
Investigating Heuristic and 
Meta-Heuristic Algorithms

for Solving Pickup and Delivery
Problems

A thesis submitted In partial fulfilment 
of the requirement for the degree of Doctor of Philosophy

Manar Ibrahim Hosny

March 2010

Cardiff University 
School of Computer Science & Informatics



UMI Number: U585571

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585571
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



iii

Declaration

This work has not previously been accepted in substance for any degree and is not concur
rently submitted in candidature for any degree.

Signed ..................................................  (candidate)

Date . TwAj. . .................

Statement 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of 
PhD.

Signed .................................... ....................................  (candidate)

Date .t .o..................

Statement 2

This thesis is the result of my own independent work/investigation, except where other
wise stated. Other sources are acknowledged by explicit references.

Signed ...................................... ..................................  (candidate)

Date . .?■.*?.. .dwbj f l p j o .............

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for 
inter-library loan, and for the title and summary to be made available to outside organisa
tions.

Signed .........................................................................  (candidate)

Date . 2 3 ...........................................



Abstract

The development of effective decision support tools that can be adopted in the trans
portation industry is vital in the world we live in today, since it can lead to substantial 
cost reduction and efficient resource consumption. Solving the Vehicle Routing Problem 
(VRP) and its related variants is at the heart of scientific research for optimizing logistic 
planning. One important variant of the VRP is the Pickup and Delivery Problem (PDP). 
In the PDP, it is generally required to find one or more minimum cost routes to serve a 
number of customers, where two types of services may be performed at a customer loca
tion, a pickup or a delivery. Applications of the PDP are frequently encountered in every 
day transportation and logistic services, and the problem is likely to assume even greater 
prominence in the future, due to the increase in e-commerce and Internet shopping.

In this research we considered two particular variants of the PDP, the Pickup and Delivery 
Problem with Time Windows (PDPTW), and the One-commodity Pickup and Delivery 
Problem (1-PDP). In both problems, the total transportation cost should be minimized, 
without violating a number of pre-specified problem constraints.

In our research, we investigate heuristic and meta-heuristic approaches for solving the 
selected PDP variants. Unlike previous research in this area, though, we try to focus on 
handling the difficult problem constraints in a simple and effective way, without compli
cating the overall solution methodology. Two main aspects of the solution algorithm are 
directed to achieve this goal, the solution representation and the neighbourhood moves.

Based on this perception, we tailored a number of heuristic and meta-heuristic algorithms 
for solving our problems. Among these algorithms are: Genetic Algorithms, Simulated 
Annealing, Hill Climbing and Variable Neighbourhood Search. In general, the findings 
of the research indicate the success of our approach in handling the difficult problem 
constraints and devising simple and robust solution mechanisms that can be integrated 
with vehicle routing optimization tools and used in a variety of real world applications.
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Chapter 1

Introduction

Efficient transportation and logistics plays a role in the economic wellbeing of society. 
Almost everything that we use in our daily lives involves logistic planning, and practically 
all sections of industry and society, from manufacturers to home shopping customers, 
require the effective and predictable movement of goods. In today’s dynamic business 
environment, transportation cost constitutes a significant percentage of the total cost of a 
product. In fact, it is not unusual for a company to spend more than 20% of the product’s 
value on transportation and logistics [76]. In addition, the transportation sector itself is a 
significant industry, and its volume and impact on society as a whole continues to increase 
every day. In a 2008 report, the UK Department of Transport estimates that freight and 
logistics sector is worth £74.5 billion to the economy and employs 2.3 million people 
across 190,000 companies [2].

In the last few decades, advancement in transportation and logistics has greatly improved 
people’s lives and influenced the performance of almost all economic sectors. Never
theless, it also produced negative impacts. Approximately two thirds of our goods are 
transported through road transport [2]. However, vehicles moving on our roads contribute 
to congestion, noise, pollution, and accidents. Reducing these impacts requires coopera
tion between the various stakeholders in manufacturing and distribution supply chains for 
more efficient planning and resource utilization. Efficient vehicle routing is essential, and 
automated route planning and transport management, using optimization tools, can help 
reduce transport costs by cutting mileage and improving driver and vehicle usage. In ad
dition, it can improve customer service, cut carbon emissions, improve strategic decision 
making and reduce administration costs.

Research studying effective planning and optimization in the vehicle routing and sche
duling field has increased tremendously in the last few decades [48] . Advances in tech
nology and computational power has encouraged researchers to consider various problem 
types and real-life constraints, and to experiment with new algorithmic techniques that can 
be applied for the automation of vehicle planning activities. A number of these techniques 
have been implemented in commercial optimization software and successfully used in
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the problem is likely to become even more important in the future, due to the rapid growth 
in parcel transportation as a result of e-commerce. Some applications of this problem 
include bus routing, food and beverage distribution, currency collection and delivery bet
ween banks and ATM machines, Internet-based pickup and delivery, collection and distri
bution of charitable donations between homes and different organizations, and the trans
port of medical samples from medical offices to laboratories, just to name a few. Also, an 
important PDP variant, known as dial-a-ride, can provide an effective means of transport 
for delivering people from door to door. This model is frequently adopted for the disa
bled, but could provide a greener alternative than the car and taxi to the wider community. 
Besides road-based transportation, applications of the PDP can also be seen in maritime 
and airlift planning.

As previously mentioned, considerable attention has been paid to the classical VRP and 
its related variants by the scientific community. Literally thousands of papers have been 
published in this domain (see for example survey papers [142], [96], [48], [147] and the 
survey paper in the 50th anniversary of the VRP [97]). Despite this, research on Pickup 
and Delivery (PD) problems is relatively scarce [137]. A possible reason is the complexity 
of these problems and the difficulty in handling the underlying problem constraints. In
novations in solution methods that handle different types of PD problems are certainly in 
great demand.

We have selected two important variants of PD problems as the focus of this research. 
These are: the Pickup and Delivery Problem with Time Windows (PDPTW), and the 
One-commodity pickup and delivery problem (1-PDP), with more emphasis on the first 
of these two variants and a thorough investigation of both its single and multiple vehicle 
cases. The main difference between the two problems is that the PDPTW assumes that 
origins and destinations are paired, while the 1 -PDP assumes that a single commodity may 
be picked up from any pickup location and delivered to any delivery location. In fact, the 
problems dealt with in this research are regularly encountered in every day transportation 
and logistics applications, as will be demonstrated during the course of this thesis.

1.2 Thesis Hypothesis and Contribution

Similar to the VRP, the PDP belongs to the class of Combinatorial Optimization (CO) 
problems, for which there is usually a huge number of possible solution alternatives. For 
example, the simplest form of the VRP is the Traveling Salesman Problem (TSP), where 
a salesman must visit n  cities starting and ending at the same city, and each city should 
be visited exactly once. It is required to find a certain route for the salesman such that the
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total traveling cost is minimized. Although this problem is simple for small values of n, 
the complexity of solving the problem increases quickly as n  becomes large. For a TSP 
problem of size n, the number of possible solutions is n \f  2. So, if n  =  60 for example, 
the number of possible solutions that must be searched is approximately 4.2 x 1081.

If one considers the VRP with added problem constraints, the solution process becomes 
even more complex. Despite the advancement in algorithmic techniques, solving the VRP 
and similar highly constrained CO problems to optimality may be prohibitive for very 
large problem sizes. Exact algorithms that may be used to provide optimum problem 
solutions cannot solve VRP instances with more than 50-100 customers, given the current 
resources [72]. Approximation algorithms that make use of heuristic and meta-heuristic 
approaches are often used to solve problems of practical magnitudes. Such approaches 
provide good solutions to CO problems in a reasonable amount of time, compared to exact 
methods, with no guarantee to solve the problem to optimality (see Chapter 2 for more 
details about combinatorial optimization, complexity theory and exact and approximation 
techniques).

Many heuristic and meta-heuristic algorithms have been applied to solving the different 
variants of PD problems. However, most of these approaches are adaptations of algo
rithms that have been previously developed for the classical VRP. The solution process 
for such problems is usually divided into two phases: solution construction and solution 
improvement. In the solution construction phase one or more initial problem solutions 
is generated, while in the solution improvement phase the initial solution(s) is gradually 
improved, in a step-by-step fashion, using a heuristic or a meta-heuristic approach. Ap
plying classical VRP techniques to the PDP, though, requires careful consideration, since 
the PDP is in fact a highly constrained problem that is much harder than other variants of 
the VRP.

We noticed during our literature survey that research tackling PD problems tends to exhi
bit complexity and sophistication in the solution methodology. Probably the main reason 
behind this is that handling the difficult, and sometimes conflicting, problem constraints is 
often a hard challenge for researchers. Straightforward heuristic and meta-heuristic algo
rithms cannot normally be applied to PD problems, without augmenting the approach with 
problem-specific techniques. In many cases, researchers resort to sophisticated methods 
in their search for good quality solutions. For example, they may hybridize several heu
ristics and meta-heuristics, or utilize heuristics within exact methods. Some researchers 
use adaptive and probabilistic search algorithms, which undergo behavioural changes dy
namically throughout the search, according to current features of the search space or to 
recent performance of the algorithm. Dividing the search into several stages, adding a
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post-optimization phase, and employing a large number of neighbourhood operators are 
also popular approaches to solving the PDP. Unfortunately, when complex multi-facet 
techniques are used, it can be very difficult to assess which algorithm component has 
contributed most to the success of the overall approach. Indeed, it is possible that some 
components may not be needed at all. In many papers only the final algorithm is pre
sented, and experimental evidence justifying all its various components and phases is not 
included. Notwithstanding the run time issues, the more complex the approach, the harder 
it is for other researchers to replicate.

Another important issue to consider with PD problems is solution infeasibility. Due to 
the many problem constraints that often apply, obtaining a feasible solution ( i.e., a so
lution that does not violate problem constraints) may be a challenge in itself. Since the 
generation of infeasible solutions cannot be easily avoided during the search, solution 
techniques from the literature often add a repair method to fix the infeasibility of solu
tions. This will inevitably make the solution algorithm less elegant and slow down the 
optimization process.

In our research, we investigate the potential of using heuristic and meta-heuristic ap
proaches in solving selected important variants of PD problems. Unlike previous research 
in this field, we aspire to develop solution techniques that can handle this complex pro
blem in a simple and effective way, sometimes even at the expense of a slight sacrifice in 
the quality of the final solution obtained. The simpler the solution technique, the more 
it can be integrated with other approaches, and the easier it can be incorporated in real- 
world optimization tools. In our opinion, to achieve this goal the solution technique must 
be directed towards handling the underlying constraints efficiently, without complicating 
the whole solution method. In addition, we aim to provide robust methodologies, to avoid 
the need for extensive parameter tuning. While we support, and appreciate, the need to 
compare the performance of our algorithms with the state-of-the-art, we try not to engage 
in hyper-tuning simply to produce marginally improved results on benchmark instances.

The heuristic and meta-heuristic approaches applied in this research focus on two main 
aspects that we believe can help us solve hard PD problems and achieve good quality 
solutions, while keeping the overall technique simple and elegant. These aspects are: 
the solution representation and the neighbourhood moves. The solution representation 
should reflect the problem components, while being simple to code and interpret. In 
addition, it should facilitate dealing with the problem constraints by being flexible and 
easily manageable, when neighbourhood moves are applied to create new solutions during 
the search. An appropriate solution representation is thus the initial step towards an overall 
successful solution technique. In addition, ‘intelligent’ neighbourhood moves enable the
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algorithm to progress smoothly exploring promising areas of the search space, and at the 
same time, avoiding generating and evaluating a large number of infeasible solutions.

Specifically, our research mainly concentrates on solution representations and neighbou
rhood moves as portable and robust components that can be used within different heuris
tics and meta-heuristics to solve some hard pickup and delivery problems, and may be 
adapted for solving other variants of vehicle routing problems as well. Based on this per
ception, we were able to tailor some well-known heuristic and meta-heuristic approaches 
to solving the selected variants of pickup and delivery problems, i.e., the PDPTW and 
the 1 -PDP. In this research, we employed our key ideas within some famous heuristic and 
meta-heuristic algorithms, such as Genetic Algorithms (GAs), Simulated Annealing (SA), 
Hill Climbing (HC) and Variable Neighbourhood Search (VNS), and tried to demonstrate 
how the proposed constraint handling mechanisms helped guide the different solution 
methods towards good quality solutions and manage infeasibility throughout the search, 
while keeping the overall algorithm as simple as possible. The proposed ‘techniques’, 
though, have the potential of being applicable within other heuristics and meta-heuristics, 
with no or just minor modifications, based on the particular problem to which they are 
being applied.

The contribution of this thesis is six fold:

1. We have developed a unique and simple solution representation for the PDPTW 
that enabled us to simplify the solution method and reduce the number of problem 
constraints that must be dealt with during the search.

2. We have devised intelligent neighbourhood moves and genetic operators that are 
guided by problem specific information. These operators enabled our solution al
gorithm for the PDPTW to create feasible solutions throughout the search. Thus, 
the solution approach avoids the need for a repair method to fix the infeasibility of 
newly generated solutions.

3. We have developed new simple routing heuristics to create individual vehicle routes 
for the PDPTW. These heuristics can be easily embedded in different solution 
construction and improvement techniques for this problem.

4. We have developed several new solution construction methods for the PDPTW, that 
can be easily used within other heuristic and meta-heuristic approaches to create 
initial problem solutions.

5. We have demonstrated how traditional neighbourhood moves from the VRP litera
ture can be employed in a new way within a meta-heuristic for the 1 -PDP, which
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helped the algorithm to escape the trap of local optima and achieve high quality 
solutions.

6. We have applied simple adaptation of neighbourhood moves and search parameters, 
in both the PDPTW and the 1-PDP, for more efficient searching.

Although the techniques adopted in our research were only tried on some pickup and 
delivery problems, we believe that they can be easily applied to other vehicle routing 
and scheduling problems with only minor modifications. As will be seen through the 
course of this thesis, the techniques mentioned above were in most cases quite successful 
in achieving the objectives that we had in mind when we started our investigation of the 
problems in hand. Details about these techniques and how we applied them within the 
heuristic and meta-heuristic framework will be explained in the main part of this thesis, 
i.e., Chapters 5 to 10.

1.3 Thesis Overview

Chapter 1 documents the motivation behind the research carried out in this thesis. The 
hypothesis and contribution of the thesis are highlighted, and an overview of the structure 
of the thesis is presented.

Chapter 2 provides some background information about complexity theory and algorithm 
analysis. A quick look at some exact solution methods that can be used to solve combi
natorial optimization problems to optimality is taken, before a more detailed explanation 
of some popular heuristic and meta-heuristic approaches is provided. The techniques 
introduced in this chapter include: Hill Climbing (HC), Simulated Annealing (SA), Ge
netic Algorithms (GAs), Ant Colony Optimization (ACO), Tabu Search (TS) and Variable 
Neighbourhood Search (VNS).

Chapter 3 is a survey of vehicle routing problems, with more emphasis on one particular 
variant that is of interest to our research, the Vehicle Routing Problem with Time Win
dows (VRPTW). For this problem, some solution construction and solution improvement 
techniques are described. In addition, a quick summary of some published meta-heuristic 
approaches that have been applied to this problem is provided.

Chapter 4 is another literature survey chapter dedicated to one variant of vehicle rou
ting problems that is the focus of this research, namely pickup and delivery problems. A 
classification of the different problem types is given, and a brief summary of some pu
blished heuristic and meta-heuristic approaches that tackle these problems is provided.
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The survey presented in this chapter is intended to be a concise overview. More details 
about state-of-the-art techniques are presented in later chapters, when related work to each 
individual problem that we handled is summarized.

C hapter 5 is the first of six chapters that detail the research carried out in this thesis. This 
chapter describes the first problem that we tackled, the Single Vehicle Pickup and Deli
very Problem with Time Windows (SV-PDPTW). A general overview of the problem, and 
a summary of related work from the literature is given. In addition, a Genetic Algorithm 
(GA) approach to solving this problem is described in detail. A novel solution representa
tion and intelligent neighbourhood moves that may help the algorithm overcome difficult 
problem constraints are tried within the GA approach. The experimental findings of this 
part of the research were published, as a late breaking paper, in GECC02007 conference 

[79].

C hapter 6 continues with the research started in Chapter 5 for the SV-PDPTW. Never
theless, a more extensive investigation of the problem is given here. Several heuristic and 
meta-heuristic techniques are tested for solving the problem, employing the same tools 
introduced in Chapter 5. Three approaches are applied to solving the problem: genetic 
algorithms, simulated annealing and hill climbing. A comparison between the different 
approaches and a thorough analysis of the results is provided. The algorithms and the 
findings of this part of the research were published in the Journal o f Heuristics [84].

C hapter 7 starts the investigation of the more general Multiple-Vehicle case of the Pi
ckup and Delivery Problem with Time Windows (MV-PDPTW). After summarizing some 
related work in this area, new solution construction methods are developed and compa
red, using the single vehicle case as a sub-problem. The algorithms introduced here act 
as a first step towards a complete solution methodology to the problem, which will be 
presented in the next chapter. The different construction heuristics are compared, and 
conclusions are drawn about the construction algorithm that seems most appropriate for 
this problem. This part of the research was published in the MIC2009 [81 ].

C hapter 8 continues the investigation of the MV-PDPTW, by augmenting solution construc
tion, introduced in the previous chapter, with solution improvement. In this chapter, we 
tried both a GA and an SA for the improvement phase. Several techniques from the first 
part of our research (explained in Chapters 5 to Chapter 7) are embedded in both the GA 
and the SA. The GA approach is compared with two related GA techniques from the li
terature, and the results of both the GA and the SA are thoroughly analyzed. Part of the 
research carried out in this chapter was published in the MIC2009 [80].

C hapter 9 starts the investigation of another important PD problem which is the One- 
commodity Pickup and Delivery Problem (1-PDP). In this chapter, we explain the pro-
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blem, provide a literature review, and highlight some related problems. After that, we try 
to solve the 1-PDP using an Evolutionary Perturbation Scheme (EPS) that has been used 
for solving other variants of vehicle routing problems. Experimental results on published 
benchmark instances are reported and analyzed.

C hapter 10 continues the investigation of the 1-PDP, using another meta-heuristic ap
proach, which is a Variable Neighbourhood Search (VNS) hybridized with Simulated 
Annealing (SA). Also, adaptation of search parameters is applied within this heuristic 
for more efficient searching. The approach is thoroughly explained and the experimental 
results on published test cases are reported. Two conference papers that discuss this ap
proach have now been accepted for publication in GECCO2010 (late breaking abstract) 
[82], and PPSN2010 [85]. In addition, a third journal paper has been submitted to the 
Journal o f Heuristics and is currently under review [83].

C hapter 11 looks beyond the current research phase and discusses how a theoretical 
scientific research, such as that carried out in this thesis, can be used in real-life com
mercial applications of vehicle routing problems. We give examples of some commercial 
software tools, and we also highlight important industrial aspects of vehicle routing that 
the research community should be aware of. An overview of future trends in scientific 
research tackling this issue is also provided.

Chapter 12 summarizes the research undertaken in this thesis and elaborates on the thesis 
contribution. Some critical analysis of parts of the current research and suggestions for 
future work are also presented.

1.4 A Note on Implementation and Computational Expe
rimentation

All algorithmic implementations presented in this thesis are programmed in C++, using 
Microsoft Visual Studio 2005. Basic Genetic Algorithms (GAs) were implemented with 
the help of an MIT GA library GALIB [155]. Most of the computational experimentations 
were carried out using Intel Pentium (R) CPU, 3.40 GHz and 2 GB RAM, under a Win
dows XP operating system, unless otherwise indicated. The algorithms developed in this 
thesis were tested on published benchmark data for the selected problems, or on problem 
instances created in this research. We indicate in the relevant sections of this thesis the 
exact source of the data, and provide links where applicable.
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Chapter 2

Combinatorial Optimization,
Heuristics, and Meta-heuristics

In this chapter, we introduce an important class of problems that are of interest to resear
chers in Computer Science and Operations Research (OR), which is the class of Combina
torial Optimization (CO) problems. The importance of CO problems stems from the fact 
that many practical decision making issues concerning, for example, resources, machines 
and people, can be formulated under the combinatorial optimization framework. As such, 
popular optimization techniques that fit this framework can be applied to achieve optimal 
or best possible solutions to these problems, which should minimize cost, increase profit 
and enable a better usage of resources.

Our research handles one class of CO problems, which is concerned with vehicle routing 
and scheduling. Details about this specific class will be presented in Chapters 3 and 4.
In the current chapter we provide a brief description of CO problems, and the related al
gorithm and complexity analysis theory in Section 2.1. We will then proceed to review 
important techniques that are usually applied to solving CO problems. Section 2.2 briefly 
highlights some exact algorithms that can be used to find optimal solutions to these pro
blems. On the other hand, heuristic methods that may be applied to find a good solution, 
which is not necessarily the optimum, are introduced in Section 2.3. We emphasize in 
this section: Hill Climbing (HC), Simulated Annealing (SA), Genetic Algorithms (GAs),
Ant Colony Optimization (ACO), Tabu Search (TS), and Variable Neighbourhood Search 
(VNS). Finally Section 2.4 concludes this chapter with a brief summary.

2.1 Combinatorial Optimization, Algorithm and Complexity 
Analysis

Combinatorial optimization problems can generally be defined as problems that require 
searching for the best solution among a large number of finite discrete candidate solutions.
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More specifically, it aspires to find the best allocation of limited resources that can be 
used to achieve an underlying objective. Certain constraints are usually imposed on the 
basic resources, which limit the number of feasible alternatives that can be considered as 
problem solutions. Yet, there is still a large number of possible alternatives that must be 

searched to find the best solution.

There are numerous applications of CO problems in areas such as crew scheduling, jobs 
to machines allocation, vehicle routing and scheduling, circuit design and wiring, solid- 
waste management, energy resource planning, just to name a few. Optimizing solutions 
to such applications is vital for the effective operation and perhaps the survival of the 
institution that manages these resources. To a large extent, finding the best or optimum 
solution is an integral factor in reducing costs, and at the same time maximizing profit and 
clients’ satisfaction.

Many practical CO problems can be described using well-known mathematical models, 
for example the Knapsack problem, job-shop scheduling, graph coloring, the TSP, the 
boolean satisfiability problem (SAT), set covering, maximum clique, timetabling... etc. 
Many algorithms and solution methods exist for solving these problems. Some of them 
are exact methods that are guaranteed to find optimum solutions given sufficient time, and 
others are approximation techniques, usually called heuristics or meta-heuristics, which 
will give a good problem solution in a reasonable amount of time, with no guarantee to 
achieve optimality.

Within this domain, researchers are often faced with the requirement to compare algo
rithms in terms of their efficiency, speed, and resource consumption. The field of algo
rithm analysis helps scientists to perform this task by providing an estimate of the number 
of operations performed by the algorithm, irrespective of the particular implementation or 
input used. Algorithm analysis is usually preferred to comparing actual running times of 
algorithms, since it provides a standard measure of algorithm complexity irrespective of 
the underlying computational platform and the different types of problem instances sol
ved by the algorithm. Within this context, we usually study the asymptotic efficiency of 
an algorithm, i.e., how the running time of an algorithm increases as the size of the input 
approaches infinity.

In algorithm analysis, the O notation is often used to provide an asymptotic upper bound 
of the complexity of an algorithm. We say that an algorithm is of O(n)  (Order n), where 
n  is the size of the problem, if the total number of steps carried out by the algorithm is 
at most a constant times n. More specifically, f ( n ) =  0(g(n) ) ,  if there exist positive 
constants c and n 0 such that 0 < f ( n )  < cg(n),  for all n > n 0. The O notation is usually 
used to describe the complexity of the algorithm in a worst-case scenario. Other less
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frequently used notations for algorithm analysis are the Q notation and the 0  notation. 
The Q notation provides an asymptotic lower bound, i.e., f ( n )  is of Q(g(n))  if there exist 
positive constants c and no such that 0 <  cg(n) <  f (n) ,  for all n > uq. On the other hand, 
the 0  notation provides an asymptotically tight bound for /(n ) ,  i.e., f ( n )  is of Q{g(n))  
if there exist positive constants c\, c2 and n 0 such that 0 < cig(n) < f (n )  < c2g{n), for 
all n > no [32]. Figures 2.1(a), 2.1(b) and 2.1(c) demonstrate a graphic example of the O 
notation, the Q notation, and the 0  notation respectively.1

(a) The O notation (b) The Q notation

(c) The 0  notation 

Figure 2.1: Asymptotic Notations.

In addition to analyzing the efficiency of an algorithm, we sometimes need to know what 
types of algorithms exist for solving a particular problem. The field of complexity ana
lysis analyzes problems rather than algorithms. Two important classes of problems are 
usually identified in this context. The first class is called V  (polynomial time problems).

'In this thesis we use the O notation for the analysis of algorithms when needed, since it is the most 
commonly used type of asymptotic notations among the three notations introduced in this section.
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It contains problems that can be solved using algorithms with running times such as O(n),  
0(log(n))  and 0 ( n k) 2. They are relatively easy problems, sometimes called tractable 
problems. Another important class is called M V  (non-determ inistic polynomial time 
problems). This class includes problems for which there exists an algorithm that can 
guess a solution and verify whether the guessed solution is correct or not in polynomial 
time. If we have an unbounded number of processors that each can be used to guess and 
verify a solution to this problem in parallel, the problem can be solved in polynomial time. 
One of the big open questions in computer science is whether the class V  is equivalent 
to the class M V .  Most scientists believe that they are not equivalent. This, however, has 
never been proven.

Researchers also distinguish a sub class of M V ,  called the M V-com plete  class. In a sense, 
this class includes the hardest problems in computer science, and is characterized by the 
fact that either all problems that are M V-com plete  are in V , or not in V . Many M V -  
complete problems may require finding a subset within a base set (e.g. the SAT problem), 
or an arrangement (or permutation) of discrete objects (e.g. the TSP), or partitioning an 
underlying base set (e.g. graph coloring). As mentioned above, these problems belong 
to the combinatorial optimization class of problems, and sometimes called intractable 
problems.

An optimization problem for which the associated decision problem is M V-complete is 
called an M V -hard  problem. A decision problem  is a problem that has only two pos
sible answers: yes or no. For example, if the problem is a cost minimization problem, 
such that it is required to find a solution with the minimum possible cost, the associated 
decision problem would be formulated as: “ is there a solution to the problem whose cost 
is B , where B  is a positive real number?” . Figure 2.2 demonstrates how the different 
complexity classes may relate to each other. For more details about algorithm analysis 
and complexity theory, the reader is referred to the book by Garey and Johnson [54] and 
Cormen et al. [32].

Solving CO problems has been a challenge for many researchers in computer science and 
operations research. Exact methods used to solve regular problems cannot be used to 
solve CO problems given current resources, since searching among all possible solutions 
of a certain intractable problem is usually prohibitive for large problem sizes. The natural 
alternative would be to use approximation methods that give good, rather than optimal, 
solutions to the problem in a reasonable amount of time.

In the next section we briefly consider some exact methods that can be used to solve

2Running times of 0 ( n ) are usually called linear running times. Also, running time of 0 ( n k) are often 
referred to as polynomial running times, while running times of 0 (2 n) are called exponential running times.
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Figure 2.2: Complexity Classes.

CO problems. However, since exact algorithms are not practical solution methods for 
the applications considered in this thesis, our discussion of these techniques will be very 
brief. On the other hand, a more detailed investigation of approximation algorithms, i.e., 
heuristics and meta-heuristics, will be presented in Section 2.3.

2.2 Exact Algorithms

As previously mentioned, exact algorithms are guaranteed to find an optimum solution 
for a CO problem if one exists, given a sufficient amount of time. In general, the most 
successful of these algorithms try to reduce the solution space and the number of different 
alternatives that need to be examined in order to reach the optimum solution. Some exact 
algorithms that have been applied to solving CO problems are the following:

1. Dynamic Program m ing (DP): which refers to the process of simplifying a com
plicated problem by dividing it into smaller subproblems in a recursive manner. 
Problems that are solved using dynamic programming usually have the potential of 
being divided into stages with a decision required at each stage. Each stage also 
has a number of states associated with it. The decision at one stage transforms the 
current state into a state in the next stage. The decision to move to the next state 
is only dependent on the current state, not the previous states or decisions. Top- 
down dynamic programming is based on storing the results of certain calculations, 
in order to be used later. Bottom-up dynamic programming recursively transforms a
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complex calculation into a series of simpler calculations. Only certain CO problems 

are amenable to DP.

2. Branch-and-Bound (B&B): is an optimization technique which is based on a sys
tematic search of all possible solutions, while discarding a large number of non
promising candidate solutions, using a depth-first strategy. The decision to discard 
a certain solution is based on estimating upper and lower bounds of the quantity 
to be optimized, such that nodes whose objective function are lower/higher than 
the current best are not explored. The algorithm requires a ‘branching’ tool that 
can split a given set of candidates into two smaller sets, and a ‘bounding’ tool that 
computes upper and lower bounds for the function to be optimized within a given 
subset. The process of discarding fruitless solutions is usually called ‘pruning’. The 
algorithm stops when all nodes of the search tree are either pruned or solved.

3. B ranch-and-C ut (B&C): is a B&B technique with an additional cutting step. The 
idea is to try to reduce the search space of feasible candidates by adding new 
constraints (cuts). Adding the cutting step may improve the value returned in the 
bounding step, and could allow solving subproblems without branching.

2.3 Heuristic Algorithms

Given the limitation of exact methods in solving large CO problems, approximation tech
niques are often preferred in many practical situations. Approximation algorithms, like 
heuristics and meta-heuristics3, are techniques that solve ‘hard’ CO problems in a rea
sonable amount of computation time, compared to exact algorithms. However, there is 
no guarantee that the solution obtained is an optimal solution, or that the same solution 
quality will be obtained every time the algorithm is run.

Heuristic algorithms are usually experience-based, with no specific pre-defined rules to 
apply. Simply, they are a ‘common-sense’ approach to problem solving. On the other 
hand, an important subclass of heuristics are meta-heuristic algorithms, which are general- 
purpose frameworks that can be applied to a wide range of CO problems, with just minor 
changes to the basic algorithm definition. Many meta-heuristic techniques try to mimic 
biological, physical or natural phenomena drawn from the real-world.

3In this discussion we use the term approximation/heuristic algorithm to refer to any ‘non-exact’ so
lution method. More accurately, however, the term approximation algorithm is often used to refer to an 
optimization algorithm which provides a solution that is guaranteed to be within a certain distance from the 
optimum solution every time it is run, with provable runtime bounds [ 153]. This may not be necessarily the 
case for heuristic algorithms, though.
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In solving a CO problem using a heuristic or a meta-heuristic algorithm, the search for 
a good problem solution is usually divided into two phases: solution construction and 
solution improvement. Solution construction refers to the process of creating one or more 
initial feasible solutions that will act as a starting point from which the search progresses. 
In this phase, a construction heuristic usually starts from an empty solution and gradually 
adds solution components to the partially constructed solution until a feasible solution 
is generated. On the other hand, solution improvement tries to gradually modify the 
starting solution(s), based on some predefined metric, until a certain solution quality is 
obtained or a given amount of time has passed.

Within the context of searching for a good quality solution, we usually use the term search 
space to refer to the state space of all feasible solutions/states that are reachable from the 
current solution/state. To find a good quality solution, a heuristic or a meta-heuristic al
gorithm moves from one state to another, i.e., from one candidate solution to another, 
through a process that is often called Local Search (LS). During LS, the new solution 
is usually generated within the neighbourhood of the previous solution. A neighbou
rhood N( x )  of a solution x  is a subset of the search space that contains one or more 
local optima, the best solutions in this neighbourhood. The transition process from one 
candidate solution to another within its neighbourhood requires a neighbourhood move 
that changes some attributes of the current solution to transform it to a new solution x ' . 
A cost function f ( x )  is used to evaluate each candidate solution x  and determine its cost 
compared to other solutions in its neighbourhood. The best solution within the overall 
search space is called the globally optimal solution, or simply the optimum solution. 
Figure 2.3 shows a search space for a minimization function, i.e., our goal is to obtain the 
global minimum for this function. In this figure three points (solutions) are local optima 
within their neighbourhoods, A, B  and C. The global optimum among the three points is 
point C.

Several modifications to the basic local search algorithm have been suggested to solve CO 
problems. For example, Baum [10] suggested an Iterated Local Search (ILS) procedure 
for the TSP, in which a local search is applied to the neighbouring solution x'  to obtain 
another solution x".  An acceptance criterion is then applied to possibly replace x'  by x " . 
Voudouris and Tsang [154] suggest a Guided Local Search (GLS) procedure, in which 
penalties are added to the objective function based on the search experience. More spe
cifically, the search is driven away from previously visited local optima, by penalizing 
certain solution features that it considers should not occur in a near-optimal solution.

In addition, some local search methods have been formulated under the meta-heuristic fra
mework, in which a set of predefined rules or algorithmic techniques help guide a heuristic
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Figure 2.3: Search space for a minimization problem: local and global optima.

search towards reaching high quality solutions to complex optimization problems. Among 
the most famous meta-heuristic techniques are: Hill Climbing (HC), Simulated Annea
ling (SA), Genetic Algorithms (GAs), Ant Colony Optimization (ACO), Tabu Search and 
Variable Neighbourhood Search (VNS). For more details about local search techniques 
and its different variations and applications to CO problems, the reader is referred to [3] 
and [125]. In what follows we describe some important meta-heuristic techniques that 
have been widely used for solving CO problems.

2.3.1 Hill Climbing (HC)

Hill Climbing is the simplest form of local search, where the new neighbouring solution 
always replaces the current solution if it is better in quality. The process can thus be 
visualized as a step-by-step movement towards a locally optimum solution. Figure 2.4 
shows how an HC algorithm transitions ‘downhill’ from an initial solution to a local mi
nimum. On the other hand, Algorithm 2.1 shows the steps of an HC procedure applied to 
a minimization problem.
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X

Figure 2.4: Hill Climbing: downhill transition from an initial solution to a local 
optimum.

Algorithm 2.1: Hill Climbing (HC).

1: Generate an initial solution x  
2. repeat
3: Generate a new solution x' within the neighbourhood of x  (x' € N (x))
4:
5: if (A <  0) then
6: x  <— x '
7: until (Done){stopping condition is reached}

8: Return solution x

HC is frequently applied within other meta-heuristic techniques to improve solution qua
lity at various stages of the search. In our research we tried HC among the selected ap
proaches for solving the Single Vehicle Pickup and Delivery Problem with Time Windows 
(SV-PDPTW), as will be explained in Chapter 6. HC was also an important part of the 
solution construction heuristics that we developed for the Multiple Vehicle Pickup and De
livery Problem with Time Windows (MV-PDPTW), as will be explained in Chapter 7. We 
have also applied it in parts of the algorithms developed for solving the One-Commodity 
Pickup and Delivery Problem (1-PDP), as will be shown in Chapters 9 and 10.
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2.3.2 Simulated Annealing (SA)

Simulated annealing is a well-known meta-heuristic search method that has been used 
successfully in solving many combinatorial optimization problems. It is a hill climbing 
algorithm with the added ability to escape from local optima in the search space. However, 
although it yields excellent solutions, it is very slow compared to a simple hill climbing 

procedure.

The term simulated annealing is adopted from the annealing of solids, where we try to 
minimize the energy of the system using slow cooling until the atoms reach a stable state. 
The slow cooling technique allows atoms of the metal to line themselves up and to form a 
regular crystalline structure that has high density and low energy. The initial temperature 
and the rate at which the temperature is reduced is called the annealing schedule.

The theoretical foundation of SA was led by Kirkpatrick et al. in 1983 [93], where they 
applied the Metropolis algorithm  [107] from statistical mechanics to CO problems. The 
Metropolis algorithm in statistical mechanics provides a generalization of iterative im
provement, where controlled uphill moves (moves that do not lower the energy of the 
system) are probabilistically accepted in the search for obtaining a better organization and 
escaping local optima. In each step of the Metropolis algorithm, an atom is given a small 
random displacement. If the displacement results in a decrease in the system energy, the 
displacement is accepted and used as a starting point for the next step. If on the other hand 
the energy of the system is not lowered, the new displacement is accepted with a certain 
probability exp(_f;/fc6T) where E  is the change in energy resulting from the displacement, 
T  is the current temperature, and kb is a constant called a Boltzmann constant. Depending 
on the value returned by this probability either the new displacement is accepted or the 
old state is retained. For any given T, a sufficient number of iterations always leads to 
thermal equilibrium. The SA algorithm has also been shown to possess a formal proof of 
convergence using the theory of Markov Chains [47].

In solving a CO problem using SA, we start with a certain feasible solution to the pro
blem. We then try to optimize this solution using a method analogous to the annealing 
of solids. A neighbour of this solution is generated using an appropriate method, and the 
cost (or the fitness) of the new solution is calculated. If the new solution is better than 
the current solution in terms of reducing cost (or increasing fitness), the new solution is 
accepted. If the new solution is not better than the current solution, though, the new solu
tion is accepted with a certain probability. The probability of acceptance is usually set to 
exp(~A/T), where A is the change in cost between the old and the new solution and T  is 
the current temperature. The probability thus decreases exponentially with the badness of
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the move.

The SA procedure is less likely to get stuck in a local optimum, compared to a simple 
HC, since bad moves still have a chance of being accepted. The annealing temperature is 
first chosen to be high so that the probability of acceptance will also be high, and almost 
all new solutions are accepted. The temperature is then gradually reduced so that the 
probability of acceptance of low quality solutions will be very small and the algorithm 
works more or less like hill climbing, i.e., high temperatures allow a better exploration of 
the search space, while lower temperatures allow a fine tuning of a good solution. The 
process is repeated until the temperature approaches zero or no further improvement can 
be achieved. This is analogous to the atoms of the solid reaching a crystallized state. 
Figure 2.5 shows how occasional uphill moves may allow the SA algorithm to escape 
local optima in a minimization problem, compared to the HC algorithm shown in Figure 
2.4.

F(x)

X

Figure 2.5: Simulated Annealing: occasional uphill moves and escaping local optima.

Applying SA to CO problems also requires choices concerning both general SA para
meters and problem specific decisions. The choice of SA param eters is critical to the 
performance of the algorithm. These parameters are: the value of the initial temperature 
T, a temperature function that determines how the temperature will change with time, the
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number of iterations N ( t ) to be executed at each temperature, and a stopping criterion to 

terminate the algorithm.

As previously mentioned, the initial temperature T (0) is generally chosen high enough 
so that almost any move is accepted regardless of its fitness. This choice is adopted from 
the physical analogy and corresponds to heating up a substance until all particles are 
randomly arranged in a liquid. The temperature update function is usually a proportional 
temperature function T ( t  +  1) =  a T { t), where t is the current iteration. Typical values 
of a  lie between 0.8 and 0.99. Using such values provides very small decrements of the 
temperature, which corresponds to slow cooling of the substance until the temperature 

approaches zero.

The number of iterations carried out at each temperature value should be large enough to 
bring the system to a stable state equating to thermal equilibrium in the physical analogy. 
Some applications may choose N( t )  to be constant for each temperature. The stopping 
criterion of the algorithm is usually the stagnation of the system when no change in the 
result can be obtained for a specified number of iterations or temperature changes.

Implementing SA also requires a set of problem-specific decisions. These include: iden
tifying the set of feasible solutions to the problem, defining a clear objective function, ge
nerating an initial solution, and defining a neighbourhood operator that generates moves 
using the current solution.

The topology of the neighbourhood structure is also critical to the performance of the SA 
algorithm. In general, a smooth topology with shallow local optima is favoured over a 
bumpy topology with many deep local minima. A neighbourhood function is also easy to 
implement for discrete problems, while implementing a neighbourhood function for conti
nuous problems is more challenging. Constrained problems also raise some difficulties. 
A choice must be made between restricting the solution space to solutions that conform to 
the constraints, or allowing solutions that break the constraints at the expense of a suitably 
defined penalty function. The generic SA algorithm is described in Algorithm 2.2, where 
the underlying optimization problem is again assumed to be a minimization function.

Some modifications to the basic SA algorithm have been suggested. These modifications 
are intended to provide an improvement of the quality of the solution and/or processing 
time. One attempt is to store the best solution found so far. Since the SA algorithm accepts 
solutions probabilistically, it may accept solutions that are worse than the current solution. 
A good solution found during the run may be discarded because it was not lucky during 
the acceptance attempt. Storing the best solution found so far prevents the SA algorithm 
from returning a final solution that is worse than the best solution ever found (e.g. [63]).
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Algorithm 2.2: The Simulated Annealing (SA) Algorithm.

1: Generate an initial solution x
2: T  <— To {initialize current temperature}

3: repeat
4: for (i =  0 ; i < nurn ltera tw ns\  i -f -f) do

5: Generate a new solution x'  within the neighbourhood of x  (x/ e N(x) )
6: A «— f ( x ' )  -  f ( x )

7: if (A < 0) then

8: x *- x'
9. else

10: p =  R andom (0,1) {generate a random number in the interval (0,1)}

11: if {p < exp(-A//T)) then

12: x  <— x'

13: T  <— a  x T  {reduce current temperature}

14: until (Done){stopping condition is reached}

15: Return solution .r

Some researches also modify the basic SA algorithm using problem specific information. 
For example [148] suggest a neighbourhood operator that is able to identify promising 
areas in the neighbourhood, and give a greater probability to generated moves that fall 
in the promising areas. SA has also been hybridized with other optimization techniques. 
This can be done by using another technique to generate a good initial solution that SA 
can improve, or using SA to generate a good solution that can be used by another search 
technique.

To sum up, SA has several attractive features, especially in difficult optimization problems 
in which obtaining a good solution, with a reasonable computational effort and proces
sing time, is preferred to an optimal solution with considerably higher cost. The basic 
advantages of SA are the following:

1. It is very easy to implement, since it just requires a method for generating a move in 
the neighbourhood of the current solution, and an appropriate annealing schedule.

2. It can be applied to a wide range of problem types. For example, any combinatorial 
optimization problem can be tackled using SA, if an appropriate neighbourhood 
structure has been devised.

3. High quality solutions can be obtained using SA, if a good neighbourhood structure 
and a good annealing schedule have been chosen.
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These benefits, however, may be at the expense of a longer processing time, compared 
to simple hill climbing. In our research we applied SA to solving the SV-PDPTW, as 
explained in Chapter 6, and for the MV-PDPTTW, as explained in Chapter 8. We also 
hybridized SA with a Variable Neighbourhood Search (VNS) approach for solving 1-PDP, 

as will be shown in detail in Chapter 10.

2.3.3 Genetic Algorithms (GAs)

The idea of simulation of biological evolution and the natural selection of organisms dates 
back to the 1950’s. One of the early pioneers in this area was Alex Fraser with his research 
published in 1957 [50] [51]. Nevertheless, the theoretical foundation of GAs were esta
blished by John Holland in 1975 [78], after which GAs became popular as an intelligent 
optimization technique that may be adopted for solving many difficult problems.

The theme of a GA is to simulate the processes of biological evolution, natural selection 
and survival of the fittest in living organisms. In nature, individuals compete for the re
sources of the environment, and they also compete in selecting mates for reproduction. 
Individuals who are better or fitter in terms of their genetic traits survive to breed and 
produce offspring. Their offspring carry their parents’ basic genetic material, which leads 
to their survival and breeding. Over many generations, this favourable genetic material 
propagates to an increasing number of individuals. The combination of good characteris
tics from different ancestors can sometimes produce ‘super fit’ offspring who out-perform 
their parents. In this way, species evolve to become better suited to their environment.

GAs operate in exactly the same manner. They work on a population of individuals re
presenting possible solutions to a given problem. In traditional GAs, each individual is 
usually represented by a string of bits analogous to chromosomes and genes, i.e., the 
parameters of the problem are the genes that are joined together in a solution chromo
some. A fitness value is assigned to each individual in order to judge its ability to survive 
and breed. The highly fit individuals are given a chance to breed by being selected for 
reproduction. Thus, the selection process usually favours the more fit individuals. Good 
individuals may be selected several times in one iteration, while poor ones may not be 
selected at all. By selecting the ‘most fit’ individuals, favourable characteristics spread 
throughout the population over several generations, and the most promising areas of the 
search space are explored. Finally, the population should converge to an optimal or near 
optimal solution. Convergence means that the population evolves toward increasing uni
formity, and the average fitness of the population will be very close to the highest fitness.

During the reproduction phase of a GA, two individuals breed by combining their genes in
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an operation called crossover. Not all selected pairs undergo crossover. A random choice 
is applied, where the likelihood of crossover is some given probability. If crossover is not 
performed, offspring are produced simply by duplicating their parents. Crossover allows 
the basic genetic material of parents to pass to their children, who then form the next 
generation.

Another operation that is performed by GAs is mutation. Mutation is applied to each 
child generated from crossover. With a certain small probability, each gene may be alte
red. Thus, Crossover allows a rapid exploration of the search space by producing large 
jumps, while mutation allows a small amount of random search. The basic outline of a 
GA is shown in the following algorithm:

Algorithm 2.3: The Basic Genetic Algorithm (GA).

1: Coding: initialize and encode a random population of solutions called chromosomes 

2: repeat
3: Fitness Assignment: decode and evaluate the fitness of each chromosome

4: Selection: select some chromosomes from the current population for reproduction, where
the selection criterion is based on the fitness of the selected parents 

5: Recombination: with some probability apply crossover between the selected parents to
produce new children

6: Variation: apply mutation with a small probability to some genes of the newly produced
offspring, or to selected members of the population 

7: Replacement: integrate the newly generated offspring with the old population to create a
new generation 

8: until (a certain stopping condition is reached)

The traditional GA uses strings of bits to represent chromosomes. In addition, the classical 
crossover operator is called one-point crossover, where the two mating chromosomes 
are each cut once at corresponding points and the sections after the cuts are exchanged. 
However, many different crossover types have been devised, often involving more than 
one cut point. For example, in a two-point crossover two cut points are chosen randomly 
in the parent chromosomes. The section between the selected cut points is exchanged 
between the two children. Another form of crossover is called uniform crossover, in 
which a random mask of bits is generated. Each gene in the offspring is created by copying 
the corresponding gene from one of the parents. The parent is selected according to the 
value of the corresponding bit in the mask. These three crossover operators are illustrated 
in Figure 2.6.

On the other hand, the most popular mutation operators are point mutation, where one
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bit in the chromosome is flipped, and inversion mutation, in which a substring is selected 
at random and the bits within this substring are inverted. Figure 2.7 demonstrates these 
two mutation operators.

GO

Parent 1

Parent 2

C hild  1

1 1 0 0 1 1 1 0 0 I 0

0 1 0 1 0 1 0 1 1 1

1 1 0 0 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 0
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C hild 1

C hild 2

1 1 0 0 1 1 1 0 0 0

0 1 0 1 0 1 o I 1 1 1

1 1 0 0 0 1 0 0 0 0

0 1 0 1 1 1 J J h 1 1

(a) One-point Crossover (b) Two-point Crossover

Mask 0 0 1 0  1 0  1 0  110

Parent 1 1 1 0 o 1 1 1 0 0 0

Parent 2 0 1 0 1 0 1 0 1 1 1

Child 1 1 1 0 0 0 1 0 0 1 0

Child 2 0 1 0 1 l 1 1 1 1 0 1

(c) Uniform Crossover 

Figure 2.6: Crossover.
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(a) Point Mutation (b) Inversion Mutation

Figure 2.7: M utation.
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Chromosome representation as a bit string is not suitable for many problems types, though. 
For example, a permutation of integers representing nodes or locations has been often used 
for the TSP and other vehicle routing problems. This kind of representation is called an 
order-based representation, since the fitness depends on the order in which the genes ap
pear. Different crossover and mutation operators must be used in this case, since classical 
genetic operators, such as the ones described above, will result in ‘infeasible’ chromo
somes. Goldberg in [64] described several order-based operators, such as the Partially 
Matched Crossover (PMX). In a PMX, it is not the genes that are crossed, but the order 
in which they appear, i.e., offspring have genes that inherit order information from each 
parent. This avoids the problem of generating offspring that violate problem constraints, 
such as having duplicate cities in a chromosome that represents a solution to the TSP, or 
having a chromosome with some non-visited cities. Figure 2.8 shows an example of a 
PMX, where cities 5,6,7 exchange their positions with 2, 3 and 10 respectively. Other 
crossover operators that can be used for order-based representations are cycle crossover 
and order crossover (see [64] for details).

Parent 1 9 8 4 5 6 7 1 I 3 2 10

8 7 1 2 3 10 9 | 5 1 4 6 |

9 8 4 2 3 10 1 6 5 7

8 10 1 5 6 7 9 2 4 3

Figure 2.8: Partially Matched Crossover (PMX).

To select two individuals in the population for mating, several selection methods may 
be applied. For example, in a rank selection, individuals are sorted according to their 
objective function values, and each individual is assigned a number of offspring that is 
a function of its rank in the population. Roulette wheel selection picks an individual, 
with a probability, based on the magnitude of the fitness score relative to the rest of the 
population. The higher the score, the more likely an individual will be selected, and the 
probability of the individual being chosen is equal to the fitness of the individual divided 
by the sum of the fitness values of all individuals in the population. On the other hand, a 
tournament selection uses the roulette wheel, or another selection method, to select two



28 2.3 Heuristic Algorithms

or more individuals, then picks the one with the higher score.

Similarly, many replacem ent schemes can be used to integrate the new offspring and 
produce the next generation. In a Simple GA, the new generation of offspring comple
tely replace the old population, while a Steady State GA allows generations to overlap, 
with a certain percentage of replacement. On the other hand, an Increm ental GA only 
allows a small degree of overlap between generations, for example by replacing one or 
two individuals at each generation.

In summary, GAs represent an intelligent search method, since they operate on a popu
lation of solutions and allocate trials to promising areas of the search space. GAs do not 
depend heavily on information available from the underlying problem. They are easy 
to connect to existing simulations and models, and can be easily hybridized to generate 
knowledge-augmented GAs. Using the operations of selection of the fittest, mutation, 
and crossover, GAs can quickly reach fit individuals (not always the most fit), but who are 
usually good enough as solutions to problems of a large magnitude. Crossover is consi
dered as the main GA operator. Having to combine two solutions rather than one, makes 
designing an appropriate crossover operator often more challenging than developing a 
mutation operator or a simple neighbourhood move. This usually makes GAs implemen
tation more difficult compared to SA or simple HC.

In our research we applied GAs to solving the PDPTW, for both the single and multiple 
vehicle variants, as will be explained in detail in Chapters 5, 6 and 8. We also applied a 
GA within a perturbation scheme for the 1-PDP, as will be detailed in Chapter 9.

2.3.4 Ant Colony Optimization (ACO)

Ant Colony Optimization is a meta-heuristic technique that is inspired by the behaviour of 
real ants. Its principles were established by Dorigo et al. in 1991 [42]. Real ants coope
rate to find food resources by laying a trail of a chemical substance called ‘pheromone’ 
along the path from the nest to the food source. Depending on the amount of pheromone 
available on a path, new ants are encouraged, with a high probability, to follow the same 
path, resulting in even more pheromone being placed on this path. Shorter routes to food 
sources have higher amounts of pheromone. Thus, over time, the majority of ants are di
rected to use the shortest path. This type of indirect communication is called ‘stigmergy’ 
[41], in which the concept of positive feedback is exploited to find the best possible path, 
based on the experience of previous ants. Figure 2.9 visualizes the foraging behaviour of 
real ants in their search for food sources.
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Figure 2.9: Foraging behaviour of ants.
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Applying ACO to hard combinatorial optimization problems is attractive, due the flexi
bility and robustness of the algorithm. In fact, the technique can be applied to solving a 
wide range of problems with only minimal changes to the basic algorithm. In addition, 
its population based nature allows exploring the search space, while exploiting positive 
feedback during the search process to find near optimal solutions.

