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Abstract

Modifications were made to the traditional PSA descriptor by decoupling it into its H- 

bond acidic and basic components. The PSA based descriptors were also scaled according 

to the known hydrogen bonding characteristics of common functional groups to make 

them more realistic measures of a molecules hydrogen bonding capacity. Three other 

surface area descriptors total surface area, total halogen atom surface area and total 

aromatic carbon surface area were also defined.

Various routes to the calculation of these descriptors were explored and it was concluded 

the best descriptors were those obtained from a single structure generated using the semi 

empirical-method AMI. It was also shown that descriptors obtained from a vdw surface 

were more suitable than those obtained from solvent accessible surface area.

The scaled PSA descriptors were initially tested against octanol-water, chloroform-water, 

and cyclohexane-water partition coefficients of 110 organic and drug-like molecules. All 

of the models produced were seen to be statistically accurate and followed known 

characteristics of the partition coefficients considered.

The scaled PSA descriptors were then applied successfully to a number of important 

biological processes such as cellular uptake and intestinal absorption; models were also 

produced for important industrial processes such as Fluorophilicity and CMC. The surface 

area descriptors were also seen to be equally capable of modelling inorganic molecules 

and excellent models were produced for octanol-water and chloroform-water partitions for 

a number of platinum containing drugs.
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Chapter 1. Introduction

1.1 Introduction

The ability to predict a priori the properties of molecules, especially drugs and other bio

active molecules has led to a great deal of research interest,1 especially within the 

pharmaceutical and agrochemical industries. Prediction of biological activity is one of the 

major goals of such studies. However, the capacity of a proposed drug to act against a 

particular target is irrelevant if the molecule cannot reach the target. Hence the prediction 

of properties such as lipophilicity, aqueous solubility, bioavailability, and CNS 

penetration at the beginning of the product design process allows early identification and 

removal of candidate molecules with unsuitable characteristics. The independence of a 

predictive method from experimentally observed information also allows prediction of 

chemical properties without the need for synthesis. However the use of experimental 

observed data in predicting properties is still advantageous when a difficult to measure 

property can be related to a property that is easily measured. For example water solubility 

(difficult) and Skin permeability (difficult) can be calculated from properties such as 

water-octanol partition, melting or molecular weight.2

1.2.1 QSAR

A quantitative structure activity relationship (QSAR) is a method by which numerical 

properties derived from molecular structure is mathematically related to its activity. At its 

most general, a QSAR equation takes the form.

Activity = f(X,,X2,....XB) (1.1)

Activity is a function of molecular properties or descriptors X i...X B which encode 

important chemical information about the molecule. It is therefore important that a QSAR 

equation contains descriptors that encompass the properties that have influence on the 

activity.

The term QSPR (quantitative structure property relationship) is used to refer to a relation 

where the property of interest is not a biological activity. Through analysis of the form of
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QSAR/QSPR equations it is possible to interpret which structural features are beneficial 

to activity and which are a hindrance; this information can be used to guide the design 

process of pharmaceuticals and help make compounds with more appropriate activities or 

other properties.

Where a relation is correlating Gibbs free energy related variable (e.g. equilibrium 

constant) and descriptors are related to well-defined interactions, the term linear free 

energy relationship (LFER) is often used.

1.2.2 History of QSAR

One of the earliest examples of a SAR was that proposed by Crum Brown and Fraiser in 

1868. They noted that curare-like properties of a series of quartemised strychnines was 

dependent upon the quatemised group and therefore proposed that the physiological 

activity was a function of the structure of the molecule.

In 1869 Richardson reported the relationship between toxicity of simple ethers and 

alcohols and their water solubility.4 Similarly Overton5 and Meyer,6 working 

independently, observed a relationship between aqueous narcosis of tadpoles and partition 

coefficients. A partition coefficient (P) is a measure of the affinity of a molecule for a 

solvent phase (in this case olive oil) versus that for water, calculated as the equilibrium 

ratio of concentration of solute in the solvent phase to that in the water phase. Overton’s 

interpretation was that the narcotic effect was due to physical changes caused by the 

dissolution of the drug in the lipid component of cells. Although it was not until 1920 that 

Meyer and Gottlieb-Billlroth proposed the relationship in a quantitative formula,7 this 

represents the first reported QSAR.

Cnar * P0u = Constant. (1.2)

Where Cnar is the concentration required to induce narcosis and P 0ii is the olive oil/water 

partition. Gottlieb-Billroth also showed a relation between aqueous narcosis and water 

oleyl alcohol partition, and proposed a QSAR for gaseous narcosis.

2



In 1933 Collander and Barland8 offered the first real examination of partition coefficients. 

Collander demonstrated that the partition coefficients of two similar water solvent 

systems (I and II) could be related thus.

LogPn = a.logPi + b (1.3)

Where a and b are constants. Collander9,10 stated that the relationship would only be valid

where the two solvents had similar chemical properties. The ideas of Collander were

expanded by Leo and Hansch,11 who also suggested octan-l-ol as a standard solvent, as 

the water/octanol partition was a better measure of lipopilicity (the logPoct partition is 

discussed at greater length in 1.3).

1.2.3 QSAR Descriptors -Electronic Effects

Hammett12' 14 undertook a systematic study of a series of benzene derivatives to establish a 

set of descriptors which would encode electronic properties, and could be applied to other 

solvents and used for prediction of activity and other properties. Hammett defined a 

descriptor a, referred to as the Hammett substituent constant. This descriptor is a measure 

of the electron donating or withdrawing strengths of the substituents. Values of a are 

determined by comparing the equilibrium constants for the ionisation of substituted 

benzoic acids to the ionisation constants of unsubstituted benzoic acid.

o = log[Kx] -  log[KH] (1.4)

Where Kx and Kh are equilibrium constants of ionisation in a given system for benzoic 

acid, and X substituted benzoic acid respectively. Benzoic acid by definition has o equal 

to 0; positive values of o are given by electron withdrawing subtituents due to the 

stabilising effect on the anion, while electron donating subtituents give negative values for 

o. The values of a are usually seen to be different for the same subsitituent if it is located 

in the meta or para position, an effect which is attributed to the enhanced resonance 

effects at the para position. Using the o descriptor Hammett derived the following 

equation.

3



Log Kx = p o + logKH (1.5)

where p is the slope of the line of best fit, and is a measure of how sensitive the given 

system is to the electronic effects of the substituents.

Hammett o values are still widely regarded as one of the most reliable and general means 

to assess the electronic effects of substituents upon a reaction; a large number of a values 

have been reported, and Hammett type relationships have been applied to a wide variety 

of physiochemical studies.15"17

1.2.4 QSAR Descriptors Steric Effects

The work of Hammett was expanded upon by Taft18 in the 1950s. Taft proposed a 

descriptor Es that would account for the steric effects of substituents upon activity. Taft 

compared the effects of subtituents upon the hydrolysis of esters in acidic conditions.

O YWhere K represents the methyl derivative and K is the X-substituted compound. The 

hydrolysis was performed under acidic conditions, as the hydrolysis of esters under acidic 

conditions is dependent only upon steric effects where hydrolysis under basic condition is 

dependent on steric and electronic effects. This dependence and independence of 

electronic effects allowed Taft to define a further electronic descriptor Oj.

The acid disassociation constant of 4-substituted bicyclo[2.2.2]octane carboxylic acid in 

50% aqueous ethanol was used by Roberts and Moreland19 as a more direct method of 

determining Oj.

a, = 0.606 (1.7)

v
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Where Kxa and KHa are the acid dissociation constants for the substituted and 

unsubsitituted compounds respectively. The value of 0.606 is a scaling factor to place the 

values of a\ on the scale proposed by Taft.

1.2.5 Multiparameter QSAR

Hansch20’21 realised that in order to fully describe activity or other properties, a single 

descriptor would be insufficient as any property is the result of a combination of different 

factors, and that multiparameter QSAR was necessary to account for all these factors. The 

first use of a multiparameter QSAR equation by Hansch in 1964 is considered by many to 

be the origin of modem QSAR. Hansch stated the following equation for the prediction of 

relative biological response (RBR).

LogRBR = c - cn? +b7t + p a  +Es (1.8)

Where a  is Hammett’s electronic parameter, Es is Taft’s steric parameter and n is the 

difference in logP for substituted and unsubstituted benzene as shown in equation 1.9.

71 = logPx -  logPH (1.9)

1.2.6 3D QSAR

The boundaries of QSAR were further expanded by the introduction of 3D QSAR. 3D 

QSAR methods tend to treat the molecule as a whole rather than a collection of 

substituents, offering the ability to account for conformational flexibility, ring and cage 

formation, and intramolecular interactions.

The first published 3D QSAR method was the Comparative Molecular Field Analysis 

(CoMFA) model of Cramer in 1988.22 In CoMFA, a set of conformations is generated, 

one for each molecule in the set. This conformation is presumed to be the conformation of 

the active structure. These conformations are then overlaid against each other in the 

proposed binding mode. The molecular field surrounding each conformation is then 

calculated by placing appropriate probe groups at points (usually a distance of 2A

5



between points) on a regular lattice that encompasses the molecules. The type of probe 

used is dependent of the type of interaction.

The results of this analysis can be represented as a matrix S, in which each row 

corresponds to one of the molecules and the columns are energy levels at the grid points. 

If there are N points in the grid and P probe groups are used there will be N x P such 

columns. The table is completed by adding a column that contains the relevant activity of 

the molecule. A correlation between biological activity and the field values is then 

determined. The general form of the equation that is desired is thus

Activity = R + Y , H CvSu ( 1 •1 °)
;=1 7=1

Where Qj is the coefficient for the column in the matrix that corresponds to placing probe 

group J at grid point I. Owing to the large number of descriptors generated from CoMFA 

partial least squares (PLS) analysis (see 2.9) is required.

PLS analysis generates a coefficient for each column in the data table. This coefficient 

indicates the significance of each grid points to the activity. This information is most 

usefully represented as a 3D surface that connects point which have the same coefficients. 

These diagrams are then used to identify regions where (for example) changing the steric 

bulk would increase or decrease the activity/binding. As with any QSAR, prediction of 

the activities of molecules not included in the analysis is possible by calculation the fields 

of these molecules and inserting these values in to the equation obtained from the 

regression.

CoMFA still remains one of the most popular 3D methods in the drug design with 

hundreds of applications in the field of ligand protein interactions.23,24

6



1.2.7 Other QSAR Descriptors

The range of descriptors that have been proposed for use in QSPR methods to date is 

overwhelming. QSPR descriptors can broadly be divided into two categories: observed 

and theoretical/calculated descriptors. Observed descriptors are properties such as boiling 

and melting point, spectroscopic shifts and acidities/basicities.

Theoretical descriptors are more widespread and range from simple counts of hydrogen 

bond donors and acceptors to more complex descriptors such as HOMO and LUMO
7 ̂  7 fsenergies, electrostatic potentials and partial atomic charges. ’ Some models have also 

proposed simple indicator variables as descriptors to account for specific structural 

properties that are important to the solvation property but not encoded by any available 

QSPR. The popularity of theoretical descriptors has been driven largely by the increased 

use of high throughput screening and combinatorial where the large numbers of 

compounds involved (often measured in millions) make measurement of properties by 

experimental methods expensive and time consuming. The enormous number of 

analogues produced by combinatorial chemistry also means that any predictive method 

must be rapid if it is to be used successfully as a virtual screening tool. Thus theoretical 

descriptors that do not require measurement of experimental data, such as partition 

coefficients or melting points, offer a considerable advantage. A further advantage to 

theoretical descriptors is they offer the ability to predict properties of a molecule without 

the need for synthesis.

The huge amount of descriptors that are available to describe the properties of molecules 

can make the process of selecting descriptors for a QSPR difficult. One approach to this 

problem is found in QSPR methods which select an appropriate subset from larger pools 

of up to several hundred possible descriptors, choosing a new subset for each property of 

interest.27,28 In this way, it is possible to find correlations that could otherwise have been 

missed. This approach has been taken by Jurs and Kattritsky who developed the program 

CODESSA.29 For a model of aqueous solubility for 258 liquids made using CODESSA, 

Jurs selected nine descriptors from a pool of 157 descriptors.30 While these methods are 

predictively accurate and can find correlations that are missed by other methods they are 

also usually quite difficult to interpret.

7



1.3 Solvation

The conclusions drawn by Richardson,4 Overton5 and Meyer6 as discussed in 1.2.2 have 

been widely accepted and the influence of molecular properties such as solubility and 

partition coefficients upon observed biological activity have been studied at great 

length.31'37 As a result of this many specialist QSAR and QSPR methods have been 

formulated for the prediction of solvation properties.38

1.3.1 Octanol-Water Partition

Since its first use by Collander10 octanol-water partition has become the standard measure 

of lipophilicity in QSAR. The ability of this system to represent lipophilicity has been 

attributed to its chemical similarities to the partition between aqueous and biophases. ’ 

Octanol, with a polar head and flexible non polar tail has hydrogen bonding capabilities 

and amphiphilicity characteristics similar to those of the phospholipids and proteins that 

make up biological membranes. The octanol water partition coefficient is defined thus.

. _  [octanol]log P =  log1
[water]

( 1. 11)

Where [octanol] and [water] are the concentrations of the solute in the octanol and water 

phases respectively. The term is expressed as a logarithm because of the wide range 

covered, as much as 8-10 orders of magnitude. For a molecule partitioning between water 

and octanol the molecule is said to be lipophilic if P > 1 and hydrophobic where P < 1, 

with the vast majority of used drugs having logPoct values in a relatively tight range, 

somewhere between 1 and 5.40

The popularity of logPoct within QSAR studies can also be attributed to the large amounts 

of reliable experimental data that is available,41’42 this is due to most compounds of 

interest having logPoct values that are in a range that can easily be experimentally 

observed using standard (e.g.) shake flask methods.

Other partitions have been proposed, although the results of many studies have shown 

logPoct to give the best correlation with biological activity.43 While logP has no close



rival, the use of water/cyclohexane partition has been proposed and used with some
44success.

Numerous methods have been proposed for the prediction of logPoct many of which have 

been rigorously review and compared.40,45'50

1.3.2 Group Contribution Methods

One common method of predicting logP values is through the use of a “group 

contribution approach”, in this method molecules are broken down into a series of 

predefined fragments and their corresponding contributions are summed to obtain a final 

model. One of the earliest group contribution methods was that of Rekker,51,52 who 

proposed a set of 136 fragments and then calculated their contribution to logPoct via 

multiple linear regression analysis (MLRA) against observed values of logP. Rekker also 

included 10 correction factors to account for the fact that a molecule’s properties were 

more than collection of fragments. In order to overcome the need for correction factors 

Suzuki and Kudo53 produced a model of logP that used 494 fragments.

A similar method to that of Rekker was employed by Hansch and Leo, who developed the 

program CLOGP.41,48,54,55 The method of generating fragments used by Hansch and Leo 

differed to that of Rekker in that they were derived from experimental logPoct values for a 

small set of simple compounds. The initial CLOGP program used 200 fragments and 20 

correction factors41 although numerous other correction factors and fragments have been 

subsequently added to the CLOGP which have substantially improved the model.56,57

Bodor40 used the methods of Rekker and CLOGP to model logPoct for 145 molecules 

many of which were peptides, nucleotides, druglike and halogenated aromatic molecules. 

The results showed the method of Rekker to be inferior to that of CLOGP giving an R2 of 

0.757 compared to 0.934 yielded by CLOGP, although when the models were created 

from a subset of 101 molecules (exclusion of all the halogenated molecules from the 

original dataset) the difference between the two methods was smaller with R2 values of 

0.887 and 0.844 respectively.
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1.3.3 Atomic Contribution Methods

Another popular method for the calculation of logPoct has been through the use of 

“Atomic contribution methods”. These methods are similar to group contribution methods 

except they try to predict logPoct using single atom contributions. This method has been
CO

noted as being problematic as the problems that arises by treating a molecule as just a 

sum of fragments under the group contribution method is exacerbated when further 

broken down in to atomic contributions, atoms are defined in relation to their topology 

and environment within the molecule, for example in the AlogP method of Ghose and 

Crippen which initially used 110 descriptors59,60 but was later extended by Viswanadhan 

(ALOGP)61 to 120 descriptors, has 44 atom types defined for carbon and 10 different 

atom types defined for hydrogen.

Another method to overcome the problem that a molecule is more that the sum of its parts 

is to define numerous groups of atoms as a fragment via specific bonding pathways, as 

implemented in the method of Broto et a f 2 where 222 descriptors were used many of 

which consisted of combinations of up to four atoms. Similarly to the group contribution 

method correction factors are also included in the descriptors. Despite these problems, 

atom contribution methods are of interest due to the relative ease of their computer 

implementation.

1.3.4 Molecular Methods

Through the use of quantum chemical modelling numerous descriptors have been 

defined63 that more accurately represent the interaction of the solute with the surrounding 

solvent system and treat the molecule as a whole.

In 1981 Klopman and Iroff64 used atomic charges obtained from molecular orbital 

calculations to estimate logP values for 61 simple organic molecules. Another and more 

widely used molecular method is that of Bodor.65,66 This method uses geometric 

properties such as volume and surface area and electronic distribution parameters such as 

dipole moment and charge density obtained from AMI calculations. Using this method 

302 logPoct values were modelled with an R2 of 0.98 and an Sd. (standard deviation) of
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0.31. Sasaki et a f 1 used surface tension, electrostatic potential and charge transfer, 

derived from structures optimised with molecular mechanic methods to calculate logPoct 

for 63 compounds.

Another group of descriptors which contain information about the whole molecular
/TO

structure are the Weighted Holistic Invariant Molecular (WHIM) indices. The 

descriptors are calculated from 3D structures and weighted by atomic mass, van der 

Waals atomic electronegativities and geometric parameters. WHIM descriptors were 

applied to a dataset of 268 small molecules and using PLS analysis logPoct values were 

reasonably well predicted (R2=0.77, Sd= 0.66) although the use of WHIM descriptors is 

limited due to the computationally demanding need for quantum mechanical calculation.

The 3D QSAR method CoMFA which also treats the molecule as a whole has also been 

applied to the prediction of logPoct although it has only been applied to small specific 

datasets such as furans and triazines.69

1.3.5 Linear Solvation Energy Relationships (LSER)

Linear solvation energy relation ships (LSER) represent a general and rigorous 

physiochemical treatment of solvation effects. These methods describe a large number of 

solvation effects with an equation that assumes solvation properties can be decomposed 

into cavity formation, dipolarity/polarisability and hydrogen bonding effects.70'72

One of the first rigorous LSER methods was that of Kamlet, Taft and Abraham18,73'76 who 

developed a multiparameter QSPR for the prediction of transport properties of a given 

solute upon solvents.

logTr = c +d8  + S7i*i + aai + bPi + d(8 n) 2 (1.12)

Where logTr is the transport property of a given solute, 8  is an empirical solvent 

polarisability correction term, n* \ is the solvent dipolarity/polarisability descriptor ai and 

Pi are solvent hydrogen bond acidity and basicity descriptors respectively, and (8h ) is the 

Hilderbrand cohesive energy density, which is the energy needed to remove a molecule
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from its nearest neighbour. Following on from this work, Kamlet produced an equation
72 77 78for the transport properties of solutes in a given solvent. ’ ’

logSP = c + d8  + S 7 i* +  aa + bp + vV (1-13)

LogSP is the log of a solubility property, 8  is an empirical solute polarisability correction 

term, n is the solute dipolarity/ polarisabilty descriptor, a  and p are solute hydrogen bond 

acidity and basicity descriptors respectively, and V is the solute volume.

The advantage to the solute parameter approach is that important physiochemical 

information that governs the properties of the solute are encoded into the descriptors, 

these properties are observed independently of any solvent. Hence the equation is far 

more general and can be applied to other solvation or biological properties.

Following on from the work of Taft and Kamlet and an approach that merits further 

discussion due to its applications within this study is the Linear Free Energy Relation
70(LFER) method of Abraham and co-workers. In this method, solvation properties are 

expressed as linear combinations of molecular descriptors, according to equation 1.14.

logSP = c + eE + sS + aA + bB + vVx (1.14)

Where logSP is some solvation property; E is the excess molar refraction and is a measure 

of the dispersion interactions of n and n electron pairs; S is a joint polarity/polarisability 

term; A and B are hydrogen bond donor and acceptor strengths; and Vx is McGowan’s 

characteristic molecular volume.80 The LFER approach is sufficiently general to model 

many properties of interest and has been applied to solubility in water, organic solvents 

and to important biological properties such as blood-brain distribution, intestinal 

absorption and uptake into plants.81

Calculation of the necessary descriptors was traditionally a slow method, requiring 

manual data analysis and often experimental data input. However, a rapid, automated 

fragmentation method for their estimation82 based upon simple atom and functional group 

definitions has been established. The values of descriptors calculated using this 

fragmental approach have been seen to be close to the value of descriptors obtained from
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experimental results. The quality of these descriptors has been further verified through the 

successful modeling of numerous physiochemical properties.

The strength of the Abraham equation lies in the fact that the descriptors used in this 

method were carefully chosen to model specific interactions that are crucial to many 

solvation and biological properties, meaning that just five descriptors are applicable 

across a wide variety of solvents.

Using equation 1.14 Abraham showed excellent correlations for 613 molecules and 

logPoct (R2=0.994, Sd= 0.12) . 83 The LFER equation is shown bellow.

lo g P 0ct = 0.088 + 0.562£ +1.054S + 0.034A - 3.460B + 3.81V (1.15)

R2=0.994 Sd=0.12

From analysis of the regression coefficients obtained from the equation 1.15 Abraham 

stated that the positive E term indicates octanol is able to interact with 7i and n electron 

pairs of the solute greater than water. The positive value of the S term shows that octanol 

is less polar/polarisable than water. The positive value for A is only small which indicates 

that water and octanol are similar in hydrogen bond basicity, where as the large negative 

B term indicates that water is much more hydrogen bond acidic that octanol. Finally the 

large V term indicates that large molecules will be more preferentially partitioned in to 

water. The conclusions drawn from the relatively large values of B and V are in fitting 

with conclusions from other studies that suggest logPoct is governed largely by hydrogen 

bond basicity and molecular size.84,85

1.3.6 Molecular surfaces

Another method to encode 3D information into QSAR models and to treat a molecule as a 

whole is through the use of molecular surface areas. The use of molecular surface areas in 

the modelling of solvation properties has a long history. Langmuir86 was the first to 

suggest the use of the molecular surface area in the estimation of solution free energies.
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One of the earliest studies in which surface areas were used quantitatively to estimate 

solvation properties was that of Hermann in 1970.87 Hermann calculated the surface area 

of a cavity that would need to be formed to accommodate a molecule in water. The cavity 

surface area was defined as the area traced out by the centre of water sized probe sphere 

rolled across the surface of the solute. The cavity surface area is effectively a measure of 

the number of solvent molecules that can be packed around a solute.

Solvent cavity surface areas were calculated for a series of hydrocarbons, and then 

correlated against the logarithm of their water solubility (logS), a linear relationship 

between solvent cavity size and logS was reported. Hermann noted that aromatic 

hydrocarbons were lower in their logS values than corresponding open chain analogues 

and did not fit on the same line due to the increased water solubility of the ring systems. 

Hence, two correlations were produced, one for purely aliphatic and one for aromatic 

hydrocarbons. Hermann’s results showed as that as the surface area of the cavity is 

increased the solubility decreases.

Hermann noted that when applied to molecules containing polar functional groups, cavity

surface area did not describe the modification to the water structure from the polar group.

Assuming that functional groups and hydrocarbons contribute differently to solubility,
• • 88Amidion subdivided total cavity surface area in to hydrocarbon and functional group 

surface area (HYSA and FGSA respectively), in order that the approach could be applied 

to functionalised solutes. Amidion proposed the following relation.

logS = C + CiHYSA +C2FGSA +C3IFG (1.16)

Where logS is the log of the solubility, C is the intercept and IFG is the functional group 

index, an indicator descriptor with a value of zero for hydrocarbons and 1 for 

monofuctional molecules, Ci, C2 and C3 are regression coefficients.

While surface areas were calculated in a manner similar to Hermann, Amidion refers to 

the surface area descriptor as a measure of the solvent accessible surface area (SASA) a 

nomenclature that is now used almost exclusively for this type of surface.
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Amidion produced separate models for the aqueous solubility of the following 

monofunctional molecules: ethers, ketones, aldehydes, carboxylic acids, esters and 

olefins. The overall statistics for these models was excellent, with an average R-value of 

0.991 and an average Sd of 0.167. Amidion showed that in these models the separation of 

total surface area was possibly unnecessary as both descriptors modelled similar effects so 

the following model was proposed with total solvent accesible surface area (TSASA).

LogS = C + CjTSASA + C2IFG (1.17)

Equation 1.17 was seen to model the effects of individual datasets with similar accuracy 

to equation 1.16. Amidion stated that for all the groups of compounds similar coefficient 

values of IFG and TSASA were given except for the olefins. For this reason the olefins 

were removed and all remaining groups were combined to make a dataset of 227 

compounds, to which equation 1.17 was applied. The regression produced excellent 

correlation with R2 = 0.98 and a Sd of 0.216. Throughout all model the IFG was seen to 

give a negative value, i.e. aiding solubility.

Similar partitioning of total SASA into polar and non polar regions was performed by
QQ

Dunn. Dunn calculated these surfaces using the same methodology as Herrman but 

using the algorithm of Lee and Richards.90 This algorithm was originally designed to 

interpret the conformational effects upon the surface area of peptides, proteins and 

biopolymers but has meet with considerable success and acceptance as a method of 

generating surface descriptors in QSAR and QSPR studies.

Using principle component analysis to model the partition coefficients of octanol, ether, 

chloroform, benzene, carbon tetrachloride and hexane for 50 solutes, Dunn showed that 

the non polar, or isotropic surface area accounted for 80% of the partitioning data, while 

the functional group surface area accounted for 15% of the variance. Dunn interpreted that 

the 80% of variance accounted for by the isotropic surface was representing the “non 

specific” interactions of the solute and water.
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1.4 Polar Surface Area

1.4.1 History of PSA

While the work of Amidion88 and Dunn89 showed the surface area of functional groups to 

be less influential than total surface area upon solubilities and partition values, 

McCracken and Lipkowitz,91 in a study of the structural activity relationships of 

benzothiazole and benzimidazole anthelmintics, showed a clear relationship between 

observed anthelmintic activity and the polar surface area (PSA). Both PSA and percentage 

PSA were seen to correlate strongly and negatively with the log of the dosage of 

anthelmintic needed to produce a response. McCracken said this result could be 

interpreted in two ways: either that drugs with higher PSA are more soluble in polar 

media such as water, and may be better transported, or that the active site its self is very 

polar and drugs with higher PSA are better able to bind with the active site to elicit an 

effect. Distinguishing between the two effects was difficult, and it could not be 

determined without ambiguity which was the more important. But from this result 

McCracken stated drug activity increases with percentage PSA and that any new drug 

could be prescreened by this alone.

PSA remains to this day a popular descriptor for use in QSAR. It has been widely 

accepted by pharmaceutical and medicinal chemists and hence has been used in prediction 

and modelling of many biological processes, most commonly intestinal absorbance. Much 

of the pioneering work in PSA in particular with reference to biological absorption has 

originated from Palm’s group at Uppsala University.92

PSA is defined as the surface area of a molecule that arises from N, O, N—H, and O—H 

atoms, and is simply calculated from a 3D molecular structure usually obtained with some 

form of energy minimization (see chapter 3.2.2.1).
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PSA has been seen to be an excellent descriptor in the modelling of absorption possesses. 

Using PSA and molecular weight (MW) as descriptors van der Waterbeemd93 derived a 

QSAR for passage of 17 molecules across a Caco-2-monolayer.

LogPapp = 0.008M W  -0 .0 4 3 P S  A  - 5 . 1 6 5  (1.18)

The Q S A R  showed a good correlation of R 2 =  0 . 6 9 4 .  A  further study into absorption was 

that of Palm,94 where P S A  was used to model fraction of a drug that was absorbed by the 

intestine ( % F A ) .  Using a dataset of 2 0  molecules that were selected on the basis of being 

absorbed exclusively through passive diffusion, Palm showed a strong sigmoidal 

relationship ( R 2=  0 . 9 4 )  between P S A d  and % F A .  It was seen that when P S A d  <  6 0  A2 a 

molecule would be well absorbed ( % F A > 9 0 % ) .  While if P S A d  exceeds 1 4 0  A2 the 

absorbance was seen as being poor ( % F A  < 1 0 % ) .  The term P S A d is a measure of dynamic 

P S A  calculated as the Boltzman average of number of conformations (this is discussed in 

further detail in 1 .4 .3 ) .  This correlation along with the cut-offs is shown in figure 1 .1 .

Figure 1.1: The Sigmodial fit of P S A d  vs % F A .
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A number of other studies have also shown PSA to be a suitable descriptor for modelling 

intestinal absorption, and only in the study of Goodwin95 were poor correlations seen 

between PSA and absorption (Caco-2 cells) for a set of 21 peptides.
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1.4.2 PSA and Surface Area Type

PSA has been calculated from both the vdw surface area and solvent accessible surface 

area. Where SASA is applied the algorithm of Lee and Richards90 is most commonly used 

to calculate descriptors, formally this corresponds to adding the radius of the solvent 

molecule to the vdw radii of the atom; essentially a van der Waals surface with inflated 

radii. Another form of surface that is available is the contact surface, defined as the 

smooth convex surface traced by the inward facing part of the probe sphere as it rolls over 

the molecule.96

There has been a great deal of debate as to which is the most suitable surface area from 

which to define P S A .  In a study of six beta-blocking agents, Palm showed that P S A d  

gives very similar correlations for Caco-2 permeability irrespective of whether obtained 

from S A S A  or vdw ( R2 = 0.99 and 0.96 respectively). In contrast to this Krarups97 studies 

of caco-2  permeation for six beta blocking agents and five prodrugs showed substantially 

poorer correlations for P S A d  where obtained from vdw surface area (R2 = 0.72) compared 

to S A S A  (R2= 0.98). Moreover, another study by Palm92 of absorption through the rat 

illium the correlation between logPapp in the colonic tissue and the vdw P S A  (R =0.91) 

was higher than of S A S A  P S A  (R2=0.88)

Water accessible surface area was originally reported to be linearly related to the vdw
OQ

surface area by Amidion, Palm argued this was only true for small molecules with few 

intramolecular interactions, and did not hold for all molecules. A good correlation
*7 *7between the two surface areas (r > 0.83) was seen for atenolol, but not for alprenolol (r = 

0.45). Palm also noted that the S A S A  P S A d  descriptors were larger than the vdw P S A d  for 

most compounds.

In related QSPR studies where surface area descriptors other than PSA have been applied, 

similar results have been seen between descriptors derived from SASA and those obtained 

from vdw surface. In the charged partial surface area QSPR of Stanton98 for gas 

chromatographic retention of 107 pyrazines on carbowax 20M, where the probe radius 

was zero and hence the surface area was effectively the vdw surface, the models were 

seen to give a slightly poorer fit of R= 0.984 compared to R= 0.994 along with a small
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increase in Sd. Stanton concluded that SASA represents the best approximation of the 

contact surface involved in such interaction.

Amidion88 stated that on a natural log scale the intercept for such relations, as solubility 

and molecular surface area should be zero, although this was not reported in his work with 

SASA. Amidion attributed this to the solvent radii effect noted by Reynolds," which 

states that when using a solvent probe with a radii of 1.5 A a theoretical solute molecule 

with zero radius (no particle) would still give a surface area of 28.3 A2 which would not 

give the appropriate intercept. Hence a molecular surface determine with a solvent radius 

of zero was a more appropriate choice.

1.4.3 Dynamic PSA

The term P S A d  refers to “dynamic P S A ” , as calculated from a number of conformations, 

generated through a conformational search. The P S A  of each low energy conformation is 

weighted according to the probability Pj of each conformation J, as given by the 

normalised Boltzman distribution.

Pj =  ex p (-A E j/R T )/£ e x p (-A E j/R T ) ( 1 1 9 )

Where AEj is the relative steric energy of the J’th conformation, R is the gas constant; T is 

the temperature in Kelvin.

It has been recommended that for typical drugs 1000 conformations are required to cover 

all minima and ensure that entire conformational space is explored.97 The strength of 

P S A d  is that for flexible molecules where a wide variety of conformations can exist, the 

effects of these conformations upon surface area are reflected within P S A d .  Palm stated 

that a method based purely on only the conformation of lowest energy would be sensitive 

to the choice of force field and hazardous as it may represent only a small part of the 

conformational space. P S A d  values have been proposed based on vdw surface area by 

Palm92,100 and S A S A  by Krarup.97
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In order to attempt to add further realism to P S A d ,  Palm performed conformational studies 

on 8 beta blocking agents in simulated water and chloroform environments. 100 Fewer 

conformations were generated in the simulated chloroform environment and only small 

differences were seen in the conformations generated in simulated chloroform and 

vacuum. However low energy conformations generated in simulated water showed a 

greater degree of intramolecular hydrogen bonding. 101 In general the P S A d was seen to 

increase in the order vacuum<chloroform<water as a result of the changes in 

intramolecular bonding patterns.

Models of caco-2-monolayer permeability for the 8  molecules using PSAd calculated from 

each simulated environment were not quantitatively different, with the effect of the 

simulated solvent acting to only slightly shift the curves of fitting along the P S A d  axis. 

The use of these simulated environments also dramatically increased the computer time 

required to generate P S A d .

A number of authors have suggested that PSAd may not offer a substantial gain over PSA 

calculated from a single conformer (static PSA). Clark101 took the 20 compounds used in 

the dynamic study of %FA of Palm and calculated static PSA. For molecules with more 

flexibility there was generally a greater difference between PSA and PSAd, but the static 

PSA descriptors gave a correlation with %FA of almost equal value to that of PSAd. Also, 

both Palm and Krarup have noted that excellent correlations with experimental data can 

be obtained from PSA calculated from a single conformation.

1 noKelder also argued that static P S A  obtained from a well built 3D structure will give a

P S A  of close to that of P S A d ,  the exceptions being where hydrophobic collapse or strong

intramolecular interactions occur. Stenberg103 further agreed stating that the P S A  of the

global minimum conformation generally only differed from P S A d  by a few A2. In his

study of intestinal membrane permeability, P S A  and P S A d  were seen to correlate against

logPapp with values of R2 of 0.82 and 0.87 respectively. If dynamic P S A  is unnecessary

then the time taken to calculate P S A  is sufficiently small to allow P S A  to be used as a

pre-screening tool.81
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1.4.4 Rapid Calculation of PSA

The early success of PSA in modelling biological properties, combined with sheer size of 

libraries that are produced in combinatorial methods, has led to a number of 

methodologies for the rapid calculation of PSA.

Clark showed that for the %FA dataset of 20 molecules, an excellent correlation of R of

0.94 could be obtained from 3D structure obtained directly from the program 

CONCORD104 with no form of energy minimisation. 1,105 The removal of the energy 

minimisation (the longest step) from the calculation of PSA meant that values could be 

generated at a rate of 1 0 + molecules per second.

A different method to generate PSA as quickly as possible without the need for lengthy 

geometry optimisation was proposed by Ertl. 106 In this method a type of PSA called 

topological PSA (TPSA) was defined. TPSA is calculated from a simple summing of a 

series of tabulated surface contributions of PSA. The method contains a set of 43 polar 

atom types each with an associated PSA value. The TPSA descriptors were compared to 

3D descriptors obtained from CORINA, 107 a simple rule and data based program for 

generating 3D structure. An R2 value of 0.982 was reported between the two sets of PSA, 

the majority of outliers were large molecules with many polar atoms.

The T P S A  descriptors were seen to be equally successful in correlation of biological 

properties when used to remodel six published datasets. Even more surprising, the 

descriptor were seen to give comparable R2 values to P S A d  descriptors, (model of Caco-2 

absorbance for 20 molecules R2 = 0.91 cf. R2 = 0.94) The un-computationally demanding 

nature of this method makes it extremely rapid with 8000 T P S A  values produced per 

minute. Egan and Lauri108 and Labatue109 have proposed two other rapid P S A  calculation 

methods from summation of fragments.
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1.4.5 PSA and Additional Descriptors

The use of PSA as a descriptor reduces the various ways a molecule can interact with the 

environment to a single number. Hansch20 established that a single descriptor may not be 

sufficient to explain a biological or physiochemical property as it may be reliant on more that 

one interaction. Work by Abraham and others79,81,110 demonstrate that the relative importance 

of these interactions can differ greatly. Hence it can be seen that a single number e.g. PSA or 

logPoct cannot hope to model all such properties.

In a model of blood brain barrier penetration for 57 molecules, Clark111 noted that a single 

parameter model of PSA was incapable of predicting the varying penetrative strengths of 

nonpolar molecules. Clark attempted to construct models incorporating molecular weight, 

molecular volume, nonpolar surface area and ClogP: only ClogP was seen to significantly 

improve the model.

Non-polar surface area has been very successful in combination with PSA for modelling 

intestinal absorption, and both Krarup97 and Palm94 included non-polar surface area in 

models of intestinal absorption. The contributions from non-polar surface area were
119investigated by Stenburg for a series of 19 oligopeptides. A sigmodial fit was seen for a 

model of PSA and non-polar surface area, and an excellent model was produced which 

out-performed similar equations that were reliant on experimentally observed descriptors, 

such as octanol-water and heptane-water partition.

Winiwarter113 attempted numerous models of the human effective intestinal permeability 

for 13 molecules using PSA and a number of additional descriptors. A one parameter
'j

model of just PSA gave an R value of 0.76. On addition of a second descriptor, the 

number of hydrogen bond donors, the R value increased to 0.88. Further improvements 

were made to the model by inclusion of either logP or ClogP, giving R2 values of 0.98 for 

both descriptors. Other descriptors such as HOMO and LUMO energies, molecular 

weight, dipole moment and total number of atoms were seen to be less significant upon 

intestinal permeability when used in conjunction with PSA.
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Stenberg et alu 4 fragmented the PSA and molecular surface area in to separate surface 

area descriptors which included the surface area of hydrogen attached to oxygen, sp3 

carbon, sp3 nitrogen, saturated non polar and double bonded oxygen. These descriptors 

were used to create a model of intestinal absorbance. This model, which they called the 

partitioned total surface area (PTSA), was a marked improvement over traditional PSA 

methods giving results comparable to those obtained from more computationally 

demanding methods such as quantum mechanical calculations.

In a review of prediction of physiochemical properties of dug like molecules Blake115 

noted that no distinction has been made in PSA between the hydrogen bond acceptor or 

donor contributions of PSA, an area that Blake noted that could warrant further studies.

