
GAPS: a hybridised framework
applied to vehicle routing problems

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Matthew J. W. Morgan

December 2008

Cardiff University
School of Computer Science

UMI Number: U514605

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U514605
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

iv

V

Abstract

In this thesis we consider two combinatorial optimization problems, the Capacitated Ve­
hicle Routing Problem (CVRP) and the Capacitated Arc Routing Problem (CARP). In the
CVRP, the objective is to find a set of routes for a homogenous fleet of vehicles, which
must service a set of customers from a central depot. In contrast, the CARP requires a
set of routes for a fleet of vehicles to service a set of customers at the street level of an
intercity network.

After a comprehensive discussion of the existing exact and heuristic algorithmic tech­
niques presented in the literature for these problems, computational experiments to pro­
vide a benchmark comparison of a subset of algorithmic implementations for these meth­
ods are presented for both the CVRP and CARP, run against a series of dataset instances
from the literature. All dataset instances are re-catalogued using a standard format to
overcome the difficulties of the different naming schemes and duplication of instances
that exist between different sources.

We then present a framework, which we shall call Genetic Algorithm with Perturbation
Scheme (GAPS), to solve a number of combinatorial optimization problems. The idea is
to use a genetic algorithm as a container framework in conjunction with a perturbation
or weight coding scheme. These schemes make alterations to the underlying input data
within a problem instance, after which the changed data is fed into a standard problem
specific heuristic and the solution obtained decoded to give a ‘true’ solution cost using the
original unaltered instance data.

We first present GAPS in a generic context, using the Traveling Salesman Problem (TSP)
as an example and then provide details of the specific application of GAPS to both the
CVRP and CARP. Computational experiments on a large set of problem instances from
the literature are presented and comparisons with the results achieved by the current state
of the art algorithmic approaches for both problems are given, highlighting the robustness
and effectiveness of the GAPS framework.

vi Abstract

Acknowledgements

Throughout my years of study at Cardiff University, I have been supported and inspired,
through interaction with many friends and colleagues within the School of Computer Sci­
ence. I would like to extend my thanks to these individuals, but I particularly wish to
acknowledge a number of people who have had a profound impact on my work.

First of all I would like to extend my thanks to the School of Computer Science at Cardiff
University for their general and financial support.

Above all, I extend my heartfelt gratitude to my supervisor Christine Mumford, who has
consistently provided me with support, encouragement and friendship during my time at
Cardiff University. Thank you for all of your time, patience, interesting discussions and
being the sounding board for my ideas, both good and bad!.

Finally, I want to thank my family, for all of the unconditional help and support that
they have provided me. They have been a continuous inspiration, without whom, the
completion of this work would not have been possible.

viii Acknowledgements

Contents

Abstract v

Acknowledgements vii

Contents ix

List of Figures xv

List of Tables xix

List of Algorithms xxi

Notation xxiii

Acronyms xxv

1 Introduction 1

1.1 Motivation... 1

1.2 Real World Vehicle Routing ... 2

1.3 Problem Complexity and Solution M ethods... 3

1.4 Thesis Contribution... 4

1.5 Algorithmic Implementations... 5

1.6 A Note on Computational Experimentation ... 5

1.7 Thesis Overview ... 6

X Contents

2 Background and Terminology 9

2.1 Introduction.. 9

2.2 Combinatorial O ptim ization.. 9

2.3 Graph T heory ... 10

2.4 Computational Com plexity... 15

2.5 Algorithmic Classes... 18

2.6 Routing Problem s... 20

2.7 Chapter Summary... 21

3 Routing Problem Formulations 23

3.1 Node Routing Problems.. 23

3.1.1 Symmetric Traveling Salesman Problem... 23

3.1.2 Multiple Traveling Salesman Problem .. 25

3.1.3 Capacitated Vehicle Routing P ro b lem .. 26

3.1.4 Vehicle Routing Problem with B ackhau ls...................................... 28

3.1.5 Vehicle Routing Problem with Time Windows................................ 28

3.2 Arc Routing Problems .. 29

3.2.1 Chinese Postman P ro b lem ... 30

3.2.2 Directed Chinese Postman P ro b le m ... 32

3.2.3 Mixed Chinese Postman P ro b le m .. 34

3.2.4 Windy Postman Problem .. 35

3.2.5 Rural Postman Problem .. 36

3.2.6 Directed Rural Postman Problem.. 37

3.2.7 Mixed Rural Postman Problem... 38

3.2.8 Capacitated Arc Routing P rob lem ... 39

3.3 Chapter Summary... 39

Contents___xi

4 Solving The Capacitated Vehicle Routing Problem 41

4.1 Introduction... 41

4.2 H euristics.. 41

4.2.1 Single Phase Route-Construction Heuristic Algorithms................ 41

4.2.2 Two Phase Constructive Heuristic Algorithms............................... 47

4.2.3 Improvement Heuristic Algorithms .. 56

4.3 Dataset Instances.. 60

4.4 Comparing the CW, Sweep and Petal Heuristics................... 66

4.4.1 Computational R esu lts... 66

4.5 Chapter Summary... 72

5 Solving The Capacitated Arc Routing Problem 73

5.1 Introduction.. 73

5.2 Arc Routing Problems ... 73

5.2.1 Simple Constructive Heuristic Algorithms..................................... 74

5.2.2 Two Phase Constructive Heuristic Algorithms............................... 86

5.3 Dataset Instances... 87

5.4 Comparing Augment Merge and Path Scanning... 88

5.4.1 Computational R esu lts.. 88

5.5 Chapter Summary... 93

6 Metaheuristics 95

6.1 Introduction.. 95

6.2 Descent Algorithms.. 96

6.3 Simulated A nnealing... 97

6.4 Tabu Search .. 99

6.5 Genetic Algorithms...103

6.6 Memetic A lgorithm s..107

xii Contents

6.7 Ant Colony System Algorithms...107

6.8 A Historical Comparison Of State Of The A r t .. 109

6.9 Chapter Summary.. 109

7 A Genetic Algorithm using a Perturbation Scheme (GAPS) 111

7.1 Introduction.. I l l

7.2 Perturbation..I l l

7.3 Weight Coding ... 117

7.4 The GA M o d e l ... 118

7.4.1 Population structure and initialisation..119

7.4.2 Crossover.. 120

7.4.3 M u ta tio n .. 120

7.4.4 Solution Mechanism/Decoding Procedure..120

7.4.5 Solution Refinement/Improvement.. 121

7.5 Chapter Summary...121

8 GAPS - Application to the CVRP 123

8.1 Introduction..123

8.2 GAPS for the C V R P .. 123

8.3 The GA M o d e l ..125

8.3.1 Chromosome encoding.. 127

8.3.2 Population structure and initialisation... 127

8.3.3 S e lec tion .. 128

8.3.4 Crossover.. 128

8.3.5 M u ta tio n .. 128

8.3.6 Solution Mechanism, Decoding and Improvement............................. 129

8.4 Preliminary Experimentation.. 130

8.4.1 Solution Mechanism, Evaluation and S e lec tion132

Contents xiii

8.5 Perturbation Models...133

8.5.1 Random Perturbations.. 135

8.6 New Perturbation Models for the C V R P ..135

8.6.1 Random...136

8.6.2 Nearest N eighbour.. 136

8.6.3 Depot D istance.. 137

8.7 Comparison of the Perturbation M o d e ls ..138

8.8 Computational Experiments .. 139

8.8.1 Real vs Rounded Solution C o sts ..139

8.9 GAPS Results.. 140

8.10 Convergence and Solution U p lift.. 145

8.11 Chapter Summary.. 149

9 GAPS - CARP Implementation 151

9.1 Introduction... 151

9.2 GAPS for the C A R P .. 151

9.3 The GA M o d e l ... 152

9.3.1 Chromosome encoding...153

9.3.2 Population structure and initialisation...153

9.3.3 Selection, Crossover and Mutation...154

9.3.4 Solution Mechanism and D ecod ing ... 154

9.4 Weight Coding M odel...154

9.5 Preliminary Experimentation..155

9.6 Computational Experiments .. 156

9.6.1 GAPS Results ...157

9.7 Convergence and Solution U p lift..159

9.8 Chapter Summary.. 160

xiv Contents

10 Conclusions 161

10.1 Conclusions.. 161

10.2 Future W ork.. 162

10.2.1 Extension of the present study to larger problem instances 162

10.2.2 Coordinate perturbation versus weight cod ing163

10.2.3 Thorough analysis of improvement heuristics................................ 163

10.2.4 Extension of GAPS to other VRP variants.......................................163

10.2.5 GAPS applied to other optimization problems.................................164

References 165

XV

List of Figures

2.1 Basic characteristics of a simple graph G = (V,E) 10

2.2 Two neighbourhoods in G .. 11

2.3 Characteristics of a m ultigraph.. 11

2.4 Cut e d g e s ... 12

2.5 Eulerian p a th s... 12

2.6 Eulerian cycle ... 13

2.7 Directed a r c .. 15

2.8 Weighted edge... 15

3.1 TSP problem instance and optimum solution... 24

3.2 mTSP problem instance and optimum solution.. 26

3.3 Connected undirected weighted graph G = (V, E) 31

3.4 Minimum weighted perfect matching G' of graph G 32

3.5 Eulerian multigraph G” .. 32

3.6 A weakly connected digraph G - (V, A) ... 33

3.7 Eulerian and non Eulerian mixed graph .. 35

3.8 RPP problem instance... 37

4.1 CVRP problem instance... 43

4.2 CW cost m atrix .. 44

4.3 CW initialisation 44

x v i List o f Figures

4.4 CW potential sav ings... 45

4.5 CW solution.............................. 46

4.6 Sweep initialisation... 48

4.7 Sweep so lu tio n .. 49

4.8 Petal initialisation... 54

4.9 Petal construction... 55

4.10 Acyclic digraph induced at node 1.. 55

4.11 Single route Improvement... 57

4.12 2-Opt improvement... 57

4.13 3-Opt improvement... 57

4.14 Multiroute Improvement... 58

4.15 String C ross .. 59

4.16 String Exchange.. 59

4.17 String R elocation... 60

4.18 Instance set C ... 61

4.19 Instance set R ... 63

4.20 Instance R -n385-k47.. 64

5.1 CARP problem instance .. 76

5.2 AMA initialisation and augmentation .. 78

5.3 AMA m erge.. 79

5.4 AMA solution... 80

5.5 CARP instance optimum solution ... 81

5.6 PSA cycle construction I ... 83

5.7 PSA cycle construction I I ... 84

5.8 PSA so lu tio n ... 85

6.1 Minimization Problem: Local and global optima... 96

List o f Figures xvii

6.2 Tabu Search: The problem of cycling... 99

6.3 Examples of genetic operators... 105

6.4 Illegal crossover operation... 106

7.1 Perturbation of customer coordinates.. 114

7.2 TSP problem instance.. 115

7.3 Perturbed TSP problem instance..115

7.4 TSP solution..116

7.5 Weight coded chromosome... 117

7.6 Weight coded distance matrix C'...117

7.7 Weight coded TSP solution..118

7.8 Perturbed and weight coded chromosome representation............................... 119

8.1 Overview of the GAPS framework for the C V R P ...124

8.2 CVRP solutions using G A PS...125

8.3 GAPS pseudocode for the C V R P...126

8.4 CVRP Chromosome encod ing ..127

8.5 Solution and decoding p ro cess ..129

8.6 Perturbation using different zone shapes...133

8.7 Perturbation model zone shapes...134

8.8 Random perturbations...135

8.9 Nearest neighbour m o d e l...137

8.10 Depot distance m odel... 138

8.11 Real and rounded solution costs ...140

8.12 Convergence... 146

8.13 GAPS average deviation for 30 second r u n s ...146

8.14 GAPS solution uplift instances A, B and P ..147

8.15 GAPS solution uplift instances C, F and R ..147

xviii List o f Figures

8.16 Optimum solution for instance P-n50-k7... 148

9.1 Overview of the GAPS framework for the C A R P .. 152

9.2 Chromosome encoding...153

9.3 Overview of the solution process with the GAPS framework for the CARP. 155

9.4 GAPS solution uplift instances gdb and val .. 159

xix

List of Tables

4.1 Constructed petals... 53

4.2 CVRP instance set C ... 61

4.3 CVRP instance set E ... 62

4.4 CVRP instance set F ... 62

4.5 CVRP instance set H ... 62

4.6 CVRP instance set R ... 63

4.7 CVRP instance set A ... 64

4.8 CVRP instance set B ... 65

4.9 CVRP instance set P ... 65

4.10 Computational results for instance set A ... 67

4.11 Computational results for instance set B ... 68

4.12 Computational results for instance set P ... 69

4.13 Computational results for instance sets C,E, F and R 70

4.14 Computational results for instance sets C,E, F and R 70

5.1 CARP instance set g d b .. 87

5.2 CARP instance set val... 87

5.3 Computational results for instance set g d b .. 89

5.4 Computational results for instance set val .. 90

5.5 Further computational results for instance set G 91

XX List o f Tables

5.6 Further computational results for instance set V .. 92

6.1 CVRP metaheuristics.. 109

8.1 A comparison of the effect of using different population sizes...................... 127

8.2 Preliminary R esu lts... 131

8.3 A comparison of the effect of using SPX, 2PX, UPX and no crossover . . 132

8.4 A comparison of the effect of using different perturbation zone shapes . . 134

8.5 A comparison of the effect of using different perturbation zone sizes . . . 134

8.6 A comparison of perturbation models .. 138

8.7 Computational results for instance set A .. 141

8.8 Computational results for instance set B .. 142

8.9 Computational results for instance set P .. 143

8.10 Computational results for instance set E ..143

8.11 Computational results for instance set F ..144

8.12 Computational results for instance set C ..144

8.13 Computational results for instance set R .. 145

9.1 A comparison of the effect of using different population sizes.......................153

9.2 CARP preliminary results..156

9.3 Computational results for instance set g d b ... 157

9.4 Computational results for instance set val ... 158

xxi

List of Algorithms

2.1 Fleury’s Eulerian Path Algorithm.. 13

2.2 TSP Enumeration A lgorithm ... 17

3.1 Chinese Postman Tour Algorithm... 31

4.1 Clarke and Wright Algorithm - Parallel V ersion....................................... 42

4.2 Clarke and Wright Algorithm - Sequential Version 46

4.3 Sweep A lgorithm ... 48

4.4 Generalized Assignment Algorithm ... 51

4.5 Petal Algorithm.. 52

6.1 A Basic Descent Algorithm.. 97

6.2 A Basic Simulated Annealing Algorithm... 98

6.3 A Basic Tabu Search Algorithm .. 100

6.4 A Basic Genetic Algorithm... 104

6.5 A Basic Memetic A lgorithm ..107

7.1 Codenotti et al. Algorithm ... 113

7.2 GAPS A lgorithm .. 119

xxii List o f Algorithms

Notation

A Set of directed arcs... 24
A(X, Y) Arc set corresponding to the cut C = (X , Y) 34
Cij Cost of traversing edge/arc c with end nodes i and j 24
C = (X , Y) Cut producing non-empty subsets X and Y ... 34
8(G) Minimum degree of graph G ...11
A ((S') Maximum degree of graph G .. 11
din(C) Sum of arcs crossing cut C from Y to X .. 34
dout(C) Sum of arcs crossing cut C from X to Y .. 34
E Edge s e t ..10
\E\ Number of edges in graph G ..10
E(G) Edge set of graph G ...10
E(X, Y) Edge set corresponding to the cut C = (X , Y) ..34
G = (V,E) Graph with vertex set V and edge set E ... 10
i , j , v Single vertices ..10
{z, j } Undirected edge with endvertices z and j ... 10
{k, l} Directed arc with endvertices k and I .. 14
K\V\ Complete graph with |V| vertices ..12
N The set of real numbers... 17
p(v) Degree of vertex v ..11
p+(v) Out-Degree of vertex v ..14
p~(v) In-Degree of vertex v ...15
V Vertex s e t ..10
\V\ Number of vertices in graph G .. 10
V(G) Vertex set of graph G ...10
x + y Absolute difference between integers x and y ... 34

XXIV Notation

XXV

Acronyms

ACS Ant Colony System.

AMA Augment Merge Algorithm.

ARP Arc Routing Problem.

ATSP Asymmetric Traveling Salesman Problem.

BPP Bin Packing Problem.

CARP Capacitated Arc Routing Problem.

CCPP Capacitated Chinese Postman Problem.

CPP Chinese Postman Problem.

CRPP Capacitated Rural Postman Problem.

CSA Construct Strike Algorithm.

CVRP Capacitated Vehicle Routing Problem.

DA Descent Algorithm.

DCPP Directed Chinese Postman Problem.

DCVRP Distance Constrained Capacitated Vehicle Routing Problem.

DRPP Directed Rural Postman Problem.

DVRP Distance Constrained Vehicle Routing Problem.

GA Genetic Algorithm.

GRP General Routing Problem.

xxvi Acronyms

MA Memetic Algorithm.

MCPP Mixed Chinese Postman Problem.

MPSA Modified Path Scanning Algorithm.

MRPP Mixed Rural Postman Problem.

mTSP Multiple Traveling Salesman Problem.

ORMS Operational Research and Management Science.

PSA Path Scanning Algorithm.

RPP Rural Postman Problem.

SA Simulated Annealing.

SPP Set Partitioning Problem.

STSP Symmetric Traveling Salesman Problem.

TS Tabu Search.

TSP Traveling Salesman Problem.

UCPP Undirected Chinese Postman Problem.

URPP Undirected Rural Postman Problem.

VRP Vehicle Routing Problem.

VRPB Vehicle Routing Problem with Backhauls.

VRPTW Vehicle Routing Problem with Time Windows.

WPP Windy Postman Problem.

 1

Chapter 1

Introduction

1.1 Motivation

The transportation of goods and people continues to be a vital function in the world we
live in today. The Energy Information Administration (EIA) predicts that over the next
25 years, world demand for liquid fuels and other petroleum is expected to increase more
rapidly in the transportation sector than in any other end-use sector [188]. A portion of this
increase comes about quite naturally through the economic expansion of poorer countries,
however, a large proportion comes from the increasing demands of society as a whole.

Enormous sums of money are spent each year by businesses on logistics, namely on petrol,
repairs and associated workforce costs. In addition to these measurable costs, there are
other ethical issues that play more and more of a role today, most notably that of car­
bon emissions. Given the growing evidence of climate change, the effect of overusing
transportation systems is potentially catastrophic. Through effective planning and the im­
provement of algorithmic techniques, the burden on our world can be helped.

The multitude of research already undertaken into such transportation problems, is largely
due to their real world applicability. Numerous techniques proposed have been used in
real world scenarios and many have proved successful in reducing associated transport
and emission costs. However, there remains wide scope for new techniques.

The practical applicability of routing and scheduling algorithms is varied and diverse.
Consider a typical courier company, where each day the delivery of goods to a number
of customers need to be scheduled. Making these deliveries on an ad hoc basis with
no forethought will ultimately result in inefficiencies. Drivers will typically be covering
excessive distances, resulting in higher wage, fuel and maintenance costs. However, by
planning deliveries, these associated costs can be reduced.

The field of optimization involves applying a set of planning techniques so as to min­
imise these associated costs. Exactly which costs should be minimised is specific to each

2 1.2 Real World Vehicle Routing

problem, e.g. in the case of the courier, the requirement might be to minimise the overall
travelling distance of the vehicle fleet. Alternatively, in addition to minimising overall
travelling distance, there could also be a requirement that for any given route the driving
time to complete that should not exceed 3 hours. For any given problem, there may exist
one or more such constraints.

A widely known optimization problem, called the Vehicle Routing Problem (VRP), has
been well studied within the scientific community, since its first conception in 1954. The
VRP involves finding a set of routes for a fleet of vehicles (each departing from/returning
to the same depot), to service a set of customers, such that each customer is served by ex­
actly one vehicle. The objective is to minimise the cost of making the customer deliveries.

A number of extensions to this basic problem to deal with further constraints exist, such as
the Capacitated Vehicle Routing Problem (CVRP). Here, a capacity constraint is placed
on each vehicle and assumptions are made that a fleet of vehicles are available, all of
which are capable of holding an identical fixed capacity. The quantity demanded by each
customer must be less than the capacity of a single vehicle and known in advance. The
objective is to minimise the cost of making the customer deliveries.

1.2 Real World Vehicle Routing

Further to the theoretical problems detailed, the translation of these into real world sit­
uations requires a raft of additional constraints and restrictions to be taken into account.
Further to the underlying constraints within each problem, there are many more which
need to be considered when dealing in the real world.

The type of vehicle being used and goods to be delivered, will differ substantially between
different businesses and industries. Consideration must be given to the unit weight or
volume capacity of vehicles and how this capacity is organised. Many vehicles have
particular loading or unloading restrictions, such as requiring goods to be loaded only
from the rear. Additionally, the nature of the goods being delivered and whether they can
perhaps be mixed needs to be taken into account.

To be able to make any deliveries, a vehicle requires a driver. When dealing with members
of any workforce, there is much legislation in place that must be adhered to. These include
the restrictions laid down in employment law that relate to all workers and more specific
constraints applicable to particular industry sectors. In the case of delivery drivers, there
are restrictions on the number of hours that can be driven before a rest break must be

1.3 Problem Complexity and Solution Methods 3

taken. In August 2009, further EU directives will come into place requiring Large Goods
Vehicle (LGV) drivers to undertake a minimum of 7 hours training, every 5 years.

Consider the road infrastructure along which vehicles undertake their deliveries. The
maximum speed at which larger vehicles can travel is restricted by law. There are many
one way streets and road restrictions for heavy goods vehicles, such as low bridges and
width/weight restricted sections of roads. A number of motorways and cities have seen
the introduction of tolls and congestion charging, bringing further cost implications to be
considered.

The list of requirements faced in the real world is substantial and adds a myriad of further
constraints and complications to the theoretical problems described. Many examples of
the successful transference of theory into real world problems are documented in the
literature. For a description of such applications for vehicle routing problems, see the
books by Toth and Vigo [170] and Dror [53].

1.3 Problem Complexity and Solution Methods

The Traveling Salesman Problem (TSP) is one of the best known optimization problems
and involves generating a minimum cost travelling route for a salesman who must visit n
cities exactly once, starting from and returning to a base city location. Although a fairly
simple task for very small values of n, the complexity of solving this problem quickly
increases with the number of cities.

For any given problem with n cities, the number of possible solutions is equal to (n - 1)!.
So in the case of n = 4, 6 possible solutions exist, allowing a solution to be quickly
obtained using just a pen and paper. However, where n = 48, the result is equal to
258.623.241.511.168.180.642.964.355.153.611.979.969.197.632.389.120.000.000.000 or
approximately 2.59 x 1059 possible solutions.

At n = 60, the number of possible solutions is roughly equal in magnitude to the total
number of atoms in the known universe. Consider a computer, capable of evaluating
1.000.000 solutions per second, for a TSP instance with n = 60 cities. If this computer
had started generating all the possible solutions for this problem at the time of the big
bang, around 13.7 billion years ago, it would still not be finished if we had another 13.7
billion years to wait.

For any given optimization problem the number of possible solutions that exist is known
as the solution space. Trying to solve a problem by evaluating every possible solution is

4 1.4 Thesis Contribution

just not feasible. Instead algorithmic techniques must be used to exploit the search space.
These techniques can be classified into two types, exact and approximate algorithms.

Exact algorithms guarantee an optimum solution to a problem instance. In order to avoid
the need to evaluate all answers in the solution space and the inherent difficulties outlined,
they utilise a number of mechanisms to identify areas of the search space that do not
contain the optimum solution, resulting in a reduction in the overall number of solutions
that need to be evaluated. However, as problem sizes increase, even with the reduction
in the search space, the number of evaluations eventually becomes too large again to be
searched in an acceptable time frame.

Thus, for larger size problem instances, above around 50 customers in the case of the
CVRP, the use of exact algorithms are not feasible and approximate algorithms must be
used. These procedures utilise intelligent techniques to sample, rather than exhaustively
evaluate, all solutions in a problems search space. This allows near optimal, or in many
cases, optimum solutions to be identified in far more realistic time frames, in comparison
to exact procedures. The theory of computational complexity is introduced more formally
in section 2.4.

1.4 Thesis Contribution

The focus of this thesis is solution procedures for vehicle routing problems, specifically
the CVRP and Capacitated Arc Routing Problem (CARP) variants. The principal novel
contribution of this thesis is the application of a hybridised metaheuristic framework
called Genetic Algorithm with Perturbation Scheme (GAPS), to the CVRP and CARP.
Although the application of GAPS has been confined to these two problem types, it has
the potential to be applied to a range of optimization problems.

GAPS provides a framework for the determination of near optimal solutions for both
CVRP and CARP problem instances. The approach is based on a Genetic Algorithm (GA),
which forms a container framework, utilising a perturbation strategy to alter the distance
data, allowing simple problem specific heuristics to be fooled into providing superior
quality solutions to benchmark problem instances.

The use of perturbation strategies is not a new concept and has been demonstrated by var­
ious authors against a number of problems such as the TSP, Knapsack Problem (KP) and
Container Packing Problem (CPP). Perturbation can be applied at three different stages:
solution, algorithm and problem instance. Full details of previous applications and the
strategy of perturbation are given in chapter 7.

1.6 A Note on Computational Experimentation 5

However, no perturbation or weight coding based approach has ever been applied to the
CVRP or CARP. This thesis provides a GA based framework, combining a series of
new perturbation models, in conjunction with a number of well known problem specific
heuristics, to solve both CVRP and CARP problem instances.

All of the underlying heuristics used for both the CVRP and CARP are each implemented
and intensively tested to provide a benchmark comparison for the GAPS framework. This
is achieved using a series of commonly used benchmark instances from the literature.
One of the difficulties with such instances is that different authors refer to the same in­
stances using different names, the result being duplicated instances and much confusion.
To overcome these problems, all instances have been catalogued and renamed using a new
naming scheme.

1.5 Algorithmic Implementations

All algorithmic implementations presented within this thesis are programmed using the
Java language. These have been constructed using a combination of the built in functions
and data structures provided with JAVA, in conjunction with a number of specifically
implemented custom data structures.

1.6 A Note on Computational Experimentation

An intensive computational study to benchmark and analyse the various heuristic and
metaheuristic implementations presented within this thesis has been undertaken. This
has resulted in a substantial collection of outputs and results being amassed. It is not
appropriate to include all the results generated, thus, only the pertinent information has
been included in this thesis. However, all run and solution data generated throughout this
research can be viewed at http : //purl. oclc . org/NET/thesis/results.

All computational studies for the CVRP and CARP, have been carried out using a number
of well known problem instances from the literature and are described in detail within
sections 4.3 and 5.3, for the two problems respectively. All experimentation is carried
out using a Pentium IV 2.8GHz computer, with 1GB of memory installed and running a
GNU/Linux based Operating System.

For all reported results, a statistic known as Relative Deviation (RD) is reported. This
figure measures the RD from the best known or optimum solution for a problem instance,

6 1.7 Thesis Overview

for each solution generated. It is stated for all individual solutions presented and also
as an average over various problem instance sets. The calculation for RD is made using
equation 1.1 and reported as a percentage value.

RD is used by the majority of authors reporting results for CVRP and CARP problem
instances. Given this fact, RD was chosen as the success measure for all results provided
within this thesis, allowing comparisons to be easily made with results from alternative
sources.

1.7 Thesis Overview

Chapter 1 documents the motivations and objectives for the research undertaken in this
thesis. The contributions and achievements of the thesis are outlined and finally a overview
of the thesis presented.

Chapter 2 introduces the field of combinatorial optimization and covers the key aspects of
graph theory that underly the problems tackled within this thesis. The theory of compu­
tational complexity is outlined and a number of algorithmic classes introduced, before a
summary of the main routing problems within this work are detailed.

Chapter 3 describes and formulates a series of node and arc routing problems, providing a
description and model for each problem, incorporating the similarities and links between
them. Formal definitions for the CVRP and CARP, the two main problems studied within
this work, are introduced. A survey of the various models, highlighting current state of
the art exact procedures, is also included.

Chapter 4 surveys a range of heuristic approaches available for the CVRP. A series
of standard benchmark instances for the CVRP from the literature are introduced. The
chapter also includes a comparative study of implementations for a number of the CVRP
heuristics described, tested against the standard benchmark instances outlined.

Chapter 5 surveys a number of common heuristic approaches proposed for the CARP.
A series of standard benchmark instances for the CARP derived from the literature are
introduced. The chapter also includes a further comparative study of some heuristic im­
plementations for the CARP, which are again tested against a number of sets of standard
benchmark instances.

solution obtained — optimum or best known solution
optimum or best known solution

(1 . 1)

1.7 Thesis Overview 1

Chapter 6 introduces some common metaheuristic techniques and surveys the use of these
approaches for both the CVRP and CARP. The chapter includes a historical review of
state of the art techniques for both problems and includes a comparison of the solution
quality achieved using these methods when tested against a common set of benchmark
instances.

Chapter 7 introduces a hybridised metaheuristic framework called GAPS for the deter­
mination of near optimal solutions for both CVRP and CARP problem instances. The
approach is based on a GA, which forms a container framework, utilising a novel pertur­
bation model and simple problem specific heuristics. The details of the framework and its
component parts are described in a generic context, using an application to the TSP as an
example.

Chapters 8 documents the specific application of GAPS to the CVRP. A series of prelimi­
nary experiments to assess the effectiveness of the procedure and the investigation carried
out into the various components of the framework are described. A generic set of param­
eters is formulated and the algorithm tested against the full range of benchmark instances
detailed in chapter 4. The chapter concludes with an evaluation of GAPS against other
state of the art methods for the CVRP.

Chapter 9 applies and refines GAPS for the CARP. A thorough assessment of GAPS in
comparison to other state of the art procedures for the CARP is given.

Chapter 10 summarises the findings of the work within this thesis, highlighting the con­
tributions made. A series of suggestions for future research directions are presented.

1.7 Thesis Overview

Chapter 2

Background and Terminology

2.1 Introduction

This chapter introduces the domain of combinatorial optimization and the general theories
and related terminology that underly the work presented in this thesis.

2.2 Combinatorial Optimization

Combinatorial optimization is a field of mathematics and computer science within the dis­
cipline of Operational Research and Management Science (ORMS). The rationale behind
combinatorial optimization problems is the efficient allocation of restricted resources, so
that subject to any imposed constraints, required objectives are satisfied. The process
involves enumerating a problem search space, to facilitate the discovery of the best solu­
tion, from amongst a very large subset of feasible solutions. The best (optimal) solution
generally equates to the solution with minimal cost or maximum profit, depending on the
specific problem requirement.

Companies in the 21 st Century are faced with the ever increasing challenges of operating
within a highly competitive and constantly evolving industrial arena. Their very survival
often hinges on the quality of information and decision making methodologies that they
employ. Combinatorial optimization problems have had a major impact on this increas­
ingly competitive world of commerce that we see today. Companies that utilise efficient
techniques for solving these problems are able to reduce their fixed/variable costs or con­
versely increase their overall profit, without seriously impacting on the level of service
that they provide to their customers. This group of problems represents one of the major
innovations evolving from the field of ORMS.

A large subclass of ORMS problems are routing problems, all of which are naturally
modelled on a graph network structure. The area of graph theory is fundamental to the

10 2.3 Graph Theory

vertex 1 is incident to edges {1,2},{1,3},{1,4},{1,5}

vertex
e = {1,2}

e = {1.3}
' endvertices of edge {2,3}

e = {2,4}

edge
degree of

vertex 5 is 2

® = {3,4}

vertices 4 and 5 are neighbours

G = (y,E)
V{G) = { 1 ,2,3,4,5,6}
E{G) = {{1, 2}, {1,3}, {1,4}, {1, 5}, {2, 3}, {2,4}, {3,4}, {4, 5}}
5(G) = 0 and A(G) = 4
\V\ = 6 and \E\ = 8

Figure 2.1: Basic characteristics of an undirected simple graph G = (V, E)

study of routing problems. The following section outlines the key aspects of graph theory
that form the basis of this class of problems.

2.3 Graph Theory

An undirected graph G = (V, E) comprises a finite nonempty set V and a set E con­
taining element pair subsets of V. The elements of sets V and E are known as vertices
and edges respectively. The vertex set of graph G, containing \V\ elements, is denoted
by V(G) and the edge set, comprising \E\ elements, by E(G) . Each edge e £ E(G) is
associated with a unordered pair of vertices {z, j } £ V(G), i.e. where {z, j } = {j, z}.
Vertices z and j are said to be incident to their connecting edge e and are known as its
endvertices. A vertex without incident edges is isolated. These basic characteristics for
an undirected simple graph G = (V, E) are illustrated in figure 2.1.

2.3 Graph Theory 11

For any pair of vertices Vi and Vj, if a connecting edge e = {«, j } exists, they are then
termed adjacent or neighbours. The set of all neighbours to Vi E V(G) is known as
its neighbourhood, NG(vi) = v% e V(G) : vJvl e E(G). Figure 2.2 shows two such
neighbourhoods in a graph G. The degree p{v) of vertex Vi is equal to the total number
of its neighbours, i.e. p{v) = |AG(ui)|. The minimum degree of all vertices present in G
is denoted 6(G) and the maximum degree A (G) .

1 2 1 2

4

(a)

4

(b)

Figure 2.2: Two neighbourhoods in G. (a) Neighbourhood N g (5) = {1 ,4 } (b)
Neighbourhood iVG(3) = {1, 2 ,4 } .

An edge with identical endvertices is called a loop and those with common endvertices are
said to be parallel, see figure 2.3. Graphs that do not contain any loops or parallel edges
are simple graphs. Where either of these characteristics are present, the graph is then
called a multigraph. For any simple graph with a finite number of edges and vertices, the
number of vertices having an odd degree will always be even and the sum of the degrees
of all its vertices will always be twice the total number of edges present, that is:

The term “graph” can be used to indicate either graphs or multigraphs. All graphs through­
out this thesis contain no loops or parallel edges. The term graph is used from this point
on to refer to a simple graph.

1

(a) (b)

Figure 2.3: Characteristics of a multigraph, (a) Loops: edges with identical endver­
tices or (b) Parallel edges: with common endvertices.

12 2.3 Graph Theory

Any graph, in which every pair of vertices is connected by an edge, is said to be complete.
The degree of every vertex in a complete graph K\v\ is equal to \ V | — 1. Removing one or
more vertices V' C V (G) and/or edges E' C E(G) from a graph G results in a subgraph
G' = (V', E') where G' C G.

A walk is a traversal across a graph, following an alternating sequence of vertices and
edges, such that each edge connects the vertices prior to and immediately after it. A
walk between two vertices is the sequence u0, e\, Vi, e < i , en, vn, where e» = {ut_i, ?;*},
VI < i < n. In a walk, edges or vertices can be crossed more than once. A walk with no
repeated edges is called a trail and a trail with no repreated vertices is called a path. A
path with identical vertices at each end, i.e. vq = vn is a closed path and called a cycle.

Figure 2.4: A connected graph G with two cut edges {2, 4} and {7, 8}.

A graph containing a walk between every pair of vertices, is said to be connected. A
single edge of a connected graph whose removal results in an unconnected graph is called
a cut edge (or bridge). Figure 2.4 shows a connected graph G, with two cut edges {2,4}
and {7,8}, whose removal results in G becoming unconnected. An edge cut is a subset
D c G of the edges in G, which when deleted, leaves G unconnected.

A Eulerian Path EP(vi, Vj) is a vertex/edge sequence from Vi to Vj, where every edge in
G is crossed exactly once. Such a path will only exist, iff, the total number of odd degree

1 -« 1 2 1 » > 2

5

8

4 4

(a) (b)

Figure 2.5: Two Eulerian paths in graph G (a) A Eulerian path E P { 2 ,3) =
2 1 5 4 1 3 2 4 3 and (b) A Eulerian path E P (3, 2) = 3 1 4 3 2 4 5 1 2.

2.3 Graph Theory 13

vertices in G is equal to 0 or 2. Figure 2.5 shows two valid Eulerian paths in graph G,
which contains exactly two vertices of odd degree. The labels on the edges of the graphs
indicate the sequence of traversal for each Eulerian path. A Eulerian path in any graph
with exactly two odd degree vertices, will always start from one of the vertices with odd
degree. Algorithm 2.1, defined by Fleury [63], can be used to determine a Eulerian Path.

Algorithm EulerianPath(G)
Construct a Eulerian path in a connected undirected graph G with exactly two vertices of
odd degree. The algorithm returns a sequence representing a Eulerian path.

I. Arbitrarily select an odd degree vertex vx as the start of the sequence.
II. Traverse along any edge {vi,Vj}, that is not a cut edge (i.e. whose subsequent

removal will not disconnect the current graph G). If no such edge exists, traverse
the cut edge.

III. Delete the edge {vx, Vj}, selected in step II., from the current graph G. Set vx = vr
IV. Repeat steps II. to HI. until no more edges exist.

Algorithm 2.1: Fleury’s Eulerian Path Algorithm

A Eulerian Cycle EC(vi) is a closed path starting and ending at the same vertex A
graph containing this type of cycle is said to be Eulerian (or Unicursal). Graphs where
all vertices have an even degree (i.e. having odd degree vertices equal to 0) will contain a
Eulerian cycle and be Eulerian. Adding edges {2,5} and {3,5} to the graph in figure 2.5,
results in the even graph shown in figure 2.6. Consequently, the graph contains a Eulerian
Cycle and is therefore a Eulerian graph.

1 1 » 2

Figure 2.6: Eulerian cycle in G, .E C (l) = 1 2 3 4 5 3 1 4 2 5 1.

Algorithm 2.1 can again be used, with slight modification, to find a Eulerian Cycle in any
connected undirected Eulerian graph G. Given that all vertices are of even degree, step
I. is amended to allow the sequence to be started from any vertex present in G. All other
steps in the algorithm remain the same, repeating steps II. to HI. until no more edges exist
and the sequence finishes at the starting vertex. The output for a given input graph G and

14 2.3 Graph Theory

selected start vertex Vi, is a sequence beginning and ending at Vi, representing the Eulerian
Cycle EC(vi).

The problem with this algorithm is that at each iteration, the connectivity of the graph
needs to be checked to identify cut edges. The procedure of determining these cut edges
has a high computational cost. A series of more efficient algorithms have been proposed
based upon an “end-pairing” algorithm, first described by Hierholzer [94]. Although this
algorithm was first published by Hierholzer in 1873, before that of Fleury in 1885, it
remained undiscovered by modem day researchers for some time. Having identified this
procedure, Edmonds and Johnson [55] defined a variation of the “end-pairing” algorithm
with a C?(| Vj) time complexity. A detailed analysis of algorithms for Eulerian graphs can
found in Fleischner [62].

In contrast a Hamiltonian Path HP(vi,Vj) visits every vertex of G exactly once. A
Hamiltonian Cycle is a Hamiltonian path with the same start and end vertex. A graph
containing a Hamiltonian cycle is called a Hamiltonian graph. Hamiltonian paths and
cycles are named after the Irish mathematician Sir William Rowan Hamilton, who in­
vented the game called Icosian. The game involves the player finding a Hamiltonian
cycle along the edges of a dodecahedron, visiting every vertex just once, with no repeated
edges, ending at the same vertex as that started from. A detailed description of the game
can be found in Ball and Coxeter [6].

Although the problem of deriving a Hamiltonian cycle in a graph appears quite simi­
lar to that for a Eulerian cycle, characterisations such as that of even-degree for a Euler
cycle, do not exist for the Hamiltonian problem. The problem has been shown to be
M V -Complete [73]. Many graphs will contain more than one Hamiltonian cycle, pre­
senting the question of which is the shortest. This problem is then known as the Traveling
Salesman Problem (TSP).

In many situations it becomes necessary to model the direction of each edge in a graph,
e.g. In road networks with one way streets. Such a graph is then known as a digraph
G = (V, A) and comprises a finite nonempty set of vertices V and a set of directed arcs
A. Note the distinction between undirected edges and directed arcs. From this point on
“edge” will be used solely to describe undirected edges and “arc” to refer to directed
edges. Each arc a is associated with an ordered pair of vertices {k , /} in V, i.e. where
{k, I} ^ {I, fc}. Vertex k is called the tail or start endvertex and vertex I the head or
destination endvertex. Arcs are represented using an arrow to indicate the direction of
traversal. An example is shown in figure 2.7.

An arc {k, 1} is described as being incident from vertex k and incident to vertex /. For
any vertex, its out-degree p+ (v) is equal to the number of arcs incident from it and its

2.4 Computational Complexity 15

—► Direction of arc

' I* ------------------------------- 2
TAIL HEAD

Figure 2.7: A directed arc which can only be traversed from tail to head.

in-degree p~ (v) is equal to the number of arcs incident to it. A digraph containing a walk
between each vertex and every other vertex, whilst adhering to the direction of each arc,
is said to be strongly connected.

Cost c(e)
1#--------------------- • 2

Figure 2.8: A weighted edge with associated cost of traversal c(e).

The final type of graph is known as a weighted graph. A cost c(e) (or w eight) is associ­
ated with each edge e e E(G), as shown in figure 2.8. The cost of traversing any path or
cycle in G is equal to the sum of its individual edge costs.

2.4 Computational Complexity

The theory of computational complexity was bom out of the work of Cook [38] and
Karp [99], who laid down a framework to measure the efficiency/complexity of a problem.
Before outlining the field of complexity, we will begin by defining the terms problem,
problem instance and algorithm.

A problem is a generic question, with a common structure, consisting of a series of input
variables, requiring an answer, e.g. The TSP models an intercity road network on a graph
G, representing cities using vertices and routes between pairs of cities as edges. The
question for this problem is then “What is the least cost cycle, visiting every city exactly
once?”, i.e. Hamiltonian cycle.

Each specific question is known as an instance of the problem. Each instance consists
of an exact specification of the problems input variables, e.g. in the case of the TSP, the
number of vertices and a list of edges, including their associated costs (i.e. travelling
distances).

There is much disagreement about the definition of an algorithm, but for our purposes we
define it as a set of step by step instructions for solving a problem, which when applied

16 2.4 Computational Complexity

to a problem instance, ensures a legal solution to that problem in a finite number of steps.
A crucial factor for any algorithm is the length of time it takes to produce the required
solution.

Today’s computers provide us with larger memory/storage facilities and substantially
faster processors than previous models and this trend seems set to continue. However,
computers only have a finite set of resources to offer. Eventually, the size of a problem
instance becomes too large to be solved in a finite or realistic timescale.

So why not use the actual running time of an algorithm on a given computer as the mea­
sure of that problem’s complexity? The biggest problem is that computers are built upon
different architectures, with different processors and amounts of memory/storage. Using
the runtime of an identical problem instance executed on a series of different hardware
platforms, does not allow for a standardised comparison for that problem. Trying then to
use this approach to make comparisons between different problems would prove virtually
impossible to achieve and provide meaningless results.