In solving a combinatorial optimization problem using an ACO, the problem may be vi
sualized as finding the shortest path in a weighted graph. Artificial ants (software agents) 
cooperate to find the best path by constructing solutions consisting of graph nodes step- 
by-step. Each step adds a selected node to the partial solution in a stochastic manner, but 
biased by the amount of pheromone available on the nodes or the edges connecting them. 
To this end, problem-specific information is placed in a common memory, which plays 
the role of the pheromone trail. The information in the memory, i.e., the pheromone trail, 
is updated by ants at each iteration, allowing ants to cooperate in finding good problem 
solutions. Pheromone values also diminish over time, similar to the evaporation of real 
pheromone. Thus, solutions of bad quality are eliminated from further consideration as 
the search progresses. Algorithm 2.4 shows the main steps of the ACO meta-heuristic.

Algorithm 2.4: The Ant Colony Optimization (ACO) Algorithm.

1: Set parameters, initialize pheromone trails 
2: while (termination condition not met) do 
3: Construct AntSolutions
4: DaemonActions {optional}

5: Update Pheromones

The steps of Algorithm 2.4 are briefly explained below:

1. Construct AntSolutions: during this phase, each ant constructs a solution from the 
set of feasible problem solutions, by adding one solution component at each step of 
the construction process to the current partial solution. For example, in solving a 
TSP, the construction process will add one non-visited city at a time to the current 
solution. The choice of the new solution component depends on a probabilistic rule 
that takes into account both the pheromone trail of the component at the current 
iteration and other problem-specific heuristic information. In a TSP, the pheromone 
trail is associated with the edge connecting the last added city and the potential new 
city, such that edges previously used by other ants are favoured, due to an increased 
pheromone value. On the other hand, the heuristic information (sometimes called 
the attractiveness) will be proportional to the length of the edge connecting the two
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cities. Certain parameters are also used in the probabilistic rule to determine the 
relative importance of the pheromone trail and the heuristic information. During 
the solution construction, individual ants may update the pheromone trail on the 
edges they visited in a process called local pheromone update.

2. DaemonActions: in this optional step of the ACO algorithm, some problem-specific 
action may be required, which cannot be usually performed by a single ant. For 
example, local search may be applied to optimize the set of generated solutions. 
The new optimized solutions are then used to decide which pheromone trails to 
update.

3. UpdatePheromones: this is a global pheromone update process that is performed 
at the end of each iteration, where updating the pheromone values depends on the 
quality of the generated solutions in the current iteration. This is usually done by 
decreasing the pheromone value for all solutions, in a process called evaporation, 
and increasing the pheromone value of good solutions. Evaporation is a tool that 
ACO uses to explore new areas of the search space and avoid being trapped in local 
optima.

ACO has become very popular in solving CO problems. For example, its versatility and 
robustness have been demonstrated in [43] by tailoring the approach to the TSP, the asym
metric TSP, the Quadratic Assignment Problem (QAP), and the job-shop scheduling. It 
has also been applied to variants of vehicle routing problems (e.g. [39] and [90]). The idea 
of ‘attractiveness’ and ‘pheromone trails’ were also exploited within other meta-heuristic 
techniques. For example, in the crossover operator used by [158] for solving the 1-PDP. 
For further information about the various types of Ant systems and their applications, the 
reader is referred to the book by Dorigo and Stiitzle [44].

2.3.5 Tabu Search (TS)

Tabu search is another popular search technique proposed by Glover in 1977 [59]. Since 
then, it has been widely used for solving CO problems. Its name is derived from the word 
‘taboo’ meaning forbidden or restricted. TS, like SA, allows for exploring the search 
space ‘intelligently’ in an attempt to escape the trap of local optima. Nevertheless, there 
are three main differences between TS and SA. Firstly, unlike SA, TS only accepts moves 
within the vicinity of the current solution that improve the objective function. Secondly, 
TS always searches for the best solution in the current neighbourhood before applying 
the replacement criterion. Thirdly, the most distinguishing feature of TS is the use of
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a short term memory called a tabu list, in which moves that have been recently visited 
during the search are recorded. Moves in the tabu list are considered prohibited by the 
search and cannot be visited again for a certain number of iterations. The idea is to avoid 
the problem of cycling, meaning that the search may be trapped within the boundaries 
of a certain neighbourhood region, oscillating among solutions that have been previously 
visited, as illustrated in Figure 2.10. By prohibiting recently visited moves, the algorithm 
is forced to explore new areas of the search space in an attempt to escape local optima.

F(x)

X

Figure 2.10: The problem of cycling.

The size of the tabu list is usually fixed, such that some old tabu moves are removed to 
allow for recording new moves recently visited, and the duration that a move is declared 
tabu is called its tabu tenure. Hence, the structure of the neighbourhood being searched 
varies dynamically from one iteration to another. However, always restricting the search 
to non-tabu moves may prevent some promising search areas from being explored. To 
avoid this problem, TS often makes use of an aspiration criteria, which allow overriding 
the tabu status of some moves that look attractive from a search perspective. For example, 
an aspiration criterion may override the tabu status of a newly generated solution, if its 
objective value is better than the best solution found so far.

To determine the tabu status of certain solutions, it is common in tabu search to identify 
particular solution features or neighbourhood moves as ‘undesirable’. Accordingly, a 
newly generated solution holding such features will be considered tabu. Similarly, some
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previously identified tabu moves may be prohibited during certain stages of the search.
Algorithm 2.5 shows the main steps of TS for a cost minimization problem.

Algorithm 2.5: The Tabu Search (TS) Algorithm.

1: Initialize an empty Tabu List T

2: Generate an initial solution x
3: Let x * <— x  {x* is the best so far solution)

4: repeat
5: Generate a subset S  of solutions in N(x)  { N(x)  is the current neighbourhood of x }

6: Select the best neighbourhood move x'  6 S, where f ( x  ') < f i x)
7: i f ( / (x ')  < /(x* ))th en

8: x* <— x'  {aspiration condition: if current solution improves best so far, accept it even if
it is in the tabu list)

9: x  <— x'  {update current solution)

10: T  <— T  + x'  {update tabu list)

11: else
12: if {x' e N(x) \  T)  then
13: x  <— x'  {update current solution if the new solution is not tabu)

14: if ( f{x ' )<  f{x*))  then
15: x* <— x'  {update the best so far solution if the new solution is better in quality)

16: T  *— T  + x'  {update tabu list)
17: until (Done){stopping condition is reached)

18: Return solution x*

It is also sometimes fruitful in TS to make use of an intensification and/or a diversifica
tion mechanism. Intensification tries to enhance the search around good solutions, while 
diversification tries to force the algorithm to explore new search areas, in order to escape 
local optima. For example, intensification can be performed by encouraging solutions that 
have some common features with the current solution. On the other hand, diversification 
may be enforced by applying a penalty in the objective function, at some stage of the 
search, to solutions that are close to the present one [ 156).

Some variations of TS also exist in the literature, for example Probabilistic TS assigns 
a probability to neighbourhood moves, such that some attractive moves that lower the 
solution cost are given a higher probability, while moves that result in a repetition of 
some previous state are given a lower probability [63]. Also, a Reactive TS was proposed 
by Battiti and Tecchiolli [8] in which the size of the tabu list is adapted dynamically during 
the search, according to the frequency of repeated moves.

TS has been extensively applied to many CO problems. For example, it has been applied
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to scheduling in manufacturing systems in [113], to uniform graph partitioning in [36], 
to the Quadratic Assignment Problem (QAP) in [140]. In addition, it was applied to 
many variants of vehicle routing problems, for example in [129], [100], [112], [143] and 
[99]. For more details about some variations and applications of tabu search, the reader is 
referred to [62] and [55].

2.3.6 Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search (VNS) is a relatively new meta-heuristic that has been 
suggested by Hansen and Mladenovic in [69] and [70]. The main idea is based on explo
ring the search space by gradually increasing the neighbourhood size, within which a new 
solution is generated, until a certain stopping condition is reached. In addition, whenever 
a new solution is generated in the current neighbourhood, a local search is applied to this 
solution to optimize it before the replacement decision is undertaken. The basic VNS 
algorithm, as described in [70], is shown in Algorithm 2.6.

Algorithm 2.6: The Variable Neighbourhood Search (VNS) Algorithm [70].

1: Initialization: Select the set of neighbourhood structures N k, (k — 1 , . . .kmax), that will be 

used in the search 
2: Generate an initial solution x  

3: repeat
4: k  <- 1
5: while (k < kmax) do
6: Shaking: Generate a point x'  at random from the k th neighbourhood of x (x' E N k (x))

7: Local Search: Apply some local search method with x'  as initial solution; denote with
x"  the so-obtained local optimum 

8: Move or not. if the local optimum x"  is better than the incumbent, move there (x x"),
and continue the search with N\ (k <— 1); otherwise set k  <— k +  1 

9: until (Done)[stopping condition is reached]

10: Return solution x

In the above VNS algorithm, the neighbourhood size k increases from 1 to a certain maxi
mum value kmax. The most important step is the Shaking step in which a new point 
(solution) is generated within the current neighbourhood N k(x).  It is crucial to choose a 
shaking procedure that will allow enough perturbation of the solution, while preserving, at 
the same time, the most favourable solution features which should be utilized in obtaining
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a near optimum solution as the search progresses. For example, in solving the TSP, sha
king my be performed by displacing or inverting a sequence of k cities in each iteration, 
i.e., the number of cities to be displaced is the variable neighbourhood size that gradually 
increases from one iteration to the next. On the other hand, the local search step in the 
VNS algorithm intensifies the search to obtain a local optimum, which may replace the 
current solution. For example, in a TSP a 2-Opt improvement heuristic may be applied as 
a local improvement method (see Section 3.4 for more details about the 2-Opt heuristic).

The basic VNS procedure is a descent algorithm with a first acceptance criterion. Ho
wever, the algorithm can be easily changed to a descent/ascent procedure, similar to SA, 
by accepting bad moves with a certain probability in Step 8 (move or not) of Algorithm 
2.6. Also, the first improvement criterion adopted by the basic VNS in the same step, 
may be changed to a best improvement by selecting the neighbourhood k*, which yields 
the best improvement, among all kmax neighbourhoods. Other variations include starting 
the neighbourhood size from a certain value kmin rather than 1, and varying the step size,
such that increasing the neighbourhood size allows jumps to far away regions of the space
[70].

Another important variant of the basic VNS algorithm, called Variable Neighbourhood 
Descent (VND), was also suggested by Hansen in [70]. The idea is to apply a change of 
neighbourhood size within the local search as well. The steps of the VND algorithm as 
described in [70] are shown in Algorithm 2.7.

Algorithm 2.7: The Variable Neighbourhood Descent (VND) Algorithm [70].

1: Initialization: Select the set of neighbourhood structures Nk,  (k  =  1 ,...kmax), that will be 
used in the local search

2: Generate an initial solution x
3: repeat
4: Set k <— 1
5: while (k < kmax) do
6: Exploration o f the neighbourhood: Find the best neighbour x'  of x (x1 e  Nk{x))

7: Move or not: if x'  is better than x, set (x <— x') \ otherwise set k <— k + 1.

8: until (Done)]no further improvement is obtained}

9: Return solution x

The VNS meta-heuristic offers many attractive features that have encouraged researchers 
to use it for CO problems. First, the algorithm is simple, easy to understand and imple
ment, and, to a large extent, parameter-independent. Second, well-known neighbourhood 
moves and local search methods can be easily integrated in several ways and applied wi
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thin the VNS framework. Third, it is a robust technique that can be used in a variety of 
problem types with almost no modification to the basic structure of the algorithm. Fi
nally, it can be easily hybridized with other heuristic and meta-heuristic approaches to 
solve hard optimization problems. In fact, VNS has been successfully used in solving 
many well-known CO problems. For example, it has been applied to the TSP and the 
facility location problem in [70], and to the graph coloring problem in [6]. It has also 
been extensively applied to vehicle routing problems, for example in [19], [119], [118] 
and [73]. For more details about advances in VNS and its applications, the reader is re
ferred to the recent work by Hansen et a i  [71]. As previously mentioned, our research 
applied the VNS approach, hybridized with SA, in solving the 1-PDP, as will be explained 
in detail in Chapter 10.

2.4 Chapter Summary

Conventional OR techniques may not be sufficient for solving complex optimization pro
blems, which model a large number of decision making strategies in real-world applica
tions. Heuristic and meta-heuristic techniques, which usually perform well in most prac
tical situations, have become increasingly popular among researchers in the optimization 
field.

In this chapter we introduced combinatorial optimization problems and the theory of al
gorithm and complexity analysis. We then briefly highlighted some exact algorithms that 
can be used to solve these problems to optimality, for limited problem sizes only. For 
more practical applications, though, a heuristic or a meta-heuristic approach is usually the 
preferred option. We reviewed in this chapter some important meta-heuristic techniques 
like Local Search, Simulated Annealing, Genetic Algorithms, Ant Colony Optimization, 
Tabu Search, and Variable Neighbourhood Search.

In the next chapter, we will introduce an important class of CO problems, which is the 
class of vehicle routing and scheduling. A particular variant of vehicle routing problems, 
pickup and delivery problem s, is introduced in Chapter 4. Since pickup and delivery 
problems are the main theme of our research, our investigation of some selected problems 
from this category continues in Chapters 5 to 10.
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Chapter 3

Vehicle Routing Problems: A Literature 
Review

Solving the Vehicle Routing Problem (VRP) and its related variants is an important field 
in the area of Operations Research (OR), which has attracted a growing interest in recent 
years. Effective decision support tools that can be adopted in logistic planning are cur
rently in great demand, since they can lead to a substantial cost reduction and efficient 
resource consumption. In addition, they can help reduce the negative environmental im
pacts of transportation. An European Commission White Paper [1] states:

A modern transport system must be sustainable from an economic and social as well 

as an environmental viewpoint. Plans for the future of the transport sector must 
take account of its economic importance. Total expenditure runs to some EUR 1000 

billion, which is more than 10% of gross domestic product. The sector employs 

more than 10 million people. It involves infrastructure and technologies whose cost 
to society is such that there must be no errors of judgment.

The use of automated route planning and scheduling can lead to huge savings in transpor
tation costs, typically ranging from 5% to 20% [147], which should contribute to boosting 
the overall economic system. This great potential, together with the advancement in tech
nological and computational powers in the last three decades, has encouraged researchers 
to experiment with diverse algorithms and address different applications, in order to meet 
the increase in demand for effective vehicle routing support tools. This indeed resulted 
in a large increase in the literature dealing with the VRP, especially given that its theme 
encompasses several intertwined disciplines, such as scientific computing, operations re
search, and business and management [48].

The rest of this chapter is organized as follows: Section 3.1 gives an idea about the dif
ferent types of vehicle routing problems existing in the literature and highlights the diver
sity of published research in this area. Section 3.2 briefly describes one particular VRP va
riant that is of interest to our research: the Vehicle Routing Problem with Time Windows
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(VRPTW). Section 3.3 emphasizes heuristic approaches for the solution construction of 
the VRPTW, while Section 3.4 describes some popular solution improvement heuristics. 
Section 3.5 then briefly summarizes some meta-heuristic algorithms that were applied to 
the VRPTW. Finally, section 3.6 concludes this chapter with a short summary.

3.1 Vehicle Routing Problems (VRPs)

VRPs generally involve problems that deal with the transportation of goods or people bet
ween depots and customers, where the objective is to design an optimum schedule for one 
or more vehicles to service the clients with minimum possible operational cost and maxi
mum customer satisfaction. For example, the routing and scheduling plan may try to mi
nimize the number of vehicles used, the total distance traveled, and the labour force used. 
At the same time, it may try to maximize orders and volumes serviced per unit distance. 
Moreover, for practical applicability of the problem, a number of constraints are usually 
added to the basic model. These may include respecting the capacity of the vehicle, ap
plying a certain visiting order, or adhering to preferred service times for clients and to the 
maximum working hours of drivers. Other practical considerations include service types 
for customers (delivery and/or collection), number of depots (one/two/multiple), types of 
operating vehicles (homogeneous/heterogeneous), drivers availability (fixed/variable start 
times), and whether the information concerning routing requests is known in advance or 
revealed in real-time.

As a generalization of the famous TSP, the VRP is an AfV -hard  problem [54] [147]. This 
fact, together with the above mentioned constraints and practical considerations, add to 
the difficulty of handling the different variants of vehicle routing problems, and contribute 
to the existence of a wealth of models and algorithms that deal with this problem.

Given the large amount of published research tackling the various types of VRPs [48], 
it becomes increasingly difficult to keep track of all problem types and underlying so
lution methods. However, a general classification of the basic routing and scheduling 
problems and their interconnections is shown in Figure 3.1. Two main problem catego
ries are distinguished in this figure, based on the observation that routing and scheduling 
problems are usually represented as graphical networks, in which pickup and/or delivery 
points are represented as nodes connected with line segments called arcs. The first cate
gory is called node routing problems, in which the service demand is associated with 
nodes (locations). The second category is called arc routing problems, in which the 
service demand is associated with the arc connecting two nodes. Arc routing problems 
involve applications like refuse collection and winter gritting, and are often referred to as



3.1 Vehicle Routing Problems (VRPs) 39

the Chinese Postman Problem (CPP) [66]. The CPP, though, is beyond the scope of our 
research and will not be addressed further. As Figure 3.1 indicates, the simplest type of 
node routing problems is the TSP, in which a single vehicle is required to visit a number 
of nodes, with no restriction on the capacity of the vehicle. It is required in the TSP that 
the trip starts and ends at the same node, without identifying a particular depot point. The 
multiple-vehicle variant of the TSP is called the Multiple Traveling Salesman Problem 
(MTSP). If the demands of locations are added to the problem, the capacity of the vehicle 
is restricted, and a depot point is identified, it is usually called the Capacitated Vehicle 
Routing Problem (CVRP). Requesting two different service types (pickup and delivery) 
in the problem instance, transforms it to the Pickup and Delivery Problem (PDP) category. 
In addition, a service time window (TW) may be imposed on any of the above variants 
to allow for more realistic applications of the problem, in which the visiting time of each 
node is restricted between certain pre-defined bounds. For further details about the main 
variants of the VRP and both exact and heuristic methods applied to solving it, the reader 
is referred to the book edited by Toth and Vigo [147].

Unlimited Vehicle Capacity

MTSP

Limited Vehicle Capacity

Mixed Services

Time Windows

PDPTW

TSP

PDP

CPP

VRPTW

CVRP

Vehicle Routing 
and 

Scheduling

Node Routing 
Problems

Arc Routing 
Problems

Figure 3.1: Vehicle routing and scheduling problems.
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Recently, Eksioglu et a l  in 2009 carried out a taxonomic review of the VRP [48], in 
which they demonstrated that the growth in the literature published from 1955 to 2005 is 
almost perfectly exponential, if we eliminate the first two years of data. Despite this large 
increase in published VRP literature, other OR/MS (Operations Research/Management 
Sience) disciplines have grown at a much higher rate, which indicates that research in the 
VRP area is probably more sophisticated and requires high skills in analysis and design. 
The authors classified the characteristics of different VRPs, which should help understand 
the extent of the available literature and also identify potential areas where more research 
seems to be needed. Their taxonomy of the VRP research as it appears in [48] is shown 

in Figure 3.2.

This taxonomy classifies the VRP literature under five major categories:

1. Type of Study: which identifies the nature of the study itself, for example: theore
tical or applied. Some techniques listed under applied literature include exact and 
heuristic methods.

2. Scenario C haracteristic: which indicates the problem characteristics and the ope
rating scenario of the vehicle routing process. For example, under this category, 
static problems, in which all requests are determined in advance of the solution pro
cess, are distinguished from dynamic problems in which some requests may arrive 
later (in real-time). Dynamic problems should account for some probable changes 
in the current progressing routing plan. Other problem characteristics identified 
here include the type of service (pickup/deliveiy), and the precedence and coupling 
requirements 1.

3. P roblem  Physical C haracteristics: which outlines factors that directly affect the 
solution, such as number of depots, number of vehicles, capacity and time win
dows constraints. This category also distinguishes node routing problems from arc 
routing problems.

4. Inform ation C haracteristics: which identifies the nature of information presen
ted and accessed by the underlying solution methodology, and is mainly directed 
to the study of fuzzy and dynamic routing problems. For example, acting under 
uncertainty, when certain information (e.g. delays/vehicle breakdown) are revealed 
during an emergency situation, may fall under this category.

5. D ata C haracteristics: identifies the type o f data used to evaluate the solution me
thod, such as real-world or synthesized data.

‘Precedence means that a pickup location must precede its corresponding delivery, while coupling re
quires that both the pickup and its delivery must be served by the same vehicle.
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Figure 3.2: Taxonomy of the VRP literature [48].
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The above taxonomy gives a general idea about how sophisticated and diverse the VRP 
literature is. As previously mentioned in the introduction to this thesis (Chapter 1), our 
research mainly focuses on one particular variant of vehicle routing problems, which are 
problems that deal with two types of services simultaneously, pickup and delivery (PD). 
Specifically, we selected two main problems from this category, the Pickup and Delivery 
Problem with Time Windows (PDPTW) and the One-commodity Pickup and Delivery 
Problem (1-PDP), with more emphasis on the first of these two variants. In the next chap
ter, we will present a brief summary of some important PD problems, and give examples 
of published research in this field. On the other hand, we will devote the rest of this chapter 
to an important and closely related problem in the literature, which is the Vehicle Routing 
Problem with Time Windows (VRPTW). This problem is significant to our research, be
cause it bears similarities to our selected PD problems, in terms of the constraints involved 
and the solution approaches used, as well as the objective function. Moreover, it is one of 
the most well-studied problems in the vehicle routing field.

As previously mentioned in Chapter 2, exact algorithms have their limitations in solving 
large scale combinatorial optimization problems. In the vehicle routing domain, Hasle 
and Kloster [72] indicate that today’s exact methods cannot consistently solve VRP ins
tances having more than 50-100 customers, which is generally small for most realistic 
applications. Moreover, given the complexity of the problem, it is very unlikely that an 
algorithm that solves the problem to optimality in a reasonable time will be developed 
in the near future. Hence, our research mainly investigates heuristics and meta-heuristics 
as possible solution methods to the problems of interest. This literature review will, the
refore, focus on the approximation techniques introduced in Chapter 2. In other words, 
we will highlight selected published research that deals with heuristic and meta-heuristic 
methods only. Information about research that uses exact methods can be found in several 
vehicle routing and pickup and delivery problems surveys that we are going to mention 
throughout this discussion . In this chapter and the next chapter, a general classification 
and overview of the literature is presented, while more details about previous research par
ticularly related to the individual problems we tackled will be presented in the chapters 
dedicated to these problems (i.e., Chapters 5 to 10).

3.2 The Vehicle Routing Problem with Time Windows 
(VRPTW)

The VRPTW is an important problem occurring frequently in transportation systems. The 
problem deals with a number of customer requests that must be dealt with by a fleet of
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vehicles. All customers are assumed to require the same type of service (either pickup 
or delivery but not both) 2. Each vehicle route must start and end at a central depot, and 
each customer must be visited exactly once. Two main constraints are strictly enforced 
in this problem. The capacity constraint requires that the vehicle capacity should not be 
exceeded at any time, while the time window (TW) constraint requires that each customer 
must be visited during a pre-specified time window interval, i.e., if the vehicle reaches 
the customer before the beginning of its TW, it should wait until the allowed service 
time begins. Similarly, arrival after the deadline of the TW means a violation of problem 
constraints. The solution objective is usually hierarchical, such that the minimization 
of the number of vehicles used is a primary objective, followed by minimizing the total 
travel distance of the operating fleet, or the total schedule duration. Figure 3.3 shows a 
representation of a small instance of the VRPTW, before solving it (Figure 3.3(a)) and 
after solution (Figure 3.3(b)).

The VRPTW is one of the most well-studied problems in the vehicle routing research. 
Both exact and heuristic methods have been widely applied to solving this problem. In our 
current literature summary, we mostly base our review on the 2-part survey of the VRPTW 
by Braysy and Gendreau [20] and [21]. As previously mentioned, our investigation of the 
problem focuses on heuristic and meta-heuristic solution methods, since exact methods 
are only limited to small problem sizes. Up-to-date exact algorithms were only capable of 
solving some of Solomon’s benchmark instances (developed in [141]) of 100 customers

2In the current discussion, we use the terms requests and customers interchangeably to refer to the set of 
nodes to be visited. Nevertheless, a distinction between the two terms will be introduced within the context 
of the PDPTW in Chapters 5 to 8.

(a) VRPTW - before solution (b) VRPTW - after solution

Figure 3.3: The vehicle routing problem with time windows.
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to optimality. Moreover, most of the solved instances are characterized by having a short 
schedule horizon (a short TW width). The remaining (unsolved) instances have a long 
schedule horizon, and are much harder for exact algorithms to solve. For further details 
about some important exact algorithms in the VRPTW literature, the reader is refereed to 

Cordeau etal. [28].

Solving the VRPTW generally requires two types of decisions: 1) the assignment or the 
grouping decision, which means to assign to each vehicle a subset of nodes from the 
customers set, and 2) the routing and scheduling decision which involves generating a 
minimum cost route for each vehicle to visit its assigned requests, such that the generated 
route respects the capacity and TW constraints. It is often observed that for vehicle routing 
problems of this sort, the assignment decision is usually of more importance than the 
routing and the scheduling decision, in determining the final solution quality [137]. In 
addition, the solution process often consists of two phases: solution construction, in which 
one or more solutions for the problem is generated, and solution improvement, in which 
the initial solution is improved using a heuristic or a meta-heuristic approach. Both phases 
are discussed in the following two sections.

3.3 Solution Construction for the VRPTW

Solution construction refers to the creation of a set of routes for the vehicles by selecting 
nodes (customers) and inserting them in one of the partial routes already created, or in 
a new route. The decision to select a particular node for insertion is usually based on a 
cost-minimization criterion, and requires that the insertion of the node in a selected route 
does not cause violations o f problem constraints. Two main types of solution construction 
exist in the VRPTW literature: sequential construction, which builds routes one after the 
other, and parallel construction which builds several routes at the same time. Sequential 
construction does not attempt to allocate an additional vehicle unless no more requests 
can be ‘feasibly’ added to the current vehicle. A parallel construction, on the other hand, 
initially pre-specifies the number of vehicles that could be used, but more vehicles can 
be added as needed if the initial estimate of the number of vehicles does not serve all 
requests without violating the constraints of the problem. Figure 3.4 demonstrates these 
two variants.
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Figure 3.4: Solution Construction.

Several famous construction heuristic are described by Solomon in [141]. These are the 
savings heuristics, the time oriented nearest neighbour heuristic, the insertion heuristics, 
and the time oriented sweep heuristic. These heuristics are briefly explained below.

3.3.1 Savings Heuristics

This method is based on one of the most successful construction heuristics for the VRP, 
the savings heuristic proposed by Clarke and Wright [26]. The idea is to initially assign 
each customer individually to one vehicle. Thus, an initial vehicle route will only consist 
of a trip from the depot to the customer and then back to the depot. If we have two such 
routes, one serving customers i and another serving customer j ,  combining the two routes 
such that the new route will service both i and j  will result in a saving of service cost 
Sij = Ctf + CQj — fy .  This idea is illustrated in Figure 3.5.

The parallel savings construction algorithm for the VRPTW can be summarized as fol
lows:

1. Step 1: compute saving Sy for every two customers i and j ,  and sort them from 
largest to smallest;

2. Step 2: take saving SV, from top of the saving list. Search for a route containing 
(0,t) and another containing (j, 0). If such routes exist, join them to form route
(0 , i , j ,  0).

Solomon in [141] adapted the Clarke and Wright savings heuristic to the VRPTW by 
taking the route orientation into account, as shown in Figure 3.5 and Step 2 above. In 
addition the algorithm must check the capacity and time window feasibility at every step
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Cv0

Figure 3.5: The savings heuristic.

in the heuristic process 3. A limit on the waiting time is also imposed when routes are 
joined.

A sequential version of the savings heuristic will consider one route at a time, and then 
implement the best saving that can be achieved if another route is joined with the current 
route. The sequential savings heuristic can be briefly described as follows:

1. Step 1: compute saving for every two customers i and j ,  and sort them from 
largest to smallest;

2. Step 2: consider the current route (0,2, ... ,j ,0 ) . Find routes containing (/c, 0) and 
(0, /) that have the best savings S*., and Sji in the saving list, and select the best 
one among them for joining with the current route. If no more savings can be 
implemented for the current route, move to the next route.

3.3.2 Time Oriented Nearest Neighbour Heuristic

This heuristic is a sequential construction process that starts by initializing the current 
route with the depot. Then the customer closest to the depot, in terms of a certain cost 
measure c, is inserted next in the route. Subsequently, the customer ‘closest’ to the last 
added customer will be inserted next, if its insertion causes no constraint violation. If

3Solomon also proposed an important heuristic for speeding the TW feasibility checking called the push 
forward (PF) heuristic, which is based on calculating the extra time occurring in the schedule due to the 
insertion of the new node in the route. For more derails see [141].
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all remaining un-routed customers cannot be feasibly inserted in the current route, a new 
route is allocated and the process is repeated.

The cost function c used by Solomon in [ 1 4 1 ]  to determine the ‘closeness’ between two 
customers, is based on both geographical and temporal separation between the two nodes. 
This measure is described by Cij = w\ x  dy +  tt;2 x  Tij + w3 x  vy, where dy is the distance 
between the two customers4, Ty is the time difference between the completion of the 
service at i  and the beginning of the service at j ,  and Vy is the urgency of visiting customer 
j ,  which is calculated as the time remaining until the deadline of servicing customer j  is 
reached. The weights w \t w2 and satisfy: w\ +  w2 +  = 1.0, and W\ > 0, w2 > 0
and >  0.

3.3.3 Insertion Heuristics

This is another class of sequential construction heuristics described by Solomon in [ 1 4 1 ] ,  

and is based on expanding the current route by inserting one un-routed customer at each 
iteration. The general idea is demonstrated in Figure 3.6, where the un-routed customer k 
(left) was inserted between customers i  and j  (right) in the progressing route.

More specifically, the insertion heuristic starts by initializing the route under consideration 

with a seed customer. Other customers are then selected for addition to the current route,

Figure 3.6: The insertion heuristic.

4One simplifying assumption that is usually made in the VRP is that the speed of the vehicle is constant 
(often =1). If this assumption is made, the distance separating i and j  (dy) and the travel time between i 
and j  (Uj) may be used interchangeably.
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based on two cost measures to be defined shortly. When no more un-routed customers 
can be ‘feasibly’ inserted in the current route, the process is repeated for a new route. 
The seed customer could be selected as the customer farthest from the depot, or as the 
customer having the earliest allowed starting service time.

Three insertion heuristics have been defined by Solomon, based on the criteria used for 
selecting an un-routed customer to be inserted next in the current route. The first and most 
successful insertion heuristic (called I I  insertion) proceeds as follows, after initializing the 

route with a seed customer:

1. Assume the current partial route created is ( * o , ■■•*»»)» where z0 and i m  re
present the depot;

2. For each un-routed customer u , find its best feasible insertion position in the route, 
between two adjacent customers i  and j .  The best insertion position is the one that 
minimizes the first cost measure, which we will call Ci(u). c\(u) is a measure that 
is calculated based on both the extra travel distance and time delay that happens in 
the route, due to the insertion of u\

3. Find the best customer u* to be inserted in the route, where u* is the customer 
having the maximum value of a second measure, which we will call c2(u). c2(u) is 
calculated based on both c\(u) (the first measure) and the distance from the depot.

The second insertion heuristic (12) differs from II in the definition of the measure c2(u), 
since it is now a combined measure of the total route distance and time resulting after the 
insertion of u (rather than the extra distance and time, as in II). On the other hand, the 
third sequential insertion heuristic (13) differs from II in the definition of ci(tt), since the 
urgency o f servicing the new customer u is now also considered in this measure5.

These insertion heuristics are in fact a generalization of the time oriented nearest neigh
bour heuristic, described in Section 3.3.2, since they allow for inserting a new customer 
between any two nodes in the route, rather than only at the end. They are sometimes refer
red to in the literature as the cheapest insertion heuristics, with II being the most popular 
among them.

A parallel construction heuristic for the VRPTW was proposed by Potvin and Rousseau
[121], based on the II heuristic described above. In this heuristic several routes are first 
initialized with seed customers. To determine the number of initial routes, the authors

5Our presentation of Solomon’s insertion techniques and the cost measures adopted within these heuris
tics is simplified to a large extent, in order to fit the general overview intended here. For further information, 
the reader is referred to [141] and [20].



3.4 Solution Improvement for the VRPTW 49

first ran the II sequential construction algorithm. Further routes are later added as needed 
if the initial number of routes does not yield a feasible solution. After determining the 
best (feasible and least cost) insertion position for each un-routed customer, the customer 
whose insertion in the solution causes the least increase in the overall cost is selected next 
for insertion. Besides a weighted sum of the extra travel distance and time delay used 
by Solomon to determine the cost of the insertion, this parallel heuristic adds a regret 
measure over all routes. The regret measure is a type of ‘lookahead’ estimate of the cost 
of not inserting the customer immediately in its current best route, i.e., if its insertion was 
postponed to be carried out later in a different route.

Although these construction algorithms have mainly been designed for the VRPTW, re
searchers have also adapted them to different problem variants, such as the PDPTW. More 
discussion about solution construction heuristics from the perspective of the PDPTW will 
be presented in Chapter 7.

3.3.4 Time Oriented Sweep Heuristic

In this heuristic Solomon [141] suggests a two phase approach to construct a VRPTW 
solution. The first phase is a clustering phase, in which customers are assigned to vehicles 
in a way similar to the original sweep heuristic suggested by Gillett and Miller [58]. In 
this heuristic, a centre of gravity is computed based on the angle between the depot and 
a randomly selected customer. Then, the remaining customers are assigned to vehicles 
according to the polar angle separating their locations from the centre of gravity. After 
the assignment phase, the scheduling phase starts by inserting the selected customers 
in their respective routes, such that the insertion process follows Solomon’s II insertion 
heuristic, explained in Section 3.3.3.

3.4 Solution Improvement for the VRPTW

Solution improvement within the context of the VRPTW refers to the gradual and repea
ted modification of the initial solution until a certain stopping condition is satisfied. The 
initial solution is usually a feasible solution, obtained using a construction algorithm, such 
as the ones described in the previous section. One must then define a neighbourhood move 
that can be applied to the initial/current solution to obtain a new solution within its neigh
bourhood, i.e., the new solution only differs in a few attributes from the current solution. 
For example, the new solution could be obtained by modifying some edges connecting 
customers in the current solution. Afterwards, the generated solution is evaluated based
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on the objective function, and may replace the previous solution if it is smaller in cost. 
Nevertheless, two main acceptance criteria are usually adopted in this context. The first 
acceptance criterion selects the first solution found in the neighbourhood of the current 
solution that improves the objective function. On the other hand, the best acceptance exa
mines all solutions in the neighbourhood of the current solution, and selects the best one 
among them.

The above process is often referred to as local search, and usually results in a local opti
mum that may be very far from the optimal solution. In addition, the quality of the local 
optimum depends heavily on the quality of the initial solution. Within the vehicle rou
ting literature, edge exchanges are the most popular solution improvement method, first 
described by Lin [103] for the TSP.

Edge exchanges are applied to one route in the current solution, and depend on removing a 
number k of edges from the current route, and replacing them with another set of k edges. 
Thus, the process is often called fc-exchange. A route that cannot be further improved 
by a fc-exchange is called a ^-optimal. Performing all possible /^-exchanges on a route 
requires 0 ( n k) time. Thus, moves beyond 2 or 3 exchanges are very time consuming. 
The 2-exchange move is illustrated in Figure 3.7.

Figure 3.7: 2-exchange move.

Several other improvement methods have been described for the VRPTW, a few of them 
are modifications to the basic edge-exchange moves. We will briefly mention some of the 
most important methods, without going into details, since most of them are beyond the
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scope of our research.

Potvin and Rousseau [122] introduce a modification to the 2-Opt heuristic of [ 103], called 
the 2-Opt* exchange heuristic. 2-Opt* works on two different routes (unlike 2-Opt which 
exchanges edges belonging to the same route). 2-Opt* tries to combine the two routes 
without changing the orientation of the tours, by appending the last customers of the 
second route after the first customers of the first route. Also, Or [114] modified the 3-Opt 
operator of [103] and introduced the Or-Opt operator for the TSP. In this operator, three 
edges in the original tour are replaced by three new ones without changing the orientation 
of the tour.

Inter-route operators for the VRP were introduced by Savelsbergh [ 136] and used by Pos- 
ser and Shaw [123] for the VRPTW. These are the re-locate, exchange and cross opera
tors. The relocate operator moves a customer from one route to another. The exchange 
swaps two visits in different routes and the cross is similar to the 2-Opt* proposed in
[122]. Other neighbourhood operators are the X-exchange of Osman [115], the CROSS- 
exchange of Taillard et al. [143], the GENI-exchange of Gendreau et al. [56], ejection 
chains of Glover [60] [61] and cyclic k-transfers of Thompson and Psaraftis [146].

In addition, other improvement heuristics include the Large Neighbourhood Search (LNS) 
of Shaw [139]. This algorithm removes a large number of customers from their current 
routes, and re-schedules them at optimal cost. The removed customers could be selected at 
random, or based on some relatedness measure that takes into account customers demands 
or starting times. Schrimpf [138] used a similar approach and calls it ruin and recreate. 
Finally, Braysy [ 18] introduces a modified ejection chain approach that also considers 
re-ordering of the routes. For the interested reader, more details and illustrations of the 
different types of solution improvement heuristics are presented in [20].

Similar to solution construction approaches, solution improvement methods have also 
been adapted and applied to PD problems. Some examples of their application to these 
problems will be presented in the upcoming chapters, when related work to our selected 
problems is investigated.

3.5 Meta-heuristics for the VRPTW

Since our research is particularly focused on meta-heuristic techniques, we highlight in 
this section some papers that use meta-heuristic approaches for the VRPTW, and explain 
briefly some important common features among them. Table 3.1 summarizes research
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that uses Tabu Search (TS), Simulated Annealing (SA), Ant Colony Optimization (ACO), 
Variable Neighbourhood Search (VNS), and Guided Local Search (GLS).

As Table 3.1 indicates, most meta-heuristic techniques apply some cheapest insertion 
method for the construction of the initial solution, with Solomon’s insertion being the 
most popular among them. On the other hand, solution improvement is usually per
formed using well-known neighbourhood moves like 2-Opt, 2-Opt*, 3-Opt, Or-Opt, A- 
interchange... etc. To accelerate the optimization, the search is sometimes limited to 
neighbourhoods having particular features. For example, in [53] only moves involving 
arcs close in distance are allowed, while the approach in [22] only considers selected 
routes and selected customers for merging during the solution construction process.

Some approaches allow infeasibility of solutions (e.g. [99]) and penalize the violation in 
the objective function. In addition, many algorithms apply a specific strategy for reducing 
the number of vehicles. For example, the algorithm in [53] removes customers from 
routes having a small number of nodes and inserts them into other routes, using Or-Opt 
exchanges. Also, in [11] a 2-phase approach is applied, where the first phase is an SA 
procedure intended to minimize the number of routes, while the second phase focuses on 
minimizing total distance. On the other hand, the ACO of [52] uses two colonies, one for 
the minimization of the number of vehicles and the other to minimize total travel distance.

Different diversification mechanisms have also been applied within the various meta
heuristics to improve solution quality, so that the algorithm is directed towards exploring 
new areas of the search space. For example, in [129] the search is diversified using an 
adaptive memory, where routes taken from best solutions found during the search are sto
red. Some of these routes are combined to form solutions that will act as new starting 
solutions for the TS. Also, in [ 143] diversification is applied by penalizing frequently per
formed exchanges. On the other hand, the approach in [22] adopts a Guided Local Search 
(GLS) diversification mechanism that penalizes certain solution features, if they are going 
to bring the search close to previously visited solutions.

Intensification of the search around best solutions discovered during the search have also 
often been considered. For instance, in [101] the SA algorithm is forced to start from 
the current best solution several times, while the ACO in [52] uses global pheromone 
updating, to further explore search areas around the best solutions obtained. Also, in [143] 
intensifying the search is done by selecting the best routes and re-ordering customers 
within these routes, using Solomon’s II insertion.

A post-optimization phase is sometimes added to the basic meta-heuristic to further en
hance best solutions. For example, the approach in [129] performs a post-optimization
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using an exact set-partitioning algorithm on routes obtained from the adaptive memory. 
Also, in [143] the post-optimization technique of [56] is applied to each route of the final 
solution obtained.

In many cases, hybridization of more than one meta-heuristic technique is adopted. For 
example, in [101] a tabu-embedded SA is used. Also, in [25] the annealing process is 
enhanced using a varying size tabu-list, and the authors in [11] use both SA and LNS.

To complete our review of meta-heuristic techniques for the VRPTW, Table 3.2 summa
rizes some Genetic Algorithm (GA) approaches that have been applied to this problem. 
Almost all of these techniques hybridize GAs with some other heuristic, local search, or 
another meta-heuristic approach for solution construction and/or solution improvement.

Solution representation is usually based on integer representation, rather than the classical 
bit string encoding. Thus, genetic operators are directly applied to problem solutions. The 
initial population is often created randomly, or by adapting some well known construction 
methods. For example, in [144], customers are grouped randomly, and then the cheapest 
insertion method of [65] is used for routing each group of customers.

The fitness function is usually based on solution cost, i.e., number of routes, total dis
tance and total duration. However, since some approaches allow violations of problem 
constraints, the fitness function should take this into account. For example, in [16], the 
fitness considers the number of un-serviced customers in an infeasible solution. Also, in 
[ 15] a penalty is added in the objective function to violated constraints. On the other hand, 
the selection scheme often applied is roulette-wheel selection. However, other selection 
methods have also been used. For instance, a ranking scheme is used in [120].

Regarding recombination, most of the GA techniques apply specialized crossover opera
tors, since traditional genetic operators do not usually fit the VRPTW. For example, the 
authors in [120] propose a Sequence-Based Crossover (SBX) and a Route-Based Cros
sover (RBX), while the GA in [16] applies special crossover operators that depend on a 
global precedence relationship among genes, such as the distance or time windows orde
ring. On the other hand, mutation is often based on traditional local search operators like 
2-Opt, 2-Opt*, Or-Opt and LNS. In addition, mutation is sometimes applied to reduce the 
number of routes in the solution, as in [120] and [15].

To sum up, meta-heuristic approaches to the VRPTW often embed solution construction 
and improvement methods as described previously. However, they usually obtain bet
ter quality solutions than algorithms that apply straightforward solution construction and 
improvement techniques on their own. This often comes at the expense of greater com
plexity in implementation and increased computation time, though. Braysy and Gendreau
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Table 3.1: Meta-heuristics for the VRPTW.

Paper Algorithm Solution Construction Solution Improvement Remarks
Garcia et al. [53] TS Solomon’s insertion 2-Opt*, Or-Opt Parallel implementation - Only allows moves involving arcs close in distance

Rochat and Taillard [129] TS Solomon’s insertion & 
2-Opt

2-Opt, relocate Uses adaptive memory containing routes obtained from best solutions visited 
during the search, with the purpose of providing new starting solutions

Taillard et al. [143] TS Solomon’s insertion CROSS Decomposes solutions into subsets of routes, based on a polar angle associated 
with the centre of gravity of each route - TS applied to each subset separately 
- Diversification by penalizing frequently performed exchanges - Intensification 
by reordering customers within best routes using 11 insertion

Lau et al. [99] TS Relocate from a holding 

list where all customers 

are initially stored

Exchange - relocate Allows violation of constraints for a penalty in the objective function - Penalty 
parameters adjusted dynamically

Chiang and Russell [25] SA The parallel construction 

of Russell [133]

A-inierchange and fc-node 
interchange

Enhancing of the annealing process via a varying size tabu-list

Li et al. [101] Tabu-
embedded

SA

Insertion and exten
ded sweep heuristics of 

Solomon

Shifting and exchange of 
customer segments bet

ween and within routes

SA restarts from current best solution several times - Reduce routes by reordering 
customers and inserting them into other routes - Diversification by random shifts 
and exchange of customer segments

Bent and Van Hentenryck 

[11]

SA and LNS Not specified 2-Opt. Or-Opt, relocate, 
exchange and 2-Opt*

2-phase approach: SA to minimize number of routes and LNS to minimize total 
distance

Gambardella et al. [52] ACO Nearest-neighbour heuris

tic with probabilistic rules

CROSS 2 colonies: first one minimizes number of vehicles, and the second minimizes 
total distance - Both cooperate in updating best solution

Braysy [ 19] VNS Solomon’s Insertion and 
the parallel construction of 

Russell [133]

Or-Opt exchanges and 
CROSS-exchanges

Reducing number of routes using an ejection-chain phase - Second VNS phase 
for improving total distance

Braysy et al. [22] Threshold 
accepting 
(TA) & 

Guided Lo
cal Search 
(GLS)

Savings heuristic SPLIT (of routes) - limited 
CROSS - limited Or-Opt

Construction algorithm only considers selected routes and selected customers for 
merging - Initial phase to minimize number of routes, based on simple customer 
re-insertion - Further improvement using TA & GLS - TA allows local search 
moves that worsen the objective function, provided it is within a certain threshold 
limit - GLS penalizes certain solution based on some solution features (e.g. long 

edges), not considered part of a near-optimal solution

in



Table 3.2: Genetic Algorithms for the VRPTW.

Paper Initial Population Crossover Mutation Remarks
Thangiah
[144]

A set of A seed angles are planted, 
where K  is the number of vehicle. Sec
tor rays are drawn originating from the 
depot to each seed angle - Routing done 
using cheapest insertion of Golden and 
Stewart [65]

Exchange a randomly selected por
tion of the bit string between chro
mosomes

Randomly change bit value Cluster first route second approach cal
led GIDEON - Each chromosome is a 
set of possible clustering scheme and 
the GA used to improve the clustering 
- Routes improved by A-interchange

Potvin and 
Bengio [120]

Chromosome is a problem solution crea
ted using Solomon's cheapest insertion

Sequence-Based Crossover (SBX): 
two sub-tours from two parents 
are linked together - Route-Based 
Crossover (RBX) replaces a route 
of one parent by another route from 
the second parent - Repair operator 
applied for infeasible offspring

Reduce number of routes by in
serting customers from a ran
domly selected short route into 
another - Local search muta
tion using Or-Opt exchanges

The approach is named GENEROUS

Blanton and
Wainwright
[16]

Solution coded as a permutation of 
customers - Insertion heuristic used to 
construct solution

Specialized crossover that uses glo
bal precedence relationship among 
customers (TW/distance)

Randomly exchange 2-edges The GA searches for a good ordering of 
customers, while construction of fea
sible solutions is handled by a greedy 

heuristic
Berger et al. 
[15]

Random insertion heuristic - Chromo
somes are problem solutions - Two po
pulations: POP1 used to minimize dis
tance and POP2 minimizes constraint 
violations

Insertion-based crossover (IBX): 
combining k  routes from parent 1 
(one at a time) with subsets of 
customers from parent2 - Insert- 
within-route crossover (IRNX): si
multaneously combines k  routes 
from parent 1 with subsets of custo
mers from parent2

Large Neighbourhood Search 
(LNS) mutation - Each custo
mer considered for reinsertion 
in an alternate route, eliminate 
shortest route - Reorder custo
mers within a route

Simultaneous evolution of two popula
tions (minimize distance & constraint 
violations) - POP2 has smaller number 
of routes than POP 1 - When a new better 
solution is obtained from POP2, POP1 
is replaced by POP2

Repoussis ei 
al. [128]

Discrete arc-based representation of in
dividuals combined with a binary vec
tor of strategy parameters - Individuals 
created using greedy insertion from a 
Restricted Candidate List (RCL), with a 
probabilistic element

Multiple-parent recombination ap
plied only to strategy parameters 
not to problem solutions

Mutation rate determined by 
strategy parameters evolved 
during the search - Mutation 
done using “ruin and recreate”

(A +  /r) Evolution Strategy (ES). Star
ting from ft individuals, at each iteration 
a new intermediate population of A indi
viduals is produced by mutation - Evo
lutionary search is based only on muta
tion - Each offspring is further optimi
zed using route elimination and a local 
search (based on TS) to improve total 
distance
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in [21] identified several techniques that seem to give good results when applied within 
the different meta-heuristic approaches. Some of these techniques are: 1) saving best 
solutions found during the search, 2) varying the neighbourhood structure, with the size 
of the neighbourhood being typically small, 3) using a memory structure to facilitate the 
search, 4) applying a specific strategy for reducing the number of routes in the solution 
and 5) hybridization of different heuristics and meta-heuristics.

3.6 Chapter Summary

Vehicle routing problems have gained considerable attention in the last few decades. This 
is mainly due to the increase in complexity in transportation and logistics demands, and 
the urgent need for optimizing client services, reducing operational costs, and limiting the 
negative environmental impacts that may result from the non-optimal planning of vehicles 
and their routes. This chapter provided a general classification of vehicle routing problems 
existing in the literature and highlighted the diversity of problem types, solution methods, 
and the huge amount of published research that deals with this problem.

We emphasized in this chapter one particular vehicle routing problem that is of interest 
to our study, the Vehicle Routing Problem with Time Windows (VRPTW). This problem 
is closely related to pickup and delivery problems that we investigated in our research, in 
terms of: problem definition, solution methods, objective function and constraint handling 
approaches. We presented in this chapter a summary of some important heuristic and 
meta-heuristic algorithms that have been applied to solving the VRPTW.

The next chapter is devoted to an overview of pickup and delivery problems, which are 
the main focus of our research. We will present a general classification and highlight 
some published research in the field, as an introduction to a more in-depth analysis of our 
selected pickup and delivery problems, which will follow during the course of this thesis.
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Chapter 4

Pickup and Delivery Problems: A 
Literature Review

We dedicate this chapter to a literature summary of Pickup and Delivery (PD) problems, 
since they are the main theme of our research. In addition, there are various types of pi
ckup and delivery problems and different classifications of these problems that distinguish 
them from other variants of vehicle routing problems.

PD problems are widely applicable in areas such as: the transportation of raw materials 
from suppliers to factories, Internet-based pickup from sellers and delivery to buyers, food 
and beverage collection and delivery, post and parcel delivery, newspaper distribution, 
and airline and bus scheduling. In addition, an important related variant is the dial-a- 
ride problem and the handicapped persons’ transportation, where people instead of goods 
are transported, giving rise to customer inconvenience issues that should be taken into 
consideration while constructing a solution.