1.4.6 What Does PSA Represent?

PSA has met a great deal of success in modelling passive absorbance, it has been shown 

from previous QSAR studies that the two key components of passive absorbance are 

lipophilicity and hydrogen bonding potential116, so PSA must be a measure of at least one 

of these factors. If PSA of a homologous series of acids is considered, lipophilicity 

(logPoct) increases with increasing chain length while PSA remains constant, so logically 

PSA is a measure of hydrogen bonding. This can be further rationalised when one 

considers the number of models in which logP has been used in combination with PSA to 

predict passive absorbance.

Palm100 provided further evidence that P S A  was a measure of hydrogen bonding by 

showing the high correlation between P S A d  and the number of hydrogen bonds that could 

be formed by a molecule (R=0.92). Palm also pointed out that P S A  is a more informative 

measure of hydrogen bonding than many other theoretical approaches of calculating 

hydrogen bonding as the influence of the 3D structure can account for such effects as 

shielding and burial of polar atoms in a molecule.

Stenberg117 proposed a deconvolution of PSA to facilitate the interpretation of the 

composite descriptor, and to suggest methods for faster calculation or more easily 

obtainable substitutes. He calculated a number of hydrogen bond donor and acceptor
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properties using the program HYBOT118 and MOLSURF119 and correlated them with PSA 

using PLS for a set of 128 molecules. The program HYBOT created by Raevsky and co

workers uses a large database of thermodynamic data relating to hydrogen bonding to 

calculates free energy hydrogen bond donor (SCb) and acceptor strengths (£Ca) for a 

given molecule;120 numerous absorption and permeability datasets have been modelled
191with HYBOT descriptors. The program MOLSURF uses the wavefunction to compute 

various properties related to the molecular valence region. MolSurf descriptors describe 

properties such as hydrogen bonding, polarity and polarisability. It should be noted that 

MOLSURF is too computationally demanding to be applied to large libraries or other 

scenarios in which rapid calculation of descriptors are required.

Stenburg117 revealed a good correlation for hydrogen bond acceptor strength and PSA, 

while poor correlations were seen with hydrogen bond donor strength. Polarity and size 

related properties were seen to be of less importance. Most importantly, Stenburg showed 

the number of hydrogen bonds and not their strength was most important to PSA. The 

highest correlation with PSA were seen with descriptors for the number of H-bonding 

acceptor oxygen atoms, number of H-bond acceptor nitrogen atoms and the total number

of hydrogen bond donors, which described 93% of the variance of PSA. Ostberg and
122Norinder also found that simple counts of acceptor nitrogen and oxygen atoms plus the 

sum of hydrogen atoms bound to N and O correlate strongly with PSA > R2 = 0.93.

These conclusions were drawn from single conformations, and Stenburg noted the use of 

P S A d  in this analysis was not possible, as the computations would be too demanding. 

Hence the effects of intramolecular hydrogen bonds, which would represent a substantial 

problem to prediction of P S A  by atom or fragment counts, may be less pronounced. 

Stenberg also noted that simple atom and fragment counts might not be extensive enough 

to define P S A  for large flexible molecules with many polar atoms.

1.4.7 PSA and Hydrogen Bonding Strength

The evidence indicates that PSA is a representation of hydrogen bonding but not 

hydrogen bonding strength. Possibly the most obvious reason for this is the grouping 

together of all polar atoms N, O, N—H, and O—H as having the same contribution to

24



PSA. It is well known123 that the H-bond strength is far from uniform for different 

functional groups. For example donor ability of N—H atoms can differ by an order of 

magnitude (e.g. for dimethylamine A = 0.08, tetrazole A = 0.88 using Abraham’s scale of 

hydrogen bond acidity), and taking these groups’ contribution to PSA as identical must 

introduce errors.

The inability of PSA to account for the varying hydrogen bonding strengths has been 

noted by a number of authors. In the study of Krarup97 the two nitrogens in the 1,2,5 

thiadiazole ring of timodol and pro timidol were not included in their definition of PSA as 

they were seen to be reluctant hydrogen bond acceptors. 101 This non-contribution of 

specific polar atoms was also discussed by Clark, 101 where he pointed out that crystal 

structure surveys and ab initio calculations124' 126 show the ‘ether’ oxygen in a ester is only 

rarely a hydrogen bond acceptor, and should perhaps also be omitted from the PSA 

calculation altogether.

A number of other authors have commented on the possible unrealistic assumptions made 

when calculating PSA and treating it as a measure of hydrogen bonding. Both Ertl 106 and 

Blake 115 commented that a more realistic approach to calculating PSA would be to scale 

these to account for hydrogen bonding strength.

1.4.8 Charged Partial Surface Areas

One method that has been suggested to increase the accuracy and realism of molecular 

surface area descriptors has been through the use of charged partial surface areas, In this 

method, the surface area (either vdw or SASA) is calculated and then scaled using a value 

derived from the electrostatic charge. This has been done in numerous studies although to 

our knowledge never directly related to PSA.

98Stanton proposed a number of charge partial surface area descriptors, which were

grouped by charge type thus, partial positive surface area descriptors (PPSA) and partial

negative descriptors (PNSA). Descriptors to describe differences in charge (DPSA)

functionally charged descriptors (FPSA) and a similar set of total surface weighted partial

surface area descriptors (WPSA and WNSA) were also proposed. Two descriptors were
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also included to describe the most highly charged negative and positive atom (RPCG and 

RNCG).

Using Stepwise multiple linear regression with other descriptors such as number of single 

bonds, molecular polarisability for gas chromatographic retention of 107 pyrazines on 

Carbowax 20M, a six parameter QSAR was defined which had a R2 value of 0.988 and a 

Sd of 32.9. In this equation three of the descriptors were charged partial surface area 

descriptors.

1.5 Conclusions

Numerous models and descriptors have been developed to predict and describe biological 

and physiochemical properties. The use of 3D QSAR has proven an area of particular 

interest as features such as steric hindrance and burial of important molecular features can 

be explained. The use of molecular surfaces has met with a great deal of success as a 3D 

modelling tool, and one such molecular surface descriptor (PSA) has show great potential 

for modelling biological possesses.

Numerous models of P S A  have been proposed along with different routes to its 

calculation i.e. type of surface from which it is defined. A  dynamic form of P S A  has also 

been proposed in which the effects of multiple low energy conformations are considered. 

There is a substantial disagreement as to which form of P S A  is the most accurate, 

although the general consensus is that dynamic P S A  offers only marginal improvement 

over P S A  calculated from a single conformation. One area in which all authors are in 

agreement is that the time consuming nature of P S A d  makes it an unsuitable descriptor for 

virtual screening of large libraries.

While PSA has met with a great deal of success it is not without its failings. Most notably, 

it does not accurately represent hydrogen bonding as both donors and acceptors are 

classed together and the relative hydrogen bond strengths of different functional groups is 

ignored. PSA as a descriptor is also fairly uninformative compared to methods such as 

LFER and interpretation of the QSAR produced tend to provide little information.
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Chapter 2. Statistical Methods

A number of different statistical methods have been used in QSAR and QSPR studies, the 

following chapter outlines some of the more commonly used statistics and those used in 

the subsequent studies. Further information on all of these techniques can found in the
1 7following references. ‘

2.1 Linear Regression

One of the most common methods of deriving QSAR equations is via linear regression; 

this method uses least squares fitting to find the best combination of coefficients within 

the QSAR equation. To demonstrate the mechanism of the least squares we shall first 

consider the simplest case where the property we wish to model is the function of just one 

descriptor. In this case the equation that we need to define is.

Y=MX+C+E (2.1)

Where Y is the observed property we wish to model, e.g. logP, referred to as the 

dependant variable. X  is the descriptor, e.g. molecular volume, and is referred to as the 

independent variable. M  and C are the coefficients, and E is a random error term, which is 

removed when the equation is used predictively. The goal of regression analysis is to 

calculate the optimum value of M  and C that will minimise the sum of deviation of the 

observations from the fitted equation. Finding the equation that gives the relationship 

between X  and Y is known as finding the regression line. The values of X  and Y occur in

pairs. For n values of X  we would have values Xu X 2  X„ which correspond to the Y

values Yu 7? •••• Yn. The line of best fit for these n corresponding points is that which 

minimises the sum of squares deviations of the predicted Y values from the observed Y 

values. The equation of the best fitting line is thus
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Y = MX + ( Y - M X ) (2.2)

Where

_ £ r ,
X = —  (2.3) Y = ^ —  (2.4)

n

And

X  = M, —  (2.5)
Z , ( X , - X ) 2
i- 1

The coefficient M  is the slope of the regression line and (Y -  MX)  is the Y  intercept. The 

symbol Y indicates that this is the value Y as predicted by the equation. Once the 

equation of the line of best fitting is determined a value of Yt can be predicted by inserting 

the appropriate Xt value in to the equation

Yi =MXi + ( Y - W C )  (2.6)

The most efficient formula for the calculation of Mis

V v y  & * ) £ »
U = - ---------------------------------------------------------------------------------------- (2-7)

The quality of a linear regression equation is most often reported as the squared 

correlation coefficient, or r2 value. This coefficient is the fraction of total variation in the 

dependant variables that is explained by the regression equation. To determine r2 it is 

necessary to calculate the total sum of squares (TSS) of the deviation of the observed Y 

values from the average the mean Y and the explained sum of squares (ESS), which is the 

sum of deviation of the values Yt calculated from the model from the mean Y . Another

term that is commonly used in calculation of r2 is the residual sum of squares RSS, which 

is the square of the difference between the observed and calculated values of Y. the
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difference in value between the observed and calculated values of Y is referred to as the 

residual it is the measure of how accurately a value of Y is predicted, The TSS is the sum 

of RSS and ESS. r2 is calculated from these sum of squares values thus.

2 ESS T SS-R SS  m RSS= —  —  = 1  —  (2 .8 )
TSS TSS TSS

Values of r2 range from 0 to 1, a value of one indicates that all of the variance of the 

observed data is being modelled by variation in the independent variable and a value of 0  

indicates none of the variance has been explained.

2.2 Multiple Linear Regression

In multiple linear regression, the techniques of linear regression are expanded so that the 

effects of more than one independent variable can be modelled simultaneously. Where as 

linear regression fits the value of a line in two-dimensional space, multiple linear 

regression fits a multidimensional surface. For a series of p independent X variables the 

general form of the multiple linear regression is as follows

Y = C + MjX j + M2X2 .. .MpXp + E  (2.9)

Similarly to equation 1 C is the Y  intercept, MjJMp are the gradients of the descriptors

X i Xp. E is a random error term, when the equation is used predictively this term is

omitted. In order to calculate values for Mi M2....Mp and C the equation is treated using 

matrix algebra, which produces the matrix form.
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Y = XM + E (2.10)

Where F, M, and E  are vectors, and X  is a matrix (called the model matrix or design 

matrix). The vectors Y M  and E  and matrix X  for equation 2.10 would be as follows

1 X u X 12

X  =

x ^

7  =

Yi

A /

E =

'E ^

M  =
M x

Values of C and M i.....M2 are calculated by least squared analysis, for n observations, the

residual is minimised as follows.

= i t e , - C - M lX a - M 1X a - . . . M r X lpy  = £ ( l ' - j ' ) 2 (2.11)
/ = 1  J = 1  ( = 1

The quality of the fit of MLRA is indicated by the multiple correlation co-efficient R2, 

this statistic is analogous in calculation and interpretation to r2.

2.3 Root Mean Square Error

The route mean square error (RMSE) represents the square root of the mean of deviation 

from the mean. This is used to assess the accuracy of the values calculated by the model.

RMSE i=1 (2.12)

A similar measure is standard deviation (Sd). This is almost identical to RMSE except the 

mean of squares is divided by w-1. This is done to prevent the underestimation of the total 

population variance. Although for datasets where n > 20 the difference in the two 

statistical methods becomes so small that either can be used to calculate the variation in 

the data.
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2.4 F-ratio

Another statistical validation of MLRA is f-ratio. The f-ratio indicates the likelihood that 

relationship is not one derived by chance. The f-ratio is dependent upon the number of 

independent variables and the number of data points within the equation. The value which 

corresponds to a particular level of confidence in the model falls as the number of data 

points increases and or the number of independent variables falls. The reason for this is 

that an equation would be expected to have greater predictive power if it is predicting a 

large number of data points with the fewest possible descriptors. The numbers of degrees 

of freedom associated with each parameter are used to take this into account. A simple 

linear regression is associated with n-1 degrees of freedom as the fitted line always passes 

through the means of the dependant and independent variables. The total sum of squares 

is associated with N-1 degrees of freedom. If there are P independent variable then there 

are N -P  -1 degrees of freedom associated with the explained sum of squares.

. E S S N - P - 1
F -  ratio = ------------------ (2.13)

P RSS

2.5 Cross-validated R2 and Training and Test Sets

The cross-validated R2 (R2CV) is a measure of the internal self-consistency of a model and 

reflects the predictive power of the model. The value of R2 is determined by removing a 

value from the dataset, deriving a model from the remaining data and then using this 

model to predict the value of the excluded value. This predicted value is then compared to 

the observed value. This is repeated until every point in the model has been excluded and 

its value has been predicted. Values obtained for R2 are usually higher than those obtained 

for R2cv. Another measure of predictive accuracy is the PRESS statistic (predicted residual 

sum of squares) this value is similar to the residual sum of squares although the values of 

Y j  calc are obtained from models which do not include the corresponding values of X;.
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PRESS (2.14)

N

PRESS = (2.15)
1=1

A further more robust test of the models predictive accuracy is through the use of training 

and test sets. In this method a large number of data points, usually about 20 -  25% of the

then created from the remaining points, which are called the training set, and the values of 

the test set are predicted. This process can be repeated several times until all compounds 

have been excluded and predicted.

2.6 Interpretation of MLRA Equations

While the ability of QSAR equations to predicted properties is useful, the ability to glean 

information from the models about the properties governing the modelled system should 

not be overlooked.

Where all dependant variables are scaled similarly it is possible to gain information about 

the significance and role of each descriptor directly from the regression coefficient. 

However, this is not possible where the values of the individual descriptors vary greatly in 

size, for models where this is the case the significance of individual descriptors can be 

assessed using the t-ratio. The t-ratio is obtained by dividing the relevant regression 

coefficient (M) by the standard error of the coefficient s(M).

The significance of the t-ratios is informative. A large t-ratio value shows that a descriptor 

is accounting for a significant proportion of the variation. Similarly a small t-ratio value 

would indicate that the descriptor is insignificant, if the t-ratio is sufficiently small and the 

descriptor is seen not to be contributing to the model it may be removed from the 

regression.

total number of data points in the dataset, are removed and called the test set. A model is

t -  ratio =
s{M )

(2.16)
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Where the descriptors are physically meaningful it is possible to compare the relative size 

of all t-ratios and determine what factors are most strongly governing the modelled 

system. Not only is the value of a t-ratio informative but its sign also provides information 

on the role of the descriptor within the model. For example in a model for the prediction 

of logPoct a positive value for the t-ratio of the molecular size descriptor would indicate 

that large molecules would more preferentially be drawn into the octanol, alternatively if 

the molecular size descriptor had a negative t-ratio it would tell us that partition of larger 

molecules into octanol is unfavourable. Where the properties of a system as determined 

from t-ratio values reflect the known physical properties of the system further validity is 

added to the model.

It should be stated that assumptions made on t-ratio values should not be made lightly as a 

limitation of all regression techniques is that one can only ascertain relationships, but 

never be certain about underlying causal mechanism.

2.7 Stepwise regression

When a large number of descriptors are generated it is often difficult to know which are 

important within the regression. A solution to this is the use of stepwise regression. There 

are two methods of stepwise regression forward and backward stepping. In forward 

stepping an equation is derived with one descriptor, which is seen to make the most 

contribution, based on its t-ratio. In the next step the next most influential descriptor is 

added to the equation, this is repeated a number of times until all significant descriptors 

have been included into the regression. Backward stepping is simply the opposite of this 

where an equation is calculated with all the descriptors with the least significant 

descriptor being ejected from the equation at each step.

2.8 Outliers

Where a point is seen to be modelled poorly and large residuals are reported the point is 

called an outlier. This is occasionally defined rigidly as any point whose residual is three 

times that of the RMSE, although it is also defined as any point whose residual is
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substantially larger than other residuals in the model. In extreme cases outliers can 

seriously bias the results by "pulling" or "pushing" the regression line in a particular 

direction, thereby leading to biased regression coefficients. The effects of outliers are 

particularly influential on the values of R cv.

There can be number of different reasons for outliers, most obviously that the 

experimentally obtained value is incorrect due to mistakes in measurement or calculation. 

It is occasionally possible to corroborate such mistakes by comparing experimentally 

observed data for a homologous series of molecules.

Where observational error is not the cause of an outlier the fault logically lies within the 

model, although this may not mean the model is incorrect merely that the boundaries in 

which it operates have been violated. For example if a model were created for passive 

diffusion in a biological system, any molecule with strong active transport properties 

would be seen as an outlier. Outliers can also be generated where a molecule has a 

descriptor or property that greatly exceeds the boundaries of the model. Structural 

abnormalities and properties that are not permitted by the model can also be a large source 

of outliers e.g. charged molecules and zwitterions.

An outlier should only be removed if there is a justification for its removal. Often 

excluding just a single extreme case can yield a completely different set of results. When 

the outlier has no structural abnormalities and reliable experimentally observed values the 

QSAR should be re evaluated.

2.9 Limitations to MLRA and Alternatives

While MLRA is a powerful tool it is not without its limitations. Fitting problems can 

occur when the data does not have a good distribution of values. Datasets where the 

distribution of values is irregular can generate models where the line is being fitted 

through a few isolated pockets of data. While the model will show good accuracy when 

analysed with statistical tests such as R2, it is likely to be predictively poor as the line is 

not fitting the individual points in each pocket, instead the line of best fit is only
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intersecting with the pocket. These pockets are often easily observable in a plot of 

observed versus calculated data.

MLRA is also limited in the number of descriptors that can be applied to a dataset and 

still achieve a statistically significant result. It has been stated that at a minimum there 

must be five data points for every descriptor, and that the optimum ratio to gain a stable 

model is at least 10 to 20 times as many observations than descriptors.

Another limitation to MLRA is where descriptors are highly correlated with each other 

(R2> 0  .5). This internal correlation causes redundancy within the descriptors as the same 

direction of fit is being modelled twice. This can lead artificially high values of R and 

errors in the coefficients and their interpretation.

Alternative statistical methods are available which solve some of the problems associated 

with MLRA such as principle component analysis, in which the number of descriptors can 

exceed the number of observations. This is possible in principle component analysis as 

the method reduces the dimensions of the model by transforming/condensing the original 

variables into principle components, which are a set of variables that define the maximum 

amount of variation in a dataset. Each principle component is orthogonal (and therefore 

uncorrelated) to the previous principle component of the same dataset. The principle 

components are constructed so that the first component extracted explains the maximum 

variance in the dataset. The second component then explains the maximum of the 

remaining variance of the dataset.

Principle component regression uses these principle components as descriptors in a 

regression against the dependent variable. However, models created using principle 

component analysis are often more difficult to interpret that those made with MLRA as 

each principle component is a combination of a number of factors and the physical 

meaning can be difficult to define.

Another method available which overcomes the problem associated with MLRA is partial 

least squares analysis (PLS). In this method the independent variables are transformed 

into latent variables via linear combinations of the original independent variables, in a 

similar manner to principle components analysis, although unlike principle components

39



latent variables are constructed with the intention of maximising their correlation with the 

dependant variable.

After the latent variables have been constructed they are correlated with the property of 

interest by MLRA, in which the latent variable are the descriptors. PLS is a particularly 

powerful tool when the number of independent variables greatly exceeds the number of 

dependant variables also co-linear descriptors are not a problem.

It can be envisaged that the descriptors, which we propose in 3.1.2, will not correlate 

highly and the datasets chosen will be sufficiently large that there will always be a 

minimum of 10 observations to every descriptor and analysis by MLRA will be possible.

2.10 Software

All statistical analyses were performed using JMP version 4.0.2.8
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3.1 Model Development

3.1 Generating Descriptors

3.1.1 MOL VOL

While many different program and algorithms for the calculation of molecular surface 

areas are available the program MOL VOL by Dodd and Theodorou1 was chosen as our 

method of generating the surface areas from which our descriptors would be calculated. 

MOL VOL was chosen as it has been seen capable of calculating accurate surface areas
'y

and more specifically PSA from previous studies. MOLVOL was also selected, as the 

source code is publicly available and legal to modify.

MOLVOL calculates the total and individual volume and exposed surface area of a 

molecule by treating it as an arbitrary collection of fused hard spheres of predefined radii 

cut by relevant planes.

MOLVOL places the centre of each sphere in positions representing the nuclei. These 

positions are defined from a set of XYZ coordinates from the input file. The exposed 

surface area of these spheres is then calculated from radii encoded into MOLVOL. Where 

two spheres overlap a plane of intersection is drawn perpendicular to the line connecting 

the two spheres. This plane contains the circle of intersection of the two sphere surfaces. 

A vector is then assigned that points from the centre of the sphere to the centre of the 

plane of intersection. It is from this vector that MOLVOL determines which parts of the 

sphere are exposed (before the plane of intersection) and which are buried (after the plane 

of intersection). For two spheres intersecting, the area that is buried by either sphere is a 

dome shaped spherical cap, which is removed by MOLVOL. The parts of the sphere 

remaining after all of the buried segments have been removed by the planes is described 

as the “cutout”. Spheres that are intersected by two or more other spheres are treated using 

the same methodology.

The intersecting spheres are then completely decoupled to leave the individual cutout of 

each individual atom; each of these is given a copy of the intersection planes along with 

the vector. This form of decoupling means each individual sphere is treated as an
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individual problem; this is essential to our study as the proposed descriptors are reliant on 

the exposed surface area of individual spheres/atoms.

Once the configuration of the all the planes of intersection are known and the molecule 

has been decoupled into separate atoms, the volume and surface area is determined by 

treating the cutout as a sum of “cone pyramids” formed by plane intersections and 

“spherical sectors” formed by the uncut remains of the sphere. The cone pyramids can be 

thought of as the unexposed part of the cutout and the spherical sector is the exposed part 

of the cutout.

The cone pyramids are defined thus: the base of the cone pyramid is defined as the plane 

of intersection, in the case of two spheres interacting the base would be a circle and the 

cone pyramid would be a simple cone. The height of the cone pyramid is the 

perpendicular distance from the centre of the sphere (nucleus) to the plane of intersection. 

The planes of intersection which form the base of the cone pyramid are most often 

intersected with other planes that also cut the sphere, this form of multiple intersection 

causes the base of the cone sphere to become a complex shape containing numerous plane 

lines and points of intersection. These complex shapes are referred to as arc-polygons, as 

they often still possess arcs from the original sphere circle. The surface area of these cone 

spheres is defined as the convex solid object drawn out by lines connecting the sphere 

centre with all points on the perimeter of the arc polygon. From the area of the cone 

pyramid the volume is calculated by taking the product of this area and one-third the 

height of the cone pyramid. The volumes and surface areas of these regions represent the 

unexposed surface area and volume of the cutout. Once these volume and surface area are 

calculated they are removed from the cutout to leave the spherical sector.

To calculate the surface area and volume of the spherical sector, all of the arc polygons 

are connected to form one or more closed curves on the cutout sphere surface. It is these 

closed curves that represent the boundary of the exposed surface area. A spherical sector 

may have more than one series of closed curves on the surface of the sphere, and also 

more than one contiguous region of uncut sphere. Analysis of the closed curves on the 

surface of the sphere allows the determination of the exposed surface area of the sphere. 

The spherical sector surface area is defined as a cone-like solid object whose apex is 

sphere centre and whose base is the continuous uncut area of the sphere (exposed surface
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area). The volume of the spherical sector is calculated as one third the radius of the sphere 

(the height of the cone) times the surface area of the continuous uncut area.

MOLVOL is reliant on pre-programmed radii to calculate surface areas. These radii were 

obtained from the study of Clark.3 and were chosen as they have been seen to be reliable 

for generating PSA values from previous studies.2'4 Other radii that were required but not 

included within those stated by Clark were obtained from web elements.5 It was seen that 

radii obtained from the work of Clark and those from web elements were different, 

although a correlation of 0.966 was seen when the two sets of radii were plotted against 

each other as shown in fig 3.1.

Figure 3.1: Plot of vdw radii obtained from the study of Clark vs radii obtained from web 

elements
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From the fit shown in figure 3.1. The following relation was defined.

C= 1.2556W-0.17 (3.1)

Where C is the value of Clarks radii and W is the value of the radii as obtained from web 

elements both set of radii are in A. The radii as obtained from Clark and those 

extrapolated from web elements are listed in table 3.1.
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Table 3.1 : van der Waals Radii as implemented into MOLVOL

Atom Vdw Radii/A

C 1.90

0 1.74

N 1.82

H 1.50

H attached to 0 1.10

H attached to N 1.13

S 2.11

P(ll) 2.05

F 1.65

Cl 2.03

Br 2.18

1 2.32

Pt 2.03*

Si 2.46*

*Value as calculated from webelements.

In order for MOLVOL to assign vdw radii an if statement was used, in which radii were 

assigned from atomic symbol. Atomic numbers were also assigned to each atom to aid 

determination of molecular fragments. The radii for H attached to O or N were assigned 

based upon data contained in the connectivity block. The exact nature of this assignment 

is discussed further in 3.1.4.

In order for MOLVOL to calculate the surface area descriptors required, the first change 

required was the format and the information contained in the input file of MOLVOL. 

Figure 3.2 shows the original MOLVOL input file for formaldehyde. The Cartesian 

coordinates from which MOLVOL calculates surface area contain no information about 

the chemical environment of individual atoms i.e. bond type, aromaticity or connectivity. 

For this reason the input file was changed to that of MDL’s Molfile format.6 Molfiles 

encode the relevant information in the molecule’s bond block. Figure 3.3 Contains the 

MDL molfile for formaldehyde as generated by HYPERCHEM PRO 67 and shows how 

chemical information is encoded in the connectivity block.
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Figure 3.2: Original Input file format of formaldehyde program MOLVOL

No Atoms 

No Bonds

[ t ]  0
/  6 0 0 0 0 0 . 1 1 2 7  0 0 0 0 0 . 2 4 0 5  - 0 0 0 0 . 0 0 0 0

8 0 0 0 0 0 . 1 1 2 7  0 0 0 0 1 . 4 6 7 8  - 0 0 0 0 . 0 0 0 0
1 0 0 0 0 1 . 0 5 2 1  - 0 0 0 0 . 3 5 1 5  - 0 0 0 0 . 0 0 0 0
1 - 0 0 0 0 . 8 2 6 6  - 0 0 0 0 . 3 5 1 5  - 0 0 0 0 . 0 0 0 0\   /  \   /  \   /

XYZ Coordinates 

Atomic Number

Figure 3.3: MDL Molfile for formaldehyde and connectivity assignment

Counts
Line

Atom _ 
Block

Bond
Block

No Atoms 
No Bonds

0 0 0 0 0 0 0 0 0  V2000  

/  0 0 0 0 0 . 1 1 2 7 0 0 0 0 0 . 2 4 0 5 - 0 0 0 0 . 0 0 0 0

0 0 0 0 0 . 1 1 2 7 0 0 0 0 1 . 4 6 7 8 - 0 0 0 0 . 0 0 0 0  

0 0 0 0 1 . 0 5 2 1 - 0 0 0 0 . 3 5 1 5 - 0 0 0 0 . 0 0 0 0

- 0 0 0 0 . 8 2 6 6 - 0 0 0 0 . 3 5 1 5 - 0 0 0 0 . 0 0 0 0  
\ ___________ /  \ __________/  \  /

XYZ Coordinates

0 0 
0 0 
0 0 
0 0

/
001 002 002 0 0 0

001 003 001 0 0 0

\
001 004 001 0 0 0

— Bond Type 
Conectivity Data 1 
Conectivity Data 2

- Atomic Symbol

o

H H

The connectivity data in the bond block refers to atoms in the atom block. A value of one 

in the connectivity data refers to line one of the atom block a value of two refers to line 

two (in the example shown in figure 3.3 the carbon atom and the oxygen respectively).
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The first line of the bond block states that atom one is bonded to atom two. The bond type 

in this example, connecting atom one to atom two has the value two, which indicates that 

the bond is a double bond. The notation used to define bonds in a molfile is as follows.

1. Single

2. Double

3. Triple

4. Aromatic

5. Single or Double

6. Single or Aromatic

7. Double or Aromatic

8. Any

While further information is encoded within the molfile such as charge and valence in the 

atom block and stereo information in the bond block, this is not discussed further as it has 

no relevance to the proposed descriptors.

To aid the speed with which MOLVOL could be used to calculate descriptors, the 

program was altered so that the name of the desired molfile to be processed could be 

entered on the command line, and an output file with the extension .out would be 

produced. As opposed to MOLVOL’S original usage by which a file title Volume.inp 

would be processed and a file titled volume.out would be produced.

All of the aforementioned changes were made to MOLVOL in the form of a new 

subroutine entitled Read dataMol.
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3.1.2 Descriptors

As stated in 1.4.5 the use of PSA as a measure of a molecule’s hydrogen bonding capacity 

reduces the various ways a molecule can interact with the environment to a single 

number. In order to give greater flexibility to PSA as a descriptor a number of surface 

area descriptors were defined that account for the various ways in which a molecule can 

interact with its environment.

o

While it has been shown that PSA represents a molecule’s hydrogen bond capacity its 

traditional definition groups all hydrogen bonding atoms together and does not account 

for the fact that individual polar atoms in molecules will act as hydrogen bond donors and 

acceptors. Hydrogen bond donors are defined as hydrogen atoms covalently bonded to 

electronegative atoms such as oxygen and nitrogen. It is the withdrawing effect of the 

electronegative atom on the electron density of the hydrogen atom that causes the atom to 

gain a positive charge while the electronegative atom gains a negative charge. The small 

size of hydrogen relative to other atoms and molecules results in a large charge density. 

The partial positive charge on this hydrogen is capabable of interacting with hydrogen 

bond acceptors, which are hetaroatoms with lone pairs or partial negative charges such as 

oxygen and nitrogens. Hydrogen bond donors and acceptors are also refered to as 

hydrogen bond acids and bases.

To account for these properties, PSA was decoupled into its hydrogen bond acid and 

hydrogen bond base components. The hydrogen bond acid surface area descriptor is 

denoted as ASAu and is defined as the total vdw surface area of all hydrogens attached to 

an oxygen or a nitrogen. The hydrogen bond basicity surface area descriptor (BSAu) is 

defined as the total vdw surface area of all oxygen and nitrogen atoms.

The strength of a hydrogen bond depends greatly on the donor and acceptor. For this 

reasons two other descriptors AS As and BSAs were defined; these descriptors are 

intended to scale the hydrogen bond acid and base descriptors to give a more realistic 

representation of hydrogen bonding. The scaling of these descriptors is discussed further 

in 3.1.3.
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The total surface area of a molecule is also important to its solvation properties. The 

cavity theory9' 11 of solution states that in order for a solute to be solvated a cavity of 

suitable size must be created in the solvent. The formation of this cavity is endoergic due 

to the energy required to disrupt the solvent solvent interactions. The reorganisation of the 

solvent molecules may also account for a large change in enthalpy and entropy and the 

introduction of the solvent into this cavity causes various solvent-solute interactions all of 

which are exoergic. The larger the solute the greater the size of the cavity, and the greater 

the disruption to the solvent-solvent interactions. Hence total surface area is an apt 

descriptor for this interaction. The total surface area descriptor (TSA) is defined as the 

total vdw surface area of the whole molecule.

11Simple energy calculations show that the centre of an aromatic ring such as benzene is 

capable of interacting with hydrogen bond donors and acting as a hydrogen bond 

acceptor. It has been seen that the hydrogen bond is formed by a small partial charges 

centered on the ring. The hydrogen bond formed is seen to be about half as strong as a 

normal hydrogen bond. Via the scaling factors it is possible to include aromatic carbon 

surface areas into the descriptor BSAu, although benzene rings tend to interact more 

strongly with solvents via polar and polarisable effects. For this reason the slight 

hydrogen bonding basic properties of aromatic carbons is included into B S A s  and also 

included as a separate descriptor BenSA which is defined as the total surface area of all 

aromatic carbon. The descriptor is intended to take into account polar and polarisable 

properties of benzene rings.

The effect of halogen atoms upon solubility is included in the descriptor HalSA, which is 

defined as the total vdw surface area of all halogen atoms. The HalSA descriptor accounts 

for the dipole-dipole interaction and induced dipole interactions between the solvent and 

the halogen atoms of the solute. The partitioning of a molecule by the proposed surface 

area descriptors is shown in figure 3.4.
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Figure 3.4: The partitioning of 4-Aminomethyl-5-chloro-2-hydroxy-benzoic acid methyl 

ester by the surface area descriptors.
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* All atoms contribute to VISA. These atoms contribute onlv to MSA.

The descriptor TSA was already encoded into MOLVOL and included in the output file. 

The descriptor ASAu was assigned based on connectivity data, and calculated as the total 

exposed surface area of any H attached to an O or N. The BSAu surface area was assigned 

based upon atomic number with BSAu being calculated as the sum of the exposed surface 

area of any atom with an atomic number of 7 or 8. The definition of the descriptors AS As 

and BSAs and their calculation is discussed in 3.1.4.

The variety of atoms included in the definitions of ASAs and BSAs is wider than that of 

its unsealed counterparts as the effects of weak hydrogen bonding molecules is accounted 

for by appropriate scaling. ASAs is expanded to include the scaled exposed surface area of 

H attached to alkynes; BSAs is expanded to incorporate sulphur, phosphorous and carbon 

in alkanes and alkynes.

The HalSA descriptor was assigned from atomic number. The BenSA descriptor, which is 

the surface area of any aromatic carbon atoms, was assigned based upon atomic symbol
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and the value of bond type in the bond block. MOLVOL was modified so the values 

calculated for these surface areas were included in the output file.

3.1.3 Scaling Factors

The molecular fragments from which the scaling factors would be assigned were chosen 

with the intention of keeping the model as simple and general as possible without loss of 

accuracy. For example hydrogen atoms attached to oxygens were defined as alcohol, 

phenol and carboxylic acids. Experimentally 13 each type is found to have broadly similar 

hydrogen bond donor abilities. Similar classifications were made for N-H, oxygen, 

nitrogen and sulphur. Sulphur has been included in our definition of PSA here as its 

“slightly polar” properties can be modelled via appropriate scaling. PSA including 

sulphur have been proven to produce more accurate models than just oxygen and nitrogen 

based PSA.14 A series of 49 fragments were defined a list of these fragments is given in 

table 3.3.

The Abraham A and B values were chosen as the starting point for our scaling. A is the 

overall hydrogen bond acidity of the solute. The preliminary AH2 scale was developed 

from acid base systems in tetrachloromethane at 298K. From available literature Abraham 

and co workers 1516 created the acidity scale denoted KHA, this scale fitted all the 

equilibrium constants onto one single scale irrespective of the reference base. Plots of 

logK for acids with a given reference base against the logK for acids with another base 

produced a series of straight lines that intersected at a point. The origin was set to zero for 

convenience for the resulting AH2 scale. As this scale was derived for 1:1 complexation 

and a more realistic measure of a solutes H bonding acidity as surrounded by solvent 

molecules, an overall £AH2 scale was defined, in this scale 0 corresponds to no hydrogen 

bond acidity and 1 represents a strong monofunctinal acid. For example a value of 1 is 

expressed for pentachlorophenol if a molecules displays a XAH2 value of 0.1 its hydrogen 

bond acidity is one tenth that of pentachlorophenol.

B is the hydrogen bond basicity of the solute. B is derived from Taft’s /?KHb scale 17,18 

using a similar methodology as the acidity scale. Taft’s pKHe is related to the Gibbs free 

energy of formation of the hydrogen bond complexes in tetrachloromethane at 298K. The 

scale was generalised to an overall the XBH2 is a similar manner as that for hydrogen bond
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acidity, with a value 0 representing no hydrogen bond basicity and 1 being equal to a 

strong monofunctinal base such as hexamethylphosphorictriamide (HMPTA). This ability 

to express free energy related properties in terms of conventional units and the appropriate 

range of values covered by the ZAH2 and £BH2 scales makes them an appropriate and apt 

scale for our scaling factors.

A further strength of the A and B scales is their values are derived from experimental 

measurements such as changes in the infra red stretching frequency H-X upon formation 

of a complex B H-X, gas liquid chromatography data and water solvent and gas/solvent 

partition data.

Two methods were proposed for the generation of scaling factors for the fragments the 

first of these was a simple averaging of A and B values while the second method was a 

more elaborate regression of A and B values against surface area.

3.1.3.1 Averaging of Abraham Scales

Data for experimentally observed A and B  Abraham values were collected.19 From the 

collected Abraham values, scaling factors for A S A s  and B S A s  were calculated by taking 

the average of a number of observed A and B  values for a specific functional group. An 

example of this for alcohol is shown in table 3.2.

51



Table 3.2: Experimentally observed Abraham A and B values for a series of alcohols.

Name A B

Methanol 0.43 0.47

Propan-1-ol 0.37 0.48

Butane-1-ol 0.37 0.47

Butane-2-ol 0.33 0.49

Pentane-2-ol 0.33 0.49

2,2-dimethylpropan-1 -ol 0.37 0.5

Octanol 0.37 0.48

Decan-1-ol 0.37 0.48

Cyclopropyl carbinol 0.35 0.4

1-Adamantanol 0.32 0.52

Hexafluoroisopropanol 0.77* 0.1*

Pantolactone 0.53 0.55

Average 0.37 0.48
* Value not included in average.

Care was taken in selecting the molecules from which the averages were calculated, no 

molecules whose A  and B  values that were outstandingly different to the majority and 

whose values could be attributed to effects caused by atoms not included in the specific 

functional group were included in the calculation. In the above example of alcohol, 

hexafluoroisopropanol was not included in the calculation of the A S A s  and B S A s  scaling 

values, as its A  and B  values are much higher than all other values.

3 20 22Clark stated that evidence from crystal structure surveys and ab initio calculations 

indicates that the ether oxygen in an ester is only rarely a hydrogen bond acceptor, and 

should perhaps be removed from PSA altogether. If the average B value of an ester has a 

calculated value of 0.45, this is the same B value as reported for a solitary carbonyl. For 

these reasons the B value of the ether oxygen in the ester is scaled to 0 and the carbonyl 

oxygen is scaled by the same value as a solitary carbonyl.

The scaling factors were also designed to take in to consideration that certain atoms in 

functional groups have relativly large hydrogen bonding acid and base properties but 

small surface areas. For primary, secondary and tertiary amines, Abraham’s scale assigns 

B values of approx 0.48, 0.54 and 0.65 respectively, while surface area as calculated by
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MOLVOL is approximately 19, 11 and 5 A2. The average B value when multiplied by 

their relevant surface areas produce values that do not correlate with the increase in H- 

bonding basicity seen in the Abraham scale, due to the relatively small exposed area of 

the tertiary amine compared to that of the primary amine. In order to resolve this problem 

the B scaling values for secondary and tertiary amines were increased appropriately.

