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Summary
Wound healing is a complex process broken down into five main stages fibrin clot 

formation, re-epithelialisation, granulation tissue formation and wound contraction, 

and finally angiogenesis. In the second stage, re-epithelialisation over fibroblast- 

derived matrix occurs which is necessary for wound closure. During this process, 

TG2, a multi-functional enzyme with both cross linking and GTP signalling ability 

is involved in both stabilisation of the extracellular matrix by cross linking and by 

allowing downstream signalling events to occur which lead to the wound closing. 

This thesis has investigated the mechanisms by which re-epithelialisation occurs 

with regard to TG2. In the first stage of wound healing, an influx of growth factors 

and metalloproteinases occurs, that through the initial interaction of TG2 are able to 

stabilise the matrix and stimulate keratinocyte cells to migrate and proliferate to 

close the wound. Experiments have indicated that TG2 is able to stimulate 

proliferation and migration of keratinocyte cells both directly and indirectly by 

modulating metalloproteinase signalling, leading to the activation of the EGFR by 

EGF ligands liberated from the ECM. Furthermore, through the course of altering 

TG2’s conformation and activity experiments have determined that TG2 must be in 

an open and active conformation in order for it to affect keratinocyte signalling 

leading to proliferation and migration. Finally, a G protein coupled receptor has 

been investigated as to whether it may be involved in TG2 driven proliferation and 

migration in keratinocytes. Previous work by Xu et al., 2006 had shown TG2 to be 

a binding partner of GPR56 and this GPCR has been shown to be involved in 

proliferation and migration of cells located in the brain and heart. Although 

investigations of GPR56 are at this time inconclusive regarding keratinocyte 

proliferation and migration this thesis confirms the presence of GPR56 in 

keratinocytes. Therefore GPR56 may be involved in keratinocyte migration and 

proliferation.
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1.0 Transglutaminases General introduction

Transglutaminase was introduced as a term in 1957 by Clarke et al, 1957 to 

describe the transamidation (cross linking ability) seen in guinea pig liver. 

Further study indicated that transamidating enzymes were able to stabilize fibrin 

monomers during blood clotting through a cross- linking acyl transfer reaction 

(Pisano et al., 1986). Since these discoveries were made transglutaminase 

activity has been seen in many organisms from microorganisms and plants up to 

higher invertebrates and vertebrates. Transglutaminases are multi-functional; 

they are able to act as both a transamidating enzyme and as a GTPase through 

activation via calcium (Ca2+) binding. Transamidation allows transglutaminase to 

modify glutaminyl side chains in protein substrates. Post-translational 

modification of glutamine residues occurs by protein crosslinking by the 

formation of N-y-glutamyl e-lysine isopeptide bonds between the donor lysine 

residue of one polypeptide and the acceptor glutamine residue of another 

polypeptide. This leads to the formation of covalently cross-linked protein homo 

and hetero polymers. Alternatively, primary amines can be incorporated at 

selective peptide bound glutamine residues where the incorporation of either a 

negatively charged glutamic acid residue or positively charged amine group can 

have biological consequences. It is however more complicated than the 

incorporation of single molecules. After the glutamine containing the first 

substrate (or acceptor) is bound to the enzyme a y-glutamylthiolester is formed 

with the active centre cysteine residue of the transglutaminase (acyl-enzyme 

intermediate). This is accompanied by a release of ammonia or amine. The 

second substrate (the donor in the transamidation reaction) then binds to the 

enzyme acyl-enzyme intermediate and attacks the thiolester bond. This allows
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the active centre cysteine residue of the enzyme to return to its original form 

allowing another cycle of catalysis to occur. It is the covalent acyl-enzyme 

intermediate which is the rate limiting step of the reaction. This is determined by 

the ability of the transglutaminase to bind the second substrate of the acyl- 

enzyme intermediate coupled with the active site Cys-His-Asp catalytic triad and 

a crucial tryptophan residue located 36 residues upstream of the active centre 

cysteine (Folk and Finlayson 1977, Lorand and Conrad 1984; Lorand and 

Graham, 2003).

Nine transglutaminase (TG) genes have been identified, eight of which code for 

functioning enzymes. The TG family comprises of intracellular TGI, TG3 and 

TG5 isoforms which are expressed predominantly in epithelial tissue, TG2 which 

is expressed in various tissue types and occurs both intra and extracellularly, 

TG4 which is found in the prostate gland, factor XIII (FXIII) which is expressed 

in haematopoietic cells and TG6 and 7 which are not yet tissue assigned. The 

final TG gene encodes a protein called band 4.2, which is a component protein of 

the membrane that has lost its enzymatic activity and serves to maintain 

erythrocyte membrane integrity (Lorand and Graham 2003). There is a high 

degree of sequence homology between transglutaminases and domain 

conservation and these proteins are thought to have evolved from cysteine 

proteases occurring early in evolution (Pedersen et al., 1994). TG genes have 

been discovered clustered on five different chromosomes and are thought to have 

evolved by successive duplications (Grenard et al., 2001). The active site of the 

TG family comprises a catalytic triad of cysteine (Cys), histidine (His) and 

aspartate (Asp) that is functional in all but one (Pedersen et al., 1994); band 4.2,

4
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which has a Cys to Ala substitution resulting in deficient crosslinking (Korgren 

et al., 1990).

Transglutaminase activity results in changes in physical and chemical properties 

of the cross-linked proteins which in turn lead to changes in biological activity 

and function. This manifests by the formation of protein polymers resulting in 

increased protein stability and resistance to degradation, be it mechanical, 

chemical or physical, and is therefore highly important in extracellular matrix 

(ECM) functionality. If the amine is incorporated into the acceptor protein via 

glutamine transamidation or by glutamine undergoing deamidation this results in 

the conversion of glutamine to glutamic acid. This can alter stability, 

conformation, molecular interaction or the enzymatic activity of the target 

protein.

TG enzymes have thus been shown to be involved in a wide range of 

physiological processes. These include fibrin clot formation (Pisano et al., 1986, 

Chen and Doolittle, 1971, Shainoff et al., 1991), semen coagulation (Williams- 

Ashman, 1984), wound healing (Raghunath et al., 1996; Haroon et al 1999, 

Stephens et al., 2004) and generation of comified envelopes in keratinocyte 

differentiation (Steinert and Marekov, 1995, 1997, Candi et al., 1999). 

Transglutaminase family members have also been shown to fulfil a specific 

function where their expression is limited. For example Band 4.2 has a specific 

structural role in the cytoskeleton of hematopoietic cells (Aeschlimann et al., 

2001). In contrast transglutaminases 2 and 5 can be found ubiquitously expressed 

(Thomazy and Fesus 1989; Grenard et al., 2001; Candi et al., 2004, Esposito and
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Caputo, 2009). In addition, more than one transglutaminase is expressed within 

a tissue, therefore it has been suggested that there is redundancy within the 

family. In support of this, the TG2 knock out mouse has no overt phenotype 

(De Laurenzi and Melino 2000).
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l.lTransglutaminase Family Structure.

Early structural studies of transglutaminases were performed using high 

resolution crystallography. The first to be identified was enzyme FXIII (Yee et 

al., 1994, 1996, Weiss et al., 1998). This showed that each factor XIII subunit 

was composed of 4 domains (Figure 1). An N-terminal P sandwich, combined 

with a largely a-helical active domain 2, forms a 450 amino acid residue core 

domain containing both the catalytic and regulatory sites. The C terminal p barrel 

domains 1 and 2 are linked to the catalytic domain by a flexible loop, which is 

susceptible to proteolytic cleavage. Studies showed that two monomers assemble 

into the native dimer through surfaces in domains 1 and 2 in opposite orientation. 

This organisation into the four domains is highly conserved amongst the TG 

family where minor variations in additional N or C terminal sequences 

incorporate the functionality of each enzyme, which, in turn impacts on substrate 

selection (Greenberg et al., 1991). For example it has been suggested that the 

acyl donor approaches from the C terminal P barrel region ensuring a larger 

degree of enzyme specificity while the acyl acceptor is believed to dock from the 

catalytic domain (Lorand and Graham, 2003). It has also been proposed that non­

proline cis peptide bonds present adjacent to the active site may be involved in 

transglutaminase activation (Weiss et al., 1998). This is dependent on the binding 

of Ca2+ and/or substrates that trigger a conformational change from cis to trans 

isomerisation of these peptide bonds (Weiss et al., 1998). Furthermore, Trp241 

plays an essential role in activating TG2. This is suggested to occur by stabilising 

the transition state of the enzyme. It has been shown that Trp241 is conserved 

throughout the entire TG family with the exception of band 4.2 which is 

catalytically inactive (Murthy et al., 2002, Iismaa et al., 2009). Studies have
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shown that different TGs may interact with the same substrate with different 

affinity, and may target different residues. This has been attributed to structural 

and charge properties of flanking residues o f the active site (Esposito and 

Caputo, 2004).

barrel 1

Figure 1. The secondary structure of transglutaminase enzymes is conserved: The domain 
structure between isoenzymes are observed to conserve the N-terminal sandwich domain, 
catalytic domain and two C-terminal (3-barrel domains as demonstrated by the backbone 
structure of a) the FXIII monomer (Yee et a l,  1994) and b) TG2, where the domains are 
coloured magenta, orange, blue and green respectively. The flexible loop connecting the 
catalytic domain and the 1st (3-barrel domain is coloured red and the amino acids involved 
in the active site (Cys277, His335 and Asp358), Ca2+ binding (Ser449, Pro446, Glu451 and Glu452) 
and interaction with GTP (Ser171, Lys173, Arg478, Val479 and Arg580) are coloured yellow, 
black and grey respectively (Griffin et al., 2002).
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1.1.1 Transglutaminase Regulation by Nucleotide Binding.

In order for cell communication to occur there must be a system of signal 

recogniser, mediator and acceptor. The guanine nucleotide binding proteins (G 

Proteins) are signal mediators that transfer receptor signals to acceptors. They are 

effector enzymes that produce biologically active molecules or second 

messengers (Im et al., 1997). There are over a thousand types of G protein, which 

share a common GTP binding motif, and which are split mainly into 3 classes. 

These are heterodimeric G Proteins, Ras like G proteins and small molecular 

weight G proteins. TG2, 3, 4 and 5 have been shown to be regulated by GTP 

binding and are capable of hydrolysing these molecules (Iismaa et al., 2009). It 

has been shown that although the amino acid sequences binding GTP are not 

conserved between TG family members, a hydrophobic pocket forms the GTP 

binding site for all isoforms. This GTP binding site is located in the cleft between 

the catalytic core and p-barrel domain close to the dimerization interface 

although the specific amino acid sequence involved differs depending on the TG 

(Liu et al., 2002; Ahvazi et al., 2004,). Isoforms TG2, 3, 4 and 5 can bind GTP 

but only TG2 is able to utilise it for GTPase signalling activity (Ahvazi et al., 

2004). X ray crystallography studies undertaken by Liu at al., indicated that 

when TG2 is bound to GDP the transamidation site is obstructed by two loops 

within the p barrel domain and the active Cys reside from the catalytic triad is 

hydrogen bonded to a Tyr residue (Liu et al., 2002). This inhibition is reversed 

by the binding of Ca2+ causing a conformational change to an open configuration 

and resulting in an active enzyme (Figure 2). This Ca dependence for 

functionality may explain the nature of TG2 and its activity depending on its 

location. In the cytoplasm high concentrations of GTPs can be found
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accompanied with a low Ca concentration favouring GTP cycling and GTPase

9+activity of TG2 whereas in surrounding matrices a high Ca concentration may 

support transamidation activity of TG2. Furthermore it has been suggested that

9+local concentrations of Ca and nucleotides influences TG2 regulation (Haroon 

et al., 1999). This also suggests there may be a direct link between nucleotide
9  i

and Ca levels and the regulation of the other isoforms of transglutaminase. In
9 ,

vitro TG5 has a lower sensitivity for Ca -mediated activation and GTP 

inhibition than TG2 (Candi et al., 2004). Therefore at physiological levels of
9  i

Ca TG5 retains 25% of its maximal transamidation activity compared with 

75% for TG2 while at physiological GTP levels, up to 55% of TG5 enzyme 

activity is lost compared to 90% of TG2 activity (Candi et al., 2004).

10
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Transamidation

Protein

ProteinProtein

C a1’

- © “►
GTP OOP

NH?

TG2 TG2 Protein

Deamidation
Figure 2: Transglutaminases are capable of catalysing various post-translational 
modifications: In the presence of Ca2+ the TG2 active site cysteine (Cys 277> thiol attacks 
the y-glutaminyl side chain of a protein or peptide bound glutamine residue forming a 
thioester intermediate with the release of ammonia. In transamidation a primary amine 
nucleophile attacks the thioester carbonyl displacing the TG2 thiol and resulting in an 
isopeptide crosslink between glutamine side chain and the primary amine. In deamidation, 
water acts as the thiol-displacing nucleophile resulting in the net conversion of glutamine to 
glutamate. The presence of GTP or GDP inhibits transglutaminase transamidation activity.
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TG A lternative
d esignations

C hrom osom e
location

G ene Function Size aa 

(k D a)

L ocation

F actor

X III

Fibrin stab ilisin g  

factor, plasm a TG

6p 24-25 F13A1 B lood  c lotting  and 

w ou n d  healing

732 (83) C y to so l,

extracellular

B and 4.2 E rythrocyte

membrane

protein

15q l5 .2 EPB42 Structural protein in 

ery th ro cy tes -  no  

activ ity

6 9 0 (7 2 ) M em brane

1 K eratin ocyte  TG, 

particulate TG

14q 11.2 TGM1 C om ified  e n v e lo p e  

assem b ly  in surface  

epithelia

8 1 4 (9 2 ) C y to so l,

M em brane

2 T issu e  TG, liver  

TG

20q 11-12 TG M 2 Cell

death /d ifferentiation , 

a d h es io n , matrix 

a ssem b  ly

686 (80) C y to so l,  

n u c le u s , 

m em brane, 

cell su rface, 

extracellular

3 Ep idermal TG 20q 11-12 TGM 3 C om ified  e n v e lo p e  

assem b ly  in surface  

epithelia

692 (77) C y to so l

4 P rostate TG 3q21-22 TGM 4 Sem en co a g u la tio n  in 

rodents

683 (77) U nknow n

5 TG x 15q 15.2 TGM 5 Epidermal

differentiation

7 1 9 (8 1 ) N uclear

matrix,

c y to sk e le to n

6 TG Y 20q 11 TG M 6 U nknow n 706 (80) U nknow n

7 T G Z 15q 15.2 TGM 7 U nknow n 7 1 0 (8 0 ) U nknow n

Table 1: Summary of the nine isoforms.
The nine TGs are summarised here to briefly illustrate their position, function, size and location.
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TG2 ------------------------------------------------------------- D1
B4.2 ------------------------------------------------------------
TG3 ------------------------------------------------------------
TG6 ------------------------------------------------------------
TG5 ------------------------------------------------------------
TG7 ------------------------------------------------------------
FXIII  SETSRTAFGGRRAVPPNNS NAAEDDL 26
TGI MDGPRSDVGRWGGNPLQPPTTPSPEPEPEPDGRSRRGGGRSFWARCCGCCSCRNAADDDW 60
TG4 --------------------------------- ---------------------------

1

TG2 ------------------------------------------
D1

B4.2 ------------------------------------------
TG3 ------------------------------------------
TG6 ------------------------------------------
TG5 ------------------------------------------
TG7 ------------------------------------------
FXIII PT--------------------------------------VELQGWPRG— VN  38
TGI GPEPSDSRGRGSSSGTRRPGSRGSDSRRPVSRGSGVNAAGDG

103
TG4 ------------------------------------------
TG2  AEELVLERCDLELET-------NGRDHHTADLCREKLWRRGQPFWLTLHFEG— RNYEAS 52

D2
B4.2-- GQALGIKSCDFQAAR-------NNEEHHTKALSSRRLFVRRGQPFT11LYFRAPVRAFLPA 54
TG3  AALGVQSINWQTAF-----NRQAHHTDKFSSQELILRRGQNFQVLMIMN-------KGLGSN 50
TG6  AGIRVTKVDWQRSR-----NGAAHHTQEYPCPELWRRGQSFSLTLELS-------RALDCE 50
TG5  AQGLEVALTDLQSSR-------NNVRHHTEEITVDHLLVRRGQAFNLTLYFRN— RSFQPG 52
TG7 - DQVATLRLESVDLQSSR-----NNKEHHTQEMGVKRLTVRRGQPFYLRLSFS-------RPFQSQ 51
FXIII — LQEFLNVTSVHLFKERWDTNKVDHHTDKYENNKLIVRRGQSFYVQIDLS RPYDPR 95
TGI TIREGMLWNGVDLLSSRSDQNRREHHTDEYEYDELIVRRGQPFHMLLLLS RTYESS

160
TG4 MDASKELQVLHIDFLNQ DNAVSHHTWEFQTSSPVFRRGQVFHLRLVLN QPLQSY 54

• * ★ ★★★ •

TG2 VDSLTFSWTGPAPSQEAGTKARFPLRDAVEEGDWTATWDQQDCTLSLQLTTPANAPIG
112 D2

B4.2 LKKVALTAQTGEQPSKINRTQATFPISSLGDRKWWSAWEERDAQSWTISVTTPADAVIG
114

TG3 -ERLEFIVSTGPYPSESAMTKAVFPLSNGSSG-GWSAVLQASNGNTLTISISSPASAPIG
109

TG6 -EILIFTVETGPRASEALHTKAVFQTSELERGEGWTAAREAQMEKTLTVSLASPPSAVIG
1 0 9

TG5 LDNIIFWETGPLSDLALGTRAVFSLARHHSPSPWIAWLETNGATSTEVSLCAPPTAAVG
112

TG7 NDHITFVAETGPKPSELLGTRATFFLTRVQPGNVWSASDFTIDSNSLQVSLFTPANAVIG
113

FXIII RDLFRVEYVIGRYPQENKGTYIPVPIVSELQSGKWGAKIVMREDRSVRLSIQSSPKCIVG
155

TGI -DRITLELLIGNNPEVGKGTHVIIPVG-KGGSGGWKAQWKASGQNLNLRVHTSPNAIIG
217

TG4 -HQLKLEFSTGPNPSIAKHTLWLDPRTPSDHYNWQATLQNESGKEVTVAVTSSPNAILG
113

★ ★ ★ ★  • • • • ■ * ■

TG2 LYRLSLEAST GYQGSSFVLGHFILLF
138  D2

B4.2 HYSLLLQVSG RKQ LLLGQFTLLF
137

TG3 RYTMALQIFS QGGISSVKLGTFILLF
134

TG6 RYLLSIRLSS HRKHSNRRLGEFVLLF
135

TG5 RYLLKIHIDSF— QGSVTAYQLGEFILLF
139

TG7 HYTLKIEISQG— QGHSVTYPLGTFILLF
140

13



Role of Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

FXIII KFRMYVAVWTPYGVLRTSRNPETDTYILF
184

TGI KFQFTVRTQSDAGEFQLPFDPRNEIYILF
2 4 6

TG4 KYQLNVKTGN----------HILKSEENILYLLF
137

•  -  •  • ★  *

TG2 NAWCPADAVYLDSEEERQEYVLTQQGFIYQGSAKFIKNIPWNFGQFEDGILDICLILLDV
198  D3

B4.2 n p w n r e d a v f l k n e a q r m e y l l n q n g l iy l g t a d c iq a e s w d f g q f e g d v id l s l r l l .s k

197
TG3 NPWLNVDSVFMGNHAEREEYVQEDAGIIFVGSTNRIGMIGWNFGQFEEDILSICLSILDR

194
TG6 NPWCAEDDVFLASEEERQEYVLSDSGIIFRGVEKHIRAQGWNYGQFEEDILNICLSILDR

195
TG5 NPWCPEDAVYLDSEPQRQEYVMNDYGFIYQGSKNWIRPCPWNYGQFEDKIIDICLKLLDK

199
TG7 NPWSPEDDVYLPSEILLQEYIMRDYGFVYKGHERFITSWPWNYGQFEEDIIDICFEILNK

2 0 0
FXIII NPWCEDDAVYLDNEKEREEYVLNDIGVIFYGEVNDIKTRSWSYGQFEDGILDTCLYVMDR

244
TGI NPWCPEDIVYVDHEDWRQEYVLNESGRIYYGTEAQIGERTWNYGQFDHGVLDACLYILDR

3 0 6
TG4 NPWCKEDMVFMPDEDERKEYILNDTGCHYVGAARSIKCKPWNFGQFEKNVLDCCISLLTE

197
★ ★

TG2 NPKFLKNAGRDCSRRSSPVYVGRWSGMVNCNDDQGVLLGRWDNNYGDGVSPMSWIGSVD
2 5 8  D3

B4.2 D----------------KQVEKWSQPVHVARVLGALLHFLKEQRVLPTPQTQATQEGALLNKRRGSVP
2 4 9

TG3 SLNFRRDAATDVASRNDPKYVGRVLSAMINSNDDNGVLAGNWSGTYTGGRDPRSWNGSVE
254

TG6 S PGHQNNPATDVSCRHNPIYVTRVISAMVNSNNDRGWQGQWQGKYGGGTS PLHWRGSVA
2 5 5

TG5 SLHFQTDPATDCALRGSPVYVSRWCAMINSNDDNGVLNGNWSENYTDGANPAEWTGSVA
2 5 9

TG7 SLYHLKNPAKDCSQRNDWYVCRWSAMINSNDDNGVLQGNWGEDYSKGVSPLEWKGSVA
2 6 0

FXIII A--------------QMDLSGRGNPIKVSRVGSAMVNAKDDEGVLVGSWDNIYAYGVPPSAWTGSVD
297

TGI R--------------GMPYGGRGDPVNVSRVISAMVNSLDDNGVLIGNWSGDYSRGTNPSAWVGSVE
3 5 9

TG4 S--------------SLKPTDRRDPVLVCRAMCAMMS FEKGQGVLIGNWTGDYEGGTAPYKWTGSAP
25 0

TG2 ILRRWKNHGCQRVKYGQCWVFAAVACTVLRCLGIPTRWTNYNSAHDQN SNLLIEYFRNE
318  D3

B4.2 ILRQWLTGRGRPVYDGQAWVLAAVACTVLRCLGIPARWTTFASAQGTGGRLLIDEYYNE
3 0 9

TG3 ILKNWKKSGFSPVRYGQCWVFAGTLNTALRSLGIPSRVITNFNSAHDTDRNLSVDVYYDP
314

TG6 ILQKWLKGRYKPVKYGQCWVFAGVLCTVLRCLGIATRWSNFNSAHDTDQNLSVDKYVDS
315

TG5 ILKQWNATGCQPVRYGQCWVFAAVMCTVMRCLGIPTRVITNFDSGHDTDGNLIIDEYYDN
319

TG7 ILQQWSARGGQPVKYGQCWVFASVMCTVMRCLGVPTRWSNFRSAHNVDRNLTIDTYYDR
320

FXIII ILLEYRSSE-NPVRYGQCWVFAGVFNTFLRCLGIPARIVTNYFSAHDNDANLQMDIFLEE
3 5 6

TGI ILLSYLRTG-YSVPYGQCWVFAGVTTTVLRCLGLATRTVTNFNSAHDTDTSLTMDIYFDE
418

TG4 ILQQYYNTK-QAVCFGQCWVFAGILTTVLRALGIPARSVTGFDSAHDTERNLTVDTYVNE
3 0 9

14



Role of Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

TG2 FGEIQGD-KSEMIWNFHCWVESWMTRPDLQPGYEGWQALDPTPQEKSEGTYCCGPVPVRA 
377  D3

B4.2 EGLQNGEGQRGRIWIFQTSTECWMTRPALPQGYDGWQILDPSAPNGGGVLGSCDLVPVRA
36 9

TG3 MGNPLD-KGSDSVWNFHVWNEGWFVRSDLGPSYGGWQVLDATPQERSQGVFQCGPASVIG
373

TG6 FGRTLEDLTEDSMWNFHVWNESWFARQDLGPSYNGWQVLDATPQEESEGVFRCGPASVTA
375

TG5 TGRILGNKKKDTIWNFHVWNECWMARKDLPPAYGGWQVLDATPQEMSNGVYCCGPASVRA
37 9

TG7 NAEMLSTQKRDKIWNFHVWNECWMIRKDLPPGYNGWQVLDPTPQQTSSGLFCCGPASVKA
380

FXIII DGNVNSKLTKDSVWNYHCWNEAWMTRPDLPVGFGGWQAVDSTPQENSDGMYRCGPASVQA
41 6

TGI NMKPLEHLNHDSVWNFHVWNDCWMKRPDLPSGFDGWQWDATPQETSSGIFCCGPCSVES
478

TG4 NGEKITSMTHDSVWNFHVWTDAWMKRPDLPKGYDGWQAVDATPQERSQGVFCCGPSPLTA
369

• ★ •

TG2 IKEGDLSTKYDAPFVFAEVNADWDWIQQDDG— - SVHKSrNRSLIVGLKISTKSVGRDE
434 D3

B4.2 VKEGTVGLTPAVSDLFAAINASCWWKCCEDG— -TLELTDSNTKYVGNNISTKGVGSDR
42 6

TG3 VREGDVQLNFDMPFIFAEVNADRITWLYDNTTG- -KQWKNSVNSHTIGRYISTKAVGSNA
431

TG6 IREGDVHLAHDGPFVFAEVNADYITWLWHEDES- -RERVYS-NTKKIGRCISTKAVGSDS
432

TG5 IKEGEVDLNYDTPFVFSMVNADCMSWLVQGGK— -EQK-LHQDTSSVGNFISTKSIQSDE
435

TG7 IREGDVHLAYDTPFVYAEVNADEVIWLLGDGQ— -AQEILAHNTSSIGKEISTKMVGSDQ
437

FXIII IKHGHVCFQFDAPFVFAEVNSDLIYITAKKDG— -THWENVDATHIGKLIVTKQIGGDG
473

TGI IKNGLVYMKYDTPFIFAEVNSDKVYWQRQDDG— -SFKIVYVEEKAIGTLIVTKAISSNM
535

TG4 IRKGDIFIVYDTRFVFSEVNGDRLIWLVKMVNGQEELHVISMETTSIGKNISTKAVGQDR
429

. ; # . »* * * * » .

TG2 REDITHTYKYPEGSSEEREAFTRANHLNKL------- -------------------------- AEKEE----------------
4 6 9  03

B4.2 CEDITQNYKYPEGSLQEKEVLERVEKEKME------- -------------------------- R EK D N dR P--------
465

TG3 RMDVTDKYKYPEGSDQERQVFQKALGKLKP------- --------------------NTPFAATSSMG----------
472

TG6 RVDITDLYKYPEGSRKERQVYSKAVNRLFG------- --------------------VE AS GRRIWIRRAGGR
478

TG5 RDDITENYKYEEGSLQERQVFLKALQKLKARSFHGSQRGAELQPSRPTSLSQDSPRS-----
492

TG7 RQSITSSYKYPEGSPEERAVFMKASRKMLG------- ------------------------ PQRASLPFLDL------
478

FXIII MMDITDTYKFQEGQEEERLALETALMYGAKKP-- ----------------------LNTEGVMKSRS--------
5 1 6

TGI REDITYLYKHPEGSDAERKAVETAAAHGSKP----- ------------------------ NVYANRGSAE--------
576

TG4 RRDITYEYKYPEGS SEERQVMDHAFLLLS SE----- ------------------------ REHRRRVKEN--------
470 mk

• -Jt ~k ~k ~k -k  ~k •
2

TG2
4 69 D3

B4.2 ------------------PSLETA—
471

TG3 ------------LETEEQEPS—
681

TG6 CLWRDDLLEPATKPS—
493
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T65  LHTPSLRPSDV
503

T67 ------------LESGGLRDQ—
487

FXIII -----------------
51 6

TGI -----------------
57 6

TG4 -----------------
470

TG2 TGMAMRIRVGQSMNMGSDFDVFAHITNNTAEEYV— ----- CRLLLCARTVSYNGILGPECG
524  D4

B4.2 SPLYLLLKAPSSLPLRGDAQISVTLVNHSEQEKA— ----- VQLAIGVQAVHYNGVLAAKLW
5 2 6

TG3 — IIGKLKVAGMLAVGKEVNLVLLLKNLSRDTKT— ----- VTVNMTAWTIIYNGTLVHEVW
534

TG6 — IAGKFKVLEPPMLGHDLRLALCLANLTSRAQR— ----- VRVNLSGATILYTRKPVAEIL
5 4 6

TG5 VQVSLKFKLLDPPNMGQDICFVLLALNMSSQFK----- — DLKVNLSAQSLLHDGSPLSPFW
558

TG7 -PAQLQLHLARIPEWGQDLQLLLRIQRVPDSTHPRGPIGLWRFCAQALLHGGGTQKPFW
5 4 6

FXIII — NVDMDFEVENAVLGKDFKLSITFRNNSHNRYT— ----- ITAYLSANITFYTGVPKAEFK
5 6 9

TGI — DVAMQVEAQDAVMGQDLMVSVMLINHSSSRRT— ----- VKLHLYLSVT FYTGVSGTIFK
629

TG4 —  FLHMSVQSDDVLLGNSVNFTVILKRKTAALQN- - ----- VNILGSFELQLYTGKKMAKLC
523

TG2 TKYLLNLNLEPFSEKSVPLCILYEKYRD------CLTESNLIKVRALLVEPVINSYLLAERDL
58 1  D4

B4.2 RKKLH-LTLSANLEKIITIGLFFSNFER------NPPENTFLRLTAMATHSESNLSCFAQEDI
582

TG3 KDSAT-MSLDPEEEAEHPIKISYAQYEK------ YLKSDNMIRITAVCKVPD-ESEVWERDI
58 9

TG6 HESHA-VRLGPQEEKRIPITISYSKYKE------ DLTEDKKILLAAMCLVTK-GEKLLVEKDI
601

TG5 QDTAF-ITLSPKEAKTYPCKISYSQYSQ------ YLSTDKLIRISALGEEKSSPEKILVNKII
614

TG7 RHTVR-MNLDFGKETQWPLLLPY SNYRN------ KLTDEKLIRVSGIAEVEETGRSMLVLKDI
602

FXIII KETFD- VTLEPLSFKKEAVLIQAGEYMG----- QLLEQASLHFFVTARINETRDVLAKQKST
625

TGI ETKKE-VELAPGASDRVTMPVAYKEYRP------HLVDQGAMLLNVSGHVKE SGQVLAKQHT F
685

TG4 DLNKT-SQIQG-QVSEVTLTLDSKTYINSLAILDDEPVIRGFIIAEIVESKEIMASEVFT
581

TG2 Y LEN PEIK IRILG E PKQKRKLVAEVS LQN PL
612 D4

B4.2 AICRPHLAIKMPEKAEQYQPLTASVSLQNSL
613

TG3 ILDNPTLT LEVLNEARVRKPVNVQMLFSN PL
620

TG6 T LE D -  FITIK VLG  PAMVG VAVT VE VT W N  P L
631

TG5 TLS YPS IT  INVLGAAW NQPLSIQVIFSNPL
645

TG7 CLEPPHLSIEVSERAEVGKALRVHVTLTNTL
633

FXIII VLTIPEIIIKVRGTQWGSDMTVTVQFTNPL
656

TGI RLRTPDLSLTLLGAAWGQECEVQIVFKNPL
7 1 6
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TG4 S FQYPE FSIELPNTGRIGQLLVCNCIFKNTL
612

*  ★

TG2 PVALEGCTFTVEGAGLTEEQKTVEIPDPVEAGEEVKVRMDLLPLHMGLHKLWNFESDKL
672 D5

B4.2 DAPMEDCVISILGRGLIHRERSYRFRS-VWPENTMCAKFQFTPTHVGLQRLTVEVDCNMF
672

TG3 DEPVRDCVLMVEGSGLLLGNLKIDVPT-LGPKEGSRVRFDILPSRSGTKQLLADFSCNKF
679

TG6 IERVKDCALMVEGSGLLQEQLSIDVPT-LEPQERASVQFDITPSKSGPRQLQVDLVSPHF
690

TG5 SEQVEDCVLTVEGSGLFKKQQKVFLGV-LKPQHQASIILETVPFKSGQRQIQANMRSNKF
704

TG7 MVALSSCTMVLEGSGLINGQIAKDLGT-LVAGHTLQIQLDLYPTKAGPRQLQVLISSNEV
692

FXIII KETLRNVWVHLDGPGVTRP-----------------MKKMFREIRPN-----STVQWEEV
694

TGI PVTLTNWFRLEGSGLQRPKILNVGDI--GGNETVTLRQSFVPVRPGPRQLIASLDSPQL
774

TG4 AIPLTDVKFSLESLGISSLQTSDHGTV--QPGETIQSQIKCTPIKTGPKKFIVKLSSKQV
670

TG2 KAVKGFRNVIIGPA---------------------------------------------------------
686 D5

B4.2 QN LTN YKS VT W A PE  LS A-------------------------------------------------
690

TG3 PAIKAMLSIDVAE-----------------------------------------------------------
692

TG6 PDIKGFVIVHVATAK-------------------------------------------------------
70 5

TG5 KDIKGYRNVYVDFAL-------------------------------------------------------
71 9

TG7 KEIKGYKDIFVTVAGAP---------------------------------------------------
7 0 9

FXIII CRPWVELDVQIQRRPSM---------------------------------------------------
711

TGI SQVHGVIQVDVAPAPGDGGFFSDAGGDSHLGETIPMASRGGA
81 6

TG4 KEINAQKIVLITK-----------------------------------------------------------
683

Figure 3: Multiple alignment of the nine human transglutaminase sequences: An alignment 
of the nine characterised TG human gene products, TG2 (Gentile et ah, 1991), band 4.2 
(Korsgren et al., 1990), TG3 (Kim et ah, 1993), TG6 long form (Thomas, H., Thesis, 2004), 
TG5 (Aeschlimann et ah, 1998), TG7 (Grenard et ah, 2001), factor XIII a-subunit 
(Grundmann et ah, 1986; Takahashi et ah, 1986), TGI (Phillips et ah, 1990; Kim et ah, 
1991) and TG4 (Grant et ah, 1994) are shown. Dashes indicate gaps inserted for optimal 
sequence alignments. Residues conserved in all sequences are designated “*”, those 
demonstrating conserved substitutions are designated and semi-conserved substitutions 
are marked The sequences are arranged to reflect the transglutaminase domain 
conservation based on the crystal structure of factor XIII a-subunit (Yee et ah, 1994): N- 
terminal propeptide domain (D l), P-sandwich domain (D2), catalytic core domain (D3), and 
P-barrel domains 1 (D4) and 2 (D5). The active cysteine residue, required for 
transamidation reactions is shown in blue. Identified cleavage sites are indicated with 
arrowheads (blue); (1) sites identified in FXIII and TGI (2) sites identified in FXIII, TGI 
and TG3.
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1.2 Summary of Nine Isoforms.
The nine TG isoforms are summarised in table 1 and multiple alignments of the 

TG family are shown in figure 3 however the following sections summarise 

function and activity of each of the nine isoforms.

1.2.1 Factor XIII

Factor XIII can be found in several tissues and cells with a molecular weight of 

320 kDa. Factor XIII is a tetramer composed of two alpha and 2 beta chains 

which are non-covalently associated (Lorand, 1986). Inactive Factor XIII (FXIII)

74-is converted into an active transglutaminase (FXIIIa) by thrombin and Ca in the 

terminal phase of the clotting cascade. Activation of Factor XIII occurs by 

proteolysis of the serine protease thrombin in the presence of Ca2+. Thrombin 

cleaves a scissile peptide bond between Arg and Gly near the amino terminus 

of the alpha (a) chain (Lorand, 1986). The activation peptide (residues 1-37) is 

then thought to dissociate from the protein thus activating it (Weiss et al., 1998). 

