p-famesene formation and therefore implies a concerted 

elimination mechanism rather than the two steps El elimination.
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extracted from incubation. (D) El-mass spectrum o f (E)-fi-2F-farnesene from authentic 
standard.
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The yield of (£)-p-2F-famesene is slightly lower than that of (£)-p-famesene itself, 

probably because the fluorine at C2 position increases the transition state energy of 

diphosphate group release. The concerted elimination mechanism requires 

involvement of an active site base. These are usually histidine residues and the 

diphosphate group (57, 167). In the case of EBFS, there are no histidine residues 

around the active site pocket, suggesting that the diphosphate group would most likely 

be the active site base. Here, we proposed a syn-elimination mechanism for the 

enzymatic reaction catalysed by EBFS (Scheme 4.2). In agreement, the diphosphate 

group was also proposed as the catalytic base in the enzymatic reactions catalysed by 

isoprene synthase, famesyl diphosphate synthase and aristolochene synthase (62, 72, 

93), which provides another hint for the described enzymatic strategy of EBFS.

OPP

FDP (5)

2’0 ,P0

l l H 19

11AX19

C o ® ? ,o .? ? o e
II II
o o

B

ppi

(£')-P-faraesene (57)

Scheme 4.2: Proposed mechanism for the formation o f (E)-/3farnesene from an 
intramolecular reaction o f  FDP via either pathway A or pathway B.

Since the structures of those cyclic products have not been identified, it is hard to 

explain the details about the mechanism of enzymatic conversion of FDP to cyclic 

product by EBFS. Nevertheless, it suggests that the first ring closure of this catalytic 

mechanism goes through a concerted fashion as decribed for aristolochene synthase 

(81, 82)
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4.2 Mutagenesis studies of (£>p-farnesene synthase

4.2.1 Introduction

The deduced amino acid sequence of wild-type (£)-p-famesene synthase has a 

significant level of similarity with other plant sesquiterpene synthases. It is most 

similar to e/?/-aristolochene synthase from tobacco (62% similarity and 4 9 % identity) 

(168) and also closely resembles 6 -cadinene synthase from tree cotton with 60% 

similarity and 37% identity (59) and the germacrene C synthase from tomato (57% 

similarity and 34% identity) (169).

Several liganded and unliganded crystal structures of sesquiterpene synthases from 

both fungi and plants have been solved, revealing a conformational change triggered 

by Mg2+3-FDP complex binding to the enzymes (81, 90, 93, 170). Several loop 

regions participate in this movement upon ligand binding, forming a sequestered 

active site cavity with the proper conformation for terpenoid production. It has also 

been suggested that the active site cavity could enforce the substrate to dock into the 

enzyme with a product-like conformation for high fidelity sesquiterpene synthases, 

whereas the promiscuous synthases contain a larger active site pocket that allows 

different substrate binding conformations, leading to mutiple reaction products (1). 

Based on the above discussion, it is reasonable to assume that altering the active site 

volume would lead to a different product outcome.

A homology model for EBFS was created based on the crystal structure of 6 -cadinene 

synthase using the SWISS-MODEL automated homology modelling server (Figure

4.18). Sequence alignment with other plant terpene synthases was carried out with 

ClustalX using default parameters (162). Residues in the first tier of the active site (i.e. 

within van der Waals radii (about 3.5 A) of the substrate (160)) have been listed in 

Table 4.4.
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Figure 4.18: Cartoon representations of the EBFS homology model and the expansion of the 
active site. FDP (red sticks) was docked into the active site by the program FlexX.

Table 4.4: Comparison of wild-type EBFS active site contact residues with other plant 
sesquiterpene synthases. GAS: germacrene A synthase from Crepidiastrum sonchifolium 
(ABB00361.1); GCS: germacrene C synthase from Solanum lycopersicum (AAC39432.1); 
TEAS: 5-e/n-aristolochene synthase from Nicotiana tabacum (AAA19216.1); DCS: 
6-cadinene synthase from Gossypium arboretum (AAA93064.1); EBFS: (F)-(3-famesene 
synthase from Mentha x piperita, L. (AAB95209.1).

Enzyme Active site contact residues

GAS R275 W284 V288 T305 L308 V309 D312 T412

GCS R263 W272 V276 L293 T296 S297 D300 S401

TEAS R264 W273 V277 1294 1297 S298 D301 T401

DCS R270 W279 V283 1300 A303 S304 D307 T407

EBFS R264 W273 Y277 V294 C297 G298 D301 T401

Enzyme Active site contact residues

GAS S413 A414 Y415 1418 R453 D456 L524

GCS A402 G403 Y404 1407 R442 N445 L513

TEAS T402 T403 Y404 L407 R441 D444 L512

DCS C408 G409 Y410 L413 R448 D451 L519

EBFS S402 C403 1404 M407 R441 N444 Y514



Y277 and Y514 from the bottom of active site of EBFS were revealed by the amino 

acid sequence alignment to be conserved in the other four enzymes as smaller size 

hydrophobic residues; and 1404 from the side face of the active site was replaced by 

aromatic residues in the analogous position of the other four enzymes. Mutants 

containing these three residues were prepared to investigate if the volume change 

could bring a new function to the active site pocket. In addition, there are two cysteine 

residues that had been observed to form a potential disulfide linkage. The 

corresponding residues from EBFS were mutated to cysteine residues to see if the 

changes could affect the product outcome. Finally, a hybrid was constructed by 

swapping all the active site residues of EBFS with the corresponding ones of DCS.

4.2.2 EBFS-Y514L

Y514 of EBFS that sits at the bottom of the active site pocket has been found to be a 

conserved Leu in the four other sesquiterpene synthases (Figure 4.19). The reason 

EBFS forms mainly acyclic products may be that the distal isoprene unit is 

mispositioned in the active site due to steric hindrance, attenuating the efficiency of 

cyclisation. The mutant EBFS-Y514L could release some free space around the 

bottom of the active site, which might allow the substrate to fold into a different 

conformation.

FDP f \  V

hG aO * (1 W t r  ' L
Y 5 1 4

Figure 4.19: Cartoon representation o f the active site o f the EBFS 
homology model. FDP (shown as red sticks) was docked into the active 
site by the program Flex X. Residue Y514 was shown as orange sticks.
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The mutant was made by substitution of the native TAC codon of Tyr with CTG of 

Leu by site-directed mutagenesis. EBFS-Y514L was purified in the same way as 

WT-EBFS (Figure 4.20). Typically, 15 mg of EBFS-Y514L was obtained per litre of 

culture. 10 pM of the purified mutant was incubated with 1 mM FDP overnight and 

the hexane extractable products were analysed by GC-MS. The product outcome was 

not significantly affected (Figure 4.21). The mutant generates (E)-(3-famesene as the 

main product (95%) and another four minor products, (Z)-(3-famesene (0.7%), 

(3Z,6£)-a-famesene (1%), QE, 6FT)-a-famesene (1.6%) (structures are confirmed by 

comparing GC-MS results of wild-type EBFS) and an unknown sesquiterpene with 

the retention time of 25.22 min (1.7%).
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Figure 4.20: (A) Chromatogram for DEAE purification o f EBFS-Y514L. (B) 
13% SDS-PAGE analysis. Lane 1-3: fractions from the first peak. Lane 4-12: 
fractions from the second peak. Lane M: protein marker.
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Figure 4.21: GC frace for incubation of 10 p.M EBFS- Y514L with 1 
mM FDP in the presence of 5 mMMg2+.

The reaction time and enzyme concentration were optimised to ensure the reaction 

was in the initial linear region and was not reaching saturation during the experiment. 

An incubation time of 30 min and an enzyme concentration of 0.4 pM were chosen 

from the linear part of both curves to meet the requirements for Michaelis-Menten 

kinetic assay. After three replicates, a kCdX of (5.5 ± 1.9) xlO4 s' 1 and a ATm of 23 ± 8  

pM were obtained from the assays (Figure 4.22).
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Figure 4.22: Kinetic analysis of EBFS-Y514L. (A) Time course (0.125 pM enzyme, 10 pM 
FDP); (B) Plot of velocity against enzyme concentration (10 pM FDP, 30 min incubation 
time); (C) Michaelis-Menten plot (incubation of 0.4 pM enzyme with radiolabelled substrate 
for 30 min at 22 °C).

Although the product outcome was not affected, the &cat was reduced 27-fold and the
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Km was 4 times greater than that of the wild-type enzyme, suggesting the volume 

increase does affect the substrate binding, but not in the way of generating any other 

new structures. In contrast, this change may compromise the orbital alignment 

between the electron lone pair of nucleophile and empty s-obital of the proton by 

increasing the mobility of the famesyl chain in the active site.

4.2.3 EBFS-I404Y

1404 of EBFS is in helix G and the side chain of 1404 points to helice H in close 

proximity (Figure 4.23). The corresponding residue was found to be a conserved Tyr 

in the other four sesquiterpene synthases. Different residues at this position may either 

affect the conformation of helices G and H, or directly influence the plasticity of 

active site surface.

Helix (

Helix H

Figure 4.23: Cartoon representation for the active site o f EBFS 
homology model. FDP (shown as red stick) was docked into the active 
site by the program Flex X. Residue 1404 was shown as orange sticks.

The gene of mutant EBFS-I404Y was prepared by replacing the native lie codon ATT 

with a Tyr codon of TAT using site-directed mutagenesis. The mutant was purified in 

the same manner as the wild-type EBFS (Figure 4.24). Typically, 20 mg of 

EBFS-I404Y was obtained per litre of culture. The in vitro assay was carried out by 

incubating 10 pM of purified mutant protein with 1 mM of FDP in a total volume of 

500 pi reaction solution at room temperature overnight and the hexane extractable 

products were analysed by GC-MS. Rather than producing another 8 minor products 

(as seen for the wild type), in addition to the predominant (£)-(3-famesene only a
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small amount o f the unknown sesquiterpene at the retention time of 25.22 min was 

detected (Figure 4.25).
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Figure 4.24: (A) Chromatogram for DEAE purification o f EBFS-I404Y. (B) 13% 
SDS-PAGE analysis. Lane 1-13: eluent fractions. Lane M: protein marker.
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Figure 4.25: GC trace fo r incubation o f 10 pM EBFS-I404Y with 1 mM 
FDP in the presence o f 5 mM Mg2+.



E B F S -I4 0 4 Y  w a s  a lso  fo u n d  to  b e  a  le s s  a c t iv e  en z y m e  com p ared  to the w ild -typ e  

E B F S . T h e in cu b a tio n  t im e  an d  th e  e n z y m e  con cen tra tion  for the k inetic assay  w ere  

o p tim ised  to  b e  3 0  m in  an d  0 .2  p M  r e sp e c tiv e ly . A fter  three rep licates, a Km o f  2 9  ±  

12 p M  an d  a kcaLt o f  0 .0 0 3 7  ±  0 .0 0 1 6  s '1 w e r e  ob ta in ed  from  the k in etic  assays (Figure  

4 .2 6 ). O v era ll th e ca ta ly tic  e f f ic ie n c y  w a s  red u ced  1 8 -fo ld . T h e fact that the m utant 

co u ld  n o t p ro d u c e  th e  o th er three a c y c lic  p rod ucts ((Z)-(3-fam esen e , 

( 3 Z ,6 £ ) -a - fa m e s e n e  an d  (3E, 6E )- a - f a m e s e n e )  su g g ests  the substrate b inds into the  

active  s ite  o f  th is  m u tan t in  a  d ifferen t co n fo rm a tio n  com p ared  to the b ind ing  

con form ation  in  th e  w ild -ty p e  E B F S , su ch  that o n ly  the p roton  at C l 5 can  be  

ap proach ed  b y  th e  a c t iv e  s ite  b a se  an d  th u s co m p le te  the d ep rotonation  step.
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Figure 4.26: Kinetic analysis o f  EBFS-I404Y. (A) Time course (0.2 pM enzyme, 10 pM 
FDP); (B) Plot of velocity against enzyme concentration (10 pM FDP, 30 min incubation 
time); (C) Michaelis-Menten plot (incubation of 0.2 pM enzyme with radiolabelled substrate 
for 30 min at 22 °C).

4.2.4 EBFS-Y277V

A cco rd in g  to  th e  h o m o lo g y  m o d e l, Y 2 7 7  is  an oth er arom atic resid ue that sits in  the 

b ottom  o f  th e a c t iv e  s ite  (F ig u re  4 .2 7 ) . It h as b e e n  fou n d  to  b e  a con served  V a l in  the 

four o ther se sq u iter p e n e  sy n th a ses  and th e  in crea sin g  s iz e  o f  th is residue in  E B F S  

m ay b e  im portan t for  th e o v e r a ll sh ap e o f  th e a c tiv e  site  ca v ity . In addition, it m ay  

a lso  h elp  to  iso la te  th e su b strate fro m  th e so lv en t.
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x p r

Y277

Figure 4.27: Cartoon representation for the active site of 
EBFS homology model. FDP (shown as red stick) was 
docked into the active site by the program Flex X. Residue 
Y277 was shown as orange stick.

The corresponding residues from the other four sesquiterpene synthases are found to 

be a conserved Val. Thus, the mutant EBFS-Y277V was designed to check if the 

modified active site cavity would affect the product selectivity and catalytic activity. 

The native Tyr codon TAC was substituted by a Val codon GTG using site-directed 

mutagenesis. The mutant was produced and purified by the same method for the 

wild-type enzyme (Figure 4.28). Typically, 13 mg of EBFS-Y277V was obtained per 

litre of culture. GC-MS analysis following overnight incubation of EBFS-Y277V (10 

jxM) with FDP (1 mM) showed an unchanged product profile from the wild-type 

enzyme (Figure 4.29).
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Figure 4.28: (A) Chromatogram for DEAE purification o f EBFS-Y277V. (B) 13% 
SDS-PAGE analysis. Lane 1-14: eluent fractions. Lane M: protein marker. Lane C: 
concentrated protein.
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Figure 4.29: GC trace for incubation o f 10 pM EBFS-Y277V 
with 1 mM FDP in the presence o f 5 mM Mg2+.



T he k in e tic  p aram eters o f  th is  m u tan t co m p a ra b le  to  that ob ta in ed  from  the w ild -typ e  

en zy m e . T h e  kcat w a s  fo u n d  to  b e  0 .0 1 7  ±  0 .0 0 9  s '1 and the Km w a s  18 ±  7 pM  (Figure  

4 .3 0 ). T h u s, c h a n g in g  th e  v o lu m e  b a se d  o n  th is  T yr resid u e  d o es  n ot appear to a ffect 

the e n z y m e  fu n ctio n a lity  at a ll, su g g e s t in g  a con sid erab le  d istance b etw een  the  

b in d in g  su bstrate F D P  an d  th e  T yr re s id u e  at 2 7 7  p o sitio n .
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Figure 4.30: Kinetic analysis o f  EBFS-Y277V. (A) Time course (0.0375 pM enzyme, 10 pM 
FDP); (B) Plot of velocity against enzyme concentration (10 pM FDP, 20 min incubation 
time); (C) Michaelis-Menten plot (incubation of 0.375 pM enzyme with radiolabelled 
substrate for 20 min at 22 °C).

4.2.5 EBFS-I404Y/Y514L

In order to  g e t  a  further u n d erstan d in g  o f  th e re la tion sh ip  b e tw e en  active  site  v o lu m e  

and e n z y m e  fu n ctio n a lity , th e  m u tan ts in v estig a ted  ab o v e  w ere com b ined . First, a  

d ou b le  m u tan t E B F S -I 4 0 4 Y /Y 5 1 4 L  w a s  prepared, w h ic h  con ta in s m od ifica tion s to  

the s id e  and  b o tto m  o f  th e  a c t iv e  s ite . T h e d o u b le  m utant w a s  p rod uced  and purified  

in  the sa m e m a n n er  a s  th e w ild -ty p e  e n z y m e  (F igure 4 .3 1 ). T yp ica lly , 2 0  m g  o f  

E B F S -I4 0 4 Y /Y 5 1 4 L  w a s  o b ta in ed  p er litre o f  cu lture. In cu bation  o f  10 pM  purified  

e n zy m e w ith  1 m M  F D P  g a v e  n o  G C -M S  d etec ta b le  product (F igure 4 .3 2 ).
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Figure 4.31: (A) Chromatogram for DEAE purification o f EBFS-I404Y/Y514L. 
(B) 13% SDS-PAGE analysis. Lane 1-11: eluent fractions. Lane M: protein 
marker.
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Figure 4.32: GC trace for incubation o f 10 pM EBFS-1404Y/Y514L 

with 1 mM FDP in the presence o f 5 mMMg2+.
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The observed activity loss of the double mutant indicates a significant change of the 

active site conformation. The modified active site cavity may not be able to complex 

with FDP anymore, or FDP is docked into the active site with a conformation that is 

highly unfavored for any reaction to take place. Another three triple mutants were 

designed based on EBFS-I404Y/Y514L, trying to restore the catalytic activity of this 

enzyme against FDP. These mutants with additional alteration were also expected to 

be constructed with different functions.

4.2.6 EBFS-Y277V/I404Y/Y514L

The substitution Y277V was first introduced into the double mutant 

EBFS-I404Y/Y5 14L to confer the active site with more free space at the bottom 

(Figure 4.27). This triple mutant was overexpressed and purified by the same method 

as wild-type enzyme (Figure 4.33). Typically, 17 mg of EBFS-Y277V/I404Y/Y514L 

was obtained per litre o f culture.
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Figure 4.33: (A) Chromatogram for DEAE purification o f
EBFS-Y277V/I404Y/Y514L. (B) 13% SDS-PAGE analysis. Lane 1-12: eluent 
fractions. Lane M: protein marker. Lane C: concentrated protein.
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Although the mutation Y277V did not change either product selectivity or catalytic 

activity compared to wild-type EBFS, it restored the activity of the double mutant 

EBFS-I404Y/Y514L. In addition, the triple mutant showed an obviously different 

product distribution. (iT)-|3-Famesene is still the main product but it only makes up 

83% of the total sesquiterpenes and an increasing amount of (3Z,6E)-a-famesene 

(2.5%) and (3£’,6E)-a-famesene (11.5%) was observed by GC-MS (Figure 4.34). 

Besides, a newly formed peak at the retention time of 23.95 min was identified. 

Comparing the mass fragmentation pattern of this compound with data from the 

Wiley database available on the mass spectrometer software suggests a cyclic 

sesquiterpene structure. However, the actual structure of this compound cannot be 

assigned solely by it mass spectrum because the mass spectra of cyclic sesquiterpenes 

are very similar. An activity test was carried out by incubation of 0.5 [iM purified 

mutant with 60 (iM radiolabelled FDP for 30 min and the activity of enzyme reaction 

was roughly at the same level as the enzyme-free control. Thus, the catalytic activity 

was defined as too low to be measured reliably by the kinetic assay using 

radiolabelled substrate.
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Figure 4.34: (A) Sesquiterpene product profile o f EBFS-Y277V/I404Y/Y514L. Peak 1: 
unknown sesquiterpene product. Peak 2: (£)-|3-famesene. Peak 3: (3Z,6£>a-famesene. Peak 
4: (3£, 6E)-a-famesene. (B) EI-MS o f the peak 1.

