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Abstract

ABSTRACT

In this thesis, a dynamic model has been developed for oscillating combustion systems. 

It comprises of three sections, an inlet pipe, a combustor and a tailpipe, in the 

expectation that this can be adapted to a wide range of combustion systems. The 

modelling results have been validated against available experimental data from 

pulsating combustors, whilst further possibilities are considered in the context of neural 

network modelling.

Neural aided combustion oscillator models (NACO) have been developed for time 

domain prediction of low frequency oscillations. The NACO method consists o f two 

stages, one is the design of a core-stimulation (CS) model based on the combustion 

properties; in the second stage the CS model is combined with a compensation neural 

network, which is trained to interact with and adjust the CS model. The effectiveness o f  

the training of the non-linear models can be verified by predicting and comparing the 

outputs with experimental data at a wide variety of different conditions. The limitations 

of this approach however lie in the simplicity of the core-stimulation model and the 

necessity for large quantities of training data. This leads to the main thrust of this thesis 

to evolve a generalised dynamic combustion model which has more general 

applicability and which can be in the fullness of time be integrated with neural network 

modelling to improve data, using only sparse training data.

The initial section of this dynamic combustion model is the air transmission line, which 

uses a finite difference model based on the conservation laws combined with a lumped 

model to realize the time-domain simulation. The experimental components, such as the 

pressure transducers, mass flow meter, solenoid directional valve, and pneumatic 

cylinder etc, are connected with the designed control panel. The Microstar Laboratories 

DAP card is used to realize the data gathering and control signal output from the PC. 

Based on the certain numerical discrete method for finite difference model and lumped 

model, the effectiveness of the proposed model is depicted through comparisons o f 

simulated pressure responses against pressures measured by practical experiments on 

various transmission lines. The simulation results match well with experimental data.



Abstract

A premixed combustion model based on the conservation laws was then established. 

The essential features of the combustor geometry, combustion reaction rate, unsteady 

mixed reactants motion, and fluid dynamics in inlet pipe and tailpipe are accounted for. 

The governing equations presented identify key characteristic length and time scales, 

while the numerical simulation of the equations provides a relatively efficient prediction 

of the combustion pressure oscillations. This is further analysed using FFT analysis to 

obtain the frequency and amplitude of the pressure oscillations for comparison with 

experiments. Good results are generally found although the incorporation of the 

transmission line representation of the combustor inlet pipe reduces the accuracy of the 

predictions. Reasons for this are discussed as well as the possibility of using this model 

in conjunction with neural networks.
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1. Introduction

1. INTRODUCTION

1.1 INTRODUCTION

Passive control of combustion processes has been widely sought to reduce pressure 

oscillations and pollutant formation, increasing combustion intensity and heat transfer 

rates, whilst operating the combustor beyond its natural flammability limits. Active 

control is promising due to a number of reasons: 1) it can be used to overcome some of 

the tradeoffs inherent in current combustion technology, such as reduced pressure 

oscillations accompanied by increased pollutant formation; 2) passive control has been 

shown to be often inadequate as the operating conditions change; 3) actuators such as 

acoustic drivers and dynamic fuel injectors, which provide means of modulating key 

variables in the combustion process, as well as fast and accurate sensors such as 

pressure transducers, radiometers, and photodiodes, are becoming available; and 4) 

active controllers consume a small fraction of the power generated in the system and 

hence are feasible for commercial use [1-5].

Thus, it is clear that future progress in understanding transient combustion phenomena 

such as swirl flows, pulse combustion, explosions, and other similar combustion 

instabilities is important so as to be able to realize the active control for combustion 

instabilities. This will require a good and flexible model for combustion and gas- 

dynamic interactions [6, 7].

With the development of computer technology, it has become possible to realize the 

time-domain simulation of large scale plant and this has recently been extended to 

dynamic modelling of low frequency oscillations in a swirl Bumer/Fumace system 

using artificial neural networks [8]. A neural network aided combustor oscillator 

approach was used to predict combustion pressure instabilities. However it relies on a 

primitive core stimulation model which needs careful tuning to combustion oscillations 

and is not capable of covering diverse modulating oscillations. Moreover extensive

1



1. Introduction

training data are needed which are rarely available from expensive (i.e. gas turbine) 

systems. These systems are normally operated (not unexpectedly) in operational regimes 

with minimal oscillations and regions of oscillation are quickly passed through. Thus 

this thesis develops a more generalized combustion model consisting of an inlet pipe, 

combustor and tailpipe which is calibrated against available pulsating combustor results, 

with the understanding that in the longer term it can be integrated with the neural 

network model when sufficient training data is available. A zero-dimension premixed 

combustion model is developed for a generalise combustor based on the conservation 

laws. The essential features of the combustor geometry, combustion reaction rate and 

unsteady mixed reactants motion are accounted for. The governing equations presented 

identify key characteristic length and time scales. The models predict development o f 

the combustion oscillations in accord with those observed during the experiment 

especially with the premixed combustion. The consideration of the fluid dynamics in the 

inlet pipe and tailpipe of the combustion system contributes to the model accuracy. A 

time-domain simulation of pneumatic transmission lines is useful to capture the air 

transient characteristics within the pipe lines and interaction with the combustor. The 

aim of the study has been to provide quantitative tools, which are relatively simple to 

use and provide solutions in relatively short time-scales, yet are sufficiently elaborate to 

be of use for design purposes, and can contribute to the understanding of air 

transmission line interactions with transient combustion and associated tailpipe 

processes. Ideally it is expected that that this integrated model should be capable of 

being matched to a wide variety of different oscillating combustion systems, especially 

when some training data is available for neural network analysis. This can form the 

foundations for the future of both active adaptive and passive control of pressure 

oscillations.

1.2 ARTIFICIAL NEURAL NETWORKS FOR MODELLING COMBUSTION 

OSCILLATIONS

Currently neural networks are of considerable interest. They have great capability in 

solving complex mathematical problems since they have been proven to approximate 

any continuous function very accurately [9]. Hence, they have received considerable 

attention in the field of system identification and controller design [10-24]. In the

2



7. Introduction

system identification stage, the neural network model is developed for a controlled 

nonlinear plant or process. This network is trained offline in single or batch mode, using 

data collected from the operation of the plant or process. In the control stage, the neural 

network identification model is used to design the controller.

Artificial neural networks have been used to model the dynamics o f the combustion 

process in a swirl bumer/fumace system which can be made to oscillate under a wide 

range of conditions by simple variation of geometry and flowrates o f fuel gas and air 

[25]. The simulation using a NAR (non-linear Auto-Regressive) model usually obtains 

very poor validation results for unseen data and the predicted oscillation amplitude 

decays to a very small level or becomes far from experimental data as time passes. This 

is because there are no external varying inputs in the model to stimulate the oscillation, 

and the prediction accuracy is limited due to noise existing in the measured data used 

for training. Although the NARMAX (Non-linear Auto-Regressive Moving Average 

with exogenous inputs) model considers the external dynamic inputs, it can not be 

applied until affordable, reliable, high-speed flow rate measurement devices are 

available.

To overcome these problems, a methodology for building models of such systems is 

proposed where dynamic flow rate measurement of gas and air is absent, the inputs to 

the models being pressure time records, measurements of mean gas and air flowrates 

and the geometry of the furnace. The modelling has two objectives:

•  To model the oscillating properties of the system, such as fluctuating pressure 

frequencies and rms amplitude values. This can then be used to build a core- 

stimulation model.

•  To model the time domain dynamic response to pressure oscillation.

Experiments were undertaken on a swirl bumer/fumace test rig of typically lOOkW 

thermal input. This system could be made to oscillate in a regular manner by parametric 

changes such as mean equivalence ratio, mean gas and air flowrates as well as by small 

changes in geometry [25]. Pressure fluctuations generated by low frequency oscillations 

were considered, with a fundamental frequency less than 70 Hz. FFT analysis of the

3
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data was carried out to derive the dominant first and second harmonic frequencies for 

the various combustion conditions investigated. Multilayer perceptron neural networks 

are applied and a solution to enhance the training converging speed is applied. This is a 

rule of instant learning performance based on the dynamic learning rate. The 

effectiveness of the non-linear models trained is verified by prediction and comparison 

with experimental data. It is shown that the model can give predictions of oscillation 

frequency and amplitude slightly beyond that of the experimental data upon which it 

was based. The limitation of this technique is the core stimulation model.

1.3 TRANSMISSION LINES

Fluid power systems, which are a close parallel to some of the work described here, are 

most commonly simulated using networks of lumped parameter component models, that 

is, systems of ordinary differential equations (ODEs) and difference equations. It is 

therefore convenient to have lumped parameter component models for transmission 

lines. This requires an approximation of the governing partial differential equations 

(PDE). A survey of linear PDE models for fluid transmission lines has been presented 

by Stecki and Davis [26, 27].

Watton and Tadmori [28] compared the four most common approximations for fluids: 

finite differences, finite volumes, the modal method of Hullender et al [29], and the 

method of characteristics. They concluded that the modal approximation method is the 

most accurate, convenient, and numerically stable. A variant of the modal method was 

presented in Piche and Ellman [30].

Compressible fluid models based on the conservation laws have been well established 

using the Navier-Stokes equations [31]. In this study, the time domain simulation o f a 

pneumatic transmission line is investigated and then applied to the combustion model. 

The three-dimensional Navier-Stokes equations are firstly reduced to one dimension and 

coordinate conversion is undertaken to make them be suitable for the pipe model. Then 

it is combined with the lumped model to simulate pressure waves travelling in the 

transmission line. The lumped model based on the orifice equations is mainly used to 

update the boundary conditions during the simulation. Two different applications are

4



1. Introduction

simulated, which are the both-end blocked model and cylinder charging model. 

Comparisons between the simulation and experimental results indicate that the proposed 

combination model is an effective means to simulate the dynamics of the pneumatic 

lines under different conditions.

1.4 TRANSIENT COMBUSTION PROCESS

Continuous combustion processes are prominently encountered in many applications 

related to power generation, heating and propulsion. Examples include domestic and 

industrial burners, steam and gas turbines, waste incinerators, and jet and ramjet engines. 

The characteristics of these processes include a wide variety of dynamic behaviours [32]. 

Amongst these, pressure oscillations are considered the most significant in terms o f their 

impact on system performance, although flame movement can cause considerable 

damage. In many applications, pressure oscillations become more severe as the 

operating condition of the combustors is changed to meet specific performance criteria. 

For example, fuel-rich or fuel-lean conditions may be desired, depending on the 

combustor design and whether the performance objective is an increase in the thermal 

output of a combustor and/or a reduction in nitric oxide emissions respectively. In most 

cases, pressure oscillations are undesirable since they lead to excessive vibrations 

resulting in mechanical failures, high levels of acoustic noise, high bum rates, and 

possibly component melting.

In a typical continuous combustion process, a highly flammable fuel-air mixture is 

ignited, and the hot gases generated due to the chemical transformation of the mixture. 

In its simplest form, the combustion process can be considered as a reacting mixture 

flowing in a constant area duct with a flame anchored at a specific location. The latter 

ignites the reactants, releasing their chemical energy in the form of heat, thus raising 

their temperature and reducing their density. Combustion chambers can be viewed as 

organ pipes or Helmholtz resonators in which acoustic pressure and velocity oscillations 

can be sustained. Flames, which are essentially surfaces across which reactants are 

converted into products, not only possess their own inherent instabilities, but are also 

known to respond readily to imposed oscillations. The potential coupling between the

5
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unsteady components of pressure and heat release rate can lead to their resonant growth, 

which is referred to as thermoacoustic instability [33].

1.4.1 Rayleigh Criterion

The connection between heat release and pressure has been understood for over a 

century. In 1878, Rayleigh [34] described the requirements necessary for sustained 

combustion-driven oscillations, which is known as Rayleigh Criterion. In simplified 

terms, the Rayleigh Criterion states that the point of maximum energy release should

ideally coincide with the point of maximum pressure such that the pressure wave will be

sustained.

1.4.2 Thermodynamics and Reaction Kinetics of Combustion

Combustion involves the liberation of energy as chemical reactions proceed, which is 

determined from the energies of the individual reactants and products. The precise 

quantity of products, and hence the overall stoichiometry of the reaction, must be 

established by chemical analysis [33].

For the calculation of the energy released, one basic definition is made in which the 

energy of an individual chemical species can be given either in terms of its internal 

energy or its enthalpy is:

H = U  + p V  (1.1)

where, H  is the enthalpy, U is the internal energy and the product p V  indicates the

mechanical work done on the system.

The change of enthalpy for a general chemical reaction can be given as the difference of 

standard enthalpies of formation of reactants and products. To describe the quantitative 

behaviour of the chemical reaction considered, a rate law may be specified to account 

for the rate of change of concentration of chemical species, in terms of the product of

6
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concentration terms and rate constants. A rate constant k is usually dependent on the 

temperature, but is independent from the concentrations. It is normally expressed in the 

Arrhenius form as:

k = Ae{' mT) (1.2)

where A is the Arrhenius pre-exponential factor, E is the activation energy of the 

reaction, R is the universal gas constant, and T is the temperature.

1.4.3 Thermoacoustic Instability Phenomenon during Combustion

Chemical-acoustic coupling is concerned with interactions between pressure waves and 

the chemical processes involved in reactive flows. The acoustic waves may be the 

natural modes of a system, generated by energy deposited in the system by an external 

source, or derived from by chemical reactions within the system.

Reports of thermoacoustic instability have a long history, starting in the 19th century, 

when a number of independent studies revealed that sound of considerable amplitude 

can be generated when a gas flame is placed inside a large tube, leading to what has 

become colloquially known as “singing” flames to Rayleigh’s famous criterion [35], 

Rayleigh’s criterion has, over the years, served as an important analytical tool to predict 

potentially damaging interactions in combustor designs.

Recently, interest has been renewed in this problem [32]. This is because several 

modem combustion systems, such as lean premixed combustors, ramjet engines, and 

pulsed combustors, designed for low emissions, fast propulsion, and flexible operations 

respectively, exhibit this instability in a prominent way. Traditionally, past approaches 

have been directed toward mitigation of the instabilities, including changing the flame 

anchoring point, the burning mechanism, and acoustic boundary conditions, and 

installing baffles and acoustic damper. Interest in operating these systems over a wide 

range of conditions without running the risk of self-destruction, and maintaining their

7
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N 0 X emission levels within desirable limits, has leaded to the exploration of active and 

adaptive control as possible strategies for achieving the desired performance.

1.4.4 Flame Type and Structure

A flame can be defined as an exothermic combustion reaction, which is self-propagating 

through space and has a luminous reaction zone. According to whether the fuel and the 

oxidant have been mixed prior to combustion, flames can be classified into two 

categories: i) premixed flames, and ii) diffusion flames. In a premixed flame, fuel and 

oxidant are mixed before entering into the reaction zone, while in diffusion flames fuel 

and oxidant must diffuse together in order to react [36].

Further classification can be made according to the fluid mechanics of the reaction zone; 

a laminar flame if the gas flow is laminar and turbulent flame if the gas flow is turbulent. 

The threshold distinguishing the laminar and turbulent flows is expressed by the 

dimensionless Reynolds number, (Re).

Re = ^  (1.3)

where v is the gas flow velocity, L is the distance, p  is the density, and p  is the 

dynamic viscosity.

If the values of the Reynolds number are less than 2x10 , the flame is laminar, and if Re 

is between 2xl03 to 104, the flow is at the transition regime from laminar to turbulent. 

For Re greater than 104 the flow is turbulent [37].

Premixed flames occur in a combustion process in which the fuel and the oxidant mix 

together before they enter into the combustion zone or when the flame travels in a 

homogeneous mixture. When a fuel and oxidant mixture enters into a combustor, the 

reaction is initiated by an energy stimulus to produce a flame (or deflagration). Reaction 

is then induced in the layer of reactant mixture ahead of the flame front by heat
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conduction or diffusion of reactive species from the hot burned gas or reaction zone 

behind the flame front.

If the premixed reactants are forced to flow towards the flame front, and their velocity is 

equal to the rate at which the flame would propagate into stagnant gas, i.e. the burning 

velocity, the flame itself would come to a standstill. This is put into practice in 

combustion applications involving burners, the design of the appliance being aimed at 

holding the flame in one position and rendering it immune to small disturbances.

The velocities of premixed flames are limited by transport processes (i.e. heat 

conduction and species diffusion). The velocities normally do not exceed the speed of 

sound in the reactant gas. However, it is often found that a flame (propagating wave or 

deflagration) undergoes a transition to a quite different type of wave, such as the 

detonation, for which the wave velocity is much higher than the speed of sound. In this 

type of wave, the chemical reaction is initiated by a supersonic compression, or shock 

wave, travelling through the reactants.

Diffusion flames occur in a combustion process in which fuel and oxidant are supplied 

to form a combustible mixture, which is ignited immediately upon its formation. The 

flame appears at the boundary between the oxidant and fuel zones. Reaction products 

spread to either side of this boundary, and before they reach the combustion region the 

oxidant and the fuel diffuse against them [32]. Diffusion flames are very important 

industrially because of their combustion stability, easy ignition, intense radiation (with 

certain fuels) and safety, although there is inadequate information about diffusion 

flames due to the complexities of the chemistry, thermal decomposition of the fuel in 

the hot oxygen-free region, soot-formation process and the radiative heat transfer.

The dominant physical process is normally the mixing of the fuel and the oxidant as 

chemical reactive times are very fast. So a clear distinction can be made between flames 

which involve two different flow regions. The first one is a slow-burning diffusion 

flame (e.g. candle flames). In this kind of flame, the fuel rises slowly and laminar flow 

ensues. The mixing process occurs solely by molecular diffusion and thus the flame 

properties are determined by molecular quantities. The second one is a rapid-buming 

diffusion flame (i.e. industrial burner, gas turbines) in which the fuel is usually

9
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introduced in the form of discrete droplets (liquid fuel combustion). In the latter, 

burning is rapid, flow velocities are high and the mixing process is associated with the 

turbulence of the flow.

Moreover, a laminar flame propagating (and growing) freely in a homogeneous mixture 

of fuel and air may become turbulent due to the natural instabilities of large flames. In 

this situation the flame spreads through the fuel and air mixture very rapidly. The flame 

propagation results in the conversion of the reactants into products in the flame region.

The rate at which the burnt gases are produced depends mainly on the burning velocity. 

The burning velocity is a property of the mixture but it also varies with other parameters 

as for instance the temperature and pressure of the surrounding environment and above 

all with the turbulence level. Hence in laminar conditions the type of fuel together with 

the concentration of the fuel is the most important parameters which determine the 

laminar burning velocity. Gases such as acetylene and hydrogen have some of the 

highest burning velocities among fuels, whilst methane has one of the lowest. As a rule 

of thumb, it can be said that the laminar burning velocity becomes a maximum just on 

the rich side of the stoichiometric fuel-air ratio.

Drastic acceleration of flames of large dimensions is induced by the irregularities in the 

form of the flame. Large flames are naturally unstable and tend to fold and wrinkle 

increasing their surface area and providing in this way a self-acceleration mechanism. 

Similarly, congestion or bluff-bodies create turbulence in the environment in which the 

combustion occurs, providing a mechanism of flame acceleration. Turbulent flames 

magnify the rates of mass and heat transferred within the flame region, accelerating the 

combustion process.

1.4.5 Modelling Methods

Four modelling methods are listed by Marsano [38], which are Empirical Models, 

Phenomenological Models, Computational Fluid Dynamics (CFD) codes, and 

Phenomenological Scaling.

10
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For empirical models, experimental correlations of a process are determined by 

experimental data only, which makes it easy for the user to track how the model arrived 

at a prediction. However, these models are not strictly valid outside the data set upon 

which they were built, which leads to scaling problems. For phenomenological models, 

the various components of a physical process are dissected and physically or empirically 

based sub-models derived. These sub-models are linked together to provide a fully 

integrated predictive model. Computational Fluid Dynamics codes aim to solve 

fundamental conservation equations of mass, momentum and energy by solving a 

complex system of equations using non-linear mathematical solvers. However 

simplifications are needed mainly due to the complexity of chemistry and turbulence. 

The codes can, in principle, cope with complex geometries and can incorporate the 

latest methodology for modelling the more complex aspects of combustion. For very 

complex physico-chemical process, the researcher sometimes resorts to appropriate 

scaling parameters. Scaling laws are derived and applied to data from small-scale 

experiments to model real scale processes. Hence, in this type of models, the 

geometrical features of the geometry are modelled in detail.

In this study, three premixed combustion models are established. The essential features 

of the combustor geometry, combustion reaction rate and unsteady mixed reactants 

motion are accounted for. The governing equations presented identify key characteristic 

length and time scales.

1.5 AIMS AND STRUCTURE OF THE THESIS

In this thesis an engineering approach to modelling typical transient combustion 

processes is described, being tested against available pulsating combustor data. The aim 

is to provide design engineers with quantitative tools, which are relatively simple to use 

and can provide solutions in relatively short time-scales, yet are sufficiently elaborate to 

be of use for design purposes. As a further refinement, model parameters are identified 

which can be adjusted by an available neural network model to widen the applicability 

of the model to different combustion systems when sufficient training data is available.

11
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In Chapter 2, a combustion oscillation modelling method, neural aided combustion 

oscillator (NACO), is reviewed [8]. This consists of two stages, combustion property 

modelling and dynamic response modelling. In the first stage, combustion oscillation 

properties of dominant resonant frequencies and rms values are modelled using neural 

networks related to a variety of experimental conditions. Integrating the outputs of these 

trained networks into sinusoidal forms, a core-stimulation (CS) model can be built up 

based on the experimental condition given, although the range is inevitably limited. The 

simulation at this stage is usually far from acceptable, with a sustainable oscillating 

source being obtained at the expected dominant resonant frequencies. In the second 

stage, the CS model is combined with a compensation neural network (CNN), which is 

to be trained using sampled patterns of oscillating pressure data and the output of the CS 

model. The inputs to the CNN consist of steady-state experimental conditions and the 

history output of the overall network, predicted pressure. This method greatly eases the 

training time though it consists of two stages, and the effectiveness is due to the CS 

model with a sustainable oscillation mechanism at the conditions given whilst the CNN 

makes up for the non-linearity in the complex process. In addition, a dynamic learning 

rule is established to adjust the learning rate in the training process to appropriate values 

to speed up or slow down the gradient descent process at the interest of ensuring the 

overall changing trend is in the target direction, hence enhancing the convergence 

process. The limitations of the existing core stimulation model are explored and the 

rational refinement is developed for the dynamic combustion model of the remainder of 

the thesis.

In Chapter 3, the continuity, momentum and energy equations are presented including 

the relevant state equations to describe the behaviour of compressible fluids in 

transmission lines. The derivation of Navier-Stokes equations based on the 

conservation laws is presented. These equations are then transferred into cylindrical 

coordinates to make them suitable for the pipe line with circular cross-section. The 

lumped model is firstly used to simulate the air flow dynamics. The limitations of this 

method are presented. The finite difference model combined with the lumped model is 

then proposed to realize the time-domain simulation of an air transmission line.

In Chapter 4, a premixed combustor model is described based on the conservation laws 

to predict the pressure oscillations. Effects of wall temperature, heat transfer,

12



1. Introduction

equivalence ratio, tailpipe friction and length are also investigated. The model is 

appraised against experiments. Predicted combustion oscillations are similar to those 

observed during the experiments. The FFT analysis is used from the Matlab Library to 

obtain the frequency and amplitude of the pressure oscillations.

In Chapter 5, a zero-dimension premixed combustion model is proposed. The essential 

features of the combustor geometry, combustion reaction rate and unsteady mixed 

reactants motion are accounted for. The governing equations presented identify key 

characteristic length and time scales. The numerical simulation of the equations 

provides a relatively more efficient prediction of the combustion pressure oscillations. 

In addition, the pressure in the inlet pipe with a value slightly above atmospheric is 

considered.

In Chapter 6, a premixed combustor model is combined with a one-dimensional 

transmission line model, in which the mass fraction equations are included for the pipe 

lines. The reasons why the simulations based on this model gives poorer results 

compared with other two models are analyzed.

Chapter 7 draws overall conclusions and recommendations from the work.

13
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2. A REVIEW OF THE USE OF ARTIFICIAL NEURAL NETWORK 

MODELS FOR COMBUSTION OSCILLATIONS AND 

APPLICATION TO OTHER SYSTEMS

NOMENCLATURE

At Pressure oscillation amplitudes

a 2 Pressure oscillation amplitudes

B Data matrix

e(t) Error in core-stimulation (CS) model

E Error vector

Er Equivalence flow ratio

Fg Flag of learning performance

K Adaptive factor, dynamic learning

L Air inlet pipe length

Nc Merit number, dynamic learning

Nm Merit threshold, dynamic learning

p(t) Pressure

P s(t) Output pressure in the CS model

p Pressure vector

Qa Air flow rate

Qga Axial gas flow rate

Qgp Premixed gas flow rate

rms Root mean squares of the pressure

R Root of mean squares of model errors

w(k) Neural network weight at instant k

Xt Unknowns in the CS model

y(k) Expected output at instant k

yn(k) Neural network output

0)1 Oscillation frequencies

14
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0)2 Oscillation frequencies

P Neural learning momentum

Aw(k) Weight adjustment at instant k

s(k) Instantaneous sum of the square errors

fa Phases in the CS model

<h Phases in the CS model

V(k) Dynamic learning rate at instant k
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2.1 INTRODUCTION

Extensive research has been undertaken in the published literature [39-43] on 

combustion oscillations to improve the understanding of the nature of the process and to 

achieve stable performance, especially through passive measures. Adaptive combustion 

control is an attractive idea because it can be matched to many different situations, 

providing high performance over a wide range of the operating envelope and 

eliminating costly design changes typically required in passive approaches [39, 41]. 

Dynamic models of processes are required to accurately implement adaptive control 

algorithms, but they can also be useful for passive control. Dynamic modelling 

techniques have been carried out using various combustion theories [3-5], while 

application of real time adaptive control using this method is still limited due to the 

uncertainties in models, which are obtained from practical experiments; also most 

importantly the reliability of equipment.

Neural networks are increasingly employed in a wide range of applications, such as 

modelling, prediction, control, classification and pattern recognition, signal processing, 

optimisation, etc [44-48]. The theoretical justification for the application is that, 

provided that the network topology is sufficiently large (sufficient number of hidden 

neurons), any continuous function can be approximated to within an arbitrary accuracy 

by carefully choosing parameters in the network [49]. The most commonly used types 

of neural networks are feed-forward, recurrent, and self-organising; for learning 

algorithms they are back propagation (BP), genetic algorithms (GA), least squares (LS), 

and reinforcement learning rules.

Recent research [50, 51] has described the application of neural networks in the 

modelling of combustion dynamics with the effectiveness of neural prediction on 

combustion pressure oscillation in one experimental condition being shown. The 

prediction was undertaken in limited steps and the results show the simulation 

performance deteriorates as the prediction step increases. The dynamic inputs to the 

network are history pressure predictions; therefore it is actually a NAR (non-linear 

Auto-Regressive) model, which is expressed in general form as:
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(2 .1)

where >>(•) is the output at the generic time sample, ny is the dimension of the history 

y(-) and /(•)  is the non-linear function, which is a neural network in the study. The

prediction of an output variable using the NAR model only depends on the history of the 

output variable itself, with no external dynamic inputs being considered. In this case, the 

history prediction error effect dominates the prediction performance as time passes if the 

model is not trained to high enough accuracy or there is a presence of noise. In reference 

[18], the same problems were encountered at the early stage of the work in modelling 

combustion dynamics by a single neural network model using the predicted output as 

the dynamic inputs. The simulation is usually very poor in validation for unseen data 

and the predicted oscillation amplitude decays to a very small level or becomes far from 

experimental data as time passes. This is because there are no external varying inputs in 

the model to stimulate the oscillation, and the prediction accuracy is limited due to noise 

existing in the measured data used for training. The NAR model prediction accuracy is 

more sensitive to the errors in history prediction than the prediction accuracy in the case 

of using NARMAX (Non-linear Auto-Regressive Moving Average with exogenous 

inputs) model, which is generally expressed as:

input is considered in the NARMAX model, the prediction output is expected to be 

more accurate. However in the combustion process modelling, the actual inputs to the 

burner, dynamic gas and air flow rates, are difficult to measure in practice at a speed as 

fast as the pressure measurement. Thus the NARMAX model can not be applied until 

affordable, reliable, high-speed flow rate measurement devices are available.