An added complication is that when applying an algorithm to different instances of a prob­
lem, some instances may be easily solved, while other instances prove much harder and
require substantially more steps to be executed before a solution is generated. Although
a measure of the average, or even perhaps the best performance of an algorithm would
be very useful, carrying out this kind of analysis would be extremely difficult and time
consuming.

The accepted framework for measuring computational complexity overcomes these is­
sues. Complexity is calculated based upon how the time requirements for a problem
increase in relation to an increase in the size of a problem instance. The measurement is
normally stated for the worst possible case, i.e. the hardest problem instance of a given
size. Take the TSP problem outlined earlier. To answer the question posed, a complete
enumeration of all solutions could be undertaken using algorithm 2.2.

The size of a problem instance is a variable n which reflects the amount of input data
needed to specify that instance. In the case of the TSP, the size n is equal to the number
of cities defined in an instance. Each problem instance made up from the input data
must be transformed into a description before being passed to the computer. Instances are
transformed into a series of zeros and ones using an encoding scheme resulting in a finite
bit string. Each problem requires a relevant encoding scheme to allow this transformation
to take place. For any given problem, the length of the input for any instance is equal to
the length of the description generated by the problem encoding scheme.

Given an encoded description, a runtime analysis can be performed using a computational

2.4 Computational Complexity 17

Algorithm EnumerateTSP(n, E(G))
Carry out a complete enumeration of all possible tours for the given problem instance.

I. Initialise distance matrix E = E(G) and set shortestCycleLength — oo.
II. Recursively enumerate possible tours. In each recursion step do the following:

1. Calculate tour length and set cycleLength equal to this length.
2. If cycleLength < shortestCycleLength set shortestCycleLength =

cycleLength.

Algorithm 2.2: TSP Enumeration Algorithm

model. Any model, such as a Turing machine [171], Church’s A-calculus [34] or even a
modem day computing language can be used. The important fact is that these models
provide a platform independent mechanism for measuring complexity. The number of
elementary steps (e.g. addition, multiplication) required by the computational model to
provide a solution to a given problem instance using a specified algorithm can provide an
estimate of the runtime.

As we are interested in the number of elementary operations as a function of the length n
of the input description, we can use G(.) notation to state the mnning time of an algorithm.
O notation is an upper bounding function f (n) = 0(g(n)), if a constant c > 0 exists,
such that f (n) < cg(n) for all n > 0. For any problem, the main concern is the growth
rate in the number of steps required as the input size n of the problem instance increases.
Problems are either polynomial, scaling up in a fashion constrained by a polynomial in
n or exponential. Polynomial algorithms are considered efficient, with growth rates such
as n , n2 or n3. All other algorithms are said to be exponential with growth rates in the
order 2n, 3n or n\. Problems for which polynomial algorithms exist are generally said to
be “easy”, where as exponential algorithms are termed “hard”. The difficulty of a problem
is known as its tractability.

Problems can be broadly classified based upon their relative tractability using a group of
problems known as decision problems. For any problem instance, a decision problem can
have only two possible answers yes or no. Consider the TSP, a decision problem would
pose a question such as “Are there more than 3 cycles with a distance shorter than 50
miles?”.

The simplest class V (polynomial) represents the set of decision problems which can be
solved on a computational model in polynomial time, i.e. having a runtime of 0 (n k), for
k € N. Most algorithms in this class can be solved relatively easily, however, when k
becomes large, problems become uncomputable in a finite timescale.

The class J\fV (nondeterministic polynomial) contains all decision problems which can

18 2.5 Algorithmic Classes

be solved on a nondeterministic computer model in polynomial time. A nondeterministic
computer is a theoretical device emulating the notion of polynomial time verification, a
fact not possible in reality: essentially, the ultimate checking machine that can take all
possible solutions and check them in parallel. The theory is that given a "yes" answer to
a decision problem, it can be easily verified in polynomial time.

The class coMV is made up of any decision problems with a "no" answer that can be
checked by a nondeterministic computer in polynomial time. The larger problem class
M V also contains all problems in V, i.e. V C M V , however, the question of whether V =
M V remains one of the most infamous unanswered questions in the field of complexity
theory. Although not actually proved, it is conjectured by many that M V ^ V.

A problem is MV-Hard if a polynomial time algorithm for that problem can be translated
into a polynomial time algorithm for solving every problem in the class MV. Any problem
that is both MV-Kard and in the class M V is said to be MV-Complete. A/r'P-Complete
problems represent the hardest problems in the class M V. Finding a polynomial time
algorithm for any A/r'P-Complete problem, would imply a polynomial time algorithm for
every AfP-Complete problem.

2.5 Algorithmic Classes

We have seen that for “hard” problems, carrying out a complete enumeration of all solu­
tions is prohibitive, for all but the smallest of problem instances. More intelligent tech­
niques must be used to reduce the total number of evaluations required, which based upon
the methodology employed, result in differing guarantees of solution quality. For our pur­
poses, these solution methodologies will be broadly classified into the following types:
exact algorithms and approximation algorithms.

Exact Algorithms

Given sufficient time, an exact algorithm offers a concrete guarantee for deriving the
optimum solution to a problem instance. However, due to the exponential increase of
potential solutions for “hard” problems, a number of exact algorithm paradigms have
been developed, employing techniques to intelligently cut down the overall solution space,
reducing the number of solutions that need to be checked to derive the optimum answer
for a given instance.

2.5 Algorithmic Classes 19

These techniques are still very limited in relation to the size of input that they can han­
dle and the time taken to derive the optimal solution. For MV-Hard problem instances,
computing an optimum solution in polynomial time will only be possible if V = MV. A
number of the more prominent exact methods are Branch-and-Bound (B&B) and Branch-
and-Cut (B&C)

B&B is a technique applied to optimization problems and represents the search space us­
ing the leaves of a search tree. Lawler and Wood [109] published one of the first papers
discussing the B&B paradigm. The method essentially searches the complete solution
space using the concept of branching to determine the next move and guarantees an op­
timum solution. However, in order to avoid an exhaustive search and the exponentially
increasing number of solution possibilities associated with it, bounds are used to reduce
the size of the solution space that needs to be searched.

B&C is a hybrid method utilising B&B and cutting plane techniques. The principal behind
cutting plane methods is to reduce the feasible regions within the search space by the
addition of new constraints (cutting planes) to a problem, such that the feasible integer
solution set is unaltered.

Approximation Algorithms

Heuristics typically offer a solution methodology capable of quickly finding a valid solu­
tion to a problem instance, although no guarantee can be offered with regards to the quality
of that solution. The quality of these methodologies is typically assessed through empiri­
cal testing. Due to the limitations of exact methods, the use of heuristics is commonplace
for large instances of “hard” combinatorial optimization problems. This primarily stems
from the fact that such techniques are capable of providing feasible solutions to substan­
tially larger instances, using significantly less computational effort than required by their
exact counterparts. They essentially trade-off a proportion of the final solution accuracy
against the computing time required to produce the solution. Although it may be the case
that the solution attained is in fact the optimum solution to a given problem instance.

A subclass of heuristics that have received massive research interest over the last few
decades are known as metaheuristics. They provide generic frameworks for heuristics
that can be applied to a wide range of problem classes. Some well known metaheuris­
tic frameworks are the Genetic Algorithm (GA), Tabu Search (TS), Simulated Annealing
(SA), Ant Colony System (ACS) and Memetic Algorithm (MA). Chapter 6 provides a
detailed analysis of metaheuristic frameworks, including a summary of their use and ef­
fectiveness for routing problems.

20 2.6 Routing Problems

2.6 Routing Problems

Many different routing problems exist, but all can be classified using two main problem
types. Consider the following two scenarios:

Scenario 1: Departing from a base city location, a salesman wishes to traverse a number
of different cities, stopping at each to sell his wares, returning to the base city once all
cities have been visited. The salesman wishes to undertake this journey along a route
which requires minimum travelling distance, starts and ends at the base city location and
visits all destination cities exactly once.

Scenario 2: Departing from a depot location, a refuse driver wishes to collect the refuse
from a sub-network of streets within a city, returning to the depot once all collections
have been made. The refuse operative requires a minimum length route which starts at the
depot, traverses each street at least once and finally returns to the initial depot location.

Although these problems may at first seem quite similar, significant differences can in fact
be observed. In the first scenario, the work of the operative is undertaken at a series of
fixed locations (i.e. the cities) and it is the connections between these points that are used
to derive a route for travel. In contrast, in scenario 2 the work of the operative is carried
out on each of the connections between the points (i.e. the streets), the points acting
only as interconnections between the various streets. Problems of the kind described in
scenario 1 are known as Node Routing Problems and those in scenario 2 as Arc Routing
Problems.

Both types of problems can be modelled using the graph structures outlined in section 2.3.
Node Routing Problems are typically defined on a weighted graph G = (V,E), with cities
represented by the vertex set V and the connections between the cities by the edge set E.
Each edge e : E —> m G, has an associated edge weight c(e), representing the cost of
travel between two city vertices.

Arc Routing Problems are again modelled on a weighted graph G = (V, E), but in con­
trast to their node routing problem counterparts, the streets are represented by the edge
set E and the interconnection points between the ends of the streets, by the vertex set V.
The weight c(e) associated withe each edge e : E —» in G, can represent the distance
or service time required in traversing the street.

The focus of this thesis is on two well known routing problems, namely the CVRP and the
CARP. The CVRP is a Node Routing Problem and involves the distribution of products
to a group of customers. This must be achieved using a quantity of vehicles, located at
one or more depots and driven by a group of drivers using the road network infrastructure.

2.7 Chapter Summary 21

Essentially, the solution to this problem requires the determination of a set of routes that
fulfill all given constraints and minimise overall transportation costs. Each route must be
undertaken by only one vehicle, which itself must start and return to its allocated depot.
The CVRP can be viewed as an amalgamation of two other well known combinatorial
optimization problems: the Bin Packing Problem (BPP) and the TSP.

The CARP is an Arc Routing Problem and requires the computation of a set of minimal
cost routes across the arcs and/or edges of a graph network, in order to service a group of
customers at the street level, whilst adhering to any contraints that might exist.

2.7 Chapter Summary

This chapter began by outlining the domain of combinatorial optimization and the funda­
mental concepts of graph theory that underlie the subclass of problems known as routing
problems. The theory of computational complexity and its relevance to optimization prob­
lems was then explored. Finally, a number of algorithmic classes were detailed and the
chapter concluded with a definition of two sub-problems from the class of routing prob­
lems that form the basis of the work presented in this thesis.

22 2.7 Chapter Summary

________________ 23

Chapter 3

Routing Problem Formulations

This chapter aims to introduce and formulate a series of node and arc routing problems,
highlighting important aspects of the literature and state of the art techniques for each
problem type. Although the main routing problems studied in this thesis are the Capaci­
tated Vehicle Routing Problem (CVRP) and Capacitated Arc Routing Problem (CARP), a
number of simpler, closely related problems that underly the CVRP and CARP will first
be introduced.

3.1 Node Routing Problems

Node routing problems have historically received substantially more research interest than
their arc routing counterparts. The simplest type of problem, known as the Traveling
Salesman Problem (TSP), is detailed first and built upon to show a number of different
variations and extensions that result in the CVRP. Further variants of the CVRP taking
account of time windows and backhauls are then introduced.

3.1.1 Symmetric Traveling Salesman Problem

The simplest and best known routing problem is the TSP. The work of a traveling sales­
man requires that he leaves home at the beginning of each day, visits a number of cus­
tomers in different locations, before returning home at the end of the day. For any sales­
man, being able to schedule a route that visits all customers while covering the shortest
possible travelling distance (or cost), will offer obvious advantages. The TSP, involves
the calculation of a travelling route for the salesman, of minimal distance, visiting every
customer exactly once. The TSP can be formulated on both graphs and digraphs, allowing
the encapsulation of a number of real world scenarios. Figure 3.1 shows a typical prob­
lem instance and the corresponding optimum route for the salesman. When modelled on

24 3.1 Node Routing Problems

(a) (b)

Figure 3.1: Traveling Salesman Problem: (a) Problem instance and (b) Optimum
solution for problem instance in (a).

graph, the cost of travel along an edge is the same in both directions and the problem is
called the Symmetric Traveling Salesman Problem (STSP), defined as follows:

Problem Symmetric T raveling Saleman Problem (STSP)

Input: A connected undirected weighted graph G = (V, E) with associated
edge costs Cy, Vj) G E.

Output: A least cost Hamiltonian cycle in G.

In the case of an asymmetric cost matrix, where the cost of travel between two vertices will
differ depending upon the direction of travel between the vertices, the problem is then for­
mulated on a digraph and known as the Asymmetric Traveling Salesman Problem (ATSP).
Both the STSP and ATSP are AfV-Hard by reduction from the Hamiltonian Cycle Prob­
lem [73].

Problem Asymmetric T raveling Saleman Problem (ATSP)

Input: A connected directed weighted digraph G = (V, A) with associated di­
rectional arc costs and cjit \/{vi,Vj} G A.

Output: A least cost Hamiltonian cycle in G.

Ever since the seminal cutting plane algorithm of Dantzig, Fulkerson, and Johnson in
1954 [44], which provided the solution to the first non trivial instance of the TSP, com­
prising 49 cities in the United States, a substantial amount of research into the TSP has
been carried out. In order to standardise comparisons between different algorithms, prob­
lem instances from various sources were compiled by Reinelt [154, 155], producing a
library known as TSPLIB [189]. The library contains problem instances for the STSP,
ATSP and CVRP.

3.1 Node Routing Problems 25

Instances for the STSP range in size from 14 to 85,900 cities. In April 2006, the last
remaining instance in TSPLIB, at that point unsolved to optimality, was proved by Ap­
plegate et al. [2] to be optimal. They utilised a tour previously derived by Helsgaun [92]
and used the Concorde TSP Solver [186], a code framework written in a programming
language called Ansi C, in combination with a number of domino-porito constraints pro­
posed by Letchford [114].

Books by Lawler et al. [110], Gutin and Punnen [90] and a recent book by Applegate
et al. [2] provide a thorough introduction to the TSP and its variants. A review of the
Applegate et al. book is provided by Letchford and Lodi [114]. Applegate et al. outline
the current day state of the art methodologies and discuss in detail the underlying compu­
tational code used by the authors to achieve the solutions to the large problem instances,
such as the 85,900 city instance, recently solved.

Further to the success with the instances in the TSPLIB library, focus has now moved
forward to even larger problem instances. A further collection of instances was introduced
to continue the standardisation of comparison between new methodologies. These include
a National TSP set, containing 27 problem instances, each modelling the cities of 27
different countries, ranging between 29 and 71,009 cities, and a VLSI TSP set from the
University of Bonn, containing 102 problem instances, with between 131 and 744,710
cities.

Currently the largest instance solved to optimality for the National TSP set is 24,978
cities for the country of Sweden, achieved by Applegate et al., and for the VLSI TSP set
is 10,959 cities using the Lin-Kemighan heuristic proposed by Helsgaun. There remain a
total of 13 and 62 problem instances still unsolved to optimality for each set respectively.

The final problem instance, which repesents the ultimate challenge for the TSP researcher
is known as the world problem and contains all registered populated cities and a series of
research facilities in Antarctica, resulting in a massive 1,904,711 cities. Although, at the
time of writing, the best result achieved for this instance by Helsgaun, has a variation on
the known lower bound of only 0.0498%.

3.1.2 Multiple Traveling Salesman Problem

The Multiple Traveling Salesman Problem (mTSP) generalises the TSP, requiring the de­
termination of a set of routes for m salesman, each departing from and returning to the
same base location (or depot).

26 3.1 Node Routing Problems

(a) (b)

Figure 3.2: Multiple Traveling Salesman Problem: (a) Problem instance and (b)
Optimum solution for problem instance in (a).

Any mTSP can be formulated as a TSP with m + n cities, m duplicate copies of the depot
node must be created and the distances between all new depot nodes is set to a arbitrarily
large number, ensuring that no individual salesman tour will be empty. Figure 3.2 shows
a typical problem instance for the mTSP and the corresponding optimum solution.

Problem M ultip le T raveling Saleman Problem (mTSP)

Input: A connected undirected weighted graph G = (V,E) with associated
edge costs Cij, V{^, Vj} G E. A number of salesmen m > 1, located
at a depot node vq G V (G) and a set of intermediate nodes V \ {vo}-

Output: A set of m cycles in G, each starting/ending at the depot node, visiting
all intermediate nodes exactly once, such that the cost of traversing all
cycles is minimised.

Research into the mTSP is far less abundant when compared to the related TSP. For a
survey detailing the exact and heuristic methods available for the mTSP, see Bektas [10].

3.1.3 Capacitated Vehicle Routing Problem

The simplest version of the VRP is known as the CVRP, which naturally extends the
mTSP, modelling salesmen as vehicles and enforcing a capacity restriction on the carry­
ing capacity of each vehicle. Assigning each vehicle a capacity greater than the sum of
customer demands, allows the problem to be reduced to a mTSP.

The CVRP involves finding a set of routes for a homogenous fleet of vehicles, which must
service a set of customers from a central depot. Assumptions are made that all vehicles
depart from and return to the same depot and a preset number of vehicles are available,

3.1 Node Routing Problems 27

Problem Capacitated Vehicle Routing Problem (CVRP)

Input: A connected undirected weighted graph G = (V, E) with associated
edge costs Cy, V{^, Vj} £ E and node demands di, V{^} £ V \ {v0}.
A number of vehicles m > 1 with identical capacity Q, located at a
depot node v0 £ V, with dVo = 0.

Output: A set of m cycles in G, each starting/ending at the depot node, where
each non depot node is crossed exactly once, such that the cost of
traversing all cycles is minimised and the capacity of each cycle does
not exceed Q.

all of which are capable of holding an identical fixed capacity. The quantity demanded by
each customer must be less than the capacity of a single vehicle and known in advance.
The objective is to minimize the cost of making the customer deliveries.

A similar problem, substituting the capacity restriction for a distance restriction, is known
as the Distance Constrained Vehicle Routing Problem (DVRP), commonly modelled with
an objective function to either minimise total distance travelled or the total number of
vehicles required to service all demands. A number of exact algorithms with an objective
function to minimise the total distance of all vehicles have been proposed.

Laporte et al. [107] proposed a linear programming formulation for the DVRP and de­
scribed two exact algorithms, one utilising branch-and-bound and the other cutting plane
methods, allowing optimal solutions to be computed for problem instances containing up
to 60 nodes.

Laporte et al. [108] further proposed an alternative linear programming algorithm to solve
both distance and capacity constrained versions of the VRP, allowing problem instances
containing up to 60 nodes to be solved to optimality, with substantially better computing
times.

Li et al. [118] investigated the DVRP, analysing optimal solutions for both objective func­
tions and proposed a tour partitioning heuristic, exhibiting relatively good results for prob­
lem instances with few vehicles. A related more generalised version of the DVRP is called
the Distance Constrained Capacitated Vehicle Routing Problem (DCVRP) and considers
both distance and capacity restrictions.

2 8 3.1 Node Routing Problems

3.1.4 Vehicle Routing Problem with Backhauls

The Vehicle Routing Problem with Backhauls (VRPB) generalises the CVRP and can be
modelled on a symmetric or asymmetric cost matrix. In both cases the VRPB is MV-
Hard. Customers are divided into two subsets, linehaul customers requiring goods to be
delivered and backhaul customers with a quantity of goods to be collected.

Problem Vehicle Routing Problem w ith Backhauls (VRPB)

Input: A connected undirected weighted graph G = (V, E) with associated
edge costs ĉ -, e E. A non empty subset L C V of line­
haul customers and a non empty subset B C V of backhaul customers
where L + B = V \ {^o}- Node demands di, V{^} £ L and Node col­
lection requirements ri, V{^} £ B. A number of vehicles m > 1 with
identical capacity Q , located at a depot node vq £ V, with dVQ = 0.

Output: A set of m cycles in G, each containing at least one linehaul customer,
starting/ending at the depot node, where each non depot node is crossed
exactly once, such that the cost of traversing all cycles is minimised,
the capacity of each cycle does not exceed Q and for any cycle con­
taining both linehaul and backhaul customers, backhaul customers are
only serviced once all linehaul customer demands have been satisfied.

The requirement that backhaul customers are only serviced after all linehaul customer
demands have been satisfied is necessary as the majority of vehicles are loaded from the
rear. Attempting to load goods collected from a customer into a vehicle already containing
goods for delivery may not be practical. However, the requirement also fits nicely with
typical customer expectation, wishing deliveries to be made at the earliest possible time
and goods they are dispatching to be picked up later in the day.

3.1.5 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) generalises the CVRP with
an additional constraint, requiring that servicing the demands of every customer should
only commence during a predefined time interval, known as a time window. Each time
window has an associated start time

The VRPTW is Ar'P-Hard [112]. Detailed surveys of the VRPTW can be found in Golden
and Assad [83, 84], Desrochers et al. [48], Solomon and Desrosiers [163]. Exact algo­
rithms are outlined in Desrosiers et al. [50] and Cordeau et al. [42], although the majority

3.2 Arc Routing Problems 29

Problem Vehicle Routing Problem with Time Windows (VRPTW)

Input: A connected weighted digraph G = (V, A) with associated nonnegative
distance costs Cy, V{vz, v3} G A and nonnegative traveling times tXJ,
\/{vu Vj} G A. Vertex v0 G V represents the depot node and the vertex
subset V \ {r>0} customers. For each customer, the total time required
to service demands is s* which must begin during the time window

h), where e* is the earliest and U the latest time at which servicing
can commence. A number of vehicles m > 1 with identical capacity

Q.
Output: A set of m minimum cost (total travelling time and/or distance) cycles

in G, each starting and ending at the depot node u0, where each cus­
tomer node is visited exactly once by exactly one vehicle, such that the
capacity of each cycle does not exceed Q and for each customer ser­
vicing their demands begins during the time window ^(e*, /*), where
early arrival at at a customer location results in a waiting time Wi.

of research has focused on heuristic procedures. A thorough survey of route construc­
tion/local search heuristics and metaheuristics for the VRPTW is given by Braysy and
Gendreau [19, 20].

3.2 Arc Routing Problems

The Arc Routing Problem (ARP) can be traced back many years to the infamous Konigs-
berg bridge problem, which involved determining the existence of a closed route, crossing
each of the seven bridges over the Pregel river in the city of Konigsberg, East Prussia, ex­
actly once: i.e. a route starting at any vertex, crossing every edge only once and returning
to the initial vertex. Euler [57] proved in 1736 that such a route was not possible in this
instance and for any undirected graph to contain such a route, every vertex within it must
have an even number of edges incident to it. The graph is then said to be Unicursal or
Eularian. Although Euler developed the concept of unicursality, the actual method of
computing a closed route in a unicursal graph was provided in 1873 by Hierholzer [94].

In their simplest form, arc routing problems require the computation of a route across
the arcs and/or edges of a graph network in order to minimise the cost of following that
route, whilst adhering to any contraints that might exist. The following sections describe
the main ARP classes and the variants of those problems.

30 3.2 Arc Routing Problems

3.2.1 Chinese Postman Problem

Euler showed that a closed route does not exist if the conditions of unicursality are not
satisfied. However, the question of traversing a non-Unicursal graph covering every edge
at least once, whilst minimising the distance travelled was later proposed by Guan [88].
Meigu Guan (or Kwan Mei-Ko) was a mathematician who worked at a post office dur­
ing the Chinese Cultural Revolution in the 1960s. The problem he stated, known as
the Chinese Postman Problem (CPP), required the computation of the shortest route for
a postman (with an assigned delivery region), who upon leaving the postal depot, would
deliver all of his mail and then return to the postal depot from which he initially departed.
The problem is known as the Undirected Chinese Postman Problem (UCPP):

Problem U ndirected Chinese Postman Problem (UCPP)

Input: A connected undirected weighted graph G = (V, E) with associated
edge costs c*j, V{uj, Vj} £ E.

Output: A least cost closed walk on non Eulerian graph G traversing every edge
at least once.

If a graph G satisfies the properties of unicursality (i.e. every vertex has even degree), the
problem can be easily solved by constructing a Eulerian cycle on G. This can be achieved
in polynomial time with a time complexity G(\E\). However, for any graph with vertices
of odd degree, a number of edges incident to those vertices must be crossed more than
once (or deadheaded). Crossing any vertex involves following an incident edge into and
then out of that vertex. Each time a vertex is crossed, exactly two incident edges must be
covered. Therefore, vertices with an odd degree will have at least one incident edge that
will need to be covered more than once.

If r(vi,Vj) is the number of times that an edge {y^Vj} is recrossed for any postman
tour, total traversals for that edge will equal (1 + r(u*, V j)) . Repeated paths will always
terminate on vertices of odd degree. Therefore, computing a minimum weighted perfect
matching M on the subgraph G ' , constructed using all vertices with odd degree in G,
computes a set of edges, which when added to G, make it Eulerian. Adding the set of
repeated edges to G results in an Eulerian graph G" , allowing a least cost cycle in G" to
be easily constructed.

The first polynomial time algorithm for the minimal weighted matching problem was
provided by Edmonds [54]. This was later adapted to provide a polynomial algorithm to
solve the UCPP [55]. Algorithm 3.1 describes how a Chinese Postman tour can be derived

3.2 Arc Routing Problems 31

Algorithm ChinesePostmanTour(G, c)
Detects the least cost postman tour in an undirected graph G with associated edge costs
Cij , V j } G E. The algorithm returns a sequence representing the tour.

I. Generate set S of all odd degree vertices in G. For each pair of vertices {r;*, V j } G S ,

calculate the shortest path = SP(vi, v3) between them.
II. Construct a complete graph G', from all vertices {v*, V j } G S.

IE. Find a perfect matching M in G' with minimal total edge weight.
IV. For each edge { v i , V j } G M, add all edges and associated costs of the path

SP fa , Vj) , inserting duplicate (i.e. parallel) edges to form a new multigraph G".
V. Construct a least cost Eulerian cycle on G”, representing an optimum postman tour.

Algorithm 3.1: Chinese Postman Tour Algorithm

from any connected undirected weighted graph. The time complexity of this algorithm is
o m 3).

24

Figure 3.3: Connected undirected weighted graph G = (V, E)

Consider the connected undirected weighted graph G shown in figure 3.3. Each edge
{vi,Vj} is labelled with the cost of travel between vertices Vi and Vj. The set S of
vertices of odd degree is {3,4,5,6,7,8}. Edge costs for all possible vertex pairs in S are
derived from computing the shortest path distance between each pair giving SP(3,4) = 6,
SP{3,5) = 18, SP(3,6) = 27, SP(3,7) = 18, SP(3,8) = 11, SP(4,5) = 12,
5P(4,6) = 21, SP(4,7) = 22, SP(4,8) = 15, 5P(5,6) = 9, S P (5,7) = 21,
SP(5,8) = 14, SP(6,7) = 19, SP(6,8) = 23 and SP(7,8) = 7, resulting in a mini­
mum weighted perfect matching consisting of edges {3,4}, {5,6} and {7,8} as shown in
figure 3.4.

32 3.2 Arc Routing Problems

14

Figure 3.4: Minimum weighted perfect matching G ' of graph G

Adding edges {3,4}, {5,6} and {7,8} to graph G results in the Eulerian multigraph
G" shown in figure 3.5. A Eulerian tour can then be calculated such as the sequence
1 2 3 4 8 3 4 5 6 7 8 2 7 8 5 6 1, with a total travelling distance of 223.

24

16

Figure 3.5: Eulerian multigraph G "

3.2.2 Directed Chinese Postman Problem

In the Directed Chinese Postman Problem (DCPP), arcs are substituted for edges, which
can only be traversed in a predefined direction. We saw in section 3.2.1 that a solution to
the CPP can be computed for any connected undirected weighted graph. However, this
is not always possible for the directed case. Consider the graph in figure 3.6, although
weakly connected, no path exists between the vertex subsets {3,4, 5} and {1,2,6, 7,8}.
As such, a digraph will only contain a postman tour, iff it is strongly connected (i.e. a
directed arc between every pair of vertices in G).

3.2 Arc Routing Problems 33

1 2

Figure 3.6: A weakly connected digraph G = {V, A) with no path between vertex
subsets {3 ,4 , 5} and {1, 2, 6, 7, 8}.

The DCPP was initially formulated by Edmonds and Johnson [55] and can be defined as
follows:

Problem D irected Chinese Postman Problem (DCPP)

Input: A strongly connected weighted digraph G = (V, A) with associated arc
costs Cij, Vj} G A.

Output: A directed least cost closed walk on non Eulerian digraph G, traversing
every arc at least once.

In contrast to the undirected case where added edges form paths between vertices of odd
degree, the DCPP requires the addition of edges, creating paths between vertices with
differing in and out degrees. For any given path between vertices Vi and Vj, where p~Vj ^
p+Vj the number of added paths that must start at Vi is p~Vj — p+Vj = D(vi) < 0 and
those that must finish at Vj is p~Vj — p+Vj = D(vi) > 0.

Once the required number of paths that must be added has been calculated, the problem
is then to select a suitable set of paths, such that the resulting digraph G" is balanced, i.e.
\/Vi G V, p~vi = p+Vi, whilst minimising the cost of traversing the additional vertices,
J2Vt Vj cijt{yii vj)i where t(vi: v3) is equal to the number of edges between vertices vt and
Vj added to obtain G".

A number of different algorithms have been proposed for constructing a least cost Eule­
rian graph from G. One such approach is by transforming it into the minimum cost flow

34 3.2 Arc Routing Problems

problem [55], An alternative is to solve the transportation problem, utilised in the proce­
dures proposed by Edmonds and Johnson [55], Orloff [137] and Beltrami and Bodin [11].
A variation of this approach is outlined by Lin and Zhao [122]. The DCPP can be solved
in polynomial time.

3.2.3 Mixed Chinese Postman Problem

The Mixed Chinese Postman Problem (MCPP) was originally proposed by Edmonds and
Johnson [55] and is defined on a graph G = (V, E U A), allowing both undirected edges
and directed arcs, resulting in a model that more accurately reflects real world road infras­
tructures. The problem is as follows:

Problem Mixed Chinese Postman Problem (MCPP)

Input: A strongly connected mixed weighted graph G = (V, E U A) with
associated edge/arc costs Cij,V{vi,Vj} E (E U A).

Output: A mixed least cost closed walk on a non Eulerian graph G traversing
every edge/arc at least once.

Any undirected connected weighted graph is Eulerian, iff, the degree of every vertex is
even. A digraph is Eulerian if it is strongly connected and the in-degree equals the out-
degree for all vertices. Although a combination of the undirected and directed CPP, the
MCPP was shown by Papadimitriou [140] to be ATP-Hard in the general case. For a
mixed graph to be Eulerian, it must again be strongly connected and adhere to the prop­
erties, defined by Ford and Fulkerson [69] as follows:

Degree The degree p(vt) of any vertex E V, equal to the sum of both edges
and arcs (irrespective of direction) incident to it, must be even.

Balance For every vertex subset S C V, the difference between the number of
directed arcs crossing the cut C = (S , V \ S) from S t o V \ S and the
number of directed arcs crossing from V \ S to S, must be less than
or equal to the total number of undirected edges crossing the cut C =
(S ,V \S) , i.e. din(A (S ,V \S)) ± dout(A { S ,V \S)) < \E (S ,V \S) \ .

As for the underlying undirected and directed problems with a non Eulerian input graph
G, the MCPP involves the addition of a minimum cost set of edges and or arcs to produce
a Eulerian graph G" from which a Eulerian cycle can be derived, see figure 3.7.

One of the earliest methods to solve the MCPP to optimality was defined by Minieka [128]
and involved transforming the MCPP to a flow with gains problem. Polyhedral aspects

3.2 Arc Routing Problems 35

Cut (S,V\S)

NAS27

,20

(b)

27

Figure 3.7: Mixed Graphs G = (V, IS U A) (a) Eulerian graph, (b) Non Eulerian
graph, failing the balance condition for the cut C = (5, V \ S), where S = {1, 2}
and V \ S = {3, 4, 5, 6, 7, 8}.

of the MCPP were investigated by Kappauf and Koehler [98], who provided an Integer
Linear Programming formulation, but the inaugural exact algorithm for the MCPP, using
a B&B method with Langrangean relaxation, was later proposed by Christofides [28].
Both methods were based upon the characteristics defined by Veblen [176] for mixed
Eulerian graphs. A series of similarly structured formulations were provided by Grotschel
and Win [87] and Ralphs [152], Other formulations and exact algorithms, utilising a
B&C approach were proposed by Win [178], Grotschel and Win [87] and Nobert and
Picard [134]. The latter authors approach formulated on the characterisations for Eulerian
mixed graphs provided by Ford and Fulkerson [69].

Edmonds and Johnson [55] stated the first approximate algorithm for the MCPP. The
procedure initially augments the input graph for a given problem instance to make it even
and subsequently further augments the resulting even graph to make it symmetric. How­
ever, there is no guarantee that in making the graph symmetric the even characteristic of
the graph can be maintained. For any graph that is symmetric, but contains odd nodes, an
optimum postman tour cannot be computed. The heuristic was later improved by Freder-
ickson [68] to overcome this, by adding a final stage to transform any uneven symmetric
graph to even.

3.2.4 Windy Postman Problem

The Windy Postman Problem (WPP) was proposed by Minieka [128], who questioned the
feasibility of identical weighting for the cost of travel along an undirected edge. Given
an edge representing a road containing a steep gradient, the cost of traversal in the uphill
direction will differ to that when travelling downhill. Minieka described the scenario of a

36 3.2 Arc Routing Problems

windy day, walking along a street into the wind or with the wind behind you, resulting in
the following problem:

Problem Windy Postman Problem (WPP)

Input: A connected undirected weighted graph G = (V, E) with associated
edge costs and Cjii Vj} G (E U A).

Output: A least cost closed walk on a non Eulerian graph G traversing every
edge at least once.

The WPP is AfP-Hard [21, 89] as it is a generalisation of the CPP, DCPP and MCPP.
However, a problem instance can be solved in polynomial time if for the input graph
G, every cycle has the same cost when traversed in both directions [62] or it is Eule­
rian [179]. Grotschel and Win [87] proposed an exact method to solve the WPP using a
B&C structured algorithm, based on a linear programming formulation. The algorithm
was run against a number of problem instances ranging from 52 to 264 vertices and 78 to
489 edges, which it solved to optimality. Win [178] additionally defined an approximation
algorithm for the WPP.

3.2.5 Rural Postman Problem

The Rural Postman Problem (RPP) was initially stated by Orloff [137]. In contrast to the
CPP, the RPP models situations where deliveries must be made to isolated areas of the
graph, i.e. where a number of non required edges exist that have no servicable demand
and are used purely as a means of reaching other areas with service requirements. The
only difference to the CPP is in the set R of required edges, which contains only a subset,
R C E, of those present in the graph.

Consider a configuration of outlying rural villages, as shown in the graph structure of
figure 3.8. Villages are made up of a network of required edges, each with a servicable
demand. A series of non required edges connect the various villages, allowing traversal
between servicable regions. The problem is:

Problem Undirected Rural Postman Problem (URPP)

Input: A connected undirected weighted graph G = (V,E) with a subset R C
E of required edges and associated edge costs Cy, V{uj, Vj} G E.

Output: A least cost closed walk in G traversing every required edge in R at
least once.

3.2 Arc Routing Problems 37

Village I Village 2

16 25

\ 15

Village 3

Figure 3.8: RPP problem instance graph G , consisting of three rural villages with
required edges, interconnected by non required edges, represented by dotted lines.

The Undirected Rural Postman Problem (URPP) has been shown to be jVP-Hard [111],
although it is polynomially solvable when the subset R of required edges induces a con­
nected subgraph or the where R = E, allowing the problem to then be reduced to a UCPP,
outlined in section 3.2.1.

The first exact algorithm for the URPP was devised by Christofides et al. [29], utilising a
B&B based method with Langrangean relaxation. B&C algorithms were later proposed
by Corberan and Sanchis [39] and Ghiani and Laporte [75], allowing larger problem in­
stances to be solved to optimality. Polyhedral investigations were also under taken by
Letchford [117].

In addition to the well known Frederickson heuristic [68], Hertz et al. proposed a series of
local search heuristics and Fernandes de Corboda et al. [58] derived a heuristic utilising
Monte Carlo principles.

3.2.6 Directed Rural Postman Problem

As with the DCPP, arcs are substituted for edges, allowing traversal only in a predefined
direction. The Directed Rural Postman Problem (DRPP) is:

38 3.2 Arc Routing Problems

Problem D irected Rural Postman Problem (DRPP)

Input: A strongly connected directed weighted graph G = ('V, A) with a subset
R C A of required arcs and associated arc costs ĉ-, V{^, Vj} G A.

Output: A directed least cost closed walk in G traversing every required arc in
R at least once.

The DRPP is AfP-Hard [111]. Christofides et al. [30] proposed a B&B structured ex­
act algorithm, based on Langrangian relaxation and a heuristic procedure. The heuristic
works as follows:

1. Construct G \ the connected graph obtained by the shortest spanning tree rooted to
an arbitrary vertex connecting all the components induced by the required arcs, R

2. Add arcs in a least-cost manner so that, in any vertex, the number of incoming arcs
and the number of outgoing arcs is equal

3. Determine an Eulerian circuit on the augmented graph

A further heuristic was defined by Ball and Magazine [7]. Benavent and Soler [13],
outlined an extension of the DRPP, incorporating turn penalties into their model. An
alternative model by Dror and Langevin [52] involves grouping arcs into distinct clusters,
where the demand for each cluster must be completely serviced before service can begin
on a different cluster.

3.2.7 Mixed Rural Postman Problem

The Mixed Rural Postman Problem (MRPP) is a generalisation of the RPP and MCPP
and as such is itself AfP-Hard. The problem is:

Problem Mixed Rural Postman Problem (MRPP)

Input: A strongly connected mixed weighted graph G = (V, E U A) with a
subset R C EU A of required edges/arcs and associated edge/arc costs
Cij , y { v i , V j } G E U A.

Output: A mixed least cost closed walk in G traversing every required arc in R
at least once.

Polyhedral investigations were undertaken by Romero [7] and Corberan et al. [40, 41]
from the perspective of the General Routing Problem (GRP), a generalisation of the MRPP.

3.3 Chapter Summary 39

3.2.8 Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) can be modelled as a capacity constrained
version of the CPP or RPP, known as the Capacitated Chinese Postman Problem (CCPP)
and the Capacitated Rural Postman Problem (CRPP) respectively. Whereas the deliveries
in the CPP and RPP are made by a single person and a single route through the graph is
computed, the CARP deals with the situation where a fleet of vehicles is used to service
the edges. Due to the very nature of vehicles, they can hold only a limited capacity, and
typically more than one vehicle is required to service all the required edges and/or arcs
in the CARP. A set of routes, one for each vehicle, with the aim of minimising total
travelling distance must be computed.

Problem C apacitated Arc Routing Problem (CARP)

Input: A connected undirected weighted graph G = {V,E) with associated
edge costs and edge demands dij, \/{vi,Vj} G E. A unique depot
node Vi e V and vehicle capacity Q for each vehicle.

Output: A set of m cycles in G, each starting/ending at the depot node, where
each required edge is serviced exactly once, such that the cost of
traversing all cycles is minimised and the total demand of each cycle
does not exceed Q.

The first variant of the CARP, modelled as a CCPP, where each edge has a positive
demand, i.e. d^ > 0, Vjt;*, Vj} G E, was first proposed by Christofides [27]. A second
variant of the CARP was proposed by Golden and Wong [86] and formulated as a CRPP.
Identical parameters to those in the Christofides model are used. The only difference
between the two is the quantity of edges/arcs that must be serviced within the graph. In
the CCPP, every edge/arc has a servicable demand, but in the CRPP only a subset R of
all arc/edges present need to be serviced.

Since a CVRP instance can easily be transformed into a CARP instance by splitting each
node into two nodes joined by an edge of zero weight and with demand equal to the
original node, the A/T^-Hardness of the CARP is evident. But the CARP is even harder,
due to the fact that it contains the TSP, CVRP and GRP as special cases.

3.3 Chapter Summary

The main purpose of this chapter has been to describe and formulate the various node
and arc routing problems. The early sections of the chapter deal with node routing prob­

40 3.3 Chapter Summary

lems, providing a chronological description of the various types of problems from the
relatively simple TSP through to the CVRP and the interconnections between them. For
each problem type, important areas of the literature have been reviewed and state of the
art techniques outlined.

The latter sections of this chapter follow the same format as the initial part, covering
the various arc routing problems such as the Chinese Postman Problem, Rural Postman
Problem and CARP.

Chapter 4

Solving The Capacitated Vehicle
Routing Problem

4.1 Introduction

This chapter aims to introduce a range of heuristic algorithms to solve the CVRP, present­
ing a series of examples, a review of the literature and comparative study of a number of
algorithmic implementations.

4.2 Heuristics

Due to the limitations of exact methods applied to vehicle routing problems, approxima­
tion algorithms have attracted a substantial amount of research throughout recent years.
Approximation algorithms rely on heuristics or “rules of thumb” to make local decisions,
and seek local optima (see discussion in Chapter 2). The generation of new solutions is
dependent only on the information obtained during the procedure and the algorithm halts
when no further improvement to the objective function can be found, easily becoming
trapped in a local optimum.

Approximation algorithms applied to vehicle routing problems can be broadly classified
into two categories: route construction, and route improvement algorithms, relying
on route construction and route improvement heuristics, respectively. Within these two
heuristic categories, variants can be distinguished, namely single and two phase route
construction, and single and multiple route improvement.

4.2.1 Single Phase Route-Construction Heuristic Algorithms

Feasible routes are gradually built, where existing routes are either merged using a savings
criterion or vertices are progressively allocated to a vehicle route using an insertion cost.

42 4.2 Heuristics

Clarke and Wright

The well known algorithm of Clarke and Wright [35] is based upon the principle of sav­
ings and can be applied in a sequential or parallel form. The algorithm begins with each
customer assigned to their own distinct route and then iteratively combines these routes
using a savings criterion, until a solution can be obtained. Two feasible routes can be
merged into a single route as long as no constraints are violated in doing so. It is often
the case in variants of the problem with a limited number of vehicles, that a solution will
require more vehicles than those available. This will then result in an infeasible solution.

At the start of the procedure there are n routes, where each route contains exactly one
customer. The overall travelling distance for a symmetrical VRP problem is 2 $Z"=1 %•
As any two routes (containing customers i and j respectively) are merged into a feasible
single route, a new route with distance c0f + Cy + cj0 is produced. The saving to the overall
travel distance by merging the two routes is :

Sij = 2(c0j + c0j) — (cQi + Cij + Cjo)

— Coi + Coj — Cij (4.1)

Thereafter, any two routes (each containing more than one customer) with customer i at
one end of the first route and customer j at one end of the second route can be merged to
produce an identical saving Sy. Algorithm 4.1 details the parallel version of the Clarke &
Wright procedure with a run time complexity of 0 (n 2 log n).