In summary, all the mutants studied with the aim of manipulating the active site 

volume suggest that the bound famesyl chain is close to the side formed by helices H 

and G since the mutations (1404Y and Y514L) on this side significantly reduce the
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en zy m e  a c t iv ity  an d  th e d o u b le  m utant e v e n  lo s t  ca ta ly tic  activ ity , p o ss ib ly  due to  

im paired  su bstrate b in d in g . A fte r  r e le a s in g  so m e  m ore sp ace on  the other sid e o f  

a ctiv e  s ite  b y  th e  m u ta tio n  Y 2 7 7 V  in  th e trip le  m utant, the substrate m ay have b een  

forced  to  b in d  m o re  to w a rd s th e  o p p o s ite  s id e  o f  h e lic e s  H  and G  w ith  a d ifferent 

con form ation , a l lo w in g  a  n e w  c y c lic  p rod u ct to  form . H o w ev er , the orig inal active  

site  co n to u r  is  p r e c is e ly  d e f in e d  fo r  th e o p tim ise d  reaction  con d ition s, thus the 

m o d ific a tio n  le a d s  to  a  h u g e  red u ctio n  o f  e n z y m e  a ctiv ity .

4 .2 .7  N 4 4 4 D

T h e w o rk  so  far w a s  fo c u s s e d  o n  m a n ip u la tin g  the sp ace in sid e  the active  site  p ocket. 

O n the o th er h an d , th e  co n fo rm a tio n  o f  the substrate b in d in g  area is  a lso  crucial for  

the p rod u ct s e le c t iv ity  an d  a c t iv ity  an d  m u ta tion s in  th e M g 2+ b ind in g  m o tif  cou ld  

ch an ge b o th  th e  e n z y m e  a c t iv ity  and  p rod u ct p ro file  (95, 170-172). A ccord in g  to the  

h o m o lo g y  m o d e l an d  th e  se q u e n c e s  a lig n m en t, N 4 4 4  w a s  id en tified  as part o f  the  

seco n d  M g 2+ b in d in g  m o t i f  N ^ D T S S Q L R E  (eq u iv a len t p o sitio n  to  other plant 

sesq u iterp en e sy n th a se s )  an d  it w a s  fo u n d  to  b e  an  A sp  in  the corresp ond ing  p osition  

am on g  so m e  o th er  p la n t se sq u iterp en e  syn th ases . P rev iou s stud ies sh o w ed  that the  

corresp on d in g  m u ta tio n  N 2 4 4 D  in  the P. roqueforti a risto loch en e syn th ases altered  

the p rod u ct s e le c t iv ity  fro m  94%  a r isto lo ch en e  to  80%  germ acrene A  and redu ced  the  

cata ly tic  e f f ic ie n c y  b y  6 6 0 0 - fo ld  (9 5 ) . T h erefore, the m utation  E B F S -N 4 4 4 D  w a s  

co n stru cted  in  b o th  th e  w ild -ty p e  e n z y m e  and th e m utant E B F S -I4 0 4 Y /Y 5 1 4 L  to  

in v estig a te  i f  th is  ch a n g e  c o u ld  b rin g  n e w  fu n ction  to th e a ctiv e  sites w ith  d ifferent  

v o lu m e s.

B oth  m u tants w e r e  p u r ified  b y  th e sa m e m eth o d  as w ild -ty p e  E B F S  (F igure 4 .3 5 ).

T y p ic a lly , 2 0  m g  o f  E B F S -N 4 4 4 D  an d  10 m g  o f  E B F S -I4 0 4 Y /N 4 4 4 D /Y 5 1 4 L  w as

ob ta in ed  p er  litre  o f  cu ltu re. In cu b ation  o f  E B F S -N 4 4 4 D  w ith  F D P  g a v e  n o G C -M S

d etectab le  se sq u iter p e n e  p rod u ct (F igu re  4 .3 6 ) . T h e ob serv ed  lo ss  o f  w ild -typ e

en zy m e a c t iv ity  re su ltin g  fro m  th is  m u tation  in  the M g 2+ b in d in g  m o tif  is  probably

due to  d istu rb an ce  o f  th e  p r e c ise  b in d in g  con form ation  o f  the substrate b y
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compromising the enzyme:Mg2+:FDP tertiary complex. It also suggests a precise 

active site template, which is only defined for certain substrate binding conformation. 

EBFS-I404Y/N444D/Y514L showed very weak enzyme activity; only three small 

peaks (barely higher than the noise level) representing (£}-(3-famesene, 

(3Z,6£)-a-famesene and P E ^i^-a-fam esene were identified by GC-MS analysis 

after a typical overnight incubation (Figure 4.36). Although the misfolded substrate in 

the modified active site of the triple mutant did not lead to a total loss of activity, the 

catalytic efficiency was lowered to a negligible level.
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Figure 4.35: Chromatograms for DEAE purification o f EBFS-N444D (A) and EBFS- 
1404Y/N444D/Y514L (B) and 13% SDS-PAGE analyses o f each purification (C) and (D). 
Lane 1-11: eluent fractions for EBFS-N444D. Lane 12-22: eluent fractions for 
EBFS-I404Y/N444D/Y514L. Lane M: protein marker. Lane C: concentrated protein.
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Figure 4.36: Product profiles fo r incubation o f FDP with EBFS- N444D (A) and EBFS- 
I404Y/N444D/Y514L (B).
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4.2.8 EBFS-I404Y/Y514L/A529Y

Another substitution that was introduced into the double mutant EBFS-I404Y/Y514L 

was A529Y. The residue A529 belongs to the J-K loop, which is located near the 

entrance of the active site and has been shown to be involved in the movement upon 

ligand binding, capping the active site pocket during catalysis (7). This residue was 

proposed to be close to the Mg2+-PPi complex. The corresponding residues to A529 

are either Tyr or Phe among the other four sesquiterpene synthases (Figure 4.37). The 

aromatic group could provide negative or positive electrostatic potential to the local 

area and this might be related to adjusting the orientation of the Mg2+ cluster. In 

addition, they might also provide the bulk required for the shape of the active site.

This triple mutant was purified in the same manner as the wild-type enzyme (Figure 

4.38). Typically, 15 mg of EBFS-I404Y/Y514L/A529Y was obtained per litre of 

culture. GC-MS showed three weak signals representing (7s)-|3-famesene (65), 

(3Z,6E)-a-famesene (112) and (37s,67s)-a-famesene (113) respectively following a 

typical overnight incubation (Figure 4.39).

Figure 4.37: Cartoon representation of DCS complexed with three 
magnesium ions and substrate analogue 2F-FDP (PDB 3G4D, chain 
A). Magnesium ions are shown as green spheres and bound 2F-FDP is 
shown as red sticks. Residue Y535 is shown as orange sticks.
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Figure 4.38: (A) Chromatogram for DEAE purification o f EBFS-I404Y/Y514L/A529Y. (B) 
13% SDS-PAGE analysis. Lane 1-6: fractions from the first peak. Lane 7-16: fractions from 
the second peak. Lane M: protein marker. Lane C: concentrated protein.
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Figure 4.39: GC trace for incubation o f 10 pM
EBFS-I404Y/Y514L/A529Y with 1 mM FDP in the presence o f 
5 mM Mg \

Similar to the mutant EBFS-I404Y/N444D/Y514L, EBFS-I404Y/Y514L/A529Y 

seems to affect the precise binding of the substrate, supported by the fact that the
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triple mutant showed weak activity rather than loss of activity seen for the mutant 

EBFS-I404Y/Y514L. However, only acyclic products ((£)-|3-famesene (65), 

(3Z,6ir)-a-famesene (112) and (BE^i^-a-famesene (113)) were formed, which 

suggests the active site of this mutant is still quite rigid and not able to allow the 

formation of cyclic intermediates or products.

4.2.9 EBFS-S402C/G440C

In the crystal structure o f DCS, a disulfide linkage between C408 and C447 was 

identified (Figure 4.40). The specific function of this structure has not been 

discovered; nevertheless this linkage could possibly stabilize helices G and H, leading 

to a better-defined active site template for the precise intermediates and product to 

form.

Helix G

Helix H

Figure 4.40: Cartoon representation o f DCS with substrate analogue 
2F-FDP bond in the active site (PDB 3G4D, chain A). Bound 2F-FDP is 
shown as red sticks. Disulfide linkage is shown as orange sticks.

In the homology model of EBFS, S402 and G440 were found at analogous positions 

to the two cysteine residues from DCS. A double mutant (EBFS-S402C/G440C) was 

designed to introduce the disulfide bridge into the structure of EBFS. To construct the 

cDNA of the double mutant, the native codons AGC for S402 and GGT for G440 

were replaced by Cys codons TGC and TGT, respectively, by site-directed 

mutagenesis. The double mutant was purified in the same way as wild-type enzyme 

(Figure 4.41). Typically, 10 mg of EBFS-S402C/G440C was obtained per litre of
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culture. Sesquiterpene products profile was obtained by an incubation of 10 pM 

EBFS-S402C/G440C with 1 mM FDP at room temperature overnight. GC-MS 

analysis showed that mainly (iT)-(3-famesene (97) and (3Z, 6£)-a-famesene (112) were 

identified as sesquiterpene products with a roughly 2 to 1 ratio (Figure 4.42). Kinetic 

assay of this mutant was not performed.
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Figure 4.41: (A) Chromatogram for DEAE purification o f EBFS-S402C/G440C. (B) 13% 
SDS-PAGE analysis. Lane 1-20: eluent fractions. Lane M: protein marker. Lane C: 
concentrated protein.
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Figure 4.42: GC trace for incubation o f 10 pM EBFS-S402C/G440C 
with 1 mM FDP in the presence o f 5 mM Mg2+.
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Further investigation of the role of the proposed disulfide linkage was performed by 

employing tris(2-carboxyethyl)phosphine (TCEP) (Figure 4.43). TCEP is a commonly 

used reducing agent for the purpose of breaking disulfide bonds between and within 

proteins {173). Thus, a different product profile was expected after addition of TCEP 

into the reaction solution, if the disturbed product distribution was caused by the 

formation of the disulfide linkage.

O O

F ig u r e  4 .4 3 : The structure o f TCEP.

Six individual incubation tests were carried out by addition of FDP (final 

concentration of 1 mM) to solutions containing 10 pM protein with variable 

concentrations of TCEP (0.1, 1, 3, 8 and 20 mM). GC-MS analysis revealed no 

obvious change of product profile up to 8 mM TCEP (Figure 4.44), while protein 

precipitation was observed when the concentration of TCEP was increased to 20 mM. 

The unchanged product profiles strongly indicate that the two cysteine residues did 

not form the proposed disulfide bond in the tertiary structure of EBFS. Nevertheless, 

both mutations could lead to a change of overall active site contour. According to the 

homology model (Figure 4.18), both S402 and G440 are located in the middle part of 

the active site. The size increase caused by mutation G440C would greatly reduce the 

width of the active site, affecting the substrate binding conformation in the active site. 

Differing from previously prepared mutants that did not affect the product distribution, 

the alterations in the active site of EBFS that introduced two cysteine mutations 

would possibly force the C4 proton to be more accessible to the active site base. This 

was supported by the increased production of (3Z,6£)-a-famesene. In addition, it also 

revealed a critical role for the structure of helices G and H, which could be the 

essential component to determine the product specificity of EBFS.
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The enzymatic reaction catalysed by the double cysteine mutant was also performed 

in non-reducing conditions. The mutant protein was purified without the presence of 

any reducing agent. 200 pi of the purified protein (20 pM) was first left in the air at 

room temperature for 12 h and then mixed with 250 pi buffer (20 mM MOPS, 5 mM 

MgCh, pH7.2) and 50 pi FDP (10 mM). The incubation was left at room temperature 

overnight. GC-MS analysis showed an unchanged product profile compared to that 

obtained under reducing conditions (Figure 4.45).
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F ig u r e  4 .4 5 :  GC trace for incubation o f 10 yM  EBFS-S402C/G440C 

with 1 mM FDP in the buffer system without any reducing agent.

4.2.10 EBFS-S402C/G440C/Y514L

The substitution Y514L was first introduced into the double cysteine mutant to test if 

the increasing volume at the bottom of active site pocket would have any particular 

effect on the selectivity of the double cysteine mutant. The triple mutant was 

produced and purified by the same procedure as the wild-type enzyme (Figure 4.46) 

typically yielding 23 mg of EBFS-S402C/G440C/Y514L per litre of culture. 

Incubation of the purified enzyme with FDP showed an unchanged product profile 

from that of the double cysteine mutant (Figure 4.47). Together with the result from 

mutant EBFS-Y514L, the unchanged product profile of this triple mutant suggests the 

residue Y514 has nearly no contribution to the product specificity of EBFS. Kinetic 

assay of this mutant was not performed.
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F igure 4.46: (A) Chromatogram for DEAE purification o f
EBFS-S402C/G440C/Y514L. (B) 13% SDS-PAGE analysis. Lane 1-11: 
eluent fractions. Lane M: protein marker.
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Figure  4.47: GC trace for incubation o f 10 pM
EBFS-S402C/G440C/Y514L with 1 mM FDP in the presence o f 5 
mM Mg2 .
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4.2.11 EBFS-S402C/I404Y/G440C

Another triple mutant was constructed by adding the substitution I404Y into the 

double cysteine mutant. This triple mutant was overexpressed and purified by the 

same manner as wild-type enzyme (Figure 4.48), typically yielding 10 mg of 

EBFS-S402C/I404Y/G440C per litre of culture. GC-MS analysis of the hexane 

extractable products from the incubation of purified mutant with FDP showed no 

obvious sesquiterpene product formation (Figure 4.49).
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Figure 4.48: (A) Chromatogram for DEAE purification of EBFS-S402C/I404Y/G440C. (B) 
13% SDS-PAGE analysis. Lane 1-13: eluent fractions. Lane M: protein marker. Lane C: 
concentrated protein.
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Figure 4.49: GC trace for incubation o f 10 pM  EBFS-S402C/I404Y/G440C 
with 1 mMFDP in the presence o f 5 mMMg2+.

As mentioned before, residue 1404 was found to be positioned in between helices G 

and H in the homology model. Therefore, the substituted Tyr was expected to further 

disturb the active site contour that has been modified by the double cysteine mutant. 

The observed activity loss of this triple mutant indicated a significant effect of the 

active site volume on the enzyme activity. The substituted residues together brought a 

local volume reduction to the side of active site cleft and the substrate might not be 

able to fit into the newly formed active site with a proper conformation for the 

reaction. In addition, this fact supports the assumption that substrate FDP binds more 

closely to the side of the active site formed by helices G and H (see Section 4.2.6) and 

modifications in this area will directly lead to the product promiscuity and the 

reduction of enzyme activity.

4.2.12 EBFS-S402C/I404Y/G440C/Y514L

The mutant EBFS-I404Y/Y514L has been proved to be a non-catalytic enzyme. Here, 

a quadruple mutant was prepared by introducing the double cysteine mutations into 

the mutant EBFS-I404Y/Y514L to check if the further modification to the active site 

would confer the enzyme with ability to make new sesquiterpenoid products. The
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mutant was purified by the same method as wild-type enzyme (Figure 4.50), typically 

yielding 10 mg of EBFS-S402C/I404Y/G440C/Y514L per litre of culture.

Remarkably, the quadruple mutant showed activity towards FDP rather than the 

observed activity loss of double mutant EBFS-I404Y/Y514L and triple mutant 

EBFS-S402C/I404Y/G440C. The product profile of this mutant was very close to the 

one from the double cysteine mutant, consisting of mainly (£)-p-famesene and 

(3Z,6E)-a-famesene with a tiny amount of {3E,6E)-a-famesene (Figure 4.51). A 

slight increase in production of (3Z,6£)-a-famesene was observed from 30% of the 

double cysteine mutant to 40% of the quadruple mutant. These results indicated that 

the modifications further altered the binding orientation of famesyl chain in the active 

site, which made the proton elimination from C l5 became less favoured.

Figure 4.50: (A) Chromatogram for DEAE purification o f EBFS-S402C/I404Y/G440C/Y514. 
(B) 13% SDS-PAGE analysis. Lane 1-13: eluent fractions. Lane M: protein marker. Lane C: 
concentrated protein.
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F ig u r e  4 .5 1 :  G C  trace for incubation o f 10 pM
EBFS-S402C/I404Y/G44OC/Y514L with 1 mM FDP in the 
presence o f  5 mM Mg2+.

4.2.13 EBFS-Y277V/S402C/I404Y/G440C/Y514L

Another substitution Y277V was introduced into EBFS-S402C/I404Y/G440C/Y514L 

to check if any new product would be formed by creating more free space at the 

bottom of the active site pocket. The mutant was produced and purified by the same 

method as wild-type enzyme (Figure 4.52). Typically, 15 mg of purified protein was 

obtained per litre of culture. Apart from the three acyclic products also produced by 

the previous quadruple mutant, a new product (appeared at 23.95 min) with a mass 

fragmentation pattern suggestive of a cyclic sesquiterpene was also identified by 

GC-MS (Figure 4.53). The m/z of 161.1 most likely represents the fragment of a 10 

member ring structure, which was form by losing the isopropyl group from 

sesquiterpene product. This fragmentation pattern in the mass specta of this 

compound is very similar to that of cadinane type sesquiterpenes and greatly suggests 

that a 1,10-cyclisation is involved in the formation of this compound.
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Figure 4.52: (A) Chromatogram for DEAE purification of
EBFS-Y277V/S402C/I404Y/G440C/Y514. (B) 13% SDS-PAGE analysis. Lane 1-17: eluent 
fractions. Lane M: protein marker. Lane C: concentrated protein.

This product profile is close to that of mutant EBFS-Y277V/I404Y/Y514L, whereas 

the increased amount o f (3Z, 6£)-a-famesene (16%) represents the impact of the 

double cysteine mutant. In addition, the increased amount of the unknown 

sesquiterpene product (7%) supports the previously proposed explanation that 

modifications on the helices G and H forces the substrate to move towards the other 

side of the active site and the enlarged space created by mutation Y277V could 

possibly accommodate substrate in a cyclic form to initiate cyclisation. We speculated 

that the mutant produces mainly acyclic compounds probably because the ic-orbital of 

the distal double bond and the empty p-orbital of Cl could not reach a perfect 

alignment required for the alkylation. Thus, only a small amount of substrate FDP can 

be converted into cyclic product.
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F ig u re  4 .5 3 :  GC trace for incubation o f 10 pM  EBFS-Y277V/S402C/I404Y/G440C/Y514L 
with 1 mMFDP in the presence o f  5 mM Mg2+ (A) and EI-MS o f the peak at 23.95 min.

4.2.14 Active site hybrid

Plant sesquiterpene synthases exhibit a significant degree of similarity at the amino 

acid level and this feature leads to some successful examples of manipulating enzyme 

function through a small amount of amino acid substitutions in the active site (155, 

174). However, in our studies all the attempts to modify the active site volume to 

mimic other plant sesquiterpene synthases failed to alter the function of EBFS from 

generating cyclic sesquiterpene product as major product. To get a better 

understanding of the relationship between active site contour and product selectivity, 

a hybrid was prepared by substitution residues of EBFS that have contact with the 

substrate FDP within 8 A with corresponding ones from DCS (Figure 4.54). The 

whole design was based on the deduced amino acid sequence alignment and the 

homology model of EBFS. In total, 50 residues of EBFS were identified have contact 

with FDP within 8 A, in which 34 residues were different to the corresponding 

residues from DCS (Figure 4.55). Thus, these 34 residues were chosen to be 

substituted.
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Figure 4.54: Cartoon representation o f the EBFS homology model. FDP 
was docked into the active site by the program MOE (red). Selected 
mutations are shown as sticks.