The initial intention was simply to multiply the calculated atomic surface areas by the 

appropriate scaling factors as obtained from the Abraham A and B  values to give the 

scaled values of A S A s  and B S A s .  However, this would mean that ‘missed’ atoms, i.e. 

those not matched by any defined fragment, would effectively be assigned a value of 1, 

corresponding to a very strong donor or acceptor. To remedy this, the Abraham scaling 

factors were tripled. This means that missed atoms would be scaled as weak to medium 

donors/ acceptors, similar to alcohols ( A S A s )  or ether/alcohol ( B S A s ) .

It has been observed and calculated that intramolecular hydrogen bonding can act to ‘tie- 

up’ both acid and base atoms, and reduce hydrogen bond acidity and basicity. While such 

effects may be represented in the 3D structures via the overlap of vdw surface area of 

intramolecular hydrogen bonding atoms, it is possible that these effects will not be 

accounted for accurately enough to fit onto our proposed scales. A series of scaling 

factors were defined as a contingency if vdw surface area could not account for the 

reduction in hydrogen bond acidity and basicity. These fragments are defined simply as a 

H-bond donor sited ortho- to an acceptor on an aromatic ring and are shown in table 3.3 

Their values were again assigned via averaging of experimentally obtained Abraham 

values.

It is not as easy to define fragments for hydrogen bonding within aliphatic systems as the 

number of fragments required would remove a large amount of generality from the model, 

Also assignment of values to these fragments is difficult as their effects on hydrogen bond 

acidity and basicity are less pronounced than those around aromatic rings as 

conformational flexibility in aromatic rings is far more restricted than in aliphatic 

systems.
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3.1.3.2.1 Regression of Abraham Scales

Simply assigning a value to a scaling factor based on its average value in the Abraham 

scales may not be an accurate way of correcting a surface area to account for H-bonding 

strength. While accurate values may be obtained for some functional groups this method 

does not provide evidence, or indicate if key fragments have been missed. Also other 

atoms like the N in tertiary amines where the scaling factor must be corrected to account 

for unusually large or small surface areas may have been missed using the previous 

methodology. For this reason a second method of calculation scaling factors was 

explored.

A dataset of 1055 molecules with experimentally observed Abraham values was

constructed from the Abraham database19. 3D coordinates for each of the molecules in the
91dataset were obtained from CORINA and energy minimized using AMI in 

HYPERCHEM (The justifications for this method of generating 3D structure is given in 

3.2.2). A modified version of MOLVOL was used to calculate the total individual surface 

area for each of our 49 defined fragments for each molecule.

Multiple linear regression analysis (MLRA) of A and B values against the relevant 

individual surface areas was then performed, i.e. A was regressed against all H attached to 

oxygen, nitrogen and alkynes. The intercept was removed from the regression so that a 

molecule with no hydrogen bonding acid or basic surface areas would give A and B 

values of zero. The coefficients of these regressions were taken as our new scaling factors.

3 . 1 . 3 . 2 . 2  Results A S A s

A was regressed against 16 H bond acid surface area fragments. The regression gave an 

R of 0.82 and an RMSE of 0.126. The residual revealed a number of outliers in the 

dataset. The first of these outliers is JG-18 (shown in figure 3.5). An observed A value of 

2.08 was given this value is very high considering the fragment approach of Platts24 

predicts it to be 0.987. As both theoretical methods substantially over estimate the A 

value of this molecule we assume the observed value is incorrect and remove it from the 

dataset. The second largest outlier is 3-bromoacetanilide, comparisons of its reported A 

value to that of other halogen-substituted acetanilides shows it is seen to be significantly 

larger than other values, for this reason it was removed from the dataset.
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Figure 3.5: Structure of molecule JG18
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The molecules mannitol, sucrose and arabitol were also identified as outliers all of these 

molecules contain large numbers of adjacent alcohols that are capable of interacting via 

intramolecular H bonding. As fragments are not defined for intra molecular H-bonding in 

aliphatic systems, and the hydrogen bonding properties of these molecules are governed 

by such effects we have chosen to remove them from the data set. Chloramphenicol and

2-amino- 1-propan-di-tfa were also removed from the dataset as thier A values were seen 

to be radically different to those of structurally similar molecules.

No individual functional groups were seen to be continually modelled poorly indicating 

that the 16 fragments assigned to calculate A S A s  were not missing any important 

functional groups. The regression was repeated with the removal of the outliers. The 

following statistics were seen R 2 0.88 and R M S E  0.091 a marked improvement over the 

original regression.

3 . 1 . 3 . 2 . 3  Results B S A s

B values were regressed against 32 surface area descriptors for the full set of 1055 

molecules and the following statistics were given R 2 0.842 R M S E  0.178.

JG18, chloramphenicol, and N,N diphenlacetamide were reported as outliers. All of these 

molecules were removed, as their B values were considerably higher or lower than those 

of structurally similar molecules. N 2,4,6 tetra nitro-N-methylamine was also removed as 

it contained a fragment (C-N-N-C) that did not occur anywhere else in the data set.
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Creating a fragment and scaling factor for this would have been futile, as its value in the 

regression would be calculated from one point, also the fragment is not common enough 

in organic molecules to justify its own scaling factor.

The regression was then repeated with the removal of the outliers. The regression yielded 

the following results an R2 value of 0.89 and RMSE of 0.143. No individual functional 

groups were seen to be constantly modelled erroneously indicating that the fragments 

defined for hydrogen bond bases were comprehensive and that no important functional 

groups containing these atoms had been missed.

From these regressions of A and B values the coefficients for each fragment were taken as 

our surface area scaling factors. The coefficient values were all scaled to a range of 0-1 to 

place them on scale akin to that of the Abraham scales and to aid interpretability. This 

scaling was performed by scaling the strongest hydrogen bond acid and base to one, the 

strongest acid was seen to be phenol while tertiary amine was seen to be the strongest 

base. A list of all these scaling factors is given in table 3.3. This form of scaling makes 

direct numerical comparisons between the two sets of descriptors difficult as in the 

averaged obtained scaling factors neither tertiary amines or phenols have values of exactly 

1 on the Abraham scale.
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Table 3.3: Scaling factors as obtained from regression and averaging method.

O B a ses R egression  scaling  
factor

Averaged scaling  
factor

Carbonyl 0 .15 0.45
Alcohol 0 .16 0.48
Phenol 0 .07 0.36
Ether 0 .18 0.55
Acid/ester -O- 0 0
Furan/aromatic 0.01 0.15
Nitro 0.01 0.15
Sulphoxide 0 .28 0.93
Sulphonamide 0 .14 0.36
Sulphone 0.1 0.36
Phosphate 0 .18 0.45
Phosphine 0 .55 0.45

N Acids R egression  
scaling factor

Averaged scaling 
factor

1y amine 0 .16 0.08
2y amine 0 .17 0.08
Aniline 0 .22 0.12
Pyrrole 0 .69 0.21
Amide 0.41 0.25
Anilide 0 .69 0.5
Sulphonamide 0.44 0.45
Thioamide 0.34 0.5

O Acids

Alcohol 0 .46 0 .38
Phenol 1 0 .54
Carboxilic Acid 0 .95 0.6

Intra B a ses

C = 0  ortho to phenol 0 .06 0

N = 0  ortho to phenol 0 .02 0.05

O ortho to Phenol 0 .08 0.2

O ortho to aniline 0.04 0.2

N = 0  ortho to aniline 0.02 0.05

C Acids

Alkyne 0.05 0.09

Intra Acids

Phenol ortho to C = 0 0.45 0.05
Phenol ortho to N = 0 0.45 0.05
Phenol ortho to O 0.71

0.25
Aniline ortho to O 0.09 0.1
Aniline ortho to C = 0 /N = 0 0.15 0.1

Phospourus

Phosphate
/Phosphine

0.68
0.55

Carbon

C=C double bond 0.02 0.06
C#C triple bond 0.03 0.13
C Aromatic 0.01 0N b a ses

1y amine 0.21 0.6
2y amine 0.4 1.2
3y amine 1 3
Amide 0.02 0.25
Aniline 0 .13 0.4
Cyano 0.06 0.37
Nitro 0 0
Pyridine 0 .13 0.75
Pyrrole 0.13 0.25
Sulphonamide 0 0.08

Sulphur B ases

Thiol, sulphide 0.21 0.3

As a final test of the predictive accuracy of the scaling factors obtained from the 

regression four training and test sets were constructed. 100 molecules were removed from 

the set the remaining 944 were regressed. The equation produced from this regression was 

then used to calculate the A and B values for the 100 omitted molecules. This was 

repeated a further three times with a different randomly selected set of 100 molecules 

being removed. The results for these models are given in table 3.4. It can be seen that the 

predictive accuracy of these models is high with an average R2 of 0.87 for A and 0.85 for 

B.
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Table 3.4: Test set results for A and B regressions.

Test set No. A R2 B R2
1 0.91 0.90
2 0.86 0.81
3 0.85 0.88
4 0.85 0.78

Average 0.87 0.85

3.1.3.3 Scaling factors Discussion

The values shown in Table 3.3 reflect the hydrogen bonding properties of functional 

groups as determined by many years of careful experiment. As such, there are some useful 

insights into why the simple definition of PSA is insufficient for our purposes it is also 

evident that O—H groups are generally stronger acids than are N—H’s and Nitrogen 

bases are usually stronger than their oxygen counterparts.

The scaling factors for hydrogen bond acids are generally higher when obtained by the 

regression method, although this is due to the scaling of the regression coefficients to 

place them on a scale of 0-1 where the phenol scaling factor was used to define the top 

end of the scale, hence direct numerical comparisons between both scales is not possible. 

There are many broad similarities and trends between the two sets of scaling factors, both 

sets of scaling factors show that alkynes are relatively weak hydrogen bond acids. Primary 

and secondary amines are also both seen to be weak H bond acids, the scaling values 

obtained from averaging state that the same scaling factor can be used for primary and 

secondary amines, the regression scaling factors are in agreement with this, with a 

difference of only 0.01 being shown between primary and secondary amines. Anilines are 

also shown to be relatively weak hydrogen bond acids in both sets of scaling factors. Both 

show reduction in acidity if an aniline is ortho substituted to either a carbonyl, nitro or 

ether, The regression scaling factors show that a C=0 or N=0 will cause less reduction in 

hydrogen bond acidity than an ether oxygen, while the averaged scaling factors state that 

C=0, N=0 and an ether oxygen will all cause the same reduction in hydrogen bond 

acidity.
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The strongest hydrogen bond acids are seen to be carboxylic acid and phenol, although 

the regression and averaging method disagree on which of the two is the stronger their 

values are both relatively very high in both sets of scaling factors.

The largest disagreement between both sets of scaling factors is seen for the 

intramolecular H bonding fragment for a phenol ortho substituted to C=0 or N=0 the 

scaling factors as obtained from averaging suggest that the reduction in hydrogen bond 

acidity will be heavy and the acidity of the phenol will be reduced to less than that of an 

alkyne, whereas the regression obtained scaling factors suggest that a much smaller 

reduction is seen.

For the two scales of hydrogen bond basicity, the difference in numerical values is seen to 

be even greater than that of the acidity scaling factors. The regression obtained scaling 

factors were scaled to place them onto a scale of 0-1 by assigning a value of 1 to the 

strongest base, which was tertiary amine. The large scaling value for tertiary amine means 

that the scaling factors for regression obtained scaling factors are much lower than those 

obtained by the averaging method. Although again numerous similarities and trends can 

be seen between the two set of scaling factors.

Both sets of scaling factors show that the ester oxygen in carboxylic acids and esters, the 

nitrogen in nitro and aromatic carbon will have negligible or no contribution to hydrogen 

bond basicity.

The scaling factors obtained from the regression also show the following to be very weak 

hydrogen bond acceptors: N in sulphonamide, O in furan and O in nitro. The averaged 

scaling factors disagree with this and state that while these three atoms are weak hydrogen 

bond acceptors they are not as weak as suggested by the regression scaling factors. Some 

doubt is cast upon the validity of the regression scaling factors for O in nitro as an 

increase is seen when comparing the scaling factor for a solitary nitro and that for a nitro 

ortho substituted to either aniline or a phenol. This increase in hydrogen bond basicity 

dose not fit in with the experimentally observed decrease in A and B values associated 

with intramolecular hydrogen bonding. For the averaging obtained scaling factors the 

expected reduction is seen in scaling values.
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The largest scaling factors are seen for tertiary amines. This is not so much a reflection of 

the strength of tertiary amines as hydrogen bond acceptors but instead a scaling that takes 

into account the small exposed surface area of tertiary amines. The scaling factors 

obtained from regression for primary, secondary and tertiary amines show a similar ratio 

and increase in the series as implemented for the averaged scaling factors to take into 

account average exposed surface area of these atoms.

The largest difference between the two sets of scaling factors is seen for the N in pyridine, 

the regression scaling factors state that it should be a weak to medium base while the 

averaged scaling factors state that it should be a medium to strong base. Experimentally 

observed Abraham values suggest that the scaling factors obtained from the averaging 

method are the more accurate and pyridine is a medium to strong hydrogen bond base.

The second largest discrepancy between the two datasets is for the N in a cyano functional 

group the regression obtained scaling factors show this to have far lower hydrogen bond 

basicity than that of the averaged scaling factors. This difference is most likely caused by 

the large average surface area of the N in a cyano (25 A2) which was not accounted for in 

the averaging method. The validity and accuracy of these scaling factors with relevance to 

modelling partition properties is discussed in further detail in 4.2.

3.1.4 Fragments

In order for MOL VOL to assign the hydrogen bonding weighting factors to relevant 

atoms a subroutine called con_data was added to MOL VOL to classify all the atoms in a 

molecule via the criteria of our predefined fragments.

The subroutine con data consisted of a block of do loops and if statements for each of our 

defined molecular fragments, these blocks of logic statements were named fragment 

blocks. The fragment blocks were arranged in a specific hierarchy within the program so 

that no relevant atom would be missed or assigned incorrectly, for example the fragment 

block for a nitrogen in an amine occurs before the fragment blocks for amides. Which in 

turn occur before the fragment blocks for intramolecular hydrogen bonding. In this 

manner a nitrogen is first defined as an amine, as the program continues it checks to see if
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the nitrogen is part of an amide, if this is the case the nitrogen is redefined and the original 

definition is overwritten.

An example of a fragment block for a carboxylic acid is given below in figure 3.6. Figure 

3.7 shows the steps through which the subroutine identifies fragments.

Figure 3.6: Fragment block Carboxylic acid.

C C=0 30, C-O-H 40

Do J= 0, n bonds * 2

If (atnum((conls(J)-l)).eq. 6 .AND. atnum((con2s(J)-l)). eq.
> 8 .AND. Btypes(J).eq. 2) then

Do L= 0, n_bonds * 2
IF (conls(L).eq.conls(J). AND. atname((con2s(L)-l)). eq. '10’)

> then
C Finding the acidic H within the carboxilic acid 

Do M= 0, n_bonds * 2
IF (con2s(M).eq.con2s(L). AND. atnum((conls(M)-l)). eq. 1)

> then 
atname((con2s(J)-l)) = '30' 
atname((con2s(L)-l)) = '40' 
atname((conls(M)-l)) = '2H'

End IF 
End Do 

End If 
End Do 

End If 
End Do

The variables and structure of the code as shown above merits discussion in order that 

anyone wishing to define further fragments would be able to do so easily. The variables in 

the algorithm are defined as number of bonds is n bonds and atnum is atomic number. 

Con IS and con2S are extended versions of the connectivity data as obtained from the 

molfile. Con IS is an array of all the data from connectivity data 1 followed by all the data 

from connectivity data 2 obtained from the molfile, con2S is a list of all the data from 

connectivity data 2 followed by all the data from connectivity data 1. Btypes is an array of 

all the bond types from the molfile in order twice. An example of this for methanoic acid 

is shown in table 3.5.
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Table 3.5: The arrays con Is, con2s and Btypes for methanoic acid.

Connectivity datal Connectivity data 2 Bond type Con 1s Con2s Btypes

1 2 1 1 2 1

1 4 1 1 4 1

2 3 2 2 3 2

2 5 1 2 5 1

2 1 1

4 1 1

3 2 2

5 2 1

Figure 3.7: System for finding and assigning carboxylic acid functional group

Exit

Yes No

No

No

Search through 
conectivity data

Have all lines 
in bond block 
been analysed ?

Is a carbon atom attached to 
an oxygen with a double bond ?

Assign relavant fragments to 
atoms

Is The carbon also attached to an 
oxygen via a single bond ?

Is the single bonded oxygen also 
bonded to a hydrogen ?
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The need for the extended arrays con Is and con2s is necessary due to the method with 

which bonds are found within the fragment blocks. For example if one wished to find 

atom 5 bonded to atom 2, using only arrays of connectivity data, one would first have to 

search through connectivity data 1 for the occurrence of atom number 5 and then check 

the corresponding entry of connectivity data 2 for atom number 2. In this case the bond 

would not be discovered, in order to locate the bond a second search would have to be 

performed in which connectivity data 1 was searched for atom number 2 and the 

corresponding value in connectivity data 2 was checked for atom number 5. This need to 

search connectivity data 1 and 2 individually becomes an increasing problem as the 

number of atoms within a functional group required to be identified increases.

With the amalgamation of both arrays into one array only one search is necessary as the 

bond is listed twice once as 2-5 and once as 5-2. The array Btype is also treated in this 

manner so that the type of bond can be obtained from the array BtypeS.

The if statements that are used to identify specific bonds can be broken down and 

translated as follows.

IF 1

Fortran 77

I f  ( a t n u m ( ( c o n l s ( J ) - 1 ) ) . e q .  6 . AND.  a t n u m ( ( c o n 2 s ( J ) - 1 ) ) .  e q .  8 . AND.
B t y p e s ( J ) . e q .  2)

t h e n

If the atomic number for the atom in field one of conls equals six, and the atomic number 

for the atom in field one of con2s equals eight, and the bond type in BtypeS equals two (a 

double bond) then this is a carbonyl.

The J in the fortran code is the field in which the specific line of code is analysing if the 

target bond is not found then the loop adds 1 to the value of J and the next set of fields of 

conls and con2s are searched. This is performed until either a match is found or the value 

of J equals double the number of bonds and all fields of conls and con2s have been 

searched.
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If a carbonyl is detected then the next if statement would be 

IF 2

I F  ( c o n l s ( L ) . e q . c o n l s ( J ) . AND.  a t n a m e ( ( c o n 2 s ( L ) - 1 ) ) .  e q .  ' 1 0 '  )

L determines the field that is now searched, J remains the same as in IF 1. So the code 

would read, if the atom in field one of conlS the same as that determined to be the carbon 

of a carbonyl? If so then is the atom in con2s an oxygen in an alcohol? If field one is not a 

match then the value of L is increased by one and field two is checked. Again this is 

repeated until a match is found or all the fields have been checked. If no match is found 

after all the fields are searched then the fragment block is exited and the program moves 

to the next fragment block.

If the program identifies a functional group it is given a label in the array Atname. 

Atname is an array that contains the information used to identify the relevant atom in the 

fragment. It is from the values assigned in Atname that the scaling factors are assigned.

For certain functional groups it is necessary for the fragment block to contain checks to 

ensure that the same atom was not being counted twice. For example in order to determine 

if a nitrogen is a primary or secondary amine the number of hydrogen attached must be 

determined, if the hydrogen in a secondary amine is counted twice then the program 

would wrongly classify the nitrogen as a primary amine.

3.1.5 Output

The output of MOL VOL was amended to include the calculated surface area descriptors, 

individual surface area, individual scaled surface area values, atomic numbers and a list of 

all the fragments in the molecule. The output file was also altered to remove numerous 

pieces of information that are not required for calculating polar surface area such as CPU 

time and total volume of sphere.

The output file produced by the modified MOL VOL program of formic acid is shown in 

figure 3.8.
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Figure 3.8: The modified output file from MOL VOL for formic acid

Sphere number

-Atomic number

Exposed surface area

-̂Exposed scaled surface 
area 

Fragment type

F i l e Formic .mo J

AtNo AExposed s c a l e d  Area Fragment ty p e

19 .997287  
14 .040768  
22 .336827  

4 .4 2 6 6 8 9  
13 .058577 /

0 . 0 0 0 0 0 0  
14 .040768  
30 .154716  

7 .968040  
13 .058577

40  
C 

30  
2 H 

H

-O- in  c . a c i d

=0 in  c . a c i d  
H in  C .a c id

Number o f  sp h e r e s  = 
R eferen ce  Radius (A)= 1.930000

T o ta l  Volume (AA3) = 53 .200643
T o ta l  Area (AA2) = 7 3 .8 60147
T o ta l  Acid p o la r  s u r f a c e  Area : 
T o ta l  Base P o lar  s u r f a c e  Area : 
T o ta l  P o lar  S u r fa c e  Area :
T o ta l  Cl s u r f a c e  a r e a  :
T o ta l  Benzene S u r fa c e  Area : 
U nsealed  a c i d  S u r fa c e  Area : 
Unsealed  Base S u r fa c e  Area : 
T o ta l  Halogen S u r fa c e  Area : 
T o ta l  P i S u r fa c e  Area :

0 .566210)  
0.443924)  
7 .9 6 8 0 4 0  

154716  
122757  
0 0 0 0 0 0  
000000 
426689  

42 .334114  
0 . 0 0 0 0 0 0  
0 . 0 0 0 0 0 0

30,
38,
0,
0,
4,

—Surface area 
descriptors

3.1.6 Automation

To aid the speed with which surface area descriptors could be calculated a shell script and 

an awk script were written to automate the processes of calculating and tabulating surface 

areas. The shell script named runscale opened a file that contained the names of all the 

mol files that are intended for calculation. This shell script then calls MOLVOL and 

processes the first job on the list. After the job is processed the shell script calls an awk 

script, which collects the surface area descriptors from the output file of MOLVOL and 

tabulates them in a separate file. With this automation it is possible to calculate surface 

area descriptors for approximately 50 molecules per second running on a Compaq 

XP1000 workstation. This rate of generating surface area descriptors is more than 

adequate for use as a virtual screening tool.
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3.2. Generating 3D Structures

3.2.1 CORINA

A necessary requirement for the calculation of the surface area descriptors is a full set of
'y

3-D atomic coordinates. Following the work of others we have chosen to generated these 

coordinates in a two step process, firstly approximate 3D coordinates are generated using 

rule and data based computer programs such as CORINA23, CONCORD25, MOLGEO26 

or COBRA27. These approximate 3D coordinates are then energy minimised to remove 

any close steric interactions and give more accurate structures.

The program CORINA was selected as the method for generating approximate 

coordinates as in trials28 using 639 X-ray structures obtained from the Cambridge 

Crystallographic Database21 against six other automated 3D structure generators 

(CONCORD, ALCOGEN, Chem-X, MOLGEO, and COBRA), CORINA was seen to 

give a 100% conversion rate and produce structures that most accurately resembled those 

obtained from the X-ray crystallography. For these trials a structure was determined to be 

well reproduced if the RMSE deviation of the atomic positions (R M S E x y z) was less than

0.3 A. Chain geometry was defined as being well reproduced if the RMS deviation of the 

torsion angles was less than 15°.

CORINA was also seen to remove accurately atom crowding with only 3% of the 

structures generated containing close contacts, with a molecule being defined as free of 

close contact interactions if the ratio of the smallest non bonding distance against the 

smallest acceptable value for this distance was less than 0.8.

While the trial showed that of the six programs CORINA was not the fastest method of 

generating 3D structures, its rate of conversion of 0.58 s/molecule running on a VAX 

6000 computer is rapid enough to meet our needs.

CORINA is capable of producing 3D coordinates from connection tables or a linear code. 

The linear code method was chosen, as it is a faster method of defining structures and can 

be performed by hand even for highly complex molecules. The linear code that was used
90was SMILES (Simplified Molecular Input Line Entry Specification), which is part of the

66



Daylight tool kit. SMILES are a simple yet comprehensive chemical structure 

nomenclature. SMILES follow a series of simple rules under which the structure for any 

molecule can be encoded as a linear string. Examples of these rules are

1. Atoms are represented by atomic symbols.

2. Double bonds and triple bonds are represented by = and #.

3. Branching in the molecule is indicated by the use of branching pairs.

4. Pairs of matching digits indicate ring closure.

5. Lower case letters represents atoms within aromatic systems.

Hydrogen atoms are not defined within SMILES strings and are added implicitly for 

atoms specified without brackets, from normal valence assumptions. Other rules are 

encoded into smiles to take into account features such as charge, chirality, and isotopes. 

Examples of SMILES for a series of organic molecules are shown in table 3.6.

Table 3.6: Example of SMILES

Name Smiles
Methane C
Ethane CC
Ethene C=C
Acetic acid CC(=0)0
Benzene c1cccccl
Cyclohexanol C1CCC(0)CC1
Caffeine Cn1 cnc2n(C)c(=0)n(C)c(=0)c12
Nicotine CNlCCCClc2cccnc2

3.2.2.1 Optimisation Methods

A method for geometry optimisation or energy minimisation for the approximate 3D 

coordinates in order to relieve close steric interactions that may have been missed by 

CORINA had to be identified. Previous studies of PSA as a modelling tool have stated 

their optimisation method but none have offered any justification behind their choice, 

Krarup30 and Clark2 both used the max2min minimize Tripos force field in SYBYL,
3 1Palm chose molecular mechanics calculations using the MM2 force field, while

39Stenburg used the semi empirical method AMI .
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The selection of an Optimisation method was made using two criteria

1. The structures must be accurate.

2. The method must be rapid enough that structures for large datasets of 100+ 

molecules can be generated quickly.

Geometry optimisation methods can broadly be classed into three categories molecular 

mechanics, semi empirical and ab initio.

The word “Ab initio” is Latin for “from the beginning” meaning that calculations are 

derived directly from theoretical principles with no inclusion of any experimental data. 

This usually refers to an approximate quantum mechanical calculation, where the 

approximations are usually mathematical approximations such as an approximate solution 

to a differential equation or using a simpler functional form for a function.

Hartree Fock calculations (HF) are the most common form of ab initio calculations. In HF 

calculations two approximations are made. The primary approximation is called the 

central field approximation. This approximation states that the Coulombic electron -  

electron repulsion is not specifically accounted for, although its net effect is included in 

the calculation. The approximate energies calculated in units called Hartrees (1 H = 

27.2114 eV) have the exact energy as a lower bound. This approximation means that 

energies calculated by HF are higher than the exact energy and tend to a limiting value 

called the Hartree Fock limit.

The second approximation of HF calculations regards the wave function. As the wave 

function must be described by some functional form and exact functional forms are only 

known for a few one electron systems, the functions used are most often derived from 

linear combinations of Slater type orbitals (STO) or Gausian type orbitals (GTO). The 

wave function is formed from the linear combination of atomic orbitals or basis functions. 

The exact set of basis functions used is often specified by an abbreviation, such as STO- 

3G or 3-21G.

The most powerful property of Ab initio calculations is that they eventually converge to 

the exact solution, once all of the approximations have been made sufficiently small.
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While these calculations are the most accurate they are also require enormous amounts of 

computer CPU time, memory and disk space, and so are not really appropriate here.

Semi-empriical calculations are similar to HF calculations except certain factors such as 

two electron integrals are omitted or approximated. This omission of information is 

corrected for by the use of curve fitting of appropriate parameters against experimental 

data to give the best concurrence with the experimental data.

This form of curve fitting causes a problem in semi empirical calculations in that if the 

molecule being calculated is dissimilar to those in the data base used to parameterise the 

method, the results produced may be poor, although alternatively if the molecule closely 

resembles those of the parameterisation set the results may be good.

Semi empirical methods have been more successful in organic chemistry than ab initio 

due to the fact that the limited selection of atoms that occur in organic compounds are 

well defined and parameterised the molecules studied are rarely large enough to represent 

a problem.

Molecular mechanics represent the fastest and simplest of all three methods. Their main 

application lies in calculations on molecules that are too large to be treated with ab initio 

or semi empirical methods such as protein and segments of DNA. For this reason it has 

become a popular computational method in fields such as biochemistry. The speed with 

which molecular mechanics are capable of performing calculations is due to the fact that it 

is totally devoid of any quantum mechanical calculation. Molecular mechanics uses 

simple algebraic expression to calculate the total energy of the molecule; they are not 

reliant on factors such as wave functions or electron density. Simple classical equations 

such as the harmonic oscillator equation are used to describe the energies associated with 

bond stretching and rotation. All of the constants for these equations are derived from 

either experimental data or ab initio calculations.

In molecular mechanics methods the set of parameters used by the method is referred to 

as the force field. The choice of compounds when using molecular mechanics methods is 

fundamental as many force fields are parameterised against very specific classes of
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molecule, e.g. proteins. The main failing of molecular mechanics is that many chemical 

properties are not defined or parameterised such as electronically excited states.

These three methods represent a wide cross section of techniques ranging greatly in 

accuracy and computational time, with ab inito calculations typically taking hours, semi 

empirical methods taking minutes and molecular mechanics methods taking seconds.

Two separate molecular mechanics force fields were chosen these were AMBER and 

MM+. AMBER (Assisted Model Building and Energy Refinement) is based on force field 

developed for computations of protein and nucleic acid molecules. A great deal of 

development has gone in to the AMBER force field due to its high popularity in
'X  'Xacademia. AMBER was first designed as a united atom force field and later extended to 

include an all atom version.34 As AMBER was developed for the treatment of 

macromolecules there are few parameters for the treatment of small organic and inorganic
-5 C

molecules. The second molecular mechanics force field selected was MM+, which was 

developed primarily for small organic molecules.

Two semi empirical methods were also selected; these were PM3 and AMI. AMI (Austin
-j/r -37

Model 1) proposed by Dewar et al ' is an in improvement of the modified neglect of 

diatomic overlap (MNDO) method. While AMI uses the same basic approximations as 

MNDO, alterations to the functions describing repulsion between atomic cores and 

assignment of new parameters have significantly improved its performance. The second 

semi empirical method selected is PM338, this method is a reparameterisation of AMI, 

and differs only from AMI in the value of the parameters. A much larger number and 

wider variety of experimental versus computed molecular properties were used to derive 

the parameters for PM3. Both AMI and PM3 contain parameters for all atoms commonly 

found in organic molecules. Neither method includes parameters for transition metals; 

PM3 is also parameterised for a number of main group elements.

Due to the time consuming and computationally heavy nature of ab initio methods only 

one quantum mechanical Hartree fock method was selected, with basis set 3-21G.

In order to assess the different optimisation methods and their effects upon our 

descriptors, structures were generated using CORINA and then energy minimized using
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the five aforementioned methods for a dataset of 110 organic and drug like molecules. 

The 3D coordinates acquired directly from CORINA with no form of geometry 

optimisation were also analysed.

Molecular mechanics and semi empirical calculations were performed in HYPERCHEM 

running on a 733Mhz PC with optimisation terminating after 2000 cycles or when a 

gradient of <0.01 kcal mol'1 A'1 is attained, ab initio calculations were performed using 

GAUSSIAN9839 running on a Compaq XP1000 workstation.

To assess the geometrical similarity of the structures produced by each optimisation five 

molecules were compared (aspirin, dichlofenac, fluoxetine, ibuprofen and papaverine) 

using the overlay function in HYPERCHEM and RMSE values were generated based on 

the spatial similarity of the two molecules. These five molecules were selected, as they 

represent a range of structures similar to those for which our proposed methods will be 

applied. The structures were also selected as experimental structural data was available, in 

the form of an X-ray crystal structures obtained form Cambridge crystallographic
91database. Comparisons between the structures generated from theoretical means offers 

information about the internal self consistence of these methods, while comparisons of 

theoretically generated structures to X-ray crystallographic structures offers a method of 

benchmarking the different theoretical methods. Surface area descriptors were calculated 

for all six structures for each of the five molecules to give an insight into how structural 

differences generated by the optimisation method are manifested within the descriptors.

Table 3.7 contains the average RMSE deviations in nuclear positions for five sample 

molecules. It is clear from these results that optimisation using any of these methods alters 

the CORINA geometries substantially, leading to large RMSE deviations. As might be 

expected, the molecular mechanics methods, MM+ and AMBER, agree well with each 

other, as do the semi-empirical methods, AMI and PM3. As a test of internal self- 

consistency, the agreement between methods is encouraging.
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Table 3.7: Average RMSE deviations in nuclear positions for five molecules in A
Crystal Structure Ab initio PM3 AM1 MM+ Amber

Corina 0.604 0.755 0.612 0.516 0.591 0.803
Amber 0.487 0.775 0.736 0.507 0.296
MM+ 0.387 0.739 0.771 0.547
AM1 0.354 0.59 0.502
PM3 0.491 0.861
Ab initio 0.295

Comparisons to crystal structures shows as one would expect that the most accurate 

methods of generating structures is the ab initio method, while structures obtained directly 

from CORINA show the greatest deviation in nuclear position. These results show 

broadly the expected trends that are associated with optimisation methods with a trade off 

between time required to run the calculations and the accuracy of the results gained. 

While the ab initio methods are the best the time required for the calculations may be too 

lengthy to be used as a tool for virtual screening in which extensive libraries of molecules 

may require processing. The semi empirical method AMI is seen to have an RMSE value 

only 0.06 A higher than that of the Ab initio methods, this difference in RMSE is perfectly 

acceptable when weighted against the speed with which AMI calculations can be 

performed. An unexpectedly low RMSE value of 0.387 is reported for MM+ structures 

against crystal structures.

Although it is expected that simple monofunctional structures can be accurately generated 

from any of the aforementioned methods, in order to confidently proceed similar overlays 

were performed in HYPERCHEM for a number of simpler molecules. For straight chain 

molecules (1-heptanol) and rigid molecules where there is little conformational freedom 

(2-fluorophenol) the RMSE between CORINA structures and Ab initio is seen to be very 

low (approximately 0.05 A).

Figure 3.9 shows the overlay of CORINA and Ab initio optimised structures for 

dichlofenac. Distinct differences can be seen in the spatial orientation of the two 

structures an RMSE of 0.962 A is seen for the overlaying of the two structures, but these 

differences are not reflected in the surface area descriptors also shown in Figure 3.9.
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Figure 3.9: The overlay of CORINA generated Dichlofenac with its ab intio energy

minimised analogue and surface area descriptors.

Ab initio Corina

TSA 321.67 317.37

ASA 5 .35 8.91

B SA S 35.02 33.25

PSAs 43.37 42.16
Ab initio 70.93HalSA 74.23

BenSA 84.87 81.09

A SA u 5.33 6.95Corina
B SA u 41.75 44.96

* scaled descriptors are calculated using the method set out in 3.1.3.1

By comparing the overlay diagram of dichlofenac with the descriptors it is clear that while 

the molecule changes in orientation during energy minimisation the descriptors dont 

change significantly. This is because for a molecule such as this there is no difference in 

the two structures that would act to tie up surface area such as the overlapping of vdw 

radii. However, while it may appear that for molecules were little overlap of vdw radii 

may occur the choice of optimisation method may be ultimately trivial this is not the case. 

If we consider a molecule such as papaverine where the same functional group (ether) 

occurs four times we see the descriptors for BSAu exhibit a greater difference in values. 

The overlay diagram and descriptors for Papaverine is given in figure 3.10.
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Figure 3.10: The overlay of CORINA generated Paparverine with is ab intio energy

minimised analogue and surface area descriptors.

C orina

CCDB Abinitio Corina AM1
B SA s 86.77 84.36 98.92 86.56
B SA u 53.27 51.74 60.62 53.08

While the two structures shown in Figure 3.10 appear similar in configuration the values 

for the descriptors BSAu and BSAs are overestimated when obtained directly from the 

CORINA generated structure when compared to descriptors obtained from X-ray 

crystallography and ab initio structures. This overestimation of descriptor values is due 

accumulative error from the ether oxygens. The ab initio and X-ray crystallographic 

structures suggest this functional group should have a bond angle of 117 -  120° with bond 

lengths of 1.4 and 1.3 A. While the structure obtained from CORINA gives similar bond 

lengths the bond angle for this group are much lower at approximately 106°. This smaller 

bond angle means that the exposed surface area calculated from the CORINA structure is 

approximately 3 A2 larger than that of X-ray crystal and ab initio derived surface areas. It 

again should be noted that the semi empirical method AMI is in agreement with the ab
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initio and X-ray crystallographic descriptors due to its similarity in bond angle for this 

functional group (116°).

A further method for comparison of the descriptors generated from different methods is 

possible via multivariate analysis. Surface area descriptors were generated for all 110 

molecules as obtained from all structure generation methods. For the TSA descriptor high 

correlations with R2 values of > 0.99 are given by all methods. The hydrogen bonding 

descriptors ASAu and BSAu show lower correlation, with ASA giving the lower of the 

two, both descriptors similar trends to those given in table 3.7 with high correlations 

being given when similar methods of geometry optimisation are used i.e. descriptors 

calculated via molecular mechanics methods MM+ and Amber correlate with R value of 

>0.995 for both ASAu and BSAu- The descriptors generated directly from CORINA are 

seen to correlate the least with all other sets of descriptors with an average correlation of

0.936 for ASAu and 0.962 BSAu- The descriptors generated from ab initio optimised 

structures are seen to correlate most highly with descriptors obtained from AMI 

optimised structures for both ASAu and BSAu with R2 values of 0.983 and 0.997 being 

reported respectively. When scaling factors as detailed in 3.1.3.1 are applied to the 

hydrogen bond descriptors very little difference is seen in the correlations with values 

remaining the same or changing by small increments of 0.001. The expected trends were 

again visible with similar methods correlating highly and AMI correlating more highly 

with ab inito descriptors than any other optimisation method.

This similarity in results obtained from AMI and ab initio methods again indicates that 

AMI may represent the best balance of accuracy and time for generating 3D coordinates.

3.2.2.2 Geometry Optimisation Conclusions

From the results it can be seen that as expected the ab initio methods are the most capable 

of producing structures that most resemble closely those obtained from X-ray 

crystallographic structures. Although due to the time required for ab initio calculations 

and number of optimisations that are required for our models they cannot be seriously 

considered. The semi empirical method AMI is seen to be a close second to ab initio 

methods with the average time for calculation being acceptable for our requirements.
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The results also showed that for small and inflexible molecules or where few polar atoms 

are present, the choice of optimisation method can be inconsequential. For more complex 

molecules such as papaverine the type of optimisation method was more significant, this 

was reflected in the surface area descriptors as generated from different structures. It was 

seen that the miscalculation of fundamental structural properties such as bond angles 

would have detrimental effects on surface area descriptors, a problem that is exacerbated 

for descriptors such as B S A s  if the angle in question refers to a polar atom. The A M I  

generated structures were seen to be very similar to X-ray crystal structures in term of 

bond lengths and bond angles.