Similar to other vehicle routing problems, pickup and delivery problems have attracted 
the attention of researchers in the last few decades. Nevertheless, published research 
tackling these problems is still relatively limited, compared to other variants of vehicle 
routing problems [137]. Several important surveys of pickup and delivery problems have 
appeared in the literature. The oldest ones are by Solomon and Desrosiers [142], and 
Savelsbergh and Sol [137]. Two other surveys appeared recently in [14] and [117]. A 
survey dedicated to the dial-a-ride problem is in [29]. Another survey on the one-to-one 
pickup an delivery problems (see Section 4.2 for a description of this problem category) 
is provided in [31]. In our literature summary, we mostly rely on the information and 
classification provided by Parragh et al. in 2008 [117], unless otherwise indicated.

Parragh et al. [117] classify the different types of pickup and delivery problems under 
two classes: 1) problems that deal with the transportation of goods from pickup customers 
(also called backhaul customers) to the depot, and from the depot to delivery customers 
(also called linehaul customers). This class is called the Vehicle Routing Problem with
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Backhauls (VRPB), and 2) problems that deal with the transportation of goods/people 
between two pickup and delivery points. This class is called the Vehicle Routing Pro
blem with Pickup and Delivery (VRPPD). Sections 4.1 and 4.2 describe in detail these 
two categories. Section 4.3 briefly highlights some meta-heuristic techniques that have 
been applied to pickup and delivery problems. Finally, Section 4.4 concludes this chapter 

and introduces the rest of the thesis.

4.1 The Vehicle Routing Problem with Backhauls (VRPB)

As mentioned above, this class deals with PD problems that involve the transportation of 
goods from the depot to customers and vice versa. These problems are further subdivided 
into four categories, generally based on the required visiting order of pickups and delive
ries, and whether a customer can demand both types of services. In all cases the objective 
is to minimize the total cost (e.g. total travel distance) of the routing plan, while adhering 
to some pre-specified problem constraints. For example, respecting the capacity of the 
vehicle at all times, and ensuring that the vehicle starts, if needed, with a load that is equal 
to the total load to be delivered.

1. The vehicle Routing Problem with Clustered Backhauls (VRPCB): where all 
delivery customers must be visited before all pickup customers. The single vehicle 
special case of the same problem is denoted by (TSPCB).

2. The Vehicle Routing Problem with Mixed Linehauls and Backhauls (VRPMB):
where mixed visiting of pickup and delivery customers are allowed. The single 
vehicle case of the same problem is denoted by (TSPMB)1. If the capacity of the 
vehicle is greater than or equal to the total sum of demands of pickup and delivery 
customers, the problem coincides with a simple TSP.

3. The Vehicle Routing Problem with Divisible Delivery and Pickup (VRPDDP):
where each customer is both a pickup and a delivery customer. In addition, two 
visits to the same customer is allowed. The single vehicle variant of the same pro
blem is denoted by (TSPDDP). A possible scenario in this variant is that the vehicle 
could initially visit a few delivery customers to get rid of some of the load it is car
rying. Afterwards, the vehicle could visit another set of customers to perform both

1 More details about this problem will be presented in Chapter 9, since this problem is closely related to 
the One-commodity Pickup and Delivery Problem (1-PDP) that we handled in our research. Nevertheless, 
we refer to it in our research by the Traveling Salesman Problem with Pickup and Delivery (TSPPD), the 
name most commonly used for this problem in the literature (e.g. [110] and [75]).
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delivery and collection service at each, and finally a collection service would be 
performed at customers that were initially visited for delivery. This type of solution 
is called a ‘lasso’ solution. It is also observed in [117] that a solution method of 
the VRPMB (the second category) can be applied to the VRPDDP if each custo
mer demanding both delivery and pickup was modeled by two vertices, one for the 
delivery and another for the pickup. Very little research has been applied to this 
problem.

4. The Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP): 
where each customer demands both a delivery and a pickup, but, unlike the VRPDDP 
(the third category), only one visit is allowed for each customer. The single vehicle 
variant is denoted by (TSPSDP).

We summarize in Table 4.1 the most important features of the different variants of the 
VRPB described in this section. In this table, we indicate the problem name, whether 
the customer is allowed to demand both pickup and delivery, whether delivery customers 
must all be visited before pickup customers, or otherwise that mixed sequences of visits 
is allowed. The table also shows whether more than one visit is permitted, and if split
ting the demand of one customer is allowed. Finally, the last column of the table gives 
examples of selected published papers that dealt with the underlying problem, together 
with the solution method adopted. We used the notations: (LNS) for Large Neighbou
rhood Search, (TS) for Tabu Search, and (VNS) for Variable Neighbourhood Search. If 
the paper handled the single vehicle case, we indicate this by (SV) and if it handled the 
multiple vehicle case, we indicated this by (MV).

The authors in [117] concluded from their survey that the LNS algorithm of [132] seems 
to be the most flexible and accurate meta-heuristic to date, since it can be applied to seve
ral problems in the VRPB class, and it provided new best solutions for several benchmark 
instances. On the other hand, they selected the heuristic in [111] among the fastest algo
rithms applied to the VRPB.
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Table 4.1: The Vehicle Routing Problem with Backhauls (VRPB).

Problem Customer 
both P&D

Deliveries 
Visited be
fore Pickups

Mixed Visi
ting

One Custo
mer Visit

Demand
Splitting

Example Papers and Solution Methods

VRPCB
TSPCB

no yes no yes no Gendreau et al. [57]- heuristic (SV) 
Thangiah et al. [145]- heuristic (MV) 
Mladenovic and Hansen [108]- VNS (SV) 
Ropke and Pisinger [132]- LNS (MV)

VRPMB
TSPMB

no no yes yes no Mosheiov [110]- heuristic (SV)
Nagy and Salhi [111]- heuristic (MV) 
Ropke and Pisinger [132]- LNS (MV)

VRPDDP
TSPDDP

yes no yes no
(at most two)

yes Hoff and Lpkketangen [77]- TS (SV) 
Salhi and Nagy [134] - heuristic (MV)

VRPSDP
TSPSDP

yes no yes yes no Alshamrani et al. [4]- heuristic (SV) 
Nagy and Salhi [111]- heuristic (MV) 
Ropke and Pisinger [132]- LNS (MV)

o
VO
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4.2 The Vehicle Routing Problem with Pickups and Deli
veries (VRPPD)

This class refers to problems that deal with the transportation of goods/people between a 
pickup and a delivery point. Two subclasses can be distinguished in this category:

1. The Pickup and Delivery Vehicle Routing Problem (PDVRP): where pickup and 
delivery points are unpaired, and one type of commodity is transferred. Thus, pi
ckup customers will supply the demands needed by the delivery customers. The 
single vehicle variant of this problem is denoted by (PDTSP). The objective func
tion in this problem category is to minimize the total cost of the route(s), without 
violating the capacity constraints. It should be noted that the PDTSP is the same as 
the 1-PDP investigated in our research, as explained in detail in Chapters 9 and 10.

2. The Classical Pickup and Delivery Problem (PDP) and the Dial-a-Ride Pro
blem (DARP): where a transportation request is associated with both a pickup (ori
gin) and a delivery (destination), i.e., customers are paired and the demand of the 
pickup is the same as the demand of its associated delivery. Unlike the PDP, the 
DARP additionally takes customer inconvenience into account. The single vehicle 
cases of these problems are denoted by SPDP and SDARP respectively. The ob
jective function for these problems usually tries to minimize the number of vehicles 
used (in the multiple-vehicle case) as a primary objective, followed by reducing the 
overall travel distance or service duration. The final solution should also adhere 
to all underlying problem constraints, such as the vehicle capacity and the visiting 
time restrictions. Our research handles the PDP problem with the addition of the 
time window constraint (denoted by PDPTW) in Chapters 5 and 6 for its single 
vehicle variant (denoted in our research by SV-PDPTW), and Chapters 7 and 8 for 
its multiple vehicle variant (denoted in our research by MV-PDPTW).
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We provide in Table 4.2 a summary of the most important features pertaining to the 
VRPPD. We indicate in this table the subcategory name, whether the customers are paired 
or not, whether a homogeneous commodity or multiple commodities are considered, and 
whether the problem is primarily associated with the transportation of people or goods. 
In addition, we highlight the most important constraints that are usually taken into consi
deration while handling the problem. These include: 1) the precedence constraint, in 
which a pickup request is required to precede its corresponding delivery, 2) the coupling 
constraint, which requires that the pickup and delivery pair must be visited by the same 
vehicle (in case of the multiple-vehicle variant), 3) the capacity constraint, which ensures 
that the load carried by the vehicle at any given time does not exceed its capacity, 4) the 
time window constraint, which requires that a customer has to be served in a pre-specified 
time interval, and 5) the maximum ride time constraint, which ensures that when people 
are transported, the time they spend in the vehicle does not far exceed the direct travel time 
between their origin and destination. Finally, the table gives examples of some published 
papers that deal with the problem. Again, we use (SV) for the single vehicle case and 
(MV) for the multiple-vehicle variant. (LNS) refers to a Large Neighbourhood Search 
algorithm, and (ALNS) refers to an Adaptive version of LNS, (HC) is a Hill Climbing 
approach, (GA) is a Genetic Algorithm, (GGA) is a Grouping Genetic Algorithm, (SA) is 
a Simulated Annealing algorithm, and (TS) is a Tabu Search algorithm.

In our opinion, the GA in [158], the LNS in [12], the ALNS in [131], and the GGA in 
[126] seem to be among the state-of-the-art algorithms applied to the VRPPD, in terms of 
their solution quality and/or robustness or flexibility. More details about these approaches 
and other important research in the field will be described in the following chapters, where 
we address specific pickup and delivery problems in our research. Before we conclude 
our review of pickup and delivery problems, though, we present in the next section a brief 
summary of some meta-heuristic techniques that have been applied to this problem class.



Table 4.2: The Vehicle Routing Problem with Pickups and Deliveries (VRPPD).

Problem Paired
Custo
mers

One
Com
modity

T^pe of 
Commo
dity

Precedence Coupling Capacity TW Max Ride 
Time

Example Papers and Solution Methods

PDVRP
PDTSP

no yes goods no no yes no no Hemdndez-Pdrez and Salazar-Gonzdlez [751- 
heuristic (SV)
Zhao et al. [158]-GA(SV)
Dror et al. [45]- heuristic (MV)

PDP
SPDP

yes no goods yes yes yes yes no Jih and Hsu [89]- GA (SV)
Hosny and Mumford [84] - HC & SA & GA 
(SV)
Li and Lim[100]-TS (MV)
Bent and Van Hentenryck [12] - LNS (MV) 
Ropke and Pisinger [131] - ALNS (MV) 
Hosny and Mumford [80]- GA (MV)

DARP
SDARP

yes yes people yes yes yes yes yes Psaraftis [ 124]- heuristic (SV) 
Jaw el al. [87]- heuristic (MV) 
Baugh et al. [9]- SA (MV) 
Rekiek et al. [ 126]- GGA (MV) 
J0rgensen et al. [91 ]- GA (MV)
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4.3 Meta-heuristic Algorithms for Pickup and Delivery 
Problems

Similar to all routing and scheduling problems, pickup and delivery problems have at
tracted the interest of researchers who deal with meta-heuristic techniques, since exact 
algorithms can only be used for small problem sizes and may not be useful for large prac
tical applications. For example, the approach in [46], for solving the multiple-vehicle 
PDPTW, was only capable of solving problem sizes of up to 55 customers using an exact 
algorithm. Also, the exact algorithm in [74], solved PDTSP instances of up to 60 cus
tomers. On the other hand, heuristic and meta-heuristic approaches are able to solve 
problems having several hundreds of nodes, which is common in every day routing and 
scheduling demands for some industrial applications. For example, Paragon software sys
tems recently reported, in their October 2009 newsletter2, that their optimization software 
helped Sainsbury’s to manage its transport requirement, involving daily deliveries from 
19 distribution centers to 527 supermarkets and 276 smaller stores.

Many heuristic and meta-heuristic techniques that have been successfully applied to the 
VRP have been adapted to fit the PDP variant. Table 4.3 summarizes some meta-heuristic 
techniques for pickup and delivery problems. In addition to the notations used for the 
meta-heuristic techniques in Table 4.2, we use (GRASP) for a Greedy Randomized Adap
tive Search Procedure, and (VND) for a Variable Neighbourhood Descent algorithm. On 
the other hand, Table 4.4 summarizes some GA research on pickup and delivery problems. 
It is important to emphasize again that the review presented here is just intended as a quick 
introduction to the literature that deals with pickup and delivery problems. As previously 
mentioned, further investigation of specific work that is closely connected to our research 
will be presented in later chapters, when we address certain variants of pickup and deli
very problems.

2http://w w w .paragonrouting.com/cms/assets/pdf/directionsissue22 .pdf

http://www.paragonrouting.com/cms/assets/pdf/directionsissue22


Table 4.3: Meta-heuristics for Pickup and Delivery Problems.

Paper Problem Algorithm Solution Construction Solution Improvement Remarks
Hemandez- 
Penez and 
Salazar- 
Gonzdlez 

[73]

PDTSP
(SV)

Hybrid 
GRASP 
& VND

Selecting the next ele
ment for insertion from a 
Restricted Candidate List 
(RCL), with a probabilis
tic element in the choice of 
the next node

2-Opt and 3-Opt in the VND phase - Move for
ward and move backward in a post optimization 
phase

Combining two optimization heuristics: 1) GRASP (Greedy Ran
domized Adaptive Search Procedure), which is based on a  repe
tition of a construction phase and a local search phase, 2) VND 
(Variable Neighbourhood Descent), which is a variant of the VNS, 
where the local optimum found acts as the new starting point for 

the local search
Landrieu et al. 
[95]

PDPTW
(SV)

TS Simple insertion heuristic A swap move and an insertion move Two tabu search methods compared: a regular deterministic Tabu 

Search (TS), and a Probabilistic Tabu Search (PTS)
Nanry and 
Bams [112]

PDPTW
(MV)

Reactive
TS

Cheapest insertion Single Paired Insertion (SPI): move all predeces
sor nodes to better feasible locations, then in
sert successor nodes in the best possible positions 
- Swapping Pairs Between Routes (SBR): ex
change predecessor nodes between vehicles then 
successor nodes - Within Route Insertion (WR1): 
re-order nodes within the same route

Reactive tabu search - Allows tuning of search parameters, such 
as a short-term memory length, based on an assessment of visited 
solutions during the search

Li and Lim 
[100]

PDPTW
(MV)

Tabu-
embedded
SA

Modified Solomon's inser
tion heuristic - Initializes 
each route with a P&D 
pair that satisfies a set of 
criteria, based on combi
ned TW intervals and dis
tance from the depot

PD-Shift: moves a P&D pair from route 1 to 
route2, and moves another pair from route2 to 
routel - PD-Swap: removes a P&D pair from 
each route, and then reinserts each pair in the 
other route - PD-Rearrange: removes and then 
reinserts a P&D pair in the same route

Main meta-heuristic is a tabu-embedded SA with K -restarts, i.e., 
the algorithm stops when the number of iterations without impro
vement reaches a pre-defined value K  - To prevent cycling, the SA 
records the accepted solutions in a tabu list

Urban [149] PDPTW
(MV)

Guided
SA

Assigning only one pickup 
and delivery pair to each 
route. A guided SA is then 
applied to improve this ini
tial solution by trying to 
bundle requests into the 
available routes

Removing a selected request from its current 
route and inserting it into another - Exchange of 
requests served on different routes - Repositio
ning of a pickup and delivery pair in its same 

route

The cost function takes into consideration both wage and non-wage 
related traveling and operating costs of the vehicles - The selection 
of neighbourhood move depends on a certain probabilistic criterion 
- Calculated measurements control the selection of customers and 
routes during the generation of the new solution

Cordean and 
Laporte [30]

DARP
(MV)

TS Assigning requests to ve
hicles randomly and inser
ting source location follo
wed by destination at the 
end of the route

Moving a request from one route to another Re-insertion of the removed request in its original route is forbid
den by for a number of iterations - Diversification penalizes fre
quently occurring moves in the objective function - Intensification 
performed by removing all requests from their respective routes, 
and re-inserting them in the best possible positions
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Table 4.4: Genetic Algorithms for Pickup and Delivery Problems.

oVO

Paper Problem Initial Population Crossover Mutation Remarks
Zhao et al. [158] PDTSP

(SV)
Nearest-neighbour construction 
heuristic

A new pheromone-based cros
sover - Edges between last 
node and potential new node 
that have proved successful in 
the past are favoured

3-exchange procedure Initial population is optimized using a 2-Opt move - Phe
romone trails are updated each generation - Offspring is 
optimized using a 2-Opt local search.

Jih and Hsu [89] PDPTW

(SV)

A solution is encoded as a permuta
tion of locations

Two traditional order-based 
crossover operators - Two 
merge crossover operators, 

MX1 and MX2, that use a 
global precedence vector to 
guide the inheritance process, 

as in [ 16]

Swap two genes selected al 
random - Select two random 
sites in the chromosome and 
reverses the sub-route between 
them - Shuffle genes that pre
cede a location for which a vio

lation of constraints is obser

ved

A Family Competition Genetic Algorithm (FCGA) - Each 
individual of the population plays the role of a family fa
ther in turn - Another randomly selected individual plays 
the role of mate for the family father

Jung and Haghani 
[92]

PDPTW

(MV)

Chromosome representation is ba
sed on assigning a 4 digit code to 

each request - First digit represents 
the number of the vehicle - Remai
ning 3 digits are used to sort re
quests according to the visiting or
der of the vehicle - A pickup request 
always has a sorting code that is less 
than its corresponding delivery

Two crossover points genera

ted, and the resulting segmenLs 
swapped between the two pa

rents

Change the first digit of a pi
ckup and delivery pair to ano

ther digit, i.e., assign the re
quest to another vehicle - Ve

hicle merging also used to re
duce the number of vehicles

Customers inconvenience is taken into consideration by 
assigning a penalty in the objective function to the arrival 
of the vehicle before or after the specified TW

Pankratz [116] PDPTW
(MV)

Each gene represents a group of re
quests that are assigned to one ve
hicle - Routes are represented by an 
independent data structure associa
ted with each gene

Vehicles with their assigned re
quests removed from one pa
rent and inserted in the other 

parent

Removes a random cluster 

from a chromosome, and re
assigns its requests to other 
clusters

A Grouping Genetic Algorithm (GGA), where the GA is 
only responsible for the grouping (assignment) problem 
- Routing is handled using an adaptation of Solomon’s 
cheapest insertion - Chromosome 'clean up’ needed after 
the genetic operators to remove duplicate vehicles and re
peated assignment of requests, in addition to re-assigning 
requests that are no longer assigned

Rekiek et al. 
[126]

DARP
(MV)

Chromosome representation is 
group oriented, where each group 
represents a vehicle to which a set 
of requests is assigned

traditional GGA crossover as 
in [49]

Create a new group - Remove 
an existing group - Move items 

between groups - An inversion 
operator is also used to change 
the location of groups in the 
chromosome

A Grouping Genetic Algorithm (GGA) applied to the 
Handicapped Person Transportation (HPT) problem, 

which focuses on minimizing clients' inconvenience - The 
insertion heuristic used to insert requests in routes is the 
best-fit (BF) heuristic - An unserved client is inserted in 
the vehicle that will grant him the best service without vio
lating problem constraints
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4.4 Chapter Summary

In this chapter, we reviewed an important category in the VRP literature, which deals with 
pickup and delivery problems. These problems are gaining more attention every day, due 
the continuous need for optimizing routing and scheduling costs in real-life applications 
that require two different service types for clients. We briefly analyzed basic problem 
features and general existing classifications. We also highlighted some published research 
in the field, mainly focusing on heuristic and meta-heuristic approaches.

In the following chapters, we will start discussing the specific problems that we addressed 
in our research. The Pickup and Delivery Problem with Time Windows (PDPTW) will 
be analyzed in detail in Chapters 5 and 6 for its single vehicle variant (SV-PDPTW), and 
in Chapters 7 and 8 for its multiple vehicle variant (MV-PDPTW). On the other hand, the 
One-commodity Pickup and Delivery problem (1-PDP) will be thoroughly discussed in 
Chapters 9 and 10.
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Chapter 5

The Single Vehicle Pickup and Delivery 
Problem with Time Windows: 
Introduction and a Genetic Algorithm 
Approach

The Single Vehicle Pickup and Delivery Problem with Time Windows (SV-PDPTW) is 
a frequently encountered problem in public and goods transport systems. However, only 
a few researchers seem to have tackled it, possibly due to the difficulty in managing the 
different underlying problem constraints. As previously mentioned in the introduction to 
this thesis (Chapter 1), our research concentrates on representational issues and neigh
bourhood moves within a simple meta-heuristic framework. For this problem, we adopt 
a solution representation that depends on a duplicate code for both the pickup location 
and its corresponding delivery. This simple representation will guarantee the satisfaction 
of the precedence constraint, among the pickup and delivery pair, throughout the search. 
We also present intelligent neighbourhood moves, that are guided by the time window, ai
ming to overcome the difficult timing constraint efficiently and produce feasible and good 
quality solutions in a reasonable amount of time.

This chapter covers two aspects: 1) a detailed analysis of the problem and research chal
lenges and motivations, as well as a summary of some related work on the SV-PDPTW 
and 2) the initial development of our key ideas using a Genetic Algorithm (GA) as a can
didate solution methodology. The next chapter presents a comparison of three different 
approaches to the SV-PDPTW: a genetic algorithm approach, a simulated annealing ap
proach, and a simple hill climbing heuristic, which all employ the same representation and 
neighbourhood move that our initial GA approach adopts. The work related to the current 
chapter, i.e., the initial GA technique, was presented in the GECCO'07 conference, as a 
late breaking paper [79]. Also, the research tackling other heuristics and meta-heuristics 
applied to the SV-PDPTW, as described in the next chapter, was published in the Journal
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o f heuristics [84].

The rest of this chapter is organized as follows: Section 5.1 explains the problem tackled 
in this part of the research and the motivation behind our selection of the problem and 
the underlying solution approaches. Then, Section 5.2 formally defines the SV-PDPTW, 
while Section 5.3 provides a brief summary of some related work from the literature. 
Section 5.4 highlights the contribution of our research, and focuses on the solution repre
sentation and neighbourhood move suggested to facilitate dealing with the SV-PDPTW. 
Sections 5.5 presents the details of the proposed GA approach to solving this problem, 
together with the experimental findings of this part of our research. Finally, Section 5.6 
concludes the chapter with our intended future work.

5.1 Problem and Motivation

The Pickup and Delivery Problem with Time Windows (PDPTW) is an important variant 
of vehicle routing problems that is likely to assume even greater prominence in the fu
ture. Current concerns over global warming, resource depletion and the social impact of 
traffic congestion and pollution, are driving companies, government organizations and re
searchers to improve the efficiency of logistics and distribution operations. In addition, 
the rapid growth in parcel transportation as a result of e-commerce is likely to have an 
increasing impact. As previously mentioned in Chapter 4, an important related variant 
of the PDPTW is the dial-a-ride problem, which is concerned with the transportation of 
people, especially the elderly and the disabled, from their origins to their destinations, 
while minimizing customer inconvenience.

The SV-PDPTW is a special case of the PDPTW dealing with a number of customer 
requests that must be satisfied by one vehicle with a known capacity. The route of the 
vehicle usually starts and ends at a central depot. A request must be collected from a 
pickup location before being dropped off at a corresponding delivery location, and every 
pickup and delivery location is associated with a specific time window during which it 
must be served. If the vehicle arrives earlier than the beginning of the designated time 
window interval, it must wait until the requested service time begins. All requests must 
be served in a way that minimizes the total travel cost of the vehicle, without violating 
precedence, capacity and time windows constraints [137].

In addition to being a sub-problem in the PDPTW, the SV-PDPTW has also practical ap
plications, where small scale companies or individuals may operate one vehicle to serve a 
set of clients, as for example in a dial-a-ride service. In other applications, the underlying
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vehicle could be a helicopter or a small ship. Also, in some multiple vehicle applications, 
the assignment of requests to vehicles may be restricted by some commodity, vehicle, 
driver or client conditions. In such cases, certain requests must be assigned to a speci
fic vehicle, making the optimization of a single vehicle route necessary for reducing the 
overall cost of the logistic operation. Moreover, the analysis of the SV-PDPTW is essen
tial in developing an insight into the more general multiple-vehicle case, and establishing 
comprehensive solution algorithms.

As a constrained version of the TSP, the SV-PDPTW is known to be M V-hard  [95], with 
the presence of time windows making the problem particularly complicated. Since exact 
algorithms are too slow for large problem sizes, heuristic and meta-heuristic approaches 
seem to be reasonable alternatives. Several heuristics and meta-heuristics are potentially 
suitable for this problem. Genetic Algorithms (GAs) are known for their robustness, pa
rallelism, and their ability to perform reasonably well on a wide variety of problems, 
including ordering and grouping problems, as well as highly constrained problems [64] 
[105]. Thus, exploring GAs to solve the SV-PDPTW would seem to be a justified option.

Another alternative meta-heuristic approach that could be suitable for this problem is Si
mulated Annealing (SA), which is analogous to the annealing of solids. As previously 
discussed in Chapter 2, this approach has been widely applied to many optimization pro
blems, successfully transforming ‘random’ low quality solutions to stable high quality 
optimized solutions. One appealing feature of simulated annealing is that it is very easy 
to implement, since it only requires a method for generating a move in the neighbourhood 
of the current solution, and an appropriate annealing schedule. A third solution alterna
tive is simple Hill Climbing (HC) that first creates a candidate solution and then iteratively 
tries to perturb this solution to improve it.

In our research, we mainly focus on developing a meta-heuristic framework for the SV- 
PDPTW rather than on a specific algorithmic paradigm. Within the context of the meta
heuristic, we employ a problem-specific solution representation and guided neighbou
rhood moves, aiming to overcome and deal efficiently with the hard problem constraints. 
Our key ideas were adopted in all three approaches highlighted above, the GA, SA and 
HC. In all cases, our view was to design an intelligent and robust solution approach 
that can handle all problem constraints efficiently, while keeping the overall algorithm 
as simple as possible, a feature often overlooked in most up to date solution methodolo
gies. Ultimately, we aim to obtain feasible and high quality solutions in an acceptable 
amount of time.
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5.2 The SV-PDPTW

Let G — (N , A)  be a digraph. The node set is TV =  {nx G =  0 , 1 , 2 , m},  
such that m  is an even index. The node no denotes the depot, and each nx, i — 1,2, ...m  
denotes a customer location. It is assumed that a customer’s request rk, k =  {1,2, ...m/2} 
consists of a pickup and delivery (P&D) pair. We can consider, without loss of generality, 
that the set N + =  {nj G N \i =  1,2, ...,m /2}  represents pickup locations, and the set 
N~ = {ni G A ji =  (m /2) +  1,..., m} represents delivery locations, such that the pickup 
location n x has the corresponding delivery location ?il+(m/2)- Thus, N  =  N + U N~  and 
|jV+ | =  \N~\  =  m /2 . Each location n x is associated with:

•  A customer demand qit such that qt > 0 for a pickup location, qx < 0 for a delivery 
location and qx +  qj =  0 for the same customer’s pickup and delivery locations

(qo =  0);

•  A service time s* (s0 =  0), which is the time needed to load or unload a customer 
demand;

•  A Time Window (TW) [e*. lx] during which the location must be served, and lx > ex.

For each pair of nodes <  nx, n3 > a travel time ^  and/or a travel distance dij are specified. 
We assume here a symmetric case, i.e., fy =  tji and dXj = djX. In addition, only edges 
satisfying the TW are allowed. Thus the arc set is A  = {< nixnj > \nx,Uj G N ,n i 
Uj,toi +  sx + tij < lj}.  The vehicle has a limited capacity C.  The capacity constraint 
ensures that the total load carried by the vehicle at any given time does not exceed its 
capacity. The vehicle’s journey should start and end at the depot, while each location is 
to be visited exactly once. The time window constraint requires that a location must be 
serviced within the specified TW, i.e., if the vehicle reaches the location before the earliest 
service time e*, it must wait until ex. The precedence constraint requires that each pickup 
location must precede the corresponding delivery location in the visiting order.

The objective function varies depending on the application. In general, one or more of 
the following objectives are minimized as far as possible: the total traveling distance, 
the total route duration, or the drivers’ total waiting time. Figure 5.1 shows a simplified 
representation of a small instance of this problem before and after solving it.
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(a) SV-PDPTW - before solution (b) SV-PDPTW - after solution

Figure 5.1: The single vehicle pickup and delivery problem with time windows.

As indicated above, there are various approaches to handle pickup and delivery problems. 
Some approaches are exact and guarantee to solve the problem to optimality, while others 
are approximations and attempt to find an acceptable solution in a reasonable amount 
of time. For the SV-PDPTW, an exact algorithm is the dynamic programming approach 
of [124]. However, this technique has a time complexity of 0 (n 23n) (where n is the 
number of locations) and for this reason is normally limited to solving small problems of 
up to about 10 requests (20 locations). Also, the authors in [38] are able to provide exact 
solutions to the single vehicle dial-a-ride problem, with precedence, capacity and time 
windows constraints, using dynamic programming. Their algorithm uses a set of states 
(S, i)y such that 5  is a subset of nodes from the node set, and i is a selected node. State 
(5, i) is defined only if there is a feasible route that visits all nodes in S  and terminates at i. 
To reduce the state space, their dynamic programming algorithm uses sophisticated state 
elimination criteria, based on the state (5, i). Computational experimentation indicated 
that the elimination criteria work best when the time windows are tight and the vehicle 
capacity is small, such that narrowing the constraints in their approach helped to reduce 
the usual exponential running time of dynamic programming to a linear running time. 
This algorithm can solve instances of up to 40 requests (80 locations).

Approximation algorithms, in which a heuristic or a meta-heuristic is developed to deal

5.3 Related Work
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with the problem, make it possible to cope with much larger instances. Among the heu
ristics for solving the SV-PDPTW is the one suggested in [23]. This heuristic involves 
a 2-phase algorithm. In the initial phase a feasible solution is constructed, and in the 
second phase this solution is improved. In both phases a variable depth arc exchange 
procedure is performed, as a neighbourhood move, in which the number of arcs to be 
exchanged is not determined in advance, but calculated dynamically during the search. 
In the route construction phase, the time constraint may be violated as long as the pre
cedence and capacity constraints are satisfied. In the improvement phase, however, only 
feasible solutions are permitted and route duration is used as an objective function. Du
ring the improvement phase, the feasibility of a tour (in terms of precedence and capacity) 
is verified using a set of global variables and an algorithm of time complexity 0 ( n 2). To 
check the feasibility of the time constraint and determine the promising arc exchanges, a 
forward time slack is computed at each node to identify the permissible shift in departure 
time that can be introduced without causing violations of time windows for other nodes in 
the route. For problem sizes up to 38 customers, a near optimal solution can be reached 
by this algorithm in less than 150 seconds. Unfortunately, success is not guaranteed, and 
low quality or even infeasible solutions can result, if the 2-phase approach gets trapped 
in a poor local optimum. To handle this possible situation, the authors present an alterna
tive approach, which uses SA. This algorithm accepts time window violations in the early 
stages, but penalizes them more severely as the search progresses. The SA approach is 
able to obtain good quality solutions, albeit with a relatively high processing time.

The work reported in [88] also deals with the SV-PDPTW. This time, however, a hybrid 
strategy is proposed which combines an exact method with a genetic algorithm and both 
static and dynamic cases are considered. The static case assumes that all requests are 
determined in advance of the route construction process, while the dynamic case allows 
some requests to arrive during the construction of the route. The approach in this work 
consists of three consecutive stages: a pre-planned module, a dynamic programming mo
dule, and a GA. The pre-planned module arranges requests and prepares information for 
the dynamic programming module. The role of the dynamic programming module is to 
create a set of sub-routes, which it will eventually pass on to a temporary result pool, 
where the GA module will pick them up, installing these unfinished sub-routes to esta
blish its initial population. In the GA module, a solution is encoded as a permutation of 
locations, and four crossover operators are compared: two traditional order-based cros
sover operators, and two merge crossover operators, MX1 and MX2, that use a global 
precedence vector to guide the inheritance process, as explained in [16] and later in this 
chapter. The mutation operator is applied only when the offspring is identical to one of its 
parents. Three mutation operators are used: one swaps two genes selected at random, the
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second selects two random sites in the chromosome and reverses the sub-route between 
the selected sites, finally the third mutation shuffles the genes that precede a location for 
which a violation of constraints is observed. If an infeasible solution, violating the prece
dence constraint, is generated as a result of any genetic operator, this solution is repaired 
by swapping the corresponding pickup and delivery pair. The experimental results on 
data sets ranging from 10 to 50 requests indicate the merge crossover operator MX1 ge
nerally performed better than the other crossover operators tested. The first two mutation 
operators also achieved better results than the third mutation operator.

In a more recent work [89], the same authors use similar genetic operators to the ones used 
in [88], but in the context of a Family Competition Genetic Algorithm (FCGA). Again, 
an order-based representation is adopted. The idea is to allow each individual of the po
pulation to play the role of a family father in turn. Another randomly selected individual 
plays the role of mate for the family father. The two individuals are combined to produce 
an offspring in a regular GA fashion. The selection of the mate and the reproduction is 
repeated for a chosen number of iterations to produce a family of offspring. Only the best 
offspring in the family survives and is added to a temporary population of champions. The 
new generation is chosen from among the best individuals in both the original population 
and the champions of the families. Comparing the performance of the FCGA and a tradi
tional GA on data sets created by the authors (ranging from 10 to 100 requests), the results 
indicate that the merge crossover operators MX 1 and MX2 generally worked better in the 
context of a traditional GA than a FCGA, possibly due to premature convergence in the 
latter case. On the other hand, a traditional uniform order-based crossover (UOX) worked 
better within the framework of a FCGA than a traditional GA, possibly due to its uniform, 
non greedy, nature of exploring the search space.

The authors in [95] present a heuristic based on tabu search to solve the SV-PDPTW. 
The algorithm first creates a route respecting precedence and capacity constraints, using 
a simple insertion heuristic. The generated route may be infeasible in terms of the time 
window constraint, though. Then, two tabu search methods are compared in transforming 
the initial route to a feasible route, with minimum total distance. The two tabu search 
methods investigated are a regular deterministic Tabu Search (TS), and a Probabilistic 
Tabu Search (PTS), which is based on the same principles as the deterministic one with 
the addition of a buffered memory of potential moves and introducing some probabilistic 
criteria for the selection of the next move. The creation of a neighbouring solution in 
both tabu searches is based on classical neighbourhood moves, a swap operation and an 
insertion operation, which respect the precedence and the capacity constraints. Test results 
on problem instances created by the authors (from 10 to 40 customers) demonstrate the 
superiority of TS compared to the PTS in both run time and solution quality. Possible
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reasons behind the superiority of TS were not indicated by the authors, though. For the 
problem sizes tested in their approach, a feasible solution could be reached by both tabu 
search methods in a reasonable amount of time. However, for larger problem sizes (more 
than 60 locations), the authors predict that reaching a feasible solution could possibly 
take more than one hour. According to the authors, an improvement in processing time 
could be achieved by adapting the parameters of the method, and a better analysis of the 
neighbourhood structure.

5.4 SV-PDPTW: Research Contribution

Our research tries to overcome some gaps currently existing in the literature that tackles 
the SV-PDPTW. Existing approaches usually face many difficulties, among them are so
lution representations that need frequent repair during the search process to correct infea
sibility. In addition, handling the difficult constraints puts a huge burden on the search 
algorithm, usually making it quite complicated, especially if the researcher chooses to 
limit the search to only feasible solutions in the neighbourhood. This would indeed re
quire time consuming computations to ensure the satisfaction of all constraints in every 
step during the search process, which will inevitably add to the overhead of the algorithm, 
making it slow or inefficient for most practical situations.

The main challenge that we are faced with in this research is the development of an appro
priate solution representation, reflecting the problem and its constraints in a simple way to 
avoid complicating our algorithms. In addition, the representation should be coupled with 
intelligent neighbourhood operators that are capable of directing the search towards high 
quality and feasible solutions. A major objective is to avoid generating and evaluating 
a large number of infeasible solutions (that violate one or more of the hard constraints), 
in order to maximize the efficiency of the search process. Our proposed approach for 
handling these challenges is presented in the following two subsections.

5.4.1 The Solution Representation

A suitable solution representation for this kind of problem is not as obvious as it seems. 
The PDPTW is an ordering problem in which a solution could be represented as a permu
tation of locations, representing an order in which these locations will be visited. In the 
PDPTW, however, the issue of precedence should be addressed in the representation of the 
solution, because for this particular problem, no delivery location is allowed to precede
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its corresponding pickup location. Nevertheless, the precedence order may not be main
tained following the application of a neighbourhood move to a solution. For example, a 
simple swap of locations could disturb the precedence order and result in an infeasible so
lution. Consequently, a repair method would be needed to restore the solution feasibility, 
as done, for example, in [88] and [89]. Inevitably, such an approach would increase the 
processing time and complicate the algorithm.

We have developed a solution representation which avoids the precedence issue: we sim
ply assign the same code to both the pickup and its associated delivery location, and rely 
on a simple decoder to identify its first occurrence as the pickup and the second as the deli
very. This straightforward representation eliminates the problem of backtracking to repair 
an infeasible solution, and solves the precedence constraint issue in an effective way. As a 
result, more effort can be directed towards harder constraints such as the vehicle capacity 
and time windows. Figure 5.2 shows an example of a solution with 3 requests1 following 
this representation.

1 2 1
3

2 3

Pickup Delivery

Figure 5.2: Solution Representation.

5.4.2 The Neighbourhood Move

As previously mentioned, while creating a neighbouring solution during the search pro
cess, we are faced with a major challenge: the possible violation of one or more of the 
problem constraints that may follow such moves. A neighbourhood move should be in
telligent enough to direct the search towards high quality and feasible solutions, and thus 
avoid valuable time being wasted evaluating a large number of infeasible solutions. When 
designing such moves, all problem constraints should be considered. Nevertheless, in our 
research we found the time window constraint the most difficult to deal with. Recall that 
our duplicate encoding scheme renders the precedence constraint trivial. Furthermore, the 
capacity constraint tends to be easy to satisfy in most problem instances, because half of

1 Recall from Section 5.2 that a request refers to a pair of locations (pickup and delivery).
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the locations visited in any route are delivery locations whose demands are removed from 
the vehicle.

In our research we adopt neighbourhood search operators that apply ‘randomness’, yet at 
the same time take account of the time windows, and bring the more ‘urgent’ locations 
earlier in the visiting order, where this is possible. This neighbourhood idea is adopted 
in all our search algorithms, with slight variations depending on the context in which it is 
applied.

The rest of this chapter and the next chapter are dedicated to our suggested solution me
thodologies for handling the SV-PDPTW. The following section addresses our problem- 
specific genetic algorithm that we adopted for solving this problem. On the other hand, 
our investigation of the SV-PDPTW continues in Chapter 6, which presents the proposed 
operators within the framework of three different heuristic and meta-heuristic techniques 
to deal with this problem.

5.5 A Genetic Algorithm Approach for Solving the SV- 
PDPTW

The focus of this part of our research is to investigate the potential of using genetic al
gorithms to solve the SV-PDPTW. In particular, herein we experiment with a duplicate 
gene encoding that guarantees the satisfaction of the precedence constraint, between the 
pickup and the delivery, throughout the search. Thus, our chromosome encoding simply 
follows the representation depicted in Figure 5.2. In addition, several problem-specific 
genetic operators are tested and compared on a number of data sets with various sizes.

The rest of this section presents the details of our GA approach. Section 5.5.1 describes 
the fitness function that the GA relies on during the evolutionary process. Section 5.5.2 
introduces our suggested genetic operators. Section 5.5.3 explains the procedure adopted 
to create test data for the problem. Finally, Section 5.5.4 details the experimental findings 
of this part of the research,

5.5.1 The Fitness Function

Following [89], the fitness function treats the constraints as soft constraints, meaning that 
an infeasible solution that violates either the capacity and/or the time window constraint
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will be penalized by an added term in the fitness function. The fitness function of a route 
r  is:

F (r ) = wi x D(r)  +  w2 x T W V ( r )  +  w3 x  CV(r) ,  (5.1)

where D(r)  is the total route duration including the waiting time and the service time at 
each location, T W V { r )  is the total number of time window violations in the route, and 
CV(r)  is the total number of capacity violations. w2, and w3 are weights in the range 
[0,1] assigned to each term in the fitness function, and w\ +  w2 +  w3 =  1.0.

The fitness function will thus try to minimize infeasibility as well as the total route du
ration. Also, the choice of appropriate weights depends on the importance of each term 
in the fitness function. Specifically, the highest penalty must be imposed on the number 
of time window violations, since it is the most difficult constraint to satisfy in the SV- 
PDPTW. We used the following values for the weights of the fitness function: w\ — 0.001, 
w2 = 0.7, and w3 =  0.299. Our experimentation with different values in the range [0,1] 
indicated that if a smaller weight value was assigned to the T W V  term, the best individual 
resulting at the end of the evolutionary process is often infeasible, in terms of violating 
the time window constraint.

5.5.2 The Operators

Two crossover operators have been used in our GA, the first crossover operator is a Merge 
Crossover (MX1), first suggested in [16]. The second crossover operator is a new pro
blem specific crossover that we called the Pickup and Delivery Crossover (PDPX). 
Also, two mutation operators were used in our research. A regular gene swap m utation 
and another constraint oriented directed mutation. These four operators are explained 
below.

Crossover

M X l  Crossover: Several crossover operators were considered potentially suitable for 
this kind of problem. The first crossover operator we tried follows the merge crosso
ver operators suggested in [16] for the VRPTW2, and used in [88] and [89] for the SV- 
PDPTW. Unlike traditional crossover operators for ordering problems, which depend only 
on the order of genes in a chromosome, the merge crossover operators depend on a glo
bal precedence among genes, such as the time window or distance ordering. Traditional

2Recall from Chapter 3 that in the VRPTW, the same service type applies to all locations, either pickup 
or delivery.
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order-based crossover operators are not very effective for highly constrained problems 
like the SV-PDPTW, since they frequently produce infeasible solutions. Merge crossover 
operators, however, were shown to be superior to the traditional ones for these types of 

problems [16] [88] [89].

In the current research we have slightly modified the MX1 operator used by [88] and [89]. 
Instead of creating just one child, giving priority to a parent’s gene having an earlier time 
window lower bound, we have created two children: the first child favouring genes that 
have an earlier lower bound, while the second child favours genes that have an earlier 
upper bound. The idea is that visiting a location just before its deadline could be more 
beneficial than visiting it as early as possible in its allowed interval. This may help reduce 
the waiting time that would result if the vehicle arrives too early at a location, and may 
consequently decrease the total route duration. Creating two children instead of one was 
suggested in [16], and may help improve the quality of the new generation and accelerate 
the optimization process.

To illustrate how the MX1 operator works, assume that the vector shown in Figure 5.3 
defines the precedence order, in terms of the lower bound of the time window, among all 
pickup and delivery locations, where a (+) following a request number indicates that this 
is its pickup location and a (-) indicates the delivery location for the same request.

{2+,1-,3+1+4-,2-,3-,4+J
Figure 5.3: Time window precedence vector.

Figure 5.4 illustrates the steps of the MX1 operator. Consider the two parent solutions, 
PI and P2, shown in Figure 5.4(a). The MX1 crossover starts by decoding the parent 
solutions to differentiate the pickup locations from the delivery locations, as illustrated in 
Figure 5.4(b). Then, the MX1 proceeds as follows:

•  Step 1: since 2+ has a higher precedence than 3+ (as indicated by the precedence 
vector depicted in Figure 5.3), the child will inherit 2+ as the first gene, as shown in 
Figure 5.4(c);

•  Step 2: to maintain feasibility, 2+ in P2 will be swapped to the first location. Now 
the second gene in both parents is identical, so it is copied to the child, as shown in
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Figure 5.4(d), and we move on to the next gene in order;

•  Step 3: now since the next gene in P2 (1-) has a higher precedence than 3+ of PI, 
1 - is copied to the third gene in the child, and 1- is swapped with 3+ in P I , as shown 
in Figure 5.4(e);

•  Step 4: continuing in the same manner, we obtain the child Cl shown in Figure 
5.4(f), together with its final format, using the duplicate encoding. Note that after 
the MX 1 crossover, the last 2 genes of C 1 were out of order (4- followed by 4+), but 
this is of no concern since the first one is automatically considered as the pickup.

2 1

COCO 1 2 4 4

3 1 1 2 2 4 4 3

(a) MX 1 - two parents before decoding

2+ 1+ 3+ 3- 1- 2- 4+ 4-

3+ 1+ 1- 2+ 2- 4+ 4- 3-

2+

(c) MX1 - Step 1

2+ 1+ 1- 3- 3+ 2- 4+ 4-

2+ co1+ 2- 4+ 4- 3-

2+ |1+ 1 - 1

(e) MX1 - Step 3

Figure 5.4: M erge

pi 2+ 1 + 3+ 3- 1- 2- 4+ 4-
i

P2 3+ 1 + 1- 2+ 2- 4+ iCOi

(b) MX 1 - two parents after decoding

P1 2+ 1+ 3+ 3- 1- 2- 4+ 4-

P2 2+ 1+ 1- 3+ 2- 4+ 4- 3-

C1 2+ 1+

(d) MX 1 - Step 2

C1 2+ 1+ 1- 3+ 2- 3- 4- 4+

C1 2 1 1 3 2 3 4 4

(0 MX1 - Step 4 

Crossover (MX1).
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The second child is created in a similar manner but with the precedence vector defined by 
the upper bound of time window intervals instead.

PDPX Crossover: In addition to the MX 1 operator, we designed a new problem-specific
crossover operator for the SV-PDPTW. The idea is that, since any crossover operator 
essentially tries to create a child that inherits half of its genes from the first parent and 
half of its genes from the second parent, we will try to transmit pickup locations to the 
child in an order close to the order of their appearance in the first parent, and try to 
transmit delivery locations to the child in an order close to the order of their appearance in 
the second parent. A second child is created by simply reversing the role of parents. This 
kind of crossover might prove useful in satisfying the capacity constraint in particular, 
since the satisfaction of this constraint is mainly dependent on the ordering of pickups 
and deliveries. Figure 5.5 illustrate how the PDPX crossover works.

2 1 3 3 1 2 4 4

3 1 1 2 2 4 4 3

2 1
!

3 ! 4

2 1 3 1 2 4 4

C
O

(a) PDPX - Step 1 (b) PDPX - Step 2

C2 3 1 2 4

C2 3 1 3 2 1 4 2 4

(c) PDPX - second child 

Figure 5.5: P ickup and Delivery Crossover (PDPX).

Starting from the two parent solutions, PI and P2, shown in Figure 5.5(a), the PDPX 
crossover proceeds as follows:

•  Step 1: first all pickups (first occurrences of genes) will be copied to the child in 
the exact order and locations as the first parent, as shown in Figure 5.5(a);

•  Step 2: now, we want to take the order of delivery locations from the second parent. 
Since a delivery is always the second occurrence, we will start processing P2 from
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the last gene rather than the first. If we encounter a gene that appeared in the child 
only once, i.e., it has already been picked up, we will copy it in the first available 
location in the child (also processed starting from the last gene). If, on the other 
hand, we encounter a gene that has already appeared twice in the child, this gene 
will be ignored because pickup and delivery has already occurred for this gene, and 
we move on to the next gene in order. Following this, we obtain the child shown in 
Figure 5.5(b).

The second child is obtained by taking the pickups order from the second parent and the
deliveries order from the first parent, as shown in Figure 5.5(c).

Mutation

As mentioned above, we experimented with two mutation operators in our GA. The first is 
a random gene swap mutation, which selects two genes at random and swaps them. Using 
the duplicate gene encoding eliminates the possibility of infeasible solutions, in terms of 
precedence order, that may result following such a swap.

We also implemented, a new problem oriented mutation operator, named Directed Mu
tation. As mentioned above, it appears that the TW constraint is the most challenging to 
satisfy among all other problem constraints. To deal with the TW constraint, a mutation 
operator can try to bring a location that may be more urgent, to an earlier point in the vi
siting order. This may result in a better ordering of locations, which should be beneficial 
in satisfying the timing requirement. Instead of a traditional random swap of two genes, 
this new mutation operator only swaps genes if they are out of order in terms of their late 
TW bounds, i.e., if the later one has a deadline that precedes the earlier one. The directed 
mutation operator is shown in Figure 5.6.

TW[ 10,30]

Figure 5.6: Directed Mutation.
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5.5.3 Test Data

Since there are no standard benchmark test cases available for the SV-PDPTW, our GA 
was tested on a data set obtained from the authors of [89]. This data set has a number of 
customer requests ranging from 10 to 100 (20 to 200 locations). In addition, for a more 
extensive and thorough testing of the operators, we have created a new data set with larger 
numbers of customer requests ranging from 100 to 200 (200 to 400 locations).

To create test data for the SV-PDPTW, it is essential to ensure the existence of at least 
one solution that satisfies all problem constraints. Similar to [89], our algorithm first 
creates a route that respects precedence and capacity constraints, then a time window 
interval is generated for each location based on the arrival time realized in the created 
route. Unlike [89], however, we rely on our GA to create the initial feasible solution, while 
they create their starting feasible solution randomly. More specifically, the following steps 
were followed to create the test data:

1. Generate a random vehicle capacity within a certain predetermined range;

2. Generate random x  and y coordinates for the depot;

3. For all pickup and delivery locations:

(a) Generate random x  and y  coordinates;

(b) Generate a random demand (load) within a certain allowable range, such that 
the demand of a delivery location is the same as the demand of its correspon
ding pickup location, but with a negative sign;

(c) Assume a very large time window interval that could not possibly be violated;

4. Run the GA to obtain a feasible solution. Note that, the precedence constraint 
is always satisfied in any generated solution, thanks to our duplicate gene enco
ding. Moreover, due to the nature of the problem, the satisfaction of the capa
city constraint can be easily accomplished by our genetic operators. The timing 
constraint can also be easily satisfied because the TW intervals are very large at this 
point;

5. Calculate the arrival time at each location in the feasible route obtained;

6. Create a random time window interval for each location such that the arrival time 
falls within the created time window. The width of the permitted time window 
interval should be determined in advance.
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Algorithm 5.1 describes the initial steps carried out for the creation of test data for the 
problem without the final time window intervals, i.e., Steps 1 to 3 above. In this algorithm, 
the allowable ranges for the random values were determined empirically. Note that all 
ranges were scaled according to the number of requests currently generated, i.e., the larger 
the number of requests, the larger the allowable range for the vehicle capacity and the 
demand of the location. Algorithm 5.2 describes the procedure for determining the TW 
intervals, i.e., Step 6 above.

Algorithm 5.1: Create Test Data.