It is believed to circulate as a heterotetrameric ensemble made up of plasma 

coagulation factor XIII, PFXIII-a2p2 or fibrin stabilising factor where the a 

subunit belongs to the transglutaminase family and the p subunit is related to the 

small consensus (sushi) repeat family (Lehtinen et al., 2004). The a subunit is 

protected in the circulation by the richly sialylated p subunit. The a chain mature 

protein consists of 730-31 amino acid residues with a molecular weight of 

approximately 83 kDa. The typical N-terminal hydrophobic linker sequence for 

secretion is absent in this isoform, which may account for its presence in the 

cytoplasm. The p chain contains 641 amino acids and has a molecular weight of 

approximately 80 kDa after addition of carbohydrate (Weiss et al., 1998).
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Factor XIII plays an important role in haemostasis, wound healing, and 

pregnancy. By cross-linking fibrin chains and a (2) plasmin inhibitor to fibrin, 

FXIIIa mechanically stabilizes fibrin and protects it from fibrinolysis. Showing 

the importance of this function, severe deficiency of the potentially active A 

subunit (FXIII-A) results in a rare but severe hemorrhagic diathesis (Karimi et 

al., 2009). The main role of Factor XIII is to catalyse the formation of isopeptide 

bonds between the side chains of glutamine and lysine residues, thus stabilising 

the fibrin soft clot and rendering it resistant to fibrolysis either by crosslinking 

fibrin itself or crosslinking a2 antiplasmin, a potent inhibitor of the protease 

plasmin, into the fibrin clot (Muszbek 1996, Uchino et al., 1991, Sakata, 1980). 

In addition, it protects clots from plasminolysis by covalently linking a2 

antiplasmin and a-monoglobulin and the a chain of fibrin (Mortensen, 1981). 

The pro-coagulate protein Von Willebrand factor is anchored via TG mediated 

crosslinking of serotonin on the surface of activated platelets thereby forming 

coat platelets which can be found either when there is haemostatic need or in 

thrombotic plaques (Esposito and Caputo, 2004). Factor XIII can however, also 

have a negative effect if a fibrin clot is established and causes thrombosis -  

therefore inhibitors that specifically target Factor XIII are in development.

In wound healing, crosslinking of fibrin, fibronectin and collagen at the site of 

injury may facilitate wound closure by providing a scaffold for fibroblasts to 

proliferate and spread (Akagi et al., 2002). Deficiencies in factor XIII can be 

acquired or inherited. They lead to prolonged coagulation time and can lead to an 

increased occurrence of late bleeding. Furthermore, wound healing deficiencies 

have been linked with deficiencies of Factor XIII (Seitz 1996). Vitronectin,
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PAI-2, lipoprotein (a), Von Willebrand factor and platelet vinculin have also 

been reported to be substrates for factor XIII however the role of this 

modification is not clear (Esposito and Caputo, 2004).

1.2.2. Band 4.2.

Band 4.2 was characterised by analysis of cDNA which revealed a protein of 

mass 77 kDa and 691 amino acids (Korsgren et al., 1990). A Cys to Ala 

substitution at residue 268 produces a crosslinking deficient isoform. Post- 

translational modifications include the cleavage of the terminal Met and 

myristylation of the penultimate Gly (Cohen et al., 1993). Cohen et al also 

suggested that band 4.2 is stabilised by phosphorylation (Cohen et al., 1993). 

Band 4.2 was the first member of the TG family where alternative splicing was 

identified; a 30 amino acid insertion following Gin has been observed in some 

forms of the enzyme and has been designated B4.2L (Cohen et al., 1993). The 

loss of transamidating activity apparent in Band 4.2 highlights the potential 

structural function of TG enzymes. Band 4.2 is associated with the face of 

erythrocyte membranes forming part of the cytoskeleton (Lorand and Conrad, 

1984; White et al., 1992; Cohen et al., 1993). Mutations in this gene are 

accompanied by abnormally shaped blood cells and anaemia. As yet no 

functional difference has been seen between the two splice variants, however it 

has been suggested that post translational modifications take place within the 

additional N- terminal sequence as observed with TGI (Aeschlimann and 

Paulsson,1994).

20



Role o f Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

1.2.3 TGI

Kim et al., identified TGI, otherwise known as keratinocyte transglutaminase, by 

preparing a synthetic oligonucleotide encoding the consensual active site 

sequence of known transglutaminase sequences and comparing that with the 

newly seen TG (Kim et al., 1991). A pro enzyme with a predicted size of 92 kDa 

was identified, made up of 814 amino acids. When this was compared with the 

corresponding rat sequence, a homology of 92% was observed (Aeschlimann and 

Paulsson, 1994). The TGI protein has proven difficult to purify (Thacher, 1989) 

therefore studies have been conducted using a recombinant form of the enzyme 

(Kim et al., 1994; 1995a; Nemes et al., 1999a, Hitomi et al., 2000). TGI is post- 

translationally modified within its N terminus to incorporate the fatty acid 

palmitate or myristate via a thioester linkage (Phillips et al., 1993). Treatment 

with protein synthesis inhibitors suggested that myristylation occurs co 

translationally while palmitate labelling is a post-translational process (Steinert et 

al., 1996b). A number of Ser residues in the N terminus are also phosphorylated 

however there is no corresponding alteration in activity indicating a function in 

substrate interactions (Rice et al., 1996). A 106 kDa form of TGI has also been 

detected, suggesting that the enzyme may undergo further modifications (Kim et 

al., 1995a). The presence of a fatty acid anchor localises 95% of TGI to the 

membrane fraction of the cell (Steinert et al., 1996a) and it has been suggested 

that this anchorage of the enzyme promotes further enzyme processing (Kim et 

al., 1995a). Studies have indicated approximately 50% of the membrane bound 

enzyme is present in its zymogen form while the remaining enzyme undergoes 

cleavage to produce 3 fragments with calculated masses of 10 kDa (N-terminal 

membrane anchoring region), 33 kDa (C terminal p-barrels) and 67 kDa (active
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domain) (Steinert et al., 1996a). Edman degradation sequencing identified these 

cleavage sites as residing between Arg573-Gly574 and Arg93-Gly94 (Kim et al., 

1995a; Steinert et al., 1996a). Alignment with other human TG sequences 

demonstrated the first of these sites correlates with the thrombin activation site of 

FXIII and the second with the inactivating cleavage of the same enzyme. 

However the second site also aligns with the cleavage site of TG3 by an 

unknown enzyme to generate the active form (Kim et al., 1995a). Studies with 

antibodies distinguishing the N terminus of the two TGI fragments suggested 

cleavage first occurs between residues 573-574 and then between residues 93-94. 

It has also been suggested separate enzymes may be involved or that this may be 

the result of differential control of a single protease (Iizuka et al., 2003). A 

smaller pool of soluble TGI has also been studied identifying both the full length 

enzyme and cleavage products. The ratio of cleavage products compared with 

full length enzyme increased in keratinocytes committed to differentiation, 

suggesting this process of activation is regulated by differentiation signals (Kim 

et al., 1995a, b, Steinert et al., 1996a, b). Complexes between the 67 kDa with 

either the 33 kDa fragment or full length enzyme have been obtained by co­

elution from Mono Q fast protein liquid chromatography (FPLC) or co- 

immunoprecipitation followed by calculating the specific activities of each 

component. The full length enzyme is active; however when the 67 kDa and 33 

kDa fragments are associated, an increase from 5 to tenfold activity is seen. The 

67 kDa fragment can also be negatively regulated by binding of the full length 

enzyme which reduces enzyme activity (Kim et al., 1995a). The processed forms 

of TGI have a significantly shortened half-life of 7 hours in comparison to 20 

hours for the full length fragment. The enzyme responsible for cleavage and
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activation of TGI is likely to be cathepsin D as studies using cathepsin D 

knockout mice revealed TGI activity within the epidermis was severely reduced 

when compared with wild type controls (Egberts et al., 2004). Furthermore, this 

study also indicated the addition of exogenous cathepsin D increases TGI 

activity in cultured keratinocytes (Egberts et al., 2004).

Studies carried out by Baumgarter et al., suggested TGI has a function in 

controlling the barrier properties of microvasular monolayers via its crosslinking 

activity within the intercellular junctions of myocardium endothelial cells 

(Baumgarter et al., 2004). Nevertheless it is the role of TGI in N-terminal 

differentiation of squamous epithelia that is best characterised (Simon and Green, 

1985; Kim et al., 1995a; 1995b; Steinert et al., 1996a). Furthermore, TGI is 

expressed in the differentiated layers of the epidermis and its expression is 

associated with transglutaminase activation and comified envelope (CE) 

formation (Eckert et al., 2009). In vitro studies indicate TGI is capable of 

crosslinking several proteins expressed during terminal differentiation including 

involucrin, loricrin and small proline rich (SPR) proteins (Candi et al., 1999; 

2001). These proteins are cross linked to form a shell like macromolecule 

comified envelope which contributes to an effective barrier against water loss 

and infection. A recent study also indicated that an additional protein named 

tazarotene-induced gene 3 (TIG3) is associated with TGI activation (Candi et al., 

1999). In addition to its role in CE formation TGI appears to have a unique 

function within the TG family. Within an in vitro vesicle system TGI has been 

demonstrated to catalyse formation of ester linkages between a co- 

hydroxyceramide analogue and a number of CE precursors including involucrin
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(Figure 4) (Nemes et al., 1999). Similar linkages involving involucrin have also 

been isolated from ex vivo samples as well as envoplankin and periplankin 

(envelope precursors) (Marekov and Steinert 1998). In conjunction with CE 

formation the sequestering of covalently bound lipids (CBLs) to the surface of 

differentiating keratinocytes is an important step in the transition of cells into a 

hydrophobic environment. TGI ablation produces a lethal phenotype in mice due 

to their defective skin barrier formation, resulting in death within hours of birth, 

indicating the key role of TGI in skin homeostasis (Matsuki et al., 1998).

OH
OH

NH
a

OHb

NH OH

Figure 4. Schematic representation of lipids covalently bound to the envelope precursor 
involucrin: It was determined that a number of lipids within the stratum corneum are 
attached to (CE) via ester linkages. Primarily these cross-links occur with involucrin 
molecules (grey rectangle) and the reaction is thought to be catalysed by TGI. Two 
examples shown here include (a) a co-hydroxyl linkage (b) a sphingosine-l-hydroxyl ester 
linkage (Swartzendruber et al., 1987)
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1.2.4 TG2.

TG2 has been identified and cloned from a number of mammals including 

humans, mice, guinea pigs and cows. TG2 is approximately 80 kDa and contains 

between 685 and 691 amino acids (Ikura et al., 1988; Gentile et al., 1991). Some 

conservation was seen between species (65-88% when compared with the human 

sequence) (Aeschlimann and Paulsson, 1994). TG2 is expressed as an active 

enzyme that is predominantly localised to the cytosol (80%), but is also localised 

in the nucleus (5%) or membrane associated (15%). The latter is likely mediated 

by fatty acid linkages (Harsfalvi et al., 1987). There is no evidence for 

glycosylation or inclusion of disulfide bonds (Ikura et al., 1988) and the N 

terminus of this enzyme can be blocked by the removal of the initiator Met and 

the acylation of the flanking Ala residue. Furthermore, TG2 can be externalised, 

localising at the cell surface or in association with ECM components in a number 

of tissues (Aeschlimann and Paulsson; 1991; Barsigian et al., 1991; Martinez et 

al., 1994; Aeschlimann et al., 1995; Gaudry et al., 1999). As with FXIII, a 

hydrophobic leader sequence is absent and it has been suggested that the Na- 

Acetyl group may target the enzyme to an alternative secretory pathway (Muesch 

et al., 1990). Alternative methods of secretion of this enzyme include specialised 

pores within the plasma membrane or passive diffusion following transient 

stress-induced membrane ruptures (Kuchler and Thomer, 1990; Steinhardt et al., 

1994; Elliot and O’Hare, 1997). It has been hypothesised that the presence of cis 

peptide bonds conserved within the TG family may be essential for the secretion 

of TG2 into the ECM (Balklava et al., 2002). TG2 mutations of the active Cys 

residue (Cys277Ser) or targeting the proposed cis bond (Tyr274Ala) have 

demonstrated that only the active form is retrieved in culture medium or detected
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in the ECM, and both mutant forms are able to localise to the plasma membrane 

(Balklava et al., 2002). This indicates that transamidation activity and/or the 

tertiary conformation of the active site is required for complete secretion.

TG2 is ubiquitously and constitutively expressed at high levels in both 

endothelial and smooth muscle cells (Thomazy and Fesus, 1989). It is regulated 

at the translational level and/or at the rate of protein turnover indicated by 

discrepancies between relative mRNA (high levels in lung, heart, kidney and 

blood vessels) and protein quantities (higher in liver and spleen) (Clarke et al., 

1959; Aeschlimann and Paulsson, 1994). Two alternative spliced variants of TG2 

have been identified within exons VI and X (Fraij and Gonzales, 1997). Studies 

of the neurodegenerative condition progressive supranuclear palsy have detected 

significantly raised levels of mRNA encoding a short form of TG2 implicating a 

functional role for this splice variant (Zemaitaitis et al., 2002). This shortened 

form lacks the nucleotide binding cleft and in the absence of negative regulation, 

demonstrates high levels of crosslinking activity. TG2 was the first TG family 

member identified capable of NTP cycling, specifically ATP and GTP 

(Achyuthan and Greenberg, 1987). The inactive GDP bound form has been 

analysed by X ray crystallography (Liu et al., 2002; Pinkas et al., 2007). Protein 

dynamics simulation indicates that binding of this divalent ion produces major 

conformational changes moving apart domains 2 and 3 between which the active 

site is situated (Casadio et al., 1999). Despite being the first member of the TG 

family to be identified (Clark et al., 1959) its physiological function is still not 

completely understood. This is a consequence of its ubiquitous expression and 

the necessary delinearisation of its opposing activities as both a transamidation
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enzyme and a G protein. TG2 has been implicated in signal transduction 

(Nakaoka et al., 1994), cell adhesion, spreading and differentiation (Gentile et 

al., 1992; Aeschlimann et al., 1993; Jones et al., 1997 Stephens et al., 2004) 

wound healing (Bowness et al., 1988; Haroon et al., 1999) and apoptosis 

although conflicting reports on the role of TG2 in this process exist since 

cytosolic transamidation activity can be pro-apoptotic corresponding to raised
^ I

Ca levels in late stage apoptosis whereas nuclear GTP cycling proves to be 

anti-apoptotic (Jeong et al., 2009)

1.2.4.1 Intracellular TG2 Function.

1 .Cytosol.

TG2 is thought to be capable of targeting a number of cellular proteins, as loss of 

its Ca2+ regulation in 3T3 fibroblasts results in large insoluble protein shells 

analogous to those formed in keratinocyte differentiation (Nicholas et al., 2003). 

These structures may play a role in vivo by stabilising cells prior to clearance by 

phagocytosis, and limiting harmful release of cellular components into the 

surrounding tissue. The absence of this activity has led to reports of 

inflammatory and autoimmune responses (Pireda et al., 1997). Experiments 

involving over-expressed TG2 in fibroblasts and neuroblastoma cells have 

indicated an increase in both spontaneous and induced apoptosis (Gentile et al., 

1992; Melino et al., 1994; Piredda et al., 1997). Conversely antisense silencing of 

TG2 in neuroblastoma and human pro-monocytes resulted in a decreased 

susceptibility to retinoic acid induced apoptosis (Oliverio et al., 1999).

Further to its function in apoptosis, TG2 has been implicated in cell adhesion, 

spreading and migration. TG2 has been implicated in vimentin recruitment to
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stress fibres via retinoic acid induced transamidation of RhoA. This occurs via 

ROCK-2 and is accompanied by increased cell adhesion (Singh et al., 2001). 

Stephens et al., compared fibroblasts stably transfected with antisense, over­

expressed and a crosslinking deficient mutant TG2 revealing normal cell 

attachment in TG2 deficient cells although spreading of cells was delayed 

(Stephens et al., 2004). TG2 deficient fibroblasts also displayed defects in 

motility which was not attributed to its crosslinking function. Blocking antibody 

experiments failed to induce similar defects in the wild type fibroblast indicating 

the involvement of intracellular TG2 (Stephens et al., 2004). Further experiments 

revealed these TG2 deficient cells had defective- focal adhesion turnover and 

stress fibre formation, accompanied by alterations in phosphorylation of focal 

adhesion kinase (FAK) and failure to activate protein kinase C a, a key enzyme 

involved in cell spreading (Stephens et al., 2004).

2. Membrane.

As a membrane associated G protein, TG2 couples aib- and aid- adrenoreceptors, 

and thromboxane and oxytocin receptors to phospholipase C, thus mediating 

inositol phosphate production in response to agonist activation (Nakaoka et al., 

1994; Feng et al., 1996).

3. Nucleus.

Peng et al., suggested the nuclear pool of TG2 may be transported with the help 

of importin-a3 (Peng et al., 1999). The ability of TG2 to cross link histones 

(Ballestar et al., 1996; 2001), retinoblastoma (Oliverio et al., 1997) and Spl 

proteins has also led to the hypothesis that this enzyme may have a direct role in 

chromatin modifications and/or gene expression regulation.
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4. Extracellular TG2.

It has been shown that TG2 may be involved in cell adhesion (Stephens et al.,

2004). Fibroblasts over-expressing TG2 have been reported to demonstrate a 

decreased susceptibility to trypsin treatment (Gentile et al., 1992; Verderio et al.,

1998). Furthermore, the use of antisense silencing techniques in endothelial cells 

resulted in a reduction in adhesion and spreading (Jones et al., 1997). It was first 

thought that the transamidating activity of TG2 and its remodelling of the 

pericellular matrix may be responsible for this function (Jones et al., 1997). 

Studies have demonstrated TG2 is capable of binding fibronectin with high 

affinity, with the recognition sites for this glycoprotein residing within the N- 

terminus (Jeong et al., 1995). TG2 co-localises with pericellular fibronectin (FN) 

whilst truncated TG2 lacking the fibronectin binding site is not sequestered to 

this region (Gaudry et al., 1999). More recent studies have discovered the 

existence of cell surface TG2/p integrin co-receptors for fibronectin (Figure 5). 

The predominant complex forms with a5pl integrin, but despite TG2 functioning 

within this complex it cannot substitute for the action of these integrins in 

fibronectin assembly (Akimov and Belkin, 2001). The TG2/p integrin receptors 

are calculated to be a 1:1 ratio and dependent on cell type; up to 40% of pi 

integrins may complex in this way (Akimov et al., 2000). Further, these co­

receptors have been found to facilitate cell adhesion and spreading (Isobe et al.,

1999) and motility (Balklava et al., 2002). Much of this work has been carried 

out on fibronectin and these co-receptors may play an important role on this 

substratum. This could explain disparities with studies established on alternative 

ECM components or tissue grade plastic (Stephens et al., 2004). Despite the 

ability of TG2 to cross link fibronectin (Barsigian et al., 1991; Martinez et al.,
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1994; Jones et al., 1997) these functions are independent of transamidation 

activity (Akimov et al., 2000; Balklava et al., 2002) indicating a structural role 

for TG2. In vitro studies carried out using transgenic mice also indicated a role 

for cell surface TG2 in fibroblast migration (De Laurenzi et al., 2001; Verderio et 

al., 2005). Fibroblasts isolated from TG2V' mice were found to repopulate 

wounds at a slower rate than their wild type controls. However this could be 

partly counteracted by the addition of exogenous purified guinea pig liver TG2. 

Furthermore this was found to improve the stability of the cell sheets and shifted 

the pattern of healing toward the control phenotype (De Laurenzi and Melino, 

2001).

Although original sequence data suggested TG2 was a cytosolic protein, 

significant quantities of TG2 have been detected associated with ECM of certain 

tissues. TG2 found here has been implicated in wound healing, angiogenesis, 

remodelling and stabilisation (Upchaurch et al., 1991; Haroon et al., 1999; 

Aeschlimann and Thomazy, 2000). TG2 and its role in wound healing will be 

discussed in detail in section 1.4.5 however its ability to remodel ECM tissue has 

been attributed to its crosslinking activity. This has been demonstrated in vitro by 

its ability to contract floating collagen lattices where crosslinking deficient forms

*777of the enzyme produced by a substitution of Cys to Ser residue demonstrates a 

reduced rate of contraction accompanied by reduced levels of MT1-MMP and 

active MMP2 (Stephens et al., 2004). TG2 substrates within the ECM vary; 

fibronectin (Jones et al., 1997), vitronectin (Sane et al., 1988), collagen (Kleman 

et al., 1995), osteonectin (Aeschlimann et al., 1995), osteopontin (Kaartinen et 

al., 1997) and nidogen (Aeschlimann and Paulsson 1991) have all been found to
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be TG2 substrates. Furthermore TG2 has demonstrated a high affinity for several 

basement membrane components leading to its proposed stabilisation of the 

dermo-epidermal junction (DEJ). TG2 may also affect matrix deposition 

indirectly; the secreted enzyme is found to impact on the activation of TGF-P 

possibly through covalent modification of activating factors (Kojima et al., 1993; 

Nunes et al., 1997). This produces a positive feedback mechanism for TG2 

expression and that of several other ECM genes (Ritter et al., 1998; Akimov and 

Belkin, 2001)
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Figure 5. Schematic representation of the role of extracellular TG2: Transglutaminase 2 
(TG2) acts as an integrin co-receptor and binds fibronectin with a high affinity, thereby 
aiding the organisation of the extracellular matrix (ECM). Through interactions with 
adhesion components such as paxillin and FAK, the a5pi integrin receptor can influence 
intracellular signalling and the cytoskeleton. Unlike the more reversible processes of cell- 
matrix interactions (a) that are dependent only on non-covalent associations with TG2, 
irreversible mineralisation (b) requires the covalent cross-linking of connective-tissue 
substrates (osteonectin/osteopontin and collagens) by the Ca2+-activated enzyme (Figure 
courtesy of D. Aeschlimann, University of Wales, Cardiff, UK), (c) TG2 also stabilises the 
dermo-epidermal junction. This enzyme catalyses the covalent attachment of TGFp, 
through its latent TGFP protein (LTBP) subunit, to the microfibrils. As such, large stores of 
this growth factor can accumulate in the connective tissue from where it can be liberated by 
the action of proteases. Hemidesmosome-mediated attachment of cells to the basement 
membrane and the underlying connective tissue proteins (anchoring fibrils, microfibrils 
and collagen fibrils) -  all of which are substrates for TG2 -  are shown. (Lorand and 
Graham, 2003).
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1.2.4.2 Murine TG2'/_ model.

To date, TG2 mutations have not been found within the human TGM2 gene. In 

addition, TG2 multifunctionality led to the hypothesis that TG2 knockout in mice 

would produce a lethal phenotype. However, generation of TG2 knockout mice 

resulted in a normal phenotype at mendelian frequency (De Laurenzi and Melino, 

2001; Nanda et al., 2001). Initial experiments revealed no obvious alterations in 

apoptosis (De Laurenzi and Melino, 2001), ECM structure or heart function 

where GTPase activity is thought to be important (Hwang et al., 1996). These 

findings suggested there may be redundancy within the TG family indicating a 

compensatory mechanism, however only FXIII is localised to the ECM and this 

is not capable of GTP cycling. Further investigation of these mice identified a 

decrease in primary fibroblast adhesion (Nanda et al., 2001) and impaired wound 

healing (Meams et al., 2002). Furthermore, following dexamethasone induction 

of apoptosis, phagocytic clearance by macrophages is defective within the 

thymus and the liver (Nanda et al., 2001). This concurs with previous studies 

indicating TG2 crosslinking is important in stabilising apoptotic cells prior to 

clearance (Piredda et al., 1997). Finally knockout mice have also demonstrated 

glucose intolerance as a result of reduced insulin secretion that correlates 

strongly with maturity onset diabetes in humans (Bemassola et al., 2002).
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1.2.5 TG3

TG3 is a virtually inactive zymogen of 77 kDa and 692 amino acids that localises 

to the cell cytosol (Kim et al., 1993; Hitomo et al., 2003). Activation of the 

enzyme is a result of cleavage at Ser469 to produce a 50 and 27 kDa fragment 

(Kim et al., 1990; 1993). The 50 kDa cleavage products which consists of the N- 

terminal sandwich and catalytic domains is capable of catalysing transamidation 

reactions (Chung and Folk, 1972; Ogawa and Goldsmith, 1976) however when it 

is complexed with the 27 kDa C-terminal P barrel domain this activity is 

increased and it is thought that the two fragments stay associated (Kim et al., 

1990). The enzyme responsible for this cleavage in vivo has not yet been 

identified but in vitro studies have utilised the bacterial protease dispase to 

produce correlating cleavage products (Kim et al., 1993). The cleavage site is a 

unique sequence of 12 polar amino acid residues residing in the flexible loop 

connecting the catalytic and p barrel domain 1 (Kim et al., 1993) and correlates 

strongly with cleavage sites found in TGI and FXIII (Thibaut et al., 2009). 

Conservation of TG3 between species ranges from 50-75% indicating this 

enzyme is still undergoing rapid evolution (Kim et al., 1993; Aeschlimann and 

Paulsson 1994). The protease cleavage site has particularly low homology and 

may be evident of species evolving alternate activation mechanisms (Kim et al., 

1993). Resolution of several TG3 crystallographic structures has indicated the

94 *conformational changes which accompany activation. A total of three Ca 

binding sites have been identified within the enzyme (Ahvazi et al., 2002). The 

first (Asn -Asn ) demonstrates constitutive binding (Kd 0.3 pM) and has a 

role in enzyme stabilisation, the second (Asn430-Asn448) and third (Asn393-, Glu443 

and Glu 448) Ca2+ binding sites occur after zymogen cleavage and cooperate to
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produce a movement of the p-strand (Gly322-Ser325). This conformational change 

opens a channel through the enzyme and exposes two (Trp) residues near to the 

active site (Figure 6). This is thought to stabilise the transition state of the 

enzyme. The conformational change also makes Asp324 accessible for 

coordination to the Ca2+ ion at site 3. Ca2+ ions at sites 2 and 3 can be substituted

for lanthamides and for site 3 Mg2+. Despite this, Ca2+ binding at site 3 is
2+

required to activate the enzyme. Therefore it has been suggested that the Mg 

binding of the cleaved zymogen provides a mechanism to stop aberrant
' y i

crosslinking activity in the absence of increased Ca concentration (Ahvazi et 

al., 2003). Biochemical and crystallographic evidence has been shown to indicate 

that TG3 can undergo GTPase cycling; however unlike TG2 this enzyme does 

not target ATP (Ahvazi et al., 2004, Thibaut et al., 2009). In order for GTP/GDP 

binding to occur there must be a substitution of Ca ion at site 3 for Mg 

accompanied by regional conformational changes producing movement of the 

320DKGSDS325 sequence motif. This indicates therefore this structural alteration 

targets the same sites involved in the activation of the enzyme and indicates the 

negative regulatory role of nucleotides.
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Figure. 6 The electrostatic surface potential comparison of the TG3-GDP complex when 
bound to Ca2+ or Mg2+ at site 3: The front and back view represent images rotated 180° with 
respect to each other. The acid and basic regions are coloured red and blue respectively. An 
open channel is clearly evident in the Ca2+ bound form and is lost following Mg2+ 
substitution (Ahvazi et al., 2004).
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1.2.6 TG4

Currently, the most extensive studies carried out with TG4 have included the rat 

form of the enzyme, and no knockout mouse has been reported (Iismaa et al.,

2009). TG4 is a 74 kDa protein made up of 692 amino acids that exists as a 

homodimer (Wilson and French, 1980). It has been identified as a major 

secretory product of rat dorsal prostate and coagulating glands (Ho et al., 1992). 

TG4, like other secreted TGs, contains no recognised signal peptide and is N- 

terminally blocked. Immunogold electron microscopy has detected TG4 in 

apocrine secretory vesicles, however its absence from golgi apparatus suggest 

direct entry from the cytoplasm (Seitz et al., 1990; 1991). TG4 has been shown 

to be mannosyl linked and has a phophotidyl anchor post modification (Seitz et 

al., 1991) however its best characterised function is its rapid catalysis of 

polyamines to produce seminal plugs (Williams-Ashmann 1984).

1.2.7 TG5

TG5 has been shown to be ubiquitously expressed in low levels in human tissues 

with the exception of both the lymphatic and central nervous system 

(Aeschlimann et al., 1998; Candi et al., 2004). TG5 is an 81 kDa protein made up 

of 720 amino acids, is expressed in its active form and has been shown to be N- 

terminal acetylated (Rufini et al., 2004). TG5 mRNA isolated from human 

keratinocytes indicates 3 alternative splice products in addition to the full length 

enzyme, in which exons III, XI or III or XI are absent. In vitro studies have 

determined that exon III is required for enzyme activity (Candi et al., 2001). 

Splice products lacking exon XI produce a frame shift mutation resulting in a 

novel sequence of 25 amino acids followed by premature termination (Candi et
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al., 2001). Due to its slow expression several TG5 studies have utilised 

keratinocytes that over-express the protein; such studies have shown this enzyme 

to be resistant to extraction and retrieval has only been possible by treatment 

with SDS or urea. This is similar to the profile of insoluble proteins and cell 

fractionation studies have demonstrated that TG5 associates with the nuclear 

matrix and cytoskeleton. Like TG2, TG5 is capable of binding ATP and GTP, 

which has been demonstrated to inhibit the enzymes crosslinking ability (Candi 

et al., 2004) although its GTPase activity and subsequent affect on cellular 

function is not yet known. TG5 expression is increased several fold in induced 

differentiating cultured keratinocytes, leading to its investigation in CE formation 

and consequent binding to CE components such as involucrin and loricrin (Candi 

et al., 1995).

1.2.8 TG6.

TG6 has remained elusive for study due to its insolubility, despite extreme 

measures. Consequently, little data has been published on TG6 except that 

concerning its role in gluten sensitivity in celiac disease (Hadjivassiliou et al., 

2010). TG6 is calculated to be an 80 kDa protein consisting of 708 amino acids. 

TG6 has been shown to undergo alternative splicing of exon XII, the absence of 

which produces a frame shift and premature termination within exon XIII. TG6 

was first amplified from the small lung carcinoma cell line H69 (H Thomas PhD 

thesis, 2004) and subsequent northern blot analysis identified widespread 

expression at low levels in human tissues. High expression levels have been 

determined in gluten sensitivity sufferers in brain tissue (Hadjivassiliou et al.,
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2010) and in addition, murine in situ data suggests that this isoform is also 

localised to the epidermis (Hadjivassiliou et al., 2010).

1.2.9 TG7

TG7 is the most recently discovered member of the TG family. It was first 

isolated from a prostate carcinoma cell line, and is an 80 kDa 710 amino acid 

protein. Northern blot analysis has indicated this TG7 is expressed at low levels 

in many human tissues with the highest concentrations found in testis and lung 

tissue (Grenard et al., 2001). TG7 has been amplified from a number of cell lines 

by RT-PCR including dermal fibroblasts (TJ6F and HCA2), primary 

keratinocytes and mammary epithelium (Grenard et al., 2001). Although 

physiological functional data of this enzyme is limited and there is no knock out 

mouse currently reported, data concerning neurodegeneration has linked 

mutation in this enzyme with activated microglia leading to severe brain 

vacuolation and neurodegeneration (Kercher et al., 2007).

Metalloproteinases are cited in literature as being responsibly for extensive 

changes in tissues caused by proteolytic activity and remodelling. Therefore the 

following section details the metalloproteinase family and their potential role in 

mediating Transglutaminase affects on re-epithelisation
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1.3 Metalloproteinases General introduction.

Proteinases are implicated in many processes in tissue remodelling; cell motility, 

morphogenesis and cell and organ growth and development, through the 

degradation and processing of matrix components. This mechanism allows 

tissue and organ turnover through removal and replacement of cellular or matrix 

components (Fowlkes and Winkler, 2002).

The Metzincin superfamily is a diverse and expansive group of zinc peptidases, 

from both eukaryote and prokaryote families. Of the four sub-families the 

Astacins (crayfish collagenolytic enzyme and bone morphogenic protein 1 

(BMP-1), Serralysins (bacterial proteinases), Adamalysins, (snake venom 

proteinases and a disintegrin- and metalloproteinase (ADAMS) and Matrix 

Metalloproteinases (MMPs) (Stocker and Bode, 1995) only the 

metalloproteinases, MMPs and ADAMS, will be discussed in this review due to 

the volume of research available on these four subfamilies and the relevance to 

this study.

The metalloproteinase family share several characteristics. They display a high 

level of sequence homology and all but the membrane type (MT)-MMPs are 

secreted from cells in a non active state known as a zymogen and termed a pro- 

MMP. They are activated by the removal of the propeptide sequence and they 

can be secreted as soluble proteinases or inserted into the cell membrane (MT- 

MMPs). Their activity is highly dependent on both zinc and Ca2+ ions, and once 

activated, MP activity is controlled by the tissue inhibitor of metalloproteinases 

(TIMPs) of which there are four family members (Nagase et al., 1999). Since
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metalloproteinase activity is highly dependent on both zinc and Ca ions, they 

can also be readily inhibited chemically, by chelating agents such as EDTA.

1.3.1 Structure of Metalloproteinase Family.

Classification of proteases is generally based on whether they cleave terminal or 

internal sites within peptides or proteins and are therefore referred to as 

exopeptidases or endopeptideases respectively. Further classification involves 

examining their catalytic mechanism and/or their specific inhibitor sensitivities. 

They can then be further divided into serine, cysteine, aspartic or 

metalloproteinases (Stocker and Bode, 1995). A typical metalloproteinase 

consists of a propeptide of around 80 amino acids, a catalytic metalloproteinase 

domain of around 170 amino acids, a linker peptide of variable length (also 

referred to as the hinge region) and a hemopexin (Hpx) domain of around 200 

amino acids. The zinc binding motif HEXXHXXGXXH in the catalytic domain 

and the cysteine switch motif PRCGXPD in the propeptide are common 

structural signatures where the three histidines in the zinc binding motif, and the 

cysteine in the propeptide co-ordinate with the catalytic zinc ion (Bode et al., 

1993). This Cys-Zn coordination inhibit metalloproteinase activity by 

preventing a water molecule essential for catalysis from binding to the zinc ion. 

The catalytic domain also contains a conserved methionine which forms a Met 

turn eight residues from the zinc binding motif, providing a base to support the 

structure surrounding the catalytic zinc (Bode et al., 1993). The zinc binding 

motif and the Met turn are also conserved in members of the ADAMs family, 

ADAMTS sub family, the Astacins and the Serralysins and while these
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subfamilies have little homology in their primary structures, the overall protein 

folds are similar (Gormis-Ruth, 2003).

1.3.2 Metalloproteinase Family and Domain Structure.

In 1962, Gross and Lapiere first reported vertebrate collagenolytic activity in 

tadpole tissues (tailfin, skin, intestine and gill) undergoing metamorphosis (Gross 

and Lapiere, 1962), prompting the investigation of remodelling in further tissues, 

as the deposition and remodelling of collagen is important in tissue turnover, 

structure and function. The first human collagenase to be purified was from 

rheumatoid synovium (Woolley et al., 1975) which has similar properties to 

tadpole collagenase, cleaving triple helical type I collagen at a single site about 

three quarters away from the N-terminus (Woolley et al., 1975). It took another 

11 years to deduce the primary structure of human collagenase (MMP-1) from 

fibroblasts by cDNA cloning (Goldberg et al., 1986).

To date, the MMPs now comprise a family of over 20 members which are all 

highly homologous zinc dependent matrix degrading proteinases. By comparison 

of the domains and their preferred substrates, metalloproteinases are grouped into 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)- 

MMPs and others. Figure 7 shows the variations in metalloproteinase domain 

arrangements and Table 2 describes the composition of each member.