Correlations of the descriptors generated from the different methods showed that the AMI 

descriptors most closely resembled those of ab initio. Descriptor values obtained directly 

from CORINA structures correlated the least with those obtained from ab initio methods.

From all the evidence it can be concluded that the optimisation step is fundamental to the 

values generated by surface area descriptors. It can also be concluded that the best method 

of optimisation is the semi empirical method AMI as it offers the best trade off between 

accuracy and the time required to produce structures.

The use of AMI as the primary method for generating structures is further verified in 4.3 

by the construction of individual predictive models based on descriptors obtained from 

each of the structure generation methods.

3.2.3 Conformational Flexibility and its Effects on PSA

The effect of conformational flexibility on PSA descriptors has been discussed at some 

length (see 1.4.3) Palm et al stated that the PS Ad descriptor which accounts for multiple 

low energy conformations, would give a better descriptor of molecular surface area than a 

descriptor that only accounts for one conformation. One difficulty with dynamic measures 

of PSA is that to conduct a conformational search with energy minimisation for even a 

small moderately flexible molecule can take several hours of CPU time on a modem 

workstation.
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Studies by Pearlman,40 Ertl41 and even Palm31 have shown that accurate models can be 

constructed considering only a single conformer. Clark concluded that values for a single 

conformer generally fall within a few percent of values averaged over many low energy 

conformations.

The effects of conformational changes upon our proposed P S A  descriptors are unknown, 

and individual descriptors may be found to be more sensitive conformational change, for 

example A S A s  and A S A u  may be highly effected by intra molecular hydrogen bonding as 

these would tend to “tie up” the hydrogen bonds donor ability.

Conformational studies

10 flexible molecules were chosen which displayed a good range of functional group 

types, atom types and conformational flexibility. A detailed conformational search was 

preformed on each of these molecules using HYPERCHEM. A molecular mechanics 

method using an MM+ force field was used for the conformation searches as the time 

taken for semi empirical calculations would have meant that far fewer conformations 

could be generated.

The conformations search in HYPERCHEM varies the dihedral angle around a specified 

bond. The method generates random variation of the selected dihedral angles to generate 

new structures and then energy minimizes each of these. Low-energy unique 

conformations are stored while high-energy or duplicate structures are discarded. The 

generation of new starting conformations for the energy minimization uses random 

variation of dihedral angles. The conformation search was set to perform 1000 

optimisations. Each individual conformation was saved as a molfile and passed into our 

modified version of MOLVOL. Surface area descriptors were calculated for TSA ASAu 

BSAu ASAs BSAs HalSA BenSA. The scaling factors for ASAs and BSAs those as stated 

in 3.1.3.1.

An average was taken for each surface area descriptor along with the standard deviation. 

The average descriptor values along with the descriptor values as calculated from an AMI 

optimised structures are given in table 3.8. It should be noted that average values were 

was not Boltzman weighted as those in the study of Palm.31,42
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Table 3.8: surface area descriptors as averaged over a number of conformations

Name Conformations Rotations TSA ASAs BSAs BenSA ASAu BSAu HalSA

Aspirin 39 4 Average 223.01 7 .29 54.54 48 .16 4 .05 66.51 0

AM1 224.44 7.78 51.94 4 7 .62 4 .32 63.56 0

Atropine 89 4 Average 371.35 5.09 94.74 4 7 .7 8 4 .46 48.51 0

AM1 372.7 5 90.42 48.71 4 .38 4 3 .29 0

Dichlofenac 43 3 Average 317.96 8.82 34.67 8 3 .36 8 .04 44 .54 70 .73

AM1 323.01 8.49 35.48 86 .03 6 .14 43 .48 72 .58

Fluoxitine 50 2 Average 377.73 1.03 4 7 .46 92 .69 4 .29 17.39 59.11

AM1 383.09 1.03 49 .48 96.14 4 .28 17.27 55 .53

Hexanol 91 4 Average 192.45 4.94 26.92 0 4 .33 18.7 0

AM1 196.04 4.99 27 .89 0 4 .38 19.37 0

Ibuprofen 18 4 Average 298.7 7.52 27 .94 40 .73 4 .18 39.04 0

AM1 298.29 7.84 25 .65 4 0 .36 4 .36 37.91 0

M iconazole 100 4 Average 426 .75 0 37.62 95 .49 0 23.73 145.31

AM1 438.78 0 33 102.52 0 21 148.71

O-Nitroaniline 4 2 Average 169.64 2.55 33.82 50.11 7.74 63 .69 0

AM1 169.55 2.21 33.41 50 .25 6.54 63.41 0

Papaverine 166 5 Average 423.1 0 80.92 101.01 0 49 .6 0

AM1 417.1 0 86.56 105.92 0 53 .08 0

Tetracine 178 5 Average 386.33 1.52 85.52 45 .68 4.21 42.31 0

AM1 391.74 1.5 78.65 47 .65 4 .1 6 39.78 0

The values in table 3.8 show that the descriptors calculated from the average of all 

conformations are very similar in value to those obtained from AMI optimised structures. 

The largest differences are given by TSA where an average difference of 4.0 A2 is seen 

between the two sets of descriptors, although, this difference is small when we consider 

that eight of the ten molecules have a TSA value of > 200 A2 with five of these having 

surface areas of > 350 A2. It is interesting to note that for 1-hexanol a molecule, which 

contains a flexible hydrocarbon tail that the average total surface area for all 91 

conformers is very similar to the surface area of the AMI, generated structure.

The hydrogen bond basic descriptors B S A u  and B S A s  show some variance in descriptors, 

with an average difference of 3.05 and 2.05 A2 for B S A s  and B S A u  respectively. 

Tetracine and Papaverine are seen to give the largest differences in B S A s  although this is 

due in part to the fact that these molecules were given more conformational flexibility 

than the others and more conformations were generated. Some of the effects of 

conformational flexibility are removed form the scaled base descriptor as atoms such as 

the ether oxygen in carboxylic acids and esters are scaled to 0 and hence removed from 

B S A s .
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The hydrogen bond acid descriptors A S A u  and A S A s  show very little difference in 

surface area values. This is an interesting result, as it would be expected that 

conformations would be generated in which intramolecular hydrogen bonds were 

generated and a resultant reduction in hydrogen bond acid surface area would be 

observed. For the molecule o-Nitro aniline it would be expected for conformations 

containing an intramolecular H-bond a decrease in surface area of A S A  and B S A  to be 

observed. However over all conformations very little difference was seen in the 

descriptors with a standard deviation of 0.39 and 0.50 A2 being reported for A S A s  and 

B S A s .

While these results suggest that conformational searches are unnecessary and that the 

surface area descriptors generated from a single conformation of low energy are almost 

equal they indicate that the descriptors may not encode certain 3D information such as 

intramolecular hydrogen bonds. The use of these conformationally averaged descriptors 

as a predictive tool is assessed further in 4.5.

3.2.4 Encoding 3D Information

As was stated earlier, we expect intramolecular hydrogen bonding to tie up polar surface 

area and cause descriptors such as ASA and BSA to be reduced. Conformational studies 

suggest that for molecules where an intra molecular H-bond may occur there is no 

reduction in ASA and BSA. It can also be hypothesised that if the descriptors are not 

representing intramolecular hydrogen bonding via overlap of vdw radii then other 3D 

effects we would wish to model such as cavity effects are also not being accounted for 

within the descriptors.

In order to assess this problem, conformational searches were performed on the peptide 

triphenylaniline (Phe-Phe-Phe) again using an MM+ force field in HYPERCHEM. The 

structure of triphenylaniline is shown in figure 3.11. This peptide was selected as it has 

potential to display intra molecular H-bonds and is capable of forming a wide range of 

conformers with diverse range 3D shapes. The search produced 134 different 

conformations. Surface area descriptors were calculated using MOLVOL.
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Figure 3.11: Structure of Triphenylaniline

N

The surface areas generated had a very small range of values 17.94 A2 -  21.17 A2 for 

ASAu and 101.40 A2 -  120.11 A2 for BSAu. This range of values is low when we 

consider the number of polar groups in the molecule and the fact that the geometrical 

variation in the conformations was high. Five of the conformations contained 

intramolecular H-bonding causing helical structures to occur with polar groups being 

locked on the inside of the molecule, but for these molecules ASA and BSA were not 

lower than straight conformations without intramolecular H-bonding.

Figure 3.12 shows a van der Waals surface for a conformation of peptide I where an 

intramolecular H bond occurs. The vdw Radii used in Figure 3.12 are the same as those
o #

stated by Clark and the same as those used in MOLVOL to calculate the descriptors. 

Figure 3.12: van der Waals surface of Triphenylaniline
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The orange spheres in figure 3.12 represent hydrogen attached to Nitrogen (blue spheres) 

of amides. The surface areas of these hydrogens are approximately 3A2, a standard value 

for a hydrogen of this type. Two of these hydrogens will be unable to interact with any 

solvent molecule due to the steric effects caused by the benzene rings. This phenomenon 

may cause our descriptors to over predict hydrogen bond acidity. A solution to this is to 

consider only the solvent accessible surface area.

3.2.4.1 Solvent Accessible Surface Area

As stated in 1.4.2 many different methods have been proposed for the calculation of 

solvent accessible surface area (SASA). We have chosen to assess two separate 

definitions of solvent accessible surfaces obtained from two different methods. From 

these surface descriptors were defined and scaled using the methods stated in 3.1.2 and 

3.1.3.1.

The first solvent accessible surface area method is that of Lee and Richards. This method 

was originally designed to quantify the effects of protein folding and the burial of 

hydrophobic side chains. The accessible surface of a molecule is defined as the van der 

Waals envelope of the molecule expanded by the radius of the solvent sphere about each 

atom centre.43

The second method of generating SASA is that of Fraczkiewicz et a f A as implemented in 

the program FANTOM45 and available as the web service GET ARE A.46 In this method 

SASA is calculated by finding solvent-exposed vertices of intersecting atoms, this method 

avoids calculating buried vertices, which are not needed to determine the accessible 

surface area. GET ARE A was selected as the contribution of each individual atom towards 

SASA is reported a factor that is essential to the calculation of descriptors.

81



3.2.4.2 Expanded van der Waals Radii

The vdw radii defined in MOLVOL for each atom was increased by 0.7 A, thus causing 

any gap between two van der Waals surfaces that is less than 1.4 A (the radius of a water 

molecule) to be filled.

For triphenylaniline the variation in descriptors calculated over all conformations was 

much higher than that of the previous approach, with values of A S A u  ranging from 7 .1  -  

2 6 . 6 8  A2, giving the descriptors a spread of values four times greater than that of the 

previous study. B S A u  surface areas gave a range of values from 9 2 . 2 2  A2 -  1 4 5 .5  A2 a 

spread of values three times that of the previous study. For the five conformations where 

intramolecular hydrogen bonding had been identified significantly lower values for A S A u  

were reported. Where an intramolecular H-bond was present an average surface area of 

1 3 .7 7  A2 was found, where there was no intra molecular H-Bond an average A S A u  of 

19.96 A2 was found. This same pattern was not seen for the hydrogen bond basic 

descriptors with both types of conformation giving a B S A u  value of approximately 120 

A2. A  list of the surface area descriptors as obtained from a number of conformations is 

given in table 3 .9 .  The conformations adopted for molecules with intramolecular H- 

bonding in this study arrange themselves so that two of the nitrogens in the peptide are 

locked on the inside of the molecule and the oxygen (red spheres) of the carbonyls faces 

outward exposing themselves fully to the solvent. Figure 3 .1 3  shows a van der Waals 

surface for the same conformation of triphenylaniline give in figure 3 . 1 2  using the 

expanded radii. The cavity that contained the hydrogen attached to the nitrogen is now 

filled causing two of the hydrogen surface areas to be reduced to 0.0 A2, causing a 

significant reduction in A S A u  to 7 .1  A2. The nitrogen locked inside the molecules no 

longer contributes to B S A  with their exposed surface areas being reduced to zero. 

Similarly as expected these results are reflected in the scaled descriptors A S A s  and B S A s  

(shown in table 3 .9 ) .
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Table 3.9: Average hydrogen bond descriptors for Peptide I for conformations with and 

without intramolecular Hydrogen bonding

Radii Intra molecular H bond TSA* A2 ASAs* A2 BSAs* A2 BenSA*A2

Original YES 604.76 15.16 129.36 145.13

NO 595.35 15.31 125.83 139.31

Plus 0.7 A YES 669.66 10.12 146 131.48

NO 657.21 14.97 141.41 117.22
* Surface areas are averaged over all conformers

Where the radii suggested by Clark are applied the ASAs descriptor show no 

discrimination between conformers where polar atoms are buried due to helical structures 

caused by intramolcular H-bonding and those without, inflation of the radii by 0.7 A gives 

a difference 4 A2. Although similar reductions are not seen in BSAs for either set o f radii 

this is due to the reduction in BSA from the burial of N atoms in intramolecular hydrogen 

bonding conformations being counteracted by the increased exposure o f the oxygens 

which are forced to the outside of the molecule.

Figure 3.13: Expanded van der Waals surface area of Triphenylaniline

The expanded radii were also applied to the four conformations generated for o-Nitro 

aniline generated in 3.2.3. One of the four conformers was seen to contain an
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intramolecular H-bond between the aniline and the nitro group. Using our original radii all 

four conformations were seen to give very similar descriptor values with the 

intramolecular H bonding conformer reporting only a 7% decrease in A S A u  compared to 

the average value on the non-intramolecular hydrogen bonding conformers. When the 

radii are expanded by 0.7 A a larger decrease is seen in A S A y  for the intramolecular 

hydrogen bonding conformer with its value being 14 % smaller than the average value of 

the non intramolecuar hydrogen bonding conformations. This reduction is in keeping with 

experimentally observed A  values for O-nitro aniline where a reduction of 13% is seen 

when compared to aniline.

3.2.4.3 GETAREA

A FORTRAN program was written to process the output files of GETAREA so that 

descriptors analogous to those stated in 3.1.2 could be generated. The descriptor HalSA 

could not be calculated due to the restricted number of atoms that are encoded into 

GETAREA. The program was also designed to scale the SASA calculated by GETAREA 

to account for hydrogen bonding strength using the scaling factors stated in 3.1.3.1 were 

applied. The vdw radii stated in table 3.1 were used in GETAREA and a probe radius of

1.4 A was selected.

Solvent accessible surface area descriptors were generated for 96 simple organic and drug 

like molecules. This was the same dataset that was used in the optimisation studies of 

3.2.2 but excluding any halogen containing molecules. The 3D coordinates for these 

molecules were obtained from CORINA and optimised using the semi empirical method 

AMI. Solvent accessible surface area descriptors were also calculated for a number of 

conformations of triphenylaniline and the four conformations of o-nitroaniline generated 

in 3.2.3.

For triphenylaniline the descriptors showed a decrease in the value of A S A s  when the 

geometry of the conformer causes acidic hydrogen to be buried inside a cavity 

(conformation shown in figure 3.12). The individual buried acidic hydrogen gave a S A S A  

of 0 A and hence offered no contribution to A S A y  or A S A s .  As with the expanded radii
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method, the descriptor B S A s  and B S A u  were not seen to be as strongly influenced by the 

conformational flexibility of the peptide.

The four conformations of o-Nitroaniline showed a reduction in A S A u  for the 

conformation in which an intramolecular hydrogen bond was observed. The descriptors 

for the four conformations are given in table 3.10.

Table 3.10: SASA descriptors calculated for four conformations of o-nitroaniline.

Intra molecular 
Hydrogen bond No No No Yes
TSA 308.91 308.91 306 305.5
ASAu 47.92 47.91 46.44 17.11
BSAu 103.95 103.95 103.37 96.1
BenSA 109.95 109.88 110.47 107.52

Slight reduction is seen in B S A u  for the intramolecular hydrogen bonding conformation 

although this is much less significant than the reduction in A S A u -  The size term T S A  is 

seen to be unchanged over the conformations.

For the dataset of 102 simple organic and drug like molecules comparisons were made 

between descriptors obtained using the original radii stated in 3.1.1, expanded radii and 

S A S A .  This comparison was performed using multivariate analysis the results of the 

analysis for the descriptors T S A ,  A S A u  and B S A u  are given in table 3.11.

  • • 0
Table 3.11: Multivariate analysis (R values) of descriptors obtained using three different 

surface area methods.

TSA Expanded Radii Original Radii

SASA 0.965 0.964
Original Radii 0.999

ASAu Expanded Radii Original Radii

SASA 0.888 0.899
Original Radii 0.934

BSAu Expanded Radii Original Radii
SASA 0.943 0.921
Original Radii 0.967

The correlations show familiar trends, of all descriptors TSA gives the highest 

correlations values indicating that all three methods give similar results for TSA. The
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highest correlation for T S A  is seen between the descriptors obtained using the original 

radii and those obtained using the expanded radii, these two methods are seen to give the 

best correlation for A S A u  and B S A u .  It is not unexpected that these two methods show 

the best correlation, as they are both calculated using essentially the same algorithm. The 

high correlations for T S A  suggest that both descriptors are encoding virtually the same 

information about molecular size. S A S A  descriptors are also seen to correlate very highly 

with exposed surface area descriptors, combined with the findings for the conformations 

of o-nitro aniline where T S A  was seen to be unaffected by conformational change and 

molecular geometry we can conclude that for simple organic and drug like molecules 

there is a strong relation between total solvent accessible and total exposed surface area, 

and as a descriptor it is relatively insensitive to conformational change.

The hydrogen bonding descriptors A S A u  and B S A u  show more variation that T S A  with 

A S A u  giving the lowest correlations in agreement with previous results. It is surprising 

that the S A S A  descriptors show marginally higher correlation with exposed surface area 

descriptors calculated using the original radii, as previous findings have show that 

descriptors calculated with the original radii do not account for 3D information.

The similarities between solvent accessible and exposed surface descriptors is due to the 

simple organic and drug like molecules used in the dataset not being complex enough in 

3D structure to cause cavities and bury atoms which would be ignored by the exposed 

surface area descriptors.

3.2.5 Conformations and SASA Conclusions

It has been seen that if descriptors are generated for exposed surface area using the radii 

stated in 3.1.1, the effects of conformational change on these descriptors is so slight that 

descriptors calculated from a single conformation of lowest energy fall within a few 

percent of those obtained by taking an average of all conformations obtained from a 

detailed search.

Via inspection of the descriptors it was seen that this immunity to the effects of 

conformational change is caused by the descriptors failing to identify specific 3D
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properties such as the overlap of vdw radii upon formation of intramolecular hydrogen 

bonds and the burial of atoms inside the molecule where they cannot interact with solvent. 

The application of two separate methods for calculation of solvent accessible surface 

produced descriptors, which reflected more realistically the effects caused by molecular 

geometry. The descriptors calculated from these solvent accessible surface area 

descriptors showed that TSA was largely unaffected by conformational change while 

ASA and BSA were seen to be more sensitive.

Through the calculation of descriptors using three different methods for a large dataset of 

simple organic and drug like molecules it was seen that solvent accessible descriptors and 

exposed surface area descriptors were similar for simple organic and drug like molecules. 

This similarity can be attributed to the simple organic molecules not containing any cavity 

effects and shielding of atoms by steric effects. Effects such as intra molecular hydrogen 

bonding which are common in simple organic molecules account for some of the variance 

between the two types of descriptor although these could be accounted for by predefined 

fragments which will act to reduce the exposed surface area appropriately during the 

scaling process.

If the exposed surface area descriptors calculated using our original defined radii are 

capable of accurately modelling partition processes we can hypothesis that these 

descriptors can be accurately obtained from a single conformation of lowest energy. This 

hypothesis is further tested in chapter 4 where various different models of partition 

processes are constructed using descriptors obtained from a variety of surface areas.
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Chapter 4. Partition models

4.1 Data

A dataset of 110 molecules with experimentally determined values of water/octanol, 

water/chloroform, and water/cyclo-hexane partition coefficients (denoted logPoct, 

logPcHci, and logPcyc throughout) was compiled. The data was collated from two sources, 

namely Zissimos et aV s LSER study of partition coefficients1 and the MedChem02 

database.2 The molecules fall into two broad classes, being either simple organic 

molecules or more complex ‘drug-like’ molecules. These molecules represent a good 

cross section of the molecules for which our methods will be applied in later studies.

The solvent systems used were chosen as they cover a range of interaction types: both 

octanol and water are H-bond acids and bases, albeit of different strengths, while 

chloroform is an acid but not a base, and cyclohexane is neither. Further, they form three- 

quarters of the ‘critical quartet’ of partitions proposed by Leahy et a l , designed to encode 

all important interactions for solvation (insufficient data was available for the final solvent 

of the quartet, propylene glycol dipelargonate, to be included). This is therefore a 

stringent test of descriptors and models. Molecules were chosen to represent a range of 

both chemical and numerical diversity, with maximum and minimum values for logPoct of 

5.40 and -1.09, logPcHci 6.21 and -2.00, and logPcyc 5.24 and -4.88. This dataset of 110 

molecules is the same as that used in 3.2.2, 3.2.3 and 3.2.4.

4.2.1 Descripors and Scaling Factors

For this initial study 3D molecular structures were generated using CORINA,4 and were 

subsequently optimised using AMI, as implemented in HyperChem 6,5 with an 

optimisation criterion of <0.01 kCal mol'1 A '1 following the conclusions of 3.2.2.1. futher 

analysis of optimisation methods applied to models is given in 4.3.

All surface area properties were calculated from these AMI geometries using our locally 

modified version of MOLVOL. Two sets of scaled descriptors were calculated using the 

appropriate scaling factors. These two sets were the set obtained by averaging observed
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Abraham values defined in 3.1.3.1 and those obtained from regression of observed 

Abraham values defined 3.1.3.2.

To test the quality of the modified PSA models, comparisons were made against models 

derived from Abraham’s LSER descriptors, as calculated by the group contribution 

approach.6 All models, whether based on PSA or LSER, were found with multivariate 

linear regression analysis (MLRA) using JMP Discovery software.

4.2.2 Results and Discussion

Table 4.1 contains the results of the initial attempts to model partition coefficients using 

PSA-type descriptors. Single parameter fits, using TSA, PS Ay etc., are very poor indeed, 

with typical R2 values of 0.05 -  0.15, and hence are not considered further. The simplest 

model in Table 4.1, employing just total and unsealed polar surface areas, is clearly 

unsatisfactory for all three solvents, typically accounting for only 50-60% of the variance 

in the data and giving RMSE errors almost twice those from LSER models. Thus, it seems 

that simple PSA-type descriptors are incapable of forming accurate models of these 

partition processes. The ‘completeness’ of the dataset, at least in terms of physical 

properties spanned, is confirmed by the fact that the LSER model of logPoct is not 

significantly different to that recently published for 8200 compounds in the logP* list of 

the MedChem97 database.8

Table 4.1: Partition models using unsealed surface area descriptors
Model

R2

lO g P o c t

RMSE F R2

logPCHCl

RMSE F R2

logP eye

RMSE F

TSA + PSAu 0.577 0.792 75.7 0.614 0.941 88.1 0.542 1.16 65.7

TSA + ASAu + BSAu 0.578 0.794 50.2 0.714 0.836 88.2 0.618 1.065 59.2

TSA + PSAu + HalSA + BenSA 0.75 0.613 82 0.642 0.94 47.1 0.583 1.117 38.1

TSA + ASAu+ BSAu + HalSA + BenSA 0.751 0.616 65.1 0.758 0.776 65.1 0.675 0.991 44.9

LSER* 0.906 0.378 208.1 0.874 0.544 150.4 0.854 0.663 126.9

* calculated in the manner o f ref, 6

Breaking down PSA  into acid and base surface areas yields slightly improved statistics in 

two cases, logPcHci and logPcyc, but no significant change for logPoct- Closer inspection 

reveals that PSAy is dominated by H-bond base atoms (PSA y and B SA u are correlated 

with r = 0.99) such that they are effectively interchangeable, this high corelation of PSA y
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and BSAu means that no model should contain both descriptors. It is well known7 that 

logPoct has no dependence on H-bond acidity, so either descriptor can be used equally 

well here and ASAu is not significant in the model. On the other hand, both logPcHci and 

logPcyc are strongly affected by H-bond acidity, since water is a stronger H-bond base 

than either solvent, such that the extra flexibility afforded by this model is significant. 

Table 4.1 demonstrates that including the surface areas of halogen atoms and aromatic 

carbons (HalSA and BenSA) improves the quality of fit substantially, due mainly to the 

ability of the two descriptors to encode important polarisability properties of a molecule 

which are neglected by PSA-type descriptors. In each case, the most flexible model 

explains around 15% more of the data than models produced using only TSA and PSAu, 

which highlights the importance of polarity/polarisability as well as size and H-bonding. 

Once again, decomposing PSA gives no improvement for logPoct, but results in markedly 

better statistics for the other two solvents. These results demonstrate that it is possible to 

improve upon ‘standard’ PSAu simply by summing the surface areas of different atom 

types, rather than just those expected to be involved in hydrogen bonding.

Despite these improvements, it is still evident that the models do not take into account all 

the factors that determine partition coefficients, since even the best results are 12-15% 

less accurate than the equivalent LSER models.

The first set of scaling factors that were applied were those obtained from averageing of 

Abraham Values. Applying these scaling factors to the calculation of PSAs, ASAs, and 

BSAs results in remarkable improvements in modelling all three partitions, as reported in 

Table 4.2. Considering logPoct first, Table 4.2 shows that even the simplest model, 

employing just molecular size and scaled PSA, is a great improvement over the unsealed 

equivalent, explaining 18% more of the variance in logPoct and reducing the RMSE error 

by 0.18 log units. The form of this model is also encouraging, showing that molecular size 

increases logPoct while polarity/H-bonding reduces it. Increasing the flexibility of the 

model by breaking down scaled PSA into its component parts yields an improvement of 

around 0.05 in R2, unlike in the unsealed models above. Adding in the halogen and 

aromatic surface areas improves statistics still further, such that the final 5-parameter 

model has R2 = 0.85 and RMSE = 0.48, improvements of 0.27 and 0.31 over the original 

model. To highlight this improvement, Figure 4.1 shows observed vs. calculated values of 

logPoct for both, along with the analogous comparisons for logPcHci and logPcyc.
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Table 4.2: Partiton models made using scaled surface area descriptors
Model

R2

IogP„c.

RMSE F R2

lOgPcHCL

RMSE F R2

logPcyc

RMSE F

TSA + PSA 0.754 0.61 164 0.776 0.734 186.11 0.786 0.809 196.81

TSA + ASAs + BSAs 0.807 0.542 147.89 0.891 0.516 288.29 0.855 0.67 207.71

TSA + PSA + HalSA + BenSA 0.826 0.518 124.18 0.786 0.727 96.136 0.787 0.816 96.96

TSA + ASAs + BSAs + HalSA + BenSA 0.851 0.481 118.72 0.898 0.5 184.78 0.858 0.669 125.43

LSER* 0.906 0.378 208.1 0.874 0.544 150.4 0.854 0.663 126.9

* calculated in the manner o f ref, 6
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Table 4.2 also shows that the best surface area models are not as accurate as the LSER, 

and therefore not as accurate as many of the dedicated algorithms for calculation of 

logPoct, such as ClogP. However, it should be emphasised that the purpose of this work is 

not to generate yet another logPoct calculator, but to use this and other water-solvent
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partition data as a test of PSA and related descriptors. In this context, the accuracy 

attained and improvements made here are, sufficient to justify the modifications made.

A similar pattern of improvements is obtained for logPcHci, though here the improvement 

in statistics due to scaling PSA is even greater: the simplest scaled model is slightly better
■j

than unsealed one in Table 4.1, with R increased by 0.15 and RMSE reduced by 0.21 log 

units. In this case splitting up PSA gives substantially greater accuracy, but including 

more descriptors is barely significant. Nonetheless, the 5-parameter model is the most 

accurate found in this study, and is actually better than the LSER model, with almost 90% 

of variance explained and an RMSE of just 6% of the total spread of data.

The final partition coefficient, logPcyc, is the most difficult to model of the three, since the 

two solvents are possibly the most dissimilar imaginable, and hence covers the largest 

range of values (over 10 log units) considered here. This is reflected in Table 4.1, in 

which the statistics for logPcyc are the poorest. It is encouraging, therefore, that the results 

in Table 4.2 represent a substantial increase in accuracy; here, the scaled 2-parameter 

model is 0.24 better in R2 and 0.35 log units better in RMSE. As with logPChi, splitting up 

PSA improves results still further but inclusion of HalSA and BenSA is less useful, and 

again the 5-parameter surface area model is slightly more accurate than its LSER 

equivalent. In contrast with logPoct, very few methods for the rapid prediction of these, or 

indeed many other partition coefficients directly from structure have been reported, and 

the results in Table 4.2 indicate that these models are among the most accurate yet 

developed.

The scaling factors obtained from the regresion method stated in 3.1.3.2. were applied to 

the models, the results are shown in Table 4.3.



Table 4.3: Partition models made using scaled surface area descriptors obtained from 

regresion.
Model

R 2

logPoct

RMSE F R 2
lOgPcHCI

RMSE F R 2

lOgP CyC 

RMSE F

TSA + PSAs 0.621 0.761 86.567 0.849 0.592 298.59 0.777 0.8226 184.79

TSA + ASAs + BSAs 0.856 0.4699 208.94 0.85 0.592 198.6 0.794 0.794 135.13

TSA + PSAs + HalSA + BenSA 0.74 0.634 74.239 0.859 0.576 0.576 0.789 0.807 97.314

TSA + ASAs + BSAs + HalSA + BenSA 0.868 0.454 135.73 0.86 0.578 126.87 0.796 0.798 80.414

LSERa 0.906 0.378 208.1 0.874 0.544 150.4 0.854 0.663 126.9

It is clear that there is very little difference between the two sets of scaling factors when 

the results of Table 4.2 and 4.3 are compared. If the five parameter models from each of 

the two models are compared it is seen that only logPoct shows improvement when the 

regression scaling factors are applied and this is only an improvement of 0.01% in R and 

a decrease of 0.02 in RMSE. LogPcHci and logPcyc both show a decrease in R and an 

increase in RMSE. A possible explanation for this pattern is that logPoct is not influenced 

heavily by hydrogen bond acidity. This suggests that it is the hydrogen bond acidity term 

in the regression scaling factors that causes the models to be inferior to those calculated 

using the averaged scaling factors.

The source of error within the regression from which the ASAs scaling factors were 

calculated may be due to the fact that of the 1055 molecules in the regression all contained 

hydrogen bond basic atoms under our definitions but 562 contain no hydrogen bond 

acidic molecules and had an A value of zero giving the regression significantly less data 

to train the scaling factors.

While the models produced are very similar, the improvement given by the model of 

logPoct when the regresion scaling factors are applied is outweighed by the loss of 

accuracy in the models of logPcHci and logPcyc- For this reason we determine the averaged 

scaling factors to be those that will be applied in all future models.
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4.2.3 Significance of descriptors

The t-ratio and coefficients for five parameter models scaled using the averaged scaling 

factors are given in Table 4.4. These values reveal that size (TSA) is generally the most 

important term, followed closely by base and acid surface areas. The largest cross

correlation between descriptors is just r = 0.47 for this dataset, such that MLRA is 

appropriate and direct interpretation of coefficients is meaningful. The models broadly 

follow expected trends, with the size term always increasing logP and H-bonding 

decreasing it. Further, ASAs is less significant for logPoct than the other partitions due to 

the similar basicity of water and «-octanol. Halogen and benzene surface areas play a 

lesser role, typically acting to increase logP, although perhaps surprisingly HalSA is not 

statistically significant in a model of logPcHci- Thus, not only are the models developed 

statistically valid, but they also reflect known physicochemical properties of the solvent 

systems. Using the critiria that any t-ratio of less than 2 is insignificant within the model 

the HalSA decriptor can be removed from all the proposed models and BenSA can be 

removed from logPCyC, Although it can be stated that HalSA may not be insignificant to 

these partitions for a larger dataset that contained a higher number of halogen molecules.

Table 4.4: Coefficients and T-ratios of models of logPoct, logPcHci and logPcyc
TSA ASAs BSAs HalSA BenSA

logPoct 0.015(13.6) 0.033 (2.19) -0.035 (-9.6) 0.005 (-1.8) 0.01 (5.0)
logPcHCl 0.02 (17.1) -0.225 (-14.4) -0.044 (-11.6) -0.004 (-1.3) 0.006 (2.6)
logPcyc 0.021 (14) -0.227 (-11) -0.66 (-13.1) 0.002 (0.52) 0 .004(1.4)

a t-ratios given in parenthesis.

4.2.3 Predictive Accuracy

R cv values of 0.806, 0.88, and 0.82, respectively, indicate that the models reported here 

are capable of making reliable predictions. However, a more realistic test of predictive 

ability lies in the construction of training and test sets. Five randomly selected test sets of 

22 data points (20% of the full dataset) were removed from the dataset, models were then 

built on the remaining data and used to predict logPs for the omitted molecules, an 

average variation of 10% was found, but when averaged over all test sets the accuracy is
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been shown to have advantages over the method used by Platts for platinum 

complexes.24,25 Bowdery showed that the structures calculated by the new method were 

indeed more accurate and in better agreement with experimental data, and so 

optimisations at the mPWlPW/LanL2DZ level for all other molecules within our datasets. 

These structures were obtained as XYZ coordinates and converted to molfiles using 

HYPERCHEM PRO 6. It was from these molfiles that surface area descriptors were 

generated using MOL VOL. MOL VOL was modified to calculate an additional surface 

area descriptor, PtSA that would contain the exposed surface area of the Pt atom. 

Descriptors were scaled using the methods detailed in 4.9.

4.10.4.1 logPoct Results

Using scaled and un-scaled surface area descriptors a number of models were constructed 

for all datasets, the results of which are given below in table 4.8.

Table 4.8: LogPoct Surface area models of 24 platinum containing complexes

Number Descriptors R2 RMSE F-ratio

1 PSAU TSA 0.85 0.412 59.207

2 PSAU TSA PtSA 0.93 0.29 90.87

3 PSAs TSA PtSA 0.85 0.419 38.204

4 PSAs TSA PtSA HalSA BenSA 0.85 0.448 19.871

5 TSA PtSA HalSA BenSA ASAU BSAU 0.94 0.291 43.413

6 TSA PtSA HalSA BenSA ASAs BSAs 0.85 0.49 15.723

The results of table 4.8 show the unsealed polar surface area descriptors give better 

models of PSA than those where scaling factors are applied. This is not an unexpected 

result as the scaling factors were designed to model the effects of hydrogen bonding in 

organic not inorganic molecules. We can hypothesise that an atom’s distance from the 

metal core will affect the accuracy of our scaling factors. Atoms directly bonded to the 

metal core will show the most difference in H-bonding to that of organic molecules while 

functional groups located at a sufficient distance from the metal will be expected to 

behave more similarly to those found in organic molecules.
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The R2 and RMSE values show that model number 5 has the highest R2 value although it 

is only marginally better than the three-parameter model (number 2) and RMSE is seen to 

be equal. For this reason we determine that model 2 is the best as the increase in R by 1% 

by the inclusion of three other descriptors is not acceptable. The t-ratios for model number 

five are given in table 4.9.

Table 4.9: t-ratio values for logPoct model of 24 platinum containing complexes*

Descriptor t-Ratio

Intercept -4 .45

TSA 9.25

ASAu -0 .23

BSAu -5 .24

HalSA 0.30

BenSA -0 .90

PtSA 2.76

*Model number 5 in table 4.8.

The t-ratios reveal that the descriptors HalSA, BenSA and ASAu have little significance, 

hence the similarity between models 2 and 5. Multivariate analysis reveals that BSAu and 

PSAu correlate with an R2 value of 0.995 indicating that both descriptors are encoding 

virtually the same chemical information; this high correlation combined with the 

insignificance of the ASAu descriptor explains why the splitting of PSA yields no 

improvement for this dataset.

For a model of logPoct such as this it would be expected that a molecule’s hydrogen bond 

acidity would not be as important as its basicity, which would act to hinder partition into 

octanol. The large positive TSA t-ratio value is also expected for logPoct, acting to 

encourage larger molecule in to the octanol phase. While the conclusions gleaned from 

the t-ratios are in agreement with the physical properties of the octanol/water partition, 

their reliability is questionable due to the restricted size of the dataset. Therefore the 

dataset was expanded to include 15 more platinum containing complexes.
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FIGURE 4.6: Structures of Dianil 8 and Dianil 2

DianilS

Initial analysis of the expanded dataset showed the molecule dianil 8 (shown in figure 4.6) 

to be an outlier. Its reported logPoct value of 0.5 is very high when compared to 

structurally similar molecules within the dataset. The potential error of this value can be 

highlighted further by comparison of logPoct values of toluene and nitrobenzene, where 

substitution of a methyl group for a nitro group on an aromatic ring causes the expected 

decrease on logPoct, in contrast dianil2 and diani!8 show an increase in logPoct when a 

nitro group is substituted for a methyl group. For these reasons dianil 8 was removed from 

the regression. Table 4.10 shows the results from the regressions of a wide variety of 

descriptors.

Table 4.10: LogPoct Surface area models of 39 platinum containing complexes

Number Descriptors R2 RMSE f-ratio

7 PSAu TSA 0.833 0.608 89.60

8 PSAu TSA PtSA 0.860 0.502 93.73

9 PSAs TSA PtSA 0.714 0.806 29.24

10 TSA ASAu BSAu PtSA 0.896 0.494 73.13

11 TSA ASAs BSAs PtSA 0.725 0.800 22.47

12 PSA TSA PtSA HalSA BenSA 0.87 0.559 44.38

13 TSA PtSA HalSA BenSA ASAy BSAy 0.918 0.453 59.31

14 TSA PtSA HalSA BenSA ASAs BSAs 0.877 0.553 38.09

The models show similar trends to those of the dataset of 24 logPoct values, with the 

scaling of the PSA descriptor lowering the quality of the models. Splitting of PSA into its 

components only marginally improves the fit.
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By comparison of the four-parameter models numbers 10 and 11 it is seen that scaling of 

the descriptors reduces R by 17%. A similarly large reduction is seen when the three- 

parameter models 8 and 9 are compared, both of these reductions are much larger than 

those given by models constructed from the small datasets. This is in concordance with 

our previous hypothesis that the scaling factors are not suitable for representing the H- 

bonding abilities of inorganic molecules. The expanded dataset contains a wider range of 

functional groups, which offers a wider source of potential errors for the scaling factors.