1 MATNGWISCLREVRPPMTKHAPSMWTDTFSNFSLDDKEQQKCSETIEALKQEARGMLMA 

6 1  ATTPLQQMTLIDTLERLGLSFHFETEIEYKIELINAAEDDGFDLFATALRFRLLRQHQRH  

1 2 1  VSCDVFDKFIDKDGKFEESLSNNVEGLLSLYEAAHVGFREERILQEAVNFTRHHLEGAEL 

1 8 1  DQSPLLIREKVKRALEHPLHRDFPIVYARLFISIYEKDDSRDELLLKLSKVNFKFMQNLY  

2 4 1  KEELSQLSRWWNTWNLKSKLPYARDRWEAYVWGVGYHYEPQYSYVRMGLAKGVLICGIM 

3 0 1  DDTYDNYATLNEAQLFTQVLDKWDRDEAERLPEYMKIVYRFILSIYENYERDAAKLGKSF 

3 6 1  AAPYFKETVKQLARAFNEEQKWVMERQLPSFQDYVKNSEKTSCIYTMFASIIPGLKSVTQ 

4 2 1  ETIDWIKSEPTLATSTAMIGRYWNDTSSQLRESKGGEMLTALDFHMKEYGITKEEAASKF 

4 8 1  EGLVEETWKDINKEFIATTNYNVGREIAITFLNYARICEASYSKTDGDAYLDPNVAKANV 

5 4 1  VALFVDAIVF

Figure 4.55: The deduced amino acid sequence ofWT-EBFS. The mutations on the active site 
hybrid are coloured orange.

The construct of the hybrid was created by mutating the native codon TAT which 

encodes amino acid Y271 to AGC; together with the codon GCT that encodes amino 

acid A270, this mutation creates a NheI restriction site. A synthetic DNA fragment 

was designed to encode the amino acid sequence after V272 of EBFS with all the 

chosen mutations and constructed with Nhe I and BamHI restriction sites at the 5’ and 

3’ end respectively. Double digestion of the mutated plasmid with Nhel and BamHl 

restriction enzymes and subsequent ligation with the synthetic DNA fragment formed 

a plasmid containing the gene encoding the hybrid (Figure 4.56). Formation of the
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constructed plasm id was checked by a single digestion with BamHl (Figure 4.57) and 

also confirmed by D N A  sequencing.

EBFS 5’-
NHf

Synthetic gene fragment encoding 
part of DCS with selected mutations

Hybrid 5’-
N H f

Nhel
 I____

i---------
810 bp 
(270 aa)

Nhel
5 - J -

N H f

BamHl

1653 bp 
(550 aa)

BamHl

3’
COO

3’
COO-852 bp 

(281 aa)

Stop codon 
3-

1 COO-1653 bp 
(550 aa)

Figure 4.56: Schematic diagram o f  construction o f  the active site hybrid. Line drawings 
depict composite diagrams for wild-type EBFS (coloured white), synthetic gene fragment 
encoding part of DCS with selected mutations (coloured black) and hybrid gene.

8 . 0  k b  —

6 . 0  k b -
- 8 . 0  k b  

- 6 . 0  k b

Figure 4.57: 1% Agarose gel analyses o f  the active site hybrid cDNA construct preparation. 
Lane 1: The mutated insert gene after double digestion by both Nhe I and BamHl restriction 
enzymes. Lane 2: The mutated insert gene after digestion by BamHl restriction enzyme. Lane 
3: The gene plasmid of the hybrid. Lane 4: The gene of the hybrid after digestion by BamHl 
restriction enzyme. M: 1 kb DNA ladder.

The hybrid w as purified by the same method as wild-type EBFS (Figure 4.58), 

typically yielding 6 m g o f  hybrid per litre o f culture. Surprisingly, the overall active
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site modification leads to a huge reduction in enzyme activity. GC-MS analysis 

showed only two weak signals (barely higher than the noise level) representing 

(£)-(3-famesene and (3Z, 6iT)-a-famesene as products from an overnight incubation of 

10 |xM purified mutant with 1 mM FDP; the expected product 6-cadinene was not 

detected (Figure 4.59). A control experiment by removing FDP from incubation 

solution was carried out to ensure the observed sesquiterpene peaks were coming 

from the enzymatic reaction. This model indicates a well-defined active site volume 

of wild-type EBFS for the acyclic products. Although the chemical environment and 

steric conformation of the active site has been modified to mimic another plant 

sesquiterpene cyclase, the rigid space would not allow any cyclic intermediates or 

products to form.

Volume ml

Figure 4.58: (A) Chromatogram for DEAE purification o f the active site 
hybrid. (B) 13% SDS-PAGE analysis. Lane 1-13: eluent fractions. Lane M: 
protein marker.
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Figure 4.59: GC trace for incubation o f 10 fiM the active site 
hybrid with 1 mM FDP in the presence o f 5 mM Mg2+.

3.3 Conclusions

Wild-type EBFS has been fully purified and determined to be a monomer at pH 7.2. 

An overall a-helical fold was confirmed by CD spectroscopy. The product 

distribution was defined as (£)-|3-famesene (95%), (Z)-|3-famesene (1.5%), 

(3Z, 6£)-a-famesene (1.3%), (3E, 6£)-a-famesene (0.2%) and another 5 unknown 

cyclic products (<2% in total) when Mg2+ was employed as the cofactor. Mechanitic 

studies using the substrate analogue 2F-FDP suggests an concerted syn-elimination 

rather than the previously proposed two step El elimination (115) by forming the 

transoid allylic cation as the intermediate since the C2 fluorine can greatly inhibit the 

forming of this intermediate through an inductive electron withdrawing effect. It was 

believed that the enzymatic formation of sesquiterpenes went through the ionization 

of trans-trans-famesyl diphosphate to the corresponding transoid allylic cation. 

However, the E2 elimination suggests an alternative route to (2i)-|3-famesene. It seems 

that the enzymatic reaction catalysed by EBFS is under kinetic control since the 

predominant product (£)-|3-famesene is not the most stable product. In addition, the 

formation of transoid allylic cation intermediate in sesquiterpene cyclization reactions 

was also reported to be under kinetic rather than thermodynamic control (175).
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Alternatively, purified wild-type EBFS catalyses the conversion of Cio analogue GDP 

to mainly acyclic products (myrcene (38.3%), (£)-ocimene (29.4%) and (Z)-ocimene 

(18.9%)), rather than the previously reported major product limonene (48%) that was 

generated by the partially purified enzyme. The broad distribution towards three 

acyclic products is probably due to the large active site volume which leads to 

different substrate GDP binding conformation, allowing the active site base to 

approach protons from both C4 and CIO.

In terms of the proposed active site volume theory (Section 4.2.1), three single 

mutants (Y277V, 1404Y and Y514L) were prepared to mimic the conformation of this 

region in the other four plant sesquiterpene synthases, but none of them had a 

significant influence on the product outcome, only a 20-100 fold catalytic efficiency 

reduction was observed for mutants 1404Y and Y514L. The observed activity loss in 

the double mutant EBFS-I404Y/Y514L and restored activity of the triple mutant 

EBFS-Y277V/I404Y/Y514L indicate that the position of the famesyl chain in the 

active site of wild-type EBFS should be close to the helices G and H. After 

introducing mutations 1404Y and Y514L, the active site contour could not 

accomodate the famesyl chain in a reactive conformation, leading to activity loss. 

Mutation Y277V brought more space into the active site of the double mutant and the 

substrate can be accommodated into the enlarged active site again but more towards 

the opposite site of helices G and H with a slightly different conformation. The 

modified active site contour plus the possibly different substrate binding conformation 

led to the formation of an unknown cyclic sesquiterpene by the intramolecular attack 

of the 10,11- or 6,7- double bond on Cl.

Mutagenesis studies at the two conserved Mg2+ binding motifs showed the possibility

of altering both the enzyme activity and product profile (95, 170-172). When the

mutation N444D (from the second Mg2+ binding motif N444DTSSQLRE) was

introduced into both wild-type EBFS and the double mutant I404Y/Y514L, only a

huge enzyme activity reduction was observed. The observed activity loss by
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manipulating the Mg2+-binding site suggests a significant disturbance of the precise 

substrate binding conformation. This change did not generate any new product, 

possibly due to the rigid active site pocket, which would barely accommodate any 

kind of cyclic intermediate or product.

The active site contour was also modified by introducing two cysteine substitutions, 

which have been observed to form a disulfide linkage in the crystal structure of DCS. 

However, treatment with TCEP suggested that the newly introduced two cysteine 

residues did not form the proposed disulfide linkage in the tertiary structure of EBFS. 

Nevertheless, the double cysteine mutant alters the product distribution from 

(£)-P-famesene (95%) to 65% (£)-p-famesene, 33% (3Z,6£)-a-famesene and 1% 

(3E, 6£)-a-famesene. The increased production of (3Z, 6£)-a-famesene suggests a 

possible active site volume reduction, which would squeeze the famesyl chain more 

towards the entrance of the pocket, leading the C4 proton to be more accessible to the 

diphosphate group (proposed active site base). This is consistent with the apparent 

function of the two cysteine mutations that could reduce the width of the active site 

pocket. In addition, the alteration of the product distribution by modifications on the 

helices G and H also indicates the structure of helices G and H may be the key 

component that determines the product specificity for the enzyme.

Additional modifications toward manipulating the active site volume did not confer

the enzyme with obvious new function. The activity loss of the triple mutant

EBFS-S402C/I404Y/G440C suggests that the modified active site was not able to

accommodate the substrate with the proper conformation due to the volume reduction

caused by the mutations. This can be supported by the fact that releasing some space

in the active site of the non-catalytic enzyme by mutating the aromatic residue Y514

into a smaller hydrophobic residue Leu restored catalytic ability of the enzyme. The

quintuple mutant EBFS-Y277V/S402C/I404Y/G440C/Y514L even reveals a

combined effect of the mutants EBFS-Y277V/I404Y/Y514L and

EBFS-S402C/G440C by showing an increased production of (3Z,62s)-a-famesene and
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the newly formed unknown sesquiterpene (retention time of 23.95 min) compared to 

the wild-type enzyme.

The observed activity loss of the active site hybrid simply illustrates the importance of 

the active site volume. In other words, the active site of the hybrid does not contain a 

proper cavity to dock cyclic intermediates and products, although it contains a nearly 

identical chemical environment to DCS. In addition, the modification also 

compromises the ability to form (£)-|3-famesene, suggesting either the conformation 

of the Mg2+ binding area has been severely disturbed or the modified active site 

contour cannot accommodate the native substrate FDP.

Table 4.5: Summary o f kinetic data for the mutants o f EBFS.

Protein kcat ! S Km/ \ i M

W T -E B F S 0.015 ± 0 .0 0 4 6.4 ±  1.7

E B F S -Y 5 1 4 L (5.5 ± 1.9) xlO-4 23 ±8

E B F S -I4 0 4 Y 0.0037 ±0.0016 29 ±12

E B F S -Y 2 7 7 V 0.017 ±0.009 18 ± 7

E B F S -I 4 0 4 Y /Y 5 1 4 Y Inactive

E B F S - Y 2 7 7 V /1 4 0 4 Y /Y 5 14 Y P oor actvity

E B F S -N 4 4 4 D Inactive

E B F S -I 4 0 4 Y /N 4 4 4 D /Y  5 1 4 Y Inactive

E B F S -I4 0 4 Y /Y  5 1 4  Y /A 5 2 9 Y Poor actvity

E B F S -S 4 0 2 C /G 4 4 0 C A ctiv e

E B F S -S 4 0 2 C /G 4 4 0 C /Y  5 1 4L A ctiv e

E B F S -S 4 0 2 C /I4 0 4 Y /G 4 4 0 C Inactive

E B F S -S 4 0 2 C /I4 0 4 Y /G 4 4 0 C /Y  5 14L P oor activ ity

E B F S -Y 2 7 7 V /S 4 0 2 C /I4 0 4 Y /G 4 4 0 C /Y  5 1 4L P oor activity

A c t iv e  s ite  hybrid Inactive
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Chapter 5: Dual roles of the N-Terminal 
Region in Catalysis
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5.1 In troduction

Sesquiterpene synthases from bacteria and fungi are single-domain enzymes. These 

enzymes contain a class I terpenoid synthase fold domain constructed with several 

a-helices connected by short loops. Plant sesquiterpene synthases usually contain an 

additional N-terminal domain (91). This domain adopts an a-helical fold closely 

related to glycosyl hydrolases and has a structure similar to the N-terminal domain of 

the class II terpenoid synthase fold (92). Recently, the crystal structure of A. grandis 

a-bisabolene synthase (AgBIS) was solved (176), which is the first three-domain plant 

sesquiterpene structure. Unlike the previous structurally characterised plant 

sesquiterpene synthases (TEAS and DCS) that have only two domains, AgBIS 

composes an additional domain (insertion domain), which can be found in diterpene 

synthases such as taxadiene synthase and copalyl diphosphate synthase (130, 138). 

The C-terminal domain of AgBIS contains the class I terpenoid synthase fold and is 

determined to be the functionally active domain. While, the N-terminal domain 

together with the insertion domain of AgBIS exhibits a non-functional class II 

terpenoid synthase fold, since AgBIS lacks the conserved DXDD motif that initiates 

the cyclization of linear isoprenoids. Thus, AgBIS is proposed to be potentially an 

intermediate in the evolutionary transition from diterpene to sesquiterpene synthase 

(176). In this sense, the N-terminal domain of plant sesquiterpene synthase may 

function as part of the class II terpenoid synthase active site for the ancestral origin of 

this enzyme family. However, the function of the N-terminal domain among 

two-domain plant sesquiterpene synthases is still not clear.

It has been proposed (57) that the N-terminal domain of plant sesquiterpene synthase 

plays a role in capping the active site of the C-terminal class I terpenoid synthase 

domain. In the crystal structures of two plant sesquiterpene synthases (TEAS and 

DCS), the N-termini are above the entrance of the active site, which were proposed to 

protect the active site from exposure to the solvent during catalysis (75, 114). Based 

on the crystal structure of TEAS, it has also been suggested that the N-terminal region
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may have contact with A-C, D-Dl, J-K and H -H-al loops for the purpose of 

protecting the active site (91). Thus it is tempting to suggest that the N-terminal 

region could have influence on catalysis. Based on the sequence alignment of EBFS 

with other plant sesquiterpene synthases, the initial part (first 14 amino acids) of the 

N-terminal region (M1-K38) shares nearly no similarity, yet the rest part of sequence 

shares a considerable amount o f similarity and identity (Figure 5.1).

GAS 1 KAAVEAKGTLQAKTKTTTEPVR LANT? SVHGDRFMFSI.DKKEI.EGTAKAiiEEPK£ELRRI,::VDSCKDSKKttSX.iySVHiaUSLnLF
GCS 1 M A A SS,,^v~A EK CR LAKTH SW CYHFL8 YT. HEITNQ. EKVEVDETKETIRK LVETCDNSTQKLVLI. AHQRXiGVAIKF
TEAS 1 KASAAVAKXESEZVK VADFS 8 LHGDQFIA F 8 1KWCVAEKYA KE Z EAUtE QC RK tLATGKKIADCU{I.IDTZERX«ZSIKF
DCS 1 KASQVSOKPSSSPLSSKKDEKK KADFQ SZWGDLFUfCPDKHZDAE • CEKRHQQUCEEVRK ZVAFXAKSTQKLATXDSVQHbGVSIKF
EBFS 1 MATKGW:SCLREVRP KTKHA SJWTDTFSKFSLDDKE0QKC3ETZRAUCQEARG XJfAATTP.l£QKrLII»TLERLiGL8FKF

GAS 91  LQEIEA0IAKLFKEFKX/QDYDEVDI.XTT8ZKFQVFRHLGHKLP DVFKRFKDSTSGKFICEXITKDVKSKLGLrESAQLKVRGESILDEAS
GCS 77 DKEIETSIOKIFDASSKOKDKDKKI.rWSLRFRI.VRQOCTntSSDVFKOFTK.ODeiCFKETM’KDVQGLLSMEASHI.RVRKEEIUEEAL
t e a s  84 e k e i d d i l p q i x ^ . ^ ^ OTcirc f tr e g AM y jn ftMMwmAm rtxrm̂ TMwrjwAfw/m*ixvuMYWtMuaxu(MU
DCS 90 TKEXEDEIAKXyHKK. .  .KDAEKDX.XTTSZRFRXAREHGYKVS DTFKKFKP ■ EQCKTKS8VTSU VRCLLEI.TQAS YLRVHGEDII^EAZ
EBFS 84 ETKi Kr Ki KLXKAAg ^ ^ ^ v BQCFTafcf ftTf tm F U U I » M V SF*1P UU» 4 * AX

GAS 181  A FTETK UCSW K TlfG K. . .LEEOVMQSUUt FKQGH KVEAKX.XF8. KYTEECATHASLI.KZJUCLHFSYLEIJQQKEEXAZV8QHWKDKE
GCS 1 6 6  TFTTT8XASTVSKLSKKKKSLKVEVGEALTQ ZRKTZ RMGARKXIB. XIEKKDAHHBLU<KFAKU>FHKXaQKFHQREI£DX.TfWKKDI^)
TEAS 169  AFSTZHX^RAAPHXJCSP. .  . LREOVTHALEQCLHKGV KVETRFFESSIXDKEOSKKKVIiRFAKADFIiX&QHUfKQEXAQVBimWKDLD
DCS 1 7 6  SFTTHKLSLAVASXjD H ?. . . LE EVSHALKQSZRRGL KVEARHIIA. VTQDZEBHHKALLEFAKZDFWLQFUCRICEIAEZCIWWKDUS
EBFS 169  KTTRHKLFG^^AEIJXJSPIilREKVKHALEH L.HRDF ZTOARLFXS. ITEKDDSRDEIXLKLSICVKFKrKQKI.YKEEMQIARWKirTtfK

GAS 2 6 7  FQCSV 1 1 RDRV PEIXLHIM LXFE RISLARZZATKZTLrLWLDDTXDAXATZEEZRLLTDAIKRWDISAMEQI E U R  FXKZIXEE
GCS 2 5 5  FAKKT TAKDRLVECIFKXIiGVXFE KTSRARK XTKVLKLTSXZDDTFDAIATFDEI.VTFKDAICRHDANAIDSIQPI R AXQALL -
TEAS 2 5 6  FVTTX. XARDRWECXFMAI2SVXFE QIS-QARV I.VKTZSItZSIVDI»TFDAIGTVKKXeAXTDAIQRWDIKEIDRL DX KZSIKAZLDL
DCS 2 6 2  FQRKL I  ARE1 RWEGXFXXSOVXFE QXSLGRK tTKVTAKASIVDDTXDSIATXEEXrPXTKAIERKDIltCIOEI EX K SIKALU V
EBFS 2 5 6  LKSKX. lARDKWBAXVWGVOXirXE QISXVRMGXAKGVLTCGUtDDTTDKXATUfEAOLrrOVXiMCMDRDEAERL EX KZVXRFZtSZ

GAS 3 5 7  TAEX.£KQLRXEOREK5V:ASJCQAFQD;AKGXZ£EAEtrTKSG.XVATFPETXK]iGLITSAXt>VTSKSAl.V6 GEKVSEBALAKYESH KTL
GCS 3 4 5  I SSMBQVL8KECICLDRVTIAKNE KKX.VRAIFKETXJWLKDCDHT KYEEQVEHAZVSAGIWlZSCTCLTOZEEFZSEETFEWLieiESVIV
TEAS 3 4 6  XKDYEKELSSAGRSHZVCHAZER KEWRKXKVESTVFZEG. XT PVSEIiSIIAIArTCXYXIACTSYI« KS. ATEQDFEXLSKK KIL
DCS 3 5 2  IEEXVQLVAEHGRQYRVEIAKKA ZRXAQSXLVEAKWTLQK. XK SFEEFKAHAAPTCGXAKXATTSFVO GDZVTPETFKWAASD KIX
EBFS 3 4 6  XENYERDAAIOjGKSrAAPIFKECVlCQLARAFKESQKXVXEA.QI, SFQDXVKKSEKTSCIYTKFASITPGLKS. VTQETZCWZKSE TLA