To overcome these problems, a combustion oscillation modelling method, neural aided 

combustion oscillator (NACO), was used, which consists of two stages, combustion 

property modelling and dynamic response modelling. In the first stage, combustion 

oscillation properties of dominant resonant frequencies and rms values were modelled

y(k ) = f [ y ik -  0. • • ■ > y{k - n, \ u { k - \ ) , - u ( k -  nu)] (2.2)

where w(-) is the external input at the generic time sample. As the process dynamic
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using neural networks related to a variety of experimental conditions. Integrating the 

outputs of these trained networks into sinusoidal forms, a core-stimulation (CS) model 

can be built up based on the experimental condition given, although it is acknowledged 

that there are frequency range limitations. The simulation at this stage was far from 

acceptable, with a sustainable oscillating source being obtained at the expected 

dominant resonant frequencies. In the second stage, the CS model is combined with a 

compensation neural network (CNN) as shown im Figure 2.1, which is to be trained 

using sampled patterns of oscillating pressure data and the output of the CS model. The 

inputs to the CNN consist of steady-state experimental conditions and the history output 

of the overall network, predicted pressure. This method greatly eases the training time 

though it consists of two stages, and the effectiveness is due to the CS model with a 

sustainable oscillation mechanism at the conditions given whilst the CNN makes up for 

the non-linearity in the complex process. The models of rms amplitude and dominant 

frequencies obtained at the first stage of the NACO method can also be used for steady- 

state property prediction for the purpose of aiding optimal design for combustion 

systems. Details of the NACO method are described in the following sections.

Multilayer perceptron (MLP) neural networks and Back-propagation algorithms [45, 47] 

were used. The weights in the neural networks are trained using the data patterns and 

learning algorithms. The slow learning problem often concerned is largely due to local 

minima encountered in the training process. The training can become stuck at a local 

minimum for a long time or forever due to inappropriate values of the pre-set learning 

rate. This problem is overcome by a solution of the dynamic learning rate, in which the 

learning rate is determined by a rule on instant learning performance. The learning rate 

in the dynamic state matches its value to the learning performance in the training 

process and local minima situations can be jumped over by the genetic mechanism in 

the solution, the training process thus being enhanced effectively.
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2.2 NEURAL NETWORK BACKGROUND

2.2.1 Neural Networks

The multilayer perceptron (MLP) consists of a set of input neurons which constitute the 

input layer, one or more hidden layers with nonlinear activation neurons, and an output 

layer consisting of one or more output neurons as shown in Figure 2.2 (a). A hidden 

layer neuron consists of a set of synapses or weights relating to every input, an adder for 

linear summing the input signals weighted by the respected synapses of the neuron, and 

an activation function for limiting the amplitude of the output of the neuron as shown in 

Figure 2.2 (b). The most commonly used type of activation function is the sigmoid 

function as follows:

in the latter. The input layer neurons serve only as distribution points transferring the 

input signals to each neuron in hidden layer 1. The hidden layer neurons accept the 

signal from each neuron in the previous layer and compute the weighted summation and 

activation. The outputs of hidden neurons in a layer are then transferred to each neuron 

in the next layer as input signals. The network output neuron is usually only a linear 

weighted summation model, without a nonlinear activation function. Bias is considered 

as a special input with constant value 1.0 in each neuron. The network learns from the 

pre-set data, which are in the form of input and output patterns and can be handled 

pattern by pattern or batch handled subject to training algorithms.

(2.3)

or

(2.4)

which limits the neural output to be within a specified range (0 1) in the former or (-1 1)



2. A Review o f the Use o f Artificial Neural Network Models for Combustion Oscillations and
Application to other Systems______________________________________________________ ______

2.2.2 Learning Algorithms

Network training is the process by which the weights are adjusted by algorithms to 

achieve a network performance, which can match the input/output mapping relations at 

a specific criterion. The back-propagation (BP) algorithm is commonly used based on 

the gradient descent method. The BP algorithm requires that the activation function be 

differential. The hyperbolic activation function is also used, which produces output in 

the range of -1 to 1. The mechanism of the BP algorithm is used to minimise the error 

criterion, the instantaneous value of the sum of square errors, s(k), defined as follows:

where y(k) is the expected network output and yn(k) the network output at the training

the weights of the network are all fixed and an input vector effect propagates through 

the network layer by layer. Finally, a set of outputs is produced as the actual response of 

the network. During the backward pass, on the other hand, the weights are all adjusted 

in accordance with the gradient descent method as follows:

e\(k) = y{k)-y„ (k) (2.5)

and

(2.6)

iteration k (i.e., presentation of the kth training pattern). In the forward pass of signals,

Aw„ (*) = “7 T ~ T 7 \ + P A wi< (* ~ 0  dwj,(k)
(2.7)

then

(k + l) = wJI(k)+AwJI(k) (2.8)

20



2. A Review o f the Use o f Artificial Neural Network Models for Combustion Oscillations and
Application to other Systems_______ _________ ____________________________________________

thwhere Awji(k) is the weight adjustment to weight Wjfk) connecting the j  neuron m a 

hidden layer or output layer to the ith neuron in the previous layer at the training 

iteration k. Thus a value Wji(k) + Awjfk) is given to Wjj(k+1) after this training iteration 

and the training in which the weights are adjusted on a pattern by pattern basis. The 

term de(k)/dwji(k) is the partial derivative of the error criterion (Equation (2.7)) against 

the considered weight wji(k), 77 (its value is between 0 and 1) is the learning rate and /3 

(its value is also selected between 0 and 1) is the momentum rate. The momentum term 

that is considered in the gradient descent method is used to improve training time and 

enhance the stability of the training process. Equation (2.7) is the general form of the 

gradient descent algorithm, which is applied to adjust each weight, also including the 

bias weights, in each training iteration. In the training process, weights are of time- 

varying form and their values are adjusted by iteration along the error surface with the 

aim of moving them progressively toward the optimum solution.

At the end of each training epoch, such as a cycle of training using all patterns, the 

assessment of performance is undertaken by comparing the network output with the 

expected output over the validation patterns using the criterion of root of mean squares 

(R) as:

R = ± ( y { k ) - y M Y  i ± y { k f
*=1 *=1

1 /2

(2.9)

where M  is the number of total validation patterns, which can be the same, partially the 

same or totally unseen data as the patterns used in training. The training is undertaken 

until the R is less than the pre-set target. Note the R differs from the rms amplitude as an 

oscillation property.

For successful training of a given system, parameters such as learning rate, momentum 

rate, must be chosen properly, but there is no concrete guide to determine these. 

Although there are techniques designed to improve the converging speed, like conjugate 

gradient descent, MLP networks using back-propagation are still time consuming, 

especially when the training data are large and noisy.
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2.2.3 Dynamic Learning Rate

The ideal R curve is a sharp descent straight line to the training criterion target, however 

in practical training the R curve has up-and-downs, resulting in local minima. For a 

given network topology, the R curve resulting from training depends on: 1) the initial 

weights selected randomly; 2) the data used for training and validation; and 3) the 

learning rate and the momentum rate used. The gradient descent function in the learning 

algorithm is an approximate way of minimising the error criterion in discrete 

progressive form. The most controllable term for the R curve for efficient training is the 

learning rate, which is often a fixed preset value. In the training process, the weights are 

moving in a non-linear space guided by the learning algorithm, and the training process 

will frequently encounter local minima. If a large learning rate were used, it would mean 

fast convergence if the weights were moving in the right direction. However the 

convergence often can not proceed as the training is encountering a local minima. In this 

case the weights are swinging between two space locations and the algorithm is

incapable of finding new weight moving directions if the same learning rate is kept, as

shown as 1—>2—>1 in Figure 2.2 (c). Smaller learning rates give smaller gradient descent 

steps, which will lead the training toward the bottom of the valley of the R, 1 —>3—>4 in 

Figure 2.2 (c). Once the R reaches the local minimum the gradient descent algorithm 

will search for new directions of all the weights. This will generate a new R curve for 

each weight until the training reaches overall minimum. The rules for the dynamic 

learning rate used here is as follows:

'tj{k)/K i f  Fg = 1
K xrj(k) i f  Fg = - 1 (2.10)
rj(k) else

and

T){k) = -
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1 i f  N c > N m
-1  i f  N c < - N ,
0 else

(2.11)

where K  (its value is between 0 and 1) is the adaptive factor and Fg is a flag to recognise 

the instant learning performance, which is determined by Nm, a merit threshold. At the 

end of each training epoch, i.e. a cycle of training using all patterns, a merit number Nc 

increases by one if the R is decreasing, otherwise Nc is zero, or the merit number N c 

decreases by one if the R is not decreasing, otherwise Nc is zero. The flag Fg is set as 1 if 

Nc is larger than Nm, Fg is -1 if Nc is less than -N m and Fg is zero in all other cases. Nc is 

reset to zero after a change is made to the learning rate.

In the training process using the dynamic learning rate, the initial learning rate rj(k) {k= 0) 

can be set to a large value decreasing to 1 for an initial fast convergence. If the R is 

decreasing continuously over a set number of epochs, the flag Fg will be set to '1', that 

means the direction of movements of the weights are correct, and thus the mechanism 

will accelerate the convergence by increasing the learning rate. On the other hand, if the 

R is not decreasing consecutively over the set number of epochs, the flag Fg will be set 

to '-1', the changing of weights will be constrained by reducing the learning rate to 

obtain opportunities of moving the weights in the correct direction. The dynamic 

learning rate mechanism will bring the learning rate to an appropriate value for 

continuing the converging process. Using the dynamic learning rate for the learning 

performance will be very effective in overcoming the sticking of the training process as 

the learning pace is regulated by the instant learning performance. The convergence will 

be finally limited by the complexity of the system to be learned and noise in the patterns 

used. However, the model trained would give a much better result than that derived 

from the fixed learning rate.

There are two arbitrary parameters in the dynamic learning method, the merit threshold 

Nm and the adaptive factor K, both of which affect the training. Use of a small value of 

K  will result in large rate of change of the learning in a changing event. Thus too small a 

value of K  will lead to too large changes of learning rate; this is not expected. It is thus 

reasonable to consider a value of K which is less than but close to 1.0. However, with a
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value of K  too close to 1.0, the training process would be very slow as it will need too 

many events of learning rate change to overcome a local minima. Thus a reasonable 

choice for K  is around (0.8 1). There is no boundary found for the merit threshold N m_ 

However if it is too large, it will take too many epochs to have a change of learning rate 

and the training process will be very slow. On the other hand, if it is too small it will 

result in too frequent changes of learning rate, which is unnecessary and may interrupt 

the acceptable pace of the gradient descent process. A starting value of Nm as 10 was 

considered.

The method of dynamic learning rate converts the initialised value of learning rate to a 

time-varying dynamic state in the training process, and changes of the learning rate are 

undertaken based on the genetic reproduction conception, which awards promising 

seeds more space to develop and constraint growing of deteriorating seeds. The learning 

rate is adjusted to appropriate values to speed up or slow down the gradient descent 

process in the interests of maintaining the overall trend of the R in the target direction, 

thus enhancing the training process.

2.3 EXPERIMENTS

Reference [45] shows results of modelling experiments undertaken on a 100 kW natural 

gas fired swirl bumer/fumace system. The schematic of the burner with two tangential 

air entries is shown in Figure 2.3 (a). Variation of swirl number was achieved by the 

use of removable inserts in the two inlets, the experiment setup being depicted in Figure

2.3 (b). The oscillation of the system could be substantially altered by variations in the 

length of the inlet pipe, L, to the system, Figure 2.3 (b), and this was employed to 

generate large quantities of oscillation data (66 sets) for a given swirl bumer/fumace 

combination, coupled with variations in equivalence ratio (Er) and quantity of natural 

gas supplied to the premixed (Qgp) and axial (Qga) inlets. Other variables included the 

exit pipe length (L) and total airflow (Qa)

Typical signals obtained from the pressure transducer are shown later in this chapter 

with predictions in Figure 2.8. rms values of pressure were obtained directly from an 

FFT analyser. Figure 2.4 (a) shows a phase locked pressure signal of the fluctuations in
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the furnace, with superimposed phase angles, used for phase locked velocity 

measurements, reported in [45]. Figure 2.4 (b) shows a typical output from the FFT 

analyser, showing the two major harmonic frequencies generally found.

2.4 THE NACO METHOD AND IMPLEMENTATION

The NACO method consists of two stages, combustion oscillation property modelling 

and combustion dynamic response modelling. The oscillation properties modelled were 

resonant pressure frequencies and rms amplitude values. The resonant frequencies 

modelled in first stage were used in the second stage for a time domain model. The rms 

values can be calculated directly using the measured pressure data. Harmonic 

frequencies at each experimental condition can be obtained by undertaking FFT analysis 

of the measured pressure data, Figure 2.4 (b). The two dominant resonant frequencies, 

which vary for given test conditions were only considered.

2.4.1 Combustion Property Modelling

The objective of the first stage of the NACO method was to model the combustion 

oscillation properties of resonant frequencies and rms using neural networks. Each of 

the properties (oscillation frequencies) of co\ (first harmonic), o>i (second harmonic) and 

rms is modelled using an independent network, the general topology being shown in 

Figure 2.5 (a). The training data are input-output patterns, and the inputs to the three 

networks are the same; these are the experimental conditions for the equivalence ratio 

Er, the premixed gas flow rate Qgp and the inlet pipe length L. The ranges of the 

parameters in the 66 experiments were as follows:

Er 0.62 to 0.88 
< 1001/min and 1201/min

L 1.7m, 4.3m and 7.7m
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The data of each experiment were processed for the corresponding resonant frequencies 

and rms values, thus 66 patterns of Er, T, Qm  co\̂  a>i and rms are used for the subsequent 

data-based modelling and analysis. The patterns are numbered and odd number patterns 

were used in training the combustion property models; all were used for validation.

In the modelling of the frequency co\ as the output of the network, the number o f 

neurons in the first layer is 10, 5 in the second layer, initial learning rate being 0.1, 

adaptive factor K  0.9 and the merit threshold number Nm 10. The training process at the 

dynamic learning rate took 25 minutes finishing at a value of R of 0.01 as shown in 

Figure 2.5 (b). The process for the fixed learning rate was terminated by the operator at 

90 minutes as the training was stuck at a local minimum as shown in Figure 2.5 (c). The 

variation of learning rate in the dynamic learning process is shown in Figure 2.5 (d), 

learning rate fluctuating between 0.1 and 2.5x10'5. In the modelling of frequency o>i and 

rms as the output of the network, the topology of the network and parameters set for 

training are the same as in modelling coi. All the above training tasks were completed 

successfully. The value of R is 0.017 in validation of (o\ and 0.011 for a>i The validation 

of the rms was carried out for a wide range of equivalence ratios, where predictions 

within and beyond the experimental conditions are depicted. Validations at all the 

conditions used in the experiments are shown in Figure 2.6.

2.4.2 The Core-stimulation Model

With the modelled resonant frequencies <x>\ and o>i with experimental inputs of the flow- 

rates of air, natural gas and the inlet duct geometry, as described in section 2.4.1, a core- 

stimulation (CS) model was used as follows

p{>) = sin(&>,r + fa )+ A2 sin(<y2 t + </>2)+e(t) (2.12)

where A / and A 2 are amplitudes, fa and fa are phases, and eft) is the model error. The 

unknowns, A j,A 2 , (/)1 and fa in Equation (2.12) can be determined using the process 

below.
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Equation (2.12) can be expanded as

Pi>) = x l sin(<y,r)+x2 cos^ ^ + ĵ  sin(<y2r)+ x 4 cos(fi>2f)+e(f) (2.13)

where x, (#=1-4) are unknowns. Using initial n data sets measured at a given 

experimental condition, Equation (2.13) can be written into matrix form as,

P=BX+E (2.14)

where P=[p(tj) p(t2)  ... p f t r j f ,  X=[x 1 X2 X3 x4] T, E=[ e(ti) e(t2) ... e(t„)]T and B (nx4) is 

the matrix with each row as [sin(coit) cos(coit) sin(o)2 t) cos(o)2 t)] at a different instant t. 

Minimising the error vector E, the unknown vector can be solved using the least squares 

algorithm as:

X=(BTB f IBTP (2.15)

Therefore the unknowns in Equation (2.12) can be obtained as:

At = { x t+x i ) V2
<i>\ = x 2 / x {

A 2 = (x32 + x3
<f>2 = X 4 / X  3

2V/2 (2.16)

The first approximation for the CS model is therefore,

p s (r) = Ax sin(fy,r + <j>x)+ A 2 sin(co2t + </>2) (2.17)

This CS model is far from satisfactory as the combustion process is much more complex 

than the combination of sinusoids, hence the development of more complex models. 

The various parameters in the equation are optimised by minimising the error eft), 

whilst the model provides a sustainable oscillation source at the same frequencies as the 

pressure response resonant frequencies for the given experimental conditions.
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2.4.3 Combustion Dynamic Response Modelling

The objective of the second stage of the NACO method is to build a time domain model 

for the prediction of the pressure oscillation in combustion. The CS model in Equation 

(2.17), built by modelling the resonant frequencies at the first stage for a given 

experimental condition, is combined with a compensation neural network, as in the 

scheme shown in Figure 2.1. Details of the topology of the CNN and the NACO method 

are shown in Figure 2.7, where steady-state experimental conditions Er, L and Qw  and 

the history of the predicted pressures, Pn(k-1), Pn(k-2), ..., Pn(k-m), are used as the 

inputs to the CNN; there is only one hidden layer m, the history dimension of Pn(•) in 

the model; this is chosen to be 100. As the sampling frequency is 2560Hz and the 

maximum harmonic frequency is found to be close to 120Hz, at least 4.6 harmonic 

history cycles of pre-predicted data are used in the CNN model for prediction purposes. 

In this study the output neuron of the CNN is designed with a hyperbolic activation 

function. The output of the CS model Equation (2.17), which is an oscillation signal of 

the frequencies predicted at the given experimental condition, is added with the output 

of the CNN to give the prediction, Pn[k]. The error of this prediction, e[k] = P[k] -  

Pn[k], and the measured data are used in the BP algorithm, back propagating through 

the CNN with the weights being updated.

103 inputs are provided to the CNN, 100 being history NACO output data and the other 

three being the experimental conditions Er, L, and Qgp. The initial learning rate is set as 

0.05, adaptive factor K  is 0.9 and merit threshold is 10. 5000 patterns at different 

experimental conditions from 12 files are applied in the training, which took 130 

minutes to reach R 0.05 using a relatively old computer.

Validation of the model obtained via the derived NACO method was undertaken by 

comparing the model simulation with the unseen data at a variety of experimental 

conditions, three traces being shown in Figure 2.8. The oscillation trends are followed 

very well in frequency and amplitude. Characterisation of the errors between prediction 

and measured data give the root of the mean squares of the error as 10.23% in Figure
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2.8 (a), 9.35% in Figure 2.8 (b) and 8.22% in Figure 2.8 (c). These errors could have 

been significantly reduced by extended periods of training, or indeed via the use of a 

better core stimulation model.

2.5 PREDICTIONS AND RELEVANCE TO THE WORK IN THIS THESIS

The models built in the first stage of the NACO method predict the oscillation properties 

of rms amplitude and dominant resonant frequencies using the experimental conditions 

and the burner geometry, these being key factors which influence system instability. 

Therefore these models can provide a powerful tool to investigate instability in a wide 

range of different combustion situations. However, there are clear frequency domain 

limitations in the core stimulation model in that, for instance, only two dominant 

resonances are predicted.

The predictions and experimental results agreed well for the two dominant resonant 

frequencies and rms pressure fluctuations, for most conditions the oscillation occurs in a 

regular and sustained manner over a range of equivalence ratios from 0.62 to 0.88. 

Several interesting phenomena were also predicted, including a peak in rms pressure at 

an equivalence ratio of around 0.8, also at an inlet pipe length of 7.7 m significant 

frequency jumps at equivalence ratios around 0.8, Figure 2.6. The effectiveness of the 

steady-state prediction techniques is also illustrated by Figure 2.8 where predictions of 

the actual pressure dynamics are made. However prediction of another 256Hz 

oscillation [25] was not possible at the same time, showing up the limitations of the 

method at the moment.

The review of the use of neural networks for combustion oscillation and instability 

prediction has clearly shown the possibilities of the method. However, the technique 

will always be limited by a lack of training data, except that from small scale systems, 

as it is not possible to run, for instance, gas turbine systems in operational ranges where 

serious oscillations can occur. Any training data is likely to be sparse and of limited 

extent.
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For this reason it is clear that better models of oscillating and unstable combustion 

systems are needed that can better represent processes occurring in such systems and 

form the basis of the Core Stimulation model, whereby the neural network is used to 

adjust a variety of model parameters to better fit any training data that is available. 

Naturally the advance of computer power makes such approaches possible. These 

models can also be clearly used as a first stage predictor without neural network 

assistance.

The other problem with the work reviewed in this chapter is that the extensive training 

data comes from a very complex combustion aerodynamic system, a swirl burner 

furnace. In order to develop a general purpose combustion model, which can be used to 

represent a range of systems, very detailed data available from a pulsating combustion 

system have been used for validation. This has allowed a model to be developed 

incorporating an inlet pipe, combustor and tailpipe, as discussed in the rest of this thesis.
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3. INLET PIPE MODEL FOR THE COMBUSTOR

NOMENCLATURE

A Orifice area or cross-section area of the transmission line

c d Discharge coefficient

c . Mass flow parameter

C, Specific heat at constant pressure

Cv Specific heat at constant volume

d Inner diameter of the transmission line

e Internal energy per unit mass

E, Total energy per unit volume

F Total force vector

f Body force vector per unit volume

f . x  components of the body force vector per unit volume

fy y  components of the body force vector per unit volume

f . z components of the body force vector per unit volume

g Acceleration of gravity vector

k Coefficient of thermal conductivity

I Segment length

Md Mass flow rate

mi Mass in segment i

P Pressure

Ps Pressure from the air supply

Pu Upstream stagnation pressure (absolute)

Pvc Static pressure at the vena contracta or throat

q Rate of heat lost by conduction (vector)

qx x  components of heat lost rate by conduction
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y  components of heat lost rate by conduction

<lz z  components of heat lost ratebyconduction

Q Heat produced per unit volume by external agencies

R Gas constant

T Temperature

Tu Upstream stagnation temperature (absolute)

u x  components of the velocity vector

V Fluid velocity vector

K Volume of segment i

V y  components of the velocity vector

w z  components of the velocity vector

GREEK LETTERS

Ap Pressure drop along a pipe segment

At Time interval for finite difference model

Ax Spatial interval in x direction for finite difference model

P Density

M Dynamic viscosity

s Second viscosity coefficient

V Kinematic viscosity

K Bulk viscosity coefficient

Y Ratio of the specific heat

Tij Viscous stress tensor

s * Kronecker delta function

a Stress tensor
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3.1 INTRODUCTION

In recent decades, there has been great development and interest in utilising pneumatic 

systems as a transmission medium. The earlier systems used air as the working medium, 

but nowadays inert gases are used in some applications. Inefficiency of compression o f 

gases and the dangers involved with storing high pressure gases limit that the working 

pressure are being designed normally for 10 bar operation. This means however there is 

extensive theory in this area enabling models to be developed for the inlet pipe section 

of combustors, especially relevant with gas turbines, where operating combustor 

pressures can be 20 bar or more.

There are several mature theories on steady state analysis of pneumatic systems, 

especially in the frequency domain [52-54]. However the dynamic analysis o f 

pneumatic systems in the time domain is still not well developed.

Courant and Friedrichs [55] show how the notion of characteristic directions can be 

extended to n quasi-linear partial differential equations in two independent variables. 

Again, characteristic directions are sought. For n equations, there are n characteristic 

directions through each point. Some may be coincident. With this extension, the size of 

the computation is greatly increased and not too many problems have been solved for 

ri>2. Further generalizations can be made when more than two independent variables 

are involved. Courant also outlines possible procedures. Based on these, Lister [56] 

analyzes the computational procedures of the numerical solution of hyperbolic partial 

differential equations by the method of characteristics, in which the basic technique is 

related to the case of two equations in two unknown variables.

Hartree [57] develops the mathematical foundations of a theory for a method of 

characteristics approach to one-spatial-dimensional, unsteady gas flow organized on a 

rectangular grid of predetermined dimensions. Streeter and Wylie [58] discuss a 

rectangular grid scheme for hydraulic transient analysis by the method of characteristics 

in detail. A simple bulk modulus treatment of compressibility is, however, inadequate 

for a pneumatic line. An equation of state is used instead, Manning [59]. Manning used
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the method of characteristics for pneumatic line flows with a rectangular grid scheme. 

The perfect gas equation and the isentropic relations, together with the perfect gas 

relation for sonic velocity are used to replace the density and pressure in the continuity 

and momentum equations to make these two equations only contain the velocity terms. 

For simplicity, the heat transfer, viscosity, three-dimensional effects and local changes 

in entropy across travelling pressure waves are neglected in Manning’s analysis. The 

correct determination of characteristic lines directions is the key point for this method. 

To some extent, previous computations, experimental results, or educated guess might 

be used to estimate the probable range of those two replaced variables in the pneumatic 

line being analyzed.

Ikeo et al [60] use the bond graph approach for systematic modelling of pneumatic 

systems. Krus [61, 62] uses an alternative approach, distributed modelling, for 

pneumatic system. In distributed modelling, the wave propagation effects are modelled, 

which introduces physically motivated time delays that can be used to isolate different 

parts of the system from each other numerically in each time step. One of the interesting 

properties of distributed modelling shown in those two papers is that it is possible to 

solve the equations of a subsystem or components independently from other subsystems 

or components. Hence it can be used for large-scale systems.

Bao et al [63] use a SIMPLE algorithm with domain decomposition to calculate the two- 

dimensional viscous flow field of tube. The decomposition method is mainly to dispose 

of the boundary condition. Bao finds that the pressure pulse in the tube is relevant to the 

ratio of length to diameter. The higher of the ratio, the lower the pressure pulse. Hence, 

the ratio is an important factor in reaching the orifice characteristics of a tube.

Xue and Yusop [64] separate the transmission line into different segments and treats 

each of them as a lumped volume. The equations of the fluid passing through an orifice 

are then utilized to calculate the mass flow rate, which is then used to update other 

primitive variables related with the transmission line dynamics. The time-domain 

simulation of the air charging the pneumatic systems is investigated.

Frequency-domain modelling of a transmission line with compressible fluid is addressed 

in [65], and the influence of wall viscoelasticity on line dynamic behaviour is expressed

43



3. Inlet Pipe Model for the Combustor

in [66]. Based on this, Franco and Sorli [67] implement a line model as described in [30] 

in the Matlab-Simulink environment in the time domain. Franco separates the 

transmission line with different segments, each of which is considered as an electric 

circuit. The pneumatic lines under different operating conditions are then simulated in 

the time domain.