Algorithm C larkeW rightParallel(G , c)
Generate a set of vehicle tours in G with associated edge costs Cy, V{vi,Vj} 6 E. The
algorithm returns a set of sequences, each representing a tour.

I. Calculate Sy for all customer pairs (i, j) and list savings in descending order.
II. Beginning at the top of the list with the largest saving, combine two routes via edge

i j to produce saving Sy.
III. Check feasibility of savings Sy in step II in respect of the constraints of the problem.

If feasible join the two routes via edge ij, else reject.
IV. Go to stage II and process the next saving in the list.

Algorithm 4.1: Clarke and Wright Algorithm - Parallel Version

Consider the problem instance shown in figure 4.1. It contains 12 customers, each with
specific demands, who must be supplied from a single depot by a fleet of identical vehicles
with a holding capacity of 19 tonnes. The depot node is numbered 0 and the customer

4.2 Heuristics 43

Customer 1 2 3 4 5 6 7 8 9 10 11 12
Demand 11 5 8 7 6 8 7 6 9 8 9 7

80

70

60

50

0

40 4

30

20

10

Depot

12

11
10

-i--------------- r-

0 10 20 30 40 50 60 70 80 90

Figure 4.1: CVRP problem instance.

nodes from 1 — 12. The instance is defined on a Euclidean 2 dimensional coordinate
system, with the location of each customer and the depot defined by (x,y) coordinates.

Initially, the distances between all customer/customer and customer/depot locations must
be calculated. Using the coordinates (xi? yt) and (xj, yj) for each unique pair of locations,
the distance between them is derived using equation 4.2.

\J{Xj - Si)2 + (Vj - &)2 (4.2)

In the next step, the potential savings, from merging each pair of routes into a feasible
single route, is calculated using equation 4.1. The resulting distances and savings for the
problem instance are respectively shown in the bottom left and the upper right of the cost
matrix in figure 4.2. The potential savings are then sorted in descending order, resulting
in the list shown in figure 4.4.

Having generated the underlying data, the algorithm continues initialising 12 separate

44 4.2 Heuristics

0
1

0 1 2 3 4 5 6 7 8 9 10 11 12

25 __ 26 11 11 7 2 0 0 1 7 17 21
2 47 46 — 29 44 45 26 12 16 4 0 2 6
3 15 29 33 — 29 26 19 12 13 5 2 0 3
4 25 39 28 11 — 46 32 18 22 9 4 0 1
5 36 54 38 25 15 — 50 26 40 18 10 1 0
6 29 52 50 25 22 15 — 30 48 26 17 3 0
7 15 40 50 18 22 25 14 — 30 22 14 3 0
8 40 65 71 42 43 36 21 25 — 40 34 11 4
9 22 46 65 32 38 40 25 15 22 — 36 16 6
10 29 47 76 42 50 55 41 30 35 15 — 29 14
11 20 28 65 35 46 55 46 32 49 26 20 — 23
12 14 18 55 26 38 50 43 29 50 30 29 11 —

Figure 4.2: Clarke and Wright Example: Cost/savings matrix.

routes for each customer i . Each route starts at the depot node, travels to customer i and
then returns back to the depot, i.e. (0 i 0). The initialised routes are shown in figure 4.3.

Route Route Route
Number Route Distance Demand

1 0 1 0 50 11
2 0 2 0 94 5
3 0 3 0 30 8
4 0 4 0 50 7
5 0 5 0 72 6
6 0 6 0 58 8
7 0 70 30 7
8 0 8 0 80 6
9 0 9 0 44 9
10 0 10 0 58 8
11 0 11 0 40 9
12 0 12 0 28 7

1

10

Figure 4.3: Clarke and Wright Example: initialisation.

Processing of the sorted savings list begins with the largest potential saving, connection
(5,6). Neither of the routes containing customers 5 and 6 have been merged with other

4.2 Heuristics 45

Connection Saving Viable Connection Saving Viable Connection Saving Viable

5 6 50 / 7 9 22 X 9 12 6 X

6 8 48 X 1 12 21 / 3 9 5 X

4 5 46 X 3 6 19 X 2 9 4 X

2 5 45 / 4 7 18 X 4 10 4 X

2 4 44 X 5 9 18 X 8 12 4 X
5 8 40 X 1 11 17 X 3 12 3 X

8 9 40 / 6 10 17 X 6 11 3 X
9 10 36 X 2 8 16 X 7 11 3 X

8 10 34 X 9 11 16 X 1 6 2 X
4 6 32 X 7 10 14 X 2 11 2 X

6 7 30 X 10 12 14 X 3 10 2 X
7 8 30 X 3 8 13 X 1 9 1 X
2 3 29 X 2 7 12 X 4 12 1 X
3 4 29 / 3 7 12 X 5 11 1 X

10 11 29 / 1 3 11 X 1 7 0 X
1 2 26 X 1 4 11 X 1 8 0 X
2 6 26 X 8 11 11 X 2 10 0 X
3 5 26 X 5 10 10 X 3 11 0 X
5 7 26 X 4 9 9 X 4 11 0 X
6 9 26 X 1 5 7 X 5 12 0 X

11 12 23 X 1 10 7 X 6 12 0 X
4 8 22 X 2 12 6 X 7 12 0 X

Figure 4.4: Clarke and Wright Example: Potential savings list.

routes. The resulting merger between these routes adheres to the vehicle capacity restric­
tion of 19 and is applied to produce a new route (0 560). The two routes used to achieve
the merger are deleted and the newly generated route set aside for potential further merg­
ers. The next few connections (6,8) and (4,5), although possible, would break the vehicle
capacity constraint and as such are rejected.

The algorithm continues with connection (2,5). Customer 5 has already been used in a
merger and checking the respective route to which it currently belongs shows that it is
exterior (i.e. next to the depot node) to that route. Merging route (0 2 0) with (0 5 6 0)
does not infringe vehicle capacity and the merger is processed resulting in the new route
(0 2 5 6 0). Route (0 5 6 0) is overwritten by the new route and route (0 2 0) deleted.
Processing continues using the rules outlined in steps II- IV of algorithm 4.1, until the
bottom of the savings list has been reached. A list of the viable connections resulting a
merger are shown in figure 4.4 using a / symbol.

A full breakdown of the final routes and the corresponding pictorial representation of the
final solution is shown in figure 4.5. An alternative variant of the Clarke and Wright

46 4.2 Heuristics

Route Route Route
Number Route Distance Demand

1 0 2 5 6 0 129 19
2 0 8 9 0 84 15
3 0 3 4 0 51 15
4 0 10 11 0 69 17
5 0 1 12 0 57 18
6 0 7 0 30 7

Total 420 E

Figure 4.5: Solution to CVRP problem i
Wright savings algorithm.

2

1

10

using parallel version of Clarke and

algorithm can also be used, where routes are processed in a sequential rather than parallel
manner, as shown in algorithm 4.2.

Algorithm ClarkeWrightSequential(G, c)
Generate a set of vehicle tours in G with associated edge costs Ctj, V{tfc,t7j} €E E. The
algorithm returns a set of sequences, each representing a tour.

I. Calculate the savings and initialise routes.
1. Calculate the saving Sij = Co* + % — C\j for all customer pairs i and j , where

i = 1,...., n and i ^ j , ordering them in descending order.
2. Initialise n vehicle routes (0, z, 0) for i = 1,...., n and 0 = depot.

II. Process saving list as follows:
1. Select route (0, z,...., j , 0) in turn and for each route locate the first feasible

saving sgi or sjh which connects the currently selected route to another with
edge {9,0) or (0, h). Join the two routes and continue down the savings list
locating any additional feasible savings for the current route.

2. When no more feasible savings are found for the current route, continue se­
lecting the next route and repeating the feasible savings location process (step
II: 1) from the top of the list until no more feasible mergers resulting in savings
can be applied.

Algorithm 4.2: Clarke and Wright Algorithm - Sequential Version

Gaskell [74] and Yellow [184] extended the Clarke and Wright algorithm to overcome its
tendancy to generate good routes during early stages, progressing to lesser value routes

4.2 Heuristics 47

later on. The newer algorithm utilises generalised savings, taking the form Sij = di0 +
dQj — A ij. The A parameter shapes the routes, where larger values of A have the effect of
emphasising the distance between the vertices to be connected.

Desrochers and Verhoog [49] and Atlinkemer and Gavish [3] proposed similar algorithms
which adapt the normal savings method, whereby at each iteration the saving = t(Sl)-\-
t(S j)—t(SiUSj) for routes i and j. ^represents the vertex set of routes and t(Sv) equals
the optimum TSP solution for Sv. By using the values generated by the algorithm as
matching weights, a max-weight matching problem is solved for set Sv.

4.2.2 Two Phase Constructive Heuristic Algorithms

Two-phase algorithms decompose the CVRP into two natural components. The first phase
involves clustering customer nodes to form capacity feasible sets, followed by a route
construction phase, deriving vehicle routes for each cluster.

Sweep

Although commonly attributed to Gillet and Miller [77], the Sweep method was first pro­
posed by Wren [181] and Wren and Holliday [182] and uses a cluster-first route-second
method to solve planar instances of the VRP. Using the depot as a central point, a set of
feasible clusters is initially generated by rotating an imaginary ray around the depot in a
clockwise direction, starting from the angle between an arbitrarily selected customer node
and the depot. Each time the ray crosses a customer node, the customer is added, subject
to vehicle capacity constraints, to the current vehicle. New routes are started at the point
at which capacity restrictions are exceeded. Algorithm 4.3 illustrates the process.

Using the clusters of customers, derived in phase 1, the corresponding TSP is solved and
all resulting routes are then combined to form a feasible solution to the CVRP problem
instance. Further optimization can also be carried out by exchanging vertices between
adjacent clusters and reoptimising the routes.

Consider once more the problem instance in figure 4.1 and an arbitrarily selected starting
customer 5. The procedure initialises with the route (0 5 0), angle 05j is then calculated
for all j ^ 5 remaining customers and the list sorted in ascending order, as shown in
figure 4.6. At each iteration of the route building phase, the customer with the smallest
angle is removed from the sorted list and the feasibility of its insertion into the current
route assessed. If after insertion, the sum of demands on the given route will remain
less than or equal to vehicle capacity, insertion is viable and the current route updated

48 4.2 Heuristics

Algorithm Sweep(G, c)
Generate a set of vehicle tours in G with associated edge costs , V{vi? e E. The
algorithm returns a set of sequences, each representing a tour.

I. Initialise route and calculate angles.
1. Select an arbitrary customer i and create a single route (0 i 0).
2. Starting from the chosen customer node i, select each customer node j in a

clockwise direction, calculating the angle 0j, between customer i and j.
3. Create sorted list of customer nodes in ascending order of

II. Build routes.
1. Select customer with smallest angle. Assign it to the current route if vehicle

capacity constraints allow. Otherwise, create a new route and assign customer
to that route. Delete customer from list.

2. If there are customers still remaining on the list, repeat step 11:1.
III. Solve a TSP for each route generated and write back any improved route solutions.

Algorithm 4.3: Sweep Algorithm

to include the new customer. At any point where a customer insertion violates capacity
constraints, the current route is closed and the customer inserted into a new route.

Start
3 Oij

25.35
37.87
56.31
82.87

115.35
160.35
191.31
236.31
307.87
326.31
337.62

Figure 4.6: Sweep Worked Example - Initialisation phase. Start customer i = 5 and
sorted angles list for all j ^ 5 remaining customers.

Route construction commences with the removal of customer 6 from the list, the sum
of the demands on the current route and those for customer 6 are less than the vehicle
capacity (i.e. 6 + 8 < 19) and the customer is inserted to form the route (0 5 6 0). The
process is then repeated, removing customer 7, however, insertion into the current route

4.2 Heuristics 49

Route Route Route
Number Route Distance Demand

1 0 5 6 0 81 14
2 0 7 8 0 81 13
3 0 9 10 0 67 17
4 0 11 12 0 46 16
5 0 1 2 0 118 16
6 0 3 4 0 51 15

Total 444 E

^ ta r t

Figure 4.7: Solution to CVRP problem instance using Sweep algorithm.

would result in a total demand of 21 exceeding vehicle capacity. The route (0 5 6 0)
is set aside and a a new route (0 7 0) created. The route building process is repeated
for each customer in the list until no more customers remain. The final routes generated
are shown in figure 4.7. Typically, an exact or heuristic TSP algorithm is applied to each
route, however, in the case of the worked example, each route contains no more than two
customers and no improvement can be gained from this procedure.

Generalized Assignment

The Generalized Assignment heuristic was proposed by Fisher and Jaikumar [60] for
the solution of the CVRP. In the first phase of the procedure, customers are assigned
to specific delivery vehicles by solving a Generalized Assignment Problem (GAP). The
second phase involves solving a TSP for each vehicle, to produce an optimized route
through the customers assigned to it in phase one.

The procedure commences with K vehicles, a number which must be derived a priori,
each having a capacity Q. A set of K clusters, each containing a subset of the total
customers n, is then computed and each cluster assigned to a different delivery vehicle.
The methodology employed by Fisher and Jaikumar to achieve this works as follows.

I. Decompose the problem space into n distinct regions: Project a ray out from the de­
pot node and rotate the ray in a clockwise direction until it reaches a customer node.
Leaving the current ray in place, rotate a second ray, starting from the position of
the first until a second customer node is reached. Inserting a customer boundary

50 4.2 Heuristics

ray at the angle bisect of the first and second ray. Delete the first ray and starting
at the current position of the second ray, repeat the process of creating another ray,
rotating it clockwise to the next customer node and inserting a customer boundary
ray at the angle bisect of the two rays. Label the region between the two boundary
rays region r* and associate the demand di of customer i with that region. Con­
tinue this processing, inserting customer boundary rays between adjacent customer
nodes, labelling each region created and associating demands, until the rotation has
covered 360 degrees. The result is a set of n regions with an associated demand,
each containing a customer node.

II. Identify a set of K different seed points: Starting at any boundary ray, rotate in
a clockwise direction, summing the associated demands of the region following
each boundary ray until the total demand exceeds a fixed value a, computed using
equation 4.3.

Subtract the last demand di from the current sum of weights 5 for the region fol­
lowing the current boundary and calculate the weighted portion 6W of the angle 6
between its two boundaries using (((a — s) - r - d {) x 9) . Rotate the current position of
the ray 0W degrees and insert a vehicle boundary. Rotate the ray to the next customer
node, setting s = (di — (a — s)) and then di = 0 = 6W — 0. Repeat the process
until K vehicle boundaries have been created. Finally, create a seed point on each
ray bisecting the K regions between route boundaries.

Having inserted a set of seed points, k routes are created, with each route including a
traversal from the depot to one of the seed points and back to the depot. The cost dik of
inserting each customer i into each of the routes created is calculated for a symmetric cost
matrix using equation 4.4, where is the cost of travelling from customer i to j and 0
the depot node.

71

i=1 (4.3)a
K Q

d i k Q)i 4 " C-ijk C q j k (4.4)

4.2 Heuristics 51

Once the costs have been calculated, a GAP must be solved. The Generalized Assignment
Problem (GAP) requires a minimal cost assignment of a set of tasks to a set of agents, all
of whom have a limited resource capacity. For each task, there is a cost associated with
each agent undertaking it and a quantity of resources required by that particular agent in
doing so. The problem has been shown to be AA'P-Hard by reduction from the 2-partition
problem [61].

Problem Generalized Assignment Problem (GAP)

Input: A set T = {1,...., n} of n tasks and a set A = {1,...., m } of m agents.
The resource capacity of each agent i is az, the resource required by
agent z to undertake task j is rl3 and the cost of assigning agent z to
carry out task j is Cy.

Output: A minimal cost assignment of tasks to agents, adhering to the capacity
restrictions of agents.

Solving the GAP with costs modelling the customers as tasks, clusters as agents, with
agent resource capacity equal to vehicle capacity and agent resources required equal to
customer demand di, produces a minimal cost assignment of customers to the K vehicle
routes. In the final phase, the TSP is applied to the set of customers in each of the K
routes and the optimized routes compiled to derive a solution to the CVRP. Algorithm 4.4
details the process.

Algorithm GeneralizedAssignmentRouting(K, c)
Determines a set of K vehicle routes. The algorithm returns a sequence representing the
tour.

I. Phase one - construct routes:
1. Create a set of K clusters and assign each cluster A; to a separate delivery

vehicle.
2. Decompose problem space and identify a seed customer j *. for each cluster k.
3. For each customer z, calculate .
4. Solve the GAP.

II. Phase two - optimize routes:
1. Using the set of routes from the solution of the GAP, apply an exact or heuristic

version of the TSP to each individual route.

Algorithm 4.4: Generalized Assignment Algorithm

52 4.2 Heuristics

Petal Algorithm

The final type of two-phase procedure is called the petal algorithm and was initially pro­
posed by Foster and Ryan [70]. It extends the structure of the aforementioned sweep
algorithm by generating multiple potential routes (known as petals) and then deriving a
solution using a Set Partitioning Problem (SPP) algorithm, as shown in algorithm 4.5.

Algorithm Petal(G, c)
Generate a set of vehicle tours in G with associated edge costs ci<7-, V{^, Vj} e E. The
algorithm returns a set of sequences, each representing a tour.

I. Initialise.
1. Select an arbitrary customer s.
2. Starting from the chosen customer node s, select each customer node i in a

anti-clockwise direction, calculating the angle 0i9 between customer s and i.
3. Create a circular sorted list of customer nodes (i.e. wrapping around from the

last item in the list to the first) in ascending order of 9. Set p = 1.
II. Petal construction.

1. Extract the customer c at position p in the list and create a new petal r con­
taining customer c. Save a copy of the petal.

2. Calculate the sum of demands for all customers in r and the next customer at
position p + 1 in the list. If less than the vehicle capacity, insert the customer
at p + 1 into r and save a copy of the petal, otherwise, if the end of the list has
not been reached, increment p by 1 and repeat step II: 1.

3. Repeat step 11:2, attempting to insert the next item in the list.
III. Using the petals derived in n, solve the SPP to obtain an optimal selection of petals

to form the final routes.

Algorithm 4.5: Petal Algorithm

The procedure starts by generating a series of routes called petals, clustered at locations
centered around the depot location, the premise of Foster and Ryan being that for many
problem instances, optimal routes exhibit a petal or slightly variant petal form. The op­
timal selection of petals from all those generated, visiting each customer exactly once
whilst minimising travelling distance is then calculated by solving a SPP.

Problem Set P a r t i t io n in g Problem (SPP)

Input: A set P of k generated petals, each with an associated demand dk.
Output: A minimal cost assignment of petals visiting every vertex exactly once.

4.2 Heuristics 53

The original formulation of the SPP for optimal petal selection was provided by Balinksi
and Quandt [5], modelling rows and columns representing delivery locations and petals
respectively. However, due to the computational resources required to solve the corre­
sponding SPP, only instances with a small set of petals are practical. Ryan, Hjorring and
Glover[161] later showed that the problem can in fact be solved in polynomial time using
a shortest path algorithm, where routes are constructed in cyclic order and modelled as
a weighted cyclic digraph, allowing the optimal selection of petals to be found for large
instances in practical timescales.

The process of petal generation was extended by Renaud, Boctor and Laporte [156] to
include routes known as 2-Petals, allowing the creation of petals containing embedded or
intersecting routes, which again the authors argue are structures often found in the routes
of optimal solutions.

Consider again the problem instance in figure 4.1 and an arbitrarily selected starting cus­
tomer s = 1. The procedure initialises with the construction of a circular sorted list of
customers in decreasing order of the angle 9si between the ray projecting from the cus­
tomer s and every other customer i ^ s resulting in the list shown in figure 4.8 (c). A
circular sorted list is used to reflect the cyclic order in that once the last item in the list is
reached, the next item is then the first in the list.

Construction of petals then begins from the first renumbered node Zi in the list (/i,...., ln).
Starting with a single route containing node 1, the next node in the list is added to the
route in turn until the available capacity of the vehicle is exceeded. Each time a node is
added to the route, it is set aside as a petal. The process is then repeated for all remaining
nodes in the list. Figure 4.9 shows a summary of the petal construction phase with the
generation of petal (1,2) through to the generation of the final petal (12,1). The full list of
constructed petals is shown in table 4.1.

S ta rt

Node Petal(s)

Route

Dem and

S ta rt

Node Petal(s)
Route

D em and
S ta rt
Node Petal(s)

Route

Dem and
1 (1,2) 19 5 (5,6) 15 9 (9,10) 13
2 (2,3) 16 6 (6,7) 13 10 (10,11) 15
3 (3,4) 17 7 (7,8) 15 11 (11,12) 13
4 (4,5) 17 8 (8,9) 14 12 (12,1) 18

Table 4.1: Final list of constructed petals for problem instance.

Following the principles described by Ryan, Hjorring and Glover[161], the resulting
petals are then modelled to form a series of acyclic digraphs. For each node in turn,

54 4.2 Heuristics

12

Start
I

4 •

3 6• •

• ■ m *
71.6 '

J® 12 •

10

10

11

• 7

(a). (b).

101 .3 °
123 . 7°90 . 0 °

149 .0 °71 .6 °

h 161 .6 °0 .0°

315 . 0 ° 180 .0 °

284 .0 ° 206 .6 °
239 .0 °

(c).

List item h I2 I3 I4 1$ Iq I7 lg I9 ho h i I12

Node 1 2 3 4 5 6 7 8 9 10 11 12
Custom er 1 12 11 10 9 8 7 6 5 4 3 2

(d).

Figure 4.8: Petal method initialisation phase - (a). An arbitrary start vertex is se­
lected, in this case vertex 1 and proceeding in an anti-clockwise direction each vertex
is renumbered from 1 onwards and a node created in the cyclic list to represent it.
(b). Renumbered customer vertices, (c). The final cyclic linked list representing
renumbered nodes in ascending angle order, wrapping around from the first to last
node. (d). Table of relationships between actual customer vertices and renumbered
nodes in the cyclic list.

4.2 Heuristics 55

(a). Petal (1,12) (b). Petal (12,11) (c). Petal (11,10)

(d). Petal (10,9) (e). Petal (7,6) (f). Petal (7,6,5)

Figure 4.9: Petal method petal construction phase.

an acyclic digraph induced at that node and ending at that node is formulated and a short­
est path algorithm applied to derive the best set of petals. Directed edges are inserted into
each digraph to represent the petals generated. For example, the petal (1,2) is represented
using a directed edge {1,3} and (2,3) using {2,4}, i.e. the value of the higher node is
incremented by one. The acyclic digraph induced by node 1 for the petals in table 4.1 is
shown in figure 4.10. The distances associated with each petal are shown above each edge
and calculated by applying a TSP algorithm to each petal generated. However, as already
pointed out, this it not relevant for this worked example.

118 51 81 81 67 46

96 77 59 84 71

Figure 4.10: Acyclic digraph induced at node 1.

This process is repeated for every other node and the shortest distance, calculated using
all induced digraph, represents the optimal petal set. The resulting solution, requiring 5
vehicles with a cost of 444 is identical to that produced using the sweep method, as shown
in figure 4.7.

56 4.2 Heuristics

Other Methods

Another two-phase method uses seeds determined from the solution of a Capacitated Lo­
cation Problem (CLC) and then adds the remaining vertices gradually into selected routes
(described by Bramel and Simchi-Levi [17]). Initially, k seeds (concentrators) are located
from amongst n customer locations in order to minimise the overall distance of customers
to their closest concentrator, while ensuring total demand assigned to any concentrator is
not greater than the vehicle capacity. Routes are then formed by inserting at each stage,
the customer assigned to that route concentrator having the minimum insertion cost.

4.2.3 Improvement Heuristic Algorithms

There are two main activities involved in deriving a solution to the VRP, assignment of
customers to vehicles and the routing of the assigned customers to derive an order of
travel for each of those vehicles. Improvement heuristics exist to improve both aspects
of the VRP structure. Single route improvement heuristics seek to optimize the routing
assignment of each vehicle and multiroute improvement heuristics seek to optimize the
assignment of vehicle to routes.

Given that each route is essentially a TSP, any improvement heuristic suitable for the TSP
can be exploited in the case of single route improvement. For multiroute improvement
a number of different operators have been proposed. The following sections detail some
algorithms available.

Single Route Improvement Algorithms

Given a solution to a VRP instance, it can be thought of as a set of TSP routes. In
this vein, any of the improvement mechanisms available for the TSP can be used for
the improvement of individual routes in the VRP. Figure 4.11 (a) shows a single route
from a VRP solution and figure 4.11 (b), the same route after the application of a single
route improvement procedure. Typically, such procedures are applied to each individual
route in turn and the overall solution distance is subsequently recalculated to take account
of any improvements identified. A range of different improvement schemes have been
proposed for the TSP.

The best known of these procedures are 2-Opt and 3-Opt. The notion of a 2-Opt move was
initially outlined by Flood [64], but later formally described by Croes [43]. The principal
of this procedure is to delete two edges from a given solution to produce a pair of paths

4.2 Heuristics 57

Single route

Depot
6

improvement

Depot
6

(a) (b)

Figure 4.11: Single route Improvement.

which are then reconnected in an alternative way. After each reconnection, the resulting
route is evaluated against the original. The procedure is illustrated in figure 4.12 where
the edges {a, b} and {/, g} in the solution shown in (a) are deleted and reconnected in a
different orientation, via edges {&, g} and {a, /} , to produce the solution shown in (b).

a

3

a

3

(a) (b)

Figure 4.12: 2-Opt: (a) A tour (b) A new tour after a 2-Opt move.

In the case of 3-Opt, 3 edges are deleted, providing three possible reconnections. Deleting
the edges {a, b}, {e, /} and { i , j } from the solution illustrated in figure 4.13 (a), provides
three ways of recombining the deleted edges, shown in figure 4.13 (b), (c) and (d).

a

3

h

(a)

a

3

h

a

3

(b) (c)

Figure 4.13: Potential 3-Opt moves.

a

3

(d)

58 4.2 Heuristics

Lin [120] introduced the A-Opt mechanism for the improvement of the TSP (i.e. single
route from the VRP). Using this heuristic, A edges are removed from the single route and
the A remaining segments are reconnected in every possible way. The most profitable
reconnection is subsequently implemented and the single route changed to reflect this.
The methods halts at a local minimum, where no additional improvements can be found.

A number of modifications to the A-opt procedure exist. Lin and Kemighan [121] de­
scribe a modified A-opt algorithm, which allows the A value to be changed dynamically
throughout the search process. Or [136] proposed a restricted form of 3-Opt interchanges,
known as Or-Opt, which works by displacing strings of 3, 2 or 1 consecutive vertices to
an alternative location. In a similar vein, Renaud, Boctor and Laporte [156] described a
restricted version of a 4-Opt procedure called 4-Opt*, which tries subsets of promising
reconnections between a chain of at maximum w edges and another chain of two edges.

Multiroute Improvement Algorithms

Multiroute improvement algorithms aim to enhance feasible solutions by performing a
sequence of edge or vertex exchanges within/between vehicle routes. In contrast to single
route improvements, where individual routes are considered in isolation, multiroute proce­
dures utilise more than one route at a time. Detailed descriptions are given by Kindervater
and Savelsbergh [101], Thompson and Psaraftis [169] and Van Breedam [174].

Multi route
8 improvement

Depot Depot
9

12 1 1

(a)

Figure 4.14: Multiroute Improvement.

Figure 4.14 (a) illustrates two individual routes from a solution to the VRP. A potential
reorientation of the routes in (a), after the application of a multiroute improvement proce­
dure, is shown in figure 4.14 (b). The edges {3,8} and {4, 7} are deleted and the vertices
reconnected via edges {3,4} and {7,8} to produce the new orientation of routes.

A number of different exchange and relocation schemes have been proposed by various
authors, many of which being a variation of the generic ‘6-cyclic, A:-transfer scheme de­

4.2 Heuristics 59

scribed by Thomson and Psaraftis. A circular permutation of b routes is chosen and for
each route (selected in turn), k customers are removed and relocated to the next route in
the permutation. The customers in the final route are moved to the first route of the cyclic
permutation. Van Breedam further classified three different operators: string cross, string
exchange and string relocation.

A string cross operation, involves the crossing of two edges from different routes. Fig­
ure 4.15 illustrates the crossing of the edges (3,4) and (7,8) from the two routes shown in
(a). The cross is achieved through the deletion of these edges and subsequent reconnection
of the vertices via edges (3,7) and (4,8), resulting in the routes shown in (b).

Depot

12 11

String
8 Cross

Depot

12 1 1

(a) (b)

Figure 4.15: Multiroute improvement: String Cross.

A string exchange operation, denoted (m, n), involves the exchange of a string of m
vertices from one route with a string of n vertices from another. Figure 4.16 illustrates a
(2,1) exchange between the routes shown in (a), interchanging the string {5,6} on one
route with the string {10} on the other, resulting in the routes shown in (b).

Depot ^

12 1 1

String

Depot

12

(a) (b)

Figure 4.16: Multiroute improvement: String Exchange.

A string relocation operation, involves the insertion of a string of m vertices from one
route into another. Figure 4.17 illustrates the relocation of vertex 7 on one route shown in
(a), to a new route, resulting in the routes shown in (b).

60 4.3 Dataset Instances

String
Relocation

Depot

12 11 12 11

(a) (b)

Figure 4.17: Multiroute improvement: String Relocation.

4.3 Dataset Instances

Well known standard benchmark problems from the literature are used in this study as
the basis for all computational experiments in relation to the CVRP. Full details of these
instances are shown in tables 4.2 through 4.9. All of the instances used are publicly
available from [185, 187, 190]. However, due to the confusion arising from the various
naming conventions used at the various sources, all instances have been renamed using
the following standardised format:

S - n X - k Y

The value S represents the name of the set to which the problem instance belongs, X the
total number of vertices (including the depot) in the instance and Y the number of vehicles
in best known/optimum solution.

This scheme is dependent on knowing the number of vehicles in the best known/optimum
solution, which arguably could change in the future. However, the inclusion of the value
Y allows results to be compared on a like for like basis. Often results are published and
the number of vehicles required to fulfil a solution is not given and in many situations
using an additional vehicle can lead to a shorter solution distance than the long standing
benchmark results from all author publications.

Although this scheme may not be so suitable for other benchmark instances not considered
within this thesis, those that it does categorise, are long standing and well researched
problems where the risk of a change in the future is minimal.

For each problem set, the original source names are also included for completeness. In
addition, an analysis of the parameters for each instance is provided, n and k are labels
and do not represent values.

4.3 Dataset Instances 61

In each table, | V| is equal to the number of customers, K the number of vehicles available,
Q the capacity for each of the vehicles, d the total demands for all customers and finally
the tightness of each instance, x K). For all problem instances, the position of
each vertex is defined using coordinates based upon a Euclidean 2d coordinate system.

Instance
Original
Source |V| K

Instance Parameters
Q J2d Tightness DEIS [187] BC [185] VRP Web [190]

C-n51-k5 [31] 50 5 160 777 0.97 E051-05e E-n51-k5 E-n51-k5,vrpncl
C-n76-kl0 [31] 75 10 140 1364 0.97 E076-10e E-n76-kl0 E-n76-kl0,vrpnc2
C-nl01-k8 [31] 100 8 200 1458 0.91 E101-08e E-nl01-k8 E-nl01-k8,vrpnc3
C-nlOl-klO [32] 100 10 200 1810 0.91 ElOl-lOc M-nlOl-klO vrpncl2
C-nl21-k7 [32] 120 7 200 1375 0.98 E121-07c M-nl21-k7 vrpncll
C-nl51-kl2 [32] 150 12 200 2235 0.93 E-51-12c M-nl51-kl2 vrpnc4
C-n200-kl6 [32] 199 16 200 3186 1.00 E200-16c M-n200-kl6 vrpnc5

Table 4.2: Instances Set C.

• • • * • • . • •
• • • •

• • • * * • •

*• • • •
.

* . * • • • • * . . . • • • • . .
• • • . • • •

• •

• • • • • • _ • •

• • •

• • • • • • • • ; •
• _ • • _ • • • V

0 * 0 •

• & # • * • • • s
• • • • . / • • •• # • • • •

C-n51-k5 C-n76-k10 C-n101-k8

. . V j

• c ^ . n * 7 / . v » s
• , • • • •

• • . *

• ̂ • • • •

£ •? m

•
2

C-n200-k16 C-n151-k12 C-n101-k10

kc

w *

C-n121-k7

Figure 4.18: Pictorial representation of instances in set C, the larger dark square
representing the depot in each graphic.

The first set of instances is detailed in table 4.2 and is derived from those of Christofides et
al. [31, 32]. The re-labelled instances correspond to the original instances 1-5, containing
an increasingly large number of randomly generated uniform points and instances 11-12,
made up of clusters. Figure 4.18 provides a pictorial representation of all instances within
set C, highlighting the varying patterns of customer locations in each.

Set E, shown in table 4.3, contains a series of instances ranging in size from 21 to 100
customers and were originally formulated by Gaskell [74] and Gillet and Miller [77].

62 4.3 Dataset Instances

Instance
Original
Source \v\ K

Instance Parameters
Q E d Tightness DEIS [187] BC [185] VRP Web [190]

E-n22-k4 [74] 21 4 6000 22500 0.94 E022-04g E-n22-k4 E-n22-k4
E-n23-k3 [74] 22 3 4500 10189 0.75 E023-03g E-n23-k3 E-n23-k3
E-n30-k3 [74] 29 3 4500 12750 0.94 E030-03g E-n30-k3 E-n30-k3
E-n33-k4 [74] 32 4 8000 29370 0.92 E033-04g E-n33-k4 E-n33-k4
E-n76-k7 [77] 75 7 220 1364 0.89 E076-07s E-n76-k7 E-n76-k7
E-n76-k8 [77] 75 8 180 1364 0.95 E076-08s E-n76-k8 E-n76-k8
E-n76-kl4 [77] 75 14 100 1364 0.97 E076-14s E-n76-kl4 E-n76-kl4
E-nl01-kl4 [77] 100 14 112 1458 0.93 E101-14s E-nl01-kl4 E-nl01-kl4

Table 4.3: Instances Set E.

Set F, shown in table 4.4, comprises 3 instances from Fisher [59] ranging from 44 to 134
customers.

Instance
Original
Source \v\

Instance Parameters
K Q E d Tightness DEIS [187] BC [185] VRP Web [190]

F-n45-k4 [59] 44 4 2010 7220 0.90 E045-04f F-n45-k4 F-n45-k4
F-n72-k4 [59] 71 4 30000 114840 0.96 E072-04f F-n72-k4 F-n72-k4
F-nl35-k7 [59] 134 7 2210 14620 0.95 E135-07f F-nl35-k7 F-nl35-k7

Table 4.4: Instances Set F.

Set H, shown in table 4.5, brings together a series of smaller problem instances from
various authors.

Instance
Original
Source \v\ K

Instance Parameters
Q Ed Tightness DEIS [187] BC [185] VRP Web [190]

H-nl6-k3 [33] 15 3 90 258 0.96 E-016-03m na na
H-nl6-k5 [33] 15 5 55 258 0.94 E-016-05m na na
H-n21-k4 [33] 20 4 85 329 0.97 E-021 -04m na na
H-n21-k6 [33] 20 6 58 329 0.95 E-021 -06m na na
H-n22-k6 [33] 21 6 4000 22500 0.94 E-022-06m na na
H-n23-k5 [77] 22 5 4500 10189 0.45 E-023-05s na na
H-n26-k8 [33] 25 8 48 367 0.96 E-026-08m na na
H-n30-k4 [77] 29 4 4500 12750 0.71 E-030-04s na na
H-n31-k9 [91] 30 9 68 590 0.96 E-031-09h na na
H-n33-k3 [135] 32 3 38000 98565 0.86 E-033-03n na na
H-n33-k5 [77] 32 5 8000 29370 0.73 E-033-05s na na
H-n36-kl1 [91] 35 11 67 699 0.95 E-036-llh na na
H-n41-kl4 [91] 40 14 60 798 0.95 E-041-14h na na
H-n48-k4 [158] 47 4 15 47 0.78 E048-04y att-n48-k4 att48

Table 4.5: Instances Set H.

Set R, shown in table 4.6, contains 12 instances from Rochat and Taillard [162] and a
single instance from Taillard [166]. They contain variably sized clusters and exponen­
tially distributed customer demands. The 384 customer instance is derived from the real
world, modelling the major towns from one of the 26 cantons in Switzerland. Figures 4.19
and 4.20 show a pictorial representation of all instances within set R and the 384 customer

4.3 Dataset Instances 63

Instance
Original
Source \v\ K

Instance
Q

Parameters

E<* Tightness DEIS [187] BC [185] VRP Web [190]
R-n76-kl0a [162] 75 10 1445 13756 0.95 E076A10r na tai75a
R-n76-k9b [162] 75 9 1679 14906 0.99 E076B09r na tai75b
R-n76-k9c [162] 75 9 1122 9520 0.94 E076C09r na tai75c
R-n76-k9d [162] 75 9 1699 14175 0.93 E076D09r na tai75d
R-nlOl-kl la [162] 100 11 1409 15203 0.98 ElO lA llr na tailOOa
R-nlOl-kllb [162] 100 11 1842 19503 0.96 ElOlBllr na tail 00b
R-nlOl-kllc [162] 100 11 2043 20999 0.93 ElO lCllr na tail 00c
R-nlOl-klld [162] 100 11 1297 13592 0.95 ElOlDllr na tailOOd
R-nl51-kl5a [162] 150 15 1544 21831 0.94 E-151A15r na tail 50a
R-nl51-kl4b [162] 150 14 1918 25485 0.95 E-151B14r na tail 50b
R-nl51-kl4c [162] 150 14 2021 28048 0.99 E-151C14r na tail50c
R-nl51-kl4d [166] 150 14 1874 25578 0.97 E-151D14r na tail50d

Table 4.6: Instances Set R.

••

2 * 0 & *■
• •

• •
* •• •

••• ••

hN V

•v
• ••• •

R-n76-k10a R-n76-k9b R-n76-k9c

» ■ ' *

**■ V
• • •

•• •
•

a ?

« • >
R-n76-k0d R-n101-k11a R-n101-k11b

S#- # * ^
• •

* •
••• ••

%

J / . . ' * 8. .

• ••• *

* • » »
« ' *

R-n101-k11c R-n101-k11d R-n151-k15a

» A

: • •

* * * • :

* * V -
<*•

4 _il* _

R-n151-k14b R-n151-k14c R-n151-k14d

Figure 4.19: Pictorial representation of instances in set R, the larger dark square
representing the depot in each graphic.

64 4.3 Dataset Instances

problem instance respectively. They illustrate the differing structure of the instances, with
some being clustered and other quite dispersed

Figure 4.20: Pictorial representation of instance R-n385-k47, the larger dark square
representing the depot in each graphic.

The sets A, B and P, shown in tables 4.7 to 4.9, contain instances produced by Augerat
et al. [4]. All problems in Set A have random positions and demands for each customer,
those in set B have clustered customers and set P consists of a series of modified instances
found previously in the literature.

Instance
Original
Source \V\ K

Instance Parameters

Q Ed Tightness DEIS [187] BC [185] VRP Web [190]
A-n32-k5 [4] 31 5 100 410 0.82 na A-n32-k5 A-n32-k5
A-n33-k5 [4] 32 5 100 446 0.89 na A-n33-k5 A-n33-k5
A-n33-k6 [4] 32 6 100 541 0.90 na A-n33-k6 A-n33-k6
A-n34-k5 [4] 33 5 100 460 0.92 na A-n34-k5 A-n34-k5
A-n36-k5 [4] 35 5 100 442 0.88 na A-n36-k5 A-n36-k5
A-n37-k5 [4] 36 5 100 407 0.81 na A-n37-k5 A-n37-k5
A-n38-k5 [4] 37 5 100 481 0.96 na A-n38-k5 A-n38-k5
A-n39-k5 [4] 38 5 100 475 0.95 na A-n39-k5 A-n39-k5
A-n39-k6 [4] 38 6 100 526 0.88 na A-n39-k6 A-n39-k6
A-n44-k6 [4] 43 6 100 570 0.95 na A-n44-k6 A-n44-k6
A-n45-k6 [4] 44 6 100 593 0.99 na A-n45-k6 A-n45-k6
A-n45-k7 [4] 44 7 100 634 0.91 na A-n45-k7 A-n45-k7
A-n46-k7 [4] 45 7 100 603 0.86 na A-n46-k7 A-n46-k7
A-n48-k7 [4] 47 7 100 626 0.89 na A-n48-k7 A-n48-k7
A-n53-k7 [4] 52 7 100 664 0.95 na A-n53-k7 A-n53-k7
A-n54-k7 [4] 53 7 100 669 0.96 na A-n54-k7 A-n54-k7
A-n55-k9 [4] 54 9 100 839 0.93 na A-n55-k9 A-n55-k9
A-n60-k9 [4] 59 9 100 829 0.92 na A-n60-k9 A-n60-k9
A-n61-k9 [4] 60 9 100 885 0.98 na A-n61-k9 A-n61-k9
A-n62-k8 [4] 61 8 100 733 0.92 na A-n62-k8 A-n62-k8
A-n63-k9 [4] 62 9 100 873 0.97 na A-n63-k9 A-n63-k9
A-n63-kI0 [4] 62 10 100 932 0.93 na A-n63-kl0 A-n63-kl0
A-n64-k9 [4] 63 9 100 848 0.94 na A-n64-k9 A-n64-k9
A-n65-k9 [4] 64 9 100 877 0.97 na A-n65-k9 A-n65-k9
A-n69-k9 [4] 68 9 100 845 0.94 na A-n69-k9 A-n69-k9
A-n80-kl0 [4] 79 10 100 942 0.94 na A-n80-kl0 A-n80-kl0

Table 4.7: Instances Set A.

4.3 Dataset Instances 65

Original Instance Parameters
Instance Source \v\ K Q Ed Tightness DEIS [187] BC [185] VRP Web [190]
B-n31-k5 [4] 30 5 100 412 0.82 na B-n31-k5 B-n31-k5
B-n34-k5 [4] 33 5 100 457 0.91 na B-n34-k5 B-n34-k5
B-n35-k5 [4] 34 5 100 437 0.87 na B-n35-k5 B-n35-k5
B-n38-k6 [4] 37 6 100 512 0.85 na B-n38-k6 B-n38-k6
B-n39-k5 [4] 38 5 100 440 0.88 na B-n39-k5 B-n39-k5
B-n41-k6 [4] 40 6 100 567 0.95 na B-n41-k6 B-n41-k6
B-n43-k6 [4] 42 6 100 521 0.87 na B-n43-k6 B-n43-k6
B-n44-k7 [4] 43 7 100 641 0.92 na B-n44-k7 B-n44-k7
B-n45-k5 [4] 44 4 100 486 0.97 na B-n45-k5 B-n45-k5
B-n45-k6 [4] 44 6 100 592 0.99 na B-n45-k6 B-n45-k6
B-n50-k7 [4] 49 7 100 609 0.87 na B-n50-k7 B-n50-k7
B-n50-k8 [4] 49 8 100 735 0.92 na B-n50-k8 B-n50-k8
B-n51-k7 [4] 50 7 100 684 0.98 na B-n51-k7 B-n51-k7
B-n52-k7 [4] 51 7 100 606 0.87 na B-n52-k7 B-n52-k7
B-n56-k7 [4] 55 7 100 616 0.88 na B-n56-k7 B-n56-k7
B-n57-k7 [4] 56 7 100 697 1.00 na B-n57-k7 B-n57-k7
B-n57-k9 [4] 56 9 100 803 0.89 na B-n57-k9 B-n57-k9
B-n63-kl0 [4] 62 10 100 922 0.92 na B-n63-kl0 B-n63-kl0
B-n64-k9 [4] 63 9 100 878 0.98 na B-n64-k9 B-n64-k9
B-n66-k9 [4] 65 9 100 861 0.96 na B-n66-k9 B-n66-k9
B-n67-kl0 [4] 66 10 100 907 0.91 na B-n67-kl0 B-n67-kl0
B-n68-k9 [4] 67 9 100 837 0.93 na B-n68-k9 B-n68-k9
B-n78-kl0 [4] 77 10 100 937 0.94 na B-n78-kl0 B-n78-kl0

Table 4.8: Instances Set B.