1: Choose values for constants M in C a p a c ity ,  M axCapacity ,  M inCoord  and M axCoord  
{We used M inC apacity  =  1, M a x C a p a c ity  — 10, M inC oord  = 0 and M axCoord  =  

200}
2: Choose value for constant M i n T W  {A very small value (we used 0)}
3: Choose value for constant M a x T W  {A very large value (we used 100000)}

4: Let nrequests — n /2  be the number of requests in the set, where n  is the total number of 
nodes (locations) in the data set, excluding the depot 

5: VehicleCap — R andom (M inC apac ity  x  n req u es ts , M axCapacity  x nrequests) {Func

tion Random  generates a random value between its two parameters}
6: A verageD emand = Veh ic leC ap/nreques ts  {The average demand of a request}

{Generate coordinates, demand, and TW for the depot and the pickup locations}

7: for {pickloc = 0; pickloc < =  nrequests; pickloc + + ) do 
8: x\pickloc] = Random (M inCoord , M axC o o rd )  {The x-coordinate}

9: y\pickloc] =  Random (M inCoord, M a xC o o rd )  {The y-coordinate}
10: if (pickloc = 0) then

11: demand\pickloc] = 0 {The demand of the depot is 0}
12: else
13: demand\pickloc] = R a n d o m (A vera g eD em a n d x  m \ ,  AverageD em andx m 2 ) {The

choice of m i and m 2 depends on how big we want the demand of the location}
14: E TW \pick loc] = M i n T W  {The lower bound of the TW}

15: LTW[pickloc] = M a x T W  {The upper bound of the TW }

{Generate coordinates, demand, TW for delivery locations}
16: for (delloc =  nrequests  -f 1; delloc < = n; delloc +  -f) do 
17: x[delloc] = Random{M inCoord, M axC oord )
18: y\delloc\ — Random (M inCoord , M axC oord)

19: demand\delloc] =  -dem and\delloc — rirequests]{Same as its pickup demand but -ve}
20: E T W [delloc] — M i n T W  {The lower bound of the TW}

21: L T W  [delloc] = M a x T W  {The upper bound of the TW}
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Algorithm 5.2: G enerate Time Windows.

1: Choose value for constant C u rre n tW id th  {We used 10}
2: Calculate the arrival time of the vehicle at each location in the feasible route obtained by the 

GA

3: for (loc = 1; loc <— n; loc -f + ) do
4: ETW\loc] — Arrival\loc\ — R a n d o m {C u rre n tW id th  x m \,  C u rre n tW id th  x m 2 )

{The choice of m i and m 2 depends on whether we want the time window interval to be 

wide or narrow}

5: if (ETW[loc\  <  0) then
6: E T W [loc ] =  Arrival[loc\ — R a n d o m ( l ,  Arrival[loc\)
1: LTW[loc] — Arrival[loc] +  R a n d o m (C u r r e n tW id th  x m i ,  C u rre n tW id th  x m 2 )

5.5.4 Experimental Results

We implemented a steady state GA with a replacement percentage of 100% and a popu
lation size of 1000. Algorithm 5.3 outlines the GA used in our implementation.

Algorithm 5.3: The SV-PDPTW Genetic Algorithm.

1: Initialize a random population P O P  of candidate solutions to the SV-PDPTW, using the 

duplicate encoding of pickup and delivery locations 

2: while (stopping condition is not reached) do 

3: for (i=0; i<NumCrossovers;i++) do
4: Select parents Pi and P2 from P O P ,  using roulette wheel selection

5: Apply crossover to parents Pi and P2 to produce two children C 1 and C2

6: With some probability, apply mutation to Ci and C 2

7: Update P O P  by integrating the new generation and eliminating some worst individuals
{i.e., steady state GA with overlapping populations}

To test our GA, different combinations of crossover and mutation operators were compa
red on two data set samples. The first sample, which we will call SET 1, is the sample 
obtained from [89] and includes 30, 80, 90 and 100 customer requests3. It should be no
ted that while solving the problem for this data set, the authors of [89] assumed that the 
vehicle’s journey is open path. Thus, although the vehicle should start its journey from 
the depot, it could end at any of the delivery locations. In order to compare our results 
with their results we also make this assumption in our GA approach. An alternative, and 
more ‘standard’, assumption is for the vehicle to start and end at the depot.

3Source: http://wrjih.wordpress.com/2006/12/09/pdptw-test-data/

http://wrjih.wordpress.com/2006/12/09/pdptw-test-data/
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The second data set used to test our algorithm, which we will call SET 2, is obtained from 
the instances created by us, and includes 130, 170, and 200 customer requests 4. Note that 
the number of locations is always double the number of requests. The algorithm was run 
10 times on each test case, with a crossover rate of 1.0 and a mutation rate of 0.45.

The following combinations of crossover and mutation operators were compared:

1. MX1 crossover and random swap mutation.

2. MX1 crossover and directed mutation.

3. PDPX crossover and random swap mutation.

4. PDPX crossover and directed mutation.

5. Directed mutation without any crossover6.

6. MX1 crossover without any mutation.

The genetic algorithm was run to convergence or for a maximum of 3000 generations if no 
convergence can be reached. Since robustness is one of our main goals in this research, the 
GA was run with the same parameters on all problem instances, i.e., it was not specifically 
tuned or optimized for each instance separately.

The results for the 10 runs are recorded in Table 5.1 as follows, for each test case under 
each GA version: the best score found (in terms of total route duration only), and the 
percentage of feasible solutions obtained during the 10 runs. The last column of the table 
shows the previous best result. For SET 1, the previous best results are the ones reported 
in [89], during their computational experimentation with these problem instance7, while 
for SET 2, the previous best results are the best results achieved in the current experiment. 
A score followed by a (*) indicates that this solution is infeasible in terms of time window 
constraint violation. When the obtained result is the same as or better than the previous 
best result, it is highlighted in boldface.

In terms of the objective function values, Table 5.2 shows the average, best, and worst 
objective function values, as calculated by Equation 5.1, for all versions of our GA. the

4Source: http://users.cs.cf.ac.Uk/M. I. Hosny/PDP. zip
5 A higher than usual mutation rate was found necessary to avoid being trapped in a local optimum. One 

reason could be the duplicate encoding, a side effect of which is that mutation may swap identical genes 
producing the same offspring.

6Mutation rate was set to 1 and crossover rate to 0
7 The results shown are truncated as they appear in (89).

http://users.cs.cf.ac.Uk/M
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Table 5.1: GA Results Summary (Total Route Duration).

Data Task
MXl&Swap MXl&Directed PDPX&Swap PDPX&Directed Directed Mut MX1

Prev Best
Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas

SET 1

30 3696.51 100 3738.73 100 3863.27* 0 3734.54 100 3747.47 100 3741.10 100 3713
80 7838.21 100 7858.72 100 9163.92* 0 7838.21 100 7879.35 90 7867.68 80 7849
90 8619.01 100 8619.01 100 10057.0* 0 8623.23 100 8662.20 100 8619.01 100 8618
100 10600.10 100 10600.10 100 11886.10* 0 10608.20 80 10608.20 90 10600.10 90 10600

SET 2
130 13856.20 100 15913.10 20 19185.40* 0 14791.70 60 14679.20 100 21626.0* 0 13856.20
170 19861.30 100 20674.50 60 25817.10* 0 20359.30 90 20470.20 90 30575.60* 0 19861.30
200 24512.80 80 26058.10 60 32009.70* 0 24911.20 40 25091.70 70 37148.50* 0 24512.80

o coo



Table 5.2: GA Results Summary (Objective Function Values).

Task
M Xl&Swap M Xl&Directed PDPX&Swap

Avg Best Worst SD Avg Best Worst SD Avg Best Worst SD
30 3.72 3.70 3.74 0.02 3.74 3.74 3.74 0 15.82 13.66 17.34 1.19

80 7.84 7.84 7.85 0 7.88 7.86 7.89 0.01 81.52 72.86 87.10 4.36
90 8.62 8.62 8.62 0 8.62 8.62 8.62 0 102.78 94.76 114.5 6.68
100 10.60 10.60 10.60 0 10.60 10.60 10.60 0 114.43 101.49 127.16 8.90
130 14.06 13.86 14.23 0.14 56.33 15.91 108.21 35.03 124.0 118.59 128.68 3.88
170 20.17 19.86 20.6 0.24 21.98 20.67 23.95 1.04 183.66 174.22 192.86 5.93
200 24.72 24.51 25.4 0.34 29.27 26.06 47.70 6.61 225.55 214.71 245.10 8.32

Avg 12.82 12.71 13.01 0.11 19.78 13.35 30.1 6.10 121.11 112.9 130.39 5.61

Task
PDPX&Directed Directed M utation MX1

Avg Best Worst SD Avg Best Worst SD Avg Best Worst SD

30 3.77 3.73 3.80 0.02 3.80 3.75 3.86 0.03 3.74 3.74 3.75 0

80 7.91 7.84 7.97 0.04 8.0 7.88 8.63 0.22 8.03 7.87 8.59 0.29

90 8.69 8.62 8.78 0.06 8.70 8.66 8.76 0.03 8.62 8.62 8.62 0

100 10.80 10.61 11.38 0.3 10.73 10.61 11.37 0.23 10.67 10.60 11.30 0.22

130 15.42 14.79 16.59 0.66 15.14 14.68 15.49 0.27 124.53 111.23 132.67 6.85

170 20.84 20.36 22.07 0.49 20.95 20.47 23.03 0.74 178.85 169.48 189.61 6.51

200 25.91 24.91 28.06 1.01 25.46 25.09 26.35 0.39 229.47 214.25 240.92 6.96

Avg 13.33 12.98 14.09 0.37 13.26 13.02 13.93 0.27 80.56 75.11 85.07 2.98
00
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Standard Deviation (SD) value of the objective function for the 10 runs is also shown in 

this table.

As can be observed in Table 5.1, the best results are obtained from the MX1 crossover 
and random  swap m utation. Together they achieved a 100% feasibility rate in all test 
cases except for the largest task (200 requests) in which the feasibility rate was 80%. In 
two cases the results obtained were even better than the previous best results reported in 
[89]. These are the results for test cases 30 and 80. Table 5.2 also shows clearly that the 
overall average objective function results of the MX1 crossover and swap mutation were 
better than those obtained by all other GA versions, for all categories demonstrated in the 

table.

Table 5.1 shows that the worst results are obtained by the PDPX crossover and swap mu
tation. These two operators together failed to achieve any feasible results, in terms of the 
time window constraint, even for the small sized tasks. Also, the overall average objective 
function results for these two operators were considerably worse than the results obtained 
by all other GA versions, as Table 5.2 indicates. These inferior results may be explained 
by noticing that both PDPX crossover and swap mutation lacked any guidance towards 
the time window ordering. Although they were able to satisfy the capacity constraint in all 
test cases, they failed to satisfy the time window constraint. Clearly, they worked blindly 
with respect to the timing order, and consequently were not able to find an ordering that 
services all requests in their desired intervals.

When directed mutation replaced the random swap mutation, however, the results drama
tically improved for the PDPX. Table 5.1 shows that PDPX together with directed m u
tation were able to obtain feasible solutions in all test cases. The feasibility ratio ranged 
from 40% for the largest task to 100% for the smallest task. The overall results, though, 
were not able to beat the results obtained from the MX 1 crossover and swap mutation, 
which can be seen in Table 5.2. Figure 5.7 sustains the above observation, by showing 
how directed mutation was able to guide the search and helped the PDPX crossover to 
find much better solutions for the largest task tested (200 requests), when used in place of 
the random swap mutation.

The situation is different, however, when directed mutation replaced random swap mu
tation with the MX1 crossover. As shown in Tables 5.1 and 5.2, MX1 crossover and 
directed m utation produced lower quality solutions than those obtained by MX1 cros
sover with the random swap mutation. Possibly, the introduction of directed mutation 
caused the algorithm to rapidly converge to a local optimum. Figure 5.8 bears this out, 
and shows the rapid convergence of the MX1 crossover with directed mutation compared 
to the gradual convergence of the MX1 crossover with the random swap mutation.
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Figure 5.7: PDPX & Swap against PDPX & Directed - Task 200.
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Figure 5.8: MX1 & Swap against MX1 & Directed- Task 200.
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The MX1 crossover thus seems capable of guiding the GA towards feasible solutions 
without the help of an ‘intelligent’ mutation operator. Its success is possibly due to the 
fact that it creates not only one but two children that have a better visiting order than 
their parents. These children are biased towards the more urgent requests in terms of the 
allowed service time. All that this crossover needs is a simple random swap to introduce 
a bit of a diversity in the population. Any more ‘intelligent’ interference does not seem to 
help and actually appears to drive the search away from better solutions.

The importance of the random swap mutation to help introduce diversity can also be 
noticed in Tables 5.1 and 5.2, by observing the results when MX1 worked alone w ithout 
any m utation. The results in Table 5.1 show that MX1 failed to find some previously 
achieved best results in the small tasks (SET 1), and even failed to achieve any feasible 
results in all large tasks (SET 2). In addition, the overall average objective function results 
produced by MX1 alone were considerably worse than the results produced when MX1 
worked together with the random swap mutation, which can be clearly realized from Table 
5.2.

Finally, when directed m utation was tested w ithout any crossover, the results obtained 
were, to some extent, surprising. As shown in Table 5.1, this mutation alone was able to 
obtain feasible solutions for all test cases. The feasibility rate was 90% or 100% for all test 
cases except for the largest one, in which the feasibility rate was 70%. Table 5.2 shows 
that in terms of the objective function results, the GA with directed mutation obtained the 
second best results (after the MX1 and swap mutation results). Both tables indicate that 
this mutation is an intelligent operator that has a great potential, since it was able to obtain 
good quality and feasible solutions without the help of any crossover operator.

It should be noted, though, that when directed mutation was tested with MX1 crossover, 
only one swap movement was needed to inject the necessary level of diversity and to 
reduce the chance of being trapped in a local optimum. On the other hand, when directed 
mutation was tested alone or with the PDPX crossover, it was found that a laiger number 
of swaps was needed to achieve good results. For these cases, the number of swaps was 
taken to be a random number between 1 and the number of requests in the data set.

Table 5.3 shows the average number of generations of the 10 runs needed to reach the best 
individual in the population, for all tasks and all GA versions. It is clear from this table 
that the GA with MX1 crossover (alone) had the smallest average number of generations, 
in all test cases. This again indicates the lack of diversity in the population in this GA 
version, due to the absence of mutation, which led to the rapid convergence to a low 
quality solution. On the other hand, the GA with PDPX crossover and random swap 
mutation had the largest average number of generations in most test cases. This could
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be the result of some kind of ‘chaotic’ search that these two operators followed, since 
they lacked any guidance towards the promising areas of the search space, as previously 
discussed. Also, the GA with directed mutation (alone) had the largest average number 
of generations in two test cases (130 and 200 requests). This is most probably due to the 
absence of crossover, which is usually beneficial in exploring wide areas of the search 
space and finding good solutions within a fewer number of generations. Similarly, the 
GA with PDPX and directed mutation needed a relatively large number of generations in 
all test cases. This sustains our previous observation that the crossover operator in this 
GA version seems to be ineffective, and the search could be relying mostly on directed 
mutation to obtain good quality solutions.

Table 5.3: Average Number of Generations to Reach the Best Individual.

Task Mxl Mxl PDPX PDPX Directed MX1
& & & & Mutation
Swap Directed Swap Directed

30 31 15 704 39 35 13

80 116 15 943 414 267 14

90 23 18 1811 421 341 17

100 17 14 1696 617 562 14

130 444 230 1000 893 1432 53

170 446 382 2000 1769 1572 54

200 851 365 2000 2268 2320 49

5.6 Summary and Future Work

In this part of our research we introduced the first variant of pickup and delivery problems 
that we tried to handle, namely the single vehicle with time windows. After describing the 
problem and the motivation behind the research in addition to a summary of some related 
work, we explained our view regarding the solution representation and the neighbourhood 
moves that we believe can help conquer the difficult problem constraints. We then exami
ned the suggested ‘ideas’ in the context of a problem-specific genetic algorithm.

Specifically, the encoding used in our GA is a duplicate gene encoding that guarantees 
the satisfaction of the precedence constraint throughout the search, alleviating the need 
for backtracking to solve the infeasibility that may result following any genetic manipu
lation. Four genetic operators were tested: a 2-child merge crossover (MX1) guided by
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precedence of both time window bounds, a new pickup and delivery crossover (PDPX) 
that depends on the order in which the pickup and delivery locations appear in parent 
solutions, a regular random swap mutation, and a directed mutation that swaps genes 
according to the urgency of service time.

The experimental results on two data set samples indicate that the MX1 crossover and the 
directed m utation are each effective as genetic operators (although they do not work very 
well together). We believe their success is due to the guidance they take from the time 
window information. On the other hand, the PDPX crossover was not able to find fea
sible solutions to any of the test instances, when tested in combination with the random 
swap mutation. This was probably due to the absence of guidance towards the desired 
service time. However, the results for PDPX dramatically improved, when used in combi
nation with directed mutation. Indeed, the directed mutation operator seems to show great 
promise, and would appear to be useful in guiding the search towards feasible solutions, 
in cases where a crossover operator is disruptive, ineffective or absent. Our upcoming 
research will attempt to investigate the potential of this operator for the SV-PDPTW in 
the context of other heuristics and meta-heuristics. The details of this investigation is 
presented in the next chapter.



95

Chapter 6

Several Heuristics and Meta-heuristics 
Applied to the SV-PDPTW

Taking into consideration the challenges of developing an appropriate solution represen
tation and effective neighbourhood moves to facilitate dealing with the constraints of the 
SV-PDPTW, in this part of our research we investigate and compare three approaches to 
the problem. The first approach is a GA approach, similar to that introduced in Chapter 5. 
As previously mentioned, this approach adopts a solution representation having the same 
code for both the pickup and its associated delivery, and applies some problem-oriented 
genetic operators. The second solution methodology we investigated is Simulated An
nealing (SA), which adopts the same solution representation as the one used in the GA. 
Also inspired by the GA mutations, two SA neighbourhood strategies are tested: a ran
dom blind move, and an intelligent move that is directed by the time window. The third 
approach is a simple Hill Climbing (HC) heuristic that creates a starting solution and then 
tries to improve it, replacing the current solution with better solutions generated during 
the search. The same solution representation and the directed neighbourhood move used 
in both the GA and the SA are also adopted in the HC. As previously indicated in Chap
ter 5, the details of the three approaches and the results of this part of our research were 
published in the Journal o f Heuristics [84].

Before we start the discussion of our solution methodologies, we present, in the following 
section, the objective function used in this part of the research. The three sections that 
introduce our selected approaches to the problem are Sections 6.2 (GA), 6.3 (SA) and 
6.4 (HC). Section 6.5 then details our findings when the three approaches were analyzed 
and compared, and Section 6.6 elaborates on some further analysis of the SA algorithm, 
which is the most promising approach among those tested. Finally, Section 6.7 concludes 
this chapter with some suggested future work.
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6.1 The Objective Function

In this part of the research, we slightly modified the objective function used by [89] and 
also by our GA in Chapter 5 (i.e., Equation 5.1). The current objective function additio
nally penalizes the amount of time delay, together with the number of time window and 
capacity violations. The idea is that adding a penalty for the extent of total tardiness in 
the route could possibly direct the search towards better quality and feasible solutions, 
especially if the problem size increases. Thus, the objective function of a route r  is now 
described by the following equation:

F ( r )  = w\ x D { r )  +  w2 x T W V ( r ) +  x  C V ( r )  T D ( r ), (6.1)

where D ( r )  is the total route duration including the waiting time, if the vehicles arrives at a 
location before the start of its service time. T W V ( r )  is the total number of time window 
violations in the route. C V { r )  is the total number of capacity violations, and T D ( r )  

is the total amount of delay if the vehicle arrives at a location later than the specified 
deadline, w i, w2, and w4 are weights in the range [0,1], and + w2 + w3 + w4 =  1.0. 
While experimenting with this objective function, we found that in order to eliminate 
infeasibility, a higher penalty should be imposed on the time window violations and the 
total delay than the capacity violations or the total route duration. We used the following 
values for the penalty weights in our objective function: w\ =  0.001, w2 — 0.6, w3 =
0.099, and w4 =  0.3.

6.2 The Genetic Algorithm (GA) Approach

The genetic algorithm used in the current research is identical to the GA used in the first 
part of the research, as presented in Chapter 5. Nevertheless, here we only applied the 
two most promising genetic versions. Namely, the GA with MX1 crossover and random 
swap mutation, and the GA with directed mutation only. Also, the GA adopted here uses 
the new objective function described in Equation 6.1, instead of the previous objective 
function (Equation 5.1).

6.3 The 3-Stage Simulated Annealing (SA) Approach

As previously explained in Section 2.3.2, the theoretical foundation of simulated annea
ling was established in [93]. Since then, the algorithm has been successfully used in
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solving many combinatorial optimization problems, including vehicle routing and sche
duling problems.

To solve the SV-PDPTW using SA, we first need to construct an initial solution, and then 
try to optimize this solution using a method analogous to the annealing of solids. Some 
researchers choose to apply different heuristic techniques to create an initial solution with 
minimum constraint violations, for example [23] and [95]. In our research, we construct 
an initial solution s by simply generating a large number of random routes and selec
ting the route with minimum cost (according to Equation 6.1) to be our starting solution1. 
This technique is straightforward to implement and also computationally inexpensive. Al
though the quality of the initial solution may be poor, the main focus of the algorithm is 
on the route improvement phase, accomplished during the SA search. A good neighbou
rhood move should be capable of directing the SA algorithm to reach a final high quality 
solution, irrespective of the quality of the starting solution. The solution representation 
adopted in the SA approach is the same as the solution representation of the GA, i.e., 
assigning the same code to the pickup and its delivery as shown in Figure 5.2.

The choice of an appropriate annealing schedule is critical to the performance of SA. 
Ideally it is desirable to devise a scheme that is adaptable for all test cases and problem 
sizes, eliminating the need for ‘arbitrary’ parameter tuning, which can be very time consu
ming. Following [40], we created the annealing parameters for each test case individually 
as shown in Algorithm 6.1. To generate a neighbouring solution s' in this algorithm, a 
simple random swap between two different locations in s is performed.

The main SA algorithm is shown in Algorithm 6.2. This algorithm starts with the same 
solution s used to calculate the annealing parameters in Algorithm 6.1. This time, ho
wever, to get a new state s’ from the current state s, an intelligent neighbourhood move, 
that depends on the upper bound of the time window, is used. First two locations in the 
current solution are selected at random. Then, these two locations are swapped, only if 
their deadlines are out of order, i.e., if the latter has a more urgent deadline than the earlier 
one. This is exactly the same idea adopted in the directed mutation used in the GA (see 
Section 5.5.2 and Figure 5.6), and its purpose is to arrange requests in a way that will best 
satisfy the timing constraint.

'We generated 10000 random solutions and selected the best one among them.
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Algorithm 6.1: Calculating Annealing Parameters [40].

1: Given an initial solution s
{Initialize P sta r t  the starting acceptance probability and P en d  the final acceptance probabi

lity}
2: Let P sta r t  = a large value {We used 0.999}
3: Let P end  = a small value {We used 0.001}
4: A avg *- 0

{Generate n  neighbouring solutions of s}
5: for (i = 0; i < n; i + +) do 
6: Select two random locations in s
7: Swap the current two locations in s to get a new solution s'

8: A <— |cos£(s') — cos£(s)|

9- A aVg < A avg T A
10: A aVg * A avg /  n
11: To <------A avg/  \og(Pstart) {To is the initial temperature}

12: Tyv <------A avg/  log {Pend)  {Tyv is the final temperature}
13: or <— exp(]og(TN^~log('Tô /N {a  is the temperature reduction factor, and N  is the number of

iterations desired}

14: Return To, Tyv and a

Algorithm 6.2: The Main SA Algorithm.

1: Given an initial solution s, a starting temperature To, and a temperature reduction factor a 

2: T  *— Tq {Initialize the current temperature}
3: repeat
4: Select two random locations in s

5: if (The latter location has a smaller value of the upper bound of the time window) then

6: Swap the current two locations in s to get a new solution s'
1: A <— cost(s') — cost(s)
8: if (A <  0) then

9: s <— s'

10: T  <— a  x T  {Reduce the current temperature}

11: else
12: p = Random {0,1) {generate a random number in the interval (0,1)}
13: if (p <  exp(_A//r)) then
14: s <— s'

15: until (Frozen) {Stop when no improvement is achieved for a pre-specified number of iterations 
(we used 5000 iterations)}

16: Return s
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During any iteration of the main SA algorithm, if the currently selected locations are not 
out of sequence in terms of their deadlines, however, no swap of locations will take place. 
As a result, the current solution will remain intact, and no change in cost is evaluated. 
The temperature value T  also remains unchanged and is carried forward to the next itera
tion. In fact, as will be explained shortly, the present temperature value is only reduced 
following the replacement of the current solution s with a new improved solution s'.

Nevertheless, since the final solution obtained after the main SA procedure may still be 
a low quality or an infeasible solution, we extended our algorithm with two further SA 
stages, in order to more fully exploit all the guidance that the time windows can give 
us. The second stage adopts a neighbourhood move depending on the lower bound of 
the time window instead of the upper bound, while the third stage uses a neighbourhood 
move based on the centre of the time window interval. Specifically, the second and third 
SA stages will only differ from the first SA stage (which is shown in Algorithm 6.2) in 
Step 5 of the algorithm, since the lower bound and the centre of the time window will be 
used respectively in these two stages.

The idea is that, each of these different neighbourhood moves may help introduce some 
improvement to the fitness of the current solution, for example by reducing the total delay 
or the total waiting time, which could ultimately lead to obtaining high quality solutions. 
Each new SA stage starts from the final solution reached by the end of the previous stage, 
and its starting temperature is the final temperature reached by the previous stage. We 
chose to start with a route improvement move that is guided by the upper bound of time 
window, in order to reduce the total number of time window violations in the route by 
visiting the more urgent requests first. However, a different improvement order could 
also be attempted (See Section 6.6 for a further investigation of different orders of time 
window moves).

In the first two stages of the SA procedure (in which the neighbourhood move depends on 
the upper and then the lower bound of the time window), the temperature reduction sche
dule was slow. As shown in Step 10 of Algorithm 6.2, we chose to reduce the temperature 
only when a better solution was found, i.e., several neighbouring solutions are explored 
for the same temperature value. The idea is to allow the algorithm a thorough exploration 
of the neighbourhood by accepting a large number of worse moves during the early stages 
of the search. However, during the final stage of the SA (the one that adopts the centre of 
the time window to perturb the solution), the solution was approaching stability, and there 
was a danger of losing the best solution obtained if the temperature was slowly reduced. 
Thus, during this final stage, the temperature reduction was rapid. This was achieved by 
reducing the temperature at every iteration of the search, which will make the probability
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of accepting worse solutions very small.

To evaluate the performance of the 3-stage SA algorithm described above, it was compa
red with another simple SA algorithm in which the same annealing schedule and a slow 
cooling is used, but the neighbourhood move was a simple random swap of locations that 
does not take the timing order into consideration. The comparison results are reported in 
Section 6.5.

6.4 The Hill Climbing (HC) Approach

The final approach we used to solve the SV-PDPTW problem is a simple hill climbing 
heuristic. The algorithm basically has two phases: a route construction phase, and a route 
improvement phase. As with our SA algorithm, the initial solution is simply created by 
generating a large number of random solutions and selecting the best generated solution 
(i.e., minimum cost solution according to Equation 6.1). Again this procedure will avoid 
unnecessary complications and increased processing time that may result if we try to ge
nerate a high quality solution with minimum infeasibility. A guided route improvement 
phase, which repeatedly replaces the current solution with better solutions generated du
ring the search, should be able to transform the starting low quality and possibly infeasible 
solution to a high quality and feasible solution. Our main HC algorithm is described in 
Algorithm 6.3.

Algorithm 6.3: The Main HC Algorithm.

1: Given an initial solution s 
2: repeat

3: for (Each possible pair of locations in s) do

4: if (The latter location has a smaller value of the upper bound of the time window) then
5: Swap the current two locations in s to get a new solution s'
6: A <— cost(s')  — cost(s)
7: if (A <  0) then
8: s <— s'

9: until (Done){Stop if no improvement has been achieved in the previous pass}

10: Returns

Again, in our HC we adopt the same solution representation and neighbourhood moves 
that were used in both the GA and the SA. Similar to the SA algorithm, the HC algorithm 
was divided into three stages. The first stage generates a neighbouring solution by swap
ping the two locations currently under consideration, only if their deadlines (i.e., the upper
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bounds of the time window) are out of order. On the other hand, if the deadlines are in 
sequence, the current solution remains intact, and two new locations are considered in the 
next iteration. When no further improvement is possible using this neighbourhood move, 
the second stage starts from the final solution achieved in the first stage and repeats the 
same HC procedure, but with a neighbourhood move that adopts the lower bound of the 
time window to decide the swapping. Finally, the third stage starts with the final solution 
obtained in the second stage, but with a neighbourhood move that swaps locations if they 
are out of order in terms of the centre of the time window interval.

6.5 Experimental Results

To test our algorithms, we used the same data set samples on which we tested our GA, as 
previously explained in Section 5.5.4. Each of the following algorithms was run 10 times 
on each test case:

1. The GA with MX1 crossover and random swap mutation (GA1).

2. The GA with directed mutation only (GA2).

3. The 3-stage SA (SA1).

4. The simple random-move SA (SA2).

5. The Hill Climbing (HC) algorithm .

All algorithms were run on all problem instances using the same set of parameters (e.g. 
GA parameters, simulated annealing schedule, and stopping conditions), i.e., no particular 
tuning of parameters was performed for each test case separately. The results for the 10 
runs are recorded in Table 6.1 as follows: for each test case under each algorithm, the 
best result found (in terms of total route duration only), and the percentage of feasible 
solutions obtained during the 10 runs. The last column of the table shows the previous 
best results, attributed to [89] and our GA approach reported in Chapter 5. Whenever 
the result achieved in the current experiment is better than the previous best result, it is 
highlighted in boldface.
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Table 6.1: Results Summary for all Algorithms (Total Route Duration).

Data Task
GA1 GA2 SA1 SA2 HC

Prev Best
Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas

SET 1

30 3738.73 100 3751.21 100 3299.40 100 3684.21 100 3772.82 70 3696.51

80 7838.21 100 7867.68 100 7267.0 100 7852.25 80 7847.67 90 7838.21

90 8619.01 100 8619.01 100 8292.67 100 8619.01 100 8671.54 100 8618.0
100 10600.10 100 10600.10 90 10544.60 90 10611.10 70 10600.10 90 10600.10

SET 2

130 14041.0 100 14343.0 100 13826.0 100 14081.20 90 14031.10 100 13856.20
170 20618.10 100 20333.80 100 19690.90 100 19964.80 100 20003.60 100 19861.30

200 25799.50 100 24730.0 100 23841.10 100 24461.60 100 24304.30 100 24512.80

(NO
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As shown in Table 6.1, the best route duration results were achieved by the 3-stage SA 
(SA1). In all test cases the best results achieved by this version of SA were better than 
the previous results achieved in [89] and by our GA explained in Chapter 5. The results 
were also superior to the results achieved by all the other algorithms tested in the current 
research. A very high feasibility rate and good quality solutions were obtained in all 
tasks tested, with an improvement of approximately 11%, over the previous best2, for the 
smallest task and approximately 3% for the largest task.

In terms of the overall objective function values, Table 6.2 shows the average, best, and 
worst objective function values, as calculated by Equation 6.1, for the GA1 and GA2 
algorithms, the Standard Deviation (SD) value of the objective function for the 10 runs is 
also shown in this table. Table 6.3 shows the same objective function information for the 
remaining three algorithms (SA1, SA2, and HC).

Table 6.2: Results Summary for GA1 and GA2 (Objective Function Values).

Task
GA1 GA2

Avg Best Worst SD Avg Best Worst SD
30 3.74 3.74 3.74 0 3.81 3.75 3.89 0.05

80 7.86 7.84 7.87 0.01 7.92 7.87 7.97 0.04

90 8.62 8.62 8.62 0 8.69 8.62 8.77 0.05

100 10.60 10.60 10.60 0 11.08 10.60 14.69 1.27

130 14.51 14.04 15.28 0.35 14.85 14.34 15.16 0.25

170 20.94 20.62 21.25 0.21 20.67 20.33 20.88 0.16

200 26.20 25.80 26.45 0.21 25.04 24.73 25.33 0.21

Avg 13.21 13.04 13.4 0.11 13.15 12.89 13.81 0.29

Tables 6.2 and 6.3 also support the conclusions drawn from Table 6.1. Observing the 
overall average results in the last row of Table 6.2 and 6.3, we can clearly see that the 
SA1 algorithm outperformed all other heuristics in the average, best and worst objective 
function values. On the other hand, its overall average SD value was only slightly larger 
than the overall average SD of the GA1 algorithm. The GA1 algorithm obtained a smaller 
SD, due to the fact that the population converged to a sub-optimal solution in 3 out of the 
7 test cases (30, 90 and 100 requests), as shown in Table 6.2.

2The improvement percentage is calculated using the formula: ((R * -  R)/R*) x 100, where R is the 
current result and R * is the previous best result.
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Table 6.3: Results Summary for SA1, SA2 and HC (Objective Function Values).

Task
SA1 SA2 HC

Avg Best Worst SD Avg Best Worst SD Avg Best Worst SD

30 3.53 3.30 3.66 0.1 3.71 3.68 3.74 0.02 3.83 3.77 3.96 0.06

80 7.63 7.27 7.85 0.19 9.25 7.85 18.78 3.43 9.55 7.85 24.45 5.24

90 8.46 8.29 8.60 0.11 8.69 8.62 8.75 0.04 8.69 8.67 8.72 0.02

100 10.63 10.54 11.0 0.13 21.49 10.61 75.31 20.70 10.90 10.60 13.40 0.88

130 13.95 13.83 14.12 0.11 18.68 14.08 59.05 14.19 14.51 14.03 15.08 0.37

170 20.06 19.69 20.43 0.22 20.16 19.96 20.46 0.16 20.31 20.0 20.89 0.25

200 24.37 23.84 24.68 0.25 24.71 24.46 24.94 0.15 24.63 24.30 24.99 0.22

Avg 12.66 12.39 12.91 0.16 15.24 12.75 30.15 5.53 13.2 12.75 15.93 1.01

o
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It appears from these results that the SA1 algorithm was able to escape the trap of local 
optima and to gradually find better solutions by progressing from one stage to another. 
Each stage of the 3-stage SA (SA1) seems to contribute to the improvement process. To 
illustrate this, Table 6.4 shows the progress of the 3-stage SA in the best run for our largest 
task of 200 requests. The table shows the total route duration, the number of capacity 
violations (CV) and the number of time window violations (TWV) at the beginning of the 
run, and after the termination of each of the three stages. It is clear from this table how 
the solution progressively improves after each stage.

Table 6.4: 3-stage SA Progress for Task 200.

Stage Route Duration CV TW V
Initial Solution 52969.3 64 387
After Stage 1 37768.2 0 344
After Stage 2 23841.1 0 3
After Stage 3 23841.1 0 0

Regarding the other four algorithms (GA1, GA2, SA2 and HC), it appears from Tables 
6.1, 6.2 and 6.3 that the best results obtained by both versions of the GA were slightly 
worse than the results obtained by the random-move SA (SA2) and the HC in most test 
cases. The GAs, nevertheless, achieved a better feasibility ratio, and their overall average 
objective values were better than the average obtained by the SA2 algorithm. The tables 
also show that the performance of the HC algorithm was in general very good. Its overall 
average objective function result (shown in the last row of Table 6.3) was comparable to 
those obtained by the GAs, but better than the overall average objective of the SA2 algo
rithm. The SA2 algorithm has the worst overall average objective value, obviously due 
to the higher percentage of infeasible solutions obtained by this algorithm, as indicated in 
Table 6.1.

Similar to the 3-stage SA, the three stages applied in the HC algorithm seem to contribute 
to guiding the search towards better solutions. To see this, consider again the laigest task 
of 200 requests. Table 6.5 shows the progress of the best run for this task from one stage to 
another, highlighting the total route duration and the number of capacity and time window 
violations. It is again clear from this table how each stage played its role in improving the 
solution it received from the previous stage.
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Table 6.5: HC Progress for Task 200.

Stage Route Duration CV TWV
Initial Solution 55013.0 117 387
After Stage 1 26462.9 1 1
After Stage 2 24315.9 0 0
After Stage 3 24304.3 0 0

Figure 6.1 also bears out the above observations. This graph shows the average objective 
value (as calculated by Equation 6.1) achieved during the 10 runs, by each of the algo
rithms tested. For all test cases, the graph demonstrates the superiority of the 3-stage SA, 
since its average objective value is the lowest compared to the other algorithms tested.
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Figure 6.1: Average objective value for all algorithms.

It should be noted that infeasible solutions are seldom produced by our algorithms. Ho
wever, since an infeasible solution usually has a very large objective value, the presence 
of one or more such solutions often results in a large increase in the average objective va
lue (as an example, notice the average objective value produced by the random-move SA 
algorithm (SA2) for tasks 100 and 130 shown in Figure 6.1). Specifically, if the infeasible 
solution has a very large number of TW violations, its overall objective value will be very
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high, given the large penalty imposed on the TW violations in Equation 6.1, and also the 
penalty on the amount of delay. On the other hand, a feasible solution will only have the 
route duration (multiplied by its small weight) as its total objective value.

Figure 6.2 shows the best run of the HC algorithm against the best run of 3-stage SA 
(SA1) algorithm for the largest task of 200 requests. The graph demonstrates the current 
objective value, as calculated by Equation 6.1, in each iteration of the run. It seems in this 
graph that the 3-stage SA was able to explore a wider area of the search space, albeit with 
a larger number of iterations needed to reach convergence.

Figure 6.3 shows the best run of the random-move S A algorithm (SA2) against the best run 
of the 3-stage SA (SA1), again showing the current objective value in each iteration of the 
run for the 200-requests task. In this graph, it is clear that the 3-stage SA was immediately 
directed towards lower cost solutions during the early phases of the run. The random- 
move SA, however, spent quite a long time during these early phases investigating low 
quality solutions, and only started discovering the promising areas of the search almost 
halfway through the run3.
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Figure 6.2: HC against 3-Stage SA (SA1) for task 200.

3It should be noted that the objective values only appear to go to zero in Figures 6.2 and 6.3, due to the 
scale of the y-axis. However, the final objective values are in fact very small. This is because the solution 
reached by the end of each run in both figures is a feasible solution whose cost is only measured by the 
duration of the route (multiplied by its small weight), according to Equation 6.1.
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Figure 6.3: Random-move SA (SA2) against 3-Stage SA (SA1) for task 200.

Table 6.6 shows the average processing time in seconds for all the algorithms tested. 
The table shows that the HC algorithm has the fastest average processing time among all 
algorithms, in all test cases. The table also indicates that the overall average processing 
time of the 3-stage SA was slightly longer than the overall average processing time of the 
random-move SA. In addition, the table clearly indicates that both GA versions were very 
slow compared to all other algorithms, which is expected due to the need to maintain a 
large population of individuals throughout the search. The SA and HC algorithms, on the 
other hand, have lower computational costs due to focusing on a single solution.

Finally, comparing the results obtained by the 3-stage SA with the results obtained by pre
vious researchers for the same problem, our algorithm seems impressive, in terms of run 
time as well as solution quality. We appreciate the difficulty in making such comparisons 
when different platforms have been used. Nevertheless, our run times are to a large extent 
acceptable. For example, as shown in Table 6.6, the average run time of the 3-stage SA 
for the 100-requests task was 44.5 seconds, while the best algorithm tried in [89] appears 
to have an average CPU time of approximately 300 seconds for the same task.
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Table 6.6: Average Processing Time in Seconds.

Task GA1 GA2 SA1 SA2 HC
30 92.6 42.65 5 4.9 1
80 114.5 73.15 23.8 11.7 4.3
90 121 105.65 39.1 14 5.4

100 43.55 111.9 44.5 14.4 6.2
130 422 581 26.3 30.1 9.2
170 479.7 699.4 38.8 42.1 13.8
200 1018.8 760.95 46.4 53.9 19.4

Average 327.44 339.24 31.99 24.44 8.47

6.6 The 3-Stage SA: Further Investigation

As mentioned above, the 3-stage SA seems to be quite a promising approach. Thus, it 
would be justified if we perform a thorough investigation of this algorithm by trying to 
examine all its potential. The choice of the sequence of the three neighbourhood moves 
was only based on our judgment. Starting with a move that is guided by the upper bound of 
the time window may give the algorithm better guidance, since it would potentially reduce 
the infeasibility incurred as a result of over delay. This, however, may not be the best 
choice. A different order could prove more beneficial in the optimization process, either 
in the quality or the speed of the final solution obtained. Thus, this part of our research 
tries to investigate all possible sequences of neighbourhood moves, by testing them on 
selected tasks from the data sets used in the previous part of the research. Our aim is to 
reach a conclusion as to whether there is any significance to the order of the underlying 
neighbourhood moves. The following discussion details our experimental findings when 
the different sequences of stages were investigated.

3-Stage SA Experimental Results:

To evaluate the performance of the 3-stage SA when different orders of neighbourhood 
moves are considered, we selected 4 tasks from our two data set samples. These are tasks 
30,90, 130, and 200. For each task, we ran the 3-stage SA algorithm under each possible 
sequence 10 times. In the upcoming analysis of results, we use a combination of the first 
letters of the three time window (TW) moves to denote the sequence under consideration. 
For example (LEC) denotes the sequence: Late time window followed by Early time
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window then Centre time window.

Table 6.7 shows the average objective value4, of the 10 runs achieved by the different 
TW orders for all tasks. Table 6.8 shows the best and worst average objective values 
achieved in each task, together with the sequence of moves that obtained these averages. 
This table also shows the best objective value achieved in each task and the sequence 
which obtained this best result. The last column of the table shows the previous best 
objective value obtained using the preliminary experimentation order (LEC), as explained 
in Section 6.5.

Table 6.7: Average Objective Value for all Sequences.

Task LEC LCE ELC ECL CEL CLE

30 3.53 3.75 3.49 3.70 3.57 3.78
90 8.46 8.62 8.55 8.52 8.48 8.75
130 13.95 14.03 13.97 13.96 14.22 14.19
200 24.37 24.40 24.30 24.27 24.32 24.49

Table 6.8: Best and Worst Results.

Task Best Avg Obj Worst Avg Obj Best Obj Prev Best Obj
30 3.49 - ELC 3.78 - CLE 2.97 - ELC 3.30 - LEC
90 8.46 - LEC 8.75 - CLE 8.23 - CEL 8.29 - LEC
130 13.95-LEC 14.22-C EL 12.93-ECL 13.83-LEC
200 24.27 - ECL 24.49 - CLE 23.43 - ELC 23.84 - LEC

As shown in Table 6.8, the sequence LEC (used in Section 6.5) achieved the best average 
in 2 tasks, tasks 90 and 130. On the other hand, the sequence CLE achieved the worst 
average objective in 3 tasks, 30, 90 and 200, while the sequence CEL achieved the worst 
average for task 130. Note that both sequences that obtained the worst averages start with 
the centre of the time window, while all sequences that obtained the best averages started 
with either ends of the TW interval. Possibly, adopting the centre of time window as the 
starting phase may not be the best choice for our algorithm. This deduction, however, still 
needs further evidence, specially when we notice in Table 6.8 that the sequence CEL was 
able to achieve the best solution among all sequences for task 90. For the remaining three

4 As calculated by Equation 6.1.
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tasks, 30, 130 and 200, the sequences that obtained the best results all started with a move 
that depends on the early TW bound. Apart from the above observations, there seems 
to be no significant difference between the averages obtained by the different sequences. 
This can also be seen in Figure 6.4, which shows graphically the same information as 
Table 6.7. The graph shows that all sequences obtained more or less comparable averages 
in all test cases.

Task 90 Task 200
Task Size

Figure 6.4: Average objective value for all sequences .

Also, observing the resulting feasibility ratio of all sequences, we found that the feasibility 
ratio obtained by all sequences was 100% for all tasks, with only one exception, the 
sequence CLE. This sequence had an 80% feasibility for task 30, and a 90% feasibility 
for task 90. Again this may provide an additional evidence that starting with the centre 
of the time window may, in some cases, drive the algorithm away from the promising 
solutions. Possibly, the middle of the time window is not a very good indicator of how 
urgent the request is. Thus, starting with it may lead to a solution that does not have the 
best visiting order of requests and may have a large number of time window violations. 
This order may be difficult to change later in the run.

It can also be noticed in Table 6.8 that the best results obtained in the current experiment 
were better than the previous best results in all test cases. A possible indication of this 
is that the 3-stage SA is a stable and robust algorithm which consistently produces high 
quality solutions even if different orders of neighbourhood moves were employed.

Moreover, it should be noted that in most test cases the three stages seem to contribute 
positively to the optimization process. Each stage often added further improvement to the
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result of the previous stage, although the extent of improvement obviously varies depen
ding on several factors, such as the quality of the starting solution, the current annealing 
schedule, and the neighbourhood structure.

Table 6.9 shows the progress of the SA optimization process during the three stages, for 
the best run of each task. The table demonstrates the objective value5, the number of 
capacity violations (CV), and the number of time window violations (TWV) before and 
after each stage of the algorithm. The sequence of TW stages that obtained these best 
solutions is also shown next to the size of each task. This table shows that, in some cases, 
for example task 90, the best solution reached by the end of one stage may be lost during 
the following stage. This is normal in any SA algorithm, and especially when slow cooling 
is employed, as we did in our first two stages6. Nevertheless, the final result obtained by 
the end of the last stage was better than the lost solution. Obviously, when the algorithm 
starts a fresh stage, using a new move, after the stagnation of the previous stage, it may 
escape a local optimum, only by passing through worse solutions.

In terms of processing speed, nevertheless, we might be able to reach a slightly better 
distinction. Table 6.10 shows the average processing time in seconds for the different 
sequences, together with the best average speed and the sequence that achieved this best 
average. The table shows that the sequence LCE achieved the best average speed in 3 
cases, 30, 130, and 200.

Table 6.10: Average Processing Time in Seconds for all Sequences.

Task LEC LCE ELC ECL CEL CLE Best Average Sequence of Best
30 5.0 1.5 29.2 5.0 5.6 1.8 1.5 LCE
90 39.1 21.6 18.9 18.1 19.7 15.9 15.9 CLE
130 26.3 18.0 45.8 36.9 29.5 33.4 18.0 LCE
200 46.4 33.7 85.1 73.1 63.4 37.7 33.7 LCE

5The objective value shown in Table 6.9 is calculated by Equation 6.1. Notice that this value is very large 
for the initial solution, due to the presence of a very large number of capacity and TW violations, which 
are penalized in the objective function. When the violations are removed by the end of the run, though, the 
remaining objective value will only be the route duration multiplied by the weight assigned to it.

6See the discussion in Section 6.3.



Table 6.9: Solution Progress through Stages.

Task
Initial Solution After Stage 1 After Sta ge 2 After Sta »e3

Obj CV TWV Obj CV TWV OBJ CV TWV OBJ CV TWV

30 - ELC 18689.70 4 48 2.97 0 0 2.97 0 0 2.97 0 0

90 - CEL 258255.0 83 171 8.84 0 0 9.68 0 1 8.23 0 0

130 - ECL 792709.0 23 232 112.24 0 2 12.93 0 0 12.93 0 0

200 - ELC 2345240.0 130 382 696.82 0 7 23.44 0 0 23.43 0 0
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6.7 Summary and Future Work

In this part of our research, we investigated three different approaches to the SV-PDPTW. 
First, a GA approach equipped with problem-specific genetic operators was implemented. 
One GA version had a TW directed merge crossover working together with a random swap 
mutation, while the other depended only on an intelligent directed mutation that is guided 
by the TW. Second, two versions of SA were tested: the first operated in three stages and 
adopted neighbourhood moves that are guided by the time window, and a second adopted 
a random unguided neighbourhood move. The third approach is an HC heuristic which 
also operated in a manner similar to the 3-stage SA, but only accepted better solutions 
encountered during the search.

The experimental results indicated that both GA versions had more or less comparable 
results in terms of both quality and processing speed. This could only indicate that the 
directed mutation operator is an intelligent operator that can guide the search towards 
better solutions even without the help of any crossover, which is usually the main GA 
operator. However, the performance of the GA in general was slightly inferior to the other 
algorithms tested in this research, in terms of the quality of the best solution in most test 
cases, but more so in terms of processing speed.

On the other hand, the 3-stage SA seems to be superior to all other algorithms tested in 
this research in the quality of the solutions obtained. Moreover, its results were better than 
the best results from previous research on the problem, both in terms of quality and speed, 
in all test cases. However, this SA version was slightly slower than the random-move 
SA version and the HC heuristic tested. The success of the 3-stage SA is possibly due to 
its dependence on intelligent neighbourhood moves that contributed to guiding the search 
towards better solutions. These neighbourhood moves were also successful in the context 
of hill climbing but with a less dramatic effect than their effect in the context of simulated 
annealing, possibly due to the trap of local optima. However, using hill climbing can still 
give us good quality solutions in a very short processing time, which may be preferable in 
real world applications, and if the algorithm is used repeatedly, as usually done when the 
problem is generalized to the multiple vehicle case.

We also further investigated the 3-stage SA algorithm by examining all possible time win
dow sequences and analyzing their outcome on selected instances. The results in general 
indicated that the 3-stage SA is a stable algorithms that usually produces high quality 
solutions under various orders of stages. Nevertheless, all sequences seem to produces 
comparable average results in most test cases. It was not possible to reach a definite 
conclusion as to whether one or more sequences are preferred during the application of
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the SA algorithm. Some results, though, indicated that the initial phase should probably 
start with either bounds of the TW interval, rather than its centre. In some cases, this will 
probably provide the algorithm a push ahead towards more promising solutions. In terms 
of processing speed, however, the sequence LCE seems to have the fastest average speed 
in most test cases.

The ideas introduced so far for handling the SV-PDPTW problem constraints can be incor
porated in any heuristic or meta-heuristic approach that tackle this problem, and also its 
multiple vehicle variant, as will be shown later in this thesis. The robustness and portabi
lity of these simple tools have been demonstrated on several occasions within the current 
research.

Our next plan is to broaden our scope and investigate the more general Multiple Vehicle 
Pickup and Delivery Problem with Time Windows (MV-PDPTW). The work done so far 
for the single vehicle case will be integrated within our upcoming study. The details of 
this investigation are presented in the next two chapters.
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Chapter 7

New Solution Construction Heuristics 
for the Multiple Vehicle Pickup and 
Delivery Problem with Time Windows

The Multiple Vehicle Pickup and Delivery Problem with Time Windows (MV-PDPTW) 
is a generalization of the SV-PDPTW introduced in Chapters 5 and 6. Thus, the problem 
definition in Section 5.2 applies to the MV-PDPTW except that we assume here the avai
lability a homogenous fleet of vehicles, with identical capacity, to serve the requests. In 
addition to the precedence, capacity and time window constraints, applied to the single 
vehicle case, the multiple vehicle case has an added coupling constraint. This constraint 
ensures that the pickup location and its corresponding delivery are served by the same 
vehicle. Also, the objective function of the MV-PDPTW usually tries to minimize the 
number of vehicles used in the solution, as a primary objective, followed by minimizing 
the total traveling distance and/or the total schedule duration. Figure 7.1 shows a simpli
fied  representation of a small instance of this problem before and after solving it.