Compressible fluid models based on the conservation laws have been well established, 

[31, 68-75]. Here, the time domain simulation of a transmission line is investigated 

relevant to inlet pipes on combustors. The three-dimensional Navier-Stokes equations are 

firstly reduced to one dimension and then the coordinate conversion is undertaken to 

make them suitable for the pipe model. Then it is combined with a lumped model to 

simulate the pressure wave travelling in the transmission line. The lumped model [64] is 

mainly used to update the boundary conditions during the simulation. Two different 

applications are simulated, which are both-end blocked model and cylinder charging 

model. Comparisons between the simulation and experimental results indicate that the 

proposed combination model is an effective means to simulate the dynamics of the 

pneumatic lines under different conditions [76].

3.2 GOVERNING EQUATIONS

The fundamental equations of fluid dynamics are based on the following universal 

conservation laws [31, 68-75], which are:

1) Mass Conservation

2) Momentum Conservation

3) Energy Conservation

The equation that results from applying the mass conversation law to a fluid is called the 

continuity equation. The momentum conservation law is nothing more than Newton’s 

Second Law. When this law is applied to a fluid flow, it yields a vector equation known 

as the momentum equation. The energy conservation law is identical to the First Law of
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equation. In addition to the equations developed from these universal laws, it is 

necessary to establish relationships between fluid properties in order to close the system 

of equations.

In the next section the compressible Navier-Stokes equations are modified to make them 

suitable for the transmission line/inlet pipe analysis.

3.2.1 Continuity Equation

The mass conservation mass law applied to a fluid passing through a control volume 

yields the following equation of continuity:

where p  is the fluid density and V is the fluid velocity vector. The first term in this 

equation represents the rate of increase of the density in the control volume, and the 

second term represents the rate of mass flux passing out of the control surface (which

For a Cartesian coordinate system, where u, v, w represent the x, y , z components of the 

velocity vector, Equation (3.1) becomes:

dt
(3.1)

surrounds the control volume) per unit volume. The dot product operator V • (•) is the 

divergence and expressed as:

(3.2)

Note that this equation is in conservation law (divergence) form.
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3.2.2 Momentum Equation

Newton’s second law applied to a fluid passing through a control volume yields the 

following momentum equation:

dt
(3.3)

The first term on the left side in this equation represents the rate of increase o f 

momentum per unit volume in the control volume. The second term represents the rate 

of momentum lost by convection (per unit volume) through the control surface. Note 

that pVV  is a tensor, so that V • pVV  is not a simple divergence. This term can be 

expanded, however, as:

The term on the right side of the Equation (3.3) means the sum of all forces acting in a

The first term in right side of the Equation (3.5) is the body force vector per unit volume. 

Body forces act at a distance and apply to the entire mass of the fluid. The most

The second term on the right side of the Equation (3.5) represents the surface forces per 

unit volume. These forces are applied by the external stresses on the fluid element. The

(3.4)

given direction ( V direction) on a control volume, which includes the body and surface 

forces on the fluid element. Then it is:

n „ (3.5)

common body force is the gravitational force. In the case, the force per unit mass ( /  ) 

equals the acceleration of gravity vector g :

p f  -  pg (3.6)
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stresses consist of normal stresses and shearing stresses and are represented by the 

components of the stress tensor „ .

When the Equations (3.4) and (3.5) are substituted into Equation (3.3), and the resulting 

equation is simplified using the continuity equation, the momentum equation reduces to:

r — J + v - n ,  <3-7 >

Here, the substantial derivative is defined as:

^ U  = ^ 0  + F V ( )  (3.8)
Dt dt

The momentum equation given above is quite general and is applicable to both 

continuum and noncontinuum flows. If it is assumed that the stress at a point is linearly 

dependent on the rates of strain (deformation) of the fluid, which is called a Newtonian 

fluid, then a general deformation law that relates the stress tensor to the pressure and 

velocity components. In compact tensor notation, this relation becomes:

FI,;= - P 5‘J + V
r ~ \  d

+ SijM '^jL iJ,k=U2,3 (3.9)
dxk

du: du.
+

KdXj dx, ,

where Stj is the Kronecker delta function (S- =1 if i=j and 8i}= 0 if iff); uj, U2 and u3

represent the three components of the velocity vector V ; xi, X2 and x3 represent the three 

components of the position vector; p  is the coefficient of viscosity (dynamic viscosity), 

and p! is the second coefficient of viscosity. The two coefficients of viscosity are 

related to the coefficient of bulk viscosity k  by the expression:

2
K = - p  + p  (3 .10)
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If we ignore bulk viscosity and let k  is zero, the second coefficient of viscosity 

becomes:

u = — p  
3

(3.11)

and the stress tensor may be written as:

r L = - M f + - u
dui du. 
 L  + L

^dxj dxt 3 J dx.
i,j,k= 1,2,3 (3.12)

The stress tensor is frequently separated in the following manner:

Y l r - P su+t» v.*=i.2.3 (3.13)

where r jy represents the viscous stress tensor given by:

f dui duj ̂  
Kdxf + dx, j

- - S , .
3 >J dx.

i,j,k= 1,2,3 (3-14)

The suffices i and j  in r jy indicate that the stress component acts in the j  direction on a 

surface normal to the i direction, as shown in Figure 3.1.

Upon substituting Equation (3.12) into Equation (3.7), it is obtained:

D V  J  Y7 5P —  = P f ~ V p  +
Dt dx; P

du; du
+

Kdxj d x ,
2 duk 

—  SuP— -3 dx.
(3.15)

For a Cartesian coordinate system, Equation (3.15) can be separated into the following 

three scalar Navier-Stokes equations:
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Du - dp d 
p ~ * =

p ^ ^ + a
dt
Dw

dy dx

M
^du dv dw 

dx dy dz

y d f
+ —

)_ dy _ V

dt dz dx M

 ̂dv du^
 1-----

Kdx dy

r dw du  ̂
dx dy

+
dy

2
—J*3

du dv 1-----
dy dx

(2 ^  ^u dwN 
dy dx dz

d
H-----

dz

dz

d dv du>N d 2 (+ —  
dy Kdz dy /

+ — 
dz 3 M_ v

(dw du)  
Li ----+ ----

\ d x  dz 

( dv dwN 
dz dy 

^dw  du dv> 
dz dx dy

(3.16)

Utilizing Equation (3.3), these equations can be rewritten in conservation law form as:

^  + | U v - r J + | ( p v ! + P - r J + A ( ^ _ r J = ^  

^  + - |; (p « « ’- 0 +-|-(pMH’- r  „)+^ -{p»’2 +P-T*)=ef zot ox dy dz

(3.17)

where the components of the viscous stress tensor Ti} are given by:

r » = 7 ^

du dv
dy dx
dw du
dx dz
dv dw)

^ 2  du dv dw^
 ̂ dx dy dz j

^ 2  dv du
dy dx dz

2  dw du dv''
dz dx dy

= T.

T.r

=  T,

(3.18)

Strictly speaking, the term Navier-Stokes equations refers to the components of the 

viscous momentum equation (Equation (3.15)). However, it is common practice to 

include the continuity equation and the energy equation in the set of equations referred 

to as the Navier-Stokes equations.
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3.2.3 Energy Equation

The first law of thermodynamics applied to a fluid passing through a control volume 

yields the following energy equation:

^  + V ■ E,V = - - V - q  + r f - V  + V v )  (3.19)dt dt U. 1# / '

where Et is the total energy per unit volume given by:

E, = p V 2 . . Xe + - y  + potential energy + ■ • (3.20)

and e is the internal energy per unit mass. The first term on the left side of the Equation 

(3.19) represents the change rate of energy Et in the control volume; while, the second 

term represents the rate of total energy lost by convection (per unit volume) through the 

control surface. The first term on the right side in the Equation (3.19) is the rate of heat 

produced per unit volume by external agencies; while the second term ( V q ) is the rate 

of heat lost by conduction (per unit volume) through the control surface. Fourier’s law 

for heat transfer by conduction will be assumed, so that the heat transfer q can be 

expressed as:

q = - k V T  (3.21)

where k is the coefficient of thermal conductivity and T is the temperature. The third 

term on the right side in the Equation (3.19) represents the work done on the control 

volume (per unit volume) by the body forces; while the fourth term represents the work 

done on the control volume (per unit volume) by the surface forces. It should be obvious 

that Equation (3.19) is simply the First Law of Thermodynamics applied to the control 

volume. That is, the increase of energy in the system is equal to heat added to the 

system plus the work done on the system.
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For a Cartesian coordinate system, Equation (3.19) becomes:

w  +  p w - U T X I - V T ^ - W T ^  +q2)= 0

(3.22)

which is in conservation law form. Using the continuity equation, the left side in 

Equation (3.19) can be replaced by the following expression:

if only internal energy and kinetic energy are considered significant in Equation (3.20).

3.2.4 State Equation

In order to close the system of fluid dynamic equations, it is necessary to establish 

relations between the thermodynamic variables (p, p , T, and e). For example, consider a 

compressible flow without external heat addition or body forces and use Equation (3.2) 

for the continuity equation, Equation (3.17) for the three momentum equations, and 

Equation (3.22) for the energy equation. These five scalar equations contain seven 

unknown variables, p, p, T, e, u, v and w. It is obvious that two additional equations are 

required to close the system. These two additional equations can be obtained by 

determining relations that exist between the thermodynamic variables. Relations of this 

type are known as equations of state. The local thermodynamic state is fixed by any two

p D {E Jp) 5E,
Dt dt

+ V-E .V (3.23)

which is equivalent to:

(3.24)
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independent thermodynamic variables, provided that the chemical composition of the

present example, if we choose e and p  as the two independent variables, then the 

required state equations are:

For most problems in gas dynamics, it is possible to assume a perfect gas. A perfect gas 

is defined as a gas whose intermolecular forces and there occupied volumes are 

negligible. A perfect gas obeys the perfect gas equation of state:

where R is the gas constant.

For problems involving a perfect gas at relatively low temperatures, it is possible to also 

assume a calorically perfect gas. A calorically perfect gas is defined as a perfect gas 

with constant specific heats. In a calorically perfect gas, the specific heat at constant 

volume Cv, the specific heat at constant pressure Cp, and the ratio of specific heats y all 

remain constant, and the following relations exist:

For air at standard conditions, J?=287 m2/(s2-K), Cp=1005.1 J/(KgK), C,.=717.9 

J/(Kg-K), and y=\A [71]. If it is assumed that the fluid in our example is a calorically 

perfect gas, then Equation (3.26) becomes:

fluid is not changing owing to diffusion or finite-rate chemical reactions. Thus for the

(3.25)

p  = pRT (3.26)

(3.27)
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P = 
T =

( y - \ \ p e  
( y - 1>

R
(3.28)

3.2.5 Vector Form of Equations

Before applying a numerical algorithm to the governing fluid dynamic equations, it is 

often convenient to combine the equations into a compact vector form. For example, the 

compressible Navier-Stokes equations in Cartesian coordinates without body forces, 

mass diffusion, finite-rate chemical reaction, or external heat addition can be written as:

dU dE dF dG
 +  —  +  —  + —  =  0
dt dx dy dz

(3.29)

where U , E , F , and G are vectors given by:

U =

P
Pu
p v

p w

E.

E =

pa
pu2+ p - r xx

P UV~ TXy
pU W  — T xz

{E, + p )u - u t xx- v t  -  W T XZ +  q x

F =

pv

P UV~ TXy

PV2+P-Tyy
pVW — Tyz

(Et + p ) v - U T  -VT -WT + q.
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G =

pw 
P U W - T a

pVW-Ty, 
.2

(3.30)

Pw +P-Tzz 
{E,+p)w-UTa - V T  -  W T U +q,

The first row of the vector Equation (3.29) corresponds to the continuity equation as 

given by Equation (3.2). Likewise, the second, third, and fourth rows are the momentum 

equations, Equation (3.17), while the fifth row is the energy equation, Equation (3.22). 

In addition, the components of the shear-stress tensor and heat flux vector are given by 

Equations (3.18) and (3.21). With the Navier-Stokes equations written in this form, it is 

often easier to code the desired numerical algorithm.

3.2.6 Coordinate Conversion and Reducing Dimension

Here the inlet air flows in inlet pipes/transmission lines with circular cross-section are 

studied. It is necessary to convert the three-dimensional Navier-Stokes equations from 

Cartesian coordinates to cylindrical coordinates, in which the x, y  and z components in 

Cartesian coordinates are replaced by r (radial), 6 (circumferential) and z.

From the experiment (Figure 3.5), it is noticed that the change of the temperature for the 

pneumatic transmission line system is small enough to be omitted. The temperature is 

then assumed to be constant, although later when integrated with the combustion model 

this can leads to errors. Hence, the following coordinate conversion only focuses on the 

continuity and momentum equations.

In cylindrical coordinates, for continuity equation (Equation (3.2)), it becomes:

dp 1 
—  + -  
dt r or dO dz

= 0 (3.31)

and for momentum equations (Equation (3.17)), it is:
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-ziP<*r)+P dt
du, ua du

r dr r dO
-  + u. far

dz

| > i O + | r ( n J + | - 0 - n jdr du dz

dt
(pue)+ p

dua ua dut
r dr r dO

SUg
dz

u.

dr du dz

~ { p » , ) + p  dt
du7 uff du7 du7

K dr r dO dz

- ^ ( r U j +~ ( U li) + ^ ( r U j
dr dO dz

+ w.
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■^-{rpur)+ -^-{pue) + ~ ( r p u !) 
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where the stress tensor is given by:

IX, = - p  + - f t (2 e rr - e m - e „ )

ng g = ~ P  +  - p(2eee - e n -  e , . ) 
2
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and

e.. =
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r dO 
du,

e,_ =

£ =
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' r9

1 du, d
M----------------- — + r

r dO dz l  r J
dur du7

r + Z

dz dr

r ± {
w /

+ -

1 dur
dr{ r y

r dO

(3.32)

(3.33)

(3.34)
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The following then reduces the three-dimensional Navier-Stokes equations in 

cylindrical coordinate to one-dimension.

The first assumption is that the swirl of the fluid in each cross section is to be omitted. 

Then for continuity equation (Equation (3.31)) becomes:

dp 1 
—  + -  
dt r dr dz

=  0 (3.35)

and for momentum equations (Equation (3.32)), it is:

du. du.
a i {pu' )+ V ' - a r +u' - *

+

- f ( '-n j+|-(rrO
or dz

dt 0*0+p
du.

u + u.
dr dz

+

0 * 0 + - 1 - 0 * 0  dr dz

J :  0 * 0 + ^  0 * 0

j - i r n j + j - b n . )dr dz

(3.36)

where the stress tensor (Equations (3.33) and (3.34)) is given by:

n „  = - p  + - m( 1e„ - e ;2) 

n = = - p  + ~t*(2e_ ~e„)

n„ = n_-r =
(3.37)

and

dur
dr

du.
6z: dz

dur du. 
e  - — -  +

dz dr

(3.38)
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Further assumption is that the fluid along the radial direction is of uniform profile. Then 

for continuity equation (Equation (3.35)), it is:

Up to here, the one-dimensional partial differential equations for the inlet 

pipe/transmission line with circular cross-section have been derived. They will then be 

used in the following simulations to capture the dynamics of pressure waves inside the 

transmission line. Two applications are considered: 1) both-end blocked model; and 2) 

volume charging. Before staring the simulation, the relevant experiments are needed 

firstly to calibrate some parameters. In the following sessions, the available test-rigs 

used for obtaining required experimental data are described.

dt d z K 2'
(3.39)

and for momentum equations (Equation (3.36)), it is:

d_
dt

(3.40)

where the stress tensor (Equations (3.37) and (3.38)) is given by:

(3.41)

and

e
du.

(3.42)
dz
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3.3 EXPERIMENTS

In this section, the experimental setup is described. Real time experimental data is 

captured. Several parameters are calibrated which will be used in the following 

simulations.

3.3.1 Test Rig and Its Components

In this study, two experimental setups are configured. The first one is for the completely 

blocked model, and the second one is for the model of volume air charging linked with a 

transmission line/inlet pipe.

Figure 3.2 shows the experimental setup for the both-end blocked configuration. The 

tube from the compressed air supply is linked with a solenoid directional valve, which is 

then connected with one end of the polyurethane line. The other end of this transmission 

line is linked back to the directional valve and then exhausted to the atmosphere. During 

the experiment, the directional valve is opened to make the air flow through the line. 

When the steady state is reached, the valve is closed to make the air trapped within the 

transmission line. The pressure transducers are embedded into the transmission line to 

measure the pressure during the whole process. One mass flow meter is put between the 

air supply and the valve to obtain the steady state mass flow rate. All these data are 

recorded by a data acquisition card, which is incorporated into a PC.

Figure 3.3 shows the experiment setup for volume charging with a transmission 

line/inlet pipe. The pipe from the compressed air supply is still linked with a solenoid 

directional valve, which is then connected with one end of the line. The other end of this 

line is linked with a large volume. Here this large volume is a cylinder. When the valve 

is opened, the compressed air will start to charge the cylinder through the line, which 

will be completed when the pressure of the whole system uniform. The pressure 

transducers are used to capture the pressure signals.
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Summarizing the experimental setups above, the following components are used in this 

study, which are:

1) Valve. An SMC 3-position-closed-centre solenoid directional valve (SY7340-5DZ-Q) 

is used to regulate the air flow. This valve has an operating voltage of 24 Volts DC and 

has a maximum operating pressure o f 7 bar.

2) Pressure Transducer. Festo pressure transducers (PENV-A-PS/O-LCD) are used to 

capture the instantaneous pressure signal within the different positions of the 

transmission line, which have a measuring range of 0-12 bar with operating voltage of 

24 Volts DC.

3) Mass Flow Meter. IFM mass flow meter (SD6000) is used to measure the steady state 

mass flow rate for the first experimental setup (Figure 3.2). This flow meter has a 

maximum operating pressure of 16 bar with operating voltage of 24 Volts DC. From the 

IFM manual, the actual mass flow rate is equal to the recorded (displayed) flow meter 

value multiplied by the air density at zero sea-level.

4) Cylinder. A double-rod-double-acting pneumatic cylinder (C92SB-125-180W) with a 

bore of 125 mm and a stroke of 180 mm is used as the large volume at the end to let the 

compressed air charge it through the transmission line. The calculated inner volume of 

this cylinder is about 0.002 m3.

5) Data Acquisition Card. The Microstar Laboratories DAP 4200a is used to sample 

measured data from the transducers, flow meter, etc, and send the relevant control 

signals to valve, pressure regulator, etc. This DAP has a high sampling time of 100 ns 

with both input and output range of ±10 Volts DC.

Other components used in this study are:

1) Pressure Regulator. SMC pressure regulator (ITV2030-31) is used to regulate the 

supplied air pressure from the main line. It has a maximum working pressure 5 bar with 

operating voltage of 24 Volts DC.
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2) Thermocouple. Rod type-T thermocouples are used to measure the temperature inside 

of the transmission line.

Firstly, these components will be used to calibrate the line diameter. Then the 

temperature is measured inside of the transmission line with the thermocouples to give 

evidence why the following simulation assumes that temperature is constant for the 

whole system.

3.3.2 Transmission Line Diameter Calibration

The polyurethane pneumatic tube with inner diameter 5 mm and wall thickness 1.5 mm is 

used as the transmission line. Due to the compressible characteristics of this polyurethane 

tube, the diameter meter needs to be first calibrated by experiment to determine the 

influence of the system pressure on the changes in its radial dimension. Highly 

incompressible liquid (such as water) is injected into a polyurethane transmission line 

which is blocked at one end. Different pressures are then applied to the other end. By 

recording the liquid height, the transmission line diameter changes can be determined. 

Experiment results are listed in Table 1.

It is assumed that the high pressure applied only expands the transmission line along the 

radial direction and do not influence the dimension along the axial direction. The initial 

volume occupied by the water is 1.88x 10“6 m3. Based on the assumption above, the 

relationship between the applied pressure and the expanded internal diameter of the 

transmission line is shown in Figure 3.4.

The relationship between the transmission line diameter and the applied pressure is shown 

in Equation (3.43).

d  = 3xl(T 5/? + 0.005 (3.43)

Equation (3.43) expresses the static relationship between the inner diameter of the 

polyurethane pneumatic transmission line and the corresponding pressure. This equation
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will be used in the following simulation to consider the inner diameter changes of the tube 

due to the high pressure. However, since the polyurethane tube is elastic material, it can 

not immediately follow the changes of the pressure. Dynamics may need to be considered 

later.

3.3.3 Kinematic Viscosity Calibration

Viscosity is a measure of a fluid’s resistance to flow. Low viscosity fluids such as the air 

used in this study tend to promote high levels of leakage loss in equipment. On the other 

hand, high viscosity fluids result in more sluggish operation and power wastage due to 

excessive pressure loss through pipe lines and components [77].

The dynamic viscosity ( // Ns/m ) of a fluid is defined as [52]:

shear stress
H = ------------------ - p v  (3.44)

shear rate

where v is the kinematic viscosity ( v m2/s) and it is the ratio of the dynamic viscosity to 

the fluid density. The typical value of the kinematic viscosity for air is 1.5 x 10 m /s at 1 

bar and 20 degree C, which expresses the resistance between air and air.

Before the simulation is conducted, the average kinematic viscosity between air and the 

polyurethane tube needs to be firstly determined and this is done by utilising the equation 

of the pressure drop along a pipe segment, which is shown as [54]:

u m j v
AP = ----- - f -  (3.45)

7X1

Note that Ap is the pressure drop along a pipe segment, / is the segment length, and M d 

is the mass flow rate.
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As shown in Figure 3.2, the valve is opened until the steady state is reached. The pressure 

signals and mass flow rate are recorded by the DAP card, Table 3.2. Based on these 

measured data and using Equation (3.45), the kinematic viscosity v is identified as 

0.00011 m2/s.

3.3.4 Temperature Measurement

The experimental setup shown in Figure 3.2 is used for temperature measurement of the 

line, where the pressure transducers are replaced by rod type-T thermocouples.

The valve is first opened until the line reaches a steady state. Then it is closed to block 

both end of the line. Five type-T thermocouples are used to record the temperature 

corresponding to the five different positions until the fluid trapped inside reaches a new 

steady state. The experimental results are shown in Figure 3.5, from which it is noticed 

that there are no significant temperature variations during this period. Hence, it is 

assumed the temperature is constant for the following simulation, although later this 

becomes subject to doubt in this thesis.

3.4 LINE SIMULATION

Here, the dynamics of the air flow in the polyurethane line are simulated. The lumped 

line model [52, 64] is firstly analyzed to prove its practibility for expressing the pressure 

wave dynamics in the pipe. The numerical discretisation method is then selected to 

obtain the finite difference formation for the continuity and momentum equations 

(Equations (3.39) and (3.40)). Two experimental setups are designed. The relevant 

pressure and mass flow rate are captured by the DAP card, which is then stored in the 

PC. The method of combining the finite difference model with the lumped model is 

proposed. The simulation results show the validity of this combined model for the 

experimental results obtained.
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3.4.1 Lumped Line Model

The variable orifice is the most popular device for controlling fluid flow, which is the 

fluid equivalence of the electrical resistor. Andersen [78] and Blackburn et al [79] give a 

detailed description of the flow of gases through orifices. For air as a working fluid, 

compressibility is an important factor. Mass rather than volume flow rate is generally 

used, since in the case of compressible flow, volume and pressure are interdependent. 

The mass flow rate M d through an orifice can be written as [52]:

where Cd is the discharge coefficient, Pu is the upstream stagnation pressure (absolute), 

A is the orifice area, and Tu is the upstream stagnation temperature (absolute).

The mass flow parameter Cm is shown below in Equation (3.47).

where Pvc is the static pressure at the vena contracta or throat, R is the gas constant (287

(3.46)

C.m (3.47)

7 7 •m /(s K) for air), and y is the ratio of the specific heat (1.4 for air).

Equation (3.47) applies only when:

P (  ? Y/(r-1)
r vc . ^ = 0.528 for air.

When Pvc / Pu is less than this value, the flow is to be choked and Cm becomes:
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C_ =
f  2 NV(r_1)

lr+i
[ 2  r  
* ( r + i )

= 0.0405 for air. (3.48)

The variation of Cm with pressure ration is shown in Figure 3.6.

It is impossible with the current experimental components to measure the pressure value 

at the vena contracta, which is assumed to be the one downstream of the orifice. In 

addition, the discharge coefficient Q  is a function of Reynolds number and orifice 

geometry. In general, the discharge coefficient of an orifice is determined experimentally.

For the line shown in Figure 3.2 or Figure 3.3, if it is equally divided into N  segments and 

the orifice equation (Equation (3.46)) is used to calculated the mass flow rates at the inlet 

and outlet of each segment, then it forms the foundation of a lumped model. In this study, 

the transmission line has a cross-sectional diameter 5 mm with 1.5 mm wall thickness. 

Using the test rig in Figure 3.3, the lumped analogy of the system is presented in Figure 

3.7. The valve is initially closed, and then the pressures within the transmission line and 

the last large volume are all ambient. Once the valve is opened, the compressed air from 

the air supply with constant pressure Ps is used to charge this line and the large volume 

through the orifices with the same diameters until the pressures in each segment are same 

as the one from the air supply. The validation of this lumped model had been 

demonstrated by Xue and Yusop [64].

Equation (3.46) is firstly used to calculate the mass flow rate through an orifice, which is 

then used in the following two differential equations to update the mass and pressure in 

each segment. Here, the temperature is assumed to be constant.

For continuity equation, it is:

^  = (3.49)
at

and for state equation, it is:
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dt V, v
(3.50)

where the m, is the mass in segment i, M { is the mass flow rate flowing into the

mass flow rate flowing into the next segment i+1), pi is the pressure at the segment i, 

and the Vi is the volume of the segment i.

3.4.2 Finite Difference Model

In the finite difference approach, the continuous problem domain is “discretized”, so 

that the dependent variables are considered to exist only at discrete points. Derivatives 

are approximated by differences, resulting in an algebraic representation of the partial 

differential equation. Thus a problem involving calculus has been transformed into an 

algebraic problem [80].

There are many numerical discrete methods, which include Upwind Method [31], Lax- 

Wendroff Method [81, 82], MacCormack Method [83, 84], etc. According to the 

analysis of inviscid Burgers’ Equation, the Upwind Method is used to discrete the 

continuity equation (Equation (3.39)) and momentum equation (Equation (3.40)) in this 

study.

When the velocity of the main flow is positive, the backward upwind differencing 

formation is as follows:

for continuity equation:

segment i, M M is the mass flow rate flowing out of the segment i (which is equal to the

(3.51)
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and for momentum equation:

(p u T  ={pu,)1 -

A/
Ax [pul +pf, - ( /» ;

+ p ^ - t

u i+1 -  W,

Ax Pi-
ut - u  

Ax

\Y\
/-I (3.52)

When the velocity of the main flow is negative, the forward upwind differencing 

formation is as follows:

for continuity equation:

p T ' = p" -  ~  (G», L  -  (p“i ),")Ax
(3.53)

and for momentum equation:

( p o r 1 ={pux)n, -

At
Ax

/

(p“l + p L  + pf, - 7 -Ax P (+i
l/+i

Ax
w, — u

3 Mi
i-1 (3.54)

Ax 'A

where the prefix n is the time level, the suffix i is the spatial level in x direction, At is the 

time interval, and Ax is the spatial interval in x direction.