Original Instance Parameters
Instance Source \v\ K Q Ed Tightness DEIS [187] BC [185] VRP Web [190]
P-nl6-k8 [4] 15 8 35 246 0.88 na P-nl6-k8 P-nl6-k8
P-nl9-k2 [4] 18 2 160 310 0.97 na P-nl9-k2 P-nl9-k2
P-n20-k2 [4] 19 2 160 310 0.97 na P-n20-k2 P-n20-k2
P-n21-k2 [4] 20 2 160 298 0.93 na P-n21-k2 P-n21-k2
P-n22-k2 [4] 21 2 160 308 0.96 na P-n22-k2 P-n22-k2
P-n22-k8 [4] 21 8 3000 22500 0.94 na P-n22-k8 P-n22-k8
P-n23-k8 [4] 22 8 40 313 0.98 na P-n23-k8 P-n23-k8
P-n40-k5 [4] 39 5 140 618 0.88 na P-n40-k5 P-n40-k5
P-n45-k5 [4] 44 5 150 692 0.92 na P-n45-k5 P-n45-k5
P-n50-k7 [4] 49 7 150 951 0.91 na P-n50-k7 P-n50-k7
P-n50-k8 [4] 49 8 120 951 0.99 na P-n50-k8 P-n50-k8
P-n50-kl0 [4] 49 10 100 951 0.95 na P-n50-kl0 P-n50-kl0
P-n51-kl0 [4] 50 10 80 777 0.97 na P-n51-kl0 P-n51-kl0
P-n55-k7 [4] 54 7 170 1042 0.88 na P-n55-k7 P-n55-k7
P-n55-kl0 [4] 54 10 115 1042 0.91 na P-n55-kl0 P-n55-kl0
P-n55-kl5 [4] 54 15 70 1042 0.99 na P-n55-kl5 P-n55-kl5
P-n60-kl0 [4] 59 10 120 1134 0.95 na P-n60-kl0 P-n60-kl0
P-n60-kl5 [4] 59 15 80 1134 0.95 na P-n60-kl5 P-n60-kl5
P-n65-kl0 [4] 64 10 130 1219 0.94 na P-n65-kl0 P-n65-kl0
P-n70-kl0 [4] 69 10 135 1313 0.97 na P-n70-kl0 P-n70-kl0
P-n76-k4 [4] 75 4 350 1364 0.97 na P-n76-k4 P-n76-k4
P-n76-k5 [4] 75 5 280 1364 0.97 na P-n76-k5 P-n76-k5
P-nl01-k4 [4] 100 4 400 1458 0.91 na P-nl01-k4 P-nl01-k4

Table 4.9: Instances Set P.

66 4.4 Comparing the CW, Sweep and Petal Heuristics

4.4 Comparing the CW, Sweep and Petal Heuristics

Benchmark results for implementations of the CW, Sweep and Petal heuristics have been
published by various authors. However, due to the differences in implementations and
data structures used, the results vary from author to author. Additionally, no one author
provides benchmark results for all instances described in the previous section. Due to
the important role played by these problem specific heuristics in the GAPS algorithm,
described in a later chapter, all three heuristics were implemented and run against the full
range of instances described, to provide a benchmark for each method.

4.4.1 Computational Results

In this section we present the computational results obtained from a set of experiments
to evaluate to relative performance of the three heuristics, namely the Clarke and Wright,
Sweep and Petal methods. All are implemented in Java and tested on a Pentium IV 2.8
GHz single processor computer with 1GB RAM, running the GNU/Linux Operating Sys­
tem.

Given that all three heuristics are deterministic, experimentation is confined to a single
run for each of the following combinations of heuristics and/or improvement heuristics:

• Clarke & Wright parallel heuristic

• Clarke & Wright parallel heuristic with a 2-Opt improvement strategy

• Sweep heuristic

• Sweep heuristic with a 2-Opt improvement strategy

• Petal heuristic

As already detailed in section 2.4, one of the inherent shortcomings of using actual run­
ning time as a measure of a problem’s complexity, is that all computers are built upon
different architectures, not allowing a precise comparison to be made. However, it was
decided due to the wide variation in reported results by other authors and fact that the pri­
mary reason for the implementation of these heuristics and/or improvement heuristics was
to serve as a benchmark for evaluating the performance of the GAPS algorithm described
later in the thesis, the use of CPU time as a measure was appropriate in this instance.

Optimum Solution CW Parallel CW Parallel + 20pt Sweep + Exact TSP Sweep + 20pt Petal
Rounded Rounded CPU Rounded CPU Rounded CPU Rounded CPU Rounded CPU

Instance Cost Source Cost K ms Cost K ms Cost K ms Cost K ms Cost K ms
A-n32-k5 784 [185] 842 5 0 829 5 0 860 5 235 860 5 0 860 5 15
A-n33-k5 661 [185] 713 5 0 713 5 0 705 5 187 712 5 16 696 5 0
A-n33-k6 742 [185] 775 7 0 775 7 0 769 6 62 769 6 0 753 6 0
A-n34-k5 778 [185] 810 6 0 810 6 0 785 5 156 788 5 0 785 5 15
A-n36-k5 799 [185] 826 5 0 826 5 0 858 5 891 865 5 0 892 5 15
A-n37-k5 669 [185] 705 5 0 693 5 15 746 5 22281 750 5 15 736 5 31
A-n37-k6 949 [185] 975 6 0 975 6 0 1082 7 156 1085 7 0 1098 7 15
A-n38-k5 730 [185] 765 6 0 763 6 0 814 6 719 814 6 0 789 6 15
A-n39-k5 822 [185] 898 5 0 898 5 15 877 5 4406 881 5 31 912 6 31
A-n39-k6 831 [185] 861 6 0 855 6 0 952 6 515 952 6 16 899 6 15
A-n44-k6 937 [185] 974 7 0 972 7 15 1056 6 313 1060 6 19 1061 6 15
A-n45-k6 944 [185] 1005 7 0 1005 7 16 1064 7 453 1067 7 15 1019 7 31
A-n45-k7 1146 [185] 1200 7 0 1198 7 15 1305 7 609 1306 7 15 1306 7 31
A-n46-k7 914 [185] 940 7 0 939 7 15 975 7 1110 977 7 15 958 7 16
A-n48-k7 1073 [185] 1110 7 0 1101 7 15 1160 7 39657 1163 7 16 1151 7 15
A-n53-k7 1010 [185] 1098 7 0 1083 7 15 1090 7 24063 1094 7 16 1102 8 31
A-n54-k7 1167 [185] 1199 7 0 1183 7 0 1329 7 10390 1332 7 16 1337 8 31
A-n55-k9 1073 [185] 1098 9 0 1098 9 16 1190 9 172 1202 10 16 1174 10 31
A-n60-k9 1354 [185] 1420 9 0 1408 9 0 1508 10 968 1514 10 31 1510 9 31
A-n61-k9 1034 [185] 1099 10 0 1091 10 15 1152 10 1281 1157 10 16 1150 10 31
A-n62-k8 1288 [185] 1346 8 0 1341 8 16 1404 8 77468 1424 8 16 1496 8 31
A-n63-k9 1616 [185] 1684 10 0 1682 10 16 1817 10 968 1822 10 16 1822 10 31
A-n63-kl0 1314 [185] 1352 10 0 1342 10 16 1446 11 8157 1448 11 32 1445 11 31
A-n64-k9 1401 [185] 1489 10 0 1486 10 16 1600 10 5797 1602 10 16 1601 10 42
A-n65-k9 1174 [185] 1230 10 0 1229 10 15 1297 10 2579 1299 10 31 1291 10 41
A-n69-k9 1159 [185] 1206 9 0 1201 9 0 1226 9 6047 1241 9 32 1248 10 31
A-n80-kl0 1763 [185] 1859 10 0 1857 10 16 2133 11 20422 2142 11 47 2141 11 46

Table 4.10: Computational results for instance set A

Os
< 1

4.4
Comparing

the
CW

, Sweep
and

Petal H
euristics

4.4

Co
mp

ar
in

g
the

CW

,
Sw

ee
p

and

Pe
ta

l
H

eu
ri

st
ic

s

Optimum Solution CW Parallel CW Parallel -t- 20pt Sweep + Exact TSP Sweep + 20pt Petal
Rounded Rounded CPU Rounded CPU Rounded CPU Rounded CPU Rounded CPU

Instance Cost Source Cost K ms Cost K ms Cost K ms Cost K ms Cost K ms
B-n31-k5 672 [185] 677 5 0 677 5 0 701 5 328 701 5 16 693 5 0
B-n34-k5 788 [185] 793 5 0 792 5 0 888 5 14484 890 5 0 888 5 16
B-n35-k5 955 [185] 978 5 0 970 5 0 969 5 2453 974 5 15 962 5 15
B-n38-k6 805 [185] 828 6 0 828 6 0 868 6 328 868 6 16 834 6 15
B-n39-k5 549 [185] 563 5 0 562 5 0 649 5 8344 650 5 15 611 5 16
B-n41-k6 829 [185] 896 7 0 895 7 0 881 6 219 885 6 16 857 7 15
B-n43-k6 742 [185] 777 6 0 773 6 0 747 6 3078 748 6 16 747 6 31
B-n44-k7 909 [185] 935 7 0 934 7 0 1135 7 469 1140 7 0 1137 7 15
B-n45-k5 751 [185] 754 5 0 753 5 0 809 6 10688 809 6 15 800 6 31
B-n45-k6 678 [185] 725 7 0 724 7 16 777 7 3343 732 7 15 725 7 16
B-n50-k7 741 [185] 745 7 0 745 7 0 830 7 17235 831 7 16 786 7 31
B-n50-k8 1312 [185] 1353 8 0 1350 8 15 1378 8 2047 1383 8 16 1383 8 30
B-n51-k7 1032 [185] 1119 8 0 1113 8 0 1068 8 1641 1100 8 16 1023 8 31
B-n52-k7 747 [185] 761 7 0 758 7 0 758 7 15406 758 7 16 757 7 30
B-n56-k7 707 [185] 727 7 0 725 7 15 788 7 133421 776 7 15 773 7 31
B-n57-k7 1153 [185] 1237 8 0 1236 8 15 1279 8 7578 1283 8 31 1200 8 31
B-n57-k9 1598 [185] 1652 9 0 1651 9 0 1737 9 1547 1737 9 16 1728 9 30
B-n63-kl0 1496 [185] 1595 10 0 1592 10 0 1624 10 3125 1642 10 31 1638 10 41
B-n64-k9 861 [185] 915 10 0 912 10 15 903 10 3078 905 10 15 904 10 31
B-n66-k9 1316 [185] 1412 10 0 1405 10 15 1447 10 77922 1447 10 31 1396 10 30
B-n67-kl0 1032 [185] 1095 11 0 1093 11 15 1120 10 1906 1128 10 31 1109 11 47
B-n68-k9 1272 [185] 1311 9 0 1311 9 16 1381 9 14516 1428 9 16 1414 10 31
B-n78-kl0 1221 [185] 1259 10 15 1258 10 16 1313 10 85391 1317 10 47 1317 11 42

Table 4.11: Computational results for instance set B

00
VO

Optimum Solution CW Parallel CW Parallel + 20pt Sweep + Exact TSP Sweep + 2Qpt Petal
Rounded Rounded CPU Rounded CPU Rounded CPU Rounded CPU Rounded CPU

Instance Cost Source Cost K ms Cost K ms Cost K ms Cost K ms Cost K ms
P-nl6-k8 450 [185] 478 9 0 478 9 0 545 10 18 545 10 16 531 10 15
P-nl9-k2 212 [185] 237 2 0 237 2 0 224 2 1250 227 2 15 232 3 15
P-n20-k2 216 [185] 234 2 0 234 2 0 238 2 1516 238 2 0 238 2 16
P-n21-k2 211 [185] 236 2 0 236 2 0 211 2 6453 213 2 0 220 2 15
P-n22-k2 216 [185] 240 2 0 240 2 0 216 2 9609 216 2 15 223 2 16
P-n22-k8 603 [185] 591 9 0 591 9 0 627 9 32 627 9 0 627 9 30
P-n23-k8 529 [185] 537 9 0 537 9 0 630 10 31 630 10 0 617 10 31
P-n40-k5 458 [185] 516 5 0 516 5 0 468 5 4109 470 5 0 465 5 15
P-n45-k5 510 [185] 569 5 0 569 5 0 517 5 12719 523 5 15 519 5 30
P-n50-k7 554 [185] 593 7 0 588 7 0 571 7 1406 571 7 16 577 7 31
P-n50-k8 631 [185] 670 9 0 670 9 0 663 9 125 663 9 16 660 9 30
P-n50-kl0 696 [185] 735 11 0 735 11 0 776 11 63 779 11 16 772 11 16
P-n51-kl0 741 [185] 786 11 0 786 11 16 802 11 47 805 11 16 806 11 31
P-n55-k7 568 [185] 617 7 0 612 7 15 590 7 5735 591 7 16 589 7 31
P-n55-klO 694 [185] 734 11 15 734 11 16 736 10 125 739 10 16 739 10 30
P-n55-kl5 989 [185] 973 17 0 973 17 0 1063 17 47 1077 17 31 1084 17 31
P-n60-kl0 744 [185] 796 10 0 792 10 15 804 11 125 806 11 16 819 11 31
P-n60-kl5 968 [185] 1013 16 16 1010 16 16 1092 16 47 1113 16 15 1086 16 30
P-n65-kl0 792 [185] 848 10 0 847 10 15 832 10 375 832 10 32 833 10 31
P-n70-kl0 827 [185] 892 11 0 889 11 16 888 11 688 892 11 31 891 11 42
P-n76-k4 593 [185] 684 4 15 680 4 16 616 4 16282 616 4 47 616 4 47
P-n76-k5 627 [185] 705 5 15 698 5 16 666 5 24356 666 5 31 674 6 46
P-nl01-k4 681 [185] 754 4 16 751 4 16 741 4 47892 741 4 94 749 5 87

Table 4.12: Computational results for instance set P

O n
VO

4.4
Comparing

the
CW

, Sweep
and

Petal H
euristics

4.4

Co
mp

ar
in

g
the

CW

,
Sw

ee
p

and

Pe
tal

 H
eu

ri
st

ic
s

Best Known CW Parallel CW Parallel + 20pt Sweep + 20pt Petal
Rounded Rounded CPU Rounded CPU Rounded CPU Rounded CPU

Instance Cost Source Cost K ms Cost K ms Cost K ms Cost K ms
E-n22-k4 375 [185] 388 4 0 388 4 0 397 4 16 397 4 15
E-n23-k3 569 [185] 621 3 0 569 3 0 569 3 16 569 3 42
E-n30-k3 534 [185] 532 4 0 508 4 0 550 3 16 515 4 16
E-n33-k4 835 [185] 841 4 0 841 4 0 884 4 16 878 4 15
E-n76-k7 682 [185] 733 7 0 729 7 0 722 7 31 702 7 47
E-n76-k8 735 [185] 787 8 0 779 8 0 761 8 47 771 8 47
E-n76-kl4 1021 [185] 1048 15 0 1048 15 0 1131 15 31 1130 15 31
E-n 101 -k14 1067 [185] 1130 14 16 1130 14 16 1200 15 62 1172 15 47
F-n45-k4 724 [185] 728 4 0 727 4 16 764 4 16 770 5 18
F-n72-k4 237 [185] 253 5 15 252 5 16 284 5 47 258 5 52
F-nl35-k7 1162 [185] 1190 7 15 1175 7 15 1348 8 157 1269 9 114

Table 4.13: Computational results for instance sets C,E F and R

Best Known CW Parallel CW Parallel + 20pt Sweep + 20pt Petal
Real Real CPU Real CPU Real CPU Real CPU

Instance Cost Source Cost K ms Cost K ms Cost K ms Cost K ms
C-n51-k5 524.61 [166] 584.64 6 0 584.64 6 0 538.40 5 15 535.23 5 16
C-n76-kl0 835.26 [166] 907.39 10 0 902.09 10 0 894.95 11 31 894.09 12 32
C-nl01-k8 826.14 [166] 889.00 8 15 883.97 8 15 872.01 8 78 866.07 8 80
C-nlOl-klO 819.56 [166] 833.51 10 16 828.13 10 16 916.94 10 62 831.06 10 59
C-nl21-k7 1042.11 [166] 1068.14 7 15 1053.11 7 15 1278.14 7 110 1272.54 7 123
C-nl51-kl2 1028.42 [166] 1140.42 12 15 1136.69 12 31 1109.71 12 172 1103.00 13 202
C-n200-kl6 1291.29 [124] 1395.74 17 31 1389.60 17 31 1444.48 17 297 1431.86 18 285
R-n76-kl0a 1618.36 [166] 1645.50 10 0 1643.78 10 15 2139.00 12 31 2004.84 12 31
R-n76-k9b 1344.62 [166] 1356.56 10 0 1350.37 10 16 1680.97 11 31 1652.90 12 31
R-n76-k9c 1291.01 [166] 1334.84 9 0 1322.67 9 15 1740.98 11 47 1715.50 11 46
R-n76-k9d 1365.42 [166] 1428.53 10 15 1418.70 10 16 1494.75 10 31 1428.51 10 30
R-nlOl-klla 2041.34 [71] 2166.05 12 16 2150.28 12 16 2373.61 13 49 2438.37 14 55
R-nlOl-kllb 1939.90 [124] 2034.31 12 16 2028.57 12 16 2247.46 12 63 2215.16 13 59
R-nlOl-kllc 1406.20 [71] 1434.07 11 16 1433.53 11 15 1800.41 12 63 1661.55 14 51
R-nlOl-klId 1580.46 [132] 1677.97 12 16 1662.45 12 16 1893.89 12 78 1853.55 12 95
R-nl51-kl5a 3055.23 [166] 3388.60 16 16 3367.04 16 31 3781.74 16 140 3714.19 17 161
R-nI51-kl4b 2727.20 [132] 2890.40 14 16 2885.18 14 16 3206.31 15 141 3119.01 15 120
R-nl51-kl4c 2341.84 [166] 2457.23 15 16 2459.92 15 16 3024.54 16 172 2800.01 17 152
R-nl51-kl4d 2645.39 [166] 2788.23 16 15 2767.70 16 31 3538.63 17 156 3238.13 17 166

Table 4.14: Computational results for instance sets C,E F and R
o

4.4 Comparing the CW, Sweep and Petal Heuristics 71

Tables 4.10 through 4.14 detail the results for all instances presented in section 4.3. For
each instance the provable optimum or best known solution, including the source of each
of these values, is given. For instances A, B, E, F and P, the real solution costs shown are
calculated using the routes from the rounded optimum solutions. For instances C and R,
the rounded solution costs are calculated and presented using the best known real solution
costs.

Our implementation of the Sweep procedure runs the heuristic n times, where n is equal
to the number of customers within a problem instance. Each customer is systematically
selected in turn, to serve as the starting customer. The best solution obtained from all
solutions generated is then selected. In the column headed “Sweep + Exact TSP”, the
customers allocated to each route within a solution are routed using the exact solution to
a TSP solved using a rudimentary branch and bound procedure. The exact algorithm is
substituted for 2-Opt in the column headed “Sweep + 20pt”.

For each combination of heuristic and/or improvement procedure, the columns headed
‘Real Cost’ and ‘Rounded Cost’ give the results from a single run using real and rounded
costs respectively to calculate total solutions costs. The value ‘K’ represents the number of
vehicles required for each solution and ‘CPU ms’, the runtime in milliseconds to generate
each solution.

Published results for the CW, Sweep and Petal heuristics vary between authors. The
primary reason for these differences is due to the variation in implementations and data
structures used by authors publishing results. This results in different decisions or selec­
tions being made at a particular juncture of the algorithmic process, leading to a variation
in the quality of results across specific implementations.

Given this fact, the results obtained are in line with those published by other authors. For
the standard heuristics, when no improvement procedure is applied, the CW produces a
best overall solution quality when compared with the Sweep and Petal heuristics. This is
also the case when considering the runtimes, with the CW providing superior runtimes.

The reduction in runtime efficiency for the Sweep and Petal procedures can clearly be
attributed to the generation of exact solutions for the subset of TSP problems that must be
solved within each instance. In both cases, the runtime of each method deteriorates sub­
stantially as the size of a given problem instance increases. This would clearly preclude
the use of such methods for problem instances of a much larger size.

The runtimes for these two methods can be improved by the substitution of the exact
algorithm with an approximate procedure. In order to demonstrate this point, results are
included for the Sweep, using a 2-Opt improvement strategy in place of an exact solution

72 4.5 Chapter Summary

method. Using this combination clearly allows the runtime of the method to be reduced,
with a relatively small impact on solution quality. Although, still inferior for both solution
quality and runtime when compared to the CW method.

4.5 Chapter Summary

This chapter provides a survey of CVRP heuristics, together with a comparative study of
a number of algorithmic implementations. Its main purpose is to provide a comparative
benchmark framework for the metaheuristic algorithms used later in the thesis. It has
been demonstrated that in comparison to the Sweep and Petal heuristics, the CW proce­
dure produces better solutions overall from a runtime and solution quality perspective.
Although techniques to reduce the runtimes of the Sweep and Petal methods have been
demonstrated, the relative solution quality attained from these procedures is still inferior
to those of the CW.

Chapter 5

Solving The Capacitated Arc Routing
Problem

5.1 Introduction

In the VRP, goods are delivered to and/or collected from customers at geographically
disparate locations, each represented as a vertex in the graph structure. The edges, repre­
senting the interconnecting street network between customers, are used only as a means
of reaching customer nodes and hold no other significance. By contrast, the ARP involves
the provision of services at the street level. In the graph network, streets are represented
by edges and junctions connecting the streets by vertices. Typical applications include
refuse collection, postal deliveries, meter reading and road gritting.

This chapter aims to introduce a range of heuristic algorithms to solve the CARP, provid­
ing a series of examples, a review of the literature and comparative study of a series of
algorithmic implementations.

5.2 Arc Routing Problems

For A/P-Hard optimization problems such as the CARP, heuristic methods provide a
mechanism for the production of, in the most part, good quality solutions, for large prob­
lem instances (allbeit generally not optimal), within realistic time frames.

Numerous heuristic algorithms have been proposed for the CARP and are classified as ei­
ther simple or two-phase constructive methods. The following section describes a number
of the most notable, providing a more in depth analysis for those algorithms that form the
basis of the implementations described later. For all heuristics described in the following
section, only undirected variants of the various problems are considered.

74 5.2 Arc Routing Problems

5.2.1 Simple Constructive Heuristic Algorithms

Vehicle routes are constructed using problem specific rules.

Construct Strike

The Construct Strike Algorithm (CSA), proposed by Christofides [27], represents one of
the first methods developed for the Capacitated Chinese Postman Problem (CCPP). The
ideology is to construct cycles, which adhere to capacity constraints, such that after their
subsequent removal from the overall graph, it remains connected. Isolated nodes are
excluded when determining the connectivity of the remaining graph. The process of con­
structing/removing feasible cycles from the graph continues until no more cycles exist. If
at this stage, the graph contains no required edges, the process ends, resulting in a solution
made up of the generated cycles.

However, if the graph still contains required edges, a series of non-required edges are
added in between odd nodes in the graph. The set of edges to be inserted in the graph are
calculated using a minimum weighted perfect matching method. The whole process of
constructing/removing cycles and adding new edges is repeated until all required edges
have been removed from the graph. The solution again being derived from the generated
cycles. The run time complexity of this algorithm is 0(\E\ | V^3).

Augment Merge

The Augment Merge Algorithm (AMA) was originally proposed by Golden and Wong [86]
and consists of 3 distinct stages. Its mechanisms are similar to the Clark & Wright algo­
rithm used in the solution of the VRP. The 3 phases are: initialisation, augmentation and
merge.

Initialisation
The procedure begins by constructing a set of initial routes such that each route services
precisely one servicable edge in the graph. For each edge selected, the shortest path from
each of its endpoints back to the depot is calculated and a cycle constructed. All cycles
generated are then tabulated in descending order based upon travelling distance, and each
cycle assigned a numeric identifier. The longest cycle is labelled 1, the next in the sorted
table 2, down to the last cycle n (initially equal to the total number of serviced edges

5.2 Arc Routing Problems 75

present in the graph).

Augmentation
The process of augmentation then involves selecting each cycle in turn (the master route)
starting at cycle 1 and evaluating the inclusion of each servicable edge in the shorter sib­
ling cycles (i.e. all cycles in the table below the master cycle) into the currently selected
master cycle. If the servicable edge in a sibling cycle can be serviced on the master cycle,
whilst adhering to any vehicle capacity constraints, the master cycle is updated to include
the service of that edge and the sibling cycle deleted. Once all sibling cycles have been
evaluated against a particular master cycle, the next cycle in the table becomes the master
and its sibling cycles are evaluated using the same procedure. The process continues se­
lecting master cycles until the bottom of the table is reached and no further cycles exist. If
at any point in time the total demand on the master cycle becomes equal to the capacity of
the vehicles available, it is immediately set aside and the next cycle in the table is selected
as the master.

Merge
The merge phase further refines the cycles derived during augmentation. The selection
mechanism remains the same as that for augmentation. The first cycle in the table (not
full to capacity) is selected as the master and each cycle following it in the table is selected
in turn to take on the role of the sibling. Each master/sibling combination is then evaluated
to assess the feasibility of a merger into a single cycle. A merger is only valid if the new
cycle services every edge originally present in the master and sibling cycles. For each
valid merger, the total distance saving acheived by combining the cycles is calculated as
follows:

Sij /j lj rri-ij (5.1)

where:

= saving achieved from the merger of cycles i and j

Ik = length of cycle k pre merger

rriij = length of post merger cycle resulting from combination of cycle i and j

Example

76 5.2 Arc Routing Problems

Figure 5.1: CARP problem instance with arc lengths.

The following worked example, using the instance of the CARP shown in figure 5.1,
demonstrates the operation of the AMA. The depot is represented by vertex 1 and cus­
tomers by vertices 2 to 7. The distance cost of travel along all edges between connecting
vertices, are labelled in a square box on each edge. The demand along all edges is 1 and
the capacity of all vehicles is 4.

Initialisation Stage

Each servicable edge is selected in turn and a cycle contructed using the shortest paths
from each of its endpoints back to the depot node. The resulting cycles are subsequently
sorted in descending distance order as shown in figure 5.2 (a).

Augmentation Stage

Augmentation begins with cycle 1 being selected as the master and cycle 2 as the sib­
ling. The serviced edge on the sibling cycle is evaluated for inclusion in the master cycle.

5.2 Arc Routing Problems 11

The edge (3,4) does not exist in the master cycle and hence its inclusion is not feasible.
The process continues selecting each next cycle in the table as the sibling until either the
vehicle capacity is fully utilised or no more sibling cycles can be selected. The process
continues with edge (4,5) on sibling cycle 3, (5,6) on sibling cycle 6 and (5,7) on sib­
ling cycle 9 being included on the master cycle, as shown in figure 5.2 (b), (c) and (d)
respectively. At this stage cycle 1 becomes full to capacity and is set aside.

Cycle 2 assumes the role of the master and the cycles below it in the table are selected
in turn as the sibling. Edges (1,7) on cycle 10, (2,3) on cycle 11 and (1,2) on cycle 12
are included on the master cycle 2, as shown in figure 5.2 (e), (f) and (g) respectively.
Having reached vehicle capacity, cycle 2 is set aside. The master/sibling selection process
continues from cycle 4 (master) and cycle 5 (sibling). No further augmentation is possible
and the final cycles are shown in figure 5.2 (g).

Merge Stage

The merge phase begins by analysing possible mergers between all the cycles, not full to
capacity, developed in the augmentation stage. The workings associated with the merger
phase are shown in figure 5.3. Possible mergers are sorted, based upon potential savings,
in descending order. Where a number of mergers exist that provide an identical saving, a
single merger is selected arbitrarily and processed. For the current example, the merger
between cycle 4 and 7 (R47) is selected and processed.

The process is repeated, evaluating potential mergers, resulting in the merger R58. At this
stage no more mergers are possible and the final cycles are shown in figure 5.3 (e). A
pictorial representation of the final solution obtained for the example problem instance is
shown in figure 5.4. The optimum solution for the same problem instance is shown in
figure 5.5 for comparison.

Path Scanning

In the Path Scanning Algorithm (PSA) of Golden et al. [85] the procedure iteratively
builds single cycles, each starting from the depot node, resulting in a final solution made
up of a set of multiple cycles. It is run five separate times, each time using a different
rule set to build solutions, after which the best overall solution is then selected from all of
those generated.

Each rule set utilises a different selection criterion to obtain the next edge (z,j), along
which to extend the current cycle route being built. Edges are chosen, subject to vehicle

78

Route No Demand Distance Route
1 1 60 1 7 5 4 6 5 7 1
2 1 55 1 2 34 5 7 1
3 1 52 1 7 5 4 5 7 1
4 1 52 1 2 3 5 7 1
5 1 49 1 7 5 6 7 1
6 1 48 1 7 5 6 5 7 1
7 1 45 1 2 5 7 1
8 1 44 1 5 7 1
9 1 42 1 7 5 7 1
10 1 34 17 1
11 1 30 1 2 3 2 1
12 1 26 12 1

(a) routes after initialisation

5.2 Arc Routing Problems

Route No Demand Distance Route
1 2 60 1 7 5 1 6 5 7 1
2 1 55 1 2 3 4 5 7 1
4 1 52 1 2 3 5 7 1
5 1 49 1 7 5 6 7 1
6 1 48 1 7 5 6 5 7 1
7 1 45 1 2 5 7 1
8 1 44 1 5 7 1
9 1 42 1 7 57 1
10 1 34 17 1
11 1 30 1 2 ^ 2 1
12 1 26 1 2 1

(b) augmentation of route 1 and 3

Route No Demand Distance Route
1 3 60 1 7 5 4 6 5 7 1
2 1 55 1 2 3 1 5 7 1
4 1 52 1 2 3_5 7 1
5 1 49 1 7 5 6 7 1
7 1 45 1 2 5 7 1
8 1 44 1 5 7 1
9 1 42 1 7 5 7 1
10 1 34 II 1
11 1 30 1 2 3 2 1
12 1 26 12 1

(c) augmentation of route 1 and 6

Route No Demand Distance Route
1 4 60 1 7 5 4 6 5 7 1
2 1 55 1 2 ^ 4 5 7 1
4 1 52 1 2 1 5 7 1
5 1 49 1 7 5 6 7 1
7 1 45 1 1 5 7 1
8 1 44 15 7 1
10 1 34 17 1
11 1 30 1 2 3 2 1
12 1 26 12 1

(d) augmentation of route 1 and 9

Cycle No Demand Distance Route
4 4 60
2 2 55 1 2 1 4 5 7 1
4 1 52 1 2 1 5 7 1
5 1 49 1 7 5 6 7 1
7 1 45 1 1 5 7 1
8 1 44 1 5 7 1
11 1 30 1 2 3 2 1
12 1 26 12 1

(e) augmentation of route 2 and 10

Cycle No Demand Distance Route
4 4 60 1 7 5 4 6 5 7 1
2 3 55 1 2 3 4 5 7 1
4 1 52 1 2 3 5 7 1
5 1 49 1 7 5 6 7 1
7 1 45 1 2 5 7 1
8 1 44 1 5 7 1
12 1 26 1 2 1

(f) augmentation of route 2 and 11

Cycle No Demand Distance Route
4 4 60 1 7 5 4 6 5 7 1
2 4 55 1 2 3 4 5 7 1
4 1 52 1 2 3 5 7 1
5 1 49 1 7 5 6 7 1
7 1 45 1 2 5 7 1
8 1 44 1 5 7 1

(g) augmentation of route 2 and 12

Figure 5.2: Augment Merge Example - initialisation and augmentation phase

5.2 Arc Routing Problems 19

Cycle No Demand Distance Route
4 4 60 1 7 5 4 6 5 7 1

2 4 56 1 2 3 4 5 7 4

4 1 52 1 2 3 5 7 1

5 1 49 1 7 5 6 7 1
7 1 45 1 2 5 7 1

8 1 44 1 5 7 1

(a) R outes a t s ta r t of m erger phase

Cycle
Merger Demand li lx m i; SXJ Merged Route

R47 2 52 45 53 44 1 2 3 5 2 1

R57 2 49 45 50 44 1 2 5 6 7 1

R78 2 45 44 45 44 1 5 2 1

R45 2 52 49 59 42 1 2 3 5 6 7 1

R48 2 52 44 54 42 1 2 3 5 1

R58 2 49 44 51 42 1 5 6 7 1

(b) M erger list 1

Cycle No Demand Distance Route
4- 4 60 1 7 5 4 6 5 7 1

2 4 55 1 2 3 4 5 7 1
4 2 53 1 2 3 5 2 1

5 1 49 1 7 5 6 7 1
8 1 44 1 5 7 1

(c) i ? 4 7 replaces route 4 and rou te 7 is deleted

Cycle
Merger Demand /j lx rriij Sij Merged Route

Rss 2 49 44 51 42 1 5 6 7 1

(d) M erger list 2

Cycle No Demand Distance Route
1 4 60 1 7 5 4 6 5 7 1

2 4 55 1 2 3 4 5 7 1
4 2 53 1 2 3 5 2 1

5 1 49 1 5 6 7 1

(e) Final solution: R̂ g replaces route 5 and route 8 is deleted

Figure 5.3: Augment Merge Example - merge phase

80 5.2 Arc Routing Problems

1713

23

' 49

2 8

16 3
I

3

1014

Cycle 1: 1 7 5 4 6 5 7 1
Distance = 60

Cycle 2: 1 2 3 4 5 7 1
Distance = 55

8

10

Cycle 3: 1 2 3 5 2 1
Distance = 53

Cycle 4:1_5 6 7 1
Distance = 51

Total Distance = 219 No Vehicles = 4

Figure 5.4: Augment Merge Example - solution to CARP instance

5.2 Arc Routing Problems 81

17

23 23

4 4 9

8 2
iii16 3 16i
3

10 10 14

Cycle 1: 1 2 3 5 4 6 52 1
Distance = 71

Cycle 2: 1 2 3 4 5 7 1
Distance = 55

Cycle 3: 1 5 6 7 1
Distance = 51

Total Distance =177 No Vehicles = 3

Figure 5.5: Optimum solution to CARP instance

82 5.2 Arc Routing Problems

capacity constraints, using the following rule sets:

1. the cost/demand ratio where is the distance and dtJ the demand for edge
i to j , is minimised.

2. the cost/demand ratio / dij is maximised.

3. the distance from node j (i.e. the end of the edge) back to the depot is minimised.

4. the distance from node j back to the depot is maximised.

5. if the vehicle is less than half full, use rule 4 to select next edge, else use rule 3.

We now explain how to solve a problem instance, with a set R containing all required
edges in that instance and an empty path P. The path P is then extended, one edge at a
time, until the vehicle is full to capacity. For each edge extension, a set S containing all
edges in R not exceeding the capacity of the route currently being extended, is generated.
An edge is then selected from S using one of five rules and P extended along that edge.

Worked Example

The following worked example for the PSA solves the the same CARP instance as that
used for the worked example of the AMA in section 5.2.1. To reiterate, the depot is rep­
resented by node 1, demand for all arcs is 1 and capacity for all vehicles is 4.

Initialisation

The first rule set to minimise the cost/demand ratio is selected. Then set E , containing
all of the required edges in the dataset instance and a new empty cycle R\, starting at the
depot node are created:

E = {(1, 2), (1, 5), (1, 7), (2,3), (2,5), (3,4), (3, 5), (4,5), (4,6), (5,6), (5, 7), (6, 7)}

R\ — 1 Distance - 0 Demand = 0

Cycle Construction

Cycles are developed using the currently selected rule set. The process of cycle construc­
tion for this rule set is shown step by step in figures 5.6 and 5.7, resulting in the solution
shown in figure 5.8, including solutions for the other rule sets.

5.2 Arc Routing Problems 83

Cycle 1: a). Generate ordered list of non serviced edges
incident to node 1, subject to vehicle capacity constraints,
minimising cost/demand ratio:

Edge cz j / d%j
(1,2) 13X)
(1,7) 17.0
(1,5) 23.0

Select edge (1,2) which minimises cost/demand ratio and
extend route R \ along the edge to produce:

R i = l 2

Distance = 13 D em and = 1

b). Generate ordered list of non serviced edges incident to
node 2, subject to vehicle capacity constraints, minimising
cost/demand ratio:

Edge Czj j dZj
(2,3) l o
(2,5) 9.0

Select edge (2,3) and extend route R i along the edge to
produce:

R i = 12 3

D istance = 15 Dem and = 2

c). Generate ordered list of non serviced edges incident to d). Generate ordered list of non serviced edges incident to
node 3, subject to vehicle capacity constraints, minimising node 4, subject to vehicle capacity constraints, minimising
cost/demand ratio: cost/demand ratio:

Edge czj j dZj Edge &ij / dZj
(3.4) 14.0 (4,5) 5.0
(3.5) 16.0 (4,6) 10.0

Select edge (3,4) and extend route R \ along the edge to Select edge (4, 5) and extend route R i along the edge to
produce: produce:

f?i = 1 2 3 4 i?i = 1 2 3 4 5

D istance — 29 D em and = 3 D istance = 34 D em and = 4

e). Vehicle is full to capacity. Generate shortest deadhead
path from node 5 to the depot, giving final route:

R i = 1 2 3 4 5 7 1

D istance = 55 D em and = 4

Cycle 2: a). Generate ordered list of non serviced edges
incident to node 1, subject to vehicle capacity constraints,
minimising cost/demand ratio:

Edge C-'ij / dij
(1,7) 17.0
(1,5) 23.0

Select edge (1, 7) which minimises cost/demand ratio and
extend route R i along the edge to produce:

R2 = 1 1

D istance = 17 D em and = 1

b). Generate ordered list of non serviced edges incident to
node 7, subject to vehicle capacity constraints, minimising
cost/demand ratio:

Edge Cij j dij
(7.5) 4.0
(7.6) 8.0

Select edge (7,5) and extend route R 2 along the edge to
produce:

R 2 = 1 7 5

D istance = 21 D em and = 2

Figure 5.6: Path Scan Example - cycle construction I

84 5.2 Arc Routing Problems

Cycle 2: c). Generate ordered list of non serviced edges
incident to node 5, subject to vehicle capacity constraints,
minimising cost/demand ratio:

Edge cZj / dj,j
(5,6) 33)
(5.2) 9.0
(5.3) 16.0
(5,1) 230

Select edge (5 ,6) and extend route R 2 along the edge to
produce:

R 2 = 1 7 5 6

D istance = 24 D em and = 3

d). Generate ordered list of non serviced edges incident to
node 6 , subject to vehicle capacity constraints, minimising
cost/demand ratio:

Edge Cij /d ij
(6 , 7) 8.0
(6,4) 10.0

Select edge (6 , 7) and extend route R 2 along the edge to
produce:

R 2 = 1 7 5 6 7

D istance = 32 D em and = 4

e). Vehicle is full to capacity. Generate shortest deadhead
path from node 7 to the depot, giving final route:

R 2 = 1 7 5 6 7 1

D istance = 49 D em and = 4

Cycle 3: a). Generate ordered list of non serviced edges
incident to node 1 , subject to vehicle capacity constraints,
minimising cost/demand ratio:

Edge Cij j dij
(1,5) 233)

Select edge (1,5) which minimises cost/demand ratio and
extend route R \ along the edge to produce:

R 3 = 1 5

D istance = 23 D em and = 1

c). No edges incident to node 2. Add shortest path to node
on non serviced edges closest to node 2 , subject to vehicle
capacity constraints, minimising cost/demand ratio:

R 3 = 15 2 3

D istance = 34 D em and = 2

b). Generate ordered list of non serviced edges incident to
node 5, subject to vehicle capacity constraints, minimising
cost/demand ratio:

Edge C ij/dij
(5.2) 9.0
(5.3) 16.0

Select edge (5, 2) and extend route R 3 along the edge to
produce:

R 3 = 1 5 2

D istance = 32 D em and = 2

d). No edges incident to node 5. Add shortest path to node
on non serviced edges closest to node 5, subject to vehicle
capacity constraints, minimising cost/demand ratio:

R 3 = 1 5 2 3 5 6

D istance = 53 D em and = 3

Generate ordered fist of non serviced edges incident to
node 3, subject to vehicle capacity constraints, minimising
cost/demand ratio:

Edge Cij / dij
(3,5) 163)

Select edge (3, 5) and extend route R 3 along the edge to
produce:

R 3 = 1 5 2 3 5

D istance = 50 D em and = 3

Generate ordered list of non serviced edges incident to
node 6 , subject to vehicle capacity constraints, minimising
cost/demand ratio:

Edge Cij /d ij
(6,4) 10.0

Select edge (6 ,4) and extend route R 3 along the edge to
produce:

R 3 = 1 5 2 3 5 6 4

D istance = 63 D em and = 4

Figure 5.7: Path Scan Example - cycle construction II

5.2 Arc Routing Problems 85

Cycle 3: e). Vehicle is full to capacity. Generate shortest
deadhead path from node 4 to the depot, giving final route:

R 3 = 1 5 2 3 5 6 4 5 7 1

D istance = 89 D em and = 4

All edges serviced. Final routes are:

R i — 1 2 3 4 5 7 1 D istance = 55 D em and = 4
R 2 — 1 7 5 6 7 1 D istance = 49 D em and = 4
R 3 = 1 5 2 3 5 6 4 5 7 1 D istance = 89 D em and = 4

Total D istance = 193 Total D em and = 12 N o Vehicles = 3

Cost/demand ratio maximised:

i?i = 1 5 3 4 6 7 1 D istance = 87 D em and = 4
i ? 2 = 1 7 6 5 2 1 D istance — 50 D em and = 4
H 3 = 1 2 3 2 5 4 5 7 1 D istance = 57 D em and = 4

Total D istance = 194 Tota l D em and = 12 N o V ehicles = 3

Distance to depot minimised:

111 = 1 2 3 5 1 D istance = 54 D em and = 4
112 = 1 7 5 2 3 4 5 7 1 Distance = 72 D em and = 4
113 = 1 7 6 5 4 6 5 7 1 Distance — 67 D em and = 4

Total D istance = 193 Tota l D em and = 12 N o V ehicles = 3

Distance to depot maximised:

111 = 1 5 4 6 5 7 1 D istance = 62 D em and = 4
112 = 1 7 6 5 7 5 3 2 1 D istance = 67 D em and = 4
113 = 1 2 5 4 3 2 1 D istance = 56 D em and = 4

Total D istance = 185 Total D em and — 12 N o V ehicles — 3

Distance to depot min/max:

111 = 1 5 4 3 2 1 D istance = 57 D em and = 4
112 = 1 7 6 5 2 1 D istance = 50 D em and = 4
113 = 1 2 3 5 7 6 4 5 7 1 D istance = 78 D em and = 4

Total D istance = 185 Total D em and = 1 2 N o Vehicles = 3

Figure 5.8: Path Scan Example - solutions for 5 rule sets

86 5.2 Arc Routing Problems

As can be seen from the results of both the standard AMA and PSA algorithms, for the
simple CARP instance in figure 5.1, they provide rather different solutions. The AMA
solution requires 4 vehicles to service the required edges, whereas, the PSA manages to
produce a solution utilising fewer vehicles and also covering a lesser distance.