When the scaling factors are applied to a six parameter models, the reduction in accuracy 

is far smaller than for models with less descriptors. When the t-ratios of models 13 and 14 

are compared we see that in the scaled model the HalSA and BenSA descriptor have a 

much higher significance and that the model is far more dependent upon these descriptors, 

this increased dependency can be attributed again to the poorer quality of the scaled 

surface areas.

Similarly to the small dataset the best model for this dataset is the six parameter un-scaled 

model although again this model is only a small improvement over the three parameter 

model and that the improvement in accuracy is not merited by the inclusion of three extra 

descriptors. The t-ratios for the six parameter model are given in table 4.11.

Table 4.11: T-ratio values for logPoct model of 39 platinum containing complexes*

Descriptor T-ratio

Intercept -6.793

TSA 12.720

ASAu 1.312

BSAu -3.743

HalSA 2.149

BenSA 0.503

PtSA 4.641

* Model number 13 in table 4.10

The t-ratios again reflect the properties expected for octanol water partition with T S A  and 

B S A u  being the most dominant and having opposing effects upon logPoct- The A S A u  

descriptor is now seen to give a small positive value, which is in agreement with our 

previous surface area model of logPoct for organic molecules (see 4.2.2). The low t-ratio
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values of ASAu and BenSA indicate that they can be removed from a model of this 

dataset.

4.10.4.2 logPcHci Results

Following the same methodologies used for the logPoct datasets a selection of models was 

constructed using a variety of descriptors. The results of these regressions are given in 

table 4.12.

Table 4.12: LogPcHci Surface area models of 14 platinum containing complexes

Number Descriptors FT RMSE f-ratio

14 PSAy TSA 0.93 0.64 70.81

15 PSAy TSA PtSA 0.93 0.67 42.94

16 PSAs TSA PtSA 0.93 0.69 41.18

17 TSA ASAu BSAu PtSA 0.93 0.71 29.42

18 TSA ASAs BSAs PtSA 0.93 0.72 28.43

19 PSA TSA PtSA HalSA BenSA 0.95 0.65 28.07

20 TSA PtSA HalSA BenSA ASAu BSAu 0.96 0.61 27.20

21 TSA PtSA HalSA BenSA ASAs BSAs 0.96 0.57 31.14

From the data it can be seen that even a simple model of PSAu and TSA is capable of 

modelling logPcHci and that a simple model of PSAu TSA is the best model for this 

dataset as it uses the least descriptors. Unlike the previous models of logPoct, the 

application of the scaling factors has no effect on the models. This difference in the 

models between scaled and unsealed descriptors is due to the dataset containing a very 

narrow range of functional groups. Analysis of the scaled and un-scaled ASA and BSA 

descriptors illustrates how similar these descriptors are, with ASA and ASAu correlating 

with 0.90 and BSA and BSAu correlating to within 0.96. It should be noted that the 

descriptors in the former models of logPoct do not correlate highly enough for this to be of 

concern.

A  more worrying concern caused by the small number of functional groups within this 

dataset is the heavy correlation it causes between the hydrogen bond acidic and basic 

descriptors, with A S A  and B S A  correlating with 0.932 and B SA u and PSA u correlating 

with 0.923. Therefore any model in which P SA  is decoupled in table 4.12 should be
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discarded due to the errors associated with internal correlation of descriptors. For these 

reasons the best model in table 4.12 is number 19, the t-ratios for model 19 are given 

below in table 4.13.

Table 4.13: T-ratio values for logPoct model of 15 platinum containing complexes*

t-ratio

Intercept -1.622

TSA 8.723

HalSA -1.826

BenSA 1.644

PtSA -1.704

PSAy -8.559

While these t-ratios are sensible and in fitting with our previous studies of logPoct their 

validity should be taken with caution as the dataset is very limited.

4.10.5 Combining Organic and Inorganic Datasets

While the above models all show the potential of surface area methods in prediction of 

partition values for platinum complexes, it is interesting to see if the surface area methods 

are robust enough to model inorganic and organic molecules simultaneously. The ability 

to combine organic and inorganic data would allow larger datasets to be modelled due to 

the more widespread availability of data for organic molecules. A wider range of 

molecules in the dataset will also lead to more confidence in conclusions drawn from the 

t-ratios, as the inorganic datasets are very limited in size. The organic data is that used to 

generate models of logPoct, logPcHci and logPcyc in chapter 4.1, (note that chlorpromazine 

and miconazole have been removed at they were noted to be outliers in previous surface 

area models).

From the results of previous studies one serious problem can be envisaged in the 

simultaneous modelling of organic and inorganic data, organic molecules have been 

shown to require scaling in order to be modelled correctly, while our scaling factors are 

inappropriate for inorganic molecules. In order to assess this problem three models were 

attempted:
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i) No scaling was applied

ii) Scaling for all molecules

iii) Scaling of organic molecules only

The results for the models of logPoct and logPcHci are given below

Table 4.14: logPoct and logPcHci surface area models with organic and inorganic 

molecules

logPocT
N RMSE f-ratio

Scaled six parameter 147 0.73 0.88 64.0

Unsealed six parameter 147 0.80 0.77 92.5

Scaled organic and unsealed Inorganic six parameter 147 0.81 0.74 100.9

Organic only model scaled 108 0.85 0.45 112.2

N R* RMSE f-ratio

Scaled six parameter 122 0.86 0.63 117.9

Unsealed six parameter 122 0.74 0.85 55.3

Scaled organic and unsealed Inorganic six parameter 122 0.90 0.52 179.3

Organic only model scaled 108 0.92 0.42 226.8

The logPoct models show that no combination of scaled and unsealed descriptors explains 

more that 81% of the variance of the original dataset. It should be noted that the logPcHCL 

data amalgamation of the organic and Pt datasets causes the heavy correlation between the 

hydrogen bond acidity and basicity descriptors to be removed, consequently the splitting 

of PSA is possible.

For logPcHCL the un-scaled descriptors are the least accurate, this is not unexpected, as 

models constructed for organic molecules show that un-scaled descriptors were 

unsatisfactory and they represent 89% of the dataset. When a model is constructed using 

only scaled descriptors it is seen to be less accurate than a model constructed using scaled 

descriptors for organic molecules and un-scaled descriptors for Pt complexes, whereas the 

models constructed for only Pt complexes showed no preference for un-scaled or scaled 

descriptors. This result implies strongly that the range of functional groups within the Pt
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complex dataset is so restricted that the regression is capable of fitting the error in the 

scaling factors for the Pt complexes in a model of only platinum complexes.

It can be concluded from these results that the original scaling factors are not suitable for 

modelling inorganic complexes. In an attempt to obtain more accurate scaling factors, two 

new fragments were added to account for Pt-Nfh and Pt-Cl. As no experimentally 

observed A and B values are available for these fragments, our scaling values were 

obtained instead from the theoretical values calculated by Robertazzi . Robertazzi 

calculated that cisplatin should display an A value of 0.70 a value stronger than most 

monofunctional acids, and a B value of 0.84, again rather stronger than most 

monofunctional bases. Robertazzi also noted that these properties were largely due to 

electrostatic effects, i.e. its hard acid/base with almost negligible covalent overlap. For 

these reasons we define our scaling factors thus: H in Pt-N-H is scaled by 0.12 in ASA, 

and Cl in Pt-Cl a scaling factor of 0.42 in BSA. While it is unusual to include Cl in our 

definition of hydrogen bond basicity, the values calculated by Robertazzi support its 

inclusion. All other polar atoms in the molecules are scaled, as before, using the principle 

that in larger molecules polar atoms located at a sufficient distance will mimic the nature 

of polar atoms in organic molecules. With these scaling factors in place the following 

models were constructed.

Table 4.15: logPoct and logPcHci models created with the application of inorganic scaling 

factors

N R2 RMSE f-ratio

logPoct six parameter new scale 147 0.754 0.845 71.852

logPcHci six parameter new scale 122 0.93 0.454 241.32

The logPoct model shows mild improvement to that of the original scaling method but is 

still inferior to the un-scaled models. The logPcHci model yields a marked improvement of 

7% in R when compared to the original six-parameter model. With the resultant model 

now being superior to that of the model created using the combination of scaled and 

unsealed descriptors.

The new scaling factors are seen to be successful in the chloroform dataset and yet fail for 

the octanol model this difference can be attributed to the fact that the chloroform dataset
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contains predominantly complexes where the only polar atoms attached to the Pt core are 

covered within our limited fragment definitions. Many of the molecules contained within 

the octanol dataset contain polar atoms bonded directly to the core that are not categorised 

within our definitions. As no further published A and B data is available for these 

fragments, our solution was to restrict the dataset to contain only Pt complexes where 

either N or Cl were bonded to the Pt core. With the removal of all unsuitable molecules a 

dataset of 18 Pt complexes remained. These 18 molecules were again combined with the 

dataset of 108 organic molecules. This dataset was modelled and the results are given in 

table 4.16.

Table 4.16: surface area models of logPoct dataset with restricted number of platinum 

complexes

N RMSE f-ratio

Scaled six parameter 126 0.804 0.645 81.687

Un-scaled six parameter 126 0.806 0.641 82.844

Scaled organic and un-scaled Inorganic six parameter 126 0.783 0.680 71.792

New scaling factors 6 parameter 126 0.906 0.446 192.872

Organic only model scaled 108 0.846 0.450 112.241

The results clearly show that the best model is that in which the new scaling factors are 

applied, with the model giving higher R2 and lower RMSE values than any other 

combination of descriptors, the model also gives a higher R2 and lower RMSE value than 

the dataset of organic only models.

4.10.6 Coefficient Analysis

Via term-by-term analysis of the t-ratios it is possible to determine if the coefficient 

values of the descriptors in our new models accurately represent the known chemical 

properties of the water/octanol and chloroform/octanol partitions. The graphs below show 

the plots of t-ratios for all descriptors in different models.
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Figure 4.7: t-ratio values of a selection of logPoct models
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The graph shows that the descriptors display broadly similar properties in all models. 

TSA is seen to be the largest and most positive of all coefficients, the next most 

significant descriptor is the BenSA with only two models being the exception, these 

exceptions are where the new metal fragment scaling factors are applied and where only 

organic molecules are used. In these models the second most influential descriptor is seen 

to be BSA acting to reduce logP values. The increased relative significance of the BSA 

descriptor in the models where the new scaling factors are applied and where the organic 

only molecules are considered is a more physically realistic representation o f octanol 

water partition.

The hydrogen bond acidity descriptor is seen to have very little influence in any o f the 

models; this result is in concordance with other models of logPoct and can be attributed to 

the similarity in hydrogen bond basicity of water and octanol. The HalSA descriptor, 

while of little significance, is interesting as it value fluctuates more than any other 

descriptor over all the models with positive and negative values being reported. This 

fluctuation is due to the unique hydrogen bond basicity properties of Cl atoms in cisplatin, 

positive values of HalSA are reported for the organic only model and the model in which
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new scaling factors are used, the similarity of the two models adds further validation for 

our new scaling factors.

The PtSA descriptor is seen to have a small negative value throughout, thereby acting to 

decrease the logP values. The negative value given by PtSA in both logPoct and logPcHci 

model might suggests favourable interaction between the electron poor metal atom and

water. The exact role of the metal surface area is difficult to interpret without ambiguity,

but it can be considered as a “catch all” term that defines all metal solvent interactions.

The chloroform descriptors as shown in figure 4.8 again show broadly similar properties 

for all models, the most significant descriptor in each model is TSA acting to increase 

logP, the second most significant is ASA followed by BSA both of which act to reduce 

logP. The HalSA descriptor is again seen to be the largest source of fluctuation within the 

model: again this can be attributed to the hydrogen bond basicity of the Cl in cisplatin. As 

with the octanol partition models, the positive HalSA values are reported for the organic 

only model and the model in which the new scaling factors are applied.

Figure 4.8: t-ratio values of a selection of logP cH ci models
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As a final test of the new scaling factors and an overall measure of the validity of the 

cisplatin descriptors, the organic dataset was remodelled as a training set, the equation 

generated was then used to predict the logP value of the inorganic complexes. For each of 

these models the average absolute error in prediction of the cisplatin complexes was 

calculated and the results are given in table 4.17. It should be noted that for these models 

PtSA is not included as a descriptor as it is impossible to generate a value for it from the 

organic only training set.

Table 4.17: Average absolute error in prediction for platinum complex test sets

logPocT logPcHCL

Unsealed descriptors 3.00 1.67

Scaled descriptors 4.03 4.77

Scaled descriptors (cisplatin scaled) 0.62 1.05

The results in the table show that the lowest errors in prediction are given where the metal 

scaling fragments are used and the worst errors are seen where the old scaling factors are 

applied.

4.10.7 Platinum Complex Conclusions

The results show that our surface area methods are capable of predicting logP values for 

cisplatin molecules. Two new fragments have been defined to help model the unique 

hydrogen bonding properties of atoms bonded to Pt. When these new fragments and their 

associated scaling factors are included organic and inorganic molecules can be modelled 

simultaneously. The t-ratio values for the descriptors of these models have been seen to 

accurately represent the physiochemical properties of the systems. The t-ratios of models 

that incorporate the new scaling factors most closely resemble equations from established 

models created using datasets of organic only molecules.

Accurate values of logPoct and logPcHci were predicted for a test set of cisplatin 

compounds from a training set of organic molecules. From these results we can conclude 

that our scaled surface area methods are potentially capable of predicting other partitions 

and biological properties for cisplatin molecules with the same accuracy as organic 

molecules. Although this potential cannot yet be realised as the current amount of
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biological partition data available for metal complexes is too limited to construct a 

reliable dataset.

4.11 Future Work

The identification of other important inorganic fragments and the assignment of scaling 

factors for these fragments would expand the number of inorganic molecules that could be 

treated using scaled PSA methods.

Experimentally observed partition values for cisplatin and carboplatin such as blood brain 

barrier perfusion and cell uptake, could be used to create models that may be highly 

beneficial to medicinal chemist. While this information is currently limited for inorganic 

molecules, the ability to combine inorganic data with the more abundant organic data 

could produce a sufficiently large dataset to create an accurate/robust model.

Further models of inorganic molecules could also be beneficial in determining the exact 

properties that are being modelled by the PtSA descriptor.
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Chapter 5 Biological Applications

5.1 The uptake of Volatile organic compounds into the cuticular matrix 

of plants

5.1.1 Introduction

The uptake of volatile organic compounds (VOC) from air in to plant foliage is an area of 

great concern; the absorption of unwanted chemicals into vegetation provides a potential 

path into the human food chain. This problem is exacerbated by the increasing volume of 

VOC that are being released into the atmosphere by industrial processes \  Further insight 

into the mechanism of uptake of VOC and the ability to envisage potentially dangerous 

molecules via predictive modelling would offer greater accuracy in risk assessment and 

help avert potential environmental disasters. There have been a number of studies and 

models proposed for this partition.1'7

o
Schonherr and Riederer proposed that the absorption of VOC into plants is determined so 

predominantly by the partition of the molecule from the air into the plant’s cuticle, that it 

is the only obstruction that must be considered. The cuticle is a protective layer that 

regulates and controls the exchange of water and gases from the plant, the cuticle can also 

help prevent certain disease causing organisms from infecting the plant but the primary 

role of the cuticle is to prevent dehydration.

Riederer et a t  used chloroform to dewax the membranes by extraction in order obtain 

only the cuticular polymer matrix membrane (MX). Measurements of partition from air 

into isolated cuticular matrix membranes were then obtained for 50 VOC by headspace 

analysis; this partition is denoted as Kmxb- A further partition between water-solvated 

VOC deposited upon the cuticle and the cuticular matrix K Mxw was also calculated by the 

relationship.
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A m Xw -  ^M X a -  ^ a w (5.1)

Where Kaw is the gas water partition coefficient, Kaw values were either determined8 or 

available5 for 40 of the 50 VOC.

The plant cuticular matrix is made of a waxy substance called cutin, which has been seen 

to be lipophilic in nature. For this reason it has been proposed that logPoct should act as a
o

suitable model for the cuticual matrix. Riederer et al. showed a linear correlation of 

0.819 (R2) between logA^xa and air octanol partition (logAToa) for 38 VOC. This 

correlation shows that while there is similarity between the octanol phase and the plant 

cuticular matrix, octanol is not similar enough in properties to act as a fully 

comprehensive model. Riederer et al also proposed a more detailed model of log A^xa 

based on the following descriptors, molar refractivity and lypophillic contributions to 

water-octanol partition, a topological index descriptor and a hydrogen bond acidity term.
'y

A model based on 49 log Kmx* produced using these descriptors gave an R value of 

0.812 and a standard deviation of 0.271. While the statistics are comparable to those given 

by the simple plot of log Koa against log KMxa a strength of the model was that the 

physical properties that govern the mechanism of air plant cuticual matrix partition could 

be determined by analysis of the descriptors coefficient values. From this analysis it was 

seen that the plant matrix displayed hydrogen bond basic properties with hydrogen bond 

acidic molecules being more readily absorbed.

Further log KMxw and values of log Kqw (water cutical partition) have been reported by 

Sabljic et al for 15 molecules in four different plant species. An interesting result of this 

study was that values of log Â mxw and log Kcw were almost identical. The study also 

showed that values of log Â mxw and log Kqw were fairly consistent across all four plant 

species. This result is in opposition with the work of Keymeulen et a l 6 who showed that 

there was marked difference in uptake of VOC into cuticles of different plant species 

(Hedera helix and Buxus sempervirens).

Platts et a f  offered a model of log Amxw and log Amx3 for 62 molecules, using data 

obtained from Reiedrer et al8 and Sabljic et al}  The relevant Kaw values needed to 

calculate ATmxw from Amx3 were predicted using the Abraham LFER.10 Descriptors for this
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model were not experimentally derived but calculated via the group contribution of 

Platts.11 The study produced the following equations.

Air-plant cuticle partition

log ^ Mxa=-0.641 + 1.310S + 3.116A + 0.793B + 0.877L (5.2)

N= 62 R2 = 0.994 R2CV = 0.992, RMSE = 0.230 F = 2361

Water-plant Cuticle partition

log K  Mxw= -0.415 + 0.596E -  0.413S -  0.508A - 4.096B + 3.908V (5.3)

N= 62 R2 = 0.981 R2cv = 0.972, RMSE = 0.236 F = 566

Both of these equations show excellent correlation between experimentally observed 

calculated partition values. Term by term analysis of the coefficients for equation 5.2 and

5.3 revealed a large amount of information about the partition process.

It was seen for Air plant cuticle partition (equation 5.2) that the E descriptor was 

insignificant and that the dispersion effects of 7i and n electrons had little effect on 

partition. The most significant descriptor within the processes was A, the hydrogen bond 

acidity descriptor, indicating that a molecule with strong hydrogen bond acidity would be 

preferentially absorbed into the cuticular matrix, and that the cuticular matrix displayed 

hydrogen bond basic properties, a result in agreement with the equation stated by Riederer 

et al.s From the small positive value of the B descriptor Platts et alu stated that the cuticle 

must also display some hydrogen bond acidity. The relatively large value of S reveals that 

the cuticle is polar/polarisable in nature. A positive value was given by the size term L 

suggesting that larger molecules are more preferentially absorbed e.g. via dispersion.

Similar analysis was performed for water-plant cuticle partition (equation 5.3). Equation

5.2 describes only the plant cuticle where as equation 5.3 gives the relative difference 

between the plant cuticle and bulk water. The coefficients revealed that cuticular matrix 

interacts more through 7i and n electron pairs and the cuticle is also less hydrogen bond 

basic and considerably less hydrogen bond acidic than water. The positive value given by 

the size term V indicates that cavities are much more easily formed in the cuticular matrix 

than water.
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In order to explore the potential of the scaled PSA descriptors in modelling biological 

properties, models were created for the both datasets used in the study Platts et al? Due to 

the high quality of the models produced by Platts et al (R = 0.981 and 0.994) it is not 

expected that any statistical improvement will be seen, instead the models are intended to 

act as a test bed to assess if scaled PSA models can be created for biological data, and if 

the physiochemical information obtained from them is reliable.

5.1.2 Methods

Scaled PSA descriptors were generated for the 62 molecules used by Platts et al {1) and 

models were generated via MLRA. The descriptors were generated using the method 

outlined in 4.9.

5.1.3 Results and Discussion

The regression of log£Mxa and logATMxw against scaled surface area descriptors produced 

the following equation.

log/̂ MXa~ -0.798 +0.016TSA + 0.277ASAs +0.031BSAs +0.014HalSA +0.045BenSA (5.4)
N= 62, R2= 0.941, RMSE = 0.729, R2CV= 0.916, F=177.982

l o g ^ MXw =  -1.842 +0.022TSA -0.095ASAs -0.028BSAs +0.010HalSA +0.0136BenSA (5.5)
N= 62, R2= 0.898, RMSE = 0.541, R2CV= 0.842, F=98.1977

While the overall statistics for these model are good they are slightly inferior to those 

proposed by Platts et al? Partition values were predicted accurately for all molecules in 

both datasets with the exception of 4-nitrophenol for the air/cuticular matrix partition, 

where a residual of 2.369 log units was reported. 4-nitrophenol is predicted with a residual 

of 0.605 log units by the Abraham descriptors using equation 5.3, as this residual is so 

low we can assume that the experimentally observed data is reliable. As the error in 

prediction dose not lie in the experimental value it could be deduced that the error is 

generated within the scaled surface area descriptors, although the scaled surface area 

descriptors have been proven to be capable of predicting logPoct, logPcHci and logPcyc 

values accurately for 4-Nitrophenol (see chapter 4.2). As the precise reason for the high

133



residual value cannot be determined the removal of 4-nitrophenol from the dataset cannot 

be justified.

The t-ratios of equation 5.3 and 5.4 are presented in Table 5.1.

Table 5.1: t-ratios of equations 5.3 and 5.4

Descriptor

lOCJ^MXa

t-ratio

logKMXw

t-ratio

Intercept -2.352 -7.315

TSA 6.341 11.776

ASAs 7.228 -3.347

BSAs 6.554 -7.881

HalSA 6.993 6.921

BenSA 11.700 4.688

The t-ratios of table 5.1 are similar to those of the coefficient values of equations 5.2 and 

5.3. For the air/cuticle matrix partition a large ASAs t-ratio is seen, indicating that the 

cuticle has hydrogen bond basic properties. The value of BSAs is higher than that 

reported by Platts et al but the value is still positive indicating that the cuticle displays 

some hydrogen bond acidic properties. The positive size descriptor TSA also indicates 

that larger molecules will show a preference to partition into the cuticle.

The most significant of all descriptors is BenSA, The exact nature of this descriptor is 

complex. The cuticular matrix is comprised of predominantly (40 to 80% by weight) of 

cutin, a high molecular weigh polymer of C l6 and C l8 hydroxalkanoic acids.12 

Hydroxyalkanoic acids which would not be expected to interact with benzene via n-n 

interactions strongly enough to merit the high significance of this descriptor. However, a 

study of polycyclic aromatic hydrocarbons13 (PAH) noted that PAH with few carbon 

rings exhibited lower lipophilicity, higher vapour pressures and lower affinity for particle 

adsorption onto the cuticle surface than PAH with numerous aromatic rings. It can be 

assumed that the BenSA descriptor is describing a composite of all these factors. If one 

compares the molecules limonene and perylene, perylene displays a substantially higher 

log^MXa value (8.35 log units higher). Yet with the exception of BenSA the other 

descriptors are fairly similar, TSA values of 230.54 and 291.06 A2 are calculated for
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limonene and perylene respectively. Neither molecule has any hydrogen bond acid/base 

properties or halogen atoms. The large difference in partition is accounted for entirely by 

the BenSA descriptor that is calculated to be 155.42 AA2 for Perylene and 0 for limonene.

The descriptors for \ogKMXw are of particular interest as they reveal the relative difference 

between the cuticular matrix and bulk water. The plant cuticle matrix is seen to be 

substantially less acidic than bulk water and slightly less basic. The value of the TSA t- 

ratio shows that larger molecules will preferentially be absorbed into the cuticle matrix 

indicating that cavities are more easily formed within the cuticle matrix than bulk water. 

TSA is also determined to be the most significant factor determining partition. The 

BenSA descriptor is much less significant than in the model of air/cuticle matrix partition 

possibly due to factors such as gaseous adsorption onto the cuticle surface being 

irrelevant.
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5.2 Partition into Biological liquids and tissues of vapours and biological 

liquids

5.2.1 Introduction

When designing a new pharmaceutical product more factors than just the molecules 

potency towards the biological target must be considered. The molecules ADME 

(absorption, distribution, metabolism and excretion) properties and toxicity must be 

considered if a viable product is to be developed. Of the many different biological 

partitions and processes that must be considered, two of the most detrimental in drug 

design have been determined as the partition between the blood stream and the 

brain/central nervous system and the absorption of molecules via the intestine. A large 

quantity of research has been undertaken in these processes and many models and 

methods of theoretical prediction have been proposed; both of these partitions are 

discussed in further detail in 5.3 and 5.4. The importance of other biological properties 

such as solubility in different biological fluids and tissues must not be overlooked.

While the ability to predict properties of drug molecules from structure and eliminate 

unsuitable candidates early in the design process is a very useful tool the importance of 

the quantitative knowledge that can be obtained from QSAR must not be ignored, and 

information about solubility of gases into biological phases is particularly valuable within 

fields such as anaesthesiology, pulmonary and hyper baric physiology. In order to obtain a 

large array of information about different biological environments scaled surface area 

models have been developed for the solubility of vapours and gases in the following 

liquids and tissues: blood, plasma, brain, muscle, lung, liver, kidney and heart.

There has been a large quantity of work already performed and several reviews 14-16 

within which biological solubility of gases are discussed and models have been proposed. 

The vast majority of these correlations have been between Ostwald solubilities in 

biological media against Ostwald solubilities in water, fat and olive oil. 14-18 One such 

correlation is that offered by Sato et a /18 in which the solubility in blood (logLeiood) was 

correlated against the log of the product of the solubility in water and the solubility in oil. 

Sato et al derived two equations, one for the prediction of chlorinated hydrocarbons based
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on 20 molecules and one for aromatic hydrocarbons based on 10 molecules. Both models 

were seen to be accurate with R2 values of 0.935 and 0.861, while the equations stated by 

Sato et al show good correlations the equations are very specific to molecule types and 

not robust enough to act as a generic model.

Abraham et al 19 proposed the following model of log! for biological tissues again using 

the logZ, values of water and oil.

LogZ/f|uid/tissue — C +  W logLwater O logZ/0ji (5 .6 )

Where the coefficients c, w and o are regression coefficients. The equation was applied to 

a wide range of biological fluids and tissues including blood, plasma, brain, muscle, lung, 

liver and kidney. The models produced were of a very high quality with R values ranging 

from 0.974 to 0.990 for solubility into muscle tissue and blood respectively. While these 

models are predictively accurate they offer very little insight into the mechanisms 

governing partition, the only information that could be attained was if the phase was more 

hydrophilic or lipohilic in nature. The models also require experimentally observed water
90and oil solubility values. A later study by Abraham et al applied the Abraham LFER to 

the same datasets as used in their earlier study. For these models the logLi6 (gas 

hexadecane partition coefficient) descriptor was used in place of the size term V. 

Excellent models were produced with high R2 values and low standard deviations. From 

this work a comprehensive amount of information was obtained about the dynamics of the 

partition of gases. Abraham showed that plasma was similar to water although a little 

more lipophilic and that blood, lung, kidney, muscle, and brain in that order become more 

lipophilic less dipolar/polarisable, less acidic and less basic. Abraham also produced an 

LFER in which McGowan’s characteristic volume was used to analyse partitions between 

phases such as water/phase and blood/phase.

All of the models discussed thus far have relied in some form on experimentally observed 

data as a descriptor. For this reason our proposed scaled surface area model offers a 

unique advantage in that no experimentally observed data is required allowing faster 

prediction of properties without need for synthesis.
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5.2.2 Method

Scaled surface area descriptors were generated for the 11 datasets used in the studies of 

Abraham19,20 and were created using the methods stated in 4.9.

5.2.3 Results and Discussion

In the LFER study of Abraham et al20 the data obtained from the studies of Pezzango et 

al2X and Perbellini et al22 was noted as being potentially erroneous as logZ. values reported 

for alkanes and cycloalkanes in blood were seen to be higher in the work of Pezzango that 

those of Perbellini. Via construction of a model of logLbiood created without values of 

Pezzango et al or Perbellini, Abraham et al predicted values for alkanes and 

cyclohexanes, the values of Perbellini were seen to be more preferable to the LFER 

method so with reluctance Abraham excluded the values of Pezzango from all models.

In contrast in the model of solubility of liquid non electrolytes in blood produced by 

Kamlet et al23 no discrimination was seen against the results of Pezzango et al. The 

importance of data credibility cannot be understated, especially when one considers that 

Abraham and Kamlet reached differing conclusions about the nature of blood, more 

specifically the role of haemoglobin, based on the difference of datasets. Also the removal 

of all Pezzango’s data represents a hefty reduction in size for some of the smaller datasets 

most notably that of logLneart in which Pezzango’s data accounts for almost a third of the 

data.

In order to assess the reliability of the data of Pezzango for ourselves, two sets of models 

were constructed, only the first set of models contained the values of Pezzango. Table 5.2 

contains the statistical analysis for a selection of these models. The results showed overall 

that models were very similar with or without the values of Pezzango. Analysis of the 

residuals shows that our scaled surface area method predicts the experimentally stipulated 

values proposed by Pezzango accurately with an average error of -0.209 for alkanes and 

0.315 for cyclohexanes. For this reason we have chosen not to omit the values of 

Pezzango from our analysis. By retaining this data the distribution of the descriptors and 

logL values covered by our models is wider than those of Abraham.
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Table 5.2: Surface area models to assess the quality of the data of Pezzango

Incluc ling the values o f Pezzango Excluding the values c f  Pezzango

Partition n R2 RMSE n R2 RMSE

Brain 44 0.71 0.70 35 0.71 0.78

Muscle 45 0.74 0.69 36 0.75 0.76

Heart 25 0.64 0.47 16 0.67 0.58

Kidney 39 0.67 0.68 30 0.68 0.76

Abraham et al 20stated that the inorganic gases display distinctly different properties in 

water than organics24, and hence we have removed all inorganic gases from the models.

Three molecules were seen to be large outliers in several different systems; these were 

propanone, butanone and sulphur hexaflouride. These molecules were seen to give 

consistently poor calculated values over all models. It can be proposed that due to the 

inorganic nature of sulphur hexaflouride more accuracy could be obtained if specific 

scaling factor were added, but very little information is available to generate scaling 

factors, also the inclusion of such a specific fragment would begin to remove generality 

from our method. For these reasons sulphur hexaflouride was removed from all models.

Propanone and butanone were seen to give average residuals of 2.01 and 1.44 log units 

respectively. Previous models of logPoct, logPcHci and logPcyc (see 4.2) have shown the 

scaled surface area descriptors capable of modelling these molecules with a maximum 

error of about half a log unit. It is also notable that other aliphatic ketones such as 

pentanone, hexanone and heptanone are predicted with high accuracy for the three 

datasets in which they occur (logLbiood, logLwater and oil). This evidence suggests some of 

the values of propanone and butanone are inaccurate. For these reasons propanone and 

butanone were omitted from all regressions.

With the removal of all the outliers the regressions were repeated, the statistical results for 

all of the models produced are given in table 5.3 the modes were produced with the 

descriptors TSA ASAs BSAs HalSA and BenSA.
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Table 5.3: Statistics results for all the models

N R 2 R M S E F

logZwater 1 81 0 .6 4 9 0 .6 2 6 1 4 .1 0 5

logZ,Blood 35 0 .8 4 7 0 .5 4 3 2 .2 2 3

lo&^Plasma 3 2 0 .8 4 8 0 .6 4 3 7 .7 8

lo&^Brain 41 0 .8 3 2 0 .5 3 4 .6

LogZ,Muscle 4 2 0 .8 6 5 0 .4 7 4 6

lo&^Lung 35 0 .8 4 7 0 .5 4 3 2 .2 2

lo&^liver 32 0 .61 0 .4 3 1 3 .5 6

loSLKjdney 37 0 .81 0 .4 9 7 3 4 .1 7 5

lo&^Heart 25 0 .6 4 2 0 .4 6 8 1 2 .1 1 9

logZ,Fat 3 8 0 .81 0 .4 5 2 8 .8 4

lO Rloil 95 0 .8 0 9 0 .6 3 3 7 5 .4 3
*1 -  exclud ing all inorganic gases.

From these results it is apparent that all of our models are less accurate than those
9 0  9produced in the study of Abraham where an average R value of 0.97 and an average 

RMSE value of 0.19 log units was reported. While the Abraham models are superior it 

should be remembered that in the study of Abraham the descriptors were experimentally 

observed, experimental observation of descriptors requires more time and money than 

simple theoretical calculation making our models faster and more cost effective. While 

the statistics are not as good as those for non-biological phases such as logPoct and 

logPchcl3 they are still acceptable when one considers the large experimental errors that 

can be associated with obtaining log£ values for biological fluids and tissues.

The vast majority of models given in table 5.3 display good R2 values of over 0.8 and 

RMSE values of under half a log unit. Three models are seen to give poorer fits these are 

logLwater, logLiiver and logLHeart- With the exclusion of the three aforementioned outliers 

none of the remaining molecules are modelled poorly enough to be classed as outliers. 

Stepwise regression for these three datasets reveals that the accuracy of the models can be 

increased significantly if the HalSA descriptor is substituted with the C1SA descriptor 

(total Chlorine surface area). For example substitution of C1SA for HalSA in the logLneart 

regression yields an increase in R2 from 0.64 to 0.83 accompanied by a decrease in RMSE 

of 0.15 log units.

Further regression for all datasets reveals that Substitution of HalSA with C1SA yields an 

increase in R2 for nearly all models. The models of logL in which the most improvement
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is seen are those where the Abraham polar/polarisability descriptor S is seen to be highly 

significant, and the hydrogen bond acidity descriptor A was reported to be of little 

significance. As the HalSA and C1SA descriptors encompass no information about 

hydrogen bond acidity it can be deduced that the improvement provided by C1SA is due to 

better modelling of polar effects. Table 5.4 contains the experimentally observed 

Abraham values for a variety of halogenated organic molecules. Table 5.4 shows clearly 

that different halogen atoms display different polar effects. It should also be noted that 

the percentage of halogenated molecules within these logL datasets is proportionally 

higher than usually found in datasets, and that the datasets also contain a wider range of 

halogen atom types.

Table 5.4: Varied polarity/polarisability of different Halogenated methanes

Name S Ref
T etrafluoromethane -0.25 25

T ertachloromethane 0.38 26

Tetrabromethane 0.94 27

For the models of logLuver and loglnean a pattern is seen between halogen atom types in a 

molecule and predicted error, with the majority of molecules that are under predicted 

contain numerous fluorine atoms while a high proportion of the over predicted molecules 

contain several chlorine atoms.

From this evidence we can deduce that HalSA may not be the most suitable descriptor 

when a large portion of the molecules in the dataset contain halogen atoms of different 

types and where polarity is highly significant. For these reasons it was chosen to perform 

the regression again this time using the C1SA descriptor in place of HalSA, as before the 

relevant outliers were removed. The statistical results and t-ratios for these regressions are 

given in table 5.5. The effects of the t-ratios on different tissues and fluids is also shown 

in figure 5.1
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Figure 5.1: The significance of descriptors within different biological tissues
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Table 5.5 Statistical analysis and t-ratio values of tissue solubility models

R2 RMSE N F Intercept TSA ASA BSA CISA BenSA
*1logL Water 0.742 0.706 81 43.14 1.11 -4.27 2.54 10.25 5.77 6.87

LogL Blood 0.72 0.66 89 43.1 -8.13 8.44 9.38 2.73 4.34 4.4

L o g L  piasma 0.85 0.646 32 38.13 -6.3 5.26 9.35 0.53 -1.3

LogL Brain 0.897 0.392 41 61.17 -9.53 10.87 12.7 3.06 5.45 4.45

L o g L  Muscle 0.903 0.402 42 67.47 -9.64 10.37 13.59 1.43 5.16 4.33

LogL Lung 0.889 0.46 35 46.63 -5.7 5.55 14.03 0.71 5.18 4.14

LogL Lver 0.827 0.29 32 32.19 -6.93 9.21 3.13 6.44 5.85

L ogL jQ d jaey 0.871 0.41 37 42.04 -4.93 5.95 13.9 1.79 4.55 3.61

LogL Heart 0.827 0.32 25 23.9 -6.24 7.41 1.99 6.34 5.38

LogL p at 0.896 0.339 38 55.49 -4.79 12.38 7.87 -1.65 6.58 5.11

LogL oil 0.867 0.525 96 138.28 -9.11 17.61 4.65 2.14 8.26 7.71

N.B. Where no t-ratio values are shown indicates the dataset contained no information this descriptors e.g. no aromatic molecules inlogLplasma dataset



Via analysis of the t-ratios of each individual descriptor we see that all logL partitions 

have a positive value for the size descriptor TSA. The only phase where a negative value 

is observed is the logLwater partition. This result is expected, as it is known larger 

molecules form cavities in solvents such as oil and fat more easily than water. Indicating 

that the vast majority of biological fluids and tissues display more lipophilic tendencies 

than hydrophilic with regards to molecular size. Purely using the size term TSA as a point 

of reference we see that of all tissues and fluids, plasma is seen to behave most like water, 

an expected result as plasma is comprised predominantly of water (approx 90%). 

Relatively low TSA values are also given for lung, kidney tissue and blood.

For the hydrogen bond acidity and basicity terms, A S A s  and B S A s ,  positive t-ratio values 

are seen throughout with only one exception. This is an expected and chemically sensible 

result, as the solubility of a gas into a medium must be aided by the acidity or basicity of 

that medium. A S A s  is seen to be larger in the biological tissues than the biological fluids. 

No A S A s  t-ratios could be calculated for liver and heart tissue, as their datasets contained 

no hydrogen bond acidic molecules under our definitions of hydrogen bond acidity. From 

the values of the A S A  t-ratio we can see that hydrogen bond basicity decreases in tissues 

in the order lung, kidney, muscle and brain.

The model of logLwater gives the highest value of BSAs, a result that is in agreement with 

Abraham who stated that of all the phases studied water should be the most hydrogen 

bond acidic. A negative t-ratio value is given in the model of logLfat. As stated earlier for 

the solubility of gases we would expect this value to be positive by analysis of the logLfat 

dataset we see that N2 (a molecule where we would expect our scaling factors to fail) has 

a very influential effect on the value of BSAs. If N2 is removed the significance of BSAs 

drops to the point where it becomes insignificant and a model of equal quality can be 

produced with only four descriptors.