■  pickup 
; ) delivery

Figure 7.1: MV-PDPTW before solution (left) and after solution (right).
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The MV-PDPTW is known to be AfV-hard  [131], and the presence of many constraints 
makes the problem particularly complicated. Indeed, generating feasible and good quality 
solutions to the problem in a reasonable amount of time is often a hard challenge for re
searchers. The MV-PDPTW is both a grouping problem  (assigning requests to vehicles), 
and a routing problem  (finding the best route for each vehicle). Thus, an intelligent solu
tion methodology should be able to handle these two aspects efficiently. Similar to other 
vehicle routing problems, researchers usually try to solve the problem in two stages: the 
first stage is solution construction, while the second is solution improvement. This chapter 
is dedicated to the solution construction phase of the MV-PDPTW, while our investigation 
of the solution improvement phase is detailed in the next chapter. The findings of this part 
of our research were published in the MIC2009 conference [81].

The rest of this chapter is organized as follows: Section 7.1 gives a general idea about 
solution construction for the MV-PDPTW and introduces our upcoming research in this 
area. Section 7.2 summarizes some related work. Section 7.3 emphasizes the motivation 
and the objectives of this part of our research. Section 7.4 explains the routing algorithm 
embedded within the different construction heuristics suggested. Section 7.5 details the 
construction heuristics implemented in this research. Section 7.6 reports the experimental 
results of the algorithms tested. Section 7.7 sheds light on some implementation issues 
and complexity analysis of the suggested algorithms. Finally, Section 7.8 concludes this 
chapter with our future plans.

7.1 Solution Construction for the MV-PDPTW

Like the construction heuristics for the VRPTW, a solution construction algorithm for the 
MV-PDPTW usually selects at each iteration an un-assigned customer whose insertion is 
predicted to cause the least increase in the overall cost of the solution. The selected cus
tomer is then inserted in its best (least cost) feasible insertion position found among all 
available routes. This kind of insertion may require multiple calculations to estimate the 
effect of the insertion, in terms of the increase in travel distance and time delay, on all cus
tomers already existing in that particular route who could be affected by the insertion (see 
Section 3.3 for more details about construction heuristics). Additional decisions during 
the construction of the solution include whether to build routes sequentially or in parallel, 
and possibly the selection of seed customers to initialize the routes. Some construction 
algorithms order customers before the insertion, and the initial order is also an important 
factor that may affect the quality of the generated solution. Common approaches include 
sorting customers according to the distance from the depot, or according to the time win
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dow. Finally, the selection of a cost function to assess the quality of the whole solution1 
during the construction is sometimes needed, so that insertions which greatly affect the 
solution cost can be identified and appropriately handled.

While these considerations also apply to the general VRPTW, where all requests are of 
the same type (either pickups or deliveries), the MV-PDPTW in itself entails additional 
considerations. This is due to the presence of a pair of related locations for each indivi
dual request and the precedence and coupling issues resulting thereof. For example, the 
decision regarding the best insertion position for a certain request should ideally take both 
the pickup and the delivery into account. The sorting criteria for requests may likewise 
be based on either the pickup or the delivery location, or perhaps combine both. It is also 
frequently the case with the MV-PDPTW that the initial solution is drastically changed 
during the improvement phase. For example, both the algorithms in [ 12] and [131] produ
ced very good results using an approach that is based on a Large Neighbourhood Search 
(LNS). The algorithm removes and then relocates a large number of requests (30% - 40%) 
in each iteration. This could possibly indicate that sophisticated construction algorithms, 
that are usually time consuming, parameter dependent, and hard to implement, may not 
actually merit their cost, compared to more straightforward and faster algorithms.

In an attempt to overcome the difficulties inherent in the construction of a feasible so
lution, which are mainly due to the hard problem constraints and the complex problem- 
specific decisions, we propose, in this part of our research, four different construction 
heuristics that aim to build initial feasible solutions to the MV-PDPTW. To the best of 
our knowledge, our research is the first attempt in the literature to analyze and compare 
different initial solution construction methods for the MV-PDPTW. The aim of the re
search is to decide which construction algorithm has more potential as a preliminary step 
towards a complete solution methodology to the problem. A promising construction al
gorithm should demonstrate a suitable balance between quality of the generated solution, 
processing speed and simplicity of implementation.

All suggested algorithms make use of a simple and efficient routing algorithm to generate 
feasible individual vehicle routes. This routing heuristic was based on our investigation 
of the SV-PDPTW, as previously detailed in Chapters 5 and 6. These algorithms, never
theless, differ in whether the construction of vehicle routes is performed sequentially or 
in parallel. They also differ in the criteria according to which the next un-routed request 
is selected for insertion in a particular route.

1 For example, the cost function may combine the number of routes and the total cost of each route.
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7.2 Related Work

As previously mentioned in Section 3.3, solution construction, for vehicle routing pro
blems in general, can be done either sequentially or in parallel. A sequential construction 
builds routes one after another, while a parallel construction builds a number of routes 
simultaneously. Figure 7.2(a) shows a typical solution, consisting of 8 locations, that is 
constructed sequentially, while Figure 7.2(b) shows a solution with the same number of 
locations that is constructed in parallel.
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(a) Sequential construction (b) Parallel Construction

Figure 7.2: Solution Construction.

To construct initial solutions for the MV-PDPTW sequentially, researchers usually adap
ted Solomon’s sequential insertion heuristics of the VRPTW [141]. A weighted sum of 
the extra travel distance and total time delay resulting from the insertion is often used 
to estimate the cost of the insertion (see Section 3.3.3 for more details about Solomon’s 
insertion heuristics). This type of construction was used by [100] for the MV-PDPTW, 
and was followed by a solution improvement phase called a tabu-embedded simulated 
annealing.

As previously mentioned in Section 3.3.3, a parallel construction heuristic was first intro
duced in [121] for the VRPTW. In a parallel construction, several routes are initialized 
with seed customers and requests are subsequently inserted into any of the initialized 
routes. Accordingly, the algorithm needs an initial estimate of the number of vehicles to 
be used. Routes are later added as needed if the initial estimate does not yield a feasible 
solution. The authors also introduced an additional complex measure in the cost function, 
which is called “a generalized regret value”, in order to compare the difference between 
the cost of an immediate insertion versus a postponed insertion. Requests with a large 
regret value are given priority of insertion. The regret value is a kind of a ‘look-ahead’ 
measure to estimate the difference between inserting the request in its best route and in
serting it in its second best route. The measure may be generalized by comparing the
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insertion costs of the best k routes of a particular request, rather than only the best two 
routes. In a sense, we choose the insertion (of a request) that we will ‘regret’ most if it 
was not performed now. This regret measure was also used by [ 131 ] for the MV-PDPTW, 
and was embedded within an Adaptive Large Neighbourhood Search (ALNS) technique 
to improve the solution quality.

The work in [102] presents a sequential construction algorithm for the MV-PDPTW. The 
algorithm repeats a cycle of three components. The first component is a constructor, which 
uses a sequential greedy algorithm to add pairs of customers in the order they appear in a 
priority sequence that is initially random. The analyzer afterwards analyzes the solution 
and assigns a certain ‘blame’ value for each customer based on its contribution to the total 
solution cost. Finally, the prioritizer reorders the customers, such that customers with a 
high blame value are moved forward in the priority sequence.

A parallel construction heuristic that solves the MV-PDPTW is presented in [104]. The 
algorithm starts by finding the largest set of customers, where it is impossible to serve 
any two customers with the same vehicle due to constraint violation. These customers 
are then used as seed customers in the initial set of routes. To insert the remaining custo
mers afterwards, the algorithm takes into consideration the effect of insertion on both the 
classical increase in distance measure, and also the remaining time window slack in the 
route, i.e., priority is given to insertions that do not use much of the available time slack, 
allowing for more feasible latter insertions. The authors also use a non-standard measure 
of the visual attractiveness of the route to select the most desired insertions, by trying to 
minimize the number of crossings (intersection points) between the generated routes.

7.3 Research Motivation and Objectives

We noticed during our literature survey of the MV-PDPTW that researchers who adopt 
a 2-phase approach (i.e., construction of an initial solution, followed by an improvement 
phase) to solving the problem often pay more attention to the solution improvement phase, 
such that the results of the initial solution construction phase are seldom reported, if at all. 
This makes it difficult to assess the contribution of the construction method to the success 
or the failure of the overall algorithm. It is also important to note that the role of the 
construction algorithm is not only limited to the initialization phase. The construction 
algorithm is often applied at various stages during the improvement phase to create or 
modify new or partial solutions, as done for example in [ 12] and [116]. Therefore, a good 
choice of the construction algorithm is vitally important.
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The research reported in this part of the thesis will help identify the construction heuris
tic^) that seems to be most appropriate for this problem, and decide whether sophisticated 
and computationally expensive methods actually warrant their cost, as opposed to other 
simpler and less expensive algorithms. In the following section we explain our simple 
routing algorithm, which is the core of the different construction algorithms proposed in 
this research. Section 7.5 then discusses in detail these construction algorithms.

7.4 The Routing Algorithm

A crucial part of the MV-PDPTW is the routing algorithm that will generate a feasible 
route for each individual vehicle. A major concern is how to handle all problem constraints 
efficiently. The routing algorithm we used here was selected based on our research on the 
SV-PDPTW, detailed in Chapters 5 and 6. This algorithm relies on an iterative impro
vement of individual routes, and is embedded in the overall constructive algorithm that 
could either be sequential or parallel. The main difference between our routing algorithm 
and other routing (insertion) heuristics in the literature is that our algorithm does not try 
to find the best insertion position for each request in the route, but accepts any feasible 
insertion. As a result, many complex calculations and problem-specific decisions, that 
are related to the association between the pickup and the delivery, can be avoided. For 
example, our algorithm eliminates the bias towards either the pickup or the delivery loca
tion, which is one of the major drawbacks of ‘classical’ insertion methods. Clearly, when 
the best insertion position for one location (pickup or delivery) is chosen first, the choices 
available for its partner will be restricted accordingly.

Based on the representation attempted in our SV-PDPTW heuristics, rather than repre
senting the visiting order of locations in each route by a one-dimensional permutation of 
all the different locations, we assign the same code to both the pickup location and its 
delivery, and we refer to the pair as a request. We then rely on a simple decoder to al
ways identify the first occurrence of the code as the location of pickup and the second as 
the location of its delivery. This representation will handle both the precedence and the 
coupling constraints of the MV-PDPTW, since it will be no longer necessary to ensure 
that both the pickup location and its delivery are assigned to the same vehicle, and that the 
pickup comes before the delivery in the visiting order. On the other hand, the capacity and 
time windows constraints may be violated in this representation, but they are penalized in 
the objective function, as will be explained shortly (see Equation 7.1 below).

Recall from Chapter 5, that the different routing algorithms for an individual vehicle tried 
to improve the current route by rearranging nodes based on their time window intervals.
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For the purpose of the MV-PDPTW, we selected as a route improvement heuristic, the 
simple Hill Climbing (HC) algorithm which tries to gradually modify the current route 
until no further improvement is possible. In fact, we chose the HC algorithm to improve 
individual routes, because it was very fast compared to the other heuristics investigated for 
the SV-PDPTW, and it also gave good quality results. As such, it seemed more suitable 
for repeated application within the various construction algorithm, as will be explained 
in Section 7.5. Also, only one stage of time window improvement was applied here to 
accelerate the generation of multiple routes. The neighbourhood move used by the HC 
algorithm in this part of our research depends only on the upper bound of the time window 
interval to decide the swapping of locations. Algorithm 7.1 describes this simple heuristic.

Algorithm 7.1: The HC Routing Algorithm.

1: Given a route r

2: repeat

3: for (Each possible pair of locations in r) do

4: if (The latter location is more urgent in its upper time window bound) then

5: Swap the current two locations in r  to get a new route r'
6: A <— cost(r') — cost(r)

7: if (A  <  0) then

8: r  <— r'

9: until (Done){Stop if no improvement has been achieved in the previous pass}

The cost function to evaluate the quality of a route r ,  in Step 6 of the HC algorithm, is 
described by the following equation:

F (r) = W! x D (r) +  w2 x T W V {r )  +  w3 x C V (r)  , (7.1)

where D {r) is the total route duration, including the waiting time and the service time 
at each location. T W V (r)  is the total number of time window violations in the route, 
and C V (r)  is the total number of capacity violations. The constants w\, w2, and w3 are 
weights in the range [0,1], and w\ +  w2 +  w3 =  1.0. As previously mentioned, the largest 
penalty should be imposed on the time window violations, in order to direct the search 
towards more feasible routes. We used the following weights for the route cost function: 
W\ = 0.201, w2 = 0.7 and = 0.0992.

2Comparing the current weights to those assigned in Equation 5.1, the penalty on the capacity violations 
was reduced, while the weight assigned to the total route duration was increased. This is due to the fact 
that routes in the multiple vehicle case are usually shorter than routes in the single vehicle case, and the 
satisfaction of the capacity constraint tends to be easier as a result.
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7.5 Solution Construction Heuristics

In all our construction heuristics we first start by sorting customers according to the dis
tance from the depot (farthest first). However, since in our approach we deal with custo
mers in pairs, where each pair consists of a pickup location and its associated delivery, the 
distance measure, in relation to the depot, could either be the distance between the depot 
and the pickup location, or the distance between the depot and the delivery location. We 
arbitrarily chose the distance separating the depot and the delivery location for the initial 
order of requests.

7.5.1 The Sequential Construction Algorithm

The sequential construction heuristic tries to build routes one after another. Requests are 
taken one by one in order, and each request (pickup and delivery pair) is initially inserted 
at the end of the current route. Our HC routing heuristic (Algorithm 7.1) is then called to 
try to improve the current route. If the HC algorithm returns an improved route that can 
‘feasibly’ accommodate the newly inserted pair, this insertion is accepted and we move on 
to the next request. However, if the improved route is still infeasible, the newly inserted 
pair is removed from the current route to wait for another insertion attempt in a new route3. 
Thus, unlike the ‘traditional’ insertion methods, our algorithm relies on the HC heuristic 
to improve the quality of the current route, without actually having to calculate the cost 
of each and every possible insertion position in order to select the best one among them.

Algorithm 7.2 describes the sequential construction procedure. It is important to note in 
Step 7 of this algorithm that, besides overcoming the precedence and the coupling issues, 
inserting a request (a pickup and delivery pair) at the end of the route has the added 
advantage of accelerating the insertion process, since two locations instead of one are 
simultaneously inserted.

3 Although the HC algorithm is usually very successful in ‘deciding’ whether a new pair can be feasibly 
inserted in the route, there is still a small chance that the wrong decision is made. In other words, a pair may 
be removed from the route although it could have been feasibly inserted there, had the cost of all possible 
insertion positions been calculated and the best position identified, as done in ‘traditional’ construction 
methods.
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Algorithm 7.2: The Sequential Construction.

1: Let M  <— 0 {M  is the number of vehicles used}
2: repeat

3 : Initialize an empty route r

4: M  — M  + 1
5: for (All unassigned requests) do

6: Get the next unassigned request i
7: Insert request i at the end of the current route r

8: Call the HC routing heuristic (Algorithm 7.1) to improve r

9: if  ( r  is a feasible route) then

10: Mark i as inserted

11: else

12: Remove i from r

13: until (All requests have been inserted)

7.5.2 The Parallel Construction Algorithms

As mentioned previously, for a parallel construction, several routes are considered simul
taneously for inserting a new request, and an initial estimate of the number of vehicles 
is required. Potvin and Rousseau in their parallel construction algorithm for solving the 
VRPTW [121], estimate the initial number of vehicles by first running Solomon’s sequen
tial construction [141]. The number of vehicles in the resulting solution is then used as an 
estimate of the initial number of vehicles for the parallel heuristic.

In our research, we adapted the parallel construction heuristic of the VRPTW in [121] 
to the MV-PDPTW. However, to avoid extra processing time, we estimated the initial 
number of vehicles using a simple formula that divides the total demand of the pickup 
requests in the problem instance by the capacity of the vehicle, as shown in Equation 7.2.

M  = L( E  ’ (7'2)
i € N  +

where M  is the estimated initial number of vehicles, N + is the set of pickup customers, 
is the demand (load) of a pickup request, and C  is the capacity of the vehicle. However, 
this estimate seems to be more suitable for instances with a critical schedule horizon, i.e., 
those having a short time window width. Instances with more flexible (long) time window 
intervals, on the other hand, may require fewer vehicles to start with. More specifically, 
when the width of the time window interval is short, there will be a limited number of 
alternative feasible locations for scheduling the request. Accordingly, instances with such
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a property usually need a large number of vehicles to be able to serve all requests without 
any constraint violation, as opposed to instances having a long time window width. Thus, 
to be able to handle the different types of test cases, we introduced a small modification 
to this formula for some problem instances, as will be explained in Section 7.6.

Similar to the parallel approach for the VRPTW in [ 121 ], which initializes each route with 
a seed customer, our parallel algorithms initialize each route with a seed request (pickup 
and delivery pair) from the sorted list of requests. We then take the remaining requests 
in order and attempt to insert the next request in one of the partial routes created. If the 
next request cannot be feasibly inserted in any of the already created routes, a new route is 
added to accommodate this request. This process is repeated until all requests have been 
inserted.

As previously explained, traditional parallel construction algorithms for both the VRPTW 
and the PDPTW, usually select the customer who has the current minimum insertion cost 
among all remaining un-routed customers to be inserted next. This cost is often a measure 
of the extra travel time and distance, which would result from inserting the customer in the 
best possible (feasible and minimum cost) insertion position found in all available routes. 
Our parallel algorithms, on the other hand, differ among each other in how they select 
the next request to be inserted, and also in selecting the route in which this request will 
be inserted. Following is an explanation of the different parallel construction algorithms 
proposed in our research.

Parallel Construction - First Route:

In our first parallel construction algorithm, the next request in order is inserted in the first 
route in which a feasible insertion of this request is found, i.e., no attempt is made to find 
the best route for the current request. Thus, our first parallel construction uses a fast first 
acceptance criterion for insertion. Algorithm 7.3 describes this procedure.
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Algorithm 7.3: Parallel Construction: First Route.

1: Calculate M  (the initial estimate of the number of vehicles)

2: Initialize M  routes with seed customer pairs from the sorted list of customers 
3: for (All remaining unassigned requests) do 

4: Get the next unassigned request i
5: r  =  0 {start with the first route)

6: while ( ( r  < M )  and (i not yet inserted)) do

7: Insert the request i at the end of the current route r
8: Call the HC routing heuristic (Algorithm 7.1) to improve r
9: if (?' is a feasible route) then

10: Mark i as inserted

11: else

12: Remove i from r
13: r  =  r  +  1

14: if (i was not inserted) then

15: Initialize a new route r ’
16: M  — M  + 1 {increase the number of vehicles)

17: Insert the request i in the new route r'

18: Mark i as inserted

Parallel Construction - Best Route:

In our second parallel construction algorithm, the next request in order is inserted in the 
best route in which a feasible insertion of this request is found. The best route for each 
request is the route that causes the least increase in the overall cost of the solution (the 
routing schedule) due to the insertion process. To calculate the overall cost of the solution, 
we used an objective function that is suggested by Bent and Hentenryck in [12]. The 
objective function consists of three components: the first component tries to minimize 
the number of vehicles used in the solution, the second component tries to minimize the 
total distance traveled, while the third component is a measure that tries to maximize the 
square of the number of nodes visited by each vehicle. This last component is intended 
to favour routes that are rather full and those that are rather empty, as opposed to an even 
distribution of nodes among routes. The idea is to try to get rid of some vehicles that are 
under-utilized during subsequent route improvement phases. The objective function of a 
solution S  is described by Equation 7.3.

0 ( S ) =  a  x M  +  P x ^ 2  D ist{r) — 7  x | r |2 ,
re s  re s

(7.3)
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where M  is the number of vehicles used in the current solution, Dist(r) is the total dis
tance traveled by each vehicle, and |r | is the number of nodes visited by each vehicle. The 
constants a , (3, and  7  are weights in the range [0 , 1] assigned to each term in the objective 
function, and a  + 0  +  7  =  1.0 . In our research we try to minimizing the number of ve
hicles as our primary objective followed by the total distance, thus we chose a > (3 > 7 .
We used the following weight values for Equation 7.3: a  =  0.7, (3 = 0.29 and 7  =  0.01.
Algorithm 7.4 describes the second parallel construction algorithm.

It is important to note, in Step 10 of Algorithm 7.4, that since the insertion process only 
affects one route, the calculation of the new solution cost does not require evaluating all 
routes in the current solution. The calculation is simply done by removing the old cost 
of the current route (before the insertion), and adding the new cost resulting from the 
insertion.

Algorithm 7.4: Parallel Construction: Best Route.

1: Calculate At (the initial estimate of the number of vehicles)
2: Initialize M  routes with seed customer pairs from the sorted list of customers 

3: for (All remaining unassigned requests) do
4: Initialize Local M i n  to an arbitrary large value
5: fo r (r =  0; r < M;  r +  + )  do

6: Get the next unassigned request i

7: Insert the request i at the end of the current route r

8: Call the HC routing heuristic (Algorithm 7.1) to improve r
9: if  (r is a feasible route) then

10: calculate A cost {A cost is the change in solution cost due to the insertion (where cost
is estimated using Equation 7.3) }

11: if (A cost < L o c a l M i n ) then

12: L oca lM in  = Acos t

13: r* — r { r* is the current best vehicle for request i}

14: Remove i from r (temporarily remove i until the insertion cost of the current request in
all routes is calculated}

15: if (r* is found) then

16: Insert i in r*
17: Mark i as inserted

18: else

19: Initialize a new route r'  (Since no feasible insertion is found for i in any of the available
routes, allocate a new route}

20: M  = M  + 1 (increase the number of vehicles}
21: Insert the request i in the new route r'
22: Mark i as inserted
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Parallel Construction - Best Request:

Our next parallel construction heuristic does not only try to find the best route for each 
request, but also selects the best un-routed request to be inserted next. The best un
routed request is the one whose insertion (in its best route) causes the least increase in the 
overall cost of the solution, where the solution cost is again evaluated using Equation 7.3. 
Algorithm 7.5 describes this procedure.

Algorithm 7.5: Parallel Construction: Best Request.

1: Calculate M  (the initial estimate of the number of vehicles)
2: Initialize M  routes with seed customer pairs from the sorted list of customers 
3: repeat
4: Initialize GlobalMin to an arbitrary large value
5: for (All remaining unassigned requests) do
6: Initialize LocalMin to an arbitrary large value
7: for (r =  0; r <  M; r +  +) do
8: Get the next unassigned request i
9: Insert the request i at the end of the current route r

10: Call the HC routing heuristic (Algorithm 7.1) to improve r
11: if (r is a feasible route) then
12: calculate A cost
13: if (Acost < LocalMin) then
14: LocalMin = Acost
15: r* =  r { r* is the current best route for request i }
16: Remove i from r
17: if (r* is found) then
18: if (LocalMin < GlobalMin) then
19: GlobalMin = LocalMin
20: i* = i {i* is the current best request}
21: v* = r* [v* is the best vehicle (route) for i*}
22: else
23: Initialize a new route r'
24: M  =  M  +  1
25: Insert i in the new route r'
26: Mark i as inserted
27: if {i* is found) then
28: Insert i* in v*
29: Mark i* as inserted

30: until (All requests have been inserted)
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7.6 Computational Experimentation

7.6.1 Characteristics of the Data Set

To test our algorithms, we used several instances from the benchmark data of the MV- 
PDPTW created by Li and Lim in [ 100]. The authors of [100] created this data set based 
on Solomon’s test cases of the VRPTW in [141]. There are 6 different categories of 
problem instances in this data set: LR1, LR2, LC1, LC2, LRC1, and LRC2. Problems 
in the LR category have randomly distributed customers, problems in the LC category 
have clustered customers, and problems in the LRC category have partially random and 
partially clustered customers. On the other hand, problems identified with the number 
‘1* have a short scheduling horizon (tight time window width), while problems iden
tified with the number ‘2 ’ have a long scheduling horizon (large time window width). 
Each category has 6 different problem sizes: 100, 200, 400, 600, 800, and 1000 cus
tomers4. There are between 56-60 files from each problem size. The total number of 
files in the data set is 354. The data and the best known results can be downloaded from
h t t p ://w w w .s i n t e f .no/Pro jectweb/TOP/Problems/PDPTW/Li--Lim-benchmark/. 
For the purpose of testing our algorithms we selected the first 6 files from each category 
for each problem size. The total number of files used to test our algorithms is 216. The 
files used for testing our algorithms are summarized in Table 7.1.

As mentioned in Section 7.5.2, we used a simple formula (Equation 7.2) to estimate the 
initial number of vehicles needed for the parallel construction heuristics. However, during 
our preliminary experimentation, we found that this estimate does not suit the different 
types of problem instances. Apparently, problems that have a long schedule horizon al
low for a more flexible visiting schedule, and generally require fewer vehicles. We also 
found during our experimentation that an underestimate of the initial number of vehicles 
is usually preferred to an overestimate, since reducing the total number of vehicles used is 
our primary concern. As a result, to estimate the initial number of vehicles for problems 
with a long schedule horizon (problems of category ‘2 ’) we reduced our initial estimate 
by 50%. Thus, Equation 7.4 was used instead of Equation 7.2.

M =  L ( l / 2 ) ( £ > , ) / C J  . (7.4)
i e N  +

However, this estimate is to some extent arbitrary and remains under consideration for 
future reassessment.

4The original data set in [100] contained only 56 100-customers problems. Larger problem sizes were 
later added to the original data set.

http://www.s
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Table 7.1: Test Files.

Category 100 customers 200 customers 400 customers

LC1 LC101 to LC106 LC 1-2-1 to LC 1-2-6 LC 1-4-1 to LC 1-4-6

LC2 LC201 to LC206 LC2-2-1 to LC2-2-6 LC2-4-1 to LC2-4-6

LR1 LR101 to LR106 LR 1-2-1 to LR 1-2-6 LR 1-4-1 to LR 1-4-6

LR2 LR201 to LR206 LR2-2-1 to LR2-2-6 LR2-4-1 to LR2-4-6

LRC1 LRC101 to LRC106 LRC 1-2-1 to LRC 1-2-6 LRC 1-4-1 to LRC 1-4-6

LRC2 LRC201 to LRC206 LRC2-2-1 to LRC2-2-6 LRC2-4-1 to LRC2-4-6

Category 600 customers 800 customers 1000 customers

LC1 LC1-6-1 to LC1-6-6 LC 1-8-1 to LC 1-8-6 LC 1-10-1 to LC 1 -10-6

LC2 LC2-6-1 to LC2-6-6 LC2-8-lto LC2-8-6 LC2-10-1 to LC2-10-6

LR1 LR1-6-1 to LR1-6-6 LR 1-8-1 to LR 1-8-6 LR1-10-1 to LR 1-10-6

LR2 LR2-6-1 to LR2-6-6 LR2-8-1 to LR2-8-6 LR2-10-1 to LR2-10-6

LRC1 LRC1-6-1 to LRC1-6-6 LRC 1-8-1 to LRC 1-8-6 LRC 1-10-1 to LRC 1-10-6

LRC2 LRC2-6-1 to LRC2-6-6 LRC2-8-1 to LRC2-8-6 LRC2-10-1 to LRC2-10-6

7.6.2 Comparing the Construction Heuristics

Throughout this discussion, we use the following notations to refer to each algorithm

1. Sequential Construction: SEQ

2. Parallel Construction - First Route: PFR

3. Parallel Construction - Best Route: PBR

4. Parallel Construction - Best Request: PBQ

Since the construction algorithms are all deterministic, each algorithm was run only once 
on each test file. Table 7.2 shows the percentage of time each algorithm produced the 
smallest number of vehicles (Min-Vehic), and the smallest total distance (Min-Dist), that 
are found in the current experiment, over all 216 problem instances5. Table 7.3 shows the 
average number of vehicles, the average total distance, and the average processing time 
(in seconds), produced by each algorithm for each problem size separately.

5Some ties are produced and counted in the results.
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Table 7.2: Frequency of G enerated Best Solutions .

A lgorithm Min-Vehic Min-Dist

SEQ 48% 31%

PFR 24% 6%
PBR 19% 8%

PBQ 49% 56%

The following observations can be realized from Tables 7.2 and 7.3:

•  Regarding the number of vehicles generated, SEQ and PBQ produced the best re
sults, with SEQ producing better results than PBQ in large size problems, while 
both PFR and PBR were slightly inferior in this respect.

•  Regarding the total distance traveled, PBQ was able to beat all other algorithms, 
followed by PBR and SEQ.

•  PFR produced the worst average distance in all test cases, but it was slightly better 
than PBR in the average number of vehicles used.

•  SEQ and PFR have comparable average processing time in all test cases. Their 
processing time on average is faster than the other two algorithms, with PBQ being 
the slowest among all.

In summary, the results in Tables 7.2 and 7.3 suggest that PFR and PBR are inferior 
to SEQ and PBQ, both in terms of the number of vehicles used and the total distance 
traveled6. As a result, PFR and PBR can be eliminated from further consideration, and 
we can focus our attention on SEQ and PBQ.

As can be noticed from the average results in the last row of Table 7.3, SEQ produced 
better results than PBQ in the number of vehicles used. The PBQ algorithm, however, 
was able to beat the SEQ algorithm in minimizing the total distance traveled. This was 
obviously due to the fact that the SEQ algorithm was more concerned with fitting the 
largest possible number of requests in each vehicle before allocating a new one, while 
the PBQ algorithm relied on a cost function that has the total travel distance among its 
components. The PBQ algorithm was, nevertheless, much slower than the SEQ algorithm.

6However, PBR was able to slightly improve upon PFR with respect to the total distance traveled, while 
PFR was slightly better than PBR in the number of vehicles used.



Table 7.3: Average Results for all Algorithms.

Problem Size
SEQ PFR PBR PBQ

Vehic Dist Time Vehic Dist Time Vehic Dist Time Vehic Dist Time
100-customers 11.78 2662.92 0.02 11.83 2767.19 0.02 11.83 2711.89 0.03 11.69 2564.09 0.34
200-customers 17.33 8887.08 0.08 17.69 8954.06 0.08 18.17 8816.33 0.1 17.14 8132.84 3.62
400-customers 33.56 22215.14 0.32 34.64 23010.53 0.3 34.69 21898.96 0.38 33.72 19758.38 26.93
600-customers 48.22 44949.4 0.72 49.89 46644.49 0.69 50.69 45234.96 0.86 49.53 41791.82 147.57
800-customers 63.53 74650.07 1.24 65.94 77895.32 1.23 66.44 74056.45 1.65 64.89 68713.31 438.97
1000-customers 77.25 108513.19 1.88 81.97 115106.93 1.93 81.75 108662.01 2.54 81.58 103751.31 952.34

Average 41.95 43646.30 0.71 43.66 45729.75 0.71 43.93 43563.43 0.92 43.09 40785.29 261.62

u>u>
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The average processing time of the SEQ algorithm ranged from 0.02 seconds for 100- 
customers problems to 1.88 seconds for 1000-customers problems. The PBQ algorithm, 
on the other hand, had a processing time ranging from 0.34 seconds to 952.34 seconds 
for the same problem types, which indicates beyond doubt the huge difference in the 
computational effort needed for both algorithms.

It should also be noted that the SEQ algorithm neither requires an initial estimate of the 
number of vehicles, nor does it need a solution evaluation mechanism during the construc
tion process (the SEQ is unlike the PBR and the PBQ algorithms for instance, in which 
the cost of the whole solution must be calculated using Equation 7.3 at each step of the 
construction process). The only advantage that the PBQ algorithm offers, which is a slight 
reduction in the total travel distance, does not seem to justify its added cost in terms of 
the complexity of the algorithm and the increase in processing time. Another advantage 
of the SEQ algorithm is that it can be easily adapted to population-based heuristics or 
meta-heuristics by randomizing the initial order of requests to generate different diverse 
solutions. The PBQ algorithm, on the other hand, is expected to produce a limited diver
sity, even if the initial order of requests is randomized, because of the selection criteria 
and the cost function it relies on during the insertion process. Most likely, requests that 
are hard to insert, and thus cause a large increase in the solution cost, will always remain 
the same, despite the change in the insertion order.

7.6.3 Comparing with Previous Best Known

Although our algorithms are primarily intended for constructing initial solutions to the 
MV-PDPTW, it would still be useful to compare our results with the best known solutions. 
This would give us a general idea about the expected effort in the solution improvement 
phase.

Table 7.4 shows the relative gap (in percentage) between the average results produced by 
both the SEQ algorithm and the PBQ algorithm and the average best known results. We 
used the following formula to calculate the relative gap

gap — ( (R e su lt  — B e s tK n o w n ) /B e s t  K n o w n )  x 100 (7.5)

The relative gap is measured with respect to both the number of vehicles and the distance7. 
The table shows that the SEQ algorithm produced, on average, a slightly smaller gap 
with respect to the number of vehicles, and a slightly larger gap with respect to the total

7For example, a gap of 50% in the average number of vehicles means that the result of the construction 
heuristic produced 50% more vehicles than the best known result.
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distance. Together with the fact that the SEQ algorithm is quite simple and fast compared 
to the PBQ algorithm, the results in Table 7.4 would again seem to justify its preference 
as a solution construction method over the PBQ algorithm.

Table 7.4: Average Relative Distance to Best Known.

Problem Size
Vehic-Gap Dist-Gap

SEQ PBQ SEQ PBQ
100-customers 58% 57% 146% 137%
200-customers 63% 61% 187% 163%
400-customers 66% 67% 207% 173%
600-customers 64% 69% 206% 185%
800-customers 66% 70% 205% 181%
1000-customers 65% 74% 191% 178%
Average 64% 66% 191% 170%

It may also be beneficial to analyze the results produced by the construction heuristics for 
each benchmark category separately. This may give an insight into what problem types 
would require more effort in the solution improvement phase. Figure 7.3 shows the ave
rage gap produced by the SEQ algorithm for all tasks, organized by problem categories. 
Figure 7.4 shows the average gap produced by the same algorithm with respect to the 
distance traveled.

Both figures show that the SEQ construction heuristic seems to be more ‘successful’ in 
instances with a short schedule horizon, i.e., instances identified with ‘ 1* in the data set, 
since these instances always have a smaller gap than instances of type ‘2’. Regarding 
the primary objective, which is the number of vehicles used, the algorithm seems to do a 
better job for instances that have clustered customers, as opposed to instances that have 
random or partially random customers. It is clear that instances in the LC category always 
have the smallest gap compared to other problem types. Problems with random customers 
and a long time window interval appear to be the most challenging for the SEQ algorithm, 
and possibly all solution algorithms. The reason could be that the solution space for these 
problems seems to be laiger, due to the randomness of locations and the large width of 
time windows involved in this case. It also appears from both graphs that the gap in the 
number of vehicles is inversely proportional to the gap in the total travel distance, in most 
test cases.

It is also worth mentioning that the results in Table 7.4 and Figures 7.3 and 7.4 indicate
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Figure 7.3: SEQ algorithm - average vehicle gap for all problem categories.

500

q _ 4 0 0  j— ] LFj2

O  3 5 0
Q)
O  300- 

2 250 -

400 600
Problem Size

Figure 7.4: SEQ algorithm - average distance gap for all problem categories.

that a lot of work still needs to be done in the improvement phase, in order to reach the 
anticipated standard for the final problem solutions. This is evident by the relatively large 
gap between the current initial solutions and the final best known results. Designing an 
‘intelligent’ improvement phase seems to be inevitable, in order to cope with the difficult 
problem constraints and the various types of problem instances.

Finally, Table 7.5 shows the average processing time of the SEQ algorithm, for each
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problem size in each benchmark category. It appears in this table that problems involving 
random customers with a long schedule horizon, LR2 and LRC2, generally require a 
longer processing time than the other problem categories, which sustains our previous 
observation regarding the large solution space for these problems.

Table 7.5: Average Processing Time (seconds) of the SEQ Algorithm for all Tasks.

Category
Problem Size

100 200 400 600 800 1000
LR1 0.02 0.06 0.22 0.53 0.95 1.54

LC1 0.02 0.05 0.22 0.48 0.92 1.43

LRC1 0.02 0.06 0.21 0.50 0.93 1.44

LR2 0.03 0.13 0.43 1.04 1.71 2.72
LC2 0.03 0.06 0.39 0.61 1.06 1.57
LRC2 0.02 0.12 0.47 1.12 1.84 2.53

7.7 The SEQ Algorithm: Complexity Analysis and Im
plementation Issues

Before we conclude this part of our research, we present in this section some remarks 
concerning the complexity and feasibility checking of the SEQ algorithm in relation to the 
common construction methods. Analyzing our SEQ algorithm we find that: the routing 
heuristic in Algorithm 7.1 needs 0 ( n 2) time for accessing each pair of locations in the 
route, where n is the number of requests in the problem instance. Also, the cost function 
of Equation 7.1, which checks the feasibility of the whole route as well, needs O(n) time. 
The SEQ algorithm (Algorithm 7.2) needs 0 ( n ) since its major iteration processes all 
requests in order. This will make the run-time complexity of the whole algorithm 0 (n 4).

For the sake of comparison, Algorithm 7.6 describes a basic construction method for 
vehicle routing problems in general. The algorithm appears in [24].
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Algorithm 7.6: Basic Construction Algorithm for the VRP [24].

1: N  = set of unassigned customers
2: R  = set of routes {initially contains one route}

3: while N  ^  Hi do
4: p* =  — oo

5: for j  E N  do

6: for r G R do

7: for (i — 1, i) € r  do

8: if (Feas ib le ( i , j ) and P r o f i t ( i , j )  > p*) then
9: r* = r

10: i* =  i

11: j * = j
12: p* =  P r o f i t ( i , j )
13: In ser t ( i* , j* )  {insert j* between (i* — 1) andi*}
14: N  = N \ j *

15: Update{r*)

According to [24], Algorithm 7.6 is of 0 ( n 3), provided that the feasibility and profitability 
can be performed in constant time. Feasibility makes sure that the current position 
adheres to all problem constraints, while Profitability is usually measured as a weighted 
combination of extra travel distance and time delay resulting from the insertion. When 
it is more profitable to insert a customer in a new route, a new route will be allocated. 
As explained in [24], a special algorithm can be applied to reduce the TW feasibility 
test of the VRPTW from a linear time to a constant time. The same algorithm can also 
be applied to the PDPTW. Nevertheless, this algorithm requires that extra information is 
kept for each customer already existing in the route. In general, two quantities have to be 
maintained: the earliest and the latest possible times the service can take place, relative 
to the customer’s current location in the route. This information is not fixed and subject 
to change after each insertion, which accounts for the existence of an update function to 
maintain the desired quantities (Step 15 of Algorithm 7.6).

Unlike the VRPTW, however, checking the capacity feasibility for the PDPTW can only 
be done in linear time [8 6 ], due to the presence of two different types of customer services 
in the route. As a result, the basic construction algorithm when applied to the PDPTW also 
results in 0 ( n 4) complexity. The algorithm can also include a selection of seed customers 
for route initialization, which usually does not change the complexity of the algorithm.

As mentioned above, it is possible to reduce the TW feasibility check for the PDPTW 
from a linear time to a constant time, by maintaining and frequently updating extra route
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information, as done for example in [37]. However, since our route cost function (Equa
tion 7.1) tests the feasibility of both the TW and the capacity concurrently, it would be 
redundant to calculate and store additional service timing information to accelerate the 
TW feasibility test, since an 0 (n )  testing would still be needed for the capacity feasibi
lity.

In addition, since our SEQ algorithm accepts any feasible insertion, it does not have to 
check the feasibility nor estimate the profitability of each and every possible insertion 
position, as done in Algorithm 7.6. In our algorithm, the cost of the route as a whole will 
be calculated, if at all, only if the route has been changed. This is due to the restriction 
imposed by the TW condition in Step 4 of Algorithm 7.1.

Finally, during the insertion process, i.e., Step 7 of the SEQ algorithm (Algorithm 7.2), 
two locations (a pickup and delivery pair) are simultaneously inserted, then Algorithm 7.1 
handles the feasibility checking and the improvement of the underlying route altogether. 
Besides overcoming the precedence and the coupling issues, this insertion has the added 
advantage of accelerating the solution construction process, since only half the number of 
locations is processed in the main iteration of Algorithm 7.2.

On the other hand, the parallel construction algorithms implemented in this research seem 
to be one order of magnitude higher than the SEQ algorithm, due to the presence of an 
extra loop that passes through all available vehicles, although the number of vehicles is 
always less than n (the number of nodes in the data set).

7.8 Summary and Future Work

In this research we investigated several initial solution construction heuristics for the MV- 
PDPTW, aiming to identify the best heuristic that can be used as part of a comprehensive 
solution methodology. In our opinion, existing approaches in the literature often overlook 
and perhaps underestimate this vital component of the overall solution algorithm.

The experimental results on a large number of benchmark instances indicate that the se
quential construction heuristic (SEQ) seems to be the most favourable solution construc
tion method, which can be by easily embedded in a heuristic or a meta-heuristic technique 
to reach final good quality solutions. With just a few simple lines of code, and without 
a pre-determined number of vehicles or a solution evaluation mechanism, this algorithm 
produced good quality results, that are sometimes even better than the results obtained by 
the most sophisticated parallel algorithm tested in our research (the PBQ algorithm). The 
SEQ algorithm also had an impressive speed, with a processing time that is at most 6% of
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the time needed by the PBQ algorithm, making it even more suitable for population-based 

solution algorithms.

The experimental results, nevertheless, show that probably a costly improvement phase is 
still needed to achieve final good quality solutions, as evident by the relatively large gap 
to best known results produced by the SEQ construction algorithm. This, however, further 
supports the need for a fast solution construction method to achieve an overall reasonable 
computation time for the complete solution algorithm.

The construction algorithms developed in this part of our research are distinguished by 
their simplicity and ease in coding and replication, compared to many construction me
thods that are adopted from the VRPTW literature. All of our algorithms are general por
table frameworks that can be used within other heuristics and meta-heuristics that solve 
the PDPTW and its related variants.

In the next part of our research, we will start investigating the solution improvement phase 
for the MV-PDPTW, using the SEQ algorithm for the solution construction phase. Details 
of our investigation are presented in the next chapter.
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Chapter 8

Two Approaches for Solving the 
Multiple Vehicle Pickup and Delivery 
Problem with Time Windows: A 
Genetic Algorithm and a Simulated 
Annealing

In this chapter we continue our investigation of the MV-PDPTW, introduced in Chapter 
7. This part of our research will augment the solution construction heuristic developed in 
the previous chapter with an improvement method, using both a Genetic Algorithm (GA) 
approach and a Simulated Annealing (SA) heuristic.

This chapter is organized as follows: Section 8.1 highlights the motivation behind the re
search carried out in this part of the thesis. Section 8.2 provides a brief summary of some 
related work from the literature. Section 8.3 discusses genetic algorithms as a solution 
approach form the perspective of the MV-PDPTW, and introduces our specific GA sug
gested for the improvement phase of this problem. Within this section, we describe the 
solution representation and the objective function used in Section 8.3.1, how the initial 
population is created in Section 8.3.2, the genetic operators in Section 8.3.3, the overall 
GA in Section 8.3.4, some attempts to improve the results of the GA in Section 8.3.5, and 
finally Section 8.3.6 reports the experimental results of the GA when tested on published 
benchmark data and compared with previous GA attempts from the literature. After that, 
Section 8.4 explains the SA approach adopted for soiving the problem, together with its 
experimental results compared to the results of the GA approach. Finally, Section 8.5 
gives some concluding remarks and possible future work. Our findings, related to the GA 
approach, in this part of our research were published in the M1C2009 conference [80].
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8.1 Research Motivation

As previously mentioned in Chapter 2, Genetic Algorithms (GAs) are intelligent search 
methods that have been successfully used for solving many hard combinatorial optimiza
tion problems. In the first part of our research, though, the 3-stage SA approach performed 
better than the GA for the SV-PDPTW, especially in terms of processing time. Despite 
this, using a GA for the improvement phase of the MV-PDPTW still appeared to be pro

mising for several reasons:

Firstly, GAs have been used for solving the related VRPTW, producing good results in 
many cases, for example [144], [120], [16] and [15]. Secondly, the parallel nature of 
GAs and its population based mechanism can probably make it more appropriate than 
other meta-heuristic approaches (that focus on improving only one solution), for solving 
very hard optimization problems. The multiple-vehicle case of the PDPTW is in fact 
considerably harder than the single vehicle case [137], which makes applying GAs an 
attractive option for solving this problem. In addition, our simple sequential construction 
algorithm (SEQ), developed in Chapter 7, seems to be most appropriate for population- 
based meta-heuristics, due to its simplicity, speed and its potential for creating a diverse 
population by randomizing the initial order of requests.

Finally, as previously mentioned in the introduction to this thesis (Chapter 1), the main 
focus of our research is on developing appropriate representations and neighbourhood 
moves that can help guide the search towards good quality solutions and manage infea
sibility throughout the search. If the appropriate techniques are designed, they should be 
widely applicable, and may be used within other heuristics or meta-heuristics, for solving 
the underlying problem. Accordingly, we tried to follow the same approach used in our 
research for solving the SV-PDPTW, by first developing the representation and neigh
bourhood moves (represented as genetic operators here) that we believe can handle the 
difficult problem constraints. These operators are first tried within a GA approach for sol
ving the MV-PDPTW, but they were also adapted and employed within an SA approach, 
as previously done for the single vehicle case.

8.2 Related Work

When dealing with the MV-PDPTW, some researchers use exact methods to solve the 
problem to optimality, but these are limited to small size problems. For example, the 
work presented in [46] is an optimization techniques which formulates the problem as a 
set partitioning problem, and then employs a column generation method to solve a linear
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relaxation of this problem to optimality. Problem sizes of up to 55 customers and 22 ve
hicles were solved using this approach. Also, the work in [130] presents a new mixed 
integer programming formulation for both the MV-PDPTW and the dial-a-ride problem, 
and the formulations are solved using two branch-and-cut algorithms. New problem ins
tances have been created, and the results of the algorithms were compared with upper 
bound solutions obtained by applying the heuristic in [ 131 ] to the same problem instances. 
Problem sizes up to 194 nodes were solved to optimality.

Other approaches adopt approximation techniques to deal with large size problems. As ex
plained in the previous chapters, the solution process, in this case, often starts by construc
ting one or more initial solutions to the problem, usually using techniques adopted from 
the VRPTW construction algorithms, and then these solutions are improved using heuris
tics or meta-heuristics. In general, Simulated Annealing (SA) and Tabu Search (TS) have 
been the most popular approaches for solving the MV-PDPTW.

The work in [ 112] is one of the first attempts to solve the MV-PDPTW. The technique is 
based on a reactive tabu search which allows the tuning of the search parameters, such as a 
short-term memory length, based on an assessment of visited solutions during the search. 
The algorithm also tries to detect and escape possible local optima. The solution repre
sentation is a vector that includes customer nodes separated by vehicle nodes to which 
customers are assigned. The objective function consists of three components: the total 
schedule duration, the number of capacity violations, and the number of time window 
violations. Thus, during the search process, overloads and tardiness in the solutions are 
treated as soft constraints, while precedence and coupling constraints are strictly enfor
ced. To construct an initial feasible solution, a predecessor-successor pair (PS) is inserted 
in the best feasible insertion position in the current vehicle’s route. If no feasible insertion 
can be found, a new vehicle route is added to the solution. Three neighbourhood moves 
are used in this algorithm. The first move is the “Single Paired Insertion” (SPI), which 
tries to move all predecessor nodes to better feasible locations in other routes. Successor 
nodes are inserted after their predecessors in the best possible positions, although vehicle 
capacity or time windows may still be violated. The second move is the “Swapping Pairs 
Between Routes” (SBR), which first tries to exchange a pair of predecessor nodes bet
ween two different vehicles, and then exchanges their successor nodes. The last move is 
the “Within Route Insertion” (WRI), which tries to reorder nodes in the same route to re
duce infeasibility in the solution and improve its quality. The sequence of neighbourhood 
moves is selected dynamically during the search, based on a calculated relationship bet
ween the average time window length (the tightness of the time window) and the average 
route duration.
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The authors in f 100] present a tabu-embedded simulated annealing approach to solve the 
MV-PDPTW. To construct an initial feasible solution, they modified Solomon’s Insertion 
heuristic [ 141 ] by initializing each route with a pickup and delivery (PD) pair that satisfies 
a set of criteria, based on combined time window intervals and distance from the depot. 
Each un-routed PD pair is then inserted into the partial route in the best possible feasible 
and minimal cost insertion position. The objective function tries to minimize, in priority 
order, the number of vehicles used, the total travel distance, the total service duration, 
and the drivers’ total waiting time. To create a neighbouring solution, three local search 
methods are presented. The first is a “PD-Shift” operator. In this operator, a PD pair is 
first removed from route 1 and then it is inserted in route 2. After that, another PD pair 
is removed from route 2 to be inserted in route 1. The second operator is a “PD-Swap” 
operator, which simultaneously removes a PD pair from each route, and then reinserts 
each pair in the other route. The third is a “PD-Rearrange” operator which first removes 
and then reinserts a PD pair in the same route. In all three moves, only feasible insertions 
are allowed. For a more thorough neighbourhood search, they extend their local search 
method to a descent local search (DLS), which tries to improve the current solution for 
a number of iterations. When no further improvement is possible, the DLS algorithm 
returns the best current solution. The main meta-heuristic algorithm is a tabu-embedded 
simulated annealing procedure with A'-restarts, i.e., the algorithm stops when the number 
of iterations without improvement reaches a pre-defined value K . To prevent cycling, their 
simulated annealing procedure records the accepted solutions in a tabu list. The authors 
generated test data for the problem based on Solomon’s test cases for the VRPTW [141 ]. 
The authors consider their approach as the first efficient attempt to solve practical size 
MV-PDPTW instances. Their generated data set also became the standard benchmark test 
data for the MV-PDPTW.

The work in [98] presents a two-phase method to solve the MV-PDPTW. In the first phase 
the algorithm creates an initial feasible solution using a strategy that combines the benefits 
of Solomon’s classical insertion heuristic [141], and a sweep heuristic, first suggested in 
[58], which was particularly adapted to fit the MV-PDPTW. The authors call their insertion 
heuristic “Partitioned Insertion Heuristic” . The objective functions is based on the number 
of vehicles used and the total travel distance. Their local search is based on three moves, 
similar to the moves described in [112], as explained above. The second phase of the 
algorithm is a tabu search that tries to improve the current initial solution using a set of 
composite neighbourhood moves.

In a relatively recent work [ 12], the authors present a two-stage algorithm to deal with the 
MV-PDPTW. The first stage uses a simple SA approach, whose focus is to minimize the 
number of vehicles used in the solution. The second stage uses a Large Neighbourhood
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Search (LNS) strategy, first suggested in [139], to minimize the total travel cost of the 
entire solution. The primary objective function (used in the LNS stage) minimizes the 
number of vehicles first, then the total travel cost. However, according to the authors, 
using this objective function is more effective in reducing the total travel cost than mini
mizing the number of routes in the solution. Therefore, they added an SA phase to boost 
the performance of the overall algorithm by reducing the number of routes in the solution 
first. To this end, they used a different objective function in the SA stage than the one 
used by the LNS. The SA objective function included three components: the first com
ponent tries to minimize the number of routes. The second component tries to maximize 
the number of routes that are rather full and those that are rather empty, with a view to eli
minating routes with few customers during the search. Finally, the third component of the 
SA evaluation function reduces the total travel cost1. The neighbourhood move adopted 
in their SA is a simple pickup and delivery pair relocation operator, which was also used 
by previous researchers (e.g. [98], [100] and [112]). The LNS of their algorithm is ac
tually a sequence of local searches, where a group of customers are selected for relocation 
based on a certain relatedness measure between pickup customers. The neighbourhood 
generated after the relocation of customers is then exhaustively explored, using a branch 
and bound algorithm, to find its best solution. The best solution found replaces the current 
solution, if it has a better objective value. The algorithm was tested on benchmark data 
obtained from [ 100], where the results show the effectiveness of the approach since it was 
able to produce many new best solutions for instances with 100, 200 , and 600 customers.