The collagenases are active against fibrillar forms of collagen. The collagenases 

are able to cleave interstitial collagens I, II and III into characteristic Va and lA 

fragments but they are also able to digest other ECM molecules and soluble

42



Role o f Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

fragments (Woessneer and Nagase, 2000; Visse and Nagase, 2003). Although 

MMP2 and MMP14 (MT1-MMP) also have collagenolytic abilities, these are 

grouped differently due to their domain composition. The gelatinases have high 

activity against denatured collagens (gelatin), and bind to gelatin and collagen 

via their 3 fibronectin type II repeats. They are also able to digest collagens IV, 

V and XI, laminin, aggrecan core protein amongst others (Aimes and Quigley, 

1995). MMP 2 is also able to digest collagen I, II and III similarly to the 

collagenases (Aimes and Quigley, 2005). The stromelysins exhibit activity 

against a wide range of non collagen components of the ECM; they have a 

domain arrangement similar to the collagenases but they are able to digest 

interstitial collagens as well as digestion of some ECM molecules and 

participation in proMMP activity (Murphy et al., 1993). The Matrilysins lack a 

hemopexin domain. As well as processing ECM components, MMP 7, a member 

of this family, is able to process cell surface molecules such as pro-a- defensin 

and Fas-Ligand (Nagase et al., 2006).
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Figure 7. Domain structures of the metalloproteinase family, ss, signal sequence; pro, pro­
domain, FNII, fibronectin type II motif; LI, linker 1; L2, linker 2; Mb, plasma membrane; 
TM, transmembrane domain; CT, cytoplamic tail; CysR, cysteine rich; Ig, immunoglobulin 
domain; GPI, glycosylphosphatidylinositol anchor; C, cysteine. Taken from Murphy and 
Nagase. 2008.
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The MT-MMPs all contain a furin recognition sequence RX[r/k]R at the C 

terminus of the propeptide. MT-MMPs are transmembrane MMPs that have 

some activity against some ECM components and can activate other MMP 

family members. They are activated intracellularly and active enzymes are likely 

to be expressed at the cell surface. All MT-MMPs except MT4-MMP can 

activate proMMP2, and MT1-MMP has collagenolytic activity for collagens I, II 

and III (Ohuchi et al., 1997). Although several MMPs are not listed this is 

because they display characteristics similar to those seen in these groups. All are 

still capable of digesting various ECM components by similar modes of action 

(Nagase et al., 2006).
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Enzyme MMP Chromosome
location(Human)

SS Pro cs RX[R/K]R Cat FN2 LK Hpx Lk2 TM GPI Cyt CysR-Ig

Collagenases
Interstitial collagenase; 
Collagenase 1

MMP-1 Ilq22-q23 * * * * ★ *

Neutrophil collagenase; 
Collagnease 2

MMP-8 Ilq21-q22 * * * ★ * *

Collagenase 3 MMP-13 1 lq22.3 * * * * * *
Collagenase 4 (Xenopus) MMP-18 Not in humans * * * * * * *
Gelatinases

Gelatinase A MMP-2 16ql3 * ■k * * * * *

Gelatinase B MMP-9 20q 11.2-q 13.1 * * * * * * *
Stromelysins
Stromelysin 1 MMP-3 1 lq23 * * * * * *
Stromelysin 2 MMP-10 Ilq22.3-q23 •k ■k ■k * * *
Matrilysins
Matrilysin 1 MMP-7 Ilq21-q22 * * * *
Matrilysin 2 MMP-26 llp lS * * * *
Stromelysin 3 MMP-11 22ql 1.2 * * * * *
Membrane Type MMP 
Transmembrane type
MT1-MMP MMP-14 14ql l-ql2 * * * * * * * * * *
MT2-MMP MMP-15 15ql3-q21 * * * * * * * * * *
MT3-MMP MMP-16 8q21 * * * * * * * * * *
MT5-MMP MMP-24 20q 11.2 * * * * * * * * * *
(B) GPI-anchored
MT4-MMP MMP-17 12q24.3 * * * * * * * * *
MT6-MMP MMP-25 16pl3.3 * * * * * * * * *
Others
Macrophage elastase MMP-12 Ilq22.2-q22.3 * ■k * * * *
- MMP-19 12q 14 * * * * * *
Enamelysin MMP-20 1 lq22.3 * * * * * *
- MMP-21 * * * * * * *
CA-MMP MMP-23 lp36.3 * * * * *
- MMP-27 1 lq24 * * * * * *
Epilysin MMP-28 17q21.1 * * * * * * *
Table 2: Metalloproteinases listed with their alternative names, location and alternative splicing arrangements.
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1.3.3 Control of Metalloproteinases.

MP activity is tightly regulated at 3 levels; they are expressed at low levels, by 

transcription control either positively or negatively controlled by cytokines and 

growth factors, and post transcriptional control where their activity can be 

restricted. A number of inflammatory cytokines [interleukin-1-P (IL-ip), IL-6], 

growth factors [platelet derived growth factor (PDGF)], hormones 

(corticosteroids) and tumour promoters [tumour necrosis factor-a (TNFa)], 

control the gene expression and the secretion of MMPs (Dollery et al., 1995; 

Thompson and Parks, 1996).

Inhibition of proteolytic activity of metalloproteinases occurs by endogenous 

inhibitors of matrix metalloproteinases (TIMPS). The tissue inhibitors of matrix 

metalloproteinases (TIMPs) are the dominant inhibitors of MMPs (detailed in 

section 1.3.4), they are a family of 4 proteinase inhibitors which bind to MMPs 

rendering them inactive while a2-macroglobulin and tissue-factor pathway 

inhibitor-2 inhibit MMPs to a lesser extent. TIMPs bind either active or latent 

forms of MMPs in a molecular 1:1 ratio (Visse and Nagase, 2003). The balance 

of relative concentrations of active MMPs and their inhibitors determines the net 

proteolytic activity (Knox et al., 1997).

MMPs are synthesised as latent pro-enzymes that require activation by disruption 

of cysteine-zinc interaction of the cysteine switch and the removal of the pro­

peptide for full activity (Visse and Nagase, 2003). The signal peptide is removed 

during translation and the proMMP is generated. Activation of the zymogen 

(proMMP) is an important regulating step. Thirteen of the MMPs are secreted as
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proMMPs. Within the propeptide there is a susceptible bait region which allows 

tissue and plasma proteinases to activate the proMMP. The removal of the bait 

region cleaves only a part of the propeptide; complete removal often occurs in 

trans by the action of a MMP intermediate or by another active MMP. This 

process has been termed Stepwise Activation (Nagase et al., 1990). Ten more of 

the proMMPs possess a furin-like proprotein recognition site RX[K/R]R at the 

end of the propeptide and are activated intracellularly before secretion or 

association with the cell surface. The activity of these MMPs is regulated by their 

tissue position and inactivation by either endogenous inhibitors such as a TIMP 

or by proteolysis (Nagase et al., 2006) MT1-MMP is unique in that it becomes 

rapidly endocytosed and partially recycled to the cell surface (Stawowy et al.,

2005). Furthermore, MMPs can be readily activated by treatment with mercurial 

compounds, Sh reagents and chaotropic agents, thought to be due to perturbation 

of the molecule. Alternatively oxidants such as HOC1 and ONOO- can activate 

proMMPs by reacting with the cysteine (cys) of the cys switch in the propeptide; 

this mode of activation may therefore occur under inflammatory conditions 

(Peppin and Weiss 1986; Gu et al., 2002).

1.3.4 Endogenous Regulation of MMPs (including TIMPS).

MMPs are regulated endogenously in two ways; firstly they can be regulated by 

a2-macroglobulin; a plasma glycoprotein of 725 kDa containing four identical 

subunits of 180 kDa each. a2-macroglobulin inhibits proteinases by entrapping 

the proteinase within the macroglobulin and the complex is rapidly cleared by a 

low density lipoprotein receptor related protein 1 which endocytoses the complex 

(Strickland et al., 1990). This process usually occurs for MMPs which are active
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in the fluid phase. Secondly, TIMPs can also inactivate MMPs. TIMPs are 

proteinase inhibitors usually consisting of 184-194 amino acids and are 

subdivided into an N-terminal and a C terminal subdomain. Each domain 

contains three conserved disulphide bonds and the N-terminal domain folds as an 

independent unit with MMP inhibitory activity. TIMPS have been shown to 

inhibit all MMPs thus far, however, some are more effective against specific 

MMPs than others. For example TIMP-1 is a poor inhibitor of MT1, 3 and 5 - 

MMP, but is effective against the other MMPs and ADAM10 (Nagase et al.,

2006). The mechanism of TIMP inhibition of MMPs has been determined based 

on crystal structures of the TIMP-MMP complex (Gomis-Ruth et al., 1997). The 

overall shape of the TIMP molecule is ‘wedge-like’ which allows the N terminus 

four residues Cys1 -Thr-Cys-Val4 and the residues Glu67-Ser-Val-Cys70 in the 

case of TIMP1, to be slotted into the active site of the MMP via a disulphide 

contiguous bridge. This region accounts for 75% of the protein-protein 

interaction in the case of the complex of the catalytic domain of MMP3 and 

TIMP1. The catalytic zinc atom is bidentately chelated by the N-terminal amino 

group and the carbonyl group of Cysl which expels the water molecule bound to 

the zinc atom and therefore inactivates the MMP (Nagase et al., 2006). 

Furthermore a mutation of the position 2 residue (Thr in TIMP-1) can greatly 

affect the affinity of the TIMP for the MMP. A substitution to glycine in this 

position inactivates TIMP1 in MMP inhibition (Meng et al., 1999). Further 

amino acid changes can affect the four TIMPs’ affinity to regulate the MMPs and 

depending on the substitution can render them ineffective as a means of MMP 

control.
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1.3.5 ADAMS Sub Family.

ADAMS (a disintegrin and metalloproteinase) are membrane bound enzymes 

that make up a further sub family of the metzincin superfamily, and whose 

function is closely related to that of the snake venom metalloproteinases. Their 

structure consists of multidomains; proproteinase, metalloproteinase, disintegrin, 

cysteine-rich, epidermal growth factor-like, and cytoplasmic domains. 

Mammalian ADAMs are involved in regulation of cell-cell fusion, adhesion, and 

intracellular signalling as well as in sperm egg binding and fusion (Van Goor et 

al., 2009). To date, 34 ADAM proteins have been identified in different species 

and the human family contains 23 members (Zhong et al., 2008). Approximately 

half have a consensus metalloproteinase catalytic sequence, rendering them 

proteolytically active; indeed, several ADAM family members have been found 

to release cytokines, growth factors, receptors, adhesion molecules, and other 

membrane proteins from the cell surface, a process termed ectodomain shedding. 

The remainder are likely to primarily have roles in cell adhesion, through their 

interaction with integrins via the disintegrin/cysteine-rich domains (Zhong et al.,

2008).

1.3.6 ADAMS Structure.

An ADAM is a single span transmembrane protein that comprises a pro domain, 

a zinc metalloproteinase domain which faces extracellularly, a disintegrin 

domain, a cysteine rich region, an EGF like sequence, a transmembrane region 

and a cytoplasmic tail (see Figure 8). The N terminus of ADAMs contains a 

signal sequence
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that directs ADAMs into the secretory pathway and a prodomain that functions in 

maturation. Primarily however the purpose of the prodomain is to maintain the 

metalloproteinase site of ADAMs in an inactive conformation, through a cysteine 

switch (Van Wartand Birkedal-Hansen 1990; Becker et al. 1995). A conserved 

cysteine residue within the prodomain preferentially coordinates the required 

active site zinc atom, which sequesters the metalloproteinase domain in an 

inactive conformation. The second main function of the prodomain is to 

chaperone the proper folding of ADAMs, in particular the metalloproteinase 

domain. This has been suggested by studies showing that the removal of the 

prodomain of ADAM 17 generates a protease-inactive protein (Milla et al. 1999). 

The crystallization of several metalloproteinase domains of metzincin family 

members, including ADAM 17, has allowed the mechanism of proteolytic 

activity to be elucidated (Maskos et al., 1998). Similarly to matrix 

metalloproteinases, the active site of the ADAM contains zinc and water atoms 

that are necessary for hydrolytic processing of protein substrates. This is 

coordinated by three conserved histidine residues and a downstream methionine. 

The methionine lies in a Met turn motif that loops around to face the consensus 

HExxHxxGxxH site. This region is highly conserved amongst the various 

Metzincins. However, individual proteins can be distinguished by other 

structural features that may impart specificity for substrates and protease 

inhibitors (Stocker et al., 1995). Not all ADAMS are enzymatically active, as 

some individual ADAMs lack the characteristic catalytic zinc binding signature.

The disintegrin domain of ADAMs proteins is around 90 amino acids long. 

Structurally, there is little known about the disintegrin domain of ADAMs,
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although a comparison with structural studies of Snake venom 

metalloproteinases (SVMP) crystals and other integrin receptor ligands may 

allude to its function (Gomis-Ruth et al., 1994). The disintegrin domains of 

SVMPs mimic the ligand site of matrix proteins like fibronectin for integrin 

receptors. Like fibronectin, many have an RGD consensus sequence within a 13 

amino acid stretch called the disintegrin loop, which projects from the surface of 

the protein and confers binding to allbp3 and av|33 integrin receptors (Blobel et 

al., 1992). The cysteine-rich and EGF-like domains have been described as the 

black box of the ADAM (Seals and Courtneidge, 2003). What is known of these 

domains does not appear to indicate a functional theme that would characterize 

these domains in the same manner as the metalloproteinase and disintegrin 

domains.

ADAMs 1, 3, 12, and 14 have a motif in their cysteine-rich domain that is very 

similar to sequences found in viral fusion peptides (Blobel and White, 1992). 

This, coupled with the observations that ADAMs 1, 3 and 12 participate in cell 

fusion reactions, led to the proposal that the cysteine-rich domain is involved in 

membrane fusion, although this hypothesis has not been experimentally tested 

(Seals and Courtneidge, 2003). It is also postulated that the cysteine-rich domain 

complements the binding capacity of the disintegrin domain, and potentially 

confers specificity to disintegrin domain-mediated interactions. Furthermore, 

another theory suggests a cysteine-rich domain-specific function as a ligand for 

the cell adhesion molecule syndecan (Iba et al., 1999, 2000).
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The cytoplasmic tail of the ADAM is variable both in sequence and length. This 

domain contains specialized motifs that are thought to be involved in the inside- 

out regulation of metalloproteinase activity, the outside-in regulation of cell 

signalling, and/or the control of maturation and subcellular localization. The 

most common motifs are PxxP binding sites for SH3 domain-containing proteins. 

Several ADAMs also have potential phosphorylation sites for serine-threonine 

and/or tyrosine kinases. This may regulate ADAM function directly, as well as 

the resulting phosphotyrosine residues providing ligands for SH2 domain- 

containing proteins. Consequently, ADAMs may serve adaptor functions to 

assemble complexes of proteins at critical sites of functional activity (Seals and 

Courtneidge, 2003). ADAM structure and types of ADAMs are shown in figure 8 

and described in table 3.
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Figure 8. The domain structure of a typical ADAM protein. SP, signal peptide; Pro, Pro­
domain, including cysteine switch region; Catalytic, catalytic domain, including the zinc- 
binding HEXXH consensus sequence; Dis, disintegrin domain; EGF, epidermal growth 
factor domain; TM, transmembrane domain; Cyt, cytoplasmic domain. In the ADAMTS 
family, the EGF, transmembrane and cytosolic domains are absent and are replaced by one 
or more thrombospondin type-1 (TSP1) motifs. The central TSP1 domain is highly 
conserved among the ADAMTS proteins but the number of C-terminal TSP1 domains can 
vary from zero (ADAMTS4) to 14 (ADAMTS9 andADAMTS20). Some ADAMTS contain 
additional C terminal extensions (not shown). The disintegrin-like domain in the ADAMTS 
proteins lacks the typical arginine-glycine-aspartic acid (RGD) integrin-binding motif of 
ADAMs proteins and of the snake venom disintegrins (Van Goor et al., 2009).

54



Role of Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

No. Common name Potential functions Expression Alternative splicing MP Active Integrin Binding SH3 binding site 

cytoplasmic tail

2 Fertilin-P, PH-30p Sperm/egg binding fusion Testis *

7 EAP1 Epididymis *

8 MS2, CD 156 Granulocytes/ monocytes *

9 Meltrin-y, MDC9 Sheddase, Cell migration Somatic *FLS * * *

10 Kuz, MADM, SUP-17 Sheddase, cell fate determination Somatic *L/S * *

11 MDC Putative tumour repressor Brain *

12 Meltrin-a Sheddase, Myoblast fusion Somatic *L/S * * *

15 Metargidin, MDC 15 Cell/Cell binding Somatic * * *

17 TACE Sheddase Somatic *

18 tMDCIII Testis *

19 Meltrin-P, MADDAM Sheddase, dendritic cell development Somatic * *

20 Testis *

21 Testis *

22 MDC2 Brain *y,8,e *

23 MDC3 Cell adhesion/Neural development Brain *

28 MDC-L Immunosurveillance Epididymis, Lung, Lymphocytes *M/S * *

29 Testis *a,p,y *

30 Testis *a,p *

33 Genetically linked to asthma Somatic * * *

Table 3: ADAMS found in humans and their associated position, function and splice variations.
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1.3.7 ADAM Family Function.

Unsurprisingly, since ADAMs have a complex domain structure, they have been 

shown to be involved in several proteolytic driven processes via their 

metalloproteinase activity, adhesion to integrins via a disintegrin domain, cell­

cell fusion potentially through a hydrophobic fusion peptide present in the 

cysteine rich domain and cell signalling involving the SH3 recognition sequence 

sometimes present in the cytoplasmic tail (Black et al., 1997, 1998; Killar et al., 

1999; Yamamoto et al., 1999; Blobel et al, 2000). Approximately half of the all 

current known ADAMs have been assigned a function dependent on their 

catalytic abilities however the catalytically inactive ADAMs are less well 

understood. It has been suggested they could be involved in as acting as peptide 

binding receptors to mediate cell signalling (Van Goor et al., 2009). Furthermore 

the related ADAMTS family also differ from the ADAMs in that they lack the 

EGF like sequences and transmembrane domains and hence function as secreted 

proteins. ADAMTS’ also retain the metalloproteinase domain as well as the 

disintegrin like domain however the function of this is not yet understood; 

potentially the interactions of the disintegrin like domain with integrins seen in 

vitro may yet be deemed physiologically relevant (Van Goor et al., 2009). 

ADAMS are highly involved in development and therefore have been implicated 

in spermatogenesis and sperm egg formation as well as neurological 

development and branching morphogenesis in the lung, kidneys and pancreas 

(Tousseyn et al., 2006). Furthermore they have also been shown to be 

ubiquitously expressed in healthy human tissues, although particular ADAMS 

are restricted to specific organs. Furthermore, their presence appears to prevent 

diseases such as Alzheimer’s and thrombotic thrombocytopenic purpura, both of
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which have been linked with defects in ADAMs signalling (Van Goor et al.,

2009).

1.3.8 ADAMS as Modulators of the EGF Receptor Signalling.

The epidermal growth factor family (EGF) family have already been mentioned 

briefly in section 1.3.5 however their regulation by members of the ADAM 

family warrants further discussion. The EGFR family are type 1 receptor 

tyrosine kinases that participate in several cellular processes including 

differentiation, proliferation, migration and cell survival (Holbro et al., 2003). 

EGFR signalling has been implicated in a wide variety of disease including 

cancer, inflammation and fibrosis (Melenhorst et al., 2008). The ErbB receptor 

family is composed of four members; HER1, HER2 (HER2/Neu), HER3 and 

HER4. All of these are capable of homo or heterodimerizing with one another to 

form several combinations of functional receptor. Furthermore they are also 

capable of binding to multiple members of functionally and structurally similar 

growth factors increasing their activities in diverse cellular function. All EGFR 

ligands are synthesized as membrane-bound precursors that require 

metalloproteinase mediated proteolytic cleavage to produce the soluble, active 

forms. Although paracrine/juxtacrine signalling by transmembrane precursors 

has been shown to mediate biological effects in some experimental systems 

(Iwamoto and Mekada, 2000; Miyoshi et al., 1997; Singh et al., 2004; Willmarth 

and Ethier, 2006), findings from numerous studies strongly suggest that major 

EGF-like growth factor functions including cell proliferation depend on 

proteolytic release of soluble EGFR ligands from their membrane-bound 

precursors (Peschon et al., 1998; Sanderson et al., 2006; Iwamoto et al., 2003).
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Most EGFR ligands are shed by ADAMS including Epidermal growth factor - 

EGF, Transforming growth factor alpha -TGFa, Heparin binding-epidermal 

growth factor -HB-EGF, amphiregullin AREG, epiregulin EREG, betaceullin 

BTC, the neuregulins NRG1-4 and epigen EPGN (Harris, 1997, Singh and 

Harris, 2005,). ADAM 17 is the predominant sheddase of EGF ligands as 

ADAM 17 knockout mice display phenotypes similar to both EGF and TGFa 

knock outs (Sahin et al., 2004). ADAM17 activity can be stimulated externally 

by G protein coupled receptor activation (GPCRs) to induce shedding of cell 

surface ligands. When the GPCR is activated signalling takes place via mitogen 

activated protein kinases and protein kinase C, resulting in ADAM activation and 

AD AM-mediated shedding of EGFR ligands from the cell membrane, allowing 

the EGF ligand to bind to the EGFR (Van Goor et al., 2009). This process is 

called EGFR transactivation. A relatively recent EGFR transactivation process 

was discovered in the activation of EGFR via angiotensin II activation of the 

ATI receptor which promotes vascular remodelling (Ohtsu et al., 2006).

EGFR ligand binding results in conformational changes of the extracellular 

receptor domains (Jorrisen et al., 2003), initiating signalling mechanisms that 

regulate multiple cellular responses such as migration, proliferation, 

differentiation and survival (Citri and Yarden, 2006; Yarden and Sliwkowski, 

2001). Downstream of the EGFR a cascade of distinct signal transduction protein 

becomes phosphorylated upon EGFR activation. These include 

phosphatidylinositol 3-kinase (P13K), MEK and ERK which regulate gene 

transcription via transcription factor activation thereby regulating cell growth, 

proliferation and migration (Holbro et al., 2003). There is substantial evidence
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implicating EGF-like growth factor activity in the regulation of cell migration, 

proliferation, survival and differentiation of normal and malignant epithelial cells 

(Hashimoto et al., 1994; Piepkom et al., 1998; Yarden and Sliwkowski, 2001).

Human keratinocytes express multiple EGF-like growth factors including AREG, 

BTC, EREG, HB-EGF, and TGF-a (Barnard et al., 1994; Coffey et al., 1987; 

Hashimoto et al., 1994; Piepkom et al., 1998; Tokumaru et al., 2000). These cells 

also express substantial levels of EGFR, ErbB2, and ErbB3 but no detectable 

ErbB4 protein (De Potter et al., 2001; Press et al., 1990; Prigent et al., 1992; Stoll 

et al., 2001) suggesting that EGF-like growth factor signalling in keratinocytes 

proceeds through the formation of EGFR homo- or EGFR/ErbB2 and/or 

EGFR/ErbB3 heterodimers. Although the function of EGFR ligands in human 

keratinocytes appears to be highly redundant (Barnard et al., 1994; Coffey et al., 

1987; Cook et al., 1991; Hashimoto et al., 1994; Shirakata et al.,2000; Strachan 

et al., 2001), the importance of individual growth factors in specific cellular 

contexts has not been identified. Animal models and other experimental systems 

have indicated that EGF-like growth factors have distinct roles in various tissues. 

For example, HB-EGF has been shown to be important for wound healing 

(Marikovsky et al., 1993; Stoll et al., 1997; Tokumaru et al., 2000), 

arteriosclerosis (Nakata et al., 1996), blastocyst implantation (Das et al., 1994), 

and heart function (Iwamoto et al., 2003; Jackson et al., 2003; Yamazaki et al.,

2003), whereas AREG has been implicated in mammary gland development 

(Stemlicht et al., 2005). Targeted expression of AREG in the epidermis results in 

a dermatosis with many similarities to psoriasis (Cook et al., 2004; Cook et al., 

1997). Both AREG and HB-EGF have been shown to be important for retinoic
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acid-induced epidermal hyperproliferation (Rittie et al., 2006; Varani et al., 

2001). TGF-a is implicated in hair follicle development and eye formation 

(Luetteke et al., 1993) whereas EREG appears to be a mediator of dermatitis and 

lung metastasis (Gupta et al., 2007; Shirasawa et al., 2004; Stemlicht et al., 

2005). BTC null mice have no detectable defects (Luetteke et al., 1999) however 

in transgenic animals it was recently shown that BTC regulates hair follicle 

development and angiogenesis during wound healing (Schneider et al., 2009).

Acute stimulation of keratinocytes with high concentrations of EGF or other 

EGFR ligands leads to increased expression of multiple EGF family members 

including AREG, HB-EGF and TGF-a (Barnard et al., 1994; Shirakata et al., 

2000; Stoll and Elder, 1999). Although keratinocytes express multiple EGF-like 

growth factors, their importance and specific function in different cellular 

contexts has been incompletely characterized. Stoll et al., carried out an 

investigation to assess the relative expression of EGF ligands in cultured 

keratinocytes and normal and organ cultured human skin (Stoll et al., 2010).

Using Q-PCR, they found that proliferating normal human keratinocytes express 

at least 19 times more AREG mRNA than EPGN, EREG, HB-EGF or TGF-a, 

and that betacellulin (BTC) mRNA was nearly undetectable (Stoll et al., 2010). 

This study also demonstrated that the recently discovered EGFR ligand epigen -  

(EPGN), is also expressed by keratinocytes (Strachan et al., 2001). Similarly, 

using a multiplex EGFR ligand assay, AREG was the most abundant EGF-like 

growth factor shed into the culture medium, whereas EREG, TGF-a, and HB- 

EGF were very close to the lower detection limit. These findings showed that
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Amphiregullin (AREG) is the most abundantly expressed and shed EGF-like 

growth factor in keratinocytes which may largely explain why autocrine 

keratinocyte growth and ERK phosphorylation were selectively blocked by 

antibodies against AREG but not by antibodies against four other EGF-like 

growth factors. Nevertheless AREG has a much lower binding affinity for EGFR 

than does EGF, due to the lack of a conserved leucine residue necessary for high 

affinity binding to EGFR (Adam et al., 1995). Thus, it is possible that the strong 

dependence of keratinocyte proliferation on AREG might be further explained by 

relatively weak desensitization of ligand-receptor complexes. Findings from 

earlier studies showing that AREG antibodies block growth of cultured 

keratinocytes under autocrine conditions (Bhagavathula et al., 2005) was 

confirmed by Stoll et al, whereas TGF- a antibodies had no effect under these 

conditions (Pittelkow et al., 1993). In support of the importance of AREG in skin 

homeostasis, in vivo, overexpression of AREG in transgenic mice leads to a 

hyperproliferative skin phenotype with many similarities to psoriasis (Cook et 

al., 2004; Cook et al., 1997). Furthermore, a humanized antibody against AREG 

also markedly blocked the psoriatic phenotype of human skin grafts on 

immunodeficient mice (Bhagavathula et al., 2005).

Expression of all EGF-like growth factors in cultured keratinocytes from normal 

skin was very low; however, HB-EGF, EREG, TGF-a and AREG were strongly 

induced in human skin organ culture (Stoll et al., 2010). This in vitro model 

displays many similarities to cutaneous wound healing (Bhora et al., 1995; Eisen, 

1969; Hebda, 1988; Mackie et al., 1988; Reaven and Cox, 1968; Sarkany et al., 

1965; Stoll et al., 1997; Stoll et al., 2002). Furthermore, Stoll et al., demonstrated
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a sequential regulation of HB-EGF and AREG expression, and suggest that HB- 

EGF may be important in the earliest phases of wound healing, with AREG 

increasing later during the process (Stoll et al., 2010). This correlates with the 

division of wound healing into an early phase during which keratinocytes 

migrate but do not proliferate and a later phase characterized by vigorous 

proliferation (Bhora et al., 1995; Hebda, 1988; Marks et al., 1972; Stenn, 1978; 

Stoll et al., 1997). The importance of AREG for autocrine KC proliferation might 

explain its increased expression during the later phase of organ culture. 

Interestingly, increased expression of AREG during wound healing has been 

reported (Schelfhout et al., 2002). The early expression of HB-EGF in this model 

and its importance in scratch wound closure; strongly suggest an important 

function of HB-EGF during the early migration phase of wound healing (Xu et 

al., 2004). Consistent with this, it has been shown that skin wound closure was 

markedly impaired in keratinocyte-specific HB-EGF-deficient mice (Shirakata et 

al., 2005). Stoll et al also confirm earlier findings that keratinocyte migration is 

sensitive to EGFR, HB-EGF and MP inhibitors (Tokumaru et al., 2000, Stoll et 

al., 2010). However, in those experiments keratinocyte migration was assessed 

on tissue culture plates coated with type 1 collagen. Although keratinocyte 

migration was sensitive to antibodies against several ligands, expression of 

soluble HB-EGF markedly improved migration even in the presence of MP 

inhibitors (Tokumaru et al., 2000). In contrast, soluble AREG by itself is not 

sufficient to promote keratinocyte migration, but instead requires the proteolytic 

release of one or more additional growth factor(s) (Tokumaru et al., 2000). 

Lysophosphatidic acid (LPA) is an important constituent of blood and serum and 

has been implicated in migration, proliferation, cancer and wound healing
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(Watterson et al., 2007). The strong activation of EGFR by HB-EGF depends on 

MP-mediated release of HB-EGF suggesting an important role of HB-EGF 

during the early phases of wound healing. Metalloproteinase-mediated release of 

membrane-bound EGF-like growth factors is required for EGFR-dependent 

autocrine ERK phosphorylation, migration and proliferation of normal human 

keratinocytes (Stoll et al., 2010). This study indicated that autocrine keratinocyte 

proliferation and ERK phosphorylation are selectively regulated by MP- 

dependent release of AREG, whereas proteolytic release of HB-EGF is required 

for keratinocyte migration as well as LPA-induced ERK phosphorylation. These 

data suggest important but distinct functions of HB-EGF and AREG during the 

migratory and proliferative phases of cutaneous wound healing respectively.
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1.4 Wound Healing General Introduction.

Wound healing is a complex process driven by molecular events during which 

damage occurring to skin is repaired by the interplay of several key cell types. 

Several systems are involved including the inflammatory system, circulatory 

system and cellular repair which result in the production of “new skin” or wound 

closure. Over the previous two decades attempts have been made to understand 

the process of wound healing, often using tissues arising from periodontal 

surgical procedures (Hakkinen et al., 2000). These tissues represent surgically 

wounded sites and incorporate a cascade of cellular and molecular events for 

initiating wound repair. The classical description of wound healing comprises an 

initial temporary repair characterised by the formation of a clot in wounded 

tissues. Inflammation follows, caused by inflammatory cells after which 

fibroblasts and endothelial cells migrate to cover the damaged surfaces. Finally a 

maturation phase occurs where healing of the tissue matrix is seen alongside 

contraction of the wound and scarring. As well as several important cell types 

including those belonging to the inflammatory system such as macrophages and 

neutrophils, fibroblasts, epithelial cells and endothelial cells release a cascade of 

factors which ensure these processes follow on from one another. These include 

the enzymes transglutaminases, cytokines such as decorin and biglycan and 

growth factors such as TGF beta. However, this is a simplified version of events 

and more detail is required on the individual processes that occur during wound 

healing.

1.4.1 The Fibrin Clot and Inflammatory Cells

Any injury to the skin or organ can initially cause injury to blood vessels. This 

causes a fibrin rich clot to form as a result of blood coagulation and platelet
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aggregation which plugs the cut blood vessels and serves to protect at least 

temporarily, the freshly wounded tissue underneath (Clark, 1996). The clot is 

formed by platelets enclosed by a network of fibrin fibres. In addition, plasma 

fibronectin, vitronectin and thrombospondin is also present (Martin, 1997). The 

clot serves as a provisional matrix for cell migration, and provides a rich source 

of growth factors and cytokines from degranulated platelets. Initially there is a 

recruitment of inflammatory cells to the wound site followed by epithelialisation, 

granulation tissue formation and angiogenesis. Neutrophils and monocytes are 

recruited into the wound space by signals present within the clot. Neutrophils 

cleanse the wound of foreign particles, debris and bacteria; this is accomplished 

by both the release of enzymes and toxic oxygen products (metabolites) (Clark, 

1996). When there is a large and increasing number of contaminating bacteria 

present in the wound, neutrophils can cause additional tissue destruction during 

the removal of these foreign objects and bacteria. Neutrophils also fulfil another 

role; they are a source of further pro-inflammatory cytokines which signal to the 

adjacent fibroblasts to activate them. Keratinocytes then begin the re- 

epithelialisation process (Hubner et al., 1996). Neutrophil infiltration of the 

wound ceases after a few days, and they become phagocytosed by either 

macrophages or fibroblasts (Clark, 1996). Peripheral blood monocytes continue 

to be recruited into the wound site and differentiate into macrophages upon 

activation. Fibrin, along with fibronectin in the clot acts as a provisional matrix 

for the influx of monocytes and fibroblasts (Brown et al., 1993). Macrophages 

continue the process started by neutrophils and phagocytose bacteria and cellular 

and matrix debris in the wound. Growth factors and cytokines are continuously 

synthesised and secreted into the wound environment by macrophages. Thus the
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wound repair signals are initiated by degranulating platelets and neutrophils, and 

are maintained by macrophages.

1.4.2 Re-Epithelialisation.

Using gingival tissue as an example, under normal conditions the basal layer of 

epithelium is attached to the basal lamina. Keratinocytes use integrins, which are 

receptors on the cell surface, to bind to a major component of the basal lamina; 

laminin (Hakkinen et al., 2000). Integrins are a family of cell adhesion receptors 

that mediate cell surface interactions predominantly with extracellular matrix but 

sometimes with other cells (Hynes, 1990). The integrin family is made up of 24 

heterodimers composed of 18 a subunits and 8 P subunits where each integrin is 

made up of one alpha and one beta subunit in a non covalent complex (Yamada 

et al., 1996). A number of combinations of these subunits allow individual 

integrins to be specific for a particular ligand, further; many integrins are also 

capable of recognising the same substrate. Table 4 shows the ligands for 

integrins linked with wound healing.

Migration of cells is potentially dependent on integrin expression and the 

changes that occur as a result of changes in the wound environment. In normal 

tissue, keratinocytes use the integrins a6p4 to bind to laminin in the basal lamina, 

and these integrins have intracellular links with the keratinocyte cytoskeletal 

network. When migration of the keratinocytes is necessary, the keratinocytes at 

the wound edge dissolve the hemidesmosome attachment and begin to upregulate 

integrins needed to stimulate healing in the wound environment (Hakkinen et al.,

2000). Migrating keratinocytes express integrins a5pi and aVp6 to bind the 

wound components fibronectin and tenascin, and aVp5, to bind vitronectin. In
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addition integrin a2pi is reorganised to redistribute collagen receptors (Hakkinen 

et al., 2000). This activation of integrins allows the keratinocytes to adhere to 

provisional matrix molecules as well as wound debris. Once the migration of 

epithelial keratinocytes has begun cells from the basal layer away from the 

wound edge begin to proliferate providing a further source of basal cells. The 

mechanism driving epithelial migration is not completely understood.
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Integrin Ligands
a, p; a2|31 Fibrillar collagen, laminin
a3pl Fibronectin, entactin, epilgrin, laminin, denatured collagen
a4pl Fibronectin, VCAM-1
a5pl Fibronectin (RGD)
a6pi; a7pl; a6p4 Laminin
a8pl Fibronectin, vitronectin
a9pl Tenascin
avpl; avp5 Fibronectin; vitronectin
avp3; allbp3 Vitronectin (RGD); fibronectin, fibrinogen, von Willenbrand factor, 

thrombospondin, denatured collagen
avp6 Fibronectin, tenascin
a4p7 Fibronectin (IIIcs)00o

c
l

5 Vitronectin
aMp2 Factor X, fibrinogen
aXp2 Fibrinogen
Table 4: A list of the substrates of integrins associated with wound healing.

Growth Factor Source Effect

Fibroblast growth factors 
1,2 and 3

Macrophages, endothelial 
cells

Fibroblast proliferation and 
angiogenesis

Transforming growth 
factor a

Macrophages,
Keratinocytes

Re-epithelialisation

Transforming growth 
factor pi and P2.