However, comparing both solutions to the optimum solution for the instance, shown in
figure 5.5, there is still room for improvement on even a simple instance such as this. As
will be seen on the instances tested later, as they become larger and more difficult, so the
difference between the solutions from these heuristics and the best known solution for a
given instance widens.

Modified Path Scanning

The Modified Path Scanning Algorithm (MPSA), proposed by Peam [142], is a variation
on the original method. In contrast to the original PSA method where solutions are gen­
erated using one of the five rules exclusively, the modified version randomly selects one
rule, each time the solution is extended along an edge. The author experimented with
different weightings of probability for rule selection, attaining the best results from each
rule having an equal probability of selection.

Computational runs were presented for the DeArmon dataset instances and limited to the
generation of 30 solutions. However, the author points out that increasing the number of
solutions generated can result in better quality solutions, but of course each increment in
the number of solutions generated brings with it an increase in running time. The run time
complexity of this algorihm is the same as the original method (i.e. 0{\V\Z)).

5.2.2 Two Phase Constructive Heuristic Algorithms

Two phase constructive methods for the CARP can be generally classified into two types
of procedures: route first cluster second and cluster first route second. The seminal route
first cluster second algorithm for the CARP was proposed by Ulusoy [172]. Initially any
vehicle capacity constraint is relaxed and a single tour constructed to cover all required
edges, essentially requiring a solution to the RPP. The single tour is subsequently split
into smaller tours, each adhering to any capacity restrictions, using a splitting procedure.

5.3 Dataset Instances 87

5.3 Dataset Instances

A number of authors have published dataset instances for the CARP, namely DeAr-
mon [46], Benavent et al. [12], Li [116], Li and Eglese [117] and Kiuchi et al. [103].
The DeArmon instances, presented in table 5.1 are called gdb and consist of 23 problem
instances with a mixture of dense and sparse graph networks.

Problem
No

Vertices
No

Edges
Total

Demand
Vehicle

Capacity Density
gdbl 12 22 22 5 33
gdb2 12 26 26 5 39
gdb3 12 22 22 5 33
gdb4 11 19 19 5 35
gdb5 13 26 26 5 33
gdb6 12 22 22 5 33
gdb7 12 22 22 5 33
gdb8 27 46 249 27 13
gdb9 27 51 258 27 14
gdb 10 12 25 37 10 38
gdbl 1 22 45 225 50 19
gdb 12 13 23 212 35 30
gdb 13 10 28 240 41 63
gdb 14 7 21 89 21 100
gdb 15 7 21 112 37 100
gdb 16 8 28 116 24 100
gdb 17 8 28 168 41 100
gdb 18 8 36 153 37 100
gdb 19 8 11 66 27 20
gdb20 11 22 106 27 40
gdb21 11 33 154 27 60
gdb22 11 44 205 27 80
gdb23 11 55 266 27 100

Table 5.1: De Armon dataset analysis

Problem
No

Vertices
No

Edges
Total

Demand
Vehicle

Capacity Density
vail 24 39 358 45-200 14
val2 24 34 310 40-180 12
val3 24 35 137 2 0 - 8 0 13
val4 41 69 627 75-225 8
val5 34 65 614 75-220 12
val6 31 50 451 50-170 11
val7 40 66 559 65-200 8
val8 30 63 566 65-200 14
val9 50 92 654 70-235 8
val 10 50 97 704 75-250 8

Table 5.2: Benavent et al. dataset analysis

The second set of instances from Benavent et al., presented in table 5.2, are called val
and comprise 34 problems, modelled on 10 sparse graph networks, with varying vehicle

88 5.4 Comparing Augment Merge and Path Scanning

capacities for each network. The Li and Eglese instances are derived from real world data,
relating to winter gritting in the county of Lancashire, UK and consist of 24 problems.

The gdb and val data instances include only required edges, in contrast to those from Li
and Eglese where a mixture of both required and non-required edges are found. For the
purposes of this thesis, experimentation has been limited to the DeArmon and Benavent
et al. instances.

5.4 Comparing Augment Merge and Path Scanning

The AMA and PSA heuristics were implemented and run against the full range of in­
stances described in the previous section, to provide a benchmark for comparison against
the use of these methods within the GAPS algorithm, described in a later chapter. The fol­
lowing sections present and evaluate the results obtained for the experiments undertaken.

5.4.1 Computational Results

This section presents computational results obtained from a set of experimental runs of
the AMA and PSA methods. All algorithms are implemented in Java and executed on a
Pentium IV 2.8 GHz single processor computer with 1GB RAM, running the GNU/Linux
Operating System.

In line with the CVRP heuristics in section 4.4.1, experimentation is confined to a single
run for each of these deterministic approaches as follows:

• Augment Merge heuristic

• Path Scanning heuristic

Tables 5.3 and 5.4 present the results for all instances described in section 5.3. For
each instance the best known solution is given. The column headed “Original A-Merge”
presents the original published results for an implementation of AMA by Golden and
Wong. The column headed “My A-Merge” present the results for our implementation of
AMA. Throughout all tables, results marked with a **’ indicate the best known solution
for that problem instance.

Similarly the columns headed “Original Path Scan” and “My Path Scan” present the re­
sults published by the original authors, Golden et al., and those generated using our im­
plementation of the PSA heuristic. The final columns headed “Run Time (s)” detail the

5.4 Comparing Augment Merge and Path Scanning 89

Problem
Lower
Bound

Original
A-Merge

LB
Dev

My
A-Merge

LB
Dev

Run
Time (s)

Original
Path Scan

LB
Dev

My
Path Scan

LB
Dev

Run
Time (s)

gdbl 316 326 1.03 357 1.11 0.02 316* 1.00 316* 1.00 0.01
gdb2 339 367 1.08 408 1.09 0.03 367 1.08 367 1.08 0.01
gdb3 275 316 1.15 338 1.08 0.01 289 1.05 279 1.01 0.01
gdb4 287 290 1.01 342 1.19 0.01 320 1.11 287* 1.00 0.01
gdb5 377 383 1.02 383 1.02 0.02 417 1.11 438 1.16 0.01
gdb6 298 324 1.09 328 1.19 0.02 316 1.06 324 1.09 0.01
gdb7 325 325* 1.00 325* 1.00 0.01 357 1.10 336 1.03 0.01
gdb8 344 356 1.03 421 1.16 0.03 416 1.21 462 1.34 0.02
gdb9 303 339 1.12 355 1.26 0.06 355 1.17 364 1.20 0.02
gdb 10 275 302 1.10 319 1.16 0.02 302 1.10 284 1.03 0.01
gdbl 1 395 443 1.12 449 1.14 0.04 424 1.07 443 1.12 0.02
gdb 12 458 573 1.25 587 1.26 0.01 560 1.22 560 1.22 0.01
gdb 13 536 560 1.04 574 1.09 0.03 592 1.10 572 1.07 0.01
gdb 14 100 102 1.02 104 1.02 0.03 102 1.02 102 1.02 0.01
gdb 15 58 58* 1.00 60 1.03 0.03 58* 1.00 58* 1.00 0.01
gdb 16 127 131 1.03 137 1.06 0.04 131 1.03 131 1.03 0.01
gdb 17 91 91* 1.00 93 1.00 0.03 93 1.02 91* 1.00 0.01
gdb 18 164 170 1.04 172 1.04 0.05 168 1.02 172 1.05 0.01
gdb 19 55 63 1.15 63 1.15 0.01 57 1.04 57 1.04 0.01
gdb20 121 123 1.02 127 1.02 0.02 125 1.03 129 1.07 0.01
gdb21 156 158 1.01 162 1.04 0.04 168 1.08 160 1.03 0.01
gdb22 200 204 1.02 204 1.03 0.03 207 1.04 206 1.03 0.01
gdb23 233 237 1.02 239 1.03 0.11 241 1.03 248 1.06 0.02

Average LB Dev 1.06 1.11 1.07 1.07

Table 5.3: Comparison of results for instance set gdb

running times of our implementations, reported in seconds. The average deviation from
the best known solution is reported for all algorithmic implementations to allow compar­
ison between the methods to be made.

One of the problems with AMA is at the stage where mergers are selected. The original
implementation specifies that mergers should be selected arbitrarily. However, in the
situation where there is more than one merger with the largest possible saving, selecting
one over the other can result in dramatically different solutions.

There have been many results published benchmarking implementations of this heuristic
that show a wide range of different results for the standard problem instances. The vari­
ation in solution quality comes about from the nature of the data structures used to hold
the sorted list of possible mergers. Different structures result in different mergers being
placed at the top of the table and as such a varying quality solution.

In order to test this theory, the AMA was run against the same problem instances, using
random selection from all mergers in the list having the highest saving. The results of
these tests can be seen in tables 5.5 and 5.6. Included for comparison are the results

90 5.4 Comparing Augment Merge and Path Scanning

Lower
Problem Bound

My
A-Merge

LB
Dev

Run
Time (s)

My
Path Scan

LB
Dev

Run
Time (s)

vallA 173 196 1.12 0.04 188 1.09 0.02
val IB 173 202 1.16 0.03 205 1.18 0.02
val 1C 235 324 1.27 0.03 311 1.32 0.02
val2A 227 255 1.16 0.04 250 1.10 0.01
val2B 259 311 1.20 0.04 284 1.10 0.01
val2C 455 533 1.17 0.02 516 1.13 0.02
val3A 81 88 1.03 0.05 85 1.05 0.01
val3B 87 88 1.03 0.05 99 1.14 0.01
val3C 137 150 1.17 0.03 180 1.31 0.02
val4A 400 466 1.09 1.44 440 1.10 0.05
val4B 412 466 1.12 1.40 503 1.22 0.06
val4C 428 478 1.15 1.31 512 1.20 0.06
val4D 520 622 1.26 1.00 630 1.21 0.06
val5A 423 500 1.19 0.54 476 1.13 0.02
val5B 446 518 1.09 0.53 491 1.10 0.02
val5C 469 552 1.17 0.50 539 1.15 0.04
val5D 571 684 1.27 0.39 713 1.25 0.06
val6A 223 246 1.13 0.06 254 1.14 0.02
val6B 231 258 1.12 0.06 265 1.15 0.02
val6C 311 392 1.19 0.04 394 1.27 0.03
val7A 279 331 1.18 0.06 335 1.20 0.05
val7B 283 323 1.18 0.07 338 1.19 0.05
val7C 333 397 1.22 0.06 404 1.21 0.06
val8A 386 411 1.06 0.34 427 1.11 0.02
val8B 395 421 1.08 0.35 440 1.11 0.02
val8C 517 605 1.25 0.27 578 1.12 0.03
val9A 323 363 1.14 0.46 340 1.05 0.07
val9B 326 373 1.14 0.44 362 1.11 0.07
val9C 332 375 1.16 0.45 393 1.18 0.07
val9D 382 461 1.19 0.37 459 1.20 0.07
vallOA 428 465 1.10 4.58 450 1.05 0.07
vail 0B 436 477 1.08 4.53 472 1.08 0.07
val 10C 446 499 1.11 4.66 486 1.09 0.07
vallOD 524 625 1.15 3.73 584 1.11 0.07
Average LB Dev 1.15 1.15

Table 5.4: Comparison of results for instance set val

attained from a similar procedure adopted by the original authors. As can be seen by
these results, the selection made from the available mergers plays a significant part in the
quality of the final solution.

Using a random selection mechanism, the average deviation from the lower bound has
been reduced from 1.11 to 1.08 for the DeArmon instances and from 1.15 to 1.11 for the
Benavent et al. instances. This certainly substantiates the theory that the method of selec­
tion does in fact affect solution quality. The results attained by the original authors, using
a number of similar approaches to those already oulined, further substantiate this, result­
ing in a slightly better average deviation of 1.06 from the best known. However, these
results would suggest that the limits of what this algorithm can achieve in its standard

5.4 Comparing Augment Merge and Path Scanning 91

Problem
Lower
Bound

My Mod
Path Scan

My Mod
A-Merge

Mod
Path Scan A-Alg

Double
Outer

My
Path Scan

gdbl 316 316* 351 324 352 370 366
gdb2 339 353 380 366 352 414 359
gdb3 275 279 316 284 303 354 303
gdb4 287 287* 342 292 322 372 317
gdb5 377 417 383 431 413 501 421
gdb6 298 316 328 335 318 370 318
gdb7 325 336 325* 325* 343 368 355
gdb8 344 405 393 405 394 400 403
gdb9 303 344 347 370 339 375 353
gdb 10 275 284 319 299 301 371 301
gdbl 1 395 410 435 423 429 515 433
gdb 12 458 460 577 550 548 594 546
gdb 13 536 548 548 565 560 641 566
gdb 14 100 102 100* 110 110 146 110
gdb 15 58 58* 60 58* 60 74 60
gdb 16 127 129 135 137 133 143 133
gdb 17 91 91* 91* 91* 93 109 93
gdb 18 164 164* 164* 168 182 202 182
gdb 19 55 57 63 61 65 73 65
gdb20 121 127 123 123 125 147 125
gdb21 156 160 158 162 164 181 164
gdb22 200 204 204 205 206 224 206
gdb23 233 243 235 244 241 269 241

Average LB Dev 1.05 1.08 1.07 1.08 1.24 1.09

Table 5.5: Comparison of results for DeArmon test instances

form have been reached.

Also presented in tables 5.5 and 5.6 are the results for an implementation of the MPSA
heuristic. The column headed “Mod Path Scan” show the results presented by the original
authors and the column headed “My Mod Path Scan” those attained using our implemen­
tation.

The final columns headed “A-Alg” and “Double Outer” present the results achieved using
more recent algorithmic techniques. A-Alg [180] is an approximation algorithm based
upon the Frederickson algorithm for the RPP. The Double Outer Scan heuristic [180]
combines AMA and PSA methods with a Node Duplication heuristic. Results reported
for “A-Alg” are competitive in comparison to AMA and PSA, but relatively ineffective in
the case of “Double Outer”.

The results for MPSA show an improvement in solution quality, in comparison to the
standard PSA heuristic, for the instances across both sets. However, it is interesting to
note yet again the variation in reported solutions between our implementation of MPSA
and that of the original authors.

92 5.4 Comparing Augment Merge and Path Scanning

Problem
Lower
Bound

My Mod
Path Scan

My Mod
A-Merge

Mod
Path Scan A-Alg

Double
Outer

My
Path Scan

vallA 173 184 196 174 181 240 181
val IB 173 197 202 187 199 243 199
val 1C 235 311 308 272 283 284 285
val2A 227 246 255 248 263 317 263
va!2B 259 272 283 296 293 363 297
val2C 455 516 533 539 533 533 545
val3A 81 85 84 88 85 102 85
val3B 87 97 88 101 101 115 101
va!3C 137 150 150 158 166 157 166
val4A 400 432 440 478 434 577 434
val4B 412 473 452 495 468 596 468
val4C 428 512 466 534 510 593 510
val4D 520 630 608 678 602 660 602
val5A 423 433 474 478 471 637 475
val5B 446 474 492 475 461 588 460
val5C 469 518 520 547 559 680 541
val5D 571 691 662 742 734 791 739
val6A 223 246 246 241 237 294 237
val6B 231 253 252 263 261 314 261
val6C 311 357 388 388 372 364 361
val7A 279 319 321 310 283 393 283
val7B 283 338 323 306 299 397 299
val7C 333 393 397 386 371 409 371
val8A 386 417 393 451 437 556 430
val8B 395 430 407 473 549 572 454
val8C 517 578 581 602 605 660 609
val9A 323 340 351 357 337 458 337
val9B 326 349 357 373 351 467 351
val9C 332 366 357 377 375 473 370
val9D 382 459 429 478 456 507 448
vallOA 428 450 457 471 460 587 460
vail OB 436 472 465 490 476 598 476
val IOC 446 462 479 503 486 601 486
vallOD 524 574 577 622 598 652 602
Average LB Dev 1.11 1.11 1.15 1.13 1.34 1.13

Table 5.6: Comparison of results for Benevant et al. test instances

The algorithmic implementations of the PSA, MPSA, AMA and modified AMA heuristics
have allowed direct comparison to be made, providing a set of benchmark solutions for
each procedure. The main philosophy for implementing these methods, as in the case of
the heuristics for the CVRP, is to provide a means of comparison and evaluation later in
the thesis, where these heuristics are utilised within a GA based hybridised metaheuristic
called GAPS.

5.5 Chapter Summary 93

5.5 Chapter Summary

This chapter provides a survey of CARP heuristics, in conjunction with a experimental
study of a series of algorithmic implementations, providing a series of benchmark results
for each. These results serve for comparison against the metaheuristic algorithm presented
later in this thesis. Overall, both the AMA and PSA heuristics provide similar results for
the benchmark instances tested. However, the runtime of PSA is superior to that of AMA,
scaling well with an increase in problem size.

94___________ 5.5 Chapter Summary

95

Chapter 6

Metaheuristics

6.1 Introduction

The substantial number of intractable combinatorial problems that exist, such as the TSP,
CVRP and CARP, for which the application of exact algorithms are for the most part
infeasible, both practically and computationally, has driven the trend of recent research
into heuristic and metaheuristic techniques. Metaheuristics combine and utilise standard
heuristic methods, such as those outlined in chapters 4 and 5, within a more generic
framework, the majority of which being modelled upon natural, physical or biological
paradigms.

Before introducing the main types of metaheuristics, it is important to understand the
concept of a solution space and neighbourhood structure. The set of all feasible solutions
that can be derived for any given combinatorial problem, is known as the search space.
Within any given search space, there will exist a number of neighbourhoods, each con­
taining a subset of solutions and one or more local optima. For any given solution x,
its neighbourhood N(x), is defined as any solution attainable from a small perturbation
(or operation), known as a neighbourhood move, to the solution x. Any solution x that
cannot be improved by another solution in the neighbourhood N(x), i.e. through a minor
alteration, is said to be locally optimal to that neighbourhood.

Within the overall search space, any solution which provides minimum cost (for a min­
imisation problem) or maximum cost (for a maximisation problem) is said to be globally
optimal, often just termed the optimum solution. Consider a search space S, containing
all possible solutions for a problem, where each solution Xi G S has a cost f(xi), cor­
responding to its relative quality, e.g. total travelling distance in the case of the TSP or
CVRP. The requirement for such minimisation problems is to locate a solution Xi £ S
whose cost f(xi) is minimal.

Consider the plot of a cost function for a minimisation problem shown in figure 6.1.
Solutions A, B and C are all locally optimal to their corresponding neighbourhoods N(A),

■ y ' ■ \

96 6.2 Descent Algorithms

Local Optima

</)oOco
3o
COcncw

03s
ow0)Q

Global Optima
B

Figure 6.1: Minimization Problem: Local and global optima.

N(B) and N(C), but having minimal cost overall in the search space S, point B is also
the globally optimal solution for this problem.

Throughout the following sections, the main types of metaheuristics will be introduced,
first in a generic context, followed by a review of the more effective approaches and their
relative success in respect of both the CVRP and CARP.

6.2 Descent Algorithms

A Descent Algorithm (DA) is a simplistic form of local search which moves between
solutions within a neighbourhood using a set of predefined neighbourhood moves. The
procedure begins from an initial solution xit generated at random or using a problem
specific heuristic. A neighbourhood move is then applied to generate a new solution xi+i
in the neighbourhood N(xi). The cost of / (x i+1) is calculated and if f (x i+1) < /(x j),
in the case of a minimisation problem, the newly generated neighbourhood solution is
selected and the search repeated from this solution. If the cost is worse, the search is
restarted from solution X*. The algorithm eventually converges on a local optimum, at the
point when no more cost improvements in the neighbourhood N(xi) can be obtained from
a neighbourhood move. The structure of a basic DA is shown in algorithm 6.1.

The very first Iterated Local Search (ILS) procedure, called iterated descent, was outlined
by Baum [9] and applied to the TSP. The author used 2-Opt for the local search procedure

6.3 Simulated Annealing 97

Algorithm DescentAlgorithm(P)
A basic Descent Algorithm starting from an initial solution xiy for problem instance P,
generated randomly or using a problem specific heuristic.

Generate initial solution x*
while f(xj) < f(xi),V{xj} E N(x{) do

Generate solution Xj E N (x i)

$ = f (x j) ~ f (x i)
if S < 0 then

Xi = Xj

end if
end while
return Solution Xi

Algorithm 6.1: A Basic Descent Algorithm

and a random change of 3 vertices for neighbourhood moves. Although already outlined
by Baum, a significant improvement to ILS was proposed by Martin et al. [123], known as
Large-Step Markov Chain. It utilised a combination of 3-Opt and Lin-Kemighan heuris­
tics for local search and a double-bridge move for neighbourhood moves.

Although a simple and effective method to derive a local optimum, the quality of the
solution obtained using this procedure will be wholly dependent on the initial solution
used to start the search. Within a search space, a number of local optima may exist, so for
any initial solution derived, it will always converge on one of these local optima, which
could be a long way from the global optimum for that problem instance.

Mester and Braysy [126] proposed a guided local search procedure for the VRP called
Active-Guided Evolution Strategies (AGES). An initial solution is created using a hybrid
cheapest insertion heuristic [125]. The best solution obtained using this routine is then
improved using a two stage process, which is iteratively repeated until no more further
improvements can be identified.

6.3 Simulated Annealing

Simulated Annealing (SA) is based upon a method originally proposed by Metropolis et
al. [127] for finding the equilibrium configuration of a collection of atoms at a given
temperature. Pincus [143] first recognised the relationship between this method and min­
imization problems, although it was Kirkpatrick et al. [102] who proposed the method as

98 6.3 Simulated Annealing

Algorithm SimulatedAnnealingAlgorithm(P, xi? T)
Basic Simulated Annealing Algorithm starting from an initial solution for problem
instance P, generated randomly or using a problem specific heuristic and with initial
temperature T > 0.

while T > 0 do
for t = 0 to noiterations do

select x t+i E N(x t)
5 = f (x t+1) - f (x t)
if S < 0 then

xt = xt+i
else

generate a random number r such that 0 < r < 1
if r < e t then

t = t + l
end if

end if
T = a x T

end for
end while
return bestDistance

Algorithm 6.2: A Basic Simulated Annealing Algorithm

an optimization technique for combinatorial optimization problems.

The method of SA was first motivated by an algorithm used to simulate the physical
process of heating material in a heat bath and slowly cooling the substance to obtain a
strong crystalline structure. The theory of SA in relation to combinatorial optimization
problems is to search for feasible solutions, so as to eventually converge on an optimal
solution. A SA algorithm iteratively searches for better solutions using randomness to
select new solutions. The structure of a basic SA is shown in algorithm 6.2.

SA begins from an initial solution Xi which can be generated randomly or by using any
type of problem specific heuristic. At each iteration t , the process moves randomly from
the current solution x t to a solution x t+i located in the neighbourhood N(x t). Iterations
are repeated until a stopping condition is met.

One of the earliest SA algorithms specifically developed for the VRP was proposed by
Robuste et al. [159]. The neighbourhood structure of this method allows the reversal
of part of a route, vertices to be exchanged between two routes and part of a route to

6.4 Tabu Search 99

be moved into another position of the route. This algorithm was closely followed by a
method from Alfa et al. [1] which utilises a route-first cluster-second heuristic to generate
an initial solution and applies a 3-Opt procedure during the search phase.

6.4 Tabu Search

In contrast to SA where randomness plays a major role in its strategy, Tabu Search (TS)
adopts an intelligent search strategy. TS was originally proposed by Glover [78, 79, 80]
and derives its name from the word "taboo", meaning to prohibit or restrict. The key
element of TS is its exploitation of memory structures, which allows the solution space
to be efficiently searched in an economic way. Solutions are explored in the same man­
ner as in SA, except the next move is always made to the best available solution in the
neighbourhood N(x) of the current solution x.

N(x) X2
Xs

X 4 O
X i

X 3

Figure 6.2: Tabu Search: The problem of cycling.

TS begins by moving to a local optimum and then navigates the search space, using
memory techniques to avoid the problem of cycling. Figure 6.2 illustrates the problem
of cycling. Neighbourhood moves recently undertaken must be recorded in a tabu list
to ensure the search does not return to an area already explored. If this is not done,
an algorithm can become stuck between neighbourhoods, continually cycling back and
forth, halting the search at a local optimum. To ensure this does not happen, all recently
examined solutions are made tabu, forbidding them from being selected for a certain
number of iterations.

100 6.4 Tabu Search

Algorithm TabuSearchAlgorithm(P, xA)
Classical Tabu Search Algorithm starting from an initial solution £*, generated randomly
or using a problem specific heuristic, to solve problem instance P.

Initialise an empty tabu-list L : 0
Initialise bestSoFar: 999999
x t = Xi
while stopping criterion not met do

select best neighbourhood move x t+i G N (x t)
if no move found or no improvement made for long time then

x t = new random solution
while x t G L do

x t — new random solution
end while

end if
if f (x t+1) < bestSoFar then
xt = xt+i
bestSoFar = f (x t)
Add move x t : x t+i to L
if L is full then

delete oldest entry in L
end if

else
x t = x t+i
Add move x t : x t+\ to L
if L is full then

delete oldest entry in L
end if

end if
end while
return bestSoFar

Algorithm 6.3: A Basic Tabu Search Algorithm

At each iteration, the best neighbour is sought and replaces the current solution. To al­
leviate the need to trace the steps taken to reach a local optimum, the recent moves to
reach the last solution visited are recorded in the tabu list structure. The tabu list is the
fundamental component of the TS and is represented in short-term memory, holding his­
torical information that forms the tabu search memory. To reduce memory and time, it

6.4 Tabu Search 101

is normal to record an attribute of the tabu solution, rather than the whole solution itself.
The size of the tabu list is generally fixed and once full, moves currently in the list must
be removed to allow the latest moves to be added. The structure of a basic TS is shown in
algorithm 6.3.

However, although a fundamental aspect of the TS approach, making moves tabu can be
potentially detrimental to the search process, as these tabus can potentially stop attractive
moves from taking place. To overcome this, aspiration criteria are used to allow the tabu
status of a move to be cancelled. The most common aspiration criteria allows a move to
be undertaken, even if currently tabu, as long as it provides an increase in the objective
function, when compared to the best solution already found at that stage.

Early implementations of TS applied to the VRP were relatively unsuccessful. Willard [177]
proposed an algorithm which begins by transforming the solution into a giant tour, achieved
by replicating the depot node. Neighbourhood solutions are classified as any feasible so­
lution, reachable from the current solution using a 2-Opt or 3-Opt transformation. The
best non-tabu move becomes the next solution. In contrast, Pureza and Franca [147] de­
fine valid transformations for the neighbourhood structure such as swapping vertices be­
tween two routes or relocating a vertex to a different route, maintaining feasible solutions
throughout. The move selection mechanism is identical to the Willard algorithm. While
these early implementations did not produce good results for benchmark data instances, a
number of much more successful implementations followed.

Osman [138, 139] offered a TS method based upon a neighbourhood structure using a
A-interchange generations scheme, with a A value of 2. Valid transformations consist
of vertex relocations to alternative routes, 2-Opt moves and vertex moves between two
different routes. There are two alternative move selection mechanisms: Best Admissable
(BA) and First Best Admissable (FBA). BA scans the entire neighbourhood and uses the
best feasible move that is non-tabu. FBA uses the first feasible improving move or defaults
to BA if one cannot be identified.

In Taillard [166] an identical neighbourhood structure as that utilised by Osman is used.
This is enhanced using a diversification strategy and randomising the size of the tabu
tenure throughout. For planar problems, the main problem instance is deconstructed into
smaller instances, achieved by partitioning vertices into sectors around the depot. These
smaller instances are subsequently divided into further regions and each instance is then
solved separately. This requires that vertices be moved between adjacent sectors from
time to time. Non-planar problems are partitioned by using a tree, with the depot as the
root.

An extension to previous algorithms presented by Xu and Kelly [183] remodels the neigh­

102 6.4 Tabu Search

bourhood structure to consider local route improvements, swapping vertices between pairs
of routes and relocating vertices into alternative routes. This relocation is carried out us­
ing the solution to the network flow model. Route improvements are performed using a
3-Opt mechanism in conjunction with a TS improvement routine. Parameter variables can
be dynamically changed throughout the search phase. A number of best solutions found
previously in the search are recorded in memory, which at any point in time can be used
to restart the search.

A simple yet interesting algorithm by Barbarosoglu and Ozgiir [8] uses a A-interchange
scheme where vertices from the centroid of their current route and close to the centroid of
the destination route are preferred. All route improvements are carried out using a 2-Opt
procedure.

All of the algorithms discussed so far utilise elements conceptualised in the early devel­
opments of the TS approach. Rochat and Taillard [162] built upon these foundations and
proposed a method known as adaptive memory. The principle of adaptive memory is to
retain a number of the best solutions found during the search phase, in a pool, allowing
parts of the solutions to be periodically extracted and combined to generate promising
new solutions. Although predominantly used in TS, the concept is not exclusive to this
approach.

A number of different TS algorithms have been proposed for the CARP. One of the ear­
liest algorithms, detailed by Hertz et al. [93] and applicable to the undirected version of
the CARP, is an adapted version of TS, called CARPET. The operation defined for neigh­
bourhood moves is the removal of a required edge from a route in the current solution,
which is then subseqently reinserted into another route. However, the procedure differs
from that of the traditional TS model, in that moves can be made from the current solu­
tion, to another non-tabu solution within the same neighbourhood, even if the result of
this move has a detrimental impact on to the objective function. The results reported for a
number of benchmark instances testify the efficiency and high solution quality attainable
using this heuristic.

A more recent TS algorithm for the CARP, called TSA, for the CARP was proposed by
Brandao and Eglese [15]. This deterministic algorithm, i.e. producing identical results
each time it is run, uses a TS implementation with no long-term memory or diversifica­
tion strategy. The authors report results for a series of benchmark instances and provide
several new best solutions. In comparison to the non-deterministic CARPET and memetic
algorithm approach of Lacomme et al., the algorithm demonstrates good runtime perfor­
mance and comparable solution quality.

6.5 Genetic Algorithms 103

6.5 Genetic Algorithms

GA’s were initially proposed by Holland [95]. The overall method replicates the evolu­
tion of a population of solutions, mimicking the principles of Darwinian evolution. Based
upon an iterative procedure, candidate solutions are represented as chromosomes. By util­
ising a fitness function to provide a measure of the objective to be obtained (maximum or
minimum), a GA learns by producing continually improving offspring. Essentially, better
and better solutions are evolved from previous generations until a stopping condition is
met.

There is no common agreement amongst researchers for the definition of the term ‘genetic
algorithm’, however, GA’s do have a number of common attributes. These include, a
population of encoded chromosomes, a mechanism for reproduction, selection according
to fitness and a number of genetic operators. The chromosomes within the population
were originally encoded as bit strings (but many other encoding schemes are now used),
symbolic of a set of solutions.

The mechanism for reproduction can be as simple as duplicating some strings within
the population. However, a measure of fitness, associated with each population member,
is usually used and the strings chosen for reproduction biased by this value. Typically
‘better’ individuals in the population are associated with higher values of fitness than
weaker or ‘poorer’ individuals.

The average fitness value of any given population should improve over time. In order to
ensure this occurs, ‘better’ individuals are given more chance to contribute to any off­
spring generated, using selection probabilities to bias the selection of parents. This can
easily be achieved by allowing the parents of the next offspring to be chosen in accordance
with a probability distribution based upon the fitness values of potential chromosomes.
This process of selection is known as fitness proportional selection.

A final essential attribute of a GA is the ability to effect change through the use of genetic
operators. The three operators, as described by Holland, are crossover, mutation and
inversion.

The crossover process involves two parent strings, which are first aligned, before a cut
point is randomly chosen and the sub strings following the cut point are exchanged be­
tween the parent chromosomes, resulting in a child chromosome. A number of different
variants, incorporating two or more cut points are commonly used and are known as two
point or multi-point crossover respectively. The process of single point crossover is illus­
trated in figure 6.3 (a).

104 6.5 Genetic Algorithms

Algorithm GenericGeneticAlgorithm(P, N)
Basic Generic Genetic Algorithm for problem instance P, with population size N.

I. Generate N random strings
II. Evaluate and store the fitness of each string

HI. do:
1. for i = 1 to N /2 do

a. Select a pair of parents at random, using a selection probability in direct
proportion to the fitness

b. Apply crossover with probability pc to produce two offspring
c. If no crossover takes place then

i. Form two offspring that are exact copies of their parents
c. Mutate the two offspring at a rate of pm at each locus
c. Evaluate and store the fitness for the two offspring

2. Replace the current population with the new population
IV. while stopping criterion not satisfied.

Algorithm 6.4: A Basic Genetic Algorithm

For a given chromosome, the process of mutation makes a random change to the chro­
mosome. In the case of a bit string encoded chromosome, this could be an inversion of
a particular bit of the string from 0 to 1, or vice versa. The inversion operator works by
selecting two cut points at random and inverting the sub string between the selected cut
points. Examples of mutation and inversion are shown in figure 6.3 (b) and (c).

A simple generic GA is outlined in algorithm 6.4. This basic structure of GA’s, as de­
veloped by Holland took some time to be embraced by the research community. De
Jong [47] and Goldberg [82] were the first to demonstrate the practical aspects of using
GA’s to solve complex optimization problems. However, these classical approaches do
not lend themselves readily to problems such as the VRP.

The use of a bit string representation to model a solution to the VRP is not viable and
is generally substituted by a string of integers, with each integer representing a vertex.
This is known as a path representation, and the integer position in the string identifies
the relative position in the route. Similarly, the use of classical crossover and mutation
operators can lead to infeasible and meaningless route sequences, brought about by dupli­
cation and/or omission of vertices. Consider the crossover operation shown in figure 6.4.
A single point crossover operation, if applied to the two parents, results in two new child
offspring. However, in the case of both children, a number of vertices are omitted or
duplicated, resulting in infeasible offspring. To overcome these difficulties specialised

6.5 Genetic Algorithms 105

PARENT 1 1 1 0 1 1 0

PARENT 2 1 0 1 1 0 1

* CRO SS POINT

CHILD 1 1 1 1 1 0 1

CHILD 2 1 0 0 1 1 0

(a). One Point Crossover

BEFORE MUTATION 1 1 0 1 1 0

AFTER MUTATION 1 1 1 1 1 0

(b). Point Mutation

BEFORE INVERSION 1 1 0 1 1 0

AFTER INVERSION 1 1 1 0 1 0

CROSS POINT 1 . CRO SS POINT 2

(c). Inversion

Figure 6.3: Examples of genetic operators.

operators are required.

Some more specialised crossover and mutation operators were described for the TSP by
Potvin [144]. However, with the exception of the VRPTW (Potvin and Bengio [145] and
Thangiah [168]), very little new research into GA’s for the basic VRP variants has been
undertaken. This is arguably due to the large amount of research carried out on the TSP
and its obvious close links to the VRP.

Goldberg and Lingle [81] proposed a permutation crossover operator known as Partially-
Matched Crossover (PMX) and a mutation operator called Remove and Reinsert (RAR).
These operators are iteratively applied until a sufficient number of feasible solutions have
been generated.

Van Breedam [175] uses a local descent operator, detailed in section 4.2.2 and modelled
on 4 different exchange moves for the VRP, which are only applied to the best solu­
tions of the current population. Significant testing identified the benefits and performance

106 6.5 Genetic Algorithms

PARENT 1

PARENT 2

CHILD 1

CHILD 2

Figure 6.4: Illegal crossover operation.

enhancements from using such operators. Comparable results to similar TS and SA algo­
rithms were presented by the authors.

Due to the representation difficulties, the success of early GA’s for the VRP was limited.
Many procedures organised chromosomes with a series of route delimiters, requiring off­
spring chromosomes to be repaired to ensure a feasible solution, limiting the quality of
information being passed from parent to child.

However, using classical GA’s is usually not enough to provide competitive solutions to
hard optimization problems, in comparison to other types of metaheuristics. By using
a hybridized approach, achieved by combining some form of local search operator, the
inefficiencies of the classical approach can be overcome. This principle forms the basis
of a new breed of metaheuristic known as Memetic Algorithms.

Prins [146] proposed a GA, hybridized with a series of a local search procedures. Ap­
proaches such as these are known as Memetic Algorithms and are detailed in the following
section. The chromosome design, consisting of a list of customers with no trip delimiters,
in conjunction with a splitting procedure, avoids the need for specialist crossover proce­
dures, allowing any of the various classical permutation operators to be used. A total of
nine different local search procedures are employed, incorporating various customer re­
moval/insertion moves, swaps, 2-Opt and a variation of the 2-Opt procedure which works
across different routes.

1 3 4 2

•

4 1 3 2

CROSS POINT

1 3 3 2

4 1 4 2

6.7 Ant Colony System Algorithms 107

6.6 Memetic Algorithms

The Memetic Algorithm (MA) naturally extends the structure of a GA, refining the popu­
lation by applying a local search to the mutated individuals within its population. This is
achieved using a local search procedure, e.g. hill-climbing. MA’s were initially proposed
by Moscato and Norman [130] and later formally defined as a metaheuristic by Radcliffe
and Surrey. [148].

Extending the Darwinian evolution principles of a GA, MA’s draw on the concept of
meme [45], a unit of cultural evolution that can exhibit local change. An MA utilises both
global and local search, using an evolutionary algorithm to explore different regions of
the search space and local search to exploit these regions. The structure of a basic MA is
shown in algorithm 6.5.

Algorithm Memetic Algor ithm(P)
Classical Memetic Algorithm for problem instance P.

I. Initialise population pop.
II. Apply Local Search LS(s), for each s in pop.
II. do:

1. Select two parents (p\,p2)from pop
2. Apply a crossover operator to parents (Pi,P2) to produce two children (ci,c2).
3. For each child c:

a. Apply Local Search LS(c), to c.
b. Apply a mutation to c.
c. Replace an individual in pop with c.

IV. while stopping criterion not satisfied.

Algorithm 6.5: A Basic Memetic Algorithm

Nagata and Braysy [132] proposed an MA for the solution of the CVRP. The procedure
extends and incorporates the work of Mester and Braysy [126], combining their different
approaches within a mix of three different local search neighbourhoods and using an MA
originally proposed by Nagata [131]. The results obtained by the authors represent the
current state of the art for the CVRP, for both solution quality and runtime.

6.7 Ant Colony System Algorithms

The inspiration for the Ant Colony System (ACS) came from the analogy of ant colonies
foraging for food. Ants use scents to mark the paths they traverse as they search for food.

108 6.7 Ant Colony System Algorithms

The quantity of scent deposited is related to the path length and the perceived quality of
food to which a particular path leads. This results in the most frequently used paths, i.e.
those closest to the ants nest and ones leading to the better foods, being marked with larger
amounts of scent.

The initial concept of the ant system as a metaheuristic to solve combinatorial optimiza­
tion problems was introduced by Colomi et al. [37]. The quality of food sources associ­
ated with the objective function and values recorded in adaptive memory form the scent
trails.

Very few applications of ACS’s for the VRP have been put forward. The first offering by
Kawamura et al. [100] uses a hybrid variant of the ACS, utilising a 2-Opt improvement
heuristic and probabilistic acceptance rules. This was followed by two further methods
by Bullnheimer et al. [22]. The initial algorithm, also based on a hybrid approach, uses
a 2-Opt heuristic during the construction of routes prior to the trail update. The second
algorithm builds upon the first and results in superior solutions and runtimes.

A variation on the standard ACS approach was presented by Reimann et al. [153] The
algorithm, known as D-Ants, combines a savings based ACS framework with a decom­
position method similar to that employed by Taillard [166], but based upon the proximity
of vehicle routes. Competitive results for standard benchmark instances are presented by
the authors.

Gambardella et al. [71] proposed an algorithm called MACS-VRPTW, utilising a Multiple
Ant Colony System based on ACS, to solve the VRPTW. It is also capable of providing
solutions to CVRP problem instances. The procedure utilises multiple ACS colonies, each
one specifically charged with the optimization of a particular objective function.

The algorithm can solve vehicle routing problems using different objective functions. Ei­
ther the number of vehicle or alternatively the total travelling time can be minimised.
The results presented for MACS-VRPTW show it be highly competitive with other meta­
heuristic approaches, providing a series of new best solutions to a number of standard
problem instances from the literature.

Doemer et al. [51] proposed an ACS algorithm for the CARP, but the authors reported
poor results for a set of standard benchmark problem instances from the literature. This
was followed by an ACS implementation by Lacomme et al. [105], which in contrast, pro­
vided results that were competitive with the state of the art methods at that time, however,
this was achieved at the expense of running time.

6.9 Chapter Summary 109

6.8 A Historical Comparison Of State Of The Art

Many metaheuristic procedures have been proposed for the both the CVRP and CARP.
In the case of the CVRP, the most successful of these techniques have been TS and MA
based algorithms.

Authors Ref Type Year
% Dev to

Best Known
Taillard [165] TS 1992 0.39
Osman [139] SA 1993 2.09
Taillard [166] TS 1993 0.05
Gendreau et al. [76] TS 1994 0.82
Rochard and Taillard [162] TS 1995 0.00
Tarantilis et al. [167] TS 2002 0.23
Prins [146] MA 2004 0.24
Mester and Braysy [124] MA 2005 0.03
Nagata and Braysy [132] MA 2008 0.00

Table 6.1: Comparison of metaheuristics for the VRP applied to the Christofides
problem instances. Results obtained from a variety of parameter settings.