An interesting solution methodology is presented in [131], where a variant of the MV- 
PDPTW is considered. It is assumed here that the starting and ending depots of a vehicle’s 
journey need not be the same, and the depots could be different for different vehicles. It 
is also assumed that the number of vehicles is limited, so it may not be possible to serve 
all requests, in which case the unserved requests are placed in a request bank. Thus, mi
nimizing the number of unserved requests in the request bank is one of the objectives of 
the algorithm, added to minimizing the number of vehicles used and the total travel dis
tance. It is also assumed that there could be some special requests that cannot be served 
by some vehicles, for example if transferring the request requires a special characteris
tic that is not available in some vehicles (e.g. transferring frozen food or some medical 
samples). The basic solution methodology in this work is a Large Neighbourhood Search 
(LNS) technique, used in both [139] and [12], where a number of requests are first remo
ved then re-inserted into the solution. Unlike previous researchers, however, the authors 
apply a number of different heuristics for both the removal and the insertion methods.

'Recall that this 3-component evaluation function is the same as the cost function used by our PBR and 
PBQ construction heuristics (Equation 7.3), as explained in Section 7.5.2
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They present three different removal heuristics. First, the “Shaw Removal” removes re
quests according to a certain relatedness measure, which is based on differences between 
distances, arrival times, loads and the numbers of vehicles that can serve these requests. 
Second, the “Random Removal” heuristic removes randomly selected requests. Finally, 
the “Worst Removal” heuristic removes requests with high costs, i.e., requests that appear 
to be placed in unfavourable positions in the solution. They also present two different 
insertion techniques to insert the removed requests in the partial routes. The basic greedy 
heuristic inserts the request with minimum insertion cost in the best possible insertion 
positions. On the other hand, the regret insertion heuristic gives priority for insertion 
to requests whose insertion would seem to be more costly if it was delayed2. To select 
which heuristic to use, the authors assign weights to the different heuristics and use a 
roulette wheel selection method. These weights are adaptively adjusted during the search 
based on the performance of the different heuristics employed. Accordingly, the authors 
call their algorithm an Adaptive Large Neighbourhood Search (ALNS), as opposed to the 
basic LNS search method which only applies one removal and one insertion heuristic. 
During the search, a newly generated solution replaces the current solution using an SA 
acceptance criterion. Also, similar to [12], the authors first apply a preliminary stage to 
minimize the number of vehicles used in the solution before applying the basic ALNS. 
During this stage, they create an initial solution using a sequential insertion heuristic. 
They then try to remove one or more routs from this solution, using the LNS algorithm, 
until the minimum possible number of routes is reached. The algorithm was tested on 
the benchmark data of [100]. In addition, new problem instances were created, which 
takes into account their modified variant of the MV-PDPTW. When compared with the 
LNS, which uses only one removal and one insertion heuristic, the ALNS seems to be 
superior. In addition, their ALNS was able to outperform previous heuristics applied to 
the MV-PDPTW. To the best of our knowledge, the LNS technique of [ 12] and the ALNS 
of [ 131 ] are the current state-of-the-art, since they have both produced best known results 
for many benchmark problem instances.

Besides SA and Tabu Search, GAs have been applied by some researchers for solving 
the MV-PDPTW and the related dial-a-ride problem. In the early GA approach by [92], 
the chromosome representation is based on assigning a four digit code to each location. 
The first digit of this code represents the number of the vehicle to which the location is 
assigned. Thus, both the pickup location and its associated delivery will be assigned the 
same first digit. The other three digits are used to sort locations according to the visiting 
order of the vehicle, and a pickup location always has a sorting code that is less than its 
corresponding delivery. The crossover operator works by generating two crossover points,

2See Section 7.2 for more details about the regret measure of the parallel construction heuristics.
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Figure 8.1: A chromosome in a GA that handles both grouping and routing for the 
MV-PDPTW.

and swapping the resulting segments between the two parents. The mutation operator, 
simply changes the first digit of a pickup and delivery pair to another digit, i.e., assigns the 
request to another vehicle. Another operator called vehicle merging is also used to reduce 
the number of vehicles. The algorithm was tested on 24 randomly generated problems 
with numbers of requests ranging from 5 to 30.

The authors in [33] introduce an attempt to handle the MV-PDPTW using an evolutionary 
algorithm, for both the grouping and the routing aspects of the problem. The solution 
representation is a list of vehicles routes, where each route consists of a sequence of 
pickup and delivery locations, and all problem constraints are enforced in the solutions 
throughout the search. Figure 8 .1 shows how a typical chromosome may look in their 
suggested evolutionary approach. The objective function tries to minimize the number of 
vehicles in the solution, the total travel distance and the total travel time. Two crossover 
operators are tried, one exchanges fragments of routes between parents, while the other 
exchanges complete routes. Infeasible solutions that may be created following crossover 
are repaired by removing repeated requests or adding requests that are not served. If this 
is not possible, the offspring is discarded. Two mutation operators are presented, the first 
tries to reduce the number of vehicles in a solution by selecting a route and moving all 
its requests to other routes in the same solution. The second mutation tries to improve a 
route by rearranging its requests.

The work in [116] presents what seems to be a first attempt to apply a Grouping Genetic 
Algorithm (GGA) to the MV-PDPTW. In a GGA, the genetic representation is based on 
a set of genes, where each gene represents a group of objects rather than a single object. 
For the MV-PDPTW, it is assumed that each gene represents a group of requests that are 
assigned to one vehicle. Thus an individual solution only covers the grouping aspect of 
the problem. The routing aspect, on the other hand, is handled by an independent data
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structure associated with each gene. Figure 8.2 is a visual representation of how a chro
mosome in their GGA approach may look. The objective function is to minimize the total 
travel distance, irrespective of the number of vehicles used. The crossover is an adapta
tion of the original crossover mechanism for the GGA, presented in [49], where clusters 
(vehicles with their assigned requests) are removed from one parent and inserted into the 
other parent. This is then followed by a chromosome clean up, to remove duplicate ve
hicles and the repeated assignment of requests, in addition to re-assigning requests that are 
no longer assigned. The mutation operator removes a cluster from a chromosome, and re
assigns its requests to other clusters, creating additional clusters if necessary to maintain 
feasibility. The embedded insertion heuristic applied in several stages of this algorithm 
is based on inserting a request in the best feasible and minimum cost position, among all 
possible insertion positions in the chromosome 3. In a recent work [126], another GGA 
was applied to the Handicapped Person Transportation problem (HPT), which focuses on 
minimizing clients inconvenience.

Figure 8.2: A chromosome in a GA that handles only grouping for the MV-PDPTW.

The authors in [91] deal with the dial-a-ride problem using a cluster-first route-second 
approach. The clustering is handled using a GA, and the routing is handled using a space
time nearest neighbour heuristic. In the clustering phase, the chromosome representation 
is a two-dimensional array where rows represent routes and columns represent customers. 
A cell values of 1 or 0 indicates whether or not a customer is assigned to a particular 
route. Crossover is performed by selecting two random routes from parent solutions and 
creating a new child route using a traditional uniform crossover. The remaining routes 
in the child are inherited from the first parent without change. The newly created child 
may be infeasible, though. Accordingly, a repair method is followed to assign unassigned 
customers or remove duplicate assignments of customers. The mutation operator just

3More details about [33] and [116] will be given in Section 8.3.6 when our algorithm is compared with 
their approach.
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moves a random customer to another cluster (route). On the other hand, the work in [34] 
tries to use a GA for the whole dial-a-ride problem, i.e., for both the grouping and the 
routing phases. In their representation a gene consists of a vehicle-passenger pair. They 
used a one-point crossover and a Partial Match Crossover (PMX). For mutation they use 
a bit-level mutation and a 2-Opt operator.

A recent paper [37] presents an indirect search method for the MV-PDPTW. The idea 
is to separate the meta-heuristic search strategy from the feasibility checking routines, 
to simplify and accelerate the optimization process. This technique facilitates the appli
cation of simple problem-independent moves during the meta-heuristic search, while a 
problem-specific greedy decoder handles the construction of the corresponding feasible 
solution using the information (encoding) given from the meta-heuristic search engine. 
For example, in the PDPTW, the encoding is a permutation of transportation requests, 
which determines the sequence in which these requests will be scheduled. Given a certain 
permutation, the greedy decoder creates a feasible solution (schedule) using a sequential 
construction algorithm and a cheapest insertion rule. To create a neighbouring solution 
during the meta-heuristic search, a simple 2-exchange move is applied to the current per
mutation and the new permutation is supplied again to the greedy decoder to create the 
corresponding new schedule. A comparison of the indirect search technique with two 
special-purpose algorithms for the MV-PDPTW shows that the technique is competitive 
in both solution quality and speed. This may indicate the potential of applying the tech
nique to other rich combinatorial optimization problems.

The above literature summary shows that the MV-PDPTW is in fact a hard problem, for 
which most solution methods tend to be rather complex and hard to explain and repli
cate. Developing an appropriate solution technique is indeed a challenge for researchers. 
An intelligent solution methodology should be able to handle both the grouping and the 
routing aspects of the problem efficiently. In addition, in both the construction and the im
provement phases of the problem, the researcher is faced with many decisions that should 
be made. These decisions include, among others, the components of the objective func
tion, the permissibility of infeasible solutions, how to adhere with the constraints of the 
problem, how to generate new solutions, and what acceptance criteria should be applied 
to replace the current solution during the improvement phase. It is thus often difficult to 
discover good quality solutions that do not violate any problem constraint, in a reasonable 
processing time.
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8.3 A Genetic Algorithm (GA) for the MV-PDPTW

Although Genetic Algorithms (GAs) have been successfully used for solving many rou
ting and scheduling problems, research using GAs for solving the MV-PDPTW is gene
rally scarce. In addition, the results reported by most GA techniques attempted are often 
disappointing in some respects. As previously explained, the MV-PDPTW consists of two 
related problems: the grouping or the clustering problem tries to find the best allocation of 
requests to vehicles, while the routing problem is concerned with finding the best feasible 
route for each vehicle, given the requests assigned to it. When trying to solve this problem 
using a GA, it is often hard to tackle these two aspects simultaneously. Moreover, a major 
issue is finding a suitable genetic encoding and designing intelligent genetic operators that 
are capable of handling all the difficult problem constraints and may encourage the forma
tion of meaningful genetic building blocks, which may help in generating individuals of 
better fitness [116]4. In the MV-PDPTW, the genetic operators should be smart enough to 
transfer the favourable genetic traits from parent solutions to their offspring, while trying 
to avoid the frequent generation and evaluation of infeasible problem solutions. As pre
viously mentioned, infeasible solutions are handled in many solution algorithms using 
a repair method to fix infeasibility during the search, which will inevitably increase the 
processing time and complicate the algorithm.

Most previous GA research, for example [116] for the MV-PDPTW and [91] for the dial- 
a-ride, tried to tackle the difficulties encountered in the GA encoding and operators by 
allowing the GA to handle only the grouping aspect. The routing aspect, on the other 
hand, was handled by an independent routing algorithm that is hidden from the GA and 
is called when a chromosome is decoded. The genetic operators in this case are usually 
general-purpose and do not apply any problem-specific knowledge. Attempts to use a GA 
for both the grouping and the routing aspects, for example [33] for the MV-PDPTW and 
[34] for the dial-a-ride problem, generally produced discouraging results.

We present in this part of our research our experimentation with a new GA for solving 
the MV-PDPTW. Our GA tries to face the challenge of handling both the routing and the 
grouping aspects of the problem simultaneously. Unlike the most popular approaches in 
the literature, in which the GA is only aware of how requests are clustered, but is not 
aware of how they are routed, our chromosome representation more naturally accommo
dates each group of requests together with suggested routes. By explicitly monitoring 
and manipulating all the solution information, we aim to preserve the distinctive cha
racteristic of GAs in identifying the desirable genetic material and transferring it from

4For details about the “GA schema theorem” and “the building block hypothesis”, the reader is referred 
to [64],
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generation to generation during the evolutionary process. Our GA, thus, does not rely on 
a separate decoder for interpreting the chromosome contents and creating the subordinate 
routing information for each group of requests. Instead, the algorithm has a simple em
bedded construction heuristic that allows individual routes to dynamically change, within 
the chromosome itself, during the search . Also, with our solution representation in mind, 
we developed new simple genetic operators. Using problem-specific knowledge, such as 
the quality of the generated routes, these operators try to create good quality feasible so
lutions throughout the search. In addition, since no parallel repair method is needed to fix 
the infeasibility of solutions, the overall algorithm is simple and elegant, a feature often 
missing from most up-to-date solution algorithms.

Besides comparing our GA with the SA approach that will be introduced in the next 
section, we also compare here in detail our GA approach with what seems to be the only 
other two GA attempts in the recent literature for solving the MV-PDPTW. We highlight, 
based on the experimental findings, the promising aspects of our approach, and also point 
out to where further improvement could be achieved.

8.3.1 The Solution Representation and the Objective Function

As mentioned in the introduction to this thesis (Chapter 1), one of our goals in this re
search is to develop a solution representation that facilitates handling the difficult problem 
constraints. Following our approach for solving the SV-PDPTW, as explained in Chapter 
5, we adopt a simple representation for each individual route. A route is simply a list 
of visited locations in order. However, when we assign requests to each route, both the 
pickup and its delivery location are given the same code. For more details, the reader is 
referred to Section 5.4.1.

In our GA, the chromosome represents a problem solution. It is simply a collection of indi
vidual routes. Thus, each gene is actually a complete vehicle route. Both the route (gene) 
length and the chromosome length are variable depending on the number of requests to 
be visited and the number of vehicles in the solution. Thus our representation is just a 
problem solution upon which the genetic operators are directly applied. Our chromosome 
is very much like the chromosome structure depicted in Figure 8.1, but only differs in 
assigning the same code to both the pickup and the delivery. Thus, the code of each re
quest will appear twice in the chromosome, once showing where its pickup location will 
be visited and another for its delivery location. Figure 8.3 shows a typical chromosome in 
our GA.



152 8.3 A Genetic Algorithm (GA) for the MV-PDPTW

v l 0 1 2 3 3 2 1 4 4 0
v2 0 5 5 6 6 7 7 0
v3 0 8 9 8 9 0

v4 0 10 11 12 11 10 12 0

Figure 8.3: Our chromosome representation for the MV-PDPTW.

Most solution methods from the literature, for example [ 100], try to minimize the number 
of vehicles used in the solution as a primary objective, followed by either or both the total 
distance traveled and the total service duration. We used the following objective function 
of a solution S  to achieve this goal:

0 ( 5 )  =  N (S )2 x T o tD ist{S )  x T o tD ur(S )  , (8 . 1)

where N ( S )  is the number of vehicles used in the solution, T o tD ist(S )  is the total dis
tance traveled by all vehicles, and T o tD u r(S )  is the total schedule duration, which in
cludes the total travel time, the waiting time of the vehicles, and the service time at each 
location. The number of vehicles is squared in this objective function, so that solutions 
that use more vehicles will have a considerably higher cost than solutions that use less 
vehicles. Initial experimentation with this objective function indicated that it adequately 
serves the purpose of giving priority to minimizing the number of vehicles. In addition, 
no fine tuning or adjustment of different weights is needed in this objective function.

8.3.2 The Initial Population

To create a solution for our GA, requests are first placed in a relocation pool in a random 
order, before being inserted into the solution. Based on our investigation of several solu
tion construction methods, as explained in Chapter 7, we chose the sequential construction 
algorithm (SEQ), to create each solution in the initial GA population. The same algorithm 
was also used to create or modify solutions during the evolutionary process, as will be ex
plained later when we address the genetic operators. The underlying Hill Climbing (HC) 
routing heuristic and the overall sequential construction algorithm are explained in detail 
in Sections 7.4 and 7.5.1, respectively, and outlined in Algorithms 7.1 and 7.2.

The cost function, in Step 6 of the HC algorithm (Algorithm 7.1), is used to evaluate 
the quality of each route, and is different from the objective function (8 .1) used to eva
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luate the overall solution (chromosome). This cost function tries to minimize the total 
route duration as well as the degree of infeasibility in capacity and TW constraints. The 
cost function of a route r  is described by the following equation (same as Equation 7.1, 
repeated for convenience):

F ( r ) = Wi x D(r)  +  w2 x T W V ( r )  +  w;3 x CV(r )  , (8.2)

where D(r)  is the total route duration, T W V ( r )  is the total number of time window 
violations in the route, and C V (r ) is the total number of capacity violations, while w\, w2 
and w3 are assigned weights in the range [0,1], and w\ +  w2 +  w3 =  1.0. For this route 
cost function, we used the same weights used in Equation 7.1, i.e., w\ = 0.201, w2 =  0.7 
and u>3 =  0.099.

Our routing algorithm allows routes to dynamically change during the search, i.e., pre
vious routing decisions (locations) for some requests already existing in the route may 
be altered as new requests are added to the route. The new routing information is copied 
back to the chromosome whenever a change in the route occurs.

8.3.3 The Genetic Operators

As previously mentioned in the introduction to this thesis, we try to focus on neighbou
rhood moves (represented by genetic operators here) as a tool for satisfying the hard pro
blem constraints, and maintaining the feasibility of solutions throughout the search. Two 
crossover operators and one mutation operator have been designed to achieve this purpose. 
In what follows we explain in detail our proposed genetic operators.

Mutation

The mutation operator, which we will call the Vehicle Merge Mutation (VMM), simply 
tries to merge requests from two randomly selected vehicles. The idea is to try to reduce 
the number of vehicles by distributing the requests among already existing vehicles, or 
possibly combining two vehicles into one.

Figure 8.4 demonstrates the steps of the VMM. Figure 8.4(a) shows that vehicles v2 and 
v3 were randomly selected for merging from the current solution. The requests belonging 
to them will then be placed in a relocation pool in a random order. The remaining requests 
in the solution, i.e., vehicles v l  and v4  will be copied to the new solution to form a partial 
solution. Figure 8.4(b) shows that the requests in the relocation pool are then re-inserted 
into the partial solution using the SEQ construction, i.e., Algorithm 7.2, and the final
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mutated solution is constructed. In our mutation operator, the new solution replaces the 
old one only if it is better in quality, i.e., if it has a lower objective function value.

vl 0 1 2 3 3 2 1 4 4 0

v2 0 5 5 6 6 7 7 0

v3 0 8 9 8 9 0

v4 0 10 11 12 11 10 12 0

Relocation Pool

Vl 0 1 2 3 y 2 1 4 4 0

v2 0 10 11 12 11 10 12 0

(a) VMM - two vehicles selected for merging, and their request placed in the relocation pool. 
Remaining routes copied to the new solution without change

Vl 0 1 2 3 -> 2 1 4 4 0

v2 0 $ 5 6 6 7 7 0

v3 0 8 9 8 9 0

v4 0 10 11 12 11 10 12 0

Relocation Pool

vl 0 1 2 j y 2 1 4 4 0

v2 0 10 11 12 li 10 12 0

0 8 1 2 1 7 2 8 4 7 4 0

0 10 11 12 9 11 10 9 12 6 6 0

0 5 5 0

(b) VMM - requests in the relocation pool re-inserted into the partial solution using the SEQ 
algorithm

Figure 8.4: Vehicle Merge Mutation (VMM).
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Crossover

Two crossover operators have been designed in our research. The first crossover operator, 
which we will call the Vehicle Merge Crossover (VMX), is similar to the mutation ope
rator described above. However, instead of merging two vehicles from the same solution, 
the VMX tries to meige two vehicles selected at random, one from each parent solution.

The second crossover operator, which will call the Vehicle Copy Crossover (VCX), tries 
to copy complete routes from the parent to the child. The number of routes to be copied 
is a random number between 1/4 to 1 /2  the number of routes in the first parent. To select 
routes for inheritance, the VCX tries to select the ‘good’ routes. It is generally desirable 
to copy routes that serve a large number of requests, since our main objective is to reduce 
the number of vehicles. Accordingly, the VCX first ranks routes based to the number of 
nodes served in each route. The larger the number of nodes served the higher the rank 
of the route. Routes with the same number of nodes are ranked according to the total 
distance traveled, in which case routes with a shorter distance are more favourable than 
the longer ones.

Figure 8.5 demonstrate the steps of the VCX. Figure 8.5(a) shows that vehicles v l  and v4 
were selected from Parent 1, depending on the ranking criterion described above. These 
two vehicles are then copied to the first child. Figure 8.5(b) shows that the remaining 
requests that have not been included in Child 1 (those highlighted in Parent2), will be 
copied in the same order of their appearance in Parent2 and placed in a relocation pool. 
The requests in the relocation pool are then sent to the SEQ construction algorithm and 
used to form a set of new routes. These new routes will afterwards be appended to the 
routes already existing in Child 1, which were inherited from Parent 1.

Child2 is created similarly by reversing the roles of parents. Our early experimentation 
indicated that the presence of both crossover operators was necessary for improving the 
results and satisfying the objective function.
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Parent 1 Parent 2
V l 0 1 2 3 2 1 4 4 0 V l 0 s 6 6 1 1 5 0
v2 0 5 5 6 6 7 7 0 v2 0 2 7 2 3 3 7 0
v3 0 8 9 8 9 0 v3 0 4 4 12 12 0

v4 0 2 11 10 12 0 v4 0 8 9 8 9 0

l
v5 0 10 10 11 11 0

0 1 2 > 3 2 1 4 4 0

0 10 11 12 i i 10 12 0

(a) VCX - selected routes copied from parent 1 to the child

Parent 1 Parent2

v4 v4
v5

v l
v2
v3
v4 Relocation Pool

C'hildl

(b) VCX - remaining requests copied from Parent2 to the relocation pool, and used to create new 
child routes

Figure 8.5: Vehicle Copy Crossover (VCX).

31
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8.3.4 The Complete GA

Algorithm 8.1 shows the outline of the complete evolutionary algorithm that we used to 
solve the MV-PDPTW.

Algorithm 8.1: The Complete Genetic Algorithm.

1: Initialize a population P O P  of candidate solutions to the MV-PDPTW, using the SEQ 
construction algorithm (Algorithm 7.2)

2: for (a pre-specified number of generations) do 
3: for (i=0; i<NumCrossovers;i++) do
4: Select parents Pi and P2 from P O P , using roulette wheel selection
5: Randomly select crossover type (VCX or VMX)
6: Apply the selected crossover to parents (P \ , P2) to produce child C\

7: Apply the selected crossover to parents (P2, P \ ) to produce child C2
8: With some probability, apply mutation (VMM) to C\ and C2
9: Update P O P  by integrating the new generation and eliminating some worst individuals

{i.e., steady state GA with overlapping populations}

8.3.5 Attempts to Improve the Results

Before we report the experimental findings of this part of our research, we describe in 
this section some other operators and modifications to the solution approach that we ex
perimented with, in an attempt to reach the best possible results. These attempts are 
briefly explained below, in addition to some concluding remarks about their performance. 
However, since the benefits realized from adopting these approaches did not meet our an
ticipations, they were abandoned in favour of the simpler approach described in Sections
8.3.1 to 8.3.4.

Vehicle Removal Mutation

This mutation operator is based on the GGA of [116]. One vehicle is removed and its 
requests are placed in the relocation pool in a random order, where the SEQ algorithm tries 
to re-insert them into the solution. This may result in reducing the number of vehicles, if 
all the requests from the pool were accommodated into other vehicles. The approach in 
[116] selected a random vehicle for removal, while in our research we selected the vehicle 
with the minimum number of nodes.
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Large Neighbourhood Search (LNS) Mutation

This mutation operator is based on the Large Neighbourhood Search (LNS) move used in 
the work by [ 131 ], which is an adaptation of the same operator used by Shaw in [139] for 
the VRPTW. The idea is to remove a number of requests from the solution and then try to 
re-insert these requests back. Usually a large number of nodes (30% to 40%) are removed. 
However, since in our research this operator is used as a mutation operator, it would be 
more appropriate to reduce the number of requests removed. In our experimentation we 
found that 5% to 10% of the total number of nodes produce reasonable results.

Two variations of this operator were tried in our research, as advised by [131]. One ver
sion of this mutation selects the nodes to be removed randomly (random removal), while 
the other version selects the nodes that seem to be located in the wrong positions in the 
solution (worst removal). To find these requests, we calculate the cost of the solution (the 
objective function), with and without each request in turn, i.e., the request is temporarily 
removed from the solution to calculate its effect on the overall cost. The requests are then 
sorted in decreasing order of the change in cost. The requests to be removed are taken, 
in order, starting from the top of the list and then placed in a relocation pool in a random 
order. The removed requests are then re-inserted in the solution using the SEQ algorithm. 
The ‘worst removal’ version of the LNS algorithm gave slightly better results than the 
‘random removal’ version.

A Memetic Algorithm

We also tried to improve the performance of the GA by introducing local search at various 
stages of the evolutionary process. This idea is based on the memetic algorithm described 
in [94]. We tried both the vehicle removal mutation and the LNS mutation (explained 
above), as neighborhood moves to create a new solution within the local search. We also 
used an SA acceptance for solution replacement.

More specifically, in this memetic algorithm, local search is performed on some indivi
duals in the population (according to a certain probability), for example at the beginning 
of each generation. The local search repeatedly applies a selected ‘mutation’ operator on 
the individual for a pre-specified number of trials. Within the local search, a new solu
tion replaces the current solution using an SA acceptance criterion, i.e., a better solution 
always replaces the current solution, while a worse solution may replace the current solu
tion with some small probability. The best solution found during the local search is finally 
the one that replaces the initial solution (the individual that we started with).
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Our experimentation indicated that the more suitable operator to be used within the local 
search seems to be the LNS operator. It should also be noted that a small population 
size (e.g. 30 individuals) would be most appropriate for this memetic algorithm, due to 
the large increase in processing time that result from the repeated application of the local 
search.

Allowing Infeasible Solutions

In our attempt to improve the results, we also tried to add some infeasible solutions to the 
set of allowable solutions. The idea is that sometimes good solutions lie in the vicinity 
of infeasible solutions, so by allowing infeasibility we may be able to climb out of local 
optima. In this version of our algorithm, whenever a solution construction is needed 
during the initialization phase of the population, or during the course of the evolutionary 
operators, there was a 50% chance that the construction process will allow infeasibility.

In order to restrict the amount of infeasibility and reduce the search space, we only allo
wed violations in the time window but not in the capacity constraint. To do that, several 
modifications to the algorithm were needed.

Firstly, we had to restrict the number of nodes allowed in each individual vehicle. Other
wise, we could end up with a solution in which all requests are served by one vehicle. 
This is due to the fact that even if violating the capacity is not permitted, the algorithm 
would still be able to find a solution in which all requests are served, without any capacity 
violations, using only one vehicle. For example, a solution in which each pickup is fol
lowed by its delivery will always satisfy the capacity constraint. Specifically, the allowed 
number of nodes, for each vehicle individually, was set to a random number ranging from 
1 to m, where m  was arbitrarily chosen to be 2 0 % of the total number of nodes in the 
problem instance. Thus, nodes are added to the current vehicle until the predetermined 
limit on the number of nodes for this vehicle is reached, at which stage a new vehicle has 
to be allocated.

Secondly, the objective function has to be changed in order to penalize infeasibility in the 
solution. The following equation was used

O(S) — w\ x N ( S ) 2 -F w2 x T o tD is t(S )  + ^ 3  x T W V (S ) .  (8.3)

Where N (S )  is the number of vehicles in the solution, TotD ist(S )  is the total distance 
traveled by all vehicles in the solution, and T W V ( S )  is the number of time window 
violations in the solution. w\, w2 and u>3 are weights in the range [0 ,1] and w\ +w2 + wz =
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1.0. As with all other similar objective functions in our research, the penalty on the time 
window violations has to be large in order to get rid of infeasible solutions as the search 

progresses.

Thirdly, the genetic operators had to be modified. We modified the VCX crossover opera
tor by ranking vehicles according to the percentage of infeasibility in each vehicle, rather 
than the number of nodes visited and the total distance, as done previously when only 
feasible solutions were allowed. The VMX crossover was used without modification.

We also used the LNS mutation, after modifying it to remove the requests that have a time 
window violation and try to re-insert them again in the solution, i.e., the worst requests 
are now the requests that violate the time window. The vehicle removal mutation was also 
used without modification.

Results of the Improvement Attempts

Based on our experimentation, we can rank the effectiveness of the above improvement 
attempts (from best to worst) as follows: the memetic algorithm, the LNS operator, the 
vehicle removal mutation and finally allowing infeasible solutions.

The improvement introduced by these variants, or any combination of them, though, did 
not warrant, in general, the increase in the complication of the overall algorithm. These 
variants seem to cause an improvement in some test cases, but may cause a degradation 
in the results of other test cases. Accordingly, to keep the overall algorithm as simple as 
possible, which is the main philosophy in our research, we decided not to include any 
of these variants in the final testing version of the proposed GA. Thus, only the operators 
described in Section 8.3.3 and the final GA described in Section 8.3.4, were adopted in the 
final version. The experimental results of this final version are detailed in the following 
subsection.
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8.3.6 GA Experimental Results

To test our algorithm, we implemented a steady state GA with a 95% replacement. The 
following parameters were used: population size= 500, crossover probability= 0.6, mu
tation probability= 0.05, and the number of generations= 300. In cases where crossover 
is performed either VCX or VMX is selected at random. We used the standard 56 (100- 
customers) benchmark instances, created by Li & Lim in [100]. For the different types of 
problem instances in the data set, the reader is referred to Section 7.6.1. The algorithm 
was run 10 times on each problem instance.

We compared our algorithm, which we will call the Grouping-Routing GA (GRGA), 
with the GA in [33], denoted by CKKL5, and the grouping GA in [116], denoted by GGA. 
To the best of our knowledge, they are the only GA approaches that have been attempted 
in the literature for the MV-PDPTW and applied to the published benchmark data of [100]. 
The results in [116] are also close to the best known results, so we found that a comparison 
with their results will be sufficient for the purpose of this part of our research6. Before 
we report our experimental findings, though, we present in Table 8.1 a comparison of the 
most distinctive features of the three algorithms under consideration.

Figures 8.6 and 8.7 show the best results achieved by the three algorithms in terms of the 
number of vehicles and the total distance traveled. The two figures show that our GA 
clearly achieves better results than the CKKL algorithm in almost all test cases. There 
are only 5 cases in which our algorithm produced one more vehicle than the number of 
vehicles produced by the CKKL. Moreover, all our total distance results were better than 
the results of the CKKL. On average, the improvement of our results compared to the 
results of the CKKL in the number of vehicles is approximately 16%, while the average 
improvement in the total travel distance is approximately 36%. Also, our results are 
also close to the results of the GGA in the number of vehicles produced, with only few 
exceptions. Nevertheless, the resulting total distance is larger than the resulting total 
distance of the GGA in most test cases. This is even more noticeable in instances with a 
long time window width, i.e., instances of category ‘2 ’.

5We thank the authors of [33] for providing us with the data files containing their detailed results.
6The detailed results of the GRGA approach and a comparison with best known results will be presented 

in Section 8.4
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Table 8.1: Comparison between the GRGA, GGA and 
CKKL Algorithms

GA GRGA GGA CKKL

General
Approach

- A GA handles both 
the grouping and the 
routing
aspects of the problem.
- All problem informa
tion is explicity monito
red and manipulated by 
the GA.

- A GA only handles 
the grouping aspect of 
the problem.
- The routing informa
tion is hidden from the 
GA and created when 
the chromosome is de
coded.

- A GA handles both 
the grouping and the 
routing aspects of the 
problem.
- All problem informa
tion is explicity monito
red and manipulated by 
the GA.

Encoding

- A Chromosome has 
a variable number of 
genes.
- Each gene is a vehicle 
route (a sequence of 
visited nodes).
- Same code for pickup 
and delivery (P&D), 
and a parser to traverse 
the route and identify 
each.

- A Chromosome has 
a variable number of 
genes.
- Each gene is a cluster 
of requests assigned to 
one vehicle.
- A sperate data struc
ture and an insertion 
heuristic are used 
to create individual 
routes.

- A Chromosome has 
a variable number of 
genes.
- Each gene is a vehicle 
route (a sequence of vi
sited nodes).

Routing
or
Insertion
Heuristic

- Insert P&D pair at end 
of route, and improve 
the route using an HC 
algorithm.
- The routing decisions 
of requests in the route 
may be changed by the 
genetic operators.
- New routes are copied 
back to the chromo
somes, during recombi
nation and mutation.

- Examine all feasible 
insertions for the P&D 
pair in all routes, and 
select the insertion that 
causes minimal additio
nal cost.
- The routing decisions 
of nodes already exis
ting in the route are sta
tic and are not chan
ged by the genetic ope
rators.

- The P&D pair is inser
ted in a feasible route 
position.
- Position of insertion 
could be modified later 
using a local search mu
tation.

Continued on Next Page...
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Table 8.1 . . .  Continued from Previous Page

GA GRGA GGA CKKL

Crossover

- Vehicle Copy Cros
sover (VCX) & Ve
hicle Merge Crossover 
(VMX).
- Crossover operators 
are aware of, and make 
use of, the routing in
formation of each gene.
- Offspring is always 
feasible, and no repair 
method needed.

- Adaptation of the ge
neral GGA crossover, 
where crossover is not 
aware of the routing 
information of each 
gene.
- Consecutive set of 
clusters are selected 
from the first parent 
and inserted in the 
second parent.
- Chromosome cleanup 
is needed to correct in
feasibility of offspring.

- Sequence Based Cros
sover (SBX): fragments 
of two routes are se
lected from each parent 
and joined together to 
form a new route.
- Route Based Crosso
ver (RBX): two selec
ted routes are exchan
ged between the two 
parents.
- If possible, infeasibi
lity of offspring is re
paired. Otherwise, off
spring is discarded.

Mutation

- Vehicle Merge M uta
tion (VMM).
- Mutation is performed 
on the offspring created 
by crossover with a cer
tain probability.

- Remove one vehicle 
and reassign its re
quests.
- Mutation is performed 
on the offspring created 
by crossover with a 
certain probability.

- One-Level exchange 
Mutation (1M): re
moves one vehicle and 
reassigns its requests.
- Local Search Muta
tion (LSM): tries to 
find better locations for 
requests in a randomly 
selected route.
- Mutation is performed 
on a randomly chosen 
individual.

Objective
Function

- Minimize the number 
of vehicles, followed by 
total distance and total 
duration.

- Minimize total travel 
distance, irrespective of 
the number of vehicles.

- Minimize a weigh
ted sum of the number 
of vehicles, total dis
tance and total duration 
(equal weights are assi
gned).
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When we try to analyze the computational results in the light of the differences between 
the three algorithms summarized in Table 8.1, we will realize the following. First, since 
both the GRGA and the CKKL algorithms have the same chromosome structure and the 
same components of the objective function, then the obvious success of the GRGA com
pared to the CKKL algorithm must be due to the routing algorithm and/or the genetic 
operators used in the former. The success of the GRGA to produce solutions with less 
vehicles in most test cases could be attributed to the presence of two genetic operators the 
are specifically designed for this purpose and heavily applied during the search, namely 
the VMM mutation and the VMX crossover. On the other hand, the 1M mutation, used 
for reducing the number of vehicles in the CKKL, is only performed occasionally during 
the search. Also, the noticeable success of the GRGA in terms of reducing the total travel 
distance, could be attributed to the routing algorithm that is called whenever a route is 
created or modified to try to improve the quality of the route by reducing its overall cost. 
This again is in contrast to the LSM mutation of the CKKL that tries to improve the route, 
but is only called occasionally during the search. The VCX crossover, used in the GRGA, 
also seems to do a better job than the RBX crossover used in the CKKL. The RBX merely 
exchanges one route between parents, while the VCX tries to be selective when transfer
ring routes from the parent to the child, by choosing routes that serve a large number of 
nodes with the smallest possible distance. It also seems that the SBX crossover, used in 
the CKKL, may not be suitable for the genetic representation used. Since the gene is ac
tually a complete route, it would seem more appropriate to transfer a collection of routes 
rather than route fragments between parents.

We will now try to analyze the reasons behind the sub-optimal results achieved by the 
GRGA compared to the GGA, specially in terms of the total travel distance7. First of all, 
one of the major differences between the two algorithms is the objective function. The 
objective function of the GRGA includes the number of vehicles, the total distance, and 
the total duration, while the objective function of the GGA only includes the total dis
tance. Thus, the best solution as far as the GRGA is concerned must balance all three 
components, i.e., it takes into consideration other parameters involved in the routing sche
dule like the total waiting time of the vehicle at each location and the total service time. 
The second main difference is the routing heuristic used in both algorithms. The routing 
(insertion) algorithm of the GGA tries to find the best insertion position for each newly 
inserted request in all available routes, while we use a simple and fast algorithm that ac
cepts any feasible insertion. The attempt to improve the route, using the HC algorithm, 
is only local to each route and does not involve comparing the insertion cost with other

7It should also be noted that our algorithm was run only 10 times on each test case, while the GGA of 
[116] was run 30 times and the best result was selected.
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routes. It seems that our routing algorithm could probably use the help of an additional 
local search operator (e.g. 2-Opt), to try to improve the routes, which should in turn help 

reduce the number of vehicles.

In our opinion, these two issues are the main reasons for the inability of our approach to 
reach the solution quality of the GGA. On the other hand, the genetic operators in both 
seem to be comparable, since they either try to reduce the number of vehicles, or copy 
complete routes from parents to children. However, we think that our VCX crossover may 
be more suitable than the crossover of the GGA for this problem type, because transferring 
a sequence of routes is not really meaningful, since the order of routes in the chromosome 
is irrelevant.

Also, as mentioned previously, our algorithm seems not able to cope with instances of 
type ‘2’, as evident by the large gap between our results and the results of the GGA in the 
total travel distance. This could be explained if we recall that our routing algorithm had 
a neighbourhood move, which was guided by the TW. It seems that the routing algorithm 
was thus capable of dealing better with instances in which the TW constraint is hard to 
satisfy, i.e., those with a tight TW width. This neighbourhood move may not be sufficient 
to improve the route in problems with a large TW width, because of the availability of 
many different feasible orders of nodes. An alternative neighbourhood move may be 
needed in that case. For example, the neighbourhood move could take into account not 
only the bound(s) of the time windows of the swapped locations, but also whether the 
swapping can improve other route characteristics, such as the total waiting time, the total 
travel time, or the extra travel distance. The results obtained for instances of type ‘2’ also 
sustain our previous observation in Section 7.6.3, regarding the large solution space for 
this specific type of problem instances.

Finally, the average processing time needed by our algorithm, over all 56 problem ins
tances, was 176.9 seconds, which is comparable to the processing time of the grouping 
GA in [116] having an average of 167.1 seconds. Nevertheless, the separation of the data 
structure used for individual routes in [116] from the actual chromosome, seems to be 
favourable than our representation which includes all vehicle routes in the chromosome, 
as far as processing time is concerned, since the transfer of complete routes during the 
recombination and mutation operators is definitely time consuming. The authors in [33], 
on the other hand, do not report their processing time.
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8.4 Simulated Annealing (SA) for the MV-PDPTW

As previously mentioned in Section 8.1, we will try in this part of our research to adopt 
some of the neighbourhood operators used in the GA approach for the MV-PDPTW within 
an SA approach. As expected, the solution representation used in the SA is similar to 
the chromosome representation used in the GA (explained in Section 8.3.1). The same 
objective function (Equation 8.1) is also used here.

The initial solution from which the SA will progress is created by generating a number of 
random solutions8, in a manner similar to the creation of an initial genetic population (as 
explained in Section 8.3.2), and the best solution among them, in terms of the objective 
function value, is selected.

To allow for an adaptive calculation of the SA parameters for each problem instance in
dividually, we again used the approach proposed by [40], as previously done for the SV- 
PDPTW (see Section 6.3 and Algorithm 6.1). Thus, the annealing parameters are calcu
lated based on the average value of A cost, where A cost is the difference in the objective 
function value between some randomly generated solutions for the current problem ins
tance. In our approach, the same set of random solutions created for the selection of the 
starting solution, were also used for the purpose of calculating the annealing parameters.

A crucial part of any SA algorithm is the neighbourhood move that will be used to generate 
a new solution. In this part of the research, we experimented with different neighbourhood 
moves from the ones tried in our GA approach. Two neighbourhood moves were found to 
be the most appropriate for the SA approach:

1. The Large N eighbourhood Search (L N S) M ove: the LNS move is similar to 
the LNS mutation operator explained in Section 8.3.5, which is inspired from the 
Adaptive Large Neighbourhood Search (ALNS) approach of [131]. As previously 
explained, the idea is to remove and then re-insert a large number of requests in each 
application of the move. The authors in [131] recommend that 30% to 40% of the 
total number of nodes is removed in each iteration. In our LNS move, we slightly 
increased the allowed range for the number of removed requests, in order to explore 
a wider area of the search space. The number of removed requests in our LNS move 
ranges between 20% to 50% of the total number of requests. In addition, we adopted 
here the “Worst Removal” variant from the three types of removal heuristics applied 
in [131] (see Section 8.2 for more details about the different removal heuristics of 
[131]). In our approach, the requests removed are those that are estimated to cause

8100 random solutions were created in this experiment.
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a large increase in the cost of their respective routes, i.e., they may be inserted in 
unfavourable positions in the solution. Thus, to determine the cost of each request, 
the total travel distance of the route to which the request belongs is calculated, 
with and without the request under consideration, and the difference in the route 
distance is used as a measure of the request cost. Requests having the highest costs 
are selected for removal from the current solution. After this, the removed requests 
are placed in a relocation pool in a random order, before they are inserted back in 
the solution using the SEQ construction algorithm, hoping to find better insertion 
positions for them in the new solution.

2. The Vehicle M erge (VM) Move: this move is identical to the Vehicle Merge Mu
tation (VMM), explained in Section 8.3.3. The vehicle merge move selects two 
vehicles at random from the current solution. Then, the requests belonging to them 
will be temporarily placed in a relocation pool in a random order, before they are 
re-inserted in the solution using the SEQ algorithm as shown in Figure 8.4.

Similar to the idea of the 3-stage SA for the SV-PDPTW (explained in Section 6.3), our 
SA approach to the MV-PDPTW operates in two stages. In the first stage, the LNS move is 
used to generate a new solution, while in the second stage the VM move is used instead. 
Changing the SA move in this manner allows the search process to slightly perturb the 
current solution, before trying to re-optimize it, which may help in escaping local optima. 
The second SA stage starts from the final solution obtained in the previous stage and from 
the final temperature reached by the end of the previous stage. During each stage, the best 
so far solution is saved and each SA stage terminates when no improvement is realized 
in the best solution for a consecutive number of iterations9. Also, during each stage, the 
current temperature value is reduced in each iteration of the SA algorithm.

For a more extensive searching, the two SA stages are repeated several times. Again, the 
repetition only stops when the best obtained solution reaches a stage of stagnation and 
does not improve for a number of consecutive attempts of applying the two stages10. We 
also found during our computational experimentation that there seems to be no signifi
cance to the order of application of the two moves. Thus, as long as the two stages are 
repeated, the SA may be started from either move. The overall 2-stage SA approach is 
shown in Algorithm 8.2.

9100 consecutive attempts without improvement was used to terminate each SA stage.
1010 consecutive attempts without improvement was used to stop the repetition of the 2-stage SA ap

proach
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Algorithm 8.2: The 2-Stage SA Algorithm.

1: Find an initial solution (In itS o l ) and calculate the annealing parameters 

2: BestSol <— In itSo l  {Initialize the best so far solution}
3: Initialize M ax  Attempts  to a small number {We used 10}
4: Noimprovement  <— 0 

5: repeat

6: OldCost <— Objective(BestSol)  {Calculate the cost of the solution using Equation 8.1}

7: BestSol *— SA u v s iB es tS o l)  {Perform SA on the current best solution, using the LNS
move, and return the best found solution}

8: B estSo l  <— S A v M (B e s tS o l)  {Perform SA on the current best solution, using the VM
move, and return the best found solution}

9: NewCost <— Objective(BestSol)  {Calculate the cost of the new solution using Equation
8.1}

10: if (NewCost  is not better than OldCost)  then
11: N  ol mprovement +  +
12: else
13: N  ol mprovement <— 0

14: until (No I  mprovement reaches M a x  Attem pts)

SA Experimental Results

Our SA algorithm was tested on the same 100-customers test cases used for testing our 
GA, as explained in Section 8.3.6. Similar to the GA , the SA algorithm was run 10 
times on each test case. Table 8.2 shows the best result, in the 10 runs, achieved by both 
the GA and the SA for each test case. The best result is the one having the minimum 
number of vehicles, and for the same number of vehicles, the one having the minimum 
total travel distance. The better obtained result between the two algorithms is highlighted 
in boldface. In addition, the processing time in seconds is also shown in the table. The last 
two columns of the table show the current best known results for these problem instances, 
which are published in:
http : //w w w .si n te f .no/Projectweb/TOP/Problems/PDPTW/Li —  Lim-benchmark/
The best known results are attributed to [100], [12], and [135].

The last two rows of the table show, respectively, the overall average results of the corres
ponding column, and the percent difference (gap) between our average and the average of 
the best known results, in terms of both the number of vehicles and the total distance.

http://www.sintef.no/Projectweb/TOP/Problems/PDPTW/Li
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Table 8.2: GA & SA Best Results (100-Customers)

GA Results SA Results Best Known

Name Vehic Dist Time Vehic Dist Time Vehic Dist

LC101 10 828.94 34.8 10 828.94 45.72 10 828.94

LC102 11 978.48 109.97 11 945.88 57.99 10 828.94

LC103 10 1310.3 131.3 10 1238.57 226.67 9 1035.35

LC104 10 1203.1 145.28 9 1328.29 201.8 9 860.01

LC105 10 828.94 85.03 10 828.94 40.41 10 828.94

LC106 10 844.58 87.69 10 828.94 41.52 10 828.94

LC107 10 828.94 85.66 10 828.94 46.7 10 828.94

LC108 10 949.96 85.52 10 828.04 64.66 10 826.44

LC109 10 827.82 83.7 10 849.08 52.63 9 1000.6

LC201 3 591.56 261.17 3 591.56 3.47 3 591.56
LC202 5 1261.81 304.77 4 1186.64 58.34 3 591.56
LC203 5 1957.86 420.83 5 1903.04 75.36 3 585.56
LC204 5 1770.26 627.95 4 2194.2 119.03 3 590.6
LC205 3 591.56 283.27 3 591.56 8.02 3 588.88
LC206 4 681.35 216.52 4 626.89 11.61 3 588.49
LC207 3 766.62 293.88 3 701.72 24.77 3 588.29
LC208 3 604.51 320.33 3 604.7 15.19 3 588.32
LR101 19 1667.68 80.67 19 1667.68 10.22 19 1650.8
LR102 17 1627.73 90.61 17 1627.91 48.41 17 1487.57
LR103 14 1619.68 103.23 14 1525.99 86.06 13 1292.68
LR104 11 1262.3 231.22 11 1335.91 146.14 9 1013.39
LR105 15 1433.79 76.48 15 1450.98 49.74 14 1377.11
LR106 14 1564.06 95.33 13 1458.71 114.17 12 1252.62
LR107 12 1356.72 99.78 12 1353.44 195.7 10 1111.31
LR108 13 1380.93 108.16 12 1353.05 235.58 9 968.97
LR109 13 1448.14 85.14 13 1449.38 71.34 11 1208.96
LR110 13 1362.74 94.81 12 1323.12 151.78 10 1159.35
LR111 13 1431.07 103.59 12 1299.28 278.8 10 1108.9
LR112 12 1339.66 95.56 11 1237.92 100.78 9 1003.77
LR201 4 1783.1 194 4 1841.72 65.25 4 1253.23
LR202 5 2035.85 335.24 4 2083.77 177.84 3 1197.67
LR203 5 2135.47 500.69 4 2312.46 409.73 3 949.4
Continued on Next Page...



8.4 Simulated Annealing (SA) for the M V-PDPTW 171

Table 8.2 . . .  Continued from Previous Page

GA Results SA Results Best Known
Name Vehic Dist Time Vehic Dist Time Vehic Dist
LR204 4 2017.64 541.06 4 2059.11 181.25 2 849.05
LR205 4 1939.61 289.36 4 2123.62 78.56 3 1054.02
LR206 4 2128.15 554.16 4 2134.15 206.45 3 931.63
LR207 4 2191.28 615.16 4 2360.2 185.77 2 903.06
LR208 4 2064.23 723.53 4 2059.02 276.97 2 734.85
LR209 5 1787.82 275.5 4 2058.16 106.94 3 930.59
LR210 5 1928.42 313.3 4 2175.39 164.81 3 964.22
LR211 4 1782.99 401.3 4 1886.82 196.34 2 911.52

LRC101 16 1806.27 81.13 16 1806.27 26.11 14 1708.8
LRC102 15 1840.05 94.08 14 1776.15 80.47 12 1558.07

LRC103 13 1599.7 118.67 13 1558.38 122.19 11 1258.74
LRC104 13 1535.82 110.97 12 1464.11 279.77 10 1128.4

LRC105 16 2009.51 91.36 16 1862.36 88.17 13 1637.62
LRC106 13 1688.86 87.11 14 1672.87 53.06 11 1424.73
LRC107 14 1637.27 93.05 12 1452.42 153.31 11 1230.15
LRC108 13 1535.48 101.88 12 1379.59 148.47 10 1147.43

LRC201 5 2230.74 144.81 5 2327.42 89.98 4 1406.94

LRC202 5 2442.78 286.58 5 2525.27 171.39 3 1374.27

LRC203 5 2335.04 395.59 5 2413.63 400.44 3 1089.07
LRC204 5 2049.8 628.95 4 2323.05 289.55 3 818.66

LRC205 6 2162.85 162.3 5 2605.27 148.02 4 1302.2

LRC206 5 21813 191.58 5 2400.12 40.58 3 1159.03

LRC207 5 2346.32 245.63 5 2319.27 172.53 3 1062.05

LRC208 5 1983.58 247.73 5 2195.22 68.34 3 852.76

AVG 8.75 156232 226.2 8.43 1592.23 124.37 7.18 1036.68
GAP% 22% 51% - 17% 54% - - -

Table 8.2 shows that SA achieved better results than the GA in 31 out of the 56 problem 
instances. In terms of the overall average results, SA achieved a slightly better average in 
the number of vehicles and a slightly worse average in the total distance traveled, which 
can also be seen from the relative difference to best known results, indicated in the last 
row of the table. In terms of the average processing time, though, the result was in favour
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of SA, with approximately 45% less average processing time than the GA.

