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Summary

The study describes the morphology of eyes in children and adults with 
Down’s syndrome (DS) including ocular biometric parameters (axial length, 
cornea, anterior chamber, lens and pupil size) and retinal features. It is 
important to understand any links between ocular structures and visual 
function.

Children with DS and adults with DS have significantly thinner corneas both 
in the centre and periphery, smaller corneal radius, higher corneal power, 
higher corneal aberration and lower lens power compared to their respective 
control children and adults. Further, there was a significant difference in the 
correlation of axial length and refraction between DS children (n=46) and 
controls (n=50). Therefore, refraction in people with DS appeared to be 
determined by those abnormal refractive components.

A larger disc and rim were found in children with DS compared to controls. 
An increased number of vessels were found in periphery of the retina in 
children with DS. However, there was a similar distribution of retinal vessels 
in DS children and controls. The presence of the peripapillary atrophy in 
children with DS (67%) was much higher than that of controls (28%). No 
significant correlation was found between the total number of vessels and 
visual function such as refraction, visual acuity and accommodation among 
children with DS.

Keratoconus was present in 8 adults with DS, however, no keratoconus was 
found in children with DS but abnormal corneal topography was more 
common in children with DS compared to that in controls. No significant 
difference was found in measured intraocular pressure between DS adults 
and the controls.
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Chapter 1: Introduction

1.1 The structure of the thesis

This thesis describes a study of the morphology of eyes in children and adults with 

Down’s syndrome (DS) since it is recognised that visual and refractive defects are 

common in people with DS. It is important to understand the contribution that 

ocular structures make to such defects. Two aspects are of particular interest, 

keratoconus (common in people with DS) and glaucoma (of which little is known in 

people with DS).

The first part of the thesis includes this introductory chapter 1, which is a review of 

the general health and ocular features in people with DS. It is also specifically 

related to keratoconus and glaucoma. The later section of this chapter outlines the 

aims of the project and its procedures.

The second part of the thesis includes chapter 2, 3, 4 and 5. Chapter 2 describes 

the options of the equipment and evaluation procedures. Chapter 3 presents the 

ocular biometry measurement and the analysis procedures including axial length, 

properties of the cornea, lens, anterior chamber and pupil size. Additionally, 

corneal topography was assessed to detect keratoconus. Chapter 4 concerns the 

quantitative features of the optic disc and retinal vessels. Chapter 5 considers 

detecting glaucoma in people with DS. Again, in the final part of each chapter, the 

findings and its implications are presented and discussed.

Finally, Chapter 6 summarizes the main findings and discusses their implications. 

The possible limitations of the whole study are considered and future research is 

suggested.
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Chapter 1: Introduction

1.2 General features in people with DS

1.2.1 Epidemiology

Down’s syndrome (DS) is the most frequent cause of severe learning disability and 

also the most common chromosomal anomaly in live births. The incidence of DS is 

approximately 10 per 10,000 live births, which is universal and appears to occur 

with equal frequency across the world (Bishop et al. 1997; Cornel et al. 1993; Dolk 

et al. 2005; Forrester and Merz 2002; Johnson et al. 1996; Metneki and Czeizel 

2005; Olsen et al. 1996; Siffel et al. 2004). In the UK, around 1000 babies are born 

with DS every year (Nicholson and Alberman 1992).

Maternal serum screening (multiple-marker screening) are most widely used to 

screen for DS in younger women (Cuckle et al. 1987; DiMaio et al. 1987; lliyasu et 

al. 2002; Wald et al. 1992; Wald et al. 1999). The diagnosis of DS is typically 

made at birth by characteristic physical features or within the first 2 years of life by 

cytogenetic analysis (Kenue et al. 1995; Mutton et al. 1991). Despite increasing 

termination of DS pregnancies (resulting from the greater availability of antenatal 

screening and diagnosis), there has been no significant reduction in live birth 

prevalence (Bell et al. 2003; Stratford and Steele 1985). It may be due to the 

improved survival rate in all infants with DS.

1.2.2 Genetics
After the pioneering description of DS by a physician, JL Down (Down 1866), 

almost one century was needed to find the aetiology of the syndrome. An extra 

chromosome 21 in people with DS was first discovered in France (Lejeune et al. 

1959). The partial 21 trisomy was found later (Poissonnier et al. 1976). Three 

types of DS were discovered:

i. Trisomy 21 is present in 95 percent of persons with DS, which means the 

presence of a whole extra chromosome 21 in each cell.

ii. In 3-4 precent of cases, DS is caused by a translocation, which means that 

only a part of a supernumeral chromosome 21 has attached itself to another 

chromosome (most often 14, 21 or 22). Thus there exists an extra part of 

chromosome 21 in each cell. Most chromosome-21 translocations are 

sporadic.

2



Chapter 1: Introduction

iii. Mosaicism, occurs in 2 percent of cases, which means an individual with 

DS having cells of two types: abnormal cells in the body which contain three 

chromosomes 21; normal cells which have the normal number of two 

chromosomes 21.

The chromosomes are holders of the genes that direct the production of a wide 

range of materials which the body needs. The chromosome 21 has been fully 

sequenced (Hattori et al. 2000; Sakaki et al. 2000), and has about 1% of a 

human’s genetic material on it (Deloukas et al. 1998). As more is learned about 

the genes contained on chromosome 21, it is likely that the origins of additional 

clinical manifestations of DS will be better understood. For instance, a gene for 

amyloid (an abnormal protein found in the brain of individuals with Alzheimer’s 

disease), is located on chromosome 21, which may explain why people with DS 

are at an increased risk for developing Alzheimer’s disease and ageing early 

(Frangione et al. 1996).

It has been suggested that DS is a gene dosage disease (Amstad and Cerutti 

1990; Epstein 1988; Epstein et al. 1982; Sinha 2005). In other words, due to 

trisomy, there is an over expression or overproduction of certain proteins, encoded 

by normal genes on the extra chromosome, which imbalances some of the 

biochemical and physiological pathways, important for the development and 

function of the organs and tissues affected in people with DS.

1.2.3 Physical characteristics and facial morphometry

Patients with DS have physical features that distinguish them. The tongue is 

usually too large for the oral cavity, causing the individual to habitually hold the 

mouth open. The hand and feet are short and stubby, with multiple dermatoglyphic 

irregularities. Abdominal protuberance is often seen and most likely is the result of 

hypotonic muscles. Short stature and overweight are common signs in people with 

DS (Cronk et al. 1988; Fonseca et al. 2005; Melville et al. 2005; Myrelid et al. 

2002; Styles et al. 2002). Growth hormone deficiency may aggravate their growth 

retardation and lead to a reduced pubertal growth spurt (Anneren et al. 1999). 

Hence, the individuals with DS reach their final height at relatively young ages 

(Myrelid et al. 2002).

3



Chapter 1: Introduction

In addition, the prevalence of upward slanting of the palpebral fissure (range from 

43% to 97%) and epicanthal folds (range from 38% to 64%) are highly common in 

people with DS (da Cunha and Moreira 1996; Fierson 1990; Kim et al. 2002; Liza- 

Sharmini et al. 2006; Lyle et al. 1972; Shapiro and France 1985). It may caused by 

malformation of the sphenoid bone or an angle orientation of the orbits (Lyle et al. 

1972). Woodhouse et al. carried out the study on facial morphometry, in respect of 

spectacle wear, showed that children with DS differ from control children 

(Woodhouse 1998; Woodhouse et al. 1994):

smaller interpupillary distance in older children (age of 9-12); 

lower crest height; 

shorter front-to-bend.

1.2.4 Common health problems

The most commonly reported health problems are vision, hearing and minor 

respiratory problems (Selikowitz 1992; Turner et al. 1990). The higher prevalence 

of ocular anamolies in people with DS is reviewed in a later section. Hearing loss 

occurs in approximately two thirds of children with DS (Harigai 1994; Roizen et al.

1993). These children may also develop sleep apnoea (brief periods of arrested 

respiration during sleep) as a consequence of upper airway obstruction from 

enlarged tonsils and adenoids (Dahlqvist et al. 2003; Stebbens et al. 1991).

Congenital heart abnormalities are present in 28%-67% of children with DS, and is 

one of the leading causes of death in individuals with DS (Kallen et al. 1996; 

Marino 1996; Satge et al. 1998; Selikowitz 1992; Stoll et al. 1998).

Life expectancy for people with DS has improved to more than 50 years (Baird and 

Sadovnick 1987; Eyman and Call 1991; Roizen and Patterson 2003), resulting 

from improvements in medical care, early identification and treatment with support. 

The process of physical ageing seems to be accelerated in individuals with DS 

(Brown 1979; Devenny et al. 1996; Fromage and Anglade 2002).

Individuals with DS are also more likely to suffer from thyroid dysfunction 

(Karlsson et al. 1998; Prasher 1999), leukaemia (Satge et al. 1998), diabetes
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(Milunsky and Neurath 1968; Ohyama et al. 2000; Van Goor et al. 1997) and 

several skin conditions (Pueschel et al. 1992).

1.2.5 Development and cognitive aspects

People with DS have intelligence disability of varying degrees. The reduced 

cognitive processes of people with DS have been well documented (Connolly 

1978; Rohr and Burr 1978; Sloper et al. 1990), including intelligence quotient 

score ranging from 30 to 70 and averaging around 50 (Chapman and Hesketh 

2000), difficulties with spatial memory, poor long-term memory performances and 

difficulties acquiring new skills (Chabert et al. 2004).

In general, infants with DS show relatively normal abilities in prelanguage 

behaviour, learning and memory (Oiler and Seibert 1988; Steffens et al. 1992). 

The learning and memory problems become considerably more noticeable as the 

infant grows to childhood and adolescence. Children with DS are especially poor 

at language performance compared to non-related children of the same cognitive 

level (Hodapp and Zigler 1990), but there are also cases in which language 

capacity is within normal range. It is also commonly accepted that their language 

comprehension skills are more advanced than their expressive language (Kumin

1996). Although these children generally have poor verbal short-term memory 

skills, their visual-motor skills are relatively strong (Wong and Ho 1997). 

Concerning academic skills, their reading ability is better than arithmetic (Carr 

1995).

One major point to be stressed is that this has less to do with the inability of 

children with DS to acquire words or linguistic constructions and more to do with 

their inability to 'stabilize' the information that they do manage to acquire (Wishart 

1993; Wishart and Duffy 1990). Test-retest reliability is very low because 

successes gained in one test might not appear upon retest and new skills show up, 

only to disappear shortly thereafter. A paper reviewed the neural and cognitive 

features of DS (Nadel 2003). The author stated “I will suggest that difficulties in 

both the acquisition of information (learning), and the long-term storage and 

retrieval of information (memory) are a part of the phenotype of DS." This view
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was supported that chromosomal regions may be involved in specific cognitive 

functions (Chabert et al. 2004).

The motivational difficulties and developmental instabilities were observed by 

Wishart (1993). However, it has been reported that children with DS were just as 

persistent as the typically developing children with the challenging tasks (Gilmore 

et al. 2003). The studies of maternal directive and supportive behaviour have 

concluded mothers of children with DS exerted greater control in most of the 

aspects of directiveness, while mothers of children without DS were more likely to 

silently watch their children (Mahoney et al. 1990; Tannock 1988).

Studies indicate that children with translocation DS do not differ cognitively or 

medically from those with trisomy 21 (Johnson and Abelson 1969). However, 

children with mosaic DS, (perhaps because their trisomic cells are interspersed 

with normal cells) have typically higher scores on intelligence quotient tests and 

have fewer medical complications than children with translocation or trisomy 21 

(Fishier and Koch 1991).

1.3 Ocular features in people with DS

1.3.1 The cornea

The cornea is a transparent tissue at the front of the eye, which is one of the 

principal refractive elements of the eye. The majority of corneal growth occurs pre- 

natally with nearly all post-natal growth being found to occur within first few years 

of life (Sorsby et al. 1961). Paediatric central corneal thickness (CCT) increases 

slowly over time and reach adult thickness at 5 to 9 years of age (Hussein et al. 

2004). There is a less than 10-micron change per decade as the cornea becomes 

thinner with age (Foster et al. 1998).

Shape of the cornea

Generally, the cornea is smaller in the vertical diameter than in the horizontal 

diameter. Advances in corneal mapping technology have allowed for more 

accurate and complete descriptions of the corneal shape. The contour of the 

human cornea is closely modelled by a conic section, which is described by 

asphericity and apical radius of curvature. The profile of a cornea along any
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meridian can be considered as part of an ellipse, meaning that it becomes flatter 

from the centre to the periphery.

The aspheric shape of the cornea has been the focus of numerous studies, which 

quantifies the rate of curvature change from apex to periphery (Eghbali et al. 1995; 

Gatinel et al. 2002; Wang et al. 1989). It was assumed that the cornea could be 

described by the conic section (Bennett and Rabbetts 1991; Douthwaite and 

Sheridan 1989; Guillon et al. 1986; Kiely et al. 1982; Kiely et al. 1984). Three 

commonly used parameters in the optometric literature to quantitatively describe 

corneal shape are: the ‘Q’ value, the shape factor ‘p’ and the eccentricity ‘e ’ 

(Cheung et al. 2000; Douthwaite 2003; Dubbelman et al. 2006; Gatinel et al. 2002; 

Holladay 1997; Lam et al. 1999; Lindsay et al. 1998; Pardhan and Beesley 1999; 

Wang et al. 1989). These parameters are related to each other by the following 

equations:

p= 1+Q or e2 = -Q

Kiely et al. (1982) first attempted to provide a mean value of Q = -0.26. Guillon 

(1986) found a mean value of Q = -0.18. Bennett et al.(1991) described the 

asphericity by p-value. Douthwaite et al. (2003) reported that the range of 

normality for the p-value was from 0.56 to 1.08. Davids et al. (2005) reported the 

mean value of Q= -0.35. All in all, the typical shape of the human cornea is that of 

a prolate ellipse, flattening from corneal apex to periphery (Fig. 1-1).

Prolate Ellipse(-1 <Q  <0)

Oblate Ellipse 
(Q > 0 ) ,

Fig. 1-1: Conic sections of asphericity, Q (Davis et al. 2005)

Q > 0, oblate ellipsoid 

Q ■ 0, sphere
-1 < Q < 0, prolate ellipsoid with the major axis in the z direction
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It was reported that hyperopic eyes tended to have less negative Q, more prolate 

than those of emmetropes and myopes (Davis et al. 2005; Llorente et al. 2004). 

Most recently, Dubbelman (2006) stated “The asphericity of both corneal surfaces 

is independent of gender and radius. However, with age, the asphericity changes 

significantly, which results in a slight peripheral thinning of the cornea.”

Aberration of the cornea

Aberration of the cornea indicates the extent to which the distribution differs from 

that of a perfect optical system. It has been found that the corneal wavefront 

aberrations varied widely from subject to subject for each Zernike term (Wang et 

al. 2003). Despite a large inter-subject variability, the average amount of 

aberration in the human cornea tends to increase moderately with age (Amano et 

al. 2004; Jahnke et al. 2006; Oshika et al. 1999). In other words, there is a 

tendency of the cornea to become more spherical with age, increasing spherical 

aberration, more irregular and other high-order asymmetric aberrations.

Corneal aberration may contribute to degradation of the retinal image quality and 

therefore to visual performance (Gobbe and Guillon 2005; He et al. 2002). It has 

been suggested that high levels of axial aberration play a role in myopia 

development (Charman 2005; He et al. 2002; Llorente et al. 2004). In contrast, 

some studies find no differences in the aberration characteristics of myopes, 

emmetropes and hyperopes (Cheng et al. 2003; Porter et al. 2001).

Properties of the cornea in people with DS

Corneal abnormalities in people with DS have been reported such as reduced 

corneal thickness, reduced corneal radius and higher corneal power (Doyle et al. 

1998; Evereklioglu et al. 2002; Haugen et al. 2001a) (Table 1-1).

Computerized corneal topography are used to observe properties of cornea in 

children and adults with DS (Doyle et al. 1998; Haugen et al. 2001a; Liza-Sharmini 

et al. 2006; Vincent et al. 2005). Doyle et al. described:” Corneal topography was 

generally of a regular “bow tie” pattern, 2% had overt keratoconus and 6% had 

corneal topography with inferior steepening.” Vincent et al. (2005) reported that 

difference in corneal power between the two eyes and steepness of the inferior
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cornea versus the superior cornea of each individual with DS was significantly 

different from the control population.

Table 1-1: Summary of corneal measurements in people with DS

Doyle Haugen Everklioglu Vincent

Year 1998 2001 2002 2005

Age (years) 15-22 1 4 - 2 6 5 - 1 5 10mons-18years

No. subjects 50 46 28 21

Methods
Comeal

topography

Corneal

topography

Ultrasound
pachymetry

Corneal

topography

CCT (mm) n/a 0.48±0.04 0.49 ±0.39 n/a

Corneal power (D) n/a 46.39 ±1.95 n/a 46.66 ± 1.64

Corneal
topography

6% abnormal 

changes

25% abnormal 

changes
n/a

39% abnormal 

changes

It was reported that the conical corneas seen in keratoconus patients with DS who 

present for corneal grafting are thinner than those from keratoconus patients 

without DS (Haugen et al. 2001b). Moreover, acute swelling of the conical cornea 

is far more common in keratoconus patients with DS than those without DS 

(Pierse and Eustace 1971; Tuft et al. 1994). Therefore, it appears that DS people 

have inherent corneal thinning. It can be speculated that there might be a 

connection between chromosome 21 and the thinning of the cornea. The gene 

encoding the a-1 chain of type VI collagen, a major constituent of the corneal 

stroma, is on chromosome 21 (Hattori et al. 2000; Rabinowitz 1998). The stroma 

of cornea is derived from the neural crest cells. Hence, it has been suggested that 

the common defect in the migration or differentiation of neural crest cell may lead 

to this thinning (Bertelsen and Seim 1974).

In addition, it was speculated that the increased curvature may be due to the 

reduced mechanical rigidity as a result of the thinning of the corneal stroma 

(Haugen et al. 2001b).
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1.3.2 The anterior chamber

The anterior chamber is the space in the eye that is behind the cornea and in front 

of the iris, which is filled with the aqueous humour. Anterior chamber has normally 

reached its maximum depth by about 15 years of age (Sorsby et al. 1961). The 

aqueous passes first into the posterior chamber and then flows forward through 

the pupil into the anterior chamber. The aqueous drains out of the eye via the 

trabecular meshwork into the aqueous veins. The production and drainage of 

aqueous fluid determines intraocular pressure. Therefore, the configuration of 

anterior chamber is relevant to the pathogenesis of glaucoma (Ashaye 2003; 

Caprioli et al. 1986; Congdon et al. 1999; Devereux et al. 2000; Sakai et al. 1996).

To our knowledge, only Haugen performed ACD measurement and reported that 

the mean ACD in individuals with DS was 3.45±0.34 mm, which was very similar 

to that of normal individuals (3.40±0.23mm) (Haugen et al 2001a).

1.3.3 The lens

The normal lens

The lens is a flexible transparent structure with two convex surfaces, which is 

suspended radially from the ciliary body. The lens itself is surrounded by a thick 

lens capsule which is the basement membrane of the lens epithelial cells. The bulk 

of the lens consists of lens fibres. The newest lens fibres are found in the 

outermost layer of the fibres in the cortex. The mature fibres are gradually buried 

deeper in the nucleus. The lens increases in size and cell numbers throughout life 

(Smith and Pierscionek 1998). An increase in thickness with age has been 

confirmed (Brown 1974; Cook et al. 1994). However, no change with age was 

reported in the study of lens thickness using the Magnetic resonance imaging 

(MRI) techniques (Strenk et al. 2004).

Properties of the lens in people with DS

The prevalence of the lens opacities ranges from 0% to 50% in people with DS 

(Doyle et al. 1998; Fierson 1990; Haugen et al. 2001a; Hestnes et al. 1991; 

Igersheimer and Mautner 1951; Jaeger 1980; Kim et al. 2002; Robb and 

Marchevsky 1978; Wong and Ho 1997) (Table 1-2).
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The majority of lens opacities were small and located in the periphery. Among 

young adults with DS the frequency of small “flake” opacities in the lens is high 

(range from 20-49%) and the number of opacities tends to increase with age. 

Differences in the age would therefore be a main factor, which are in line with the 

previous reports that lens opacities began to appear in DS people between 6-10 

years of old and were almost universally present after the age of 16 years 

(Igersheimer and Mautner 1951; Robb and Marchevsky 1978). In addition, 

different technique used for checking the presence of lens opacities may influence 

the prevalence of lens opacities.

Table 1-2: Summary of lens opacities in people with DS

Author Year No. subjects Age Lens opacity

Igershimer et al. 1951 125 6-10years 2%

Fierson et al. 1990 150 2months-20years 42%

Hestness et al. 1991 30 20-72years 50%

Berk et al. 1996 55 2months-25years 20%

Doyle et al. 1998 50 15-22years 38%

Haugen et al. 2001 47 14-26years 28%

Kim et al. 2002 123 6months-14years 3%

Liza-sharmini et al. 2006 60 1 month-17years 0%

With the more advanced technology, it has been stated that individuals with DS 

had reduced lens thickness and increased density of the lens compared to the 

age-matched controls (Haugen et al. 2001a).

Although abnormalities of the lens capsule do not appear to be characteristic of 

DS, there might be some link with the pathology of cataract. Reports of the 

prevalence of cataract in people with DS are varied from 0%-47% (Berk et al. 

1996; Hestnes et al. 1991; Kim et al. 2002; Rosenfield et al. 1996; Woodhouse et 

al. 1997). The age range of the studies population undoubtedly had effect on the
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reported prevalence of cataract. The method of examining the eye also had an 

effect on the possible detection of cataract, for example, whether the pupil is 

dilated or not. The prevalence of congenital cataract is frequent in DS people 

(range from 1-6%) (Liza-Sharmini et al. 2006; Merin and Crawford 1971; Tsiaras et 

al. 1999). It has been suggested that impairment in the antioxidant system may be 

a possible mechanism for early cataract formation in people with DS (Cengiz et al. 

2002).

1.3.4 The retina and optic disc

The normal retina and optic disc

The retina lines the inside of the eyeball. The retina includes both the sensory 

neurons that response to light and intricate neural circuits that can convert the 

information from the external environment into neural impulses. The optic nerve 

head (ONH) is situated in the nasal side of the retina. The fovea is located 3.5mm 

temporal to the ONH. A circular field of approximately 6mm around the fovea is the 

central retina while beyond this point is the peripheral retina, extending up to 

21mm from the centre of the optic disc. The central retina close to the fovea is 

considered thicker than the peripheral retina. This is due to the increased packing 

density of photoreceptors and their associated bipolar and ganglion cells in central 

retina compared with peripheral retina.

The terms optic disc or ONH can be used interchangeably; this is the place where 

retinal ganglion cells exit the eye through an opening called the scleral canal. The 

optic disc also refers to the tissues composed of millions of nerve fibres that 

originate in the ganglion cell layer of the retina and converge on the nerve head 

from all points in the fundus. The optic disc comprises the neuroretinal rim and the 

optic cup. It is usually surrounded by the Elschnig scleral ring, which may or may 

not be accompanied by other peripapillary atrophy (PPA) (Jonas et al. 1988a; 

Jonas et al. 1988b, c). The Elschnig scleral ring is a thin, cream coloured border, 

which marks the termination of the retinal pigment epithelium. Its appearance may 

be confused with the margin of the disc. The cup is the central depression of the 

disc and does not contain any nerve fibres, hence its pale appearance. The rim is 

formed by the ganglion cell axons that extend over, and turn sharply into the
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scleral canal and normally appears a healthy pink as the nerve fibres have a rich 

vascular supply.

The cup and rim size positively correlates with the size of the disc (Bengtsson 

1976; Budde et al. 2000; Caprioli and Miller 1987; Hellstrom and Svensson 1998; 

Jonas et al. 1988b). The number of nerve fibres is directly related to the area of 

the disc (Jonas et al. 1992; Panda-Jonas et al. 1994). It was found that the 

number of axons per optic nerve has a high degree of variability. The nerve fibres 

density per unit area was higher in eyes with small optic disc than those with large 

optic discs (Jonas et al. 1992). Age related loss of ganglion cells and the thinning 

of retinal nerve fibre layer have been reported (Jonas and Dichtl 1996; Jonas et al. 

1992).

The disc area ranges from 1.87 mm2 to 3.22 mm2 according to different studies 

(Hellstrom et al. 1997; Hellstrom and Svensson 1998; Jonas et al. 1988b; Mansour 

1992; Rimmer et al. 1993; Varma et al. 1994). The size of the optic disc is 

influenced by high refractive errors (Jonas 2005b; Jonas et al. 1999), the methods 

of correcting the magnification of the images (Bengtsson and Krakau 1977, 1992; 

Bennett et al. 1994; Garway-Heath et al. 1998; Langenbucher et al. 2003; 

Littmann 1982; Quigley and Dube 2003; Rudnicka et al. 1998) and the race 

(Varma et al. 1994).

Table 1-3: Summary of planimetry evaluation of the disc in normal people

Author Year
No.

subjects

Age

(years)
Methods

Disc size 

(mm2)

Jonas et. al 1988 319 43 Planimetry 2.89±0.44

Mansour et. al
1991 121 21-64 Mannual

Planimetry

2.66-3.02

1992 66 2-10 2.66-3.22

Rimmer et. al 1993
17 2-10 Post­

mortem!

1.87±0.44

31 >10 2.19±0.54

Varma et. al 1994 3387 >40 Planimetry 2.63-2.94

Hellstrom et. al 1997 100 3-20 Planimetry 2.69±0.44
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PPA

The feature of the PPA has been described as the result of misalignment between 

the boundaries of the three tissues that form the scleral canal: the epithelium, the 

choroid and the sclera (Nevarez et al. 1988). PPA has been subdivided into the 

peripheral Zone a and central Zone p, which reflects the severity of atrophy. Zone 

a refers to the area that exhibits irregular pigmentation and may appear more 

marked. Zone p refers to the area where the pigmentation is completely absent, 

which is the zone most adjacent to the optic disc margins and allows visibility of 

the choroidal vessels and the sclera. The inter-individual variability that 

characterises the development of the two zones is congenital and influenced by 

gender and race. This latter aspect particularly applies to Zone a which is 

frequently observed in heavily pigmented eyes and is therefore more prevalent in 

dark skin races.

High myopic eyes usually demonstrate a PPA area expanding concentrically 

around the optic disc margins (Jonas et al. 1989). In addition, the extent of PPA is 

associated with progressive optic disc damage and progressive visual field defects 

in glaucoma and may be useful for monitoring progressive glaucomatous damage 

(Jonas 2005a; Jonas and Konigsreuther 1994; Park et al. 1996; Uchida et al. 

1998). It has been also reported that position of the central retinal vessel trunk 

influences the location of PPA in glaucoma (Jonas et al. 2001). The author stated: 

“The longer the distance to the central retinal vessel trunk exit, the more enlarged 

is PPA and the smaller is the neuroretinal rim.”

In addition, it has been observed that the prevalence of both zones increases with 

age (Jonas and Fernandez 1994). Therefore, PPA can also be considered as a 

feature of the normal ageing retina.

Blood supply to the retina and optic disc

The retina is situated between two sets of arteries and veins: the ciliary vessels of 

the choroid, branches of the central retina artery and the central retinal vein. The 

central retinal vein is always situated temporally to the retinal artery, which is 

usually at the upper nasal quadrant of the disc in normal eyes (Jonas and 

Fernandez 1994).
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ONH is the site of entry and exit of the retinal vascular system. The main source of 

blood supply to the ONH itself is via the posterior ciliary artery. There is an 

additional lesser supply via the central retina artery and the choroidal circulation. 

The surface nerve fibre layer is supplied by the retinal circulation (Bathija 2000). 

Blood supply to the ONH is sectorial in distribution, and there is a significant 

variation between individuals. The ONH venous drainage is via the central retinal 

vein.

The retina is supplied by the central retina artery, which enters the eye via ONH. It 

then branches into four major vessels each supplying its own quadrant of the 

retina. Each branch passes deeper into the retina and may penetrate as far as the 

inner nuclear layer, from which the venules return to the larger superficial retinal 

veins. As the vessels branch into small capillaries across the retina and the ONH, 

the retina vessels show a monotonic decrease in diameter, which becomes more 

prominent with increase in the distance from the ONH.

The retinal vessel diameter may reflect the need of the vascular supply in the 

corresponding superficial retinal area. It has been reported that the retinal arteries 

crossing ONH have wider diameters at the Tl (Temporal-Inferior) followed by TS 

(Temporal-Superior), NS (Nasal-Superior) and Nl (Nasal-Inferior) (Jonas and 

Schiro 1993), which complies with the density distribution of retinal nerve fibres 

layer. It has also been reported that the regional blood flow is higher in temporal 

than nasal but the same blood flow in superior and inferior (Feke et al. 1989; 

Rassam et al. 1996; Riva et al. 1985). After all, the temporal contains the highly 

metabolic area of the macula. Similarly, the vessel diameters are larger in the 

temporal than in the nasal retina, but similar between the superior and inferior 

retina (Jean-Louis et al. 2005), which therefore are in agreement with earlier blood 

flow studies.

Since retinal and ONH vasculature have no autonomic nerve supply, retina blood 

flow is auto-regulated, that is, responsive to the local metabolic activity (Johnson 

1986). Therefore, in various conditions, auto-regulation protects the retinal 

circulation and provides a constant blood flow (Delaey and Van De Voorde 2000). 

It has been reported that a decrease of the retinal blood flow with a rate of 8% per
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decade (Boehm et al. 2005; Groh et al. 1996). Failure of auto-regulation commonly 

occurs very early in many retinal vascular diseases such as diabetes mellitus and 

hypertension.

Properties of the retina and optic disc in people with DS

A few studies have described retinal abnormalities in people with DS (Ahmad and 

Pruett 1976; Berk et al. 1996; da Cunha and Moreira 1996; Sherk and Williams 

1979; Williams et al. 1973).

Lowe first reported that the disc appeared pinker in people with DS (Lowe 1949). 

Later, by using the hand-held fundus camera, William (1973) described that there 

was an increased number of retinal vessels crossing the optic disc margin (n=50, 

age 10-25 years), suggesting this sign may be useful in the clinical diagnosis of 

DS in newborns. Ahmad et al. (1976), by using indirect ophthalmoscope, stated 

that the disc appeared ‘more rosy than normal’ (n=32, age 18-62 years). Sherk et 

al. (1979) counted the number of arterioles, venules and large vessels crossing 

the disc margin (n=100, age 14-50 years) and showed a similar results to William’s 

study. In Berk’s study (1996), an increased number of retinal vessels crossing the 

optic disc was detected in 38.1% cases.

Hypoplasia is recognized as a congenital anomaly which may affect one or both 

nerves. Optic nerve hypoplasia was described in two post-mortem retina, along 

with the diminution of retinal ganglion cell and the nerve fibre layers (Fierson 1990; 

Ginsberg et al. 1980). Fierson (1990) reported optic nerve hypoplasia in 10% of a 

group of 150 children and young adults with DS aged 2 months to 20 years who 

were examined by using an ophthalmoscope. However, the criteria for identifying 

hypoplasia were not described.

Children with DS are believed to be more susceptible to retinoblastoma (Brichard 

et al. 2003; Moll et al. 2002; Satge et al. 2001; Satge et al. 2005). Retinal 

detachment was reported (Berk et al. 1996; Liza-Sharmini et al. 2006). Although 

diabetes appears to be associated with DS (Milunsky and Neurath 1968; Ohyama 

et al. 2000; Van Goor et al. 1997), there is a low prevalence of diabetic retinopathy 

in people with DS and explained that there are some inherent protective factors
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against the development of diabetic retinopathy such as the relatively low 

pressure, myopia and growth hormone deficiencies (Fulcher et al. 1998).

1.3.5 Axial length

Axial length (AL) refers to the distance from the cornea to the retina epithelium. 

Growth of the AL is mainly caused by increasing length of vitreous cavity. A minor 

role in human eye growth is also played by increasing depth of the anterior 

chamber (Katuzny and Koszewska-Kolodziejczak 2005).

The role of AL in emmetropisation is evident from the significant correlation 

between AL and refraction. Moreover, the AL/CR (corneal radius) ratio has been 

used to give a better correlation with refraction than is obtained with AL (Garner et 

al. 2004; Osuobeni 1999). A “high ratio” (i.e. > 3.0) has been suggested to be a 

predictor or correlation of myopia, which may indicate the extent to which an 

imbalance between AL and CR contributes to progression toward myopia (Ojaimi 

et al. 2005). Interestingly, a strong association between body height, body weight 

and AL was found (Ojaimi et al. 2005; Selovic et al. 2005), suggesting 

physiological of the body growth are correlated with the development of eye.

AL in people with DS was only measured by ultrasound pachymetry in two studies 

(Doyle et al. 1998; Haugen et al. 2001a). Both studies reported that there is a 

similar range of values for AL and an association between refraction and AL in 

people with DS as in their controls.

1.3.6 Other ocular features in people with DS

Iris

There are two typical features of the iris in DS people: peripheral white spots 

(Brushfield’s spots) or “speckling”, and a thinning of the iris stroma. The peripheral 

spots were first described in the majority of individuals with DS people by 

Brushfield (1924). Thinning of the iris stroma in DS subjects was first pointed out 

by Lowe (1949), and has later been described by several authors (Berk et al. 

1996; Fierson 1990; Jaeger 1980). The cause of these iris changes is not known. 

Fierson (1990) described Brushfield’s spots as consisting of condensation of the 

normal iris stromal connective tissue and hypothesised that the decrease in iris
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pigmentation often seen in DS may reflect thinning of this iris stroma in which the 

pigment melanin is located.

Blepharitis

Blepharitis has long been described as an ocular feature of people with DS. The 

prevalence reported in the literature is 6% to 47% (Berk et al. 1996; da Cunha and 

Moreira 1996; Liza-Sharmini et al. 2006; Lyle et al. 1972). The variation may be 

explained by different examination techniques, for example, general observation 

versus a detailed slit lamp examination. It is probably due to impaired lachrymal 

drainage coupled with eye rubbing (Berk et al. 1996). One author postulated that 

the high frequency of blepharitis in people with DS was related to an impaired 

immune response (Catalano 1990).

Lacrimal obstruction

The prevalence of lacrimal obstruction is significant higher, ranging from 17% to 

30% in people with DS (Berk, 1996; Da Cunha 1996; Kim et al. 2002).

1.4 Reduced visual function in people with DS

1.4.1 Higher refraction

Refraction development in normal people

At birth, newborns commonly demonstrate high levels of hyperopia and 

astigmatism that reduce towards emmetropia rapidly during the first year of life. 

This process is known as emmetropisation (Ehrlich et al. 1997; Gwiazda et al. 

1984; Ingram and Barr 1979). Emmetropisation may be described as the 

development of the AL of the eye matching the power of the cornea and lens. 