Table 6.1 details a historical perspective of the relative solution quality, presented as the
% deviation from the best known solution, for a number of metaheuristic implementa­
tions, including the most successful. The average deviations shown are for the benchmark
instances in set C, developed by Christofides et al. and detailed in section 4.3.

For each result reported, the authors of the algorithm, type of algorithm, year of publica­
tion and average deviation % are shown. The runtimes for the different methods have been
excluded due to the vast differences in the underlying software and hardware utilised by
different authors. However, the information serves to further substantiate the effectiveness
of the TS and MA algorithms.

In contrast, research into the CARP has attracted less attention than the CVRP. Details of
the more successful algorithmic implementations for the CARP are detailed in chapter 9.

6.9 Chapter Summary

This chapter introduces a number of common metaheuristic procedures and provides a
brief survey of such methods in respect of both the CVRP and CARP. Its main purpose
is to provide a comparative framework for the metaheuristic algorithms, described and
implemented in the following chapters.

110 6.9 Chapter Summary

__________________ m

Chapter 7

A Genetic Algorithm using a
Perturbation Scheme (GAPS)

7.1 Introduction

This chapter describes a metaheuristic framework called Genetic Algorithm with Per­
turbation Scheme (GAPS). The central ethos of the scheme is the utilisation of existing
simple heuristics in conjunction with a perturbation model, integrated within a Genetic
Algorithm (GA) framework to produce high quality solutions to combinatorial optimiza­
tion problem instances.

Many simple and fast heuristics have been proposed for the solution of different combi­
natorial optimization problems. In general, the cost of such simplicity and efficiency is
an inferior solution quality. To obtain superior quality solutions, the use of alternative
methods such as TS, SA and other metaheuristics has become the norm. In turn, these
methods have become far more complicated from both an understanding and implemen­
tation perspective. To be truly effective, some require the use of very powerful computers
not available to the average user. GAPS utilises existing simple heuristics, is able to run
on standard computer hardware and is very easy to implement.

The framework will be introduced from the perspective of the TSP, before specific imple­
mentations are presented in chapters 8 and 9.

7.2 Perturbation

The method of perturbation has been used under may guises and applied to a range of
combinatorial optimization problems. One of its earliest uses is within Iterated Local
Search (ILS), detailed in section 6.2, where typically perturbation is applied to the solu­
tion, through neighbourhood moves, at the point a local optimum is reached, the basic

112 7.2 Perturbation

principle being to introduce a number of perturbations, providing a means to escape from
a local optima. However, there are three different ways to introduce perturbations, namely
to the:

• current solution

• construction/improvement heuristic used to derive a solution to a combinatorial op­
timization problem

• underlying problem instance

As well as application to a solution, perturbation can also be applied at the algorithm
and problem instance level. Algorithmic perturbation can be applied to the construction
heuristic, perturbing the criteria used to derive the solution, or similarly at the improve­
ment heuristic stage.

Examples of such techniques can be found in Genetic Programming (GP) [104] and
Hyper-Heuristics (HH) [23]. GP is a variation of a GA, where the members within a
population are computer programs or heuristics. Similarly HH acts a controller, schedul­
ing the use of different heuristics from a defined set.

Instance perturbation on the other hand is applied to the underlying data within the prob­
lem instance itself. It was first outlined by Storer et al. [164] and Charon and Hudry [26].
Codenotti et al. [36] later applied these techniques within an ILS algorithm to solve the
TSP. However, instead of perturbing the solution alone, algorithm 7.1 by Codenotti et al.,
additionally perturbed the city coordinates in the problem instance itself.

The actual method of applying perturbations to the problem instances is achieved via two
stategies called e-move and Ac-remove. The former moves the Euclidean position of each
city in the problem instance P by a value e, to produce the new instance P '. The latter
achieves the transformation from P to P', by removing k cities from P.

Variations of the Codenotti et al. method were proposed by Valenzuela and Williams [173]
and Bradwell et al. [16]. The algorithms breed perturbed instance data, encoded as chro­
mosomes within a Genetic Algorithm framework, to solve the TSP. A Nearest Neighbour
and Karp heuristic algorithm are used to construct solutions from the chromosomes of
perturbed coordinates within the population at any point in time. Given a solution, the
real distance of the tour is then calculated (or decoded) using the original unaltered prob­
lem instance data. This length is then used to assess the fitness of the solution derived
from any given chromosome.

7.2 Perturbation 113

Algorithm Codenotti e t al.

I. Construct an initial solution s for problem instance P using a local search proce­
dure.

II. While M < n o i te ra t io n s :
A. Perturbation strategy:

1. Perturb problem instance P to produce new instance P'.
2. Decode solution s using instance P', to produce solution s'.

B. Local search:
1. Apply the local search procedure on solution s', using instance P', to

produce a new solution s".
2. Decode solution s" using instance P, to produce solution t.

C. If length(t) < length(s), set s = t.
II. Return solution s.

Algorithm 7.1: Codenotti et al. Algorithm

In contrast to the Codenotti method, the algorithms work solely on perturbed instances and
are capable of utilising both tour construction and local search heuristics. The perturbation
strategy involves perturbing each pair of x and y city coordinates within a rectangular
region around each city vertex using equation 7.1.

x' = (int)(x + (r — 0.5) * / * X)

y' = (int)(y + (r — 0.5) * / * Y) (7.1)

where:

x = x coordinate for city in chromosome

y = y coordinate for city in chromosome

r = random number 0 < r < 1

/ = perturbation factor

X = \Xmax — X min\, range of X coordinate values

Y = |Ymax — Ymin\, range of Y coordinate values

114 7.2 Perturbation

The effect of each coordinate transformation is to move the location of each customer
vertex to an alternative point within a region defined by the range of x and y values in a
given problem instance and a perturbation factor. The process it outlined in figure 7.1.

y

x

Figure 7.1: Perturbation of customer coordinates.

A Similar Genetic Algorithm based technique, incorporating a perturbation strategy, was
outlined by Cahoon et al. [24]. The algorithm was applied to the TSP and tested against a
range of problem instances from the literature.

With any algorithmic approach that requires a number of parameters to be set, the ques­
tion of what settings should be applied and most importantly whether a generic parameter
set can be derived to produce optimal or near-optimal solutions for the particular opti­
mization problem being targeted becomes the key requirement. A common observation
amongst the authors who have implemented a perturbation strategy within an algorithmic
framework, is the wide range of perturbation parameter values capable of consistently
providing good quality solutions.

The following section provides a worked example, detailing an application of the method
of perturbation to the TSP. The perturbation model used for this purpose is that outlined
by Bradwell et al. [16] The example is further utilised in a later section to detail, compare
and contrast a similar strategy to that of perturbation, known as weight coding.

Example: Traveling Salesman Problem (TSP)

Consider the problem instance, illustrated in figure 7.2 and containing 7 cities. The loca­
tion of each city is defined by a pair of x and y coordinates, which are then transformed
into a cost matrix C representing the travelling distance between each pair of cities. Dis­
tances dij, are computed in a 2 dimensional Euclidean space and the cost of travel from
city i to city j , for all cities, calculated using equation 7.2.

7.2 Perturbation 115

y
40

. 3 0 21 35 36 21 25 16 '

30 • 2. 21 0 21 32 29 16 18
• 35 21 0 18 30 11 22

6
20 • 4 C = 36 32 18 0 21 16 21

•7 21 29 30 21 0 20 11
10 - •

1 25 16 11 16 20 0 11
-

#5 . 16 18 22 21 11 11 0 _
0 — X

0 10 20 30 40

Figure 7.2: TSP problem instance.

x d = x [i] - x[j]

Vd = y[i\ - y[j]
di j = V Xd2 + y d2 (7.2)

The resulting distance matrix C, detailing the cost of inter-city travel between the 7 cities
within the problem instance is shown in figure 7.2. Utilising C as a starting point, a
perturbation strategy is then applied to the x and y coordinates from the original problem
instance. This is achieved by applying equation 7.1 to each x and y city coordinate pair
to produce a new pair of perturbed coordinates, x' and y ' , which are then used as the
basis to produce a perturbed distance matrix C', containing the cost of travel between the
perturbed coordinate pairs for each city.

node X y x ’ y’
1 5 10 2 15
2 10 30 29 43
3 30 35 36 22
4 40 20 27 7
5 25 5 11 26
6 20 25 24 2
7 20 15 5 10

0 6 34 37 35 17 22
6 0 31 37 38 14 25
34 31 0 19 36 17 20
37 37 19 0 20 25 21
35 38 36 20 0 33 13
17 14 17 25 33 0 22
22 25 30 21 13 22 0

Figure 7.3: Perturbed TSP problem instance.

116 7.2 Perturbation

Figure 7.3 shows a set of perturbed x' and y' coordinate pairs for the problem instance
and the resulting perturbed cost matrix C'. Once derived, the perturbed distance matrix
forms the input for the heuristic being used to derive a solution for the problem instance,
in contrast to the original cost matrix, which used is only to decode the derived solution,
using the original instance data.

Consider the application of a nearest neighbour heuristic to the perturbed distance matrix
C' in figure 7.3. Using the solution attained from this heuristic, the true distance of the
solution is then calculated using the original unaltered distance matrix C. Figure 7.4
shows the resulting solution for the perturbed distance matrix C' in figure 7.3, represented
by a dashed path, and the corresponding solution decoded using the unaltered cost matrix
C , represented by a solid path. The solution attained happens to be optimal for the given
problem instance.

y

40

30

20 -

10

x
0 10 20 30 40

Figure 7.4: TSP solution from perturbed matrix C '.

7.3 Weight Coding 117

7.3 Weight Coding

A similar GA based scheme to perurbation, is known as weight coding [151]. Chromo­
somes are encoded with weights, in the case of the TSP, each city is associated with a
numeric weight. Each chromosome is used in conjunction with the distances for a given
problem instance P, to produce a perturbed instance P'. A problem specific heuristic is
then used to identify the solution for the instance P', which is then decoded using the
original instance data P, to provide a solution and corresponding distance which is then
used as the fitness function for the GA.

P = 4 5 2 6 7 8 3

Figure 7.5: Weight coded chromosome.

Figure 7.5 illustrates a typical chromosome for a weight coded GA to solve the TSP. The
length of each chromosome is the same as the number of cities contained within a problem
instance. Chromosomes are encoded from city 1 to n, in the case of this example, city 1
has the weight 4 associated with it and city 7, the weight 3.

0 21 + 4 + 5 35 + 4 + 2 36 + 4 + 6 2 1 + 4 + 7 25 + 4 + 8 16 + 4 + 3

2 1 + 4 + 5 0 2 1 + 5 + 2 32 + 5 + 6 29 + 5 + 7 16 + 5 + 8 18 + 5 + 3

35 + 4 + 2 21 + 5 + 2 0 18 + 2 + 6 30 + 2 + 7 1 1 + 2 + 8 22 + 2 + 3

36 + 4 + 6 32 + 5 + 6 18 + 2 + 6 0 2 1 + 6 + 7 16 + 6 + 8 21 + 6 + 3

2 1 + 4 + 7 29 + 5 + 7 30 + 2 + 7 21 + 6 + 7 0 20 + 7 + 8 11 + 7 + 3

25 + 4 + 8 16 + 5 + 8 1 1 + 2 + 8 16 + 6 + 8 20 + 7 + 8 0 1 1 + 8 + 3

16 + 4 + 3 18 + 5 + 3 22 + 2 + 3 1 + 6 + 3 11 + 7 + 3 1 1 + 8 + 3 0

0 30 41 46 32 37 23
30 0 28 43 41 29 26
41 28 0 26 39 21 27
46 43 26 0 34 30 30
32 41 39 34 0 35 21
37 29 21 30 35 0 22

23 26 27 30 21 22 0

Figure 7.6: Weight coded distance matrix C".

Each chromosome is used as a template to derive a new inter-city cost matrix from the

118 7.4 The GA Model

one of the original problem instance, as shown in figure 7.6. For each distance in the cost
matrix C between 2 cities, the weights in the chromosome for both those cities are added
to the original distance to provide a new weight coded distance matrix C'.

The resulting solution, obtained again from applying a nearest neighbour heuristic, is
shown in figure 7.7.

y y
40

30

20

10

0
0 10 20 30 40

40

30

20

10

0
0 10 20 30 40

Figure 7.7: TSP weight coded solution.

The application of weight coding has been demonstrated using a wide range of com­
binatorial optimization problems, such as the optimum communications spanning tree
problem [141], the shortest common supersequence problem [18], the rectilinear Steiner
tree problem [96], the minimum weight triangulation problem [25], the traveling salesmen
problem [97], the multiple container packing problem [149], the multiconstraint knapsack
problem [150] and the degree-constrained mimimum spanning tree problem [151].

7.4 The GA Model

Within the GAPS framework, detailed in algorithm 7.2, the GA is responsible for evolv­
ing new offspring from the population of chromosomes. Each member of the population
is encoded with perturbed or weight coded data from the original problem instance, from
which solutions are then attained using a problem specific heuristic. A decoding proce­
dure is then applied to each solution generated in order to calculate the actual solution cost
based upon the original unaltered problem instance data. The following sections describe
the approach in detail.

7.4 The GA Model 119

Algorithm GAPSAlgorithm(P)
GAPS Algorithm for problem instance P.

I. Initialise population pop of perturbed or weight coded values.
II. do:

1. Select two parents (p\,p2) from population
2. Apply a crossover operator to parents (p\,P2) to produce child c.
3. For child c:

a. Apply 0, 1 or 2 mutations to c.
b. Generate a solution s from c, using a problem specific heuristic.
c. Decode solution s to produce a real solution a.
d. Apply improvement heuristic to a.
e. Compare solution cost a to parents (pi,P2)> used to produce child c.

i. I f better than weaker parent, replace weaker parent with child c.
f. I f bestSoFar

i. Update population.
ii. Update bestSolution.

III. while stopping criterion not satisfied.

Algorithm 7.2: GAPS Algorithm

7.4.1 Population structure and initialisation

Due to the very nature of the perturbation and weight coding approaches, the need for a
complex chromosome representation and problem specific crossover operators is negated.
Chromosomes are encoded as strings, each containing an ordered list of perturbed or
weight coded integers. Figure 7.8 depicts the typical chromosome structures for a per­
turbed and weight coded model, in the context of the TSP problem instance described in
section 7.2.

(5,10) (10,30) (30,35) (40,20) (25,5) (20,25) (20,15)

4 5 2 6 7 8 3

Figure 7.8: Perturbed and weight coded chromosome representation.

The initial population consists of p chromosomes, where p equals the chosen size of the
population. In the case of perturbation, customers are selected in order and their x and y

120 7.4 The GA Model

coordinates are randomly perturbed, using a suitable perturbation model, to produce each
chromosome. For the weight coded approach, a series of randomly generated integers
within a predefined range are generated for each chromosome. The process in each case is
repeated until the required number of chromosomes (i.e. the population size) are created.

7.4.2 Crossover

Given the very nature of the encoding scheme for each chromosome, any standard crossover
operator can be utilised without any fear of illegal child chromosomes being produced.
The three operators chosen for the purpose of this research were single point (SPX),
2-Point (2PX) and uniform (UX) crossover. In the case of the TSP and indeed the
CVRP/CARP problems considered later, although specific crossover operators do exist
for chromosomes encoded as permutations, they are not applicable for use in the GAPS
framework.

7.4.3 Mutation

A simple mutation procedure is used which consists of randomly selecting m (mutation
rate) values from any offspring (i.e. child chromosome), and further perturbing or adjust­
ing the weight coded integer for each selected value. This is achieved using an identical
procedure to that used for the generation of the initial population, in the case of perturba­
tion, reapplying the perturbation formula and for weight coding, generating a new integer
value. Values for m are 0, 1 or 2, leaving the possibility of the child remaining unchanged
from mutation.

7.4.4 Solution Mechanism/Decoding Procedure

After mutation has been applied to the offspring produced in the selection phase, the
resulting chromosome is solved using a problem specific heuristic, to produce a template
solution. The key aspect of heuristic selection is the speed at which it can compute a
solution to the given instance. Typically most problem specific heuristic procedures will
provide a solution to a small problem instance quickly, but only those that scale well for
larger problem instances are valid candidates for use in the GAPS framework.

Using the template solution, a decoding sequence is applied to produce a ‘true solution’.
The overall distance calculated from the offspring is then compared to the solution dis­
tance of the parent chromosome used to create it. If the distance is better than the weaker

7.5 Chapter Summary 121

parent, that chromosome is replaced in the population with the generated offsping. Off­
spring weaker than their parents are discarded.

7.4.5 Solution Refinement/Improvement

Problem specific improvement heuristics can be applied, if required, after crossover and
mutation. In the case of the TSP, a number of heuristics, as detailed in section 4.2.3,
are available. The key requirement for any such heuristic is its run-time in relation to an
increase in the size of input for a problem instance. To allow the solution of both small and
large problems instances, only heuristic procedures that scale well are valid candidates for
inclusion within the GAPS framework.

7.5 Chapter Summary

Within this chapter we have outlined a hybridized framework we have called GAPS, for
solving a range of combinatorial optimization problems. The algorithm exploits a GA
to breed perturbed or weight coded problem instance data, in conjunction with simple
problem specific heuristic construction algorithms and improvement procedures to derive
quality solutions for a range of combinatorial problems.

122________ 7.5 Chapter Summary

_______________ 123

Chapter 8

GAPS - Application to the CVRP

8.1 Introduction

This chapter outlines an implementation of the GAPS framework for the solution of the
CVRP. Perturbations are achieved using coordinate transformations rather than a weight
coded scheme. Details of a series of preliminary experiments to assess the effectiveness of
different perturbation models, crossover operators and mutation schemes are given. The
algorithm is then applied to various problem instance sets derived from the literature and
its performance critiqued alongside existing state of the art methods.

8.2 GAPS for the CVRP

The generic GAPS framework described in the previous chapter is further refined and
applied to the CVRP. An outline of the amended framework for the solution of the CVRP
is shown in Figure 8.1. In summary, a population of chromosomes, each containing pairs
of perturbed customer coordinates is initially created. Using a series of standard genetic
operators, child offspring are produced and their perturbed coordinates passed to a simple
problem specific heuristic, based upon which, a solution containing a set of vehicle routes
is produced.

Individual routes from this solution are then decoded to provide a ‘true’ travelling dis­
tance, using the original unperturbed customer coordinate data to calculate the cost for
each. The ‘true’ cost of all routes, for each solution generated, is evaluated against that
of the weaker parent, and if better, the offspring chromosome from which the solution
was derived is written back into the population, replacing the weaker of the two parents
used to create it. If superior to the best solution generated so far, the best overall solution
distance is updated to reflect the cost of the new solution.

124 8.2 GAPS for the CVRP

GENETIC ALGORITHM

MUTATION

C | 14,28 I g j p i J 41'47 56,64 | 68,43 | 59,31

OBJECTIVE FUNCTION

if Cost(C) < Cost(Weaker Parent)
Replace Weaker Parent in population with C

If Cost(C) < BestDistanceSoFar
BestDistanceSoFar = Cost(C)

REPEAT

Until stopping criteria met

GENERATE POPULATION l Cust X y 1
1 1 14,29 23,71 42,43 47,57 59,62 67,44 53,34

■
I 1 15 30

! 2 14,28 26,76 41,47 46,59 57,58 57,42 57,32 i
l Perturb Coordinates

2 25 75
1 3 16,29 24,72 41,46 42,53 61,57 62,48 59,38 Q 40 45* I J

4 14,31 24,77 42,48 43,58 59,63 69,41 51,32 l 4 45 55
' 5 16,32 23,78 40,42 44,60 56,64 68,43 59,31 l

i 5 60 60

1 l 6 65 45

i
l
l 7 55 35

T-*> CROSSOVER C rossover Point
I
i

1 P1 14,28] 26,76 41,47 46,59 57,58 57,42 57,32 l
i P2 16,32 | 23,78 40,42 44,60 56,64 68,43 59,31 i

1

▼ V l

; C| 14.28 | 26,76 | 41,47 | 46,59 | 56,64 I 68,43 | 59.31 | ,

CUSTOMER
COORDINATES

Original
Coordinates

SIMPLE HEURISTIC

GENERATE SOLUTION

0 1 3 0 2 4 0 5 7 0 6 0

DECODE SOLUTION

COST: 350

FEEDBACK SOLUTION COST

Figure 8.1: Overview of the GAPS framework for the CVRP.

The process of generating new child offspring and decoding/evaluating their correspond­
ing perturbed solutions continues until a predefined stopping condition is met. The best
solution found throughout the search process of the algorithm is finally retrieved.

All coordinate perturbations, in both the initial stage of chromosome generation and dur­
ing the mutation stage, are made within a predefined region around each customer loca­
tion. Full details of a number of new perturbation models derived for the CVRP are given
in section 8.5, later in this chapter. Figure 8.2 (a) shows a solution, with a total cost of
420, generated using the simplistic CW construction heuristic for the problem instance
presented in figure 4.1.

In contrast, the solution for the same problem instance, with a total cost of 395, shown
in figure 8.2 (b), is generated with the GAPS framework, using a small amount of per­
turbation. The location of customer vertices, based on the perturbed coordinates, used to
produce this solution and the corresponding routes derived from these coordinates, using
the CW heuristic, are shown in the figure 8.2 (b) as a series of points with interconnected

8.3 The GA M odel 125

2 2

* . «

(a) (b)

Figure 8.2: Perturbation: (a) Solution from standard CW heuristic, with total dis­
tance of 420. (b) Optimum solution obtained from GAPS using CW heuristic, with
total distance of 395.

dashed lines. The corresponding ‘true’ final solution decoded from these routes, created
using a perturbed coordinate set, is shown as a set of points connected with solid lines.

The solution shown in figure 8.2 (b), generated by GAPS, is in fact optimum for this
particular problem instance. As can be seen, applying even a small amount of perturbation
allows neighbourhoods of the solution space to be visited that would never be reached
using the standard heuristic alone.

The following section outlines the specific details of the different elements of the GA
model. These include the chromosome representation, selection procedure, crossover/mutation
mechanisms and the method of generating, decoding and improving solutions obtained
from the heuristic procedure.

Details are limited to those elements that differ from the generic GAPS model already
outlined in chapter 7. The actual methods of perturbing coordinates and a number of new
perturbation models are then described in section 8.5. Full pseudocode for the application
of GAPS to the CVRP is given in figure 8.3.

8.3 The GA Model

126 8.3 The GA Model

Pseudocode GAPS Algorithm

for i == 1 to popSize do
for j = 2 to noCustomers do

chromosome[i][j] = perturb(Coords)
end for

end for
while stopping criterion not met do

for i = 1 to popSize do
P I = getChromosome(z)
p = generateRandomQ, where 1 < p < popSize and p ^ i
P2 = getChromosome(p)
C l = cross(Pl, P2)
C2 = mutate (Cl)
routeSolution = CVRPHeuristic(C'2)
actual RouteSolution = decodePerturbed {routeSolution)
actual Route Solution = Impro \/e(actual RouteSolution)
actual Route Distance = QetD'\S\Sir\ce(actualRouteSolution)
if actual Route Distance < distance[P 1] || distance[P2] then

if distance[P 1] < distance[P2] then
weaker Parent = P I

else
weaker Parent = P2

end if
if actual Route Distance < bestDistance then

bestDistance = actual Route Distance
distance[weaker Parent] = actual Route Distance
weaker Parent = C 2

end if
end if

end for
end while
return bestDistance

Figure 8.3: Pseudocode for the application of the GAPS framework to the Capaci­
tated Vehicle Routing Problem.

8.3 The GA Model 127

8.3.1 Chromosome encoding

Chromosomes are encoded as a sequence of n customers, from 1 to n, with each position
holding the perturbed x and y coordinates corresponding to the particular customer vertex.
Figure 8.4 illustrates the simple encoding scheme for a chromosome with n customers.

C
Figure 8.4: Chromosome encoding for GAPS framework, containing a sequence of
customers from 1 to n and their corresponding perturbed coordinate pairs.

8.3.2 Population structure and initialisation

The process for generating the initial population is based upon the techniques described
by Bradwell et al. [16] as detailed in section 7.2, where city coordinates are perturbed
within a fixed region around each city. For the CVRP, a preset rectangular region around
each pair of customer coordinates is used.

The initial population consists of p chromosomes, where p equals the chosen size of the
population. For each chromosome, customers are selected in order and their x and y
coordinate values perturbed. The process is then repeated until all p chromosomes have
been constructed.

A wide array of population sizes have been considered throughout this research investi­
gation. Too small a population, inhibits the strength of the crossover operation within the
GA. Too large a population brings with it obvious running time issues and wasted compu­
tational effort. Table 8.1 presents the average deviation % for different population sizes,
over 50 runs of a subset of 20 CVRP problem instances, showing 100 to be a suitable
population size for the set of instances tested within this thesis. Of course, for different
sized problem instances, another population size may be more appropriate.

Population Size 20 50 100 250 500
AvDev % 0.62 0.56 0.40 1.27 3.63

Table 8.1: A comparison of the effect of using different population sizes for a subset
of 20 CVRP problem instances, over 50 runs.

x1,y1 x2,y2 x3,y3 x4,y4 x5,y5 x6,y6 x7,y7

128 8.3 The GA Model

8.3.3 Selection

The selection of parent chromosomes through each generation of the GA is made using
a simple mechanism. A single generation of the GA involves the systematic selection of
each chromosome in the population, which is then paired with another randomly selected
chromosome from the remaining population. The two selected parent chromosomes are
then used to create a single new child offspring.

8.3.4 Crossover

Experimentation with crossover operators was limited to single point (SPX), two point
(2PX) and uniform crossover (UX). All of these are non specialised, standard crossover
mechanisms, which can be utilised due to the nature of the chromosome encoding in
GAPS. An analysis of the effect of the different crossover mechanisms, using a subset of
CVRP problem instances was undertaken. The results and conclusions drawn are shown
in section 8.4.

8.3.5 Mutation

A simple mutation procedure is used which consists of randomly selecting m, the muta­
tion rate, customers from the offspring chromosome, and further perturbing the selected
customer coordinates using the chosen perturbation model. Initial early testing, using the
same set of parameters as those described in section 8.4, to evaluate a range of different
mutation rates, as detailed in [129], established a mutation of rate of around 10% of the
total number of customers to be preferred

However, further research, using a range of different perturbation models, has shown a
mutation rate of 1 or 2 coordinate pairs per chromosome to be most effective. Although
higher mutation rates do introduce the potential for driving the search to radically differ­
ent neighbouroods, the use of a high rate substantially reduces the regularity at which im­
proved neighbourhood solutions are found. Utilising a lower rate, provides a far greater
number of potentially improved neighbourhood moves from any given solution, at any
given stage in the search process, however, using a smaller number will eventually result
in a local optimum that is difficult to escape.

A potential way around the scenario of reaching a local optimum, applied by various
authors, is to restart the procedure, perhaps randomly or even from a solution saved during
the search. Alternatively, increasing the rate of mutation through the generations of the

8.3 The GA M odel 129

GA is favoured by other authors. Nevertheless, acceptably high solution quality was
achieved in the present study without resorting to special “escape measures”.

8.3.6 Solution Mechanism, Decoding and Improvement

Following selection, crossover and mutation, the resulting offspring chromosomes are
passed as an input to a problem specific heuristic, from which a solution, encoded within
a predefined template, is derived. The template solution is encoded within an array, as a
list of customers within each route, with each route separated by a route delimiter value
of 0. Figure 8.5 depicts the offspring chromosome passed as input to the heuristic and the
structure of the solution returned from that heuristic, allowing individual routes from the
solution to be easily extracted.

Using the template solution, a decoding sequence is applied to produce a ‘true solution’ to
the CVRP. The first route in the list is extracted and a depot node inserted at the beginning
and end of the route. The distance from the depot through each of the customers in the
route and back to the depot is calculated using the original unperturbed set of coordinates.
This procedure is then repeated for the remaining routes until the ‘true’ distances of all
routes in the list has been calculated. The overall solution to the CVRP is derived from
the sum of all calculated route distances.

Given the ‘true’ solution, individual routes are extracted in turn and a 2-Opt improvement
strategy, as described in section 4.2.3, is applied to each route. The sum of route distances
is recalculated and compared to the starting solution before the application of the single
2-Opt move operation.

The solution distance, after the application of the single 2-Opt operation, is then compared
to the stored solution distance of the weaker of the two parent chromosomes used to create
the offspring. If this distance is shorter than that of the weaker parent, its corresponding

x l .y l x2 ,y2 x3 ,y3 x4,y4 x5,y5 x6,y6 x7,y7 x8,y8 x9,y9 xA,yA xB,i
OFFSPRING CHROMOSOME

CW ALGORITHM OUTPUT

y ROUTE 3 \

5 1 7 | 0 | | 0 | 10 | 12 | 11 | 0 |
ROUTE 4ROUTE 1 ROUTE 2

Figure 8.5: Outline of solution and decoding process.

130 8.4 Preliminary Experimentation

chromosome in the population is replaced with the chromosome of the child offspring
and the distance stored as a representation of the fitness of that individual. Any offspring
whose overall route distance is greater than that of both parents are discarded.

8.4 Preliminary Experimentation

In order to assess the suitability of the GAPS framework as a solution mechanism for
the CVRP, a number of preliminary experiments were undertaken, using the same per­
turbation model described in section 7.2 and equation 8.1 as the means of applying all
coordinate perturbations.

A series of eight different perturbation values of / , as detailed in [129], were chosen and
tested using a population size of 100 for the GA, a Uniform Crossover operator and a
mutation rate of 10% of the number of customers in a given problem instance. The CW
heuristic described in section 4.2.1 was chosen as the solution mechanism. The stopping
condition for the GA was set to 1,500 generations.

The algorithm was run against all problem instances from set C and a subset of those
from set R. The results attained, for the range of perturbation factors detailed, are shown
in table 8.2.

x' = (int){x + (r — 0.5) * / * X)

y — (int)(y + (r — 0.5) * / * Y) (8.1)

where:

x = x coordinate for city in chromsome

y = y coordinate for city in chromsome

r = random number 0 < r < 1

/ = perturbation factor

X = \Xmax — X min\, range of X coordinate values

y = I ̂ max — ^mm|, range of Y coordinate values

8.4 Preliminary Experimentation 131

/ = 0.01 / = 0.02 / = 0.03 / = 0.04
Instance Best Avg Best Avg Best Avg Best Avg
C-n51-k5 524.93 526.74 525.93 526.82 524.93 525.72 524.61 524.97
C-n76-kl0 838.60 840.16 838.60 839.72 839.10 843.67 846.40 852.16
C-nl01-k8 836.38 837.14 836.89 837.38 839.87 840.24 836.85 838.32
C-nl51-kl2 1058.48 1059.03 1046.72 1052.27 1058.19 1059.43 1064.54 1066.92
C-n200-kl6 1335.82 1340.13 1332.68 1336.25 1319.11 1326.48 1345.16 1349.57
C-nl21-k7 1045.62 1045.97 1046.35 1046.32 1042.11 1043.87 1046.62 1047.44
R-n76-kl0a 1622.24 1622.24 1620.70 1621.63 1618.36 1619.56 1618.36 1620.26
R-n76-k9b 1344.62 1344.63 1344.62 1344.66 1344.62 1344.62 1344.62 1344.62
R-n76-k9c 1291.01 1291.01 1291.01 1291.01 1291.01 1291.01 1291.01 1291.01
R-n76-k9d 1389.32 1393.00 1389.32 1390.43 1386.70 1387.57 1383.99 1386.87
R-nlOl-kl la 2072.64 2074.83 2073.06 2075.03 2067.57 2071.38 2072.43 2074.89
R-nlOl-kllb 1948.56 1951.43 1940.97 1945.68 1942.81 1945.15 1940.70 1943.55
R-nlOl-kllc 1406.24 1406.31 1406.20 1406.21 1406.20 1407.06 1406.24 1406.81
R-nlOl-klld 1598.36 1599.06 1598.36 1599.72 1598.38 1600.32 1601.30 1603.75

/ = 0.05 / = 0.08 / == 0.1 / == 0.2
Instance Best Avg Best Avg Best Avg Best Avg
C-n51-k5 524.61 527.96 525.13 528.63 531.52 539.86 532.99 538.27
C-n76-kl0 838.60 841.37 839.88 843.21 845.75 848.36 854.14 861.94
C-nl01-k8 840.11 842.28 831.25 832.95 835.17 836.01 880.81 852.42
C-nl51-kl2 1060.75 1064.77 1065.68 1066.45 1072.47 1073.69 1096.78 1116.39
C-n200-kl6 1359.09 1364.92 1355.00 1359.18 1357.94 1366.84 1449.38 1453.64
C-nl21-k7 1045.13 1046.83 1046.33 1049.73 1044.91 1046.72 1061.21 1067.46
R-n76-kl0a 1618.36 1618.36 1618.36 1618.36 1618.36 1618.49 1629.12 1631.76
R-n76-k9b 1344.62 1344.62 1345.01 1345.34 1345.92 1346.23 1360.58 1362.66
R-n76-k9c 1291.01 1291.01 1291.01 1291.01 1291.01 1291.01 1298.62 1301.92
R-n76-k9d 1365.42 1369.76 1366.48 1368.48 1370.89 1381.56 1404.83 1404.15
R-nlOl-klla 2062.90 2063.14 2062.38 2067.81 2054.62 2059.13 2108.82 2116.31
R-nlOl-kl lb 1940.36 1940.67 1941.26 1942.20 1947.56 1949.39 1976.10 1988.58
R-nlOl-kllc 1406.20 1406.80 1411.38 1413.82 1419.73 1422.37 1462.49 1468.34
R-nlOl-klId 1591.32 1597.64 1599.53 1601.97 1594.42 1597.34 1637.94 1658.71

Table 8.2: Preliminary results for different perturbation factors.

Although a perturbation value of / = 0.05 seems to provide the best results overall, it is
apparent that the scheme is quite robust, providing good quality solutions across the wide
range of different perturbation factors between 0.01 and 0.2.

To evaluate the effect of using different crossover operators, a further series of preliminary
experiments were carried out. GAPS was applied with no crossover, SPX, UX and then
2PX crossover, using identical settings to those of the previous experiments, all configu­
rations applying 0, 1 or 2 mutations after crossover.

A total of 50 runs were made for each combination described. Table 8.3 summarises the
results achieved for a subset of 20 problem instances for the CVRP. A fair conclusion
to draw is that the choice of crossover mechanism has no real bearing on the quality of
solution achieved using GAPS. All mechanisms provide a similar overall solution quality.

A question arises, however: is crossover actually needed? Table 8.3 shows the results

132 8.4 Preliminary Experimentation

SPX Crossover 2PX Crossover UPX Crossover No Crossover

/ Av Dev % Av Dev % Av Dev % Av Dev %
0.01 0.45 0.44 0.47 0.72
0.05 0.40 0.42 0.42 0.65

Table 8.3: A comparison of the effect of using SPX, 2PX, UPX and no crossover
operation for a subset of 20 CVRP problem instances, over 50 runs.

for the same subset of problem instances, using an identical procedure and settings as
that used to compare the different crossover operators, but instead using no crossover
operation at all.

It can be seen that the results achieved without crossover are in line with those when a
crossover operator is used. Further analysis and testing has identified that for some prob­
lem instances and particularly smaller ones, using no crossover can lead to better quality
solutions, but generally this is achieved at the cost of running time, the algorithm requir­
ing significantly more generations to produce similar quality solutions to those produced
when crossover is used.

However, the benefit of using a crossover operation becomes much more pronounced
as the size of a problem instance increases. Even given a sufficient running time, the
solutions attained where no crossover is used are consistently inferior to those produced
when any of the three crossover procedures described are utilised.

8.4.1 Solution Mechanism, Evaluation and Selection

Further intensive investigation was undertaken to evaluate and compare a number of alter­
native solution mechanisms for the CVRP. A key factor of any such procedure is run time.
Given that a procedure must be used to produce a solution for each child chromosome,
within a GA with a population size of 100, run for 1,500 generations, any such heuristic
will need to be run 150,000 times, i.e. on 100 child chromosomes each generation and for
1,500 generations.

The main focus of these experiments was confined to using the faster and simpler heuris­
tics available for the solution of the CVRP, namely the CW, Sweep and Petal heuristics
described in chapter 4. All heuristics resulted in solutions far superior to those attained
using a particular heuristic in its standard form. However, a number of observations were
made.

Due to the very nature of the sweep heuristic and its method of constructing routes through
a clockwise or anti-clockwise sweep around the depot vertex, a perturbation model must

8.5 Perturbation M odels 133

be carefully designed to take account of these characteristics. Similar considerations are
required for the petal heuristic. In comparison, the nature of savings used in the CW
heuristic, lends the procedure more naturally to the method of perturbation.

In line with the computational results reported in section 4.4.1, the run time of these
procedures means that the number of evaluations that can be undertaken through any
generation of the GA is fewer for both the petal and sweep, when compared to the CW
heuristic, resulting in poorer scaling as the size of a problem increases. Due to these
considerations, it was decided that for the purposes of this thesis, all experimentation
would be restricted to using the CW heuristic as the solution mechanism in the GAPS
framework.

The size of the perturbation region around each customer location confines the movement
of each customer to that area. But just how far should the customer coordinates be allowed
to be perturbed? It is feasible that the area of the optimum perturbation region varies
according to the number of customers n and the overall rectangular region R, comprising
all customers within a problem instance.

Given the results from the preliminary experimentation carried out, a series of new per­
turbation models were derived and are described in section 8.6. In contrast to the models
used for the preliminary experimentation where customer coordinates were allowed to
drift unchecked, the new models constrain the perturbation zone around each customer.

8.5 Perturbation Models

• 10

' 1 • r

(a) (b)

Figure 8.6: Perturbation using different zone shapes

134 8.5 Perturbation Models

Consider the application of the perturbation formula, using a perturbation factor of 10%,
to the problem instance in figure 4.1. The potential movement of each customers within
its associated perturbation zone is shown in figure 8.6 (a). It is feasible to conjecture that
the shape and size of the perturbation zone around each customer coordinate pair could
have a dramatic effect on the solution quality attained. Figure 8.6 (b) shows a fairly simple
alternative to the rectangular regions.

Figure 8.7: Perturbation model zone shapes.

A number of different shaped zones have been analysed and tested. Figure 8.7 illustrates
five of the different shapes used, namely a rectangle, triangle, circle, diamond and star
shape. Each zone shape was evaluated over 50 runs of a subset of 20 CVRP problem
instances, with identical settings for all runs, other than the shape of the zone. Table 8.4
details the average deviation % across all of the runs for each shape.

Zone Shape Rectangle Triangle Circle Diamond Star
AvDev % 0.4 0.42 0.41 0.43 0.45

Table 8.4: A comparison of the effect of using different perturbation zone shapes for
a subset of 20 CVRP problem instances, over 50 runs.

Further experimentation was undertaken to evaluate the effect of zone size. Analysis over
50 runs of a subset of 20 CVRP problem instances was again used, in conjunction with
a varying sized rectangular shaped zone, using the nearest neighbour model described in
section 8.6. Table 8.5 details the average deviation % across all of the runs for each shape
with different sclar factors.

Scalar 1 2 4 8 10
AvDev % 0.4 0.37 0.48 3.12 6.85

Table 8.5: A comparison of the effect of using different perturbation zone sizes for a
subset of 20 CVRP problem instances, over 50 runs.

The conclusion drawn from these experiments is that shape alone, has no significant im­
pact on solution quality. The key factor identified is the actual size of the zone itself.

8.6 N ew Perturbation Models for the CVRP 135

8.5.1 Random Perturbations

Although through the use of different perturbation models, the shape of confinement for
any movement around a set of customer coordinates from any given perturbation will
differ, within every model, a random variable 0 < r < 1 is used to randomly generate
the new position to move to within this predefined region. The variable r is consistently
generated using the prebuilt random classes of the Java programming language.

This allows for a uniform distribution of transformations within each perturbation zone.
Figure 8.8 (a) and (b) show the distribution of a set of 1,000 randomly generated perturba­
tions around a customer located at the coordinates (0,0), at the centre point of both shapes.
The result is a nice even uniform distribution across the whole region of the perturbation
zone.

ass

(a) (b)

Figure 8.8: Random perturbations

8.6 New Perturbation Models for the CVRP

Three new perturbation models were formulated and extensively tested. All models use
fixed constrained zones, which once defined do not change. The size of the zones in
each model are calculated based upon a random, nearest neighbour and depot distance
respectively. These models are described and formulated in the following sections. In all
cases a circular perturbation zone is used based on equation 8.2.

x' = x + (D * s) * (2 * r — 0.5)
y ' = y + (D * s) * (2 * r — 0.5)

m = x' *x ' + y' *y' (8.2)

136 8.6 New Perturbation Models for the CVRP

where:

D = random distance

r - random number 0 < r < 1

s = a pre-set scalar factor to set zone size

m = check to ensure that the (x',y ') coordinates lie within the radius D,
i.e. coordinate pairs are continually generated until m < D2.

For each x and y coordinate pair, a new perturbed pair x' and y' are calculated by adding
the sum of a predefined associated radius D , multiplied by a random number (2 * r — 0.5),
with r between —1 and +1, to produce a new pair of perturbed coordinates, representing
the new position for any given customer vertex. Exactly how D, the potential perturbation
distance, is calculated for each customer vertex is explained in the following sections.

8.6.1 Random

In the random model the potential range D of any perturbation zone around each individ­
ual customer is calculated using a random approach. The value D is constrained within
a fixed region, based upon the range, i.e. the difference between the maximum and min­
imum, of the x and y coordinate pairs. The rationale for inclusion of such a model is to
provide a benchmark comparison for the alternative models described later. Although the
actual size of the zone can vary from customer to customer, its position is fixed and al­
ways calculated in relation to the original x and y coordinate values of the corresponding
customer vertex being perturbed.

8.6.2 Nearest Neighbour

This perturbation model, based upon equation 8.2, utilises the distance of the nearest
customer vertex to that of the vertex being perturbed, to define the distance D by which
a perturbation can be made. An additional scalar factor s is further used to allow D to
be scaled by a preset value, e.g. to define individual perturbation zones sizes of up to
potentially 3 times the distance of the nearest vertex distance, a value of s = 3 would be
used. It is again fixed constrained in relation to the original coordinate position.

8.6 N ew Perturbation Models for the CVRP 137

Potential perturbation region

-

vi

D

nearestNeighbour(ui)

, - - r <5 \
; 4 : /, * / I / \/ * '/ + - * 7 ~ ~ N / '

"v 3 / A 7/ \ /

/ ' r ■ -? \ «
12 / W . \

_ ~ 1 f ~
/ / , X v 1^ _

/ A ' 9 % /
• /
11 1 /

10

Figure 8.9: Nearest neighbour perturbation model: maximum potential vertex
movement for 8 = 1, i.e. the distance of the nearest customer vertex.

Figure 8.9 illustrates the potential movement of each customer vertex, showing the range
of each perturbation zone around each customer. The zone around each customer is cal­
culated based upon the distance of its nearest customer vertex, which serves as the value
D. The random value r allows the customer to be moved to any position within each of
the defined zones. Changing the preset scalar factor s allows the overall size of the zones
to be modified.