GAS 4 4 6  OASELISKLQDDVXTYQFEAERQQSATGVDSIZKTXGVSEKEAZDELKlWZEKAHKDXREGCIiC R * ■EVSKDVLA?ZLHIARMZ D W TR
GCS 4 3 5  RASALXARAHKDZVGEEDEQERG8VA5X.XE I  KDXGASKQETXZKFUCEVTKAWKDXRKQFSR T ,  , EVPXFVLERVLRLTRVADTLI K
TEAS 4 3 4  EA SV IIC K V IODTATYEVEK5RGQ ZATGIE  C RDTGZSTKEAHAKFQKJiAETAHKDIKEGIAR T . . PVSTF FLTPZLHIARZVEVTXZ
DCS 4 4 1  QA8TZXCRFXDDVAEHKFKHRREDDCSAIE X EEICVTAOEAXDVFKKHVESAKICDUKJEFXK T^EKPTEVLKRSUILARVNDTLIR
EBFS 4 3 4  TSTAKIGRXWKDTSSQUIESKGGEXLTALDFH K£XGZTKEEAA5KFEGLVEETWK!>IMXEFZACTKYKVGKEZAZTFIjlfXARZCEASXS

GAS 5 3 4  X . DDGFTFPGKTKXEXmXFVGSSPX
GCS 5 2 3  E . KT'TXSTAKGKI.KKKXKPZI.ZES VKZ
TEAS 5 2 2  HKX.DGXTHPEKVI.KPBITKXAVD8XKZ
DCS 5 2 9  E.GBGXTXVGKAAKGGXTSLLZEPIAL
EBFS 5 2 4  KTDGDAYUJPKVAKAKWAI^VDAIVF

Figure 5.1: Amino acid sequence alignment o f five plant sesquiterpene synthases. GAS: 
germacrene A synthase from Crepidiastrum sonchifolium; GCS: germacrene C synthase from 
Solanum lycopersicum; TEAS: 5-e/?/-aristolochene synthase from Nicotiana tabacum', DCS: 
6 -cadinene synthase from Gossypium arboreum; EBFS: (£)-P-famesene synthase from 
Mentha x piperita. Similarity and identity between residues are represented by different 
colours.
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The N-terminal regions (M1-S23 of TEAS, M1-P29 of DCS) are missing in the 

crystal structures of these plant sesquiterpene synthases and the mobility of this region 

may relate to the function of covering the active site. Based on the homology model 

and amino acid sequence alignment (Figure 5.1), the analogous region of EBFS is 

defined from Ml to S24 and this part of the N-terminal region could share the same 

function and therefore protecting the active site from bulk solvent.

Previous examination of the role of the N-terminal domain regions revealed that 

swapping the first 152 amino acids of a Hyoscyamus muticus vetispiradiene synthase 

with the analogous part of Nicotiana tabacum 5-epz-aristolochene synthase (TEAS) 

gave no novel product but only a slight decrease in specific activity {161). Another 

study of the N-terminal region of Ixeris dentate germacrene A synthase indicates an 

important role of this region towards the enzyme catalytic activity (777).

Our investigations based on the plant sesquiterpene synthase EBFS indicate dual roles 

of the N-terminal region in the catalytic reaction. Kinetic studies with mutated, 

truncated and chimeric enzymes demonstrate the importance of this loop for catalysis 

and suggest that this region regulates product release.

5.2 N-Terminal region truncated mutants

5.2.1 EBFSA14

According to the sequence alignment (Figure 5.1), the initial part of the N-terminal 

region (first 14 amino acids) of EBFS shares less than 20% similarity with other plant 

sesquiterpene synthases. In order to find out if this part of the N-terminal region could 

make contribution to catalysis, a truncated mutant (EBFSA14) was designed with the 

first 14 amino acids of EBFS removed. The full-length cDNA for EBFS (1.6 kb) was 

initially cloned into the vector pET32b (5.9 kb) with an Ncol restriction site at the 5’ 

end (Figure 5.2).
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M1 K38 E223 

J e r r r n n a l  dom ain

F550

C-terminal domain

/Stool

pET 32b (+) EBFS
7.5 kb

Figure 5.2: pET-32b vector including the cDNA sequence for EBFS.
The N-terminal and the C-terminal domains are separated by residue 
E223. The N-terminal region is coloured blue, including sequence 
from M l to K38.

To construct the gene of EBFSA14, another Ncol restriction site was introduced into 

the DNA sequence o f the wild-type enzyme. The foreign Ncol restriction site was 

formed by replacing the DNA fragment 5’-GTAAGGCCA-3’ that encodes Vall4, 

Argl5 and Pro 16, with 5’-GCCATGGCA-3’ using site-directed mutagenesis (Figure 

5.3).
3 '  -CG AATTCCCTTCGGTACCGTGGATACTGCTTCG-5 '

1 ATGGCTACAAACGGCGTCGTAATTAGTTGCTTAAGGGAAGTAAGGCCACCTATGACGAAGC 
6 2  ATGCGCCAAGCATGTGGACTGATACCTTTTCTAACTTTTCTCTTGACGATAAG -  3 '

Figure 5.3: The 5 ’ to 3 ’ N-terminal region o f EBFS gene sequence (red) and the forward 
primer (purple, primer sequence is reversed and complementary) that generates Ncol 
restriction site (underlined) fo r construction o f EBFSA14.

The mutated plasmid was then treated with Ncol and the resulting large DNA 

fragment was intramolecularly ligated to give the desired plasmid (Figure 5.4). As a 

result of introducing the Ncol restriction sites, Argl5 of wild-type EBFS was changed 

to Ala2 in EBFSA 14. The truncated mutant was produced and purified by the same 

protocol for the wild-type enzyme (Figure 5.5). Typically, 16 mg of EBFSA14 was 

obtained per litre o f culture.
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1 M M  2

Figure 5.4: 1% Agarose gel analyses o f the EBFSA 14 construct preparation. 
Lane 1: linearized plasmid that encodes EBFSA 14 after Ncol digestion. Lane 
2: plasmid that encodes EBFSA 14 after ligation. M: 1 kb DNA ladder.

A  600

olume

45.0 k
35.0 k

116.0 k 
66.2 k

Figure 5.5: (A) Chromatogram for DEAE purification o f EBFSA14. (B) 13% SDS-PAGE 
analysis. Lane 1-12: eluent fractions. Lane M: protein marker. Lane C: concentrated protein.

The product profile was analysed based on an overnight incubation of 10 pM enzyme 

with 1 mM FDP. GC-MS revealed that the main product (iT)-|3-famesene still took up 

94% of the total production (Figure 5.6). In addition, an increased amount of the 

unknown cyclic product at retention time of 25.22 min was observed.
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Figure 5.6: GC trace fo r  incubation o f  10 pM  EBFSA 14 with 1 mM
FDP in the presence o f  5 mM Mg2+.

A n  o p tim ise d  in cu b a tio n  t im e  o f  15 m in  and  an  en zy m e con centration  o f  0.1 p M  w ere  

d eterm in ed  to  m e e t  th e req u irem en ts for  M ich a e lis -M en te n  k in etic  a ssay  b efore the 

actu al run (F ig u re  5 .7 ) .  T h e  ca lcu la ted  &cat o f  E B F S A  14 (0 .0 1 5  ±  0 .0 0 2  s '1) w a s  

e x a c tly  th e  sa m e  as w ild -ty p e  E B F S  (kcal =  0 .0 1 5  ±  0 .0 0 4  s '1). T h e Am (3 .7  ±  0 .6  p M )  

w a s a lso  co m p a ra b le  to  that o f  w ild -ty p e  e n zy m e (KM = 6 .4  ± 1 . 7  p M ). T his in dicates  

that th e in itia l part o f  th e  N -ter m in a l r e g io n  o f  E B F S  has nearly  n o  contribution  

tow ards th e ca ta ly tic  a c tiv ity . H o w e v e r , th e m in or ch an ge in  the product p rofile  

su g g ests  that th e  a b se n c e  o f  th is  re g io n  m a y  a ffe c t  b in d in g  o f  the substrate s ligh tly . In  

ad dition , it h a s b e e n  p r o p o se d  that R 15  o f  5 -e/? /-ar isto loch en e syn th ase p lays a ro le in  

co n tro llin g  th e o p e n -c lo s e  sta te o f  a c tiv e  site  con form ation  b y  h yd rogen  b ond ing  w ith  

the C -term in a l d o m a in  (91). T h e  corresp on d in g  resid u e in  E B F S  is  A r g l5 ,  w h ich  has  

b een  m u ta ted  to  A la 2  in  th e tru ncated  m utant E B F S A 1 4 . T h e fact that E B F S A 14  d o es  

n ot lo se  ca ta ly tic  e f f ic ie n c y  ru les ou t the p ro p o sed  fu n ction  for R 1 5 in  the cata lysis  o f  

E B F S .
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Figure 5.7: Kinetic analysis ofEBFSA14. (A) Time course (0.1 (iM enzyme, 10 pM FDP); (B) 
Plot of radioactivity level against enzyme concentration (10 pM FDP, 15 min incubation 
time); (C) Michaelis-Menten plot (incubation of 0.1 pM enzyme with radiolabelled substrate 
for 15 min at 22 °C).

5.2.2 EBFSA24

To further define the function of the N-terminal region of EBFS, another truncated 

mutant (EBFSA24) was generated by deletion of the first 24 amino acids from the 

wild-type sequence. The analogous polypeptide segments of TEAS and DCS were 

found missing in the crystal structures probably due to the mobility that relates to the 

function of covering active sites.

This mutant was prepared following a similar method to that used for constructing 

EBFSA 14, by introducing an Ncol restriction site into the DNA sequence of the 

wild-type EBFS (Figure 5.8). The mutated plasmid was then treated with Ncol and the 

resulting large DNA fragment was intramolecularly ligated to give the desired 

plasmid (Figure 5.9).

1 ATGGCTACAAACGGCGTCGTAATTAGTTGCTTAAGGGAAGTAAGGCCACCTATGACGAA 

6 0  GCATGCGCCAAGCATGTGGACTGATACCTTTTCTAACTTTTCTCTTGACGATAAG -  3 '
3 ' -CGTACGCGGTTGGTACCCCTGACTATGG- 5 '

Figure 5.8: The 5 ’ to 3 ’ N-terminal region o f EBFS gene sequence (red) and the forward 
primer (purple, primer sequence is reversed and complementary) that generates Ncol 
restriction site (underlined) for construction o f EBFSA24.
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Figure 5.9: 1% Agarose gel analyses o f the EBFSA24 construct preparation. 
Lane 1: linearized plasmid that encodes EBFSA24 after Ncol digestion. Lane 
2: plasmid that encodes EBFSA24 after ligation. M: 1 kb DNA ladder.

The gene expression, protein overproduction and purification were carried out using 

the same methods as wild-type EBFS (Figure 5.10). Typically, 11 mg of EBFSA24 

was obtained per litre of culture.

1 0 5  -

1000

2 0 0  300

Volume ml
M  C

116.0 k
66.2 k
45.0 k
35.0 k

Figure 5.10: (A) Chromatogram for DEAE purification o f EBFSA24. (B) 13% 
SDS-PAGE analysis. Lane 1-11: eluent fractions. Lane M: protein marker. Lane C: 
concentrated protein.
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10 pM of purified EBFSA24 was incubated with 1 mM FDP overnight at room 

temperature. GC-MS analysis of the hexane-extractable products showed no 

sesquiterpene product. The product profile of this mutant was further investigated by 

an ether extraction and GC-MS analysis revealed that no polar product was formed 

either. Activity loss in the truncated mutant EBFSA24 confirmed that the N-terminal 

region was an essential element for catalysis, which is in agreement with the proposed 

theory that the N-terminal domain may function by capping the active site.

5.3 N -Term inal region chim eras

5.3.1 D24AAE

The truncated mutants established an important role for the N-terminal region in 

catalysis. However, the question still remains whether the N-terminal region has any 

contact with the surrounding loops as proposed, or if it only positions above the active 

site, capping the pocket. As mentioned before, sequence alignment among five plant 

sesquiterpene synthases showed only three conserved residues, two prolines and a 

serine, in the mobile part of the N-terminal region. The conserved Pro 17 and Pro23 of 

EBFS may confer some rigidity to the structure but are unlikely to form strong 

interactions with other residues (Figure 5.11). The conserved Ser24 of EBFS shows 

no strong interaction with surrounding residues in the homology model and a similar 

conformation of the corresponding Ser relative to the surrounding residues was 

observed in the crystal structure of DCS. In this case, if the deleted segment has any 

specific interaction with the remaining part of the enzyme, the segment swapping 

mutants should compromise all these links and show changes either in product 

selectivity or catalytic activity.
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N-tcrminal region

GAS 1 MAAVEANGTLQANTKTTTEPVRi LANFPPSVWGDRFLSFSLDNK 44
GCS 1 M AASS ADKCR LANFH SVWGYHFLSYT. HEI 31
TEAS 1 MASAAVANYEEEIVRPVADFSPSLWGDQFLSFSIKNQ 37
DCS 1 MASQVSQMPSSSPLSSNKDEMR KADFQi SIWGDLFLNCPDKNI 44
EBFS 1 MATNGWISCLREVRPPHTKHAL SMWTDTFSNFSLDDK 38

EBFSA 14 EBFSA24

D24AAE 1 MEPSSSPLSSNKDEMRh KADFQPSMWTDTFSNFSLDD 37
E24AAD 1 MATNGWISCLREVRPPMTKHAPSIWGDLFLNCPDKN 37
D 2 4A A E -S 24T /W 26G  1 MEPSSSPLSSNKDEMR KADFQ TMGTDTt SNFSLDD 37
E24A A D -S24W  1 MATNGWISCLREVRPl MTKHAPWIWGDLFLNCPDKN 37

Swapped N-tcrminal region

Figure 5.11: Amino acid sequence alignment o f N-terminal region offive plant sesquiterpene 
synthases and the N-terminal region for the chimeras. Conserved residues are coloured. Solid 
triangles denote cut positions for N-terminal region truncated mutants.

Mutant D24AAE was constructed by replacing the first 24 amino acids of EBFS with 

residues 1 and 7-30 of DCS (as residues 1-9 of DCS were shown to have very little 

effect on the enzyme activity (vide supra)) (Figure 5.12). The cDNA of D24AAE was 

created by ligation of the DNA encoding EBFSA24 following Ncol digestion with a 

DNA fragment encoding the chosen amino acids from DCS. The smaller DNA 

fragment was designed to anneal with Ncol restriction sites at both ends. To check 

whether the small DNA fragment was ligated with the insert DNA, a colony PCR 

method was designed by measuring the DNA length between the T7 promoter and the 

586th base pair position using T7 primer and primer EBFS-P586 (Figure 5.13). A 

blank experiment was carried out using the plasmid of EBFSA24 as template DNA.
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Ncol Ncol £coRI C-tenninal domain
DCS N H y v - r j-  | - 1 ■ —| - v r o o -

19 bp 91 bp 1665 bp
(7 aa) (31 aa) ( 5 5 4  aa)

Ncol Ncol
EBFS W  COO'

1 bp 73 bp 1653 bp
(1 aa) (25 aa) (550 aa)

Ncol
D24AAE NH3̂

1653 bp 
(550 aa)

Ncol
E24AAD NH3' 5 ’ Wm   |-3  COO

1647 bp 
(548 aa)

Figure 5.12: Schematic diagram o f  the N-terminal region-swapping tests. Line drawings 
depict composite diagrams for wild-type DCS (coloured white), wild-type EBFS (coloured 
black), D24AAE and E24AAD genes.

Figure 5.13: 1% Agarose gel analyses o f  colony PCR products. Level 0: parent vector (i.e. 
encoding EBFSA24) with no oligonucleotide pair fragment ligated. Level 1 : parent vector 
with one oligonucleotide pair fragment ligated. Level 2: parent vector with two 
oligonucleotide pair fragments ligated. Lane B: PCR product using only parent vector as 
DNA template.

Since both ends o f  the designed primer fragment had the same Ncol restriction site, 

the correct orientation o f  the construct was confirmed by DNA sequencing. As a 

result o f the N col restriction sites introduced for construction o f the chimera, residues 

24 and 26 o f  D24AAE were initially Thr and Gly respectively rather than Ser and Trp 

in the wild type. M utant D24AAE-S24T/W 26G was overproduced the same way as 

WT-EBFS. However, very little protein was obtained after incubating cells at 16 °C



overnight. To solve the problem, a test expression was performed (Figure 5.14). Cells 

were grown at 37 °C to an OD60o o f  0.6 before addition o f IPTG (0.1 mg/ml) at 16 °C 

and 37 °C respectively. Protein production was monitored by SDS-PAGE up to 12 h. 

A slight im provement was observed at an expression temperature of 37 °C.

66.2 k 

45.0 k

Figure 5.14: 13% SDS polyacrylamide gel o f  test expression under 
different temperature. Lane 1: 37 °C for 1 hr. Lane 2: 16 °C for 2 hr.
Lane 3: 37 °C for 2 hr. Lane 4: 16 °C for 6  hr. Lane 5: 37 °C for 4 hr.
Lane 6 : 16 °C for 12 hr. Lane M: protein maker.

In addition, an increased amount o f IPTG (1 mg/ml) was applied to initiate expression. 

No obvious band around M W  63830 was observed (Figure 5.15).

1 2 3 4 5 6  7 M

Figure 5.15: 13% SD S polyacrylamide gel o f  D24AAE-S24T/W26G test expression 
induced by IPTG (1 mg/ml) under different temperature. Lane 1: before induction.
Lane 2: 37 °C for 1 hr. Lane 3: 16 °C for 2 hr. Lane 4: 37 °C for 2 hr. Lane 5: 16 
°C for 6  hr. Lane 6 : 37 °C for 4 hr. Lane 7: 16 °C for 12 hr. Lane M: protein maker.

Further expression testing was performed by employing BL21-CodonPlus(DE3)-RIL 

cells and BL21-Star(DE3) cells. Expression was induced by addition o f IPTG (0.1 

mg/ml) at 16 or 37 °C respectively. BL21-CodonPlus(DE3)-RIL cells yielded the best
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protein production (F igure 5.16). A  good level o f  targeted protein was obtained after 4 

hr at 37 °C

Figure 5.16: 13% SD S polyacrylam ide gels o f  test expression with BL21-CodonPlus(DE3)-RlL 
cells (A) and BL21-Star(DE3) cells (B). Lane 1: 37 °C for 2 hr. Lane 2: 37 °C for 4 hr. Lane 3: 
before induction. Lane 4: 16 °C for 2 hr. Lane 5: 16 °C for 6  hr. Lane 6 : 16 °C for 12 hr. Lane 7: 
before induction. Lane 8 : 16 °C for 2 hr. Lane 9: 16 °C for 6  hr. Lane 10: 16 °C for 12 hr. Lane 
11: 37 °C for 2 hr. Lane 12: 37 °C for 4 hr. Lane M: protein maker.