The Upwind Method gives second order accuracy. The different difference formations are 

applied to ensure a stable numerical scheme due to the main flow velocity, which means 

that the errors from any source (truncation, round-off and discretization errors) are not 

permitted to grow in the sequence of numerical procedures as the calculation proceeds 

from one marching step to the next.
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If the Equations (3.39) and (3.40) are combined into a compact vector form, then it is:

dU dE A 
—  +  —  =  0 
dt dt

(3.55)

where U and E  are vectors given by:

U = P
pu

(3.56)

E =
pu

p u 2 + P - T ,
(3.57)

and the components of the shear-stress r  is given by:

4 du
Txx - ~ P  —“  3 dx

(3.58)

After each iteration, the primitive variables, which are density p , velocity u, mass flow 

rate M , dynamics viscosity p , and pressure p, can be found be “decoding” the U 

vector,

U = ' p ' ' u t ~
pu -U2_

(3.59)

in the following manner:

p  = Ut 
£/,u =

- - u

p  = Uxv

(3.60)
M = U2A
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where A is the cross-section area of the transmission line. The last primitive variable p  is 

calculated by Equation (3.50), which is to eliminate the bias due to the one-sided 

differencing. In addition, the prefect gas law and constant temperature are assumed.

3.4.3 Pressure Wave Simulation for Both-end Blocked Line Model

Figure 3.2 shows the experimental setup for both-end blocked polyurethane air 

transmission line, which has the internal diameter of 5mm and a wall thickness 1.5mm. 

An IFM flow meter is installed in front of a SMC 3-position-closed-center solenoid 

directional valve. Five Festo pressure transducers are equally spaced within the 

transmission line to measure dynamic pressure signals during the experiment. The 

compressed air is supplied from a central air station, which is far away from the 

experimental setup. Its steady state pressure is around 7 bar.

During the experiment, the valve is first opened to allow the air flow into the transmission 

line. The other end of the transmission line is linked back to the valve and then exhausts to 

the atmosphere. When the air flow in the transmission line reaches the steady state, the 

valve is discharged and the spool moves to the closed-centre to block both ends of the 

transmission line. Then the trapped air inside of the line will travel back and forth due to 

the different pressure and momentum in each position. Through the mass mixture of the 

air, the collision between the atoms or molecules, and the friction due to the viscosity etc, 

the flow within the line will reach a new steady state, in which the flow is static (actually 

the velocity of flow is zero) and the pressure is the same for different positions. Five 

pressure transducers are used to record pressures corresponding to the four segments 

during the whole process, and a mass flow meter is used to record air mass flow rate 

under the steady state condition before the valve is discharged. The recorded steady state 

values from these experimental components are then used as the initial conditions for the 

simulation. The transient pressure values are recorded to compare with the simulation 

results.

Figure 3.8 shows the measured experimental data. The line is equally divided into four 

segments with 1 m each. When the air flow reaches the steady state after the valve is
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opened, the recorded pressure and mass flow rate are listed in Table 3.3, which will be 

used as the initial conditions for the following simulation.

The lumped model is firstly used to simulate the pressure wave shown in Figure 3.8. 

From the description in Section 3.4.1, it is obvious that the computation time for lumped 

model must be quick due to the simple equations used. Hence, the lumped model is less 

sensitive to the sampling time and spatial distribution. Figure 3.9 shows the simulation 

results from the lumped model. It is obvious that the lumped model is failing to simulate 

the travelling pressure wave inside of the transmission line. However, the steady state 

valve is coincident with the measured data, which is about 4.5 bar (absolute).

The orifice equation (Equation (3.46)) is the foundation o f the lumped model, from 

which it is noticed that the mass flow is forced to flow in one direction. It means that 

only when the value Pvc/Pu is less than 1, the calculated mass flow M d rate is not zero.

Otherwise, the value of M d would be zero, which gives no changes for continuity and

state equations (Equation (3.49) and (3.50)). Due to this, all simulated pressure will 

directly converge to steady state values and it is impossible to capture the pressure wave 

ripples.

One-dimensional compressible Navier-Stokes equations (Equations (3.39) and (3.40)) 

are then selected to simulate this pressure wave ripple. The primitive variables at the 

first and last segments, which are density p , velocity u, mass flow rate M , dynamic 

viscosity p  , and pressure p, are the boundary conditions for the finite difference 

equations (Equations (3.51)-(3.54)), which are known parameters before each iteration. 

However, the primitive variables for these two segments are variant. Hence the relevant 

methods must be considered to update the boundary conditions. Since the lumped model 

has the capability to simulate the steady state pressure values of the experimental setup 

Figure 3.2, the combination of the finite difference model with the lumped model is 

proposed in this study. The lumped model is used to update the primitive variables in 

the first and the last segments, while the finite difference model is used to simulate the 

primitive variables in the other segments.
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The change of temperature is not considered in this study and the temperature is 

assumed to be constant at an ambient temperature of 20°C. The influence of the high 

pressure on the transmission line diameter (Equation (3.43)) is included in the 

simulation.

The simulation is described by the flow chart, Figure 3.10. When starting the simulation, 

the steady state pressures and mass flow rate recorded by pressure transducers and mass 

flow meter before the valve is closed to block both end of the polyurethane transmission 

line are used as the initial conditions. The orifice equation (Equation (3.46)) firstly 

calculates the mass flow rate passing the first segment. Then the main flow velocity is 

assessed. When it is positive, the backward upwind differencing formulations (Equations

(3.51) and (3.52)) are used to calculate the density and velocity in segment /; when it is 

negative, the forward upwind differencing formations (Equation (3.53) and (3.54)) are 

used. After that, the orifice equation (3.46) is used again to calculate the mass flow rate 

entering into the last segment. After updating the parameters in all segments, the condition 

to reach the new steady state is judged to determine whether the simulation is completed 

or not.

Based on this combined model, comparisons between simulation and experiment results 

are as shown in Figure 3.11. Note that the pressure travelling waves are correctly present 

in the computer simulation results. Especially, the simulation results matches well for the 

pressure ripple frequency compared with the experimental data. However, the simulation 

shows the longer transient state process, which might be because a perfect gas is assumed 

during the simulation. For the real gas, the existence of the atoms and molecules will 

induce extra the kinetic energy loss due to the collision between these substances and the 

energy loss due to the friction between them. The direct result of energy loss is to 

diminish the pressure ripples quicker than the simulation results. Figure 3.12 shows the 

comparison of one pressure ripple between the experimental and simulation results.
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3.4.4 Pressure Wave Simulation for Charging a Large Volume Linked with a 

Transmission Line

Figure 3.3 shows the experimental setup for charging a large volume linked with a 

polyurethane air transmission line. The internal diameter is still 5mm with a wall 

thickness 1.5mm. One end of the transmission line is connected with a SMC 3-position- 

closed-center solenoid directional valve connects. The other end is linked with a large 

volume, which is the pneumatic cylinder in this study. Three Festo pressure transducers 

are used to measure dynamic pressure signals during the experiment, one of which is 

located just before the inlet port of the pneumatic cylinder to approximately measure the 

pressure inside of the cylinder.

A large volume is linked with a 2.8 m polyurethane pneumatic transmission line. Before 

the valve is opened, the pressure in the transmission line and the large volume is 

ambient. After the valve is opened, the compressed air from the air supply will charge 

the transmission line and large volume until the whole system reaches the steady state. 

Then the pressure in each position of the whole system is equal to the one from the air 

supply, which is about 7.25 bar. Pressure transducers in positions i , j  and k were used to 

record the pressure during this process. Here, the temperature for the whole system was 

assumed to be constant and the change of the transmission line diameter due to the high 

pressure is still considered during the simulation as before.

Figure 3.13 shows the measured experimental data. The transmission line is equally 

divided into four segments with 0.7 m each. Once the valve is opened, the pressure at 

different positions is captured to record the process of charging the large volume.

The lumped model is firstly used to simulate the air charging the large volume with the 

line in Figure 3.13. Figure 3.14 shows the simulation results from the lumped model. 

Compared with the simulation results in Figure 3.9, the lumped model here shows better 

simulation when the main fluid only goes in one direction.

The proposed finite difference model combined with lumped model is now used for the
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3. Inlet Pipe Model for the Combustor

model of air charging a large volume linked with an inlet pipe/transmission line. The 

simulation results in Figure 3.15 show that the proposed combination model gives better 

matching with the experimental data. It gives more accurate transient state and smaller 

transient errors than those from the lumped model simulation.

3.5 DISCUSSION AND CONCLUSIONS

The transmission line diameter calibration experiment shows that the relationship between 

the diameter and the exerted pressure is close to linear, which is then applied to the 

simulation algorithm to derive the influence of the working pressure on the transmission 

line diameter expansion as shown in Figure 3.4.

Figure 3.8 shows the pressure response in the transmission line after the valve blocks both 

end of the transmission line. When the valve is fully closed, the air will continue to flow 

downstream within the transmission line due to the presence of higher pressure and 

momentum at the upstream. Therefore the pressure downstream of the transmission line 

will continue to increase until it reaches a peak value at which the velocity downstream is 

close to zero. The fluid then starts to flow in the opposite direction in the transmission line 

since the pressure downstream is larger than the pressure upstream. When the upstream 

pressure reaches a new peak value, the fluid flows downstream again. This process repeats 

itself though the peak pressure values reached at different transmission line positions with 

passage of time will gradually decreases due to the viscosity effect imposed on the 

travelling air and the mixing of the fluid. The system finally reaches a new steady state in 

which all the pressures along the transmission line arrive at the same constant value.

A combined transmission line model is proposed and developed. The simulation is based 

on the combination of a finite difference model (Equations (3.49) and (3.50)) and a 

lumped model (Equation (3.46)). The lumped model is used to update the boundary 

conditions, which is then applied to the first and the last segments. For the completely 

blocked line simulation, this last segment is part of the polyurethane pneumatic tube 

itself (Figure 3.2); while for the simulation of charging a large volume with transmission 

line, this last segment is the cylinder (Figure 3.3). The parameters for the other segments 

are updated by means of finite difference model in the simulation algorithm.
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Simulation results based on the proposed combination model show good consistency 

compared with the experiment data especially in the pressure frequency response.

1) For both-end blocked model, the lumped model fails to represent the pressure travelling 

along the transmission line. As the foundation of the lumped model, the orifice equation 

(Equation (3.46)) always forces the mass flow along one direction. The calculated mass 

flow M d rate would be zero if the value Pvc/Pu is larger than 1, which means that there

are no changes for continuity and state equations (Equation (3.49) and (3.50)). Due to 

this, all simulated pressures will directly converge to steady state values and it will be 

impossible to capture the pressure wave ripples. However, the lumped model gives the 

right steady state pressure values, which indicates that the lumped model could be used 

as one part of the total model. The finite difference model eliminates this limitation and is 

able to model the pressure wave for different directions. For both-end blocked models, the 

boundary conditions are variant, hence certain methodologies must be taken to update 

them before each iteration. In this study, the combined model is proposed, in which the 

lumped model is used to update boundary conditions and the finite difference model is 

used to update the primitive variables for the rest of the segments. The simulation results 

show good consistency compared with the experiment data, especially in the pressure 

frequency response. It is also noticed that the air in the transmission line takes a longer 

time to reach a new steady state compared with the experiment results as shown in Figure 

3.11. This is due to the fact that perfect gas is assumed. Perfect gas assumes that the force 

between the atoms or molecules and the volume occupied by them in the gas are 

negligible. Under real gas conditions, due to the existence of the aforementioned factors, 

the influence of friction on the working fluid must be greater. This affects the gas kinetic 

energy and results in an earlier dissipation of the pressure wave in the captured data 

compared to the simulated results.

2) For the model of charging a cylinder with the transmission line, both lumped model 

and the proposed combination model are as shown in Figures 3.14 and Figures 3.15. They 

all give good representations of the trends of the pressure wave. The proposed 

combination model gives more accurate transient state and smaller transient errors than 

that from the lumped model simulation. In addition, due to the limitation of the test rig
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itself, it is impossible to directly measure the pressure inside of the cylinder. The pressure 

transducer (Pk in Figure 3.3) is directly linked with the cylinder inlet port by a short 

polyurethane pneumatic tube. When the compressed air with high pressure reaches this 

short tube and then starts to charge the cylinder, the velocity of the fluid within this short 

tube will suddenly be changed from zero to a large value, the fluid then being released 

into the large volume cylinder. This short tube will act like a vena contracta to stop the 

fluid entering into the cylinder when the velocity inside of it is suddenly changes. Hence, 

there is a small bumped part in experimental curve as shown in Figure 3.15 (c).

From the experiment, it is shown that the transmission line has a very significant 

influence on the whole system dynamics in these experiments. Hence, a valid 

mathematical model and method should be considered to represent the pressure wave in 

it. Here a time domain model describing the dynamics of air in an inlet pipe/transmission 

line is presented by considering changes in air density, pressure and mass flow rate and 

assuming the temperature to be constant. A combined model is proposed to simulate the 

dynamics of trapped air in a blocked line and the charging of a large volume with the 

transmission line. In order to update the boundary conditions, the first and the last 

segments are considered as two lumped volumes and these are then connected to the 

transmission line segments using a lumped model. The rest of the line segments are 

expressed by means of a finite difference model. The effectiveness of the proposed model 

is depicted through comparisons of simulated pressure responses against pressures 

measured by practical experiments. The simulated results can thus be considered to be 

successful since it does match well with the captured experimental data though the 

simulated results show longer system transient state for both-end blocked model. In terms 

of application to the combustor model some further problems are thrown up for discussion 

later. In addition, it is found that variations of the kinematic viscosity scarcely affect the 

simulation results. Hence, the kinematic viscosity is assumed to be constant in the 

following research.
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Figure 3.1: Stress Components on Three Faces of Fluid Element
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Figure 3.2: Experiment Setup for Both-end Blocked Air Transmission Line
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Air Supply Valve Transmission
Line

Large Volume 
(Cylinder)

v----------v ---------- '
Pressure Transducers

Figure 3.3: Experiment Setup for Air Charging a Large Volume (Cylinder) with 

Transmission Line

Table 3.1: Transmission Line Diameter Calibrations

Pressure [bar] Liquid Height [mm]

0 95.82

1 94.46

2 93.72

3 92.32

4 91.59

5 90.85

6 89.27

7 88.37
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Figure 3.4: Transmission Line Diameter Calibrations

Table 3.2: Recorded Values by DAP Card for Kinematic Viscosity Calibration

Components Values

Pressure

Transducer

(Absolute)

[bar]

Pi 2.44

Pj 2.27

Pk 2.09

Pi 1.86

Pm 1.68

Mass Flow Meter 

[Kg/s]
0.0065

Segment Length 

[m]
0.34
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Figure 3.6: Variation of Cm with Pressure Ratio

Orifice

Figure 3.7: Lumped Analogy Corresponding to Figure 3.3
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Figure 3.8: Measured Pressure Wave for Both-end Blocked Experimental Setup 

(PTI=Measured Pressure Signal in Position /)

Table 3.3: Initial Conditions Measured by Pressure Transducers and Mass Flow Meter

Components Values

Pressure

Transducer

(Absolute)

[bar]

Pi 5.34

Pj 4.96

Pk 4.59

Pi 4.06

Pm 3.55

Mass Flow Meter 

[Kg/s]
0.0109
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Figure 3.9: Simulated Pressure Wave for Both-end Blocked Experimental Setup 

(PLI=Simulated Pressure Signal in Position i by Lumped Model)
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[continued]

Figure 3.11: Comparisons between Simulation and Experiment Results for Both-end 

Blocked Model (PT=Experimental Pressure; PS=Simulated Pressure)
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Figure 3.11: Comparisons between Simulation and Experiment Results for Both-end 

Blocked Model (PT=Experimental Pressure; PS=Simulated Pressure)
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Figure 3.12: Comparison of One Pressure Ripple between Experimental and Simulation

Results for Both-end Block Transmission Line Model
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Figure 3.12: Comparison of One Pressure Ripple between Experimental and Simulation
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Figure 3.12: Comparison of One Pressure Ripple between Experimental and Simulation

Results for Both-end Block Transmission Line Model
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Figure 3.13: Measured Pressure Wave for Air Charging a Large Volume Linked with a 

2.8 Meters Transmission Line (PTI=Measured Pressure Signal in Position z)
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Figure 3.14: Comparisons between Simulation and Experiment Results for the Model of 

Air Charging a Large Volume Linked with a 2.8 Meters Transmission Line 

(PT=Experimental Pressure; PL=Simulated Pressure by Lumped Model)
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Figure 3.15: Comparisons between Simulation and Experiment Results for the Model of 

Air Charging a Large Volume Linked with a 2.8 Meters Transmission Line 

(PT=Experimental Pressure; PS=Simulated Pressure)
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4. PREMIXED COMBUSTOR MODEL

NOMENCLATURE

A Kinetic constant ( (m3 )n-1 / (V ?  • Kgn~l • s ))

4 Tailpipe cross-section area (m2)

4 Surface area of the combustion zone (m2)

c, Average value for the sinusoidal inlet mass flow (Kg/s)

C2 Amplitude value for the sinusoidal inlet mass flow (Kg/s)

C, Constant pressure specific heat ( J/(Kg  • K ) )

C , Constant volume specific heat ( J/(Kg  • K ) )

D» Diameter of the tailpipe (m)

e Specific internal energy (J/Kg)

E Activation energy (J/Kg or cal/mol)

F, Friction force on the contact surface between the flow and the tailpipe (N)

F. Force along ̂ -direction (N)

f Friction coefficient

h Heat transfer coefficient (W /(m 2 -K))

Lc, First characteristic length (ratio of combustion zone volume Vc to surface 

area As) (m)

Fc2 Second characteristic length (ratio of combustion zone volume to tailpipe 

cross-section area Ae) (m)

K tp Length of the tailpipe (m)

™e Exit mass flow rate from the combustion zone (Kg/s)

rhi Inlet mass flow rate to the combustion zone (Kg/s)

p Pressure in combustion zone (bar)
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P  Pressure in the combustion zone normalized with the ambient pressure

P0 Ambient pressure (bar)

Pe Pressure at tailpipe entrance (bar)

Pe Pressure at the tailpipe entrance normalized with the ambient pressure

Pi Inlet pressure to combustion zone (bar)

Q Heat release per unit volume ( j / ( m 3 ■ s) )

R Gas constant ( J/{Kg  • K))

Rf  Fuel reaction rate (per unit volume) ( Kgj(m 3 • j )  )

Sr Stoichiometric mass ratio between fuel and oxygen

T Temperature in combustion zone (K)

Ta Dimensionless activation temperature

T Temperature normalized with the ambient temperature

T0 Ambient temperature (K)

Te Temperature at tailpipe entrance (K)

Te Temperature at the tailpipe entrance normalized with the ambient

temperature

Tt Inlet temperature to combustion zone (K)

Tw Wall temperature (K)

u Velocity of reactant products in the tailpipe (m/s)

Vc Combustion zone volume (m3)

Yf  Fuel mass fraction in the combustion zone

Yf  i Inlet fuel mass fraction

Y0 Oxygen mass fraction in the combustion zone

Ze Exit mass flow per combustion zone volume ( Kg/(m3 • s ) )

Z(. Inlet mass flow per combustion zone volume (Kgl(m* s))
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GREEK LETTERS

AH f Heat of reaction (per unit fuel mass) (J/Kg)

* Equivalence ratio

P Density in the combustion zone (Kg/m )

Po
3

Ambient density (Kg/m )

P e Density at the tailpipe entrance (Kg/m3)

r Ratio of specific heat

Shear stress of the reactant products along the tailpipe wall (N/m )

Combustion time (s)

T f Flow time (s)

T ht Heat transfer time (s)

0) Angular frequency for the sinusoidal inlet mass flow (rad/s)

e Initial phase for the sinusoidal inlet mass flow (rad)

SUFFIXES

cv Control volume for combustion zone

f Fuel

0 Oxygen

s Control surface of the combustion zone

tpv Control volume for tailpipe zone
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4.1 INTRODUCTION

The work carried out in the first part of this thesis lead onto the consideration of models 

for the complex oscillations which occur in certain types of combustor.

Combustion can be described most simply as an exothermic reaction of a fuel and an 

oxidant. The fuel may be gaseous or liquid, but the oxidant is always air. The basic 

requirements of all combustors may be listed as follows [85-91]:

1) High combustion efficiency (i.e., the fuel should be completely burned so that all its 

chemical energy is liberated as heat).

2) Reliable and smooth ignition.

3) Wide Stability limits (i.e., the flame should stay alight over wide ranges of pressure, 

velocity, and air/fuel ratio.).

4) Freedom from pressure pulsations and other manifestations of combustion-induced 

instability.

5) Low pressure loss.

6) An outlet temperature distribution (pattern factor) that is tailored to maximize the 

life of the combustor blades and guide vanes.

7) Low emissions of smoke, unbumed fuel, and gaseous pollutant species.

8) Design for minimum cost and ease of maintenance.

9) Size and shape compatible wi

10) Durability.

th engine envelope.
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11) Multifuel capability.

During the combustion process, oscillatory phenomenon can occur, in which the state 

variables (such as pressure, temperature, velocity, etc) that describe the conditions in the 

combustion zone will vary periodically with time. A simple example for combustion 

oscillation is the “singing flame” phenomenon [92]. If a gas flame is placed in a round 

vertical tube, it can cause the spontaneous excitation of the natural acoustic modes of 

the tube. The resulting oscillation is controlled by the location of the flame within the 

tube, the dimensions of the tube and the characteristics of the gas feeding the tube. 

Flames are sensitive to excitation from sound, and their response depends on the 

amplitude and frequency of the sound wave, and the part of the flame on which the 

sound impinges, for instance Blonbou et al [93] used loudspeakers as the actuator to 

attenuate the pressure oscillations for a Rijke tube. A neural network model is firstly 

used to model the nonlinear response of flames to the acoustic disturbances. During the 

control sequence, this neural network identification model is placed in parallel with the 

system. The error signal to be minimized may be the difference between the desired and 

the neural network output due to the pressure oscillation, which is then back-propagated 

through the neural network identification model to adjust the controller’s weights during 

the control sequence. The output of the controller is amplified to the loudspeakers, with 

which pressure level attenuation up to 40 dB/Hz is obtained.

The combustion process involves the coupling of a complicated three-dimensional 

transient chemical flow field, generated by a transient energy release, with a resonant 

acoustic pressure wave. Variables of pressure, temperature and velocity vary 

periodically during the cycle of operation, which is characterized by the frequency of 

oscillation. The basic operation cycle for combustion can be described in a similar way 

to that of a conventional Otto cycle, as shown in Figure 4.1. The mixed gas and air in 

the combustion chamber are firstly ignited by a spark plug or other ways (Figure 4.1 (a)). 

The consequent rise of the pressure will then drive the combustion products out to the 

exhaust and inlet pipes (Figure 4.1 (b)). Due to the inertia of the moving gas column in 

the exhaust pipe, which will create the negative pressure (the ambient pressure is treated 

as 0 bar) in the combustion chamber, the fresh gas and air are drawn in through the inlet 

pipe (Figure 4.1 (c)). Some exhaust reactive products are also recycled and then the re­
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ignition occurs when hot reactive products from the previous cycle mix with the fresh 

reactants. This process repeats to form one operation cycle (Figure 4.1 (d)).

The acoustic and flame interaction was studied first by Higgins, and then by Rayleigh 

[34], who stated the importance of the phase-lag between energy release and acoustic 

pressure wave for sustained combustion-driven oscillations. Rayleigh [35] further 

explained that both these oscillations are amplified when a phase coupling occurs 

between the flame front and the acoustic field inside the tube. The Rayleigh criterion 

states that if the local unsteady heat release is in-phase with the local pressure 

fluctuation, the pressure wave associated with the fluctuation will be locally amplified. 

Thermo-acoustic combustion instabilities represent one of the main threats for modem 

combustors, as they involve pressure and heat release fluctuations characterised by large 

amplitudes and low frequencies. The coupling mechanism self-sustains oscillations and 

causes the combustion process to become unstable, exciting the resonant acoustic modes 

of the combustion chamber. These combustion instabilities induce non-uniformity of 

exhausted gas thermal distribution, the growth of thermal-NOx production, structure 

vibrations, increased heat transfer, roll torque, and sometimes, destruction of the burner.

For development and understanding of the fundamental fluid dynamics, combustion, 

heat transfer processes occurring during the combustion and the corresponding 

instabilities, mathematical models are needed. A number of theoretical models have 

been developed for the simulation of combustion instabilities. Due to the complexity of 

the operating process of the combustion system, models are always based on a certain 

amount of empiricism. Although such models do not allow the complete design of a 

whole combustion system, they do provide insights into operating mechanisms and the 

effects of design changes.

Fureby [94] develops a simulation technique, founded on a physical model based on 

continuum mechanics mixture theories, which employs the LES (Large Eddy 

Simulation) technique. In LES, it is assumed that the variables describing the spatial and 

temporal evolution of the flow can be decomposed into two components; the "Grid 

Scale" (GS) part and the "Sub Grid Scale" (SGS) part. The GS component of the 

variables describes the evolution of the GS eddies, whose motions depend on the 

geometry of the flow domain and the imposed boundary conditions. Furthermore, the
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GS eddies contain a significant part of the kinetic energy. The SGS components 

describe the evolution of the SGS eddies, whose motions are assumed to be of a more 

isotropic nature than the GS eddies. The agreement of the LES model with the 

experimental observation is acceptable apart from the region around the inlet.

Benelli et al [95] present preliminary 2D simulations of the Lennox Warm Air Furnace 

using the commercially available computer code “FLUENT” running on VAX 8530 and 

Cray X-MP/14 hardware. Benelli stated: “while acoustic vibrations were always easily 

captured, tuning of the combustion with them was more difficult to reproduce”. It was 

suggested that the problem could be alleviated with more detailed modelling of the way 

that reactants mix together. In fact, the simplification from a three-dimensional furnace 

geometry to a two-dimensional simulation could be a source of error as the near inlet 

geometry was found to play an important role in determining both the mixing and the 

combustion rate. To establish the appropriate corrective factors to simplify the analysis 

is not straightforward.

Annaswmy and Ghoniem [96], Culick [97] and Krstic et al [98] address the definition of 

the model exploiting the system dynamics by means of the analytical transfer functions 

or sets of ordinary differential equations derived by modal decomposition of the 

equations expressing the balances of mass, energy and momentum. One of the main 

problems that can affect mathematical models is the sensitivity of the performances on 

their parameters. In fact, when non linear couplings play a strong influence on 

combustion dynamics, such as those between rapid chemical reactions, turbulent flow 

and acoustic phenomena, uncertainty on the parameters must be carefully considered as 

it can determine the model failure. Moreover, the model parameters may change 

abruptly and in an unpredictable fashion during the operation of the combustion system, 

determining a drastic decay of the model performance.

The identification of the system dynamics by means of input-output experimental 

measurements provides a useful solution to the definition of a reliable model. This 

approach allows one to bypass both the exact determination of model parameters and of 

their unpredictable variations and achieve a deep physical knowledge of the process and 

of its governing equations, which can be achieved via artificial neural networks. The 

derived model can predict the evolution of the oscillations of the acoustic field inside
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the combustion chamber due to thermo-acoustic instability, as described by Xue et al [8], 

Cammarata et al [99] and Christo et al [100]. This identification neural network model 

can be further used to realize online adaptive pressure oscillation control. During the 

control sequence, the identification model is placed in parallel with the system. The 

error signal (rms value of the pressure oscillations) to be minimized may be different 

between the desired and the identified model output, which is then back propagated 

through the identification model and then through the controller to update the weights o f 

the controller to minimize the rms value of the pressure oscillations, as described by 

Blonbou et al [1, 93], Gutmark et al [101], McManus et al [102], Liu and Daley [103], 

and Docquier and Candel [104].