Figure 8.8 shows the average objective function value (as calculated by Equation 8.1) of 
the 10 runs, for each problem instance, obtained by both the GA and the SA.
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Figure 8 .8 : Average objective value for the GA and the SA algorithms.

In general the results in Table 8.2 and Figure 8.8 indicate that both the SA and GA obtai
ned comparable results when tested on the 100-customers instances for the MV-PDPTW. 
This could be explained by realizing that both algorithms adopted similar neighbourhood 
moves. The VM move used in SA is exactly the same as the VMM mutation used in the 
GA. In addition, the LNS move used in SA is also comparable to the crossover operators 
used in the GA. In the GA, the crossover operators generally try to remove requests be
longing to some selected routes from parent solutions and insert them back into the child 
solution. This process is similar to what the LNS move performs in SA, when requests are 
removed and then re-inserted into the solution. Moreover, selecting ‘good’ routes to be 
transferred to the child in the VCX crossover is also analogous to removing ‘bad’ requests 
in the LNS move adopted in SA.

The results of both algorithms, though, were inferior to the best known results, especially 
in terms of the total travel distance. This indicates that both algorithm could probably 
make use of an additional local search method, such as 2-Opt edge exchange, to improve 
the quality of the routes and reduce the travel distance at some stage during the run.
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8.5 Summary and Future Work

In this chapter we investigated both a GA and an SA for solving the MV-PDPTW. Our 
GA approach tried to face the challenge of allowing the GA and its operators to be aware 
of and manipulate both the grouping and the routing aspects of the problem. A challenge 
that most previous GA research on this problem has achieved little success with, or has 
been avoided completely by allowing the GA to tackle only one problem aspect. We first 
tried a simple representation and an intelligent neighbourhood move to handle the routing 
part of the problem. For the grouping part, on the other hand, we designed new genetic 
operators that try to exploit problem-specific information and create new solutions from 
existing ones, while maintaining the feasibility of solutions throughout the search. Our 
operators overcome the difficult problem constraints, and avoid at the same time the need 
for a repair method to fix infeasible solutions, a technique that previous GAs and most 
other heuristic and meta-heuristic techniques have been relying on to maintain feasibility. 
Overall, though, our algorithm is a simple and straightforward GA technique, and the 
genetic operators developed here are applicable to other related routing problems.

We compared our results with two previous GA attempts to solve the problem, the CKKL 
algorithm of [33] and the GGA algorithm of [116]. The experimental results show that 
our algorithm was able to greatly improve upon the results of the CKKL algorithm, using 
just a few simple modifications in the routing algorithm and the genetic operators, and 
applying problem-specific information. The improvement was evident in both main ob
jectives, the number of vehicles and the total travel distance. However, our results are still 
behind the results of the GGA in most test cases. The three algorithms have been tho
roughly analyzed and possible reasons behind the differences in performance have been 
identified.

The GA was also compared with a 2-stage SA approach that uses two different neigh
bourhood moves repeatedly. The neighbourhood moves used within this SA approach are 
analogous to the genetic operators used previously in the GA, since they rely on removing 
and then re-inserting requests or merging selected vehicles.

Both the GA and the SA obtained comparable results when tested on published benchmark 
instances, which is mostly due to their reliance on similar neighbourhood operators. Ho
wever, neither algorithm was capable of competing favourably with best known results. In 
general, it appears that our representation and neighbourhood operators in both algorithms 
are doing a fair job in guiding the search towards better solutions. However, to cope with 
the difficulty of the problem and the different types of problem instances, both approaches 
still need further improvement. For this purpose, different neighbourhood moves could be
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attempted in the route improvement heuristic, for example by taking some route charac
teristics into consideration when swapping locations, such as the resulting total waiting 
time or the total route duration. Moreover, a local search method, such as 2-Opt or 3-Opt, 
could be added to improve the quality of the routes and reduce the total travel distance. In 
terms of processing time, though, the GA was clearly much slower than the SA, which is 
expected, due to the overhead of maintaining a large population of solutions.

Having concluded our investigation of the PDPTW both its single and multiple vehicles 
variants, in the following chapter we move on to another interesting and important variant 
of pickup and delivery problems, the One-Commodity Pickup and Delivery Problem 
(1-PDP).
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Chapter 9

The One-Commodity Pickup and 
Delivery Problem: Introduction and an 
Evolutionary Perturbation Scheme

The One-Commodity Pickup and Delivery Problem (1 -PDP) is another important problem 
in transportation and logistics systems. The 1-PDP deals with supplying and collecting 
one type of commodity from a number of customers, some of them are designated as 
pickup customers and the others as delivery customers. Each pickup customer provides 
a certain amount of the commodity, while each delivery customer consumes a certain 
amount of the same commodity, i.e., goods collected from pickup customers can be de
livered to any delivery customer. All customers are served by one vehicle with a limited 
capacity, and the journey of the vehicle should start and end at a central depot. The de
pot can supply or consume any additional amount of the commodity that is not supplied 
or consumed by the customers. Our goal is to find a feasible and minimum cost route 
for the vehicle, such that all customers are served without violating the vehicle capacity 
constraint.

This problem has attracted our interest for several reasons. First, there are many applica
tions for this problem in practice. For example, the commodity could be milk that should 
be collected from farms and delivered to factories with no restriction on the origin and 
the destination of the product, or it could be money that should be distributed between 
the branches of a bank [74]. It can also model any logistic situation in which some wa
rehouses have an extra supply of some commodity, while others are in short of the same 
commodity. A typical situation is when some hospitals need to transfer a certain medicine 
to other hospitals, who are in short of this medicine. For example, an HINI vaccination 
or treatment could be transferred in urgent epidemic circumstances [106].

Second, this problem has not been adequately explored in the literature. Since the in
troduction of the 1-PDP in [74], only very few papers seem to have handled it. Finally, 
there are other important problems in the literature that are closely related to the (1-PDP).
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For example, the Traveling Salesman Problem with Pickup and Delivery (TSPPD) (see 
Section 9.3 for more details about this and other related problems).

Our initial attempt to handle the 1 -PDP was based on a simple Evolutionary P ertu rba
tion Scheme (EPS) that has proved successful for other routing problems, such as the 
TSP and the Capacitated Vehicle Routing Problem (CVRP). We made some preliminary 
experimentation with this technique for the 1-PDP and tested it on published benchmark 
data. The details of the approach and its experimental results are reported in this chapter. 
The outcome of the approach, though, did not meet the anticipated standard. Some ana
lysis of possible shortcomings of the algorithm and future directions are also discussed 
here. Nevertheless, A more successful heuristic for solving the 1-PDP, will be detailed in 

the next chapter.

The rest of this chapter is organized as follows. Section 9.1 formally defines the 1-PDP, 
while Section 9.2 is a brief summary of related research in this area. Some problems that 
are related to the 1-PDP are presented in Section 9.3. The EPS technique attempted for 
solving this problem is explained in Section 9.4, together with its experimental findings. 
Finally, Section 9.5 concludes with a summary and some thoughts for future work.

9.1 The 1-PDP

Based on the definition provided in [73], the 1-PDP is characterized by having a set of 
customers i(i =  1,2, ...,n ), where customer 1 is the depot. V  =  1 ,2 ...n is the vertex 
set, and E  is the edge set. For each pair of locations ( i , j )  the travel cost c,j is known in 
advance. For each customer there is an associated demand qt, such that qt > 0 for a pickup 
customer and q, < 0 for a delivery customer. The depot is considered as a customer that 
supplies or consumes any amount of the product that is not supplied or consumed by the 
set of customers, and the demand of the depot will be calculated as q\ — -  $^=2  9»- All 
customers are to be served by one vehicle with a limited capacity Q  > 0, and the capacity 
of the vehicle should at least be equal to the maximum customer demand (whether a 
pickup or a delivery), i.e., Q  > m axiG;/{|g,|}.

A feasible path for the vehicle is a path that travels from the first customer to the last 
customer, and visits each customer exactly once without exceeding its capacity. The au
thors in [73] more formally describe the feasibility of a path P  through the sequence of
customers i \  ik, with k < n. If we assume that l j ( P)  is the load of the vehicle after
visiting the j th customer, and 10{P ) = 0 , then P  is feasible if and only if

jSanSlî P̂  ~Q-°- (9I)
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In [158], more explanation of Equation 9.1 is given by indicating that minj=o,...k{lj(P)} 
could be either 0  or negative, given the existence of some negative customers’ demands. 
Accordingly, there are two possible conditions for a feasible route:
(i) if minj=o,.„fc{/j(P)} =  0, Equation 9.1 will simply become maxj=0,...fc{/7(P)} < Q .
(ii) if m m j=o,...k{lj{P)} < 0 (i.e., there is a shortage in the required delivery demands), we 
can assume that | minj=o,...fc{Zj(P)}| will be supplied by the depot when the vehicle starts 
its journey. Thus, | min7--o,...jfc{/j(P)}| will be added to the demands of all nodes, making 
minj=o,...k{lj(P)} =  0 again, and we return to the first case, i.e., maxJ=o,...*:{/j(P)} < Q.

Although the 1-PDP is MV-hard  (indeed it coincides with the TSP when the vehicle ca
pacity is large enough), checking the feasibility of a path can be done in a linear time. It is 
also important to note that the feasibility of the path is independent of its orientation, such 
that a path that is feasible/infeasible if traversed forward, will be also feasible/infeasible 
if traversed backward [75]. This feature allows a solution construction algorithm to start 
a tour from any customer node, visit each node, including the depot, exactly once and 
return to the first node. This closed circular tour will correspond to starting and ending at 
the depot (see Section 9.4.3 for an example of a construction algorithm).

9.2 Related Work

Since this problem is NV-hard,  exact algorithms are only suitable for small problem 
sizes. For example, [74] presented a branch-and-cut exact algorithm to solve instances 
of up to 60 customers. To deal with large size problems, the same authors tried heuristic 
approaches in [75]. Two heuristic approaches have been presented in their work. The 
first approach starts with a construction heuristic that is based on an adaptation of a TSP 
Nearest-Neighbour (NN) insertion heuristic. However, travel distances were modified 
using a special formula that intends to penalize the use of edges connecting customers 
of the same type, i.e., edges connecting pickup customers together or delivery customers 
together. It was thought that this approach would be more likely to lead the construction 
algorithm to find feasible solutions. An improvement phase then follows, using 2-Opt and 
3-Opt edge exchanges, to try to improve the feasibility and/or the total travel distance. 
The process of optimization is repeated several times, each time a new initial solution is 
constructed using a different starting node from the node list. The second approach is an 
incomplete optimization procedure, based on the branch-and-cut approach presented in
[74] to find the best solution in a restricted feasible region.

In [73] a heuristic approach, named hybrid GRASP/VND, is proposed. The approach 
is based on combining two optimization heuristics that have been successfully applied
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to combinatorial optimization problems. The first is called GRASP (Greedy Randomi
zed Adaptive Search Procedure), and is based on a repetition of a construction phase 
and a local search phase. The construction process works by selecting the next element 
for insertion from a Restricted Candidate List (RCL), which has been previously created 
according to the benefit of inserting each node, and depends on the current state of the 
solution. There is also a probabilistic element in the choice of the next node from the 
RCL. On the other hand, the Variable Neighbourhood Search (VNS) approach is based on 
systematically changing the neighbourhood move, during the optimization process, each 
time a local optimum is reached. The new neighbourhood move is usually of higher order 
than the previous move, and it is applied to the same starting solution. Variable Neigh
bourhood Descent (VND) is a variant of VNS, where the local optimum found acts as the 
new starting point for the local search (see Section 2.3.6 for more details about the VNS 
and the VND approaches).

For the 1-PDP, the hybrid GRASP/VND approach in [73] is basically a GRASP, where 
the local search is performed using a VND procedure. In this heuristic, two VND al
gorithms have been applied with different neighbourhood moves in each algorithm. The 
first VND (called VND1) is applied in the improvement phase after the construction of 
the initial solution. The neighbourhood move used in VND1 is a classical 2-Opt, which 
is then followed by a 3-Opt move whenever a local optimum is reached. After the basic 
GRASP/VND, a further post-optimization phase is performed, using a second VND (cal
led VND2). This time, however, the neighbourhood moves applied are a move forward 
and a move backward operators respectively. In the move forward operator, a customer 
is moved from its current position to a further position in the route. So for example, if a 
customer in position i is moved to position j  with j  > L this requires that all customers 
in positions i + I , . . . , j  must be shifted backwards one position. The locations of other 
customers in the route do not change. The move backward operator works similarly, but j  
is now a position that precedes i in the tour, and intermediate customers have to be shifted 
forward one position. The VND algorithm used in this heuristic is shown in Algorithm
9.1 and the hybrid GRASP/VND algorithm is shown in Algorithm 9.2, both adopted from 
[73].
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Algorithm 9.1: VND(:r) Procedure [73].
1: for (k = 1; k < max; k + +) do 

2 : x'  <—  LocalSearch{x ,N k(x))
3: if  (x' is better than x) then

4: x  <— x'

5: Return x

Algorithm 9.2: Hybrid GRASP/VND Procedure [73].
1: while stopping condition is not satisfied do

2: x  *— G r eedy Random ized  I  n i t  SolQ  {construction phase}
{improvement phase}

3: x  <— V N D l ( x )  {edge-exchange neighbourhoods}

4: if x  is feasible and improves the best solution x '  then

5: x ' *— x

{post-optimization}

6: x '  <— V N D 2 {x ')  {vertex-exchange neighbourhood}

7: Return x'

A GA approach was introduced in [158] to solve the problem. The algorithm first starts 
by creating a population of feasible solutions using a new nearest-neighbour construction 
heuristic. The initial population is then optimized using a 2-Opt neighbourhood move. 
The most distinguishing feature of the algorithm is a new pheromone-based crossover 
operator, inspired from the Ant Colony Optimization (ACO) technique, where pheromone 
trails are updated each generation. During crossover, the selection of the next node to be 
inserted in the child is based on a probabilistic rule that takes into account the pheromone 
trail of the edge connecting the last inserted node and the potential new node, such that 
edges that have proved successful in the past are favoured. The crossover operator also 
considers the distance between the two nodes, as well as the demand of the new node 
and the current maximum and minimum loads carried by the vehicle. The offspring is 
further optimized using a 2 -Opt local search, in which only feasible solutions are accepted, 
and only the closest neighbours to the current node are considered for edge exchanges. 
The mutation operator is based on a 3-exchange procedure. Since there are 5 legal ways 
in which 3 nodes could be exchanged, the move that yields the best result is the one 
performed in the mutation operator. The algorithm was tested on the benchmark data that 
are created by [75], producing the best so far results in most test cases.

The work done in [106] presents a simulation environment to solve the problem. The algo
rithm starts with a Modified Simulated Annealing (MSA) algorithm, followed by a manual
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improvement phase. The SA approach is called Iterative Modified Simulated Annealing 
(IMSA). The idea is to create multiple neighbourhood feasible solutions Y  from the cur
rent feasible solution A' by performing a number of changes on X . The changes are done 
iteratively on X , starting from 1 change to a maximum of nChangesmax. For each change 
value, a fixed number of Y  solutions is created, and this is done at the same SA tempera
ture. This whole process is then repeated in an outer loop for a number nC ountsmax of 
iterations. The initial solution X  is created based on a Greedy Random Sequence (GRS) 
algorithm, which is a nearest-neighbour heuristic with some randomness in selecting the 
nearest customer or the second nearest customer. A final manual optimization is then 
performed to improve the solution. Using a Graphical User Interface (GUI), the user se
lects a subgraph (of less than 15 nodes) from the optimal result obtained, upon which an 
improvement algorithm is applied. This is achieved by performing an Exact Permutation 
Algorithm (EPA) for small size problems, or improving a selected sub-route for large size 
problems. The algorithm was tested on some instances created in [7], and was found to 
be useful for practical applications.

9.3 Related Problems

Hemandez-Perez and Salazar-Gonzalez in [75] presented an extensive survey of routing 
problems that are closely connected to the 1-PDP. Based on this survey, some important 
problems that are related to the 1 -PDP are:

•  The Capacitated Traveling Salesman Problem with Pickup and Delivery (CTSPPD):
which is a special case of the 1 -PDP, in which the demand of each pickup or delivery 
customer is restricted to one unit (e.g. [5 ]).

•  The Capacitated Dial-a-Ride Problem (CDARP): in which the vehicle should 
move one-unit of commodity (for example a person) between pairs of customers 
(e.g. [124]).

•  The Pickup and Delivery Traveling Salesman Problem (PDTSP): which is the 
same as the CDARP, but there is no restriction on the vehicle capacity (e.g. [127]).

• The Traveling Salesman Problem with Backhauls (TSPB): in which all delivery 
customers must be visited before all pickup customers (e.g. [5 7 ]).

• The Traveling Salesman Problem with Pickup and Delivery (TSPPD): due to
the importance of this problem and its close connection to the 1 -PDP, the following 
discussion provides more details about this problem.
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The Traveling Salesman Problem with Pickup and Delivery (TSPPD)1

This problem was introduced in [110], and it is assumed here the commodity collected 
from pickup customers is different from the commodity delivered to delivery customers. 
The depot supplies all the demand of the delivery customers and collects all the supplies 
from the pickup customers, and both products must be accommodated in the vehicle wi
thout exceeding its capacity. An example of an application of this problem is when empty 
soft drink bottles are to be collected from homes or shops and delivered to the depot, and 
at the same time full bottles are supplied by the depot to be delivered to some customers
[75]. For a TSPPD to be feasible, the vehicle capacity should at least be the maximum 
among the sum of the pickup demands and the delivery demands. This condition is not 
required for the 1-PDP, though, since the vehicle capacity could even be as small as the 
largest customer demand [75].

In mathematical terms, if we let K  =  ma*{J2iev q^oQii ~ Yhev-q l<o(li}' ^ en f°r a 
TSPPD to be feasible Q must be >  K .  However, we can always assume, as mentio
ned in [110], that the TSPPD is in ‘standard form’, meaning that K  =  Q. Accordingly, 
we can also assume that in a feasible TSPPD route, the vehicle starts at the depot with a 
full load, delivers all the demand needed by the delivery customers, and at the same time 
collects the goods provided by the pickup customers. Finally, the vehicle will arrive at 
the depot fully loaded again, having collected all the goods from the pickup customers. 
This condition does not occur in the 1 -PDP, since the product can be collected from the 
pickup customers and delivered to the delivery customers, with the depot only supplying 
or absorbing any additional amount [75]. In [74] it is observed that a TSPPD can be 
solved using the same algorithm as the 1-PDP if the TSPPD instance is transformed by 
duplicating the depot into two dummy 1 -PDP customers, one collecting all the quantity 
supplied by the pickup customers, and the other providing all the quantity needed by the 
delivery customers.

9.4 Solving the 1-PDP Using an Evolutionary Perturba
tion Scheme (EPS)

In this part of our research we are trying to handle the 1-PDP using a technique based 
on ‘perturbation’ of the problem instance, first introduced in Codenotti et al. [27] for 
solving large instances of the TSP. The idea is to introduce a small perturbation to the

'This problem was briefly mentioned in our literature survey of pickup and delivery problems in Section 
4.1 under the name: The Traveling Salesman Problem with Mixed Linehauls and Backhauls (TSPMB).
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original problem instance P  to transform it to a new instance P', for example by making a 
small change in the coordinates of the cities to be visited in the TSP. The new coordinates, 
which in turn will result in new separating distances between the nodes, will then be 
used to construct a solution for the new instance P '. The new solution is then evaluated, 
possibly after applying some local search method to improve it, relative to the original 
problem instance P  to potentially replace the initial solution2. Figure 9.1(a) shows a 
typical product of a nearest-neighbour construction algorithm to an original small TSP 
instance, while Figure 9.1(b) shows an improved solution obtained after perturbing the 

coordinates of the original instance.

This idea was extended in [151], [152], [17] and [150], by applying a search algorithm to 
find a perturbation that will give a better solution. For example, a GA can be applied to 
optimize the set of perturbed coordinates. A simple greedy algorithm could then be used 
to create a solution for the TSP, using the perturbed coordinates rather than the original 
coordinates.

For the 1-PDP, we tried to apply the same idea of optimizing the set of perturbed coor
dinates, as done in [150] for the TSP, and in the PhD thesis by Matthew Morgan3 for the 
Capacitated Vehicle Routing Problem (CVRP) [109]. We were motivated by the success 
of this simple algorithm on these routing problems, as evident by the experimental fin
dings reported. For both problems, it was demonstrated that the technique was able to 
produce high quality solutions compared to simple solution construction heuristics wi
thout perturbation. The results obtained also compared favourably to published results 
from the literature in terms of both solution quality and processing time. Its applicability 
for the 1-PDP seemed to be viable, since a simple construction heuristic, such as the one 
described in [158], can be easily embedded within the evolutionary perturbation scheme, 
in which nodes’ coordinates could be perturbed and optimized using a simple GA tech
nique.

More specifically, in our perturbation scheme, we use a straightforward GA technique 
with a chromosome representing a list of customer locations, with each gene consisting 
of the x  and y coordinates of the location. Traditional crossover and mutation operators 
are then applied to optimize the set of perturbed coordinates. The perturbation of each 
coordinate is done by applying a small change to the coordinate within a pre-specified 
radius, as suggested in [109]. As mentioned above, the underlying construction heuristic,

2 A local search heuristic, applied to a solution for the new instance P' could be ‘fooled’ into finding 
better solutions for the original instance, because a local optimum for the original instance is not necessarily 
a local optimum for the new transformed instance.

3 Matthew Morgan is a member of our research group (Scientific Computing and Optimization) in Cardiff 
School of Computer Science & Informatics, UK.
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Figure 9.1: TSP solution before and after perturbation.

used to create a solution using the perturbed coordinates, is a simple nearest-neighbour 
insertion heuristic, similar to the heuristic introduced in [158]. The created solution is 
then evaluated relative to the original coordinate set, and the cost of the solution is used 
as an objective function for the perturbed coordinates that were used to create the solution. 
Algorithm 9.3 describes the basic steps of our Evolutionary Perturbation Scheme (EPS).
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Algorithm 9.3: The EPS Algorithm.
1: Initialize a population P O P  of perturbed coordinates from the original coordinates of pro

blem instance P  
2: while (stopping condition is not satisfied) do 
3: for (i=0; i<NumCrossovers;i++) do
4: Select parents Pi and P2 from P O P , using roulette wheel selection
5: Apply crossover to parents (Pi, P2 ) to produce child C\
6: Apply crossover to parents (P2, P i) to produce child C2

7: with some probability, apply mutation to C\ and C2

8: Generate a solution s\ from child C\ and a solution S2 from child C2 , using a simple
problem-specific construction heuristic 

9: decode solutions s\ and 52 to produce two real solutions r\ and 7*2 for the original pro
blem instance P

10: Possibly apply an improvement heuristic to r\ and 7-2 {improvement heuristic is only
applied to small problem sizes, due to time limitations}

11: Evaluate n  and 7*2 and assign fitness values to C\ and C2 accordingly
12: Update P O P  by integrating the new generation and eliminating some worst individuals

{i.e., steady state GA with overlapping populations}

Although the technique in general is simple, there are some parts that need careful consi
deration during the implementation of this algorithm. A critical issue is how to deal with 
infeasible solutions created during the search, and how to assign a suitable objective value 
for these solutions, since the total travel distance will no longer reflect the true cost of an 
infeasible solution. In the following subsections, we explain the basic components of the 
EPS.

9.4.1 The Encoding

The chromosome in our GA is an ordered list of customer locations starting from customer 
1 to n. Each gene in the chromosome consists of the x  and y coordinates of the customer 
location. Figure 9.2 shows the chromosome representation for both the original and the 
perturbed coordinates, depicted in Figure 9.1.
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Original Coordinates

(5,10) (12,25) (20,5) (23,17) (7,20) (22,22)

Perturbed Coordinates

(7,8) (16,24) (15,7) (23,14) (11,18) (25,20)

Figure 9.2: EPS chromosome representation.

9.4.2 The Initial Population

A chromosome is created by applying a small perturbation on the coordinates of each 
customer location, and storing the perturbed coordinates in the corresponding gene. The 
process is repeated for all individuals in the population. The perturbation scheme follows 
the recommendation of [109], such that each coordinate is shifted a small distance within 
a pre-specified radius. This radius is calculated as a function of the distance between the 
current node and its nearest neighbour. More specifically the new coordinates are given 
by the following equation:

newx = oldx + (D  x S )  x r, n ew y — oldy + (D  x S)  x r, (9.2)

where r is a random number between —1 and 1, D  is the distance between the current 
node and its nearest neighbour, and S' is a scaling factor used to control the permitted 
shift.

9.4.3 The Nearest Neighbour Construction (NN-Construction)

The construction algorithm is called whenever the objective function of the chromosome 
has to be calculated. The chromosome is first used to create a distance matrix reflecting 
the current perturbed coordinates that are stored in the chromosome. This distance matrix 
is then passed to a simple greedy nearest-neighbour construction (NN-Construction) al
gorithm to create a corresponding solution. The construction algorithm we adopted in our 
research is the one described in [158] to create their initial GA population, with a slight 
modification. This algorithm works as follows.
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1. Given C L 4, a user defined parameter, generate the list of C L  closest neighbours to 
each node in the customer list, based on the current distance matrix;

2. Let m  = 1, insert the depot node as the first customer T ( m )  in the tour, and initialize 
both M a x  Load  and M  inLoad  of the vehicle to be equal the demand of the depot;

3. If m  = n, where n  is the total number of customers including the depot, then stop; 
otherwise go to Step 4;

4. Search the C L  closet neighbours of T(m)  for feasible candidates that have not 
been inserted before and can be added to the end of the tour without violating the 
vehicle capacity. If there are such customers, select the customer i having the largest 
demand (in absolute value) among them, and insert it as T ( m  + 1), and update 
M a x  Load  and the M in  Load  of the vehicle, go to Step 5; otherwise go to Step 6;

5. m =  ra +  1, go to Step 3;

6. Search all customers that have not appeared in T  for feasible candidates for inser
tion. If there are such customers, select the closest customer to the last inserted 
customer and insert it as T ( m  + 1) and update M a x  Load  and the M  inLoad  of the 
vehicle, go to Step 5; otherwise stop and declare an infeasible solution;

7. Return m  < n, the number of nodes that have been successfully inserted in the 
solution before infeasibility (if any) is encountered.

The difference between our algorithm and the construction algorithm described in [158], 
and used to create a genetic population of random solutions to the 1-PDP, is that they 
start their tour from a randomly selected customer, while we always start the tour from 
the depot. We chose to fix the starting node to try to make the quality of the constructed 
solution only a function of the perturbed coordinates used to create the solution. Any 
randomness in the creation of the solution will interfere in the quality of the solution and 
will not reflect the true fitness of the perturbed coordinates. Thus, the learning process 
of the GA from generation to another may be obstructed. Similarly, some degree of 
randomness in Step 6 of the algorithm that was adopted in [158] has been eliminated in 
our algorithm. This is in fact essential in our scheme, because the solution constructed 
from the perturbed coordinates is not saved during the evolutionary process. Making 
the construction algorithm deterministic, by eliminating all randomness in the selection 
of nodes, will enable our algorithm to use the best perturbed coordinates (individual) to 
re-construct the best solution, when the evolutionary process terminates. In addition to

4CL stands for a constant that determines a selected number of closet neighbours to a certain node.
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removing randomness, our algorithm stops once the solution becomes infeasible, while 
in [158], they repeat the construction algorithm starting from a new node, if the previous 
attempt resulted in an infeasible solution.

The selection of the customer with the largest demand in Step 4 of the construction algo
rithm is justified in [158] by giving priority in the insertion order to nodes that may be 
difficult to insert, because of their large demand. Also, as mentioned in Steps 4 and 6, 
the minimum load and the maximum load carried by the vehicle are updated each time 
a new node is inserted. This step is needed for the feasibility check of each candidate 
node. More specifically, according to Equation 9.1, to check the feasibility of insertion, 
the difference between M axLoad  and M inL oad  after serving the candidate node, should 
not exceed its capacity, otherwise the potential candidate cannot be feasibly inserted at 
the end of the tour.

9.4.4 The Objective Function

To calculate the fitness of each chromosome in the population, the following steps are per
formed. First, a new distance matrix is calculated based on the set of perturbed coordinates 
stored in the chromosome. Then, this new distance matrix is passed to the construction 
algorithm, described in Section 9.4.3, to create a solution S  that takes into account the 
new distances between the nodes. Finally, the objective function of a chromosome (C ) is 
calculated using the following equation

F(C ) = ((n  +  1) -  m) x D is t(S )  (9.3)

where n is the total number of nodes, m  is the number of nodes that have been success
fully inserted in the solution before infeasibility (if any) is encountered, and D ist(S )  is 
the ‘true’ total distance traveled when the solution S  is decoded relative to the original 
coordinate set.

This objective function combines both the total travel distance and the degree of infeasi
bility in the generated solution. If the created solution is feasible, all nodes would have 
been inserted successfully, i.e. m  =  n. Accordingly, the fitness of this solution will be 
Dist(S). On the other hand, if the solution is infeasible, D ist(S )  will be multiplied by a 
factor that increases with the degree of infeasibility. The smaller the number of nodes that 
have been successfully inserted, the larger the multiplication factor. Note also that in case 
of an infeasible solution, the distance value will be smaller than the distance of a feasible 
solution, because not all nodes have been successfully inserted.
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9.4.5 The Operators 

M utation

The mutation operator first selects the number of nodes (genes) to be mutated. This num
ber was chosen to be a random number between 1 and 20% of the total number of nodes in 
the chromosome. Then, the mutation operator applies Equation 9.2 to each gene selected 

at random.

Crossover

Different traditional crossover operators have been tried in our research. The most ef
fective crossover operator seems to be the EvenOdd crossover operator, which works by 
selecting alternative genes from each parent and inserting them in the corresponding lo
cations in the child. The roles of the parents are reversed for the second child.

9.4.6 Computational Experimentation

We implemented a steady state GA, with an 80% replacement, and the following parame
ters: population size= 200, number of generations=1000 for large problems (more than 60 
customers) and 200 for small problems (from 20 to 60 customers), probability of muta- 
tion= 0.3, probability of crossover=0.8, and the perturbation scaling factor 5  in Equation 
9.2 was set to 0.6, after some initial experimentation with different values. The neighbou
rhood size C L  was chosen to be 2, i.e., only the closest two neighbours are checked for 
feasibility of insertion before all other nodes are checked. We found, experimentally, that 
this ‘tight’ neighbourhood size helped to reduce the runtime, since the neighbourhood list, 
which has to be created for all nodes whenever the construction algorithm is called, will 
be very small in size. Also, it appeared from trying several other values that this small 
value gave better results even for large size problems.

The D ata Set: The algorithm was tested on instances created by [75]. There are 2 types
of problem instances. Small instances have a number of customers n in {20, 30, 40, 50, 
60}. For these instances, the optimum is known and was obtained using the exact method 
proposed in [74]. There are also large instances with n in [100, 200, 300, 400, 500}. 
For each combination of n  and a different vehicle capacity Q in {10, 15, 20, 25, 30, 35, 
40, 45, 1000}, 10 problem instances have been created and given the letters {‘A’ to ‘J ’}. 
So for example, a problem instance named N100q20A, means the first instance (A) in
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the 100-customers category (N100) with vehicle capacity 20 (q20). The data set and the 
results obtained in [75] and [73] can be downloaded from the Pickup and Delivery Site of 
Hemandez-Perez 5: http: / /webpages . u l l . es/users/hhperez/PDsite/index. html

Experimental Results: We briefly summarize here the experimental results of the EPS
on test cases with the tightest vehicle capacity. These are the problems with Q =  10, 
and considered to be the hardest problems in the data set. We summarize the results on 
all problem sizes from 20 to 100. Our perturbation heuristic was run 20 times on each 
of these instances and the best result was recorded. Larger problem size, however, were 
found to be very time consuming and their testing was dealt with differently as will be 
explained later.

It should also be noted that there is a slight difference between the final testing version of 
the heuristic between small instances and large instances. This was based on preliminary 
experimentations and was intended to give the best possible results. For small instances 
(from 20 to 60 customers), the solution obtained from the NN-construction heuristic, ex
plained in Section 9.4.3, was optimized using a Hill Climbing (HC) approach that uses a 
simple node swap neighbourhood move. The objective function (Equation 9.3) then uses 
the quality of the optimized solution as a fitness of the perturbed coordinates from which 
the solution was created. This is the same approach applied in the perturbation scheme of 
the CVRP in [109]. For larger problems, however, this technique could not be used due 
to the great increase in processing time. Therefore, the objective function was only based 
on the quality of the constructed solution without optimization. An optimization phase, 
though, was performed only on the best individual after the termination of the whole GA 
process. Thus, the set of perturbed coordinates that are represented in the best individual 
in the final generation, were used to construct the best solution obtained, using the NN- 
construction algorithm. This solution is then further optimized using an HC approach that 
uses a simple move forward operator, which was suggested in [73] (see Section 9.2 for 
more details about the move forward operator). The results summarized here are the final 
results obtained after this optimization phase.

Results on Problem Sizes 20-100 Customers: Experimental results on problem sizes
ranging from 20-100 customers indicated that the perturbation heuristic was able to achieve 
the optima] result in only 16 out of the 50 test instances, where the optimum is known (i.e., 
for problem sizes 20-60). Also, the optimum was achieved only for the smallest size pro-

5New best results were obtained by the GA in [158], but they do not appear in the pickup and delivery 
site yet.
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blems of 20 and 30 customers. The heuristic, on the other hand, was unable to compete 
with previous heuristics from the literature for all larger size problems. The average re
lative difference between our results and the optimal or best known results ranged from 
2% for 40 customers to 12% for 100 customers. The heuristic was also slower than the 
heuristic in [158]. For example the average run time for 100-customers problems was 
43.8 seconds compared to 21.12 seconds reported by [158] for the same problem types.

Thus, the experimental results clearly indicate that the EPS achieved a limited success in 
dealing with the 1 -PDP problem instances, especially as the problem size increases. The
refore, testing the algorithm on even larger size problems did not seem worthwhile. The 
perturbation scheme in all problem instances, though, always produced feasible solutions. 
This indicated to us that the heuristic may be used in cases where a quick and feasible 
solution is needed irrespective of its quality.

Results on Problem  Sizes 200-500 Customers: For these problem sizes, we shifted
our attention to testing the potential of the EPS in transforming infeasibility to feasibi
lity, rather than competing with best known results. Hence, we only ran the algorithm 
for one generation and compared the result obtained, in terms of the quality of the solu
tion constructed from the best individual in the population, with the result obtained when 
the NN-construction heuristic was run only once to produce an initial solution (using the 
original problem coordinates without perturbation). Remember that the NN-construction 
heuristic is deterministic in our scheme, since we removed all the randomness involved in 
the construction of such solution. Accordingly, there is only one initial solution that can 
be constructed using the original coordinates. If the NN-construction managed to insert 
all nodes in the solution whilst maintaining feasibility, the created solution is feasible. 
Otherwise, the quality of the created solution is determined by the number of nodes that 
have been successfully inserted before infeasibility is encountered. In the current expe
riment, the algorithm was again run 20 times on each problem instance, and we counted 
the number of times the EPS heuristic was able to generate a feasible solution after one 
generation.

The results of this experiment showed that the NN-construction heuristic failed to produce 
feasible solutions in all cases except one, which is the instance N400ql0F. On the other 
hand, the EPS heuristic was able to find feasible solutions for all problem instances after 
one generation. In most test cases, the EPS was able to find a feasible solution in all 20 
runs. In 9 out of the 40 problem instances the EPS heuristic did not produce a feasible 
solution in all runs. The minimum number of feasible solutions obtained were 3 out of 
the 20 runs.
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These results, in general, seem to indicate that the EPS heuristic was in fact successful in 
transforming the frequent infeasibility problem of the NN-construction heuristic to feasi
bility. The processing time needed was also reasonable with an average of 1.13 seconds 
for 200-customers problems to 7.18 seconds for 500-customers problems.

9.5 Summary and Future Work

In this part of the research we investigated a new heuristic for the 1-PDP. The heuristic is a 
perturbation scheme that transforms the problem instance into a new one by performing a 
small shift in the coordinates of the nodes in the problem instance. A simple construction 
heuristic is used to construct a solution to the problem from the perturbed coordinates 
rather then the original coordinates, hoping to produce a better quality solution. The 
perturbed coordinates were also optimized using a simple GA technique.

The experimental results on a large number of test cases of different sizes indicated that the 
heuristic was in most cases able to improve the quality of the initial constructed solution to 
a large extent, removing infeasibility in all test cases. However, the final results obtained 
were in general of lesser quality than the best known or optimal results. The algorithm 
was also relatively slow, which is mostly due to the nature of the GA involved.

It should be noted that the EPS algorithm is highly sensitive to several underlying factors. 
The most important element seems to be the embedded construction heuristic. Previous 
attempts in the literature that used a similar technique, for example [109], made a consi
derable effort in testing several construction methods for the CVRP, to identify the best 
construction heuristic that can be used within the EPS. Nevertheless, the literature of the 
CVRP is relatively well-established and very rich with such heuristics. The literature on 
the 1-PDP, on the other hand, is scarce and only a small number of construction heuris
tics have been previously attempted. We chose from them the construction algorithm that 
seems to be relatively simple and fast, and also gave reasonable results within the context 
of other meta-heuristic techniques. This construction heuristic, however, apparently pro
duce frequent infeasible solutions, as illustrated by the results obtained on large problem 
sizes. Having a large number of infeasible solutions will lower the quality of the overall 
population of perturbed coordinates, and make identifying the set of perturbed coordinates 
that lead to feasible and good quality solutions a difficult task for the EPS.

In addition, the EPS is also highly sensitive to the perturbation parameters and the selected 
perturbation neighbourhood shape and size around the coordinates. Fine tuning of these 
parameters was also a considerable part of the research done in [109]. In our research, we
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simply relied on the final recommendations of [109] for their CVRP. However, obtaining 
the best perturbation parameters for the 1-PDP could allow the heuristic to achieve better 
results, but will, nevertheless, be very time consuming.

Another possibility for improvement is to modify the EPS, such that only feasible solution 
are allowed in the evolutionary process. Alternatively, the construction algorithm could 
be slightly adjusted, such that it will continue inserting nodes in the solution even after 
infeasibility is encountered. The objective function, then, should take into account the 
amount of infeasibility in the solution. This approach could allow the perturbation scheme 
to more easily transform the infeasibility to feasibility and improve the overall quality 
of the generated solutions. The viability of this ‘modified’ construction technique was 
demonstrated within the context of our VNS heuristic that was applied to the 1-PDP, as 
will be detailed in the next chapter.
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Chapter 10

Solving the One-Commodity Pickup 
and Delivery Problem Using an 
Adaptive Hybrid VNS/SA Heuristic

In our attempt to investigate possible heuristics to solve the 1-PDP, and perhaps achieve 
better results than those achieved by the EPS heuristic, Variable Neighbourhood Search 
(VNS) seemed a reasonable choice that may have some potential. First, the idea is simple 
and can be easily adapted to the problem in hand. Second, it has been successfully ap
plied to many routing and scheduling problems, for example to the TSP in [70] and the 
VRPTW in [19] and [119], and recently to the Periodic Vehicle Routing Problem with 
Time Windows (PVRPTW) in [ 118]. In this chapter, we explain our investigation of VNS 
for solving the 1-PDP. The VNS algorithm introduced here is hybridized with Simula
ted Annealing (SA) to escape local optima. We also employ adaptation of some search 
parameters for more efficient searching.

Section 10.1 briefly describes the VNS meta-heuristic in general, and highlights previous 
1-PDP research that uses this approach. Section 10.2 explains in detail our proposed 
heuristic, which we will call an Adaptive H ybrid VNS/SA (AVNS-SA) technique for 
solving the 1-PDP. An outline of the complete algorithm is presented in Section 10.3. 
Experimental results of the algorithm are presented in Section 10.4, and a summary and 
some future directions will be presented in Section 10.5.

10.1 Variable Neighbourhood Search (VNS) and its Ap
plication to the 1-PDP

As previously mentioned in Section 2.3.6, VNS is a relatively new meta-heuristic that 
has been introduced by Hansen and Mladenovic in [69] and [70]. The idea is to generate
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new solutions that are distant from the incumbent solution, by systematically increasing 
the neighbourhood size within which the search is performed. The new solution replaces 
the current solution if it is better in quality. This way, many favourable characteristics 
of the incumbent solution will be preserved in the new generated solution. In addition, a 
local search is performed on the new solution to reach a local optimum within the current 
neighbourhood. For convenience, we repeat here the basic steps of the VNS algorithm as 
described in [70]:

•  Initialization: Select the set of neighbourhood structures N k, (k — 1, ...A;mai), that 
will be used in the search; find an initial solution x; choose a stoping condition;

•  Repeat the following until the stopping condition is met:

1. Set k *— 1;

2. Repeat the following steps until k — kmax:

(a) Shaking: Generate a point x' at random from the k th neighbourhood of
X (x' e N k{x))\

(b) Local Search: Apply some local search method with x' as initial solution; 
denote with x" the so obtained local optimum;

(c) Move or not: if the local optimum x" is better than the incumbent, move 
there (x <— x"), and continue the search with N\ (k <— 1); otherwise set
k <— k + 1.

A  variant of VNS, called Variable Neighbourhood Descent (VND)1, has been tried for 
the 1 -PDP as part of the heuristic proposed by Hemandez-Perez and Salazar-Gonzdlez in 
[73]. In their approach, the VND did not include a shaking phase, but only a local search 
that changes the neighbourhood move from 2-Opt to 3-Opt, whenever a local optimum is 
reached. The VND was embedded within another heuristic called GRASP (Greedy Ran
domized Adaptive Search Procedure) that repeatedly generates an initial solution upon 
which the VND is applied. Their approach is described in Algorithms 9.1 and 9.2 in the 
previous chapter. The heuristic in [73] achieved promising results that were better than 
the results obtained by the same authors using their previous heuristics suggested in [75]. 
However, their algorithm apparently was not fully capable of escaping the trap of local 
optima. This is evident by the fact that they had to use a post-optimization phase to im
prove the final result. According to the authors, this post-optimization often made the 
difference between beating the results obtained by their previous heuristic in [75] or not.

'See section 2.3.6 for more details about the VND algorithm.
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The hybrid GRASP/VND heuristic was also outperformed by the GA of [158], in most 
test cases.

A possible shortcoming of the hybrid GRASP/VND heuristic is the absence of a shaking 
phase, which should help the diversification of the incumbent solution and allow the suc
ceeding local search method to escape local optima. In our proposed approach, we try to 
apply the basic VNS, with both the shaking and the local search, hoping to overcome the 
limitation of this previous VND attempt on the 1 -PDP.

10.2 The AVNS-SA Heuristic

To apply VNS to the 1-PDP, several choices should be made. These are outlined and 
explained below:

1. The construction heuristic used to create the initial solution: The construction 
algorithm we used is the same as the algorithm proposed by [158], which is the 
nearest-neighbour construction (NN-construction) heuristic, explained in Section 
9.4.3.

2. The set of neighbourhood structures used for shaking: This is in fact the core 
of the VNS, and is the tool for diversification of the search. It is essential that the 
shaking procedure provides a balance between enough perturbation of the current 
solution, and also maintaining the most favourable characteristics of this solution. 
The shaking procedure should also allow the systematic change of the neighbou
rhood size. In our algorithm, we chose a simple move that displaces a sequence of 
nodes with or without inversion2, where the number of nodes to be displaced could 
act as the variable neighbourhood size parameter that changes during the search.

3. The local search procedure used to optimize the current solution: This proce
dure is the tool that the VNS uses for intensification of the search. In our algorithm, 
we chose as a local search a simple 2-Opt edge exchange algorithm, based on the 
famous procedure proposed by Lin in [103]. We adopted the implementation des
cribed in [157] for the 2-Opt edge exchanges, having a computational complexity 
of 0 ( n 2), where n  is the number of nodes in the problem instance. In addition, our 
local search is based on exhaustively testing all possible edge exchanges, and using 
best improvement as a replacement strategy.

2Inversion means to reverse the sequence of nodes in a manner similar to the inversion mutation operator 
shown in Figure 2.7(b)
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4. The acceptance criterion used by the VNS to accept a new solution as a replace
ment of the incumbent solution: A descent only criterion will only accept a better 
solution, while a descent-ascent criterion will also accept a worse solution with 
some probability. Both techniques can be used within the VNS procedure as explai
ned in [70]. In our approach we chose the second criterion, such that the acceptance 
is based on an SA acceptance probability, given a certain current temperature value.

In what follows we describe in detail how our proposed AVNS-SA approach was planned 
and developed.

10.2.1 The Initial Solution

To choose the initial solution that will be subject to the VNS, a number of solutions were 
created using the NN-construction heuristic (adopted from the algorithm in [158] and 
explained in Section 9.4.3), and the best solution was selected. However, in order to create 
different solutions, we re-introduced the randomness that has been removed in the EPS 
heuristic, for reasons previously explained. Specifically, the starting node was chosen at 
random, and also there was a small probability of choosing a random customer, rather than 
the nearest customer, in Step 6 of this algorithm (refer to the steps of the NN-construction 
algorithm in Section 9.4.3).

Also, rather than stopping the construction algorithm once infeasibility is encountered, 
we changed the algorithm so that if all remaining nodes are infeasible for insertion, the 
closest one to the last inserted node is selected, even if it is infeasible, hoping to fix the 
infeasibility later during the search. Thus, all nodes will be inserted in the solution and the 
degree of infeasibility is taken into consideration when calculating the cost of the solution. 
The value of CL,  which is the neighbourhood size used to create the matrix of nearest 
neighbours to each node, was chosen to be 15 in the construction algorithm of [158]. In 
our approach, though, we tried all values of C L  from 2 to 15 on selected test cases from 
both the small and the large size instances3. The value of C L  that worked best for all 
problem instances tried was 7. Also, unlike the EPS heuristic, where a new neighbourhood 
matrix was created with each set of perturbed coordinates, the current approach requires 
only one static matrix to be created at the beginning of the run. Accordingly, a very ‘tight’ 
neighbourhood size was no longer needed to improve the run time4.

For convenience, we show in detail below the steps of our construction algorithm:

3We selected test cases: N20ql0A, N60ql0A, NlOOqlOA, and N500ql0A.
4Recall that the value chosen for CL in the construction algorithm of our EPS heuristic, explained in 

Chapter 9, was 2.
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1. Given CL, a user defined parameter, generate the list of C L  closest neighbours to 
each node in the customer list;

2. Let m =  l, insert a random node as the first customer T ( m )  in the tour, and initialize 
both M a x  Load and M inL oad  of the vehicle to be equal to the demand of this 
customer;

3. If m =  n, where n  is the total number of customers including the depot, then stop; 
otherwise go to Step 4;

4. Search the C L closet neighbours of T ( m )  for feasible candidates that have not been 
inserted before and can be added to the end of the tour without violating the vehicle 
capacity. If there are such customers, select the customer having the largest demand 
(in absolute value) among them, insert it as T (m  +  1), and update M ax Load and 
the M inLoad  of the vehicle, then go to Step 5; otherwise go to Step 6;

5. rn = 77i + 1, go to Step 3;

6. Search all customers that have not appeared in T  for feasible candidates for inser
tion. If there are such customers, select the closest feasible customer to the last 
inserted customer with probability 0.7, or select a random feasible customer with 
probability 0.3; if there are no remaining feasible customers, select the closest in
feasible customer to the last inserted node; insert the selected node as T ( m  + 1) and 
update M a x Load and the M  inLoad  of the vehicle; go to Step 5.

10.2.2 The Objective Function

The objective function used to estimate the solution quality was set to

F (S )  =  ( N C V ( S )  +  1) x D is t(S ) ,  (10.1)

where N C V (S )  is the number of capacity violations along the route, i.e., the number of 
nodes at which the feasibility check, described by Equation 9.1, is not satisfied. At these 
locations, the vehicle could be ‘carrying’ an excess of its allowed capacity, or could be 
in shortage of the necessary quantity to be delivered. The larger the number of capacity 
violations, the larger the cost of the solution. D is t(S )  is the total distance of the solution, 
given the current visiting order of nodes. If there are no capacity violations in the route, 
i.e., the route is feasible, the total distance will be the sole measure of the solution quality. 
Thus, this multiplicative objective function will penalize the number of capacity violations 
in the route, by significantly increasing the cost of solutions that have a large number of
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capacity violations, compared to feasible solutions, whose cost will only be measured 
by the total distance traveled. In addition, no arbitrary fine tuning of penalty weights is 
needed for this objective function.

10.2.3 The Initial SA Temperature

As previously mentioned, we used an SA acceptance criterion within the VNS approach. 
A critical part of any SA algorithm is the SA schedule, especially the starting temperature 
and the temperature reduction factor. These parameters significantly affect the perfor
mance of the SA algorithm, and their adjustment to fit a wide range of problem instances 
and sizes is a daunting task and very time consuming. To calculate the SA starting tem
perature for each problem instance individually, we again adopted the approach proposed 
by [40]. Recall that this approach was used in both our SA algorithms that handled the 
SV-PDPTW and the MV-PDPTW, as explained in Chapters 5 and 8. The procedure for 
creating the initial solution and calculating the SA temperature is shown in Algorithm
10 . 1 .

Algorithm 10.1: Find Initial Solution & Calculate Starting Temperature.

1: Create a starting solution s using the NN-construction heuristic 

2: s* <— s (s* is the best so far solution]

(Initialize Ps tar t ,  the starting acceptance probability]

3: Let P s t a r t  = a large value (We used 0.9}
4: A avg -  0

(Generate n solutions using the NN-construction (We used n — 1000)}
5: for (i =  0; i < n \ i + +) do

6: generate a new solution s'  using the NN-construction heuristic
7: if (Objective(s ' ) < Objective(s*))  then
8: s* ♦- s'
9: A  <— \Objective{s') — Objective(s)\

10: A aVg < A nrg -f- A

11: A  aVg < A  avg/n

12: T0 «----- A aVg/\og(Pstart)
13: Return s*, the initial solution from which the AVNS-SA algorithm will progress, and the 

initial SA temperature To
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10.2.4 The Shaking Procedure

As mentioned previously, we chose as a shaking procedure a displacement of a sequence 
of nodes with some probability of inverting this sequence (a 50% chance of inversion was 
adopted in our algorithm). This move is popular in the VRP literature, and especially 
for solving the TSP, but to the best of our knowledge it has not been tried before for the 
1-PDP.

Our VNS algorithm passes the current neighbourhood size (N h S iz e ) as a parameter to 
the shaking procedure, which will in turn use this parameter as the maximum possible 
number of nodes that will be displaced. Specifically, the number of nodes to be displaced 
is a random number between 1 and N h S iz e .  So even for large values of N hSize ,  small 
sequences of nodes could still be displaced, and in fact there is a ‘bias’ toward such small 
moves, since they have a chance of being executed in all neighbourhood sizes. This is 
intended to prevent a large disruption of the current solution, and is recommended by 
some VNS implementations, as in [ 119] for the VRPTW. Both the starting position of the 
selected sequence and its new position within the route are chosen at random.