The large-scale expression  w as carried  out by grow ing cells to an O D 6 0 0  o f  0.6 at 37 

°C. Expression w as in itia ted  by addition o f  IPTG  (0.1 m g/m l) and cells were 

incubated for another 5 hr. The overexpressed protein w as purified in the same way as 

wild-type EBFS and typically  10 m g o f  purified protein w as obtained per litre of 

culture (Figure 5.17). Incubation  o f  10 pM  o f  D 24A A E-S24T/W 26G  w ith 1 mM FDP 

gave no G C-M S detectable sesquiterpene product (Figure 5.18). A fter performing 

site-directed m utagenesis to return  position  24 and 26 the w ild-type residues and the 

recom binant protein  w as p roduced and purified by the same m anner as that of 

D 24A A E-S24T/W 26G  (F igure 5.17). Typically, 20 m g o f  purified protein was 

obtained per litre o f  culture. Incubation o f  D 24A A E w ith FDP overnight and analysis 

o f the hexane extractab le products by G C-M S show ed that (£)-|3-farnesene was the 

only sesquiterpene p roduct (F igure 5.18).
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Figure 5.17: Chromatograms fo r  DEAE purification o f D24AAE-S24T/W26G (A) and 
D24AAE (B) and 13% SDS-PAGE analyses o f  each purification (C) and (D). Lane 1-11: 
eluent fractions for D24AAE-S24T/W26G. Lane 12-24: eluent fractions for D24AAE. Lane M: 
protein marker. Lane C: concentrated protein.
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Figure 5.18: GC traces fo r  hexane extractable product profiles from an overnight incubation 
o f 10 pM  D24AAE-S24 T/W26G (A) and 10 pM  D24AAE (B) with 1 mM FDP.

An optimised incubation time o f 30 min and an enzyme concentration of 0.2 pM were 

determined to meet the requirements for Michaelis-Menten kinetic assay before the 

actual run (Figure 5.19). The kcat and Km were determined to be 0.005 ± 0.00005 s' 1 

and 7.5 ± 1.1 pM respectively. A slight reduction o f turnover rate was observed, 

while generally the kinetic efficiency was comparable to the wild-type enzyme, 

suggesting that no strong interactions between the loop region (M1-S24) and 

C-terminal domain are existed or they are unimportant for catalysis.
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F ig u re  5 .1 9 : Kinetic analysis o f  D24AAE. (A )  T im e cou rse (0 .2  pM  en zym e, 10 pM  FDP); 

(B ) P lot o f  v e lo c ity  a ga in st en z y m e  con centration  (1 0  p M  F D P , 3 0  m in  incubation tim e); (C) 

M ich aelis-M en ten  p lo t (in cu b ation  o f  0 .2  p M  en zy m e w ith  rad iolab elled  substrate for 30  m in  

at 22 °C ).

Nevertheless, the conserved Ser and Trp residues are essential for the catalysis since 

the double mutant D24AAE-S24T/W26G lost catalytic ability. A closer look into the 

homology model of EBFS, reveals that the conserved Ser residue is facing into the 

C-terminal domain (Figure 5.20). Although it does not appear to have any strong 

interaction with surrounding residues, it sits very closely to helix C and A-C loop, 

which are the key components of the active site pocket. Previous studies of TEAS 

showed that this region is essential for determining the product outcome, by 

specifically controlling the shift of the methyl group (91, 161). Our mutagenesis 

studies also revealed that the product specificity of DCS totally relies on the 

subdomain that consists of helix A to helix D (Section 3.2.2). Ser24 was found in a 

distance of 3-4 A with residues Asp265 from A-C loop and V268 from helix C in the 

homology model of EBFS, which suggested van der Waals interactions. Changes 

made to the Ser could introduce steric clash with A-C loop and helix C, leading to a 

change in volume of the active site cavity. Such change usually has a negative 

influence on catalytic activity, which was displayed before by the results of active site 

mutations of EBFS. The conserved Trp residue was also found to have a possible 

interaction with helix C, which was investigated by additional mutagenesis studies 

(Section 5.4.1).
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Figure 5.20: Cartoon representation o f  EBFS showing the position o f S24 
relative to A-C loop and helix C in the homology model o f  EBFS. Bound 
FDP is shown as cyan sticks. A-C loop is coloured blue and helix C is 
coloured magenta. S24, D265 and V268 are shown as yellow sticks.

5.3.2 E24AAD

The equivalent experiment o f mutant D24AAE was also carried out based on DCS. 

The mutant E24AAD was prepared by replacing the first 30 amino acids of DCS with 

the first 24 amino acids o f EBFS (Figure 5.12). The cDNA of E24AAD was prepared 

by ligation o f the DNA encoding DCSA30 (constructed by Dr. Veronica Gonzalez in 

our group) following N col digestion with a DNA fragment encoding the first 24 

amino acids o f EBFS. The insert DNA fragment was designed to anneal with the Ncol 

restriction sites at both ends. DCSA30 was one of the N-terminal region truncated 

mutant based on DCS, o f which the first 30 amino acids were eliminated. Formation 

of the targeted construct was monitored by colony PCR using forward T7 primer and 

reverse DCS-P557 primer based on the same method used for D24AAE (Figure 5.21). 

A blank experiment was carried out using the plasmid o f DCSA30 as template DNA. 

Plasmids with the expected DNA length were sequenced and the confirmed construct 

was used for the following experiments.
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Figure 5.21: 1% Agarose gel analyses o f  colony PCR products. Level 0: parent vector {i.e. 
encoding DCSA30) with no oligonucleotide pair fragment ligated. Level 1: parent vector with 
one oligonucleotide pair fragment ligated. Level 2: parent vector with two oligonucleotide 
pair fragments ligated. Lane B: PCR product using only parent vector as DNA template.

To introduce Ncol restriction sites for the swapping strategy, Ser30 of DCS was 

mutated to Trp; The S30 of DCS became S24 in the chimeric enzyme E24AAD since 

the first 6  amino acids of DCS were omitted for the swapping strategy. The 

tryptophan mutant, E24AAD-S24W, was produced and purified following the same 

protocol as the wild type DCS (Figure 5.22). Typically, 23 mg of purified protein was 

obtained per litre of culture.
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Figure 5.22: (A) Chromatogram for DEAE purification o f E24AAD-S24W. (B) 13% 
SDS-PAGE analysis. Lane 1-10: eluent fractions. Lane M: protein marker. Lane C: 
concentrated protein.
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Incubation of this mutant with FDP gave two sesquiterpene products. 8-Cadinene, the 

main product takes up 90% of the total production and an unknown product 

(appearing at 24.87 min) contributes another 10% (Figure 5.23).
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F ig u re  5 .23 : GC traces for hexane extractable product profile from overnight incubations of 
10 pME24AAD-S24W (A) and 10 pME24AAD (B) with 1 mMFDP.

In addition to the change of product profile, the kinetic parameters were greatly 

affected. A Km of 17.7 ±3.9 pM and a kcat of (1.4 ± 0.1) x 10"4 s’1 were obtained from 

kinetic analysis (Figure 5.24). Although the Km was not affected much, the Âat was 

reduced by about 100 fold.
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F ig u re  5 .24 : Kinetic analysis o f E24AAD-S24W. (A ) T im e cou rse (0 .3 4  p M  en zym e, 10 pM  

FDP); (B ) P lot o f  rad ioactiv ity  le v e l again st en zym e concentration  (1 0  pM  FD P, 15 m in  

incubation tim e); (C ) M ich a e lis -M en ten  p lot (incub ation  o f  1 .36 p M  en zym e with  

radiolabelled  substrate for 4 5  m in  at 2 2  °C ).

The S24W mutation was corrected by site-directed mutagenesis and the gene of 

E24AAD was expressed following transformation into BL21-CodonPlus(DE3)-RIL



cells. Expression and purification of E24AAD were carried out by the same method as 

wild-type DCS (Figure 5.25). Typically, 30 mg of purified protein was obtained per 

litre of culture. In agreement with the previous study of chimera D24AAE, the mutant 

E24AAD maintained high-fidelity as parental enzyme DCS by converting FDP into 

6-cadinene as the only product (Figure 5.23) and reserved similar catalytic activity at 

the same time. Kinetic analysis showed a KM of 12.5 ±1.3 pM and a &cat of 0.031 ± 

0.003 s '1 (Figure 5.26).

Figure 5.25: (A) Chromatogram for DEAE purification o f E24AAD. (B) 13% SDS-PAGE 
analysis. Lane 1-13: eluent fractions. Lane M: protein marker. Lane C: concentrated protein.
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Figure 5.26: Kinetic analysis ofE24AAD. (A) Time course (0.34 pM enzyme, 10 pM FDP); 
(B) Plot of velocity against enzyme concentration (10 pM FDP, 15 min incubation time); (C) 
Michaelis-Menten plot (incubation of 0.1 pM enzyme with radiolabelled substrate for 30 min 
at 22 °C).
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A single mutation S24W in the chimera E24AAD changes both the product profile 

and the catalytic activity, supporting the predicted role of the conserved Ser residue in 

maintaining the precise conformation of helix C. The swapped N-terminal reigon does 

not affect the catalysis, supporting the assumption that the region before the 

conserved Ser has no strong interaction with the rest of the protein. The main function 

of this region appears to be sequestering the active site during catalysis.

5 .4  S i t e - d ir e c t e d  m u t a t io n s  r e la t e d  to  N - t e r m in a l  r e g io n

5.4 .1  E B F S -W 2 6 E

A closer look at the homology model of WT-EBFS revealed that the conserved Trp 

residue had a possible interaction with helix C (Figure 5.27), which was also observed 

in the crystal structure of DCS. The indole side chain of Trp26 is positioned close to 

the carboxyl group of conserved E269 and a hydrogen bond could be formed in 

between. Compromising this interaction may increase the mobility of the loop, 

leading to the change of activity.

Figure 5.27: Cartoon representation o f EBFS showing the 
position o f  W26 relative to E269 in the homology model o f EBFS.

Mutation EBFS-W26E was designed to disrupt the proposed hydrogen bonding and 

instead introduce a repulsive interaction between the N-terminal region and helix C, 

to investigate the effect of this specific structure on enzyme selectivity or catalytic
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efficiency. To make the mutant, the native codon TGG was replaced by GAG using 

site-directed mutagenesis. EBFS-W26E was produced and purified in the same way as 

the wild type EBFS (Figure 5.28). Typically, 30 mg of purified protein was obtained 

per litre of culture. GC-MS analysis showed a single peak for (£)-P-famesene 

following an overnight incubation of EBFS-W26E with FDP (Figure 5.29).
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Figure 5.28: (A) Chromatogram for DEAE purification o f EBFS-W26E. (B) 13% SDS-PAGE 
analysis. Lane 1-11: eluent fractions. Lane M: protein marker. Lane C: concentrated protein.
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Figure 5.29: GC trace for incubation o f hexane extractable product profile 
from an overnight incubation o f 10 pMEBFS-W26E with 1 mMFDP.
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This mutation was predicted to increase the mobility of the N-terminal region, which 

would possibly lead to a reduction of enzyme activity since all the previous studies 

defined that the only function of the N-terminal region is to cap the active site. 

However, EBFS-W26E was found to be more active than wild-type EBFS. The of 

this mutant was determined to be 2.9 ± 0.6 pM, which is about 2 times lower than the 

wild enzyme (6.4 pM) and the kcat was 0.027 ± 0.001 s'1, which is a 2 fold increase 

compared to the wild type enzyme (0.015 s'1) (Figure 5.30).
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Figure 5.30: Kinetic analysis o f  EBFS-W26E. (A) Time course (0.1 pM enzyme, 4 pM FDP); 
(B) Plot of radioactivity level against enzyme concentration (4 pM FDP, 15 min incubation 
time); (C) Michaelis-Menten plot (incubation of 0.1 pM enzyme with radiolabelled substrate 
for 15 min at 22 °C).

According to the homology model of EBFS, this conserved Trp is located outside the 

C-terminal domain and is therefore unable to affect the actual reaction by contributing 

either chemical or steric effects. In this case, the most likely explanation for the 

increased catalytic efficiency is that the increasing mobility of the N-terminal region 

has a positive effect on the product releasing process, which is believed to be the most 

likely rate-limiting step of the reaction (775). Further studies need to be done to 

confirm this assumption.

5.4.2 EBFS-E269M

To compromise the proposed hydrogen bond between W26 and E269, the conserved

Glu residue was mutated to Met, which has a similar side chain length. EBFS-E269M

was prepared by replacing the native codon GAG with ATG. The mutant was

produced and purified in the same manner as the wild-type EBFS (Figure 5.31).
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Typically, 9 mg of purified protein was obtained per litre of culture. The 

EBFS-E269M mutant maintains the high fidelity since (£)-|3-famesene was the only 

hexane extractable sesquiterpene product after an overnight incubation with FDP 

(Figure 5.32).
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Figure 5.31: (A) Chromatogram for DEAE purification o f EBFS-E269M. (B) 13% SDS-PAGE 
analysis. Lane 1-11: eluent fractions. Lane M: protein marker. Lane C: concentrated protein.
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Figure 5.32: GC trace for incubation o f hexane extractable product profile 
from an overnight incubation o f 10 pM EBFS-E269M with 1 mM FDP.



Compared to the wild type enzyme, a 3 fold lower Km (1.8 ± 0.4 pM) was seen from 

kinetic assay of EBFS-E269M, whereas the kcat (0.00011 ± 0.00001 s'1) was reduced 

by roughly 140 fold (Figure 5.33). The reduction in the catalytic activity of the mutant 

EBFS-E269M may be due to the change of the active site contour. According to the 

modelling studies by mutating conserved Asp into Met in both crystal structure of 

DCS and homology model of EBFS, the side chain of Met showed a different 

conformation comparing to the original Glu; it pointed towards the active site centre 

rather than the conserved Trp. In the crystal structure of DCS, the mutated Met even 

introduced a steric clash with the substrate analogue 2F-FDP. Clearly, the mutation 

has caused a deleterious effect on the precisely defined active site contour and this 

could explain the observed reduction of enzyme activity. In addition, SDS-PAGE 

indicates poor binding affinity of this mutant to the anion exchange column, which 

could also indicate a change of the protein structure.
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Figure 5.33: Kinetic analysis o f  EBFS-E269M. (A) Time course (0.25 pM enzyme, 5 pM 
FDP); (B) Plot o f radioactivity level against enzyme concentration (5 pM FDP, 30 min 
incubation time); (C) Michaelis-Menten plot (incubation of 0.1 pM enzyme with 
radiolabelled substrate for 30 min at 22 °C).

5.4.3 EBFS-F30A

Another conserved residue Phe30 also seems to be involved in a special structure that

stabilizes the N-terminal region. In the homology model of EBFS, this residue appears

to be trapped in a pocket formed by residues from both the C-terminal domain and

N-terminal loop and deletion of the phenyl group from the pocket could possibly

increase the mobility of the N-terminal region (Figure 5.34). By introducing better

mobility to the N-termini, an improvement of catalytic efficiency was expected for
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this mutant as observed for the mutant EBFS-W26E.

Figure 5.34: Cartoon representation o f EBFS showing the position o f 
F30 and surrounding residues in the homology model o f EBFS.

EBFS-F30A was prepared by mutating the native codon TTT to GCT. The mutant 

was produced and purified by the same procedure used for the wild-type EBFS 

(Figure 5.35). Typically, 21 mg of purified protein was obtained per litre of culture. 

Incubation of purified EBFS-F30A with FDP gave (£)-(3-famesene as the only hexane 

extractable product (Figure 5.36).
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Figure 5.35: (A) Chromatogram for DEAE purification o f EBFS-F30A. (B) 13% SDS-PAGE 
analysis. Lane 1-13: eluent fractions. Lane M: protein marker. Lane C: concentrated protein.
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Figure 5.36: GC trace for incubation o f hexane extractable product profile 
from an overnight incubation o f 10 pM  EBFS-F30A with 1 mM FDP.

Kinetic assay of EBFS-F30A showed an improvement in both substrate binding 

affinity and catalytic turnover. The KM (1.5 ± 0.2 pM) was about 4 times lower than 

the wild type EBFS and the Âat (0.044 ± 0.002 s'1) increased by about 3-fold 

compared to the wild type enzyme (Figure 5.37); therefore a 12-fold increase in 

catalytic efficiency was observed for this mutant. Thus, increasing mobility of the 

N-terminal region appears to confer the enzyme with a better substrate binding 

affinity and also facilitates the product release step, leading to a better enzyme 

catalytic efficiency.
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Figure 5.37: Kinetic analysis o f  EBFS-F30A. (A) Time course (0.015 pM enzyme, 5 pM 
FDP). (B) Plot o f radioactivity level against enzyme concentration (5 pM FDP, 15 min 
incubation time). (C) Michaelis-Menten plot (incubation o f 0.025 pM enzyme with 
radiolabelled substrate for 15 min at 22 °C).



5.4.4 DCS-F36A

The mutants EBFS-W26E, EBFS-269M and EBFS-F30A revealed improved enzyme 

catalytic efficiency, with EBFS-F30A showing the biggest improvement. The 

corresponding mutation DCS-F36A was carried out to investigate if this pattern can 

be also applied to DCS. The mutant was made by replacing the native codon TTC 

with GCC. DCS-F36A was produced and purified by Dr Veronica Gonzalez. When 

DCS-F36A was incubated with FDP overnight, the only hexane extractable product 

determined by GC-MS was 6-cadinene (Figure 5.38).
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Figure 5.38: GC trace fo r  incubation o f  hexane extractable product profile 
from  an overnight incubation o f  10 p M  DCS-F36A with 1 m M  FDP.

In agreement with previous results, improvement was found for both substrate binding 

affinity and catalytic turnover rate. The Km value was found to be 1.9 ± 0.3 pM, 

which is about 5 times lower than the value of the wild type enzyme. The kcat (0.043 ±

0.012 s'1) increased 3-fold compared to the wild type enzyme (Figure 5.39). Both 

changes lead to an overall 15 times increase in catalytic efficiency. This mutant again 

supports the hypothesis that the N-terminal region could play an important role in 

regulating substrate binding and product release.
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Figure 5.39: Kinetic analysis o f DCS-F36A. (A )  T im e cou rse (0.06 pM  en zym e, 5 p M  FDP); 

(B ) P lot o f  rad ioactiv ity  le v e l again st en zy m e concentration  (5 p M  F D P, 15 m in  incubation  

time); (C ) M ich a elis-M en ten  p lo t (incubation  o f  0.06 p M  en zy m e w ith  rad iolabelled  substrate 

for 15 m in at 2 2  °C ).

5.5 Conclusions

Plant sesquiterpene synthases have variable length N-terminal region and little amino 

acid sequence similarity before the first conserved Pro. Therefore, this part of the 

segment might contribute veiy little to the catalysis. This is consistent with the result 

for the truncated mutant EBFSA14, which showed very similar catalytic activity to its 

wild-type counterpart. Sequence similarity and identity appear after Pro 17 (EBFS) 

and loss of residues 15-24 (EBFS) abolishes enzyme activity, suggesting that this part 

of the segment may have an important function causing it to be conserved among 

plant sesquiterpene synthases. In addition, the fact that EBFSA14 does not lose any 

catalytic efficiency rules out the proposed function for Argl5 of wild-type EBFS in 

closing the active site conformation.

Results from the chimeric enzymes indicate that the interactions between the 

N-terminal region and the C-terminal domain mainly start from the conserved Ser. 

The region before this residue is needed to cap the active site pocket but either no 

strong interactions exist between this region and the C-terminal domain or they are 

unimportant for catalysis.