Based on the work by Peters [105] who analyzed the spectral behaviour of turbulent 

premixed combustion and the combustion heat release model by Schmid et al [106], 

Hirsch et al [107] presents a model for the spectral distribution of heat release in 

turbulent premixed combustion and shows that it can be applied to calculate the sound 

pressure. Hirsch uses a simultaneous PIV-LIF technique to determine the spatial spectra 

of the progress variable variance and the turbulence kinetic energy. The spectra o f 

progress variable correspond well with model spectra derived from the homogeneous 

turbulence. Mapping these Eulerian spatial spectra to Lagrangian time spectra, it is 

shown that the integral frequency spectrum of heat release fluctuation can be computed 

using local values of time averaged heat release rate density, turbulence kinetic energy 

and turbulence length scale.

In this study, a premixed combustion model is designed based on the conservation laws 

to predict the pressure oscillations. The effects of friction in the combustor tailpipe, heat 

loss from the combustion zone and mass flow rate are investigated as well. With 

different operating parameters, oscillating combustion, steady flames and blow-out are 

all predicted. The predicted simulation results are compared with the experimental data. 

The laboratory observations confirm that the premixed combustor model can predict the 

pressure instabilities, which is the foundation for the establishment of a more 

complicated model and for the future pressure oscillation control purposes.
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4.2 A PREMIXED COMBUSTOR MODEL

A theoretical model for combustion in a system comprised of a combustor and tailpipe 

is firstly provided. Characteristic geometric and operational parameters for the 

combustor are identified in the dimensionless form of the governing equations. It is 

shown that the solution of conservation equations for mass, species, momentum and 

energy will lead to oscillating combustion, producing relatively large amplitude pressure 

pulses. Results of the simulation are then favourably compared to laboratory 

observations of a combustor operating with parameters similar to those used in the 

numerical model.

The designed zero-dimensional model takes the form of a thermal combustion model 

and was initially proposed by Richards et al [108] at the Energy & Technology Center 

of Morgantown WV, and then developed by Marsano [38, 109] and Hamid [110] at 

Cardiff University. Richards’s model considers oscillations produced with a steady 

supply of fuel and air; while Marsano gives a sinusoidal inlet mass flow into the 

combustor, and Hamid includes the oscillatory heat transfer coefficient into the model. 

The designed model is simple enough to run on a standard PC with relatively short CPU 

times, which allows investigation of the influence of simple design changes and an 

insight into the governing processes of this developing combustion technology.

Indeed the pure fuel and open air inlet of the combustion system will generate 

irregularities in the oscillations, such as the amplitude modulation and running phase 

shift between pressure and temperature [111]. The non-premixed inlet affects the mixing 

of reactants and hence the onset of the combustion, which in turn changes the Rayleigh 

phase. In addition, because the fuel inlet is driven by the high upstream pressure, the 

pressure in the single inlet should fluctuate around a value a slightly above the 

atmosphere. The first step to adapt the model is to introduce a non-steady supply of 

premixed fuel and air. In next chapter, the conservation laws will be applied to inlet pipe 

and tailpipe respectively, hence a more accurate combustion model will be designed.
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4.2.1 Combustor Geometry and Experiment Results

The schematic layout of the experimental combustor is shown in Figure 4.2, which 

consists of an inlet pipe, combustion chamber and tailpipe. The combustor was of the 

Helmholtz type. In these types of combustors, the cold air and fuel in the inlet restriction 

act as a resistance for the gases attempting to exit the combustion chamber through the 

inlet. Nevertheless in practice a considerable amount of gas flows through the inlet 

during the positive pressure part of the cycle. This back-flow complicates the process 

further.

In this chapter, only the combustor and the tailpipe are considered. Hence, the simplified 

combustor model geometry is shown in Figure 4.3. In Figure 4.3 (a), the shaded region 

represents a control volume for the combustion zone. The premixed fuel and air enter 

through the inlet port, at inlet temperature Th and fuel mass fraction Yjti. In Figure 4.3 

(b), the tailpipe control volume is again identified by the shaded region. The ambient 

pressure at the combustor exit is Po. A constant friction factor /  is specified along the 

tailpipe length.

The pressure wave is measured using a fast responding piezo-electric pressure 

transducer, and the temperature is measured with fine wire thermocouples. The 

temperature measurements are corrected because of the slow thermocouple response 

compared to the cycle time; these corrections depend on the mass of the junction and on 

the local heat transfer from the gas to the junction. Velocity measurements are carried 

out using Laser Doppler Anemometry [111].

The most important measurement to compare different operating conditions and burner 

configurations is the pressure measurement. The evaluation of the frequency and the 

pressure amplitudes shows an important feature of the Helmholtz type combustor. 

Figure 4.4 (a) shows the instantaneous experimental data of pressure in the combustion 

chamber. Figure 4.4 (b) shows the FFT analysis result for measured pressure oscillations 

via Matlab software.
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4.2.2 General Assumptions

The model development employs conservation equations for mass, species, momentum 

and energy in the combustion zone. A bi-molecular reaction rate law is used to describe 

the fuel reaction rate with rate constant obtained from the propane combustion data. 

These equations are coupled to a combined expression for mass and momentum 

conservation in the tailpipe, where the effect of friction is considered.

Due to the zero-dimensional model, the pressure, temperature and other physical 

variables are assumed to be space-constant. Therefore the combustion chamber is 

treated as a well-mixed region. Hence, within the combustion chamber, the unknown 

functions are the pressure P(t), the temperature T(t) and the mass fraction Y(t), which are 

functions of time only. The combustor walls are maintained at a constant temperature Tw 

with a specified convection coefficient h.

It is assumed that the instantaneous values of the pressure P  and the temperature T in the 

combustion zone are related to the tailpipe entrance pressure Pe and temperature Te via 

isentropic acceleration from the combustion zone [112, 113]. The friction in the tailpipe 

is accounted for via a conventional friction factor f  as defined by Schlichting and Klaus 

[114], in which the friction force is developed from the wall shear stress in terms of the 

friction coefficient. Finally the tailpipe velocity is readily related to the exit mass flow 

rate me(t)-

4.2.3 Conservation Equations in Combustion Zone

The conservation equations in the combustion zone and tailpipe zone are written as in 

standard texts [115-121]. Firstly, the conservation laws of mass, species and energy are 

used for the combustion chamber.
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Based on the first law of thermodynamics, a control volume equation for energy 

conservation in the combustion zone is written as:

—  [ f ( e  + —u 2 dV  = [ Q d V - S p  e + —u 2 U • nds -  iq  • nds -  iP u  ■ nds (4.1)
dt \  2 )  *v * v 2 ,/ * *

The left side of this equation represents the change rate of energy of the system; while, 

the first item in the right side is the heat release rate (per unit volume) from the 

combustion, the second is the net flow energy rate through the combustor surface, the 

third is the heat transfer rate with control volume interface, and the last is the rate of the 

net pressure work through the combustor surface. In Equation (4.1), v 2/2  is the specific 

kinetic energy, U is the velocity vector, n is the unit vector, and q is the heat transfer 

rate vector. The suffixes of the integral symbol cv and s represent the control volume 

and the control surface of the combustion zone respectively.

To solve the Equation (4.1), the following assumptions are employed:

1) The combustion volume is considered as a homogeneous and isochoric zone, and

C
ideal gas properties are used: e=CvT, CP=CV+R, and y  = — .

Cv

2) Compared with the specific internal energy e, the contributions of the specific 

kinetic energy v 2/2  to the energy change are negligible.

3) The exit temperature Te and the exit pressure Pe are assumed to be related to the 

combustion temperature T and pressure P by adiabatic isentropic acceleration to the 

exit Mach number Me, which means that we change process variables from P  and T  

to Pe and Te in an adiabatic reversible process.

The inlet pressure and temperature into the combustion volume are Pi and 7), which are 

assumed to be equal to ambient pressure Po and temperature To. The pressure and 

temperature in the combustion zone are P and T, whilst, the exit pressure and 

temperature in the combustion volume are expressed as Pe and Te.
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The following variables are used:

1) Inlet mass flow per combustion zone volume

z, = jt- (4.2)

2) Exit mass flow per combustion zone volume

Z  = —  (4.3)y

3) The first characteristic length (ratio of combustion zone volume Vc to surface area As)

where Vc is the combustion zone volume and As is the combustor surface area.

With the assumptions and definitions above, Equation (4.1) becomes:

1 dP h
= C (T ,Z ,-T Z e) + Q + — (Tw- T )  (4.5)

y - 1 dt "  L,

The conservation of mass for the combustion zone is:

— f pdV = -<SpU-nds (4.6)
Pit «cv *dt

which states that the mass changes in combustion zone are derived from the difference 

between inlet and outlet flows.

Employing similar assumptions as in Equation (4.5), Equation (4.6) becomes:
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f - z , - z .  (4.7)

P
By means of the perfect gas law p  -  — , Equations (4.7) becomes:

RT

1 dP P dT z  z  (4 8)
RT dt R T 1 dt

To simplify the resulting expression, the following variables are defined:

1) Flow Time

= § ■  ( 4 9 )

2) Heat transfer time

*HT = Lc'Phf pT° (4.10)

3) Combustion time

rc=£^ll±  ( 4 . U )
Q

Referring to the definition of Z, (Equation (4.2)), the flow time tf  is the mean residence

time for non-reactive isothermal gas to pass through the combustion volume (the “cold” 

residence time). The flow time is thus a constant determined from the steady mass flow 

rate entering the combustor. rf  does not correspond to a residence time in the reactive

pulsating case, hence the expression flow time is appropriately called “cold residence 

time” or “non-reactive residence time”. For constant heat transfer coefficient and wall
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temperature, the heat transfer time is constant. However, the combustion time is not 

constant: it varies with the instantaneous value of the heat release rate, as to be expected 

and as described as follows.

Normalizing the temperature and pressure with the ambient temperature and pressure 

and denoting them with a tilde, Equations (4.5) and (4.7) are combined to give:

dT_
dt

' i  i i '
—  +  + —

TjfT\ xr
f L
P Vo^+-u * '

Po r TH T  w

I L
p

(4.12)

Here, the inlet temperature 7} is regarded as the ambient temperature To. Equation (4.12) 

is an expression representing conservation of thermal energy in the combustion zone. 

An equation to describe the pressure variation is easily developed by combining 

Equation (4.12) and a version of conservation of mass (Equation (4.7)). Expressing 

density from the perfect gas law as a function of the normalized pressure and 

temperature, the result is:

dP_
dt

1 1— + —
vr / HT

+ ------ h .
Po

7 (4.13)

For solving Equations (4.12) and (4.13), the expression for combustion time rc needs to 

be developed. The instantaneous heat release (per unit volume) Q is the product of the 

heat of reaction (per unit fuel mass) AH f  and the fuel reaction rate (per unit volume)

Rf , which is:

Q -  tsHf Rf (4.14)

The fuel used in the combustor is propane. Its AH f  value could be found in Rose’s or 

Perry’s Chemical Tables [122, 123].

A bi-molecular rate law between fuel (subscript f )  and oxygen (subscript o) is used to 

describe the fuel reaction rate, which is:

106



4. Premixed Combustor Model

C3H % + 50 2 = 3C 02 + 4 H 20

Then the fuel reaction rate is given by:

Rf  = A T m p % Y f e-E/RT (4.15)

where A is the kinetic constant, Yo is the instantaneous oxygen mass fraction in the 

combustion zone, Yf is the instantaneous fuel mass fraction in combustion zone, and E 

is the activation energy.

The mass fractions of fuel and oxygen are determined from the conservation of species 

in combustion zone. For fuel, it is:

which means that the change rate of fuel mass is equal to the rate of the net fuel mass 

flow through the combustor surface subtracting the parts consumed in the combustion 

process.

With the same assumptions for deriving the Equation (4.5) from Equation (4.1), the 

resulted fuel mass fraction is:

(4.16)

(4.17)

For oxygen, the formulation for conservation of species is:

(4.18)

Hence, the resulted oxygen mass fraction is:
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(4 .19 )

where Y/ti is the inlet fuel mass fraction, Y0<i is the inlet oxygen mass fraction, and Sr is 

the stoichiometric mass ratio between oxygen and fuel.

It is recognized that the equation for oxygen mass fraction (Equation (4.19)) normalized

shown that both equations will have the same solution for stoichiometric inlet conditions, 

and stoichiometric initial conditions. Thus, when stoichiometric conditions are imposed, 

the analysis is simplified because the instantaneous oxygen mass fraction is proportional 

to the fuel mass fraction by a factor of Sr. Although this simplification formally restricts 

the analysis to stoichiometric inlet and initial conditions, the simulation can be used for 

lean conditions.

Complete combustion of a hydrocarbon fuel requires sufficient air to convert the fuel 

completely to carbon dioxide and water vapour. The stoichiometric air/fuel ratio can be 

readily calculated from the reaction equation as shown above, being for propane 15.81. 

In comparing the combustion characteristics of different fuels, it is sometimes 

convenient to express the mixture strength in terms of an equivalence ratio (j>. The 

equivalence ratio is the actual fuel/air ratio divided by the stoichiometric fuel/air ratio. 

Hence, for a certain equivalence ratio $ ,  the inlet fuel (propane) and oxygen mass 

fractions are:

by the stoichiometric ratio has exactly the same form as Equation (4.17). It can be

T = ------ ------------
4000 + 253 x (j)

253 x (f>

(4.20)
Y = -------— -------

4000 + 253 x ^

Combining the Equations (4.11), (4.14) and (4.15), the combustion time is then:
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1 AH f p 2 Y f  It
—  = A ' ^ 4 — Y , ^ e - TjT (4.21)
r e C„T0 T m '  S,

where A' is a constant derived from the product of different constants in mentioned 

three equations (a ' = (A - P0 ■ S r )/{r  • T01/2)), and Ta is a dimensionless activation

temperature {fa = E/(R ■ T0)J. From Kretschmer etc [124-127], the values of A' and Ta 

are 3.85 x lO S -1 and 50 respectively. The value of Ta represents the activation energy 

of 30 Kcal/Kmol.

For stoichiometric conditions, Equation (4.21) becomes:

1 AH f P 2 , f  It
—  = A ' ^ 4 — y ,V r*/r (4.22)C r T m f

To complete the development of the equation set, it is necessary to derive the equations 

for the tailpipe to determine the exit mass flow rate me.

4.2.4 Conservation Equations in Tailpipe Zone

The exit mass flow Ze appears in Equations (4.12) and (4.13), and must be determined 

for the whole development of the combustor model. A similar procedure is used to 

predict the Helmholtz frequency of the combined tailpipe and combustion region as 

described by Zinn [128]. Here it is assumed that the gases in the tailpipe move as a slug, 

the mean flow is neglected and the governing equations are linearized for small 

oscillations. In this development, only the slug flow assumption is retained, and an 

approximate integration of density along the tailpipe is used.

As shown in Figure 4.3 (b), a control volume indicated by the shaded region extends to 

the ends of the tailpipe. The pressure Pe and the temperature Te at the entrance of the 

tailpipe are related to the pressure P  and temperature T in the combustor by isentropic 

acceleration or deceleration into or from the tailpipe.
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A control formulation for the momentum equation in the tailpipe is then written:

Y f  = — f pudV + \p u u  • nds (4.23)
' df ipv *

The left side of the equation gives the summation of all forces acting in a given direction 

(x-direction) on a control volume. These forces include the pressure acting on the area at 

either end of the tailpipe, and the force generated by wall friction along the tailpipe 

length Ff. The first item in right side of the equation is the change rate of momentum in 

the tailpipe control zone, and the second is the rate of change of the net momentum flow 

out of the tailpipe control zone in the same direction as the sum of all forces.

Hence, Equation (4.23) is:

(P -P ,)A e +Ff = —  f pdV  + wf — f pdV + $ p u -n d s \  (4.24)
dt Fv ydt *pv *

According to the conservation of mass in tailpipe, the term in brackets on the right side 

is zero, that is:

J pdV + <̂ pu • nds = 0
dt *pv

The integral of density in the tailpipe control volume is approximated as the product of 

the tailpipe entrance density p e and the tailpipe volume. The friction force Ff is

developed from the wall shear stress in terms of the conventional friction coefficient f  

as shown in Schlichting’s text [114]. Using the instantaneous tailpipe velocity in 

Schlichting’s expression and considering the shear stress at the tailpipe wall, it is shown 

that:

To = - fP u
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The friction force F f  is then the shear stress r 0 multiplied by the tailpipe surface area.

The sign of the velocity is needed to be considered for the direction of the force acting 

on the control volume. Performing these steps, Equation (4.24) becomes:

(4.25)
dt V '  ’ L„ Pe 2 D¥ H

Using the relation me = p euAe, Ze/ p 0 in Equations (4.12) and (4.13) could be then 

expressed as:

Z  P  1
- r  = u f —  (4-26)
Po T  c2

where LC2 is a second characteristic length and is identified as the ratio of combustor 

volume to the tailpipe cross-section area, which is:

i  J L
A.

Further effort is expended on analysis of the combustion zone exit pressure Pe and exit 

temperature Te, which are related to the combustion pressure P and temperature T  by 

isentropic process. Here it is assumed that the process changes from P and T to Pe and Te 

via an adiabatic reversible process [120]. For an adiabatic constant-entropy (isentropic) 

process:

\PVy = constant
(4.27)

\TVr = constant

The diameter of the combustor is regarded as much larger than that of the tailpipe. 

Hence, the adiabatic isentropic process from P and T to Pe and Te is started with the 

velocity uc (using subscript c for the state variables in the combustor), 0, to the velocity 

u at the tailpipe. With the assumption that the mass flow in the cross section of the 

control volume is constant, the following equation is derived [113]:
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- £ - R T e + - u 2 = - ^ R T  
y - 1 2 y  - 1

(4.28)

Normalizing the temperature Te with the ambient temperature To, it is obtained that: 

(l - y ) u 2
T = T  +

2 yRT0

For pressure Pe, it is:

(4.29)

P = P
lyR T J

2 y R T J + { \-y )u :

1 -Y
(4.30)

Thus, the simulation of the combustor model is achieved by simultaneous solutions of 

the differential Equations (4.12), (4.13), (4.17), (4.19) and (4.24), that is:

dT_
dt

dP_
dt
dY(

\ Tf
1

1 1 1— +  + —
r u ’T r

+

H T

1

c
p

(r _ , ) ^  + i _ + rT ,i
Po T f T TL H T 1 w

iL
p

1

Vr /
+

T^-r TH T

T■L n \

c  v '

dt

dY,

P rf  P 

T 1

r  HT1W

CPT0 ) 1
A H fj r
( C T ^^  p1 0

T
J )

r

(4.31)

dt

f-di-o
P r )

* r 0 f. /  u}

L ,P h  2 D ,P M

v ^ / 7

The definitions Equations (4.22), (4.26), (4.29) and (4.30) are needed to relate the 

various equations. The solution of the equations above gives the pressure, temperature, 

fuel mass fraction and oxygen mass fraction in combustion chamber and velocity in the 

tailpipe. The pressure and temperature at the tailpipe entrance are related to the pressure 

and temperature in the combustion chamber by the adiabatic isentropic process.
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4.2.5 Equation Solution and Initial Conditions

The governing equations are solved with a fourth-order Runge-Kutta scheme [129]. In 

the simulation programs, a time step decrement/increment method is employed in order 

to achieve the compromise between speed and accuracy of the calculation. A time-step 

decrement is performed when the temperature, pressure or velocity is changed rapidly. 

This decrement is followed by a time-step increment when these changes are moderate.

The initial conditions are:

1) Initial temperature: 5 x T0

2) Initial pressure: 1 x PQ

3) Initial velocity: 0.0

4) Friction factor: 0.03

The initial conditions correspond physically to filling the combustor with unbumed fuel 

and air at ambient pressure with no exiting flow. Then, an absolute temperature of five 

times the ambient is used to ensure the temperature is high enough to initiate 

combustion. The initial pressure and temperature rise are over-predicted since there is 

no laboratory counterpart to mixing fuel and air at the dimensionless temperature of 5, 

and then suddenly allowing the reaction to start. However, the choice of initial 

conditions is investigated and the final solutions are not affected. This result would be 

expected on physical grounds since the dissipative nature of friction in the tailpipe 

should negate the history of start-up.

In the premixed model described in this section, stoichiometric conditions have been 

considered for simplicity. Two configurations for the flow of reactants have been 

adopted, which are a steady inlet and a sinusoidal inlet.
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The steady inlet mass flow is firstly considered for the following simulation. The classic 

flame extinction/ignition boundaries and oscillating combustion are predicted. 

According to the measured pressure signal as shown in Figure 4.4 (a), the inlet mass 

flow can be modelled as a sinusoidal function:

7h. = C, + C2 sin(2;rfitf + 0) (4.32)

where C/ is the average value of the inlet mass flow, C2 is the amplitude zero-maximum, 

co is the angular frequency and 0 is the initial phase. A theoretical comparison between 

these two inlet configurations is then conducted.

A steady inlet with a second sinusoidal mass flow is considered in this study. The mixed 

reactants, the air, and the fuel are used respectively as this second inlet mass flow to 

investigate the influence of the second mass flow on the pressure oscillations in the 

combustion zone. Finally, a simply PI controller is designed to attenuate the pressure 

instabilities with the steady inlet.

4.3 SIMULATION RESULTS OF PREMIXED COMBUSTOR MODEL

In Richards’s simulation [108], the compressed air and gas is supplied into the 

combustion zone through an orifice entry port, by which the inlet stream driven by a 

high pressure is choked so that the inlet mass rate is constant throughout the cycle. For 

the combustor system investigated in this study, the mixing process of the inlet gases is 

more complex since the open air inlet (axial) configuration complicates the process. To 

simplify the simulation, it is assumed that the air and gas are well mixed before entering 

into the combustion zone. The combustor geometrical parameters are given in Table 4.1.

For comparing the experimental and simulation results, the FFT analysis [129-131] is 

undertaken to obtain the oscillating amplitude and frequency via Matlab [132, 133].
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4.3.1 Premixed Combustor Model with Steady Supply of Reactants

In this section, the pressure and temperature are firstly predicted with different steady 

inlet mass flow rate. The influence of different combustion parameters on the pressure 

oscillations is then investigated.

4.3.1.1 Prediction of Pressure and Temperature

The pressure and the temperature are predicted for the premixed experimental 

combustor in lean conditions with steady inlet supply of the fuel and air. The simulation 

results are shown in Figure 4.5. The heat transfer process is predicted by fixing the wall 

temperature Tw at 1000 K and setting the heat transfer coefficient h at 120 W/m2K. The

friction coefficient /  in the tailpipe is assumed as 0.03. The inlet mass flow mi is set at

0.015 Kg/s. The equivalence ratio (f> is firstly selected as 0.8.

As shown in Figure 4.5 (a), the initial pressure and temperature rise are caused by the 

initial conditions and the sudden occurrence of the reaction. However, the choice o f 

initial conditions doesn’t affect the final solutions. This result would be expected on 

physical grounds since the dissipative nature of the friction in the tailpipe should negate 

the history of the start up. About 0.4 s after start-up, the amplitude of the oscillation 

stabilizes. At this point, with an inlet mass flow of 0.015 Kg/s, the predicted amplitude 

of oscillation is approximately 12.6 kPa. The predicted frequency of the pressure 

oscillation is about 68 Hz, as shown in Figure 4.5 (b). As shown in Figure 4.4, the 

experimental measured pressure oscillation shows an amplitude of about 7.5 kPa with 

an oscillating frequency of about 75 Hz. The predicted amplitude and frequency of the 

oscillations are in reasonable agreement with measured results. The difference is 

considered to be primarily due to the steady inlet mass flow and difficulties in 

estimating the effective length of the tailpipe since the shape of the exhaust is simplified 

in the model.
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The predicted phase shift between the heat release and the pressure is about 0.85 ms 

(22.1°) and does not modulate between cycles. Thus the Rayleigh criterion is satisfied 

and stable combustion oscillations are predicted [35].

As shown in Figure 4.6, stable oscillation amplitudes are observed when the inlet mass 

flow is set between 0.007 and 0.024 Kg/s with TW=1000K, h=120W/(m2K), </> = 0.8, and 

f=0.03. Compared with the amplitude of the temperature oscillation, the amplitude of 

the pressure oscillation is not so critically dependent on the inlet mass flow and there are 

not great changes within these inlet mass flow values. The frequency varies from 62.5 

Hz to 75 Hz during the stable oscillation.

For the inlet mass flow below or above the limits of range 0.005-0.025 Kg/s, the 

extinction of the pulsations or a steady combustion condition is predicted, as shown in 

Figure 4.7.

After the gas and air in the combustion chamber are ignited, the sudden occurrence of 

the reaction will generate large heat release. This heat release will partly be taken out by 

exhaust products and the rest will mainly induce the initial pressure and temperature rise. 

The pressure rise will further drive the combustion products out to the exhaust, and 

there also exists similar trends towards the inlet. The smaller the inlet mass flow, the 

more obvious the trend to unstable combustion. At the same time, the temperature rise 

begins to decrease through the convection with the combustion chamber wall and via 

the products. Although the inertia of the moving gas column in the exhaust creates the 

negative pressure in the combustion zone allowing the fresh reactants to be drawn in 

through the inlet, there are still not enough reactants accumulating in the combustion 

chamber to sustain the continuous combustion process. Too much heat is also lost 

through the convective heat transfer and the exhaust, thus the flame will eventually die 

out and then extinction occurs (0.0008 Kg/s).

Increasing the inlet mass flow can help to overcome this effect and eventually it is 

possible to bring in enough volume of the fuel and air to sustain continuous combustion. 

If this process just happens before the temperature drops then sudden combustion will
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greatly increase the pressure and temperature again. This cycle is repeated. Then pulse 

combustion occurs (0.005 Kg/s).

Continuously increasing the inlet mass flow, the reactants are sufficient to sustain the 

combustion process. After a certain time the temperature rise due to the heat release 

exceeds the temperature decrease due to the convection and the consumption by 

exhausted products, thus the temperature will finally increase. In the meantime, the heat 

release will also induce the pressure rise. The inhibition to the inlet mass flow is 

strengthened. The fuel and air needs more effort to enter into the combustion zone. Then, 

the reactants in the combustion zone start to decrease, so does the heat release. If the 

heat loss prevails, the temperature will begin to decrease. Then, oscillation combustion 

occurs (0.015 Kg/s).

When the value of the inlet mass flow is large enough, it could definitely overcome the 

negative influence from the pressure rise. The combustion process then reaches a steady 

combustion state (0.025 Kg/s).

Although no simulation is shown, the model will show that too large an inlet mass flow 

will blow out the flame in the combustion zone. Hence, the flame extinction will occur 

with too large an inlet mass flow, which is just like the blowing out of a candle flame in 

a strong wind.

Based on the simulation results, the combustion process could be classified into five 

types based on the increasing inlet mass flow, which are: Flame Extinction—► Pulse 

Combustion—̂ Oscillation Combustion—»Steady Combustion—>Flame Extinction.

4.3.1.2 Wall Temperature Effects

Figure 4.8 shows the predicted pressure and temperature with three different combustor 

wall temperatures, that is: 650K, 1000K, and 1100K. For lower value of the combustor 

wall temperature (650 K), the oscillation rapidly decreases in amplitude, which indicates 

the flame extinction. Similarly, steady combustion is shown with the higher combustor
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wall temperature (1100 K), whilst for the intermediate combustor wall temperature 

(1000 K), steady oscillatory combustion is predicted.

At the higher combustor wall temperature (1100 K), the convective heat transfer 

between the combustor and the wall is lower. Hence, the temperature loss is smaller. 

The higher temperature in the combustor will increase the activity of the supplied inlet 

reactants, which will accelerate the reactant consumption. The faster reaction of the inlet 

reactants will thus remedy the loss of the pressure and temperature in the combustion 

zone. In the equilibrium state, the burned fuel is steadily replaced by the incoming fresh 

mixture, and steady combustion occurs, as shown in Figure 4.8 (a).