Gilmartin summarized the eye growth as follows: “Eye growth has shown to 

consist of a rapid infantile phase whereby, in the first 3 years of life, the cornea 

and the lens had to compensate 20 D or so for an increase in AL of 5 mm. 

Between 3-13 years, the compensation of lens and cornea has only to be 

approximately 3 D for around a 1mm increase in AL.”(Gilmartin 2004). The normal 

growth patterns are eye lengthens, and the lens flattens, thins and loses optical 

power.
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Change in distribution of refractive error with age in normal children was shown in 

Fig. 1-2. The mean spherical equivalent refraction drops from hypermetropic 

values towards emmetropia, and the distribution of spherical equivalent refractive 

values becomes narrow (Gwiazda et al. 1993a). The presence of refractive error 

can be considered to represent a failure of the emmetropisation (Gwiazda and 

Thorn 1999). Table 1-4a summarize the studies on refractive error prevalence 

reported across nations (Dandona et al. 2002; Goh et al. 2005; Junghans et al. 

2002; Saw et al. 2002; Villarreal et al. 2000).
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Fig. 1-2: Change in distribution of refractive error with age in normal children
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Table 1-4a: Summary of the prevalence of refraction in general population

Author Year
No.

Subjects

Age

(Years)
Myopia Hyperopia

Villarreal et al. 2000 1045 12-13 45.0%£-0.5D 8.4%>+1.0D

Saw et al. 2002 1453

7 29.0%2S-0.5D

n/a8 34.7S-0.5 D

9 53.1% £-0.5D

Junghans et al. 2002 2571
5 2.8%2S-0.5D 46.1%£+0.5D

12 8.7%£-0.5D 24.1%*+0.5D

Dandona et al. 2002 4074 7-15 4.1%£-0.5D 0.8%*+2.0D

Goh et al. 2005 2571
7 9.8%£-0.5D 3.8%£+2.0D

15 34.4%£-0.5D 1.0%*+2.0D

An individual's refractive state could be influenced by a number of factors including 

genetic, environmental and nutritional factors (Grosvenor and Scott 1991; McBrien 

and Barnes 1984; Mutti et al. 2002; Mutti and Zadnik 1996; Mutti et al. 1996; 

Rosenfield and Gilmartin 1999; Wallman and Winawer 2004). Theoretically 

aberrations must interfere with blur interpretation and accommodation and may 

also disrupt emmetropisation in the developing myope. Eyes with high amounts of 

aberration should be insensitive to blur. In fact, it has been demonstrated that 

myopic patients are less sensitive to blur than emmetropic patients (Rosenfield 

and Abraham-Cohen 1999). Moreover, growth hormone may play a role in ocular 

development and the physiological process of emmetropisation (Parentin et al. 

2004). It has been reported that there are many similarities in the growth patterns 

for both the emmetropising and persistent hyperopes, whereas the differences in 

growth lie mainly between the emmetropes and myopes (Jones et al. 2005).

Refraction in people with DS

All the studies agree that individuals with DS seem to become either significantly 

hypermetropic or myopic (Berk et al. 1996; da Cunha and Moreira 1996; Fierson 

1990; Haugen et al. 2001a; Hestnes et al. 1991; Jaeger 1980; Kim et al. 2002; 

Liza-Sharmini et al. 2006; Lowe 1949; Lyle et al. 1972; Perez-Carpinell et al. 1994;
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Shapiro and France 1985; Wong and Ho 1997; Woodhouse et al. 1997; 

Woodhouse et al. 1996) (Table 1-4b). The majority of papers reported 

hypermetropia to be most common. However, the degree of myopia in DS 

individuals can be extremely high (da Cunha and Moreira 1996; Fierson 1990; 

Woodhouse et al. 1997). The astigmatic part of refraction has not been studied as 

extensively as the spherical part in patients with DS.

Table 1-4b: Summary of the refraction in DS people: previous literature

Author Year Age
No.

Subjects
Hyperopia Myopia Astigmatism

Shapiro et al. 1985
8months-
28years

54 27%>+5.0D 10%<-1.0D 25%>3.0D

Fierson et al.
1990

2months-

20years
150 18%>+3.0D 12%<-2.0D 35% >+2.0D

Hestnes et al. 1991 20-72years 30 29%>+1.0D 59%<-1.0D 47%>0.75D

Perez- 
Carpinesll 

et al.

1994 7-20years 72 41 %>+1.0D 25%<-1 0D 64%>1.0D

Woodhouse 

et al.
1997

3months-
1year

93

21%>+3.0D 9%<-0.75D 26%>+2.0D

1-4years 42%>+3.0D 9%<-0.75D 22%>+2.0D

4-12years 42%>+3.0D 13%<-0.75D 38%>+2.0D

Haugen et al. 2001
3months-
11yearr

40 40%>+2.0D 8%<-1.5D 53%>+1.0D

Kim et al. 2002
6months-

14years
123 12%>+3.0D 26%<-0.75D 31%>+0.75D

Liza-Sharmini 

et al.
2006

1 month- 

17years
60 29%>+0.5D 25%<-0.5D 8.3%>+0.75D

The significant variations may be due to the following reasons:

i. Different ways of reporting refraction;

ii. Different criteria being used to classify refraction;

iii. Different age ranges of the subjects;

iv. Different regions and races.
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Different refraction techniques being used by different authors, e.g. cycloplegic vs. 

noncycloplegic refraction. It was noted that mean refraction and the range of errors 

in early infant do not differ between normal children and children with DS 

(Woodhouse et al. 1997). However, she stated: “The refraction distribution does 

not narrow in the majority of children with DS, but rather gets wider compared to 

age-matched controls.” In other words, refraction and the variance of range of 

refraction in people with DS increased with age. Cregg et al. (2003) offered a good 

explanation for no difference in the change of mean refraction in children with DS: 

“Although some children showed an increase in hyperopia, others showed a 

negative shift in spherical power to emmtropia and even myopia, and thus the 

mean remained constant”.

The causes of refractive error in people with DS were studied (Berk et al. 1996; 

Bromham et al. 2002; Cregg et al. 2001; Cregg et al. 2003; da Cunha and Moreira 

1996; Ferak and Cernay 1984; Haugen et al. 2001c; Woodruff et al. 1980). 

Woodruff et al. (1980) stated that: “Prematurity and dismaturity predispose to 

learning disability, and it is suggested that these causes tend to retard or distort 

development of ocular structures and induce refractive errors.” Berk et al. (1996) 

stated that: “We believe that hypermetropia is compatible with the nature of DS, 

which is basically a generalized inhabitation of growth.” Moreover, it was reported 

that DS children with congenital cardiopathy had proportionally more myopia or 

myopic astigmatism than DS children without these cardiac malformations 

(Bromham et al. 2002). The study of Cregg et al. (2003) showed no association 

between refraction and strabismus in children with DS and suggested that children 

with DS may be destined not to undergo emmetropisation. It was also postulated 

that the failure of emmetropisation process in children with DS may be part of a 

general dysfunction, as is the failure of accurate accommodation (Haugen et al. 

2001c). Thus, to some extent, abnormal refraction development in people with DS 

may mainly result from the general abnormal physiological features.

Haugen et. al also stated “Reduced accommodation in early childhood, carrying a 

blurred retinal image for near objects may be an aetiological factor for abnormal 

refraction development.” In addition, a strong right-left specificity of the axes 

encountered in DS people with oblique astigmatism. It was explained that the
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thinner cornea and higher curvature might be more likely influenced by the 

anatomy of the surrounding structures, that is, the eyelid pressure and the 

palpebral fissure. Therefore, if eyelid pressure is regarded as a main cause of 

astigmatism, it may explain why oblique astigmatism is more prevalent in DS than 

in the normal population (Haugen et al. 2001c).

1.4.2 Reduced accommodation

Accommodation refers to the ability of the eye to see distant objects or close 

objects by focusing an image on the retina (Maddock et al. 1981). Contraction of 

the ring-shaped ciliary muscle reduces the length of the muscle and relaxes the 

zonules of the lens, which allows the lens to move forwards, and inward. This 

increases the curvature of the lens and the refractive power. In the general 

population, many factors have been found to influence accommodation including 

retinal defocus (Gwiazda et al. 1993b; Kruger and Pola 1987), refractive error 

(Goss and Zhai 1994), visual acuity (Charman 1986; White and Wick 1995), 

cognitive demand and mental effort (Bullimore and Gilmartin 1987, 1988; Iwasaki 

1993; Winn et al. 1991). Lindstedt (1983) first reported that there was a failing 

accommodative function in people with DS. Since then, it was researched 

comprehensively by later studies (Cregg et al. 2001; Haugen et al. 2001c; 

Woodhouse et al. 2000; Woodhouse et al. 1993; Woodhouse et al. 1996) (Table 1- 

5).
Table 1-5: Summary of accommodation ability in people with DS:

Author Year
No.

subjects
Age

Reduced

accommodation

Lindstedt 1983 18 Children 73%

Woodhouse et al. 1993 26 6 - 14years 92%

Woodhouse et al. 1996 53 3- 57months 92%

Woodhouse et al. 2000 77 4.7-84.7months 68%

Haugen et al. 2001 60 2 - 12years 55%

Haugen et al. 2001 36 14- 26years 39%

The causes of under-accommodation in children in DS have remained 

inexplicable. It has been linked to visual acuity, hypermetropia, strabismus and 

cognitive level (Cregg et al. 2001; Haugen et al. 2001c; Woodhouse et al. 2000;
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Woodhouse et al. 1996).Woodhouse (1996) has suggested that reduced visual 

acuity in DS may affect their ability to identify the blur and refine their 

accommodation response. Cregg et al. (2001) reported findings from the same 

cohort of Woodhouse that there was a greater lag of accommodation in hyperopes 

than myopes and emmetropes. Haugen et al. (2001) found no significant 

association between ‘poor accommodation’ and the presence of strabismus. He 

suggested that the poor accommodation in children with DS may be also due to 

reduced elasticity of the lens or abnormalities in the ciliary muscle, or a 

combination of these different factors (Haugen et al. 2001a; Haugen et al. 2001c; 

Haugen et al. 2004).

In addition, increased cognitive demand can increase the amount of 

accommodation. Hence, a possible explanation may be the poorer level of 

concentration. However, no significant association between cognitive development 

and the accommodation ability was found in Woodhouse’s later study (Woodhouse 

et al. 2000). A recent study from the same cohort showed that bifocals aid near 

focusing for children with DS (Stewart et al. 2005). In other words, children with 

DS wearing bifocals ‘learn’ to accommodate accurately. Thus, children with DS 

appeared to have quite large amounts of accommodation available.

Cholinergic deficiency in the brains of DS infants has been found (Florez et al.

1990). Reduced cholinergic transmission may also affect the structures of the eye 

involved in accommodation.

1.4.3 Reduced Visual acuity

Visual acuity (VA) refers to the spatial limit of visual discrimination, and is a 

description of the finest detail that a person can perceive. Reduced VA is reported 

in people with DS by a number of studies (Berk et al. 1996; Courage et al. 1994; 

da Cunha and Moreira 1996; Doyle et al. 1998; Haugen et al. 1995; Haugen et al. 

2001a; Haugen et al. 2001c; Hestnes et al. 1991; Jaeger 1980; Liza-Sharmini et al. 

2006; Lyle et al. 1972; Perez-Carpinell et al. 1994; Shapiro and France 1985; 

Tsiaras et al. 1999; Wong and Ho 1997; Woodhouse et al. 1996) (Table1-6).
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The variation is most likely explained by the different methods to measure acuity 

and the method chosen depends on the child’s age, level of attention, 

comprehension and communication. Thus, the results obtained with the various 

tests are not directly comparable. In many cases, the prevalence might be 

accounted for by the relatively high incidence of ocular abnormalities (including 

refractive error and strabismus).

Table 1-6: Summary of Binocular VA in people with DS

Author Year
No.

Subjects
Age Binocular VA

Lyle et al. 1972 44 5-29years 32% (6/15-6/30)

Hestnes et al. 1991 30 20-72years
57% acuity somewhat reduced 

23% marked visual problem

Courage et al. 1994 51 2months-18years
Reduced acuity compared to 

controls of same age

Woodhouse 

et al.
1996 53 3-57months

No improvement in BVA 

compared to controls

Haugen et al. 2001 43 14-26years Reduced VA

Liza-sharmini 

et al.
2006 60 1 month-17years 60% <6/12

It has been suggested that under-accommodation may play a role in the defective 

visual development of acuity and contrast sensitivity in children with DS (Cregg et 

al. 2001; Haugen et al. 2001c; Woodhouse et al. 1996). The VA value of younger 

infants with DS (before 6 months of age) is within normal range (Courage et al.

1994). The development of VA was found behind their typically developing peers, 

which is not explained either by refraction or by the effect of poor accommodation. 

A sudden change in VA maybe associated with physiological changes in the visual 

cortex (Woodhouse et al. 1996). There is evidence of reduction in the number and 

density of neurons and a delay in cortical maturation (Buxhoeveden et al. 2002; 

Wisniewski 1990), which could contribute to the VA process. Moreover, abnormal 

spatial vision persists in children with DS in the absence of ocular abnormality. 

This would suggest that abnormal retino-cortical visual processing may lead to a 

reduced visual function (John et al. 2004; Suttle and Turner 2004).
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1.4.4 Other visual function defects

Reduced contrast sensitivity

Reduced contrast sensitivity has been reported in people with DS (Courage et al. 

1997; Perez-Carpinell et al. 1994). One recent study considered that contrast 

sensitivity tested with conventional behavioural techniques may reflect sensory 

deficits of optical or neural origin or a loss of performance (John et al. 2004). They 

compared objective acuity and contrast sensitivity measurements recorded with 

visual-evoked potentials. The DS group had reduced acuity and contrast sensitivity 

when compared with the control subjects. Therefore, reduced contrast sensitivity 

in children with DS supports the idea of an underlying sensory deficit in the visual 

system.

Strabismus

Strabismus is a deficit in the muscular control of the eyes, causing the eyes to look 

in different directions. It is present in approximately 2-4% of the general population 

(Abrahamsson et al. 1999). The prevalence varies from 9% to 69% in people with 

DS (Cregg et al. 2003; Haugen and Hovding 2001; Hestnes et al. 1991; Kim et al. 

2002; Liza-Sharmini et al. 2006; Lyle et al. 1972; Shapiro and France 1985; 

Wagner et al. 1990; Woodhouse et al. 1997; Yurdakul et al. 2006). All studies 

show that the most frequent pattern of strabismus was esotropia (Table 1-7). 

There are various hypotheses regarding the causes of strabismus in children with 

DS such as uncorrected high refractive error (Jaeger 1980; Lowe 1949), and brain 

damage (Schiavi 1997).

nystagmus

The other feature is the presence of nystagmus might be 3%-33% in people with 

DS (Awan 1977; Berk et al. 1996; Castane et al. 2004; da Cunha and Moreira 

1996; Hestnes et al. 1991; Kim et al. 2002; Liza-Sharmini et al. 2006; Perez- 

Carpinell et al. 1994; Shapiro and France 1985; Wagner et al. 1990; Wong and Ho

1997).

26



Chapter 1: Introduction

Table 1-7: The frequency of nystagmus and strabismus in people with DS

Author Year
No.

Subjects
Age Nystagmus Strabismus

Lyle et al. 1972 44 5-29 years 15% n/a

Shapiro & 

France et al.
1985 53 7-36 years 9%

43%

(42% esotropia)

Wagner et al. 1990 188
2months-

24years
30% n/a

Hestnes et al. 1991 30 20-72years 13%
69%

(65% esotropia)

Woodhouse et al. 1997 93
3months-

12years
3%

19%

(all esotropia)

Kim et al. 2002 123
6months- 

14 years
22% 25%

Liza-Sharmini et 

al.
2006 60

1 month- 

17years
33% 27%
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1.5 Keratoconus

1.5.1 Clinical features of keratoconus

Keratoconus is a noninflammatory condition in which the cornea assumes a 

conical shape because of the progressive thinning of the corneal stroma. In most 

cases the area of conical protrusion is surrounded by Vogt’s striae (vertical stress 

lines visible in the deep stroma), and Fleischer’s ring (epithelial iron deposition 

line) around the base of the cone and may result in high irregular astigmatism. The 

corneal thinning affects its optical function. Therefore, patients often present a 

history of progressive myopia, oblique astigmatism, and a reduction of spectacle- 

corrected VA. In most cases, it tends to progress gradually over many years, but in 

some cases it may advance rapidly (Tuft et al. 1994). The condition is almost 

always bilateral, but can be very asymmetric (Behrens-Baumann 1994; Holland et 

al. 1997; Hustead 1993; Rabinowitz et al. 1993). Keratoconus occurs in about 

0.1% of the general population (Rabinowitz 1998). There is no male or female 

preponderance. It is usually sporadic, although 6-8% of cases have a family 

history, often with all autosomal dominant mode of inheritance with variable 

expressivity (Gonzalez and McDonnell 1992; Rabinowitz et al. 1990; Rabinowitz et 

al. 1992).

1.5.2 Etiology of keratoconus

A review article by Rabinowiz (1998) showed that the cause of keratoconus has 

not been confirmed in spite of a number of studies being done. However, a 

number of local and systemic conditions have been implicated in its etiology such 

as atrophy, connective tissue disorders and evidence from histopathological 

studies. The changes in corneal structure that occur in keratoconus, which 

probably are under direct genetic control.

All the studies suggest that genes play an important role in the etiology of 

keratoconus. Recent linkage analysis has suggested a gene locus for keratoconus 

on chromosome 21 (Rabinowitz YS ZUL 1999). Moreover, two genes encoding the 

subunits a-1 and a -2 in collagen type VI (which is mostly found in the deep layers 

of the corneal stroma) are also located on chromosome 21. In comparison with 

normal cornea, the expression of 471 of the 5600 genes on the microarrays was 

changed in the keratoconus samples. These genes are believed to be involved in
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keratoconus. In the past few years, different research groups have gathered 

considerable information on the genetics of corneal dystrophies. In autosomal 

dominant keratoconus, chromosomal localization to chromosome 21 has been 

found by genetic mapping studies and the VSX1 gene has been implicated in the 

pathogenesis of the disease (Bisceglia et al. 2005; Heon et al. 2002).

It has been shown that irregularities in the apotosis system may be responsible for 

the thinning in keratoconus (Wilson et al. 1996). The biomechanical properties of 

keratoconus and normal corneas have been compared (Andreassen et al. 1980). It 

was found that the mechanical strength of the cornea was reduced in keratoconus. 

The relatively small load values for keratoconic corneas were only partially 

explained by corneal thinning. Qualitative differences in the keratoconus cornea 

were a significant factor in explaining their relatively reduced strength (Krachmer 

et al. 1984). Collagen is the predominant protein in the cornea, accounting for 71% 

of its dry weight. Many reports in the literature suggest an abnormality in collagen 

metabolism in patients with keratoconus. An x-ray diffraction study comparing 

normal and keratoconic human corneas revealed no difference in collagen 

interfibrillar spacing, demonstrating that the stromal thinning in keratoconus is not 

due to a closer packing of collagen fibrils but it is due to a loss of collagen 

(Fullwood et al. 1990).

Environmental factors such as eye rubbing and contact lens wear may cause 

progression of this disorder in genetically predisposed individuals. The induced 

corneal trauma by eye rubbing is considered as a significant etiological factor in 

the development of keratoconus. Keratoconus patients do rub their eyes more 

often than normal controls. But a cause-and-effect relationship is difficult to prove 

(Krachmer 1984).

1.5.3 Diagnosis of keratoconus

In the past the diagnosis of keratoconus has relied upon the history and the 

subjective assessment of clinical signs. The clinical approach to keratoconus is 

looking for classical signs. Moreover, in milder cases the typical features are not 

obvious and the clinicians have to rely on more subtle signs.
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With corneal topography becoming more widely available, the possibility of 

screening a higher risk group for keratoconus becomes more feasible. Corneal 

topography is a computer assisted diagnostic tool that creates three-dimensional 

maps of the cornea and produces a detailed visual description of the shape and 

power of the cornea. In other words, corneal topography provides both a 

qualitative and quantitative evaluation of corneal curvature (see more in chapter 3, 

section 3.1.3). Also, it has become apparent that some corneas can have the 

topographic features of mild keratoconus in the absence of the other clinical signs 

(Harrison and Maguire 1995; Maguire and Bourne 1989; Maguire and Lowry

1991). Therefore, it is a useful tool in the study of the true incidence of 

keratoconus (see more in chapter 3, section 3.1.3).

1.5.4 Association between keratoconus and DS

Prevalence in people with DS

The prevalence of keratoconus in people with DS varies widely with a range of 0% 

to 30% (Haugen et al. 2001a; Haugen et al. 2001b; Liza-Sharmini et al. 2006; Lyle 

et al. 1972; Tsiaras et al. 1999) (Table 1-8), mainly due to the difficulties in 

diagnosing subtle cases of keratoconus, different methods and different age 

groups. For instance, keratoconus typically presents in the late teens or early 

adulthood between the ages of 15 and 25 years, so has not been found in several 

studies of children and young adults with DS (Liza-Sharmini et al. 2006; Shapiro 

and France 1985; Woodhouse et al. 1997). The highest reported prevalence of 

keratoconus was amongst the two studies who have the oldest subjects (Haugen 

et al. 2001b; Hestnes et al. 1991) (Table 1-8).

30



Chapter 1: Introduction

Table 1-8: Summary of the prevalence of the keratoconus in people with DS

Author Year No. Subjects Age
Prevalence of 

keratoconus

Lyle et al. 1972 44 5-29years 5%

Shapiro & France et al. 1985 53 2.2-8.4years 0%

Fierson et al. 1990 150 7-36years 15%

Hestnes et al. 1991 30 20-72years 30%

Haugen et al. 1992 30 15-90years 20%

Woodhouse et al. 1997 93
3months- 

12years
0%

Doyle et al. 1998 50 15-22years 2%

Tsiara et al. 1999 68 5-19years 1.5%

Haugen et al. 2001 47 14-26years 13%

Vincent et al. 2005 21
10months-

18years
9.5%

Liza-Sharmini et al. 2006 60
1 month- 

17years
0%

Etiology in people with DS

The cause of the increased prevalence of keratoconus in DS is also not known. 

The most frequent chromosomal abnormality occurring in association with 

keratoconus is DS due to trisomy 21. Genetic alterations leading to structural or 

biochemical changes in the cornea, and extensive eye rubbing are the two main 

hypotheses.

The inherent corneal thinning is probably an important aspect of the development 

of keratoconus in people with DS. The gene encoding type VI collagen, a major 

constituent of the corneal stroma, is on chromosome 21 (Hattori et al. 2000; 

Rabinowitz 1998). Therefore, as people with DS have a trisomy 21, there might be 

a connection between this gene with the alteration of corneal thickness, altered

31



Chapter 1: Introduction

elements of corneal stroma and higher incidence of keratoconus in people with 

DS. Pierse and Eustace (1971) cited many reports of corneal hydrops occurring in 

patients with DS and stated that acute hydrops occurs with increased frequency in 

keratoconus patients with mental deficiency. They also suggested that ruptures in 

Descemet’s membrane occur in these patients because of eye rubbing in 

response to chronic blepharitis or a basic defect in the corneal collagen matrix 

(Pierse and Eustace, 1971).

Diagnosis in people with DS

In the past, diagnosis of keratoconus was based on clinical examination (Haugen 

1992; Shapiro and France 1985; Wong and Ho 1997). Only resent studies have 

been based on more sensitive diagnostic tests such as corneal topography in 

people with DS (Doyle et al. 1998; Haugen et al. 2001a; Liza-Sharmini et al. 2006; 

Vincent et al. 2005). The variability in the frequencies of keratoconus also reflects 

the subjective diagnosis criteria. It appeared that the older age group may have a 

higher frequency of keratoconus .
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1.6 Glaucoma

1.6.1 Classification of glaucoma

Glaucoma is described as a syndrome of progressive optic neuropathy with optic 

nerve damage and retinal nerve fibre changes, which leads to a loss of visual 

function. According to the mechanism of damage to the optic nerve, glaucoma is 

now divided into open angle glaucoma (OAG) and angle-closure glaucoma (ACG). 

OAG is a slowly progressive atrophy of the optic nerve, characterized by the loss 

of peripheral visual function, an excavated appearance of the optic disc and the 

presence of an open anterior chamber angle. ACG is a condition in which the 

outflow of aqueous from the eye is blocked due to the closure of the anterior 

chamber angle, which causes a rapid rise in IOP. This type of glaucoma is also 

known as acute glaucoma or narrow angle glaucoma. It is very different from 

OAG in that blindness from ACG can be both painful and rapid.

Glaucoma is further divided according to whether the cause is primary or 

secondary. Primary glaucoma is more common as there are no apparent 

associated factors causing the disease. Secondary glaucoma develops because of 

other disease(s). Primary open angle glaucoma is the commonest type of 

glaucoma in the UK (Crick 1994).

1.6.2 Prevalence of glaucoma
Glaucoma is the second major cause of blindness in the normal population 

(Quigley 1996; Thylefors et al. 1995). Recent studies have recorded prevalence of 

1% to 3% (Weih et al. 2001b). Different populations tend to suffer from different 

types of glaucoma. In a review of a number of studies including European, African 

and Asian people, OAG is more common in African and European population. 

However, ACG is more prevalent in Asia (Quigley 1996). In addition, the age 

adjusted prevalence for white and black adult populations over 40 is 1.6% and 

4.6% respectively (Tielsch et al. 1991b).

33



Chapter 1: Introduction

1.6.3 Etiology of glaucoma

The mechanism of damage in glaucoma is not yet clear, and may be multifactorial. 

It is assumed that increased IOP damages the optic nerve if it is not compensated 

for by a sufficient auto-regulation. Most of the theories on the pathogenesis of 

glaucoma can be grouped into either mechanical or vascular categories.

The mechanical theory suggests that optic nerve damage can be caused by 

increased IOP through biochemical or structural factors. There is histological and 

experimental evidence that damage to the neural optic nerve by IOP occurs at the 

lamina cribrosa level (Parrow et al. 1992; Sogano et al. 1993). Since many 

researchers have demonstrated structural changes induces in the ONH by IOP 

elevation (Burgoyne et al. 2005; Caprioli and Spaeth 1984; Quigley et al. 1991). 

The mechanical theory is more prevalent in patients with a higher IOP. Anatomical 

changes in the ONH are not only associated with the loss of the ganglion cells 

axons but also with the rearrangement of the extracellular matrix in the ONH 

(Morgan 2000). The tissue remodelling leading to excavation is specific for 

glaucoma (Hernandez 2000).

The vascular theory considers that the optic nerve damage is a consequence of 

insufficient blood supply due to either increased IOP or by other factors reducing 

ocular blood flow. Research supports the view that ocular blood flow is indeed 

reduced in the majority of glaucoma patients (Flammer et al. 2002; Hafez et al. 

2003; Tielsch et al. 1991a). Therefore, the microvasculature may fail to nourish the 

axons of the ONH, which also may interfere with the delivery of nutrients or 

removal of metabolic waste by the capillaries. Glaucoma damage may also be 

specially associated with the disturbance of the choroidal circulation (Spraul et al.

2002). The concurrence of haemorrhages, retinal vein occlusions and the sectoral 

damage pattern of the disc in certain glaucoma patients are considered as 

supportive evidence for the role of localised vascular impairment in glaucoma 

(Sonnsjo and Krakau 1993). The vascular theory may be the predominant factor in 

patients who develop glaucoma with a low IOP.
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Two genes have been identified as factors that contribute to OAG, defects in the 

myocilin gene primarily causes elevated pressure (Stone et al. 1997) and the 

optineurin gene, appears to contribute to disease in familial low-tension glaucoma 

(Rezaie et al. 2002). In addition to these genes, some studies have identified 

chromosomal regions likely to contain OAG susceptibility genes (Pang et al. 2006; 

Richards et al. 1996; Wiggs et al. 2000).

With the advances in genetic technology and molecular biology it may turn out that 

all of those factors are involved to some degree.

1.6.4 Risk factors in the development of glaucoma

Glaucoma carries many risk factors. It is crucial to understand them in order to 

properly diagnose and manage this condition.

IOP

The most potential risk factor for the development of glaucoma is elevated IOP. 

IOP represents the pressure of aqueous humour within the eye. A number of 

reports have demonstrated that the incidence of glaucoma rises as IOP increases 

(Hollows and Graham 1966; Kass et al. 1980; Pohjanpelto and Palva 1974; 

Sommer et al. 1991). Also, the incidence of OAG is five times greater in patients 

whose IOP is higher than 21mmHg than those with IOP lower than 21mmHg 

(Armaly 1980; Morris et al. 1994). An IOP level of 21mmHg was chosen because 

the mean value of IOP measurement from a number of studies was found to be 

15.5mmHg (Armaly 1965; Hollows and Graham 1966). Therefore, 21mmHg was 

higher by twice the standard deviation than the mean value of 15.5mmHg (as the 

IOP value was assumed to be normally distributed).

a) Normal Tension Glaucoma

Normal Tension Glaucoma (NTG) patients have IOP within the statistical normal 

levels but they suffer from progressive visual field loss (Anderson et al. 2003). 

Therefore, it is now recognized that what is a normal IOP for one person may 

cause damage in another. In population studies, up to 50% of white patients with 

glaucoma have IOP of less than 21 mmHg (Weih et al. 2001b). In the Baltimore 

Eye Study, half of all POAG patients were found to have IOP less than 21 mm Hg
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at the time of study (Tielsch et al. 1991a). Findings from a larger trial have 

indicated that NTG patients require IOP reductions of approximately 30% to 

prevent progression of functional visual field loss (Poinoosawmy et al. 1998).

b) Ocular Hypertension

Ocular Hypertension (OHT) patients have an IOP of more than 21 mmHg but have 

no sign of glaucoma. However, the level of tolerance of IOP is likely to be very low 

once the laminar structures have exceeded their threshold of elasticity after 

prolonged exposure to high IOP levels. Therefore, IOP treatment might need to be 

tailored at levels that are much lower than normal (Burgoyne et al. 2005).

Age

The risk of glaucoma increases with age. The incidence of glaucoma in older 

people over 60 is greater than those under 40 (Armaly 1980; Coleman and Brigatti 

2001; Klein et al. 1992). The Baltimore Eye Survey found that the prevalence of 

glaucoma was 3.5 times higher for white persons of 70 to 79 years as compared 

with persons of 40 to 49 years (Tielsch et al. 1991b).

Family history

Family history is a strong risk factor of developing glaucoma. It has been 

estimated that first-degree relatives of patients with glaucoma are more likely to 

develop glaucoma (Hulsman et al. 2002; Miller 1978; Tielsch et al. 1994; Wolfs et 

al. 1998).

Refractive error

It is generally accepted that there is an increased prevalence of glaucoma 

amongst people with myopia. Two recent population studies demonstrated that 

myopic eyes had a 1.6 - 3.3 times increased risk of glaucoma (Mitchell et al. 1999; 

Wong et al. 2003). One of the reasons as to why glaucoma should be more 

frequent in myopic eyes is that IOP in moderate myopia was significantly higher 

than that in emmetropia (Nomura et al. 2004). It also has been suggested that 

myopic eyes are more susceptible to the effects of elevated IOP (Perkins and 

Phelps 1982). In addition, myopic eyes might have abnormal connective tissue 

that could predispose to glaucoma (Fong et al. 1990). It was reported that the
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lamina cribrosa is significantly thinner in highly myopic eyes, which decreases the 

distance between the intraocular space and the cerebrospinal fluid spacet, which 

may explain the increased susceptibility to glaucoma in highly myopic eyes (Jonas 

et al. 2004a).

Diabetes mellitus

Several studies have demonstrated a statistical association between diabetes and 

OAG (Tielsch et al. 1995; Weih et al. 2001a; Wilson et al. 1987). Diabetes 

decreases microvascular perfusion of the small vessels around the ONH, which 

leads to increasing susceptibility to increase IOP.

Anatomical risk factors to glaucoma

a. Corneal thickness

There is an increased susceptibility to glaucoma severity in patients with thinner 

corneas (Brandt et al. 2001; Gordon et al. 2002; Herndon et al. 2004; Hewitt and 

Cooper 2005; Medeiros et al. 2003; Shimmyo et al. 2003). It may be that patients 

with thinner cornea also have thinner sclera, which makes them more susceptible 

to glaucoma damage.

b. Blood pressure

Blood pressure and vascular dysfunction should be considered. Raised blood 

pressure has been found to be positively related to IOP (McLeod et al. 1990). But 

the relationship between blood pressure and glaucoma seems more complex 

(Hayreh et al. 1999; Meyer et al. 1996). Generally speaking, perfusion pressure is 

defined as blood pressure minus IOP in the eye (Sommer 1996). There is a link 

between the perfusion pressure of the optic nerve (which is, in essence, its blood 

supply) and glaucoma (Leske et al. 1996; Mitschischek 1991; Tielsch et al. 1995). 

The lower this perfusion pressure is, the higher the risk of glaucoma seems to be. 

As blood pressure is a factor in calculating the perfusion pressure, it might have 

some effect.

c. Retinal vessels

Retinal vessels are thought to influence the susceptibility of the retinal nerve fibres 

to glaucoma damage. They provide them with nutritional support and possibly act
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as an element of additional anatomical support within the ONH structure. It is 

speculated that the vessels may protect the nerve fibres (Chihara and Honda 

1992). Baring of the vessels is common feature of the glaucoma retina. The 

vessels are hanging unsupported over the disc area. They are increasingly 

apparent in correlation to the degree of thinning of the underlying rim area. It is 

controversial whether the prevalence of cilioretinal arteries could be an additional 

protective parameter against the progression of damage especially in the temporal 

ONH region (Lee and Schwartz 1992). Or they have a rather insignificant influence 

in glaucoma progression (Budde and Jonas 2003).

d. The size of the optic disc

There is conflicting evidence as to whether the size of the optic disc is a risk factor 

in glaucoma. A study suggested that large optic discs may be susceptible to 

glaucomatous visual field damage at statistically normal IOP readings (Burk 1992). 

However, several studies stated that glaucoma is independent of the disc size 

(Jonas 2005b; Jonas et al. 1988c; Jonas and Papastathopoulos 1996; Quigley et 

al. 1999). It was reported that with the exclusion of highly myopic eyes, the shape 

of the optic disc is not markedly important for pathogenesis, early diagnosis and 

differential diagnosis of glaucoma (Jonas 2005; Jonas et al. 1988c; Jonas and 

Papastathopoulos 1996).