8.6.3 Depot Distance

Using this model, customer vertices on the extremities (i.e. farthest from the depot) can
potentially move greater distances and those closer to the depot smaller distances, which
arguably fits well with the typical structure of a problem instance.

Alternative calculations for D could be made, to allow greater movement closer to the de­
pot, by dividing the distance of each customer from the depot node by a value, such as the
quantity demand associated with the customer. Essentially further restricting movement
based upon the relative quantities demanded by customers.

Figure 8.10 illustrates the potential movement of each customer vertex, showing the range
of each perturbation zone around each customer. The zones are calculated using the depot
distance from each customer for D.

138 8 .7 Comparison o f the Perturbation Models

Potential perturbation region

Figure 8.10: Depot distance perturbation model

8.7 Comparison of the Perturbation Models

In addition to the models described in the previous section, a wide array of alternative
models were investigated. The substantial number of results generated from benchmark­
ing these other models have been omitted from inclusion in this thesis. Table 8.6 sum­
marises the results for the nearest neighbour, depot distance and random perturbation
model, included as a benchmark. The results presented are for a subset of instances from
problem sets A, B, P, C and R.

Instance
Subset

Random
Av Dev %

Nearest Neighbour
Av Dev %

Depot Distance
Av Dev %

A 0.40 0.15 0.31
B 0.16 0.02 0.01
P 0.41 0.17 0.27
C 0.96 0.52 0.89
R 0.53 0.31 0.46

Table 8.6: A comparison of the results obtained from using a random, nearest neigh­
bour and depot distance perturbation model on a subset of CVRP problem instances

The best overall results are achieved using the nearest neighbour model. However, in
comparison, the results for both the random and depot distance models do not vary sub­
stantially, highlighting the robustness of the perturbation methodology.

8.8 Computational Experiments 139

8.8 Computational Experiments

Using the following set of predefined parameters and perturbation model, derived from
the intensive investigation of various combinations, the GAPS algorithm was run against
a substantial set of problem instances.

Perturbation model (initial population):
Perturbation model (mutations):

Population size:
Crossover:

Mutation rate:
Solution mechanism:

Improvement mechanism:
Stopping criterion:

random
nearest neighbour
100
SPX
1 or 2 mutations
CW heuristic
2-Opt
20 minutes

A series of experimental runs were undertaken for the full set of problems instances de­
tailed in section 4.3. A total of 50 runs were carried out for each individual problem
instance using a Pentium IV 2.8GHz computer, running a GNU/Linux Operating System.

8.8.1 Real vs Rounded Solution Costs

There are two different commonly used methodologies for deriving the overall distance
for a solution to a CVRP problem instance. Solutions can be calculated using either
real number distance costs, based upon the straight line distance between customer/depot
coordinates using equation 7.2, or alternatively using the same underlying calculation, but
instead rounding the distance between each of the customers and depot location within a
problem instance to the nearest integer value.

Although it may seem that these schemes are essentially the same, they do in fact result in
two fundamentally different problems. Consider the two solutions shown in figure 8.11.
The total travelling distance for solution (a) is 1,170.65 if calculated using real distances
and 1,162 using rounded values. Solution (b) has a solution distance using real values
of 1,169.63 and 1,172 when rounded. As can be seen, the total travelling distance using
real values for solution (b) provides an improvement to the corresponding total distance
in solution (a). However, when calculated using rounded costs, the total cost of travel is
actually worse when compared to the rounded total for solution (a).

Rounding reduces the number of unique solutions in the search space, when compared
to using real costs. This in turn can have the effect of reducing the number of potential

140 8.9 GAPS Results

Solution (a) Problem Instance: F-nl35-k7
Route

Number Route Demand
Real

Distance
Rounded
Distance

1 0 115 114 106 107 108 109 120 0 2209 335.34 336
2 0 46 118 18 17 132 131 116 117 119 130 65 19 0 2047 207.93 205
3 0 73 74 76 134 77 64 63 79 67 80 33 71 66 0 1864 89.81 88
4 0 91 21 25 26 27 28 92 29 94 93 45 43 44 40 3 41 42 2 4 5 6 7

8 9 10 11 12 14 88 15 13 16 90 89 87 86 85 84 83 20 82 0 2145 187.89 188
5 0 60 61 54 55 57 105 97 96 38 39 95 37 36 35 99 100 98 104 101

102 50 49 34 32 47 72 0 2159 69.91 67
6 0 81 113 129 128 127 121 122 123 125 111 112 126 124 110 69

70 68 133 78 0 2149 226.42 225
7 0 22 24 23 59 31 30 58 56 103 53 52 51 62 48 1 75 0 2047 53.35 53

Total 14620 1170.65 1162

Solution (b) Problem Instance: F-nl35-k7
Route

Number Route Demand
Real

Distance
Rounded
Distance

1 0 115 114 106 107 108 109 120 0 2167 225.55 227
2 046 118 18 132 116 131 117 119 130 65 19 0 2179 187.00 189
3 0 66 71 33 80 67 79 63 34 32 134 76 W 77 74 73 0 1924 53.87 54
4 0 17 81 113 129 128 121 127 126 112 125 111 124 123 122 110

69 70 68 133 78 0 2029 205.33 204
5 0 21 25 27 28 92 29 93 94 45 39 43 44 40 3 41 42 2 4 5 6 7 8

9 10 12 11 14 88 15 13 16 90 89 87 86 85 84 83 20 82 0 2196 65.53 66
6 0 91 22 24 23 26 30 31 59 60 61 62 49 48 1 75 47 72 0 1916 97.01 96
7 0 58 57 105 97 96 38 95 37 98 100 99 36 35 101 104 56 103 102

53 55 54 52 51 50 0 2209 335.34 336
Total 14620 1169.63 1172

Figure 8.11: A comparison of the real and rounded costs for two solutions to problem
instance F-nl35-k7.

neighbourhood moves available at a particular stage of execution.

Results for instance sets A, B, E, F and P are almost exclusively reported by other au­
thors using rounded costs, where in contrast, those for instance sets C and R are typically
based upon real solution costs. The same philosophy has been adhered to within this
thesis. However, due to the differences outlined between the rounded and real costs, the
real and rounded value of the solutions attained throughout this study can be found at
http://purl.oclc.org/NET/thesis/results.

8.9 GAPS Results

The results for problem instance sets A, B, P, E, F, C and R are presented in tables 8.7
to 8.13. The average deviation from the provable optimum solution or best known for each

http://purl.oclc.org/NET/thesis/results

8.9 GAPS Results 141

solution is shown for each problem instance tested and calculated using equation 1.1.

The CPU computing times are not reported within the tables for GAPS, owing to the
omission of these figures by other authors and/or the difficulty of the wide variations in
hardware and software utilised for implementations and experimentation. However, a
full analysis and evaluation of the runtime of the GAPS approach is detailed in the next
section.

Problem Optimum SERR Dev SERR Dev Dev GAPS Av Dev GAPS Dev
Instance Solution FJ % Sweep % CLOVES % Av % Best %
A-n32-k5 784 - - - - 784 0.00 785 0.13 784 0.00
A-n33-k5 661 - - - - 661 0.00 661 0.00 661 0.00
A-n33-k6 742 - - - - 742 0.00 742 0.00 742 0.00
A-n34-k5 778 - - - - 778 0.00 782 0.51 778 0.00
A-n36-k5 799 - - - - 799 0.00 799 0.00 799 0.00
A-n37-k5 669 - - - - 669 0.00 670 0.15 669 0.00
A-n38-k5 730 - - - - 730 0.00 730 0.00 730 0.00
A-n39-k5 822 - - - - 822 0.00 822 0.00 822 0.00
A-n39-k6 831 - - - - 831 0.00 831 0.00 831 0.00
A-n44-k6 937 - - - - 937 0.00 937 0.00 937 0.00
A-n45-k6 944 - - - - 944 0.00 944 0.00 944 0.00
A-n45-k7 1146 - - - - 1146 0.00 1149 0.24 1146 0.00
A-n46-k7 914 - - - - 914 0.00 914 0.00 914 0.00
A-n48-k7 1073 - - - - 1073 0.00 1086 1.21 1073 0.00
A-n53-k7 1010 1011 0.10 1017 0.69 1017 0.69 1017 0.66 1010 0.00
A-n54-k7 1167 1179 1.03 1172 0.43 1201 2.91 1171 0.30 1167 0.00
A-n55-k9 1073 1073 0.00 1073 0.00 1081 0.75 1073 0.00 1073 0.00
A-n60-k9 1354 1363 0.67 1358 0.30 1403 3.62 1356 0.13 1354 0.00
A-n61-k9 1034 1064 2.90 1038 0.39 1113 7.64 1036 0.23 1034 0.00
A-n62-k8 1288 1288 0.00 1288 0.00 1321 2.56 1295 0.57 1288 0.00
A-n63-k9 1616 1641 1.55 1627 0.68 1662 2.85 1625 0.55 1616 0.00
A-n63-kl0 1314 1319 0.38 1322 0.61 1332 1.37 1315 0.04 1314 0.00
A-n64-k9 1401 1431 2.14 1410 0.64 1430 2.07 1410 0.66 1401 0.00
A-n65-k9 1174 1174 0.00 1177 0.26 1230 4.77 1178 0.34 1174 0.00
A-n69-k9 1159 1159 0.00 1163 0.35 1199 3.45 1165 0.49 1159 0.00

A-n80-kl0 1763 1793 1.70 1780 0.96 1786 1.31 1765 0.09 1763 0.00

Av Dev To OS (All) - - 1.26 0.24 0.00

Av Dev To OS (> 50 Cust) 0.87 0.44 11.76 0.34 0.00

Table 8.7: Computational results for the implementation of GAPS, using rounded
integer costs, against 27 problem instances from Augerat et al. Set A, including a
comparison against other algorithmic implementations.

Results in tables 8.7 to 8.11 are rounded solution costs. The columns headed “SERR FJ”
and “SERR Sweep” give the results reported by De Franceschi et al. [65], for an ILP-based
refinement heuristic for the CVRP, called SERR. The two methods differ only from the
context of their initial starting solution, one generated by the authors using the Fisher &
Jaikumar and the other using the sweep heuristic. The column headed “CLOVES” gives
the results for a cluster and search heuristic by Ganesh and Narendran [72] for the solution
of both the CVRP and the Vehicle Routing Problem with Pickup and Delivery (VRPPD).

142 8.9 GAPS Results

SERR and CLOVES were chosen for comparison to GAPS, as techniques with the best
quality published results for rounded solution costs in the literature. However, it should
be noted that the the number of results in the literature reported using rounded solution
costs is substantially less when compared to those using real values.

Problem Optimum SERR Dev SERR Dev Dev GAPS Av Dev GAPS Dev
Instance Solution FJ % Sweep % CLOVES % Av % Best %
B-n31-k5 672 - - - - 672 0.00 672 0.00 672 0.00
B-n34-k5 788 - - - - 788 0.00 788 0.00 788 0.00
B-n35-k5 955 - - - - 955 0.00 955 0.00 955 0.00
B-n38-k6 805 - - - - 805 0.00 811 0.79 805 0.00
B-n39-k5 549 - - - - 549 0.00 550 0.18 549 0.00
B-n41-k6 829 - - - - 829 0.00 833 0.51 829 0.00
B-n43-k6 742 - - - - 742 0.00 743 0.19 742 0.00
B-n44-k7 909 - - - - 909 0.00 910 0.11 909 0.00
B-n45-k5 751 - - - - 751 0.00 752 0.13 751 0.00
B-n45-k6 678 - - - - 678 0.00 680 0.34 678 0.00
B-n50-k7 741 743 0.270 741 0.00 741 0.00 741 0.00 741 0.00
B-n50-k8 1312 1324 0.915 1318 0.46 1322 0.76 1321 0.65 1312 0.00
B-n51-k7 1032 1032 0.00 1032 0.00 1057 2.42 1035 0.32 1032 0.00
B-n52-k7 747 747 0.00 747 0.00 747 0.00 748 0.16 747 0.00
B-n56-k7 707 710 0.424 710 0.42 748 5.80 708 0.09 707 0.00
B-n57-k7 1153 1153 0.00 1193 3.47 1236 7.20 1160 0.62 1153 0.00
B-n57-k9 1598 1625 1.690 1599 0.06 1614 1.00 1599 0.06 1598 0.00
B-n63-kl0 1496 1548 3.476 1510 0.94 1541 3.01 1506 0.66 1496 0.00
B-n64-k9 861 863 0.232 864 0.35 877 1.86 864 0.33 861 0.00
B-n66-k9 1316 1322 0.46 1316 0.00 - - 1319 0.21 1316 0.00
B-n67-kl0 1032 1033 0.10 1037 0.48 1040 0.78 1032 0.04 1032 0.00
B-n68-k9 1272 1288 1.258 1275 0.24 1317 3.54 1274 0.17 1272 0.00
B-n78-kl0 1221 1231 0.82 1260 3.2 1287 5.41 1222 0.08 1221 0.00
Av Dev To OS (All Cust) 1.44 0.25 0.00
Av Dev To OS (> 50 Cust) 0.74 0.74 2.65 0.26 0.00

Table 8.8: Computational results for the implementation of GAPS, using rounded
integer costs, against 25 problem instances from Augerat et al. Set B, including a
comparison against other algorithmic implementations.

The column headed “GAPS Av” reports the average solution attained for each problem
instance over the total of 50 runs made and “GAPS Best’ the overall best result from all
runs. The overall average deviation across the whole problem set or smaller subset is
provided for all algorithms, allowing comparisons to be made.

A comparison of the average results achieved by GAPS for problem instances sets A, B,
P, E and F with SERR and CLOVES show it to provide the best quality solutions overall.
GAPS provides a significant improvement over the CLOVES heuristic and although for
some sets the overall deviation is only slightly better when compared to the reported
values for SERR, there is some inconsistency in solution quality across the results for
the two types of SERR implementation. For instance sets A “SERR Sweep’” is superior,
sets P, E and F, “SERR FJ” provides better results , with the the same results reported for

8.9 GAPS Results 143

set B. The average values for GAPS provide a superior overall solution quality across all
problem instances when compared to the other algorithmic implementations.

Problem Optimum SERR Dev SERR Dev Dev GAPS Av Dev GAPS Dev
Instance Solution FJ % Sweep % CLOVES % Av % Best %
P-nl6-k8 450 - - - - 450 0.00 450 0.00 450 0.00
P-nl9-k2 212 - - - - 212 0.00 212 0.00 212 0.00
P-n20-k2 216 - - - - 216 0.00 216 0.00 216 0.00
P-n21-k2 211 - - - - 211 0.00 211 0.00 211 0.00
P-n22-k2 216 - - - - 216 0.00 216 0.00 216 0.00
P-n22-k8 603 - - - - 603 0.00 603 0.00 603 0.00
P-n23-k8 529 - - - - 529 0.00 529 0.00 529 0.00
P-n40-k5 458 - - - - 458 0.00 458 0.09 458 0.00
P-n45-k5 510 - - - - 510 0.00 510 0.00 510 0.00
P-n50-k7 554 - - - - 554 0.00 555 0.09 554 0.00
P-n50-k8 631 631 0.00 643 1.90 650 3.01 650 3.04 631 0.00
P-n50-kl0 696 - - - - 696 0.00 698 0.30 696 0.00
P-n51-kl0 741 - - - - 741 0.00 741 0.01 741 0.00
P-n55-k7 568 - - - - 568 0.00 575 1.23 568 0.00
P-n55-kl0 694 704 1.44 698 0.58 703 1.30 698 0.56 694 0.00
P-n60-klO 744 747 0.40 744 0.00 764 2.69 746 0.24 744 0.00
P-n60-kl5 968 974 0.62 968 0.00 1008 4.13 968 0.00 968 0.00
P-n65-kl0 792 802 0.82 800 1.01 809 2.15 799 0.92 792 0.00
P-n70-kl0 827 836 0.82 827 3.19 876 5.93 831 0.51 827 0.00
P-n76-k4 593 - - - - 593 0.00 597 0.73 593 0.00
P-n76-k5 627 - - - - 627 0.00 629 0.35 627 0.00
P-nl01-k4 681 686 0.82 693 3.19 693 1.76 683 0.17 681 0.00
Av Dev To OS (All Cust) 0.95 0.30 0.00
Av Dev To OS (> 50 Cust) 0.70 1.41 3.00 0.55 0.00

Table 8.9: Computational results for the implementation of GAPS, using rounded
integer costs, against 22 problem instances from Augerat et al. Set P, including a
comparison against other algorithmic implementations.

Problem Best SERR Av Dev SERR Av Dev Av Dev Av Dev GAPS Av Dev
Instance Known FJ % Sweep % CLOVES % GAPS % Best %
E-n22-k4 375 - - - - 375 0.00 375 0.00 375 0.00
E-n23-k3 569 - - - - 569 0.00 569 0.00 569 0.00
E-n30-k3 534 - - - - 534 0.00 541 1.31 534 0.00
E-n33-k4 835 - - - - 835 0.00 835 0.00 835 0.00
E-n76-k7 682 697 2.20 690 1.17 694 1.76 684 0.29 682 0.00
E-n76-k8 735 737 0.27 738 0.41 740 0.68 736 0.14 735 0.00
E-n76-kl4 1021 1027 0.59 1032 1.08 1032 1.08 1026 0.49 1021 0.00
E-nl01-kl4 1071 1088 1.59 1101 2.80 1099 2.61 1075 0.37 1071 0.00

Av Dev To OS (All Cust) 0.77 0.33 0.00

Av Dev To OS (> 50 Cust) 1.16 1.36 1.53 0.32 0.00

Table 8.10: Computational results for the implementation of GAPS, using rounded
integer costs, against 12 problem instances from Christofides and Eilon, including a
comparison against other algorithmic implementations.

It can also be seen that through the 50 runs of each problem instance, GAPS has been
able to derive the optimum solution for every problem instance within the 5 sets A, B, P,

144 8.9 GAPS Results

Problem
Instance

Optimum
Solution

SERR
FJ

Av Dev
%

SERR
Sweep

Av Dev
%

GAPS
Best

Av Dev
%

GAPS
Av

Av Dev
%

F-n45-k4 724 - - - 724 0.00 724 0.00
F-n72-k4 237 237 0.00 238 0.00 237 0.00 237 0.00
F-nl35-k7 1162 - - - - 1163 0.09 1162 0.00
Av Dev To OS 0.00 0.00 0.03 0.00

Table 8.11: Computational results for the implementation of GAPS, using rounded
integer costs, against 3 problem instances from Fisher, including a comparison
against other algorithmic implementations.

E and F. Although, interestingly, the most difficult problem instances for GAPS to solve
from these problems sets were those most easily solved by the standard sweep heuristic.
Typically these instances have a depot at a central point in relation to customer vertices,
that are positioned at locations which are naturally well placed to be efficiently clustered
by the moving ray of the sweep heuristic.

Problem
Instance

Best
Known

Rochard &
Taillard Tarantilis

Mester &
Braysy

GAPS
Av

Av Dev
%

GAPS
Best

Av Dev
%

C-n51-k5 524.14 524.14 524.61 524.14 524.14 0.00 524.14 0.00
C-n76-kl0 835.26 835.26 835.26 835.26 836.84 0.19 835.26 0.00
C-nl01-k8 826.14 826.14 826.14 826.14 830.57 0.52 826.14 0.00
C-nlOl-klO 819.56 819.56 819.56 819.56 819.56 0.00 819.56 0.00
C-nl21-k7 1042.11 1042.11 1042.11 1042.11 1042.11 0.00 1042.11 0.00
C-nl51-kl2 1028.42 1028.42 1028.42 1028.42 1043.49 1.46 1035.44 0.68
C-n200-kl6 1291.29 1291.45 1311.48 1291.29 1307.98 1.28 1298.71 0.57
Av Dev To Best Known (%) 0.00 0.26 0.00 0.58 0.21

Table 8.12: Computational results for the implementation of GAPS, using real costs,
against 12 problem instances from set C, including a comparison against other algo­
rithmic implementations.

Problem instance sets C and R represent the standard instances from the literature which
are used by authors to experiment and benchmark algorithmic approaches for the CVRP.
As already outlined, solutions for these sets are almost exclusively reported using real
costs. Table 8.12 presents results for instance set C and provides comparative results for
this instance set for the best solutions in the literature from Rochard & Taillard, Tarantilis
and the current state of the art for the CVRP from Mester and Braysy. The overall average
and best results for GAPS are not quite as good as those from the other authors for instance
set C.

Results for instance set R are presented in table 8.13. Comparative results representing
the best from the literature are again included from Rochard & Taillard, Alba et al. and
Mester and Braysy. The results reported for Alba et.al. represent the best results achieved
from a series of experimental runs. The average overall deviation across the full set of
instances is far more competitive for these instances, providing superior results to the

8.10 Convergence and Solution Uplift 145

Problem
Instance

Best
Known

Rochard &
Taillard

Alba et al.
Best

Mester &
Braysy

GAPS
Best

Av Dev
%

GAPS
Av

Av Dev
%

R-n76-kl0a 1618.36 - 1618.36 1618.36 1618.36 0.00 1618.36 0.00
R-n76-k9b 1344.62 - 1344.64 1344.62 1344.62 0.00 1344.62 0.00
R-n76-k9c 1291.01 - 1291.01 1291.01 1291.01 0.00 1291.01 0.00
R-n76-k9d 1365.42 - 1365.42 1365.42 1365.42 0.00 1365.42 0.00
R-nlOl-klla 2041.34 2047.90 2047.90 2041.34 2041.34 0.00 2053.14 0.58
R-nlOl-kllb 1939.90 1940.61 1940.36 1939.90 1940.36 0.04 1940.87 0.05
R-nlOl-kllc 1406.20 1407.44 1411.66 1406.20 1406.20 0.00 1406.20 0.00
R-nlOl-kl Id 1580.46 1581.25 1584.20 1581.25 1580.46 0.00 1590.40 0.62
R-nl51-kl5a 3055.23 3070.91 3056.41 3055.23 3059.98 0.16 3069.28 0.46
R-nl51-kl4b 2727.20 2733.60 2732.75 2727.67 2727.27 0.00 2737.16 0.36
R-nl51-kl4c 2341.84 2364.31 2364.08 2343.11 2363.34 0.91 2381.24 1.67
R-nl51-kl4d 2645.39 2663.20 2654.69 2645.40 2645.39 0.00 2652.99 0.29
R-n384-k47 24369.13 24435.50 25015.01 24855.32 24596.18 0.89 24627.14 1.01
Av Dev To Best Known (%) 0.35 0.40 0.16 0.16 0.39

Table 8.13: Computational results for the implementation of GAPS, using real costs,
against 13 problem instances from set R, including a comparison against other algo­
rithmic implementations.

Alba et al. algorithm and similar results to those of Rochard & Taillard. However, the
Mester and Braysy method provides better results overall when compared to the GAPS
average, but an identical deviation in relation to the best attained by GAPS over the 50
runs.

8.10 Convergence and Solution Uplift

The framework of GAPS is simple to both understand and implement, incorporating a
simple chromosome structure and construction/improvement heuristics. In comparison to
simple heuristics, many metaheuristics intermix a number of local search methods within
a metaheuristic framework, resulting in a far more complicated implementation. A num­
ber of researchers, recognising this fact, have turned away from complicated implemen­
tations in favour of simple techniques.

GAPS provides quality solutions, close to the optimum/best known, brought about by
a quick convergence of the algorithm to good neighbourhood solutions. The graphs in
figure 8.12 show a run of the algorithm against the problem instances B-n78-kl0 and R-
nl51-kl4b. In both these cases, and in fact for every problem instance tested, a movement
from the standard solution of the CW algorithm, to a solution close to the optimum/best
known is achieved very quickly.

In order to illustrate this fact further, GAPS was run against all problem instance sets,
with a termination time of just 30 seconds. Table 8.13 shows the results obtained with

146 8.10 Convergence and Solution Uplift

Figure 8.12: Convergence.

respect to average deviation % from the optimum/best known solutions, over a total of 50
runs for each problem instance, summarised for each set. The average deviation across
all instance sets ranges from 0.29% to 1.65%, providing good quality solutions in a short
runtime.

GAPS Average Deviation % Over 50 Instance Runs of 30 Seconds
■ AvDev %

Set R

1.65%

SetC

0.60%

Set F

1.06%

Set E

0.62%

Set F

Set B

Set A

1.60%0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20%

% Average Deviation From O ptim um /B est Known Solution

Figure 8.13: GAPS average deviation % over 50 runs of each problem instance for
30 seconds.

Although capable of providing excellent quality solutions with quick run times, GAPS
also has the advantage, common to other metaheuristic techniques, that it has the potential
to utilise additional CPU time to produce improving quality solutions. Some algorithmic
techniques are incapable of producing improvements to solution quality, irrespective of
how much time they are run for.

8.10 Convergence and Solution Uplift 147

□ Set P B S e tB ■ Set A

GAPS Average (CW)

% A verage Deviation From O ptim um Solution

Figure 8.14: Uplift in solution quality using GAPS in comparison to the standard
heuristics for instance sets A, B and P.

□ S etC ■ Set F B S e tR

GAPS A verage (CW)

GAPS Average (Sweep)

% Average Deviation From O ptim um /B est Known Solution

Figure 8.15: Uplift in solution quality using GAPS in comparison to the standard
heuristics for instance sets C, F and R.

148 8.10 Convergence and Solution Uplift

Further, in comparison to the standard heuristic approaches, the uplift in solution quality
from the standard heuristics shows a marked increase. Figures 8.14 and 8.15 compare the
average deviation from the best known/optimum solution across problem instances A, B,
P and C, F, R for the standard heuristics and GAPS using the standard heuristics as its
solution mechanism. Results are presented for both the CW and sweep heuristics.

For all instances, vastly superior quality solutions are achieved from the CW and sweep
heuristic when they are integrated into the GAPS framework. Comparing the results for
the standard CW heuristic to those when it is used as the solution mechanism is GAPS
shows a 2.6% to 8% increase in solution quality for GAPS. The uplift for the sweep is
still substantial, but by no means so pronounced as for the CW heuristic. It is noticeable
when using sweep within the GAPS framework, high quality or optimum solutions can be
attained for problem instances with 50 customers or less, however, as instances increase
in size, the quality of solutions produced begins to degrade.

y

70

60

50

40

30 -

20 -

10 -

0 10 20 30 40 50 60 70 80

Figure 8.16: Optimum solution for problem instance P-n50-k7, including underlying
perturbated coordinate set leading to this solution.

8.11 Chapter Summary 149

Overall GAPS provides a mechanism for generating high quality solutions to the CVRP in
very short times scales. Using even small amounts of perturbation, neighbourhoods con­
taining high quality or optimum solutions can be reached, such as the optimum solution
shown in figure 8.16 for problem instance P-n50-k7. The actual solution is represented
with solid lines and the perturbed solution used to derive it, by dashed lines.

The CW heuristic is still used in many commercial routing software packages today, as it
allows good quality solutions to be derived in realistic time-scales. Based upon the results
achieved with GAPS, it would seem to be a compelling alternative method for use in place
of these classical heuristics.

8.11 Chapter Summary

This chapter provides the specific details of a very simple framework , to both under­
stand and implement, for the solution of the CVRP called GAPS. The basic GA model
is documented and a series of new perturbation models are introduced. Preliminary ex­
perimentation to evaluate the effectiveness of the core components of the framework are
presented.

Its main purpose is to provide a comparison of the GAPS framework to the current state
of the art algorithms for the CVRP. Two key points have been demonstrated. Firstly, util­
ising a standard heuristic technique such as CW, in conjunction with a nearest neighbour
perturbation model within the GAPS framework, the CW can be fooled into producing far
superior quality solutions, when compared to those attained when run in its standard form.
Secondly, the results presented compare very favourably to the best published results in
the literature for current state of the art techniques.

8.11 Chapter Summary

_______________ 151

Chapter 9

GAPS - CARP Implementation

9.1 Introduction

This chapter details an implementation of the GAPS framework for the solution of the
CARP. A further set of preliminary experiments was undertaken to evaluate the effect of
different weight coding schemes and crossover/mutation operators, incorporating a subset
of the most profitable configurations found for the CVRP. The algorithm is applied to
problem instance sets derived from the literature and described in section 5.3. The results
obtained are then evaluated against the state of the art algorithms available for the solution
of the CARP.

9.2 GAPS for the CARP

The key difference between the problem instance sets available in the literature for the
CVRP and CARP is that instances for the former problem type are typically defined using
a coordinate system, based within a two dimensional Euclidean space, with the position
of each customer and the depot being defined using a coordinate pair. This allows the
distances between them to be easily calculated and crucially to then be easily recalculated
following any perturbation. Given that a perturbation essentially involves a change to the
coordinate pair of a customer vertex, distances are simply recalculated using the amended
customer/depot coordinates.

However, in the case of the CARP, instances from the literature are defined using actual
distances. It is not possible to apply a coordinate based perturbation model directly to the
problem. Instead a weight coding scheme, as detailed in chapter 7 is used. An outline of
the framework for the solution of the CARP is shown in figure 9.1.

The initial population of chromosomes is constructed at random. Offspring that result af­
ter the application of a series of genetic operators are used in conjunction with the original

152 9 3 The GA Model

GENETIC ALGORITHM

GENERATE POPULATION

1 1 14 8 3 9 4 17 11
! 2 2 16 4 8 23 2 7
1 3 21 3 8 3 2 7 9
| 4 6 16 19 4 17 6 2
' 5 12 5 1 9 18 4 6

i 1
CROSSOVER Crossover Point

1 P1 2 16 4 8 23 2 7

i P2 6 16 19 4 17 6 2

▼ ▼

! clI 2 16 I 4 8 17 6 2 I
I

D ISTAN CE MATRIX

1 2 3 4 5 6 7

i - 12 3 18 23 14 9

2 12 5 15 9 18 6

3 3 S 36 12 13 8

4 18 15 36 - 31 12 15

5 23 9 12 31 - 14 2

6 14 18 13 12 14 - 3

7 9 6 8 15 2 3 -

Original
Data

FEEDBACK SOLUTION COST

MUTATION

c[

OBJECTIVE FUNCTION

if Cost(C) < Cost(Weaker Parent)
Replace Weaker Parent in population with C

If Cost(C) < BestDistanceSoFar
BestDistanceSoFar = Cost(C)

REPEAT

Until stopping criteria met

SIMPLE HEURISTIC

V GENERATE SOLUTION

0 1-3 0 2-4 0 5-7-6 0

DECODE SOLUTION

COST: 156 -

Figure 9.1: Overview of the GAPS framework for the CARP.

cost matrix data, to produce a new altered matrix. The amended matrix is subsequently
passed to a problem specific heuristic, from which a solution is obtained. The actual ‘true’
cost of this solution is then decoded using the original unaltered matrix data and its qual­
ity evaluated. The offspring chromosome for solutions better than their weaker parent are
written back in an identical way as that described for the CVRP.

9.3 The GA Model

The following section outlines the specific details of the different elements of the GA
model. These include the chromosome representation, selection procedure, crossover/mutation
mechanisms and the method of generating, decoding and improving solutions obtained
from the heuristic procedure. Details are again limited to those elements that differ from
the generic GAPS model and its specific application to the CVRP outlined in chapters 7
and 8 respectively.

9.3 The GA Model 153

9.3.1 Chromosome encoding

Chromosomes are encoded as a sequence of c customers, from 1 to n, with each position
holding a weight coded integer value xc corresponding to customer edge c. The simple
encoding scheme, illustrated in figure 9.2, allows standard genetic operators to be used
without the worry of infeasible solutions being produced.

C

Figure 9.2: Chromosome encoding for GAPS framework, containing a sequence of
customers from 1 to n and their corresponding weight coded integer values

9.3.2 Population structure and initialisation

The initial population consists of p chromosomes, where p equals the chosen size of the
population. For each chromosome, a weight coded integer is randomly generated within a
preset range and associated with each customer vertex. The process is then repeated until
the required p chromosomes have been created.

Initially the population size was maintained at 100, in line with that derived for the CVRP.
Table 9.1 presents the average deviation % for different population sizes, over 50 runs of a
subset of 20 CARP problem instances, showing 250 to be a suitable population size for the
set of instances tested within this thesis. It should be noted that this size is only relevant
when the path scanning algorithm is used. For other heuristic algorithms with poorer
scalability and running times, smaller population sizes have to be used, if excessive times
are to be avoided. A comparison of different problem solving heuristics within the GAPS
framework is presented later in this chapter.

Population Size 50 100 250 500
AvDev % 0.52 0.44 0.37 0.98

Table 9.1: A comparison of the effect of using different population sizes for a subset
of 20 CARP problem instances, over 50 runs.

x1 x2 x3 x4 x5 x6 x7

154 9.4 Weight Coding Model

9.3.3 Selection, Crossover and Mutation

The process of parent chromosome selection and crossover are identical to those described
in sections 8.3.3 to 8.3.5, in that through a single generation of the GA, population mem­
bers are systematically selected in turn and paired with another randomly selected mem­
ber of the population, before crossover is applied. The 2PX Crossover operator is used
throughout to produce child offspring.

Following crossover, a number of mutations are applied to each offspring chromosome.
The mutation scheme involves the random selection from the chromosome of up to 2
weight coded integer values, each of which being replaced by a newly generated integer
weight within the same predefined range. 1 or 2 of the weight coded integers within the
chromosome are then mutated.

9.3.4 Solution Mechanism and Decoding

Each offspring produced after selection, crossover and mutation has taken place serves as
the input to the chosen problem specific heuristic. The offspring chromosome is used to
generate a weight coded distance matrix, altering the original distance matrix to reflect the
values held within the chromosome. The new matrix is used by the heuristic to generate a
solution for the given problem instance. The solution obtained is decoded to produce its
actual total cost using the original unaltered distance matrix.

The ‘true’ solution distance, which serves as the fitness of the chromosome, is then evalu­
ated against that of the weaker of the two parent chromosomes used to create the offspring.
If superior, the weaker parent chromosome in the population is replaced with that of the
child offspring. Offspring whose ‘true’ distance is worse than both parents are discarded.
Finally, the value of the best distance so far is updated, iff the decoded solution distance
for the solution generated from the child offspring, is superior to that of the currently
stored best solution distance.

9.4 Weight Coding Model

Through each iteration of the GA, each offspring chromosome generated is used in con­
junction with the original unaltered distance matrix to derive a weight coded distance
matrix. The process to achieve this transformation is the same as that described in sec-

9.5 Preliminary Experimentation 155

WEIGHT CODED MATRIX CHILD OFFSPRING
1 2 3 4 5 6 7

1 - 12 3 18 23 14 9

2 12 - 5 15 9 18 6

3 3 5 - 36 12 13 8

4 18 15 36 - 31 12 15

5 23 9 12 31 - 14 2

6 14 18 13 12 14 - 3

7 9 6 8 15 2 3 -

14 8 3 9 4 17 11

ORIGINAL DISTANCE MATRIX
1 2 3 4 5 6 7

1 - 12 3 18 23 14 9

2 12 - 5 15 9 18 6

3 3 5 - 36 12 13 8

4 18 15 36 - 31 12 15

5 23 9 12 31 - 14 2

6 14 18 13 12 14 - 3

7 9 6 8 15 2 3 -

PROBLEM \ WEIGHT
SPECIFIC CODED

HEURISTIC SOLUTION
► (decode

ACTUAL
SOLUTION

Figure 9.3: Overview of the solution process with the GAPS framework for the
CARP.

tion 7.3. The newly created matrix is fed to a problem specific heuristic which generates
a weight coded solution from the altered distances of the weight coded matrix.

The resulting solution, based upon the weight coded distances, is subsequently decoded
using the distances and demands in the original unaltered problem instance, resulting in a
‘true’ solution for the CARP instance. This process is illustrated in figure 9.3.

9.5 Preliminary Experimentation

Initial experimentation was limited to using the path scanning and augment merge heuris­
tics as the solution generation mechanism. Different ranges for the adjustment of weight
coded integers were tested using a population size of 250, 2PX Crossover and a random
mutation rate of up to 2. The stopping condition for the GA was set to 1,500 generations.

156 9.6 Computational Experiments

Method(instance subset)
Av Dev %

10%
Av Dev %

50%
Av Dev %

100%
AMA (gdb) 0.67 0.53 0.49
PSA (gdb) 0.25 0.21 0.24
AMA (val) 4.40 5.11 6.31
PSA (val) 3.12 2.89 3.41

Table 9.2: CARP preliminary results for different ranges of adjustment for weight
coded integers.

Each combination was run against a subset of the gdb and val problem instances and the
results attained, for the different ranges, are presented in table 9.2. The average deviation
% across the gdb and val instances tested are shown for the ranges 10%, 50% and 100%,
i.e. each weight coded integer is allowed to be adjusted by up to these preset percentage
values.

As can be seen, the results are quite robust across all ranges evaluated, however, the
runtime when using the path scanning method is superior when compared to augment
merge. Although the augment merge method is capable of producing quality solutions to
CARP problem instances given sufficient time, it does not lend itself as a valid solution
mechanism with such poor scalability. In contrast, the path scanning approach scales well
and offers superior solution quality. Given this fact, the solution mechanism for the CARP
has been restricted to the path scanning approach.

9.6 Computational Experiments

Using the following set of predefined parameters, derived from the intensive investiga­
tion of various combinations, the GAPS algorithm was run against the sets of problem
instances outlined in section 5.3.

Weight coded range (mutations): 50% range
Population size:

Crossover:
Mutation rate:

Solution mechanism: PSA heuristic
Stopping criterion: 1,500 generations

250
2PX
1 or 2 mutations

A total of 50 runs were carried out for each individual problem instance using a Pentium
IV 2.8GHz computer, running a GNU/Linux Operating System.

9.6 Computational Experiments 157

9.6.1 GAPS Results

Experimental results for GAPS are shown in tables 9.3 and 9.4. The column headed
“CARPET” give the results reported by Hertz et al. [93], for an adapted version of TS
called CARPET. The column headed “MA” show the results by Lacomme et al. [106] us­
ing a memetic algorithm. The column headed “TSAv2” presents results for a deterministic
tabu search algorithm by Brandao and Eglese [15].

CPU computing time in seconds reported for GAPS are achieved using the hardware
described in the previous section. The runtimes reported by other authors have been scaled
in line with those reported by Brandao and Eglese. The average deviation from the best
known solution for each problem instance is presented and calculated using equation 1.1,
in chapter 1.

For the gdb set of problems instances, the average results for GAPS are better than those
of CARPET. However, the results for MA and TSAv2 provide a superior solution quality
when compared to those from GAPS. With the exception of gdb8 and gdb9, GAPS has
been able to identify the best known solutions for all gdb problem instances.

Problem
Best

Known
CARPET

Cost CPU (s) Cost
MA

CPU (s)
TSA v2

Cost CPU (s)
GAPS Av

Cost CPU (s)
GAPS
Best

gdbl 316 316 2.4 316 0.0 316 0.0 316 4.8 316
gdb2 339 339 4.0 339 0.3 339 0.1 339 3.7 339
gdb3 275 275 0.1 275 0.0 275 0.0 275 0.2 275
gdb4 287 287 0.1 287 0.0 287 0.0 287 0.8 287
gdb5 377 377 4.3 377 0.1 377 0.1 379 14.6 377
gdb6 298 298 0.7 298 0.1 298 0.0 298 1.2 298
gdb7 325 325 0.0 325 0.1 325 0.0 325 1.4 325
gdb8 344 352 47.2 350 26.5 348 1.6 356 23.3 348
gdb9 303 317 41.8 303 4.7 303 26.1 309 96.4 303
gdb 10 275 275 1.2 275 0.1 275 0.0 275 0.4 275
gdbl 1 395 395 1.8 395 0.9 395 0.1 395 21.3 395
gdb 12 458 458 16.0 458 6.5 458 0.8 462 12.6 458
gdb 13 536 544 1.9 536 4.9 540 4.8 539 17.4 536
gdb 14 100 100 0.4 100 0.1 100 0.1 100 0.4 100
gdb 15 58 58 0.0 58 0.0 58 0.0 58 0.1 58
gdb 16 127 127 1.3 127 0.1 127 0.1 127 0.2 127
gdb 17 91 91 0.0 91 0.1 91 0.0 91 0.1 91
gdb 18 164 164 0.2 164 0.1 164 0.0 164 0.9 164

gdb 19 55 55 0.2 55 0.0 55 0.0 55 0.1 55

gdb20 121 121 7.4 121 0.2 121 0.2 121 0.4 121
gdb21 156 156 0.9 156 0.1 156 0.0 156 2.3 156

gdb22 200 200 2.6 200 2.3 200 0.1 200 19.4 200
gdb23 233 235 26.6 233 34.1 235 22.3 234 15.2 233

Average Dev (%) 0.47 0.04 0.08 0.34 0.00

Table 9.3: Comparison of results for AMA variations on De Armon dataset instances.

158 9.6 Computational Experiments

Best CARPET MA TSA v2 GAPS Av GAPS
Problem Known Cost CPU (s) Cost CPU (s) Cost CPU (s) Cost CPU (s) Best
vail A 173 173 0.0 173 0.0 173 0.0 173 1.2 173
vallB 173 173 7.2 173 5.3 173 0.9 174 37.2 173
val 1C 245 245 72.3 245 19.1 245 12.1 248 19.9 245
val2A 227 227 0.1 227 0.1 227 0.0 227 4.3 227
val2B 259 259 10.1 259 0.1 259 0.3 260 10.6 259
val2C 457 457 24.5 457 14.5 457 7.8 474 15.2 468
vaDA 81 81 0.6 81 0.1 81 0.0 81 1.9 81
val3B 87 87 2.1 87 0.0 87 0.0 88 4.3 87
val3C 138 138 32.2 138 18.8 138 1.3 140 15.2 138
val4A 400 400 21.9 400 0.5 400 0.4 403 57.4 400
val4B 412 412 58.6 414 0.8 412 5.5 417 67.4 412
val4C 428 428 54.2 428 12.7 428 38.0 452 96.4 450
val4D 530 530 180.8 541 68.9 530 110.0 575 78.3 569
val5A 423 423 2.9 423 1.3 423 0.3 423 71.1 423
val5B 446 446 32.0 446 0.7 446 0.1 447 84.9 446
val5C 473 474 41.3 474 67.3 474 10.6 481 92.7 479
val5D 571 577 173.5 583 60.5 583 73.3 607 124.3 598
val6A 223 223 3.0 223 0.1 223 1.6 223 14.4 223
val6B 233 233 20.9 233 44.9 233 12.7 234 92.7 233
val6C 317 317 66.0 317 34.8 317 22.9 338 42.6 337
val7A 279 279 5.1 279 1.3 279 1.0 279 16.3 279
val7B 283 283 0.0 283 0.3 283 0.5 283 41.6 283
val7C 334 334 94.0 334 67.5 334 37.0 339 44.7 337
val8A 386 386 3.0 386 0.5 386 0.3 386 52.4 386
val8B 395 395 63.1 395 6.7 395 1.8 396 45.7 395
val8C 521 521 114.1 527 47.7 529 55.7 569 78.6 545
val9A 323 323 22.1 323 12.2 323 0.0 326 56.6 323
val9B 326 326 46.4 326 19.6 326 0.5 335 81.2 326
va!9C 332 332 43.7 332 47.5 332 0.4 336 102.4 332
val9D 385 391 273.5 391 140.7 391 60.4 421 78.9 410
vallOA 428 428 4.3 428 17.0 428 3.2 433 67.4 429
vail OB 436 436 14.3 436 3.1 436 1.8 452 97.3 436
val IOC 446 446 72.4 446 11.5 446 7.5 471 81.5 447
vallOD 526 528 121.0 530 143.3 530 218.1 560 114.9 557

Average Dev (%) 1.86 0.23 0.15 2.45 1.38

Table 9.4: Comparison of results for AMA variations on Benevalant et al. dataset
instances.