For the intermediate combustor wall temperature (1000 K), the convective heat transfer 

with the combustor wall is larger, which will induce the lower temperature in the 

combustion zone. This lower temperature will reduce the reaction rate. Thus it is 

possible to accumulate surplus reactants. The resulting excess of the reactants will result 

in more heat release as combustion occurs and compression of the mixture. The result is 

an increasing reaction followed by an increasing pressure, which will enhance the 

changes of the pressure and temperature in the combustion zone and makes it possible to 

satisfy the Rayleigh criterion. Hence, for the combustor wall temperature at 1000 K, 

steady oscillations are driven, as shown in Figure 4.8 (b).

When the combustor wall temperature decreases to a certain limit (650 K), the rapid 

convective heat transfer from the combustor wall will greatly reduce the temperature in 

the combustion zone. Once this temperature is lost further reaction cannot be sustained 

and the flame will die out, as shown in Figure 4.8 (c).

4.3.1.3 Heat Transfer Coefficient Effects

Clearly, the steady oscillation combustion occurs only when an adequate convective 

heat transfer rate with the control volume interface exists. Enhanced or diminished 

convective heat transfer will result in either flame extinction or steady combustion.
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Figure 4.9 is a plot of the calculated temperature and pressure amplitudes as a function 

of the heat transfer coefficient h. Steady combustion occurs for h less than 105 W/m K. 

Above this value, combustion oscillations occur. The pressure amplitude is diminished 

with further increases in h, up to 245 W/m2K, where heat loss is sufficient to extinguish 

the flame.

4.3.1.4 Tailpipe Fiction Effects

The simulation results show that the effect of friction in the tailpipe is very significant. 

Figure 4.10 compares the velocity and pressure with three different friction coefficients. 

Without friction ( /  = 0), the pressure amplitude is about 85 kPa, and the pressure curve 

has an abrupt change in its slope, which coincides with the transition of the tailpipe 

velocity between negative and positive. When the velocity in the tailpipe changes to 

negative from zero, the exhausted products begin to flow back to the combustor. The 

compression of the reactants in the combustion zone, as well as the heat brought back by 

the returning exhausted products, makes the pressure rise. On the contrary, when the 

velocity in the tailpipe is changed to positive from zero, the exhausted products begin to 

flow out to the tailpipe. The inertia of the moving gas column, as well as the heat loss 

taken by the exhausted products, makes the pressure decrease. With friction coefficients 

0.02 and 0.04, the reverse flow is reduced and the pressure amplitudes are smaller, 

23.82 kPa and 8.8 kPa respectively. At the higher friction coefficient 0.04, the velocity 

is negative for only a small portion of the cycle. The friction effect inhibits the 

exhausted products flow in or out of the combustor. Hence, the pressure curve does not 

show the immediate change in slope at the zero crossing and there exists time delays 

between them. Essentially the higher friction provides greater limitation to the gas 

velocity flowing in or out the combustor. This will reduce the variation in the 

temperature in the combustion zone and accordingly produce the decrease in pressure 

oscillation amplitude. Further increasing the friction coefficient to 0.05, the oscillation is 

replaced by steady combustion. In these cases, the pressure rise is a combination of the 

heat release and the changes of the velocity in the tailpipe.
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4.3.1.5 Equivalence Ratio Effects

Figure 4.11 shows the predicted oscillation amplitudes of the pressure and temperature, 

frequency of oscillation, and the mean fuel mass fraction as a function of equivalence 

ratio with TW=1000K, h=l20W/(m2K), f=0.03 , and mi = 0 .02K g!s . As the equivalence

ratio changes from 0.6 to 0.9, the oscillation amplitudes of the pressure and temperature 

increase to maximum values until the equivalence ratio is about 0.7, and then begin to 

decrease; the frequencies of the oscillation varies from 61 Hz to 76 Hz as the 

equivalence ratio increases.

4.3.2 Premixed Combustor Model with Variable Supply of Reactants

The original configuration of the combustor has an open-air inlet [111], which makes 

the mixing processes that govern the operation of the combustion system even more 

complicated. Not only is there interaction between heat release and the acoustic wave, 

but there is also interference between the inlet air flow and the acoustic flow.

As a first attempt to investigate the effect of the open-air inlet configuration, a modified 

premixed model is considered, in which only one inlet for both fuel and air mass flows 

is utilized.

In reality, the pressure in the air inlet pipe fluctuates around the atmospheric value, 

while the fuel inlet is driven by high upstream pressure [111]. Hence, in the model the 

pressure in the single inlet should fluctuate around a value slightly above atmospheric. 

The relationship of the inlet mass to the pressure in the inlet pipe will be considered 

later. Here, a simple parametrical expression is used.

Firstly, a sinusoidal supply (Equation (4.32)) is used to replace the steady inlet mass 

flow in the previous simulation. Then, a main steady flow combined with a second 

sinusoidal supply is studied to consider the influence of this second inlet mass flow on
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the pressure oscillation. Finally, a simple PID controller is designed for steady inlet 

mass flow to accentuate the pressure oscillation.

4.3.2.1 Simulation with the Sinusoidal Supply Configuration

The sinusoidal inlet supply o f the reactants can be expressed as: 

mi = C, + C2 sin(2/rfitf + 0)

The values of the parameters used for the equation are as follows:

Ci=0.033 Kg/s; C2=0.0396 Kg/s;f=68 Hz; 0 =(f.

Considering that the frequencies and amplitudes o f the inlet mass flow will couple with 

the ones in the combustor, a modification to the inlet flow is introduced to account for 

this feedback influence, in which the frequency of the inlet flow is adjusted to the 

internal frequency of oscillation at each time step.

The average value of the load is 0.033 Kg/s and the sinusoidal amplitude is 0.0396 Kg/s. 

This large sinusoidal load amplitude is to simulate the inlet back flow during the 

combustion process. Again the wall temperature Tw is set at 1000 K, the heat transfer 

coefficient h is at 120 W/(m2K), and the friction factor/is at 0.03.

Figure 4.12 shows the predicted pressure and temperature oscillations. In the simulation, 

the frequency of the inlet flow as allowed to vary from 58 up to 84 Hz following the 

frequency of the pressure oscillations in the combustion chamber as discussed above. 

The predicted pressure curve is rather irregular, and the amplitudes of the oscillation 

vary from 9.5 to 49 kPa. The predicted temperature curve is also irregular.

As shown in Figure 4.12, the phase shift between temperature and pressure ranges from 

-1.467 ms to 1.33 ms for minimum and maximum cycles of the pressure amplitudes. 

Negative phase shift is equal to the large positive phase shift between the temperature
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and the pressure. Hence, the updated model shows that the acoustic pressure oscillations 

re-excite when the phase shift between heat released from combustion and pressure 

oscillations reduces. Similarly, the pressure oscillations are weakened when the phase 

shift between temperature and pressure increases.

The phase shift appears to be the parameter that mostly affects the evolution of the 

oscillations and is considerably more influential than the absolute heat release during 

each cycle, which is to be expected via the Rayleigh criteria

4.3.2.2 Simulation with a Second Sinusoidal Supply Configuration

For combustion oscillation control purposes, simulations are run, in which the inlet mass 

flow is separated into two parts. One is distinguished as the main inlet mass flow, and 

the other is the second inlet mass flow. The main inlet mass flow is fixed at 0.02 Kg/s. 

The mixed reactants, air only, and fuel only are respectively used as the second inlet.

The second inlet mass flow is also modelled as a sinusoidal function, which is:

mis =C + C sin(2;ny/ + 0) (4.33)

where C is the average value of the second inlet mass flow, co is the angular frequency, 

and 0 is the phase.

Figure 4.13 shows the oscillation pressure and temperature with the main steady inlet 

mass flow and the second sinusoidal inlet mass flow of mixed reactants, which has the 

same equivalence ratio as that of the main inlet mass flow. For mi s, C is equal to 1.5 g/s,

co is 68 Hz, and 0 is 0 rad. With this second inlet of mixed reactants, the oscillation 

amplitudes of the pressure vary from 10.5 kPa to 14.5 kPa, and the oscillation 

frequencies corresponding vary from 75 Hz to 73.1 Hz.

Figure 4.14 shows the maximum and minimum oscillation amplitudes of the pressure as 

function of the average value of the second inlet mass flow of mixed reactants C with
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T„=1000K, h=120W/(m2K), f - 0 .03, mi = 0.02K g/s  and <j> = 0.8 . For mu , m is 68 Hz

and 6  is 0 radians. With increase of the average value of the second inlet mass flow of 

mixed reactants, the maximum and minimum oscillation amplitudes decrease. However, 

the difference between the maximum and minimum oscillation amplitudes will increase. 

The simulation results show that the larger C will have a greater influence on the 

pressure oscillation.

Figure 4.15 shows the maximum and minimum oscillation amplitudes of the pressure as 

function of the average value of the second inlet mass flow of the fuel C with TW=1000K, 

h=120W/(m2K),f=0.03, and mi = 0 .0 2 K g /s . For mis , co is 68 Hz and 0 is 0 radians.

Injecting the fuel as the second inlet mass flow increases the equivalence ratio of the 

final mixed reactants. The average value of the second inlet mass flow of the fuel must 

be selected to avoid combustion with rich mixtures. In Figure 4.15, four different 

equivalence ratios in the main inlet mass flow are chosen, 0.9, 0.8, 0.7 and 0.6 

respectively. The value of C is set to ensure the final equivalence ratio varies between 

the value in the main inlet mass flow and 1. The simulation results show that the smaller 

initial equivalence ratio in the main inlet mass flow allows increase to the larger second 

inlet mass flow of the fuel, thus has a significant effect on the oscillation pressure.

Figure 4.16 shows the maximum and minimum oscillation amplitudes of the pressure as 

function of the average value of the second inlet mass flow of the air C with TW=1000K, 

h=120W/(m2K),f=0.03, and mi = 0 .0 2 K g /s . For mis , co is 68 Hz and 0 is 0 radians.

Injecting the air as the second inlet mass flow decreases the equivalence ratio of the 

final mixed reactants. In Figure 4.16, three different equivalence ratios in the main inlet 

mass flow are chosen, which are 0.7, 0.8 and 0.9 respectively. The value of C is set to 

make the final equivalence ratio vary between the value in the main inlet mass flow and 

an approximate value of 0.6. The simulation results show that even if the value of C is 

very large (4.73 g/s), there is no evidence of change to the oscillation pressure.

From the simulation results above, it is not appropriate to select the air to be the second 

inlet mass flow. Even if a large average value of the inlet mass flow of the air is chosen, 

it is impossible to greatly change the pressure amplitude. When using fuel as the second 

inlet mass flow, its average value is dependent on the equivalence ratio in the main inlet
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mass flow to ensure combustion under lean conditions. When the equivalence ratio in 

the main flow is smaller, it is thus sensible to use the fuel as the second inlet mass flow. 

The small injection of the fuel gives significant effects on the pressure oscillation. For 

the large equivalence ratios in the main inlet mass flow, the mixed reactants with the 

same equivalence ratio is appropriate.

4.3.3 A Simple PI Control for Steady Inlet Mass Flow

Unwanted combustion-induced pressure oscillations constitute a major technical 

problem in the development of high-performance propulsion systems as well industrial 

furnaces and power plants. Combustion instabilities induce many undesirable 

disturbances in the combustor and associated system. The combustion-induced pressure 

oscillations cause large mechanical vibrations in the system. The high-amplitude 

oscillations of the flow enhance the heat-transfer rate at the combustor wall. 

Combustion instabilities are generated by the resonant interaction between several 

different physical mechanisms. In general, they result from the coupling between the 

acoustic waves and flames.

The methods used to suppress combustion instabilities can be divided in two classes: 

passive and active control. In passive control techniques, modifications of the internal 

geometry of the combustion chamber are used to change the acoustic modes and 

propagation in order to prevent the resonant coupling. Designing passive control devices 

requires good physical understanding of the coupling mechanisms in the combustion 

chamber. Unfortunately the available theory seldom gives a detailed explanation of the 

complex phenomena involved, which makes the implementation of these techniques 

difficult and often limits their efficiency to a small frequency band. In contrast, active 

control techniques consist of injecting some external forcing disturbances into the 

combustor with an actuator, or adjusting the mass flow rate into the combustor to 

modify the pressure field to reach a stable operating condition.

As described in previous sections, stable oscillations can often result with certain steady 

inlet mass flows. Thus one control philosophy is to use PI control to adjust the inlet 

mass flow to make the combustion process stable.
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Ziegler and Nichols give two methods to design PI controllers [134, 135]. In the second 

method, only proportional control action is used, as shown in Figure 4.17 (a). Kp is 

increased from 0 to a critical value Kcr, where the output first exhibits sustained 

oscillations. Thus, the critical gain Kcr and the corresponding period Pcr are 

experimental determined, as shown in Figure 4.17 (b). Ziegler and Nichols suggested 

that the values of the proportional gain Kp and integral time Tt are set according to the 

following equations, which are:

K p = 0A5Kcr

' t  — p  (4 3 4 >
.  ' 1.2 c r

As shown in Figure 4.18 (a), when the combustor is given a steady inlet of reactants rfy 

equal to 0.02 Kg/s with TW=1000K, h=120W/(m2K), (f) — 0.8 and f=0.03, steady 

oscillations result. Hence, for PI controller design, the critical gain Kcr is equal to 1, and 

Pcr is just the oscillation period. The corresponding proportional gain Kp and integral 

time Tj are found as 0.45 and 0.0115 respectively. The designed PI controller is then 

embedded into the combustion system. Here, the ideal pressure level in the combustor is 

set as 1.03 bar.

Initially, the controller is off, and there is steady oscillation with the steady inlet mass 

flow. After 0.4 s, the controller is activated to attenuate the instability. The predicted 

pressure is then compared with the designed ideal output. The error between them is 

used by the PI controller to give variable control inputs to the combustor. The 

oscillatory pressure signal then decreases to a minimum level and the steady combustion 

process is realized.

4.4 DISCUSSION AND CONCLUSIONS

Thermo-acoustic combustion instabilities represent one of the main threats to modem 

combustors, as they involve pressure and heat release fluctuations characterised by large 

amplitudes and low frequencies. The coupling mechanism self-sustains oscillations and
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causes the combustion process to become unstable, exciting the resonant acoustic modes 

of the combustion chamber. These combustion instabilities induce non-uniformity of 

exhausted gas temperature distribution, the growth of thermal-NOx production, structure 

vibrations, increased heat transfer, roll torque, and sometimes, destruction of the burner.

Mathematical models can be very useful in developing understanding of the 

fundamental fluid dynamics, oscillation dynamics, combustion, heat transfer processes, 

and allow derivation of technologies to alleviate or eliminate the problem.

In this study, a premixed combustion model is designed based on the conservation laws 

to predict the pressure oscillations. Effects of friction in the combustor tailpipe, heat loss 

from the combustion zone and mass flow rate are investigated theoretically. With 

different inlet mass flow rate, the combustion process could be classified into five 

regimes based on variation of the inlet mass flow. These are: flame extinction, pulse 

combustion, oscillating combustion, steady combustion and flame extinction. The 

effects of wall temperature, heat transfer, equivalence ratio, tailpipe friction and length 

are also investigated. The predicted simulation results are compared with the 

experimental data. The laboratory observations confirm that the premixed combustor 

model can predict reasonably well the pressure instabilities. This forms the foundation 

for the establishment of more complicated models and for control of pressure oscillation.

Secondly, a sinusoidal supply (Equation (4.32)) is used to replace the steady inlet mass 

flow, which allows the reverse flow in the inlet. The frequency of the inlet supply is 

coupled to the frequency in the main combustor that induces a more stochastic 

oscillatory behaviour showing less similarity between temperature and pressure. 

Acoustic pressure oscillations are repeatedly excited and diminished from cycle to cycle 

as the phase-shift between heat released from combustion and pressure oscillation 

fluctuates.

Thirdly, a main flow with a second sinusoidal inlet supply is simulated to investigate the 

influence of this second mass flow on the pressure oscillations. The simulation results 

show that it is not appropriate to select the air as the second inlet mass flow. Even if the 

large average value of the inlet mass flow of the air is chosen, it is impossible to greatly 

change the pressure amplitude. When using fuel as the second inlet mass flow, its
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average value is dependent on the equivalence ratio in the main inlet mass flow to 

ensure combustion stays in the lean conditions. When the equivalence ratio in the main 

flow is smaller, it’s rational to use the fuel as the second inlet mass flow. This small 

injection of the fuel gives very significant changes to pressure amplitude. For higher 

equivalence ratios in the main inlet, mixed reactants with the same equivalence ratio is 

appropriate to give significant pressure amplitudes. Clearly equivalence ratio effects 

have a very considerable effect on the models.

Finally, a simple PI controller is designed for steady inlet mass flows, being based on 

the second of the Ziegler-Nichols rules. Initially the controller is switched off, and there 

is regular pressure oscillation with the steady inlet mass flow. At 0.4 s, the controller is 

activated to attenuate the instability. Under control, the predicted pressure is then 

compared with the designed ideal output. The error between them is sent to PI controller 

to give the variable control input the combustor, with which the pressure signal is 

converged to an ideal level and the steady combustion process is realized.

Although the inlet mass flow is variable rather than steady in reality, this simple 

simulation of PI control for combustion pressure instabilities still suggests that the 

pressure oscillation could be attenuated by varying the inlet mass flow rate. The 

simulation of a main flow with a second sinusoidal inlet supply also proves that small 

changes of the fuel or mixed reactant will induce large chances in pressure amplitudes. 

Possibly in the future artificial neural networks may be needed to firstly identify the 

dynamics of a combustion chamber before control methodologies are applied.

However this work is directed at producing models and simulation techniques which can 

give better insight into the fundamental processes occurring in oscillating/unstable 

combustors/combustion systems, whilst also developing control methodologies. Neural 

networks need considerable amounts of data for training and do not necessarily give 

significant information on the fundamental processes occurring in a system.
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Figure 4.1: Basic Operation Cycle for a Simple Combustor
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Figure 4.2: Schematic Layout o f  Experimental Combustor
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Figure 4.3: Combustor Model Geometry and Parameters
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(b) FFT Analysis Result for Measured Pressure Oscillations in Combustion Chamber 

Figure 4.4: Instantaneous Experimental Data of Pressure in the Combustion Chamber
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Table 4.1 Geometric Conditions Employed in Combustion Model

L e u 0.2

Length
(m)

L e d 0.2

L tp 1.3

L c i 0.0278

Lq2 2.53

Diameter D c 0.15
(m)

D tp 0.05
Cross-section Area 

(m2) A e 0.00196

Combustion Zone Surface Area 
(m2) A s 0.17842

Combustion Zone Volume 
(m3) V C 0.00496
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Figure 4.5: (a) Predicted pressure (thick line) and temperature (thin line) obtained with 

TW=1000K, h=120W/(m2K), </> = 0 .8 , f=0.03 and with a steady inlet o f reactants mi

equal to 0.015Kg/s. The close-up picture shows the phase between pressure and 

temperature; (b) FFT analysis result for pressure oscillation.
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Figure 4.6: Amplitude and Frequency o f  O scillation as Function o f  the Inlet Mass Flow  
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Figure 4.7: Predicted pressure (thick line) and temperature (thin line) obtained with 

TW=1000K, h=120W/(m2K), (f> = 0.8 ,f=0.03  and with different steady inlet o f  reactants

mi . (a) the inlet mass flow  is 0.0008 Kg/s; (b) the inlet m ass flow  is 0.005 Kg/s; (c) the

inlet mass flow  is 0.015 Kg/s; (d) the inlet mass flow  is 0.025 Kg/s.
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Figure 4.8: Predicted pressure (thick line) and temperature (thin line) obtained with 

h=120W/(m2K), <f) = 0 .8 , f=0.03, /h(. = 0 .0 2 Kg Is  and with different wall temperature

Tw. (a) the wall temperature is 1100 K; (b) the wall temperature is 1000 K; (c) the wall

temperature is 650 K.
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Figure 4.9: Effect o f  the Heat Transfer Coefficient on the Temperature and Pressure 

Oscillating Amplitudes with TW=1000K, </> = 0 .8 ,f=0.03 and mi -  0 .02K g /s  .
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Figure 4.10: Predicted pressure (thin line) in com bustion zone and velocity  in tailpipe 

(thick line) obtained with TW=1000K, h=120W/(m2K), ^ = 0 .8 ,  /n. = 0.02ATg / s and 

with different friction coefficient f  ( a ) / i s  0; ( b ) / i s  0.02; ( c ) / i s  0.04; ( d ) / i s  0.05.
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Figure 4.11: Oscillation amplitudes o f the pressure and the temperature, frequency o f  

oscillation, mean fuel mass fraction, and mean oxygen mass fraction as function o f  the 

equivalence ratio with TW=1000K, h=l20W/(m2K),f=0.03 and mi =0.02Kg / s .
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Figure 4.12: Predicted pressure and temperature oscillations with sinusoidal supply o f  

reactants. In this simulation, the frequency o f  the inlet flow  is related with a feedback 

mechanism to the frequency o f the pressure oscillations in the combustion chamber.
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Figure 4.13: Predicted pressure (thick line) and temperature (thin line) obtained with 

TW=1000K, h=120W/(m2K), $ = 0 .S,f=0.03, main steady inlet o f  reactants mi equal to

0.02Kg/s, and second sinusoidal inlet o f  mixed reactants mis equal to 

0.0015 + 0.0015 sin(2;r x 68?).
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Figure 4.14: Maximum and minimum oscillation amplitudes o f  the pressure as function 

o f the average value o f  the second inlet mass flow o f  m ixed reactants C with TW=1000K, 

h=120W/(m2K), <f> = 0.8 ,f= 0.03, and mi = 0 .0 2  K g /s . For mi s , co is 68 Hz and 6 is 0  
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Figure 4.18: A simple PI control for steady inlet mass flow: (a) predicted pressure (thick 

line) and temperature (thin line) obtained with TW=1000K, h=120W/(m2K), 0 = 0.$, 

f=0.03 and with a steady inlet o f  reactants m, equal to 0.02 Kg/s; (b) predicted pressure 

(thick line) and temperature (thin line) with PI control, in which the PI controller is on 
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5. ZERO-DIMENSIONAL PREMIXED COMBUSTION MODEL

NOMENCLATURE

A Kinetic constant ( (m3 )"_1 / (y[~K • Kg"-1 • s))

4 Tailpipe cross-section area (m2)

4 Inlet pipe cross-section area (m2)

4 Surface area of the combustion zone (m2)

4 * Surface area of the fresh reactant region in the inlet pipe (m2)

4 / a Surface area of the burned products region in the inlet pipe (m2)

ŝtq Surface area of the burned products region in the tailpipe (m2)

ŝir Surface area of the fresh air region in the tailpipe (m2)

Cp Constant pressure specific heat ( J /(K g  • K ) )

Cv Constant volume specific heat ( J /(K g  • K ) )

% Diameter of the inlet pipe (m)

D'P Diameter of the tailpipe (m)

e Specific internal energy (J/Kg)

e o Specific internal energy of the fresh reaction region in the inlet pipe (J/Kg)

e b Specific internal energy of the burned products region in the inlet pipe (J/Kg)

e d Specific internal energy of the tailpipe to the ambient surroundings (J/Kg)

e e Specific internal energy of the tailpipe exiting from the combustion zone

(J/Kg)

ei Specific internal energy of the inlet to the combustion zone (J/Kg)

% Specific internal energy of the burned products region in the tailpipe (J/Kg)

e r Specific internal energy of the fresh air region in the tailpipe (J/Kg)

eu Specific internal energy of the upstream in the inlet pipe (J/Kg)

141
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E  Activation energy (J/Kg or cal/mol)

f  Friction coefficient

Ffip Friction force on the contact surface between the flow and the inlet pipe (.N)

Fftp Friction force on the contact surface between the flow and the tailpipe (N)

Fx Force along jc-direction (N)

h Heat transfer coefficient (W /(m 2 -K))

La Length of fresh reactant region in the inlet pipe (m)

Lb Length of burned products region in then inlet pipe (m)

LcX First characteristic length (ratio of combustion zone volume Vc to surface

area As) (m)

Lc2 Second characteristic length (ratio of combustion zone volume to tailpipe

cross-section area Ae) (m)

Length of the inlet pipe (m)

Lq Length of burned products region in the tailpipe (m)

Lr Length of fresh air region in the tailpipe (m)

Ly Length of the tailpipe (m)

md Exit mass flow rate from the tailpipe (Kg/s)

me Exit mass flow rate from the combustion zone (Kg/s)

rhi Inlet mass flow rate to the combustion zone (Kg/s)

mu Upstream mass flow rate in the inlet pipe (Kg/s)

P Pressure in combustion zone (bar)

P Pressure in the combustion zone normalized with the ambient pressure

P0 Ambient pressure (bar)

Pa Pressure in the fresh reactant region (bar)

Pb Pressure in the burned products region (bar)

Pd Pressure at the downstream position of the tailpipe (bar)

Pd Pressure at the downstream position of the tailpipe normalized with the

ambient pressure 

Pe Pressure at tailpipe entrance (bar)
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Pe Pressure at the tailpipe entrance normalized with the ambient pressure

P. Inlet pressure to combustion zone {bar)

P. Inlet pressure to combustion zone normalized with the ambient pressure

Pic Pressure of the contact surface in the inlet pipe (bar)

Pq Pressure in the burned products region {bar)

Pr Pressure in the fresh air region {bar)

Ptc Pressure of the contact surface in the tailpipe {bar)

Pu Pressure at the upstream position of the inlet tube {bar)

Pu Pressure at the upstream position of the inlet tube normalized with the

ambient pressure 

q Heat transfer rate vector {J/{m2 -s))

Q Heat release per unit volume ( j / { m 3 • s ) )

R Gas constant (7 / (Kg ■ K ))

Rf  Fuel reaction rate (per unit volume) ( Kg/{m 3 s ) )

Sr Stoichiometric mass ratio between fuel and oxygen

T Temperature in combustion zone {K)

T Temperature normalized with the ambient temperature

T0 Ambient temperature {K)

Ta Temperature at the region a in inlet pipe {K)

Ta Temperature at the region a in inlet pipe normalized with the ambient

temperature

Tb Temperature at the region b in inlet pipe {K)

Tb Temperature at the region b in inlet pipe normalized with the ambient

temperature

Td Temperature at the downstream position of the tailpipe {K)

Td Temperature at the downstream position of the tailpipe normalized with the

ambient temperature 

Te Temperature at tailpipe entrance {K)
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Te Temperature at the tailpipe entrance normalized with the ambient

temperature

Ti Inlet temperature to combustion zone (AT)

Tx Inlet temperature to combustion zone normalized with the ambient

temperature

T Temperature at the region q in tailpipe (A)

Tq Temperature at the region q in tailpipe normalized with the ambient

temperature

Tr Temperature at the region r in tailpipe (K)

Tr Temperature at the region r in inlet pipe normalized with the ambient

temperature

Tu Temperature at the upstream position of the inlet tube (K)

Tu Temperature at the upstream position of the inlet tube normalized with the

ambient temperature 

Tw Wall temperature (K)

Tw Wall temperature normalized with the ambient temperature

u Velocity (m/s)

u Velocity vector (m/s)

uip Velocity of gas in the inlet pipe (m/s)

utp Velocity of gas in the tailpipe (m/s)

Vc Combustion zone volume (m3)

Yf Fuel mass fraction in the combustion zone

Yfb Fuel mass fraction of the burned products region in the inlet pipe

Yfe Fuel mass fraction from the exit of the combustion zone

Yfi Inlet fuel mass fraction to the combustion zone

Yfq Fuel mass fraction of the burned products region in the tailpipe

Yfu Fuel mass fraction at position u

Y0 Oxygen mass fraction in the combustion zone
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Yob Oxygen mass fraction of the burned products region in the inlet pipe

Yoe Oxygen mass fraction from the exit of the combustion zone

Yoi Inlet oxygen mass fraction to the combustion zone

Yoq Oxygen mass fraction of the burned products region in the tailpipe

You Oxygen mass fraction at position u

Ze Exit mass flow per combustion zone volume ( K g/(m 3 -s))

Z i Inlet mass flow per combustion zone volume ( K g / (m 3 • s ) )

GREEK LETTERS

AH f Heat of reaction (per unit fuel mass) (J/Kg)

* Equivalence ratio

P Density in the combustion zone (Kg/m3)

Po Ambient density (Kg/m3)

Pa Density of the fresh reactant region in the inlet pipe (Kg/m3)

Pb Density of the burned products region in the inlet pipe (Kg/m3)

Pd Downstream density at the tailpipe (Kg/m3)

Pe Density at the tailpipe entrance (Kg/m3)

Pi Density at the inlet entrance of the combustion zone (Kg/m3)

P , Density of the burned products region in the tailpipe (Kg/m3)

Pr Density of the fresh air region in the tailpipe (Kg/m3)

Pu Upstream density at the inlet pipe (Kg/m3)

7 Ratio of specific heat

To Shear stress of the reactant products along the tailpipe wall (N/m2)

T0ia Shear stress of the fresh reactant region at the inlet pipe wall (N/m2)

T0ib Shear stress of the burned products region at the inlet pipe wall (N/m2)

145



5. Zero-dimensional Premixed Combustion Model

2
r0tq Shear stress of the burned products region at the tailpipe wall (N/m )

T0tr Shear stress of the fresh air region at the tailpipe wall (N/m2)

tc Combustion time (s)

re Exit flow time (s)

tht Heat transfer time (s)

Tj Inlet flow time (5 )

PREFIXES

m Fractional reaction order in oxygen

n Overall reaction order

SUFFIXES

cv Control volume for combustion zone

/  Fuel

ipv Control volume for inlet pipe zone

o Oxygen

s Control surface of the combustion zone

tpv Control volume for tailpipe zone
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5.1 INTRODUCTION

A combustion process is the core of numerous applications devoted to propulsion and 

power generation. One of the main problems affecting combustion is the birth and the 

growth of the oscillations of the flame-front heat release area and of the pressure field 

inside the combustion chamber. This phenomenon is called thermo-acoustic instability 

and is self-sustained when a phase coupling between the two oscillations exists, 

pumping energy to the resonant modes of the combustion chamber [85]. The knowledge 

of the dynamic evolution of continuous combustion processes affected by thermo­

acoustic instability represents an important issue in view of the development of 

combustion systems characterised by compact size, high performance and low pollutant 

emissions as well as high flexibility to different operating conditions.