1.6.5 Diagnosis of glaucoma
There are many clinical manifestations of glaucoma. Classically, visual field 

evaluation, the ONH appearance, IOP reading and anterior chamber angle 

assessment are the main reliable indicators. A sensitivity and specificity of over 

90% has been reported using a combination of tests for glaucoma detection in 

normal people (Harper and Reeves 1999). The best combination was visual field 

analysis, optic disc cupping and IOP (leong et al. 2003). Recently, CCT is 

considered as an important measurement in the accurate diagnosis of patients 

with glaucoma and those suspected patients.
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Visual field evaluation in glaucoma

Visual field represents the extent of space an eye views when directed in a fixed, 

straight-ahead position, which enables a direct measurement of the functional 

capacity of the retina. Visual field measurement can determine the stage of the 

disease by assessing the extent of the field loss. Modern visual field testing 

employs automated computer-generated light detection measurements at multiple 

locations throughout the field of vision. However, in early glaucoma, progression of 

the visual field may occur in the presence of little change in the appearance of the 

ONH. Therefore, visual field is not sensitive enough to detect structural change as 

by the time a visual field defect can be detected, substantial damage to the nerve 

fibres has already occurred (Harwerth et al. 1999; Harwerth et al. 2004; Quigley et 

al. 1982; Quigley et al. 1989).

Changes of the ONH in glaucoma

Since it is the optic nerve fibres that are damaged in glaucoma, the assessment of 

the optic disc should provide key information about the integrity of the optic nerve. 

All the following signs of the ONH are suggestive of glaucoma: an enlarged cup 

size, acquired pit of the optic nerve, thinning of the rim, increased pallor, a shift in 

the position of the blood vessels, notches or haemorrhages (Broadway et al. 1999; 

Jonas and Schiro 1993). Progression of glaucomatous ONH changes are small 

rim area and large beta zone of PPA but independent of the size of the optic disc 

and alpha zone of PPA and retinal vessel diameter (Jonas et al. 2004b). Many 

studies have confirmed that PPA can increase in glaucoma optic neuropathy 

(Uchida et al. 1998). Even in experimental glaucoma, the development of PPA has 

been described (Hayreh et al. 1998). PPA simply reflects neuronal atrophy, 

connective tissue alterations and unveiling pre-existing atrophy of the retinal 

pigment epithelium in glaucoma.

The development of glaucomatous ONH leads to changes in ganglion cells layers. 

The retinal nerve fiber layer thickness is significantly decreased in glaucoma 

(Matsumoto et al. 2003; Matsuno et al. 2001). These changes precede visual field 

loss (Armaly 1980; Johnson et al. 2003; Quigley et al. 1999; Sogano et al. 1993). 

Early detection of ONH structural anomalies may lead to alternative forms of 

treatment thus delaying the progression of OAG. Therefore, observation of the
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ONH is a very useful tool in the diagnosis of glaucoma, the identification of 

progressive damage and the consequent therapeutic management.

IOP variations in glaucoma
For many years, glaucoma has had raised IOP as part of its definition but this has 

increasingly been shown to be misleading. IOP is often inadequate for predicting 

those at risk of the development and progression of glaucoma as some glaucoma 

patients have normal IOP. Since there can be a variety of responses to different 

pressures, it is difficult to define a safe range of IOP, even it is widely accepted 

that a healthy IOP is between 11-22mmHg. For instance, according to the Beaver 

Dam Study, 2.1% of the population above 40 years has glaucoma, and only half of 

these individuals are aware that they have the disease. One third to one half of 

patients with glaucoma exhibit normal IOP at the initial examination. In population 

studies, 50% of subjects with glaucoma have IOP under 21 mmHg and 10% of 

OHT could go on to sustain glaucomatous damage.

Glaucoma with normal IOP or with elevated IOP differs in predictive factors for the 

eventual progression of glaucomatous optic nerve damage. For patients with an 

elevated IOP, significantly predictive factors for eventual progression of glaucoma 

were older age, advanced perimetric damage, smaller rim, and larger area of PPA. 

In contrast, in the normal IOP group, a significant predictive factor was the 

presence of disk haemorrhages at baseline (Martus et al. 2005).

However, IOP readings have always suffered from multiple source errors. Most 

importantly, there are extensive data in the literature demonstrating how properties 

of the cornea influence IOP measurement such as CCT readings (Graf 1991; 

Matsumoto et al. 2000; Recep et al. 2001; Whitacre et al. 1993), corneal curvature 

(Cennamo et al. 1997; Chatterjee et al. 1997; Chihara et al. 2005; Gimeno et al. 

2000; Orssengo and Pye 1999; Shimmyo et al. 2003; Svedberg et al. 2005) and 

corneal elasticity (Harada and Naoi 2004; Svedberg et al. 2005). The apparent 

effect of corneal thickness on clinical IOP measures has been observed with 

combinations of optical pachymetry, contact tonometry, ultrasound pachymetry 

and non-contact tonometry (Graf 1991; Matsumoto et al. 2000; Recep et al. 2001). 

To date, there are many different studies researching the appropriate correction
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factors (Ehlers et al. 1975; Shah et al. 1999; Wolfs et al. 1997). Overall, the 

magnitude of the effect in apparently normal corneas is rather small, i.e. around a 

1.5 mmHg difference in IOP for a 10% difference in CCT (Doughty et al. 2002) (it 

will discussed more in chapter 5).

CCT measurement

The role of CCT in glaucoma is basically divided into two parts. The first part 

involves recalculating IOP by using an algorithm since it is well documented that 

CCT affects the estimation of IOP. Thin corneas produced underestimations of the 

IOP, whereas thick corneas produced the opposite (Whitacre et al. 1993). The 

second more complicated part of CCT is an independent risk factor for the 

development of glaucoma from previous studies (Brandt et al. 2001; Gordon et al. 

2002; Herndon et al. 2004; Hewitt and Cooper 2005; Medeiros et al. 2003; 

Shimmyo et al. 2003).

CCT is a dynamic parameter that may changed by a number of ocular and 

systemic factors, including race, age, gender, corneal curvature and time of the 

day (Alsbirk 1978; Doughty and Zaman 2000; Foster et al. 2003; Herndon et al. 

1997). A recent study suggested that more than one reading on separate 

occasions may be required to assess the risk of progression of glaucoma in 

clinical practice. Readings may also vary due to the variability of comeal thickness, 

limitations of the equipment and the experience of the operator (Wickham et al. 

2005). However, another study has not shown statistically significant CCT 

variations during the day in suspected and glaucomatous patients, therefore, 

suggesting that only one CCT measurement is sufficient (Cronemberger et al. 

2005).

Anterior chamber assessment

Gonioscopy is a mandatory test for anterior chamber assessment in ACG patients 

(Bonomi et al. 2000). It is critical to observe the anterior chamber configuration in 

ACG patients. The methods used for evaluating anterior chamber configuration 

include ultrasound biomicroscopy, A-mode ultrasonography and Scheimpflug 

principle imaging (Friedman et al. 2003; Olbert and Kehrhahn 1992; Richards et al. 

1988).
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1.6.6 Glaucoma in people with DS

Occurrence of glaucoma in people with DS is apparently rare. Infantile glaucoma 

has been reported in children with DS (Traboulsi et al. 1988; Wong and Ho 1997). 

Two case reports have described the development of a flat anterior chamber and 

raised IOP following acute corneal hydrops (Jacoby et al. 1990; McClellan and 

Billson 1988). A recent study reported four cases of glaucoma in children with DS 

(Liza-Sharmini et al. 2006): Two cases of infantile glaucoma, one case of 

glaucoma suspect and one case of secondary glaucoma. The secondary 

glaucoma was due to bilateral chronic uveitis. Several investigators who have 

studied large numbers of DS patients did not report glaucoma, possibly due to the 

difficulties in the detection (it will be discussed in Chapter 5, section 5.1.1).

However, people with DS may carry risk factors of the development of glaucoma 

the same as in the general population such as thinner cornea, higher refractive 

error and ageing earlier.
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1.7 Outline of the project

1.7.1 Aims of the project

It is well documented that people with DS have ocular defects (da Cunha and 

Moreira 1996; Fierson 1990; Woodhouse et al. 1997). Our study aimed to 

understand the contribution that ocular structures make to such defects. The first 

part of our study (chapter 3) aimed to measure ocular biometric parameters 

among our subjects including axial length, corneal shape, anterior chamber 

parameters, lens density and lens thickness. In addition, the inter-relationship 

between refractive components was investigated and compared in child subjects. 

Further, the relationship between visual function and ocular biometry in children 

with DS was investigated. Additionally, keratoconus was detected by corneal 

topography, giving an indication of the prevalence among our children and adults 

with DS.

The unique retinal features in people with DS has been observed and reported 

(Ahmad and Pruett 1976; Berk et al. 1996; da Cunha and Moreira 1996; Sherk and 

Williams 1979; Williams et al. 1973). However, there is very little information 

available about their quantitative features of the retina. Therefore, the second part 

of the study (chapter 4) aimed to investigate the dimensions of the optic disc and 

the retinal vasculature in children with DS. It was concerned with an assessment 

of the number of arteries and veins crossing the disc, their distribution and width of 

vessels.

To extend our work, the detection of glaucoma in people with DS was considered 

(chapter 5). In order to identify suspect glaucoma among our adults with DS, we 

aimed to measure IOP, investigate the relationship between corneal parameters 

and IOP, and evaluate the appearance of the optic disc in fundus photographs.

Thus, our study aimed to provide important information about the ocular biometric 

features and the unusual appearance of the retina and disc in people with DS. 

Detection of keratoconus and glaucoma were of particular interest.
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1.7.2 Procedures of the project
Selection and evaluation of equipment

At the beginning of the study, several pilot studies were performed in order to 

select the most suitable equipment (chapter 2). There were three vital points to be 

considered in order to gain the full co-operation of the subjects: a) a speedy 

examination; b) comfortable, i.e. no use of eyedrops which might distress the 

subjects; c) non-contact equipment.

The lOL-Master, the Oculus Pentacam system, a Topcon non-mydriatic fundus 

camera and l-care tonometer were chosen and used in our study. The 

magnification of the fundus camera was worked out.

Recruitment of subjects

a. Child subjects

The cohort of the Cardiff DS Vision Research Unit was founded in 1992/3, and 

covers the ages of children between 3 months to 16 years. The population is from 

South and West Wales. Despite no longer actively recruiting children to the cohort, 

it is continually increasing due to parent and professional recommendation, and 

referrals from local Health Authorities.

Prior to commencement of the present study, more than one hundred families from 

the cohort (with children aged 4 years and older) were invited to take part in our 

study through our Information Day. Information sheets and consent forms were 

then sent to our cohort family (appendix 2a). Forty six consent letters were signed 

and returned by the parents and, when appropriate, by the child with DS.

For the period of study from September 2004 to Sep 2005, control children were 

recruited. In order to minimize the effect of various factors on the measures of size 

of the optic disc, our intention was to recruit a control group who were matched 

with children with DS for refractive error. This was because the magnification of 

the fundus will be dependent not only on the optical system of the camera, but 

also on the subject’s refractive error and eye-size. Moreover, the size of the optic 

disc is influenced by the method of measurement and race (Caprioli and Miller 

1987; Meyer et al. 2001).
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All the records of child patients within the School clinic between 2001 and 2005 

were reviewed. Eighty local children who matched the following criteria were 

selected.

i. Ages of 4 to 16 years;

ii. That they had visited our clinic within the last eighteen months and lived in 

South Wales, concentrating especially on children of Cardiff University staff 

members. That is, it was convenient for them to participate.

iii. They had refractive errors similar to those children with DS who were taking 

part.

iv. They had no ocular abnormalities.

Eighty letters with information sheets and consent forms were then sent out to the 

parents of those local children (appendix 2a). Forty-eight children’s parents signed 

and returned the consent form to enrol their children in our study. A week later a 

follow up phone call was made to acknowledge their support and confirm when 

they could visit our clinic. Finally, forty-four children kept their appointment for our 

study. Four additional children were recruited when they visited our Special 

Assessment Clinic. Two more children were siblings of children with DS who came 

together to our clinic and were delighted to be receiving a share of the attention. 

Therefore, fifty control children participated in our study.

After completion of the measurements, an acknowledgement letter (appendix 2b) 

and one fundus photograph (‘photograph of the back of the eye’) were posted to 

each child as a reward.

In order to recruit child subjects for the Pentacam image (which took place after 

the ‘retinal’ study), ninety-six letters with up-to-date information about our research 

were sent off to our cohort and control children who took part in the ‘retinal’ study 

(appendix 3). Twenty five children with DS and twenty eight control children’s 

parents signed and returned the consent form to enrol their children in this study. 

Twelve children with DS and six control children gave their consent for cycloplegia 

to be used for lens thickness measurement.
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b. Adult subjects

All the records of adults DS patients who had visited our Special Assessment 

Clinic and were co-operative for the last eye test within the last three years 

between 2001 and 2005 were reviewed. Sixty-seven adults with DS (17 years and 

over) were selected and invited by letter to participate in our study. Eleven of the 

subjects were known to have keratoconus, from clinical record. The information 

sheets about the study were enclosed and sent to the family or care home for the 

adults with DS (appendix 5). Twenty-two consent letters for participation were 

signed and returned. However, four subjects later dropped out because of illness 

and two withdrew their permission. In addition, the seven Community Learning 

Disability Teams in South Wales were contacted by phone calls. Only one team 

nurse was willing to pass the information to thirty DS patients in her area. Four DS 

patients were recruited in this way. Each consent form returned was 

acknowledged by telephone, the family or carer of the subjects were then given 

the opportunity to ask any questions about the study, and an appointment was 

then made. As a result, 20 adults with DS were recruited.

Sixteen control subjects volunteered for the Pentacam images via friends, staff 

and students in the school. Oral consent was given in each case. The control 

adults were chosen individually to match the refraction with all the co-operative 

subjects with DS as closely as possible. Twenty control subjects volunteered for 

IOP and CCT measurements via friends, staff and students in the school and 

signed the consent form (appendix 7).

Table 1-9: Characteristics of all the subjects

DS Children
Control
Children

DS Adults
Control
Adults

No. subjects 46 50 19 16

Gender
28 males 

18 females

29 male 

21 female
10 males 

9 females

7 males 

9 females

Age Mean±SD 10.5±3.3 11.0±3.2 33.6±14.2 36.5±9.8

(years) (Range) (4-16) (5-16) (19-58) (19-59)

Resource From South and North Wales
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Ethical issues

Since all of the subjects were recruited by virtue of being part of the research 

cohort, or were patients of the School clinic, or were members or friends of 

members of the School, the appropriate committee was the School of Optometry & 

Vision Sciences Human Science Ethical Committee. The application was 

submitted and all recruitment procedures and experimental protocols were 

approved prior to any data collection.

Parents and carers of the subjects were contacted for initial consent for 

participation in the study. All control subjects were able to read the information 

leaflet and sign the consent form. However, ‘informed’ consent cannot be 

assumed in subjects with DS. Therefore, during the study every care was taken to 

explain to the subjects what was happening and coercion was not used. If subjects 

appeared to be willingly took part (by placing their chin on the chin rest for 

example), gentle verbal encouragement was used. However, if a subject clearly 

did not want to participate, or became uncooperative part way through procedures, 

the examination was halted. All recruitment procedures and experimental 

protocols were approved by a local Ethical Research Committee.

Data collection procedures

The testing procedures were undertaken in the clinic of the School where a parent 

or guardian was present at all times. Although the corneal topography study is 

described first in this thesis, the ‘retinal’ study took place first.

a. Child subjects

Full descriptions of protocols are given in Chapter 3 and 4. In most cases, a 

fundus photograph was first taken. The subjects were then asked to sit for the AL 

measurement. Afterwards, the children were taken to the consulting rooms for 

further eye examinations including refraction, visual acuity and accommodation. 

On the second visit, those children who were co-operative in the first visit sat only 

for the Pentacam images. In the cases of those children who did not fully co­

operate on their first visit, they were asked to repeat the failed examination if 

possible. In addition, for those who were agreeable, 0.5% Tropicamide was used 

and the Pentacam images were then taken for lens thickness measurement.
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b. Adult subjects

Full descriptions of protocols are given in Chapter 3, 4 and 5. In most cases of DS

adults the following steps were taken in the following order:

i* Fundus photograph

ii. AL measurement

iii. Pentacam images

iv. IOP measurement

V. Refractive error measurement

vi. VA measurement

Lastly, family history of keratoconus and glaucoma, the frequency of rubbing eyes 

per day were recorded when the subjects visited our clinic.

1.7.3 Data analysis procedures

Corneal topography analysis

All the reliable images were viewed by Dr. Shehzad Naroo (Lecturer, University of 

Aston), who has considerable expertise in corneal topography and detection of 

keratoconus. Objective analysis of the images by the Pentacam system was also 

used (see chapter 3, section 3.3.1).

Fundus photograph analysis

a. Retinal features

Those good quality images of fundus were measured with the use of the ImageNet 

software 2000 by one experienced observer Dr. Adrian Jones (Optometrist, 

University Hospital of Wales), which images matched for AL in DS children and 

controls (for more details, see 4.2.4). Those good quality images of the fundus 

were corrected for refraction and corneal radius, and planimetry measurement was 

performed with the use of custom software (for more details, see 4.2.4) by the 

same observer ALJ. The author (PJ) counted the number of retinal vessels in 

fundus photographs and measured their width (see 4.2.5).

b. Glaucomatous changes in the fundus photography

All the good quality images of the fundus were viewed seperately by ALJ and an 

ophthalmologist (Patrick O. Watts, University Hospital of Wales) for glaucomatous
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changes (see 5.2.3). Afterwards, a second ophthalmologist (James E. Morgan, 

University Hospital of Wales and the School of Optometry & Vision Sciences) 

reviewed the suspect photographs from a clinical perspective.

Statistical methods

The measures of the right eye of each subject were chosen for data analysis. The 

measures of the left eye were only accepted if that of the right eye was not 

available, or not reliable. Prior to data analysis, the data was checked for outliers 

and their possible effects on the interpretation of the analysis. There is no widely 

accepted method to decide whether to exclude or include extreme values 

(Armstrong et al. 2005; Tabachnick 1996). In our study, if it was a genuine score, 

outliers were included in the data analysis. Distribution for all the data was tested 

for normality with histograms, boxplot, Kolmogorov-Smirnov test or Shapiro-Wilk 

test. It was considered as a significant difference from normal value when p £

0.05. Values are presented as mean ± Standard Deviation (SD), which are 

generally most informative statistics for distribution.

Association between two variables was presented by Pearson or Spearman 

correlation co efficient. ANOVA was then performed in order to determine the 

strength and direction between two variables. Pearson correlation (R), the

coefficient of determination (R2), the significant level and the regression equation 

were presented when there was a statistically significant association between two 

variables. The difference was tested in order to compare the correlation (see 

Appendix 1). The significant difference was reported when observed z score (Zobs) 

is out range of the value from -1.96 to 1.96 (Pallant 2001). The difference in linear 

regression was tested between two groups. ANOVA was performed to test 

whether the two lines differ in slope or constant. To determine whether the residual 

variances are different, the ratio of the two variances was to be tested by a two- 

tailed variance ratio F-test after dividing the larger variance by the smaller 

(Armstrong et al. 2005).

All the statistical techniques used in each chapter are summarized and presented 

as an appendix 1.
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Chapter 2: Pilot studies

2.1 Axial length measurement

2.1.1 Choice of equipment for axial length measurement

In the past, conventional ultrasound measuring devices have played a 

decisive role in the measurement of axial length. Ultrasound is transmitted to 

the eye from a transducer and sound is reflected back to the transducer from 

tissue interfaces. However, the technique has been confounded by potential 

misalignments, corneal indentation during measurement and large 

measurement variability (Binkhorst 1981; Kurtz et al. 2004; Steele et al. 

1992).

Currently, lOL-Master provides a non-contact technique with no risk of 

infection or corneal abrasion. The reproducible and precise AL 

measurements achieved with lOL-Master were shown to be better than that 

of ultrasound in earlier studies (Findl et al. 2001; Goyal et al. 2003; Haigis et 

al. 2000; Kielhorn et al. 2003; Lam et al. 2001; Rose and Moshegov 2003; 

Rudnicka et al. 1992; Santodomingo-Rubido et al. 2002; Sheng et al. 2004). 

Two recent studies have also shown that it is considered particularly 

appropriate for AL measurement in children (Carkeet et al. 2004; Quinn et al.

2003). Moreover, it is possible to achieve consistent readings with little 

variation with lOL-Master (Olsen and Thorwest 2005). Additionally, it is less 

time consuming and has the advantages of improved precision and patient 

acceptability when compared to conventional applanation ultrasound 

biometry. Therefore, lOL-Master (Zeiss, Germany) was selected in our study.

2.1.2 Principles of how the lOL-Master works

The Zeiss lOL-Master is based on partial coherence laser interferometry 

(PCI) to measure AL. It is a combined biometry instrument which measures 

parameters of the human eye needed for intraocular lens calculation (see 

Fig. 2-1). The lOL-Master measures the ocular AL between the corneal 

vertex and retinal epithelium along the visual axis using a red fixation beam, 

with a resolution of 12 pm and a precision of 5 pm (Drexler et al., 1996). It 

utilises PCI technique, which generates interference patterns from the
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combination of a reference beam with a second beam reflected from the 
ocular components.

Fig. 2-1: A picture of IOL Master (Zeiss, Germany)

The basic principle of optical biometry is depicted schematically in Fig.2-

2. A dual beam of infrared light is emitted by a semiconductor diode 

laser (A= 780 nm) of high spatial coherence and short coherence length 

(160 pm). The eye to be measured and the photodetector are situated at 

the interferometer. Both partial beams are reflected at the corneal 

surface and the retina. Interference occurs if the path difference between 

the beams is smaller than the coherence length. The interference signal 

received by the photodetector is measured, dependent on the position of 

the interferometer mirror, which can be measured precisely. The optical 

distance is used to derive geometric intraocular distances by 

incorporating the group refractive indices of the respective ocular media 

(cornea, lens, aqueous and vitreous humour).
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Fig. 2-2: A diagram showing principle of a dual beam partial coherence

interferometer

It also measures quickly and precisely the ocular parameters in separate 

measurements such as corneal radius, corneal power and anterior chamber 

depth. These additional measures are not performed in our study.
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2.2 Pilot study (1): Validation of the Pentacam system

2.2.1 Introduction

Aims of study

Three aspects of the Pentacam performance were of interest:

i. To confirm the procedure that it used;

ii. To assess the effect of poor fixation; since the DS subjects might not 

fix properly.

iii. To evaluate the effect of cycloplegia for the lens thickness 

measurement;

Choice of equipment for corneal assessment

There are a large variety of techniques to measure central corneal thickness 

(CCT). Traditionally, the gold standard for CCT has been provided by 

ultrasound pachymetry. However, there are difficulties in alignment (Gordon 

et al. 1990; Higgins et al. 1993). That is to say, it is difficult to locate 

accurately the same points of measurements in a serial measurement. This 

may result in falsely large variations in corneal thickness as the thickness 

increases from the centre to the periphery of the cornea. What is more, it 

needs anaesthesia and contact of the probe.

A novel apparatus capable of taking CCT measurement is the Oculus 

Pentacam system (Fig. 2-3) (principle of it is described in a later section). 

The CCT values obtained with the use of the Pentacam system tend to be 

closer to ultrasound pachymetry and with less variability compared with 

Orbscan in many recent studies (Barkana et al. 2005; Buehl et al. 2006; 

O'Donnell and Maldonado-Codina 2005; Rufer et al. 2005).

The main advantage of the Pentacam system is that the eye screening 

system does not rely on placido-based technology for corneal topography. 

With more advanced technology, it also defines the optical properties of the 

cornea such as radius and asphericity. Polynomial decomposition has been 

used to determine corneal aberrations. Noticeably, the true corneal power is
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provided by the Pentacam which takes posterior comeal surface and corneal 

thickness into account. As an anterior segment analysis system, it also 

provides information for anterior chamber parameters (Buehl et al. 2006; 

Meinhardt et al. 2005) and lens properties. The effect of tear film fluctuations 

on corneal topography measurements was minor. More importantly, it is 

suitable for our subjects with learning disability since it is a non-contact 

technique whereby the anterior surface, the thickness profile, and the 

posterior surface are determined in one step. This eliminates alignment 

errors that may occur and accelerates the measurement procedure. 

Therefore, the Pentacam system was chosen as the most suitable for the 
current study.

Fig. 2-3: A picture of the Pentacam system 

(Oculus, Germany, 1.11 version software)

Principles of how the Pentacam system works

The Pentacam system uses a rotating Scheimpflug camera and a visible slit 

light source (blue at 474 nm). The camera on the rotating wheel takes a
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complete picture around the optical axis of the eye from the anterior surface 

of the cornea up to the posterior surface of the lens (Fig. 2-4).

The overview image from the Pentacam system gives several evaluations of 

the eye being measured (Fig. 2-4). The system shows the camera position 

(Fig. 2-4a) and analyzes the Scheimpflug pictures (Fig. 2-4b) automatically 

by recognizing the central curvature and constructs the centre line through 

the cornea, the anterior chamber and the lens accordingly. It then calculates 

and projects a model of the anterior eye segment (Fig. 2-4c). The corneal 

topography is shown as well (Fig. 2-4d).
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Fig. 2-4: The overview image from the Pentacam system
a) Upper left: Camera/slit lamp position and the cross-section of the 

eye;

b) Left center: Scheimpflug image and densitometry of the lens;

c) Lower left half: Virtual eye

d) Lower right: Comeal topography
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Within 2 seconds, the Pentacam system rotates and acquires 25 images that 

contain 5000 measurement points on the corneal surface. It provides a 

topography map of the anterior and posterior surface of the cornea. It also 

provides a number of keratoconus indices on the keratoconus map as an 

objective method of detection of keratoconus (for more details, see chapter 3, 

section 3.3.1). Additionally, anterior chamber parameters including anterior 

chamber volume (ACV), anterior chamber angle (ACA) and anterior chamber 

depth (ACD) are calculated from the three-dimensional model (for more 

details, see chapter 3, section 3.2.7). The density of the lens is standardized 

from 0 to 100. Therefore, 0 means the lens shows no clouding, 100 means 

the lens is completely opaque (for more details, see chapter3, section 3.3.2). 

Lens thickness readings are calculated and then shown on the screen if the 

pupils are dilated enough.

The choice of mydriatic of the agent

The advantages of use of Tropicamide are as follows: Short duration of 

action, minimal number of side effects, maximum mydriasis occurs within 15- 

40 minutes and dissipates within 2 to 6 hours (Egashira et al. 1993; Mutti et 

al. 1994). Therefore, 0.5% Tropicamide was chosen in our study.

2.2.2 Methods

Recruitment

Five normally-sighted subjects (three males, two females) were recruited 

from our university. Mean age of the subjects is 35.6 ± 9.9 years. Three 

subjects’ pupils were dilated for lens thickness measurement. Oral consent 

was given by all the subjects.

Examination procedures

The examiner (PJ) took all the measurements by the Pentacam system (the 

details about how to use it are in the next section). The procedures of the 

measurements were as follows:

First of all, one drop of 0.5% Tropicamide was put in the right eye of the 

subjects for the lens thickness measurement. Images for the right eye were
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then taken every 1-2 minutes until the pupil size and the lens thickness 

values were kept at a relative stable level. It took 40- 50 minutes and about 

30 images were taken.

Aiming to assess the effects of poor fixation, the following five additional 

measurements were then taken of the left eye of all the subjects: One was 

taken when the subject was looking at the fixation light; One was taken when 

the subject was looking to the right approximately 2.5 cm away from the 

centre; One was taken when the subject was looking to the right again, and 

tilting her or his head; One was taken when the subject was looking above 

the fixation light; One was taken without the blue fixation light when the 

subject was looking at the centre of the black circle. The above procedure 

took a further 10 minutes. Therefore, the whole procedure took 60 to 70 

minutes for each subject.

Use of the Pentacam system

The Pentacam system was used in a darkened room. The subject’s chin was 

placed on the chin rest and the forehead rested against the forehead strap. 

The subject was instructed to look at the blue fixation light.

Firstly, the examiner adjusted the Pentacam so that the subject’s pupil came 

into view by moving the joystick. The apex of the cornea was marked by the 

yellow circle and the pupil was marked by the big blue circle. The pupil image 

showed the position of the measuring head in vertical or horizontal direction 

(Fig. 2-5a: upper centre). Secondly, the live Scheimpflug image and 

alignment red dot were visible by adjusting the joystick forward and 

backward. The apex of the cornea was marked by the red dot (Fig. 2-5b: 

lower left). Then the examiner made the final adjustment to reach the best 

position by following the red arrows (Fig. 2-5c: lower centre). During this time, 

the subject was asked to keep looking at the blue fixation light and open 

his/her eyes widely. The image capture was then taken automatically when 

the red dot was on the red line and yellow circle was in the cross.

57



Chapter 2: Pilot studies

R ight eye

O v*

Eye

RigN left

Sd-wnpfluj Image 

f *  1 A c tu n

Enhanced Dynamic SchefnptWg image 

f» 5 (Y tu  v /  01 MK 
<** 10Pic»ue/a2*ec  

C  i5Ptciue/Q  3»ec

JOS*m
C  l2 P * *u e /1  Sec 
r  2S«he»uenSec 

r  30 PicMe /  2 Sec

W SStLiflM
15 A u 'j i.o h . PeisaiT'

Sue Seen

Fig. 2-5: The Image on the Pentacam screen before starting scan
a) The upper centre is “the image of pupil", which is for preadjustment.

b) The lower left is the “live Scheimpflug image”

c) The lower centre shows information for the fine alignment

QS (Quality specification) was shown on the screen (Fig. 2-6). The system, 

therefore, indicates the reason if the image is of poor quality. It also provides 

detailed information about over which area the front and back of cornea have 

been measured, the alignment level, eye movement condition and a value of 

QF (Quality Factor). QF gives the degree to which the image was disturbed 

by patient’s blinking or extraneous light influences. According to the manual, 

the data were regarded as valid:

i. The analyzed area was higher than 50%;

ii. QF > 95%;

iii. Lost segments were lower than 3;

iv. The value of eye movement was lower than 150.
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%  Examination Quality Specification
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Fig. 2-6: Examination quality specification table (QS Table)

2.2.3 Results and discussions

Should the blue slit light be kept on or off when taking images?

Following the manual, the blue fixation light is used for screening purposes in 

order to get an impression of the condition of the lens without dilating the 

pupil, thus enhancing the patient’s comfort. The subsequent results from our 

pilot study proved that there is no big difference between the measurement 

with the lights on or off if the subjects were instructed to look at the centre of 

the black circle (Table 2-1). However, it was shown that it may be better to 

put the blue light on in order to complete the examination more quickly and 

successfully. Firstly, it provides information for the fine alignment on the 

alignment screen, which is helpful for the examiner to take good images in a 

short space of time. Secondly, it is much easier for the subjects to fixate a 

light rather than looking at a whole black circle. Subjects with DS are more 

likely to lose interest or look away due to poor co-operation and lack of 

comprehension. Therefore, it could reduce the chance of the subject looking 

away from the centre of the black circle.
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To assess the effects of poor fixation

The readings of images were obtained with the subjects fixating the light, 

looking at the centre without the light, looking away, tilting the head and 

looking above the light. Those images taken in an improper position gave 

obviously different readings compared with those images taken properly 

(Table 2-1). The Scheimpflug image, the model eye and the corneal 

topography of the same subjects were obviously changed by misalignment, 

improper fixation and tilting the head of the subjects with the Pentacam 

system (see Fig. 2-7a-c). Therefore, poor fixation influenced the readings 

greatly.
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Fig. 2-7a: The image taken when the subject was looking away
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Fig. 2-7b: The image taken when the subject was tilting her head
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Fig. 2-7c: The image taken when the subject was looking above the light
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Table 2-1: All the readings of measurement with the Pentacam 

at different fixation direction

Fixating the 

light

Without the 

light

Looking

away

Looking

above

NO. 1 

Subject

CCT (fim) 606 593 613 615

ACVCmm1) 198 196 203 204

ACD (mm) 3.15 3.14 3.15 3.16

ACA (°) 29.2 29.7 17.5 29.1

QS OK OK Poor fixation Alignment

NO. 2 

Subject

CCT Oun) 542 547 444 562

ACV(mm2) 166 148 169 154

ACD (mm) 3.16 2.94 N/A 2.83

ACA (°) 33.5 31.0 N/A 33.4

QS OK OK Alignment
Poor

fixation

NO. 3 

Subject

CCT (|un) 528 526 497 670

ACV(mm2) 223 203 268 252

ACD (mm) 3.63 3.57 3.12 2.8

ACA (°) 45.2 44.7 24.2 21.5

QS OK OK Alignment Alignment

NO. 4 

Subject

CCT (jim) 573 566 720 553

ACV(mmJ) 188 147 171 184

ACD (mm) 3.06 2.87 2.87 2.81

ACA (°) 32.5 27.6 -11.6 30.0

QS OK OK Alignment Alignment

NO. 5 

Subject

CCT (pm) 541 558 601 558

ACVCmm1) 168 167 176 167

ACD (mm) 3.32 3.13 3.01 3.13

ACA (°) 38.7 34.2 34.8 34.2

QS OK OK Poor fixation
Poor

fixation
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To evaluate the effects of cvclopleaia for the lens thickness measurement 

The effect of cycloplegia on lens thickness, pupil diameter during the test in 

three subjects is presented Fig 2-8. As expected, the pupil size was highly 

associated with the action time of the cycloplegia in the subjects (Pearson 

correlation: 0.831, 0.959, 0.970, p< 0.01) (Fig. 2-8a). The lens thickness 

measurement was highly associated with the action time of the cycloplegia 

as well (Pearson correlation: 0.338, 0.674, 0.256, p< 0.01) as well (Fig. 2- 

8b). A statistically significant positive association was found between the lens 

thickness and pupil size in No.1 and No. 2 subjects (Pearson correlation: 

0.635, 0.649 respectively, p< 0.01) (Fig. 2-8c).
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Fig. 2-8a: The effect of cycloplegia on pupil diameter during the test
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Fig. 2-8b: The effect of cycloplegia on lens thickness during the test
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Fig. 2-8c: The effect of pupil diameter on lens thickness
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If the size of the pupil was not big enough (below 4.5 to 5 mm, see Fig. 2-8c), 

no lens thickness reading was shown by the Pentacam system. Lens 

thickness was shown automatically on the screen when the pupil size was 

big enough. Moreover, the readings of lens thickness increased with the 

action time of the cycloplegia and the size of the pupil (Fig. 2-8b, c). It then 

fluctuated with a small range after the size of the pupil was above 5.5 mm or 

when the cycloplegia had worked for at least 20 minutes.

The variability of the lens thickness could be due to the variability of the 

measurement with the Pentacam system. In addition, different levels of 

cycloplegia can result in different estimates of lens thickness because the 

lens is not adequately stabilized by a cycloplegia. Thus, it is reasonable to 

assume that the variability of the lens thickness obtained with the Pentacam 

system might be due to the fluctuations of accommodation by incomplete 

cycloplegia.

2.2.4 Conclusions

The blue fixation light should be kept on in order to complete the examination 

quickly and successfully in our main study. Poor fixation greatly influences 

the readings compared to those values from the images taken in a proper 

position. It is, therefore, important to give the subject appropriate instructions 

and try to maintain their fixation. It is also essential to check the quality of the 

images and select those reliable images for the further analysis. Cycloplegia 

has significant effect on the pupil diameter and lens thickness during the test. 