Platelets, macrophages Fibroblast and macrophage 
chemotaxis; extracellular matrix 
synthesis; secretion of protease 
inhibitors

Epidermal Growth Factor Platelets Re-epithelialisation
Platelet derived growth 
factor (isoforms 
AA,AB,BB)

Platelets, macrophages, 
keratinocytes

Fibroblast and macrophage 
chemotaxis, fibroblast proliferation 
and matrix synthesis

Keratinocyte growth factor Dermal Fibroblasts Keratinocyte proliferation
Insulin-like growth factor Plasma, platelets Endothelial and fibroblast 

proliferation
Vascular endothelial 
growth factor

Keratinocytes,
macrophages

Angiogenesis

Interleukin la  and p Neutrophils Activate growth factor expression 
in macrophages, keratinocytes and 
fibroblasts

Tumour necrosis factor-a Neutrophils Activate growth factor expression 
in macrophages, keratinocytes and 
fibroblasts

Table 5: Common growth factors associated with wound healing
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However chemotaxic factors, active contact guidance or an absence of 

neighbouring cells and cell to cell contact or a combination of these may 

contribute (Hakkinen et al., 2000). Once re-epithelialisation has been completed 

the components of basal lamina are deposited starting from the wound edge and 

the epithelial cells revert to their quiescent phenotype. In addition to cues from 

the extracellular matrix, these processes are highly dependent on growth factor 

signalling, summarised in Table 5.

Migration of epithelial cells through the fibrin clot is only possible due to the 

creation of a migrating pathway. This occurs as a result of the dissolution of the 

fibrin barrier by the enzyme plasmin. Plasmin is derived from the activation of 

plasminogen within the clot. The two activators tissue type plasminogen 

activator and urokinase type plasminogen activator along with their respective 

receptors are up regulated by the migrating keratinocytes. In addition to the 

activation of plasmin, several other proteases are also expressed to clear the path 

for migrating cells such as metalloproteinases, which was discussed in section

1.3 and in more detail in section 1.5 later in this chapter.

1.4.2 Granulation Tissue and Wound Contraction.

Granulation tissue is usually formed four days after wounding and is made up of 

new capillaries, macrophages, fibroblasts and some loose connective tissue. 

Granulation tissue is a hub of cytokines that drive chemoattractive, mitogenic 

regulatory reactions (Martin, 1997). Growth factors found in this tissue are 

derived mainly from macrophages and fibroblasts. Granulation tissue forms in 

several stages and depending on the stage may drive the dependent cytokine and 

therefore whether migration, chemotaxis, cell proliferation or phenotypic
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expression is supported. During the formation of granulation tissue, 

macrophages, fibroblasts and new blood vessels invade into the wound space in a 

coordinated manner. Macrophages can stimulate fibroblasts to synthesise a 

collagen-rich extracellular matrix by the release of cytokines (Schafer and 

Werner, 2007). The extracellular matrix supports cell and vascular growth which 

in turn carries nutrients to sustain cellular function. Fibroplasia is the term 

applied to the part of granulation tissue made up of fibroblasts and extracellular 

matrix. Fibroblasts may in turn secrete cytokines to which they can themselves 

respond. The extracellular matrix and fibroblasts function in a reciprocal manner 

during wound healing. Fibronectin and collagen facilitate the adhesion and 

migration of fibroblasts in the granulation tissue, the fibroblasts synthesise and 

decorate the extracellular matrix and in turn the extracellular matrix regulates 

gene expression and behaviour of the fibroblasts. The fibroblasts adhere to 

fibronectin, collagen and vitronectin via various integrins listed in table 3 

(Schafer and Werner, 2007). Similar to keratinocytes, fibroblasts change their 

integrin profiles in preparation for migration. Under normal conditions 

fibroblasts express primarily collagen-binding integrins as they are usually found 

embedded in a collagen rich matrix, however, when wounded, fibroblasts 

surrounding the wound down regulate collagen-binding integrins and up regulate 

those integrins that adhere to components enriched in the wound, such as fibrin, 

fibronectin and vitronectin. When fibroblasts are simultaneously challenged by 

signals from both the provisional matrix (fibrin) and a growth factor such as 

TGFp the fibroblasts respond by up regulating receptors for the provisional 

matrix components. However if challenged by the same growth factors in the 

presence of a collagen rich matrix the fibroblasts up regulate receptors for
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collagen and not the provisional matrix components (Xu and Clark., 1996). 

Fibroblasts in wounds can also use vitronectin and fibrin directly as substrates 

for adhesion in migration. This is facilitated by the availability of cell membrane 

receptors for these matrix proteins. Furthermore, fibroblast migration can be 

indirectly stimulated by the growth factors themselves such as platelet-derived 

growth factor (PDGF) or transforming growth factor beta (TGFp) by up 

regulating integrins that support migration in the wound environment (Schafer 

and Werner, 2007).

As wound healing progresses, the provisional matrix becomes replaced by a new 

collagen rich matrix synthesised by the fibroblasts migrating into the wound. The 

synthesis of specific extracellular matrix molecules by fibroblasts in the wound is 

regulated by TGFp and other growth factors such as those summarised in table 4 

(Clark, 1996., Martin, 1997 Schafer and Werner., 2007). Cytokines such as 

interleukin 4 (IL-4) can also induce expression of collagenous matrices in 

wounds (Postlethwaite et al., 1992). Once the necessary amount of collagenous 

matrix is synthesised signals are given to down regulate collagen synthesis. 7 to 

10 days after wounding a proportion of the fibroblasts present in the wound 

become myofibroblasts which express a-smooth muscle actin. This 

transformation allows the myofibroblasts to generate sufficient contractile forces 

to contract the wound. This final stage of fibroplasia is followed by the reduction 

of the number of fibroblasts and myofibroblasts present in the wound as a result 

of programmed cell death. When embryonic wounds are compared with adult 

wounds they heal with relatively little contraction or scarring, as there is no 

transformation of fibroblasts to myofibroblasts and the angiogenic response is
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considerably less. In addition, there is less expression of TGFp and this results in 

the reduced scarring associated with embryonic healing (Ferguson and O’Kane,

2004).

1.4.3 Angiogenesis.

Angiogenesis is the term used to describe the formation of new blood vessels and 

is a crucial final step towards the end of wound healing. The large number of 

new blood vessels cause a red granular appearance in the wound promoting the 

use of the term granulation tissue. Several growth factors are responsible for 

inducing angiogenesis in a wound including fibroblast growth factor 2 (FGF-2) 

and vascular endothelial growth factor (VEGF) (Aukhil, 2000). FGF-2 is 

synthesised by macrophages and damaged endothelial cells while VEGF is 

induced in the wound edge (Aukhil, 2000). Endothelial cells have to activate 

specific integrins such as aVp3 on their surface in order to respond to angiogenic 

signals. As the endothelial cells migrate into the provisional matrix they form 

tubes surrounded by provisional matrix, and followed by the formation of a 

mature basement membrane. Like fibroblasts, endothelial cells involved in 

angiogenesis undergo programmed cell death during the final maturation of the 

matrix characterised by the regression of capillaries and complete closure of the 

wound (Aukhil, 2000).

1.4.4 Mesenchymal-Epidermal Interactions.

Epithelial and mesenchymal interactions have historically been based on their 

visual appearance and the morphology of the multicellular structures they create 

(Shook and Keller, 2003). Numerous studies have identified the importance of
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epithelial- mesenchymal interactions for epidermal homeostasis and repair 

including the identification of cross talk between the dermal and epidermal 

compartments necessary for keratinocyte growth and differentiation (Werner et 

al., 2007). This signalling pathway is initiated by epithelial interleukin 1 (IL-1) 

which subsequently stimulates the release of granulocyte macrophage colony 

stimulating factor (GM-CSF) and keratinocyte growth factor (KGF) (Mann et al.,

2001). Keratinocyte migration models utilising cell out-growth over collagen 

gels demonstrated that migration over fibroblast populated gels could not be 

replicated in the absence of mesenchymal cells, suggesting mesenchymal cells 

activate keratinocyte out-growth via a soluble factor, although KGF was 

eliminated as a stimulant after its exogenous addition or blocking antibody 

produced no effect on migration (Younai et al., 1994). In addition IL-6 deficient 

mice indicated mesenchymal requirements for keratinocyte migration as IL-6 

deficient mice display significant delays in cutaneous wound healing (Gallucci et 

al., 2004). Further proteins and tyrosine kinase receptors have also been 

suggested as being involved in epithelial-mesenchymal interactions such as 

TGFp (Wemer et al., 2007), and EGFR signalling (Lo et al., 2005) although this 

is an area under intense investigation and further factors are yet to be identified

(Lee et al., 2009). The wound healing process is summarised in Figure 9 where

the previously described sections have been categorised into inflammation, 

proliferation and remodelling phases. Furthermore, the action of 

transglutaminases in wound healing is also summarised and discussed in section 

1.4.5.
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Figure.9: Schematic representation of the three stages of wound healing in relation to the 
actions of transglutaminases: (a) Following the initial wound event, a blood clot comprising 
of cross-linked fibrin is rapidly formed. This is followed by invasion of neutrophils 
succeeded by monocytes and lymphocytes, thereby triggering the inflammatory phase of 
wound repair. Various cytokines and growth factors secreted by these cells, aggregated 
platelets and later macrophages (PDGF, TGFP, FGF, and VEGF) mediate the transition to 
tissue repair, (b) During re-epithelialisation, keratinocytes undergo extensive alterations, 
including the dissolution of desmosomes and hemidesmosomai links. This permits cell 
movement into the wound space, between the collagenase dermis and provisional fibrin 
matrix. Re-epithelialisation is accompanied by proliferative bursts and migration of dermal 
fibroblasts from adjacent tissue into the wounded area. These fibroblasts then participate, 
substituting the temporary matrix with collagenous tissue. MMPs play a key role in matrix 
remodelling, creating paths for cell migration through their proteolytic activity. 
Neovascularization occurs to provide oxygen and nutrients required to sustain the 
proliferation of keratinocytes and fibroblasts and the formation of new tissue, (c) During 
the transition from granulation to scar tissue, a relatively acellular matrix is generated in 
which many cells and blood cells are removed by programmed cell death. The multipoint 
actions of various TG isoforms are indicated. Adapted from (Verderio et a l , 2005).
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1.4.5 Transglutaminase Role in Wound Healing

The schematic diagram in Figure 9 indicates the roles of the various 

transglutaminases involved in wound healing; however a brief summary will follow 

here.

1.4.5.1 FXIII

Epithelial wound healing requires the interaction of several members of the TG 

family. FXIII has an established role in the initial clot formation and FXIII deficient 

mice have impaired clot stabilisation and delayed bleeding arrest (Lauer et al., 2002; 

Koseki-Kuno et al., 2003). FXIII has also been implicated in sequestration of 

fibrinolysis inhibitors including plasminogen activator inhibitor -2 and a-antiplasmin 

(Ritchie et al., 2000), which would further stabilise the preliminary clot. 

Furthermore, FXIII has been implicated in matrix re-organisation of granular tissue 

following wounding (Cohen et al., 1982; Knox et al., 1986; Mosher et al., 1991; 

Corbett et al., 1997).

1.4.5.2 TGI.

Increased TGI levels have been observed in the epidermal edges of wounds in 

murine models (Inada et al., 2000); these raised levels are evident within hours of 

wounding and continue until re-epithelialisation is complete (Inada et al., 2000). 

Increased levels of TGI were also found in migrating keratinocytes leading to the 

hypothesis that a premature comified envelope is formed to provide mechanical 

strength to migrating cells dissecting the clot or protecting against damage from 

proteases within the wound space (Tharakan et al., 2010)
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1.4.5.3 TG2.

The discovery of y-glutamyl-e-lysine isopeptide cross links within the basement 

membrane region suggested a potential role for TG2 in stabilising the dermo- 

epidermal junction (DEJ) (Aeschlimann et al., 1995) and this was confirmed by 

clinical study of human skin grafts. These studies indicated key dermo-epidermal 

structures including anchoring fibrils are cross linked by transglutaminases and these 

cross links were observed to increase stability at the tissue interface (Raghunath et 

al., 1996). The DEJ includes several basement membrane components which have 

been shown to be TG2 substrates including nidogen/entactin (Aeschlimann et al., 

1991; 1992), osteonectin/BM-40/SPARC (Hohenadl et al., 1995) fibronectin 

(Martinez et al., 1994) and collagen VII (Raghunath et al., 1996).

TG2 involvement is indicated in several stages of wound healing. Models of wound 

healing employing punch biopsies in rats were investigated to elucidate the 

distribution of TG2 during this process (Haroon et al., 1999). Haroon et al, reported 

an up regulation of TG2 that continues up to nine days after wounding and is 

accompanied by an increase in isopeptide linkages (Haroon et al., 1999). This 

prolonged increase in TG2 levels may suggest a role for TG2 throughout the wound 

healing process. TG2 mRNA and protein were detected in migrating epithelial cells, 

sites of neovascularisation and granulation tissue within a day of wound healing 

(Haroon et al., 1999). Epithelial expression proved to be transient and was found to 

return to baseline levels after re-epithelialisation. Conversely, TG2 remained high 

within the DEJ (Haroon et al., 1999). Furthermore, clinical studies have identified 

TG2 in catalysing the attachment of the epidermis (Raghunath, 1996). TG2 

expression is maintained in endothelial cells, macrophages, and muscle cells
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throughout the nine days. These results suggest TG2 involvement in 

neovascularisation, stabilisation and remodelling of the provisional clot matrix, re- 

epithelialisation and the migration of cells into the clot. Furthermore several studies 

have indicated TG2 to be up regulated following wounding in rats (Bowness et al., 

1988), binding the ECM after mechanical injury of fibroblast monolayers (Upchurch 

et al., 1991), increasing the breaking strength of wound tissue (Dolynchuk et al., 

1994) and functioning in matrix repair and remodelling (Griffin et al., 2002; 

Stephens et al., 2004; Zang et al., 2004).

In addition, Verderio et al., identified TG2 in an integrin independent pathway of cell 

adhesion as well as wound healing (Verderio et al., 2003, 2005). It was reported that 

extracellular TG2-FN complexes restored lost cell adhesion following the inhibition 

of integrin co-receptors with exogenous Arg-Gly-Asp peptides (Verderio et al., 

2003). Further investigation revealed transamidating activity of TG2 was not 

required for this function and that the TG2-FN complexes associated with cell 

surface heparin sulphate (HS). This pathway is capable of ensuring cell adhesion 

following damage to the ECM, since under these conditions ECM fragments are 

capable of inhibition of the integrin dependant pathway (Verderio et al., 2003). TG2 

is also found at sites of inflammation (Greenberg et al., 1991; Kim, 2006), and is up 

regulated by a number of acute phase cytokines such as IL-6 (Ikura et al., 1994), 

TGFp (Vollberg et al., 1992; Ritter and Davies, 1998) and tumour necrosis factor 

TNFa (Kuncio et al., 1998).
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1.4.5.4 TG2 and Tissue Fibrosis.

TG2 can be further implicated in normal wound healing when the consequences of 

its misregulation are examined. Fibrosis is the term applied to a condition arising 

from acute tissue repair transmuting to chronic matrix deposition Excessive TG2 

cross linking has been reported in numerous fibrotic conditions such as liver 

cirrhosis and pulmonary fibrosis (Kunico et al., 1998; Hettasch et al., 1996). 

Interestingly the TG2 inducer TGFp is among the inflammatory mediators linked to 

these diseases (Ziyadeh et al., 2000). The ability of TG2 to cross link the matrix 

resulting in increased stability and resilience to degradation and its activation of 

TGFp and subsequent stimulation of matrix synthesis is still under investigation 

(Garcia et al., 2008).

1.5 Metalloproteinase Activity in Wound Healing.

Proteinases have long been known to be involved in the breaking down and renewal 

of matrix components. This mechanism allows tissues and organs that are damaged 

or impaired to be decomposed and subsequently replaced by new cellular and ECM 

components. For example, cell matrix and cell-cell interactions may be modified; 

MMP cleavage of laminin 5 generates a fragment (y2-chain fragment) which 

enhances cell motility (Schenk et al., 2003). Furthermore, MMPs can cleave cell 

surface molecules involved in cell cell interactions such as E-cadherin, and modify 

cell surface shedding of proteins such as Fas ligand, thus regulating Fas mediated 

apoptosis (Powell et al., 1999). MMPs may also function to modulate the migration 

of cells into a given location as has been shown with MMP mediated cleavage of a- 

1-protease inhibitor, which acts as a bioactive chemoattractant for neutrophils 

(Banda et al., 1988). Finally, several studies have shown metalloproteinases can
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result in the release of growth factors and cytokines, which may affect cellular 

growth and proliferation (Imai et al., 1997). Members of the four sub families of 

Metzincins have been identified as being involved in matrix turnover and several in 

vivo models have been developed to elucidate these mechanisms. For example 

studies involving mice deficient in MMP 14 (MT1-MMP) or ADAM 17 (TACE) 

show gross abnormalities in tissue development and growth (Killar et al., 1999; 

Zhou et al., 2000) indicating the importance of the metalloproteinase family in tissue 

turnover, growth and wound repair.

1.6 EGF and its Role in Wound Healing.

The complex process of wound healing is executed and regulated by an equally 

complex signalling network involving numerous growth factors, cytokines and 

chemokines. Of particular importance is the epidermal growth factor (EGF) family, 

transforming growth factor beta (TGF-P) family, fibroblast growth factor (FGF) 

family, vascular endothelial growth factor (VEGF), granulocyte macrophage colony 

stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), connective 

tissue growth factor (CTGF), interleukin (IL) family, and tumor necrosis factor-a 

(TNF-a) family. As a vast amount of information is available about each family 

involved in this process a summary of the involvement of EGF and TGF will be 

discussed here only. EGF is a polypeptide growth factor that binds to EGF receptors, 

which are members of the ErbB receptor family of type 1 tyrosine kinases (Fontanini 

et al., 1998). Activation of this receptor has several functions in processes including 

cell migration, growth and wound repair. The EGF ligand family is composed of 6 

members including EGF (Cohen, 1964), TGFa (Derynck et al., 1984) amphiregullin 

(Shoyab et al., 1989), HB-EGF (Higashiyama et al., 1991), betacellulin (Shing et al.,
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1993) and epiregulin (Toyoda et al., 1995). A summary of its regulation in 

keratinocytes is shown in Figure 10. All 6 members are synthesised as membrane 

anchored forms that are then processed by proteases such as metalloproteinases to 

generate bioactive soluble factors. TGFa, Amphiregullin and HB-EGF have all been 

identified as autocrine growth actors for keratinocytes (Coffey et al., 1987, Cook et 

al., 1991, Hashimoto et al., 1994) and the transmembrane forms of growth factors are 

also capable of stimulating the growth of adjacent cells including keratinocytes by 

cell to cell contacts (juxtacine stimulation) (Brachmann et al., 1989, Higashiyama et 

al., 1995; Inui et al., 1997). Furthermore it was reported in 1993 by Marikovsky et al 

that wound fluid from skin also contains EGFR ligands suggesting the regulation of 

EGFR ligand shedding is an important physiological step in the wound healing 

process. EGF family members bind to one of four ErbB family receptors which 

induce homo and heterodimerization (Stoll et al., 2001). Erbl is universally 

identified as EGFR and the other family members are identified as ErbB2, ErbB3 

and ErbB4 (Pastore et al., 2008). EGFR, ErbB2 and ERbB3 are all expressed in 

human skin with the predominant type being EGFR. This can be found in the whole 

dermis of skin however it is more accentuated in the basal cell layer (Nanney et al., 

1984; Mascia et al., 2003). EGFR can be activated by several mechanisms under 

physiological conditions, apart from direct activation by a specific ligand. EGFR 

activation occurs as a result of G protein coupled receptor (GPCR) signalling. This is 

a rapid process whereby GPCR induced release of the EGFR ligands induces EGFR 

transactivation and downstream signalling (Eguchi et al., 1998). As an example, in 

wound healing angiotensin II stimulates keratinocyte and fibroblast migration 

through a pathway initiated by the GPCR angiotensin II receptor that leads to HB- 

EGF shedding and consequently activation of the extracellular signal regulated
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kinase (ERK) cascade (Yahata et al., 2006). EGFR knockout mice showed 

abnormalities such as wavy hair and thin skin when compared with wild type 

controls however when individual knockouts for EGF ligands have been produced a 

less striking phenotype is seen (Miettinen et al., 1995; Sibilia and Wagner 1995). For 

example, the EGF-/- mouse showed no significant abnormalities nor were any 

abnormalities detected in the TGFa knock out mouse (Luetteke et al., 1993; Mann et 

al., 1993; Luetteke et al., 1999) suggesting a redundancy of EGF ligands within the 

family.
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Figure 10: Mechanism of EGFR activation in keratinocytes.
Under unstimulated conditions EGFR contributes to its own activation via an autocrine/ 
paracrine loop based on denovo synthesis and shedding of mature EGFR ligands. 1. MMP 
activation can release a variety of G protein coupled receptor (GPCR) ligands. 2. In addition 
pro-inflammatory cytokines are able to bind to their specific receptors (R). 3. GPCR agonists 
can cause a promotion of rapid metalloproteinases shedding of EGFR ligands from membrane 
precursors (via feedback mechanism). 4.1n addition after cell-matrix adhesion, integrins 
associate with the EGFR to trigger downstream signalling from its ligand independent 
phosphorylation. 5.Inactivation of protein tyrosine phosphatises can occur by intracellular 
generation of reactive oxidative species in response to pro-oxidative stimuli. . Taken from 
Pastore et al., 2007.
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1.7 TGFp and its Role in Wound Healing.

TGFp is a member of a family of dimeric polypeptide growth factors that includes 

bone morphogenic proteins and activins. Most cells in the human body both produce 

TGFp and have receptors for it (Massague, 1998). TGFp regulates proliferation and 

differentiation of cells, embryonic development and wound healing. TGFp signalling 

pathway has been shown to be essential in wound healing due to experiments 

conducted where targeted deletion of the genes encoding members of this pathway in 

mice resulted in defective healing (Peters et al., 2005). TGFp has 3 isoforms; 

TGFpl, 2 and 3 where each is encoded for by a single gene and is expressed in both 

a tissue specific and developmentally regulated fashion (Massague, 1990). TGFP 1 

and 3 are expressed earlier in endothelial cell development and TGFp2 is expressed 

later in mature and differentiating epithelium (Massague, 1990). TGFp isoforms are 

synthesised as part of a larger precursor molecule containing a pro peptide (Wrana et 

al., 1994; Nakao et al., 1997). TGFp becomes cleaved from the propeptide before the 

precursor is secreted by the cell but remains attached to the propeptide by 

noncovalent bonds. After secretion TGFp is stored in the extracellular matrix as a 

complex of TGFp-propeptide and latent TGFp binding protein which prevents it 

from binding to its receptors unless a matrix glycoprotein such as thromobospondin 

1 changes the conformation of the latent protein to release TGFp (Wrana et al., 1994; 

Nakao et al., 1997). TGFp regulates cellular processes by binding to 3 high affinity 

cell surface receptors known as types 1,2 and 3 with the third type being the most 

abundant (Wrana et al., 1994; Nakao et al., 1997). These receptors instigate 

intracellular signalling via serine threonine protein kinases in their intracellular 

domains that phosphorylate several transcription factors known as smads. Smad 2 

and 3 can be phosphorylated by activated TGFpl receptors leading to activation of
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smad 4 or smad 2 or 3 which can either induce a smad complex which then 

translocates to the nucleus where it interacts in a cell specific way to regulate 

differentiation, deposition of extracellular matrix or apoptosis. Alternatively smad 

2/3 can be blocked by smad 6 and 7 to inhibit TGFp signalling (Wrana et al., 1994; 

Nakao et al., 1997). TGFp is a potent regulator of production and deposition of 

extracellular matrix such as collagen and fibronectin from fibroblasts and other cells 

(Sonis et al., 1994) and further, TGFP decreases the production of enzymes that 

degrade the extracellular matrix including collagenases and heparinase. Dysregulated 

TGFp signalling in human disease can be caused for example by over activity of 

TGFp leading to fibrosis and progressive cancers while a decreased TGFp activity 

can cause developmental defects and artheroschlerosis (Akagi et al., 1996).
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1.8 Skin General Introduction.

Skin makes up the largest organ of the body covering it completely. The skin 

provides protection against chemical and mechanical attack. It prevents ultraviolet 

light penetration and damage to internal organs as well as microbial attack. 

Furthermore, as the skin is relatively impermeable unless injured it prevents 

dehydration of the body. The skin is able to provide sensory detection for the brain 

as it is rich in receptors for touch, pain, pressure and temperature, and therefore is 

also important in thermoregulation. Skin is covered by hair which is paramount in 

the body’s response to both heat and cold as well as subcutaneous adipose tissue 

which insulates against heat loss. Skin also synthesises vitamin D within the 

epidermis, which is partially able to supplement vitamin D derived from dietary 

sources. Mammalian skin is made up of two layers; it is formed from a protective 

epidermis and an underlying collagen rich dermis produced by fibroblasts. These two 

layers are separated by a basement membrane. Skin tissue regularly undergoes 

remodelling and rejuvenation both of which are under stringent regulation. Figure 11 

shows a cross-section of the skin indicating its main layers of epidermis and dermis. 

The following sections summarise skins components in more detail.
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Figure 11. The tissue architecture of skin: Hematoxylin and eosin (H&E) staining reveals three 

distinct domains (a) the avascular epidermal tissue formed by keratinocytes committed to 
terminal differentiation. The dermis can be dissected into the papillary and reticular layers. The 
former of these layers is immediately adjacent to the epidermis and can be distinguished by the 
greater density of fibroblasts. This region is relatively thin and formed by a fine network of 
collagen and elastin fibres. The underlying reticular dermis contains coarse collagen and elastic 
fibres in addition to the larger blood vessels, which feed into the capillary network of the 
papillary layer. The epidermis can be divided into a further four morphologically distinct layers 
as seen in a high magnification picture of a region of thin skin (b). The stratum basale is formed 
from the deepest layer of keratinocytes and demonstrates a cuboidal or columnar morphology. 
Several layers of polygonal keratinocytes comprise the stratum spinosum. In the case of thin 
skin regions, the ketohyalin granule-containing stratum granulosum is apparent as a single 
layer of dark and flattened cells although this can increase to several layers in regions of thick 
skin. Finally the outermost layers form the stratum corneum, containing anuclear, flattened 
cells termed corneocytes.
(http://www.lab.anhb.uwa.edu.aU/mb/mbl40/CorePages/Integumentarv/Integum.html#Epider
mis)
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1.8.1 The Dermis

The dermis layer of skin provides a base for the epidermis to adhere to as well as 

providing a metabolic function to this nonvascular tissue. The dermis contains 

several epidermal appendages including hair follicles and sweat glands which are 

embryologically developed from epidermal tissue. The dermal layer is made up of 

two distinct zones. Adjacent to the epidermis is the papillary dermis which is made 

up of loosely interlacing collagen fibres and is highly vascular. The other more 

prominent portion of the dermis is formed by a reticular layer named after the 

interlacing arrangement of collagen fibres which are denser than the papillary zone. 

TG2 is the dominant TG isoform located within the dermal compartment (De 

Laurenzi and Melino, 2001) and is expressed by fibroblasts and secreted into the 

extracellular matrix. TG2 has been shown to be linked to regulation of cell adhesion, 

spreading and motility as well as ECM remodelling and stabilisation. These 

functions have led to TG2 being confirmed as having an important role in wound 

healing (Haroon et al., 1999, Stephens et al., 2004). FXIII has also been found in the 

dermal ECM and has a putative role in wound healing (Cohen et al., 1982; Knox et 

al., 1986; Mosher et al., 1991; Corbett et al., 1997). mRNA of additional TG 

isoforms has been amplified from primary fibroblasts including TGI (Phillips et al., 

1993; Stephens et al., 2004), TG5 (Stephens et al., 2004) and TG7 (Grenard et al., 

2001; Stephens et al., 2004) although the physiological role of these enzymes within 

wound healing is still under investigation.

1.8.2 The Epidermis

The epidermis by comparison is constantly undergoing tissue renewal every 28 days 

(Roop, 1995). The epidermis is comprised of 4 distinct cell layers; the stratum
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basale, stratum spinosum, stratum granulosum and stratum comeum. Each of these 

sub layers has been demonstrated to express a distinct set of marker proteins specific 

for the cell maturation state (Eckert et al., 1989).

1.8.2.1 Stratum Basale

This is the deepest cell layer made up of keratinocytes with regulated proliferative 

capabilities (Cotsarelis et al., 1989; Fuchs and Bryne 1994). Keratin present within 

this layer comprises keratin 5 and 14 (Reichert et al., 1993). Transition from this 

layer is accompanied by the loss of pi integrins which are involved in the 

stabilisation of the DEJ and committing the cells to terminal differentiation.

1.8.2.2 Stratum Spinosum

The stratum spinosum makes up the biggest epidermal cell layer and contains 

extensive desmosomes. These cell-cell connections contribute to the strength of the 

tissue and accounts for the spiky appearance of keratinocytes within this layer. At 

this stage of differentiation the ability of the cells to proliferate is lost (Fuchs and 

Byrne, 1994; Eckert et al., 1997) and keratin profiles are changed to predominantly 

keratins 1 and 10 (Fuchs and Green. 1980). These keratins aggregate together to 

form intermediate filaments which have an important structural function. It is in the 

more superficial layers of the spinous region that components of the comified 

envelope are expressed, including involucrin. The formation of this envelope 

structure is a key stage in skin barrier formation.
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1.8.2.3 Stratum Granulosum

Keratinocytes within this stratum are characterised by keratinisation specific lipid 

synthesis (Swartendruber et al., 1989; Wertz et al., 1989, Schurer and Elias, 1991; 

Elias 1996). There is distinct histology of cells within this region as a consequence 

of the granule enclosed storage of proteins and lipids (Matoltsy and Matoltsy, 1966; 

Lavker and Matoltsy, 1971; Holbrook and Odland, 1975; Lavker, 1976; Ishisa- 

Yamamoto et al., 1993). These transient structures contain comified envelope 

precursors (Steven et al., 1990) including loricrin (Mehreal et al., 1990) and 

profilaggrin (Steinert and Marekov 1995) which are both considered markers of late 

stage differentiation.

1.8.2.4 Transition zone.

During skin formation there is a transition layer marked by extensive remodelling 

between the granular layer and the stratum comeum including the comification 

process. This term describes the process of resorbtion of the cell plasma membrane 

and its replacement with the extensively cross linked comified epithelium. This 

structure comprises of a protein and lipid component to be discussed individually. In 

addition to this step there is an extrusion of lipids into the inter-cellular space 

(Landmann, 1986), stabilisation of keratin intermediate filament bundles and the 

destruction of intracellular organelles by the action of proteases and nucleases. These 

reactions can cause these cells to be deemed dead however these cells have simply 

had their metabolism limited to catabolic reactions only (Eckert et al., 2005).

89



Role of Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

1.8.2.5 Stratum Corneum.

The thickness of this layer of epidermis can vary depending on the body site. It has 

been shown to be between 4 and 100 cell layers thick (Ya-Xian et al., 1999). 

Differentiated keratinocytes form plate like structures and are distinguished by the 

term comeocytes. Similarly the unique cell-cell interactions are termed comeosomes 

(Allen and Potten 1975; Chapman and Walsh, 1990) and following the breakdown of 

these structures, cells are lost by the process of desquamation (Ecket et al., 1997). 

These cells are embedded in lipid lamellae and although the stratum corneum may be 

dissected into its separate components essentially extensive cross linking creates a 

continuous macromolecule providing the barrier function of this tissue.

1.9 The Cornified Envelope.

The cornified envelope (CE) is comprised of proteins and lipids accounting for 90% 

(protein) and 10% (lipid) of the stratum corneum dry weight (Swartzenruber et al., 

1988). The protein element makes a 15nm shell that is formed on the cytoplasmic 

surface of the plasma membrane (Maltoltsy and Balsamo., 1955; Farbman 1966; 

Hashimoto, 1969). This shell eventually replaces the plasma membrane as the lipid 

bilayer is penetrated during comification. The substitution allows the skin to be more 

robust against mechanical attack (Marks et al., 1983). A 5nm lipid component has 

also been identified by electron microscopy as a lucent band and is located on the 

cell surface (Lavker, 1976). This has been characterised as a monolayer of ester 

linked co-hydroxyceramides known as covalently bound lipids (CBL) (Wertz and 

Downing, 1987; Marekov and Steinhert 1998). These lipids are among those that 

extrude into the extracellular space from keratinocytes in the transition zone, the 

remaining form unique lipid lamellae with reduced phospholipid content and
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increased fatty acids, cholesterol and ceramides (Shurer and Elias, 1991; Elias 1996). 

The hydrophobic nature of the covalently bound lipids provides an environment in 

which comeocytes become embedded where they are capable of interdigitating with 

the surrounding lamellae to enhance the barrier nature of skin (Wertz et al., 1989). 

CE generation begins in the stratum spinosum, where a scaffold forms in inter- 

demosomal regions to which further components become sequestered. The resulting 

structure is highly insoluble and may only be retrieved by boiling in SDS or a 

reducing agent buffer (Sun and Green, 1976, Manabe et al., 1981). Several methods 

have been used to investigate the CE. For example, antibodies raised against the 

isolated CE have been used to identify CE precursors (Kubilus et al., 1987; Michel et 

al., 1987, Nagae et al., 1987). Further antibodies have also been raised against 

putative CE components and immunohistochemical studies have indicated staining at 

the cell periphery of comeocytes (Rice and Green 1979; Lobitz and Buxham, 1982; 

Zettergren et al., 1984). Sequencing has also been carried out on peptides retrieved 

following extensive proteolysis of the CE (Candi et all., 1995; Steinhert and 

Marekov, 1995). Finally the ability of potential precursors to be cross linked by TG 

enzymes has been assessed in vitro (Rice and Green 1979; Simon and Green 1984; 

Candi et al., 1995, 1999, 2001). The CE has been identified in a range of stratified 

squamous epithelia such as oral epithelial or hair cuticles, with variation in CE 

composition between epithelial tissue and body site (Steinhert et al., 1998). This 

variation is believed to be necessary due to tissue specific requirements (Steinert and 

Marekov 1995; Steinhert 2000). Interestingly, the protein shell is not a homologous 

structure (Steinert and Marekov, 1995) suggesting spatial and temporal regulation is 

involved in its formation.
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1.9.1 Transglutaminases and their role in cornified envelope formation.

Early studies indicated the cross links within the CE macromolecule are disulfide 

bonds (Maltoltsy and Matoltsy, 1970) however further studies also identified y- 

glutamyl-e-lysl (Rice and Green, 1977) and y-glutamyl-polyamine isopeptides bonds 

within this structure, with y-glutamyl-polyamine isopeptides bonds almost 

exclusively involving spermidine (Piacentini et al., 1988; Martinent et al., 1990). 

Immunohistochemical studies carried out with antibodies raised against the 

isopeptide bond indicated that the number of cross links increase as differentiating 

keratinocytes translocate to the epidermal surface causing a rapid increase in 

observed staining within the transition zone. This is accompanied by intense 

staining across the DEJ indicating TG enzymes in the formation of the CE. Of the 

nine TG isoforms, TGI, 2, 3, 5, 6, and 7 are expressed in the epidermis. TG2 

expression is limited to the basal layer of keratinocytes (Aeschlimann et al., 1998; 

Haroon et al., 1999) where its role is thought to be in the stabilisation of the DEJ. 

Contrastingly, TG 1,3 and 5 have indicated differentiation specific expression (Kim 

et al., 1993, 1995a; 1995b; Aeschlimann et al., 1998; Candi et al., 2001) and have 

demonstrated an ability to cross link CE components in vitro with high affinity 

(Candi et al., 1995; 1999; 2001). Furthermore it has been demonstrated that these 

enzymes target the same Gin and Lys residues involved in cross linking in vivo 

although different isoforms were observed to preferentially cross link distinct 

residues within the same substrate (Candi et al., 1995; 1999; 2001). Furthermore, the 

discovery of TGI mutations being linked to lamellar ichthyosis (LI) a heterogenous 

group of skin diseases exhibiting defective CE formation and compromised skin 

barrier formation further indicated TG involvement in CE formation (Huber et al., 

1995; Parmentier et al., 1995; Russell et al., 1995). TGI is the first isoform to be
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expressed as low level mRNA has been found in the basal layer (Steinert et al., 

1996a) however a rapid increase is observed in the upper spinous layer, terminating 

within the transition zone (Yamada et al., 1997). Immunohistochemical studies have 

observed gradient staining with anti-TG5 decorating the spinous and granular layers 

(Candi et al., 2002). TG3 is expressed in the later stages and is approximate 

concomitant with the other late stage differentiation markers loricrin and 

profilaggrin. While components of CE vary greatly between epithelial tissues, 

several major components have been identified as TG substrates (Eckert et al., 2005) 

and are summarised below in section 1.9.1.1 onwards and Figure 12 and 13 as to 

their position in the CE and skin.
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Figure 12 Schematic representation of transglutaminase distribution in skin; Transglutaminase 
1 and 3 and 5 are expressed in the spinous and granular layer. Image taken from Eckert et al., 
2005.
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Figure 13: Summary of TG substrates and their position in the cornified envelope.
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1.9.1.1 Involucrin.