Beale [111] has highlighted the complex nature of operation for certain designs of 

pulsating combustor. The simple fuel inlet and the open air inlets of these naturally 

aspirating combustors generate a complex unsteady flow of reactants, which in turn 

varies the phase shift between heat release and acoustic pressure waves -  the Rayleigh 

Phase [136], which results in irregularities in the oscillations such as amplitude 

modulations and cyclical frequency variations.

The premixed combustor model of the previous chapter generated predictions of 

characteristic variables such as frequency, pressure and temperature amplitude (referred 

to as primary variables hereafter). Furthermore, introducing a non-steady supply in the 

premixed inlet of the fuel/air induced variations of frequency with the cycles and 

accompanying modulations of amplitude.

In reality, the pressure in the air inlet pipe fluctuates around the atmospheric value, 

while the fuel inlet is driven by high upstream pressure as described by Beale [111]. 

Hence, in the model the pressure in the single inlet should fluctuate around a value 

slightly above atmospheric. However, relating the inlet mass flow to the pressure in the 

inlet pipe was not considered for the premixed combustor model in the previous chapter.
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In this chapter, a zero-dimensional premixed combustion model is proposed. The 

essential features of the combustor geometry, combustion reaction rate and unsteady 

mixed reactants motion are accounted for. The governing equations presented identify 

key characteristic length and time scales, while the numerical simulation of the 

equations provides a relatively more efficient prediction of the combustion pressure 

oscillations. In addition, the pressure in the inlet pipe with a value slightly above 

atmospheric is considered.

5.2 COMBUSTION MODEL GEOMETRY AND EXPERIMENT RESULTS

The schematic layout of the experimental combustor is shown in Figure 5.1: it consists 

of an inlet pipe, combustion chamber and tailpipe. The combustor used is of the 

Helmholtz type.

For the premixed combustor model in the previous chapter, only the combustor and the 

tailpipe are considered. The integral of density in the tailpipe control volume is 

approximated as the product of the tailpipe entrance density p e and the tailpipe volume.

The simplified combustor model geometry is shown in Figure 4.3. In this chapter, a 

more complicated combustion model is considered, the geometry of which is shown in 

Figure 5.2. For reference, the positions u, i, e and d  are identified with the upstream, 

inlet, exit and downstream locations. The combustion zone is defined as the region 

between position i and e, as shown in Figure 5.2 (a) of the shaded region. It is assumed 

that the combustion occurs only in this region, although the equations presented here 

can be modified to allow for combustion in the inlet and tailpipe regions as well. As 

shown in Figure 5.2 (b), the well mixed fresh reactant may be either drawn in or driven 

out through the inlet pipe. Similarly, the fresh air may be either drawn in or driven out 

through the tailpipe. It is assumed that the fresh reactant or air is separated from the 

burned combustion products by a contact surface, which moves through the inlet or 

tailpipe regions. The burned combustion products are shown as shaded regions 

composed of fuel, air and reactive products. Within the combustion zone, fuel and 

oxygen react at a rate controlled by a one-step Arrhenius kinetic mechanism. The
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ambient pressure at the tailpipe exit is Po- A constant friction factor / i s  specified along 

the inlet pipe and tailpipe length.

As described in the previous chapter, the pressure wave is measured using a fast 

responding piezo-electric pressure transducer, and the temperature is measured with fine 

wire thermocouples. Velocity measurements are carried out using Laser Doppler 

Anemometry [111].

The most important measurement to compare different operating conditions and burner 

configurations is that of pressure. The evaluation of the frequency and the pressure 

amplitudes shows the important features of the Helmholtz type combustor. Figure 4.4 (a) 

shows the experimental data of the oscillatory pressure in the combustion chamber. 

Figure 4.4 (b) shows the FFT analysis result for measured pressure oscillations (via 

Matlab), in which the oscillatory pressure amplitude is about 7.5 kPa, frequency about 

75 Hz.

5.3 A ZERO-DIMENSIONAL COMBUSTION MODEL

Control volume conservation laws for each of the various regions are written next. The 

development that follows is similar to the one proposed in the previous chapter. The 

integral form of the conservations laws can also be referred to in Moody’s literature 

[137]. Assuming uniform conditions within each region, the control volume and surface 

integrals are reduced to algebraic expressions, resulting in a set of first-order differential 

equations. Before modelling the combustion process, the following assumptions are 

employed:

1) The reactants are well mixed before entering the combustor, and the combustion 

occurs only in the combustion zone (between positions i and e).

2) A contact surface exists in the inlet pipe, which separates the fresh well-mixed 

reactants from the burned gases and moves within the inlet pipe. Similarly, a contact 

surface exists in the tailpipe, which separates the fresh air from the burned gases and 

moves within the tailpipe.
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3) The inlet pipe is long enough to stop the burned products from the combustor 

returning through the inlet pipe and entering into the fresh reactant supply.

4) The combustion volume is considered as a homogeneous and isochoric zone, and

C.
ideal gas properties are used: e~CvT, CP=CV+R, and y  = — .

Cv

5) Compared with the specific internal energy e, the contributions of the specific 

kinetic energy w2/ 2 to the energy change in the combustion zone are negligible.

5.3.1 Conservation Equations in Combustion Zone

Based on the first law of thermodynamics, a control volume equation for energy 

conservation in the combustion zone is written as:

d_
dt

r (  1 A r ■ r f  1 Y_ _ f— — f — —
I p \e  + - u 2 dV  = |  QdV -  <̂ p e + — u 2 u • nds -  • nds -  <̂ Pu • nds (5.1)

As described in the previous chapter, the left side of this equation represents the rate of 

energy change of the system; while, the first item on the right side is the heat release 

rate due to combustion, the second is the net energy flow rate through the combustor 

surface, the third is the heat transfer rate with combustor wall, and the last is the rate of 

the net pressure work through the combustor surface. In equation (1), w2/ 2 is the 

specific kinetic energy, u the velocity vector, n the unit vector, and q the heat transfer 

rate vector. The suffixes of the integral symbol cv and s represent the control volume 

and the control surface of the combustion zone respectively.

Assuming uniform conditions within each region, the volume and surface integrals are 

simplified to algebraic expressions, Equation (5.1):
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V~ ^  =Cp(Tlml - T erhl )+QVc +hA,{Tw- T )  (5.2)
y - \  dt

Defining the following parameters:

1) Inlet mass flow per combustion zone volume

Z , = y  (5-3)

2) Exit mass flow per combustion zone volume

Z , = y  (5-4)

3) The first characteristic length (ratio of combustion zone volume to surface area As)

The conservation of mass is:

— f pdV = -cfpw nds (5.6)
dt A

which states that the mass change in the control volume is derived from the net mass 

flow through its control surface.

Employing similar assumptions as in Equation (5.2), Equation (5.6) for the combustion 

zone becomes:

§ - Z , - Z .  (5.7)
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p
By means of the ideal gas law, p   ----- , Equation (5.7) becomes:

RT

1 dP P dT
= Z , - Z e (5.8)

RT dt R T 2 dt

To simplify the resulting expression, the following characteristic times are defined:

1) Inlet flow time

h = Y  <5-9>

2) Exit flow time

(510>

3) Heat transfer time

(5-11)h

4) Combustion time

Note that the defined heat transfer is different from the one in previous chapter, this is 

mainly for the simplification of the following equations.

Referring to the definition of Z, (Equation (5.2)), the inlet flow time is the mean 

residence time for non-reactive isothermal gas to pass through the combustion volume. 

11 does not correspond to a residence time in the reactive pulsating case, hence the
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expression flow time is appropriately called “cold residence time” or “non-reactive 

residence time”. The inlet and exit flow times are not constant and have negative values 

when the flow reverses in either the inlet pipe or the tailpipe; i.e., when the flow is 

moving from right to left at position i or e. For a constant heat transfer coefficient, the 

heat transfer time is constant. However, the combustion time is not a constant time scale, 

changing with the heat release rate.

Normalizing the temperature and pressure with the ambient temperature and pressure 

and denote them with a tilde, Equations (5.2) and (5.8) give:

dP
dt = r

Tt Te 1
—   -  +  — + (5.13)

C H T

and

dT_
dt r

T. T  1i   e _|__
T ■ T TV * « c j

+
H T

T_
P

1 1
P

(5.14)

The mass fractions of fuel and oxygen are determined from the conservation of species 

in the combustion zone. For fuel, it is:

d_
dt

| ^pYf dV = -<^pYf u • nds -  |  Pf dV (5.15)

which means that the rate of change of fuel mass is equal to the net fuel mass flow rate 

through the combustor surface subtracting the parts consumed in the combustion 

process.

With the same assumptions for deriving the Equation (5.2) from Equation (5.1), 

Equation (5.15) becomes:

j t {pYf Vc)= m iYf i - r h J f t - R f Vc (5.16)
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Hence, the resulting fuel mass fraction is:

dY, r C T ^p 0

AH r\  f  y
(5.17)

For oxygen, the formulation for conservation of species is:

dt
f pY0dV = -<^pY„u • nds -  \ S rRf dV (5.18)

With the same assumptions for deriving Equation (5.2) from Equation (5.1), Equation 

(5.18) becomes:

-{pY .V ')  = m ,Y j-m .Y „ -k t V'Sr (5.19)

Hence, the resulting oxygen mass fraction is:

dt P t; P r ,  P
(5.20)

For Yfi, when the velocity in the inlet pipe uip is positive (or zero), Yft is equal to Yjb for 

positive Lb or Yfu for zero Lb, when uip is negative, Yft is equal to Yf. For Yfe, when the 

velocity in the tailpipe utp is positive (or zero), Yfe is equal to Y/, when utp is negative, Yfe 

is equal to Yfq for positive Lq or 0 for zero Lq. There is a similar treated for Y0i and Yoe. 

That is:

when uin > 0 , Yr =
(Lh >  0) (Lh > 0)

and y , =
(Lh = 0) Yn„ (Lh = 0)

when uip< 0, Yf i = Yf  and Yci = Y0;
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when > 0 , Yfe =Yf  and Yoe = YC, or

when up < 0, Yfe = n ,  ( i ,  > 0)
0.232 ( I ,  = 0 ) '

Note that the oxygen mass fraction in the air is 0.232.

For solving the above equations an expression for combustion time r c needs to be 

developed. The instantaneous heat release (per unit volume) Q is the product of the heat 

of reaction (per unit fuel mass) AH f  and the fuel reaction rate (per unit volume) Rf , 

that is:

The fuel used in the combustor is propane. Its AH f  value could be found in Rose’s or 

Perry’s Chemical Tables [122, 123].

A bi-molecular rate law is used to describe the fuel reaction rate, given by:

where A is the kinetic constant, Y0 the instantaneous oxygen mass fraction in the 

combustion zone, Yf the instantaneous fuel mass fraction in the combustion zone, and E  

the activation energy; the prefix m is the fractional reaction order in oxygen, and n the 

reaction order.

The pressure and temperature at the inlet tube entrance (upstream position u) are 

expressed as Pu and Tu respectively, while the ambient pressure is Po and the ambient 

temperature is T0.

Combining Equations (5.12), (5.21) and (5.22), the combustion time is then:

Q = AHf Rf (5.21)

Rf  = A T '12 p"Y0mY f men-m -E/ RT (5.22)
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1 AH  p n~x p n
—  = A  L  ,° ~ Y"Y"-me~TjT (5.23)
_  £  j ^ n - \ r p n - Q . S  j i n - O . S  °  J  >■ *

If it is assumed that the overall reaction order n is 2 and m is 1, then the Equation (5.23) 

becomes:

1 AH f p 2 f
7  = A 7 T W Y°Y' e (5-24)
T C L P 1 0 T

where A' is the product of the kinetic constant multiplied by various other model 

constants, and Ta is a dimensionless activation temperature.

Up to here, the models employing conservation equations for mass, species and energy 

in the combustion zone have been constructed. To complete the development, it is 

necessary to derive the equations for inlet pipe and tailpipe to determine the inlet mass 

rate m; and exit mass flow rate m„.

5.3.2 Conservation Equations in Inlet Pipe

The gases in the inlet pipe are modelled as a slug flow with velocity uip. A  contact 

surface might exist within this inlet pipe when the fresh well-mixed reactant is drawn 

from the upstream reservoir and flows to position i. Hence, the inlet pipe is divided into 

two regions: fresh reactant region ‘a ’ and burned products region lb \  Then the length 

between the position u and the contact surface is denoted as La. The motion of this 

contact surface is expressed as:

(5-25)

which is valid when the regions a and b are all existing.

While for the length of burned products region in the inlet pipe Lb, it is:
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Lb = Lip- L a (5.26)

The regions on either side of the contact surface are characterized by a single value for 

all properties. The suffix ‘a ’ corresponds to fresh reactant drawn from the upstream of 

the inlet pipe, while the suffix ‘6’ gives the properties of the burned products region. 

The combustion reaction is assumed to be quenched in the burned products region, and 

the concentrations of any residual fuel and oxygen are derived by the model. With the 

conservation of mass in the fresh reactant and burned products regions within the inlet 

pipe, the equations for densities are obtained.

For the density p a in region a in the inlet pipe, it is: 

dp, ( p . - P , ) .uin L„ = Lin 
dt L ,p
, < v \ (5.27)

dp,  ( P , - P , ) . .  n , T , T
dt u,p 0 < L ,< L ,P

For the density p b in region b in the inlet pipe, it is: 

dpb {pu - a ) .
dt -  ^  L „ - L lp

dpb _ { p b - P i )  0 < L < L
(5.28)

dt Lh b ,p

The following is an overall momentum balance equation, which is used for the 

combined fresh reactants and burned products regions in the inlet pipe. The equation 

balances the change of the momentum for both regions as well as the corresponding 

pressure and friction forces acting on the slug of the fluid:

y^F x = —  f pudV + c(puu ■ nds (5.29)
^  dt jpv ■*'
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The left side of the equation represents the sum of all forces acting in the axial direction 

on a control volume; while the first item on right side of the equation is the rate o f 

change of momentum in the inlet pipe, and the second is the rate of change of the net 

momentum flow out of the inlet pipe in the same direction as the sum of all forces.

The sum of all forces includes the pressure on each side of the inlet pipe and the friction 

force Ffip on the contact surface between the flow and the inlet pipe.

Hence, Equation (5.29) becomes:

(Pu - P l)Ai +Ffip= —̂ - ^ p d V  + uip ^  ^ p d V  + ^pu -nds^  (5.30)

The integral of density in the inlet pipe is the combination of the fresh reactant and 

burned products regions. It is also noticed that the term in brackets on the right side is 

zero according to the overall conservation of mass in inlet pipe, that is:

J pdV  + <̂ pu • nds = 0

The friction force Ffip is developed from the wall shear stress in terms of the 

conventional friction coefficient /  , as shown in Schlichting [114]. Using the 

instantaneous velocity of the inlet pipe in Schlichting’s expression and considering the 

shear stress at the wall of the inlet pipe, it is shown that:

_ 1 /• 2T0ia ~  g jPaFip

-  1  /  2r 0ib ~ n fP b Uip

(5.31)

The friction forces of these two regions in the inlet pipe are then calculated by 

multiplying the wall shear stresses r0ia and r0ib by the surface areas Asia and As,b. The

sign of the velocity needs to be considered for the direction of the force acting on the 

control volume. Performing these steps, Equation (5.30) becomes:
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(5.32)

In contrast to the overall momentum balance equation for the whole inlet pipe, the 

momentum balances applied to regions a and b are separately derived, which are:

When the region b does not exist, the Pic in Equations (5.33) and (5.34) is equal to P,; 

while, when the region a does not exist, the Pic in Equations (5.33) and (5.34) is equal to

Similarly to the conservation of energy in Equation (5.1), the individual energy balance 

equations are developed for the fresh reactant and burned products regions. Note that the 

kinetic energy should not be ignored again and must be considered when deriving the 

energy balance equations in these two regions. Combining the Equations (5.27), (5.28), 

(5.33) and (5.34), the energy balance for each region in the inlet pipe could be obtained.

For the temperature Ta in region a in the inlet pipe, it is:

(5.33)

and

b u ip ^ s ib (5.34)

(5.35)

For the temperature Tb in region b in the inlet pipe, it is:
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0 < L. < Linb ip

(5.36)

Assuming that the combustion reaction is quenched in the burned products region, the 

species conservation is then derived for fuel and oxygen within this region. Although 

the reaction is quenched, the species mass fractions could be varied by the changed 

boundary conditions, such as the one at position i. Combining the mass conservation 

equations, the species equations are obtained.

For the fuel mass fraction Yjb in region b in the inlet pipe, it is:

dY4
Lh = Liob ip

0 <Lh < Linb ip

(5.37)

For the oxygen mass fraction Y0t  in region b in the inlet pipe, it is:

(5.38)

Up to now, the models employing conservation equations for mass, species and energy 

in the inlet pipe zone have been considered. Similar methods will be used in the tailpipe 

zone.
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5.3.3 Conservation Equations in Tailpipe

Equations (5.25)-(5.38) describe the behaviour of the species in the inlet pipe. A similar 

set of expressions can be applied to the tailpipe.

The gases in the tailpipe are modelled with velocity u^. A contact surface might exist 

within this tailpipe when the burned products are drawn from the combustion zone. 

Hence, the tailpipe is also divided into two regions: burned products region tq > and fresh 

air region V . Then the length between the position e and the contact surface is denoted 

as Lq. The motion of this contact surface is expressed as:

dLa
- ±  = u,P (5.39)dt

which is valid when the regions q and r are all existing.

While for the length of fresh air region in the tailpipe Lr, it is:

With the conservation of mass in the burned products and fresh air regions within the 

tailpipe, the equations for densities could be obtained.

For the density p  in region q in the tailpipe, it is:

dp« ( P ' - p , , )
dt L.

dP, [Pe~P,)
dt u ,p  0  < L , <  L , r

(5.41)

For the density p r in region r in the tailpipe, it is:
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dpr _ ( P , ~  Pd)..  T------- — ------------------- u  / — /
d t  L . ,p  r ,p

*>, ( P , : Pd)u , . L  . L  ( 5 ' 4 2 )

~dT~ L. * 0 <L' <L»

The overall momentum balance equation within the tailpipe is:

(Pe - P„ K  +Ff,P = ~ \  pdV  (5.43)
dt V

The friction force F/tp is also developed from the wall shear stress in terms of the 

conventional friction coefficient/ as shown in Schlichting’s text [114], which provides 

that:

_ 1 /- 2 
' 0tq g JPq^tp

j (5.44)
r 0 t r= ^ fP rU

Hence the friction force Fftp is calculated by multiplying the wall shear stresses r0 and 

r0tr by the surface areas Astq and Astr. The sign of the velocity is also needs to be

considered for the direction of the force acting on the control volume. Performing these 

steps, Equation (5.43) becomes:

(PqLq + PrL, ) ^ £ -  = (?e -1  ]P, -  PrL' ^  (5-45)
d t  2 D >P \U 'p \

The momentum balances applied to regions q and r are separately derived, which are: 

PqL ^  = (Pe - P j - fp/ \ ^ -  (5.46)
dt s k K

and
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T ^ Utp ( u  T t \  f P r U tp A str
Pr r —7T =  \Pt c -  P0 ) ------~| " T , -  (5 ‘47)

When the region r does not exist, the Ptc in Equations (5.46) and (5.47) is equal to Ph 

and when the region r is filled in the whole tailpipe, the Ptc is equal to Pe.

Combining the Equations (5.41), (5.42), (5.46) and (5.47), the energy balances for each 

region in the tailpipe are shown as follows.

For the temperature Tq in region q in the tailpipe, it is:

r, J r  -  C»rhM - Ti )  - T q) . f P « K Asu, J  _ J

Q tp v A A ol I A r~ L tpdt Ap Ap 8| utp\AeT0

<IT, Cvme(fe - T q) f p qu 4vAm
(5.48)

P.L.C, —  = - -   -  + ■ 1 ’ , - -  0 < L < L a
'  '  dt Ae 8 k  \A.Tt P ¥

For the temperature Tr in region r in the tailpipe, it is:

^  d f ,  Cvme{Te - T r) C , m & - T r) f p ^ A ^  _

P' L»C’ ^ =  1  4 . S k l ^ o  '  *

p L C  Tj ) + f p 0  < L < L , p
dt Ae Z \u A a J 0

(5.49)

Combining the mass conservation Equations (5.41) and (5.42), the species equations in 

the burned products region within the tailpipe are obtained.

For the fuel mass fraction Y/q in region q in the tailpipe, it is:
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For the oxygen mass fraction in region q  in the tailpipe, it is:

P q ^ t p
d Y oq

dt

•shH 1
 ̂

1 3
-

* 
1̂. i •8
s A, -  AP

PqLq
d Y oq

dt

•shii r . - O 0 < L ,  < Ap

Thus the Equations (5.39)-(5.51) describe the behaviour of the fluid in the tailpipe.

5.3.4 Equation Boundary Conditions

Further effort is needed to determine the boundary conditions for the whole combustion 

system.

The pressure in upstream position u ,  Pu, is always treated as constant, whilst the 

temperature T u will depend on the direction of velocity in the inlet pipe. When u ip > 0 , T u 

is equal to ambient temperature T o ; when u ip < 0  and L a > 0 ,  T u is equal to T a \ and when 

u ip< 0  and L a = 0 ,  T u is equal to T b .

The inlet pressure P h inlet temperature T „  exit pressure P e , and exit temperature T e are 

related to the combustion pressure P  and temperature T  by the adiabatic isentropic 

process from the combustor into either pipe. Here it is assumed that the change process 

from P  and T  to P„ P e , T , and T e is an adiabatic reversible process. For an adiabatic 

constant-entropy (isentropic) process:

P V r =  c o n s t a n t  ^

T V r ~x = c o n s t a n t

The diameter of combustor is regarded as much larger than either pipe. Hence, the 

adiabatic isentropic process from P  and T  to P i ,  P e , T j and T e is started with the velocity 

u c (using subscript c  for the state variables in the combustor), 0, to the velocity Utp  at the 

inlet pipe and u tp at the tailpipe. With the assumption that the mass flow in the cross 

section of the control volume is constant, the following equations are derived:
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For inlet pipe, it is:

-?— RTi + - u l = ^ — RT  
r -1 ' 2 ,p r -1

(5.53)

For tailpipe, it is:

- ^ R T e+ - u l = ~ R T  
r - l  2 r - i

(5.54)

Normalizing the temperature T, and Te with the ambient temperature To, Equations (5.53) 

and (5.54) become:

p = r  + O - x V (5.55)

and

T = T  +
2yRT0

For pressure P, and Pe :

(5.56)

P = P
2yRT0T 

2yRTr>f  + ( \ - r H

i-r
(5.57)

'z7 y

and

P1=P
2yRT0T 

2yRTJ + { \-y )u

\ l - y

2
'z7 y

(5.58)
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The equations above are only suitable for the flow from the combustion zone to either 

pipe. For the flow into the combustion zone from either pipe, it is assumed that the fluid 

enters the combustion zone at the combustor pressure, whilst the temperature 7} is equal 

to Ta for La=Lip or 7& for Lt>0. A similar treatment is used for Te.

When Utp>0, the pressure Pa in position d  is Po (ambient pressure), and the temperature 

Td is equal to Tq for Lq=Ltp or Tr for Lr>0\ when utp<0 , Pd and Td are calculated just like 

equations (5.55)-(5.58):

Thus, the simulation of the combustion model is achieved by simultaneous solutions o f 

the differential equations in the combustor, inlet pipe and tailpipe. These are 

summarized as follows:

for combustor, the required differential equations are:

^ = 1  +
(i-rK

2 yRT0
(5.59)

and

2yRT0
(5.60)
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for inlet pipe, the required differential equations are:

d la— -  -  u- 
dt ip

dPa _ (Pu-Pi)
dt

t t;  L  --ip a ip

dpa _ ( P ,~ P J
dt L,

dpb _ { p , ~ p )

%  0 < L a < L lp

dt L...
dpb (pb~ p )
dt

U- Lh = Lip b ip

u 0 <LU<L-ip b ip

cO.L. + PbLb = (p. -  P, ]p0 -  p
dt 2D-

dTa c vmu (f„ -  Ta) C > , (7 ; -  f j  t fpptpAia 
dt 4  A, 8|w„,|4T0

d'Pg C,m„{Tu — Ta) f p auipAsia
p,LC„ — -  = ^  +

dt A,, 8 \ulp\A,T0
0 <La <Llp

r r  d ^h -  c < " 'M ~ T b) C vm f c - T b) fP d A pA sib 
" ' dt A, A, 8k„UT„ 6 ip

Pb^b^v

V  V o

dt
0 <Lb <Lip

PbLb ~  =— {Yib- Yr,)Fb b dt A ,y,b fll
0 <Lb < Lip

PbL‘" ^ ¥  = rT (y»«- y- ) - T - 7»*) L» = ^dt Ai Ai

PbLb^  = ^ ( Y ob- L )
dt A;

0 <Lb < Lip

and for tailpipe, the required differential equations are:

dL
— = ut

dt *
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_ (Pe A/)J, r _ T
l ’ - L°

* Z . . v - - £ d u  o < l < k
dt Lq * " *

dpJL = (P e~P j)u L r =Lw 
dt L ,  * *

dp, _ { P r - P d )
dt L,

Ufo 0 <Lr <L,„tp r tp

3

dt 2 Dv R .