From the B S A s  t-ratio values of the oil water and fat models we can state that if a phase is 

hydrophilic it will be more hydrogen bond acidic than a lipophilic phase. The t-ratios for 

B S A s  show that blood is hydrogen bond basic. A low t-ratio value is given for B S A s  in 

plasma, in contrast with the earlier findings from TSA that plasma is similar in properties 

to water. Analysis of the dataset for logLpiasma shows as with logLfat that nitrogen and other 

inorganic gases such as oxygen and nitrous oxide heavily influence the coefficient value
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of BSAs. Removal of these molecules from the regression causes the value of the BSAs 

descriptor to rise to 2.15 indicating that plasma is more hydrogen bond acidic than 

originally calculated. The removal of the inorganic gases from the logLpiaSma regression 

causes very little change in the t-ratios of the other descriptors or overall statistics of the 

model. For the biological tissues the hydrogen bond acidity is seen to increase in the 

following order lung, muscle, kidney, heart, brain and liver. Although it should be noted 

that for all biological tissues except brain and liver tissue the t-ratio values are bellow 2 

and in insignificant at the 95% level and in predictive models the BSAs descriptor should 

be removed.

As stated the C1SA descriptor accounts for the polar/polarisable effects of the phase. The 

largest C1SA descriptors are given by the models of logLfat and logL0ii, this is not the 

expected result as it would be expected logLwater would exhibit far more polar properties 

than fat or oil. Although the C1SA descriptor within the individual models of logLfat and 

logLoii is much less dominant than the size term TSA unlike the model of lo%Lwater- The 

importance of the C1SA t-ratio increases in the series kidney, muscle, lung, brain, heart 

and liver. The t-ratio value of logLpiasma is -1.30 meaning that it is insignificant at the 95% 

level and should be removed from a predictive model.

The aromatic surface area descriptor BenSA is seen to give the largest values in the 

liquids oil and water, with biological tissues giving lower values. This indicates that that 

water and oil are more likely to interact with n electrons. The importance of the BenSA 

descriptor increases in the series kidney, lung, muscle, blood, brain, heart and liver.

Similarities can be seen within the order in which the size of the BenSA and C1SA 

descriptor increase across all of the different models. Of all biological tissues kidney 

tissue gives the lowest values for C1SA and BenSA, signifying that the kidney tissue is 

least likely to interact with halogenated or aromatic molecules, unlike brain tissue in 

which the largest t-ratios are seen for C1SA and BenSA.

In order to get a clearer picture of which descriptors are important within individual 

models, the size term TSA was scaled to a value of one for each system and all other 

descriptors within the model were scaled accordingly. The hydrogen bond basicity term
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BSA was not particularly dominant in any of the logL systems except logLwater in which 

BSA is the most significant term.

ASA is clearly the most dominant term in logLiung and logLkjdney and to a lesser extent in 

logLbrain logLmuScie and logLpiasma- All of these models also exhibit very low BSA values 

indicating that they are more hydrogen bond basic than acidic than in nature. For the 

remaining systems TSA is seen to be the most influential descriptor with the exception of 

logLwater- The descriptors BenSA and C1SA seem to be generally more significant than 

BSA but less influential than TSA and ASA. Generally BenSA and C1SA are seen as the 

third and forth most significant terms in each regression.
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5.3 Blood brain barrier

5.3.1 The blood brain barrier Introduction.

The cerebral capillaries are distinctly less permeable than other capillaries in the body; 

this restriction in permeability is described as the blood brain barrier (BBB). In drug 

design it is important to determine whether a candidate molecule is capable of penetrating 

the BBB. For drugs targeted at the central nervous system BBB penetration is essential, 

where as peripherally acting drugs aimed at other sites of action unwanted penetration of 

the BBB may lead to undesirable side-effects.

While the models produced in 5.2 for solubility in blood, plasma and brain tissue are 

informative they do not actually yield any information about the factors and mechanisms 

that govern selective nature of the blood brain barrier. A common measure of a molecules 

ability to penetrate the BBB is the logarithm of the ratio of the concentration of the 

molecule in the brain over the concentration of the molecule in the blood, expressed as log 

(Cbrain / Cbiood) or logBB. Experimental methods to determine logBB require animal testing 

and synthesis of the compound; these experiments are not only expensive but also
• 98difficult and time consuming to perform. Artificial membrane based methods for 

studying of BBB penetration are being developed, but these methods still require 

synthesis of the test molecule and are not necessarily the same as logBB.

In silico prediction of logBB can serve as a powerful tool in drug design and discovery, 

and hence there has been a great deal of research in to predictive models of BBB29. While 

the permeation of the blood brain barrier has been seen to be complex in nature many well 

established conclusions have been drawn.30'33 Highly polar molecules are seen to exhibit 

lower logBB values, except in cases where the molecule in question is capable of active 

transport. Size, ionisation, hydrogen bonding and molecular flexibility have all also been 

seen to be influential in penetration of the BBB.

It has also been established that PSA is detrimental to logBB. One of the earliest models 

of logBB in which PSA was used as a descriptor was that of Kansy and van de 

waterbeemd34 who developed a QSAR based on the regression of logBB values of 20 

molecules against their PSAy. The study gave the following equation.
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LogBB = 1.64 -  0.21 P S A u  + 0.003mol_vol 
N = 20, R 2 = 0.697, R M S E  = 0.448

(5.6)

Where mol_vol is the total molecular volume, van de waterbeemd stated that blood brain 

penetration at equilibrium would be decreased if PSAu were increased. Later applications 

of equation 5.6 to molecules outside the dataset showed poor predictive results. Thus 

indicating that a 20 compound training set would be insufficient to create a highly 

accurate model for prediction of logBB. Kelder et al correlated PSA against logBB for a 

set of 45 drug like molecules. Kelder et al attempted to improve the correlation via 

inclusion of other calculated molecular properties such as molar weight, molecular 

volume, logP, dipole moment etc, none of which were seen to be significant within a 

stepwise regression after PSA had been entered. Correlations of dynamic PSA and logBB 

were also performed, but the increase in accuracy of the model was so slight that the time 

consuming conformational search on each molecule was not justifiable. Via these 

correlations and the analysis of 776 orally administered CNS drugs Kelder et al concluded 

that for high penetration of the blood brain barrier a molecule should posses a PSA of less 

than 60 A2.

A correlation of P S A u  against logBB was also performed by Clark36 for a dataset of 57 

molecules. This regression produced the following equation.

logBB = 0.547 -0.016PSA (5.7)

N=57, R2=0.671, Sd= 0.455

Clark36 and Platts37 both commented that a model based on equation 5.7 would be 

unrealistic as it would be incapable of predicting logBB for any nonpolar molecule 

(Although this may be of little concern for pharmaceutical applications as no potential 

drug is likely to exhibit a PSA of 0 A2). To account for this Clark produced equations that 

used molecular weight, molecular volume and non-polar surface area none of which 

produced significant improvement in the predictive accuracy of the model. The best 

model produced used calculated logP (ClogP) values as an additional descriptor. The 

model gave an R2 value of 0.787 and a standard deviation of 0.354.
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Many models of logBB have been produced which were not reliant on PSA as a
•>o

descriptor such as that of Lombardo where logBB was correlated against the linear free 

energy of solvation in water. Another model that was not dependant on PSA was that of 

Abraham et al39 who constructed a LFER model using the same training set as utilised in 

equation 5.7. The model gave impressive statistics (R2 = 0.900 and RMSE = 0.201 log
3 7units). In a follow up to this study Platts et al expanded the number of molecules in the 

training set from 57 to 157. The LFER of Abraham was applied again along with an 

additional descriptor 7), which was an indicator variable for carboxylic acids. After 

removal of outliers equation 5.8 was produced. For 112 of the compounds in equation 5.8 

experimentally observed descriptors were available, the descriptors for the remaining 

compounds were calculated using the group contribution of Platts.11

logBB -  0.021 + 0.463 E -  0.864 S -  0.564 A -  0.731 B + 0.933 V -  0.567 /, (5.8)

N = 148, R2 = 0.745, RMSE = 0.343, R2CV = 0.711, F = 69

While the statistics of this model were lower than that of the original 57 data point model, 

the increase in chemical diversity along with the range of descriptor values covered by the 

model more than compensated for the loss in accuracy.

It can be concluded that PSA is highly significant to logBB but alone it is incapable of 

producing highly accurate models. Methods like the those of Abraham, which encompass 

a wider range of chemical information and are not reliant on PSA as a descriptor are 

capable of predicting logBB with better accuracy. As our scaled PSA method can be 

thought of as a “halfway house” between PSA and methods such as the LFER of 

Abraham we have attempted numerous models of logBB to assess our scaled PSA method 

as a tool for predictive modelling and a method of determining more about the nature of 

PSA upon blood brain barrier partition.

5.3.2 Methods

Scaled polar surface area descriptors were generated for all of the molecules used in the 

datasets of Kelder et a/35 Abraham et a?9 and Platts et al?1 Descriptors were calculated 

using the method stated in 4.9.

149



For clarity the three datasets will be referred to as I for the dataset of 45 molecules 

proposed by Kelder,35 II for the dataset of 57 values proposed by Abraham39 and III for 

the dataset of 157 values proposed by Platts.37

5.3.3 Results

5.3.3.1 dataset I

A number of models were constructed for dataset I using a variety of descriptors, the 

results of which are shown in table 5.6. Addition of TSA to the regression yields very 

little improvement to the statistics. Splitting of PSAu into ASAu and BSAu components 

gives a small improvement to the model with an increase in R2 of 0.018 and a decrease in 

RMSE of 0.015. After TSA ASAu and BSAu are inserted into a stepwise regression the 

descriptors HalSA and BenSA are seen to be completely insignificant at the 95% level.

Table 5.6: Statistical analysis of a number of blood brain barrier models made using 

dataset I (45 molecules)

Descriptors R2 RMSE

PSAj 0.840 0.369

PSAu 0.791 0.423

PSAs 0.588 0.590

TSA PSAu 0.810 0.408

TSA PSAs 0.595 0.597

TSA ASAu BSAu 0.828 0.393

TSA ASAs BSAs 0.672 0.543

While the splitting of P S A u  in to its components yields only a small increase in accuracy 

the increase makes it comparable to the equations proposed by Kelder35 in which PSAd 

(dynamic P S A )  was used as a descriptor

If P S A u  in a two-parameter model with T S A  is substituted with its scaled counterpart a 

noted decrease in accuracy is observed. The R 2 value drops from 0.81 to 0.60 and the 

R M S E  value increases from 0.408 to 0.597. A  similar decrease in statistics is seen if 

A S A u  and B S A u  are replaced with A S A s  and B S A u  in a three-parameter model using
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TSA. As with the previous model a stepwise regression reveals the descriptors HalSA and 

BenSA are insignificant at the 95% level.

5.3.3.2 dataset II

The same selection of PSA models that were produced for dataset I was created for the
3 f tdataset II. The statistical analysis of these models is given in table (5.7). When Clark 

modelled this dataset two molecules were omitted. N2 was removed as ClogP was used as 

a descriptor and values could not be calculated for N2. Compound 12 was also omitted 

(shown in figure 5.2) as it had been seen to be an outlier by other groups40,41. We have 

also chosen to remove these two molecules from our models as our surface area 

descriptors have been seen to be unreliable for diatomic gases such as N2 (see 5.2.3), and 

compound 12 was also seen to be an outlier when used with our descriptors. Compound 3 

(shown in figure 5.2) has also been removed as it was poorly predicted, this removal can 

be justified as it has been excluded from models created by other groups .

Figure 5.2: Structure of compounds 3 and 12 
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The models produced using dataset II show similar trends to those exhibited by the 

models created with dataset I. Splitting PSAu into its component acid and base descriptors 

gives negligible improvement. When A S A u  and B S A u  descriptors are used B S A u  is seen 

to be the more dominant of the two. For this dataset a positive t-ratio value is given by 

ASAy although this result is in conflict with our previous findings little attention should 

be paid, as ASAy is so insignificant its removal, to leave a model of TSA and BSAu gives 

almost identical statistics. As before stepwise regression reveals that after T S A ,  A S A y  

and B S A u  are inserted HalSA is seen to be insignificant although now BenSA is seen to 

be of a small importance with its addition boosting R value from 0.734 to 0.758.

Table 5.7: Statistical analysis of a number of blood brain barrier models made using 

dataset II (54 molecules)

R2 RMSE

PSAu ClogP 0.800 0.317

PSAu 0.706 0.389

PSAs 0.570 0.468

TSA PSAu 0.728 0.378

TSA PSAs 0.584 0.467

TSA ASAu BSAu 0.734 0.378

TSA ASAs BSAs 0.620 0.451

TSA ASAu BSAu BenSA 0.758 0.369

TSA ASAs BSAs BenSA 0.665 0.427

The application of A S A s  and B S A s  descriptors acts only to hinder the models causing the 

R values to drop and RMSE values to rise. BenSA is seen to have mild significance 

while HalSA is not important. Where ASA and BSA are scaled the significance of the two 

descriptors switches making ASA more the more important of the two.

Dataset II contains many molecules, which contain a guanidine functional group, a 

functional group that is not covered within our scaling descriptors. As the abundance of 

this functional group is a source of potential error within our scaling factors a fragment 

and scaling factors for the guanidine functional group were defined and the models were
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reproduced to include this fragment. The scaling values assigned to the guanidine 

fragment are shown in figure 5.3.

Figure 5.3: Values of scaling factors assigned for guanidine functional group.

0.1
0.2
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With the new scaling factors applied the scaled models were seen to be an improvement 

over the original scaled models but still giving inferior results to those where unsealed 

descriptors were used. For a simple three parameter model of T S A ,  A S A s  and B S A s  an 

improvement of 0.06 is seen in R2 along with a decrease of 0.04 in RMSE. The t-ratios for 

these new models now show that A S A s  and B S A s  have almost identical equal effects 

upon blood brain barrier partition with increasing H-bond acidity and basicity acting to 

reduce a molecules penetration of the blood brain barrier. HalSA is seen to be 

insignificant and BenSA is seen to have a small role in penetration.

Results 5.3.3.3 dataset III

As with the datasets I and II a selection of models was created using a variety of 

descriptors. The statistical analysis of these models is displayed in table 5.8. The scaling 

factors used for these models incorporate the guanidine fragment defined in 5.3.3.2, as the 

guanidine fragment is also unusually common within this dataset. A number of molecules 

were determined to be outliers and removed from the models shown in table 5.8. Theses 

molecules were Lombardo 4, Lombardo 20, YG19, YG20, ORG12692, mesoridazine and 

indomethacine. The first five of these molecules have been reported and omitted as 

outliers in previous studies 35>36’40’42’43
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Table 5.8: Statistical analysis of a number of a variety of blood brain barrier models made 

using dataset III. (150 values)

R2 RMSE

LFER 0.745 0.343

PSAu 0.508 0.470

PSAs 0.270 0.572

TSA PSAu 0.595 0.429

TSA PSAs 0.364 0.534

TSA ASAu BSAu 0.597 0.4299

TSA ASAs BSAs 0.41 0.51

TSA ASAu BSAu BenSA 0.612 0.4233

TSA ASAs BSAs BenSA 0.424 0.516

The models show the same pattern as those made with datasets I and II. The best models 

are created when the unsealed descriptors are used. Splitting of PSAu offers no 

improvement to the model. When PSAu is decoupled BSAu is seen to be the more 

significant of the two descriptors. The best model produced with the unsealed descriptors 

is the four parameter model in which the descriptors TSA, ASAu, BSAu and BenSA are 

used, giving an R2 value of 0.612 and RMSE value of 0.423 log units. By comparison to 

the model produced by Platts et a t 1 where an R2 value of 0.745 was reported the statistics 

of our model are not as disappointing as they may first appear. Platts et al stated that due 

to the high chemical diversity and the range of sources from which this data was acquired 

models with exceptionally high predictive accuracy would not be expected to be 

produced.

The scaled PSA models also show the same patterns as our other scaled PSA models, with 

scaling of PSA decreasing the quality of the models. Slight improvement is seen when 

A S A s  and B S A s  are used, in place of P S A s .  For the descriptors BenSA and HalSA only 

the former is seen to be significant.
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5.3.4 Discussion

All three datasets show that if scaling factors are applied to P S A  then the quality of the 

models produced is reduced. The models also show that partition of P S A u  into separate 

acid and base descriptors offers little or no improvement to the model. While these two 

conclusions indicate that our scaled P S A  methods are unsuitable for modelling BBB 

partition some conclusions can be drawn about the nature of the BBB from our failings 

that are informative to pharmaceutical scientists with regards the use of P S A .

The scaling factors produced in 3.1.3 have been seen to beneficial to simple chemical 

partitions such as logPoct and logPcHci (4.2) and biological partitions such as water/plant 

cuticular matrix (5.1), but none of these partitions are as complex and selective in nature 

as that of the blood brain barrier.

37In the model of Platts et al an extra descriptor was added to the LFER of Abraham as an 

indicator of carboxylic acids. This descriptor was required as the presence of CO2H 

reduced brain penetration far higher than simply its hydrogen bond and polarisability 

properties could account for. It was proposed that CO2H had such low uptake by the brain 

because of its affinity for binding with albumin when ionised to C O 2 ", along with efflux 

actions within the brain acting to flush out molecules containing C O 2 H .  A similar 

indicator variable was used within the study of Salminen et al,43 although this variable 

accounted for the presence of carboxylic and amino groups. It is more than conceivable 

that other functional groups have unique properties within the brain penetration 

mechanism. For this reason the scaling factors we have proposed to make PSA a more 

realistic measure of hydrogen bonding may not be applicable to such a complex partition 

as BBB. The generality offered by the traditional definition of PSA may be far more 

applicable to logBB calculation as it does not in any way attempt to compensate for 

specific functional groups. While PSA is established as being a representation of a 

molecules hydrogen bonding ability, it has been used in models of blood brain barrier in 

conjunction with other descriptors that encode information about hydrogen bonding, such 

as the study of Feher et al 44 where PSA was used along with logP and the number of 

hydrogen bond acceptors in aqueous media.
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All un-scaled models show that separation of PSA into its components gives little or no 

improvement to the model. Analysis of the t-ratios for un-scaled three parameter models 

of TSA, ASAu and BSAu for all datasets shows that either ASAu and BSAu have a 

similar effect on blood brain barrier penetration both acting to reduce logBB and hinder 

perfusion into the brain in the case of dataset I ,  or that the BSA descriptor is considerably 

more significant than the ASA descriptor as in datasets I I  and I I I .

For the model made using dataset I  the t-ratios show the descriptors A S A u  and B S A u  are 

modelling similar physiochemical effects, for this reason no significant improvement can 

really be expected to be gleaned from the separation of P S A u ,  as the regression is capable 

of incorporating all the chemical properties within this one descriptor.

The models made from datasets I I  and I I I  show that the A S A u  descriptor is far less 

significant than B S A u -  Multivariate analysis of the datasets shows that P S A u  and B S A u  

correlate to more than 99%. The dominating role of B S A u  and its similarity to P S A u  

within these datasets more than explain why separation P S A u  offers no improvement to 

the models. Feher et a t A also stated that hydrogen bond basicity was more important than 

acidity from the observation that the number of hydrogen bond acceptors was significant 

within their Q S A R  of blood brain partition where as the number of hydrogen bond donors 

had little impact on the statistics of their model.

While splitting of PSA and the addition of extra descriptors offers little improvement, the 

best R and RMSA values for the models produced for each dataset employ the 

descriptors TSA A S A s  B S A s  and BenSA for scaled descriptors and TSA, A S A u ,  B S A u ,  

and BenSA for the unsealed descriptors. Although as shown in tables 5.6, 5.7 and 5.8 

these models are only the best by a narrow margin of a few %. For dataset I  and I I  a 

simple model of P S A u  is better than the four-parameter model as the increase in accuracy 

dose not merit the inclusion of three descriptors, although for dataset I I I  the improvement 

of 10% in the R2 value justifies the inclusion of extra descriptors.

Figures 5.4 and 5.5 show how the values of the t-ratios vary over the three datasets for 

both scaled and unsealed models, these models were chosen for analysis as the larger 

number of descriptors means that more information can be obtained from their 

interpretation. For the unsealed models broad similarities can be seen between datasets I I
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and III, but the t-ratios for dataset I display different properties. This is not unexpected as 

dataset I is a lot smaller in chemical diversity than datasets II and III. The t-ratios show 

that the most significant of all descriptors is either B S A s  or B S A u  always giving a 

negative value indicating that hydrogen bond basic atoms act to hinder perfusion into the 

brain. A S A u  is seen to be less significant than B S A u  and is either completely insignificant 

or slightly negative. When A S A  and B S A  are scaled A S A s  exhibits more significance and 

t-ratio values more closely resemble the t-ratios values of the Abraham LFER descriptors 

A and B  as calculated from previous studies.37 This shifting in values of the descriptors 

A S A s  and B S A s  to more closely resemble the A and B  descriptors of Abraham upon 

scaling suggests again that the scaling of A S A u  and B S A u  causes them to better represent 

hydrogen bond acidity and basicity. However, the decrease in accuracy suggests that the 

predictive power of P S A u  is not due to it accurately representing a molecule’s capacity 

for hydrogen bonding but instead acting as a more general representation of hydrogen 

bonding and polar effects.

The size descriptor TSA is seen to give small positive t-ratios for both the scaled and un- 

scaled models for dataset II and III. The positive TSA value suggests that larger 

molecules will be pushed out of the bloodstream and into the brain.
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Figure 5.4: t-ratio values for unsealed logBB models
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Figure 5.5: t-ratio values for scaled logBB models
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Positive t-ratio values are also seen for BenSA in all models except those for dataset I 

where BenSA was determined to be insignificant via stepwise regression. This positive 

value indicates that molecules with a high degree of aromatic bonding/ n electrons will be 

preferentially partitioned into the brain. The previous studies in which the data from 

datasets II and III were modelled with the LFER of Abraham are in agreement with our 

findings that molecular size and the presence of n electrons will increase a molecule’s 

absorption into the brain as both Abraham39 and Platts 37reported positive values for V 

and E in their studies.
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5.4 Intestinal Absorption

5.4.1 Introduction

The ability of a drug to penetrate from the blood stream to the CNS is important, but it is 

obviously not the only important partition that must be considered in drug design. A 

molecule’s ability to be absorbed by the intestine is of detrimental importance for any 

orally administered drug. Oral administration of drugs is of particular industrial 

importance, as it remains the most popular method of delivery for pharmaceuticals due to 

convenience, low cost and patient compliance.

Similarly to blood brain barrier penetration, experimental in vivo methods to determine 

intestinal absorbance are expensive, time consuming and often unreliable. In vitro 

methods have been developed to predict and screen unsuitable molecules, including Caco- 

2 (cancer of the colon) monolayers as a measure of intestinal absorbance.45,46 Artificial 

membranes have also been developed.47 Although the in vitro methods are faster and 

cheaper they still require synthesis of the candidate molecule. For these reasons 

computational prediction of passive intestinal absorbance has attracted a great deal of 

research and has been discussed in numerous books and reviews.29 48,49

One of the most basic models of intestinal absorption is the Lipinski’s rule of five.50 This 

states a molecule will be poorly absorbed by the intestine if more than two of the 

following chemical properties are exceeded, logP > 5, molecular weight > 500, number of 

hydrogen bond donors > 5 and number of hydrogen bond acceptors > 10. PSA has also 

been used as a measure for predicting passive intestinal absorbance. Palm et al5] 

produced a sigmoidal fit of 20 molecules and their percentage intestinal absorption against 

dynamic PSA, this fit gave an R2 value of 0.94. Analysis of the relationship revealed that 

a molecule exhibited poor intestinal absorbance (deemed as being < 10%) when the PSA 

> 140 A2, (see figure 1.1)

The dataset of 20 molecules used by Palm51 was modelled again by Clark52 although in 

this model static PSA was used in place of dynamic PSA. The results of this correlation 

were almost identical to those of Palm, concluding that static PSA was equally capable of 

acting as an indicator of a molecules potential intestinal absorbance.
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Clark further tested the >140 A 2 criterion via the scrutiny of a dataset of 74 compounds. 

The results concluded that PSA was indeed an accurate method of classifying a molecules 

intestinal absorbance and better method of classifying a molecules intestinal absorbance 

than lipinski’s rule of five.50

The methods of Clark and Palm offer classification of intestinal absorption via PSA, other 

in silico methods have been developed in which values of intestinal absorbance are 

calculated using traditional QSAR methods. Raevsky et al.53 used HYBOT descriptors to 

model intestinal absorbance data for 17 molecules. The model used two descriptors based 

on hydrogen bond acceptor and donor properties. The model used a non-linear fit and 

gave a R2 = 0.954.

Wessel et al54 used a genetic algorithm for descriptor selection along with a neural 

network to calculate intestinal absorbance for 74 molecules ( the same dataset that was
c 'y

utilised in the study of Clark ). While a good fit of observed against calculated intestinal 

absorbance values was given by this model, the complexity of neural networks meant that 

very little information could be gained about the individual roles of the descriptors within 

this model.

There have also been a number of models developed that have been designed not only to 

be capable of calculating intestinal absorption but also be easily interpretable. One such 

example is the study of Abraham55 in which % intestinal absorption was transformed into 

a first-order rate constant and regressed against the Abraham descriptors. From 

comparison of the regression co-efficient to other solvation equations it was suggested 

that the main process in intestinal absorption was diffusion through the stagnant mucus 

layer, together with transfer across the mucus membrane interface.

5.4.2. Methods

Three datasets of intestinal absorption were acquired from previous studies, a dataset of 

20 intestinal absorption values from the study of Palm, a dataset of 74 intestinal 

absorption values used in the studies of Clark52 and Wessel54 and a dataset of 125 values 

from the study of Abraham et al55. For convenience the dataset of 20 values will be
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referred to as dataset I, the dataset of 74 values will be referred to as dataset II and the set 

of 125 values dataset III.

In order to model the % intestinal absorbance using multiple linear regression analysis the 

data was transformed using the following equation. This form of transformation from 

percentage to arcsine values is necessary, as intestinal absorption has been seen to have a 

sigmoidal curve when plotted against PSA.51

Surface area descriptors were obtained using the methods out laid in 4.9.

5.4.3.1 Results dataset I

Multiple linear regressions were performed using different surface area descriptors against 

AbsT, the results of which are given in table 5.8. Foscamet was removed from all 

regressions as the surface area descriptors are not intended or tested for the application to 

charged species. From the results produced it is evident that dynamic PSA and PSAu 

when regressed against AbsT give similar models both fitting about 86% of the variance 

of the data. When a similar regression is performed with PSAs the R2 drops and the 

RMSE rises. While splitting of PSAs and the inclusion of BenSA and HalSA descriptors 

in to the equation gives improvement, the statistics of the model its quality is still inferior 

to that of a single parameter model of PSAu. A five-parameter model made using ASAu 

and BSAu gives and excellent model, with an R2 value of 0.945 and RMSE value of 0.11.

While the results shown in table 5.8 give some insight into the relationships between the 

varying types of PSA (static dynamic and scaled) and intestinal absorbance little 

confidence should be placed in the findings, as dataset I is very limited in both chemical 

diversity and total number of molecules.

The scaled descriptors are seen to be unsuitable in modelling this dataset; this 

unsuitability is caused by the occurrence within the dataset of molecules such as 

Mannitol, Lactulose and Raffmose, all of which are capable of forming numerous

AbsT % Absorbance
ArcSine ( 5 .9 )

161



intramolecular hydrogen bonds. As these intramolecular hydrogen bonds occur upon 

aliphatic carbon chains they are not accounted for within the scaling factors. Due to the 

limited size and structural diversity of the dataset these molecules represent a substantial 

portion of the hydrogen bond acidic molecules of the dataset. This particular artefact of 

the dataset is also manifested within the t-ratios of the scaled five parameter model ASAs 

is seen to be significant with a t-ratio value of -3.58 while BSA is seen to be 

insignificant, this is in contradiction with previous findings that have stated that both 

hydrogen bond acidity and basicity are important to intestinal absorbance. The dataset 

also contains hydrogen bond basic fragments such as azenes that are not incorporated into 

our scaling factors. These unclassified functional groups would have less influence on the 

coefficient values generated by the regression (or may be outliers) within larger and more 

structurally broad datasets.

Table 5.8: Models of intestinal absorption using dataset 1(19 molecules)

R2 RMSE F-ratio R2cv

PSAd 0.862 0.155 107.000 0.761

PSAu 0.865 0.154 108.610 0.783

PSAs 0.657 0.245 32.590 0.532

Five parameter unsealed 0.945 0.111 44.949 0.856

Five parameter scaled 0.821 0.202 11.950 0.580

5.4.3.2 Results dataset II

Regression of PSA descriptors against AbsT values of dataset II showed three molecules 

to be outliers; these were methotrexate, amoxicillin and cefuroxime axetil. All of these 

outliers are known to exhibit active transport properties. Methotrexate is absorbed by a 

carrier-mediated process, which is responsible for foliate absorption 56,57, Amoxicillin is 

absorbed via dipeptide carriers 58,59, and cefuroxime axetil has been noted to absorb by a 

specialized transport mechanism that obeys michaelis-menten kinetics.60 As the aim of 

our model is to calculate only passive diffusion these molecules were justifiably removed.

The remaining dataset of 71 compounds was modelled using a selection of descriptors. 

The statistical analysis of the equations produced is given in table 5.9.
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Table 5.9: Results of surface area descriptors models of intestinal absorption for dataset II 

(71 molecules)

R2 RMSE F-ratio R2cv
PSAy 0.43 0.25 53.509 0.39
PSAy TSA 0.423 0.25 24.94 0.36
TSA ASAy BSAy 0.464 0.24 19.32 0.38
TSA PSAy HalSA BenSA 0.443 0.25 13.11 0.36
TSA ASAy BSAy HalSA BenSA 0.473 0.24 11.68 0.37

R2 RMSE F-ratio R2cv
PSAs 0.393 0.25 44.702 0.35
PSAs TSA 0.393 0.25 22.03 0.33
TSA ASAs BSAs 0.478 0.24 20.52 0.41
TSA PSAs HalSA BenSA 0.397 0.26 10.89 0.31
TSA ASAs BSAs HalSA BenSA 0.490 0.24 12.47 0.41

From the results it can be seen that P S A u  descriptor gives a small improvement in R2 and 

RMSE when split into A S A u  and B S A u .  If the descriptors HalSA and BenSA are added 

to the regression a negligible improvement is seen in R2 and RMSE.

A two parameter model of P S A s  and TSA is inferior to the analogous equation made with 

P S A u .  Partition of P S A s  into A S A s  and B S A s  gives a vast improvement in R2 with its 

value rising from 0.39 to 0.48. Addition of the HalSA and BenSA descriptor gives a small 

improvement to R2 and RMSE. For these reasons we determine the best model of 

intestinal absorbance to be that which encompasses TSA, A S A s ,  BSAs, HalSA and 

BenSA.

While the scaled five parameter model offers only a 7% improvement in R2 to that of a 

model of based only on P S A u  the inclusion of extra descriptors is merited by the lower 

number of false positive given.

5.4.3.3 Results Dataset III

This dataset represents the largest and most complex of all three intestinal absorbance 

datasets. Foscamet was again removed from the regression, as surface area descriptors are 

not intended to model charged species.
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The same regressions that were performed in 5.4.3.2 were repeated for this dataset. A one- 

parameter regression using PSAu gives an R value of 0.53 and an RMSE value of 0.19. 

A three-parameter model of TSA ASAy and BSAu gives only a small improvement in R2 

to 0.60 and a slight decrease in RMSE of 0.2 log units. A stepwise regression shows that 

after TSA, ASAu and BSAy are entered into the regression only BenSA and not HalSA 

was seen to be significant, Using these four descriptors the regression produced the 

following equation.

AbsT = 1.09 + 0.0002TSA -  0.0133ASAu -  0.0021 B SA u + 0.0009BenS A (5.10)

N= 125, R2 = 0.612, RMSE = 0.172, F-ratio = 47.351

Similar models made using the scaled surface area descriptors exhibit similar properties to 

their unsealed counterparts. A simple regression of scaled PSA against AbsT gives an R2 

value of 0.50 and an RMSE of 0.19. Splitting of scaled PSA and inclusion of TSA 

improves the statistics. This equation is given below.

AbsT = 1.089 -  0.0005TSA -  0.0172 AS As -  0.0016BSAs (5.11)

N= 125 R2= 0.640 RMSE =0.165 F- ratio 71.856

A five-parameter model was not produced as BenSA and HalSA are both seen to be 

insignificant at the 95% level. While the statistics of our scaled three parameter model are 

an improvement to a model produced using traditional PSA descriptor the results are still 

inferior to the equation produced using the Abraham LFER in which an R2 value of 0.80 

and RMSE value of 0.29 was obtained.55 Although direct comparisons between the 

statistics of equations 5.10 and 5.11 and those of the LFER of Abraham are not possible 

as the Abraham LFER for this dataset predicted a first-order rate constant that was 

calculated from % absorption and not arcsine values as used within our study. For this 

reason a regression of the scaled surface area descriptors used in equation 5 .1 1  were 

performed against the rate constant used by Abraham. The regression gave the following 

values.

Log{ln[ 100/100-%Abs)]} = 0.572 + 0.0008TSA -  0.038ASAs -  0.004BSAs (5.12)

N = 125, R2 = 0.67, RMSE = 0.343, F-ratio = 82.19
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The results of equation 5.12 are marginally better than those of 5.11 suggesting that the 

method of transforming the %absorbance data into a first-order rate constant stated by 

Abraham may be more suitable for modelling intestinal absorbance using surface area 

descriptors than our transformation into arcsin value methods, It should be noted that the 

dataset of Abraham is specially selected so as not to contain any %Absorption values of 0 

or 100 %. The statistics of equation 5.12 are inferior to the LFER of Abraham published 

for this dataset, although the LFER of Abraham was reliant on experimentally observed 

descriptors.

5.4.3.4 Passive permeability Introduction

The models created for datasets I, II and III are notably less accurate than models created 

for simple non-biological systems such as water/octanol and water/chloroform partition as 

detailed in 4.2. The large difference in accuracy can be attributed in part to the uncertainty 

associated with biological data; this is often caused by the difficult experimental methods 

that are necessary to measure such properties. A further cause of error in our models is the 

presence of molecules in the dataset that are capable of active transport. While many 

studies have been reported and many molecules capable of active transport have been 

identified, such studies are not comprehensive enough to guarantee that none of the % 

absorbance values in our datasets are influenced by active transport.

Via the use of data obtained from in vitro methods both problems can be either 

significantly reduced or eliminated. While many methods for in vitro determination of 

absorption have been proposed, the parallel artificial membrane permeability assay 

(PAMPA) developed by Kansy et a l47 is the most suitable for our studies.

In vitro assays that imitate the multi-mechanism system of the intestine give results which 

are difficult to interpret in terms of individual mechanisms, where as PAMPA provides 

straightforward data on the prevalent mechanism for intestinal absorption, namely passive 

permeation. Many in vitro methods such as measures of permeability through Caco-2 

monolayers are reliant on the labour intensive production of a monolayer, which reduces 

their efficiency and reproducibility. PAMPA assays are faster and highly reproducible, as
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they do not require living cells as permeability is measured through an immobilised lipid 

membrane.

Huque et a f x produced a model using the LFER of Abraham for the passive permeability 

of 40 small organic and drug like compounds measured using the PAMPA technique. The 

data is recorded as logP0 values. Huque obtained descriptors from experimentally 

observed values where possible, or else calculated them using the group contribution 

method of Platts. Partial least squares analysis was then used to produce the following 

equation. MLRA was not used as the descriptors B and V correlated heavily (R = 0.78).

logPo = -4.264 + 1.1495- 1.6025- 1.683zl -  2.8875 + 3.026L (5.13)

N = 40,R2 = 0.824, RMSE = 0.836, R2CV = 0.737

5.4.3.5 Passive Permeability Results

Surface area descriptors were calculated for the 40 molecules used by Huque et a f x. As 

none of our descriptors correlated highly, MLR was used to calculate the coefficient 

values. Two molecules were seen to be significant outliers and removed from the dataset, 

these were chlorpromazine and penbutolol: their removal was justified by the following 

reasons. Chlorpromazine has been noted as being an outlier and justifiably removed from 

previous surface area models (see 4.2). Penbutolol is removed, as the reliability of the 

base descriptors value is questionable due to the possibility of several intramolecular 

hydrogen bonds.

Simple models of the remaining 38 molecules using PSAu gives an R2 value of 0.55 and 

an RMSE of 1.21. If TSA is added to create a two-parameter equation the R2 value rises 

to 0.794.

The Decoupling of PSAu has negligible effect upon the model. The t-ratios for this three- 

parameter model show that of the two decoupled descriptors it is B SA u that is the more 

dominant of the two. There is also seen to be a correlation between PSA u and B SA u of

0.99, explaining the similarity between the three and two parameter model. Addition of
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the HalSA and BenSA descriptors to either the three or two parameter unsealed model has 

no effect.

In a one parameter regression with PSAs a very poor model is produced with virtually no
'y

correlation between observed and calculated values (R >0.1), although in a two parameter 

model of PSAs and TSA a vast improvement is seen in R with its value rising to 0.744. 

The t-ratios show that the addition of TSA not only raises the accuracy of the model but 

also increases the significance of PSAs. The de-coupling of PSAs further improves the 

model with its R2 value rising by 5%. From the t-ratios of the three-parameter model we 

see again that the hydrogen bond basic descriptor is the more dominant of the two, though 

unlike the unsealed counterpart, A S A s is significant. The t-ratio values show A S A s to 

contribute approximately half that of B SA s, with both A S A  and B S A  reporting negative 

values. Equation 5.13 also shows the hydrogen bond basicity term B to be the more 

significant with the acidity term A contributing about 50% less. Further more, the most 

significant terms in each equation (5.13 and 5.14) are the size terms (V and TSA). The 

addition of the HalsA and BenSA descriptors to the model shows that the BenSA 

descriptor is insignificant at the 95% level, while HalSA has a small significance. The 

equation for the final four-parameter model is given below.

logPo = -4.5 + 0.015TSA -0.133 ASA -0.046BSA -0.008HalS A (5.14)

N= 38 R2= 0.816 RMSE = 0.784 F-ratio = 36.61 R2CV= 0.763

Of all the equations produced 5.14 is seen to be the best although it should be stated that 

the R2 of equation 5.14 is only 2% higher and RMSE 0.05 log units lower than a two 

parameter model of TSA  and PSAy.