Involcrin is a rod like protein comprising of predominantly a-helical structures 

(Yaffe ela., 1992) and was the first CE component to be discovered and cloned (Rice 

and Green 1979). It has been identified as a component of most squamous epithelia 

(Banks-Schlegel and Green 1981; Walt et al., 1985; Crish et al., 1993; Steinert and 

Marekov., 1997). Ultra-structural studies observed that this soluble precursor 

localised to the cytoplasm in deeper keratinocyte layers but became concentrated at 

the cell periphery in the more superficial layers (Warhol et al., 1985). Involucrin has 

been localised to the external region of the CE (Steinhert and Marekov, 1997) and 

protease cleaved peptides have revealed this protein is cross linked to a wide range 

of CE components. Furthermore, recovery of lipopeptide fragments after protease 

digestion has also identified involucrin as the primary precursor coupled to ceramide 

lipids (Marekov and Steinert, 1998).

1.9.1.2 Loricrin.

Loricrin accounts for more than 75% of the total protein content of the CE (Hohl et 

al., 1991). Step wise digestion of the CE by proteinase K have localised loricrin to 

the inner two thirds of the CE at the cytoplasmic face (Steinert and Marekov, 1995) 

which increases to 95% in the final third demonstrating its late stage recruitment and 

extent of its incorporation. Loricrin is a highly insoluble protein which has been 

detected in granules (L granules) within the stratum granulosum (Steven et al., 1990; 

Ishida-Yamamoto et al., 1993, 1996). This insolubility has been partly attributed to 

disulfide bonds (Mehrel et la., 1990). Incorporation of loricrin occurs within the 

transition zone after its release from L granules, although there is speculation 

surrounding its translocation and crosslinking into the CE is due to its insolubility.
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Kalinin et al., suggested that loricrin coupling to highly soluble proline rich proteins 

may modify its solubility (Kalinin et al., 2002). Loricrin can be cross linked in vitro 

by TGI, 3 and 5. TGI predominantly catalyses intermolecular cross links whereas 

TG3 promotes intra molecular bonds between favoured Lys and Gin residues and is 

unable to form the polymers observed with TGI action (Candi et al., 2001). 

Significantly, loricrin has been reported to accumulate in transgenic TGI'7' mice, 

potentially indicating this enzymes’ role in incorporating this protein into the CE 

(Matsuki et al., 1998).

1.9.1.3 Small Proline Rich Proteins.

The SPR proteins comprise of a 14 member multigene family (Tesfaigizi and 

Carlson, 1999) comprising several proline rich repeats flanked by N and C terminals 

rich in Pro, Gin and Lys (Gibbs et al., 1993). The Gin and Lys amino acids present 

allow the SPR proteins to participate in cross linking and it has been suggested that 

these proteins function as bridges between CE components (Steinert et al., 1998). 

Both TGI and TG3 are capable of using SPR1 as a complete substrate in vitro 

however TG2 cross links SPR1 poorly (Candi et al., 1999). Nevertheless, different 

residues are targeted by the isoforms and it would seem that the activity of both 

enzymes is necessary for the formation of oligomers.

1.9.1.4 Cystatin and Elafin.

These precursors contribute as minor components of the CE structure (Takahashi et 

al., 1994) although there has been some speculation as to their physiological role. It 

has been hypothesised that members of the cystatin family and elafin may regulate 

protease activity required for envelope maturation (Takahashi et al., 1994). Cystatin

97



Role of Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

A is a protease inhibitor and elafin functions as a potent inhibitor of elastase and 

proteinase 3. Furthermore, mutations in Cystatin m/E another cystatin family 

member has been shown to be associated with disturbed comification and 

subsequent impaired barrier formation (Zeeuwen et al., 2002; 2004).

1.9.1.5 Filaggrin.

Filaggrin is synthesised as a pro form containing 2 Ca2+ binding EF hand motifs 

(Markova et al., 1993). Synthesis as a pro form is characteristic of other envelope 

precursors such as SI 00 proteins (Donato 1999). The processed form of filaggrin has 

been shown to be involved in both CE formation and in bundling of intermediate 

keratin filaments (Dale et al., 1978, Mack et al., 1993).

1.9.1.6 Desmoplakin, Envoplakin, Perplakin and Type II Keratins

Keratins are the most abundant protein within the comeocyte, where assembled 

intermediate filaments are connected to the cell periphery within desmosomal 

regions (Green and Gaudry, 2000). As the CE scaffold is formed on the cytoplasmic 

surface of the plasma membrane both desmosomal components such as desmoplakin, 

envoplakin and periplakin and keratin bundles become incorporated (Steinert and 

Marekov, 1995; 1997). A Lys residue situated within the N terminus of type II 

keratins is crucial in the cross linking of this protein by TGs (Candi et al., 1998). 

Envoplakin and perplakin have been identified as sites of covalently bound lipid 

(CBL) linkage although not to the extent of involucrin (Marekov and Steinert, 1998).
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1.9.1.7 S100 Proteins and Annexin 1.

Both S100A10 and S100A11 have both been found within the CE of normal human
^  I

keratinocytes (Robinson et al., 1997). They are both members of this Ca regulated

EF hand motif (helix-loop-helix domain) containing protein family (Donato, 1999).
21

S100A11 has been shown to translocate to the cell periphery following Ca 

stimulation, a process which relies on a tubulin dependent mechanism (Broome and 

Eckert 2004). S100A11 has been shown to form heterotetramers with annexin 1 

including 2 molecules of each component (Rety et al., 2000). Most annexins display 

Ca channel activity in vitro (Chen et al., 1993; Benz et al., 1996; Gerke and Moss 

2002) although this activity is not seen under normal intracellular conditions. Gerke 

and Moss suggested it may be possible under oxidising conditions and the more
^  I

acidic pH observed in epidermal regions that regulates the Ca flux (Gerke and 

Moss 2002).

1.9.2 Regulation of Keratinocyte Differentiation.

Keratinocyte differentiation is still poorly understood, however a combination of

• • • 9+signals is believed to trigger keratinocyte differentiation including Ca ion 

concentration and transcription factor activity. Biochemical changes analogous to in 

vivo differentiation can be partly induced in cultured keratinocytes with the phorbal

94-ester 12-0-tetradecanoylphorbol-13-acetate (TPA) or by increasing Ca levels in the 

media (Hennings et al., 1980; Jakenand Yuspa, 1988) although structural changes 

are only observed when increased levels of Ca are applied (Dotto, 2000). A Ca 

gradient is reported to exist in vivo where a significant increase in concentration is 

seen between the mid and upper granular layers (Menon et al., 1992; Forslind et al.,
^  I 94~

1997). Ca can affect the intracellular environment in a number of ways. Ca
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sensitive receptors may be present in the keratinocyte plasma membrane similar to 

those seen in parathyroid cells (Herbert and Brown 1995; Bikie et al., 1996).

*7 4-Alternatively increased Ca levels may affect cell cell and cell matrix interactions.

0 4 -  04 -Ca induced human keratinocyte differentiation requires an intracellular Ca rise 

caused by phosphatidylinositol 3-kinase (PI3K)-dependent activation of 

phospholipase C-yl which ultimately results in differentiation (Xie and Bikle, 2007). 

Furthermore, it has been suggested that differentiation pathways converge to induce 

p21 expression which arrests the cell cycle resulting in N-terminal differentiation 

(Wong et al., 2010)

1.9.3 Proposed Mechanism for Cornified Envelope Formation.

The sequence of events leading to CE formation is slowly being determined (Candi 

et al., 1995; Nemes and Steinert., 1999; Steinert, 2000; Kalinin et al., 2001). 

Involucrin has been suggested to enrich scaffolds constructed against a background 

of membrane associated proteins (Eckert et al., 1993; Steinert, 1995; Steinert and 

Marekov, 1997). Nemes et al (1999b) reported that involucrin spontaneously binds 

the membrane in a Ca2+ dependent manner, and that this initial structure produces 

deposition sites for other envelope precursors. Involucrin becomes cross linked to 

envoplakin and periplakin (Marekov and Steinert, 1998) succeeded by the 

incorporation of SPRs. This amalgen spreads across the cytoplasmic face of the 

plasma membrane, consequently incorporating desmosomal proteins (Steinert and 

Marekov, 1995; 1997). Maturation of the scaffold primarily involves the 

incorporation of loricrin which accounts for the majority of the protein content 

(Steinert and Marekov, 1995). This proportion increases towards the cytoplasmic 

face of the envelope indicating its importance in the later stages of the process 

(Steinert and Marekov, 1995). Studies have indicated that TG3 predominantly
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catalyses intra-molecular cross links in contrast to TGI and its ability to form 

multimers (Candi et al 1995). Potentially, modifications made by TG3 promote 

loricrin incorporation by TGI, alternatively TGI cross links this precursor into the 

macromolecular structure where it undergoes further modifications by TG3 (Reichert 

et al., 1993; Eckert et al., 1993; Steinert, 1995). When the TG isoforms are compared 

for involvement in CE formation it is estimated that loricrin cross links are the result 

of 65% TG3 activity compared with 35% for TGI (Candi et al., 1995). Despite the 

coordinated sequence of events CE generation is both resilient and flexible. If a 

known precursor is altered there is no overt phenotype seen or one occurs that is 

quickly compensated for (Yoneda and Steinert 1993, Koch et al., 2000). In the case 

of loricrin removal in mice, the dry and scaly appearance of neonatal skin is lost 

within a matter of days. This has led to the “precursor availability” hypothesis 

suggesting the existence of a compensatory mechanism. Fibroblasts have 

demonstrated an ability to form pseudo envelopes following the dysregulation of 

Ca However these CE like structures appear to be disordered and non specific 

(Simon and Green, 1984; Nicholas et al., 2003).

This chapter has introduced the four areas of interest for this thesis. The current 

knowledge of the structure, function and activity of both the transglutaminase and 

metalloproteinase families have been discussed and their involvement in the 

processes of wound healing and the formation of skin. Further chapters indicate 

investigations into specific members of these families namely transglutaminase 2 and 

ADAM 17 which may invoke EGFR signalling and consequent cell migration and 

proliferation.
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2.0 Aims of Thesis

1. To establish if and how TG2 regulates keratinocyte motility in a co-culture model 

of fibroblast and keratinocytes.

2. To ascertain if keratinocyte motility and proliferation is dependent on 

metalloproteinase activity in a TG2 positive and TG2 null background.

3. To investigate the role of growth factor receptors in keratinocyte motility and 

proliferation in the presence and absence of TG2.
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Chapter 2: Materials and Methods
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2.1 Cell Culture

2.1.1 HCA2 Fibroblast Cell Culture.

Human dermal fibroblasts have been stably transfected with telomerase 

amphotrophic retrovirus pBABE-hTERT (McSharry et al., 2001) to rescue cells 

from senescence by expression of the catalytic subunit of human telomerase 

(hTERT) along with pcDNA3/human TG2 constructs (Bond et al. 1999; 

Stephens et al., 2004). The resulting HCA2 lines are immortalised but not 

transformed, are diploid and display characteristic features of normal skin 

fibroblasts. Transfection with these constructs produced high-level constitutive 

expression of the transglutaminase TG2 sense mRNA, causing an overexpression 

of TG2, antisense mRNA which leads to a reduction in TG2 from endogenous 

expression as well as a TG2 mutant mRNA. The mutant TG2 mRNA allows for a 

high level of expression of TG2 but it is inactive because the catalytic Cysteine 

(Cys) residue was replaced by Serine (Ser), generating a cross-linking deficient 

form of the enzyme (dominant negative for crosslinking function). A clone 

transfected with an empty vector was also produced as a control (mock- 

transfected) leading to endogenous TG2 expression from the fibroblasts only. 

Cultures were seeded from frozen stocks at a density of lxlO6 and grown in 

DMEM supplemented with 10 % FCS, 1% PSG - Containing 10,000 units of 

penicillin (base), 10,000 pg of streptomycin (base), and 29.2 mg of L- 

glutamine/ml in 0.85% saline, in a 10 mM citrate buffer and 400 pg/ml 

Geneticin. Subsequent cell maintenance was carried out through a 1 in four ratio 

split of the cell culture flask once a week to stop over-confluence and ensure 

selection of transfected cells. All cells were cultured at 37°C with 5 % CO2 

unless otherwise specified.
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2.1.2 Matrix Production.

Fibroblast cells were seeded into a 24 well plate at a density of 1.5xl05cells/well 

(Greiner) and cultured over night in standard HCA2 fibroblast medium for 24 

hours. Following two PBS washes fresh HCA2 medium was added without 

selection agent (geneticin) and matrix secretion stimulated with the addition of 

ascorbate-2-phosphate (2mM). Cells were allowed to reach hyperconfluence over 

a period of 48h. Every 48 hours medium was aspirated, cells washed in PBS and 

fresh HCA2 medium supplemented with ascorbate-2-phosphate (2mM). This was 

continued for a period of 10 days. Conditioned medium for migration assays was 

collected on days5, 8 and 10 and frozen. On day 10 medium was removed and 

matrices were washed twice in PBS. When experiments including live fibroblasts 

were required matrix was taken immediately for experiment, alternatively if 

matrix alone was required the matrix was treated by 3 successive freeze thaw 

cycles. The matrix was then washed with sodium deoxycholate 1% (0.5g sodium 

deoxycholate) to remove cellular debris and again washed in PBS before 

experimental setup.

2.1.3 N-Tert Keratinocyte Cell Culture

Immortalised N-Tert human keratinocyte cells (transfected with telomerase 

reverse transcriptase gene n-tert) were cultured in Solution/Media A containing 

DMEM/ HAMS F12 (67.5/22.5%v/v) supplemented with 10% v/v FCS, 

0.089mM adenine, 5ng/ml insulin, 400ng/ml hydrocortisone, lOng/ml EGF, 10' 

10M cholera toxin, 1% antibiotic/antimycotic containing 10,000 units of 

penicillin (base), 10,000 pg of streptomycin (base), and 25 pg of amphotericin 

B/ml utilizing penicillin G (sodium salt), streptomycin sulfate, and amphotericin
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B as Fungizone® Antimycotic in 0.85% saline. Keratinocyte cultures were 

seeded from frozen stocks at a density of lx l06 and subsequent cell maintenance 

was carried out in a 1 in ten ratio split of the cell culture flask weekly to stop 

overconfluence. Alternatively for migration experiments where inhibitors were 

added keratinocytes were cultured using defined serum free medium, a patent 

protected premade medium containing defined growth promoting additives 

including Human recombinant Epidermal Growth Factor (EGF 1-53) and Bovine 

Pituitary Extract (BPE) (Invitrogen).

2.1.4 Generation of Keratinocyte Spheroids and PKH26 Labelling

Immortalised N-tert keratinocytes cultured in FAD medium (65 % v/v DMEM,

22.5 % v/v HAMS FI2, 10 % fetal calf serum (FCS), 400 ng/ml hydrocortisone, 

10'10 M cholera toxin, 10 ng/ml EGF, 0.089 mM Adenine, 5 ng/ml Insulin and 

1% Antibiotic-Antimycotic containing 10,000 units of penicillin (base), 10,000 

pg of streptomycin (base), and 25 pg of amphotericin B/ml utilizing penicillin G 

(sodium salt), streptomycin sulfate, and amphotericin B as Fungizone® 

Antimycotic in 0.85% saline) were grown to 80% confluence. 1.25xl05 

keratinocyte cells were labelled using fluorescent PKH26 dye (Invitrogen). 

PKH26 dye was prepared and staining was achieved by resuspending the 

1.25xl05 keratinocyte cells into 25pl of Diluent C. 50pl of PKH26 dye was then 

added to this suspension (10% final volume). Keratinocytes were incubated for 

five minutes at room temperature before the reaction was stopped with 50pl of 

FCS. Cells were pelleted by centrifugation (1500g, 5min) before being 

resuspended in 50pl of normal FAD medium as per manufacturer’s protocol. 

The keratinocytes were then added to 10ml of 30% methylcellulose (100% stock
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of methylcellulose solution was prepared by adding 100ml FAD keratinocyte 

medium pre-warmed to 60°C, to 1.33g methyl cellulose -  Sigma). The solution 

was agitated at room temperature for 1 h using a magnetic stir bar, followed by 

agitation overnight at 4°C. The solution was cleared by centrifugation at 4,000 x 

g for 90 min and the supernatant retained as 100% stock solution). 

Methylcellulose had been prepared by the addition of 10.5mls of 100% 

methylcellulose being added to 35mls of complete FAD medium. This was 

sterile filtered through a 0.2pm filter. The keratinocytes were then added to the 

30% methylcellulose and mixed gently, this was then placed into a trough for 

ease of dispensation and a multi-well pipette was used to pipette lOOpl of the 

suspension (2500 cells) per well and then left overnight in a hydrophobic 

microtitre round bottomed 96 well plate to produce spheroids (Greiner).

2.1.5 CalceinAm Fluorescent Labelling

Previous experiments conducted by Dr Sally Rosser-Davies (PhD thesis-2006) 

had used CalceinAM green (Molecular Probes) to label keratinocyte spheroids. 

CalceinAM is converted to green-fluorescent calcein, after acetoxymethyl ester 

hydrolysis by intracellular esterases. This was abandoned in favour of the PKH26 

dye method, as PKH26 had the advantage of overcoming photo bleaching and 

subsequent reduction in cellular fluorescence seen when hourly photographs 

were being taken instead of the 24 hourly photographs taken previously. A brief 

summary of the method follows; FAD medium was supplemented with 

CalceinAM green at a concentration of 5pM. 1ml of FAD medium was 

supplemented with 2pl of CalceinAm green and added to 125,000 cells. This
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suspension was left for 30 minutes at 37°C before being added to 30% 

methylcellulose as seen with the PKH26 dye.

2.1.6 CHO Cell Culture

Chinese Hamster Ovary (CHO) cells stably transfected to overexpress G protein 

coupled receptor 56 (GPR56) were cultured from frozen stocks donated from Dr 

Vera Knauper. CHO cells were cultured in HAMS F12 (Invitrogen) 

supplemented with 10% FCS (Invitrogen), and lOOpg/ml Hygromycin 

(Invitrogen) to ensure selection of transfected cells. CHO cells transfected with 

L-selectin gene either complete (WT) or delta stalk were used as a control cell 

line for GPR56 expression experiments and were cultured in the same medium 

but also containing lOOpg/ml zeomycin (Invitrogen).

2.1.7 Primary Human Fibroblast Cell Culture

Human primary oral gingival and periodontal ligament fibroblasts were cultured 

in DMEM supplemented with 10 % FCS and 1 % Penicillin, Steptomycin, 

Glutamine_( PSG )- Containing 10,000 units of penicillin (base), 10,000 pg of 

streptomycin (base), and 29.2 mg of L-glutamine/ml in 0.85% saline, in a 10 mM 

citrate buffer as previously described for HCA2 cell lines minus the selection 

agent geneticin.

Primary cells were a kind gift from Dr. Matthew Locke (Dental School, Cardiff 

University). Cells were derived from patients undergoing tooth extraction or 

alternative dental procedures and had gone through 2  population doublings.

2.1.8 Primary Murine Fibroblast Extraction and Culture.
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TG2 wild type and knockout mice aged 3-9 months were euthanized, shaved and 

skin removed from their backs by a rectangular incision. The removed skin was 

cut into 3 pieces (1cm by 2cm) and placed in chlorhexidine mouthwash for 5 

minutes. One piece of skin was minced and placed into a T25 flask and allowed 

to air dry for 5-10 minutes. Prior to mincing the second sample underwent an 

additional treatment with trypsin (Sigma) for 5 minutes before also being minced 

and placed into a T25 flask, and allowed to air dry for 5 minutes. The flasks were 

then filled with primary fibroblast medium (DMEM, 10% FCS, 5ml 

Antibiotic/antimycrotic; previously described), and care was taken not to disturb 

attached cells. Gingival primary fibroblasts were also cultured from the mice. 

These were obtained from the upper gum line hard pallet of the roof of the 

mouth. This small area of tissue was cut from the mouse and treated by placing it 

into chlorhexidine mouth wash, minced and placed into a T25 flask and left to air 

dry. Cultures usually took approximately a week to ten days to show signs of 

new cell growth. Fibroblasts were used for experiments after 1-2 passages and 

subsequently removed from culture to avoid senescence.

2.1.9 Cryopreservation and Retrieval of Cells

Following trypsinisation 5x105 cells were pelleted by centrifugation (1500rpm, 5 

min) and resuspended in freezing medium (10% DMSO (v/v), 20% FCS (v/v) 

and 70% (v/v) standard cell medium). Cells were then placed into a quick 

freezing box and placed in a -80°C freezer overnight. These cells were then 

transferred to liquid nitrogen for storage.
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2.1.10 Mycoplasma Testing

Cells were seeded (2 x 105) onto circular glass cover slips (13mm) within a 24 

well plate. Following overnight culture the cells were fixed with two successive 

methanol washes (500pl each). Hoechst 33258 stain (Sigma) was applied (at a 

final concentration of 0.05 pg/pl in ddfbO) for a period of 15 minute at 37°C. 

Following extensive washing with ddF^O, fluorescence staining was visualised 

through a DAPI 505 nm filter. This analysis was carried out using a Carl Zeiss 

Axiocam camera linked to an Axiovert 200M Zeiss microscope. Hoechst staining 

reveals genomic DNA of both eukaryotic and prokaryotic cells.
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2.1.11 Keratinocyte Migration in a Co-Culture Model:

2.1.11.1 Spheroid Migration

Migration assays were carried out by pipetting a 50pi of 30% methylcellulose 

containing a single spheroid per well onto matrix derived from HCA2 fibroblasts 

in the presence of FAD medium either alone or mixed 1:1 with conditioned 

medium or appropriate inhibitor in chapters 3 and 4. Placement of the spheroid in 

the centre of each well was confirmed manually by phase contrast microscopy. 

Experimental samples were restricted to spheroids attaching to the centre of each 

well. Chapters 3 and 4 required FAD or defined serum free medium alone, with 

DMSO or plus inhibitors (see table 6 ) due to the previous medium set up 

interfering with action of the various included inhibitors. The results sections of 

chapters 3 and 4 will indicate where medium other than standard FAD medium 

has been used. Time lapse microscopy was carried out for 30 hours with both 

bright field and fluorescent images being taken every 1 hour. Pictures were taken 

using a Carl Zeiss Axiocam camera linked to an upright Axiovert 200M Zeiss 

microscope. Improvision Openlab™ 4.1.2 software controlled the time-lapse 

microscopy and collected the images.
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2.1.11.2 Inhibitors and Antibodies used in Migration Assays.

Inhibitor Source/Manufacturer Final Concentration

GM6001 BIOMOL International 50pM in DMSO

TAPI 1 BIOMOL International lOpM in DMSO

GI254023X (ADAM 10) GlaxoSmithKline lOpM in DMSO

GW280264X 

(ADAM 17/10)

GlaxoSmithKline lOpM in DMSO

Cub7402 (Monoclonal) Neomarkers 1 pg/ml in FAD/DSFM.

115 TG2 Inhibitor Zedira GmbH 25mM in ddH20.

TIMP1 Produced by V Knauper 

Kind Gift.

lOOnM in ddH20.

TG2 made in house 0 .0 1 -1 0ug/ml in 

FAD/DSFM

EGF Sigma 10pg/ml in ddH20

AG1478 (EGFR) Calbiochem lOpM in DMSO

AG1024 (IGFR) Calbiochem 10pM in DMSO

AG1295 (PDGFR) Calbiochem lOpM In DMSO

CRM 197 (HB-EGF) Merck/Calbiochem 50pM in ddH20

Mouse IgG Jackson 1 Opg/ml in ddH20

DMSO Sigma (v/v) in FAD/DSFM

Table 6: A list of inhibitors and antibodies used during spheroid migration assay.
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2.1.11.3 Analysis of Keratinocyte Migration.

Black and white images were analysed using CTAn.exe software (SKYSCAN®). 

Following selection of the region of interest, the threshold value was set to mark 

migrating cells only. This image was then converted to a binary image and 

examined to see the binary image lined up correctly with the furthermost 

migrating cells. The same threshold setting was used for all images within an 

experiment. SkyScan performed algorithmic analysis to generate a quantitative 

value for cell migration as detailed in chapter 3 figure 15.

2.2 Protein Analysis

2.2.1 Ethanol Precipitation of Protein

Protein solutions were precipitated by the addition of 9 volumes of ethanol (24 h, 

-20°C). Following pelleting (1500g, 30 minute, 4°C), proteins were resuspended 

in 8 M urea and spun at 1500g for 5 minutes before the urea was removed and 

substituted for SDS sample loading buffer containing 25 mM Tris (pH8.3), 39 

mM EDTA, 4 % w/v SDS, 30 % v/v glycerol, 0.3 % w/v bromophenol blue, 

supplemented with a 1:50 dilution of p-Mercaptoethanol (Sigma) and boiled for 

five minutes before analysis by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS PAGE) and Western blotting.

2.2.2 BCA Assay

To normalise sample loading, protein concentrations were established by 

bicinchoninic acid (BCA) protein assay (Pierce Chemical Co.) according to the 

manufacturer’s protocols. A bovine serum albumin (BSA) dilution series was
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included as a standard. 10pl of sample along with lOpl of control buffer was 

compared with the BSA dilution series at 540nm. Protein concentration was 

calculated out to give a lOpg protein in 12pi sample to be run by western blot.

2.2.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis

Each protein sample (10-12pl) was mixed with an equal volume of 1 x SDS 

sample loading buffer and boiled for 5 minutes prior to loading onto a pre-cast 4- 

20% Tris-Glycine gel, 1.5 mm x 15 well (Invitrogen). Both reservoirs contained 

25 mM Tris HC1 (pH 8.3), 192 mM glycine, 0.1 % w/v SDS. Proteins were 

resolved over a period of 2 h 125 V, 25mAmps.

2.2.4 Western Blotting

Protein was electrophoretically transferred from the SDS page gel to a Protran 

nitrocellulose membrane (Schleicher & Schuell) under a current of 125 mA for 2 

h in the presence of transfer buffer 25mM Tris (pH8.3), 192 mM glycine, 20% 

methanol v/v. Protein transfer was assessed using ponceau S staining 5% acetic 

acid v/v, 0.1% w/v ponceau S. Non-specific protein binding sites were blocked 

by an overnight incubation (4°C) with 5 % w/v non-fat dry milk powder (Marvel) 

in Tris Buffered Saline (TBS) 20 mM Tris base, 137 mM NaCl, (pH 7).

All antibodies used to probe Western blots were diluted in TBS with 5 % milk 

powder (See table 7). All secondary antibodies used were horse radish 

peroxidase (HRP) conjugated. Unless specified otherwise incubations with 

primary and secondary antibodies were carried out at room temperature (RT) 

under agitation for 1 hour. Each incubation step was followed by three 5 minute
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washes with TBS containing 0.05 % v/v Tween-20 (Sigma). Protein levels were 

detected by chemi-luminescence produced following 1 minute incubation with 

ECL plus Western blotting detection reagent (Amersham Pharmacia) before

TKyf t wexposing to Hyperfilm ECL film (Amersham Pharmacia) for up to 20 

minutes.
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2.2.4.1 Antibodies used in Western Blotting.

Primary Antibody 

(Monoclonal/Polyclonal- M or P)

Raised In Dilution/Concentration Source

TG2 (CUB7402) (M) Mouse 1 :2 0 0 -1 :1 0 0 0 Neomarkers

ADAM 17 (P) Rabbit 1 :2 0 0 -1 :1 0 0 0 Bioscience

ADAM 10 (P) Rabbit 1 :2 0 0 -1 :1 0 0 0 Bioscience

GPR56 (P) Sheep (Cross 
reactive-goat)

0.5-1.0pg/ml R and D Systems

TGFot (P) Goat 0 .1-0 .2 pg/ml R and D Systems

HB-EGF (P) Goat 0 .1-0 .2 pg/ml R and D Systems

EGF (M) Mouse l-2 pg/ml R and D Systems

V5(M) Mouse 1:5000-1:10000 Invitrogen

GAPDH (M) Mouse 1:1000-1:5000 Sigma

GPR56 (P) Rabbit 1 :2 0 0 -1 :1 0 0 0 Abeam

GPR56N-15(P) Goat 1 :2 0 0 -1 :1 0 0 0 SantaCruz

GPR56N-19(P) Goat 1 :2 0 0 -1 :1 0 0 0 SantaCruz

Secondary Antibody Raised in Dilution/Concentration Source

Anti-Goat HRP conjugated Rabbit 1 :1 0 0 0 DAKO

Anti-Mouse HRP conjugated Rabbit 1 :1 0 0 0 DAKO

Anti-Rabbit HRP conjugated Mouse 1 :1 0 0 0 DAKO

Anti-Mouse non specific IgG Mouse 1 :1 0 0 0 Jackson

Table. 7 Summary of antibodies utilised in Western blot Experiments.
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2.2.5 Membrane Stripping

In order to remove antibodies from membranes for re-probing, the nitrocellulose 

was incubated in stripping buffer 1 M Tris HC1 (pH 8.3), 10 % w/v SDS, 0.07 % 

2-mercaptoethanol for 30 minute at 50°C under gentle agitation. This was 

followed by three washes with TBS containing 0.05 % v/v Tween-20 and three 

sequential washes with TBS (5 minute each).

2.2.6 Immunohistochemistry on scratch wounded keratinocytes.

100,000 Keratinocyte cells were plated onto collagen coated sterile cover slips in 

a 24 well plate and allowed to reach 80% confluence in complete FAD medium 

overnight. The following day these cells were scratched using a sterile pipette tip 

200pl yellow tip (Greiner) followed by a medium change to remove detached 

cells and their debris. After a 0, 6 , 12, 18 or 24 hour incubation period medium 

was removed from all samples and cells were washed twice with PBS. The cells 

were then fixed in 4% paraformadehyde in PBS for 10 minutes. Cover slips 

blocked with 1% fraction 5 BSA (Sigma) took place for 1 hour at room 

temperature followed immediately by incubation with GPR56 antibody (R and D 

systems) at a dilution of 1 pg/ml at room temperature for one hour. The primary 

antibody was removed and 3 PBS washes ensured complete removal. The 

secondary FITC conjugated anti goat antibody (DAKO) which recognised sheep 

IgG was added at a 1:80 dilution and left for one hour at room temperature 

followed by a further 3 washes in PBS. Cover slips were then mounted onto 

slides using fluorescent mounting reagent (DAKO). GPR56 was visualised using 

the time lapse microscope as previously described in section 2.1.11.3
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2.3 Gene Expression and Molecular Biology Methods

2.3.1 Agarose Gel Electrophoresis

DNA samples were mixed with 6 X sample buffer 0.05 % w/v bromophenol blue, 

6  % v/v glycerol, 12 mM Ethylenediaminetetraacetic acid (EDTA), (pH 8 ). 

Fragments were separated through 1-1.2 % agarose (Invitrogen) gels in IX 

(TAE) buffer [40 mM Tris acetate, 2 mM Na2EDTA, (pH 8.5)] supplemented 

with 0.1 pg/ml ethidium bromide (Sigma). A 300ng 1KB ladder was also 

separated for calibration of the gel. Electrophoresis was carried out at a constant 

voltage (100 V) before the DNA was visualised by exposure to an Ultra Violet 

(UV) light source.

2.3.2 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)

Reverse transcription was carried out using Superscript II system (Life 

technologies). 1 pg total RNA was extracted from HCA2 fibroblast cultures using 

TRIzol (Invitrogen). A total of four 10cm dishes of each cell type were lysed and 

following the addition of 10 % v/v chloroform, RNA was isolated in the aqueous 

layer using an Eppendorf Phase Lock Gel™ (12000 x g, 30s). RNA within the 

aqueous fraction was precipitated in an equal volume of isopropanol and 

following washing with 75 % ethanol, the pellet was resuspended by heating in 

500 pi nuclease free water (65°C) and stored at -80°C. Total RNA was included 

in a reaction mixture which contained 25ng oligo dT primer (invitrogen), 0.5mM 

dNTPs, lOnM DTT, and 100 u DNase H Reverse Transcriptase in supplied 

buffer (250mM Tris-HCl, 375 mM KC1, 15mM MgCb, [pH8.3]). This reaction 

took place for 50 minutes at 42°C before the enzyme was inactivated by heating 

to 90°C. In order to gain maximum yield of cDNA a second transcription was
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carried out with a further 100 U of reverse Transcriptase. To confirm TG 

expression in fibroblast cell lines lpl of the resulting cDNA was subjected to 

PCR with specific TG2 primers (table 8 ). Amplification was carried out in a 

total reaction volume of 25pi (1 x Taqman buffer A, 2mM MgCh, 0.2mM dNTP, 

0.125 U Taq DNA Polymerase (Promega) and lpl of each primer. The following 

conditions were used; 35 cycles of 45 seconds at 95°C (denaturation), 1 minute at 

60°C (annealing) and 1 minute 30 seconds at 72°C (extension). The first cycle 

contained an extra step to activate Taq polymerase (95°C for 2 minutes) and the 

final cycle contained an extended extension period 72°C for seven minutes. 

Generated PCR products was then resolved through a 1% agarose gel for 

evaluation.

2.3.3 Restriction Digestion of DNA.

Confirming sequence identity restriction digestion took place using various 

restriction enzymes. 2pi of PCR product was added to lpl of appropriate 

restriction digestion buffer, lpl of lOxBSA, 0.5pi restriction enzyme and 

remaining volume made up to lOpl with H2O. Reactions were prepared in 

eppendorf tubes and left at 37°C for 90 minutes. Subsequent products were run 

on a 1% agarose gel, for analysis.

2.3.4 Quantitative Polymerase Chain Reaction (QPCR)

PCR core reagent kit came from Applied Bioscience (Roche, New Jersey). 

Quantitative PCR (QPCR) probes were synthesised at PE Life Sciences 

incorporating a 5’ 6 -carboxyfluorescein (FAM) reporter and a 3’ 6 - 

carboxytetramethylrhodamine (TAMRA) quencher. QPCR conditions to assay
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TG2 had been optimised in house (Stephens et al., 2004). All assays were carried 

out in triplicate with a reaction mixture of 25 pi (containing 1 x Taqman Buffer 

A, 2mM MgCh, 0.2nM dNTP, 0.125U Amplitaq gold DNA polymerase). Primer 

and probe sequences are summarised below (table 8 ). Conditions were as follows 

40 cycles of 15 seconds at 95°C (denaturation), 1 minute 60°C 

(annealing/extension) with the first cycle containing an extra step to allow 

activation of the polymerase enzyme (95°C for 10 minutes). Reactions were 

carried out in an ABI PrismTM 7000 detection system (Applied Bioscience). The 

2-AACT method was used to calculate relative levels of RNA expression, 

normalised to housekeeping gene expression (H306B4).

Gene
Product

Forward Primer Probe Reverse Primer Concentration 
(nM) (F,P,R)

TG2 5’ATGAGAAATAC
CGTGACTGCCTTA
C

5’AGCTACCTGCTG
GCTGAGAGGGACC
TC

5’CAGCTTGCGT
TTCTGCTTGG

300, 150,300

H306B4 5’AGATGCAGCAG
ATCGCAT

5’AGGCTGTGGTGC
TGATGGGCAAGAA
C

5’ATATGAGGC
AGCAGTTTCTC
CAG

300,150,300

Table 8: TG2 primers produced for QPCR.