The lens thickness reading should be measured after 20 minutes using 

cycloplegia and when the pupil size is above 5.5 mm.
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2.3 Pilot study (2):

Selection of procedures for refraction and fundus photography

2.3.1 Introduction

Aims of the study

The first aim was to test the compliance of the DS subjects with the fundus 

camera. The second aim was to assess whether an autorefractor could be 

used for measuring refractive error in our main study.

Choice of equipment for fundus photography

Fundus photography is routinely performed to observe changes to the retina 

and the optic disc in practice. It has benefited from the development of digital 

imaging devices.

Over the past decade, Heiderberg Retina Tomography (HRT), a confocal 

scanning laser microscope for vivo 3-dimension imaging, has been 

considered as the gold standard for evaluation of the optic disc for glaucoma. 

However, the acquisition of retinal photography skills is likely to be very 

individual-specific and patients need to co-operate well during the 

examination.

A non-mydriatic fundus camera is also a valuable and reliable screening tool 

for the observation and morphometric analysis of the retina (Detry-Morel et 

al. 2004; Lamoureux et al. 2006; Massin et al. 2003; Murgatroyd et al. 2004; 

Shiba et al. 1999). Excellent repeatability and agreement between the HRT 

and non-mydriatic fundus camera has been reported (Lamoureux et al. 

2006). Moreover, fundus image quality taken with a non-mydriatic fundus 

camera by non-professionals can be as accurate as those taken by a fully 

trained professional photographer (Maberley et al. 2004). Even HRT is 

available in our school; however, the author considered that the level of co­

operation needed was too demanding for the subjects of this study. 

Therefore, a non-mydriatic fundus camera was chosen for our study.
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Principles of how the Topcon fundus camera works

Our study used a Topcon non-mydriatic TRC_NW6S fundus camera, which 
is connected with a SONY DXC-950MD video camera (see Fig. 2-9). The 

camera uses Gullstrand’s reflex free principle. The illumination and viewing 

systems are imaged in separate regions of the pupil preventing the corneal 

and lens reflexes being viewed. Fundus cameras contain two light sources— 

a tungsten filament illuminating system and a second light, which is flashed 

when the photograph is taken. This increases the illumination of the fundus. 

Non-mydriatic fundus cameras use infrared light (which does not induce 

miosis). The image can be focused using the infrared light. The speed of the 

flash units used for taking the photograph is so fast that the pupil cannot 

constrict before the photograph is taken. However, the technique is not 

suitable for patients with small pupils.

Fig. 2-9: A picture of a Topcon TRC_NW6S fundus camera

Choice of measuring refractive error

Objective testing is the choice for establishing the amount of refractive error 

for our subjects with learning disability. There are several available methods 

of measuring objective refractive error in our school: autorefraction,
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cycloplegic retinoscopy and Mohindra retinoscopy. Since autorefraction is a 

much faster procedure and does not necessarily require a clinician, 

autorefraction was considered.

a. Autorefraction

Autorefraction is an established method (Isenberg et al. 2001; luorno et al. 

2004; Logan et al. 2005; Pesudovs 2004). The Topcon KR-7500 

autorefractor was used in our study. The device has an auto-fogging 

mechanism to relax accommodation. Measurements were taken using the 

auto-tracking and auto-shoot functions (from the manual).

b. Mohindra retinoscopy

Studies have shown the use of Mohindra technique as an accurate 

alternative to cycloplegic retinoscopy for children (Mohindra and Molinari 

1979; Saunders and Westall 1992). It does not require the use of a 

cycloplegic. It makes two assumptions: 1. that the retinoscope light does not 

stimulate accommodation; 2. that as a result the eye assumes its resting 

level of accommodation (Owens et al. 1980). A correction factor of 1.25D for 

adults, 1D for children above 2 years and 0.75D for children younger than 2 

years is recommended (Saunders and Westall 1992). Disadvantages are that 

it requires a certain amount of skill and experience on the part of examiner 

and the lack of exact control of the accommodation.

2.3.2 Methods

Recruitment

Twelve children with DS agreed to join our study when they came to the 

University clinic for their regular eye tests. Four control children who are the 

siblings of children with DS were also recruited at the same visit. Six 

additional control children were willing to join when they attended their 

appointment for an eye test. Oral consent was given by both parents and 

children.
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Examination procedures

During all the subject’s eye tests, near retinoscopy was carried out by JMW 

for measuring refraction (as described in detail in chapter 3, section 3.2.4.). 

Afterwards, fundus photographs of both eyes were taken by the author (PJ). 

Lastly, refractive error was measured again with the use of autorefractor by 

the author (PJ). All refraction measures were carried out without cycloplegia. 

These measurements took about 8 minutes for control children. It took much 

longer for children with DS, depending on their co-operation.

Use of the Topcon fundus camera

The examiner (PJ) used the fundus camera in a dimly lit room. She set the 

picture angle to 30° first and aligned the subject’s eye in the centre of the 

screen by moving the joystick. In the meantime, the subject was instructed to 

look at the internal fixation target—a green light. The examiner brought the 

instrument slowly closer to the subject until the retinal image appeared on the 

video monitor. The fixation target helped to achieve consistent photographs. 

When properly aligned, the photographic field was centered between the 

optic disc and the macula. It provided photographic documentation of the 

optic disc, the macular and about two disc diameters of retina temporal to the 

optic disc (Fig. 2-10). The captured image was sent to the external recording 

device and displayed on the colour video monitor. The examiner viewed each 

digital image immediately. If it was not good enough, a second one was 

taken at the same sitting. However, the risk involved in increasing the 

number of photographs is that their quality may decline, due to the pupillary 

construction induced by repetitive flashes.

69



Chapter 2: Pilot studies

Fig. 2-10: A fundus photograph of the right eye, one subject with DS

2.3.3 Results and discussions

Measuring refractive error

All the child subjects were measured successfully during the eye examination 

by near retinoscopy. All control children co-operated well with the auto- 

refractor. However, only six of twelve children with DS were able to co­

operate with the auto-refractor.

It showed that auto-refraction was a less successful procedure with the 

children with DS. This was possibly due to the children being tired as they 

already had had a complete time-consuming eye test and fundus 

photography taken. It was difficult to keep their further attention at one visit. 

However, using near retinoscopy, the children were encouraged by the 

examiner (JMW) by asking them to follow the light in the dark as if playing a 

game. This held their attention better while refraction was measured. 

Moreover, all the children with DS in the cohort were used to Mohindra 

retinoscopy and it was shown to be successful in previous studies (Cregg et 

al. 2001; Woodhouse et al. 1997). It is an established technique that has 

been shown to give equivalent results to cycloplegic retinoscopy in children
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with DS and in control children (Saunders and Westall 1992; Woodhouse et 

al. 1997).

Taking the whole examination procedure into account, all our subjects need 

to sit still for axial length measurement and the other ocular biometrical 

parameters. Autorefraction requires the use of a chin and hest rest as well. 

However, accommodation is needed to be measured with the use of 

retinoscopy by JMW. Therefore, it seemed better to use near retinoscopy by 

JMW during the eye test rather than using auto-refractor in order to retain 

their attention and complete all the measurements successfully.

Fundus photography

Fundus photographs of both eyes from twelve children with DS and ten 

control children were taken. Two children with DS could not keep still and 

look at the fixation light at all. Taking the future planimetric evaluation into 

consideration, the quality of each photograph was scored by the following: 

Grade 1 - Good: focus very well, the whole optic disc visible;

Grade 2 - Moderate, the whole optic disc visible, assessable but limited; 

Grade 3 - Poor, not the whole optic disc visible;

The photographs scored as Grade 1 and 2 can be accepted in the 

planimetric evaluation and photographs scored as Grade 3 were rejected. 

Quality of the fundus photography is shown in Table 2-2. The success rate of 

fundus photography was 83% and 100% in DS children and control children 

respectively.

Table 2-2: Quality of fundus photography in 22 children

Image
quality

DS Children Control children evaluation

Right Left Right Left

1 Good 2 1 8 7 Accepted

2 Moderate 8 9 2 3 Accepted

3 Poor 2 2 0 0 Rejected
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2.3.4 Conclusions

The procedures for fundus photography and retinoscopy were adequately 

successful. Therefore, the Topcon fundus camera and Mohindra retinoscopy 

were chosen for the main study.

2.4 Pilot study (3): To obtain the camera magnification

2.4.1 Aim of the study

This pilot study aimed to work out the magnification of the Topcon fundus 

camera in order to correct the magnification of the camera for the planimetry 

evaluation. All the procedures followed previous studies (Garway-Heath et 

al. 1998; Rudnicka etal. 1998).

2.4.2 Methods
The conversion factor from pixels to microns

The conversion factor from pixels to microns was calculated based on the 

chip type of the SONY DXC-950MD video camera which was connected with 

the Topcon fundus camera. The chip features are as follows: Sensing area 

(mm): 6.4*4.8; Picture elements (pixels): 752*582. So, the conversion factor 

for the chip (mm/pixel) is 6.4/752=0.0085 or 4.8/582=0.0085 mm/pixel.

Procedures of experiment

One Moorfields model eye was used to investigate the relationship between 

the actual size of a fundus feature and its photographic image as in a 

previous study (Rudnicka et al. 1992). The model eye has a micrometer head 

and a vernier scale to adjust the axial length for the required refractive error. 

Prior to the commencement of the experiment, the value of the micrometer 

setting to produce a required refractive error (on retinoscopy) from +11 to -14 

D was recorded by an optometrist (SJ). However, the reading on the 

micrometer is not the true axial length.
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The following steps were carried out for the camera scaling experiments. 

Firstly, a square target of 2 mm was printed with a laser printer and then 

laminated. The true size of the target was measured with a travelling 

microscope.

Secondly, the square target was applied to the fundus surface of the model 

eye. Distilled water was used to fill the anterior and posterior chambers. The 

fundus surface was attached to the micrometer head and vernier scale.

Thirdly, images were taken with the Topcon camera at the 30° field setting 

with the model eye set at different values, corresponding to a range of ocular 

refractions from +11.0 D to -14.0 D by rotating the micrometer. Between +/- 

6D, images were recorded every 1D and thereafter every 2D. In all cases, 
the square object was centred in the camera field (Fig. 2-11).

Lastly, the pixels of each side length of the square target (s) in the photo was 

measured by 2000 ImageNet software. It was noted that the target rotated at 

the same time as the micrometer was rotated to adjust the required refractive 
error. It was very important that the same side length of the target was 

measured. Therefore, the longest side length was recorded each time.

r  ^

Fig. 2-11: A photo for the square target taken by fundus camera
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Camera scaling calculations

Eye factor (q) and camera factor (p) were worked out by the different 

formulae which were provided by Garway-Heath (1998). The “q” factor for the 

Moorfield eye was calculated by the formula: 

q=-0.0051*Ref + 0.2962 

for the range of ametropia settings of the model eye. The true size of the 

target (t), the photo size of the target (s) and eye factor (q) had been worked 

out, therefore, the “P” factor for the eye was calculated by the formula: 

p= t/qs.

The Rudnicka paper stated “with telecentric instruments, the value of p is 

constant over an acceptable range of ametropia, provided the instrument is 

aligned and focused correctly.” (Rudnicka et al. 1998). Refractive error 

against p for the model eye was plotted (Fig. 2-12). The slope is close to 

zero and the Topcon camera can be considered telecentric: Y = - 0.0019X 

+ 1.67.

1.90

1.80

1.70-

1.60

1.50

y= -0.0019 x + 1.67
Q_

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

Refraction (D)

Fig. 2-12: Refraction and p for the Model eye 

2.4.3 Conclusion
The Topcon non-mydriatic TRC_NW6S fundus camera was telecentric. The 

scaling code was written in the software by JEM (Appendix 8).
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2.5 Pilot study (4): Validation of the Impact tonometer

2.5.1 Introduction

Aims of the study

A recent update in calibration of the l-care tonometer has made a validation 

study necessary. We aimed to test the accuracy of the l-care tonometer by 

comparing it with Goldmann tonometer. Additionally, the impact of CCT on 

IOP reading by both tonometers was compared.

Choice of tonometers

Tonometers are instruments designed to evaluate the IOP. Most devices rely 

on the principles of applanation, which means deforming an area of the 

cornea with a small amount of force that is used to calculate the IOP. 

Goldmann tonometer has been the gold standard for 40 years because it is 

accurate and reproducible (Dielemans et al. 1994; Gilchrist 1996; Moses 

1961).

The non-contact Pulsair tonometer has many advantages over the contact 

tonometer and has also shown high accuracy when compared with 

Goldmann tonometer (Atkinson et al. 1992; Bricker et al. 1990; Lawson-Kopp 

et al. 2002; Lin et al. 2003; Mackie et al. 1996; Vernon 1995; Yucel et al. 

1990). In addition, local anaesthetic is not required, it is easier to use, 

However, it has been reported that the non-contact tonometry is influenced 

more than conventional applanation tonometry by the corneal thickness 

(Cennamo et al. 1997; Graf 1991). In addition, The Pulsair was reported 

uncomfortable by some subjects (Kontiola and Puska 2004).

The l-care rebound tonometer has a simple construction and has the 

possibility of measuring IOP without a local anaesthetic (Fernandes et al. 

2005; Garcia-Resua et al. 2006; Kontiola and Puska 2004; Leiva et al. 2006). 

The round tip minimizes the risk of corneal injury from the probe’s impact 

(Kontiola 2000). It is also easy to perform and the measurement is barely 

noticed by the patient since the tonometer is intended for use by general
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practitioners, optometrists and for the home monitoring of intraocular 

pressure (Kontiola and Puska 2004). Therefore, compliance would be 

expected better for subjects with DS.

The evaluation studies have been done by the inventor, which were mostly 

on animals (Danias et al. 2003; Goldblum et al. 2002; Kontiola et al. 2001). A 

comparison with the Pulsair 3000 in an elderly population proved that there 

was a similar result and it was better tolerated by patients (Kontiola and 

Puska 2004). It has been recently reported that measurement of IOP in 

normal, healthy subjects using the l-Care tonometer produced a small, 

statistically insignificant, positive bias when compared with the Goldmann 

tonometer (Davies et al. 2006). However, two other studies concluded that 

the l-care tonometer significantly overestimates IOP when compared with the 

measurement of Goldmann tonometry (Fernandes et al. 2005; Garcia-Resua 

et al. 2006). Fernandes at al. suggested: “l-care would be clinically 

acceptable for a screening method; however, IOP with a suspicious range 

(values above 21 mmHg) must be reassessed or be referred for a Goldman 

tonometer evaluation.”

Principles of how the Goldmann tonometer works

The Goldmann applanation tonometer is a biprism mounted on a standard 

slit-lamp, which is used to applanate (flatten) the anaesthetised fluorescein 

stained cornea. The IOP calculation is based on the Imbert - Fick principle, 

whereby an external force (exerted by the tonometer) against a sphere (the 

eye) equals the pressure within the sphere times the area flattened by the 

force. The higher the IOP, the greater the force required.

Principles of how the l-care tonometer works

The l-care tonometer is also called a rebound tonometer (Fig. 2-13). It is 

based on making a moving object collide with an eye rather than applanation. 

The motion parameters of the object are monitored. The device is made by 

Tiolat (Helsinki, Finland). The disposable probes consist of a magnetic steel 

wire shaft covered with a round plastic tip at the end. The probe is 40 mm
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long, 0.3 mm in diameter with a 1.7-mm diameter plastic end-tip and 23.8- 

24.0 mg weights. The probe speed, before hitting the eye, is adjusted to

0.25-0.4 m/s (Kontiola and Puska 2004; Kontiola 2000).

f ca re

Fig. 2-13: The Impact tonometer 

(Helsinki, Finland)

2.5.2 M ethods

Recruitment

According to the International Standardisation of Tonometers (ISO/TR 

8612:1997), at least 40 eyes should be observed. In our study, twenty adult 

subjects (9 males, 11 females) were selected from friends, staff and students 

in the School according to the following exclusion criteria:

i. High corneal astigmatism (£1D), that is, those eyes displaying an oval 

contact image with the Goldmann tonometer;

ii. Corneal scarring or corneal surgery including corneal laser surgery;

iii. Contact lens wearers.

Consent forms for participation were signed after showing the information 

sheets to the subjects (appendix 7).
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Examination procedures

The subjects were first asked to sit in front of the Pentacam system for CCT 

measurement (Use of the Pentacam system is presented in section 2.2). The 

procedure took 2-3 minutes for both eyes. The CCT for an individual eye 

varies during the day but it does not appear to vary significantly during 

working hours and the diurnal variation in CCT does not contribute 

significantly to the diurnal variation in IOP (Harper et al. 1996; Mills 2000). 

Therefore, a single measurement of CCT may be adequate as a guide to its 

effect on IOP.

The IOP measurement procedure in our study complied with the ISO 

(ISO/TR 8612:1997), which is based on three observers for 40 eyes: Two 

Goldmann and one Impact tonometer. In addition, there are two prerequisites 

in the test: a) the patient shall not change his/her body posture throughout 

the IOP measurement; b) both eyes of a patient can be included in the 

measuring process. They should be considered as being independent of 

each other. Therefore, the subjects sat in the same chair during the whole 

test and both eyes were measured. Goldmann was carried out by two 

experienced optometrists (MET for the first time, RR for the second time). 

Impact tonometer was carried out by the author (PJ).

Following topical anaesthesia and instillation of fluorescein, the subject was 

positioned for the first Goldmann measurement by the examiner (MET). After 

6 minutes interval, the Impact tonometer was used by the second examiner, 

the author (PJ). It took 3 minutes for both eyes. After a further 5 minutes, the 

Goldmann was carried out for the second time by another examiner (RR), 

with additional anaesthesia and fluorescein instillation.

The delay between measures was to ensure sufficient time for the eye to 

regain its preapplanation IOP, as it has been reported that the repeated 

measurement of IOP by applanation tonometry could lower the IOP by 0.1 - 

0.7 mm Hg (Sudesh et al. 1993). A 2-10 minutes interval between successive 

IOP measurements is adequate to allow the eye to regain its preapplanation 

level (Recep et al. 1998). Only one Goldmann reading is taken by each
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observer to avoid the tendency for IOP to decrease on multiple testing (Wilke 

1972). The tips of the probe of the tonometers were changed between 

subjects.

During the three measurements, the subjects didn’t change their position. 

The three examiners recorded their readings separately, and did not confer.

Use of the l-care tonometer

The subject was seated in front of the examiner, with the eyes of the 

examiner at the same level as those of the subject. The l-care tonometer was 

held in front of the eyes of the patient at an estimated distance of about 3-10 

mm. The subject was asked to look in a distance in order to keep their eyes 

still and divert their attention away from the tonometer. The examiner 

adjusted the distance and position of the tonometer first and then pressed the 

button when it was ready. The tip of the probe hit the central cornea. 

Measurements were carried out by carefully operating the measurement 

button, to avoid shaking the tonometer. The probe moved freely about 3-7 

mm, impacted to the eye and bounced back. The IOP reading was shown on 

the screen automatically. A disposable probe was used for each subject. Six 

measurements were taken consecutively.

The software shows “Error” in the following circumstances: a) The probe hit 

the eyelid rather than the central cornea; b) The tonometer was tilted 

upwards too much or too far away from the eye. Only valid reading were 

accepted and recorded.

Use of the Goldmann tonometer

Following topical anaesthesia and instillation of fluorescein, the subject was 

positioned at the slit lamp and the tonometer was swung into place. After 

aligning the tonometer in front of the cornea, the examiner looked through the 

slit lamp ocular just as the tip contacted the cornea. Upon contact, the 

tonometer tip flattened the central cornea and produced a thin circular outline 

of fluorescein. A prism in the tip visually split this circle into two semicircles 

that appeared green while viewed through the slit lamp oculars (Fig. 2-14).
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The tonometer force was adjusted manually until the two semicircles just 

overlapped. The amount of force required to do this was translated by the 
scale into a pressure reading in mm Hg.

Fig. 2-14: Using the Goldmann tonometer 

2.5.3 Results and discussions

Twenty subjects (9 males and 11 females) were recruited and forty eyes 

were analysed. Mean age of subjects was 27.75 years (range 22-43 years). 

Mean IOP measured using the Goldmann tonometer head (mean of the two 

Goldmann readings) and the l-care tonometer was 13.2±2.2mm Hg; 

13.3±2.6mm Hg respectively. A paired t-test showed no significant difference 

between Goldmann and Impact tonometer (p = 0.753).

The ‘Bland-Altman’ analysis has been shown to be the better statistical 

method to use, specific for assessing the correlation between two methods of 

clinical measurement (Bland and Altman 1986). A plot of the difference 

between the methods against their mean is more informative (Fig. 2-15). The 

slope of the regression line for this plot was not significantly different from 

zero (y=-1.993+0.16x, p=0.301), indicating that the difference between the 

two instruments does not vary with absolute IOP.
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Fig. 2-15: Bland-Altman analysis

The mean difference was 0.13mmHg and SD was +2.03mmHg. The mean 

difference plus or minus 2 SD of the differences was -3.83 to 4.19 mmHg. It 

shows that 95% of the differences between Impact and Goldmann results fall 

between these two values.

Pearson correlation between CCT and IOP was 0.486 by Impact tonometer 

and 0.426 by Goldmann (p= 0.001) (see Fig 2-16a-b). There is no statistically 

significant difference in the strength of correlation between CCT for IOP 

measured by Impact and Goldmann tonometer (Zobs= 0.328).
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Fig. 2-16a: CCT and IOP by the Impact Tonometer
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Fig. 2-16b: CCT and IOP by the Goldmann tonometer
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The Goldmann yielded the expected relationship between IOP and CCT: a 

10% change in CCT gave rise to a change in IOP of 1.56 mmHg. The l-care 

showed a slightly greater effect of CCT: a 10% change in CCT gave rise to a 

change in IOP of 2.2mmHg.

2.5.4 Conclusions

The combination of a high correlation coefficient and the Bland-Altmann 

approach showed that the two instruments are in good agreement. Both 

instruments showed a similar relationship between IOP and CCT. Thus, the I- 

care tonometer gives acceptable readings on comparison with Goldmann 

tonometer, and given its obvious advantages for subjects with learning 

disabilities is a valid choice for this study.

2.6 Overall conclusions

In conclusion, the above pilot studies have selected the appropriate 

instrumentation for the main study. The sophisticated Pentacam system, I- 

care tonometer and retinoscopy were selected. The Topcon TRC-NW6S 

fundus camera was suitable and the magnification of the camera was worked 

out. These pilot studies also improved the author’s operational skills for the 

equipment.
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Chapter 3: Ocular biometry and corneal topography

3.1 Introduction
3.1.1 Ocular biometry in people with DS

As reviewed in chapter 1, there is a similar range of values for AL and an 

association between refraction and AL in people with DS as in their controls 

(Doyle et al. 1998; Haugen et al. 2001a). However, thinner CCT and higher 

corneal power was reported in DS subjects compared to controls in previous 

studies (Doyle et al. 1998; Evereklioglu et al. 2002; Haugen et al. 2001a). 

Moreover, a number of studies have described the presence of flake lens 

opacity in people with DS (Doyle et al. 1998; Fierson 1990; Haugen et al. 

2001a; Hestnes et al. 1991; Igersheimer and Mautner 1951; Jaeger 1980; 

Kim et al. 2002; Robb and Marchevsky 1978; Wong and Ho 1997). Finally, 

parameters such as the anterior chamber depth, lens thickness and lens 

density have only been measured in Haugen’s study, showing similar anterior 

chamber depth, relatively reduced lens thickness and increased lens density 

for 40 subjects with DS, aged 19 to 26 years (Haugen et al. 2001a).

The hypothesis was that the poor visual performance in people with DS may 

be explained by the abnormal ocular biometry or abnormal correlation 

between refractive components. For instance, refractive error is the result of 

mismatched association among the ocular components; correlations between 

the total refraction of the eye and the individual optical elements may explain 

the failure of emmetropisation in children with DS. Inaccurate 

accommodation (which is common in children with DS) may be influenced by 

properties of the lens. In addition, reduced acuity (which is a common finding 

in DS) and small pupil size will increase the depth of focus of the eye. The 

small pupil size would be needed to account for the reduced accommodation 

in DS. Therefore, the first aim was to measure visual function (including 

refraction, VA and accommodation) and ocular biometric parameters 

(including AL, cornea, lens, anterior chamber parameters and pupil size) 

among our subjects. Additionally, the inter-relationship between ocular 

parameters was calculated and compared between DS children and control 

children. The relationship between visual function and ocular biometry in 

children with DS was then investigated as well.
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To our knowledge, this is the first study measuring periphery corneal 

thickness, posterior corneal power, corneal asphericity, corneal aberration, 

pupil diameter, anterior chamber volume and angle in people with DS. It is 

also the first study to use lOL-master in patients with DS

3.1.2 Corneal topography and keratoconus in people with DS

As reviewed in chapter 1, corneal topography has been used as a screening 

tool for keratoconus detection in people with DS (Doyle et al. 1998; Haugen 

et al. 2001a; Liza-Sharmini et al. 2006; Vincent et al. 2005). In addition, 

keratoconus typically presents in the late teens or adults with DS (Haugen et 

al. 2001b; Hestnes et al. 1991), and has not been reported in studies of 

children with DS (Liza-Sharmini et al. 2006; Vincent et al. 2005).

The second aim of this part of study was to detect keratoconus by corneal 

topography, giving an indication of the prevalence among our subjects with 

DS.

3.1.3 Comeal topography and detection of keratoconus

Corneal topography provides a tool for detection of keratoconus. It also 

defines the optical properties of the normal and abnormal cornea. Corneal 

topography appears to have taken two separate forms to describe the 

cornea:

a. Coloured topographic maps; Popular and practical topographic maps tend 

to include curvature maps, elevation and pachymetry maps (Fig. 3-1).

b. Quantitative descriptors to describe corneal shape such as corneal radius 

and asphericity.

Corneal map: meridian, scale and the colour spectrum 

It is essential to check the meridian, the label on the scale and the colour 

spectrum before studying a corneal map. A meridian is a line that spans the 

diameter of the cornea from one point on the limbus to a point on the 

opposing limbus. The label on the scale in the corneal topography map gives 

the type of measurement which is being displayed: elevation in pm, curvature 

in mm and power in D (diopters). The topography map is colour-coded in
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order to quantify the shape of the cornea. For instance, in an elevation map, 

the values lower than the reference plane are shown by cooler colours such 

as blue and green and the values higher than the reference plane are shown 

by warmer colours such as red, orange and yellow. On curvature maps, 

warmer colours represent the steeper area whereas cooler colours mark the 

flatter area (see Fig. 3-1). Therefore, it is extremely important to check the 

type of scale on the map being studied.
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Fig. 3-1: Comeal topography of one DS adult with keratoconus using the Pentacam 

(Elevation, Pachymetry, Sagittal curvature and True net power map)

Elevation Map

The Pentacam system generates relative height data from the selectable 

reference bodies. It has a set default to a BFS (best-fit sphere) reference 

plane, which consists of a sphere fitted as accurately as possible to the true 

shape of the cornea. Subtraction of the highest data from a BFS shows 

actual location of corneal surface features and its irregularities. Positive 

values mean measurements above the reference body and negative values
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mean measurements below the reference body. The true elevation map 

locates the position of the apex of the cone for keratoconus (Schwiegerling 

and Greivenkamp 1996).

Pachymetry map

The Pentacam system evaluates corneal thickness across the entire corneal 

surface (usually about 9 mm of information is represented from the anterior 

cornea) and shows the thickness of every single location of the cornea. It is 

calculated by the height difference between the anterior and posterior surface 

of the cornea. The thickness of the cornea is also shown at the pupil centre 

and the thinnest location in terms of values and orientation (see Fig. 3-1).

Curvature map

Curvature map is the most well-established method of depicting the shape of 

the cornea. Normally, curvature information is presented in the form of 

Sagittal curvature or Tangential curvature maps to assess the state of the 

corneal surface. When off-axis light reflects from a curved surface it gives 

rise to two focal points, one contains the sagittal data and the other the 

tangential data. Sagittal is the perpendicular distance from the tangent at the 

measuring point to the axis, which has a spherical bias because each 

measurement is related to the optical axis (Fig. 3-2a).

Fig. 3-2a: A diagram showing Sagittal curvature 

(from the Pentacam manual)

Tangential is the curvature of the measuring point, which applies to the
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sphere that best fits the shape of a small area surrounding each point (see 

Fig. 3-2b). It has less spherical bias because the curvature is calculated for 

an individual without reference to the visual axis (Klein and Barsky 1995; 

Roberts 1994).

Fig. 3-2b: A diagram showing Tangential curvature 

(from the Pentacam manual)

Keratoconus detection by corneal topography

Corneal topography has enhanced the ability to detect keratoconus in a 

quantifiable and reproducible manner. In order to remove the subjectivity of 

the assessment and the need for experience, specific corneal indices have 

been developed by numerous studies with the development of sophisticated 

equipment and technology. The determination of quantitative indices from 

corneal topography has been suggested as a means of detecting 

keratoconus (Arntz et al. 2003; Auffarth et al. 2000; Cairns and McGhee 

2005; Dastjerdi and Hashemi 1998; Holland et al. 1997; Klyce et al. 2000; Liu 

et al. 1999; Maeda et al. 1995; Maeda et al. 1994; Maguire and Bourne 1989; 

Rabinowitz 1993; Rabinowitz and McDonnell 1989; Rabinowitz and Rasheed 

1999; Smolek and Klyce 1997; Wang et al. 1989; Wilson and Klyce 1991; 

Wilson et al. 1991).

Auffarth (2000) emphasized that elevation map is essential for the detection 

of keratoconus. Arntz (2003) suggested that placement of the apex, anterior 

and posterior corneal elevation, minimum corneal thickness, anterior 

chamber depth and corneal diameter should be considered in the detection 

of patients with an increased risk for developing keratoconus. Although
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several of the corneal irregularity indices were generated from the Orbscan 

system, sensitivity, specificity and accuracy do not improve from the 

combination of a larger number of indices (Hainline, Kollbaum and Springs, 

2006). However, it was stated that the detailed knowledge of the posterior 

surface seems beneficial in detecting keratoconus (Hainline et al. 2006). 

Even though much progress has been made in corneal topography systems, 

it is still difficult to detect subclinical keratoconus.

Table 3-1: Summary of keratoconus detection index

Author Year Keratoconus detection index

Rabinowitz et al. 1989
Inferior-Superior Value (l-S) 

Central corneal power (K)

Wilson et al. 1991
Surface regularity index (SRI) 

Surface asymmetry index (SAI)

Maeda et al.
1994,

1995
Keratoconus predictability index (KPI)

Rabinowitz et al. 

Klyce et al.

1999

2000

KISA index (K, l-S, AST, Srax)

AST quantifies the degree of regular cornea 

astigmatism;

Srax means the screwed radial axis index; which 

quantifies irregular corneal astigmatism

A valuable review about corneal topography by Cairns (2005) pointed out 

that some maps differ by reference location. For instance, if the whole 

peripheral cornea was not captured in the map, the reference body may have 

an increased radius of curvature to best fit the steeper more central region. 

Further, it may return deceptive values. Therefore, special care should be 

taken if a complete map is not provided.
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3.2 Methods (Descriptions of clinical techniques)
3.2.1 Subjects

The procedures of recruitment were described in chapter 1, section 1.7.2. 

Forty six DS children, fifty control children, nineteen DS adults took part in 

the measurement of refraction, visual acuity, accommodation and axial length. 

Twenty-five children with DS and twenty-eight control children participated in 

Pentacam images. Twelve children with DS and six control children gave 

their consent for cycloplegia to be used for lens thickness measurement. 

Sixteen control adults were measured for refraction and the Pentacam 

system. The measures of the right eye of each subject were chosen for data 

analysis. The measures of the left eye were only accepted if that of the right 

eye was not available, or not reliable.

All the children attended the whole tests accompanied by their parents. 

Amongst nineteen adults with DS, eight were accompanied by the family 

member; seven were accompanied by their carers whilst four were 

accompanied by both.

For each adult with DS, the frequency of eye rubbing per day (0=Once or 

less, 1=Twice -S ix times, 2= More than seven times) and family history of 

keratoconus were elicited from the carers or family members.

3.2.2 Examination procedures

All the adult subjects took part in the whole test at one visit. The child 

subjects were tested on more than one occasion. At the first visit, the 

subjects sat for the AL measurement first. Afterwards, the subjects were 

taken to the consulting rooms for measuring refraction, VA and 

accommodation (only for child subjects). It was approximately 30 minutes in 

total for each subject. At the second visit, those children who completed the 

above test in the first visit only sat for the Pentacam images. In the cases of 

those children who failed to co-operate, they were asked to repeat the failed 

examination if possible. In addition, for those who were agreeable, 0.5% 

Tropicamide was used and the Pentacam images were taken again for lens 

thickness measurement. It lasted 30 minutes more.
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All the reliable images of corneal topography were viewed by an experienced 

observer (SAN) in order to detect keratoconus. Objective analysis of the 

images by the Pentacam system was also used (see section 3.3.1). The 

author measured the lens density in the Pentacam image (see section 3.3.2).

3.2.3 Use of the lOL-Master

The selection of lOL-Master for AL measurement and the principles of how it 

works were described in chapter 2, section 2.1.

The subject was seated in front of the lOL-Master. The seat and table height 

were adjusted so that his/her eyes were level with the two ring marks on the 

side rails of the headrest. In some cases, small children were asked to kneel 

on the seat, or it was necessary for a child to sit on their parent’s lap, or with 

parents’s hand held under their chin, if the child’s face was quite small.

The first step was to focus the machine. The subject was instructed to fixate 

the yellow light first. For children, the examiner (PJ) asked them to keep 

looking at the yellow light and persuaded them to sit as still as possible by 

saying: “What is the colour of the light? Or does the light move?” The 

examiner focused the machine by means of the six light spots arranged in a 

circle. The focusing was complete when they were centrally aligned with the 

subjects’ pupil. In order to keep the subject’s attention and fixation, this step 

should be done quickly.

The next step was to activate “ALM mode (Axial length measurement)”. In 

order to maintain their interest, the subjects were asked to tell the examiner 

when they noticed the yellow light change and what colour they saw (a red 

light should be seen when the machine is ready to start the ALM mode). The 

magnification of the view was changed so that only a small section of the eye 

was visible to the examiner. The bright reflection of the alignment light was 

seen, with a green cross hair with a circle in the middle of the display. The 

examiner then saw a thin vertical line by adjusting the joystick. It was then 

aligned so that the reflection was in the cross hair circle. Before taking 

measurements, the subject was reminded to look at the light again. This was 

to ensure a good result the first time round and prevent avoidable repetition. 

In the case of co-operative children, this procedure was relatively quick (IQ-
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15 seconds per eye). However, if the examiner or child’s parents could not 

persuade the child to maintain good fixation, it took much longer.

The signal-to-noise ratio (SNR) is a measure of the quality of the data 

obtained. According to the manual, SNR >2.0 is the acceptable level for data. 