10.2.5 The Maximum Neighbourhood Size

Our VNS algorithm repeats the shaking followed by the local search for the current solu
tion for all N h S ize  = 1 , 2 , 3 .. .N h S izemax , where N h S iz e max is the maximum sequence 
of nodes that could be displaced. N h S iz e max should be chosen in a way that allows 
enough perturbation of the solution without disturbing its favourable characteristics. Na
turally, the value for N h S iz e max in our shaking procedure must be smaller than n, where 
n is the total number of nodes in the current problem instance. Also, to make N h S ize max 
adaptable for any problem instance, it must be calculated relative to n, and not fixed for 
all instances. However, large values of N h S iz e max will increase the computational cost 
and slow down the optimization process. So, in order to reduce the computational cost, 
we tried different fractions of n  (n /2 , n /3 , n /4 ), on selected problem instances from both 
the small and large problem instances5. These values of N h S iz e max, though, still resul
ted in a very long processing time for large problem instances. We then tried the value 
2 x y/n, which was recommended by [106], for the number of changes (nChangesmax) 
in their Iterated Modified Simulated Annealing (IMSA) approach to the 1-PDP, as pre
viously explained in Section 9.2. N h S iz e max =  2 x yfn  gave the best results among all 
values tested, in terms of the balance between processing time and solution quality, for all 
instances tried in this experiment.

5 Again we used test cases: N20ql0A, N60ql0A, NlOOqlOA, and N500ql0A.
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10.2.6 A Sequence of VNS Runs

During our early experimentation with the VNS algorithm, we found that to reach good 
solutions for the 1-PDP, several runs of the VNS procedure should be performed. Each 
run starts from the final solution obtained in the previous run. The VNS could be repeated 
for a fixed number of iterations, or until no improvement is realized in the current solution 
for a number of attempted iterations. We chose the second approach, and stopped the 
repetition of the VNS when no improvement happens in 5 consecutive iterations.

However, we realized that during the first VNS run, improvement happens quickly for 
most neighbourhood sizes, even for the large ones among them. Subsequent VNS runs, 
though, usually respond only to smaller changes in the solution. In other words, smaller 
neighbourhood sizes seem to be more beneficial in subsequent VNS runs, since larger 
changes may cause a disturbance of the current solution and reduce its quality. Accordin
gly, after each VNS run, N h S iz e max was reduced by a fraction of its value. To choose 
the reduction scheme, we tried the fractions 1/2, 1/3, 1/4 and 1/5 of N h S iz e max, on the 
same selected test instances previously indicated in Sections 10.2.1 and 10.2.5. We finally 
chose the reduction factor 1/4, based on the quality of the results obtained.

As previously mentioned, the VNS procedure is repeated several times, and only stops 
when no improvement happens in the current solution for a number of consecutive ite
rations. Thus, reducing N h S iz e max cannot continue indefinitely, because otherwise la
ter runs may not perform any shaking at all. In order to maintain a reasonable num
ber of nodes to be displaced in the shaking procedure during later runs, the reduction of 
N h S iz e max is repeated until it reaches a certain minimum value, at which stage no fur
ther reduction is performed, and the VNS procedure uses the current N h S iz e max for all 
remaining runs. The minimum value of N h S iz e max was chosen to be the same as the re
duction factor, i.e., N h S iz e max/ 4, in order to reduce the number of parameters that need 
to be adjusted in the algorithm.

10.2.7 Stopping and Replacement Criteria for Individual VNS Runs

The VNS procedure repeats the shaking and the local search for all values of N h S ize  = 
1 ,2 ,3...NhSizemax- However, in some cases, the current solution may not respond to 
changes in the neighbourhood size and reach a stage of stagnation. Therefore, rather 
than indiscriminately increasing N h S iz e  up to the pre-specified maximum, we chose 
to also end each VNS run when the solution has not changed for a certain number of 
consecutive attempts of increasing N h S ize .  For more flexibility and robustness, the
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number of attempts should be chosen relative to the current maximum neighbourhood 
size (N h S iz e max), and not fixed for all problem instances. Similar to how the reduction 
scheme was chosen (as explained in Section 10.2.6), the number of attempts was again 
set to NhSizem ax/4. Thus, the VNS will be adaptive in the sense that it will stop the 
shaking and the local search cycle, when no benefit seems to be realized from increasing 
N hSize .  It is also adaptive from another perspective, since N h S iz e max passed to the 
VNS is not fixed and depends on the current stage of the run, as previously discussed in 
Section 10.2.6

Also, as indicated before, we chose an SA acceptance criterion to replace the current 
solution within each VNS run. Initial experimentation showed that accepting worse so
lutions with some probability improved the final result obtained, although it is more time 
consuming. Thus, the SA component of the algorithm works by allowing the new solution 
resulting after the shaking and the local search to replace the current solution, even if it 
is worse in quality. The acceptance criterion is the same as the usual SA acceptance and 
depends on the difference between the objective value of the new solution and the current 
solution, and the present temperature value.

In our algorithm, the VNS procedure repeats the shaking and the local search for the sam e 

neighbourhood size (N h S iz e ) for a number of trials. The number of trials is incremented 
only when a solution worse than the incumbent appears in the current N hSize .  When 
the number of trials reaches a certain pre-defined limit, the shaking and the local search 
cycle stops for the current N h S ize ,  and the VNS moves on to the next N hS ize .  Also for 
each N hSize ,  the current temperature is decremented in the current iteration each time 
the new solution is worse than the current solution.

10.2.8 Updating the SA Starting Temperature

Normally, by the end of each complete VNS run, the SA temperature would have reached 
a small value that should not permit the acceptance of any worse solutions. If we started 
the new VNS run with such a small value, there would be no benefit to the SA acceptance, 
since all worse solutions would be rejected. On the other hand, starting a new VNS run 
with the initial temperature too high is also not beneficial, since many worse solutions 
would be accepted, possibly causing the destruction of the current solution. To achieve a 
balance between these two situations, the final temperature value reached in the current 
VNS run was doubled before the beginning of the next VNS run.
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10.3 The Complete AVNS-SA Algorithm

To put it all together, Algorithm 10.2 shows the main Adaptive VNS-SA (AVNS-SA) 
heuristic, which will invoke the VNSSA procedure, described in Algorithm 10.3.

Algorithm 10.2: Adaptive VNS-SA (AVNS-SA) Algorithm.

1: Find an initial solution (I n i t S o l ) and the starting temperature (S t a r t T e m p ) using Algorithm

1 0 . 1 .

2: N h S i z e max <— 2 x y/n, where n  is the number of nodes 

3: Decrem en t  <— N h S i z e max/ m \  (We used m \  — 4}

4: M a x S ta g n a t i o n  <— N h S i z e max/ m 2 { We used m 2 =  4}
5: Initialize M a x  A t t e m p t s  to a small number (We used 5}

6: N o i m p r o v e m e n t  <— 0 

7: repeat
8: N e w S o l  =  V N S S A ( I n i t S o l ,  N h S i z e max, S ta r tTe m p ,  M ax S ta gna t ion )

9: if (N h S i z e max > Decrement)  then

10: N h S i z e max *— N h S i z e mnx — Decremen t

11: else
12: N h S i z e max <— D ecr em en t

13: if {New So l  is not better than I n i t S o l ) then
14: N o i m p r o v e m e n t  +  +

15: else
16: N o i m p r o v e m e n t  *— 0

17: In i t S o l  «— N e w S o l
18: S t a r t T e m p  <— S t a r t T e m p  x 2

19: until ( N o  Im p r o v e m e n t  reaches M a x  A t t empts )
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Algorithm 10.3: The VNSSA Algorithm.
1: Input: InitSol, N hSizemax, StartTemp, MaxStagnation
2: Output: a new, possibly improved, solution X
3: k <— 0 { Initialize the current neighbourhood size k }
4: Stagnation <— 0

5: NumTrials  *— L I M I T  { L I M I T  is the maximum allowed number of trials for the current 
neighbourhood size (we used 30 trials)}

6: X  +— InitSol 
7: repeat
8: k + -1- { Increment the current neighbourhood size}
9: Trials «— 0

10: while (Trials < NumTrials)  do
11: Shaking(X,XI,  k) {displacing a sequence of nodes in X  up to a maximum of k, with

or without inversion. The result is stored in X I }
12: Local Sear ch(X I , X11)  {local search is done on X I  using 2-Opt. The result is stored

in X I I }

13: if (Objective(XII) < Objective(X))  then

14: X  «- X I I
15: else
16: Accept X I I  using SA acceptance probability

17: StartTemp  <— StartTemp  x a  {Decrement current temperature (we used ct =

0.99)}
18: Trials +  +
19: end while
20: if {X did not change in the last iteration (i.e., for the current neighbourhood size k)) then

21: Stagnation -f +
22 : else
23: Stagnation = 0

24: until (Stagnation =  MaxStagnation)  or (k  =  NhSizemax)
25: Return X
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10.4 Experimental Results

To test the performance of our AVNS-SA algorithm, we used the same test cases described 
in Section 9.4.6. We ran the algorithm 5 times on each test case from 20-300 customers. 
On the other hand, only one run was performed on test cases of 400 and 500 customers, 
due to time limitation. In this experiment a number of computers with different specifica
tions were used to run the algorithm. For this reason, the run times we quote in this section 
will vary according to the platform. Nevertheless, our timings give useful estimates of the 
time requirements of the algorithm.

Table 10.1 shows the results achieved by the AVNS-SA algorithm for small size problems 
of 20-60 customers. As previously explained in Section 9.4.6, a problem instance named 
N20ql0A, for example, means the first instance (A) in the 20-customers category (N20), 
with vehicle capacity 10 (qlO). Table 10.1 shows the best result obtained in the 5 runs, 
the number of times the best result appeared in the 5 runs (Num Seen), and the average 
result of the 5 runs. Finally the table also shows the optimum result found by the exact 
algorithm in [74],

Table 10.1: AVNS-SA Results (20-60 Customers)

Name Best Num Seen Average Optim um

N20ql0A 4963 4 4974.6 4963
N20ql0B 4976 5 4976 4976

N20ql0C 6333 3 6390.4 6333
N20ql0D 6280 4 6341 6280

N 20ql0E 6415 5 6415 6415
N20ql0F 4805 3 4808.6 4805
N20q 10G 5119 5 5119 5119
N20ql0H 5594 5 5594 5594

N20q 101 5157 2 5195.2 5130
N20q 10J 4410 5 4410 4410
N30ql0A 6403 1 6455 6403
N30ql0B 6603 5 6603 6603
N30ql0C 6486 1 6576.2 6486
N30ql0D 6652 2 6746 6652
N30ql0E 6070 5 6070 6070
N30ql0F 5737 4 5817.4 5737
N30ql0G 9371 1 9388.2 9371
Continued on Next P ag e ...
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Table 10.1 . . .  Continued from Previous Page

Name Best Num Seen Average Optimum
N30ql0H 6431 1 6451.4 6431
N30ql0I 5821 3 5909 5821
N30ql0J 6271 3 6344.2 6187
N40ql0A 7173 2 7246.2 7173
N40ql0B 6557 1 6621.2 6557
N40ql0C r  7528 3 7548.2 7528
N40q 10D 8073 1 8206.2 8059
N40q10E 6928 4 6941.4 6928
N40ql0F 7506 1 7577.4 7506
N40ql0G 7669 2 7707.4 7624
N40ql0H 6791 2 6870.6 6791
N40ql0I 7215 1 7267.8 7215
N40ql0J 6512 4 6516.4 6512
N50ql0A 6987 3 7031.2 6987
N50ql0B 9488 1 9603.6 9488
N50ql0C 9110 1 9178.4 9110

N50ql0D 10464 1 10678 10260
N50ql0E 9492 1 9644 9492

N50ql0F 8684 2 8747.2 8684

N50ql0G 7126 1 7240.8 7126

N50ql0H 8885 1 8982.6 8885

N50ql0I 8404 1 8486.8 8329

N50ql0J 8456 3 8638.6 8456

N60ql0A 8602 2 8646.8 8602

N60ql0B 8514 2 8571.8 8514

N60ql0C 9483 1 9553.8 9453

N60ql0D 11061 1 11324.2 11059

N60ql0E 9487 1 9638 9487

N60ql0F 9063 1 9250 9063

N60ql0G 8998 2 9101.8 8912

N60ql0H 8424 1 8473.4 8424

N60ql0I 9524 1 9577.2 9394

N60ql0J 8844 1 8982.2 8750
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Table 10.1 shows that the algorithm was able to achieve the optimum results at least once 
in the 5 runs for 39 out of the 50 test cases. These are shown in boldface in the table. The 
maximum relative difference to the optimum was less than 2% among the 11 cases where 
the optimum was not found, which was for test case N50ql0D. The processing time was 
reasonable with an average ranging from 0.66 seconds for 20 customers problems to 47.79 

seconds for 60 customers problems.

Table 10.2 shows the results of the AVNS-SA algorithm on large size problems, from 100 
to 500 customers. The table shows the best result achieved and the average result of the 
5 runs. Note that this average is replaced by the best result for problems of size 400 and 
500, since the algorithm was run only once on these problems. Finally, the previous best 
known results are also shown in the last column. Only 6 out of the previous best known 
results are attributed to 173], which are the results for test cases (N300Q10C, N400Q10A, 
N500Q10A, N500Q10D, N500Q10E, N500Q10H). All remaining previous best results 
were found by the GA in [158]. The best result achieved by the AVNS-SA is shown in 
boldface if it was better than the previous best known result.

Table 10.2: AVNS-SA Results (100-500 customers)

Name Best Average Previous Best
NlOOqlOA 11741 12173.8 11828
NlOOqlOB 13066 13410.6 13114

NlOOqlOC 13893 14073.8 13977

NlOOqlOD 14328 14567.2 14253
NlOOqlOE 11430 11823.6 11411
NlOOqlOF 11813 11947 11644
NlOOqlOG 12025 12118 12038
NlOOqlOH 12821 12844 12818
NlOOqlOI 14025 14278.6 14032
NlOOqlOJ 13476 13642.8 13297
N200ql0A 17690 17849.2 17686
N200ql0B 17618 17887.8 17798
N200ql0C 16535 16626.6 16466
N200ql0D 21228 21594.2 21306
N200ql0E 19220 19485.2 19299
N200ql0F r  21627 21677.4 21910
N200ql0G 17361 17634 17712
N200ql0H 20953 21191.4 21276
Continued on Next P age ...
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Table 10.2 . . .  Continued from Previous Page

Name Best Average Previous Best
N200ql0I 18020 18328.2 18380
N200ql0J 19016 19240.4 18970
N300ql0A 22940 23163 23242
N300ql0B 22473 22920.4 22934
N300ql0C 21183 21454 21800
N300ql0D 25220 25500.6 25883
N300ql0E 26636 26934 27367
N300ql0F 24042 24290.6 24826
N300ql0G 23683 23945 23868
N300ql0H 21555 21824.6 21625
N300ql0I 23871 24110.2 24513
N300q 10J 22503 22688.8 22810
N400q10A 30657 30657 31486
N400q1OB 24248 24248 24262
N400ql0C 27853 27853 28741

N400ql0D 23750 23750 24508
N400q10E 24798 24798 25071

N400ql0F 26625 26625 26681

N400ql0G 23925 23925 23891

N400ql0H 25628 25628 25348

N400ql0I 28262 28262 28714

N400q 1OJ 24847 24847 26010

N500ql0A 27904 2790 28742

NSOOqlOB 26612 26612 26648

N500ql0C 30247 30247 30701

N500ql0D 29875 29875 30794

N500ql0E 29978 29978 30674

N500ql0F 28527 28527 28882

N500ql0G 26171 26171 27107

N500ql0H 35805 35805 36857

N500ql0I 30247 30247 30796

N500ql0J 30428 30428 31255
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Table 10.2 shows that the AVNS-SA algorithm was able to improve the previous best 
known results for 50% of the 100 test cases, 70% of the 200 test cases, 100% of the 300 
test cases, 80% of the 400 test cases, and finally 100% of the 500 test cases.

The overall average of the results in the 5 runs for all test cases of size 100 is 13087.94, 
which is only 1% worse than the average result of the GA in [1581, having a value of 
12954.16. Moreover, our overall average for the 200 test cases is 19151.44, while the 
overall average of the heuristic in [158] for the same test cases in 10 runs is 19339.48,
i.e., our results account for an improvement of approximately 1%. On the other hand, the 
overall average of our results for the 300 test cases was 23683.12, with an improvement of 
more than 2% compared the overall average of their results for the same test cases, which 

is 24224.28.

Also, our average for the results of the 10 test cases of size 400 was 26059.3, which 
accounts for an approximately 2% improvement over the average of the best results of 
[158], having the value 26490.4. In addition, our average result of the 10 test cases of size 
500 was 29579.4. This is an improvement of approximately 3% over the average of the 
best results of [ 158], having the value 30377.1 for the same instances. These results also 
indicate that our algorithm performs even better on larger size problems. The average 
processing time in this experiment ranged from approximately 542.22 seconds for 100 
customers instances to 151103.04 seconds for 500 customers instances.

To further test the robustness of the AVNS-SA algorithm, we performed an additional 
experiment by running the algorithm on 100-customers problems with a vehicle capacity 
of 20 and 40. The algorithm was run 10 times on each test case. The results of this 
experiment is shown in table 10.3. The table shows the best result achieved among the 
10 runs, the average result of the 10 runs, and the best known results published in [73]. 
Results of the algorithm that are the same or better than the best known results are shown 
in boldface.

The results in the table show that the algorithm was able to achieve better than the previous 
best known results in 4 out of 10 test cases, for vehicle capacity Q = 20. It was also able 
to achieve the same result as the best known result for 6 out of 10 cases, for vehicle 
capacity Q = 40. The later results might as well be the optimum results, since they have 
also appeared as best results in the heuristic of [75], and each one appeared more than 
once among our 10 runs experiment. The average processing time for Q — 20 instances 
was 155.76 seconds, and for Q = 40 instances was 146.17 seconds.
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Table 103: AVNS-SA Results (100 Customers with Q=20 and Q=40).

Name Best Average Best Known
N100q20A 8650 8768.6 8616
N100q20B 9533 9628.8 9536
N100q20C 9954 10093 9993
N100q20D 10015 10351 10064
N100q20E 8864 9710.35 8838
N100q20F 9004 9127.9 9029
N100q20G 8986 9138.7 8865
N100q20H 9561 9692.3 9495
N100q20I 10017 10411 10005
N100q20J 9769 9873.5 9742
N100q40A 7938 8005.8 7938
N100q40B 8124 8234.1 8124

N100q40C 8441 8508.9 8441

N100q40D 8336 8402.9 8264

N100q40E 7960 8037 7960
N100q40F 8074 8131.9 8074

N100q40G 8181 8237.9 8168

N100q40H 7992 8010.5 7992

N100q40I 8478 8551.3 8440

N100q40J 8261 8311.2 8255

Finally, to test the effect of the SA acceptance on the performance of the algorithm, we 
ran the heuristic twice on test case NlOOqlOA. In the first run the SA acceptance was 
used, and the result of each VNS iteration was recorded. The final result produced was 
11751. In the second run, we removed the SA acceptance, and used an HC criterion, 
where only solutions of lower cost are accepted in each VNS iteration. The final result 
produced was 12313. Figure 10.1 shows the performance of both variants. It is clear from 
the figure that the SA version explored a wider area of the search space, before finally 
reaching a better result than the one achieved by the HC variant, which converged to a 
suboptimal solution. The processing time, though, was in favour of the HC variant, with 

218.33 seconds compared to 552.11 seconds for the SA variant.
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Figure 10.1: SA against HC for NlOOqlOA.

Contrary to the exceptional results achieved by our AVNS-SA algorithm, its processing 
time in general was to a large extent disappointing. For example, the average processing 
time for 100 customers problems was 542.22 seconds, while the processing time reported 
by [158] was 21.12 seconds for the same problem category.

10.5 Summary and Future Work

In this part of the research, we investigated a VNS approach to the 1-PDP problem. The 
algorithm is distinguished by performing the VNS repeatedly, each time starting from the 
final solution obtained in the previous run. Also, the algorithm is adaptive, in the sense 
that the maximum neighbourhood size allowed in each VNS run is not fixed and depends 
on the current stage of the run. Early runs are allowed to perform wider jumps in the 
solution space from the current solution, using large neighbourhood sizes. Later runs, on 
the other hand, are only allowed smaller explorations of the search space, in the vicinity 
of the current solution, to maintain the solution quality.

The stopping criterion for each VNS run is also adaptive and depends on the improve
ment realized in the current solution. The VNS is terminated when a further increase the 
neighbourhood size seems unhelpful. During each VNS run, an SA acceptance criterion 
is used to allow the algorithm to escape local optima, and explore a wider area of the 
search space. In addition, we used a new neighbourhood move in the shaking part of
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the algorithm, which has not been tried before for the 1-PDP. This move, which is based 
on a displacement of a sequence of nodes with or without inversion, seems to work per
fectly well within the context of the VNS for this problem, as evident by the final results 
obtained for the overall heuristic.

Experimental results on a large number of problem instances indicate that our algorithm 
outperforms previous heuristics in most hard test cases, where the vehicle capacity is 
smallest. This is especially noticeable for large problem sizes. The algorithm was able 
to achieve the optimum results for all but few test cases in the small size problems, and 
was able to improve the previous best known results for 90% of the large test cases. 
The algorithm is also robust enough, since it performs equally well on a wide range of 
problem instances, e.g. instances with a different vehicle capacity, without the need for 
any parameter adjustment.

These distinguished results, though, come at the expense of computation time. Although 
we cannot provide an accurate analysis at this stage, because of the use of different pro
cessors to run the experiments, we recognize that the running time of the algorithm is 
rather too long. Of course, this is more noticeable for very large problem sizes, i.e., more 
than 200 customers.

In the future, we will continue investigating possible techniques to reduce the run time. 
Some attempts include reducing the number of VNS runs, and changing the stopping cri
teria for each individual run. For example, our computational experimentation indicated 
that some problem instances needed fewer than 5 consecutive attempts (without impro
vement) to reach the best results. However, for other instances, reducing the maximum 
number of attempts to less than 5 may cause the algorithm to prematurely stop and pro
duce lower quality result. More investigation of the best termination criterion is therefore 
needed to reduce the overall processing time. Other possible improvement attempts, with 
respect to the run time, should be oriented towards the local search procedure, since it 
is the most time consuming part of the algorithm. For example, we can try to reduce 
the number of calls to this algorithm, or make it optimize only part of the solution rather 
than whole solution. This could possibly be done by changing the exhaustive search com
ponent of the 2-Opt algorithm to some random or selective search that does not process 
all nodes in the solution. A better analysis of the neighbourhood structure could also be 
beneficial in enhancing the execution time, for example by eliminating solutions that may 
not seem promising from further processing.

Having completed our investigation of several heuristics and meta-heuristics on selected 
pickup and delivery problems, we present in the next chapter a brief discussion of how 
this research relates to commercial transportation software and industrial applications.
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Chapter 11

The Research and Real-Life 
Applications

Efficient transportation has become vital for today’s dynamic society. In the European 
Union, the transportation sector constitutes more than 10% of Gross Domestic Product 
(GDP) and employs more than 10 million people [1]. Transportation volume continues to 
increase rapidly every day, as a result of economic growth and globalization, compared to 
a limited expansion in roads and networks capacities.

Transportation demand is not always geographically balanced. In addition, the lack of 
coordination between manufacturers, shippers and carriers in supply chains can lead to 
inefficient usage of natural and human resources. In many cases, transportation plan
ning is done manually. However, the advent of today’s technology- including high speed 
computers, digital cellular phones, Geographic Information Systems (GIS), Geographic 
Positioning Systems (GPS), navigation and tracking technologies, wireless data commu
nication, digital mapping and web-based services- has increased the demand for more 
efficient commercial software for route planning. If applied on a large scale, commercial 
software can lead to enormous savings, both economically and environmentally. Vendors 
of software tools claim that the reduction in cost may range from 5% - 30% [76]. Given 
the huge volume of today’s transportation, such cost reduction is in fact very significant. 
Besides cost reduction, efficient routing can greatly reduce the environmental impact of 
transportation. For example, in a recent survey of UK brewery, Paragon Software Sys
tems, Inc.1 identified savings of more than 2.5 million miles- corresponding to 3,700 tons 
of CO 2 - a year, as a result of more efficient routing [68].

To meet this demand, research in vehicle routing and scheduling has grown substantially 
in the last few decades [48]. As previously discussed in Chapter 3, a huge number of 
problem variants, different problem constraints, and operating scenarios have been inves
tigated. In fact, research in this field is central to the development of efficient decision
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support tools that can be adopted in the transportation industry. Despite this, research in 
vehicle routing is often accused of being too idealistic. The majority of published research 
tackles simplified problems, based on, for example, Euclidean distances, homogeneous 
fleets, hard constraints, fixed service tim es... etc. Unfortunately, most of these assump
tions do not hold in reality. Industrial aspects of vehicle routing have recently started to 
gain the attention of researchers, and are increasingly being incorporated into models and 
solution methods that address these problems. Thus, the current trend is towards ‘holistic’ 
approaches that are capable of solving richer and more realistic VRP models.

It is important from a realistic perspective to understand the relationship between theoreti
cal research and commercial applicability in every day business requirements. To this end, 
we discuss in this chapter some industrial aspects that may be considered when addressing 
the VRP and its related variants in Section 11.1. Section 11.2 describes the basic compo
nents of commercial software that are adopted in the transportation industry, and explains 
how a theoretical research, like ours, may be integrated within its framework. Examples 
of commercial software products and applications in the transportation sector are provided 
in Section 11.3. Section 11.4 summarizes some future trends in vehicle routing research. 
Finally, Section 11.5 concludes this discussion with a summary and some brief remarks. 
Most of the information presented in this chapter is based on the research by SINTEF 
research organization in Norway2, published in [72] and [76], unless otherwise indicated.

11.1 Industrial Aspects of Vehicle Routing

As mentioned above, research in vehicle routing is now shifting towards solving non
standard and rich VRP models that will facilitate decision making in real-life situations. 
The advancement in computational power in the last few decades has encouraged resear
chers to consider industrial aspects of vehicle routing, in order to meet the demands of 
transportation service providers and fleet management companies. Rich VRP models al
low general and more realistic features to be incorporated, as opposed to conventional 
OR models which are simplistic in nature. Some industrial aspects of vehicle routing are 
summarized below:

•  Heterogeneous Fleet: most of the VRP research makes the assumption that the 
operating fleet is homogeneous, with identical characteristics and operating costs. 
In reality, though, this is often not the case, since companies usually benefit from

2h t t p : / / w w w . s i n t e f . n o / Home/
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versatility in their fleet. A rich VRP model should allow non-homogeneous ve
hicles, such that not only the optimum number of vehicles is determined, but also 
the optimum number of each vehicle type and the optimum cost for vehicle acqui
sition/depreciation.

•  Drivers* Working Time: in real life applications, drivers’ working hours are go
verned by certain legislation rules. Hence, a rich VRP model should create working 
plans that conform to these regulations, such that the allocation and exchange of 
drivers is also taken into consideration while determining the optimum routing de
cision.

•  Depots and Service Locations: basic VRP models usually assume that there is 
only one central depot, such that each vehicle’s journey should start and end at that 
depot. Nevertheless, this assumption does not hold in many practical situations, 
since there might be multiple depots, or arbitrary starts and ends for vehicles. In 
addition, customer locations are sometimes not fixed, with alternative service loca
tions being permitted in the routing plan.

•  Order T^pes: in the basic VRP variants, order types are either pickups or delive
ries. In addition, split deliveries are usually not allowed, and each customer can 
only be visited once. In real life applications, a customer order may be both a pi
ckup and a delivery. Also, some orders may not require the transportation of goods, 
but only a certain service type (e.g. maintenance). Allowing such variants adds to 
the complexity of the problem but makes it more realistic from a business point of 
view.

• Distances and Times: the assumption that all distances under consideration are 
Euclidean distances is not adequate in real-life scenarios. Network characteristics, 
traffic, vehicle speed, and travel costs should also be taken into consideration. Mo
reover, service times for clients are not fixed in practical applications. Variable 
service times, depending on order types and volumes, should be allowed in rich 

VRP models.

•  Time Windows and Capacity Constraints: most VRP models deal with the time 
window constraint as a hard constraint, with no violation permitted in the under
lying routing plan. Time windows in reality are not always that rigid. They are 
often defined by preferred visiting times, with some cost penalty for visiting out
side the specified period. Another extension to the basic model is multiple time 
windows, where different alternative visiting periods are given. Also, some appli
cations require certain vehicle capacity and loading restrictions. For example, a
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specific loading sequence may be enforced in order to facilitate un-loading, or to 

protect fragile items.

• Uncertainty and Dynamic Situations: dynamic vehicle routing refers to the situa
tion where routing decisions are affected by input data arriving in real time. Infor
mation about orders, travel times, service times, vehicle breakdown... etc, arriving 
while the routing plan is being executed should be taken into consideration in most 
real-life applications, and necessitates an immediate response time. Uncertainty 
and stochastic variables, for example while planning a certain emergency situation, 
also add to the complexity of rich VRP models.

11.2 Commercial Transportation Software

A commercial software package for decision support in the transportation industry usually 
integrates an underlying algorithm with an efficient user friendly interface for optimum 
usage. A survey of commercial vehicle routing software [67] identifies the basic software 
capabilities as:

1. Geocoding addresses using a digital map database, i.e., determining the coordinates 
of a location using its address or postal code;

2. Determining the best driving route between pairs of geocoded pints;

3. Solving the VRP, i.e., assigning stops to vehicles and routing vehicles between 
stops, and

4. Displaying the results in both graphical and tabular forms, such that the dispatcher 
can communicate the solution to the drivers, and edit these solutions, with a ‘drag- 
and-drop’ feature if necessary.

Step 3 in the above list is where theoretical research, such that presented in this thesis, 
takes its part. It is in fact the ‘core’ or the ‘engine’ of the software tool, sometimes 
referred to as aVRP solver. Hasle and Kloster in [72] define a VRP solver as:

A software component with functionality for modeling instances of targeted variants 

of the VRP and finding feasible, optimized solutions to a given instance. The effect 
of a given routing tool is highly dependent on its VRP solver.
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The efficiency of a VRP solver can be generally attributed to the richness of the VRP 
model (problem) it is trying to solve, in addition to its algorithmic capabilities measured 
in terms of the quality of the objective and the processing time needed. To the best of our 
knowledge, most VRP solvers of today’s commercial software do not adequately handle 
pickup and delivery problems. Improvements in this area are obviously in demand.

11.3 Examples of Commercial Vehicle Routing Tools

Some examples of commercial vehicle routing software are: ILOG Dispatcher, Paragon 
Routing and Scheduling System, Direct Route, DISC, and JOpt.SDK. Notable installa
tions of these and other commercial software include companies like: Sainsbury’s, Argos, 
Tesco, Royal Mail, the Home Depot, Samsung, Kraft, Dunkin Donuts, Coca-Cola, BP, 
TNT, Fujitsu, and many others [68].

One example of a rich generic VRP solver is SPIDER [72], which was developed by 
SINTEF Applied Mathematics research institution in Norway3. SPIDER VRP solver is 
capable of solving a number of vehicle routing problems and its variants, such as the 
VRPTW, the PDPTW and the multiple-depot variants of these problems. In addition, 
it takes into consideration many industrial aspects, such as the ones described above. 
For example, it allows a heterogeneous fleet, multiple time windows, alternative service 
locations, variable service times, and travel times that vary according to road network 
topology and information available from Geographic Information Systems (GIS).

The algorithmic approach in SPIDER is a unified approach to all problem types and ins
tances. This technique has advantages in terms of simplifying the code and its mainte
nance, but may sometimes suffer in terms of computation time, since some operations 
will still be performed for problem instances that may not need them.

The SPIDER VRP solver is basically a meta-heuristic approach that integrates several 
features from successful academic research in the VRP field. The algorithm consists of 
three main components: Construction o f  Initial Solutions, Tour Depletion and Iterative 

Improvement. These are briefly explained below:

• Construction of Initial Solutions: the construction phase is based on extensions 
of classical construction heuristics like the Clark and Wright savings heuristic [26], 
Solomon’s II insertion [141], and the regret-based insertion [121]. In addition, an
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instance analysis is performed in order to determine if the instance has a heteroge
neous fleet, in which case a special construction heuristic called SPIDER construc
tor is used to build the initial solution.

• Tour Depletion: this phase is intended for reducing the number of routes in the 
initial solution, but is also used as a local search operator during the iterative impro
vement phase. Each route is depleted in turn, and an attempt is made to insert all 
its requests into other routes. If the attempt was successful, the new solution is ac
cepted. The routes that have been changed by this operation may also be optimized 
using 2-Opt or 3-Opt improvement heuristics of [103].

• Iterative Im provem ent: the iterative improvement phase is based on Variable 
Neighbourhood Descend (VND) [70], using a number of well-known operators wi
thin each route and in-between routes. For example, 2-Opt, 3-Opt, Or-Opt, EX
CHANGE, and CROSS (see Section 3.4 for more details about some of these ope
rators). However, these heuristics have been extended to accommodate the SPIDER 
rich VRP model which allows heterogeneous fleets and multiple time windows. In 
addition, several neighbourhood filters have been applied to accelerate the opti
mization, for example by analyzing the current solution and exploring promising 
moves only. When the VND reaches a local minimum, a diversification mechanism 
is applied using Large Neighbourhood Search (LNS) [131]. The overall process is 
a hybrid of VND and Iterated Local Search (ILS).

To evaluate its performance, SPIDER was tested on published benchmark data available 
from the literature and compared favourably with state-of-the-art solution methods (see
[72] for some experimental results of SPIDER on published benchmark instances of the 
PDPTW).

11.4 Future Trends

Scientific research in transportation optimization is an indispensable part of any commer
cial software tool, and there is, and will continue to be, a great demand for innovations 
in research methodologies. Researchers in this field, however, should also be aware of 
new demands in the industrial sector and try to develop richer models in their research. 
Issues like heterogeneous fleets, multiple tours, split deliveries, variable service times, 
soft time windows, special vehicle equipment or driver certificates, dynamic route plan
ning, and many other real-life requirements and constraints should motivate researchers 
to invest more effort in developing efficient solution techniques that comply with today’s
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ever changing domain of industrial vehicle routing. The complexity of these models, ne
vertheless, means that solving the problem to optimality is not an option in most practical 
situations. In fact, heuristics, meta-heuristics and hybrid approaches dominate scientific 
research in this field.

There is a trend in today’s research towards optimization tools that integrate the whole 
supply chain rather than individual components. In addition, current concerns over global 
warming has increased the demand towards rewarding lower carbon emissions and green 
logistics. More robust planning in dynamic and stochastic situations is also gaining more 
attention every day. Decision support tools that enable the service provider to choose bet
ween more than one good solution is also gaining more popularity in the current research 
environment.

Another important factor that needs urgent attention is the development of better bench
mark test cases. Most of the benchmark cases available to the research community for 
the VRP and its related variants are created randomly. In addition, they are often overly 
simplified and do not reflect real-world cases. Using such test cases increases the risk 
of over fitting, i.e., a great effort may be invested in developing solution methods that 
produce good results on published benchmark instances only. Applying these methods 
on a larger scale, though, may reveal their shortcomings. The research in [76] identifies 
several features that test cases for the vehicle routing research should have. These are: 1) 
they should be based on real-world data, 2) they should be as rich as possible, i.e., contain 
sufficient details, 3) they should have a common format (e.g. XML), 4) solutions (and not 
just their objective functions) should be published, and 5) test cases and their solutions 
should be published in the Web.

11.5 Summary and Conclusions

This chapter reviewed some industrial aspects of vehicle routing that are currently un
der consideration by the research community to meet the increase in demand for more 
efficient transportation. The current trend is towards rich VRP models that can be used 
in commercial decision support tools, in order to achieve better customer service, cost 
reduction, and efficient resource management in transportation systems.

Yet, although scientific research is a major and important step towards a complete real- 
life applicable solution to routing and scheduling problems, there is often a considerable 
distance between theoretical research and practical applicability. Integrating theoretical 
scientific research within a commercially applicable tool is usually done by consulting
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companies, routing software vendors, contract research organizations, and large research 
laboratories or institutions. In addition, it often requires the cooperation of a number of 
experts in different fields and possibly several years of development effort. These institu
tions, however, do not work in isolation from academic research. They monitor research 
carried out by the scientific community and incorporate state-of-the-art techniques in their 
products. Assessing the quality of the different scientific approaches is mostly done by 
comparing their performance against published test cases available for researchers in the 
academic field. Hence, the focus of researchers in Computer Science and Operations Re
search should be on developing competitive and robust solution methodologies that can 
be later integrated within a larger framework for applicability in real-life situations.

We have hereby completed a thorough explanation and analysis of the research carried 
out in this thesis, together with some necessary background information and a literature 
survey of state-of-the-art techniques in this field. The next chapter will conclude this 
thesis with a summary of the whole research and its major contributions, in addition to 
some future research directions.
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Chapter 12

Conclusions and Future Directions

In this research we investigated some heuristic and meta-heuristic algorithms for solving 
selected pickup and delivery problems, namely the PDPTW and the 1-PDP. Innovations 
in solution techniques that handle these and similar vehicle routing problems are in conti
nuous demand, since they can be used in decision support tools and may help reduce 
transport costs and optimize resource consumption.

Having explained in detail our research and its findings, in addition to reviewing impor
tant related work in this field, we present in this chapter a summary of the research and 
its main achievements in Section 12.1. Section 12.2 emphasizes parts of this research 
where further work may be carried out and summarizes some future research suggestions. 
Section 12.3 afterwards concludes this chapter and the whole thesis with some brief final 
remarks.

12.1 Research Summary and Contribution

Advances in computational power in the last few decades has contributed to the emer
gence of a trend among researchers towards powerful algorithms for solving optimization 
problems. A common phenomenon that existed as a result of this trend, though, is that 
solution algorithms have tended to became increasingly complex, often with many sophis
ticated and intertwined components. As a consequence, recently published results can be 
difficult to replicate, and some algorithms are indeed challenging to implement. Additio
nally, it may be difficult to assess the contribution of the different algorithmic components 
to the overall performance. In our view, it is good practice to provide a thorough analysis 
of all components of an optimization algorithm, to ensure that all are making a valuable 
contribution. Those that are not, should be removed and the algorithm simplified.

Another weakness that we perceive in much of the VRP literature is an overemphasis on 
beating best published results for benchmark data, at the expense of algorithm robustness. 
If solution algorithms are finely tuned for special benchmark instances, they may not work
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at all well on unseen data or real world instances. Robustness is a key requirement, if an 
approach is to be eventually useful in practice.

The main philosophy in our research is the development of simple heuristic or meta
heuristic frameworks that can be easily understood and implemented. We concentrate 
here on some very challenging variants of vehicle routing problems involving pickup and 
delivery. The difficulty in dealing with pickup and delivery problems stems mainly from 
the existence of several problem constraints that must be dealt with during the construction 
and improvement phases of a solution process. Keeping this in mind, we directed our 
attention towards establishing effective ways to deal adequately with problem constraints. 
Two main aspects have been focused on to achieve this goal: the solution representation 
and the neighbourhood moves.

Our solution representation for the PDPTW tried to overcome the precedence constraint, 
between the pickup and the delivery, by assigning the same code to both locations, and 
always considering the first occurrence as the pickup. This simple technique removed 
the burden of having to check and correct the precedence infeasibility at each step of the 
solution process. This representation was used for both the single and multiple vehicle 
cases of the problem. In addition to handling the precedence issue, our representation 
also overcomes the coupling constraint that must be enforced when multiple vehicles are 
used, since both the pickup and its delivery should be served by the same vehicle. Hence, 
this simple approach further reduced the number of hard constraints that the solution 
algorithm has to deal with during the search.

In addition, neighbourhood moves played a central role in our research. For the PDPTW, 
a simple neighbourhood move that is guided by the time window proved successful on 
several occasions. It was used as a mutation operator and as a solution improvement 
tool within the different heuristic and meta-heuristics techniques applied. In addition, a 
neighbourhood move used for the first time within the VNS approach to the 1-PDP, na
mely the displacement and inversion move, has demonstrated its effectiveness in helping 
the search escape local optima. We also introduced some adaptive moves. For example, 
different bounds within the time window interval were used to direct the neighbourhood 
move at different stages during the search, when solving the PDPTW. Similarly, the in
crease in neighbourhood size within the VNS approach for the 1-PDP was controlled by 
the current search progress, such that a larger neighbourhood size is only attempted when 
such increase seems fruitful to the search process.

Our research methodology has made it possible for us to accomplish a number of achie
vements that we believe are significant to scientific research in this area. The main achie
vements of this study are:
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1. We used our solution representation and neighbourhood moves to develop new 
simple routing heuristics for the SV-PDPTW. The results obtained in this part of 
the research were impressive, both in terms of the solution quality and processing 
time. One particular approach appears to have the best potential for the SV-PDPTW, 
the 3-stage SA routing heuristic. This approach was able to obtain results better 
than those previously published in all test cases and also performed significantly 
better than all other algorithms implemented in this part of our research. The ex
perimental results and comparison with other heuristics indicate that the success of 
this approach was mostly due to the guided neighbourhood moves that were adop
ted to overcome the difficult time window constraint. Another heuristic which also 
showed potential, especially in terms of processing time, is the Hill Climbing (HC) 
routing heuristic. The HC algorithm also employed the same time window guided 
neighbourhood moves during the search. The routing heuristics developed for the 
SV-PDPTW can be easily integrated within real-world optimization tools that deal 
with this problem. Two publications were made out of the results obtained, one late 
breaking conference paper [79] and another journal paper [84].

2. Since there are no standard benchmark instances for the SV-PDPTW, we were able 
in this research to create test cases that can be used as benchmark data and used by 
researchers for testing their algorithms.

3. Based on the simple routing heuristics developed for the SV-PDPTW, we designed 
and compared several solution construction methods for the MV-PDPTW. These 
construction methods, especially the sequential construction approach (SEQ), can 
be used in any heuristic or meta-heuristic that deals with the PDPTW and in the re
lated dial-a-ride problem as well. The construction heuristics are distinguished by 
their simplicity and ease in coding and application, compared to classical construc
tion methods from the literature. This part of the research was published in [81].

4. We developed new problem-specific genetic operators and neighbourhood moves 
for the MV-PDPTW. These operators use techniques developed in the first parts 
of our research, i.e., for the SV-PDPTW and for the solution construction of the 
MV-PDPTW. Our operators are characterized by the ability to create feasible solu
tions throughout the search. The operators developed here can be easily adopted by 
other GA approaches for different vehicle routing problems. For example, a cros
sover that ranks routes to guide inheritance is applicable to any routing problem. 
These operators can also be adapted and employed within different heuristics and 
meta-heuristics for solving the problem, as done in this research by using similar 
operators in both the GA and the SA for solving the MV-PDPTW. The research
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dealing with the GA approach in this part of the thesis was published in [80].

5. We developed an interesting adaptive hybrid VNS-SA approach for the 1-PDP. The 
algorithm is distinguished by adopting, for the first time, the traditional displace
ment and inversion move from previous vehicle routing research as a ‘shaking’ pro
cedure within the VNS. In addition, adaptation is introduced in a novel way within 
the VNS meta-heuristic. Traditional VNS approaches usually increase the neigh
bourhood size up to a certain pre-defined limit. In our approach, we adapted this 
requirement, such that a further increase in the neighbourhood size is only applied 
when it seems beneficial from a search perspective. The algorithm introduced here 
proved its potential by beating previously best published results for 90% of the large 
problem instances solved. Two conference papers covering this part of the research 
have now been accepted for publication in GECCO2010 conference (as a late brea
king abstract) [82], and the PPSN2010 conference [85]. In addition, a third journal 
paper has been submitted to the Journal o f Heuristics and is currently under review

[83].

The above achievements indicate that the techniques we developed to guide our heuristic 
and meta-heuristic approaches were successful to a large extent in accomplishing the ob
jectives of the research. Nevertheless, we can also identify a few parts of the research that 
did not meet the anticipated standards. Three main areas have shown some shortcomings 
and need further investigation. These are:

1. The improvement heuristics of the MV-PDPTW (explained in Chapter 8), since the 
results obtained by both the GA and the SA algorithms were in general of lesser 
quality than the best known results.

2. The evolutionary perturbation heuristic of the 1-PDP (explained in Chapter 9). Des
pite its success on other VRPs, this technique did not obtain high quality solutions 
for the 1-PDP. However, the approach did show promise in removing infeasibility.

3. The processing time needed by the VNS approach to the 1 -PDP (explained in Chap
ter 10), since the final solution obtained, albeit having a very good quality, needed 
quite a long processing time.

The possible reasons behind these shortcomings have been addressed in their respective 
chapters. Nevertheless, we will further elaborate on some future research directions that 
may be pursued to remedy these shortcomings. To this end, Section 12.2 includes a brief 
critical analysis of some parts of the current research and suggestions of additional work 
that may be performed to complement the research carried out in this thesis.
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12.2 Critical Analysis and Future Work

Some aspects of this thesis where further work can be done are summarized below.

12.2.1 The SV-PDPTW

To complement the research done so far for this problem, more problem instances of 
different sizes and different characteristics need to be created. For example, similar to 
the benchmark instances of the VRPTW and the MV-PDPTW, a certain distribution of 
nodes may be enforced, such as having some instances with clustered or partially clustered 
locations. Also, problem instances may differ according to the width of the time window, 
by having short or long schedule horizons.

In addition, a more thorough investigation of the approaches developed in this part of the 
research may be undertaken by testing the algorithms on a larger number of test cases and 
performing an in-depth statistical analysis of the results.

12.2.2 Solution Construction for the MV-PDPTW

Further investigation of the solution construction heuristics developed in this part of the 
research may be carried out by implementing one or more ‘traditional’ construction me
thods, such as Solomon’s II insertion heuristic [141], after adapting it for the PDPTW. 
This should then be followed by comparing the performance of the traditional heuristic(s) 
with the new construction algorithms developed in this research, on benchmark instances.

12.2.3 Solution Improvement for the MV-PDPTW

Our selection of GAs as a candidate solution improvement method for the MV-PDPTW 
was based on the general attractive features that GAs possess, such as simplicity and ro
bustness. Moreover, we were also encouraged by the success of GAs in solving closely 
related vehicle routing problems, like the VRPTW. As previously discussed during the 
course of this thesis, though, GAs usually suffer when dealing the MV-PDPTW. This is 
mostly due to the number of underlying constraints that must be dealt with when desi
gning problem-specific genetic operators. Another important factor is the difficulty in 
handling the grouping and the routing aspects of the problem simultaneously, in the solu
tion encoding as well as the genetic operators. Similar difficulties also seem to apply to
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our SA approach, which was attempted for solving this problem, since it employs similar 
operators to those adopted by our GA approach.

Nevertheless, we may still be able to improve the results obtained by both the GA and 
SA in the improvement phase of the MV-PDPTW by augmenting the solution approach 
with some local search method. For example, a 2-Opt or a 3-Opt heuristic may be used to 
improve individual routes at various stages during the search.

In retrospect, given the opportunity to repeat the project, a new meta-heuristic technique 
would have probably been chosen for the improvement phase of the MV-PDPTW. For 
example, VNS would be one option that would definitely be considered. In fact, it was 
notable that a significant number of papers presented on VRPs at the recent MIC20091 
conference, used VNS, most of them achieving impressive results. This was indeed one 
of the reasons that encouraged us to apply VNS to the 1-PDP, after the ‘disappointing’ 
results of the EPS heuristic. Applying VNS to the PDPTW would also seem an attrac
tive prospect, since many neighbourhood moves that have been previously used for the 
VRPTW and the PDPTW can easily be incorporated into the VNS framework. In addi
tion, to the best of our knowledge, VNS has not been previously tried on the PDPTW. 
It would be interesting to test the routing and construction heuristics developed in this 
research within a VNS meta-heuristic for solving the MV-PDPTW.

12.2.4 The Evolutionary Perturbation Heuristic for the 1-PDP

As previously mentioned in Chapter 9, the EPS heuristic was not very successful in achie
ving the anticipated results. Both the quality of the results obtained and the processing 
time were inferior to previous heuristics in this field. The main suggestion in terms of the 
solution quality would be to modify the construction algorithm or experiment with a new 
construction technique. As previously discussed in Section 9.5, one possibility for impro
vement is to modify the construction algorithm such that rather than halting the insertion 
process when infeasibility is encountered, the algorithm would continue to insert nodes 
despite infeasibility. If this is done, correcting infeasibility would probably be easier for 
the perturbation heuristic, and the overall quality of generated solutions would improve. 
Moreover, this technique has demonstrated its potential within the AVNS-SA approach to 
the problem as explained in Chapter 10.

In terms of processing time, a possible option for improvement is to optimize the per
turbed coordinates using a faster heuristic or meta-heuristic. For example, a simulated

1VIII Metaheuristic International conference, Hamburg, Germany - July 13-16, 2009
h t t p ://w w w .smartframe.d e / m i c 0 9 / H o m e .html

http://www.smartframe.de/mic09/Home.html
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annealing or a hill climbing algorithm may be used instead of a GA to improve the per
turbed problem coordinates. Together, with an appropriate and fast construction heuristic 
the overall scheme may be considerably enhanced.

12.2.5 The AVNS-SA Approach to the 1-PDP

The AVNS-SA approach was in fact very successful in dealing with the 1-PDP, especially 
for large problem sizes. As previously mentioned, the algorithm was able to obtain new 
best results for 90% of the large problem instances. The only drawback of the algorithm 
seems to be the long processing time. As previously discussed in Chapter 10, an improve
ment in this area can be achieved if we direct our attention to the local search component 
of the algorithm. The 2-Opt heuristic used in the local search phase is the most time 
consuming part of the algorithm. This heuristic adopts a best improvement strategy and 
is invoked to optimize every new generated solution. Several suggestions may help in this 
respect. One option is to reduce the number of calls to the 2-Opt algorithm based on some 
solution quality. For example, the 2-Opt procedure can be restricted only to solutions that 
look promising from a search perspective (depending on the objective function value or 
the number of constraint violations, for instance). In addition, the 2-Opt algorithm may 
be applied to selected edges of the solution and not to the whole solution. Some faster 
implementations of the 2-Opt algorithm may also be tried to reduce the time requirement 
of this component (e.g. [13]).

Finally, the stopping condition of the overall AVNS-SA algorithm also needs further in
vestigation. To improve the processing time of the algorithm, it is necessary to find an 
appropriate criterion to stop repeating the AVNS-SA procedure, without sacrificing the 
quality of the final solution returned. However, obtaining a balance between solution 
quality and processing time may not be very straightforward for such hard problem.

12.3 Final Remarks

To sum up, we believe that the work done in this thesis contributes positively to scien
tific research on vehicle routing and scheduling. This study provided simple ideas on 
constraint handling mechanisms that can be used in designing effective and robust heuris
tic and meta-heuristic algorithms. The techniques developed in this research can be easily 
integrated within a larger framework and used in optimization tools to help improve trans

portation and logistic planing.
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In this final chapter of the thesis we highlighted the most significant findings and the most 
promising areas of our research. We also tried to identify some research areas where 
further investigation and some elaboration are still needed. We aspire to carry out in 
the near future some of the outlined suggestions to complement the work done in this 
thesis and advance the research to its uttermost standards. Additional publications of the 
findings of this thesis are also underway.
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