2.3.5 Preparation of Competent E. Coli.

DH5a E.Coli were cultured in LB medium until an OD650 nm of -0.35 was 

measured using Beckman Coulter DU® 800 spectrophotometer and then 

incubated on ice. After 30 minutes the E.Coli were collected by centrifugation 

(1600 x g, 8 minutes, 4°C) and the pellet resuspended with 10ml ice cold lOOpM 

MgCh- To induce competency, the cells were collected by centrifugation and 

incubated in 2mls of lOOmM CaCl2 over 16 hours. The E. Coli were then flash 

frozen in 200pl aliquots in a 25% glycerol solution ready for future 

transformation experiments.
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2.3.6 Transformation of E. Coli

Competent E Coli DH5a were thawed on ice and then incubated with 1-5pi of 

plasmid DNA (TGFp plasmid (generous gift Dr D Fraser, Nephrology Cardiff 

University and Luciferase/Renilla Dual Glow Plasmid -Promega) in the presence 

of 20nM p-mercaptoethanol (Invitrogen) for 30 minutes at 4°C. The cells were 

then heat shocked at 42°C (exactly 30 seconds) before culturing for 1 hour at 

37°C 225 rpm with 800pl SOC medium (Invitrogen) to ensure return of cell 

integrity. 50 or lOOpl of transformation reaction was spread onto LB agar plates 

containing 50pg/ml ampicillin and left overnight at 37°C. The following day 3 

colonies were picked from each plate and expanded in 3mls of LB medium and 

50pg/ml ampicillin overnight at 37°C while shaking at 225rpm before being 

prepared via miniprep kit (Qiagen) for experiments.

2.3.7 Preparation of plasmid DNA.

Bacteria from overnight cultures were collected by centrifugation at 5000g. 

Mini-preps of DNA were prepared using a Qiagen miniprep kit and protocol was 

carried out as per manufacturer’s protocol. DNA was finally diluted with 50pl of 

ddELO and stored at -20°C.

2.3.8 SiRNA (small interfering RNA) mediated knockdown of GPR56.

2.3.8.1 Dharmacon SiRNA Transfection Protocol.

GPR56 expressing CHO cells or N-Tert immortalised keratinocyte cells were 

counted and seeded at 5xl04 cells per well of a 12 well plate (Greiner) and left 

overnight in complete growth medium. The following day the cells were 

transfected. 4pl of silencer select SiRNA (either GPR56 variant 1, variant 2) or
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scrambled negative control (Ambion) (Table 8 a) was added to 46pl of SiRNA 

buffer containing 2.2% potassium chloride (Fisher), 1% Hepes free acid (Sigma) 

0.02% magnesium chloride 6 H2O (Sigma) in RNase free water added to 2.0M 

potassium hydroxide (Dharmacon) For both SiRNA variants to GPR56 and the 

scrambled negative control in RNAase free eppendorf tubes. In addition an extra 

tube to be transfected with either ADAM 17 or ADAM 10 siRNA (Ali and 

Knauper, 2007) as a further transfection control was prepared by adding 2 pi of 

ADAM10/17 SiRNA to 48pl of SiRNA buffer. The SiRNA and buffer mixture 

was added in the presence of 50 pi of serum free, antibiotic free medium. In 

addition a master mix was prepared containing 99 pi per sample of serum free 

and antibiotic free medium with 2pl per sample of Dharmafect transfection 

reagent (Dharmacon). The buffer/SiRNA/ transfection agent mixture was left for 

5 minutes at room temperature. 99pl of the master mix was added into each tube 

containing siRNA GPR56 variant 1 or 2, scrambled negative control or 

ADAM 17/10. After mixing the SiRNA transfection complex was left for 20 

minutes at room temperature and then added drop wise to cells and mixed side to 

side -  by rocking the plate. While the samples were incubating, 500pl complete 

growth medium was replaced in each well of the 12 well plate (Greiner). The 

transfected cells were left for 48 hours before the process was repeated. After the 

second transfection cells were harvested using 400pl of cell lysis buffer 

containing 1% sucrose/triton by scrapping over ice and BCA assayed to 

determine protein concentration prior to Western blot analysis.
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Sense Antisense

Variant 1 AGCCUGGAGUCGAAACUGATT UCAGUUUCGACUCCAGTCUU

Variant 2 CCGACAUGCUGGGAGAUUATT UAAUCUCCCAGCAUGUCGGTT

Table 8a: GPR56 Silencer Select SiRNA (Ambion) Sequences for variants 1 and 2 used in 
both transfection protocols.

2.3.8.2Interferin Polyplus siRNA Transfection Protocol

N-Tert immortalised keratinocyte cells or stably transfected CHO cells 

overexpressing GPR56 were counted and seeded at 5xl04 cells per well of a 12 

well plate (Greiner) and left overnight in normal culture medium as per 

Dharmacon protocol. The following day 4pl of GPR56 silencer select SiRNA 

GPR56 variant 1, 2 or scrambled negative control (Ambion) (shown in table 8a) 

were added to 500pl of serum free antibiotic free medium in RNA free eppendorf 

tubes. 2pi of Interferin reagent was added to each tube and the tube was vortexed 

immediately for ten seconds; then left to incubate for a further ten minutes at 

room temperature. While the samples were incubating, medium was replaced in 

each well of the 12 well plate (Greiner) with 500pl of fresh complete growth 

medium. Each SiRNA mixture was added to the cells drop wise and the plate 

swirled. The samples were then left for 48 hours to transfect before being 

analysed by cell extraction and western blot.

2.3.9 MTT Test for Cell Viability and Proliferation.

An 80% confluent flask of keratinocytes was washed using PBS. Following 

trypsinisation, 5000 keratinocyte cells were seeded per well of a 24 well plate 

(Greiner) and left in complete FAD growth medium for 6 hours at 37°C, 5% 

CO2. After 6 hours the medium was removed and the cells washed twice in PBS. 

This time was determined to be sufficient for cells to adhere and spread.
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Depending on the experiment to be performed different growth media was used. 

Normally a basic keratinocyte medium made up of solution A Solution/Media A 

containing DMEM/ HAMS FI2 (67.5/22.5%v/v) supplemented with 10% v/v 

FCS, 0.089mM adenine, 400ng/ml hydrocortisone, 10'10M cholera toxin, and 1% 

antibiotic/antimycotic containing 10,000 units of penicillin (base), 10,000 pg of 

streptomycin (base), and 25 pg of amphotericin B/ml utilizing penicillin G 

(sodium salt), streptomycin sulfate, and amphotericin B as Fungizone® 

Antimycotic in 0.85% saline was added. Proliferation assays were carried out 

with multiple conditions with either inhibitors or activators and matching 

controls. Various inhibitors were used to determine the effects of inactivating 

signalling components implicated in keratinocyte proliferation and migration. 

Furthermore, the effects of these inhibitors were investigated in the presence of 

TG2 (lOpg/ml) as well as activators such as insulin (5ng/ml) and EGF (up to 

50ng/ml) where appropriate in specific proliferation assays. Each inhibitor was 

added at range of concentrations indicated in table 9. Initially samples of a 

known cell number were analysed between 0 and 1.2xl06 to establish the linear 

range of the assay and determine the junction correlating cell number with 

absorbance. When an experiment was set up to determine the effect of an 

inhibitor cells were analysed at two time points (set of replicate plates), 24 h and 

72h, to determine the change in cell number and from this calculate the growth 

rate. Triplicates of test and appropriate control conditions were induced on the 

same plate. Growth rate in the presence of vehicle only was then compared to 

that in the presence of inhibitor only. The effect of conformational arrangement 

of TG2 was also evaluated by proliferation assay. The variants of TG2 

investigated were TG2, TG2 activated by calcium, TG2ys, TG2-GTP, and TG2I-
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15. These experiments were set up in the same way, for plate preparation. 5000 

keratinocyte cells per well, were seeded and left for 6 hours in complete growth 

medium. After this time the keratinocytes were washed and the basic 1% 

keratinocyte medium was added. Previously, proliferation assays had been 

conducted where inhibitors in the presence or absence of TG2 were added to the 

basic keratinocyte medium. For TG2 conformational experiments keratinocyte 

cells were either left in basic 1% keratinocyte medium as a control or a 

concentration of a particular conformational type of TG2 was added. This 

allowed the investigation of the effects of the particular TG2 conformation on 

proliferation.

When the 24 hour time point or 72 hour time point was reached the medium was 

removed from all plates, and the cells washed twice in PBS. lOOpl of MTT (3- 

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reagent 

(Invitrogen) was added at 5mg/ml per well and plates left to incubate for 4 hours 

at 37°C, 5% CO2. MTT reagent (Invitrogen) was removed from each well on the 

plate after this time. 400pl of MTT Lysis buffer containing 20g SDS, 50ml NN- 

Dimethylformamide, 50ml H2O plus 2.5% acid mix 2.5ml 1M Hydrochloric 

acid, 80ml Acetic acid and 17.5ml ddH20 was added per well and the plate left 

overnight at room temperature covered with saran wrap. The following day cell 

extracts from each well was transferred to an eppendorf tube and spun at 1500g 

for 5 minutes before being diluted 1 to 1 with ddH20. The mixture was cleared by 

a further centrifugation step. Absorbance readings were measured using a DU800 

Spectrophotometer (Beckman Coulter) at wavelengths of 570 and 650nm for 

each sample. 650nm is outside of the main absorbance peak of the dye and was 

used as a means to identify samples with abnormal readings (light scattering).
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Data was processed by subtracting the 650nm result from 570nm value, and 

averages ascertained based on 3 replicates per condition further calculations 

(detailed p i30) indicated change in cell number and standard error of the mean 

calculated.
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2.3.9.1 Inhibitors and antibodies used in MTT Assays.

Inhibitor Source/Manufacturer Range of concentration.

GM6001 BioMOL 5.6-50*aM in DMSO

TAPI 1 BioMOL 1-30jiM in DMSO

GI254023X (ADAM 10) GSK l-30|iM in DMSO

GW280264X 

(ADAM 17/10)

GSK 0.1-30jaM in DMSO

115 TG2 Inhibitor Zedira GmbH 0.1-10(ig/ml in ddh20

TG2 Made in house 0.01-10(dg/ml in ddh20

EGF Sigma 10 jig/ml in ddh20

AG1478 (EGFR) Calbiochem 0-30|iM in DMSO

AG1024 (IGFR) Calbiochem O.ll-lOjiM in DMSO

AG1295 (PDGFR) Calbiochem 0.33-30|iM in DMSO

CRM 197 Merck/Calbiochem 2- 50|iM in ddh20

PD173074(FGF/VEGFR) Merck/Calbiochem 3.75-30nM in DMSO

DMSO Sigma (volume /volume)

Anti TGF (P) R and D systems 10|dg/ml in ddh20

Anti HB-EGF (P) R and D systems lOjag/ml in ddh20

Anti EGF (M) R and D Systems 10|iig/ml in ddh20

Table 9: A list of inhibitors and antibodies used during MTT proliferation assays.
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Proliferation values were calculated as relative growth rates compared to control, 

where a suitable control of either basic 1% FAD medium minus insulin and EGF 

was placed with DMSO (v/v), BSA (50pM) or alone to compare growth rates. A 

calibration graph was constructed to process the 570nm readings from both 

fibroblasts and keratinocytes to determine an equation to calculate cell number. 

Cell number was then calculated as follows:

=1208100/ (17.58/A-l) where A is the OD570nm for 24h 

=1208100/ (17.58/B-l) where B is the OD570nm for 72h 

24h cell number result was subtracted from the 72 hour cell number to determine 

the change in number of cells over 48 hours. This was then expressed relative to 

control where the change in cell number sample was divided by the change in 

cell number of control. Finally the relative proliferation in the control group was 

set to 1 and the cell number from the testing condition was expressed relative to 

that.

2.3.9.2 Production of Recombinant Human Transglutaminase and its 

Variants.

Complementary DNA encoding TG2 was sub cloned into a prokaryotic 

expression vector PJOE2702. A His6 tag was added to the native sequence N

terminally for purification of the recombinant protein by Ni 'chelating affinity

chromatography. E Coli BL21 transformed with the expression construct was 

grown in LB broth in baffled flasks at 37°C and 220rpm to OD600 of 0.6 before 

chilling to 20°C and induction of transgene expression by addition of rhamnose 

to a final concentration of 0.5%. After incubation for a further 24 hours at 20°C, 

bacteria was collected by centrifugation at 3000g for 20 minutes, resuspended in
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buffer A (50mM Na2HPC>4, (pH8), 300mM NaCl) to obtain a 15% cell 

suspension, and the expressed protein harvested by lysis of the cells using a 

French Press (lOOOpsi). The lysate was cleared from insoluble material by 

centrifugation at ll,500g for 30 minutes and applied to a 1ml His-trap HP 

column (Amersham Bioscience) equilibrated in buffer A at 4°C and a flow rate 

of 0.5ml/minute. The resin was washed initially with buffer A until OD280 of less 

than 0.005 was reached, and then with 100ml of buffer A containing 30mM 

imidazole before elution of His-tagged protein with buffer A containing 150mM 

imidazole. Eluted protein was dialysed (Spectra/Por4; Spectrum Laboratories) 

extensively against buffer B (20mMTris/HCL [pH 7.2]), ImM EDTA, lOOmM 

NaCl) When required enzyme was purified further by ion exchange 

chromatography using a HR 10/10 column packed with Resource Q10 

(Amersham Bioscience) whereby TG2 was eluted as a single sharp peak within a 

20 volume gradient of 0.1-0.7M NaCl. Enzyme was dialysed further in buffer B 

and concentrated to approximately 2mg/ml using centriprep-YM30 (Amicon) 

concentrators and stored at -20°C (Hadjivassilious et al., 2008).

For either GTP, GTPyS (nucleotide) or 115 inhibitor treatment 0.5mg TG2 was 

diluted to a final concentration of 1 mg/ml in PBS containing 5mM MgCl2. For 

nucleotide treatment TG2 was incubated with a 10 molar excess of either GTP or 

GTPyS for 30 minutes at 4°C. lOOpl of 2.5mM Inhibitor 115 (Zedira) was added 

to 0.5mg TG2 and incubated for 30 minutes at 25°C. After nucleotide/inhibitor 

treatment unbound nucleotide/inhibitor was removed using a PD10 column (GE 

Healthcare) and treated TG2 pooled and quantified by absorbance (Rose et al., 

2006). Ca2+ loaded TG2 was prepared by the addition of ImM calcium to 50pg 

of TG2 before each individual experiment involving this TG2 preparation.
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2.3.10 TG2 Activity Assay.

A master mix containing 0.1M Tris, HC1, 5mM CaC12 (pH8.3), 5mM DTT, 

40pM Monodansyl Cadaverine, and 10fig N,N-dimethlcasein/ sample, was 

prepared. (200pi final volume per reaction). Wild type TG2 or TG2 treated with 

115 was added into the mixture at different concentrations (lOug to 0.5pg) and 

agitated. After vortexing for 10 seconds samples were left at 37°C for 30 

minutes. The reaction was stopped by the addition of Trichloroacetic acid( TCA). 

Initially a 200pl 50% TCA preparation was added and the samples left for 2 

hours at 4°C. Precipitated proteins were collected by centrifugation at 15000g for 

10 minutes. A further 2 final washes using a 1:1 ethanol/ether mix (200pl) by 

repeated centrifugation were conducted and the resulting pellet was finally 

resuspended in 15 pi of 1:1 sample buffer and 8M Urea and applied for SDS 

polyacrylamide gel electrophoresis. Proteins were subsequently transferred to 

nitrocellulose and incorporation of dansylcadavarine into N,N-dimethylcasein 

revealed by probing with antibodies to the dansyl group diluted 1 in 300 

(Aeschlimann et al., 1993).

2.3.11 Statistical Analysis.

Statistical analysis was carried out on both proliferation assays and migration 

experiments. Migration assays are shown as single representative experiments (3 

repeats conducted with similar results) and data presented as the mean +/- SEM 

of six spheroids. Statistics were calculated using Graph pad Instat for biologists. 

Repeated measure ANOVA was conducted with either Tukey or Bonferri post 

statistical tests.
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Chapter 3: TG2 and its Role in Re-Epithelialisation.
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3.1 Introduction.

3.1.1 In Vitro Models for Re-Epithelialisation and Wound Healing

In order to study the process of wound healing several in vitro models have been 

developed in an attempt to mimic die re-epithelialisation process such as the often 

used two dimensional scratch wound (reviewed in Rodriguez et al., 2005), or the 

more complex multiple cell skin equivalent (Nakagawa et al 1959). We have adapted 

a co culture model developed to investigate endothelial cell differentiation in 

angiogenesis (Korff and Augustin, 1998) to investigate this process (Rosser-Davies, 

PhD thesis 2006). As wound healing is a complex process involving multiple cell 

types and cellular interactions such as an adequate blood supply, fibroblasts, the 

major cell type within the dermis, epithelial cells, and circulating cells o f the 

immune system it is possible to produce a model incorporating some but not all of 

these interactions. There must be cell cell and cell matrix interactions that regulate 

cellular behaviour to re-establish normal architecture and functionality of damaged 

tissues. Fibroblasts deposit a highly organised and tissue specific specialised 

extracellular matrix (ECM) which is instrumental in regulating the overlying 

epithelium (Locke et al., 2007). Previous studies have required keratinocytes to be 

seeded onto collagen embedded fibroblasts to produce a skin equivalent in which 

fibroblasts encourage proliferation and differentiation of keratinocytes (El 

Ghalbzouri et al., 2002). Positive proliferative effects of fibroblasts have been shown 

in numerous studies {Bell et al, 1951, Prunieras et al., 1953, Asselineau et al., 1956, 

Xu and Clark., 1996, Florin et al., 2005) indicating fibroblasts are able to stimulate 

proliferation by the release of interleukins such as IL-6 (Chedid et al., 1994), and 

growth factors appearing In early stage wound healing such as TGFp (Wahl et al, 

1989) or PDGF (Pierce et al., 1989).
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3.1.2 Mesenchymal Control of Keratinocyte Migration.

Fibroblasts have been suggested as being responsible for signals regulating wound 

healing and therefore keratinocyte migration either by the release of growth factors 

or the construction of an adequate extracellular matrix (ECM) providing an adhesive 

and instructive support to migrating cells. Previous studies have concentrated on the 

release of matrix proteins or soluble factors as contributory to keratinocyte 

regulation (see Table 10). TGFp, EGF and MMPs have all been implicated in the 

regulation of keratinocyte migration. TGFp suppresses keratinocyte proliferation, but 

increases their motility in a Smad-dependent manner (TGF P signalling pathway) 

(Choi et al., 2007). However, conflicting data has been shown that TGFp in fact 

increases proliferation of keratinocytes especially during the later stages o f wound 

healing (Zambruno et al., 1995). EGF has also been shown to be up-regulated during 

early wound healing and can increase keratinocyte migration (Schultz et al., 1991) as 

well as contributing to the production of fibronectin in fibroblasts (Mimura et al., 

2004) therefore aiding stabilisation of the wound and increasing contraction during 

healing. Furthermore, additional in vitro studies have indicated that keratinocytes 

have an increased ability to bind fibronectin as a result of TGFp and EGF 

stimulation of fibronectin production leading to increased keratinocyte motility on 

this substrate (TakasHma and Grinnell 1985., NickolofFet al., 1988).

Soluble factors may also regulate signalling by y kinase receptors such as EGFR to 

increase keratinocyte proliferation and migration in an acute wound (Martin., 1997) 

or secretion of proteolytic enzymes such as MMP1 (collagenase) and MMP9 

(Gelatmase) which remove collagen and other ECM components damaged during 

injury, and expose cryptic ECM binding sites.
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Factor Reference

Epidermal growth factor Schultz et al., (1991), Sarret el al (1992), 
McCawley et al., (1998), Yamasaki et 
al., (2003) Takahashi et al., (2009)

Fibroblast growth factor 2 Igarashi et al., (1993),Powers et al., 
(2000),

Fibroblast growth factor 7 Tsuboi et al., (1992)
Fibroblast growth factor 10 Matsumoto et al., (1991), Tsuboi et al., 

(1992), Cha et al., (1996), Gibbs et al., 
(2000)

Granulocyte macrophage colony 
stimulating factor

Barrandon and Green., (1987), Tsuboi et 
al., (1992), Aragane et al., (1996), Cha et 
a.,1 (1996), Ghahary et al., (1998)

Hepatocyte growth factor Tsuboi et al., (1992), Sato et al., (1995), 
McCawley et al., (1998), Liang (1998), 
Gibbs et al., (2000), Tokumaru (2005)

Insulin like growth factor I Tsuboi et al., (1992), Sato et al., (1995), 
McCawley et al., (1998), Haase (2003), 
Pozzi (2004).

IL-1 Tsuboi et al., (1992), Chen (1995), Weng 
{1997), Maas-Szabowski { 2000), Lian 
(2008)

Platelet derived growth factor Robsen (1997), Trengove et al., (2000), 
Rollman (2003)

Transforming growth factor beta Kane et al., (1991)., Sarret et al., (1992), 
Zambruno et al., 1995, Robsen (1997)

Transforming growth factor alpha Pittelkow (1993), Chen (1995), Cha et 
al., (1996), Klein et al., (2005)

Heparin binding epidermal growth factor Marikovsky et al., (1993).,Martin, 
(1997)., Faull, (2001)., Xu (2004)., 
Higashiyana (2005)., Shirakata., (2005)

Table 10 indicates common soluble keratinocyte proliferative and/or migratory factors
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3.1.3 TG2 Location and Activity in Wound Healing.

Tissue transglutaminase or TG2 is one of five isoforms expressed in human skin. 

TG2 is found only in basal keratinocytes within the epidermis (Aeschlimann et al., 

1998; Haroon et al., 1999) contrasting with other TG isoforms which have 

keratinocyte differentiation specific expression (Aeschlimann et al., 1998, Candi et 

al., 2001). TG2 is also expressed in fibroblasts and is the predominant TG in the 

dermal compartment (Aeschlimann et al., 1998). The mechanism for secretion is 

elusive, however recent work by Scarpellini et al, indicates heparin sulphate 

proteoglycans may assist TG2 by cross linking leading to TG2 secretion and 

extracellular activity (Scarpellini et al., 2009). When TG2 is relocated to the 

extracellular matrix it has been shown to be involved with extracellular remodelling 

(Aeschlimann and Thomazy 2000, Stephens et al., 2004) and can function 

independently of its cross linking ability by acting as an integrin associated co­

receptor promoting fibronectin fibril formation in the pericellular matrix and 

facilitating cell adhesion, spreading and motility (Akimov and Belkin 2001). Tissue 

TG is found in granulation tissue twenty four hours after wounding (Haroon et al., 

1999) and is upregulated by acute phase injury cytokines such as IL-6 (Ikura et al., 

1994), TGFP (Akimov and Belkin 2001) and TNFa (Kuncio et al., 1998). TG2 

stabilises the extracellular matrix and promotes granulation tissue remodelling. TG2 

has also been shown to be expressed in macrophages, skeletal muscle cells and 

endothelial cells throughout the wound healing process (Haroon et al., 1999).

3.1.4 Epithelial Migration Model and Aims of Experiments.

Using fibroblasts expressing TG2 at different levels, previous work (Rosser-Davies 

S, PhD Thesis 2006) has demonstrated that TG2 may influence cross talk between
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fibroblasts and keratinocytes to regulate epithelial migration. A co-culture model has 

been developed in house using fibroblasts and keratinocytes. Our model begins by 

the production of matrix for ten days allowing the fibroblasts to produce a 3D matrix 

containing collagen and fibronectin fibrils on which keratinocyte cells can be seeded. 

Epithelial migration is known to be induced by collagen binding synthesis, in 

addition to providing a substratum, the matrix contains fibroblast-derived growth 

factors, cytokines and TG2 which could initiate and support keratinocyte migration. 

The aim of these experiments was to determine the nature and mechanism of the 

signals sent and received between keratinocytes, fibroblasts and the extracellular 

matrix, and the relationship to TG2, using our wound healing model.
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3.2 Characterisation of Fibroblast Cell Lines.
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Figure 14: Characterisation of HCA2 Fibroblast cell lines.
(A)mRNA products from the four transfected HCA2 lines (Stephens et al 2004). Antisense (null 
for TG2), Sense (Over-expressed TG2), Mock (Normal TG2 expression) and Serine Mutant 
(non cross-linking form of TG2) are shown. (B) Q-PCR results indicating mRNA TG2 
expression levels in Mock, Sense, Antisense and Serine Mutant fibroblasts. (C) Western blot of 
first (sucrose/triton lOOx) and second (SDS/ Proteinase inhibitor based) protein extracts from 
Mock (Normal TG2 expression) Antisense (null for TG2), Sense (Over-expressed TG2), and 
Serine Mutant (none cross-linking form of TG2) using CUB7402 TG2 Monoclonal Antibody, 
TG2 detected from 77-85KDa, work carried out by Martin Langley (D)3H putresine 
incorporation by the fibroblasts indicates the amount of TG2 activity seen (taken from Stephens 
et al., 2004).
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In order to study the process of wound healing in a reductionist environment a co 

culture model of fibroblasts and keratinocytes has been developed in house. HCA2 

fibroblasts which have been previously transfected to stably express altered levels or 

activity of TG2 were characterised to confirm expected TG2 expression and activity 

(Stephens et al., 2004). Figure 14a and b indicates mRNA products produced by the 

four HCA2 fibroblast cell lines. The presence o f TG2 was indicated in over 

expressing (sense), mock transfected (endogenous) and serine mutant (cross linking 

inactive mutant) fibroblasts. No PCR product was detected in antisense (TG2 null) 

fibroblasts. Figure 14b indicates the calculated mRNA levels obtained from 

duplicate QPCR experiments. TG2 expression is highest in TG2 over expressing and 

serine mutant fibroblasts; approximately 10 fold native levels. TG2 level is reduced 

10 fold in TG2 null fibroblasts. Figure 14c shows Western blot analysis of first 

(sucrose/triton) and second (SDS) extracts from the four fibroblast cell lines. Both 

extracts indicated TG2 was present in increased amounts in TG2 over-expressing 

fibroblasts. Endogenous and mutant TG2 HCA fibroblasts express TG2 in lower 

amounts and the TG2 null fibroblasts do not express TG2 protein Figure 14d is taken 

from Stephens et al., 2004. This shows TG2 activity seen in the four fibroblast cell 

lines, determined by 3H putresine incorporation into N,N dimethycasein. TG2 over 

expressing fibroblasts have eight times more activity than the endogenous control 

(mock), while the TG2 null (antisense) line has no quantitative TG2 activity. The 

TG2 mutant fibroblasts have comparable activity to the endogenous control however 

protein expression is considerably higher.
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3.3 Re-Epithelialisation Model and Quantification of Migration Data.

Pilot experiments carried out by Sally Rosser-Davies (PhD Thesis, 2006) indicated 

keratinocyte spheroids elicited altered migration when placed onto matrices derived 

from each of the described fibroblast cell lines with altered TG2 activity.

In order to derive quantitative results based on the model from Sally Rosser-Davies 

preliminary work, the co culture model was optimised with regard to method of 

matrix preparation, spheroid visualisation and a method for quantification of 

migration. Figure 15a illustrates the preparation of a migration experiment. 

Confluent fibroblasts were cultured for a further ten days in the presence of 

ascorbate-2-phosphate to stimulate matrix production. During this time conditioned 

medium was collected on days 5, 8 and 10 and frozen. After this time the matrix was 

either utilised immediately (containing live fibroblasts) or freeze-thawed and de- 

cellularised with sodium deoxycholate to remove the cell associated proteins. A 

keratinocyte spheroid was prepared by culturing keratinocytes in a hydrophobic 

environment {in hydrophobic plates and in the presence of methylcellulose) for 16 

hours, to form an aggregated cell “ball” that was transferred onto the matrix. 

Keratinocytes were labelled to track their migration. The system was modified to 

ascertain the effects of fibroblasts, TG2 and/or conditioned medium on the migration 

of the keratinocyte cells over 30 hours.

Migration was initially monitored using a Carl Zeiss Axiocam camera attached to a 

Carl Zeiss 200 Axiovert Microscope running Improvision Openlab 4.1.3 time lapse 

software (Figure 15b top). Images were processed into greyscale Images that could 

be interpreted by SkyScan© software and a defined threshold applied to convert the
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image into binary images. The boundary of migratory keratinocyte (irregular shaped 

surface) was defined using a rolling ball algorithm which defined an irregular object 

the area of which corresponds to the total area covered by cells (figure 15b bottom) 

Finally, the distance of migration was calculated from a circle of equal area where 

the area of the spheroid at time of plating was subtracted to give a total migration 

over the 30 hours {figure 15c). Values were then converted into micrometres.
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Figure 15: Schematic representation of the co culture model and illustration of method applied 
for quantification analysis. (A) A schematic diagram showing the preparation of the migration 
model. A confluent fibroblast layer was incubated in the presence of ascorbate-2-phosphate for 
ten days and a fluorescently labelled keratinocyte spheroid was placed on top of the matrix and 
photographed every hour (B top panel) over 30 hours. (B) Shows the SkyScan© computer 
generated binary images of the spheroids pattern of migration (bottom panel B). (C) Shows the 
calculated radius calculated by subtracting the original spheroid area from the total area 
covered by migrating keratinocytes Ar reflects the average distance migrated by the 
keratinocytes
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3.3a Comparison of CalceinAM and PKH26 Fluorescent Dye for Intensity and 

Longevity in Keratinocyte Spheroids (Optimisation of Re-Epithelialisation 

Model).

Data from Sally Rosser-Davies (PhD Thesis, 2006) had utilised Calcein AM green as 

a fluorescent dye to track keratinocytes, however labelling was often heterogenous 

and was very sensitive to photobleaching. PKH26 was an alternative more recently 

developed fluorescence tracker dye tested to explore whether more consistent and 

persistent cell labelling could be obtained. Figure 16a, b and c show keratinocyte 

migration from spheroids after labelling with Calcein AM green on matrix derived 

from fibroblasts expressing TG2, after matrix decellularisation (removal of 

fibroblasts). As migration is tracked over the 48 hours there was a reduction in 

intensity of labelling and a diffusion of signal caused by photo bleaching. Moreover, 

this effect was further increased when more photographs were taken over the same 

time period. In comparison, photographs d, e and f  show migrating keratinocytes 

labelled with PKH26 cell linker dye over the same time period on matrix without 

live cells. These photographs indicate that there was no loss of signal over the 48 

hours or diffusion of dye across the spheroid. Figure 16 indicates PKH26 to be a 

more stable tracking agent for migrating keratinocytes. In support of this, PKH26 

cell tracker dye had been shown to be an effective fluorescent label of live cells over 

an extended period of time with no apparent toxic effects (Wallace et al., 1993). 

PKH26 is incorporated into the cell membrane lipid bilayer using aliphatic reporter 

molecules which do not leak or become transferred, making it a stable fluorescent 

indicator of cell migration (Horan and Slezak., 1989).
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Figure 16: Comparison of CalceinAm Green and PKH26 dyes for keratinocyte tracking.
Images A, B and C display migrating keratinocytes over an endogenous (mock) TG2 matrix 
fibroblast matrix at 2, 24 and 48 hours labelled with Calcein AM green. These images are 
reproduced with permission of Dr Sally Rosser-Davies. Images D, E, and F show keratinocyte 
cells also migrating over an endogenous (mock) TG2 matrix mock (normal TG2) matrix 
labelled with PKH26 dye at 0, 24 and 48 hours. Both matrices have been treated to remove 
fibroblast cells by freeze thaw and deoxycholate treatment.
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3.4 The Role of Mesenchymally Expressed TG2 in Cellular Cross Talk Leading 

to Migration Over Decellularised Matrix.

In order to investigate the effects of changes in ECM assembly caused by altered 

TG2 expression in fibroblasts on keratinocyte migration, an experiment was set up 

where fibroblast ECM from native cells was compared to that from cells 

overexpressing or deficient in TG2 with regards to modulation of epithelial 

migration. For clarity, matrix derived from sense, mock transfected and TG2 

deficient fibroblasts will be referred to as overexpressed (S matrix), endogenous (Mk 

matrix) and TG2 null (AS matrix) matrices throughout the document. Figure 17a 

shows images from a representative spheroid for each of the three conditions. 

Spheroids were allowed to migrate for 30 hours in normal FAD medium containing 

10% FCS, lOpg/ml EGF, and 5ng/ml insulin. Migration on over expressed matrix 

and endogenous matrix was increased 3 fold and 4 fold respectively when compared 

to TG2 null matrix (Figure 17). In actual distance, migration over endogenous TG2 

matrix was 300pm, 220pm for over expressed matrix compared with 75pm for TG2 

null matrix. However, the keratinocytes did not respond to the increased level of 

TG2 present in the over expressed fibroblasts, in fact keratinocytes showed reduced 

migration compared to endogenous TG2 matrix. This result was consistently seen 

indicating keratinocytes were either unable to utilise the increased TG2 e.g., 

endogenous TG2 was sufficient to facilitate matrix assembly or that TG2 increases 

migration up to a certain level, after which its’ increased activity is ineffective at 

stimulating keratinocyte migration e.g., high levels of matrix crosslinking may 

impede keratinocyte migration. Furthermore, TG2 may act either directly or 

indirectly on keratinocytes.
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Figure 17: Migration of keratinocyte spheroids on Over expressed, endogenous and TG2 null 
matrix.(A) Panel of fluorescent images taken using epifluorescence showing keratinocyte 
spheroid migration over matrix not containing live cells from TG2 null (antisense), 
overexpressed (sense) and endogenous (mock) fibroblasts. A single representative experiment is 
shown where the data is presented as the mean +/- SEM (standard error) of six spheroids. 
Keratinocyte spheroids labelled with PKH26 dye were added to the matrix in FAD medium and 
the migration photographed over 30 hours by time lapse microscopy. Images taken at 0, 5, 11, 
17 and 23 hours are shown. (B) Corresponding graph showing average migration over the three 
different matrices (n = 6). Repeated measures ANOVA statistical analysis was carried out with 
a 95% confidence interval. Statistical significance denoted as follows; <***P, 0.0005, <**P, 
0.005 compared with control for each point.
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3.4a Keratinocyte Migration on Extracellular Matrix Containing Live 

Fibroblasts

In order to test whether the presence of live fibroblasts within the matrix would 

affect migration of keratinocytes from spheroids the experiment shown in figure 18 

was designed. Part a shows images taken of individual spheroids placed on matrices 

from over expressed, endogenous and TG2 null fibroblasts. These matrices were 

taken straight from their 10 days of matrix production to experiment. Photographs 

from the three types of matrices are shown for five time points over 23 hours (Figure 

18a). Migration patterns in the presence of live fibroblasts are similar for all matrices 

investigated, although migration seems to be most reduced on overexpressed matrix; 

however differences between the three conditions are not statistically significant 

(Figure 18a and b). This experiment shows that migration over the three matrices in 

the presence of live fibroblasts is similar despite the altered expression of TG2. 

These results suggest that when live fibroblasts are present cellular cross talk 

between the fibroblasts and keratinocytes occurs that reduces migration irrespective 

of TG2 concentration. Therefore it can be hypothesised that a biological signal 

originating from the fibroblasts in the matrix may be negatively fedback by the 

keratinocytes thereby reducing migration. Alternatively, the fibroblasts present in the 

matrix are in some way able to reduce the availability of migration stimulating 

factors to the keratinocytes.
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Figure 18: Migration of keratinocyte spheroids over matrix containing live fibroblasts.
(A) Panel of flouresecent images taken using epifluorescence showing keratinocyte spheroid 
migration over matrix from TG2 null (antisense), over expressed (sense) and endogenous 
(mock) fibroblasts where the fibroblasts have not been removed by freeze thaw and detergent 
treatment, therefore still contain live cells. A single representative experiment is shown where 
the data is presented as the mean +/- SEM of six spheroids. Keratinocyte spheroids labelled with 
PKH26 dye were added to the matrix in FAD medium and the migration photographed over 30 
hours by time lapse microscopy. (B) Corresponding graph showing average migration over the 
three matrices (n = 6). Repeated measures ANOVA statistical analysis was carried out with a 
95% confidence interval.
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3.4b A Comparison of ECM With and Without TG2 in the Presence and 

Absence of Live Fibroblasts.