5.4.4 Discussion

The t-ratios for each of the best surface area equations (based on R2 values) for each 

dataset are given in table 5.10. The t-ratios for dataset I are not included because as stated 

before the set is so limited in size and chemical structure that any conclusions drawn may 

be unreliable.
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Table 5.10: T-ratios of intestinal absorption and PAMPA permeability data

T-Ratio

TSA ASAs BSAs HalSA BenSA

Dataset II 1.09 -4.02 -5.11 0.43 -1.15

Dataset III 3.21 -7.41 -6.18 - -
Passive Permeability 7.57 -2.79 -8.366 -1.25 -

- Descriptor seen not to 3e significant within regression

Very little consistency can be seen in the significance of the descriptors between the 

intestinal absorbance models of datasets II and III. Both datasets show that the size term 

TSA will act to increase the Absorption of a molecule by the intestine, although the t-ratio 

of TSA for dataset II is bellow the significant value of 2 although more confidence is 

placed in the t-ratio value of dataset III as it is based on a substantially larger dataset. 

While this result may appear at first to be in opposition to Lipinski’s50 rule of five 

statement that any molecule displaying a Mw > 500 would exhibit poor absorption, it 

must be remembered that these models are generated from datasets of predominantly low 

molecular weight molecules, and while such a cut off could still occur the effects will not 

be manifested within the regression. ASA and BSA are both seen to be negative 

throughout, acting to reduced intestinal absorbance with the significance of ASA and 

BSA being almost equal in both models. This similarity in acidity and basicity was also 

reported in the Abraham LFER model of dataset III,55 in which the hydrogen bond acidity 

term A has a coefficient value of -0.40 and B has a coefficient value of -0.51. This 

similarity in coefficient values and functions explains why the splitting of PSA has only a 

small effect on the models. Osterburg et a t 2 also showed that N, O, N-H and O-H would 

have a negative effect on permeability. It should be mentioned that some studies such as 

that of Oprea63 suggested that hydrogen bond donors should be more important that 

hydrogen bond bases as lipids in the cell membrane contain ester head groups that are 

capable of forming hydrogen bonds to donors but not hydrogen bond acceptors.

Further insight into the values of these descriptors can be gained if the mechanism for 

intestinal absorbance is considered. For molecules being absorbed by passive diffusion 

the route of permeation is believed to be via the transcellular pathway (across epithelial 

cells) .64 This transport can be considered a two-step process; a molecule must first cast off 

the water molecules that form its hydration sphere in order enter the lipid bilayer of the
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cell membrane. The ease with which a molecule can shed this hydration sphere will 

greatly effect its absorbance and hence the reason that A S A s and B SA s both report 

negative values. The second step of absorption is the molecules transport through the 

inner cell before crossing the cell membrane again on its exit. In order for this second 

transport to take place it would be expected that a molecules would need to exhibit an 

affinity for lipids. The t-ratios exhibited for datasets II and III reflect known lipophilic 

properties such as a positive size term and negative hydrogen bond basicity (as reported 

for the model of logPoct reported in 4.2.2).

The descriptors HalSA and BenSA are seen to be insignificant either via stepwise 

regression or t-ratio values of less than 2 , for this reason the best model for intestinal 

absorption and passive permeability is a three parameter model using the descriptors TSA, 

A SA s and B S A s.

The t-ratios of the passive permeability model are similar to those of the Abraham LFER 

of this dataset published by Huque et al.61 Negative values are reported for the hydrogen 

bond acidity and basicity terms acting again to hinder permeability across the lipid 

bilayer. The hydrogen bond basicity term is seen to be of greater importance than the 

hydrogen bond acidity term, a result also displayed by the model of Huque and in 

agreement with the conclusion of Oprea.63
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5.5 Cell Permeation

5.5.1 Introduction

Many important biological/pharmaceutical properties are reliant on a molecule’s ability to 

penetrate across cell wall membranes. While previous models such as gastro-intestinal 

absorbance include for cell permeation, they are affected by other factors. A model that 

predicts only cell permeation would prove very informative.

The rate of permeation of compounds into the giant algal cells Chara certaophylla and 

Nitella, have been reported be Collander et al.65,66 From these rates of permeation 

Collander reported correlations with water/ether and water/olive oil partition coefficients. 

A subset of the data for Chara certaophylla cells was further studied by Raevsky and 

Schaper67 who found that a molecules hydrogen bond capacity was influential to its 

permeability.

Platts et a /68 applied the LFER of Abraham to Collander’s permeation data, and created 

separate models for Chara certaophylla and Nitella cells. These models were created 

using descriptors generated via the group contribution of Platts. For a dataset of 37 

permeation values into Chara certaophylla cells, a model with an R of 0.962 was created 

this model was seen to be dominated by the hydrogen bond acidity descriptor A. A similar 

model of based on the rates of permeation for 63 Nitella cells gave an R value of 0.881. 

The two datasets were combined to create a generic model of cell permeability this model 

was also seen to be highly accurate with an Sd of 0.437.

We have chosen to take the two datasets of Collander and create similar models to those 

produced by Platts et al using our surface area methods. In addition to the permeability 

data for compounds into living Nitella cells colander also reported uptake data in to dead 

cells, this data was also modelled using our methods.
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5.6.2 Methods

Surface area descriptors were generated for the datasets of the permeability of 37 

molecules into Chara certaophylla cells and 63 molecules into Nitella cells, using the 

methods outlined in 4.9. For each dataset three models were produced, these models used 

the following descriptors

1. TSA , PSAu

2. TSA , A SA u, B SA u, HalSA and BenSA

3. TSA , A SA s, B SA s, HalSA and BenSA

5.5.3.1 Results Chara Ceratophylla Cells logK<.c

Initial analysis showed thiourea to be an outlier, as it is well predicted within the models 

of Platts, (Obs = -2.11 Calc = 2.32) it can be assumed that the observed value is not the 

source of error. The error is most likely caused by the incorrect assignment of scaling 

factors by the algorithm as no values occur for thiourea. Instead the polar atoms are scaled 

with values taken from thioamides. The differences between the A and B values of 

thiourea and thioamides can be seen if we compare experimentally observed A and B 

values of thiourea and thioacetamide.69 Thiourea has A and B value of 0.77 and 0.87 

respectively while thioacetamide has values of 0.58 and 0.64. For these reasons we omit 

thiourea from our models. In the study of Platts et al lactamide was a noted outlier and 

omitted without reason. Using our methods lactamide is well predicted, so it is kept in the 

regression. The statistical analysis of our models is given in table 5.11 along with the 

results from the LFER model produced by Platts.

Table 5.11: Results of surface area models of permeation into Chara ceratophylla Cells

Descriptors N RMSE R *cv

TSA PSA 36 0.44 0.90 0.30

TSA ASAy BSAu HalSA BenSA 36 0.58 0.82 0.43

TSA ASAs BSAs HalSA BenSA 36 0.86 0.47 0.82

LFER 36 0.96 0.25 0.94
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It is evident from table 5.11 that the scaled five parameter model is the best surface area 

model, although the LFER method is the most accurate of all.

Analysis of the t-ratios for the five parameter model show that the most dominant 

descriptor is ASAs which acts to lower the rate of permeation of a molecule. The next 

most importance term is BSAs that also acts to reduce cell uptake. Exactly the same 

importance and signs of descriptors were seen for the analogous hydrogen bond acidity 

and basicity descriptor terms in the study of Platts. The size descriptor TSA is seen to be 

the third most significant descriptor acing to increase cell permeability.

5.53.2 Results Nitella Cells logKnit

Again Thiourea was very poorly predicted especially in models where scaled ASAs and 

BSAs descriptors were applied again we choose to omit it from the regression. For this 

datasets the exact same pattern was seen in the accuracy of the different models, with a 

simple two-parameter model being the least accurate and the scaled five-parameter model 

being the superior. As with the model of logKcC a difference of approx 10% in R2 was 

seen between the five parameter scaled model and the LFER.

Table 5.12: Results of surface area models of permeation into Nitella Cells

Descriptors n R RMSE R^cv

TSA PSA 63 0.32 1.12 0.23

TSA ASAy BSAy HalSA BenSA 63 0.58 0.90 0.50

TSA ASAs BSAs HalSA BenSA 63 0.81 0.60 0.77

LFER 63 0.88 0.46 0.83

The t-ratios for the five parameter scaled model shows them to be remarkably similar to 

those of the model of Chara certaophylla cells. The ASAs descriptor is the most 

influential followed by BSAs with both acting to reduce cell uptake, Again TSA gives a 

smaller contribution and acts to increase cell uptake.
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5.5.3.3 Results Dead Nitella Cells logKnit

Both Collander and Platts suggested that uptake into dead cells is governed entirely by 

molecular weight and properties such as charge and hydrogen bond acidity are not 

important. In order to evaluate this in addition to the normal models a one parameter 

model with TSA was also produced. The results are given in the table below.

Table 5.13: Results of surface area models of permeation into dead Nitella Cells

Descriptors n R2 RMSE R^cv

TSA PSA 64 0.91 0.04 0.89

TSA ASAy BSAy HalSA BenSA 64 0.92 0.04 0.91

TSA ASAs BSAs HalSA BenSA 64 0.92 0.04 0.90

TSA 64 0.89 0.04 0.88

LFER V only 64 0.93 0.04 0.93

The results in table 5.13 show that the uptake by dead cells is indeed governed almost 

entirely by molecular size with the effects of hydrogen bond acidity and basicity being 

virtually inconsequential, with a difference of only 0.03 between the five-parameter 

models and that of the model of just TSA.

It is interesting to note that for logKnit Dead where the descriptors ASA and BSA have very 

little significance thiourea is not reported an outlier confirming our hypothesis that the 

error for this molecule is due to miscalculation of ASAs and BSAs.

5.5.3.4 Results Combined Chara ceratophylla and Nitella Cells logKgen

The broad similarities between the coefficient values for the models of Chara ceratophylla 

and Nitella, and the similarity in rates of permeation for the 27 molecules that occur in 

both datasets, indicates that the systems are similar enough that the two separate datasets 

can be combined to create a model of generic cell permeation. Thiourea was again 

removed from the regression. The combined dataset was remodelled using the descriptors 

TSA A SA s B SA s HalSA and BenSA. This regression yielded the following model.
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LogKgen = -3.013 +0.002TSA -0.218ASAs -0.018BSAs +0.012HalSA-0.019 (5.14)

N= 98, R2 = 0.821, RMSE=0.551, F ratio = 84.23, R2CV= 0.79

While the accuracy of this model is less than those of the separate models the reduction is 

accuracy is probably the result of the wider range of compounds. The statistical analysis 

of a number of other models made using the combined dataset is given in table 5.14.

Table 5.14: Results of surface area models of permeation into Chara ceratophylla and 

Nitella Cells

Descriptors n R2 RMSE Rev

TSA PSA 98 0.39 1.00 0.34

TSA ASAy BSAu HalSA BenSA 98 0.59 0.83 0.55

TSA ASAs BSAs HalSA BenSA 98 0.82 0.55 0.79

LFER V only 100 0.89 0.44 0.87

5.6.4 Discussion

The t-ratios for each of the models created using the five descriptors with hydrogen bond 

scaling applied are given in table 5.15.

Table 5.15: t-ratio values of cell uptake models

Chara ceratophylla Nitella Dead Nitella Combined model

Term t-ratio t-ratio t-ratio t-ratio

TSAs 2.78 1.47 -21.59 2.56

ASAs -11.09 -12.23 -1.79 -15.96

BSAs -8.40 -9.64 -3.34 -12.47

HalSA 1.47 0.51 -1.72 1.16

BenSA -2.51 -1.64 -1.65 -2.69

The t-ratios show that for all models of uptake by living cells the A S A s descriptor is the 

most influential. The second most influential descriptor is seen to be B SA s. From these 

findings it can be concluded that the cell interior is much less hydrogen bond basic than
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bulk water and to a lesser extent the cell interior is less acidic than bulk water. The 

positive TSA value can be attributed to cavity effects caused by the highly dense nature of 

bulk water, although these effects are far less dominant than those of hydrogen bond 

acidity and basicity for living cells.

The descriptors HalSA and BenSA are seen to be of little importance with HalSA acting 

to increase cell uptake and BenSA acting to decrease cell up take. Due to the low 

importance of both these descriptors it is difficult to conclude much about their role in the 

mechanism of cell uptake the low t-ratio values of HalSA throughout imply that it should 

be removed from predictive models of cell uptake.

5.6 Conclusions

5.6.1 Conclusions -Uptake of volatile organic compounds by plants

Models have been produced for log^MXa and logATMxw for Lycopersicon (tomato fruit), 

while the statistics offered by these models were lower than those for the models proposed 

by Platts et al created using the LFER of Abraham, the models were still very good. Via 

analysis of the t-ratios obtained from these models conclusions were drawn about the 

factors governing the mechanism of partition. These conclusions were in agreement of 

those from previously published work and were physically sound.

5.6.2 Conclusions - Partition into Biological liquids and tissues of 

vapours and biological liquids

Models have been produced for a wide variety of biological liquids and tissues. These 

models, while not as accurate as those produced using the LFER of Abraham, are still 

good with R2 values as high as 0.903 for the solubility of 42 molecules in human muscle 

tissue. The models offer a distinct advantage over those published by Abraham as they are 

based entirely on theoretically calculated descriptors and not reliant experimentally 

observed descriptors.
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From the t-ratios of the descriptors used within this study it was seen that generally 

biological tissues displayed more lipophilic than hydrophilic properties. It was also seen 

that biological fluids such as blood and more so plasma shared many properties with 

water.

Analysis of the descriptors over all models revealed that for biological fluids and tissues 

the most significant and influential of the descriptors are ASAs and TSA. Of a lesser 

importance, but still requiring consideration, are the BenSA and C1SA descriptors. The 

BSA descriptor is almost completely redundant and is seen to be the least significant 

within all models of biological tissues or fluids.

5.6.3 Conclusions - Blood Brain Barrier

Three separate models of blood brain barrier have been produced using scaled and un- 

scaled polar surface area descriptors. The best models produced use the descriptors TSA 

ASAu BSAy and BenSA. Although the models are seen to be only a small improvement 

over models in which just PSAu is used as a descriptor.

Attempts to apply our scaling factors gave no improvement to the models but instead 

reduced the quality of the statistics. This increased error is possibly due to specific 

functional groups having unique properties within blood brain partition, properties that 

are not accounted for by traditional definitions such as hydrogen bond acidity and 

basicity. The traditional definition of PSA is seen to be superior, as it dose not attempt to 

discriminate between different functional groups.

5.6.4 Conclusions - Intestinal Absorption

It was seen that our method of generating PSA from a single low energy conformation 

produced models of intestinal absorption of equal quality to those which employed the 

dynamic PSA descriptor calculated by Palm. If a five parameter unsealed model is created 

the resultant model is of much higher accuracy than that of a model of PS Ad.
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The intestinal absorbance models created from datasets II and III, show that scaling and 

partition of PSAu gives a small improvement to R2 and RMSE. This improvement is most 

noticeable for dataset III, the larger improvement is most likely due to the wider range of 

function groups present in dataset III. Models produced for passive permeability data 

were seen to be as accurate as those made using the LFER of Abraham. Analysis of the t- 

ratios of this model shows that the coefficients calculated for these models are physically 

realistic and similar to those generated from other studies.

Previous studies of intestinal absorbance have concluded that PSAu is a useful tool for 

predicting intestinal absorbance as it measures the hydrogen bonding capacity of 

molecules. Our results suggest that PSAu is more specifically a measure of a molecules 

hydrogen bond basicity as BSA u and PSA u in datasets II and III, are seen to correlate >

0.99. Also the partitioning of PSAu to A SA u and B SA u yielded only small improvement, 

suggesting that where traditional definitions of PSA are used the surface area of Nitrogen 

and Oxygen atoms is of greater importance. Where scaling factors are applied the 

significance of the PSA s descriptor drops off. Scaled descriptors only produce models 

comparable to their unsealed analogues when P SA s is partitioned into A S A s and BSA s. 

Individually neither PSAs, A S A s or B S A s can accurately produce models of intestinal 

absorbance.

5.6.5 Conclusion Cellular Uptake

The models produced confirm that our surface area descriptors are capable of producing 

models of cell permeation. Via comparison of surface area models created using different 

combinations of descriptors it is evident that splitting and scaling of PSA  is essential to 

correctly model this processes. The equations produced for the models of Chara 

ceratophylla and Nitella Cells show great similarities in the dependence of the surface 

area descriptors with A S A s being the most dominant descriptor. The similarities between 

these models are so strong that it is possible to combine both datasets and produce a 

generic model of cell permeation. The model produced for dead Nitella cells showed that 

only the TSA  descriptor was influential and that the process of molecular uptake for dead 

cells is governed almost entirely by molecular size. These findings are in conclusion with 

those of previous studies.

177



5.7 Future work

The HalS A descriptor was seen to be less effective than CIS A in specific models of 

absorption of gases into biological tissues produced in 5.2.3, This preference for CIS A 

was seen in datasets where polarisabilty was seen to be important and the datasets 

contained a large number of different halogen atoms. The result implied that the accuracy 

of HalSA may be improved if specific scaling factors were added to HalSA to account for 

the varying polar/polarisable of different halogen atoms.

The encouraging results given by cellular uptake model and the models for inorganic 

partitions of logPoct and logPcHci produced in 4.10 suggests that the scaled PSA method is 

capable of producing an accurate model for the cellular uptake of inorganic molecules
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Chapter 6. Industrial properties and green solvents

6.1 Fluorophilicity

6.1.1 Introduction

The rapidly increasing worldwide demand for environmentally friendly chemical 

properties and processes has resulted in an explosion of interest in environmentally 

friendly ‘green’ chemistry particularly catalysis. One popular area of green chemistry is 

fluorous biphasic catalysis; 1'4 this method employs environmentally benign solvents, 

produces a high product yield and provides an efficient catalyst recycling system. Horvath 

and Rabai first reported catalysis performed in a fluorous biphase system in 1994.5 A 

fluorous biphasic system consists of a fluorous phase such as 

perfluoro(methylcyclohexane) containing a preferentially fluorous phase soluble catalyst, 

and a second phase, which may be any organic or inorganic solvent with limited solubility 

in the fluorous phase. The two phases have limited miscibility at room temperature but 

homogenise at higher temperatures, allowing reactants in the organic phase to interact 

with the catalyst in the fluorous phase at high temperature, with the advantage that upon 

cooling the homogenised system will separate in to its component phases, efficiently 

partitioning the reaction products into the organic phase and the catalyst into the fluorous 

phase.

The most important factor in designing such a system is the solubility of products, 

reactants and catalyst in the fluorous phase. The ability to predict this directly from 

chemical structure would be of great importance in the design of new fluorous biphasic 

systems, allowing unsuitable molecules to be identified and eliminated at an early stage in 

the design process, saving both time and money.

The tendency of a molecule to dissolve in fluorous media may be quantified by its 

fluorophilicity, which is determined by taking the natural logarithm of a molecule’s 

partition coefficient P, between fluorous and organic layers.6 Within this study the
n

standard system proposed by Rocaboy et al shown in equation 6 .1 has been employed
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In P = In
c(CF3C6P„)
c{CH,C,H5)

T = 298K (6 .1)

Kiss et als produced a model of fluorophilicity for 59 fluorinated organic molecules using 

a neural network combination of eight descriptors chosen from a pool of nearly 1 0 0  

descriptors. The initial pool of descriptors included properties such as electrostatic 

potential, HOMO and LUMO energies, and weighted holistic invariant molecular 

(WHIM) descriptors. The surface area of the molecule and the distribution of fluorine 

were found to be significant. The study showed that fluorophilicity was increased when 

the fluorine atoms were on the exterior of the molecules and capable of interacting with 

the fluorous phase. Kiss et aVs final model stated that a molecules fluorous content had 

little significance upon its fluorophilicity, in conflict with the established view of the 

factors that determining fluorophilicity. This was assigned to the lack of molecules with 

little fluorine content within their dataset.

Huque et a f  produced a model for the prediction of fluorophilicty for 91 organic 

molecules, this dataset also contained more molecules with no fluorine atoms than the 

dataset of Kiss et al. This model employed a modified version of linear free energy 

relationship (LFER) of Abraham and coworkers. 10 Huque et al added an additional sixth 

descriptor F, the fluorine content of the solute. The descriptors for this study were not 

experimentally observed but calculated using the group contribution of Platts. 11 Stepwise 

regression demonstrated that B was insignificant at the 95% level, and was removed from 

the model. The coefficients of this model revealed that the most influential descriptor 

upon fluorophilicity is F indicating that molecules with high fluorine content would 

preferentially be drawn into the fluorous phase.

Duchowicz et al12 proposed a model of fluorophilicity based on multivariate regression of 

very simple topological molecular descriptors, which were obtained from counting the 

number of atoms and bonds in the molecule. When applied to the same dataset of 91 

organic molecules used in the study of Huque9 Duchowicz produced a model of equal 

quality using 23 descriptors. Duchowicz stated that while the model of Huque was better
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as it relied on only five descriptors the ease at which his proposed descriptors could be 

calculated should not be overlooked.

Recently de Wolf et al13 applied the universal lipophilicity model based on the mobile 

order and disorder (MOD) solution theory to predict the partition coefficients for 8 8  

molecules in either PFMCH/toluene or FC-72/benzene. Prediction required knowledge of 

molecular volume and modified non-specific cohesion parameter of the solute; de Wolf 

also detailed methods in which these properties could be easily calculated. The model 

showed that extending the perfluoroalkyl tails on a given substance would not 

automatically result in higher partition coefficients.

While these methods have been seen to work well for organic compounds, no predictive 

models occur for organometallic molecules containing transition metals. The ability to 

predict the fluorophilicity of transition metal complexes is of great importance when one 

considers the number of organometallic catalysts used in fluorous biphasic catalysis.

Following the successes of the scaled PSA approach used in Chapter 4.10 to predict 

partition properties of Platinum compounds models were constructed for calculation of 

fluorophilicity for organometalic molecules.

6.1.2 Method

The same set of 98 organic and fluorous molecules used in the study of Huque et al,9 

originally taken from Gladysz’s online database, 14 was initially used. Eight transition 

metal complexes, not used in any previous study, were taken from the same source -  these 

are reported in Table 6.1 For the 98 organic molecules structures were generated via 

CORINA and energy minimized using AMI methods.
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Table 6.1: Structures and fluorophilicities of transition metal complexes

C o d e N a m e a l n P

T m l [{ R f6 ( C H 2) 2 }3P ] 2 l r ( C l ) ( C O ) b 5 .8 1

T m 2 [{ R f6( C H 2) 2}3P ] 2N i C l 2 4 .4 1

T m 3 [R n o (C H 2) 2C 5H 4 ] M n ( C O ) 3 0 .5 9

T m 4 [R fio (C H 2)2C 5H 4] R h ( C O ) 2 -0 .2 2

T m 5 [R n o (C H 2)2C 5H 4] R h ( C O ) [ P { ( C H 2) 2R f6}3] 3 .3 8

T m 6 [R fio (C H 2) 2C 5H 4]2F e 2 .9 9

T m 7 [R f6 (C H 2) 2C 5H 4] 2Z r C l 2 3 .0 3

T m 8 [R f6( C H 2)2C 5H 4]2Z r ( C H 3) 2 1 .9 5

3 Rfn =  ( C F 2) n. , C F 3

b Structure obtained from X-ray crystallography

Structures for transition metals were obtained from the study of Platts et al, who 

employed Morokuma’s ONIOM method, 15 as implemented in Gaussian03,16 running on 

the UKCCF’s Columbus facility. In this method, the transition metal core is treated using 

a quantum mechanical method such as DFT, while outer regions are treated using a 

molecular mechanical method. Following a series of tests and comparisons to structures 

obtained from X-ray crystallography, the B3LYP/Lanl2DZ method was found to be the 

best method for the QM region and AMBER for the MM. Force constants for bonds and 

angles not contained in the standard AMBER force field, i.e. those associated with the 

transition metal center, were set to zero such that they make no contribution to the 

ONIOM energy or geometry.

From these optimized structures, PSA descriptors were calculated following the methods 

set out in 4.9. The halogen surface area descriptor was modified to include only the 

surface area of fluorine atoms, denoted FSA. A further descriptor, MetalSA, was defined 

as the exposed surface area of the central metal ion.

This raises a further complication, since calculation of PSA requires van der Waals radii 

of all atoms, and no such radii are available from standard sources for Ni, Ir, Rh, Mn, Fe, 

or Zr. In order to address this problem an in-house C-program was used to search for the
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point on the 0 .0 0 1  e.au'3 isodensity surface closest to the metal center, this distance was 

then taken to be the vdw radii and relevant modifications were made to MOLVOL.

6.1.3 Results and Discussion

Initial regression of the 98 In P  values for organic molecules against simple polar and 

total surface areas (TSA & PSAu) gave poor results (R2 = 0.41, RMSE = 2.01), indicating 

that such a model is inadequate for the task in hand. This agrees with our findings for 

more conventional partition coefficients such as logPoct, where such simple models were 

shown to be inadequate. Introduction of FSA yields a marked improvement, doubling the 

R2 to 0.84 and halving RMSE to 1.05. This improvement is much larger than was seen on 

adding the weight-fraction of F as a descriptor in the LFER model of Huque, supporting 

Kiss et aVs findings that the distribution of fluorine is as important as the total amount in 

determining fluorophilicity. Further partitioning and scaling of PSA descriptors results in 

only small statistical gains, such that the best five parameter model for these 98 data has 

R2 = 0.88 and RMSE = 0.93.

O Q
As noted in previous efforts to model this dataset, ’ several molecules appear as outliers, 

whether for statistical or physical reasons. One class of molecules, denoted K23, K24, and 

K25 (shown in figure 6.1), do not show consistent physical properties: for instance K23 

and K24 differ only by a single CH2 group, but their lnP values differ by more than 1.5 

units. These three compounds were therefore omitted from all further analyses. In this 

study, two further molecules PhlO and P h il (shown in figure 6.1) are also statistical 

outliers. Both are tri-phenyl phosphines, for which very little data was available during 

the scaling process, set out in 3.1.3.1, consequently there is less confidence for these 

molecules than other classes of compounds. These two compounds are also therefore 

omitted. However, it is encouraging that one class of outlier in the LFER study is well 

modeled here, i.e. that with compounds containing more than one fluorous chain attached 

to a single aromatic ring. It was also possible to include three silicon-containing 

molecules that were omitted from the LFER study, as no fragmental Abraham values exist 

for silicon.
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Figure 6.1: structures of outliers
F F F F FF

F F F F F 0

K23 F F F F FF  

F / V  . 0

\ \  K24
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K25

PhlO

P h il

With the removal of these outliers, the same models as described above were applied. 

Again, the simple T S A  +  P S A u  model is poor ( R 2 =  0.47, R M S E  =  1.92), while 

introduction of F S A  gives an excellent three-parameter model, with R 2 =  0.93 and R M S E  

= 0.71. As before, splitting and scaling the P S A  descriptor gives small improvements, 

such that our final five-parameter model for this organic dataset is the following:

InP  = -0.723 -  0.001 TSA -  0.0909 A SA s -  0.0146 BSA s + 0.0209 FSA -  0.0115 BenSA (6.2)

N = 93, R2 = 0.944, RMSE = 0.638, F = 291.15, R2CV = 0.935

This model is of almost identical accuracy as the previously published LFER model, 

confirming the suitability of the surface area descriptors used. It is also in full agreement 

regarding the physical significance of descriptors, since by far the most significant term is 

FSA (t-ratio = +26.6), indicating that exposed fluorine atoms act to increase In P. TSA 

has less than half this significance (t = - 1 2 .6 ), such that larger solutes prefer the organic to
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fluorous phase. All other t-ratios are small and negative, revealing that molecules 

containing H-bonding and/or polar groups also prefer the organic phase, as might be 

expected when comparing the physical properties of toluene and perfluoro 

(methy Icy c lohexane).

Thus, equation 6.2 provides an alternative model of equal accuracy to previous models, 

and could be used as independent corroboration for prediction of fluorophilicity of 

organic compounds. However, the use of surface area properties opens up the possibility 

of modeling the fluorophilicity of metal complexes. Fluorophilicities of eight transition
t n

metal complexes were available from Herrera et al and Gladysz’s online database (Table 

6.1). Three further transition metal complexes [{Rf6(CH2)2}3P]3RhCl, 

[{Rre(CH2)2}3P]3RhCl and [{Rf6(CH2)2}3P]3Rh(H)(CO) were available from the online 

database but not used within our models as preliminary studies showed the size and 

flourous content of these molecules to be so much larger than those of the other molecules 

in the dataset, such that the values calculated for descriptors would fall outside the range 

of the model.

Seven of the eight transition metal complexes reported in Table 6.1 were optimized using

the same ONIOM(B3LYP/Lanl2DZ:AMBER) method as detailed by Platts et al. The

eighth compound, Tml, could not be optimized due to a limitation in the Gaussian03

package which prevents use of AMBER for third-row transition metals such as Ir.
18Fortunately, a low temperature crystal structure of this complex has been reported , 

although some positional disorder is present in the fluorous chains. This structure was 

used without modification for all subsequent predictions. Exposed surface areas of these 

structures were then calculated, initially using a standard radius of 2A for all transition 

metals.

Initial models incorporated the transition metal complexes into the organic dataset used to 

develop equation 6.2. As expected, a simple T S A  +  P S A u  model is poor (R2 = 0.48), but 

introduction of fluorine surface area yield a reasonably accurate three parameter model 

(R2 = 0.88, RMSE = 0.95). Still greater accuracy can be obtained by adding in MetalSA, 

while splitting and scaling of the PSA descriptor has a small beneficial effect on the 

model. T-ratios revealed that BSAs is insignificant within the regression, in agreement 

with Huque et al. Since neither toluene nor perfluoro(methylcyclohexane) displays any
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hydrogen bond acidity, hydrogen bond basicity has no influence into which phase a 

molecule will partition, hence B S A s  is omitted from the model yielding equation 6.3.

l n P  =  - 1 . 1 8 6 2  -  0 . 0 0 8 5  T S A  - 0 . 1 0 1 3  A S A s +  0 . 0 1 9 2  F S A  -  0 . 4 0 9 0  M e t a l S A  ( 6 . 3 )

N  =  1 0 1 ,  R 2 =  0 . 9 1 3 ,  R M S E  =  0 . 8 0 7 ,  F  =  2 5 1 . 9 6 ,  R 2CV =  0 . 9 0 0

Incorporation of transition metal complexes into this model does not alter the relative 

significance of descriptors from eq 6.2 The largest t-ratios are still found for F S A  and 

T S A ,  which act to increase and reduce lnP, respectively. The presence of exposed metal 

surface area also acts to reduce lnP, possibly through weak attractions between the 

cationic metal center and electron rich toluene molecules. The least significant descriptor, 

A S A s ,  acts to reduce lnP due to the weak hydrogen bond basic properties of toluene’s n- 

system.

In an attempt to improve on the simple assignment of 2 A for the van der Waals radii of 

all metals, the electron density of the metal core at the B3LYP/Lanl2DZ level was 

calculated, and the 0.001 e.au‘ isosurface was searched for the point closest to the metal 

nucleus. The 0.001 isosurface is widely accepted as an accurate measure of the van der 

Waals surface of a molecule in the gas phase.19 In some cases, most notably the zirconium 

complexes Tm7 and Tm8, no such point was found within 2.5 A, indicating that the entire 

metal atom is engulfed by its ligands. In most other cases, however, reasonable estimates 

of vdw radii were obtained, ranging from 2.026 A for Ni in Tm2 to 2.453 A for Fe in Tm6 

(see Figure 6.1 for an example of such a calculation). Unfortunately, these calculated radii 

did not improve the quality of prediction of lnP, and in several cases made the predictions 

substantially worse. Thus it appears that straightforward assignment of the vdw radius of 

each metal as 2A is more reliable than these more elaborate estimations.
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Figure 6.1: 0.001 e .a ir isosurface in a model complex [Ni(C 1 )2(PEt3)2], showing closest approach to Ni 

nucleus.

As well as incorporating the transition metals into the organic dataset, it is also possible to 

successfully model their fluorophilicity individually, though the relative scarcity of data 

means any conclusions based on this must be treated with caution. Again, a three
• 2 r \ r \ aparameter model using TSA, FSA, and MetalSA is very accurate, giving R = 0.94 and 

RMSE = 0.62, while no improvement is gained by adding in PSA or BenSA. As with all 

previous models, FSA dominates the model, with TSA and MetalSA having smaller, 

counteracting effects. Clearly, more data are required before any firm conclusions can be 

made, but this method shows much promise for the prediction of fluorophilicity of metal 

complexes.
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6.2 Solubility in Supercritical Carbon dioxide

6.2.1 Introduction

Another green solvent that has been widely accepted and employed within industrial 

chemistry are supercritical fluids such as CO2. These have many distinct properties that 

make them highly important solvents in many industrial reactions. Examples of such
20 21 22 23 24processes are decaffeination of coffee, extraction of hops, spices and seed oils. ’ 

Supercritical solvents are highly tuneable so can be used to extract thermally sensitive
25 26material at low temperature. ’ The recovery of a solute from a supercritical solvent is 

easily achieved by simple changes in the operating conditions. Supercritical CO2 is of 

particular interest industrially as it is non-flammable, inert, inexpensive, non-toxic and 

unregulated. The highly tuneable nature of supercritical CO2 allows the solvating power 

of the solvent to be controlled i.e. the solvating power of the CO2 increases as its pressure 

is raised. Due to these properties supercritical CO2 has been used industrially as a solvent 

for sensitive extracting/separating reactions where purity of the extracted material must 

be of a very high standard.

97There have been many studies reported into the prediction of solubility. Famini et al 

used a theoretical linear solvation energy relationship (TLSER) to predict the solubility of 

22 aromatic compounds in supercritical CO2 at 14 MPa at 308K and 20 MPa at 308K.
9 8The TLSER method of Famini and Wilson is a computational implementation of 

Kamlet and Taft’s LSER approach. LSER models solvation properties as linear 

combinations of size, polarity, and hydrogen bonding terms. Famini et aVs study of 

solubility in supercritical CO2 produced the following equation.

logSc0 2= -6 .0 3 7 7 1 ;  +  1 0 . 4 4 0 e p - 2 2 . 0 9 8 q '+ 2 4 . 3 5 0 q - 8 . 3 7 0  ( 6 . 4 )

N =  1 9 ,  R 2=  0 . 9 2 8 ,  S d  =  0 . 4 7 7

Where n\ is a polarity/dipolarity index, £p is the molecular orbital hydrogen bond basicity, q and 

q+ are the electrostatic hydrogen bond basicity and acidity respectively. While these statistics 

prove that the model is capable of predicting supercritical CO2 solubility for a small set of 

similar molecules at the same temperature and pressure it does not fully test the ability of 

quantitative structure activity relationships (QSAR) predictive powers. Famini’s TLSER 

descriptors are calculated only for the most negative and positive formal charge in the
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molecule and therefore are only applicable to 1:1 complexes. This approach to calculation 

of the descriptors will cause the model to fail when there is multiple complexation.

29Politzer et al initially used two computational parameters based on electrostatic 

potentials to find correlations when comparing the solubility of naphthalene and eight 

indoles in four super critical fluids (C2H6, C2H4, CO2 and CHF3.) They then further 

defined three solute molecular properties: (a) surface area, (b) the sum of the variance

between the positive and negative electrostatic potentials of the surface and (c) a balance 

term parameter, which indicates the extent to which a solute’s positive and negative 

regions can interact. These three terms were used to model the solubility of 22 aromatic 

molecules in various supercritical fluids with impressive accuracy. Bush et al31 created a 

model of solubility in supercritical CO2 based on the LFER developed by Kamlet et a t 2. 

The model was based on a dataset of 35 molecules at a constant temperature and pressure 

of 308 K and 28.9 MPa. A model was produced with an average error of 65 %.

A similar study has also been performed by Dongjin.33 Here the LFER approach of 

Abraham10 was used to verify the proposed retention mechanism when performing 

supercritical fluid chromatography with CO2, when an organic modifier is used with an 

octyldecylisilane bonded phase in a packed capillary column. In this study LFER 

equations were constructed for different concentrations of organic modifier. This study 

showed that as the concentration of organic modifier increased the importance of a 

molecule size, polarizability and H bond bascicity on solubility decreased.

Although the scaled PSA and Abraham approach have proven reliable in modelling many 

solvent systems they do not allow for large changes in the density of the solvent. The 

highly tuneable nature of supercritical CO2 and the range of temperatures and pressures 

within available data can be accounted for by the addition of a sixth descriptor, 7c1, as 

suggested by Lagalante.34 7 1 1 describes the polar/polarisability of the solvent at a specific 

density. It also gives a measure of the solvent’s ability to induce dipolar phenomena in the 

solute, and is analogous to the S term in LFER, except it describes the chemical 

properties of the solvent and not the solute. For the Abraham descriptors only S requires 

an analogous solvent term as the other descriptor values for supercritical CO2 have been
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proven constant over the gas/liquid density range, via measurement made using UV 

visible solvatochromatic methods.35

Solubility values (used here as logSco2, where S is in mole fraction) for molecules in CO2 

can be measured using numerous techniques. There are four main categories into which 

all of the most commonly used techniques fall, these are i) Flow or Dynamic ii) Static iii) 

Chromatographic iv) Spectroscopic. The easiest and most common method for obtaining 

logSco2 values is via the flow dynamic method. As flow dynamic is the easiest and most 

reliable the vast majority of data used in this study was obtained from literature that used 

this method.

6.2.2 Methods

A dataset of solubility in supercritical CO2 for 67 molecules at varying temperature and
7Q 17  f \ 1pressure was compiled from various references, ’ ' the majority of which were 

acquired through the online solubility database.62 This data was acquired from the 

references in the form of mole fraction, which was converted to logSco2- The temperature 

range for this data was between 308K and 433K with a pressure range of between 74.3 

bar and 410 bar.

Scaled PSA descriptors were calculated using the method outlaid in chapter 4.9 

The n l descriptor was calculated according to the following relation.

Pr = —  (6-5)
Pc

ji1 = 1.15pr -0.98 (pr<0.7) (6.6)

7t 1 = 0.173pr - 0.37 (pr > 0.7) (6.7)

Where pr is the reduced density, pc is the critical density of CO2 and p is the density of 

supercritical CO2. Values for CO2 density and supercritical density were obtained from 

the NIST on-line Chemistry web book.63
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6.2.3 Results

Various models were constructed using the scaled and unsealed polar surface area 

descriptors for the entire set of 830 log Sco2 values. The best model obtained utilised the 

descriptors TSA, n \  BenSA, ASAs and BSAs. The model gave a disappointing R2 value 

of 0.33 and an RMSE of 1.19.