„ , r  _ c>«(a~A) c M ^ O  , / P ,» ^  ,
* * ' *  4. 4. 8 k k r 0 * *

dTq CjmJjT.-T,) J p & A ,
P'L.C ,—*- = ■■’ ■s"! 0 < L < L a

' q dt Ae 8|«,p| ^ r 0 '  *

dTr _C,me( f ' -T r) Cvmd(Td - T r) f p rulAsrr 
Pr * ’ dt ~ a, _ ~ 4  + 8 |u, ^ r 0  L' L*

PrL C  - f i ) + /fl-»«Ar 0 < i  < £
*  4. 8 k  \AeTa p *

dYfa 
o L fqP, r  dt

•shii II

dY,
p L  fq 
Pq q dt

_ th e i

4.
h - v * ) 0 < Lq < Ap

dYna 
PqLtp dt - “ '1

4. i - f r--n,) A = A ,

P l " «
Pq q dt •V r . - r j 1

In summary, the conservations laws for the combustion zone, inlet pipe and tailpipe 

have been developed. The solution of the equations above gives the pressure, 

temperature, fuel mass fraction and oxygen mass fraction in combustion zone, inlet pipe 

and tailpipe. The pressure and temperature at each pipe are related to the pressure and 

temperature in combustion chamber by the adiabatic isentropic process when the flow is 

from the combustor to either pipe.
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5.3.5 Equation Solution and Initial Conditions

The governing equations are solved with a fourth-order Runge-Kutta scheme [130]. In 

the simulation programs, a time step decrement/increment method is employed in order 

to achieve the compromise between speed and accuracy o f the calculation. A time-step 

decrement is performed when the temperature, pressure or velocity changes rapidly. 

This decrement is followed by a time-step increment when these changes are moderate.

The initial conditions are:

1) Initial temperature: 5 x T0

2) Initial pressure: 1 x P0

3) Friction factor: 0.03

The initial conditions correspond physically to filling the combustor with unbumed fuel 

and air at ambient pressure with no exiting flow. An absolute temperature of five times 

the ambient is used to ensure the temperature is high enough to initiate combustion.

5.4 SIMULATION RESULTS OF ZERO-DIMENSIONAL PREMIXED 

COMBUSTION MODEL

To simplify the simulation, it is assumed that the air and gas are well mixed before 

entering into the inlet pipe zone. The combustion system geometrical parameters are 

given in Table 5.1.

For comparison of the experimental and simulation results, an FFT analysis [129-131] is 

undertaken to obtain the oscillating amplitude and frequency by via Matlab [132, 133] 

software.
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5.4.1 Prediction of Pressure Oscillation in Combustor

The pressure is firstly predicted for the zero-dimensional combustion model at lean 

conditions, and is shown in Figure 5.3. The heat transfer process is predicted by fixing 

the wall temperature Tw at 1200 K and setting the heat transfer coefficient h at 120 

W/m2K. The friction coefficient/in the inlet pipe and tailpipe is assumed as 0.03.

Figure 5.3 (a) shows the instantaneous simulation result of the pressure oscillation in the 

combustion chamber. Compared with the simulation result in Figure 4.5 (a) in previous 

chapter, the proposed zero-dimensional premixed combustion model gives more 

accurate pressure oscillation. Similar to the experimental data, the peak values of the 

simulated pressure vary from cycle to cycle. As shown in Figure 5.3 (b) by FFT analysis, 

the predicted peak amplitude of the pressure oscillation is approximately 7.8 kPa, and 

the predicted frequency of the pressure oscillation is about 70 Hz. Figure 4.4 shows the 

experimental measured pressure oscillation has an amplitude of about 7.5 kPa with 

oscillating frequency about 75 Hz. The predicted amplitude and frequency of the 

oscillations are here in more reasonable agreement with measured results than the 

premixed combustor model with steady inlet mass flow.

Figure 5.4 and Figure 5.5 show the instantaneous simulation results of the inlet and exit 

mass flow rates. The inlet mass flow rate approximately varies from -0.0015 kg/s to 

0.02 kg/s; while the exit mass flow rate approximately varies from -0.037 kg/s to 0.052 

kg/s. As mentioned above, the fuel inlet is driven by high upstream pressure during the 

experiment. In addition, the cold air in the inlet acts as a resistance for the gases 

attempting to exit the combustion chamber through the inlet. Hence, most of the burned 

products from the combustor due to the high pressure will be driven out to the tailpipe, 

as demonstrated by the simulation results.

Figure 5.5 also shows the phase shift between the pressure in the combustor and the exit 

mass flow rate. Due to the reaction of fuel and oxygen, the pressure in the combustor 

will increase to drive the burned products out to the exhaust. When the pressure value in 

the combustor starts to decrease, the inertia of the fluid will keep accelerating the fluid
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until the exit mass flow rate in the exhaust reaches the peak value. Hence, the phase o f 

the pressure in the combustor is ahead of that of the exit mass flow rate in the exhaust. 

A similar analysis can be used for the phase relationship between the pressure in the 

combustor and the inlet mass flow rate.

5.4.2 Tailpipe Length Effects

Figure 5.6 shows the experiment result o f the oscillation frequency of the pressure in the 

combustor for a number of tailpipe lengths. With increasing the tailpipe length, the 

oscillated pressure frequency in the combustor will continuously decrease, that is 

approximately from 80 Hz to 60 Hz.

Figure 5.7 shows the simulated results for the influence of the tailpipe length on the 

pressure amplitude and frequency in the combustor. The oscillation frequency of the 

pressure decreased from 75 Hz to 52 Hz as the tailpipe length increases. Figure 5.7 also 

shows the relationship between the maximum and minimum amplitude of the pressure 

oscillations and the tailpipe length. With increasing the tailpipe length, the maximum 

pressure amplitude trends to increase. The inverse trend is for the minimum pressure 

amplitude. For too long an exhaust, it will be more difficult for exhausted products to be 

driven out. Hence, the cold and fresh reactants will gradually accumulate in the 

combustion zone, and hence the flame will die out finally.

5.4.3 Inlet Pipe Length Effects

Figure 5.8 shows the simulated results for the influence of the inlet pipe length on the 

pressure amplitude and frequency in the combustor. The frequency of oscillations 

decreased from 87 Hz to 70 Hz as the inlet pipe length increases.

During the experiment, the fuel inlet is driven by high upstream pressure. In addition, 

the cold air in the inlet acts as a resistance for the gases attempting to exit the 

combustion chamber through the inlet. The effects of them are simplified by a constant 

pressure at the entrance of inlet pipe with a value slightly above atmospheric during the

171



5. Zero-dimensional Premixed Combustion Model

simulation, causing most of the burned products to be driven out to the exhaust. The 

inlet pipe length needs to be selected to be long enough to avoid the burned products 

returning into the fresh reactant supply. In addition, if the inlet pipe is too long, the fresh 

premixed reactants need longer time to enter into the combustor. Too much heat is lost 

through the convective heat transfer and the exhaust before the enough fresh reactants 

are supplied to sustain the continuous combustion. Then the flame will eventually die 

out and extinction occurs.

5.5 DISCUSSION AND CONCLUSIONS

A zero-dimensional premixed combustion model is proposed and developed in this 

chapter. The essential features of the combustor geometry, combustion reaction rate and 

unsteady mixed reactants motion are accounted for. The governing equations presented 

identify key characteristic length and time scales, while the numerical simulation of the 

equations provides a relatively more efficient prediction of the combustion pressure 

oscillations. In addition, the pressure in the inlet pipe with a value slightly above 

atmospheric is considered.

The proposed zero-dimensional premixed combustion model gives pressure oscillations 

closer to those measured experimentally, with the peak values of the simulated pressure 

varying from cycle to cycle. The simulation results show agreement with the experiment 

as the tailpipe length varies. For too long an exhaust, it will be more difficult for 

products to exhaust. Hence, the cold and fresh reactants will gradually accumulate in the 

combustion zone, and the flame will die out finally. For a too short an inlet pipe, the 

burned products may pass directly into the fresh reactant supply, which should be 

avoided. If the inlet pipe length is too long, more heat would be lost through convective 

heat transfer and the exhaust before enough fresh reactants are supplied to sustain the 

continuous combustion. Thus the flame will eventually die out with extinction occuring.

172



5. Zero-dimensional Premixed Combustion Model

Figure 5.1: Schematic Layout o f  Experimental Combustor
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Figure 5.2: Schematic Layout o f  Com bustion System
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Table 5.1: Geometric Conditions Employed in Combustion Model

Leu 0.2

Led 0.2

Length Lip 8.5
(m) Ltp 1.12

Lei 0.0278

Lc2 2.53

Diameter
(m)

Dc 0.15

Dip 0.075

Dtp 0.05

Cross-section AreaX
Ai 0.00442

(m ) Ae 0.00196
Combustion Zone Surface Area 

(m2) As 0.17842

Combustion Zone Volume 
(m3) Vc 0.00496
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Figure 5.3: Instantaneous Simulation Result of Pressure in the Combustion Chamber
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Figure 5.8: Simulated Amplitude and Frequency of Pressure Oscillations in Combustor 

as Function of the Inlet Pipe Length (Amp-Max means the maximum pressure 

amplitude, and Amp-Min means the minimum pressure amplitude.)
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6. PREMIXED COMBUSTION MODEL BASED ON ONE­

DIMENSIONAL TRANSMISSION LINE THEORY

6.1 INTRODUCTION

In Chapter 4, a premixed combustor model has been developed. This can predict the 

classic flame extinction and ignition boundaries, but also oscillating combusting at 

certain conditions with a steady premixed supply of fuel and air. A sinusoidal supply is 

then considered to simulate the influence of the back flow to the inlet due to the high 

pressure in the combustor.

In Chapter 5, a more accurate zero-dimensional premixed combustion model is 

developed. The essential features of the combustor geometry, combustion reaction rate 

and unsteady mixed reactants motion are accounted for. A contact surface is assumed to 

separate the fresh reactant or fresh air from the burned products, which moves through 

the inlet pipe and tailpipe regions. Assuming uniform conditions within each region, the 

volume and surface integral are reduced to algebraic expressions, resulting in a set of 

first-order differential equations. The proposed zero-dimensional premixed combustion 

model gives more accurate pressure oscillation predictions. Similar to the experimental 

data, the peak values of the simulated pressure vary from cycle to cycle. The simulation 

results show agreement with the experiment as the tailpipe length varies.

In reality, when the burned product is driven out to the inlet or exhaust, mixing 

processes between the fresh reactants and fresh air with the burned product occurs. To 

overcome the assumption of the slug flow in the inlet pipe and tailpipe in the previous 

chapter, a premixed combustion model with an added one-dimensional transmission line 

is proposed in this chapter. The parameters in combustor and tailpipe are only 

considered as the function of time variable; while the extra spatial variable is included 

for the parameters in the inlet pipe.
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6.2 COMBUSTION MODEL GEOMETRY AND EXPERIMENT RESULTS

The schematic layout of the experimental combustor is shown in Figure 6.1, which 

consists of an inlet pipe, combustion chamber and tailpipe. The combustor used is the 

Helmholtz type as described before.

The geometry of combustion model is shown in Figure 6.2, which is separated into inlet 

and combustion regions. The combustion region, including the combustor and tailpipe, 

is just as the layout of combustor model in Chapter 4, in which all the parameters are 

only considered as the function of time variable. In the inlet pipe region, the spatial 

variable is included into the parameters, which is similar to the one-dimensional 

transmission line model in Chapter 3.

As described in previous chapters, the pressure wave is measured using a fast 

responding piezo-electric pressure transducer, and the temperature is measured with fine 

wire thermocouples. Velocity measurements are carried out using Laser Doppler 

Anemometry [111].

Figure 4.4 (a) and (b) show the instantaneous experimental data of combustion chamber 

pressure and associated FFT analysis, the pressure amplitude is about 7.5 kPa with 

oscillating frequency about 75 Hz.

6.3 PREMIXED COMBUSTION MODEL INCORPORATING ONE­

DIMENSIONAL TRANSMISSION LINE ANALYSIS FOR THE INLET

The new model incorporates a one-dimensional transmission line analysis for the inlet 

and the developed premixed combustor model. The equations established in Chapter 4 

are directly used for the premixed combustor model and the one-dimensional 

transmission line model including the mass fraction equations is used to predict the fluid 

dynamics in inlet pipe. The orifice equations are used to derive the linkage of these two 

models. The relevant assumptions are as before.
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6.3.1 Conservation Equations in Combustion Region

The combustion region includes the combustor and the tailpipe, as established in 

Chapter 4. The model includes the effects of heat transfer with the combustor wall and 

friction in the tailpipe. The governing equations are integrated over the combustion 

chamber and the tailpipe volumes to simplify the description of the physical process and 

the computation of the numerical solution. The mixture of fuel and air in lean condition 

is considered. Thus, the combustion region equations are obtained by simplifying the 

balances of energy, mass and fuel in the combustion chamber, together with momentum 

balance in the tailpipe.

The conservation equations used for combustion region are summarized as:

6.3.2 Conservation Equations in Inlet Pipe Region

A combined transmission line model proposed in Chapter 3 is used to describe the 

premixed reactants dynamics in inlet pipe. The schematic layout of the inlet pipe region is 

shown as Figure 6.3.

The inlet pipe is separated into N  segments. To update the boundary conditions, the 

lumped model is used to represent the primitive variables in the first and the last 

segments; while the finite difference model is used to simulate the primitive variables in

(6 . 1)
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the rest of the segments. As shown in Figure 6.3, the position u is linked with the 

premixed fresh reactant supply. Here, it is assumed that the premixed fresh reactant 

supply is so large that the pressure and the temperature are unchanged. The orifice 

equations are used to calculate the mass flow rate into the position u. The segments in 

the middle, such as position k, are modelled by finite difference equations. The position 

i is the one linked with the following combustor model. The orifice equations are used 

to calculate the mass flow rate into or out from the combustor. Considering that the 

burned products due to the high pressure in the combustor are mainly driven out to the 

tailpipe, the temperature in the inlet pipe is assumed to be constant.

For the lumped model in the first and last segments, the orifice equation is: 

M d =Cd -Cm - A - P j (6.2) 

For the finite difference model in the middle segments, the conservation equations are:

dP:, , d ( /y ,P) _ 0

= 0
dt

8ipjpuJ
. dt

dx
A du“> ^  Ip

p >«>+p¥ - - m —

dx

(6.3)

=  0

Compared with the air transmission line model, the mass fraction equation is added to 

predict the variance of the fuel due to the convection in the inlet pipe.

In addition, it is found that variations of the kinematic viscosity scarcely affect the 

simulation results in Chapter 3. Hence, the kinematic viscosity is assumed to be constant 

in the following research.
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6.3.3 Equation Solution and Initial Conditions

The governing equations for premixed combustor model are solved with Eulers method 

[129]. The initial conditions are:

1) Initial temperature: 5xT 0

2) Initial pressure: 1 x P0

3) Friction factor: 0.03

The initial conditions correspond physically to filling the combustor with unbumed fuel 

and air at ambient pressure with no exiting flow. Again an absolute temperature of five 

times the ambient is used to ensure the temperature high enough to initiate combustion.

The Upwind Method is used to discretize the Equation (6.3) in this study.

6.4 SIMULATION RESULTS OF PREMIXED COMBUSTION MODEL 

INCORPORATING ONE-DIMENSIONAL TRANSMISSION LINE ANALYSIS 

FOR THE INLET

To simplify the simulation, it is assumed that the air and gas are well mixed before 

entering into the inlet pipe zone. The combustion system geometrical parameters are 

given in Table 6.1.

For comparison of the experimental and simulation results, the FFT analysis [129-131] 

of the pressure analysis is again used as before.

The simulation results are shown as Figure 6.4. From the FFT analysis, it is shown that 

the peak frequency of the pressure oscillation is about 58 Hz with the oscillation 

amplitude 3.84 kPa.
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6.5 DISCUSSION AND CONCLUSIONS

With the combustion system geometrical parameters listed in Table 6.1, the comparison 

of experimental and simulation results for different combustion models are shown in 

Table 6.2. It is obvious that Zero-dimensional Combustion Model gives the most 

accurate results at the moment. The combustion model using a one-dimensional 

transmission line analysis for the inlet gives the largest divergence from the 

experimental results, but potentially has the most promise. The reasons might be:

1) Due to the high pressure from the combustor, parts of the burned products must be 

exhausted into the inlet pipe, which will heat the reactants there. The temperature in 

the inlet pipe may thus be higher than that of the atmosphere. However the ambient 

temperature in the inlet pipe is assumed constant for the convenience of simulation, 

although this could be changed in future work.

2) The orifice equations are used to link the combustor model and one-dimensional 

transmission line model, which is also used to update the boundary conditions for 

the inlet pipe. The orifice equations could be treated as a static model. The mass 

flow rate through the orifice is only determined by the pressure values before and 

after the orifice, hence the inertial force of the reactants is neglected. For the models 

in the previous transmission model, this neglect is acceptable due to the gradual 

change of the pressure in different positions within the transmission line. However, 

for combustion model, the pressure inside of the combustor is changed significantly 

due to the chemical reaction. Hence, the neglect of the inertial force will induce this 

significant difference between the simulation and experimental results.

For the future research, the energy equations should be considered for the inlet pipe and 

tailpipe, which also includes the effect of the heat conduction between the exhausted 

heat products and pipe walls. In addition, more accurate differential equations should be 

studied to replace the orifice equations to update the boundaries conditions for the inlet 

pipe and tail pipe. Based on this, the one-dimensional conservation equations can be 

used to calculate the density, velocity and temperature, and then to predict more 

accurate dynamic characteristics in the inlet pipe and tailpipe.
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Figure 6.3: Schematic Layout of Inlet Region

Table 6.1: Geometric Conditions Employed in Combustion Model

Length
(m)

L e u 0.2

L e d 0.2

L ip 8.5

L tp 1.12

L e i 0.0278

L c2 2.53

Diameter
{in)

D c 0.15

D ip 0.075

D tp 0.05

Cross-section Area 
(m2)

A , 0.00442

A e 0.00196
Combustion Zone Surface Area 

(m2) A s 0.17842

Combustion Zone Volume 
(m3) V c 0.00496
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Figure 6.4: Instantaneous Simulation Result of Pressure in the Combustion Chamber
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Table 6.2: Comparison of Experimental and Simulation Results

Peak Oscillation 
Frequency [Hz]

Peak Oscillation 
Amplitude [kPa]

Experimental Result 75 7.51

Combustor Model 68 12.9

Zero-dimensional Combustion Model 70 7.8

One-dimensional Combustion Model 58 3.84
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7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK

7.1 CONCLUSIONS

The thrust of this thesis has been the development of generalised dynamic combustion 

models, which can be adapted to a wide variety of different situations. The aim of the 

study has been to provide quantitative tools, which are relatively simple to use and 

provide solutions in relatively short time-scales, yet are sufficiently elaborate to be of 

use for design purposes, and can contribute to the understanding and control of transient 

combustion processes, thus laying the foundations for the future improved passive and 

active control of pressure oscillations and emissions during the combustion process.

Three combustion models for premixed conditions have been presented. The models 

predicted instabilities o f the combustion oscillations similarly to those observed in the 

pulsating combustion system at Cardiff University. Discussions are made about how the 

model can achieve wider applicability

7.1.1 Inlet Pipe Model for the Combustor

Using air as the working medium presents several key modelling problems as it is highly 

compressible and thus affects the overall system response. The investigation regarding air 

dynamics especially in transmission line is needed to understand the air flow mechanism 

and thus provides the necessary consideration that can be included in the combustor 

model and future system control algorithm.

The transmission line diameter calibration experiment shows that the relationship between 

the diameter and the exerted pressure is close to linear, which is then applied to the 

simulation algorithm to conclude the influence of the working pressure on the
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transmission line diameter expansion.

Another important aspect in air transmission line investigation is the determination of 

working fluid viscosity since this affects the pressure wave propagation characteristics. 

This pressure wave propagation diminishes over time due to energy loss. The energy loss 

is mainly in the form of viscous friction between the fluid and inner wall of the 

transmission line. From this understanding, the determination of the air viscosity value is 

vital in order to model the air dynamics in the transmission line to an acceptable degree of 

accuracy. In this study, the pressure drop equation along the pipe line is then utilized to 

find the kinematic viscosity, which is about 0.00011 m2/s.

The Navier-Stokes equations are then used with the conservation laws, which are the 

continuity, momentum and energy equations. However, the Navier-Stokes equations in 

three-dimensional format are complex to solve especially in specifying the correct 

boundary conditions. Assumptions are then needed to simplify modelling while still 

obtaining the required results. Vector form of equations offers a more convenient way o f 

applying the algorithm into the computer programming language and enables the 

decoding of the specified algorithm to obtain the primitive variables needed to compute 

the changes of the respective air parameters such as mass, pressure, density, velocity and 

viscosity before completing each time iteration.

For the model, completely blocked at the ends the rod type-T thermocouples are used to 

measure the temperature as the trapped air is disturbed by pressure ripples. Hence, it is 

assumed the temperature is constant for the simulation in this study.

The lumped modelling can be used to model pneumatic systems to some accuracy 

depending on the system modelled and assumptions applied. It is easier to implement 

compared to a finite difference approach and consumes less computing power due to the 

simplicity of the equations involved. However, this method can not be used to predict 

the propagation of the pressure waves for both-end blocked transmission lines, although 

the steady state pressure characteristics in the pneumatic system can be predicted.

From the experiments, it is shown that the transmission line has a very significant 

influence on the whole system dynamics. Hence, a valid mathematical model and
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method is needed to properly represent the pressure wave in it. In this study, a time 

domain model describing the dynamics of air in a transmission line is developed by 

considering changes in air density, pressure and mass flow rate and assuming the 

temperature to be constant. A combined model is proposed to simulate the dynamics of 

trapped air in a blocked transmission line and the charging of a large volume with the 

transmission line. In order to update the boundary conditions, the first and the last 

segments are considered as two lumped volumes. The rest of the transmission line 

segments are represented by means of a finite difference model. The effectiveness of the 

proposed model is shown through comparisons of simulated pressure responses against 

pressures measured by practical experiments. The simulated results can be concluded to 

be successful since it matches well with the captured experimental data though the 

simulated results show longer system transient state for the completely blocked model.

7.1.2 Premixed Combustor Model

Initially, a simplified premixed combustor model was proposed. This premixed model 

has been able to reproduce most of the dynamic characteristics in the combustor such as 

amplitude modulations and phase shift changes in the pressure oscillations.

Several variations of the premixed model, for inlet flow of reactants to the combustor, 

have been proposed and investigated. This includes the effects of wall temperature, heat 

transfer, tailpipe friction, and equivalence ratio. Within the stable regime, for steady 

inlet flow conditions, reasonable agreement was found between the predicted pressure 

amplitude of the combustor diagnostics and the experimental data. However, modelling 

the inlet flow as a premixed sinusoidal supply of reactants, and allowing eventually 

reverse flow in the inlet, induced the modulations between the primary variables.

A main flow with a second sinusoidal inlet supply is simulated to investigate the 

influence of this second mass flow on the pressure oscillations. The simulation results 

show that it is not appropriate to select the air as the second inlet mass flow. Even if the 

large average value of the inlet mass flow of the air is chosen, it is impossible to greatly 

change the oscillation amplitudes of the pressure. For the usage of the fuel as the second 

inlet mass flow, its average value is dependent on the equivalence ratio in the main inlet
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mass flow to ensure the combustion is in the lean condition. When the equivalence ratio 

in the main flow is smaller, it’s rational to use the fuel as the second inlet mass flow. 

The small injection of the fuel causes evident changes of the oscillation pressure 

amplitude. While for larger equivalence ratios in the main inlet mass flow, the mixed 

reactants with the same equivalence ratio is appropriate.

7.1.3 Zero-dimensional Premixed Combustion Model

To include the dynamics of the inlet pipe and tailpipe, a zero-dimensional premixed 

combustion model has been developed from the earlier work. The governing equations 

presented identified key characteristic length and time scales, while the numerical 

simulation of the equations provides a relatively more efficient prediction of the 

combustion pressure oscillations. In addition, the pressure in the inlet pipe with a value 

slightly above atmospheric is considered. A contact surface is assumed to separate the 

fresh reactant or fresh air from the burned products, which moves through the inlet pipe 

and tailpipe regions.

The effects of the inlet pipe and tailpipe length are investigated for the proposed zero­

dimensional premixed combustion model, which gives more accurate pressure 

oscillation predictions similar to the experimental data with the peak values of the 

simulated pressure varying from cycle to cycle. The simulation results also show 

agreement with the experiment as the tailpipe length is varied.

7.1.4 Premixed Combustion Model Based Incorporating a One-dimensional 

Transmission Line Analysis for the Inlet

Here the premixed combustion model from Chapter 4 is integrated with the air 

transmission line model of Chapter 3. Appropriate model modifications for the inlet 

pipe, which includes the mass fraction equations are made.
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Compared with the experimental data, this model gives poorer results, probably due to 

the omission of the temperature influence on the fluid dynamics and the updating 

methods for boundary conditions in the inlet pipe.

The models produced have already shown considerable promise in predicting 

oscillations in a pulsating combustor. Further work is needed on the inlet pipe prediction 

and model integration, but nevertheless this provides a firm foundation for future work.

In terms of integration with neural network analysis as reviewed in Chapter 2, it is clear 

that there are several parameters which could be optimised by such techniques to further 

improve predictions. These include resonant frequencies (<2>i-first harmonic; &>2 -second 

harmonic) and rms (root mean squares of the pressure in combustor) values.

7.2 RECOMMENDATIONS FOR FUTURE WORK

An inlet pipe model with the energy equation is clearly needed to allow for the influence 

of temperature. New discretisation methods should be considered to improve the 

accuracy of the model, whilst maybe more rational equations are needed to replace the 

lumped models for updating the boundary conditions of the inlet pipe.

Modelling the feedback mechanism between the combustor and fuel-supply oscillations, 

and improvements in modelling the inlet pipe and tailpipe fluid mechanics are likely to 

improve the accuracy o f the predictions. A modified one-dimensional transmission line 

model combined with the combustor model should be better able to simulate the fluid 

dynamics when the fluid is entering into or exhausting from the combustor.

As pressure, temperature and fuel mass fraction, etc, are now predicted within the 

combustion model, a post-processor sub-model could easily be implemented in the 

future for continuous NOx prediction over the cycles, maybe using Chemkin.

The simple simulation of PI control for combustion pressure instabilities in Chapter 4 

suggests that the pressure oscillation could be attenuated by varying the inlet mass flow 

rate. The simulation of a main flow with a second sinusoidal inlet supply also proves
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that small changes o f the fuel or mixed reactant will induce large chances of the 

oscillation amplitudes of the pressure. For the combustion instabilities control purpose 

in the future work, the model developed above is needed, suitably tuned by the artificial 

neural network to follow as closely as possible the dynamics of the system. This 

identification model is then used to train a second neural network controller, which is 

then used to adjust the second inlet mass flow of fuel or mixed reactants (probably via a 

pneumatic proportional valve) to attenuate the pressure oscillations, after which a more 

complex control algorithm needs be designed to consider both pressure oscillations and 

NOx emission. The possible experimental layout is shown as Figure 7.1.
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