In order to directly compare the effects of live fibroblasts as well as TG2 expression 

on keratinocyte migration, a composite graph of the previous experiments is shown 

(Figure 19). When TG2 null matrix is used regardless of the presence or absence of 

live fibroblasts a similar migration pattern is seen. When TG2 over expressed matrix 

containing live fibroblasts is used migration is dramatically reduced compared to in 

the absence of fibroblasts. Since migration in the absence of live fibroblasts is 

similar on the two different matrices this suggests that TG2 can promote migration 

either directly or indirectly. Comparison of TG2 null matrix between the presence 

and absence of fibroblasts shows no difference, indicating that in the absence of 

TG2, migration may not be under mesenchymal control i.e the cells migrate at a 

basic rate suppoted by a collagen I containing ECM. Increased motility on 

overexpressed TG2 matrix is likely acheived through synergistic growth factor 

mediated signalling. Migration in the presence of TG2 can be affected by the 

presence of live fibroblasts suggesting mesenchymal signalling or cross talk is 

mediated by TG2. When the fibroblasts have been removed from the matrix 

migratory control appears to be no longer mesenchymal and migration is presumably 

limited only by the availability of growth promoting factors such as growth factors 

sequestered within the matrix, integrin binding sites in the matrix itself, or an 

alternative signalling mechanism.
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Figure 19: Migration of keratinocytes on TG2 overexpressed and TG2 null matrix (sense and 
Antisense matrix) in the presence and absence of live fibroblasts.
A graph showing a comparison of averaged migration from both previous experiments. 
Migration over TG2 null matrix in the presence and absence of fibroblasts is compared with 
migration on TG2 overexpressed matrix in the presence and absence of fibroblasts. ). Repeated 
measures ANOVA statistical analysis was carried out with a 95% confidence interval. 
Statistical significance denoted as follows; <***P, 0.0005, <**P, 0.005 compared with control for 
each point
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3.4c The Effect of Conditioned Media from Fibroblasts with Modified TG2 

Expression in Migration

Results have indicated that both TG2 and the presence of fibroblasts within the 

matrix can influence migration. An additional hypothesis was considered where 

conditioned medium collected from the matrices on days 8 and 10 of matrix 

production could influence migration potentially by containing a growth factor or 

migration enhancing molecule. Previous results had indicated that the introduction of 

conditioned medium from TG2 overexpressing fibroblasts increases migration over a 

decellularised fibroblast derived matrix (Sally Rosser-Davies, PhD Thesis, 2006). 

Figure 20a shows devitalised matrices (fibroblasts removed) taken from TG2 null, 

endogenous and overexpressing fibroblasts with spheroids added in the respective 

conditioned medium. Photographs shown indicate migration over the three matrices 

at five time points during the 30 hours. Migration was the most extensive on TG2 

overexpressed matrix, similar results were obtained for both endogenous matrix/ 

conditioned medium and TG2 null matrix/ conditioned medium. This suggests that a 

stimulatory factor may be present in TG2 overexpressed conditioned medium that 

supports increased migration when compared with endogenous and TG2 null 

conditioned medium on their respective matrices. Migration in the presence of TG2 

null conditioned medium is increased relative to the previous experiment on matrix 

only shown in figure 18 suggesting that conditioned medium of any type may 

promote epithelial migration to an extent. The increased motility on overexpressed 

and endogenous matrix is therefore a consequence of an increase in a promigratory 

signal either due to enhanced matrix association or gene expression and not an 

antimigratory signal synthesised by TG2 null cells.
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Figure 20: Migration of keratinocyte spheroids over matrix in the presence of relevant 
conditioned medium.
(A) Panel of fluorescent images taken using epifluorescence showing keratinocyte spheroid 
migration over matrix from TG2 overexpressed (sense), endogenous (mock) and TG2 null 
(antisense) matrix in the presence of conditioned medium. A single representative experiment is 
shown where the data is presented as the mean +/- SEM of six spheroids. Keratinocyte 
spheroids were added to the matrix in a 1: 1 dilution of FAD fresh medium and conditioned 
medium of the matching type from days 8 and ten of matrix production and the migration 
photographed over 30 hours by time lapse microscopy. (B) Corresponding graph showing 
average migration over the three matrices (n = 6). Repeated measures ANOVA statistical 
analysis was carried out with a 95% confidence interval. Statistical significance denoted as 
follows; <*P, 0.05; <** P, 0.005; <***P, 0.0005, compared with control for each point
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3.5 The Role of the Mechanical Environment in TG2 Signalling.

Cell traction is influenced by the resistance of the substratum to the forces generated; 

hence physical strength of the ECM may influence motility. In order to determine 

whether the effects seen on keratinocyte migration are the result of mechanical 

properties of the matrix the following experiment was conducted by Dr Pascale 

Grenard and Dr Sally Rosser-Davies in house.

Panel A indicates the contraction of collagen lattices seeded with the 3 fibroblast cell 

lines tracked over seven days. TG2 contributes significantly to the establishment of 

tension within these matrices as contraction is evident when lattices are populated 

with TG2 overexpressing fibroblasts whereas lattices with either TG2 null or 

endogenous fibroblasts present fail to contract (Figure 20 panel A). This suggests 

that cross linking is responsible for contraction and that mechanical properties of the 

ECM are greatly different in the presence and absence of cross linking. Panel (B) 

indicates comparable epithelial migration on matrix overexpressing wildtype TG2 

and cross linking deficient TG2. This suggests enhanced migration is not dependent 

on changing forces within the matrix and may instead be due to cell-cell cross talk. If 

mesenchymal control was only limited to matrix cross linking a similar pattern of 

epithelial migration would be expected in the case of both mutant TG2 expressing 

and TG2 null fibroblasts which is not the case. Therefore this indicates mesenchymal 

control may be influenced by the availability of soluble factors or additional 

signalling events.
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Figure 21: Comparison of collagen lattice contraction and keratinocyte migration over various 
TG2 matrices. The top 3 pictures indicated 8(A) show collagen gels populated with Over 
expressed(S), SerineMutant (SerM) and TG2 null (AS) fibroblasts the amount of contraction 
seen over the course of 7 days, experiment conducted by Dr Pascale Grenard reproduced with 
permission from Prof Daniel Aeschlimann. The bottom 3 pictures show calcein green labelled 
epithelial cell migration on the respective fibroblast matrices after 48 hours (B) images from Dr 
Sally Rosser-Davies, (unpublished).
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3.6 Conclusion

Migration of keratinocyte cells on matrices produced by fibroblasts over expressing, 

endogenously expressing or not expressing TG2 has been examined in both the 

presence and absence of live fibroblast cells (summarised in Figure 22).

When the matrix is devitalised by freeze thaw and sodium deoxycholate treatment no 

further cellular cross talk can occur. Stimulatory factors from the matrix may 

influence migration depending on whether they remain cross linked within the 

matrix or the keratinocytes are able to release them, and whether they are active only 

in a soluble form or can signal as a matrix associated form. Keratinocyte migration 

on matrices produced by fibroblasts either expressing or over expressing TG2 is 

increased compared to the same matrices containing live cells, suggesting that TG2 

is important in promoting keratinocyte migration, which may depend on a factor 

cross linked to the matrix by TG2 and released by the keratinocytes as they migrate 

over the matrix. Keratinocyte migration is reduced on devitalised matrix where the 

fibroblasts have been removed, where TG2 is not expressed indicating that TG2 

expression is required to sequester growth factors in the matrix or to cross link 

matrix constituents in such a way that integrin binding site availability might be 

modulated, or that the enzyme itself acts as a signalling factor or alters gene 

expression in fibroblasts and directly enhances synthesis of a promigratory signal. 

However, if a factor normally sequestered into the ECM were active in a soluble 

form when released from the matrix, it would be expected that TG2 null media 

would contain more of this factor and so would be expected to support enhanced 

motility, which is not the case. This suggests that this factor is only active when
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matrix associated, or that TG2 expression alters the properties of the matrix or 

induced expression of the factor.

Keratinocyte migration across a matrix containing live fibroblasts expressing TG2 is 

substantially reduced in comparison to matrix with cells removed. The same effect 

was observed irrespective of the presence of conditioned medium or the level of TG2 

expression, indicating that anti-migratory signals are originating from the fibroblasts. 

This suggests that a pro-migratory factor is present within the matrix triggers 

signalling in keratinocytes. In the presence of fibroblasts, further signalling occurs 

that limits migration. Alternatively, mechanical stimuli originating from fibroblasts 

and transduced through the matrix could alter adhesion and migration of 

keratinocytes, which is mediated by integrins; (mechanical sensors of the cell 

surface). In vitro studies have previously shown that TG2 affects keratinocyte 

adhesion, where Taenaka et al., showed that TG2 can, in a dose dependent manner, 

increase keratinocyte adhesion on a fibronectin substratum (Taenaka et al., 2003). 

This effect was counteracted by the addition of arginine glycine aspartate (RGD) 

peptides. The presence of TG2 could therefore modulate integrin-mediated 

keratinocyte adhesion to fibroblast-derived matrix. A balance between adhesion and 

de-adhesion is critical for cell migration, thus if adhesion is too strong, keratinocyte 

migration would be inhibited. Thus, the marginally higher motility on endogenous 

TG2 matrix as compared to overexpressed TG2 matrix may be a result of increased 

adhesion to the matrix in this environment. However, overexpression of a cross 

linking deficient mutant form of TG2 has shown that the signalling pathway 

regulating enhanced motility is independent of the mechanical environment.
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When migration is compared in the presence of conditioned medium from each of 

the three matrix types when no live fibroblasts are present the level of migration in 

the presence of mock and antisense conditioned medium is similar, while sense 

conditioned medium (TG2 over expressed) clearly stimulates migration. This would 

suggest that the cells respond to stimulatory factors from the conditioned medium 

such as a growth factor or other soluble factor. The synthesis of which may depend 

on TG2 and this may be dose dependent. Production of active growth factors such as 

TGF{3 has been shown to be regulated by TG2 and shown to influence cell 

proliferation (Quan et al., 2005). Alternatively, TG2 may act indirectly through a 

signalling pathway causing altered gene expression of factors that promote 

migration. Further, TG2 has been shown to interact with beta chains of the integrin 

family such as beta 1 and 3, the association of which promotes cellular interactions 

with the extracellular matrix resulting in an increase in cell migration, proliferation 

and cell survival (Verma and Mehta 2007). However, our lab has shown that TG2 

cannot be detected in conditioned medium even when TG2 is overexpressed; 

therefore TG2 is unlikely to be solely responsible for increased activity present in 

conditioned medium.

From the experimental data shown in this chapter there are clear further aims to 

investigate. Initially, it is of interest to determine the nature of the factor driving 

keratinocyte migration that is deposited in fibroblast ECM in a TG2 dependent 

manner. Furthermore, the mechanism by which the keratinocytes are able to mobilise 

this migration factor must be investigated. Therefore it is necessary to investigate 

specific factors which could influence migration such as metalloproteinases as well 

as growth factors such as TGF|3 or EGF. It is also crucial to target the associated
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receptors that these molecules signal through in order to determine their involvement 

in migration control. Finally then, it has been shown that TG2 influences factors 

controlling keratinocyte migration over a fibroblast derived matrix, and subsequent

chapters will aim to delineate the signalling cascade involved.

keratinocyte
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Figure 22: A summary of results from this chapter.

The top half of the figure indicates that in the presence of live fibroblasts keratinocyte 
migration is limited. It has been shown that keratinocyte responses in wound healing are under 
the control of the fibroblasts. We expect that in our model system cross talk between fibroblasts 
and keratinocytes similarly regulate outgrowth of cells from the spheroids. In the absence of live 
fibroblasts, the epithelial cell can respond to signals from the ECM but no feedback regulation 
is possible. A basal amount of migration is seen which occurs regardless of removal of 
fibroblasts from the matrix or the presence of conditioned medium. In contrast ECM of normal 
fibroblasts or fibroblasts expressing TG2 substantially enhances migration of keratinocytes 
from the spheroids (lower panel). This suggests that TG2 is part of a signalling pathway that 
mediates enhanced motility in keratinocyte cells.
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Chapter 4: Characterisation o f Metalloproteinase 

Activity involved in Re-Epithelialisation
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4.1 Introduction.

The previous chapter indicated that the co culture model of fibroblast matrix and 

keratinocyte spheroids is potentially regulated both by the presence or absence of 

fibroblasts and the amount of TG2 present within the matrix. Alternatively, TG2 

cross-linking activity could modulate integrin binding site availability or indirectly 

mediate growth factor signalling. The effect of TG2 can be interpreted in two ways; 

either the sequestration of TG2 within the matrix allows the keratinocytes to directly 

respond to TG2, or alternatively, matrix-bound TG2 has cross linked a factor within 

the matrix which stimulates keratinocyte migration. Either effect of TG2 is a viable 

hypothesis to test if a factor is mobilised from the ECM by keratinocytes then it is 

likely that this will require a proteolysis step in order to release a soluble factor and 

allow binding to its growth receptor. Initially, a candidate molecule or effecter must 

be identified. The metalloproteinase family, specifically the matrix 

metalloproteinases, may be involved in proteolytic activity on the cell surface and 

within the extracellular matrix which leads to cell migration. Matrix 

metalloproteinase activity can induce changes in proteins which either activate or 

deactivate a protein or dramatically change its functional properties (Blobel, 2000; 

Clark et al., 2008). An example is the processing of laminin 5 by either matrix 

metalloproteinase 2 (MMP2) or membrane type matrix metalloproteinase 1 (MT1- 

MMP) where cleavage by either MMP results in the exposure of an integrin-binding 

site that supports cell migration (Koshikawa et al., 2000). Metalloproteinases 

therefore are candidates for inducing migration in the co culture model. GM6001 is a 

broad spectrum matrix metalloproteinase inhibitor that has been previously shown to 

impact on epithelialisation, granulation tissue development and wound contraction
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during cutaneous wound repair (Mirastschijski et al., 2004). Investigation of 

metalloproteinase activity in the co culture model was initiated with GM6001 and 

TAPI1, an inhibitor of ADAM17 (TACE) as well as metalloproteinases in general. 

ADAM 17 is a member of the ADAMS (a disintegrin and Metalloproteinase) family, 

a sub-family of metalloproteinases (Hinkle et al., 2004). ADAMs are membrane 

anchored metalloproteinases which process and shed the ectodomains of membrane 

anchored growth factors, cytokines and receptors (Blobel, 2005). This processing 

activity of cell surface molecules makes ADAMs potential candidates for 

involvement in keratinocyte migration. For example ADAM 10, (Kuzbanian) has 

been identified as the main sheddase of the EGFR ligands EGF and betacellulin in 

mouse embryonic fibroblasts leading to activation of the epidermal growth factor 

receptor (EGFR) (Sahin et al., 2004). The role of EGFR in promoting keratinocyte 

migration is well documented in the literature (Blobel, 2005, Xu et al., 2007). The 

literature has indicated a substantial role for a number of growth factors in cell 

migration. This chapter investigates the involvement of the three growth factor 

receptors (EGFR, IGFR, and PDGFR) specifically implicated in regulation of 

keratinocyte migration over fibroblast-derived matrix.

4.1.1 Aims of experiments.

Our previous work has indicated that TG2 is part of a pathway that promotes 

keratinocyte motility. The migration model already introduced in chapter 3 will be 

used to test the effect of various inhibitors of metalloproteinases, ADAMS and 

growth factor receptors to determine whether they play a role in keratinocyte 

migration in the presence and absence of TG2. Initial experiments will start with 

broad acting inhibitors followed by more specific inhibitors to identify in a
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systematic way specific components that are part of the pathway requiring TG2, with 

the aim of identifying pathways important in keratinocyte migration during wound 

healing. The specific role of TG2 will also be investigated within these experiments 

to determine whether the pathway is dependent on TG2 activity or protein, and 

whether altering TG2 levels in the matrix can influence keratinocyte migration or 

whether the cellular context of matrix assembly is required for this function of TG2.
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4.2 A Comparison of Media for Migration Experiments.

A set of inhibitors was selected to inhibit metalloproteinase activity, growth factor 

receptor activity and growth factor receptor ligand activity. Some of these inhibitors 

when prepared for experiments were found to be affected by various components of 

the keratinocyte culture media (FAD medium) which contains additives (detailed in 

materials and methods) such as EGF, as well as serum e.g. containing protease 

inhibitors such as a2-macroglobulin and various growth factor which may render 

inhibitors ineffective, secondly where appropriate 1% serum FAD medium was used 

where insulin, or EGF or both were removed was used. Nevertheless, there were 

occasions where this minimal FAD media was unsuitable; therefore an alternative 

media was sought which could be used. Defined serum free medium (DSFM) 

distributed by Invitrogen was determined to be a suitable alternative, which has been 

developed to support keratinocyte growth in the absence of serum. Note however 

that the growth supplement in this formulation contains high concentrations of 

various growth factors (details in materials and methods).

An experiment was conducted to test whether the previously observed differences in

keratinocyte migration in response to altered TG2 expression could be reproduced

when using different culture conditions. Figure 23 shows keratinocyte migration in

the presence of either FAD medium or DSFM over TG2 endogenous and TG2 null

matrix. Figure 23a shows that migration is comparable over this time period (thirty

hours) with either media, both in the presence or absence of TG2, indicating that

DFSM media is a suitable substitute. This result also confirms previous findings that

showed substantially reduced migration in the absence of TG2 (Chapter 3, Figure

18). Figure 23b further illustrates that total migration (after thirty hours) of

keratinocytes from spheroids over TG2 null and endogenous matrix is independent
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of the type of media used since total migration is similar for both FAD and DSFM 

media. For all experiments conducted in media other than standard FAD medium 

this will be highlighted in the description of the results. To minimise variability, a 

single batch of serum was selected, tested and then used throughout all experiments 

in this thesis.
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Figure 23: TG2 stimulation o f keratinocyte migration occurs in FAD and Defined 
serum free medium.

Comparison of migration of keratinocytes from spheroids on TG2 endogenous and TG2 null 
matrix in FAD and defined serum free medium. (A) Migration of keratinocytes over TG2 
endogenous matrix in FAD and defined serum free medium is shown in blue, migration over 
TG2 null matrix in FAD and defined serum free medium is shown in red. A single 
representative experiment is shown (3 repeats conducted with similar results) and data 
presented as the mean +/- SEM of six spheroids (n=6). (B): A comparison of total migration 
over the four conditions at thirty hours. Statistical significance denoted as follows; <*** P, 
0.005; comparing FAD with defined serum free medium on TG2 endogenous and TG2 null 
matrix analysed by repeated measures ANOVA.
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4.3 Investigating the Involvement of Metalloproteinases in Migration.

All experiments were conducted using decellularised matrix since the presence of

fibroblasts inhibited migration (Chapter 3, Figure 19). In order to study the

requirement for metalloproteinase activity within our co-culture model

metalloproteinase inhibitors have been utilised. GM6001 and TAPI1 are broad

spectrum inhibitors that have both been found to be effective in influencing

metalloproteinase family activity in many cell types. However, TAPI1 shows some

preference towards inhibition of ADAMs, and ADAM 17 in particular (Daniela et al.,

2003). Initially concentrations for the inhibitors were influenced by our experience

with other cell systems and a dose response was later conducted and is given in

chapter 5. The dosages selected were 50pM for GM6001 and lOpM for TAPI1.

Figure 24 and Figure 25 shows keratinocyte migration in the presence of these

inhibitors over endogenous (Figure 24 a, b and c) and TG2 null matrix (Figure 25).

These experiments were performed in DSFM as the presence of serum interferes

with cell derived metalloproteinase activity. Both GM6001 and TAPI1 reduced

keratinocyte migration over endogenous TG2 matrix compared to vehicle control,

DMSO. In addition, DMSO stimulated migration, compared to medium alone

(Figure 24). DMSO is known to stimulate migration and proliferation in

keratinocytes. Figure 24c further illustrates that total migration is reduced from

270pm (vehicle control, DMSO) to 150pm (GM6001 and TAPI1). These data

indicate that metalloproteinase activity is involved in keratinocyte migration in the

presence of TG2 (endogenous matrix). In Figure 25 keratinocyte migration over TG2

null matrix in the presence of metalloproteinase inhibitors was compared. Both

migration plots shown in Figure 25a and c clearly show that there is no difference

between keratinocyte migration across DMSO, GM6001 (50pm) or TAPI1 (lOpM)
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treatments, which is further illustrated by the images seen in Figure 25b. The 

migration seen across control and inhibitor treated spheroids was also found to not 

be statistically different (Figure 25 a and c). Furthermore, keratinocyte migration 

over TG2 null matrix in the presence of DMSO is comparable to that on endogenous 

matrix in the presence of GM6001 or TAPI1 suggesting that this corresponds to 

unstimulated migration based on integrin-ECM interaction. This shows that 

keratinocyte migration over TG2 null matrix is unaffected by either GM6001 or 

TAPI1, indicating that metalloproteinases are not involved in TG2 independent 

migration.
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Figure 24: A comparison of migration of keratinocyte cells in the presence of general matrix 
metalloproteinase inhibitors over TG2 endogenous matrix

Keratinocyte migration seen over decellularised endogenous TG2 matrix in the presence of 
defined serum, free medium. Migration was recorded in the presence of GM6001 (50pM), 
TAPI1 (lOpM), DMSO (vehicle control for inhibitors) or cells were untreated (Medium). 
Migration was photographed using epifluorescence illumination and analysed every hour for 30 
hours and the results plotted (A) A single representative experiment is shown (3 repeats 
conducted with similar results) and data presented as the mean +/- SEM of six spheroids (n=6).
(B) Shows the corresponding micrographs 0 and 25 hours. The edge of migration of 
keratinocyte cells from the spheroid is marked by the red circle. (C) Indicates migration from a 
single time point (hour 25) to compare the total migration under each condition. Statistical 
significance denoted as follows; ** <P, 0.005; ***<P, 0.0005, compared with DMSO control 
analysed by repeated measures ANOVA.
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Figure 25 A comparison of migration of keratinocytes in the presence of general matrix 
metalloproteinases inhibitors over TG2 null matrix.

Keratinocyte migration over decellularised TG2 null matrix in the presence of defined serum 
free medium. Migration was recorded in the presence of DMSO vehicle control for inhibitors, 
with GM6001 at 50pM and TAPI1 lOpM in defined serum free medium. Migration was 
photographed using epifluorescence illumination and analysed every hour for 30 hours and the 
results plotted. (A) A single representative experiment is shown (3 repeats conducted with 
similar results) and data presented as the mean +/- SEM of six spheroids (n=6). (B) Shows the 
corresponding micrographs taken at 0 and 30 hours. The edge of migration of keratinocyte cells 
from the spheroid is marked by the red circle. (C) Indicates migration from a single time point 
(hour 30) to compare the total migration under each condition. No significant difference was 
seen between these conditions when compared using repeated measures ANOVA.
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To further investigate the requirement for metalloproteinase activity for enhanced 

motility in the presence of TG2, keratinocyte migration in the presence of GM6001 

and TAPI1 on devitalised TG2 over expressed matrix was examined (Figure 26). 

Migration was inhibited by both GM6001 and TAPI1 but only at the last time point 

tested (thirty hours, Figure 26) and in the case of TAPI1 only after increasing the 

concentration to 50pM. The reduced efficiency of inhibition/ increased inhibitor 

concentration required may relate to the substantially increased concentration of 

TG2. This may indicate dose dependence of TG2 mediated signalling although the 

variability in the data was too great to firmly establish that (and given the complexity 

of the system). These results suggest that a metalloproteinase is involved in TG2 

dependent enhanced keratinocyte motility. Since TAPI1, while being a broad 

spectrum inhibitor, shows specificity towards inhibition of the ADAMs subfamily of 

metalloproteinases at low concentrations and seemed as effective as GM6001 at 

inhibiting migration. It is likely that a member of the ADAMs family is involved.
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Figure 26 A comparison of migration of keratinocytes in the presence of general matrix 
metalloproteinase inhibitors over TG2 over-expressed matrix.

Keratinocyte migration over decellularised over expressed TG2 matrix in the presence of 
GM6001 50pM and TAPI1 50pM and DMSO vehicle control for inhibitors. Migration was 
photographed using epifluorescence illumination and analysed as previously described, every 
hour for 30 hours. A single representative experiment is shown (3 repeats conducted with 
similar results) and data presented as the mean +/- SEM of six spheroids (n=6) (A). (B) Shows 
the corresponding micrographs taken at 0 and 30 hours indicating the motility of the 
keratinocytes from the edge of the spheroid indicated by the red circle. (C) Indicates migration 
from a single time point (hour 30) to compare the maximum migration under each condition. 
Statistical significance denoted as follows; 0.0005, <**P, 0.005 compared with DMSO
control analysed by repeated measures ANOVA.
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4.4 Investigating ADAMs 17 and 10 Involvement in Keratinocyte Migration.

Although both GM6001 and TAPI1 were both found to be effective inhibitors of 

keratinocyte migration over endogenous TG2 and over-expressed TG2 matrix, the 

TAPI1 result indicated a role for ADAMs, in particular ADAM 17, in keratinocyte 

migration. A literature search indicated that keratinocytes express ADAMS 9, 10 and 

17, all of which have been implicated in keratinocyte motility and are true 

metalloproteinases with catalytic activity (Toriseva and Kahari, 2008). Based on 

their prominent role in regulating p catenin and EGFR signaling, we decided to 

initially focus our investigation on ADAM 10 and 17. To confirm expression of 

ADAMs 10 and 17 in our keratinocytes, Western blotting was carried out (Figure 

27). These antibodies have previously been used by Ali and Knauper, (2007) to 

identify both ADAM 10 and 17 in other cell types. However multiple non specific 

interactions have been found with both antibodies. Ali and Knauper (2007) identified 

the bands corresponding to ADAM 10 and 17 by siRNA transfection and the 

subsequent removal of the ADAM 10/17 band when compared with non transfected 

cells. This identified bands migrating at approximately 97 kDa and 134kDa for 

ADAM 10 and 17 respectively. Some non specific binding was also seen. This non 

specific binding has previously been identified with these antibodies in lymph node- 

derived prostate cancer cells (LNCaPs) and a human embryonic kidney (HEK293) 

cell line over expressing TMEFF2. Presence of the correct bands for both ADAM 17 

and 10 were visualised by Ali and Knauper 2007 using siRNA to both ADAM 17 and 

10 which showed removal of the marked bands. However the presence of the same 

band in these keratinocyte samples indicated that the keratinocytes express both 

ADAM10 and 17.
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Figure 27: ADAMS10 and 17 protein expression in N-tert keratinocytes in FAD medium.

4.5 x 105 keratinocytes were seeded in each well of a 6 well plate and cultured for 24 hours to 
achieve confluence. At this time cells were washed once with PBS and lysed. Protein content was 
determined by BCA Assay and lysates analysed by Western blotting (10 pg protein per lane) on 
a 2-20% reduced SDS-PAGE gel. Membranes were probed using an anti-human ADAM 10 
antibody (Bioscience) and anti-human ADAM17 (Bioscience) antibody both detected with a 
HRP-conjugated anti-rabbit secondary antibody. Both ADAM 17 and ADAM 10 are marked on 
the blot (arrows) as well as * indicating non specific binding of the antibodies.
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Proprietary inhibitors were obtained from GSK against ADAM 10 andADAM10/17 

(GI254023X and GW280264X). Experiments were set up with the three types of 

decellularised TG2 matrices, and keratinocyte migration analysed as previously 

described. Figure 28 shows migration of keratinocytes over endogenous matrix in 

the presence of ADAM 10 and ADAM 10/17 inhibitors. Both ADAM 10 and 

ADAM 10/17 inhibitors reduce keratinocyte migration substantially in comparison to 

DMSO control in the presence of endogenous TG2 (Figure 28). Total migration after 

thirty hours was reduced from 225 pm (DMSO control) to 110pm by the ADAM 10 

inhibitor and 80pm by the ADAMlO/17 inhibitor (Figure 28). This suggests that 

either ADAM 10 or both ADAM 10 and 17 are part of the pathway through which 

TG2 enhances motility of keratinocytes. Migration of keratinocytes on over 

expressed decellularised TG2 matrix is reduced to a similar extent by the inhibitors 

to both ADAM 10 and 17 (Figure 29). Migration was reduced from 190pm (DMSO 

control) to 100pm and 80pm in the presence of the ADAM 10 inhibitor and 

ADAM 10/17 inhibitor, respectively (Figure 29). Figure 30 shows the results from an 

investigation of ADAM 17 and 10 involvement in migration over TG2 null matrix. 

Neither inhibitor has any effect on migration in the absence of TG2. These results 

suggest that migration in the absence of TG2 is independent of ADAM activity. This 

is also consistent with the observation that migration in the presence of ADAMS 

inhibitors on over expressed and endogenous TG2 matrix is comparable to that on 

TG2 null matrix in the presence of DMSO. These results suggest that TG2 mediated 

enhanced keratinocyte motility is dependent on both ADAM 10 and 17 activity.
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Figure 28 Investigating ADAM 10 and ADAM 17 involvement in keratinocyte migration using 
GSK inhibitors GI254023X against ADAM10 and GW280264X against ADAM10/17.

Migration of keratinocytes over decellularised TG2 endogenous matrix in the presence of 
defined serum free medium with DMSO a vehicle control for inhibitors, ADAM10 inhibitor 
GI254023X at lOpM or ADAM 10/17 inhibitor GW28064X lOpM. 6 spheroids were analysed per 
condition per experiment A single representative experiment is shown (3 repeats conducted 
with similar results) and data presented as the mean +/- SEM of six spheroids (n=6) as 
previously described (A). (B) Shows the corresponding micrographs at 0 and 30 hours. The edge 
of migration from the spheroid is defined by the red circle. (C) Migration from a single time 
point (hour 30) is shown to compare the maximum migration under each condition. Statistical 
significance denoted as follows; <** P, 0.005; <***P, 0.0005, compared with DMSO control 
analysed by repeated measures ANOVA.
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Figure 29 Investigating ADAM10 and ADAM17 involvement in keratinocyte migration using 
GSK inhibitors GI254023X against ADAM10 and GW280264X against ADAM10/17 on TG2 
over expressed matrix.

Migration of keratinocytes over decellularised TG2 over-expressed matrix in the presence of 
defined serum free medium with DMSO (v/v) as a vehicle control for inhibitors, ADAM10 
inhibitor GI254023X at lOpM or ADAM10/17 inhibitor GW28064X lOpM. 6 spheroids were 
analysed per condition per experiment. A single representative experiment is shown (3 repeats 
conducted with similar results) and data presented as the mean +/- SEM of six spheroids as 
previously described (n=6) (A). (B) Shows the corresponding micrographs of DMSO, ADAM 10 
and ADAM 17 inhibition of migration at 0 and thirty hours. The edge of migration is indicated 
by the red circle. (C) Migration from a single time point (hour 30) to compare the maximum 
migration under each condition is shown. Statistical significance denoted as follows; <** P, 
0.005; <***P, 0.0005, compared with DMSO control calculated by repeated measures ANOVA.
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Figure 30 Investigating ADAM10 and ADAM17 involvement in keratinocyte migration using 
GSK inhibitors GI254023X against ADAM10 and GW280264X against ADAM10/17 over TG2 
null matrix.

Migration of keratinocytes over a decellularised TG2 null matrix in the presence of defined 
serum free medium with either DMSO (v/v) as a vehicle control for inhibitors, ADAM10 
inhibitor GI254023X at lOpM or ADAM 10/17 inhibitor GW28064X lOpM. 6 spheroids were 
analysed per condition per experiment. A single representative experiment is shown (3 repeats 
conducted with similar results) and data presented as the mean +/- SEM of six spheroids (n=6) 
as previously described (A). (B) Shows corresponding micrographs of migration from a single 
time point (hour 30) to compare the maximum migration under each condition. No statistical 
significance was seen between conditions and control in these experiments when tested by 
repeated measures ANOVA.
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4.5 Investigating Growth Factor Signalling Pathways Potentially Involved in 

triggering Enhanced Keratinocyte Motility.

Results so far in this chapter have implicated the activity of metalloproteinase family 

members specifically ADAMS in keratinocyte migration. ADAMs are responsible 

for the cleaving of substrates or ligands which bind or interact with growth factor 

receptors. Therefore ADAM activity could be responsible for the release of growth 

factors from the ECM or keratinocyte cell surface and thereby stimulate 

transactivation of signalling pathways. In order to study potential pathways involved 

we selected a number of receptor tyrosine kinase inhibitors and tested their effects in 

our system. As ADAM 17 and ADAM 10 are able to cleave EGF ligands such as 

EGF, HB-EGF, TGFa, amphiregullin, and neuregullin amongst others (Sahin et al., 

2004) we suspected that the EGFR signalling pathway maybe involved. Literature 

also reiterates the involvement of EGFR signalling in keratinocyte motility and 

proliferation (Li et al., 2004, Koivisto et al., 2006). In addition IGFR and PDGFR 

were also investigated as potential signalling receptors for keratinocyte migration. 

As DSFM has been shown to contain high levels of growth factors including EGF, 

this medium was substituted for FAD medium with reduced serum (1%) and no EGF 

for the following experiments. Figure 31 compares keratinocyte migration in the 

presence of inhibitors to the three growth factor receptors (EGFR, IGFR and 

PDGFR) on both endogenous and TG2 null matrix. These results indicate that 

enhanced motility of keratinocytes under these culture conditions is dependent on 

EGFR signalling, but not on IGFR or PDGFR signalling in a TG2 endogenous 

background (Figure 31a and b). Keratinocyte migration was reduced from 180pm 

(DMSO control) to 70pm in the presence of EGFR (AG 1478) inhibitor compared
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with 150pm and 170pm with inhibitors for IGFR (AG 1024) (150pm) and PDGFR 

(AG1295) (170pm, Figure 31b). These results would suggest that EGFR plays a 

significant in TG2 dependent enhanced motility of keratinocyte cells. Figure 31 also 

shows the corresponding experiment with a TG2 null matrix. Migration is 

independent of EGFR, IGFR, and PDGFR signalling in this case.

182



Role of Transglutaminase in Signalling that Regulates Epithelial Responses in Wound healing.

350

300
fi

250

: 200
s 150
"»
s
c 100

50

0

-♦-DMSO

-*-IG FRInhibtfoi ( lOpM) 

EGFR Inhibitor (IOjiM) 

— -  PDGFR Inhibitor (1 OjiM)

5 10 1? 20

Tiineih)

350 

300 

I 250

!  -°° 
\  150 e*
a 100

50

0

-DMSO

-IGFR Inhibitor! IOjiM)

- PDGFR Inhibitor) 10(iM) 

EGFRInlubilori IOjiM)

10 15 20

Time (h)

350

300

g 250

|  200 
s
2  150
s

100

»*•i

+ DMSO + EGFR + IGFR + PDGFR 
Inhibitor (10pM> Inhibitor 110pM» Inhibitor (IOjiM)

350 

300 

|  250 

| 200 

a  150 

100 

50 ■ I I I
+ DMSO +IGFR + PDGFR +EGFR

Inhibitor! 1 OiiM'Iulubiton 10|lM ilnhibrtort ItyiM)

Figure 31. Migration experiment over decellularised endogenous and TG2 null matrix in the 
presence of growth factor receptor inhibitors for PDGFR, IGFR and EGFR.

Keratinocyte migration was analysed over 30 hours in the presence of growth factor receptor 
inhibitors. Spheroids were plated onto matrix and inhibitors added (lOpM) in FAD media 
supplemented with 1% FCS and containing no EGF. A representative experiment is shown (1 of 
3) and data presented as the mean +/- SEM of six spheroids (n=6) (A). (B) Shows migration 
from a single time point (hour 30) to compare the maximum migration under each condition. 
Statistical significance denoted as follows; <** P, 0.005; <***P, 0.0005, compared with DMSO 
control. (C) shows the comparative migration of keratinocyte cells over TG2 null matrix in the 
presence of the growth factor receptor inhibitors and analysed as described for part A. (D) 
Migration from a single time point (hour 30) to compare the maximum migration under each 
condition. No statistical difference between conditions with and without inhibitors was seen 
analysed by repeated measures ANOVA.
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4.5.1 Investigating the Effects of EGF on Keratinocyte Migration.