In our study, the AL was accepted when SNR was more than 2.0. If SNR< 

2.0 and if it was caused by a restless child or a poor alignment, the examiner 

repeated the measurements. In some cases of subjects with DS, no 

acceptable data were obtained. A maximum of 20 measurements are 

permitted per eye per day (from the manual). This is to ensure patient 

comfort and safety, also to relieve the boredom of the examination. A second 

appointment and visit to the clinic was arranged if possible.

3.2.4 Measuring refractive error

Refraction was carried out with Mohindra retinoscopy for all the children and 

for adults with DS in the same clinic room by an experienced optometrist 

(JMW) (The choice of methods of measuring refraction was discussed in 

chapter 2, section 2.3). It was performed in total darkness at a near distance 

of 50 cm. The only light was the examiner’s dim retinoscope beam. The 

subject was required to face the examiner and fixate the light. The examiner 

held a trial lens in front of the fixating eye and retinoscopy was performed 

(see Fig. 3-3). A working distance correction of 1.00D was applied for 

children 1.25D for young adults and 2.00D for presbyopic adults (Cregg et al. 

2003; Saunders and Westall 1992). Control adults were measured by the 

Topcon KR-7500 autorefractor, according to the manufacturer’s instructions.

Mean spherical refractive error was used to describe the refraction of each 

subject. Refraction was divided into three types: myopia was £ -0.5 D; 

emmetropia was between -0.5 D and +0.5 D; hyperopia was £ +0.5 D.
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Fig. 3-3: A picture showing measurement of refraction 

3.2.5 Measuring VA

There are many methods for evaluating VA in young children. Recognition 

acuities (this refers to the capacity to identify a form or its orientation) are 

more sensitive to pathological and physiological degradation than resolution 

acuities (this refers to the smallest angular separation between neighbouring 

targets that can be resolved) (Leat et al. 1999). Therefore, all subjects 
participating in our study were measured monocularly with recognition acuity. 

The Keeler Crowded Test or the Kay Picture Test was used. Both tests 

employ crowded optotypes and LogMAR sequencing. Children with DS may 

not be able to perform letter tests, whereas a control child of the same age 

may be capable of this. A recent study (Jones et al. 2003) has shown that the 

two tests produce equivalent results in children. Testing was either by the 

author (PJ), by an optometrist (JMW) or by an orthoptist (MD).

The Keeler Crowded Test requires a child to name or match letters, 

presented in the form of a flip chart book. Each line contains the same 

number of letters (four). The test also contains two booklets so that the 

individual does not memorize the letter order (Fig. 3-4).
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V

Fig. 3-4: A picture of the Keeler Crowded Test Card

The Kay Picture Test is designed for younger children and people who 

cannot identify letters. It uses familiar pictures as targets rather than letters 

aimed being interesting for children and therefore maintain their attention. It 

contains eight different pictures in a flip chart format. Eight pictures are used 

in groups of four throughout the test (except sizes 1.0 and 0.9 where there 

are two per line) (Fig. 3-5). A criticism of this test is that it only offers a limited 

range of possible pictures (eight in all) and so a child may be able to guess 

the answers. Therefore, a child must identify 2 pictures correctly before they 

can proceed to the next level.

Fig. 3-5: A picture of the Kay Picture Test Card
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The examiner took up her/his position 3 metres from the child and opened 

the test book from the front, beginning with the largest pictures or letters. The 

examiner started at the first picture or letter in the row of four by pointing to it 

and asked the child to identify it. As the pictures or letters got smaller and the 

child could not identify the first one correctly, the examiner checked the other 

pictures or letters in the same row. If two or more pictures or letters could be 

seen in that row, then the next smaller size was tested. If only one or no 

picture or letter could be named correctly, the examiner returned to the 

previous larger size and repeated the procedure, checking all four pictures or 

letters. At the end of the test, the examiner brought the charter closer to let 

the subject see the unidentified letter or picture clearly in order to keep their 

confidence. Rather than allowing the subject to decide when the letters 

become indistinguishable, the subjects were encouraged to guess the 

identity of each letter or picture. Several studies have shown that subjects 

may achieve different acuity scores because of differences in responding to 

questions when they are not confident about the answers rather than 

because of variations in visual function (Higgins et al. 1984; Sokol et al. 

1980). In our methods the testing methods were kept consistent to avoid this 

discrepancy as far as possible.

In our study, the Kay Picture Test was more often used with children with DS. 

It kept the children’s attention far better than the letter test as it was easier to 

recognize and more interesting. In some cases, the matching card was used, 

which allowed the children to match the picture rather than name it.

VA was recorded in Snellen Notation and then converted to LogMar acuity in 

our study. It was divided into normal VA (£0.3) and below-normal VA (>0.3) 

(Hall 1996).
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3.2.6 Measuring accommodation

The modified Nott technique was used to measure accommodation by the 

same optometrist (JMW). This technique is considered to be a repeatable 

and valid objective technique compared to the subjective ‘push-up’ method or 

auotorefractor (McClelland and Saunders 2003; Rosenfield et al. 1996). It 

has been used successfully in children with DS (Cregg et al. 2001; Haugen et 

al. 2001c; Woodhouse et al. 2000; Woodhouse et al. 1993; Woodhouse et al. 

1996). However, it has been reported that there is an increase in standard 

deviation with an increase in accommodative demand (Leat and Gargon 

1996).

A near cube target was mounted on a metre ruler at a set distance from the 

child’s eye: 10 cm and 16.7 cm, equivalent to 10 D and 6 D respectively. The 

cube (an internally illuminated translucent cube of 4.0*4.0*4.3 cm) had 

different black on white pictures and could be rotated in order to maintain the 

child’s interest. As the examiner held the ruler by one hand, the retinoscope 

was held by the other hand. One end of the ruler was gently placed on the 

child’s cheeks. To ensure that the child was attending to the cube, the 

examiner asked the child to fixate the target by asking questions about the 

picture, for instance, “Can you count for me how many rain drops in the 

picture?” The examiner assessed the accommodative state by moving the 

retinoscopy toward or away from the child in order to find the neutral point. If 

accommodation was accurate at the distance being tested then a ‘neutral’ 

reflex was observed. If the child was under-accommodating, then a ‘with’ 

movement was seen and the examiner moved away from the child until the 

neutral point was found (Fig. 3-6). The position was then recorded. The 

distance between the neutral point and the target was used to calculate the 

lag of accommodation. All children wore their spectacles to correct a distance 

refractive error, if these had been prescribed. Some children had bifocals. 

Accommodation was measured both through the bifocal segment and 

through the distance portion.
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Fig. 3-6: A picture showing testing accommodation

Accurate accommodation was defined a lag <0.75 D at either (or both) 10.00 

cm (10 D) or 16.7 cm (6 D) (The relationship between dioptres and distances 

is D=100/n, where un” is the response/demand in cm) (Leat and Gargon 

1996). It was used to define a significant lag of accommodation in previous 

study (Leat and Gargon 1996; Rouse et al. 1984; Stewart et al. 2005; 

Woodhouse et al. 2000; Woodhouse et al. 1996):
Accommodation lag (D) =  Accommodative response - Accommodative demand

Accommodation was divided into three types: accurate, inaccurate and 

becoming accurate. Becoming accurate was defined as the group of children 

who could accommodate after wearing bifocals (the benefit of the previous 
study with our cohort).

3.2.7 Taking the Pentacam images

The selection of the Pentacam system, the principles of how it works and 

how to use it were described in chapter 2, section 2.2.

The subject was instructed to fixate the blue light while the examiner was 

adjusting the Pentacam. The image capture was taken automatically when 

the adjustment was done. However, in some cases with DS subjects, the 

examiner had to disable the “Automatic release" and take the image 

manually at the point when all the alignment cues were deemed to be
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correct. However, if the QS (Quality Specification) was shown as “Blink” , 

“Align” or “Fix “ rather than “OK”, the image was taken again. It took 2 

minutes for both eyes of control subjects to be examined. The whole 

procedure lasted much longer with most of DS subjects depending on their 

degree of co-operation.

For those children who agreed to pupil dilation for lens thickness 

measurement, one drop of 0.5% Tropicamide was then put in both eyes after 

completion of the other tests. After 20 minutes or so, the second Pentacam 

image was taken when the pupil diameter was above 5.5 mm.

The terms used to describe the corneal pachymetry and corneal keratometry, 

anterior chamber and lens parameters are explained as below:

• Central corneal thickness (CCT) is the thickness of the cornea in the 

centre of the pupil in pm. Minimum corneal thickness (MCT) is depicted 

as the thinnest corneal thickness in pm. Peripheral corneal thickness 

(PCT) is the mean thickness of the corneal zones 6 mm around the 

thinnest point in pm.

• Corneal radius (CR) is the mean central radius in mm, of the two major 

meridians in the 3 mm ring of the cornea. The Rmin value is the steepest 

point of the cornea, which is the minimum radius of the cornea. The Rper 

value is the flattest radius in the zone between 7mm and 9mm ring of the 

cornea. Both surfaces of the corneal power are calculated by using the 

formula below:

Anterior corneal power = (n2 -  ni)/CR;

Posterior corneal power = (n3- n2)/CR;

Total corneal power = anterior corneal power + posterior corneal power 

n ^  1.000 (Rl of air), n2= 1.376 (Rl of corneal tissue), 

n3 = 1.336 (Rl of the aqueous)

• Eccentricity of the cornea is calculated as ‘e’ by the Pentacam. According 

to Q = - e2, Q is calculated as well, which describes the asphericity of the
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cornea. Aberration of the cornea was calculated by Zernike coefficient. If 

there is no abnormal Zernike coefficient, the aberration coefficient will be 

equal to 0.0. Values exceeding 1.0 are indicating that the corneal surface 

contains untypical wave components.

• The anterior chamber is defined as the distance between the posterior 

surface of the cornea and the anterior surface of the lens. ACV (Anterior 

chamber volume) is calculated in mm2, from the distance between the 

back surface of the cornea and the front surface of the lens integrated in a 

12 mm diameter around the corneal apex. Anterior chamber angle (ACA) 

is the smaller of the two chamber angles in the horizontal section. Anterior 

chamber depth (ACD) is the distance in mm, from the back surface of the 

cornea to the front surface of the lens.

• Pupil diameter is depicted as an average value in mm, over the 

measurement period.

3.2.8 Lens power calculation

In those cases in which spherical equivalent (SE), keratometry (K), anterior 

chamber depth (ACD) and axial length (AL) were measured successfully, the 

contribution of the lens was calculated by using the formula (Haugen et al. 

2001a):
r  \

1 1LENS POWER = n
A L_ ACD n _ ACQ

CR+MSE

where LP is the lens power in diopter, n is the Rl of the aqueous and the 

vitreous (n=1.336). AL and ACD are given in meters. This formula calculates 

the lens power, provided that the refraction of the whole lens takes place at 

the anterior lens surface (anterior vertex). Therefore, the total lens power is 

approximately 3 D more than it (Haugen et al. 2001a).
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3.3 Pentacam image analysis
3.3.1 Corneal topography

The quality of corneal topography

Prior to assessing the corneal topography, both the QS (Quality 

Specification) of the images and the judgment of the author (PJ) were taken 

into account in deciding whether the values should be accepted. The system 

indicates the reason if the image is of poor quality or not (for more, see 

chapter 2, section 2.2). With the information from the QS table, the examiner, 

therefore, was able to observe the quality of the image as a whole and then 

discard those images which were considered not good enough for further 

image analysis.

Objective assessment of the corneal topography by the Pentacam 

A keratoconus level map from the Pentacam system gives an early 

identification of a wide variety of corneal abnormalities. The classification is 

based on various indices which were calculated from relevant curvature data, 

height and Zernike analysis (Fig. 3-7). The Pentacam compares the 

measured values with the mean values and SD of a normal population. When 

the measured value is >mean+2.5SD, it is regarded as abnormal. The 

classification of keratoconus of each image was recorded by the author. 

Noticeably, the analysis is entirely based on the topography of the anterior 

cornea surface data. In those cases with moderate or severe keratoconus, an 

abnormal cornea was often noted by the author on the Scheimpflug image 

(Fig. 3-8).
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IS V : (Index of Surface Variance) Value of curvature
variation from the mean curvature.

IV A : (Index of Vertical Asymmetry) Value of curvature
symmetry comparison of the upper and lower area.

Kl: (Keratoconus Index)
Increases with severity of keratoconus.

CKI: (Center Keratoconus Index)
Increases with severity of central keratoconus.

I H A : (Index of Height Asymmetry) Value of height data
symmetry comparison of the upper and lower area.

IH  D : (I of H eight D ecentration) Value of the
decentration of height data in vertical direction.

RMin: (Minimum Sagittal Curvature)
Smallest sagittal curvature in the 8mm-zone.

A B R : (Aberration coefficient) Value of the aberrations of
the cornea front calculated with Zernike Analysis

Fig. 3-7: Keratoconus indices table from the Pentacam system

Fig. 3-8: A Scheimpflug image of one DS subject with keratoconus
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Subjective assessment of the corneal topography

The observer (SN) viewed all the recorded images and formed his own 

opinion of the keratoconus status by corneal topography without knowing the 

results of the Pentacam system or to which subject group each image 

belonged. The following are the principles which the observer used for the 

assessment of the comeal topography and provided to the author:

1. Using a curvature picture of the front or back of the cornea: look at the 

steepest and flattest meridians. If the steepest and flattest lines are 

not perpendicular to each other then this indicates irregularity. If the 

axes are less than 70 degrees apart, keratoconus will be suspected. 

On a normal cornea they will be perpendicular (even in patients with 

higher levels of regular astigmatism) (Naroo and Morgan 1997).

2. The Rmin value is the minimum radius of the cornea. The Rper value 

is the flattest radius in the zone between the 7mm and 9mm ring of the 

cornea. A lower Rmin value than average value may indicate 

steepness as in keratoconus. A higher Rper value indicates that there 

is a degree of flattening, which is usually in the opposite quadrant to 

the Rmin.

3. Typically the keratoconus eye will have greater values for “e”.

4. Looking at the posterior curvature maps, increased steepening as 

shown on the posterior suggests ectasia such as in keratoconus.

Once keratoconus was diagnosed, it was graded on a 0-4 scale as follows 

KK Possible, KK1= Slight/Trace, KK2=Mild, KK3=Moderate, KK4=Severe. 

This is according to Efron scales used in contact lenses (Efron et al. 2001).
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3.3.2 Lens densitometry

Prior to measuring lens density, the Scheimpflug image was opened and 

then checked in the image which the camera was in the horizontal position 

(Image 7 of 25, Segment 89°-269°) (Fig. 3-9). The lens density reading was 
not available if the lens was not visible in the image (Fig. 3-9).

Fig. 3-9: A Scheimpiug image showing that the lens is not visible, 

(probably due to a smaller pupil)

An axis line of the anterior eye segment is automatically constructed from the 

apex of the cornea. A cross marker is then automatically placed by the 

system at the intersecting points between the axis and the anterior surface of 

the cornea. The yellow dotted line marks the anterior surface of the lens. The 

horizontal marker “— “ shows the position of the cursor. In the densitogram 

at the right hand side (green colours), the yellow line indicates the beginning 

of the lens (Fig. 3-10).

The densitometer measures the amount of density and variation within lens. 

Central lens density (CLD) and maximum lens density (MLD) were measured 

at the cursor point, with the cursor placed manually. The density of the lens is 
standardized from 0 to 100. i.e. 0 means the lens shows no clouding, 

however, 100 means the lens is completely opaque. The horizontal marker
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was placed at the centre of the lens (Fig. 3-10). It shows the densitometry 

reading over the pupil centre at the right hand scale (green colours). The lens 

centre was judged by eye and the readings were recorded as CLD.

0 6 /1 2 /1 *4 R <N
11/17/2005 15 44 06

Fig. 3-10: A Scheimpflug image when the marker is in the centre of the lens

The peak of lens density was shown in solid green at the right hand scale. 

The horizontal marker was then moved around to the different points within 

the lens and placed at the point where the MLD was shown. In each case, 

the maximum reading occurred at different points and layers of the lens. For 

instance, MLD may be shown when the marker was placed at the anterior of 

the lens (Fig. 3-11) or at the centre of the lens (Fig. 3-12).
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Fig. 3-11: A Scheimpflug image for MLD measurement (at the anterior of the lens)

Fig. 3-12: A Scheimpflug image for MLD measurement (at the centre of the lens)
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3.4 Results
3.4.1 Co-operation of the subjects

All the control children and adults successfully completed all of the tests 

which they attended. Twenty-five DS children and twenty-eight control 

children who were approached and agreed to take Pentacam images. Twelve 

DS children and five control children gave consent for lens thickness 

measurement. Table 3-2 shows the number of the subjects with DS who co­

operated for each measurement.

Table 3-2: The number of subjects with DS 
and success rate (SR) for each measurement

DS Children DS Adults

No. SR (%) No. SR (%)

Refraction 46 100.0 14 74.7

VA 46 100.0 14 74.7

Accommodation 46 100.0 n/a

AL 43 93.4 13 68.4

Pentacam image 18 72.0 14 74.7

Lens thickness 9 75.0 n/a

3.4.2 Ocular function

Findings of the ocular function of all the subjects are shown in Table 3-3. No 

significant difference in refraction (p=0.835, Independent t-test), but 

significant difference in VA (p<0.001, Mann-Whitney Test) and the presence 

of inaccurate accommodation (p<0.001, Chi-square) were found between 

child groups ( that is to say, children with DS have poorer VA and are more 

likely to accommodate inaccurately compared with those controls.). There 

was no significant difference in refraction in DS adults without keratoconus 

and control adults (p>0.05, Independent t-test). As expected, DS adults with 

keratoconus have higher refraction (-8.50±6.96 D) and poorer VA (0.4±0.12) 

compared to those DS adults without keratoconus (p<0.001, Mann-Whitney 

Test).
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Table 3-3: Findings of the ocular function

DS Children Control
Children

DS Adults 

without KC
Control
adults

Meansph (D)
Range

+2.20 1 3.49 +2.35 ±3.46 -2.83 1 6.30 -2.03 1 3.47

-6.75 -+9.38 -4.50-+11.38 -16.80-+3.88 -7.25 - +2.63

VA (LogMar)

Range

0.19±0.16 0.021 0.14 0.2010.20
N/A

0.00-0.50 -0.20-0.50 -0.10-0.40

Presence of 
under­
accommodation

52% (n=24) 12% (n=6) N/A

More hyperopia was found in both child groups (Fig. 3-13a). However, both 

myopia and hyperopia were found in adult subjects. There were 82.2% 

children with DS and 98% control children seeing 0.3 (6/12) or better (Fig. 3- 

13b).

100.0% -

80.0% -

-  6 0 .0 % -

Ia>
C L

40.0% -

20.0%  -

0.0% P

n  DSChildren 
I—, Control 
u  Children

Myopia Emmetropia Hyperopia

Fig. 3-13a: Refraction in child subjects
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Fig. 3-13b: VA in child subjects

In children with DS, the accommodation was divided into three groups: 

accurate (n=15), inaccurate (n=24) and becoming accurate (n=7) (Fig. 3- 

13c).
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~  6 0 .0% -
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Children

Inaccurate Accurate Becoming
accurate

Fig. 3-13c: Accommodation ability in child subjects
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3.4.3 Ocular biometric measurements

3.4.3.1 AL measurement

There was a significant difference in AL between children with DS and control 

children (p=0.048, Independent t-test). However, there was no significant 

difference in AL in DS adults with keratoconus (diagnosed from clinical 

records) and DS adults without keratoconus (p>0.05, Independent t-test, 

power of test is 0.053) (Table 3-4).

Table 3-4: AL of the subjects

DS Children
Control

Children
DS Adults 

without KC

DS Adults 

with KC

AL Mean±SD 

(mm) Range
22.06 ±1.31 22.65 ±1.51 23.56 ± 1.97 23.59 ± 2.08

19.28-25.37 19.39-26.01 21.35-28.16 22.06 - 28.47

3.4.3.2 Properties of the cornea

Corneal parameters for all the subjects are shown in Table 3-5a, b. 

Distribution of CCT and CR in all the subjects are shown in Fig. 3-14 and Fig. 

3-15. It was noted that DS children and adults had reduced mean CCT, PCT 

and MCT compared to their respective controls (p<0.001, Independent t- 

test). In terms of corneal shape, DS adults and children have smaller CR and 

higher power of the front surface of the cornea compared to their respective 

controls (p<0.001, Mann-Whitney test). Only DS adults have significantly 

lower back surface of the corneal power compared to control adults. A 

significantly higher aberration of the cornea (p<0.01, Mann-Whitney U test) 

was found in DS subjects. However, there was no significant difference in 

corneal asphericity (p>0.05, Mann-Whitney U test, power of the test is 0.419) 

between DS subjects and their respective controls.

In terms of DS adults (n=4) with keratoconus, CCT (272.0±117.2 pm), MCT 

(229.5±150.3 pm), CR (5.2±1.6 mm) and corneal power (68.8±18.5D), 

asphericity of the cornea (e: 0.58±0.43; Q: -0.48±0.58) and aberration
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(4.43±2.61) were obviously different from DS adults without keratoconus 

(n=10) (p<0.001, Mann-Whitney U test).

Table 3-5a: Findings of the corneal parameters in child subjects

DS children Control children
P-value

No. subject 18 28

CCT (pm) MeantSD 475.7*35.8 540.7*38.4 <0.001

MCT (pm) MeantSD 451.8i59.0 533.9*46.8 <0.001

PCT (pm) MeantSD 555.4*38.8 617.4*46.1 <0.001

Front surface of the comeal 

Power (D) MeantSD 51.0*2.1 47.6*1.3 <0.001

Back surface of the comeal 

Power (D) MeantSD -6.3*0.5 -6.1 *0.2 0.070

Total comeal 

Power (D) MeantSD 44.5*1.8 41.5*1.6 <0.001

Asphericity

e MeantSD 

Q MeantSD

0.34*0.39 0.47*0.19 0.131

-0.26*0.23 -0.26t0.17 0.994

Aberration MeantSD 2.3*1.6 1.3*1.3 0.004

(Independent t-test or Mann-Whitney U test, DS children vs. Control children)
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Table 3-5b: Findings of the corneal parameters in adult subjects

DS adults 

without KC

Control

adults P value

No. subject 10 16

CCT (pm) MeaniSD 475.4133.3 544.7131.3 <0.001

MCT (pm) MeantSD 461.4±43.0 541.5132.8 <0.001

PCT (pm) MeantSD 566.9151.8 624.0130.1 <0.001

Front surface of the comeal 

Power (D) MeantSD 51.312.8 48.111.7 0.001

Back surface of the comeal 

Power (D) MeantSD -5.710.6 -6.310.2 0.001

Total comeal 

Power (D) MeantSD 44.912.4 41.811.5 <0.001

Asphericity

e MeantSD 

Q MeantSD

0.1510.15 0.1910.19 0.679

-0.1510.15 -0.07l0.06 0.152

Aberration MeantSD 2.511.5 1.211.0 0.001

(Independent t-test or Mann-Whitney U test, DS adults vs. Control adults)

CCT and PCT were significantly associated in DS children (r=0.596, p<0.001) 

and control children (r=0.943, p<0.001). Noticeably, the correlation between 

CCT and PCT were significantly different between DS children and controls 

(Zobs=-3.296). No other corneal parameters, refraction or VA was significantly 

related to asphericity and aberration of the cornea in DS child subjects.
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Fig. 3*14: CCT in all the subjects
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Fig. 3-15: CR in all the subjects

DS children Control DS adults Control
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112



Chapter 3: Ocular biometry and corneal topography

3.4.3.3 Properties of the lens

Lens density

Four adults with DS had cataract which were visible with non-dilated pupils. 

There was no visible lens opacity in any of the child subjects during the eye 

examination which was checked by JMW. No significant difference in the 

mean CLD and MLD was found between DS subjects and their controls (p> 

0.05, Mann-Whitney U test). However, DS and control adults have significant 

higher CLD compared to that of both children groups (Table 3-6).

Table 3-6: The MLD, CLD of all the subjects

DS

children

DS

adults

P-

value

Control

children

Control

adults

P-

value

No. subjects 18 10 27 16

CLD Mean ±SD 7.011.9 9.912.6 0.026 7.912.5 10.613.4 0.001

MLD Mean ±SD 19.718.6 18.016.5 0.892 18.615.3 23.419.7 0.167

(Mann-Whitney test, DS children Vs. DS adults; 

Control children Vs. Control adults)

CLD was correlated with age in control adults (Spearman correlation r=0.506, 

p<0.05) and also in adults with DS (r=0.776, p<0.05). CLD and MLD were 

associated with each other only in children and adults with DS (Spearman 

correlation r=0.511, p<0.05; r=0.652, p<0.05 respectively).

Calculated lens power

Lower calculated lens power was found in children with DS (21.37±1.35D) 

than that of control children (23.54±1.87D) (p<0.001, Mann-Whitney U test). 

Since lens power might influence a child’s accommodative ability, 

comparison of calculated lens power for children with DS who accommodate 

inaccurately (n=6), and those accurately (n=7) and those becoming 

accurately (n=4) were made. However, no significant difference was found 

between those children (p=0.709, Kruskal-Wallis test).
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Lens thickness

It appeared that the lens thickness was slightly lower in children with DS 

(n=9) (3.34±0.36mm) compared to that of control children (n=5) 

(3.56±0.11mm), but this was not statistically significantly (p=0.204, 

Independent t-test, the test power is 0.665).

3.4.3.4 Properties of the anterior chamber

No significant difference was found between subjects with DS and their 

respective controls in ACA, ACV and ACD (p>0.05, Independent t-test) 

(Table 3-7).

Table 3-7: The ACA, ACV and ACD of all the subjects

DS

Children

Control

Children

P-

value

DS Adults 

without KC

Control

Adults

P-

value

ACD (mm)

Mean ±SD
3.210.4 3.410.3 0.196 3.210.3 3.110.5 0.593

ACV (mm2) 

Mean ±SD
204.1140.0 207.8138.6 0.761 190.0146.4 188.9151.1 0.999

ACA (")

Mean ±SD
38.017.9 37.719.6 0.939 36.913.9 38.618.0 0.286

3.4.3.5 Pupil diameter

No significant difference in pupil diameter was noted between DS children 

(3.27±0.52mm) and control children (3.45±0.83mm) (p=0.406, Independent t- 

test, power of test is 0.222); DS adults and control adults (2.84±0.58mm vs. 

3.00±0.51mm) (p=0.445, Independent t-test, power of test is 0.169).

3.4.3.6 Correlation between optical components

No significant difference was found in the AL/CR ratio between our DS 

children and controls (3.00±0.16 vs. 2.88±0.20) (p=0.055, Independent t-test, 

power of test is 0.707). However, DS adults have a much higher AL/CR ratio 

3.50±0.71).
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Calculated lens power was significantly associated with AL (r=-0.799, 

p<0.001), AL/CR (r=-0.795, p<0.001), refraction (r=0.581, p=0.001) and ACD 

(r=0.677, p<0.001) only in control children. Additionally, significant negative 

association between ACD and refraction was only found in control children 

(r=0.656, p<0.001).

Significant negative association between AL and refraction, AL/CR and 

refraction were found both in DS subjects and controls (see Table 3-8; Fig. 3- 

16; Fig. 3-17). Noticeably, there was a significant difference in the correlation 

of AL and refraction between DS children and controls (Zobs=2.647). However, 

no significant difference in the correlation of AL/CR and refraction was found 

between DS children and controls (Zobs=0.799). Comparing the linear 

regression of AL and refraction in both groups, the slope was the same 

(p=0.468); the elevation (p=0.002) and the residual variance were 

significantly different at 0.05 level of probability (F=2.465, df 1 =41, df2=48). 

“In terms of the linear regression of AL/CR and refraction, the slope (p=0.058) 

and the residual variance did not reach the significance at 0.05 level of 

probability (F=1.313, df1=15, df2=26), however, the elevation (p=0.001) 

were significantly different.”

Table 3-8: Correlation between AL and refraction; AL/CR and refraction

R R* Equation P-
value

A L -

Refraction
DS children 0.680 0.462 Y=41.66-1.79X <0.001

Control children 0.885 0.783 Y=48.24-2.03X <0.001

A L/C R - 

Refraction
DS children 0.889 0.789 Y=51.95-16.70X <0.001

Control children 0.933 0.870 Y=37.68-12.52X <0.001
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Based on refractive error groups, all refraction components were compared 

between DS children and controls (Table 3-9). As expected, significant 

difference in AL (p=.000, Mann-Whitney test), AL/CR (p=.001, Mann-Whitney 

test) and ACD (p=.000, Mann-Whitney test) were noted between hyperopic 

and myopic control children. In DS children group, shorter AL (p=.016, Mann- 

Whitney test) and smaller AL/CR (p=.001, Mann-Whitney test) were also 

noted between hyperopic and myopic eyes.

However, similar AL and higher AL/CR were noted between hyperopic DS 

children and controls, whereas there was no difference between myopic DS 

children and controls (Table 3-9). Higher corneal power, higher corneal 

aberration and lower lens power were noted in hyperopic DS children 

compared to that of hyperopic controls, whereas myopic DS children only 

have significantly higher corneal power (Table 3-9). Those hyperopic DS 

children who accommodate inaccurately (n=5) have slightly lower lens power 

than those accurately (n=7) but not significantly.

Table 3-9: Refraction components of refractive error groups

Hyperopia P-value Myopia P-value

DS

children

Control

Children

DS

children

Control

children

No. subjects 14 15 6 7

AL (mm) 22.011.1 22.011.0 0.983 24.111.1 25.010.8 0.429

Comeal 

Power (D) 38.911.7 36.311.0 <0.001 39.511.3 35.212.6 0.020

AL/CR 2.910.1 2.811.3 <0.001 3.310.1 3.110.3 0.260

ACD (mm) 3.110.4 3.110.3 0.863 3.310.3 3.610.2 0.147

Lens

Power (D) 21.311.4 24.511.7 <0.001 21.511.5 21.711.3 0.905

Aberration 2.511.8 1.310.9 0.028 1.510.1 1.612.0 0.945

(Independent t-test or Mann-Whitney U test, DS children vs. controls)
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3.4.4 Detection of keratoconus

According to the previous clinical records, there were five DS adults with 

keratoconus. Two more adults with DS who had not been seen previously in 

the clinic were detected with keratoconus clinically during the course of this 

study by JMW. All child subjects were examined with retinoscopy by JMW 

and no suspicions of keratoconus arose. 26 images from DS children, 41 
from control children and 18 from DS adults were examined by the observer 

and the Pentacam system.

According to the observer’s judgment, most of DS children (n=13) were 

considered as having trace keratoconus, whereas with the Pentacam most of 

DS children were considered to have a normal cornea (n=14) (Fig. 3-18a). 

Noticeably, there were twice as many DS children with suspicious 

keratoconus by the observer (n=20), compared to that of the Pentacam 

(n=9).

DS children DS children
observer

■  Normal=6
■  Possibles 
□  Traoe=13
■  Mild=6

Pentacam
system

■  Abnormal=3
■  Normal=14
■  Possible=4 
□  Trace=4
■  Mild=1

Fig. 3-18a: Pie chart for the detection of keratoconus in DS children

With regard to the control children and adults with DS, the same number of 

control children (n=7) and adults with DS (n=12) were detected as having 

keratoconus by both methods of detecting the keratoconus (see Fig. 3-18b- 

c).
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Control children Control children

Norm a 1=34
□  Trace=5

Mnd=:

Pentacam sytem
■  Normal=30
□  Possible=4
□  Trace=3
■  MikJ=i
□  Moderate=3

Fig. 3-18b: Pie chart for the detection of keratoconus in control children

DS adults
DS adults

observer
■  Norma 1=3
□  Trace=2
■  Mik*=3
□  Mode rate =6
□  Severe=4

Fig. 3-18c: Pie chart for the detection of keratoconus in DS adults

Pentacam
system

■  Abnormal 1
■  Normal=4
□  Trace=2
■  Mild=4
□  Moderate=1
□  Severe=5
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3.4.5 Keratoconus, eye-rubbing and family history

Keratoconus was either defined by JMW or by evaluating previous clinical 

records. The results of a 3-step score of the frequency of eye rubbing per day 

(0=Once or less, 1=Twice -S ix times, 2= More than seven times) showed 

that there was no increased frequency amongst the keratoconus patients 

compared to those of the non-keratoconus group (p=0.055, Chi- square) (see 

Table 3-1 Oa). The results of the family history between Keratoconus and 

Non-keratoconus in adults with DS are shown in Table 3-1 Ob (p=0.307, Chi- 

square).

Table 3-1 Oa: The result for frequency of eye rubbing per day 

between keratoconus and Non-keratoconus subjects

Frequency of eye rubbing Keratoconus Non-keratoconus

0 (£ once) 3 7

1 (3-6 times) 2 4

2 (£ 7 times) 0 3

Table 3-1 Ob: The results for family history between keratoconus 

and Non-keratoconus adults with DS

Keratoconus Non-keratoconus

No family history 5 6

Having family history 0 0

Don’t know 2 6
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3.5 Discussion
3.5.1 Co-operation of the subjects

Measuring Refraction. VA. Accommodation and AL

All control children completed all the measurements successfully. All children 

with DS co-operated well with refraction, VA and accommodation 

measurements. The level of compliance was noted to be higher than that as 

reported in other studies in children with DS (Haugen et al. 2001c; Liza- 

Sharmini et al. 2006). The advantage of our study was that many of the 

children with DS from our longitudinal cohort had received regular visual tests 

by the same experienced optometrist (JMW). It appeared that they may be 

familiar with the surroundings and remembered the testing procedure, which 

may increase their motivation. In fact, the level of motivation of children with 

DS can strongly influence the results of cognitive tests (Wishart and Duffy 

1990). Therefore, it is likely to be the explanation of the good co-operation for 

the ocular function. However, the author failed to obtain reliable AL with 7% 

children with DS. This might be due to the lOL-Master relying on adequate 

foveal fixation to obtain measures. Their lack of comprehension of fixing the 

light may result in failure of this test. Success rates for the adults with DS for 

refractive error, VA and AL measurements were lower than that of shown in 

Haugen’s study (Haugen et al. 2001a).

Taking the Pentacam image

With regard to the Pentacam image, 75% children with DS and 74% adults 

with DS were able to co-operate, which was lower than that reported by 

Haugen (83%) and Doyle (98%) for the corneal topography (Doyle et al. 

1998; Haugen et al. 2001a). This difference may be due to the different age 

groups and different testing methods utilised in these studies. The Pentacam 

system takes 1-2 seconds to obtain a measurement. The main reasons for 

failure were tilting their head, blinking, fidgeting or lack of comprehension of 

the test in those subjects with DS. In addition, the camera rotated twice 

around the border of the black circle just in front of the subject, may distract 

their attention and result in them looking away from the fixation light.