The release of sesquiterpene product is believed to be the most likely rate-limiting 

step of the reaction (175). Site-directed mutagenesis studies toward the conserved Trp
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and Phe residues suggest that better mobility of the N-terminal region could facilitate 

this step. In addition, these mutations may increase the hydrophilicity around the 

active site, which could also accelerate the departure of the hydrophobic product. 

Notably, while the regions from Metl to Pro29 and Lys42 to Asp45 are missing from 

the crystal structure of DCS, residues 30-41 -  i.e. around the proposed stabilising 

regions -  are well defined. This observation further supports the role of the conserved 

Trp and Phe residues in stabilizing the N-terminal region.
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Chapter 6: General Conclusions and 
Future Work
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6.1 DCS

The catalytic specificity and activity of wild-type DCS (Gossypium arboretum) were 

in agreement to the previously published results (100). The secondary structure of 

DCS was determined by CD spectroscopy and agreed well with the proposed overall 

a-helical fold. The role of the aspartate-rich DDXXD motif was confirmed by alanine 

substitutions. The first and the last aspartate residues were shown to have potential 

interaction with magnesium ions, which is consistent with the observation from the 

crystal structure of DCS.

Despite reports of how individual or groups of amino acid residues contribute to 

reaction cascades of sesquiterpene synthases, several of these studies have actually 

reported on the premature termination of multistep reactions and the release of neutral 

reaction intermediates. In contrast, site-directed mutagenesis experiments revealed a 

different circumstance for DCS. Modifications by substitution of residues from both 

first and second tier of the active site did not bring any functional divergence. The 

enzymatic formation of S-cadinene form FDP has been showed to involve a 

conversion of C2,C3-double bond geometry and a 1,6-ring closure. At the meantime, 

DCS can also catalyse 1,10 or 1,11 cyclisation of some FDP analogues with 

preserving the original C2,C3-double bond geometry. The mechanistic versatility of 

DCS may indicate a relatively flexible active site contour and the overall function of 

this active site may not be easily compromised by a few amino acid substitutions. Or, 

in another case, an unusual substructural component would determine the product 

specificity of DCS.

Domain-swapping experiments, based on the conserved exon organization among 

plant sesquiterpene synthase genes, have illustrated that the N-terminal domain and 

the subdomains that are encoded by exons 1, 2, 3, 5, 6 and 7 may have very little 

contribution towards the product specificity. However, the N-terminal combines with 

part of the exon 4 encoded C-terminal to form an alternative subdomain to the usual
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sesquiterpene catalytic domain. This subdomain is also able to convert FDP to 

6-cadinene but with lower activity. These findings suggest that the product specificity 

of DCS is most likely determined by the subdomain encoded by exon 4, which is 

similar to the observation for TEAS. In addition, it seems that the product specificity 

of DCS totally relies on this subdomain since no other sesquiterpene product was 

formed by hybrids. However, similar hybrids for TEAS could generate alternative 

products determined by the vetispiradiene synthase. Additional domain swapping 

experiments need to be done to verify the function of this assumption.

The importance of this subdomain was also illustrated by the mutant E24AAD-S24W. 

The mutation S24W could possibly alter the conformation of A-C loop and helix C 

that belong to the subdomain encoded by exon 4. This modification led to a changed 

product profile by showing an alternative sesquiterpene product compared with the 

parent counterpart (E24AAD). In addition, the catalytic activity of this mutant showed 

a significant reduction compared to the parent counterpart.

6.2 EBFS

Wild-type EBFS (.Mentha x piperita) has been fully purified and determined to be a 

monomer in MOPS buffer (pH 7.2). An overall a-helical fold was confirmed by CD 

spectroscopy. In contrast to previously reports (115), the product distribution was 

defined as (£)-|3-famesene (95%), (Z)-p-famesene (1.5%), (3Z, 6£)-a-famesene 

(1.3%), (3E, 6£)-a-famesene (0.2%) and another 5 unknown cyclic sesquiterpene 

products (<2% in total) when Mg2+ was employed as the cofactor.

A new mechanism was proposed for the enzyme by the study of substrate analogue 

2F-FDP. It was believed that the enzymatic formation of (£)-|3-famesene went 

through the ionization of trans-trans-famesyl diphosphate to the corresponding 

transoid ally lie cation (167). In the case, an El elimination was proposed according to 

the ionization theory. However, the fact that this enzyme can catalyze the conversion
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of 2F-FDP with a relatively good activity indicates that the proposed carbocation 

intermediate is unlikely to be formed in the process since the C2 fluorine can greatly 

inhibit formation of this intermediate through an inductive electron withdrawing 

effect. In other words, it seems the enzymatic reaction catalysed by EBFS simply goes 

through a concerted E2 elimination rather than the previously proposed El 

elimination.

The predominant production of (£)-p-famesene suggests a rigid active site cavity for 

this enzyme, which is very likely because of the active site conformation keep the 

middle and distal double bonds in a distance that is not close enough for any 

electrophilic attack to take place. The precisely defined active site cavity was further 

demonstrated by mutations introduced to the magnesium binding motif. Previous 

studies showed that some promiscuous sesquiterpene synthases could be conferred 

with new function by manipulating the magnesium binding motif. These promiscuous 

enzymes usually contain large active site pockets and changes to the magnesium 

binding motif could lead to alternative substrate binding conformations which allow 

different structures to be formed. However, in the case of EBFS, mutations to the 

magnesium binding motif did not expand the product profile; a huge reduction in 

catalytic activity was the only effect, indicating that the active site contour of EBFS is 

constructed as product-like to ensure the high fidelity.

A variety of aliphatic and aromatic residues line the hydrophobic active site cavity of

sesquiterpene synthases to ensure the proper binding conformation of the substrate

and stabilize carbocation intermediates. For EBFS, the residues within the active site

contour mainly contribute to constructing the active site geometry since no

carbocation is likely to be formed during catalysis. Thus, product selectivity should

mainly rely on the composition of these residues if the active site contour is the key

component determining the product outcome. However, substitution of residues that

directly contribute to the active site contour with obvious size differences did not

confer the enzyme with improved ability to produce cyclic products. An increased
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production of (3Z, 6£)-a-famesene was observed among certain variants, suggesting 

the modifications forced the substrate FDP to bind in the active site with a different 

orientation. Still, it seems modifications within the active site of EBFS are not 

sufficient to reconstruct the active site template to catalyse cyclisation reactions. 

Construction of an active site hybrid by replacing the active surface of EBFS with the 

corresponding part from DCS further supports this assumption. The hybrid contains a 

nearly identical active site surface to DCS, but the expected product 6-cadinene was 

not detected. In addition, the hybrid almost completely lost the ability to convert FDP 

into any sesquiterpene product. This result strongly suggests that the product 

specificity of EBFS is not entirely determined by residues within the active site; the 

catalytic specificity of this enzyme might be modulated at a distance by residues 

surrounding the active site, which may have a huge influence on the active site 

volume.

6.3 N-terminal region

The truncated mutants of EBFS suggest an important role for the N-terminal region in 

catalysis. The function of this segment mainly relies on the sequence after R15 since 

deletion of the first 14 amino acids has little effect on catalytic activity, whereas loss 

of residues 15-24 abolishes enzyme activity. Results from the chimeric enzymes 

further define the function for the initial part of the N-terminal region to be capping of 

the active site pocket only, since either no strong interactions exist between this 

region and the C-terminal domain, or they are unimportant for catalysis.

The ‘communication’ between the N-terminal region and the C-terminal domain was 

identified to begin with the first conserved Ser (DCS S30; EBFS S24). Mutagenesis 

and tertiary structure studies suggested a role for the Ser that it maintains the proper 

conformation of helix C that plays an important role in catalysis. The conserved Trp 

(DCS W32; EBFS W26) and Phe (DCS F36; EBFS F30) residues were discovered to 

be involved in specific structures that stabilize the N-terminal region. Mutagenesis of
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these two residues could compromise the initial structures therefore potentially confer 

better mobility to the N-termini. Mutants of these residues in both EBFS and DCS 

showed improved catalytic efficiency compared to their parent enzymes. However, no 

alcohol products were produced by these mutants, suggesting either water molecules 

still could not enter the active site or the mechanism for producing (£)-|3-famesene 

goes through a concerted fashion (without generation of any carbocation). This 

improved catalytic efficiency is probably because the better mobility of the 

N-terminal region allows accelerated product release, which is believed to be the 

rate-limiting step in the parent enzymes. In addition, these mutations may increase the 

hydrophilicity around the active site, which could also accelerate the departure of the 

hydrophobic product.

6.4 Conclusions

The ultimate aim of this study is to explore the evolutionary pathway for creating a 

significant divergence of biological function among sesquiterpene synthases from a 

common ancestor. The most critical function of this enzyme family is to provide a 

template for orienting bound substrate and lowering the initial activation energy. The 

unique mechanistic character of this evolutionarily versatile enzyme family also 

depends on the repetitive electrophilic and nucleophilic functionalities in the substrate. 

Coupled with sufficient conformational flexibility, the intrinsic reactivity can be 

easily tuned by natural selection to favour formation of alternative sesquiterpene 

product. Therefore, in order to understand the evolutionary pathway of the 

sesquiterpene synthase family, we have to find out how the specific amino acid 

residues and unique tertiary structure components coordinate with each other. Based 

on this knowledge, it may be possible to predict the catalytic capability of a terpene 

synthase solely on the basis of sequence similarity, making it easier to trace back to 

the common ancestor(s) of terpene synthases along the evolutionary pathway.

The product specificity was believed to be determined mainly by the plasticity of



residues comprising the active site contour. Mutagenesis studies of 19 active site 

residues of y-humulene synthase in various combinations revealed the biosynthetic 

array of sesquiterpenes generated by this enzyme can be altered to generate alternative 

predominant products by replacing only three to five active site residues at a time, 

which represented a perfect example supporting this theory. However, our studies 

toward EBFS and DCS illustrated that sesquiterpene synthases can evolve by 

alternative patterns to control the product outcome. In the case of EBFS, it seems that 

the active site cavity was constructed in the way that only acyclic structures can bind. 

Modification of the active site surface does not enable the enzyme to produce cyclic 

products. In contrast, (£)-p-famesene is quite often found in the product profile of 

other sesquiterpene cyclases. These results indicate the overall conformation of the 

active site of EBFS is possibly modulated at a distance by residues surrounding the 

active site. In this regard, modifications toward residues within the active site may 

only slightly affect the orientation of the famesyl chain rather than creating a totally 

different contour to accommodate the cyclic intermediate and product. Studies of the 

enzymatic chemistry of DCS revealed another potential method by which nature 

engineers the catalytic pathway for sesquiterpene synthases. Active site mutations 

showed that the residue composition of the active site surface could not determine the 

product specificity for DCS. In addition, the swapping of more than half of the 

functional domain with the phylogenetically related sesquiterpene synthase GCS did 

not bring any promiscuity to this high-fidelity enzyme. These findings are 

incompatible with all previous mechanistic studies for other sesquiterpene synthases. 

The unexpected results suggest the product specificity of DCS might be strictly 

defined by a subdomain encoded by a specific exon. Even though this assumption 

need to be verified by additional domain swapping tests, it indicates the possibility of 

engineering diversity in terpenoid biosynthesis by using phylogenetic information.

6.5 Future work

Plant sesquiterpenes have important uses in medicine, agriculture and industry,
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however comparatively little is known about the biosynthesis of this large class of 

compounds. The studies described here suggest that the product specificity of 

sesquiterpene synthases could be determined by different patterns. The product 

specificity of DCS was closely related to the subdomain encoded by exon 4. The 

importance of this subdomain could be further investigated by translocating the 

DCS-specific subdomain to that region of GCS. In addition, mutations could be 

introduced into this subdomain to examine the effect of specific residues and 

mutagenesis work may also be used to identify the minimum number of residues or 

specific combinations of mutants that are necessary for interconversion of the enzyme 

activities. The mutagenesis work has been based on crystallographic studies of DCS, 

but the current crystal structure contains an unusual conformation of the bound 

substrate analogue (2F-FDP) which may not represent the realistic substrate binding 

conformation. Therefore, different substrate analogues could be co-crystalized with 

DCS to obtain alternative, potentially more realistic, substrate binding conformations.

Further studies of EBFS would be greatly assisted by a crystal structure of this

enzyme. Work to obtain a crystal structure of EBFS is underway in collaboration with

Prof. David Christianson (University of Pennsylvania, Philadelphia, USA). Visual

inspection of the crystal structure with a substrate analogue could possibly confirm

the function of residues investigated in this study. To further investigate the

biosynthetic strategy of EBFS, the equivalent experiment to the formation of the

active site hybrid described here could be performed by replacing the shell of the

C-terminal domain of EBFS with the corresponding region of DCS while maintaining

only the original active site surface of EBFS. If this hybrid can produce cyclic

product(s), then site-directed mutagenesis could be employed to identify the minimum

number of residues or specific combination of residues that are necessary for the

interconversion of enzyme activities. And also, it may suggest that the product

specificity of EBFS is determined by the structure outside active site which could

have a great influence on the volume of the active site pocket. In that case, it would be

clear that the limitation towards the product specificity of EBFS is due to the active
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site volume.

The conclusion that the N-terminal region regulates the catalytic efficiency of certain 

sesquiterpene synthases is currently based only on studies of DCS and EBFS. The 

corresponding experiments may be performed on other plant sesquiterpene synthase 

to test the predictions made here. Such experiments would also test the universality of 

the conclusions made here among other plant terpene synthases in general. Further 

studies to optimize the function of N-terminal region can be done by making different 

combinations of the various mutations.

Most of the current studies focused on identifying residues within and surrounding the 

active site that contribute directly to the reaction specificity of terpenoid synthases. 

Modifications of these residues may be useful for designing novel functions for 

terpenoid synthases. However, such application is usually limited by the avalibility of 

an efficient screening method. In addition, it seems that the specificity for terpene 

synthase families is not always determined by the plasticity of residues. Therefore, in 

the long-term, exploring the structural features that govern reaction product 

specificity for various members of terpenoid synthase families should reveal a general 

perspective into the evolution of these enzymes. Such knowledge would also 

potentially assist the development in rational design and engineering of different 

catalytic activities into existing terpenoid synthases.
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Appendices



A I  Sequence alignment o f  DCSs, EBFSs and some other plant terpene synthases

Black: aliphatic residues. Purple: hydroxyl residues. Salmon: acidic residues. Teal: 
basic residues. Brown: aromatic residues. Mustard: imino residue. Olive: sulfur 
residues. Green: amide residues. For key to enzymes see key for A I.

1
2

3
4

5

6

7

8

9

10 
11 

12

13

14

15

16

17

18  

19

MASQVSQMPSS SPLSSNXDEMRPKADFQPSIN  

MASQVSQMPSSS PISSNXDEIRPKADFQPSIN  

MASQVSQMPSSS PLSSNXDEMRPKADFQPSIN  

MASQVSQMPSSSPLSSNXDEMRPKADFQPSIN  

MASQASQVLAS. PHPAISSENRPKADFHPGIN 

MATNGWISCLREVRPPMTXHAPSMN 

MS7LP IS  S VS FS S S T S PLWDDXVS 7XPDVIRH7MNFNAS IN  

MKDM8IPLLAAVSSS7EE7VRPIADFHPIXN 

MAMPVKLr PASLSIXAVCCRF5SGGRALRF

............................................... SHEASYLINQ............. RRSANYXPNIN

MALA:PFNNEEE; VRPVANFSPSIW 

MASAAVANYSSEIVRPVADFS PSLN 

MAAVQANVT'GIXANI’X'rSAEPVRPLANFPPSVM

MAASS............................... ADXCRPLANFHPSVN

MGSEVNRPLADFPANIN

MS 11SMNVSILSXPLNCLHNLERRP. . SXALLVPC7AP7AR............. LRASCSSXtQSAHQIRR. SGNYQPALN

MALXLLTSLP. .MYNFSRVPVSSXDPILLV’ISRTRNGYLARPVQCMVANXVSTSPDILRRSANYQPSIN 

MALLS IVSLQVPXSCGLXSLISSSNVQXALCISI'AVP'rLRMRRRQXALVINMXLT'rVSHRDDNGGGVLCRRIADHHPNLN 

1 MSPVSVISLPS . DLCLPTSFI DRS. GRELIPLH IT  IPNVAMRROGXLMTR. . ASMSMNLRTAVSDDAVIRRRGDFHSNLN

MEFRVHLHADHEQXILQNCMXP.

1 33 GDLFWCPDKNIDAET. . EKRHCQLKEEVRKMIVAPMANS...........

2 33 GDFFLNCPDKNIDAGT. . EKRHCCLKEEVRKMIVAPMANS...........

3 33 GDFFLNCPDKNIDAET. . CKRHGGLKEEVRKMIVAFMANS...........

4 33 GDLFUTCPDKNIDAET. . EKRHCQLKEEVRKMIVAPMANS...........

5 32 GDMFIICPDTDIDAAT. . SLOYEELKAQVRKMIMEPVDDS........... ........... NQKLPFIDAVQRLGVSYHFEKEIEDEIiENI

6 27 TDTFSNFSLDDXSQQX. CSETlEAUCQEARGMIiMAATTPL............ .............. QCK7LID7LERLGLSFHFE7EIEYX:e L I

7 43 GDQFLIYDEPEDLVMX. . XC LVE ELKEEVKKEL17 1XGSNE PMQ. ____ HVXL1ELIDAVQRLGIAYHFEEEIEEALQHI

8 32 GNHFLXSAADVSTIDAA'IQECHAAUCCEVRRMirTTANXL...........

9 31 GSSLPCWRRTPTQRSTSSSTT’RPAASVSSGKSXQHDQEASEA?. .

10 44 XNDFLDQSLISXYDGDEYRKLSEXI.IEEVKIYISAE7XDL........... ............VAKLZLIDSVRXLGLANHFEKEIKEALD GI

11 26 GDRFHSFSLDNQVAEX. YAGEIE7LKEQ7RS' LSAAACGI7____

12 26 g d q f l s f s : k n q v a e x . y a k e : e a l k e q 7 r n m l . . l a t g m x ------ ____ l a d t l n l i d t ie r l g is y h f e k e id d i l d q i

13 34 GDRFLSFSLDRSELER. YAIAMEXPKEDLRKLIVDP7MDS...........

14 21 GYHFLSYT. H EI7NQ E. . XVEVDEYKE7IRKMLVE7CDNS........... ........... TQKLVLIDAMQRLGVAYHFDNEIE IS IQ N I

15 18 ED P. ITSFSKSDLG7E7FXEXHS7LICEAVKEAFMSSXANP............ ............IENIXFIDALCRLGVSYHFEKDIVEQLDXS

16 66 DSNYI. QSLN7PY7ESRHLDRXASL:VQVRILL. XSXMEP............ ........... VQCI^LIHDLXYLGLSDFFQDEIKEILGVI

17 68 NHDYI. ESiaiEFVGE7C7RQINVLKEQVR>94L. HXW NP............ ............LEQLELIEIIQRW LSYHFEEEIKRILDGV

18 81 EDDFIQSLSSPYGGSS . YSERAVTWEEVKEMFNSIPN. NRELFGSQNDLL7RI.WMVDS lERLGIDRHFQNEIRVALDYV

19 77 DDDLIQSLSS PYGEPS. YRERAERLIGEVKNSFNSMSNEDGESIT PLDDLIQR1WMVD S VERLGIDRHFKKEIKS AID HV
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1 101Y ...H N N N T  XENDLYTTSlRFRLLREHGYNVSCDVFNKFKi: EQGNFKSSVTSDVRGLLELYQASYLKV.