A regression of the Abraham descriptors against the same dataset of 830 logSco2 values 

gave the following LFER equation. Analysis of the t-ratio for each individual coefficients 

indicated that the s coefficient of the S descriptor was insignificant, while all other 

descriptors are >99 % significant. For this reason the S descriptor is omitted from the 

model.

logSCo2 = 1.062 -1.778E -0.702A -0.634B -0.343V + 4.1 84ji‘ (6.8)

N = 830, R2 = 0.718, RMSE = 0.780, R2CV= 0.713

Analysis of these model showed three large outliers whose predicted logSco2 values were 

more than 2  log units from that of the observed logSco2 values. These outliers were 2,4, 

D, beta-carotene and piroxicam, although piroxicam is only an outlier in the LFER model 

and is modelled adequately using the scaled PSA method. The presence of these 

molecules clearly affects the accuracy and validity of both models. With the removal of 

the appropriate outliers from the regressions the following equations were given.

Scaled PSA

L ogS c02 =  1 .1 0 9 - 0 .0 0 1  T S A +  0.051 A S A s -  0 .0 2 2  B S A s - 0 .0 1 7  B en S A  +  3 .2 0  tt1 (6 .9 )

N =  791 , R2=  0 .4 4 7 , RM SE = 1 .050, R2CV =  0.441

Abraham LFER

lo g S c0 2 =  1 .124  -1 .7 5 3 E  -0 .6 4 2 A  -1 .0 5 4 B  -0 .2 2 V  +  4 .3 2 ti’ (6 .1 0 )

N  =  782 , R2=  0 .7 8 2 , R M SE  =  0 .6 5 9 , R2CV =  0 .7 7 9

Both models show improvement upon the removal of outliers, the greatest improvement 

is seen in the scaled polar surface area method with R rising to 0.447 and RMSE
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dropping to 1.05. Although the improvement is most notable within the scaled PSA 

model, the LFER of Abraham is still clearly the better of the two methods.

Although the statistics of both of these models are inferior to those offered by the 

supercritical CO2 model of Famini27 (R2 =0.928, SD = 0.477), our models cover a much 

wider range of logSco2 values (-7.347 to -0.762 log units), a spread of over 6.5 log units. 

Our dataset also contains a wider range of molecules, many of which are multifunctional; 

our methods are also capable of predicting logSco2 values at varying temperature and 

pressure.

A list of the outliers removed from equations 6.9 and 6.10 are given in Table 6.2. The 

calculated descriptor values for these outliers were checked by comparing partition 

coefficient (logP) values calculated using the generated descriptors against observed logP 

values for a number of different solvent systems. Observed logP values were obtained 

from the MedChem2000 database64 the results are shown in Table 2. LogP values for P- 

carotene were not available from the MedChem database and could not therefore be 

analysed in this manner.

Table 6.2: Observed and calculated logP values for outliers

Solvent Piroxicam 2,4-D

Abraham LFER S ca led  P SA Abraham  LFER Scaled  P SA

Obs a Calc Error C alcb Error O bs a Calc Error C alcb Error

O ctanol 1.795 -0.647 2.442 1.929 -0.134 2.729 2.656 0.073 2.67 0.059
H exadecane -1.52 -6.178 4.658 - - - - - - -

PGD P -0.07 2.752 -2.822 - - - - - - -

CHCI3 - - - - - 1.2 2.301 -1.101 0.936 0.264
A ir - - - - - 7.75 6.499 1.251 - -

a T a k e n  fro m  r e f . 59, a v e r a g e d  w h e r e  s e v e r a l d a ta  rep o rted . 

b V a lu e s  c a lc u la te d  u s in g  th e  e q u a tio n  g e n e r a te d  in  4 .1 .

The large difference in observed and calculated values for piroxicam using the Abraham 

descriptors shows clearly that the error in predicting logSco2 values in our model for this 

molecule is caused by incorrect calculation of the descriptors. Piroxicam is a zwitterionic 

molecule, which may account for the errors in its calculation as the fragment method used 

for obtaining descriptor values assumes the neutral form. For this reason piroxicam was
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removed from the Abraham model. By contrast calculated Abraham descriptors give 

reasonable prediction of three logP values for 2,4-D. We omit this molecule from our 

final model since it appears there might be some problem with the experimental values 

used. Although we could not analyse p-carotene using the same method to determine 

error we still removed it from both models. One possible explanation for the erroneous 

predicted values of p-carotene may be due to the inability of either set of descriptors to 

account for the electronic effects caused by the molecule’s highly conjugated sp2 

hybridized carbon backbone.

To test the importance of the 7 1 1 descriptor and to see whether its use is warranted in these 

model the dataset was remodelled with the exclusion of the outliers but this time the tt1 

descriptor was omitted from the model to give equations 6.11 and 6.12.

logSc 0 2 = -1.954 -  0.0005TSA + 0.0546ASAs -  0.019BSAs -0.015BenSA (6.11)

N = 791, R2 = 0.398, RMSE = 1.096 R2CV = 0.389

logScoz = -0.088 -1.7E -0.38A -1 .2 IB +0.268S -0.08V (6.12)

N = 782, R2 = 0.691, RMSE = 0.785 R2CV = 0.687

From these statistics it can be seen clearly that the inclusion of tu1 significantly improves 

the quality of the results. With the removal of the 7:1 descriptor the R2 value drops by 0.5 

and the RMSE increases by 0.046 for the scaled surface area method, with a similar 

decrease in accuracy in the Abraham LFER method.

The relative importance of each descriptor in equation 6.9 and 6.10 was assessed by 

analysis of the t-ratios, as listed in Table 6.3. The most significant descriptor in the scaled 

PSA method is BenSA, while the most significant of the Abraham descriptors is E, both 

of these descriptors exhibit the largest t-ratio value and a large negative coefficient, from 

this result it can be concluded that supercritical CO2 is highly opposed to interacting with 

the substrate with a high density of n- and n-electron pairs, n 1 is seen to be highly 

significant in both methods, with a large positive coefficient, showing that the higher the 

density of the supercritical CO2 the more the solute will be dissolved. Negative
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coefficient values are also given for A and B. A larger negative t-ratio is given by B with 

respect to A, indicating that the stronger a substrate's hydrogen bond basicity the less it 

will be solvated by the supercritical CO2. A large negative t-ratio is also given for BSAs 

corroborating the conclusion drawn from the LFER that hydrogen bond bases will have 

less affinity for supercritical CO2.

It should be noted that within the scaled surface area method the hydrogen bond acidity 

term ASAs has a positive coefficient value within the equation. This result is in conflict 

with the negative A value obtained from the Abraham method. More confidence is given 

to the result from the Abraham LFER as the equation was proven better by statistical 

analysis. While the t-ratio values are in opposition it should be noted that the hydrogen 

bond acidity term is the least significant term in both equations and that models of almost 

equal quality can be made without its inclusion.

Table 6.3: Coefficients and t-ratios for equation 6.9 and 6.10

Scaled PSA

Term

LFER

Coefficient S.E. t -  ratioTerm Coefficient S.E. t -  ratio
Intercept -1 .167 0 .142 -8 .1 9 7 Intercept 1.128 0.108 10.428
TSA -0.001 0.000 -4 .841 V -0.22 0.024 -8.975
ASAs 0 .048 0.011 4.151 A -0.642 0.097 -6.628
BSAs -0 .020 0.001 -1 7 .3 0 8 B -1.054 0.068 -15.576
711 3.161 0 .3 7 7 8 .3 8 9 711 4.323 0.239 18.071
B enS a -0 .017 0.001 -1 9 .7 7 5 E -1.753 0.04 -44.148

A small negative coefficient is also displayed by the size terms TSA and V, revealing that 

for supercritical CO2 the exoergic dispersion forces are dominated by the endoergic cavity 

term. From this it can be concluded that solubility in supercritical CO2 is favoured if the 

volume/size of the substrate is small. As has already been stated S was omitted from the 

equation, indicating that the polarity/polarisability of the substrate has no effect on its 

solubility. This is to be expected, as CO2 has no permanent dipole for polar interaction 

and isn’t very polarisable.
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The negative coefficients for E, A, B, BenSA and BSAs can be rationalised by comparing 

the LFER equation given in this study to that of the LFER equation for the prediction of 

melting point given by Platts/Saunders.65 The LFER for melting point shows large 

positive coefficients for these descriptors, where a positive coefficient value indicates an 

increase in solid-state stability. Most of the molecules used to construct eq (6.10) are 

solids in the conditions used, such that the stabilising solid-state interactions must be 

disrupted before solvation in CO2 can occur. While this is not equivalent to melting, the 

similarity of the two equations strongly suggests that solid-state effects are an important 

factor in determining solubility of solids in supercritical CO2.

The two equations can be quantitatively compared by treating them as vectors and 

calculating the angle in between them:66 in this case, we calculate an angle of 137° 

between the LFER's for solubility in CO2 and melting point. Thus there is clearly some 

relationship between these two processes, although there are also substantial differences 

between them also. The main difference in the angle between vectors for these equations 

is due to the difference in a coefficient values. In contrast to equation 3 the LFER 

equation for melting point shows a distinctively higher value for A than B. The contrast 

between these two equations implies that supercritical CO2 has some H-bond basicity.

We can compare the properties we have proposed for the solubility in supercritical CO2 to 

those proposed by Famini.27 Absolute comparisons cannot be drawn between our 

equations and those of Famini as their descriptors are calculated using a different method, 

and also our model includes the sixth descriptor 7T1 to account for the effects of 

temperature and pressure. Famini’s electrostatic basicity term, analogous to our BSAs and 

B, also has a large negative coefficient. Famini’s equation shows a negative value for the 

dipolar/polarisability term analogous to our S term. The value of the coefficients for 

Famini’s polar descriptor is much less than that of the electrostatic basicity. Famini 

reported a positive electrostatic acidity term, suggesting an increase in H bonding acidity 

in the substrate would increase its solubility, again implying that supercritical CO2 has 

hydrogen bond basic properties.

Famini stated that these values are due to CO2 being harder ‘non polarisable’ rather than 

soft ‘polarisable’ and that harder solutes are more soluble than soft solutes. This is
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consistent with both Pearson67 and Drago68 models of acidity and basicity. They also 

show the significance of the harder terms electrostatic acidity and basicity to be far higher 

than those of soft terms such as polarisability. The descriptors for H-bond acidity and 

basicity, which we have employed, are composite of both hard and soft terms, unlike 

those of Famini, and we therefore cannot conclude anything about hardness and softness. 

However, the non-significance of the S term shows that polarity of a species is 

insignificant to its solubility in supercritical CO2, consistent with the conclusions of 

Famini.
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6.3 Critical Micelle Concentration

6.3.1 Introduction

A molecule’s critical micelle concentration CMC is defined as the concentration range at 

which individual isolated surfactant molecules begin to aggregate to form micelles due to 

surface activity. After the CMC is exceeded any additional surfactant added to the 

solution will form micelles. Once the CMC of a surfactant has been reached, many 

important physicochemical properties such as surface tension, conductivity, and 

detergency change dramatically.69 These properties are important to many industrial and 

biological systems, so the ability to predict CMC directly from molecular structure is of 

great interest.

The relationship between molecular structure and CMC has been well documented. A 

typical surfactant molecule can be broken down to two components that contribute 

towards CMC, namely the hydrophobic (tail) and hydrophilic region (head). As the size of 

the hydrophobic region is increased it becomes more thermodynamically favourable for 

the hydrophobic regions of the surfactant molecule to minimize contact with the aqueous 

solution, seen as a decrease in CMC. In contrast as the size and hydrophilic properties of 

the head group are increased CMC rises.69

Linear relationships between the logCMC (typically measured mol/L) and the number of 

carbon atoms in a surfactant’s hydrophobic tail have been defined for homologous series 

of linear alkyl hexaethoxylates by Rosen70 and octaethoxylates by Merguro.71 Ravey72 

showed a linear relationship between the number of ethylene oxide units and logCMC for 

dodecyl polythoxylates. Beecher73 used both the number of carbon atoms and number of 

ethylene oxide units to predict CMC for a series linear alkyl ethoxylate surfactants. The 

following equation was produced:

logCMC -  A + Bm + Cn (6.13)

Where m and n are the number of carbon atoms and ethylene oxide units respectively A, 

B and C are regression co-efficient. The predictive ability of this relationship was
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7 2improved by Ravey who introduced a non-linear descriptor; a cross term defined as the 

number of carbon atoms multiplied by number of ethylene oxide units.

There has also been great deal of success in predicting CMC using quantitative structure 

property relationships (QSPR). Wang et al74 derived the following equation for a set of 29 

linear alkyl ethoxylates and ten alkyl phenyl polyethylene oxides.

logCMC = 1.930 -0.7846KH0 -8.871 x 1 O'5 ET+ 0.0493 SD (6.14)

N= 39, R2= 0.995

Where KHO is the Kier&Hall index of 0 order75, E j is the total molecule energy (in eV) 

and D is the dipole moment (in Debye) of the surfactant and N is the number of molecules 

that were used in the regression. Direct comparison of equation 2 and those proposed by 

Ravey72 and Beecher revealed that equation 2 was as accurate as the previous models but 

had the benefit that it could be used to predict CMC not only for alkyl ethoxylates but also 

alkyl phenyl polyethylene oxides.

Huibers et al16 used the program CODESSA77 (Comprehensive Descriptors for Structural 

and Statistical Analysis) to predict CMC for a series of 77 non-ionic surfactants. The 

CODESSA program uses a heuristic approach to select the most appropriate descriptors 

from a large pool of several hundred descriptors. The study produced the following 

equation.

logCMC = -1.802 -0.567 c_KH0 + 1.054 c_AIC2 + 0.751 RNNO (6.15)

N = 77, R2 = 0.983

Where AIC2 is the information content index,78 RNNO (relative number of nitrogen and 

oxygen) is the number of oxygen and nitrogen atoms divided by the total number of atoms 

in the molecule. The prefix c_ indicates that the descriptor only refers to the hydrophobic 

regions of the surfactant.

Huibers et al followed up this study by using CODESSA to derive an equation for the 

prediction of CMC for anionic surfactants.79 This equation was based on a dataset of 119 

sulphonates and sulphate molecules. CODESSA produced the following equation.
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logCMC = 1.89 -  0.31 At-sum-Km  -  0.034TDIP -  1 A5h-sum-KHC 

N= 119, R2 = 0.940

(6.16)

Where t-sum-KHO is the Kier Hall molecular connectivity indices of zeroth order for all 

hydrophobic regions, TDIP is the total dipole of the molecule, and h-sum-RNC is the sum 

of the relative number of carbon atoms for hydrophilic regions.

The R2 values for equation 6.14, 6.15 and 6.16 show that the models are of a high quality. 

However these models are all constructed from datasets with low diversity of functional 

groups, for instance many of molecules within these datasets are homologous series. The 

aim of this study is to try to establish a more general model for the prediction of CMC for 

more structurally diverse molecules such as drug molecules.

While the heuristic approach of programs such as CODESSA may find correlations that 

could otherwise have been missed, the models produced often forgo the clarity and 

interpretability of models produced using other QSPR methods. A further aim for this 

study is that from the models produced further information can be inferred about the 

physiochemical factors influencing the formation of micelles.

Although the scaled PSA method was developed for transfer processes involving two or 

more solutions liquid or solid phases, we hypothesise that these methods will be flexible 

enough to model CMC. An analogy can be made between CMC and a two pseudo-phase 

partition processes except the partition is between solvated and associated solute. CMC is 

determined by factors such as the self-association properties of water and the relative 

hydrophobicity of the tail, properties that can be accounted for using descriptors such as 

molecular size and volume. CMC is also determined by the self-association and repulsive 

properties of the surfactant head groups, which can be accounted for with descriptors that 

encompass the molecules hydrogen bonding abilities.
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6.3.2 Method

Three separate datasets were compiled, the first two from previous studies of CMC by 

Huibers et al.76,79 Dataset one contained 77 non-ionic surfactants in aqueous solution at 

25°C with logCMC values ranging from -6.523 to -0.009 log units. Dataset two contained 

119 anionic surfactants in aqueous solution at 40°C, 50 of these values were recorded at 

25°C and their values at 40°C were calculated using the recommended ratio 1.088 and 

1.030 for sulphonates and sulphates respectively, a ratio that has been established to be 

approximately constant for the CMC of these molecules.79 For dataset two logCMC 

values ranged from -4.899 to -0.496 log units.

A third dataset was compiled from Schrier’s paper,80 this dataset contains 32 drug 

molecules in aqueous solution at 30°C. These molecules include analgesics, anaesthetics 

and antibiotics, whose logCMC values range from -6.22 to -0.60 log units. It should be 

noted that all of these molecules have been seen to form micelles and do not associate in a 

manner in which aggregate size increases continuously with increasing concentration.

The first two datasets allow direct comparison between the methods used in this study 

and previously published ones. Also, dataset one and the majority of dataset two can be 

combined, allowing our methods to be applied simultaneously to the calculation of CMC 

for ionic and non ionic surfactants. Dataset three was selected as it contains many drug 

molecules that are already of great commercial interest, and also the number of different 

functional groups present is significantly broader than that of any previous study of CMC.

Descriptors were generated using the method stated in 4.9. An analogous Abraham model 

was also constructed for each model, this allowed verification of any conclusions drawn 

from the PSA method. For the Abraham LFER model descriptors were calculated using 

the group contribution method of Platts.

It should be noted that the group contribution of Platts et al does not contain fragments for 

the anionic oxygen of the sulphonates and sulphate in dataset two, so the SMILES were 

changed so the anionic oxygen was treated as an oxygen in S=0. (This can be justified as 

every molecule in the dataset contains one anionic oxygen and hence can be regarded as
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constant within regression analysis). It should also be noted that there is no scaling factor 

for the anionic oxygen present in dataset two; solutions to this problem are discussed 

later.

6.3.3 Results

6.3.3.1 Dataset 1: Non Ionic

Regression of the CMC values of dataset 1 against scaled surface area descriptors gave 

the following equation.

l o g C M C  =  1 .2 8 2  - 0 . 0 1 7 T S A  - 0 . 2 5 6 A S A s  + 0 . 0 6 7 B S A s  - 0 . 0 0 7 H a l S A  - O .O O l B e n S A  ( 6 .1 7 )

N =  7 7 ,  R 2 =  0 .9 0 3 ,  R M S E  =  0 . 4 3 4 ,  R 2CV=  0 . 8 8 0 ,  F =  1 3 1 .5

When the same regression is performed using PSAu descriptor along with TSA a
•y

significantly poorer model is produced with R dropping by 0.65 and the RMSE rising by

0.736 log units. Table 6.4 contains the results of statistical analysis for all models. The 

drop in predictive accuracy is easily clarified when the t-ratios of the descriptors in 6.17 

are analysed. The t-ratios show that ASAs and BSAs have equal but opposing effects on 

CMC, i.e. as ASAs is increased the value of logCMC predicted by equation 6.17 will 

decreases whereas raising BSAs serves to increase values of logCMC calculated by 

equation 6.17. Hence the amalgamation of ASAs and BSAs to form PSAs will create a 

descriptor that cannot correctly account for the physiochemical properties of CMC, as 

determined by equation (6.17).
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Table 6.4: Statistical analysis of CMC models

Model Descriptors N R2 RMSE R2cv F-ratio

Dataset 1. TSA PSAs 0 .250 1.179 0.174 12.2

Non-ionic TSA ASAs BSAs HalSA BenSA 77 0 .903 0 .433 0.879 131.6

Abraham LFER 0 .8 5 6 0 .527 0.805 84.6

D ataset 2. TSA PSAs 0.851 0 .338 0.839 335.3

Anionic TSA ASAs BSA sb HalSA B enSA 119 0.871 0 .320 0.855 151.9

Abraham LFER 0.868 0 .324 0 .846 148.0

Combined data TSA PSAs 0 .390 0 .998 0.350 39.9

from datasets Scaled  TSA ASAs BSAs a HalSA BenSA 127 0 .757 0 .757 0.741 75.3

1 and 2. Scaled TSA ASAs BSAs b HalSA B enSA  O-SA 0.826 0 .543 0.810 114.8

Scaled TSA ASAs BSAs b HalSA B enSA  Indicator 0 .815 0 .570 0 .800 94.9

Dataset 3. TSA PSAs 0 .734 0.691 0.422 66.5

Drug m olecules Scaled TSA ASAs HalSA B enSA 32 0 .909 0 .418 0 .829 67.7

Abraham LFER 0 .9 0 9 0 .420 0 .080 67.2

a O' surface area include with value scaled to one 

b O' surface area not included

A regression of the same dataset against the Abraham descriptors produced the following 

equation.

logCMC = 1.2066-1.400E + 4.06S-3.480A+ 1.522B-3.148V (6.18)

N= 77, R2 = 0.856, RMSE = 0.527, R2CV= 0.805, F= 84.6

The statistics of this regression are similar to, but slightly lower than, those of equation 

6.17 with a slight decrease in R2 and a slight increase in RMSE. While the statistics of 

equation 6.17 and 6.18 show both methods produce accurate models, the predictive power 

of these equations is rather less than that published by Huibers et al for the same dataset, 

eq 6.15. The main source for this loss of accuracy is that many molecules in the dataset 

contain large quantities of intramolecular hydrogen bonding, which has been seen to ‘tie 

up’ both acid and base atoms and thus alter their acid and base properties. Although the 

scaled surface area method contains fragments that account for intramolecular H-bonding 

around aromatic rings, the definitions are not comprehensive enough to accurately

calculate the properties of molecules such as sucrose monooleate and beta-dodecyl
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maltoside, which are seen to be the two largest outliers for the scaled surface method 

(residuals of -1.037 and 0.967 respectively).

6.3.3.2 Dataset 2: Ionic Surfactants

Table 6.4 contains various statistical analysis of the models produced from the 119 ionic 

surfactants of dataset two. As there are no defined experimental values for the anionic 

oxygen of the sulphonates and sulphates in the Abraham scales of A and B the following 

measures were taken to account for this in the scaled surface area method.

1. Models were created in which the O' surface area was incorporated into the 

definition of BSAs and scaled with a value of one. This made it approximately 

equivalent to oxygen in sulphoxide.

2. The O' surface area was removed from the definition of BSAs and allocated its 

own descriptor, which was termed O SA.

3. The O' surface area was completely omitted from the BSAs descriptor.

The results showed that the three methods stated above make very little difference to the 

statistics of the model with R2 values being 0.866, 0.875 and 0.871 for methods 1, 2, and 

3 respectively. This is because the surface areas of O' are almost constant through the 

dataset with values only ranging from 16.2 to 20.9 A2, and a standard deviation of 1.79 

A2. Not only are the surface areas of the O" constant but also their occurrence, with one 

present for each surfactant in the dataset.

In this case, the models made containing only PSAs and TSA are only marginally worse 

than those made with the five parameter scaled surface area descriptors. This major 

change is due to the fact that 97% of molecules in dataset 1 have some H-bond acidity, 

whereas in dataset 2 only 16 % of the surfactants contain H-bond acidic groups. Hence for 

dataset two PSAs is dominated by BSAs, and PSAs and BSAs are almost interchangeable. 

While the overall statistics of the models change very little, fourteen of the nineteen 

surfactants that do possess H-bond acidity show a marked improvement when ASAs and 

BSAs are used separately. Figure 6.2 shows the correlation between observed vs. 

calculated logCMC values for the five parameter scaled surface area model.
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Figure 6.2: Observed logCMC values vs. calculated logCMC for ionic dataset, (dataset 2)

T30)
£otftAo

♦ ♦
1

■2

I

■3

-4

♦

- 3  -2

Calculated logCMC

-1

The range of different functional groups that fall into the defined fragments of our scaling 

factors is very narrow, with only 12 different types occurring (2 acid fragments and 10 

base). The lack of structural diversity in the surfactants accounts for the fact that when the 

scaling factors for ASAs and BSAs are removed, the model produced is statistically 

comparable to that of the model that includes scaling factors.

The model produced by Huibers et al19 for this dataset gave an R2 value of 0.94. The 

cause for the loss of accuracy here is due to the occurrence of numerous series of 

surfactants in which the tail group remains constant and the position of the headgroup 

moves from the terminal to the medial position along the carbon chain e.g. 1- 

dodecanesulphate through to 6-dodecanesulphate. Using the LFER relationship approach 

of Abraham and the group contribution method of Platts, the descriptors for these 

surfactants will be calculated to be equal. Although the surface area method is 3D, the 

changes in descriptors for these series are so subtle that the associated changes in CMC 

are not modelled fully. Additional accuracy could be achieved by including topological 

descriptors such as KHO, but this would negate the physical interpretability of such a 

model and prevent comparison with other solvation phenomena.

Although the results of these models show that molecular surface areas can predict CMC 

with reasonable accuracy, the nature of the dataset, with few surfactants displaying any
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hydrogen bond acidic properties and the highly similar structure of the molecules, does 

not challenge the PSA descriptor enough to merit its splitting into ASA and BSA or its 

scaling.

6.3.3.3 Combined dataset

One of the strengths of the molecular surface area models is that it is possible to easily 

combine data from dataset one and two and simultaneously predict logCMC for anionic 

and non-ionic surfactants. The two datasets could not be combined directly as dataset one 

is measured at 25°C and dataset two is measured at 40°C, and the temperature dependence
O 1

of CMC is well documented. 50 surfactants from dataset 2 had CMC values recorded at 

25°C which could be combined with the 77 surfactants of dataset one which were also 

recorded at 25°C. It is not possible to back extrapolate the CMC of remaining 69 

surfactants in dataset two using the ratio stated earlier, as a number of the structures have 

Kraft points higher than 25°C, meaning that micelles would not be formed at 25°C and 

that calculated values would be physically meaningless. It not possible to combine the 

surfactants of dataset three as their CMC values were observed at 30°C, and no single 

ratio can be assigned to such a diverse set.

MLRA was performed against this combined dataset of 127 CMC and their molecular 

surface area descriptors, the statistical analysis for these models is shown in Table 6.4. 

The models that employ only the P S A u  and T S A  descriptors are clearly incapable of 

modelling CMC. Small improvements result from separating P S A u ,  but acceptable 

statistics only result when the A S  A y  and B S A u  are scaled to account for their H-bonding 

strengths, yielding an increase of ca. 25 % in R2 and a drop of 0.13 in RMSE over 

unsealed models.

If the anionic oxygen surface area is removed from B S A s  and included as a separated
2 2descriptor O'SA further improvement is seen to the model, causing the R and R cv to 

increase by 7% and RMSE to decrease by 0.21. Within this combined dataset, the 

presence of the O'SA descriptor is not so constant as it is in dataset two, hence its 

inclusion has higher significance within this model. Given the fairly constant values of O' 

SA, a model of similar quality can be using an indicator variable, defined as one for
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anionic and zero for non-ionic surfactants, in place of O'SA (R2 = 0.815, RMSE = 0.57). 

Although these six-parameter models are less accurate than separate models, the ability to 

simultaneously model CMC for charged and uncharged surfactants is a unique feature of 

this method.

In order to establish the predictive capability of this method, 25% of the data points were 

randomly removed to create a test set while the remaining 75% were remodelled; the 

equation generated from this regression used to predict the CMC values of the test set. 

This process was repeated a further three times to include all molecules in at least one test 

set. The results show that the models are capable of accurate prediction, with R2 = 0.818 

and RMSE = 0.550 when averaged overall four test sets.

6.3.3.4 Dataset 3: structurally diverse drug molecules

Dataset three represents the most challenging of all three datasets as it contains a wider 

range of functional groups and molecular structures than any other model of CMC. 

Analysis of ASAs and BSAs (and A and B) for this dataset showed that the two 

descriptors correlate with an accuracy of about 86%. This high correlation means that if 

both descriptors were to be included in the same model errors would be generated and 

interpretability of the model and predicted values would be unreliable. It should be noted 

that for all previous models low correlations between ASAs and BSAs (and A and B) 

were found. Stepwise multiple linear regressions of the 5 scaled surface area descriptors 

revealed that BSAs was insignificant and highly accurate models could be made without 

the inclusion of BSAs. Similar conclusions were reached for B in LFER models. Thus, 

BSAs and B are omitted from all reported models.

The results in Table 6.4 reveal again that PSAs and TSA alone cannot model CMC as 

well as split four-parameter models. Scaling of the ASA descriptor yields only a 3% 

increase in R2 and a 0.067 decrease in RMSE, but a notable increase of 45% is seen in 

R2cv. The statistics of the LFER model are almost identical to the 4 parameter scaled 

surface area model except in R2CV where a difference of 75 % is reported. The difference 

in R2cv between the LFER and four parameter scaled surface area model is due entirely to 

the inability of the LFER method to predict the value of Actinomycin D when it is
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omitted during the cross-validation procedure, whereas the four-parameter surface area 

model predicts the CMC value of Actinomycin D with reasonable accuracy. It should be 

noted that the structural diversity of this dataset is much higher that that of the previous 

sets, with 32 of our 46 defined fragments being employed in the assignment of scaling 

factors.

6.3.4 Discussion

The significance of each descriptor in a model is given by its t-ratio, rather than its 

coefficient, so these are given in table 6.5. The pattern in t-ratios is fairly constant across 

models, with the molecular size descriptors giving large negative values for all four 

datasets, indicating that larger molecules will form micelles at lower concentrations. This 

relationship is well established and has been stated in previous studies81 of CMC e.g. 

CMC decreases by half for every methylene added to the chain for ionic surfactants.

Table 6.5.A:, t-ratios for best surface area models of CMC

Ionic Non-ionic lonic/nonionic Structurally diverse

Intercept 6.36 5.79 2.51 2.56

TSAs -25.97 -22.87 -19.84 -4.45

ASAs -3.70 -19.07 -14.63 -7.18

BSAs 6.18 20.04 16.13 N/A

HalSA -2.83 -11.66 -8.64 -2.35

BenSA 1.26 -0.24 0.62 -3.21

O-SA -2.04 N/A 0.03 N/A

Table 6.5.B:. t-ratios for Abraham LFER models of CMC

Ionic Non-ionic Structurally diverse

Intercept 2.85 4.36 1.65

E -1.31 -4.73 -5.45

S 2.54 7.84 4.42

A -3.65 -8.52 -7.28

B 1.66 4.86 N/A

V -24.92 -19.31 -1.55
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The molecular size term are the most significant in all models except for dataset three. 

The drop in significance of the size terms for dataset three is due to the complex 3D 

structures of the surfactants. The surfactants in dataset one and two can be predominantly 

split into their hydrophobic tail and hydrophilic head components, with the hydrophobic 

regions being mainly straight hydrocarbon chains. These can intertwine easily during 

micelle formation due to their flexibility, making the process of surfactant-surfactant 

interaction on micellization fairly constant over all surfactants. This simple intertwining is 

not possible for many of the molecules in dataset three such as Thioridazine and 

Actinomycin D. Thus the size terms for dataset three is forced to account for both the 

enthalpic and entropic factors that are needed to create a cavity in the solvent and for the 

surfactants and the self-association properties upon micelle formation.

Hydrogen bond acidity (A and ASAs) and Basicity (B and BSAs) descriptors are also 

fairly constant in their t-ratio values throughout, with hydrogen bond acidity terms giving 

negative values and hydrogen bond basicity terms giving positive values. This result 

indicates that stronger hydrogen bonding acidic surfactants will form micelles at lower 

concentrations than weaker hydrogen bond acidic surfactants, while increasing the 

hydrogen bond basicity of a surfactant acts to raise its CMC.

Further insight into the role of the hydrogen bonding descriptors can be gained by 

comparing coefficient values from the LFER logCMC models to those for Abraham’s 

model of aqueous solubility (logSw).82 This comparison allows us to infer how 

proportionately the descriptors are representing the ability of the surfactant to interact 

with water and interact with themselves during aggregation. The LFER for log Sw gives 

large positive co-efficents for A and B of 0.65 and 3.39 respectively. The LFER models of 

CMC also show positive values for B indicating that surfactants with a larger hydrogen 

bond basicity can interact with water favourably thus reducing their ability to form 

micelles and raising CMC.

The hydrogen bond acidity descriptor gives small positive coefficients in the logSw model 

but a large negative value in models of CMC. The difference in these coefficient values 

indicates that A is predominantly describing self-association effects of the surfactants and 

not surfactant water-interactions. It is not surprising that of the two descriptors, A and B, 

it is A that contains the information for self-association. Using the definitions of H-Bond
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acidity and basicity stated in this study it is possible for a molecule to be only a hydrogen 

bond base, i.e. contain no hydrogen attached to oxygen and nitrogen, whereas it is 

impossible for a surfactant to display only H-bond acidic properties. Hence any molecule 

with hydrogen bond acid groups will also contain hydrogen bond basic groups, giving rise 

to strong self-association interactions. The surface area descriptor BenSA is not highly 

significant in any of the models of CMC, nor is its value constant throughout all systems. 

For datasets one and three negative values of BenSA are displayed, as expected since it is 

known that the addition of one phenyl group is roughly equivalent in its effects on CMC 

as three methylene groups. The positive value of BenSA for dataset two is perhaps due to 

the lack of structural diversity here, since all phenyl rings are attached to an electron 

withdrawing S O 3 -  group.

HalSA’s t-ratios are relatively small and negative throughout all models of CMC. This 

negative value can be easily attributed the fact that halogens are hydrophobic in nature. 

The E and S descriptors of the LFER approach are again easily interpreted by comparison 

to the LFER for log Sw. The coefficient for the S descriptor is positive in both the CMC 

models and logSw indicating that more polar surfactants will associate more preferentially 

with water and thus raise CMC. The coefficient for E is negative in both equations 

implying that surfactants with a high density of 71 -  and n-electron pairs would rather 

interact with each other than with water, presumably through dispersion forces.
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6.4 Conclusions

6.4.1 Conclusions: fluorophilicity

A model for the prediction of fluorophilicity of 93 organic molecules has been 

constructed. Statistical analysis has shown this model to be as accurate as those produced 

from previous studies, with R = 0.94 and RMS error = 0.64. The use of exposed surface 

areas meant it was possible to include molecules omitted from previous studies, such as 

three silicon containing compounds. More importantly, given the interest in catalysis in 

fluorous phases, it was also possible to include eight transition metal complexes bearing 

fluorous ligands along with the organic molecules. This yielded a good correlation of 

observed vs. calculated values, with R =0.91 and RMS = 0.807. These models employed 

total, polar, fluorous and metal surface areas. Initially, we employed van der Waals radii 

of 2A for all transition metals. Subsequent attempts were made to calculate more accurate 

radii by finding the distance of the 0.001 e.au'3 isosurface from the metal nucleus. While 

the radii generated from this method appeared physically realistic, the resultant model was 

marginally inferior to that of its predecessor.

6.4.2 Conclusions: Supercritical CO2

We have developed a model for the prediction of solubility in supercritical CO2 based on 

65 molecules and 781 data points. The model had a temperature range from 308 K to 435 

K and a pressure range of 74.3 bar to 410 bar.

The equation given by our scaled PSA model has a very large positive coefficient value 

for the tc1 descriptor. The equation also showed a relatively large negative coefficient 

values for the hydrogen bond basicity descriptors, B and BSAs, the polar/polarisabilty 

term S and the aromatic carbon surface area BenSA. From these coefficient values it was 

determined that solubility in supercritical CO2 is increased if the density of the CO2 is 

increased. The solubility of a species in CO2 will be favoured if its n- electron density and 

H-bond basicity is low. To a lesser extent the solubility in supercritical CO2 is favoured if 

the molecule is small. These conclusions concur with those stated by other methods.
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6.4.3 Conclusions: CMC

Models have been developed for the prediction of CMC for anionic and non-ionic 

surfactants, using the LFER approach of Abraham and surface area method of Saunders et 

al. The models produced from these datasets were slightly less accurate, but are more 

generally applicable, than those produced from previous studies. Furthermore, they allow 

detailed physical analysis, giving an insight into the factors determining CMC. This 

analysis was possible as the same descriptors were used throughout and not chosen for 

each set from a larger pool of descriptors. Thus a model was created that combined 

molecules from the ionic and non-ionic datasets using a modified version of the surface 

area approach. A reasonable correlation of observed vs. calculated CMC values were seen 

for this model, though statistics are slightly worse than for separate models of neutral and 

ionic surfactants. The predictive capability of this model was confirmed by the 

construction of training and test sets, which showed that logCMC could be predicted to

0.55 log units.

As the structural diversity included in these surfactant models was very narrow, a model 

was made that included drug molecules which included a wide range of functional groups 

and molecular structures. The best model produced for this set was the scaled surface area 

model, which had an R2 value of 0.91 and an RMSE of 0.42. This model was also 

examined to give information about the micellization process the findings were in keeping 

with those of other models and more importantly are physically valid.

6.5 Future work

Alternate route to the calculation of vdw radii for metal complexes could lead to more 

accurate values of MetalSA. Also alternative routes toward the calculation of MetalSA 

would be beneficial as the current quantum mechanical methods may be a little to 

demanding for large libraries of molecules.
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7.1. Closing Remarks

For the models of logPoct, logPcHci and logPcyc produced in chapter 4 it was seen that our 

new surface area method was comparable to that of the well established LFER method of 

Abraham1 with descriptors calculated using the group contribution method of Platts.2 It 

was seen from the t-ratios that the coefficient values of these equations were physically 

meaningful and in agreement with other studies.

While these models showed that for organic molecules there was little difference between 

the two methods the true strength of the new surface area method was seen in the 

modelling of inorganic molecules. While there are a numerous QSAR and QSPR methods 

for the calculation of organic molecules there are no well-established methods for the 

prediction of inorganic molecules. The ability of the new surface area method to model 

the properties of inorganic molecules was verified by the modelling of two commercially 

important properties, these were the partitioning of platinum containing drugs between 

octanol/water and chloroform/water, and the fluorophilicity of a number of important 

transition metal catalysis used in fluorous biphasic catalysis.

For the partition models of the platinum drugs it was seen that through the assignment of 

appropriate scaling factors for polar atoms attached to the central platinum atom that 

organic and inorganic data could be modelled simultaneously. The ability of our methods 

to combine organic and inorganic data is particularly useful in the field of QSAR as there 

is a large amount of data available for organic molecules but very little for inorganic 

molecules, so the ability to combine this data means that models can be made with larger 

datasets and a greater degree of confidence can be placed in the models.

217



Through the modelling of a number of important biological properties it was also seen 

that the new surface area descriptors were capable of modelling important biological data 

such as uptake of gases by plants and cellular uptake, while these models were created for 

only organic molecules it can be proposed that if data were available for inorganic 

molecules these could be modelled and values predicted. This is an area of particular 

interest industrially as the resistance of the chemotherapy drug cis platin has been 

attributed to reduced cellular uptake.

The ability of our new surface area method to model a wide range of physiochemical 

properties has been verified through the successful modelling of a wide range of diverse 

properties including aqueous/organic partitions, organic/organic partitions, solubility of 

gases, solubility of solids and CMC.

From the model of CMC it was seen that through the application of an anionic surface 

area descriptor, it was possible to model the properties of anionic molecules either 

independently or in combination with uncharged molecules. Again this simultaneous 

modelling of two different types of molecule offers substantial improvement of other 

QSAR methods as the size of datasets can be increased and the confidence in the models 

can be raised.
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