It is noted that not many DS children (n=12) and control children (n=5) were 

involved in the lens thickness measurement. The main reason was the
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difficulty in persuading child subjects to pay a return visit, while the additional 

use of eye drops further discouraging attendance. Unlike control children, the 

parents of children with DS from our longitudinal cohort were shown to be 

more supportive and were more likely to attend a second visit.

3.5.2 Visual function

High refractive error was found in the majority of our subjects with DS. 

Compared to controls, DS children have poorer VA and higher prevalence of 

under accommodation, which is consistent with the previous studies 

(reviewed in Chapter 1).

Surprisingly, there were 82% children with DS seeing 0.3 (6/12) or better in 

our cohort, which is higher (i.e. better VA) than the other studies (Courage et 

al. 1994; Doyle et al. 1998; Evereklioglu et al. 2002; Haugen et al. 2001a; 

Liza-Sharmini et al. 2006; Tsiaras et al. 1999). Different age groups used in 

various studies may be a contributing factor. In addition, another possible 

explanation may be applicable to our study, which was stated by Doyle 

(1998) “Visual performance has been maximised by early refraction and 

appropriate glasses, with good follow up in the cohort”.

3.5.3 Ocular biometric features

3.5.3.1 Properties of the AL
The mean AL of DS children is smaller than that of our controls, which is not 

in line with Haugen’s study who reported that the AL of young adults with DS 

was similar to that of controls (Haugen et al 2001a). However, the similar AL 

value was found between hyperopic DS children and controls. Further, both 

hyperopic DS children and controls have shorter AL and smaller AL/CR 

compared to that of myopic eyes.

No significant difference was found in the AL/CR ratio between our DS 

children and controls, which is in accordance with the results of Haugen. In 

our study, DS adults have a much higher AL/CR ratio compared to our child 

subjects, which may be due to the more myopic mean refraction in DS adults 

(-2.83±6.30 D) compared to DS children and controls (2.20±3.49 D vs. 

2.35±3.46 D).
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There was no significant difference in the mean AL of DS adults with 

keratoconus and those without keratoconus in our study, which is contrary to 

the report that keratoconus eye has greater AL (Li et al. 2005; Touzeau et al. 

2004).

3.5.3.2 Properties of the cornea and its implications

Thinner central cornea and higher corneal power in DS subjects compared to 

that of controls were in agreement with the previous studies (Doyle et al. 

1998; Evereklioglu et al. 2002; Haugen et al. 2001a). No significant 

difference was found in asphericity between subjects with DS and controls 

even though corneal thickness and radius are significantly different, which is 

in line with the statement by Dubbelman et al. (2006) “A steep cornea is not 

likely to be more or less aspheric than a flat cornea. The asphericity of both 

corneal surfaces is independent of gender and radius.” It appears that the 

cornea of people with DS was prolate shape similar to controls. However, 

comeal aberration was significantly more positive in people with DS and it is 

interesting in view of the poorer VA in people with DS. However, no 

significant correlation between aberration and VA was found in our study.

Hyperopic DS children have significantly higher corneal power and aberration 

than that of hyperopic controls, whereas myopic DS children have 

significantly higher corneal power but not significantly different aberration. 

Since the participants in both child groups were mostly hyperopic (Fig. 3-13a), 

we have to bear in mind that the overall difference mainly lies in hyperopic 

eyes.
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What causes the abnormality?

The biometric parameters of the cornea in people with DS were different from 

the normal. The conical corneas seen in keratoconus patients with DS who 

present for corneal grafting are thinner than those from keratoconus patients 

without DS (Haugen et al. 2001b). Moreover, acute swelling of the conical 

cornea is far more common in keratoconus patients with DS than those 

without DS (Pierse and Eustace 1971; Tuft et al. 1994). The inherent corneal 

thinning may result from the gene disorders in people with DS. The gene 

encoding the a-1 chain of type VI collagen, a major constituent of the corneal 

stroma, is on chromosome 21 at Locus 21q22.3 (Hattori et al. 2000; 

Rabinowitz 1998). Therefore, as people with DS have a trisomy 21, there 

might be a connection between this gene and the thinning of the cornea.

The thinning of stroma of both the iris and the cornea is present in people 

with DS (Bertelsen and Seim 1974). Moreover, these tissues are both 

derived from the neural crest cells. Hence, it has been suggested that the 

common defect in the migration or differentiation of neural crest cells may 

lead to this thinning (Bertelsen and Seim 1974).

Thus, it was speculated that the increased curvature may be due to the 

reduced mechanical rigidity as a result of the thinning of the corneal stroma 

(Haugen et al. 2001b). That is to say, the central region of the cornea is likely 

to become weak due to tissue thinning, which in turn causes the tissue to 

bulge and consequently changes the shape of the cornea. However, CCT 

and CR were not correlated in our DS subjects. Therefore, it may not be the 

whole explanation for the reduced curvature in people with DS.

Its implications

Thinner corneal thickness and higher corneal power in people with DS may 

be associated with abnormalities in collagen. Therefore, it is more likely that 

corneal rigidity differs from that of ordinary people. Firstly, the inherent 

corneal thinning is probably an important aspect of the development of 

keratoconus in DS. In other words, the thin cornea may predispose for the 

development of keratoconus. Secondly, this difference could give rise to a
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false reading of the IOP. Many studies have pointed out that properties of the 

cornea other than the thickness and curvature, such as corneal elasticity may 

affect IOP measurement (Harada and Naoi 2004; Svedberg et al. 2005), 

which was discussed in chapter 5. The corneal aberration was higher, which 

may influence the balance of the aberration of the eye. Thus, it may lead to 

refractive error in people with DS. Moreover, higher corneal aberration may 

lead to degradation of the retinal image quality and therefore to visual 

performance (Gobbe and Guillon 2005; He et al. 2002) and explain, in part, 

the poor VA in children with DS.

3.5.3.3 Properties of the lens
‘Flake’ lens opacity has been reported in people with DS in a number of 

studies, as reviewed in Chapter 1. However, no lens opacity of visual 

significance was found in this study of child subjects. Pupils were not dilated 

for clinical examination, so very peripheral lens opacities may have been 

missed. Four adults with DS (29%) had cataract visible with non-dilated 

pupils.

Our finding of a thinner lens in our nine child subjects with DS compared to 

that of the five controls (3.34±0.36mm vs. 3.56±0.11mm -  not significant) 

was similar to the results of Haugen (3.27±0.29mm vs.3.49±0.20mm) 

(Haugen et al 2001a). Haugen’s study had much larger subject numbers (40 

with DS), and the difference was statistically significant. He also reported 

higher lens density in people with DS (age range from 19-26 years). 

However, in our study, no significant difference in lens density was found 

between DS subjects and controls. Both studies utilise arbitrary units to 

measure lens density so that the direct comparisons are not possible. It may 

be due to the different methods and different age groups. Our calculated lens 

power was 2.1D weaker than control subjects, which is close to the 1.8D 

difference reported by Haugen et al (Haugen et al 2001a).
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However, there was no significant difference in lens power between children 

who accommodate accurately and those who do not. Further, when the 

different refraction groups are considered separately, hyperopes with 

accurate accommodation have higher lens power, although the difference is 

non-significant. Whether this is a real trend remains to be seen when larger 

numbers of subjects can be assessed. There could be factors other than just 

lens power coming into play to influence whether an individual child with DS 

accommodates accurately, even with a low lens power. It is discussed more 

in chapter 6, section 6.2.3.

3.5.3.4 Properties of the anterior chamber

Mean ACD of young adults with DS (3.45±0.34 mm) was first reported by 

Haugen (Haugen et al. 2001a), which was deeper than our results (DS 

children 3.11±0.36 mm, DS adults 3.29±0.46 mm), but neither study showed 

a significant difference between DS and respective controls.

3.5.3.5 Pupil diameter
To our knowledge, pupil diameter of people with DS was first examined in our 

study. Subjects with DS have similar pupil size to our controls. Therefore, 

poor accommodation in children with DS cannot be explained by reduced 

pupil size resulting in increased depth of focus of the eye.

3.5.3.6 Correlation between optical components

Since refractive error is the result of mismatched association among the 

refractive components, correlations between the total refraction of the eye 

and the individual optical elements may explain the failure of 

emmetropisation in children with DS. Linear correlation between AL and 

refraction in people with DS was noted in our study, which is in accordance 

with previous studies (Doyle et al. 1998; Haugen et al. 2001a).
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Our correlation equation was

y = 44.71 - 1.92x, where y is mean sphere and x is axial length.

Doyle et al. (1998) and Haugen et al. (2001) found the following equations 

respectively:

y = 37.98 - 1 .63x and y = 38.20 - 1.67x.

There is no statistically significant difference between the three equations. 

However, in our study, the relationship between refraction and AL was not 

similar in children with DS and controls. There was also a significant 

difference in the association between AL/CR with refraction in both child 

groups. Moreover, refractive components were correlated well as expected in 

control child but not in DS children. The fact that they are not correlated 

suggests that the lack of coordination between the components may result in 

refractive error.

The difference between children with DS and control children seems to lie 

with hyperopes. With only 6 myopes in the DS group, numbers are too small 

to draw any firm conclusions.
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3.5.4 Detection of keratoconus

No clinical signs of keratoconus (0%) were detected in the examination of 

our children with DS, which is consistent with the other two studies for 

children with DS (Liza-Sharmini et al. 2006; Vincent et al. 2005). 2% was 

reported with keratoconus and 6% had an abnormal corneal topography in 

Doyle’s study (within the age range of 15 to 22 years). In terms of the 

prevalence of keratoconus in adults with DS, 13% and 20% were reported in 

Haugen’s two studies (within the age range of 19 to 26 years and from 15 to 

90 years) (Haugen 1992; Haugen et al. 2001a). In our study, 47% of adults 

with DS have keratoconus (within the age range of 19 to 58 years), from a 

biased sample as our subjects were mainly selected, being a clinical 

population and are very likely to be biased towards those with visual 

problems. It appeared that the older age group may have a higher frequency 

of keratoconus.

On assessing corneal topography to detect keratoconus, it can be seen that 

objective and subjective methods gave similar results in control children and 

adults with DS. Seven adults with DS with keratoconus by clinical 

examination were picked up by both methods. Seven control children by 

subjective method and eleven by objective method were detected as having 

suspect corneas but all had normal corneas on clinical examination. This 

raises the possibility that the criteria adopted by both methods are too lenient 

to be clinically useful. In most situations only clinically suspect corneas would 

be examined by corneal topography. JMW made the decision not to follow up 

the study diagnosis with control children, but to place a note in the subject’s 

records as a reminder to examine the cornea thoroughly at their next visit.

3.5.5 Keratoconus, eye rubbing frequency and family history (adults 

with DS)

No association between eye rubbing frequency and keratoconus was found 

in our study, which is in contrast to the study by Haugen (Haugen 1992). 

However, it is consistent with Vincent (Vincent et al. 2005). No association 

between family history and keratoconus was found. However, Vincent 

reported that there was a greater incidence of abnormal topographic changes
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in the parents of children with DS, suggesting a genetic basis for corneal 

structural abnormality (Vincent et al. 2005).

3.6 Conclusions

The majority of our subjects with DS have refractive error and under­

accommodation. Poorer VA was confirmed compared to our control children. 

With regard to the ocular biometry measurements, thinner CCT and PCT, 

smaller CR and higher corneal power were confirmed in people with DS. 

Higher aberration of the cornea was noted in people with DS. The shape of 

the cornea was prolate in people with DS similar to the controls. Calculated 

lens power was lower in children with DS compared to controls. Adults with 

DS and with keratoconus have deeper ACD compared to those adults with 

DS but without keratoconus. No other significant difference was found in 

anterior chamber parameters and pupil size between subjects with DS and 

controls.

It was confirmed that there was significant correlation between AL and 

refraction, the AL/CR and refraction in both child groups. However, it was 

noted that the correlation between AL and refraction was significantly 

different between children with DS and controls. Thus, it appeared that 

refraction is determined by AL and CR in the different way as in the general 

population.

Clinically, keratoconus was present in 40% (n=8) adults with DS, however, 

no keratoconus was found in children with DS. Abnormal corneal topography 

was more common in children with DS compared to those controls. Hence, 

more children with DS were detected with suspicious keratoconus. There 

was no association of the eye-rubbing, family history and frequency in DS 

adults with keratoconus compared to those of the non-keratoconus group.
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Chapter 4: Retinal features

4.1 Introduction
4.1.1 Retinal features in people with DS

As reviewed in chapter 1, retinal abnormalities were described in people with DS, 

but these studies have been limited to the description of the blood vessels (Ahmad 

and Pruett 1976; Berk et al. 1996; da Cunha and Moreira 1996; Sherk and 

Williams 1979; Williams et al. 1973). To our knowledge, no studies have 

documented the quantitative characteristics of the disc itself in people with DS. It 

may be due to the difficulty of determining objectively the optic disc area by 

traditional technique.

Therefore, the first aim of this part of study was to quantify the optic disc by 

planimetric evaluation. The hypothesis was that optic disc was smaller in DS 

children due to the following considerations. First of all, hypermetropia, often of 

considerable degree is very common in DS. Hyperopic eyes are smaller and 

hence, may be expected to have smaller optic discs (Lempert 2003). Secondly, 

disc relates directly to the number of nerve fibres in the optic nerve. A decreased 

number of neurons (Wisniewski 1990) and dendritic atrophy (Becker et al. 1991) in 

the visual cortical area in people with DS have been reported, both of which might 

be associated with fewer optic nerve fibres and therefore a smaller optic disc. 

Thirdly, a scarcity of nerve fibres may be a factor in the explanation for reduced 

visual functions (Hellstrom and Svensson 1998). VA is below-normal in children 

with DS, and a recent study from our group has shown that the deficit persists 

even when motivational and concentration factors are excluded by the use of 

objective electrophysiological techniques (John et al. 2004), suggesting that there 

is a neural basis for the deficit.

In addition, the distribution, the diameter and the structural integrity of the vessels 

are aspects defining the general health of the vasculature. It has been reported 

that the abnormalities of the vascular pattern are associated with various ocular 

diseases (Klein et al. 2004a; Klein et al. 2004b; Mitchell et al. 2005) and they also 

provide unique information applicable to the study of various systemic vascular 

disorders such as stroke, coronary heart diseases and diabetes (Klein et al. 2004b; 

Wang et al. 2003; Wong et al. 2002; Wong and McIntosh 2005; Wong et al. 2005).
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Therefore, the second aim of this part of study was to observe the features of 

retinal vessels in our subjects. The functional significance of children with DS 

having more retinal vessels is not straightforward. However, it was hoped that 

further information about the arteries and veins, their direction, distribution and 

width may imply the real blood supply situation in children with DS to some extent. 

If retinal blood flow is abnormal in DS, there may be an influence on eye growth 

and visual function. Thus, any possible association between the distribution of the 

vessels and visual performance such as refraction, VA and accommodation was 

investigated.

4.1.2 Planimetric evaluation

Planimetry refers to the methods that use fundus photography to produce 

measurements of the ONH structure. It has been widely used in research for the 

observation and morphometric analysis of the ONH and for the diagnosis and 

assessment of glaucoma (Bartz-Schmidt et al. 1995; Garway-Heath and Hitchings 

1998; Garway-Heath et al. 1997; Hatch et al. 1999; Jonas et al. 1989a; Morgan et 

al. 2005a; Morgan et al. 2005b; Nguyen et al. 2001; Rudnicka et al. 2001; 

Sanchez Perez et al. 2001). The true measurements of the optic disc size or the 

diameters of the retinal vessels from a fundus photograph are dependent on 

obtaining the camera magnification and the magnification of the eye.

Magnification of the fundus photograph

Various methods to correct the camera and eye magnification have been 

published and all make assumptions about the optics of the eye to a greater or 

lesser extent (Bengtsson and Krakau 1977, 1992; Bennett et al. 1994; Garway- 

Heath et al. 1998; Langenbucher et al. 2003; Littmann 1982; Quigley and Dube 

2003; Rudnicka et al. 1998).

For the first time, Bengtsson and Krakau (1977) described the nature of the 

camera and its magnification for measuring the size of the optic disc from a 

photographic image. In this paper, they also presented the formulae for calculating 

image magnification based on the refractive error of the eye.
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Since then other authors have presented different methods based on:

i. ametropia and keratometry (Littmann 1982);

ii. AL only (Bengtsson and Krakau 1992; Bennett et al. 1994)

iii. AL, ACD, lens thickness, keratometry and ametropia (Bennett et al. 1994).

iv. Bennett and Littmann's methods were compared (Garway-Heath et al. 1998). 

The AL method differs little from more detailed calculations, suggesting that 

the AL method is most accurate.

Camera magnification was discussed and presented in Rudnicka’s study 

(Rudnicka et al. 1998). They compared and presented the magnification properties 

of different fundus cameras. More importantly, they first demonstrated the 

appropriate magnification formula for cameras in image size calculations. 

Noticeably, two novel methods were described later. Quigley et al. (2003) stated 

“The focusing knob position of the camera reflects the spectacle refraction of the 

eye being photographed; therefore, it can be used in retinal photographic 

screening programs.” Langenbucher (2003) presented a numerical calculation 

scheme which was based on ametropia, keratometry, AL, ACD and LT in order to 

determine the total magnification of the camera and an individual eye using 

paraxial raytracing. It was proved to be related to the respective values of the 

classical Littmann formula as well as to enhanced methods described by Bennett 

et al. (1994) and Garway-Heath et al. (1998).

Planimetric evaluation software

The custom digital planimetry software was initially written by JEM and was 

developed with the work of a computer expert (GP). The algorithms used for the 

magnification correction of the images were derived from the work of Garway- 

Heath et al. (1998), namely, based on the keratometry and refraction settings of 

the examined eye. This magnification formula is sufficient for ocular refraction of 

less than 7 diopters. The initial version proved to be a good technique for 

planimetric evaluation of stereoscopic images in previous studies in the school 

(Morgan et al. 2005a; Morgan et al. 2005b; Sheen et al. 2004). The current version 

was modified by incorporating the scaling factor of the Topcon fundus camera, 

which was worked out with the use of a Moorfield model eye (For more detail, see
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chapter 2. section 2.4).

The digital software enables an observer to view stereoscopic or monoscopic 

images. It involves the demarcation of the ONH properties including the area of 

the disc, the rim and the cup. Digital stereoscopic optic disc assessment provides 

a better estimation of the cup and a higher level of interobserver agreement 

compared with monoscopic assessments (Morgan et al. 2005a). However, in the 

current study, the stereoscopic camera was not considered sufficiently user- 

friendly to use with subjects with DS and so only monoscopic images were 

available. In addition, the software also provides a new function for vessel width 

measurement.

Before the custom digital software was ready, the ImageNet 2000 software which 

was installed in the Topcon camera was initially used for planimetry measurement. 

Since we could not have the ImageNet software scaled for magnification of the 

fundus photograph, only those fundus photographs matched in AL within 0.05mm 

were evaluated. Because the corneal power is higher in children with DS (see 

chapter 3, section 3.4.3), magnification would be expected to differ between the 

two groups. The average corneal power for each group was also used to correct 

the difference in magnification; therefore, relative planimetric measurements were 

obtained.

Both software had been used in previous studies, to perform subjectively 

evaluation of the disc. But the custom software would be expected to be more 

precise than the ImageNet software as the following advantages:

i. The magnification of eye was corrected individually and the magnification of 

the camera was considered;

ii. More details of drawing of planimetry, i.e. the area of cup, the maximum and 

minimum diameter of the disc ;

iii. It provided the vessels measurement;

The limitation was that it had a range of certain set refractive error and corneal 

radius, which is narrower than our groups. In other words, some good images may 

not be able to be assessed with it.
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In fact, we initially aimed to correct the magnification of the eye by AL since it was 

proved that AL is more accurate to correct the magnification of the eye than the 

methods which use keratometry and ametropia alone (Garway-Heath et al. 1998). 

In addition, AL was found to be the most important predictor of size for most of the 

optic disc parameters (Rudnicka et al. 2001). However, it is time-consuming and 

tedious to modify the custom software, and required the services of the specialist 

programmer. Thus, the custom software still only took ametropia and keratometry 

into account in order to correct the magnification of the eye to obtain absolute 

planimetric measurements.

Additionally, it has been a concern that there is considerable variation in the 

definition of the optic disc and cup borders among observers, which arises 

because the observer is required to judge the inner circumference of the scleral 

ring of Elschnig and distinguish this from the presence of PPA. This variability can 

be reduced by using trained and experienced observers (Garway-Heath et al. 

1999; Hatch et al. 1999; Miglior et al. 2002; Sheen et al. 2004; Varma et al. 1988). 

Since it was important that the observer was masked to subject group (DS or 

controls) when evaluating the images, it was not possible for the author to 

evaluate the images herself. Therefore, one experienced observer (ALJ) was 

involved in the current study for planimetry evaluation.

4.1.3 Assessing the retinal vessels

Several investigations developed more quantitative approaches in order to 

measure the diameter of all arteries and veins for the identification of the earliest 

changes associated with diseases of vascular aetiology. Established methods of 

measuring vessel width are based on:

i. Manual methods from photographic or digitized film images (Hodge et al. 

1969; Hubbard et al. 1999; Newsom et al. 1992); However, observers varied 

their interpretation of a vessel’s edge, and might have overestimated the true 

width of the retinal vessel widths from the images shown (Jonas et al. 1988b; 

Jonas et al. 1989b; Stromland et al. 1995).

ii. Computer-assisted methods from digitized fundus photographs (Sherry et al. 

2002; Wong et al. 2004); The observer selected a segment of the vessel and

134



Chapter 4: Retinal features

the software calculated its width (Stromland et al. 1995).

iii. Semi-automated methods, which adopt a linear densitometry technique to 

automate the measurement of vessel calibre based on edge detection and 

boundary tracing (Arend et al. 2002; Chapman et al. 2001; Chen et al. 1994; 

Suzuki 1995; Wu et al. 1995).

The relevant literature showed that measurements have been combined in a 

variety of ways such as the sum of widths for arterioles and veins, the ratio of the 

sums, the totaling of their squares. Moreover, it was demonstrated that there was 

marked variability in the branching pattern among individuals (both size and 

number of branches). This prevented direct comparison of arteriolar measurement 

between individuals (Stokoe and Turner 1966). Consequently, some techniques 

attempted to summarize the arteriolar calibre or vein calibre by using formulae 

(Hubbard et al. 1999; Parr and Spears 1974).

The distribution of the retinal vessels may reflect the need of vascular supply in the 

corresponding superficial retinal area. The following four questions were of interest 

in our study:

a. Do children with DS have more retinal vessels crossing the disc or beyond 

the disc compared to control children?

b. Do the retinal vessels of children with DS distribute in a similar pattern 

compared to control children? That is, in which segment do they have more 

vessels, in Superior or Inferior, Temporal or Nasal?

c. Do children with DS have more arteries, veins or both compared to control 

children?

d. Do the sizes of the vessels of children with DS differ from control children?
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4.2 Methods
4.2.1 Subjects

The procedures of recruitment were described in chapter 1, section 1.7.2. Fundus 

photographs were taken in those same forty-six children with DS, fifty control 

children and nineteen adults with DS at their first visit.

4.2.2 Procedures

The author (PJ) performed fundus photography binocularly on all children with DS 

and controls, adult subjects with DS (see section 4.2.3). The good quality fundus 

photograph from children with DS was matched for the AL of the eye, within 0.05 

mm accuracy, with one photograph from the controls. The photographs from each 

pair (n=14) were corrected for the corneal power and subsequently were evaluated 

with the Imagenet 2000 planimetry software by the observer ALJ (see section 

4.2.4.2). When the scaling of the custom software was completed, the 

magnification for those fundus photographs were corrected according to the 

corneal radius and refraction and then evaluated with the use of custom digital 

planimetry software by the same observer ALJ. The planimetry procedures are 

described in detail in a later section (4.2.4.2).

The last part of the investigation of retinal vessels included the good fundus 

images from each eye of 31 children with DS and 46 control children and 4 adults 

with DS. The author viewed these images with the custom software, recording the 

number of the retinal vessels present at the disc margin and retinal periphery 

(section 4.2.5). Vessel width, after correction for corneal radius and refraction, was 

measured in each child with DS (n=17), control children (n=28) and adults with DS 

(n=4).

4.2.3 Taking fundus photograph
The study used a Topcon non-mydriatic TRC_NW6S fundus camera. The 

principles of how it works and how to use it were described in chapter 2, section 

2.3. The right eye was always photographed first. The captured image was 

displayed on the colour video monitor. The examiner (PJ) showed the photograph 

of his/her eye to the subject with DS by saying: “Look, this is the back of your eye.
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Do you want one for your left eye as well?” The subject was often interested and 

another photograph of the eye was done as quickly as possible. The examiner 

viewed each digital image immediately. If it was not good enough, a second one 

was taken at the same sitting. Otherwise, a second visit was arranged if necessary 

and possible for the subject.

4.2.4 Planimetric evaluation

Assessing the quality of the fundus photograph

Image quality was determined on the basis of illumination and the photographic 

field, which should include both the optic disc and the macula. The fundus images 

were excluded as a consequence of one or more of the following conditions:

i. The photograph was of poor quality, namely too dark, not uniformly 

illuminated or overexposed;

ii. Corneal radius was not available or was ranked out of the range of values the 

software was set for i.e. corneal radius below 7.0mm; refraction less than - 

7.0D;

iii. The peripheral retinal area named Zone A (see section 4.2.5, Fig. 4-2) was 

not visible overall;

The clearer image of the eyes of one subject was used for the monoscopic 

planimetry evaluation and retinal vessel assessment. All selected monoscopic 

images were then coded by the author. Thus only one eye of each subject was 

included in the further analysis.

Planimetric evaluation

Planimetry evaluation was performed by the experienced observer (ALJ) masked 

to whether the individual was from the DS group or the controls. The image was 

magnified in order to make a precise measurement but was not subjected to any 

software enhancement.

a. ImageNet software

ImageNet 2000 software was available for the Topcon camera, but this did not 

correct for magnification as was discussed earlier. Instead, fundus photographs
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were analysed only for eyes matched for AL (within 0.05mm). That is, for each 

photograph of a child with DS, a photograph of a control child with the same AL 

was identified. 14 paired subjects who were matched for AL and corneal power 

was available. The observer (ALJ) performed the planimetry evaluation with those 

images by using the ImageNet 2000 software. The disc margin was marked. 

Additionally, the observer drew a line from the centre of the disc to the centre of 

the fovea Gudged by eye) in order to measure Fovea-Disc distance. The values of 

disc size and Fovea-Disc distance were presented and recorded in mm2 and mm. 

A formula was used to correct the difference in magnification of those fundus 

photographs, using the average corneal power for each child.

b. Custom digital software

The observer evaluated the fundus photography with the use of the custom digital 

software in the following steps:

Firstly, refractive error and radius of cornea of the examined eye were entered into 

the software in order to correct the magnification of the fundus photograph. 

Secondly, by using a cursor, the observer outlined the margin of the optic disc, 

which is defined as the inner border of the scleral canal (Fig. 4-1). The optic disc is 

surrounded by the scleral ring of Elschnig, and may be accompanied by PPA. In 

some cases, its appearance may be confused with the margin of the disc. In 

addition, the margins are not clear in cases with small discs due to the 

overcrowding of the nerve fibres when they exit from the eye. Therefore, care was 

taken when marking the border of the disc. Disc shape is denoted by an index, 

defined as the ratio of the minimum and maximum of the optic disc axis.

Thirdly, the optic cup border (inner circumference of the rim) was marked (Fig. 4- 

1). This can be achieved by following the course of the blood supply and contour 

of the ONH.
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Fig. 4-1: A fundus photograph of the left eye, one subject with DS, 

showing the planimetric evaluation

Areas of interest were outlined as points by the observer and then interconnected 

by colour coded lines for the area of the disc and cup respectively (Fig. 4-1). The 

observer could revise the measurement by altering the points. Once these 

adjustments had been made, the software calculated and provided each 

parameter in pixels and mm2. The maximum and minimum diameter of the disc 

was automatically measured by the software.
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4.2.5 Assessing the retinal vessels

Setting up the images

In order to analyze the images in four sections: NS (Nasal-Superior), TS 

(Temporal-Superior), Nl (Nasal-Inferior) and Tl (Temporal-Inferior) according to 

the previous studies (Jonas and Budde 2002; Jonas and Grundler 1998; Jonas et 

al. 1988b; Jonas et al. 1989b; Jonas and Schiro 1993), one transparent mask was 

drawn and divided into four equal sections (NS: 0°-90°; TS: 90°-180°; Nl: 180°- 

270°; Tl: 270°-360°), starting from nasal as 0° and temporal as 180°. The 

transparent masks were overlaid on each image in turn and carefully centred on 

the disc.

Prior to counting and measuring retinal vessels, the border of the optic disc and 

cup was marked by the observer (PJ) in order to automatically obtain the Zone A, 

which is the area between the first and second circles (Fig. 4-2). These were 

centered at the geometric centre of the disc, and were 2mm and 4mm away from 

the disc margin (Fig. 4-2). Vessels were evaluated within the rim area and Zone A 

(for number and width).

The retinal vessels in all fundus photographs with good quality were counted and 

measured in the four sections of the disc and then the four sections of Zone A. 

Images were magnified in order to improve the view of the course and edge of the 

vessels. Only those images corrected for corneal radius were measured for width. 

The measuring procedure took about 20 minutes for each photograph.

Identifying the retinal vessel

The arteries and veins were counted separately in the disc and Zone A. The 

observer identified each vessel to be measured as an artery or a vein. It was 

suggested from previous studies (Stromland et al. 1995)

i. Arterioles are shown in a lighter orange-red colour, with a strong central light 

reflex, straighter and smoother in outline;

//. Veins are shown in a darker purple-red colour, with little or no central light 

reflex, tortuous, more irregular in outline;
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M arker

Fig. 4-2: A fundus photograph of the right eye of one subject showing the 

vessel assessment. It demonstrates the optic disc, zone A and the four 

sections (NS: 0°-90°; TS: 90°-180°; Tl: 180°-270°; Nl: 270°-360°), starting from 

nasal as 0°and temporal as 180°).

Selecting the region of interest

The observer selected the region of interest for that vessel, using the following 

rules:
i. Choosing a vessel segment in the outer third of the rim or Zone A;

ii. If a vessel bifurcates within the disc or zone A, the branches after the

bifurcation were measured;

iii. Choosing a stretch of vessel in order to minimize any effect of that branching

or crossing; a relatively straight vessel segment rather than curved.
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Measuring the vessel calibre

By using the cursor, the observer put one of the double parallel lines (Marker) on 

one edge of the vessel (Fig. 4-2). The second parallel line was then moved to the 

opposite edge of the vessel by enlarging the distance between the double parallel 

lines. The double lines were kept parallel with the vessel as much as possible in 

order to obtain the shortest distance across the retinal vessel. The observer 

clicked the cursor and finalized the line length (Fig. 4-2). The observer could 

choose to accept or reject the measurement depending on its precision. If the 

measurement was rejected, the observer measured the vessel again.

Final observation

Finally, the observer reviewed the digitized fundus image, checking for any 

vessels which were not marked with a blue marker. The observer also kept a 

count of the number of arteries and veins which had already been measured. 

When the observer was satisfied that all retinal vessels in the disc and Zone A had 

been appropriately measured, the data were recorded.

The vessels were then divided into three groups that were relatively easy to 

identify visually. They were grouped as large (>0.035units), medium (0.020- 

0.035units) and small (<0.020units) according to the measured diameter.
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4.3 Results
4.3.1 Co-operation of the subjects

The number and success rate (SR) of the subjects for the fundus photograph is 

shown in Table 4-1.

Table 4-1: The number of subjects and SR for the fundus photograph

Fundus

Photography

DS

Children

Control

Children

DS

Adults

No. SR No. SR No. SR

38 83% 50 100% 8 37%

Table 4-2 summarizes the number of images analyzed for the purpose of 

measurement of the disc size, vessel diameter and vessel count respectively by 

the custom software.

Table 4-2: The number of fundus images for evaluation by custom software

Measurements DS

Children

No.

Control

Children

No.

DS

Adults

No.

Disc size 17 30 4

Width of vessel 17 28 4

No. vessels 31 46 4

4.3.2 Planimetric evaluation of the optic disc

ImaqeNet software

The 2000 ImageNet software were performed in the subjects matched for AL. 

When only AL was matched, significantly larger disc (Independent t-test, p=0.010) 

and longer Fovea-Disc distance (Independent t-test, p=0.016) were found in 

children with DS than that of controls. The results are shown in Table 4-3. 

However, after the magnification of the corneal power was corrected in those 

cases with matched AL, only the disc size was significantly larger (Mann-Whitney
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U test, p=0.044, power of test is 0.805). The longer Fovea-Disc distance was not 

significant in children with DS (Mann-Whitney, U test, p=0.352, power of test is 

0.187).

Table 4-3: Comparison of the results by the ImageNet software

DS

children

DS

children

Control

children

P

value

No. subjects 14 • 14 • • 14

AL (mm) Mean±SD 22.20±1.27 22.21±1.26 0.980

Meansph (D) Mean±SD 1.59±3.02 2.63±2.65 0.338

Comeal power (D)

Mean±SD
45.36± 2.20 42.49±1.81

0.001

Disc size (mm) Mean±SD 4.97±0.92 4.59±0.44 4.06±0.63 0.044

Fovea-Disc Distance 

(mm) MeaniSD 7.01±0.68 6.45±0.63 6.29±0.44
0.352

(Independent t test or Mann-Whitney DS children Vs. Controls)

• Subjects matched for AL but with uncorrected magnification of the cornea

• • Subjects matched for AL but with corrected magnification of the cornea

The custom digital software

Results of the planimetric evaluation by the custom digital software are shown in 

Table 4-4. It revealed that the mean disc size and rim size in children with DS 

were significantly larger than that of the controls (Independent t-test, p<0.05). 

However, there is no significant difference in mean cup size or C/D ratio. The 

shape index is similar in both groups, indicating that the disc in children with DS 

has a similar shape to that in the control children.
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Table 4-4: Findings of the planimetric evaluation by the Custom software

DS Children Control Children
P value

No. subjects 17 31

Disc size (mm) 

Mean±SD 2.40±0.52 2.10±0.36 0.024

Cup size (mm) 

Mean±SD 0.71±0.30 0.6111.33 0.872

C/D ratio

Mean±SD 0.29±0.09 0.2910.10 0.890

Rim size (mm) 

MeaniSD 1.69±0.40 1.4710.27 0.031

Shape Index

MeaniSD 0.8810.06 0.9010.06 0.361

(Independent t-test or Mann-Whitney test DS children vs. controls)

Significant correlation between disc size and cup size (r=0.622, p<0.001 vs. 

r=0.652, p<0.001), disc size and rim size (r=0.833, p<0.001 vs. r=0.649, p<0.001) 

were noted in DS children and control children. Moreover, there was no significant 

difference in these correlations between DS children and control children 

(Zobs=1-305; Zobs=-0.152). A larger disc size with a larger rim was noted in both 

groups by linear regression (Table 4-5, Fig. 4-3). Comparing the linear regression 

of disc size and rim size in both groups, the slope (p=0.361); the elevation 

(p=0.341) and the residual variance were not significantly different at 0.05 level of 

probability (F=1.646, df1=15, df2=29). However, no significant correlation was 

found between disc size and VA or between rim size and VA in both groups.