2 101Y ...H N N N D  AE NTJ LYTT S LRFRLLRE HGYNVS C DVFNKFK: EQGNFKSSVTSDVQGLLELYQASYLRV.

3 101 Y . . . HNNN? AHMDLYTTSLRFRLLREHGFHVSCDVFUXFfC. EQGNFKS SVTS D VRGLLELYCAS YLRV.

4 101 Y. . .HNNNT AENDLYTTSLRFRLLREHGFNVSCDVFNKFKT EQGNFKSSVTSDVRGLLELYQASYLKV.

5 100 YRD.TNNND ADTDLYTTALRFRLLREHGFDISCDAFNKFKD EAGNFKASLTSDVQGLLELYEASYMRV.

6 95 NAAEDDGFD. LFATALRFRLLRQHQRHVSCDVFDKF1D KIXaCFEESLSNNVZGLLSLYEAAHVGF.

7 116 HVTYGEQWV.................... DKZNLQSISLWFRLLRQQGFNVSSGVFXDFVD EKGKFKESLCNDAQG1LALYEAAFMRV.

8 102  SHDLDS..................................DDLYWSLRFRLFRQQGVKISCDVFDKFKD DZGKFKESL1ND1RGMLSLYEAAYLA1.

8 105 YRSWLQRHEE.............. IMLDTMTCAMAFRILRI.NGYNVSSD2I.YHWEAS . . GLHNSLGGYrJTOTRTLLELHXASTVSlS

10 114 AAIZS. . . 0NLG-------TADDLYGTALHFKILRQHGYKVSQDIFGAFJ4DZ. . . KDT. UMHHFAHLHGMUELFEASNLGF.

11  97 YXADPNFDG......................... HDLNTLSLQFRILRQHGYNISOXFFSRFQD ANG. FKECLSN:: IRGLLNLY ASjfVRT.

12  95 YNQNSNCN ELCTSALQFRLLRQHGFNISPZIFSKFQD ■ ENGKFKESLASDVLGLLNLYEASHVRT .

13  103  FNKFSLQDY.................EEVDLYTISINFQVFRHVGYKLPCDVFNKFKDV. . . 55GTFKASITSDVG. WGLYESAQLRI •

14  88 FDASSKQND NDNNLYWSLRFRLVRQQGHYMSSDVFKQFTN____ SDGKFKE7LTN VQGLLSLYTASHLKV.

15  87 FDC1DFPQMVRQ EGCDLYTVG11FQVFRQFGFKLSADVFEKFKD ENGKFKGHLVTDAYQ4LSLYEAAQWGT.

16  134 YNEHKCFHNNEV------ SKMDLYFTALGFRLLRQHGFNISQDVFNCFKNE. . .KGIDFKASLAQDTKGHLQLYKASFLIR.

17  136  YNNDHGGDTKXA____ EN. . LYATALKFRLLRQHGYSVSQEVFNSFKDS. . . AGS . FKACLCEDTKGMLSLYEASFFll.

18  159 YSYWKEKZGIGCGRDStFPDLN5TALAl.RTLRI.HGYNVSSDV12YnCDQKGHFACPAHTEGClTRSVIiNIiYAASI.VAF.

19  156 YRYWSSK. GlGCGRESWTDLNSTALGlRTLRlHGYDVSADVLNHnCNQSGOFACTlKOTEDOlR. TVLNLYAASL1AF.

1 166 HGEDXLDEAXSFTTHHL5LAVA. . SLDHP......... LSEEVSHALKQSIRRGLPRVEARHYLS . VYQDIESHNK.......................

2 166 BGEDXLDEAISFTTNHLSLAVS . .SLDHP LSEEVSHALKQSIRRGLPRVEARHYLS . VYQDIESHNK.......................

3  166  HGEDILDEAISFTSNHLSLAVA. .SLDHP LSEEVSHALKQSIRRGLTRVEARHYLS .VYQDIESHNK........................

4 166  HGECILDEAISFTTNHLSLAVA. .SLDYP.........LSEEVSHALKQSIRRGLPRVEARHYLS . VYQDIESHNK.......................

5 167 HGEDILDEAISFTTAQLTLAL? . . TLHHP . LSEQVGHALKQSIRRGLPRVEARNFIS . IYQD1ESHMK.......................

6 159  AEERILQEAVNFTRHHLEGAE1D QSP111REKVKRALEHPLHRDFP1VYAR1FIS . IYEKDDSRDE.........................

7 184 EDETILDNALSFTKVHLD11AK. . DPSCDS. SLRTQIHQALKQPLRRALARIEAIHYX?. IYQQETSHNE.........................

8 165 RGEDILDEAIVFTTTHLKSV1STSDHSHANSNLAEQIAHSLQ1PLREAAARLEARYFLD.IYSRDDLHDZ.........................

9 177 EDESILDS1GSRSRT1LREQLE. SGGA1RKPSLFKEVEHALDGPFYTTLDRLHHRWNIENFN11EQHX1STPY1SN0HTS

10  182 EGEDILDEAKAS1T1ALRDSGH.1CYP. . DSNLSRDWHSLE1PSHRRVQWFDVKWQINAYEKDICRVNA.........................

11  162 HGEDILEEALVFSTAHLESAAP..HLZSP LSKQVTHALEQSLHKS1PRVETRYFIS . IYSZEEFKND.........................

12  159  HADCILEDALAFST1HLESAAP. . HLKSP LREQVTHALEQCLHKGVPRVETRFFISSIYDKEQSKNN.........................

13  171 RGEKILDEA5VFTEAXLKSWN. .TLEGD. . . LAQQVTQSLRRPFHQGKP1G1RQGSIS1TMKKNVP1MT.........................

14 156 RNEEILEEALTFTTTHLES1VS . . NLSNNNNSLKVEVGEALTQPIRMTLPRMGARKYIS . IYSNNDAHHH............

15  158  BGEDI1DEALAFSRSHLEE1S..................................... SRSSPHLA1RIKNALKHPYHKG1SR1ETRQYIS . YYEEEESCDP............

16  206  KGEDTLELAREFATKCLQKKLD.EGGNE1DENL11WIRHSLD1PLHWR1QSVEARWFIDAYARRPD MNP.........................

17  205  EGENILEEARDFSTKHLEEYVK . QNK. . . EKNLATLVNHSLELPLHWRMIRLEARWFINIYRHNQD VNP........................

18  238  PGEKVMEEAETFSASYLKEVLQ_____KTPVSSFSREIZYVLEYGWHTNLPRLEARNYIDVYGQDSYZSSNEMPYV. . .NT

19  233  PGEKVMDEAZSFSAKYLKEALQ_____KTPVSSFSREIGDVLEYGWHTYL?RI4£ARNYIDVFGQDTENSXS . . . YM. . .KT
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1 230 .ALLEFAKIDFNMIQFLHRKELSEICRWWKDLDFQRKl.PYARDRWEGYE'WI.SGVYFEr'QYSLGRKMI.TKVIAMASIVD

2 230 .ALLEFAKIDrMaQEXHRKELSEICRWWKL'LrFQRia^YARDRVVECYFWI.SCVYFEi^YSICRKMLTKVIAMMIVD

3 230 . VUaEFAKXDFNMVQLLHRlCELSEXSRWWKDIiOFQRKLPYARDRWEGYFWX. SGVYFh ; QYSLGRKMLTKVXAMASIV.

4 230 .VLLEFAKIEF»*VQLLHRKELSEISRWWKDXDFQRKI.PYIURERWECYFWI.SGVyFElXJYSLGRKMLTKVIAMASIVD

5 231 . SI<LCFAKXDFNll£LXiHRKEI>SEICRWWKDX>uF'rRKI»PFARDRWEGYFWI. XGVYFr.; QYSLGRKMLTKVXAMASIV:

6 224 . -XiUQtSKVNFXFXQNLYKEELSGIaSRHWN'IVfNI.XSKIaPYARDRWEAYVWG. VGYHYKPQYSYVRMGIAKGVLICGIMD

7 250 .DLUOAKLDFSVLQSMHKKELSHICKiWKDLCLQNKLFrVRDRWEGYFWI.LSlYYEPQHARTRMFLKKTCXWLWLD

8 234 . TLLKFAKLYF'NILQAAHQKEASIMrRWWNDLGFPXXVPYARBRIIE'rYINXlLGVSYEPNLAFGRIFASKVVCMITYID

9 256 RDHAISIRDFSSSQFTYQQSXOHLESWVKSCRLD.0WFARQK1AYFY1SA.AGTMFSPE-SDARTlHAKNGVLTTrVD

10 249 . 7LLC1AKLNFNMYQACLQKDI^EASXWWANLGIADNLKFARTR1VEC FACA. VGVAFEPZYSSFR1CLTKVINLVIIID

11 226 .VLLKFAKLDYNLLQKLHKHELSEVSRHWKCI^FVTrLPYARDRAVECYFirr.MGVYAEPQYSGARVlLAKriAMISIVS

12 224 .VLLRFAKI£FNL1QKLHKCELA0VSRWWKDLDFV-7LPYARDRVVECYF*IX.LGVYFEPQYS0ARVHLVK7ISH1SIVD

13 236 .HCUOAKLHFXYl^lOGKEELRlVSKHWKDMRFHiTTPYlRDRVPElYLiri.LQLYFEPRySLARirATKITlFLWLD

14 223 .LLLKFAKLrFNMLQXFHQAELSDLTRWIIKDLDFANKYPYARDREVECYFWI.LGVYFEPXYSaARKMMTKVLNLrSXID

15 222 .TLLEFAKIDFNUiQlLHREELACVrRWHHEMZFXSKV-YrRHRirEAYLIIS.lGrYFEPQYSOARVirTMAllLFTAlD

16 274 .LIFELAKLNFNXIQXTHQGELXDLSRWMSRI.CFPEKI.PFVRDRIVESFFWA.VGXFEPHQHGYQRKKAATIIVLATVID

17 270  . ILI*t FAELT: FNXYQAtvHQAELXGVSTWWKSTGlVXNLSFARDRPVENFFWT . VGLIFGPQFGYCRPMFTKVFALIT7ID

18 311 CKXJUKLAKLEFNIFHSI^QKEJUJYISRHWKDSCSS.HLEFrRHRHVEYYTMA.SClSMEPXHSAFRI.GFVKrCHI^.TVLD

19 303 EXLLEUUaUEFNIFHALGKRELEYLVRHWKGSGSP.CKTFCRHRHVEYYriA.SClAFEPQHSGFRLGFAKACHlITVLC

1 308 DTYDSYATYEELXPYTHAXERMDIKCXDEl. .PEYMKPSYKALLDVYE EMVQLVAEHGRQYKVEYAKNAMIRLA. . QSY

2 308 DTYDSYATYEELIPYTNAIERHDIKCIDEL. . FEYMKPSYKALLDVYX. EMEQLVAEHGRQYRVflYAKNAMIRLA. .QSY

3 308 DTYDSYATYEEUPYTKAXERMDXKCXDEI,. .PEYMKPSYKALLDVYE EMEQLVAEHGRQYRVEYAKNAMIRLA. . QSY

4 308 -TYDSYATYEELIPYTXAIERWDIKCIDEL. . PEYMKPSYKALLDVYE . EMEQLYAKHGRQYRVEYAKXAMIR1A. .QSY

5 309  DTYDSYATYDELIPYTNAIERWLIKCMNOL. . ,  NYMKISYKALLNVY- J MEQLLANGGRQYRVEYAKKAMIRLV. . QAY

6 302  CTYDNYATLNEACUTQVLDXWDRDSAERI.. . PE YHKIVYXFILSI YE . NYE ADAAKIGXS FAA? Y FIG 7VKQLA. . RAF

7 328  CTFDNYGTYEEI^IFTCAVERWSISCLDML. . PEYMK1IYCSLVKG.HV. EMEESLGKGGXNISNSLCQGRUQKELGSQX?

8 313  DTFDAYCTFEEX.7XJTEAV7RWDIG1ID71. .PEYKKF1VKALLD1YR.EAEEELAKEGRSYG:PYAKG>MGEI.:. .1LY

9 334  DFFDVAGSiOUELENlVMlVEMWDEHHXVEFY.SEOVEXlFSSlYDSVN.O^GEXASlVGDRSirXHLVElMEDLl..XSM

10  327  DVYBZYGSEEELXHFTKAVDRHDSREYEQL.. PECMKMCF0VLYN77CE1AHE1EXDNGWNGVLPGL7KVWADFC. .KAL

11 304 DTFDAYGIVXEI^VYTDAIGIWDISQIDRI. . PEYWCVSFKALLDLYE . DYEXELSKDGRSDVVHYAKERMKEIV. .RNY

12 302 DTFDAYGrVKELEAYTDAIGRWDINEIDRl. . >DYMKISYKA:LD:.YX.DYEXELS5AGRSH:VCHA:EPMKEW. .RNY

13 314 DTYDAYATIEEIRLLTDAINKNDISAMEGI. . PEY:RPFYK:LLDEYAGNWRAXWEKXGSQllX.LLGiaCRSKrLA. .RGY

14 301 DTFDAYATFDELVTFNDAXGRWDANAIDS: . .CPYMRPAYGAUiDIYS.EMEQVLSKEGXLDRVYYAlQiEIOGCLV. . ray

15  300 DMYDAYGTKEEI£I«ETDAMDEWLPWPDEI P1PDSMKF1YNVTVEFYD. XLDEELEKEGRSGCGF;1LKKS7GX7A. . NGY

16  352  DIYDVYGTLDELELFTD7FXRND7ESI7RL. . PYYMQLCYWGVHNYISDAAYDILKEHGF. FCLGYLRKSVVDLV. .EAY

17  348 DVYDVYGTI^ELEIJTDWERWDINAMDGL. .PDYMKICFl'rLHHSVNSMAEDTiCCECAF.HllXYIjaaWVDLC. .RSY

18  389  DMYD7FGTUiEI£LFT7AFXRirD:_SE7XCI.. .PEYMKAVYMDLYQClN.ElAQEAZKGGGRDGLNYiaKAYSSHF. .DSF

19  381 DMYD7FGTU5ELELFT3AIXRNDPSA7ECL. . PEYMKGVYM1VYN7VN.EMSQEADKAGGAD7LNYCRGAWEEY: . .DAY
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1 383 LVKAKWTLQN. YKPSFEEFKANAI.PTCGYAMLAXTSFVGMGD IVT ik.TFKWAAS" i K I I  ©AST 11CRFKD DVAE HKFXH

2 383 LVfARWTLQN. YKPSFEEFKANXLI T CGYAMLAITSFVGMGU IVTFLTFKWAANDIKIIQASTIICRf>CCV*.KHKF:<H

3 383 LVKARWTLQN Y K iSFEY.FKANALFTCGYAMLAITSFVGMCl' IVTP£TFKWAANCPKIIQASTIICRFXDL'V7EHKFKH

4 383 LVEARWTLQN.YKPSFEEFKA1IALFTCGYAMLAITSFVGMGD IVTi tTFKWAAN- i KIIQASTIICRFKI'L'VAi-.HKFKH

5 384 LLEAKWTHQN. YKPTFEEFRDHAI.PTSGYAKLAXTAFVGMGZ. VlTPETFKMAJtSDPKXXXASTXXCRYHDDXAUianai

6 377 NEEQJWVMZR.QLPSFGDYVXKSEKTSCIYTMFASIIPGLXS. .VTQET1DW:XSZP7ZA7S7AMIGRYWND7SSQ:.RES

7 405  XffSnMAXROVHAQPLKEYMSVSMVTGTYGLMXARSYVGRGD IVTSDTFIWVSSYPPIIXASCVIVRLMDDrVSHKEEQ

8 388 F7EAICWLYXG.YVPTFDEYKSVALRS:G1R7LAVASFVD1GDFIATXDNFECI:.XNAKSLXA7Z7XGRLHDDIAGYKFEG

9 410  M7EVZWRLSX.YVPTSKEYMINASLIFGLGPIVLPALYFVGP. .XISES1VXDPEYDELFXLMS7CGRLLNDVQTFEREY

10 403  LVEAZWYNXS.H:PTLEEYUUHGCDSSSVSIL7VHSFFS:7aE.GTXEKADFLHXNEDLLYNl,SLIVRI2INDlGTSAAEQ

11 379  FVEAKWFISG. YMPPVSEYLSKALATS7YYH.77TSYLGVXS . . ATXEDFEWLA7NPKILEANV7LCRWDDIATYEVEX

12 377 NVES7WFIZG. Y7PPVSEYLSNAIAT77YYYLA7TSYLGMXS . . ATECDFEWLSKNPKILEASVIICRVZDDTATYEVEK

13 390 LEEAEWTNSG.YVASFPEYMXNGLITSAYNVISXSA1VGMGZ.IVSZDAI_A*IYZSHPK71QASE1ISR1CDDVMTY0FER

14 376  FKE7QWLNDCDHIPXYEEQVZRAIVSAGY>*4XS7TCL.VGIZS. FISHETFEWLMNZSVIVRASAlIARAMNDrVGHEDEC

15 377 MCEA1CW1.XXD. Y IATFDEYKZHA1LSSGYYAL1AK7EVRM7D . 7AX1DAFEWLSSHPKIRVASZII5RF72DI5SYEFEH

16 427  FiJEAKWYHSG. Y7PSLDEYLN1 AX 1SVASPAI1SP7YF7FANASHD7AV1 DSX.Y0YHDILCLAGII7RLPDD1GTSYFE1

17 4 23  L1EAKHYYNX. Y7PSI£EYIENAWISISAP7II.VHVYFFV7NP. 1TXEA7DCLEEYPNIIRHS87ILRLADDLGTS7DEL

18 464 MXEAKW:SSG.Y1PTFEEYLXNGXVSSGSR7A71GP:17LDVP.LPNY:L0E1DYPSRFND^ASS11RLRGDTRCYKADR

19 456  MQEAKWIASG.EVPTFEEYYENGXVSSGHRVSA1G?:1-7D:P.FPEHVLKEVDIPSQLNDLASAILRLRGD7RCYGADR

1 461 RREDDCSAXECYMZEY . GVTAQEAYDVFNKHVESAHKDUtCEFLKPT. . EMPTEVLNRSUOAKVMDVLYRE GDGYTYV

2 4 61 RREDDCSAIECYMZEY.GVSAQEAYDVFNKHVESAWKDVNCKFCKPT. .EMPTEVLNRSLNLARVMDVLYRE GDGYTYV

3 461 RREDDCSAIECYMZEY.GVTAQEAYDVFNKHVESAWKDVNGCFLKPT. . EMPTEVLNRSLNLARVMDVLYRE GDGYTYV

4 461 RREDDCSAIECYMSEY.GVTAQEAYDVFNKHVESAWKDVNXEFLKPT. .EMPTEVLNRSUOARVMDVLYRE GDGYTYV

5  462 RREDDCSAIECYMKQY.GVTAQEAYNSFNKHIESSWKEVNEEFLKPT. . EMPTPVLCRSLN1AKVMDVLYRE GL'GYTHV

6 454 XGGEMLTALDFHMKEY. GLTXEEAASKFSGIVEE7WKDINXEFIA7TNYNVGREIAI7FLNYARICZASYSX7DGDAYSD

7 484 ERGHVASSIECYSKES.GASEEEACEYISRXVEEAHKVINRESLRPT. . AVPFFILI-'PAINLARMCEVLYSV.NDGFTHA

8 467 XRGHNPSAVECYXNQH.GVSEEEAVXZLLLZVANSHKDIWEELLNPT. . TVPLPMLQRLLYFARSGHFIYDDGHDRYTHS

9 487 NEGXLNSVS1LVLHGG.PK31SEAXRK1QICPID7CRRDI^.SLVXJIEE.SWPRPCXS1FWXMCXVCYFFYS7.7DGFSSG

10 481 ERGDSPSSIVCYMREV. NASEEIARXNIXGMIDNAWKXVNGXCF77NQVPF1SSFMNNA7NMARVAHSLYKD. GDGFGDQ

11 4 56  GRGC1ATGIECYMRDY.DVS7EVAMEKF0EMAE1AWKDVKEG1LRPT. .PVSTEILIRIUILARIIDVTYRJNGDGYTHP

12 454 SRGG1ATGIECCMRDY.G1S7XEAMAKFCNMAE7AWICDINEGLLRPT. .PVSTEFLIPILNIARIVEVTYIHNIDGYTH?