In contrast, the success of GAPS for the val problem instance set is mixed, providing
slightly inferior results, when compared to the results from the other algorithmic ap­
proaches. Clearly, good or in most cases best known solutions for the A and B variants
of each problem are achieved. However, in the case of the C and D variants, only limited
success has been achieved, the quality of solution degrading in line with an increase in
problem size.

All edge distances can be changed using weight coding, irrespective of whether the edges
are required or non-required. In any problem instance, as required edges are added to

9.7 Convergence and Solution Uplift 159

vehicle routes, they become available as unrequired edges for traversal to and from the
depot by any vehicle. Once a vehicle has been allocated to capacity with required edges
it must identify a shortest path traversal back to the depot and also for each new route, the
shortest path traversal to the endpoint of any remaining unserviced required edges must
be derived.

Perturbing edges distances for any traversals along non-required edges would seem to be
inappropriate. Given that for each of these traversals, the shortest path is sought, the path
along a set of perturbed edges, would generally decode to a path with a length longer than
that of the shortest using the original distance data. However, further investigation would
be required in order to substantiate this theory.

9.7 Convergence and Solution Uplift

The uplift in solution quality obtained from the integration of the PSA and AMA heuristics
into the GAPS framework in comparison to using these heuristics in their standard form
is shown in figure 9.4.

Path Scanning (PS)

GAPS Average (PS)

A ugm ent M erge (AM)

GAPS Average (AM)

0 2 4 6 8 10 12 14 16

% Average D eviation From O ptim um /B est Known Solution

Figure 9.4: Uplift in solution quality using GAPS in comparison to the standard
heuristics for instance sets gdb and val.

■ v a i D g d b

GAPS has again succeeded in substantially lifting the solution quality of the PSA and

160 9.8 Chapter Summary

AMA heuristics by margins of between 7.3%and 14.3% across the gdb and val problem
instance sets.

9.8 Chapter Summary

This chapter provides details of the application of the GAPS framework to the CARP. A
series of preliminary experiments are described and evaluated, leading to the derivation
of a generic set of parameter settings for the GAPS framework and choice of the PSA
heuristic to act as the solution mechanism. Finally, using these configuration settings,
results for a series of 50 runs of the problem instances from the gdb and val instances sets
are presented.

These results further demonstrate the ability of GAPS, using a simple method such as
the PSA heuristic, to provide far superior solution quality when compared to the results
obtained from using the PSA heuristic in isolation. When compared to other state of the
art algorithmic techniques, the results obtained by GAPS for the CARP do not compare
as favourably as those attained for the CVRP. However, the relative deviation of solu­
tion quality from the results presented for the other methods is very small and very easy
to live with given the quality of results achieved across the two optimization problems
investigated.

 161

Chapter 10

Conclusions

10.1 Conclusions

The main achievement of this thesis has been the development of a hybridized algorithm,
applied to the CVRP and CARP, called Genetic Algorithm with Perturbation Scheme
(GAPS).

The trend amongst researchers over the last decade has been the development of more and
more powerful algorithms for the solution of optimization problems. However, the result
of these endeavours is often ever increasingly complex algorithms, which are typically
both difficult to understand and implement. Another side effect is often the desire of
many authors to produce new best results for benchmark instances from the literature,
resulting in algorithmic techniques which are not generic in nature and whose ability to
provide good quality solutions for unseen benchmark problems is arguably questionable.

The experimental results for GAPS, run against standard benchmark instances and pre­
sented in chapters 8 and 9, clearly demonstrate the dramatic uplift in solution quality from
using standard heuristic techniques alone, brought about through the integration of these
problem specific heuristics within a genetic algorithm framework, in conjunction with
perturbation/weight coded models.

Within the present study current problem instances have been combined into a standard­
ised model, to dispel the complications that exist at present among the many sources from
which they can be obtained. A series of new perturbation models for use within the GAPS
algorithm have been presented and evaluated. Further analysis of the specific aspects of
these models, such as shape and size have been investigated, to allow a generic set of
parameter settings to be derived, applicable to the set of problem instances tested.

Using these generic set of parameter settings, in conjunction with the CW heuristic for
the CVRP, GAPS has provided an uplift in solution quality across instances tested, over
the results obtained from the CW alone, of between 2.6% and 8%. Throughout the 50

162 10.2 Future Work

runs carried out on the 107 problem instances tested using these fixed parameters settings,
GAPS has been able to identify the optimum or best known solutions for 101 of the 107
instances, with an average deviation from the best known/optimum solutions of 0.295%
across all problems. Overall the results from GAPS compare favourably to state of the art
techniques in the literature.

Similarly, improvements over the standard heuristics are also achieved for the CARP using
a weight coded scheme. Over the same configuration of experimental runs, GAPS has
identified 47 optimum or best known solutions from the 57 problem instances tested.
However, in the case of weight coding, it is evident that superior quality solutions are
more easily obtained for smaller problem instances.

Given that the use of classical heuristics such as CW are still prevalent in commercial soft­
ware today, largely due to the relative solution quality attained in relation to quick runtime
execution, the substitution of a simple algorithm like GAPS would arguably represent a
realistic alternative method, providing consistently superior quality solutions, in realistic
time scales.

10.2 Future Work

The following sections outline a number of suggestions for the extension of the work
presented within this thesis.

10.2.1 Extension of the present study to larger problem instances

The extension of the present study to benchmark GAPS against a wider range of larger
problem instances for both the CVRP and CARP is the most obvious course of action.
With respect to the CVRP, the largest problem instance tested is that from Rochard &
with 364 customers. The set of commonly used large scale problem instances, ranging
from 200 to 480 customers, by Li et al. [115] would seem to be appropriate for this
investigation.

For the CARP, given that experimentation was curtailed to problem instances with only
required edges, extension to encompass problem instances that include non required edges
and those derived from real world data, would be the obvious priority. Valid instances
would be those by Beullens et al. [14], based upon the road network in Flanders, Belgium,
and by Brandao and Eglese [15], derived from a winter gritting study in Lancashire.

10.2 Future Work 163

10.2.2 Coordinate perturbation versus weight coding

The work presented within this thesis demonstrates the usefulness and robustness of using
a perturbation and weight coding model. This has been demonstrated through the appli­
cation of a perturbation model within the GAPS algorithm to solve the CVRP and in the
case of the CARP, by means of a weight coding scheme. In order to better understand the
role that each plays, it would seem appropriate to apply both of these schemes to the same
optimization problem, allowing a direct comparison to be made and further insight to be
obtained. Given the extensive work undertaken on the CVRP already, the application of a
weight coded scheme to the same problem would seem to be the most appropriate means
of achieving this.

10.2.3 Thorough analysis of improvement heuristics

Although the present study has limited the use of improvement heuristics to 2-Opt, an
investigation into alternative improvement heuristics is recommended. A detailed com­
parative study to evaluate the ability of each heuristic to improve the solutions derived
from offspring chromosomes, in conjunction with an assessment of the running times
required to execute these routines could be carried out.

Experimental analysis of these heuristics could evaluate the total number of times the re­
pair process results in an improvement to solution quality and the actual runtimes required
to achieve such improvements.

10.2.4 Extension of GAPS to other VRP variants

A number of important variants of the CVRP were introduced in chapter 4, which ex­
tend the CVRP. These problems consider some of the typical constraints which must
be considered when transporting goods or providing services, such as time windows and
pickups. In addition to these standard theoretical problems, a wide array of additional
constraints exist in the real world situations. The natural step in exploring the ability of
GAPS to deal with some of these additional constraints encountered in such situations,
would be its application to the VRPTW.

164 10.2 Future Work

10.2.5 GAPS applied to other optimization problems

Given the multitude of A fV -Hard optimization problems that exist, many with common
attributes, the further application of GAPS to solve alternative combinatorial problems,
would appear to be a valid step. As detailed in section 7.3, a number of weight coding
schemes have already been applied to different problems, but currently the use of a per­
turbation model is restricted to those problems that are defined on a graph structure and
having problem instance data defined upon coordinates within a 2d Euclidean space. For
other problems, the weight coded model must be used.

The main goal would be the construction of a generic model based upon a perturbation
scheme, that can be used for any combinatorial problem, irrespective of the format of its
underlying instance data. Consider the CARP, where distances are commonly defined
based not on coordinates, but values. Developing a scheme to allow fixed values to be
mapped onto coordinates would allow any problem to be solved using a perturbation
model.

Given that for coordinate based problems, the initial coordinate locations are initially
randomised through perturbation anyway, translating fixed distances into a 2d Euclidean
space to provide a rough approximation of position, would arguably provide a similar,
fairly random, starting position as in the case of the CVRP. By mapping such fixed input
data loosely on a 2d Euclidean space, it would be possible to execute any optimization
problem using a perturbation scheme within the GAPS algorithm.

Of course, if feasible, this model would not need to be restricted to a 2d Euclidean space
and could be extended up to an n dimensional Euclidean space dependant on the problem
type. The main motivation for investigating such a system is currently based upon the
observation of a superior uplift in solution quality achieved from using the perturbation
model for the CVRP in comparison to the weight coded model for the CARP. However,
investigation into the actual feasibility of such an n dimensional model would first require
a direct comparison of weight coding and perturbation on a common problem type, before
further investigation is undertaken to validate such a model.

165

References

[1] A. S. Alfa, S. S. Heragu, M. Chen. A 3-opt based simulated annealing algorithm
for vehicle routing problems. Computers and Industrial Engineering, 21:635-939,
1991.

[2] D. L. Applegate, R. E. Bixby, V. Chavtal, W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2006.

[3] K. Atlinkemer, B. Gavish. Parallel savings based heuristic for the delivery problem.
Operations Research, 19:731-749, 1989.

[4] P. Augerat, J. M. Belenguer, A. Corberan, D. Naddef, G. Rinaldi. Computational
results with a branch and cut code for the capacitated vehicle routing problem.
Research Report 949-M, Universite Joseph Fourier, Grenoble, France, 1980.

[5] M. L. Balinski, R. E. Quandt. On an integer program for a delivery program.
Operations Research, 12:300-304, 1964.

[6] W. W. R. Ball, H. S. M. Coxeter. Mathematical Recreations and Essays. 13th ed.
New York: Dover, pp. 262-266, 1987.

[7] M. O. Ball, M. J. Magazine. Sequencing of Insertions in Printed Circuit Board
Assembly. Operations Research, 36(2): 192-201, 1988.

[8] G. Barbarosoglu, D. Ozgtir. A Tabu Search Algorithm for the Vehicle Routing
Problem. Computers & Operations Research, 26:255-270, 1999.

[9] E. B. Baum. Iterated descent: A better algorithm for local search in combinatorial
optimization problems. Manuscript, 1986.

[10] T. Bektas. The multiple traveling salesman problem: anoverview of formulations
and solution procedures. Omega, 34(3):209-219, 2006.

[11] E. L. Beltrami, L. D. Bodin. Networks and Vehicle Routing for Municipal Waste
Collection. Networks, 4:65-94, 1974.

166 References

[12] E. Benavent, V. Campos A. Corberan, E. Mota. The Capacitated Chinese Postman
Problem: Lower Bounds. Networks, 22(7):669-690, 1992.

[13] E. Benavent, D. Soler. The Directed Rural Postman Problem with Turn Penalties.
Transportation Science, 33(4):408^118, 1999.

[14] P. Beullens, L. Muyldermans, D. Cattrysse, D. Van Oudheusden. A guided lo­
cal search heuristic for the capacitated arc routing problem. European Journal of
Operational Research, 147:629-643, 2003.

[15] J. Brandao, R. Eglese. A deterministic tabu search algorithm for the capacitated
arc routing problem. Computers and Operations Research, 35:1112-1126, 2008.

[16] R. A. Bradwell, L. P. Williams, C. L. Valenzuela. Breeding Perturbed City Coor­
dinates and ‘Fooling’ a Travelling Salesman Heuristic Algorithm. Third Interna­
tional Conference on Artificial Neural Networks and Genetic Algorithms, (ICAN-
NGA97) Norwich, Springer Verlag, 241-249, 1997.

[17] J. Bramel, D. Simchi-Levi. A location based heuristic for general routing problems.
Operations Research, 43:649-660, 1995.

[18] J. Branke, M. Middendorf. Searching for shortest common supersequences by
means of a heuristic-based genetic algorithm. In J. T. Alander (ed), Proceedings
of the Second Nordic Workshop on Genetic Algorithms and their Applications,
University of Vaasa, Vaasa, Finland, 105-113, 1996.

[19] O. Braysy, M. Gendreau. Vehicle Routing with Time Windows. Part I: Route Con­
struction and Local Search Algorithms. Transportation Science, 39(1): 104-118,
2005.

[20] O. Braysy, M. Gendreau. Vehicle Routing with Time Windows. Part II: Metaheuris­
tics. Transportation Science, 39(1): 119-139, 2005.

[21] P. Brucker. The Chinese Postmand Problem for Mixed Graphs. In: Proc. Int.
Workshop, Lecture Notes in Computer Science 100:354-366, 1981.

[22] B. Bullnheimer, F. Hard, C. Strauss. An improved ant system algorithm for the
vehicle routing problem. Annals of Operations Research, 89:319-328, 1999.

[23] N. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg. Hyper­
heuristics: an emerging direction in modem search technology. Burke, E., Kendall,
G., Newall, J., Hart, E., Ross, P., and Schulenburg, S., Handbook of metaheuristics,

References 167

chapter 16, Hyper-heuristics: an emerging direction in modem search technology,
pp. 457^-74. Kluwer Academic Publishers, 2003.

[24] J. Cahoon, W. Martin, J. Leinig. Island (Migration) Models: Evolutionary Algo­
rithms Based on Punctuated Equilibria. Handbook of Evolutionary Computation,
6(3): 1-16, 1997.

[25] K. Capp, B. Julstrom. A Weight-Coded Genetic Algorithm for the Minimum
Weight Triangulation Problem. In Proceedings of the 1998 ACM Symposium on
Applied Computing, ACM Press, 327-331, 1998.

[26] I. Charon, O. Hudry. The noising method: a new method for combinatorial opti­
mization. Operations Research Letters, 14:133-137, 1993.

[27] N. Christofides. The Optimal Traversal of a Graph. Omega, 1:719-732, 1973.

[28] N. Christofides, E. Benavent, V. Campos, A. Corberan, E. Mota. An Optimal
Method for the Mixed Postman Problem. In: P. Thoft-Christensen (ed.), System
Modelling and Optimization, Lecture Notes in Control and Information Sciences,
Springer, Berlin, 59, 1984.

[29] N. Christofides, V. Campos, A. Corberan, E. Mota. An Algorithm for the Rural
Postman Problem. Imperial College Report IC.O.R.81.5, London, 1981.

[30] N. Christofides, E. Benavent, V. Campos, A. Corberan, E. Mota. An Algorithm
for the Rural Postman Problem on a Directed Graph. Mathematical Programming,
26:155-166, 1984.

[31] N. Christofides, S. Eilon. An Algorithm for the Vehicle Dispatching Problem.
Operational Research Quarterly, 20:309-318, 1969.

[32] N. Christofides, A. Mingozzi, P. Toth. The Vehicle Routing Problem. In
N. Christofides, A. Mingozzi, P. Toth and C. Sandi, editors. Combinatorial
Optimization, Wiley, Chicester, UK, pp. 315-338, 1979.

[33] N. Christofides, A. Mingozzi, P. Toth. Exact Algorithms for the Vehicle Routing
Problem, Based on Spanning Tree and Shortest Path Relaxations. Mathematical
Programming, 20:255-282, 1981.

[34] A. Church. An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics, 58:345-363, 1936.

[35] G. Clarke, J. W. Wright. Scheduling of Vehicles from a Central Depot to a Number
of Delivery Points. Operations Research, 12:568-581, 1964.

168 References

[36] B. Codenotti, G. Manzini, L. Margara, G. Resta. Perturbation: an efficient tech­
nique for the solution of very large instances of Euclidean TSP. INFORMS Journal
on Computing, 8:125-133, 1996.

[37] A. Colomi, M. Dorigo, V. Maniezzo. Distributed optimization by ant colonies.
Proceedings of ECAL’91, European Conference on Artificial Life, Elsevier Pub­
lishing, Amsterdam, 1991.

[38] S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM Symp.
Theory of Computing, 151-158, 1971.

[39] A. Corberan, J. M. Sanchis. A polyhedral approach to the rural postman problem.
European Journal of Operational Research, 79:95-114, 1994.

[40] A. Corberan, A. Romero, J. M. Sanchis. The Mixed General Routing Polyhedron.
Mathematical Programming Series A, 96(1): 103-137, 2003.

[41] A. Corberan, G. Mejia, J. M. Sanchis. New Results on the Mixed General Routing
Problem, submitted to Operations Research, 2004.

[42] J. F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, F. Soumis. The VRP
with time windows. P. Toth, D. Vigo, eds. The Vehicle Routing Problem, SIAM
Monographs on DiscreteMathematics and Applications. SIAM, Philadelphia, PA,
pp. 157-194, 2001.

[43] G. Croes. A method for solving traveling salesman probems. Operations Research,
6:791-812, 1958.

[44] G. B. Dantzig, D. R. Fulkerson, S. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research 2:393^110, 1954.

[45] R. Dawkins. The Selfish Gene. Oxford University Press, 1976.

[46] J. DeArmon. A Comparison of heuristics for the capacitated Chinese Postman
problem. Master’s thesis, University of Maryland, College Park, MD, 1981

[47] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. Dissertation, University of Michigan, U.S.A, 1975.

[48] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, F. Soumis. Vehicle routing
with time windows: Optimization and approximation. B. Golden, A. Assad, eds.
Vehicle Routing: Methods and Studies. Elsevier Science Publishers, Amsterdam,
The Netherlands, pp. 65-84, 1988.

References 169

[49] M. Desrochers, T. W. Verhoog. A matchings based savings algorithm for the ve­
hicle routing problem. Technial Report Cahiers du GERAD G-89-04, Ecole des
Hautes Etudes Commerciales de Montreal, Canada, 1989.

[50] J. Desrosiers, Y. Dumas, M. M. Solomon, F. Soumis. The constrained routing and
scheduling. M. O. Ball, T. L. Magnanti, C. L. Monma, G. L. Nemhauser, eds.
Handbooks in Operations Research and Management Science 8: Network Routing.
Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 35-139, 1995.

[51] K. Doemer, R. Hartl, S. Benkner, M. Lucka. Parallel Cooperative Savings
Based Ant Colony Optimization - Multiple Search and Decomposition Approaches.
Parallel Processing Letters, 16(3):351—370, 2006.

[52] M. Dror, A. Langevin. A generalized traveling salesman problem approach to the
directed clustered rural postman problem. Transportation Science, 31(2): 187-192,
1997.

[53] M. Dror. Arc routing: Theory, solutions and applications. M. Dror (Ed), Kluwer
Academic Publishers Group, New York, 2000.

[54] J. Edmonds. The Chinese Postman’s Problem. ORSA Bull, 13:73, 1965a.

[55] J. Edmonds, E. Johnson. Matching, Euler Tours and the Chinese Postman Problem.
Mathematical Programming, 5:88-124, 1973.

[56] S. Eilon, C. Watson-Gandy, N. Christofides. Distribution Management, Mathemat­
ical Modeling and Practical Analysis. Griffin, London, 1971.

[57] L. Euler. Solutio Problematis ad Geometrian Situs Pertinentis. Commentarii
academiae scientarum Petropolitanae, 8:124-140, 1736.

[58] P. Fernandes de Cordoba, L. M. Garcia Raffi, J. M. Sanchis. A Heuristic Algorithm
based on Monte Carlo methods for the Rural Postman Problem. Computers and
Operations Research, 25(12): 1097-1106, 1998.

[59] M. L. Fisher. Optimal solution of vehicle routing problems using minimum k-trees..
Operations Research, 42:626-642, 1994.

[60] M. L. Fisher, R. Jaikumar. A generalized assignment heuristic for the vehicle rout­
ing problem. Networks, 11:109-124, 1981.

[61] M. L. Fisher, R. Jaikumar, L. N. Van Wassenhove. A multiplier adjustment method
for the generalized assignment problem. Management Science, 32(9): 1095-1103,
1986.

170 References

[62] H. Fleischner. Eulerian Graphs and Related Topics (Part 1, Volume 2). Annals of
Discrete Mathematics, 45, North-Holland, Amsterdam, 1991.

[63] M. Fleury. Deux problemes de geometrie de situation. Journal de mathematiques
elementaires, 257-261, 1883.

[64] M. M. Hood. The travelling-salesman problem. Operations Research, 4:61-75,
1956.

[65] R. De. Franceschi, M. Fischetti, P. Toth. A new DLP-based refinement heuristic for
Vehicle Routing Problems . Mathematical Programming, 105:471^199, 2006.

[66] P. M. Franka, M. Gendreau, G. Laporte, F. Muller. The m-traveling salesman prob­
lem with minmax objective. Transportation Science, 29:267-275, 1995.

[67] G. N. Frederickson, M. S. Hecht, C. E. Kim. Approximation algorithms for some
routing problems. SIAM Journal on Computing, 7:178-193, 1978.

[68] G. N. Frederickson. Approximation Algorithms for Some Postman Problems. L
Assoc. Comput. Mach., 26:538-554, 1979.

[69] L. R. Ford, D. R. Fulkerson. Hows in Networks. Princeton University Press,
Princeton, N. J., 1962.

[70] B. A. Foster, D. M. Ryan. An Integer Programming Approach to the Vehicle
Scheduling Problem. Operational Research Quarterly, 27:367-384, 1976.

[71] L. M. Gambardella, E.Taillard, G. Agazzi. MACS-VRPTW: A Multiple Ant
Colony System for Vehicle Routing Problems with Time Windows. New Ideas
in Optimization, David Come and Marco Dorigo and Fred Glover, McGraw-Hill,
63-76, 1999.

[72] K. Ganesh, T. T. Narendran. CLOVES: A cluster-and-search heuristic to solve
the vehicle routing problem with delivery and pick-up. European Journal of
Operational Research, 3:699-717, 2007.

[73] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

[74] T. J. Gaskell. Bases for vehicle fleet scheduling. Operational Research Quarterly,
18:281-295, 1967.

[75] G. Ghiani, G. Laporte. A branch-and-cut algorithm for the undirected rural post­
man problem. Mathematical Programming, 87:467-481, 2000.

References 171

[76] M. Gendreau, A. Hertz, G. Laporte. A Tabu Search Heuristic for the Vehicle Rout­
ing Problem. Management Science, 40(10): 1276-1290, 1994.

[77] B. E. Gillet, L. R. Miller. A heuristic algorithm for the vehicle dispatch problem.
Operations Research, 22:340-349, 1974.

[78] F. Glover. Future Paths for Integer Programming and Links to Artificial Intelli­
gence. Computer and Operations Research, 13:533-549, 1986.

[79] F. Glover. Tabu Search, Part I. ORSA Journal on Computing, 1:190-206, 1989.

[80] F. Glover. Tabu Search, Part n. ORSA Journal on Computing, 2:4-32, 1990.

[81] D. E. Goldberg, R. Lingle. Alleles, loci, and the traveling salesman problem. In:
Grefenstette JJ (ed) Proceedings of an International Conference on Genetic Algo­
rithms and Their Applications. Camegie-Mellon University, 154-159, 1985.

[82] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley Publishing Company Inc, New York, 1989.

[83] B. L. Golden, A. A. Assad. Perspectives on vehicle routing: Exciting new devel­
opments. Operations Research, 34:803-809, 1986.

[84] B. L. Golden, A. A. Assad. Vehicle Routing: Methods and Studies. Elsevier
Science Publishers, Amsterdam, The Netherlands, 1988.

[85] B. L. Golden, J. DeArmon, E. K. Baker. Computational experiments with algo­
rithms for a class of routing problems. Operations Research, 10(l):47-59, 1983.

[86] B. L. Golden, R. T. Wong. Capacitated Arc Routing Problems. Networks, 11:305—
315, 1981.

[87] M. Grotschel, Z. Win. A Cutting Plan Algorithm for the Windy Postman Problem.
Mathematical Programming, 55:339-358, 1992.

[88] M. Guan. Graphic Programming Using Odd and Even Points. Chinese Math,
1:273-277, 1962.

[89] M. Guan. On the Windy Postman Problem. Discrete Applied Mathematics, 9:41-
46, 1984.

[90] G. Gutin, A. P. Punnen. Traveling Salesman Problem and Its Variations. Kluwer
Academic Publishers, 2002

172 References

[91] E. Hadjiconstantinou, N. Christofides, A. Mingozzi. A new exact algorithm for the
vehicle routing problem based on g-paths and /^-shortest paths relaxations. Annals
of Operations Research, 61:21—43, 1995.

[92] K. Helsgaun. An effective implementation of k-opt moves for the Lin-Kemighan
TSP heuristic. Writings on Computer Science, No. 109, Roskilde University, 2006

[93] A. Hertz, G. Laporte, M. Mittaz. A Tabu Search Heuristic for the Capacitated
Arc Routing Problem. Operations Research, 48(1): 129-135, 2000.

[94] C. Hierholzer. Uber die Moglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbechung zu umfahren. Mathematische Annalen, VI:30-32, 1873.

[95] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

[96] B. A. Julstrom. Representing rectilinear Steiner trees in genetic algorithms. In
K. M. George, J. H. Carroll, D. Oppenheim, and J. Hightower, (eds.), Proceedings
of the 1996 ACM Symposium on Applied Computing, New York, ACM Press,
245-250, 1996.

[97] B. A. Julstrom. Julstrom. Insertion decoding algorithms and initial tours in a
weight-coded GA for TSP. J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D B. Fogel, H. Iba, and R. L. Riolo (ed.), Genetic Programming 1998:
Proceedings of the Third Annual Conference, Madison, Wisconsin, Morgan Kauf-
mann, 528-534,1998.

[98] C. H. Kappauf, G. K. Koehler. The Mixed Postman Problem. Discrete Applied
Mathematics, 1:89-103, 1979.

[99] R. M. Karp. Reducibility among combinatorial problems. In: Complexity of
Computer Computations. R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New
York, 85-104, 1972.

[100] H. Kawamura, M. Yamamoto, T. Mitamura, K. Suzuki, A. Ohuchi. Cooperative
Search Based on Pheromone Communication for Vehicle Routing Problems. In:
IEEE Transactions on Fundamentals, E81-A, 1089-1096, 1998.

[101] G. A. P. Kindervater, M. W. P. Savelsbergh. Vehicle routing: Handling edge ex­
changes. In E. H. L. Aarts and J. k. Lenstra, editors, Local Search in Combinatorial
Optimization. Wiley, Chichester, UK, 337-360, 1997.

References 173

[102] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi. Optimization by Simulated Anneal­
ing. Science, 220(4598):671-680, 1983.

[103] M. Kiuchi, Y. Shinano, R. Hirabayashi, Y. Saruwatari. An exact algorithm for
the Capacitated Arc Routing Problem using Parallel Branch and Bound method.
Presented at the 1995 Spring National Conference of the Operational Research
Society of Japan, 1995.

[104] J. R. Koza. Genetic programming: on the programming of computers by means of
natural selection. The MIT Press, Cambridge, MA, 1992.

[105] P. Lacomme, C. Prins, A. Tanguy. First Competitive Ant Colony Scheme for the
CARP. ANTS Workshop 2004, 426-427, 2004.

[106] P. Lacomme, C. Prins, W. Ramdane-Cherif. Competitive memetic algorithms for
arc routing problems. Annals of Operational Research, 131(1-4): 159-185, 2004.

[107] G. Laporte, M. Desrochers, Y. Nobert. Two exact algorithms for the distance con­
strained vehicle routing problem. Networks, 14:161-172, 1984.

[108] G. Laporte, Y. Nobert, M. Desrochers. Optimal routing under capacity and distance
restrictions. Operations Research, 33:1050-1073, 1985.

[109] E. L. Lawler, D. E. Wood. Branch-and-bound methods: a survey. Operations
Research, 14:699-719, 1966.

[110] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys. The Traveling
Salesman Problem. John Wiley, Chichester, 1985.

[111] J. K. Lenstra, A. H. G. Rinnooy Kan. On General Routing Problems. Networks,
6:273-280, 1976.

[112] J. K. Lenstra, A. H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling
problems. Networks, 11:221-227, 1981.

[113] A. N. Letchford. Polyhedral results for some constrained arc routing problems.
PhD thesis, Lancaster University, Lancaster, 1996.

[114] A. N. Letchford, A. Lodi. The traveling salesman problem: a book review . 4QR:
A Quarterly Journal of Operations Research, 5(4):315—317, 2007.

[115] F. Li, B. Golden, E. Wasil. Very large-scale vehicle routing: new test problems,
algorithms, and results. Computers and Operations Research, 32(5): 1165—1179,
2005.

174 References

[116] L. Y. O. Li. Vehicle Routing for Winter Gritting. Ph.D thesis, Department of
Management Science, Lancaster University, Lancaster, 1992.

[117] L. Y. O. Li, R. W. Eglese. An Interactive Algorithm for Vehicle Routing for Winter-
Gritting. Journal of the Operational Research Society, 47:217-228, 1996.

[118] C. L. Li, D. Simchi-Levi, M. Desrochers. On the distance-constrained vehicle
routing problem. Operations Research, 40(4):790-799, 1992.

[119] A. N. Letchford. Separating a superclass of comb inequalities in planar graphs.
Math, of Op. Res., 25:443^154, 2000.

[120] S. Lin. Computer solutions of the traveling salesman problem. Bell Systems
Technical Journal, 44:2245-2269, 1965.

[121] S. Lin, B. W. Kemighan. An effective heuristic algorithm for the traveling salesman
problem. Operations Research, 21:498-516, 1973.

[122] Y. Lin, Y. Zhoa. A New Algorithm for the Directed Chinese Postman Problem.
Computers & Operations Research, 15:577-584, 1988.

[123] O. Martin, S. W. Otto, E. W. Felten. Large-step Markov chains for the TSP incor­
porating local search heuristics. Operations Research Letters, 11:219-224, 1992.

[124] D. Mester, O. Braysy. Active guided evolution strategies for large scale vehi­
cle routing problems with time windows. Computers & Operations Research,
32:1593-1614, 2005.

[125] D. Mester, O. Braysy. A multi-parametric evolution strategies algorithm for vehicle
routing problems. Expert Systems with Applications, 32(2):508-517, 2007.

[126] D. Mester, O. Braysy. Active-guided evolution strategies for large-scale capaci­
tated vehicle routing problems. Computers & Operations Research, 34:2964-2975,
2007.

[127] A. Metropolis, W. Rosenbluth, M. N. Rosenbluth, H. Teller, E. Teller. Equation of
State Calculations by Fast Computing Machines. The Journal of Chemical Physics,
21(6): 1087-1092, 1953.

[128] E. Minieka. The Chinese Postman Problem for Mixed Networks. Management
Science, 25:643-648, 1979.

References 175

[129] M. J. W. Morgan, C. L. Mumford. Capacitated vehicle routing: perturbing the land­
scape to fool an algorithm. Congress on Evolutionary Computation 2005, 2271-
2277, 2005.

[130] P. Moscato, M. G. Norman. A Memetic Approach for the Traveling Salesman Prob­
lem Implementation of a Computational Ecology for Combinatorial Optimization
on Message-Passing Systems. In M. Valero, E. Onate, M. Jane, J. L. Larriba, and
B. Suarez, editors, Parallel Computing and Transputer Applications, Amsterdam,
177-186, 1992.

[131] Y. Nagata. Edge Assembly Crossover for the Capacitated Vehicle Routing Problem.
In Cotta, C., van Hemert, J.I. (eds.) EvoCOP 2007. LNCS, vol. 4446, 142-153,
2007.

[132] Y. Nagata, O. Braysy. Efficient Local Search Limitation Strategies for Vehicle
Routing Problems. EvoCOP 2008, 48-60, 2008.

[133] A. Nobert, J. C. Picard. On the Complexity of Edge Traversing. J. ACM, 23:544-
554, 1976.

[134] Y. Nobert, J. C. Picard. An Optimal Algorithm for the Mixed Chinese Postman
Problem. Publication #799, Centre de recherche sur les transports, Montreal,
Canada, 1991.

[135] C. E. Noon, J. Mittenthal, R. Pillai. A TSSP+1 decomposition strategy for the
vehicle routing problem. European Journal of Operational Research, 79:524-536,
1994.

[136] I. Or. Traveling salesman-type combinatorial optimization problems and their
relation to the logistics of regional blood banking. PhD dissertation, Depart­
ment of Industrial Engineering and Management Science, Northwestern University,
Evanston, IL, 1976.

[137] C. S. Orloff. A Fundamental Problem in Vehicle Routing. Networks, 4:35-64,
1974.

[138] I. H. Osman. Metastrategy Simulated Annealing and Tabu Search Algorithms for
Combinatorial Optimization Problems. Ph.D. Thesis, The Management School,
Imperial College, London, 1991.

[139] I. H. Osman. Metastrategy Simulated Annealing and Tabu Search Algorithms for
the Vehicle Routing Problem. Annals of Operations Research, 41:421-451, 1993.

176 References

[140] C. H. Papadimitriou. On the Complexity of Edge Traversing. J. ACM, 23:544-554,
1976.

[141] C. C. Palmer, A. Kershenbaum. Representing Trees in Genetic Algorithms. In Pro­
ceedings of the 1st International Conference on Evolutionary Computation 1994,
Orlando, FL, 379-384, 1994.

[142] W. Peam. Approximate solutions for the capacitated arc routing problem.
Computers and Operations Research, 16(6):589-600, 1989.

[143] M. Pincus. A Monte Carlo Method for the Approximate Solution of Certain Types
of Constrained Optimization Problems. Operations Research, 18(6): 1225-1228,
1970.

[144] J. Y. Potvin. The traveling salesman problem: a neural network perspective. ORSA
Journal on Computing, 5:328-348, 1993.

[145] J. Y. Potvin, S. Bengio. The vehicle routing problem with time windows part II:
genetic search. Journal on Computing, 8(2): 165-172, 1996.

[146] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & OR, 31(12): 1985-2002, 2004.

[147] V. M. Pureza, P. M. Franca. Vehicle routing problems via tabu search metaheuris­
tic. Technical Report CRT-347, Centre for Research on Transportation, Montreal,
Canada, 1991.

[148] N. J. Radcliffe, P. D. Surrey. Formal memetic algorithms. In Evolutionary Com­
puting: AISB Workshop, Springer-Verlag, 1-16, 1994.

[149] G. R. Raidl. A weight-coded genetic algorithm for the multiple container packing
problem. In J. Carroll, H. Hiddad, D. Oppenheim, B. Bryant, and G. B. Lamont
(eds.), Proceedings of the 1999 ACM Symposium on Applied Computing, New
York, ACM Press, 291-296, 1999

[150] G. R. Raidl. Weight-codings in a genetic algorithm for the multiconstraint knap­
sack problem. In V. W. Porto (ed), Proceedings of the 1999 IEEE Congress on
Evolutionary Computation, Piscataway, NJ, IEEE Press, 596-603, 1999.

[151] G. R. Raidl, B. A. Julstrom. A weighted coding in a genetic algorithm for the
degree-constrained minimum spanning tree problem. In J. Carroll et al., editors,
Proceedings of the 2000 ACM Symposium on Applied Computing, ACM Press,
440-445, 2000.

References 111

[152] T. T. Ralphs. On the mixed Chinese postman problem. Operations Research
Letters, 14:123-127, 1993.

[153] M. Reimann, M. Stummer, K. Doemer. A Savings Based Ant System For The Vehi­
cle Routing Problem. In Proceedings of the Genetic and Evolutionary Computation
Conference, 1317-1326, 2002.

[154] G. Reinelt. TSPLIB-A traveling salesman problem library. ORSA Journal on
Computing, 3:376-384, 1991.

[155] G. Reinelt. TSPLIB 95. Research Report, Institut fur Angewandte Mathematik,
Uni versitat Heidelberg, 1995.

[156] J. Renaud, F. F. Boctor, G. Laporte. An Improved Petal Heuristic for the Vehicle
Routing Problem. The Jounal of the Operational Research Society, 47(2):329-336,
1996.

[157] J. Renaud, F. F. Boctor, G. Laporte. Perturbation heuristics for the pickup and deliv­
ery traveling salesman problem. Computers and Operations Research, 29(9): 1129-
1141,2002.

[158] G. Rinaldi, L. A. Yarrow. Optimising a 48-City Travelling Salesman Problem: A
Case Study in Combinatorial Problem Solving, preprint R122, IASI-CNR: Rome,
1989.

[159] F. Robuste, C. F. Daganzo, R. R. Souleyrette. Implementing vehicle routing
models. Transportation Research, 24:263-286, 1990.

[160] A. Romero. The Rural Postman Problem on a mixed graph. Department of Statis­
tics and Operations Research, University of Valencia, 1997. (in Spanish).

[161] D. M. Ryan, C. Hjorring, F. Glover. Extensions of the petal method for vehicle
routing. The Jounal of the Operational Research Society, 44(3):289-296, 1993.

[162] Y. Rochat, E. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal od Heuristics, 1:147-167, 1995.

[163] M. M. Solomon, J. Desrosiers. Time window constrained routing and scheduling
problems. Transportation Science, 22:1—13, 1999.

[164] R. Storer, S. D. Wu, R. Vaccari. New search spaces for sequencing problems with
application to job shop scheduling. Management Science, 38:1495-1509, 1992.

178 References

[165] E. Taillard. Parallel iterative search methods for vehicle routing problems. In:
Working Paper ORWP 92/03, Departement de Mathematiques, Ecole Polytech­
nique Federate de Lausanne, 1992.

[166] E. Taillard. Parallel Iterative Search Methods for Vehicle Routing Problems.
Networks, 23:661-673, 1993.

[167] C. D. Tarantilis, C. T. Kiranoudis, V. S. Vassiliadis. A List Based Threshold
Accepting Algorithm for the Capacitated Vehicle Routing Problem. Int. J. Comput.
Math., 75(9):537-553, 2002.

[168] S. Thangiah. Vehicle routing with time windows using genetic algorithms. In
Application Handbook of Genetic Algorithms: New Frontiers, Volume n„ CRC
Press, Boca Raton, 253-277, 1995.

[169] P. M. Thomson, H. N. Psaraftis. Cyclic transfer algorithms for multi-vehicle routing
and scheduling problems. Operations Research, 41:935-946, 1993.

[170] P. Toth, D. Vigo. The Vehicle Routing Problem. P. Toth and D. Vigo (Eds), SIAM
Monographs on Disrecte Mathematics and Applications. SIAM, 2002.

[171] A. M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem Proceedings of the London Mathematical Society, Series 2,42:230-
265, 1936.

[172] G. Ulusoy. The Beet size and mix problem for capacitated arc routing. European
Journal of Operational Research, 22:329-337, 1985.

[173] C. L. Valenzuela, L. P. Williams. Improving Heuristic Algorithms for the Travelling
Salesman Problem by using a Genetic Algorithm to Perturb the Cities. Proceed­
ings of the Seventh International Conference on Genetic Algorithms, (ICGA97)
Michigan State University, Morgan Kaufmann, 458^164,1997.

[174] A. Van Breedam. An analysis of the behaviour of heuristics for the vehicle routing
problem for a selection of problems with vehicle-related, customer-related, and
time-related constraints. PhD dissertation, University of Antwerp, 1994.

[175] A. Van Breedam. Comparing decent heuristics and metaheuristics for the vehicle
routing problem. Computers & Operations Research, 28(4):289-315, 1002.

[176] O. Veblen. An Application of modular equations in analysis situs. The Annals of
Mathematics, 2(14):86-97, 1912/13.

References 179

[177] J. A. G. Willard. Vehicle routing using r-optimal tabu search. M.sc. dissertation,
The Management School, Imperial College, London, 1989.

[178] Z. Win. Contributions to Routing Problems. Doctorial Dissertation, Universitat
Augsburg, Germany, 1987.

[179] Z. Win. On the Windy Postman Problem on Eulerian Graphs. Mathematical
Programming, 44:97-112, 1989.

[180] S. Wphlk. Contributions to arc routing. PhD thesis, University of Southern Den­
mark, 2005.

[181] A. Wren. Computers in Transport Planning and Operation. Ian Allan, London,
1971.

[182] A. Wren, A. Holliday. Computer scheduling of vehicles from one or more depots to
a number of delivery points. Operarational Research Quarterly, 23:333-344, 1972.

[183] J. Xu, J. P. Kelly. A Network Flow-Based Tabu Search Heuristic for the Vehicle
Routing Problem. Transportation Science, 30:379-393, 1996.

[184] P. Yellow. A computational modification to the savings method of vehicle schedul­
ing. Operarational Research Quarterly, 21:281-283, 1970.

[185] Branch Cut and Price Resource Web. Vehicle Routing Data Sets archive at
h t t p : / / www. b r a n c h a n d c u t . o r g / V R P / d a t a / .

[186] Concorde - TSP Solver Concorde available at
h t t p : / /www . t s p . g a t e c h . edu.

[187] DEIS - Operations Research Group Library of
Instances. Vehicle Routing Data Sets archive at
h t t p : / /www. o r . d e i s . u n i b o . i t / r e s e a r c h _ p a g e s / O R i n s t a n c e s / .

[188] Energy Information Administration. International En­
ergy Outlook 2008, Document No. DOE/ELA-0484(2008) at
h t t p : / / www . e i a . doe . g o v / o i a f / i e o / i n d e x . html , 2008.

[189] TSPLIB TSP Data Sets archive at
h t t p : / /www. i w r . u n i - h e i d e l b e r g . d e / g r o u p s / c o m o p t / s o f t w a r e / .

[190] VRP Web. Vehicle Routing Data Sets archive at
h t t p : / / n e o . l c c . uma . e s / r a d i - a e b / W e b V R P / .

http://www.branchandcut.org/VRP/data/
http://www.or.deis.unibo.it/research_pages/ORinstances/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/
http://neo.lcc.uma.es/radi-aeb/WebVRP/