Table 4-5: Correlation of disc parameters in child subjects

Correlation R R* Equation p-value

Disc size 

-Cup size

DS children 0.622 0.387 Y=0.164+1.081X 0.008

Controls 0.652 0.427 Y=0.157+0.847X < 0.001

Disc size 

- Rim size

DS children 0.833 0.693 Y=0.057+1.087X < 0.001

Controls 0.649 0.422 Y=0.086+0.847X < 0.001

145



Chapter 4: Retinal features

g D S  
^  Children
1^ Control 
^  Children

1.00 1.50 2.00 2.50
Rim size (mm)

Fig. 4-3: Disc size and rim size
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4.3.3 Assessing the retinal vessels

Distribution of the retinal vessels

Children with DS had significantly both more veins (13.1 ±3.7) and more arteries 

(7.8±2.4) in Zone A than control children (10.5±3.1; 6.3±2.0) (Independent t-test, 

p<0.01), but not for those crossing the disc, suggesting that retinal vessels of 

children with DS bifurcate more after leaving the disc margin (Fig. 4-4a1-2). 

Further, in Zone A, it was noted that more retinal vessels distributed nasally 

(NS+NI) than temporally (TS+TI) (Paired t-test, p=0.017), superiorly (NS+TS) than 

interiorly (NI+TI) (Paired t-test, p<0.01) in both child groups.
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Fig. 4-4 a2: Vessel number of crossing in Zone A 

(Error bar represents the SD)

Repeated measures ANOVA was conducted to explore the impact on the number 

of retinal vessels of the type of vessel (artery vs. vein), the distribution in area (disc
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vs. zone A) and segments (NS vs. TS vs. Tl vs. Nl) as within-subject factors and 

group (DS vs. control) as between-subjects factor.

A significant main effect for type was noted (p<0.001), suggesting there was a 

significantly more veins than arteries in both subjects. There was also a significant 

main effect for the area and segments respectively (p<0.001), indicating retinal 

vessels distributed significantly different in the optic disc and Zone A or across the 

four segments. Moreover, a significant main effect for group was noted (p<0.001), 

suggesting there was a significant difference in the number of retinal vessels in DS 

children and control children group.

With regard to the interaction effect, there was a significant interaction effect for 

area*group (p<0.001). This indicated that the number of retinal vessels were 

significantly different between disc and Zone A for DS and control children (Fig. 4- 

4b). However, the interaction effects for segments*group and type*group did not 

reach statistical significance (p=0.120), suggesting that the vessels distributed 

similarly in the four segments in both groups (Fig. 4-4c) and there was no 

significant difference in the proportion of the arteries or veins between two groups.
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Fig. 4-4b: Plot of interaction effect of area*group
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Fig. 4-4c: Plot of interaction effect of segments*group
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Width of retinal vessels

The width of retinal vessels is shown in Table 4-6. The mean width of arteries in 

children with DS was significantly larger than that of controls crossing the disc 

(Mann-Whitney U test, p<0.05). In terms of the vessels extending to Zone A, no 

significant difference in the mean width of arteries and veins was found between 

children with DS and control children (Mann-Whitney U test, p>0.05).

Table 4-6: Width of retinal vessels (in arbitrary units) in both groups

DS Children Control Children

Area Disc Zone A Disc Zone A

No. subjects 17 31

Width of arteries 0.029±0.005 0.02110.007 0.02610.005 0.02210.004

Width of veins 0.02910.006 0.02510.009 0.03110.006 0.02810.009

Large, medium and small vessels

Fig 4-5a shows the number of vessel width group in Zone A. It is clear that most 
vessels crossing Zone A were medium vessels in both groups.

DS children Control children

□  Small
□  Medium
□  Large

Fig. 4-5a: Vessel numbers of crossing in Zone A (vessel width group)
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Repeated measures ANOVA was conducted to quantify the distribution of the 

vessel when size of vessel (large vs. middle vs. small, type (artery vs. vein) and 

area (the disc vs. zone A) as within-subject factor and group (DS vs. control) as 

between-subjects factor.

There was a significant main effect for size of the vessel (p<0.001), suggesting 

there was a significant difference in the number of retinal vessels in terms of large, 

middle or small vessels.

There was a significant interaction effect for type*size (p<0.001). This indicated 

that the number of arteries and veins were significantly different in terms of the 

size of vessels. Most vessels are middle arteries and veins in the two child groups 

(Fig. 4-5b-c). In conclusion, there were significantly more small arteries and veins 

in children with DS than controls crossing Zone A (Fig. 4-5b-c). However, the 

interaction of size*group did not reach the significant level (p=0.089). This 

suggested that there was no significant difference in the proportion of small, 

medium and large vessels between two groups.

at type = Artery

3 .0 -

children
Control
children

DS

1.6-

1.4-

Large Medium Small

Fig. 4-5b: Plot of interaction effect of size*group (areties)
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at type = Vein

DS
children
Control
children

Large Medium Small 

Fig. 4-5c: Plot of interaction effect of size*group (veins)

The distribution of retinal vessels and visual function

No significant correlation was found between the total number of vessels and 

refraction, the total number of vessels and VA among children with DS. Our study 

found no significant difference in the total number of retinal vessels between those

children with DS who accommodate accurately and those who do not (Mann-

Whitney U test, p>0.05).
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4.4 Discussion
4.4.1 Co-operation of the subjects

Most cases of poor photographs were caused by children with DS being unable to 

fixate the target or perhaps blinking or fidgeting. The parents were often asked to 

help the child keep still during the exam. In some cases with DS adults, the poor 

quality of the photographs was due to media opacities, higher corneal astigmatism, 

refractive error and keratoconus.

4.4.2 Planimetric evaluation of the optic disc

Unexpectedly, the optic disc and rim areas were found to be significantly larger in 

children with DS than controls but they remained within the range of values 

estimated in the general population (Hellstrom et al. 1997a; Hellstrom and 

Svensson 1998; Jonas et al. 1988a; Mansour 1992; Rimmer et al. 1993; Varma et 

al. 1994). A larger disc associated with a larger rim was also found in both groups.

. It was reported that a larger disc may indicate a larger retinal surface 

(Papastathopoulos et al. 1995). However, Fovea-Disc distance is not significant 

longer in children with DS compared to controls in our study.

It can be speculated that this finding has a genetic basis or it could even be 

attributed to the influence of growth factors before the eye is fully developed, 

known to alter the genetically predetermined disc size (Hellstrom and Svensson 

1998). In addition, it was reported that the disc is larger in highly myopic eyes 

(Jonas 2005; Jonas et al. 1999). It corresponds to histomorphometric studies in 

which globes with an AL above 26 mm exhibited an ONH enlargement (Jonas et 

al. 2004). Increased axial elongation in myopias may lead to mechanical stretching 

and thinning of the choroids and retinal pigment epithelium with concomitant 

vascular and degenerative changes (Pierro et al. 1992). It was described that 

myopic eyes become larger in all three dimensions, but more in length than height, 

and more so in height than width (Atchison et al. 2004). People with DS may 

become highly myopic when getting older. But since there were only 6 myopes in 

our study, myopia cannot account for large discs.

Considering the previous studies, it can be inferred that the optic disc area, the
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count of the retinal photoreceptors and ganglion cells axons and the retinal surface 

are all correlated with each other. Eyes with larger discs compared with eyes with 

small discs may indicate the following:

• Higher number of nerve fibres (Panda-Jonas et al. 1994) but lower density 

(Jonas et al. 1992).

• A higher count of retinal photoreceptors (Panda-Jonas et al. 1994) and more 

retinal pigment epithelium cells (Panda-Jonas et al. 1996). Taking into 

account a loss of photoreceptors in glaucoma, it may point toward a higher 

anatomic reserve capacity in glaucomatous eyes with large discs than in eyes 

with small discs. Eyes with large optic discs and more photoreceptors may be 

able to lose more cells before visual deficits occur than eyes with small discs 

and fewer photoreceptors.

• It may be combined with a larger retinal surface (Jonas et al. 1992), 

presumably more retinal ganglion cells (Papastathopoulos et al. 1995).

• More cilioretinal arteries, which are those vessels that show no obvious 

connection to the central retinal artery or its branches, that emerges at or 

close to the disc border. It was reported that there are more cilioretinal 

arteries in large optic disc (Jonas et al. 1988b). Jonas (1988) explained: “The 

larger the disc, the longer its circumference. Therefore, the larger the 

interface between the optic nerve scleral canal and the choroids. Hence, a 

ciliary artery may be more likely to find its way through the separating tissue 

into the optic nerve scleral canal and onto the retinal surface.”

The cilioretinal arteries are associated with larger disc size but are generally a rare 

finding so, their presence would not have facilitated a more detailed comparison 

between the vasculature of subjects with DS and controls. Thus, the analysis of 

the fundus photography data was not extended to investigate the contribution of 

the cilioretinal arteries in the DS retinas.
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4.4.3 Assessing the retinal vessels

Retinal vessel features

Our study confirmed an increased number of retinal vessels in children with DS, 

which is in line with the previous studies (Ahmad and Pruett 1976; Berk et al. 

1996; Sherk and Williams 1979; Williams et al. 1973). In our study, children with 

DS have more arteries and veins beyond the discs, due to increased branching, 

but not those crossing the disc compared to controls. It implies that vessels 

bifurcate more after leaving the disc margin, which is contrary to William’s (1973) 

explanation: “The spoked pattern of vessels appears to be the result of early 

bifurcation of vessels before they cross the disc margin.”

However, there was no significant difference in the distribution of the retinal 

vessels between children with DS and controls. More retinal vessels distributed 

nasally than temporally; superiorly than interiorly in both groups.

It is unknown why retinal vessels branch more in people with DS. It was reported 

that changes in disc morphology are often associated with abnormal retinal 

vascular pattern (Hellstrom et al. 1997b). Retinal vessels may possibly act as an 

element of anatomical support within the ONH structure.

In addition, people with DS are at a high risk of congenital heart defects. It has 

been shown that there was a strong correlation between the retinal vascular 

tortuosity and low arterial oxygen saturation (Mansour et al. 2005). Therefore, it 

was postulated that patients with congenital heart defects have a low arterial 

oxygen saturation (Mansour et al. 2005), which may lead to a hypervascularization 

process, that is the development of more blood vessels. However, it was reported 

that there was no significant difference in the number of retinal vessels for those 

with DS who either do or don’t have heart defects (Sherk and Williams 1979). As 

far as we know, there is no report about more blood vessels in the other parts of 

the body in people with DS.

In the general population, studies focus on vessels width changes for special 

diseases such as diabetes, hypertension rather than vessel numbers. When the
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total number, distribution and size of the retinal vessels were analyzed in our study, 

it appeared that children with DS do not have significant difference in retinal 

vessels patterns compared to that of controls. Our observations provide 

information on the normal physiological variations of the retina in people with DS.

Further, if retinal blood flow is abnormal in DS, there may be an influence on eye 

growth and visual function. Our study found no association between poor visual 

performance (refraction, VA and accommodation) and the distribution of the 

vessels in children with DS. Thus, this might support that children with DS do not 

have abnormal retinal blood supply.

4.5 Conclusions

This study was undertaken to evaluate the optic disc and the retinal vessel 

properties in children with DS compared to controls. In conclusion: firstly, a larger 

disc and rim were found in children with DS compared to that of our controls. 

Similarly positive correlation between the disc size and rim size was also found in 

both groups. Secondly, in terms of the distribution of the retinal vessels, our 

current study showed that the increased number of arterials and veins was due to 

branching once they leave the optic disc in children with DS. However, there was 

no significant difference in distribution of the retinal vessels between DS children 

and controls. Noticeably, more retinal vessels distributed nasally than temporally; 

superiorly than interiorly in both groups. Thirdly, with regard to the size of the 

vessels, the width of the arteries of children with DS was larger than that of 

controls crossing the disc. Additionally, children with DS have significantly more 

small and middle size of arteries and more small size of veins compared to 

controls.
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Chapter 5: Glaucoma in people with DS

5.1 Introduction
5.1.1 To consider the detection of glaucoma in people with DS

Apart from reported infantile glaucoma in people with DS (Traboulsi et al. 1988), 

few studies have reported the prevalence of glaucoma in people with DS (Liza- 

Sharmini et al. 2006). However, people with DS may carry risk factors for the 

development of glaucoma. Firstly, people with DS have a thinner cornea (Doyle et 

al., 1998; Haugen et al., 2001a; Evereklioglu et al., 2002). There is an increased 

susceptibility to glaucoma severity in patients with thinner corneas (Brandt et al., 

2001; Gordon et al., 2002; Medeiros et al., 2003; Shimmyo et al., 2003; Herndon 

et al., 2004; Hewitt and Cooper, 2005). Secondly, vascular risk factors were 

significantly more common in patients with thin corneas (Doyle, Bensaid and 

Lachkar, 2005). People with DS have abnormal retinal vessels (Ahmad and Pruett 

1976; Berk et al. 1996), which are described more in Chapter 4. Therefore, they 

may have significant risks of glaucoma at an early age. Thirdly, high refractive 

error has been associated with an increased risk of developing glaucoma. People 

with DS have a higher refractive error (RF, 1949; Shapiro and France, 1985; 

Hestnes et al., 1991; Perez-Carpinell et al., 1994; Woodhouse et al., 1996; 

Woodhouse et al., 1997; Haugen et al., 2001a; Kim et al., 2002; Liza-Sharmini et 

al., 2006). Lastly, the risk of glaucoma increases with age. People with DS are 

ageing earlier in many respects (Brown, 1979; Devenny et al., 1996; Fromage and 

Anglade, 2002). In addition, the risk of glaucoma in diabetes mellitus is high. 

People with DS are more likely to have diabetes mellitus (Milunsky and Neurath, 

1968; Van Goor et al., 1997; Ohyama et al., 2000).

Glaucoma was not reported in those studies with a large numbers of DS patients 

(Shapiro and France 1985), probably due to the difficulties in detection. Unique 

retinal appearance of people with DS may tend to mask glaucomatous signs. 

Additionally, the low corneal rigidity in people with DS may give artificially low IOP 

readings. Therefore, our hypothesis was that glaucoma goes undetected in people 

with DS.
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Clinically, as was described in chapter 1, section 1.6.5, in the general population, 

the best traditional combination of three variables for detecting glaucoma was 

visual field analysis, optic disc cupping and IOP measurement (Harper and 

Reeves 1999; leong et al. 2003). In recent years, it has been widely suggested 

that CCT should be routinely measured because of its impact on the estimation of 

IOP and as an independent risk factor for the development of glaucoma (Brandt et 

al. 2001; Gordon et al. 2002; Herndon et al. 2004; Hewitt and Cooper 2005; 

Medeiros et al. 2003; Shimmyo et al. 2003).

However, there are limitations of detecting glaucoma in people with DS. First, 

visual fields are very difficult to evaluate in people with learning disabilities, the 

procedure being limited by anxiety, lack of comprehension, poor attention and long 

reaction times. To our knowledge, there are no reports about visual field testing in 

people with DS.

Secondly, identifying structural changes to the disc is important for the diagnosis 

of glaucoma. A number of signs of the optic disc are suggestive of glaucoma such 

as an enlarged cup size, smaller rim area and a shift in the position of the blood 

vessels or haemorrhages (Broadway et al. 1999; Jonas and Schiro 1993). Thus, 

morphologic features of the optic disc are predictive factors for the development of 

glaucoma that may be useful signs of glaucoma in people with DS. However, 

people with DS have abnormal retinal features such as larger disc and rim, more 

branching retinal vessels (see chapter 4), which could make it more difficult to 

judge, particularly for practitioners unfamiliar with the retinal appearance of people 

with DS. The assessment of the C/D ratio is also a critical criterion with suspected 

glaucoma (Garway-Heath et al. 1998; Harwerth et al. 1999; Quigley et al. 1989; 

Zeyen and Caprioli 1993). In addition, many studies have confirmed that PPA can 

increase in glaucoma optic neuropathy (Jonas 2005; Uchida et al. 1998). Even in 

experimental glaucoma, the development of PPA has been described (Hayreh et 

al. 1998).

The first aim of the study was therefore to evaluate the appearance of the optic 

disc, the C/D ratio and whether PPA was present or absent in fundus photographs 

for all the subjects.
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IOP measurement is the other key indicator in detecting glaucoma. As far as we 

are aware, lower IOP in children with DS was reported only in one study (subjects 

with the age of 5-15 yrs) (Everklioglu 2002). However, IOP readings were 

influenced by corneal properties, which are discussed below. Moreover, the 

importance of CCT as an independent risk factor in the accurate diagnosis of 

patients with glaucoma and patients in whom glaucoma is suspected has been 

highlighted. CCT is therefore an important measurement that may be helpful in the 

detection of glaucoma. The second aim of the current study was to measure IOP 

and investigate the relationship between comeal parameters and IOP in order to 

identify suspect glaucoma among our adults with DS.

5.1.2 Relationship between IOP and properties of the cornea

There is plenty of evidence in the literature showing that IOP is influenced by 

corneal parameters. Assessment of corneal thickness is important in comparing 

the IOP of eyes of different patients since it has been reported that thinner corneas 

result in artificially lower IOP readings (Graf 1991; Matsumoto et al. 2000; Recep 

et al. 2001; Whitacre et al. 1993). The original reports on the calibration and 

validation of the Goldmann applanation tonometer indicated that cornea thickness 

might have an impact on the outcome of tonometry measures and that the 

instrument was suitable only for “normal” human corneas (Goldmann and Schmidt 

1957, 1961).

To date, there are many different studies researching the appropriate correction 

factors. Three studies (Ehlers et al. 1975; Shah et al. 1999; Wolfs et al. 1997) 

have suggested that the average error of tonometry for a 10 pm deviation from the 

normal CCT is 0.71 mmHg, 0.19 mmHg and 0.50mmHg respectively). Overall, the 

magnitude of the effect in apparently normal corneas is rather small, i.e. around a

1.5 mmHg difference in IOP for a 10% difference in CCT (Doughty et al. 2002). 

However, no single formula has been universally accepted. With regard to the true 

IOP and corneal parameters, another possibility was stated by Brandt (2003): 

“CCT may be a component of corneal elasticity, but it is likely not the only 

component. The mix of collagen types, packing density of collagen fibrils and the 

extra-cellular matrix may dwarf the effect of CCT on the accuracy of IOP 

estimation.”
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The advent of refractive surgery, in which the cornea is thinned to correct myopia, 

has give further information on the effect of corneal properties. That is, along with 

corneal thickness, corneal radius may have some effects on IOP estimations 

(Cennamo et al. 1997; Chatterjee et al. 1997; Chihara et al. 2005; Gimeno et al. 

2000; Orssengo and Pye 1999; Shimmyo et al. 2003; Svedberg et al. 2005). It was 

agreed by previous studies that there was a positive correlation between IOP and 

corneal curvature. Interestingly, it has also been pointed out that a property of the 

cornea other than the thickness and curvature, such as corneal elasticity may 

affect IOP measurement (Harada and Naoi 2004; Svedberg et al. 2005). It was 

thus speculated that the level of corneal elasticity might be negatively related to 

IOP in that more elastic corneas might be associated with normal or lower IOP and 

conversely that a decrease in the elasticity of the cornea might be associated with 

elevated IOP (Harada and Naoi 2004).

Table 5-1: The formula for the corrected IOP

Author Year Formula

Ehlers et al. 1975 IOP=0.07*(535-CCT)+ measured IOP

Wolfs et al. 1997 IOP=0.02*(535-CCT)+measured IOP

Shah et al. 1999 IOP=0.05*(535-CCT)+measured IOP

Orssengo and 

Pye et al.
1999 IOP=measured IOP/K

IOP=measured IOP/ {(520-CCT)/1000) *2.87+1  

Based on comeal radius =7.8mm

A detailed exploration of the mechanical characteristics of the cornea and the role 

of CCT in IOP error were done by Orssengo and Pye (1999). However, one recent 

study tended to investigate the efficacy of currently available correction factors in 

correcting IOP and concluded: “both the Ehlers formula and the Orssengo and Pye 

model could be erroneous and lead to overcorrection of IOP, thus resulting in 

erroneously low corrected IOP eyes with thicker cornea and erroneously high 

corrected IOP in eyes with thinner cornea.’’(Gunvant et al. 2005). Thus, it is still 

very difficult to determine the extent to which these corneal parameters influenced 

the IOP estimations
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5.2 Methods
5.2.1 Subjects

The procedure of recruitment was described in chapter 1, section 1.7.1. Those 

good fundus images of all the subjects including children and adults were selected 

and coded. Both eyes were included since the study aimed to investigate the 

abnormal changes in the retina. In total, there were 74 fundus images from DS 

children, 100 from control children and 7 from DS adults.

Only the same twenty DS adults who had attended the previous study took part in 

the IOP measurement. Twenty control adults were those who joined the pilot study 

for validating the accuracy of l-care tonometer (see chapter 2, section 2.5).

5.2.2 Procedures

All the coded fundus images of all the subjects were assessed if glaucomatous 

signs were present or not by two observers separately (ALJ and POW) (see 5.2.3). 

The author (PJ) measured IOP for all the DS adult subjects (see 5.2.4). Family 

history of glaucoma in each subject was elicited from the carers or family members 

during their visits. Afterwards, three formulae were used to adjust measured IOP 

separately:

Corrected IOP=0.02*(535-CCT)+measured IOP by Wolfs;

Corrected IOP=0.07*(535-CCT)+ measured IOP by Shah;

Corrected IOP=0.05*(535-CCT)+measured IOP by Ehlers

5.2.3 Assessing glaucomatous changes in the optic disc

Two observers (POW and ALJ) separately viewed and assessed the ONH for 

glaucomatous changes in the fundus photograph, masked as to the subject group 

and to the age of the subjects. Both observers judged whether PPA was present 

or not. PPA was then divided into a central Zone (a) and a peripheral zone (P). All 

images were classified in two groups: images with normal appearance and images 

with suspicious glaucoma. POW judged the C/D ratio, which was based on 

standard clinical criteria. ALJ measured C/D ratio by the custom digital software 

(see section 4.3.3).
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5.2.4 Measuring IOP
The l-care tonometer was chosen and tested for accuracy compared with 

Goldmann tonometer (chapter 2, section 2.3). IOP Measurements were carried out 

by carefully operating the measurement button, to avoid shaking the tonometer. 

Six measurements were taken consecutively. According to the manual, the highest 

and the lowest readings are discarded by the pre-programmed software and then 

the average IOP value is calculated from the rest. Only valid readings were 

accepted and recorded.

5.3 Results
5.3.1 Co-operation of the subjects

The co-operation of fundus photograph for all the subjects was discussed in 

chapter 4, section 4.3.1 and section 4.4.1. Fourteen DS adults and all control 

adults completed IOP measurement successfully. Among them, eleven DS adults 

co-operated with CCT measurement.

5.3.2 Glaucomatous ONH changes
In the adult subjects with DS (n=8), two had PPA but no suspicious glaucoma was 

noted by two observers. In child subjects, two observers found no significant 

difference in the C/D ratio between children with DS and controls. The presence of 

the PPA (Zone a and Zone p) and suspicious glaucoma in child subjects by two 

observers are shown in Table 5-2. The presence of Zone a and Zone p were 

significantly higher in children with DS compared to that of controls (p<0.05 Chi- 

square). More children with DS were detected with suspicious glaucoma by both 

observers. A glaucoma specialist (JEM) reviewed the suspect photographs from a 

clinical perspective. No glaucoma was detected on the basis of the fundus 

photographs and JEM was satisfied that no clinical follow-up was needed.
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Table 5-2: The result of ONH changes by two observers

Observer 1 (ALJ) Observer 2 (POW)

DS Control DS Control

children children children children

No. images 78 100 78 100

PPA - Zone a 15 8 14 4

(19%) (8%) (18%) (4%)

PPA - Zone p 47 27 20 13

(60%) (27%) (36%) (13%)

Suspicious 8 3 7 5

glaucoma (17%) (3%) (10%) (5%)

5.3.3 Measured IOP and corrected IOP

Measured IOP was lower in DS adults (12.3±2.7 mmHg) compared to that of the 

controls (13.8±2.5 mmHg) but not significant (p=0.1 Independent t-test). A huge 

difference among DS subjects was noted in the corrected IOP when different 

formulas were used while similar corrected IOP appear in control adults (Table 5-3, 

Fig. 5-1).

Table 5-3: Corrected IOP by three formulae

Corrected IOP (mmHg) DS adults Control adults

By Wolfs 13.4±2.6 13.9±2.3
By Shah 15.1±2.5 14.1±2.1

By Ehlers 16.1 ±2.7 14.1±2.3
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Fig. 5-1: Measured IOP and corrected IOP (Error bars represents SD)

IOP and CCT were only associated highly in control adults (r=0.528, p=0.017). No 

significant correlation was found for IOP- CCT and IOP-CR in adult subjects with 

DS.
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Fig. 5-2: CCT and measured IOP
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5.4 Discussion
5.4.1 Co-operation of the subjects

DS adult’s co-operation for IOP measurement was slightly better than the other 

part of study. One reason may be that the measurement was done quickly by the 

l-care tonometer. The reasons for poor fundus photographs were discussed in 

Chapter 4, section 4.4.1.

5.4.2 Glaucomatous ONH changes

No obvious sign such as smaller rim, larger PPA or hemorrhage in people with DS 

was noted. The higher prevalence of PPA in children with DS was noted, which 

was in line with one previous study (Sherk and Williams 1979). More children with 

DS were detected with suspicious glaucoma by both observers, which may be due 

to that their unique retinal features tending to give wrong impression.

In all the subjects, PPA occurred more often in p zone than a zone. It was reported 

that p zone PPA occurs more often in glaucomatous eyes than in normal eyes 

(Jonas 2005). Additionally, frequency of p zone of PPA are significantly correlated 

with variables indicating the severity of the glaucomatous ONH (Jonas 2005).

5.4.3 Measured IOP and corrected IOP in the subjects

Measured IOP in people with DS was not significant lower than that of controls in 

the current study, in contrast to the study of Everklioglu (with the age of 5-15 yrs). 

It may be due to different methods and different age groups. In our study, a huge 

difference was noted in the corrected IOP in DS subjects when different formulas 

were used (Fig. 5-1), suggesting that these formula were not applicable among 

subjects with DS. It is most likely due to the extreme thinning and abnormal 

properties of the cornea in people with DS. Therefore, if we are to adopt a 

conversion factor or formula, we must first judge the normal value from which 

deviations should be corrected.

No correlation of IOP-CCT, IOP-CR in people with DS was noted, which is not in 

line with the findings in the general population according to previous studies 

(Chihara et al. 2005; Graf 1991; Matsumoto et al. 2000; Recep et al. 2001; 

Svedberg et al. 2005; Whitacre et al. 1993).
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5.5 Conclusion

l-care tonometer was a successful technique for measuring IOP in adults with 

glaucoma. Contrary to our expectations, subjects with DS do not appear to have 

significantly lower recorded IOP than normal controls. The correction for CCT 

remains a problem, but a clinical recommendation could now be made that IOP is 

routinely assessed in adults with DS using the l-care tonometer.

There were no obvious signs such as smaller rim or disc hemorrhages by 

assessing the fundus photograph in our subjects with DS, which were predictive 

factor for glaucoma patients. However, this was a small scale study. If the 

prevalence of glaucoma were the same in DS as in the general population, we 

would not expect to see it in nineteen adults of this age range. Considering the fact 

that there were more suspect glaucoma cases in children with DS than control 

children, their unique retinal features may lead to the wrong diagnosis rather than 

mask the glaucomatous changes in the disc.

The observation in this study may further aid our understanding of the detection of 

glaucoma in people with DS. However, the question still remains - do people with 

DS develop glaucoma or not?

166



Chapter 6

Discussion
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6.1 Summary of the results

The major results of our study are as follows:

Visual functions (Chapter 3)

The majority of children with DS has refractive errors (especially hyperopic) and

accommodate inaccurately. It was confirmed that poorer VA in our subjects with DS

compared to that in controls.

Ocular biometric parameters (Chapter 3)

•  There was a significant correlation between AL and refraction, AL/CR and 

refraction in both groups. A significant difference was noted in the correlation of 

AL and refraction but not in the correlation of AL/CR and refraction between 

children with DS and controls.

•  People with DS have thinner corneas both in the centre and periphery, smaller 

CR, higher corneal power of the front cornea and higher corneal aberration 

compared to controls. No significant difference in asphericity of the cornea, 

corneal power of the back cornea and pupil size was noted between people with 

DS and controls.

•  Calculated lens power was lower in children with DS compared to controls. No 

significant difference in lens density and lens thickness was noted between DS 

subjects and controls. Cataract was present in four adults with DS.

• No significant difference was found in anterior chamber parameters between 

subjects with DS and controls. However, adults with DS and with keratoconus 

have deeper ACD compared to those adults with DS but without keratoconus.

Corneal topography and keratoconus detection (Chapter 3)

• Clinically, keratoconus was present in 40% adults with DS (n=8) from a possibly 

biased sample, however, no keratoconus was found in children with DS.

• More children with DS were detected with suspicious keratoconus by corneal 

topography both objectively and subjectively.

•  There was no difference in the eye-rubbing frequency in DS adults with 

keratoconus group compared to those of the non-keratoconus group.
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Features of the retinal and optic disc (Chapter 4)

•  A larger disc and rim were found in children with DS compared to that of our 

controls. Similar positive correlation between the size of disc and rim was also 

found in both groups.

•  Children with DS have more arteries and veins beyond the discs, due to 

increased branching, but not those crossing the disc compared to controls. 

However, the distribution of retinal vessels in four segments was not 

significantly different between DS children and controls.

•  Further, the mean width of arteries crossing the disc in children with DS was 

significantly smaller than that of controls. In terms of the vessels extending to 

periphery, however, no significant difference in the mean width of arteries and 

veins was found between children with DS and control children.

•  Lastly, children with DS have significantly more small and middle size arteries 

and more small size of veins compared to our controls.

Glaucoma detection (Chapter 5)

•  The presence of the PPA (both Zone a and Zone p) in children and adults with 

DS was much higher than that of controls.

•  No significant difference was found in measured IOP between DS adults and 

the controls. It was shown that the traditional correction formula taking CCT into 

account may not be applicable to correct the measured IOP in people with DS.

•  No glaucoma was detected among our subjects with DS.
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6.2 General discussion and conclusions
6.2.1 Recruitment and co-operation

There was a good response to letters sent to the Cardiff cohort and clinical local 

patients in the current study, which may be due to the two factors: one is that there 

is a regular visit to the clinic for those children with DS from our cohort. Another 

reason is that the test time was often arranged during the half-term when it was 

convenient for the families to come.

The co-operation of people with DS was better than expected in each part of the 

study. Motivation and concentration might be strongly influenced by the child’s 

emotion. E.g. level of tiredness at the visiting time, which is likely to change the 

co-operation. It also seemed to the author that children with DS were encouraged 

and persuaded more by their parents to participate in the study (rather than giving 

their own unprompted consent), which was in line with studies of maternal directive 

and supportive behavior (Mahoney et al. 1990; Tannock 1988), concluding that 

mothers of children with DS exerted greater control in most of the aspects of 

directiveness, while mothers of children without DS were more likely to silently 

watch their children. It was proved that it would be very difficult to get precise 

measurement without help from parents in our study. Overall, it appeared that 

children with DS were just as persistent as the typically developing children with the 

challenging tasks (Gilmore et al. 2003).

6.2.2 Refraction development in people with DS

As reviewed in chapter 1, it has been shown that failure of emmetropisation is a 

characteristic of many children with DS (Haugen et al. 2001; Woodhouse et al. 

1997). Thus, in most children with DS, significant refractive errors are maintained 

or develop beyond infancy. What may lead to the failure of emmertropisation in 

children with DS? A number of previous studies have speculated that the failure of 

emmetropisation process in children with DS may be part of a general dysfunction. 

Thus, to some extent, abnormal refraction development in people with DS may 

mainly result from the general abnormal physiological features.
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The abnormal values of refractive components may lead to abnormal refraction 

development such as shorter axial length, higher corneal power and lower lens 

power. Moreover, the higher aberration of the cornea in DS subjects may be 

another factor resulting in failure of emmtropisation. In addition, since refractive 

error is the result of mismatched association among the ocular components, 

correlations between the total refraction of the eye and the individual optical 

elements may explain the failure of emmetropisation in children with DS. If the 

hypothesis above were upheld, the parameters would not show good correlation. 

The fact that they are not correlated in the same way as in controls suggests that 

there is lack of coordination between the components that results in refractive error. 

Thus, it is reasonable to assume that refraction in people with DS appeared to be 

determined by those abnormal ocular parameters and abnormal correlation 

between those parameters.

Children with DS are more likely to have growth hormone deficiency (Anneren et al. 

1999). Noticeably, it was reported that growth hormone deficiency may lead to 

hyperopia (Parentin et al. 2004). Therefore, this may be the explanation of the 

higher frequency of hyperopia in children with DS. Typical children with hyperopia 

(> +1.5D) are more likely to remain hyperopic (Hirsch 1964; Pointer 2001). This 

may account for the fact that hyperopic children with DS show little change.

The inherent thinning of the cornea and the presence of keratoconus may explain 

the myopia shift in adults with DS. In addition, it has been recently hypothesized 

that myopia shifts may have occurred as a consequence of cataract development. 

In other words, the progression of opacity in the lens nucleus may initiate the 

development of myopia (Saw et al. 2005). Since there is a high prevalence of 

cataract in people with DS, this may also be the case in those DS people with high 

myopia.
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6.2.3 What causes accommodation deficit in people with DS?

As reviewed in chapterl, the causes of under-accommodation in children with DS 

have been linked to visual acuity, hypermetropia, strabismus and cognitive level 

(Cregg et al. 2001; Haugen et al. 2001; Woodhouse et al. 2000; Woodhouse et al. 

1996).

Knowledge about the properties of the lens is essential for understanding the 

accommodation system in people with DS. In our study, calculated lens power was 

lower in children with DS compared to controls, which seemed to support our 

hypothesis that the high presence of inaccurate accommodation in children with DS 

is mainly influenced by a weaker lens. An increased change in lens curvature is 

needed for each dioptre of power change in accommodation. If this were the case, 

then a child with DS would need greater ciliary muscle contraction per dioptre 

change in accommodation. In other words, they would need to put a greater effort 

to accommodate compared to a control child. In most cases, perhaps the child 

chooses to put up with a lower accommodative response (and a slightly 

out-of-focus image) simply because of the demanding effort he or she would need 

to accommodate accurately. Therefore, we expected that children who 

accommodate accurately would have more powerful lenses than those who are 

inaccurate.

However, no significant difference in calculated lens power was found between 

those children with DS who can accommodate accurately and those who did not. 