13 468  ERGCSATGVDAYIKTY.GVSEXEAIDALXIMIENAWKDINEGCIAPR. . CVSXDliAPILNIARKIDVVYRY. DDGFTFP

14 455  ZRGHVASLIECYMKDY.GASKQEGYIKFIKSVGNAWKDINXCFFRPT. EVPMFVLERVLNL7RVAD7I.YICE XD7YTNA

15 455  XREHVATGIDCY^GF.GVSXERAVEVMGNIVSEAHKDLHQEI^RPH. .VFPFP1L!<RVLNI^RV1DVFYRY.0DAYTNP

16 506 ARGDVPX7IQCYMICE7 . NASEEEAVEHVXF1IRSAWKDMN7A1AAG. . YPFPDGMVAGAAN1GKVAQFIYLH. GDGFGVG

17 501 XRGDVPXA10CYMNE7.GASEEDAREY1XY1ISA7WKXMNEDRVAS. .SPFSHIFIEIALHIARMAQCMYOH.GDGHGHG

18 542 ARGZEASAISCYHKDHPG5TEEDAI.NH1NVMISDAI RELNWELLRPD. SXSPI55XXHAFDI7RAFHHLY1CY. RDGYTVA

19 534 ARGEEASCISCYMKDNPGGTEEDALNHLKAMISDVIKGLNWELUCPN.SSVPISAXXHAFDISRAFHCGYICY.RDGYSVA
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L 537 GKAA1CG6ITSLLIL p i a l

! 537 GKAAKGGITSLLIKPIAL

537 GKAAKGGIT S LLI PIAL

537 GKAAKGGITSLLIc pv a l

538 GKAAKGGI TS LL I L P IQ I

533 PNVAKANWALFVD AIVF

560 EGDMKSYMKSFFVHPMW

544 . LMMKRQVALLLTL PLAI

564 VERAX. ZVDAVINEPLKLOGSHTIVSDV

0 559 EKGPR7HILSLLFGPLVN

1 533 EKVLKPHIZALLVDSIEI

2 531 EKV1KPHI1NLLVDSIKI

3 544 RKDSERVYQSFCLWVLYPV

531 KGK1KNMINS1LIESVKI

531 . K1LKEHXVSLLIE7IPI

582 HSX7YEHIAGLLFEPYA

577 NHS7KDRILS1LIQPIPLNXD

620 S S E TKNLVMXTVEE PVAL

612 NIE7KS1VKR7VIDPV7L
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Key to alignment

No. Enzyme name

1 (+)-§ cadinene synthase 

isozyme XC1

2 (+)-6 cadinene synthase 

isozyme C2

3 (+)-& cadinene synthase

4 (+)-6 cadinene synthase 

isozyme XC14

5 (+)-5 cadinene synthase 

isozyme A

6 (£)-|3-famesene synthase

7 (£)~p-famesene synthase

8 (£)-(3-famesene synthase

9 (£)-|3-famesene synthase

10 a-famesene synthase

11 Vetispiradiene synthase

12 5-epi-aristolochene synthase

13 Germacrene A synthase

14 Germacrene C synthase

15 p-caryophyllene/a-humulene 

synthase

Plant

G. arboreum (Tree cotton)

G. arboreum (Tree cotton)

G.hirsutum (Upland cotton) 

(G. mexicanum)

G. arboreum (Tree cotton)

G. arboreum (Tree cotton)

Mentha piperita 

(Peppermint)

Artemisia annua (Sweet 

wormwood)

Citrus junos 

Zea mays (com)

Pyrus communis (Pear) 

Solanum. tuberosum 

(Potato)

N. tabacum (Common 

tobacco)

A. annua

Solanum lycopersicum 

(Tomato) (Lycopersicon 

esculentum).

Arabidopsis thaliana 

(Mouse-ear cress)

ID number 

Q39761

049853

P93665

Q39760

Q43714

048935

Q4VM12

Q94JS8

Q84ZW8

Q2PQC0

Q9SBJ0

Q40577

Q1PDD2

064961

Q84UU4

2 4 6



16 (+)-bomyl diphosphate 

synthase, chloroplast

17 Pinene synthase

18 Limonene/ a-pinene 

synthase, chloroplast

19 (-)-a-pinene synthase

Quercus ilex (Holly oak) A1JH12

Abies grandis (Grand fir) Q9M7C9

Salvia officinalis (Sage)

Pinus taeda

081192

Q84KL6

A 2 Primers and DNA fragments for mutagenesis work

DCS-L413I-Fwd 5’-GGTTATGCCATGATTGCTATTACATCTTTC-3’ 
DCS-L4131-Rev 5 ’-GAAAGATGTAATAGCAATCATGGCATAACC-3 ’
For construction of mutant DCS-M1. Annealing temperature: 55 °C.

DCS-I300L-Fwd 5’-GATGTTGACAAAAGTGCTAGCAATGGCATC-3’ 
DCS-I300L- Rev 5*-GATGCCATTGCTAGCACTTTTGTCAACATC-3»
For construction of mutant DCS-M2. Annealing temperature: 55 °C.

DCS-E455G- Fwd 51 - GTTT AT GG AT GAT GTT GCT GG AC AC A AGTT C AAG 
CATAGGAG-3'

DCS-E455G- Rev 5'-CTCCTATGCTTGAACTTGTGTCCAGCAACATCAT

For construction of mutant DCS-M3. Annealing temperature: 60 °C.

DCS-T407S/C408A-Fwd5,-GGCTAATGCATTGCCAAGTGCTGGTTATGC
CATGCTTGC-3'

DCS-T407S/C408A-Rev 5 '-GC AAGC ATGGCATAACCAGCACTTGGCAAT

For construction of mutant DCS-M5. Annealing temperature: 63 °C.

DCS-M523A-Fwd5'-CTAAACCTTGCAAGGGTGGCGGATGTGC
TTT AC AGGG-3'

DCS-M523A-Rev 5'-CCCTGTAAAGCACATCCGCCACCCTTGC

For construction of mutant DCS-M6. Annealing temperature: 63 °C.

CCATAAAC-3

GCATTAGCC-3

AAGGTTTAG-3
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DCS-G276C-Fwd5'-GCAAGAGATAGAGTTGTTGAATGTTACTTTTGGA
TCTCTGGAG-3'

DCS-G276C-Rev 5'-CTCCAGAGATCCAAAAGTAACATTCAACAACTCT 
ATCTCTTGC-3'

For construction of mutant DCS-M7. Annealing temperature: 62 °C.

DCS-D307A-Fwd 5'-CAATGGCATCCATTGTAGCGGATACATATG 
ACTCATATG-3'

DCS-D307A-Rev 5'-CATATGAGTCATATGTATCCGCTACAATGG 
ATGCCATTG-3'

Annealing temperature: 60 °C.

DCS-D308A-Fwd 5'-CAATGGCATCCATTGTAGATGCGACATATGACTC 
ATATGCAAC-3'

DCS-D308A-Rev 5'-GTTGCATATGAGTCATATGTCGCATCTACAATGG 
ATGCCATTG-3'

Annealing temperature: 60 °C.

DCS-D31 lA-Fwd 5'-CCATTGTAGATGATACATATGCCTCATATGCAACAT 
AT G AAGAGC-3'

DCS-D31 lA-Rev 5'-GCTCTTCATATGTTGCATATGAGGCATATGTATCAT 
CTACAATGG-3'

Annealing temperature: 60 °C.

DCS-G276F-Fwd5'-GCAAGAGATAGAGTTGTTGAATTCTACTTTTGGATC
TCTGGAGTG-3'

DCS-G276F-Rev 5'-CACTCCAGAGATCCAAAAGTAGAATTCAACAACTCT 
ATCTCTTGC-3'

For construction of EcoRl restriction site on DCS. Annealing temperature: 63 °C.

EBFS-Y514L-Fwd 5'-CATCACATTCCTCAACCTGGCTCGGATATGTGAAG-3' 
EBFS-Y514L-Rev 5'-CTTCACATATCCGAGCCAGGTTGAGGAATGTGATG-3' 
Annealing temperature: 60 °C.

EBFS-I404Y-Fwd5'-GAGAAAACCAGCTGCTATTATACCATGTTTGCTTC-3' 
EBFS-I404Y-Rev 5'-GAAGCAAACATGGTATAATAGCAGCTGGTTTTCTC-3' 
Annealing temperature: 57 °C.

EBFS-Y277V-Fwd 5’-CTTATGTTTGGGGAGTAGGTGTGCATTACGAACC
CCAATACTC-3'

EBFS-Y277V-Rev5’-GAGTATTGGGGTTCGTAATGCACACCTACTCCCC
AAACATAAG-3'

Annealing temperature: 63 °C.
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EBFS-N444D-Fwd5'-GGTCGGTATTGGGAIGACACCAGCTC-3' 
EBFS-N444D-Rev 5'-GAGCTGGTGTCATCCCAATACCG ACC-3'
Annealing temperature: 57 °C.

EBFS-A529Y-Fwd 5'-CTGACGGAGACTATTATTCAGATCC-3' 
EBFS-A529Y-Rev 5 '-GG AT CT G A AT AAT AGT CT CCGT C AG-31 
Annealing temperature: 55 °C.

EBFS-S402C-Fwd 5'-GAATTCAGAGAAAACCTGCTGCATTTATACCATG-3' 
EBFS-S402C-Rev5,-CATGGTATAAATGCAGCAGGTTTTCTCTGAATTC-3' 
Annealing temperature: 55 °C.

EBFS-G440C-Fwd 5,-CGACCGCTATGATCTGTCGGTATTGGAATG-3l 
EBFS-G440C-Rev 5t-CATTCCAATACCGACAGATCATAGCGGTCG-3, 
Annealing temperature: 58 °C.

EBFS-Y271 S-Fwd 5 ’ -GAGTCGTGGAGGCTAGCGTTTGGGG AGT AG-3 ’ 
EBFS-Y271 S-Rev 5 ’-CTACTCCCCAAACGCTAGCCTCCACGACTC-3 *
For construction of NheI restriction site on EBFS. Annealing temperature: 62 °C.

EBFS A14-1-Fwd 5'-GTTGCTTAAGGGAAGCCAGGCCACCTATGAC-31 
EBFS A14-1-Rev S'-GTCATAGGTGGCCTCGCTTCCCTTAAGCAAC-S' 
Annealing temperature: 60 °C.
EBFS A14-2-Fwd 5 '-GCTT AAGGGAAGCC ATGGC ACCT AT GACG AAGC-3' 
EBFS A 14-2-Rev 5'-GCTTCGTCATAGGTGCCATGGCTTCCCTTAAGC-3' 
Annealing temperature: 60 °C.

EBFS A24-Fwd 5' -GC AT GCGCC AACCATGGGG ACT GATACC-3'
EBFS A24-Rev 5'-GGTATCAGTCCCCATGGTTGGCGCATGC-3'
Annealing temperature: 61 °C.

EBFS A24-G2W-Fwd
5 '-G AAGG AG ATAT ACC AT GT GGACT GATACCTTTT C-3'
EBFS A24-G2W-Rev
5'-GAAAAGGTATCAGTCCACATGGTATATCTCCTTC-3'
Annealing temperature: 57 °C.

D24AAE-T24S/G26W-Fwd
5'-CAAAGCCGATTTTCAGCCTAGCATGTGGACTGATACCTTTTCTAAC-3' 
D24 A AE-T24 S/G2 6 W-Re v
5'-GTTAGAAAAGGTATCAGTCCACATGCTAGGCTGAAAATCGGCTTTG-3' 
Annealing temperature: 63 °C.
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E24A A D-W 24S-Fw d5,-G AAG CATG CG CCAA G C A TTTGGGGAGATC-3' 
E24AAD-W 24S-Rev 5'-G A TC TC C C C A A A TG CTTGGCGCATGCTTC-3' 
Annealing temperature: 59 °C.

EBFS-W  26E-Fwd 5 '-CAT GCGCC A A G C  A TG G A G A C T G A TA CCTTTTC-3' 
EBFS-W 26E-Rev 5,-G A A AAG G TATCAG TCTCCATG CTTG G CG CATG -3' 
Annealing temperature: 59 °C.

EB FS-E269M -Fw d5'-G ATCG A G TCG TG ATG G CTTATG TTTG -3' 
EBFS-E269M-Rev 5l-C A A A C A TA A G C C A TC A C G A C TC G A TC -3,
Annealing temperature: 55 °C.

EBFS-F30A-Fwd 5 '-C A TG TG G A C TG A TA C C G C ITC TA A C TTTTC TC TTG -3' 
EBFS-F30A-Rev5,-CAAGAGAAAAGTTAGAAGCGGTATCAGTCCACATG-3, 
Annealing temperature: 57 °C.

DCS-F36A-Fwd 5,-CATTTG G G G A G ATCTCG CCCTCAATTG TCCCG AC-3' 
DCS-F36A-Rev 5,-G TC G G G A C A A TTG A G GGCGA G A TC TC C C C A A A TG -3, 
Annealing temperature: 63 °C.

Synthetic gene fragment encoding part o f GCS (Section 3.3.2):

S ad  site
5 ’ -G A G C TC G T  G A C T T T  C A A T  G A T GC A A T  CC A G  A G  A T  GGG A T  GCT A A T  GC A  
A T T  G A T T  C A A T  A C  A A C C  A T  A T  A T  G AG  A C C T G CTT A T  C A A G C T C TT CT AG A  
C A T T T  AC A G T  G A A A T  G G A A C  A A G T G TT GT CC A A A G  A A G G T A A A C T GG AC  
CG TG T A T  A C T  A TG C  A A A A A A T  G A G  A T  G A A A A  A G TT  GGT GAG AG CCT A TT  
TT  A A G G A A A C C C  A  A T G G TT  G A A T  G A TT GT GACC A T  A T T  CC A A A A T A T  GA  
G G A A C A A G TG G A G A A TG C A A TC G TA A G TG C TG G C TA TA TG A TG A TA TC A  
AC A A C TTG C TTG G TC G G T A T  A G  A A G  A  A T T T  A T  A T  CCC A C G A G A C TTTT GA  
A TG G TTG  A TG  A A T G  A G TC TG T G A TT G TT CG A G CTT CCGC A T T  G A TT GCC A  
G AG C A A T G  A A C G  A T  A TTG TTG G  A C  A T  G A A G  A T  G A A C  A A G A A A G A G G  AC  
A TG T A G C TTC  A C T T  A T T  G A A T  G TT AC A T  G A A A G  A T T  A T  GG A G C TT C A A A G  
C A A G  A G  A C T T  A C  A T T  A A G T T  CCT G A A A G  A G G T C ACC A A T  GC A T  GGAAGG  
A C A TA A A C A A A C A A TTC TC C C G TC C A A C TG A A G TA C C A A TG TTTG TC C TT  
G A A C G  A G T T C T  A A A T T T  G AC A C G T G T GGCT GAC A C G TT A T  A T  A A G G AG A  
A A G A TA C A TA TTC A A C C G C C A A A G G A A A A C TTA A A A A C A TG A TTA A TC C  
A A T  A C T  A A T T G  A A T  CT G T C A A A A T  A T  A A G G  A TC C G A A TT CGAGCTC-3 ’

stop codon Sad  site
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Synthetic fragment for construction of EBFS-active site hybrid (Section 4.2.14):

Nhel site
5 ’ -GCT AGCTTTT GGAT CGT AGGT GT GC ATT ACG A ACCCC AAT ACT CAT AT 
GTTCG AAT GGGACTT GCC AAAGT GAT AGC AAT GGC ATCC ATCGT AG ACG 
AT AC AT AT GAT AATT AT GCT AC ACT C AAT G A AGCT C AACTTTTT ACTC AA 
GT CTT AG AC AAGT GGGATAG AG AT G AAGCT G AACGACTCCC AG AAT AC A 
T G AAAAT CGTTT ATCGATTT ATTTT G AGT AT AT AT GAAAATT AT G A ACGT 
GAT GC AGCG A AACTT GG AAAAAGCTTT GC AGCTCCTT ATTTT AAGG AAA 
CCGT G AAAC AACT GGC AAGGGC AT AT AAT GAGG AGC AG AAGT GGGTT AT 
GG AAAGGC AGCTACCGTC ATT CC AAG ACTACGT AAAG AATT C AG AG AAA 
ACCT GT GGT ATT GCC AT GAT GTTT GCTT CT AT CAT CCC AGGCTT G A A ATCT 
GTT ACCC AAG AAACC ATT GATT GGAT C AAGAGT G A ACCC ACGCT CGC AA 
CAT CG ACCGCT AT G ATCT GT CGGT AT AT GGAT G AC ACCGCT G AAC AGCT C 
TT C AAGC AT AGGAGAGAAG ACGAT CTGACT GCGTT GGATTTCC AC AT GA 
AAG AAT AT GGT CT G ACG AAGG AAGAGGCGGC AT CT AAGTTT G AAGG ATT 
GGTT GAGG AAAC AT GG AAGG AT AT A A AC AAGG AATTC AT AGCC AC AACT 
AATT AT AAT GT GGGT AG AG AAATT GCC AT C AC ATT CCTC AACCTT GCTCG 
GGT GAT GGAT GT GCTTT AC AGGA AAACT GACGGAGACGCTT ATT C AGAT 
CCT AAT GTT GCC AAGGC AAATGTCGTT GCTCT CTTT GTT GAT GCC AT AGT 
CTTTT GAGGATCC-3 ’ 
stop codon BamHI site

D24AAE-Fwd
5'-CAT GG AACCTT CTT CAT C ACCCCTTTCTT CC AAT AAGGAT GAAAT GCGT 
CCC AAAGCCGATTTTCAGCCT AC-3'
D24AAE-Rev
5 '-CAT GGT AGGCT G A A AAT CGGCTTT GGG ACGC ATTT C ATCCTT ATT GG A 
AG AAAGGGGT GAT G A AG AAGGTT C-3'
For construction of N-terminal segment hybrid D24AAE that encoding Ncol at both 
5’ and 3’ ends.

E24AAD-Fwd
5 ’ -C ATGGCT AC A AACGGCGT CGT AATT AGTT GCTT AAGGGAAGT AAGGCC 
ACCT AT GACGA AGC AT GCGC-3 ’
E24AAD-Rev
5 ’ -C ATGGCGC ATGCTT CGT CAT AGGT GGCCTTACTT CCCTT AAGC A ACT A 
ATT ACGACGCCGTTT GT AGC-3 ’
For construction of N-terminal segment hybrid E24AAD that encoding Ncol at both 
5’ and 3’ ends.
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