The low power of the test may fail to find the significant difference if there really is 

since sample numbers in this analysis are small. Further, hypermetropes with 

accurate accommodation do indeed have higher lens power, although the 

difference is very small and non-significant. Whether this is a real trend remains to 

be seen when larger numbers of subjects can be assessed.
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There could be factors other than just lens power coming into play to influence 

whether an individual child with DS accommodates accurately, even with a low lens 

power.

Reduced visual acuity and small pupil size will increase the depth of focus of the 

eye. The small pupil size would be needed to account for the reduced 

accommodation in DS subjects. However, pupil diameter of subjects with DS was 

not significantly different to that of our controls. Therefore, poor accommodation in 

children with DS cannot be explained by reduced pupil size resulting in increased 

depth of focus of the eye.

It has been reported that neurologically handicapped children are likely to be less 

capable of compensating for the visual defect than normal children (Bader and 

Woodruff 1980). The weak accommodation in DS may be part of a general 

dysfunction of the central nervous system. The nervous impulses to ciliary muscle 

may need to be taken into account as well. However, nothing as yet is known of 

nervous control of accommodation in children with DS.

6.2.4 Retinal and optic disc features in people with DS
Contrary to our hypothesis, the optic disc in children with DS was unexpectedly 

larger than that of control children (see chapter 4). The cause is unknown. It can be 

speculated that this finding has a genetic basis or it could even be attributed to the 

influence of growth factors before the eye is fully developed, known to alter the 

genetically predetermined disc size (Hellstrom and Svensson 1998). No significant 

correlation between VA and disc size was found in either groups.

When the total number, distribution and size of the retinal vessels were analyzed in 

our study, it appeared that children with DS do not have significant difference in 

retinal vessels patterns compared to controls. Further, our study found no 

association between poor visual performance (refraction, VA and accommodation) 

and the distribution of the vessels in children with DS. Thus, this might support the 

fact that children with DS do not have abnormal retinal blood supply.
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It is important clinically because discs can be very difficult to evaluate in people 

with DS with an unique optic disc. Our observations provided information on the 

normal physiological variations of the retina in people with DS.

6.2.5 Non-ocular influence on the biometric parameters
The growth of the eye and those structures may follow the general growth pattern 

since it is well-known that race, age and gender have impacted on ocular 

parameters such as AL, lens thickness and disc size (Bowd et al. 2002; Hyman et 

al. 2005; Kashiwagi et al. 2000; Mutti et al. 2000; Varma et al. 1994; Zadnik et al. 

2003).

Many aspects of human vision deteriorate with age. It has been suggested that a 

rapid form of ageing occurs in the brains of children with DS (Buxhoeveden et al. 

2002). Moreover, the process of physical ageing seems to be accelerated in 

individuals with DS (Brown 1979; Devenny et al. 1996; Fromage and Anglade 

2002). So, are the abnormal ocular parameters premature ageing? For instance, 

the PPA is very common in children with DS, which is also a sign of retina ageing in 

normal population.

A recent population study among the general population showed that CCT values 

are independent of refraction, gender, age, height and body mass index. However, 

there was a positive significant correlation between CCT and body weight (Rufer et 

al. 2005). In contrary, people with DS have thinner cornea although overweight is 

common in people with DS (Cronk et al. 1988; Fonseca et al. 2005; Melville et al. 

2005; Myrelid et al. 2002; Styles et al. 2002). The inherent corneal thinning in 

people with DS may result from overexpression of genes and so that it may be 

responsible for some abnormal features of the eye. The abnormality in corneal 

collagen may lead to abnormal strength, elasticity and form of the cornea. 

Therefore, as people with DS have a trisomy 21, there might be a connection 

between this gene and the thinning of the cornea.

173



Chapter 6: Discussion

AL may be influenced by low height in people with DS. There is evidence that axial 

eye length responds to adolescent growth acceleration, which means that the 

greater increase of axial eye length results from pubescent body growth (Selovic et 

al. 2005). However, growth hormone deficiency in people with DS may aggravate 

their growth retardation and lead to a reduced pubertal growth spurt. As a result, it 

may hinder the increase of the AL. Interestingly, it was reported that AL is positively 

related to body weight and height (Ojaimi et al. 2005; Selovic et al. 2005). High 

prevalence of being overweight in people with DS have been demonstrated in 

many studies (Cronk et al. 1988; Fonseca et al. 2005; Melville et al. 2005; Myrelid 

et al. 2002; Styles et al. 2002). However, people with DS don’t have longer AL in 

ours and the previous studies.

6.2.6 Detection of keratoconus
The prevalence of keratoconus in our DS subjects is consistent with previous 

studies (see chapter 3, section 3.5.4). As reviewed in chapter 3, section 3.1.3, even 

though much progress has been made in corneal topography systems, an exact 

diagnosis of suspect keratoconus is still difficult.

In our study, amongst children with DS the difference between the two techniques 

was marked, with the observer detecting twice as many cases of suspected 

keratoconus as the Pentacam system. The difference may arise because detection 

by the Pentacam system was only based on the anterior surface of the cornea, 

whereas the observer considered both surfaces of the cornea. Additionally, the 

observer did not know which images were from subjects with DS and which were 

controls, but was, nevertheless, aware that some of the images were of subjects 

with DS, and was also aware of the purpose of this part of the study.

The high detection rate of keratoconus (in children for whom keratoconus was not 

suspected clinically) suggests that suspected keratoconus is more difficult to detect 

than either a normal cornea or severe keratoconus (However, we need to bear in 

mind the possible over-detection of keratoconus in control children).
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The difficulty in evaluating corneas in children with DS may be due to the following 

reasons:

i. Children with DS have abnormal corneas such as thinner cornea, higher 

curvature, abnormal asphericity and aberration, which are also the signs for 

the development and progression of keratoconus. This might result in 

difficulties for both assessments for suspected keratoconus.

ii. The subjective diagnosis criteria may be influenced by the known high 

prevalence of keratoconus in DS, especially for suspected keratoconus and 

trace keratoconus.

The findings suggested children with DS have abnormalities of corneal shape even 

in the absence of clinical evidence of keratoconus, which are in line with the study 

by Vincent (2005). Clearly, there are questions about the difficulties of diagnosing 

keratoconus in its early stages, in young subjects with DS. More importantly, the 

abnormal results in the corneal topography may predict the development of 

keratoconus later.

6.2.7 To consider the detection of glaucoma in people with DS

People with DS may carry risk factors including ageing earlier, higher refraction and 

thinner cornea, as discussed in chapter 5. However, glaucoma was not detected 

among our DS subjects, which was in line with previous studies (chapter 5).

We have argued that the unique retinal features may mask glaucomatous signs of 

the disc. However, it turned out that unusual features in retina may mislead 

suspicious glaucoma in our studies. Measured IOP in people with DS was not 

significantly lower than that of controls. IOP readings may be false because of the 

abnormal corneal properties (extreme thinning and abnormal properties of the 

cornea). In contrast, certain factors may be protective including low blood pressure 

and more branching of retinal vessels in people with DS. Thus, they may have true 

low IOP. However, the questions still remain: Is glaucoma missed in people with 

DS and do people with DS develop glaucoma or not? However, the measured IOP 

in DS subjects was low. If people with DS have ‘true’ low IOP, they may not 

develop glaucoma.
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6.3 Possible limitations of the study
6.3.1 Subject recruitment

All efforts were made to recruit a valid representative sample of children with DS. 

People with DS comprise a small special population. Therefore, there are inherent 

limitations in recruiting large numbers of subjects with DS. However, Cardiff Down’s 

syndrome Vision Research Unit that is the main source of recruitment for the 

children with DS in the study has one of the largest available datasets. The sample 

size was limited in adults with DS (n=14) with a wide range of age (19-58 years).

Bias may be present in the study because our subjects with DS who attend the 

clinic for eye test may be more likely in have ocular problems. However, just half of 

our completed longitudinal study cohort participated in our study, which is a fair 

representation of children with DS in general. Bias is less likely to the children who 

are part of a study cohort, but more likely for adult subjects. So, the conclusions by 

comparison of normal children and DS children should be representative.

6.3.2 Data collection
The co-operation of subjects is an important parameter to be considered, as it is 

compromised in DS. It can not be subjectively evaluated and it is likely to introduce 

uncontrolled variability in the results. When the examination procedure was 

affected by low co-operation of the subjects, repeated test had to be performed. 

Images were rejected on the basis of co-operation and quality of image. The 

examiner excluded the data before analysis. This resulted in reducing the number 

of subject in each measurement. However, in this way, the variability of the 

examination would not influence the outcome of study. In addition, the examiner 

was masked to the actual values of the measurements, thus, not influencing the 

true discrepancies noted between normal and DS subjects.

Most sophisticated equipment is designed for able, alert and co-operative young 

adults and their equipment design cannot be fully adjusted to meet the special 

needs of people with physical limitations and learning disabilities. For instance, for 

some children with DS who had small faces, even when the necessary adjustment 

was made, the distance of the chin rest and head rest remained too large. In such 

cases, their mother/father’s hand was placed on the chin rest to increase the height.
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However, such adjustment could not overcome the difficulties and even for an 

experienced operator, the precision of measurement could be influenced.

Equipment that was able to perform automated procedures was specifically 

selected for the purposes of this study considering the special needs of our 

subjects with DS. However, they were still under software development. This was 

mostly occurring with the Pentacam system, with the result that the data had to be 

exported several times based on the most updated version of the software. 

Moreover, unlike the traditional methods, the performance of more modern 

techniques is not well-documented such as Pentacam system and l-care tonometer. 

At the earliest stages of the study pilot studies had to be performed to validate the 

methodology of the main study.

Another limitation of the data collection may be that the information from the 

subject’s day carer about family history of keratoconus and glaucoma may not be 

accurate.

6.3.3 Planimetry evaluation

Quantitative analysis provides a more sensitive means of assessment of the optic 

disc by software. However, the exact determination of magnification factors was a 

most difficult issue, as we discussed earlier in section 4.1.2. The true size of the 

disc is influenced by several factors, including the AL, CR, refractive error and 

optical aberrations of the individual. Therefore, correcting the magnification and an 

objective assessment of the fundus photograph were the most important aspect of 

our study. Different ONH values were obtained by the same observer between the 

Novel digital software and the ImageNet 2000 software, even for the same images 

of the same subjects. The obvious difference in the ONH parameters between the 

two methods showed the fact that ONH parameters in fundus photographs were 

influenced greatly by the different methods to correct the magnification of the 

examined eye.

In addition, planimetry is subjected to measurement errors due to observer 

variability in the assessment. The technique is limited by its reliance upon the 

observer to identify the boundary of the optic disc as this is still subject to human
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decision as to how the boundaries are defined in the programming of the software. 

In order to minimize it, an experienced observer performed the evaluation. A 

comparison of the two groups has been performed with similar technique limitations 

in our study.

6.4 Future work
6.4.1 Aberration of the cornea and keratoconus detection

In a future study, the aberration of the cornea in people with DS can be studied 

further. More recently, it has been reported that the ocular aberration may provide 

a sensitive and reliable tool to detect keratoconus (Gobbe and Guillon 2005). 

Moreover, corneal aberration may contribute to degradation of the retinal image 

quality and therefore to visual performance (Gobbe and Guillon 2005; He et al. 

2002) and explain, in part, the poorer VA that children with DS exhibit

The abnormal changes in the corneal topography of our child subjects may predict 

the development of keratoconus later. Thus, a follow-up study of the corneal 

topography in our cohort is necessary.

6.4.2 Ocular components development in people with DS
The visual development of DS subjects has been followed since 1992 in Cardiff DS 

Vision Research Unit and the present study provided a detailed account of the 

ocular features of children in our cohort. It would be advisable that a longitudinal 

study is conducted in the future to evaluate their refractive errors over time and 

observe the accompanying changes in ocular biometry. For example, high myopia 

occurs in people with DS (Berk et al. 1996; da Cunha and Moreira 1996). So far, 

very few of our cohorts have myopia and so we expect some of the present cohort 

to become myopic in the future. Monitoring the growth of the various components of 

the eye in detail may help to explain the development of refractive errors not only in 

people with DS but also in the general population.

6.4.3 Lens thickness and lens curvature
The lens power is lower in children with DS than controls in our study. However, it 

is unknown whether this difference results from a flattening of the surface, a 

difference in lens thickness or a change of the equivalent index of the lens.
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Moreover, knowledge about the change in the internal structure of the lens is 

necessary for optical and mechanical modelling of the eye and accommodation 

system in DS. Refractive error is related to anatomic and functional difference in 

the lens thickness, curvature and opacities. Therefore, in future studies, it will be 

worthwhile to measure the lens thickness and lens curvature in people with DS.

6.4.4 Retinal shape
It has been reported that as myopia increases, all dimensions increase with the 

axial dimension increasing more than the vertical dimension, which in turn 

increases more than the horizontal dimension. However, the retina stretches more 

in width and height than length (Atchison et al. 2005). The relative difference in the 

increase of these dimensions means that as the degree of myopia increases the 

retinal shape decreases in oblateness. Therefore, to some extent, retinal shape is 

important in understanding the development of refraction in people with DS. 

Magnetic resonance imaging (MRI) has been used to provide pictorial 

representations of sections through the living eye at multiple positions, from which 

a detailed investigation of ocular dimensions can be made (Atchison et al. 2004; 

Singh et al. 2006). Examining children with poor concentration and comprehension 

by MRI will represent a challenge.

6.4.5 IOP measurement
It was shown that the correction formula may not be applicable to correct the 

measured IOP in people with DS, which support the explanation that CCT and IOP 

may be dependent on corneal pathology. There is evidence in the literature 

showing how difficult it is to determine the extent to which these corneal 

parameters influenced the IOP estimations (Cennamo et al. 1997; Chatterjee et al. 

1997; Chihara et al. 2005; Gimeno et al. 2000; Orssengo and Pye 1999; Shimmyo 

et al. 2003; Svedberg et al. 2005). However, it has been suggested that IOP 

measurement using the ocular blood flow machine is not affected by changes in 

CCT (Shah, 1998). If the IOP may be the only reliable indicator for the detection of 

glaucoma in people with DS, the true IOP in people with DS should be measured in 

a future study.
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Statistical methods
Parametric methods are mathematical procedures for statistical hypothesis testing 

which assume that the distributions of the variables being assessed are normally 

distributed and that the variances of the distributions being compared are similar. 

Non-parametric methods are for statistical hypothesis testing which make no 

assumption about the frequency distributions of the variables being assessed. 

Non-Parametric tests may be, and often are, more powerful in detecting population 

differences when certain assumptions are not satisfied. In our study, with regard to 

the normally distributed continuous data, parametric tests were used. For non- 

normally distributed data, non-parametric tests were used (Mann-Whitney test, 

Kruskal Wallis test). The categorical data were tested by Chi-square.

a) Comparing the correlation

The following procedure was used to test whether the correlations for the two 

groups are significantly different (Pallant, 2001). First, the R value was converted 

into z scores; Secondly, the below equation was used to calculat the Zobs value. 

The significant difference was reported when observed z score (Zobs) is out range 

of the value from -1.96 to 1.96 (Pallant, 2001).

\

1 1
+

t f j - 3  N 2 -  3

b) Bland-Altman analysis

Bland-Altman analysis for comparison of two methods of clinical measurement is 

frequently used in scientific publications. The difference between the two methods 

of measurement is plotted against the average obtained with each of the two 

techniques. 95% of the differenced in the population is lie between mean+/-2SD. 

The upper and lower limits of this interval are called the limits of agreement. The 

agreement limits provide the variation of the values of the technique compared to 

the other (Petrie and Csabin, 2005).
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Purpose (Chapter 2)
Test

Compare the readings of l-care tonometer and Goldmann tonometer

Is there a difference in IOP readings by 2 
tonometers?

Paired t-test and Bland-Altman 
analysis

What is the relationship between IOP and CCT by 
2 tonometer?

Peasrson correlation 
Compare correlation

Purpose (Chapter 3)
Test

Comparing 2 groups: DS children and control children

Is there a difference in Meansph, VA, AL between 
2 groups?

Independent t-test, Mann-Whitney 
test

Is there a difference in the presence of inaccurate 
accommodation between 2 groups?

Chi-square test

Is there a difference in those ocular biometric 
parameters (cornea, lens, ACD and pupil size)?

Independent t-test, Mann-Whitney 
test

Exploring relationships

What is the relationship between CCT and PCT; 
CCT and MCT; CCT and CR for child groups?

Regression Line or Spearman 
correlation

What is the relationship between AL and refraction, 
AL/CR and refraction?

Regression Line

Is there a difference in the above relationship 
between groups?

Comparison of regression lines

What is the relationship between corneal power, 
ACD, lens power and refraction for 2 child groups?

Correlation

Is there difference in the refractive components 
between child subjects among refractive error 
groups?

Independent t-test, Mann-Whitney 
test
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Purpose (Chapter 4) Test

Comparing 2 groups: DS children and control children

Is there a difference in relative disc size and F-D 
distance between 2 child groups by ImageNet 
software?

Independent t-test, Mann-Whitney 
test

Is there a difference in absolute disc size, rim size, 
cup size and C/D ratio between 2 child groups?

Independent t-test, Mann-Whitney 
test

In terms of the total vessel numbers, its there a 
difference between two children groups for arteries 
and veins in four segments?

Repeated Measurements 
(ANOVA)

Is there a difference in mean width of vessels 
(arteries and veins) between 2 child groups?

Mann-Whitney test 
Wilconxon Signed test

Exploring relationships

What is the relationship between disc size and rim 
size; disc size and cup size in 2 groups?

Correlation or regression line

Is there a difference in the above relationship 
between groups?

Comparison of regression lines

Purpose (Chapter 5) Test

Comparing 2 groups: DS adults and control adults

Do DS adults have lower IOP than that of controls? Independent t-test
Is there a difference in the presence of PPA, Zone 
a, Zone b and suspicious glaucoma for 2 child 
groups by 2 observers?

Chi-square

Exploring relationships

What is the relationship between CCT and IOP in 
DS adults?

Pearson correlation

What is the relationship between CR and IOP in 
DS adults?

Pearson correlation
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Invitation letter -  parent of children with Downs’ syndrome
School of Optometry & Vision Sciences, Cardiff University

Tel: 029 2087 6163

>7 m
» * -X. I

CARDIFF
UNIVERSITY

P R IF Y S G O L
CAERDvj5>

Dear parent

I am writing to introduce myself.
My name is Ping ,Ji, and I am a new research 
student in the Down’s Syndrome Vision Research 
team. If you were at our information day before 
Christmas, you may remember that I explained the 
nature of my research.

For those of who didn’t meet me then, here is a summary: My subject is “The retinal 
appearance in children with Down’s syndrome; association with visual function”.

Our program will investigate the dimensions of the optic disc and the retinal vessels (at 
the back of the eye) of children, in order to determine any associations between retinal 
features and visual development. (You may know that visual development is different in 
children with Down’s syndrome from ‘ordinary’ children).

There are two measurements I will do:
--Take a picture of the back of your child’s eyes, using the fundus (retinal) camera. This is 
used in exactly the same way as a normal camera with a short flash, and will cause no 
discomfort at all.
-  I will measure eye-size with an instrument that shines light into the eye and assesses 
the reflections. This instrument provides non-contact recording -  that is, we don’t need to 
use drops.

If you agree to take part, I will take the pictures during your next routine visit to the eye 
clinic here in the university, and we will post on a copy of the photo if you wish.

I would like to thank you in anticipation for your co-operation. If you have any questions or 
queries regarding this study, please do not hesitate to contact me on 
029 2087-6163.

I look forward to seeing you soon,

Your sincerely,

Ping Ji
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Invitation letter -  parent of children with Downs’ syndrome
School of Optometry & Vision Sciences, Cardiff University

Tel: 029 2087 6163

CONSENT FORM

T he retinal  appearance  in children  w ith  Do w n ’s 
sy n d r o m e ; association  w ith  visual  function

Researchers: Ping Ji, Dr Maggie Woodhouse

I agree to take part in the follow-up study. □

I understand that my participation is voluntary and that I am free to withdraw at any time.

□
Parents Name Signature

Child’s Name Signature

Contact Address:

Thank you very much for 
continued support!
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School of Optometry & Vision Sciences, Cardiff University
Tel: 029 2087 6163

I s| *  v w  « m
With my compliments

Cardiff
UNIVERSITY

P R I F Y S G O L

CaeRDY[§>

Parents o f X X

Dear parents of XX

I want to express my sincere thanks to you for allowing your child joining my research 
project. I am enclosing a photograph of the back of her eye which she might be interested 
in seeing and perhaps keep it as a souvenir of her visit to our eye clinic.

Thank you once again for your help,

Yours sincerely,

Ping Ji 

Postgraduate
Cardiff School of Optometry and Vision Sciences
Cardiff University
Redwood Building
King Edward V II Avenue
Cardiff CF10 3NB
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School of Optometry & Vision Sciences, Cardiff University

Tel: 029 2087 6163

Cardiff
UNIVERSITY

PRIFYSGOL

Dear Parents/Guardians o f X X

I am Ji Ping, who is doing eye research with Dr Margaret Woodhouse in the eye clinic of 
Cardiff university as I mentioned in the previous letters. I hope you don’t mind I contact 
you again as we are really keen to recruit normal children in our further research project 
which is related with the properties of the optic disc in children with Down’s syndrome 
recently.

You will remember that I asked to take photos of the back of their eyes before. Now that I 
have analysed photos of 92 children’s eyes (both with and without Down’s syndrome), the 
results are exciting and completely unexpected. It appears that the structures at the back of 
the eyes, such as the optic nerve, are bigger in children with Down’s syndrome. This 
would usually make children shortsighted, but, of course, most of the children are not 
shortsighted. The only way we can explain this at the moment is to assume that the 
children’s eyes are a different shape to the eyes of other children.

In order to follow this up, we now need to take photos of the front of the children’s eyes to 
look at the shape and size there. We would really like to be able to photograph the lens in 
the eye, and the only way we can do this is to use drops to widen the pupil. I am writing 
now to ask you if  you are willing to bring Jordon to the clinic for it during the coming half 
term (from 9:00 AM to 4:00 PM on 2 , 3rd of Jun). We will, of course, pay the travel 
expenses. We know that some children don’t like drops, so we are only going to use drops 
if  Jordon says that it is okay. We still can get a useful photo without eyedrops.

If  you are willing to help again, please choose the suitable time and sign the consent letter 
and post back by the enclosed stamped- addressed envelope.
Any help you could give us would be really appreciated.
We are looking forward to getting reply from you,

Yours truly,

Ping Ji
School of Optometry & Vision Sciences 
Cardiff University
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School of Optometry & Vision Sciences, Cardiff University

Tel: 029 2087 6163

The retinal appearance in children with Down’s 
syndrome; association with visual function

Researchers: Ping Ji, Dr Maggie Woodhouse 

CONSENT FORM
Please tick

I have read and understood the Information Sheet and have been given the 
opportunity to ask questions. _____

I understand that my participation is voluntary and that I am free to withdraw 
at any time.__________________________________________________

I agree to take part in the study.__________________________________

Parents Name____________________  Signature

Child’s Name____________________  Signature

Child’s D.O.B Date

Contact details:

Address________________________ Telephone number_

E-mail address

Most suitable day I time:________________________

Thank you!
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RECORD OF C H ILD R E N  — M A IN  STUDY

NAME SUBJECT/ CONTROL 
GROUP

D.O.B VISIT TIMES:

AGE: DATE:

GENDER:
TESTED BY:

R L

RETINOSCOPE:

VISUAL ACUITY

ACCOMMODATION 10CM 16.7CM

FUNDUS CAMERA: 
(IMAGE CODE )

IOL MASTER 
— AXIAL LENGTH
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INFORMATION
SHEET

Cardiff
UNIVERSITY

P R IF Y S G O L
GaeRDY[§>

Dear XX

We are members of the Down’s syndrome Vision Research Team and the Ocular 
Genetics Research Team of Optometry School at Cardiff University. Together we are 
planning two studies involving adults with Down’s syndrome.

We are writing to invite you to attend our clinic to join the studies: ‘Optic disc 
and corneal properties in people with Down’s syndrome; their impact on the 
detection of glaucoma.’ and ‘Genetic causes of keratoconus in Down’s 
syndrome’. We are keen to recruit people to ensure that the studies are a 
success. We enclose our information sheet in details and consent form.

Any help you could give us would be really appreciated. 
We are looking forward to getting reply from you,
Yours truly,

Ping Ji & Jack Sheppard 
Research Students
School of Optometry and Vision Science 
Cardiff University
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Who we are

I am Ping Ji and my supervisor is Maggie 
Woodhouse. We are members of the Down’s 
Syndrome Vision Research Team.

I am Jack Sheppard and my supervisor is Marcela 
Votruba. We are members of the Ocular Genetics 
Research Team.

Together we are planning two studies involving adults 
with Down’s syndrome.
We are keen to recruit people to ensure that the studies are a success. We are 
inviting you to attend our clinic to join the studies.

Ping’s study is

‘Optic disc and corneal properties in people with Down’s syndrome; their 
impact on the detection of glaucoma’.

Glaucoma is an eye disease that becomes more likely as we get older. Because it 
doesn’t cause any discomfort, a person who has glaucoma in the early stages 
doesn’t usually know it. At the moment we have no idea of how common glaucoma is 
in people with Down’s syndrome. Because people with Down’s syndrome have eyes 
that are often ‘different’ to other people’s eyes, it may be difficult to detect glaucoma. 
For example, the cornea in people with Down’s syndrome possesses a number of 
abnormal properties. Intra-ocular pressure is measured by instruments that 
temporarily distort the shape of the cornea, and the instruments are calibrated for the 
average cornea. Thinner corneas, such as most people with Down’s syndrome have 
will give inaccurate readings, and it is possible that glaucoma is missed.
Damage due to glaucoma is apparent in changes to the optic disc. However, the 
optic disc often looks different in people with Down’s syndrome, and changes may be 
difficult to interpret.

So we intend to study the optic disc appearance and corneal properties along with 
intra-ocular pressure in people with Down’s syndrome to determine two things:

• Firstly whether glaucoma ever arises in people with Down’s syndrome
• Secondly, if it does arise, how we might best detect it in the early stages.
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Once you have agreed to join the study and come along to our clinic, we will carry 
out a normal eye examination including measuring detail vision and refractive error 
(long or short-sight). In addition, there are four measurements that we also want to 
do:

The size of the eye
This is done with an instrument that shines a light into your eye and measures the 
reflections.

A photo of the back of your eye
The photo will be taken with a retinal or fundus camera.

Corneal topography
This means a very accurate measure of the shape of your cornea.

The above three measurements mean that all you have to do is to put his/her 
chin onto a rest and keep still for a few seconds. We will not use eye-drops.

Intra-ocular pressure
For this we need to touch your eye with a small probe. The measurement is made in 
a fraction of a second, and you will probably not be able to feel it. Once again, no 
eye-drops.

Jack’s study is

Genetic causes of keratoconus in Down's Syndrome.

Keratoconus
Keratoconus (KC) is a condition in which the 
cornea becomes conical in shape because of the 
thinning of the cornea. This impairs the vision at 
both near and distance. It usually starts in late 
childhood. It can be corrected up to a point with 
contact lenses, although when KC is more 
advanced only a corneal graft will restore sight.

Up to 15% of people with Down’s syndrome have KC, which is far more than the 
general population, but we do not know why this is so. One hypothesis is that 
environmental factors, such as eye rubbing, may contribute, whilst other hypotheses 
involve the role of key genes that may be involved together with environmental 
factors.

The genetic causes of KC are being investigated internationally, but so far only a 
small number of genes have been directly implicated. One of these genes is called 
VSX1. So far it has only been studied and been found to be abnormal in some 
people with KC who do not have Down’s syndrome. So we would like to look for the 
gene in people with Down’s syndrome, including those without keratoconus as well 
as those with it.

Study procedure
When you come to the clinic, we will ask you for a sample for DNA analysis. This 
sample may be a mouth wash, buccal scrape (from the inside of your cheek) or a 
blood sample (up to 20 ml max). You can choose which you prefer.
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At the end of the study we will destroy all samples, and they will not be used for any 
other study.

Expected outcomes
If it turns out that the same gene VSX1 is associated with keratoconus in Down’s 
syndrome, then it will be useful to identify children with Down’s syndrome who may 
go on to develop KC, at an early stage. Then we will be able to provide help for their 
eyesight as early as possible.

What we offer you if you join our study

• We will offer support and advice regarding your eyes and vision.
• We will post on a copy of the retinal photo if you wish.
• We will pay travel expenses for you (and your friend or family member) to

come to the clinic

What you need to do now
If you are willing to join one or both of our studies, please fill in the form overleaf. 
Simply tick the boxes and sign your name. Your friend or family member can sign for 
you, or as well as you.
We will then contact you by post or telephone to arrange your visit to us.

Where we are
The clinic is situated in the School of Optometry &Vision Science, in the Redwood 
Building, King Edward Vllth Avenue, which is in the centre of Cardiff.
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Consent form
Appendix 5

Ping

Ping would like to measure your eye in three different ways 
and take a photo of it. She will send you a copy of your 
photo if you wish.

I am happy to join Ping’s study □
Jack

Jack would like to take a sample and look at your DNA.

I am happy to join Jack’s study □
I would prefer mouthwash □  cheek swab □  blood sample □  

My name...........................................................................................

My signature...........................................................

Carer’s name..................................... Relationship.

Signature...........................................................

Contact address......................................................

Telephone no
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RECORD OF ADULTS — M A IN  STUDY

NAME SUBJECT/ CONTROL GROUP

D.O.B

AGE:

GENDER:

VISITING DATE:

TESTED BY: 

ACCOMPANIED BY:

Family member or Staff carer
R L

Pentacam
image

CCT

IOP

ALM

Refractive
Error

VA

Fundus
photograph

Question 1
Do you have a close family history (parents, brother or 
sister) of glaucoma?

Yes No Don’t know

Question 2
Do you have a close family history (parents, brother or 
sister) of keratoconus?

Yes No Don’t know

Question 3
How often do you rub your eyes?

once or less/per day 3-6 times/per day 
7 times or more/per day

Co-operation
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Information sheet for adults

School of Optometry & Vision Sciences, Cardiff University
Tel: 029 2087 6163

“Comparison of the Impact tonometer with 
Goldmann applanation tonometry” Cardiff

UNIVERSITY

PRIFYSGOL
CaeRDY[§> Aim

To confirm the accuracy of the Impact tonometer before 
introducing it into our project

Proceures
Once you have agreed to join the study, we will carry out two measurements:

1. Intraocular pressure(IOP), which will be measured three times in one of 
your eyes

A. by Goldmann tonometer
This instrument (the ‘gold standard’ for IOP measures) involves placing a small 
probe against your eye. We will first instil a drop of local anaesthetic, so that you 
will not feel the procedure at all.

B. by Impact tonometer
For this we need to touch your eye again with a small probe. The measurement is 
made in a fraction of a second, and you will probably not be able to feel it. This 
instrument does not need anaesthetic, but the effect of the initial drop will probably 
still be there.

C .by Goldmann tonometer a second time
We may need to instil a second drop of anaesthetic, if the first has worn off.

2. Central Corneal Thickness(CCT) by the Oculus Pentacam
You will be asked to sit in front of the camera with your forehead against a rest. 
The computer then takes photos to measure the thickness of your cornea and the 
corneal topography. It is a non-invasive procedure, easy to perform.

If you agree to take part, please sign the consent form, and if you have any 
questions or queries regarding joining this study, please do not hesitate to contact 
me on 029 2087-6471 or e-mail me : iip1@cf.ac.uk.

You can change your mind at any time and decide not to take part.

We would like to thank you in anticipation for your co-operation !
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Appendix 7
Information sheet for adults

School of Optometry & Vision Sciences, Cardiff University
Tel: 029 2087 6163

Comparison of the Impact tonometer with Goldmann applanation 
tonometry

Researchers: Ping Ji, Dr Maggie Woodhouse 

CONSENT FORM

Please tick

I have read and understood the Information Sheet and have been given the 
opportunity to ask questions.

I understand that my participation is voluntary and that I am free to withdraw 
at any time.

I agree to take part in the study.

Full Name _______________________  D.O.B

Signature _______________________

Visiting Date _______________________

Thank you !
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Scaling code for the Topcon camera

// receive the scale variables back to main form 

procedure
TStereo_window.ReceiveScaleVariables(Scale:ScaleRecord); 
var

radcurve:real; 
refraction:real; 
radl:real; 
rad2:real; 
sphere:real; 
cyl:real; 
p :real;
//s:real; 
q:real; 

begin
ScaleVariables := Scale;

radl := ScaleVariables.kl; // convert to old nomenclature 
rad2 := ScaleVariables.k2; 
sphere := ScaleVariables.Sphere; 
cyl := ScaleVariables.Cylinder;

// work out S 
if ImageSingle then

S := ((ScaleVariables.Vert / ImageHeight) + 
(ScaleVariables.Horiz / Imagewidth)) / 2 
else if ImagePair then

S := ((ScaleVariables.Vert / ImageHeight) + 
(ScaleVariables.Horiz / ImageWidth)) / 2 
else

MessageDlg('Stereo Error: S.', mtlnformation, [mbOK], 0);

//writeln(Imagewidth);
//writeln(Imageheight);
//writeln(1S 1, S);

// James' scaling code.....
//calculate the magnification factor 

radcurve := (radl+rad2)/2;
refraction := sphere + (cyl/2);//mean speherical refractive 

error
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{

calculate the conversion factor for pixels to microns based on 
the camera type 
true image size = p.q.s where NB all units in

metres ... 1/metres = D 
p = camera factor
s = size of object on photographic film or in this case in 

terms of pixels on screen 
(Rudnicka et al Ophthalmology 1998: 105: 2186-2192)

}
Else if (ScaleVariables.Camera =3) then //'TOPCON NW6S Non 

myd 30 deg'- the text is go in the status bar
begin //inserted by JEM 4.11.05
p := 1.62;; //telecentric 
s := 0.024; //mm per pixel based on the TOPCON 

camera SONY DXC 950P
GL_Status(1s = 0.024);

End

//q = eye factor(calculated using Ted Garway heath's method 
(BJO 1998: 82: 352-361)

refraction := refraction/(1-(0.014*refraction)); // JEM 
from page 645 of above paper refraction = Fsp and is taken 
direct off the autorefractor

q := 1/((17.21/radcurve)+1.247 + (refraction/17.455));
// conversion factor (KTrue) for pixels := P*q*s

ScaleVariables.Ktrue := p*(q*S);// multiply the number of 
pixels by this value to get the linear dimension in mm 

ScaleVariables.KArea := sqr(ScaleVariables.KTrue);
//sqr(p*q)*(sqr(s));//from Rudnicka et al Ophthalmology 1998 
105: 2186-2192 p2191
GL_Status(1T :' + floattostrF(ScaleVariables.KTrue, fffixed, 

7, 5) + ' mm/pixel at retina S:' + floattostrF(S, fffixed,
7, 5) + ' mm/pixel on film');

Paint;
end;
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