Since EGFR is a candidate growth factor receptor involved in TG2 dependent 

migration, the EGFR ligands which may be shed by ADAM 17 and/or ADAM 10 

were investigated. Much literature is available indicating the role of EGF ligands in 

cell proliferation, motility and migration (Barradon and Green., 1987; Joslin et al., 

2007). FAD medium was supplemented with 1% serum to contain minimal EGF. In 

order to study the effects of EGF on migration, and further confirm the results with 

the EGFR tyrosine kinase inhibitors an experiment was set up where migration was 

tracked over TG2 null matrix where 2, 10, 50 ng/ml or no EGF was added in to the 

medium (Figure 32a). This experiment indicated that 2 ng/ml EGF did not stimulate 

migration compared to control since total migration over 30 hours under both 

conditions was 140pm (Figure 32 b and c). However, total migration was increased 

to 200pm for lOng/ml EGF and 180pm for 50ng/ml EGF indicating that EGF 

stimulates keratinocyte motility but that a dose above lOng/ml is not more effective 

in stimulating migration (Figure 32 b and c). These results show that EGF can 

stimulate keratinocyte migration independently of TG2. Most importantly, these 

results show that TG2 null matrix can support enhanced keratinocyte motility if an 

appropriate signal is present to induce growth factor receptor signalling (in addition 

to integrin signalling).
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Figure 32: EGF induced enhanced motility on TG2 null matrix.

(A) Spheroids were plated onto TG2 null matrix in FAD medium without EGF containing 1% 
FCS as described. 2,10 or 50ng/ml of EGF was added into the medium and migration analysed 
over 30 hours. This was a single experiment where six spheroids per condition were analysed, 
the data presented as the mean +/- SEM (n=6). (B) Shows the corresponding fluorescent images 
of a single spheroid per condition photographed at zero and thirty hours. The edge of migration 
is defined by the red circle. (C) Migration from a single time point (hour 30) to compare the 
maximum migration under each condition is shown. Statistical significance denoted as follows; 
<** P, 0.005; compared with growth medium control analysed by repeated measures ANOVA.
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4.5.2 Investigating the Effects of Neutralizing HB-EGF on Keratinocyte 

Motility.

The previous experiment had indicated that EGF can stimulate keratinocyte motility. 

However, this may not be the physiological ligand. HB-EGF is another EGFR ligand 

released by ADAM 17. To investigate the potential involvement of HB-EGF in our 

model system a commercial inhibitor to HB-EGF - CRM 197 was added to spheroids 

plated on TG2 over expressed matrix in FAD media with 1 % serum and growth 

supplements that did not include EGF (Figure 33). CRM 197 is a diptheria toxin 

mutant that has been shown to bind to HB-EGF with high affinity and sequester it 

(Xu et al., 2004). CRM 197 was added to the matrix overnight prior to plating 

spheroids to potentially enhance the effectiveness of its inhibition. Migration was 

reduced in a dose dependent manner over the 3 monitored time points (Figure 33a). 

Figure 33b illustrates that total migration was inhibited in a dose dependent manner. 

This result indicated that HB-EGF may be an EGF ligand released by an ADAMs 

that causes enhanced migration of keratinocytes in the presence of TG2.

It should be noted that repeats conducted in both FAD containing 1% serum 

medium and DSFM was unable to replicate the same result. It is possible that the 

concentration of EGF present in the DSFM was able to stimulate migration when 

HB-EGF was inhibited.
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Figure 33: Investigating the role of the EGFR ligand HB-EGF in enhancing keratinocyte 
motility.

EGFR ligand HB-EGF was investigated in a pilot keratinocyte migration experiment on over­
expressed TG2 matrix. FAD containing 1% serum but no EGF was added with no,3, 10, 30 or 
lOOpg concentrations of theCRM197 Note the matrix was pre-incubated with the inhibitor prior 
to plating for 16 hours. (A) Indicates the migration seen in a single experiment where five 
spheroids were tested per condition and data given as mean +/-SEM. (B) Shows the maximum 
migration (at forty hours) seen for the five conditions. Statistical significance denoted as 
follows; <** P, 0.00S, compared with FAD containing 1% serum control analysed by repeated 
measures ANOVA.
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Figure 34: Investigating the role of the EGFR ligand HB-EGF in TG2 dependent and 
independent keratinocyte migration.

The role of the EGFR ligand HB-EGF was investigated in 2 migration experiments in FAD 
medium containing 1% serum but no EGF. CRM 197 was added at 50pg/ml to TG2 null and 
TG2 endogenous matrix. Six spheroids were tested per condition and data presented as the 
mean +/- SEM of six spheroids. No significant difference was found by repeated measures 
ANOVA.
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Figure 34 shows migration of keratinocyte cells over endogenous and TG2 null 

matrix in the presence of CRM 197, the HB-EGF inhibitor. In contrast to TG2 over 

expressed matrix, CRM 197 did not cause a reduction in migration of keratinocytes 

when compared with medium only control over endogenous TG2 matrix (Figure 34). 

Similarly, CRM 197 had little effect on TG2 null matrix as would be expected if 

motility is not EGFR dependent (Figure 34). Collectively however, these results 

seem to suggest that motility of keratinocytes in the presence of TG2 and CRM 197 

may be affected. However a further repeat of these experiments would be necessary 

to reach a conclusion on the effects of inhibiting HB-EGF.
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4.6 Conclusion.

The experiments reported in this chapter have led to several interesting observations 

when examining keratinocyte migration over a fibroblast produced matrix both in the 

presence and absence of TG2. Initial investigations indicated keratinocyte migration 

is metalloproteinase dependent in the presence of TG2. Both a general 

metalloproteinase inhibitor GM6001 and ADAM inhibitor TAPI1, which has a 

preference for ADAM 17, were able to reduce the amount of migration seen in the 

presence of TG2 but not in its absence, suggesting that migration in a TG2 null 

background is independent of metalloproteinase activity. Further, TIMP1, a 

metalloproteinase inhibitor, was also able to reduce migration on TG overexpressed 

matrix (data not shown), confirming an important role for metalloproteinase activity 

in keratinocyte migration. Indeed, keratinocyte migration has been shown previously 

to be MMP1 dependent (Pilcher, 1997). Collectively, these data implicate both 

ADAM and MMP activity in TG2 mediated migration.

When TG2 is present it appears that the inhibition of ADAMs is most effective at 

reducing migration, more so than the general inhibition of metalloproteinases by 

GM6001. Therefore this led to considering whether a specific inhibition of 

ADAM 17 would be affective on its own. When migration in the presence of 

GM6001 and TAPI1 is compared with inhibition using the specific ADAM 10 and 

ADAM 10/17 inhibitors over the same endogenous TG2 matrix interestingly, the 

inhibitor of ADAM 17 is more effective than the inhibitor of ADAM 10 although both 

are able to reduce migration. For example migration on over-expressed TG2 matrix 

in the presence of GM6001 and TAPI1 is reduced from 300pm (DMSO) to 230pm 

(GM6001, 50pM) and 210pm (TAPI1, 50pM); a reduction of 23 and 30%.
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Using the same over-expressed TG2 matrix in the presence of the ADAM 10 

inhibitor GI254023X (lOpM) and ADAM10/17 inhibitor GW280264X (lOpM) 

migration is 190pm (DMSO control) compared with 100pm (ADAM 10) and 80pm 

(ADAM10/17); a decrease in migration of 47 and 58% respectively. These results 

reflect the relative potency of the inhibitors for 1 or more proteases involved in the 

pathway that triggers enhanced motility. It also suggests that an inhibition of the 

ADAMs within this migration pathway causes down-stream events linked to 

migration not to occur. ADAMs are well known sheddases. It has already been 

mentioned that ADAM17 and ADAM 10 are sheddases of EGFR ligands such as 

EGF, HB-EGF, TGFa, amphiregullin and neuregullin. Our data has shown that 

EGFR ligands (EGF and HB-EGF) might be involved in TG2 mediated migration. 

Taken together this data therefore would suggest that the inhibition of this shedding 

activity in the presence of TG2 affects the release of EGFR ligands and that TG2 

mediated enhanced motility is mediated by EGFR transactivation and downstream 

signalling.

EGFR signalling has been documented as being involved with keratinocyte 

migration, nevertheless, two further growth factor receptors which could be involved 

in cell migration were investigated. (Fang et al., 1999; Pilcher et al., 1999). IGFR 

has been implicated in migration of murine keratinocytes (Wertheimer et al, 2000), 

whereas PDGFR has been identified as being responsible for cell migration in 

wound healing (Kim et al., 1998). Investigation using inhibitors to these growth 

factor receptors indicated that EGFR was the more likely growth factor receptor 

active in the keratinocytes of our co culture model. However, it is important to stress
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that this again appears to be a TG2 dependent reaction, as all inhibitors had little 

effect on migration seen in a TG2 null background.

The next step was to try and identify the EGFR ligand binding to the EGFR to 

stimulate migration. Efforts concentrated on HB-EGF and EGF as a literature search 

had indicated these as the most likely candidates (Tokumaru et al., 2000; Shirakata et 

al., 2005). An investigation of EGF as a stimulator of migration in the TG2 null 

background demonstrated the presence of EGF directly induces enhanced motility 

further supporting the notion that EGF is potentially part of the TG2 dependent 

signalling pathway stimulating keratinocyte migration. The experiments showed the 

optimal dose of EGF in this model was between 2 ng/ml and 10 ng/ml since there 

was no effect at 2 ng/ml but 50 ng/ml was not able to further increase migration 

compared to 10 ng/ml. This perhaps indicates a maximum rate of stimulation from 

EGF, however further experiments would be required to confirm this.

Migration studies involving the HB-EGF inhibitor CRM 197 initially indicated that

this inhibitor was able to demonstrate a dose dependent reduction in migration of

keratinocytes in the presence of TG2 (overexpressed). However, further experiments

were unable to replicate this effect. This discrepancy could indicate that CRM 197

may not be a suitable inhibitor of HB-EGF activity in the migration model. The

keratinocytes are added to the matrix in a spheroid which is essentially a 3D ball of

keratinocytes. This arrangement could stop keratinocytes within the centre of the ball

of cells being exposed to the CRM 197 inhibitor, and result in only the peripheral

cells being exposed to a high enough dose of the inhibitor to cause a reduction in

migration. Keratinocytes closer to the centre might simply not be exposed for long

enough or at a high enough concentration for inhibition to be effective. Alternatively,
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HB-EGF may not have been the candidate EGFR ligand involved in keratinocyte 

migration. That some inhibition was observed however means that its involvement 

cannot be ruled out.

It is interesting to see the dependency of migration on the EGFR signalling pathway 

in the presence of TG2. In this model keratinocytes appear to utilise ADAM 

proteolytic activity to release EGFR ligands to the EGF receptor to allow signalling 

to take place to increase migration. When TG2 is not present migration is 

independent of this pathway. Although time does not allow further investigation of 

this, it would be an interesting next step to investigate what may drive migration in 

the absence of TG2. It is likely that this relates to ECM mediated integrin activation. 

However, MMP9 and 13 may be involved in stimulating migration of human 

keratinocytes since they have been shown to stimulate migration of murine 

keratinocytes in excision wounds (Hattori et al., 2009). In addition, the fact that 

GM6001, a general metalloproteinase inhibitor, reduced migration in our model 

could indicate the involvement of metalloproteinases other than those investigated in 

this study in TG2 dependent enhanced motility. Particularly the role of MMP1 

should be considered given the potent effect of TIMP-1 and its well established role 

in human keratinocyte motility and epithelial growth in wound healing.

In conclusion, this chapter has shown that TG2 is part of a signalling cascade 

involving a matrix metalloproteinase, EGFR and EGF ligands to stimulate enhanced 

motility (summarised in Figure 35). However, migration occurs in a TG2 null 

background and thus can occur completely independent of TG2; although the 

migration seen in this situation is greatly reduced when compared with TG2
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stimulated migration. This basal migration is therefore under the control of a 

different mechanism.

EGFR
Kvr.itinoo i« 
NplltloUl

Migrating keratinocyte cells

TG2 Matrix

Figure 35:Summary Diagram of the Chapter.

The two results chapters so far have indicated that in the presence of TG2 ADAM 10 or 17 is 
able to release an EGFR ligand, potentially EGF or HB-EGF which binds to the EGFR and 
stimulates kerationcyte migration. The linking factor between TG2 and ADAM17 is not yet 
known and will be the source of investigation in the next chapter.
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Chapter 5: TG2 mediates Transactivation of the EGFR 
pathway in Keratinocytes
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5.1 Introduction

TG2 has been implicated in stimulating keratinocyte cells during migration over a 

fibroblast derived ECM as shown in chapter 3. TG2 is up regulated during wound 

healing (Haroon et al., 1999) and has been shown to associate with the ECM 

following injury (Upchurch et al., 1991; Rhagunath et al., 1996). Therefore an 

investigation was undertaken to further examine whether the effects of fibroblast 

ECM were mediated directly by TG2. The conformation of TG2 changes rapidly 

after deposition into the ECM and this has recently been reported to be associated 

with a complete loss of catalytic activity (Siegel et al., 2008). TG2 is well known as 

a crosslinking enzyme of the ECM and catalyzes the transamidation of peptide- 

bound glutamine residues to lysine residues, as well as its ability to function as a G 

protein. The two functions use distinct catalytic sites, involve different

^ 4- /conformations and are controlled reciprocally by Ca GTP availability and binding

(Folk and Chung, 1985, Nakaoka et al., 1994, Griffin et al., 2002, Lorand and

Graham., 2003). X ray crystallography studies by Pinkas et al., 2007 on TG2

covalently modified with an inhibitory peptide in its active site revealed a novel

conformation where the active site was exposed. Along with structure-based

mutagenesis, the new TG2 structure provided mechanistic insights into isopeptide

bond formation by TG2 between large substrate proteins and provided proof for the

long suspected shifting of the p-barrel domains during catalysis. (Pinkas et al.,

2007). An earlier study from Liu and co-workers revealed that when GTP is bound

to TG2, TG2 is in a highly compact conformation obstructing access to the active

site and making it catalytically inactive (Liu et al., 2002). Most TG2 under

physiological conditions will be in a Ca -bound active form initially as extracellular

197



Role o f Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

2  | • • •
Ca concentration is high (about 2mM) but may be inactivated subsequently due to 

oxidation (Stamnaes et al., 2010). Furthermore, under physiological conditions TG2 

release in an active and potentially ‘open’ conformation may be promoted either by 

chemical injury, the removal of GTP or integrin signalling or transiently induced in 

response to innate immune signals such as those from toll like receptors (Pinkas et 

al., 2007). However, additional experiments conducted independently of this study 

found that TG2’s ability to promote adhesion, spreading, migration, or 

differentiation in different cell types is independent of catalytic activity (Johnson and 

Terkeltaub 2005. Zemskov et al., 2006). In addition, a further study has shown that 

extracellular TG2 complexed with GTP can signal, at least in monocytes (Rose et al., 

2006). TG2 therefore does not need to be catalytically active in order to influence 

keratinocyte responses. Figure 36 illustrates the 4 domain structure of TG2 and the 

changes that can occur to TG2 by altering its conformation. When TG2 is bound to 

GTP it is in a closed conformation which does not allow the active site (for 

crosslinking) to be utilised. However, when the pentapeptide inhibitor Ac- 

P(DON)LPF-NH2, was bound in the active site TG2 was found to be in an extended 

conformation, requiring a 180° shift of the (3-barrel domains. Ca2+-binding alone is 

unlikely to bring this shift about, although no such structure of TG2 is available at 

this time. Nevertheless, interactions with the peptide backbone of the inhibitor 

stabilise the open conformation and it is therefore likely that substrate binding is 

involved in this conformational change.
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Inhibitor

Figure 36. Overall Structures of GTP-Bound and Inhibitor-Bound TG2

Figure taken from Pinkas et al., 2007. The crystal structures are shown as ribbons, and cartoons 
are included to show the four main domains. In Figure 1 part A and B the N-terminal p- 
sandwich is shown in blue (N), the catalytic domain (Core) in green, and the C-terminal p- 
barrels (pi and p2) in yellow and red, respectively. (A) GTP-bound TG2. (B) TG2 inhibited 
with the active-site inhibitor Ac-P(DON)LPF-NH2, a synthesized peptide used in Pinkas et al 
2007. (C) The N-terminal p-sandwich and catalytic domains of the two structures are 
superimposed, highlighting the conformational change. The GTP-bound structure is shown in 
blue and the inhibitor-bound structure in gold. When GTP is bound TG2 is in a closed 
conformation where access to the active site is not possible. When an inhibitor is bound there is 
further change in the conformation of TG2 however TG2 has gone into an open structure where 
part of the active site is bound to the inhibitor causing changes in TG2’s transamidation 
reactions.
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5.2 Aims of Experiments

To investigate whether TG2 could directly induce responses in keratinocytes, several 

assays were designed to investigate the effects of TG2 in various forms. Proliferation 

assays were conducted where TG2 was bound to GTP, GTP-yS, 115 inhibitor, Ca 

or in its native conformation without co-factor. These experiments would determine 

whether a particular conformation or activity of TG2 was more effective at 

stimulating proliferation over another type. In addition, the mechanism by which 

TG2 promotes proliferation was investigated by the use of various inhibitors to 

metalloproteinases and growth factor receptors/growth factors to identify whether 

the same signalling pathway stimulated proliferation and motility.
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5.3 An Investigation of the Effects of TG2 Conformation on Keratinocyte 
Proliferation.

Chapter 4 revealed that TG2 may exert its effect on keratinocyte motility by 

inducing ADAM-mediated EGFR ligand shedding. However, it is not clear whether 

TG2 itself induces this reaction or whether expression of TG2 in fibroblasts 

indirectly affects keratinocyte signalling via altered gene expression or post 

transcriptional protein modification (altered ECM). TG2 is not present in fibroblast 

conditioned medium but is a component of the fibroblast ECM and could therefore 

directly interact with cell surface proteins of migrating keratinocytes. As Figure 36 

indicates, depending on the binding of GTP, an allosteric inhibitor, Ca can induce a 

large conformational change in TG2 which can influence the ability of TG2 to 

interact with other proteins and that regulates its ability to cross link protein 

substrates. Therefore, TG2 in a specific conformation may be required for an 

interaction with a keratinocyte cell surface protein. As it was not feasible to 

investigate this complex problem in our labour intensive migration model, we had to 

devise an assay that allowed rapid evaluation of a large number of different 

conditions. EGFR signalling is an important mitogenic signal in keratinocytes and if 

this was the pathway regulated by TG2, then we expected TG2 to have a strong 

effect on keratinocyte proliferation. When this is considered it is possible to 

speculate that conformational shape and cellular location of TG2 may alter its ability 

to influence proliferation. This chapter therefore investigates whether TG2 itself can 

directly stimulate keratinocyte proliferation and whether this relates to a specific 

TG2 conformation.
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Initially a proliferation assay was set up to determine the proliferation seen when 

TG2 was added in various conformational states such as native TG2 (where it is free 

to undergo conformational changes with activation in a physiological context), TG2 

pre-activated with Ca2+, TG2 bound by GTP, and TG2 bound with GTPyS (which is 

resistant to hydrolysis). The results from a single representative experiment are 

shown for each TG2 type (Fig. 36). 5000 keratinocyte cells were seeded per well of 

duplicate 24 well plates and samples were incubated with 0.01, 0.1, 1.0, or lOpg/ml 

of either TG2, TG2 Ca2+, TG2-GTP or TG2-GTPyS. Cell numbers were determined 

at 24 and 72 hours after stimulation using an MTT assay as described in materials 

and methods (section 2.3.9). Results are shown as the relative proliferation compared 

with a control relevant to the experiment (e.g. medium containing the carrier of 

activator or inhibitor); this is the change in cell number of a test condition 

normalised to the change in cell number of the control condition over the same time 

period. Figure 37 shows that keratinocyte proliferation is substantially increased in 

the presence of TG2 when compared with control (a value of 1.0, an arbitrary value 

attributed to the growth rate of the control sample, where every experimental 

condition is compared to this control).
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Figure 37: TG2 conformation affects stimulation of keratinocyte proliferation.

Keratinocyte cells were seeded at 5000 cells per well of a 24 well plate. Keratinocytes were 
allowed to attach for 6 hours before medium was removed. A 1% basic FAD medium was added 
to each well containing 1% serum, antibiotics, cholera toxin and hydrocortisone only. No EGF 
or insulin was present in any of the medium used in these experiments unless stated. 1% serum 
medium with 0.01, 0.1, 1.0 or lO.Opg/ml of standard TG2, TG2Ca2+, TG2-GTPyS and TG2- 
GTP. Each condition was carried out in triplicate and the experiment repeated 3 times. A 
representative experiment from each condition is shown. Initial colour development 
(absorbance) readings were taken 24 hours after medium change to indicate a baseline level of 
proliferation. Readings were taken at 570 and 650nm to exclude light scattering effects on a 
Beckmann Coulter Spectrophotometer. After 72 hours a further set of readings were taken to 
indicate Final proliferation values. The 72 hour readings were diluted 1:1 with water to allow 
the spectrophotometer to analyse the absorbance within its linear range. Subsequently 24 hour 
readings were subtracted from 72 hour readings and expressed here as relative proliferation 
calculated as described in materials and methods section 2.3.10 compared with control value. 
Statistical significance denoted as follows; <** P, 0.005; <***p, 0.0005, compared with 
unsupplemented medium control (not shown; value of one) for each point.
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When proliferation at a higher concentration of TG2 (lOug/ml) is compared to 

control a fivefold increase in proliferation is seen. At a lpg/ml dose of TG2

94-proliferation is 2.5 fold higher than control. TG2Ca also stimulates proliferation;

94- • •the binding of Ca will allow TG2 to remain in its catalytically active form but this 

preparation is very unstable and therefore shortlived. A O.Olpg/ml concentration is 

sufficient to stimulate proliferation by 1.5 fold, an increase in proliferation compared 

with control, although stimulation is not statistically significant until a concentration 

of 1 .Opg/ml TG2Ca2+ is added to the keratinocytes which increases proliferation by 

4.5 fold. No further increase is seen at higher concentrations (4.2 fold at lO.Opg/ml) 

(Figure 37). This result not only shows that TG2 can act directly on keratinocytes but

94-also that the Ca -activated enzyme is 10-fold more potent in doing so. In contrast, 

when TG2 alone is compared with TG2 bound to GTP or GTPyS, (a GTP analogue 

which cannot be hydrolysed), interestingly, neither stimulated keratinocyte 

proliferation, with the exception of the highest dose of TG2-GTP (Figure 37). TG2- 

GTP can be hydrolysed by TG2 to GMP which is released as affinity for GMP is 

very low. Under physiological conditions this normal turnover occurs and at least a 

portion of the population of TG2 will be in the same conformation like native TG2. 

In accordance with this, the results show that TG2 bound to GTP only stimulates 

proliferation at the highest concentration -  (lOpg/ml by 3 fold). In addition, the TG2 

bound with the non-hydrolysable GTP analogue GTPyS is not able to stimulate 

keratinocyte proliferation at any concentration. This suggests that TG2 in its closed 

conformation is unable to stimulate proliferation and therefore that either a cryptic 

protein binding site or catalytic activity is required for this function of TG2.
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5.3.1 115 ‘Open Conformation’ TG2 and its Effects on Keratinocyte 

Proliferation.

Figure 37 showed when TG2 is in its Ca2+-bound active conformation proliferation is 

stimulated and when in a closed conformation TG2 is unable to stimulate 

keratinocyte proliferation. To examine whether TG2 activity or the open 

conformation alone was required for stimulation of keratinocyte proliferation TG2 

was incubated with an active site targeting inhibitor similar to that described by 

Pinkas et al., 2007, shown in Figure 38. Using a peptide based inhibitor developed 

by Zedira: Boc-DON-QIV-OMe (115) which covalently attaches to the active site 

Cys, TG2 is expected to be sterically trapped in the enzymes’ open conformation 

although this remains to be experimentally verified. The trapped TG2 was purified 

by gel filtration and the degree to which the enzyme had been converted to the 

inhibited form was estimated by determining the level of monodansylcadaverine 

incorporation into N,N-dimethylcasein. Figure 38 shows the cross linking products 

of dimethylcasein as a smear from low to higher Mr complexes, with dimethylcasein 

itself being visible as doublet around 25 kDa (marked by the arrow at the bottom of 

the gel). Compared with the starting native TG2, the TG2-I15 preparation was 

estimated to have less than 10% of its activity remaining (0.5pg TG2-I15 is 

comparable to 0.05 pg native TG2 (1:20) indicating that >90% has been modified.
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Figure 38: activity of native TG2 and TG2-I15 as compared by incorporation of monodansyl 
cadaverine.

TG2 and TG2-I15 were compared for activity using a monodansyl cadaverine incorporation 
assay previously described in (Aeschlimann and Paulsson 1991, and Aeschlimann et al., 1995). 
TG2 was started at a 5pg/ml concentration for both TG2 and TG2-I15 and a dilution series was 
prepared for both. Dilutions used were: 5jng/ml, then 1:1,1:2, 1:5, 1:10, 1:20,. After a 30 minute 
incubation at 37 C, incorporation of the monodansyl cadaverine into N,N-dimethyl casein was 
revealed by Western blot analysis with an anti-dansyl antibody (diluted 1:300). The 
dimethylcasein band can be seen as a doublet between the 20 and 30kDa (arrow). Migration of 
Mr standards is indicated on the right.
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Figure 38 demonstrates that TG2-I15 is not completely inhibited however its activity 

is drastically reduced. Therefore, this preparation should to a large extent contain 

TG2 in the open conformation. To examine whether TG2 activity or a cryptic site 

exposed in the open conformation is necessary to stimulate a response in 

keratinocytes a proliferation assay was carried out. Keratinocytes were cultured with 

TG2-I15 or native TG2 at different concentrations and the effect on proliferation 

analysed as previously described (Figure 39). As expected, a strong induction of 

proliferation was seen with TG2 at concentrations >lpg/ml.

When 115 inhibited TG2 is compared with native TG2, it is clear that there is no 

similar stimulation of proliferation although a small stimulation is seen at the highest 

concentration tested. Native TG2, as shown in Figure 37, is able to stimulate 

proliferation in a dose dependant manner from l.Opg/ml concentration (2.5 fold) to 

lOpg/ml to (5.5 fold). When 115 TG2 is compared, no statistically significant 

stimulation of keratinocyte proliferation is seen, even at the highest dose of lOpg/ml. 

These results suggest that TG2 must be active in order to stimulate proliferation.
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Figure 39: Stimulation of keratinocyte proliferation requires TG2 crosslinking activity.

TG2-I15 was compared with native TG2 to determine whether any stimulation of proliferation 
of keratinocytes occurred. TG2-I15 and native TG2 were tested at 3 concentrations 0.1, 1.0 and 
lOpg/ml. Keratinocytes were seeded in 1% serum-containing FAD medium minus EGF and 
insulin and stimulated with the two preparations of TG2 as indicated after 6h. Proliferation 
was analysed as has been previously described. 3 replicates per condition of the experiment 
were carried out and the data is given as the mean +/- SD. A single experiment was conducted. 
Statistical significance denoted as follows; ***,P<0.0005, compared with medium control for 
each point.
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5.4 Metalloproteinase Inhibition and its Effects on Keratinocyte Proliferation in 

the Presence and Absence of TG2.

Metalloproteinase activity had been found to be necessary in the stimulation of 

migration by TG2, therefore an experiment was designed to examine the effects of 

the general metalloproteinase inhibitor GM6001 used in Chapter 4 to determine the 

requirement for metalloproteinases in TG2 mediated stimulation of keratinocyte 

proliferation.

GM6001 has previously been shown to act as a general matrix metalloproteinase 

inhibitor as well as inhibit ADAM 10 activity (Maretzky et al., 2005; Reiss et al., 

2006). An experiment was conducted to test at what dose GM6001 was effective at 

inhibiting proliferation and whether or not TG2 was able to stimulate proliferation in 

the presence of the inhibitor.

Figure 40 shows the dose dependency curve of GM6001 produced in the presence 

and absence of TG2 (panel a) and a single dose of GM6001 compared with its 

DMSO control to indicate the effect of TG2 (panel b). Figure 40 shows that at least 

50pM of GM6001 is required to reduce proliferation in both the presence and 

absence of TG2.
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Figure 40: metalloproteinase inhibitor GM6001 is not effective in blocking TG2-mediated 
stimulation of keratinocyte proliferation.

GM6001 was used to investigate the effects of inhibiting metalloproteinases in TG2 mediated 
stimulation of keratinocytes.. Part A shows proliferation in the presence of GM6001 at 3 
concentrations 5.6, 16.7 and 50pM in FAD medium containing 1% serum in the presence and 
absence of lOpg/ml native TG2. A representative experiment is shown. A representative 
experiment is shown and the results are given as mean +/-SD of 3 replicates. Statistical 
significance denoted as follows; <**P, 0.005, compared with DMSO control. Dose curves were 
carried out twice and at least one further experiment was conducted at a single effective dose.
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At 50fiM concentration there is a 50% reduction of keratinocyte proliferation in the 

presence of GM6001 (Figure 40). When TG2 is added at lOpg/ml in the presence of 

GM6001, proliferation is increased by 1.5 fold compared to GM6001 alone at 5.6 

and 16.7pM GM6001, but is reduced to control levels in the presence of 50pM 

GM6001. This can be more easily seen in Figure 40b where the 50pM concentration 

of the inhibitor is compared in the presence and absence of TG2 relative to DMSO 

control +/- TG2. Proliferation rate is reduced by a factor of 2 by GM6001 compared 

to DMSO control but can be stimulated to control levels with TG2 (GM6001 +TG2). 

This result would suggest that metalloproteinase activity may be important in 

regulation of proliferation. However, it also shows that GM6001 cannot effectively 

block TG2-mediated stimulation of keratinocyte proliferation.

TG2 is only able to induce a low level stimulation in the presence of DMSO 

(compared with that seen in Figure 37). This is due to the fact that DMSO itself 

promotes keratinocyte proliferation and that proliferation under basal conditions 

therefore was already high.
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5.4.1 ADAM10 and 17 Activities and their Effect on Proliferation in the 

Presence and Absence of TG2.

As the previous chapter has indicated a potential role of metalloproteinase activity, 

and more specifically ADAM activity, in TG2-induced keratinocyte migration 

further experiments were designed to examine the effects on proliferation of 

inhibiting ADAM 10 and ADAM10/17. ADAM 10 can be affected by GM6001 

suggesting that inhibiting ADAM-10 alone may not be sufficient to block TG2- 

mediated proliferation. ADAM 17 is structurally similar to ADAM 10 but unlike 

ADAM 10 is not constitutively active in many cells (with high levels of activity 

present after induction). Therefore a specific inhibitor to this may be a more 

promising approach to specifically affect proliferation stimulated by TG2. Figure 41 

shows the effects of inhibiting either ADAM 10 alone or ADAM 17/10 in the 

presence and absence of TG2. Both inhibitors were tried at several concentrations to 

determine an effective dose of inhibitor to cause a reduction in proliferation rate.

Figure 41 shows the dose response curve for the ADAM 10 inhibitor in the presence 

and absence of TG2. 3pM of ADAM 10 inhibitor is sufficient to inhibit proliferation 

to 50% of control. Proliferation is dose dependently inhibited up to lOpM (a 

reduction of 90%) with no further change at 30pM. When 10pg/ml TG2 is added in 

the presence of inhibitors at the same doses there is a substantial increase in 

proliferation (by 50% at l.OpM of ADAM 10 inhibitor compared with control) and 

this level is maintained for concentrations up to lOpM). Interestingly, TG2 is able to 

stimulate proliferation even at a 30pM inhibitor dose when compared with the 

inhibitor added alone. Part b shows the difference between ADAM 10 inhibitor at
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Figure 41: ADAM17 inhibition blocks TG2-mediated keratinocyte proliferation.

ADAM10 and 17 inhibitors were used to investigate the effects of inhibiting ADAM 10 and 17 in 
TG2 mediated stimulation of proliferation in keratinocytes. Part A shows proliferation of 
keratinocytes in the presence of ADAM10 inhibitor at several concentrations 1, 3, 10 and 30pM 
in FAD medium containing 1% serum in the presence and absence of lOpg/ml TG2. Part B 
shows corresponding proliferation for ADAM 10 inhibitor at a single effective dose of 10 pM 
dose compared with DMSO control in the presence and absence of TG2. Parts C and D show 
the corresponding results for the addition of ADAM10/17 inhibitor. Part C indicates the 5 
concentrations of ADAM10/17 inhibitor tried and part D shows the effective dose at lOpM 
compared with DMSO control A representative experiment is shown in each case. The results 
are given as mean +/-SD of 3 replicates. Statistical significance denoted as follows; <**P, 0.005, 
<***P, 0.0005. Dose curves were carried out twice and at least one further experiment was 
conducted at a single effective dose per inhibitor.
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lOpM with and without TG2 compared with DMSO control. TG2 is able to 

stimulate proliferation despite the presence of the ADAM 10 inhibitor. While ADAM 

10 cannot be excluded from playing a role in TG2 mediated responses in 

keratinocytes, this result demonstrates that blocking ADAM 10 alone is not effective 

in blocking TG2-stimulated proliferation and suggests that it is likely not among the 

most important factors.

To investigate the effects of the ADAM 17/10 inhibitor a similar experiment was set 

up including 5 concentrations of inhibitor in the presence and absence of TG2 

(lOpg/ml). Fig 40 c indicates the dose response curve of the ADAM10/17 inhibitor. 

Proliferation is equally reduced in the presence of the ADAM 10/17 inhibitor in the 

presence and absence of TG2. In the presence of lOpM of inhibitor with and without 

TG2 the proliferation rate drops by 80% in comparison to control. This is more 

easily seen at a single concentration of lOpM ADAM10/17 inhibitor in the presence 

and absence of TG2 lOpg/ml shown relative to DMSO control shown in Fig 40d. 

There is no statistical difference between the proliferation of cells seen in the 

presence of the inhibitor alone or inhibitor plus TG2. This result indicates that 

ADAM 17 may be involved in regulation of both basal and TG2 mediated 

keratinocyte proliferation.

214



Role o f  Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

5.5 Growth Factor Receptor Inhibition and the Effects on Keratinocyte 

Proliferation in the Presence and Absence of TG2.

Having found both TG2 and ADAM 17 to be involved in regulating keratinocyte 

proliferation, we went on to examine the signalling pathways linked including 

growth factor receptors. This would determine whether any of the growth factor 

receptors tested previously were involved in proliferation of keratinocytes. Most 

importantly, this would further confirm in an independent way whether specifically 

the EGFR pathway is involved in the keratinocyte response to TG2. Inhibitors to 

IGFR, EGFR, PDGFR and FGF/VEGFR were tested as these are the major pathways 

through which proliferation of keratinocytes is regulated. A preliminary experiment 

was conducted to establish a suitable concentration before testing each inhibitor at a 

single dose in the presence and absence of TG2. Proliferation assays were carried out 

as previously described. Figure 42 shows the proliferation seen with IGFR inhibitor 

in the presence and absence of TG2. Part a shows that the IGFR inhibitor did not 

reduce proliferation effectively until a lOpM concentration was applied where 

proliferation dropped to about 50% of control. In the presence of TG2, the inhibitor 

was again unable to reduce proliferation until a lOpM dose of inhibitor was applied. 

Importantly, TG2 was able to stimulate proliferation despite the presence of the 

inhibitor. When the single lOpM dose of IGFR inhibitor is examined in the presence 

and absence of TG2 compared with a DMSO control in part b; proliferation in the 

presence of TG2 was >2-times that than with the inhibitor alone. This result suggests 

that TG2 effects on keratinocyte proliferation are not dependent on IGFR signalling.
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Figure 42: TG2 effects on proliferation are not mediated by IGFR or PDGFR signalling.

IGFR (AG1024) and PDGFR (AG1295) inhibitors were used to investigate the effects of 
inhibiting these growth factors in TG2-mediated stimulation of proliferation of keratinocytes. 
Part A shows proliferation of keratinocytes in the presence of IGFR inhibitor at 5 
concentrations 0.11, 0.33, 1.1, 3.3 and lOpM in FAD medium containing 1% serum in the 
presence and absence of TG2 at lOpg/ml. Part B shows corresponding proliferation for IGFR 
inhibitor at a single dose of 10 pM compared with DMSO control all shown in the presence and 
absence of TG2. Parts C and D shows the corresponding results for PDGFR inhibitor at 0.33, 
1.1, 3.3, 10 and 30pM concentrations in the same medium plus and minus TG2 lOpg/ml. Part D 
shows a single dose of lOpM of the PDGFR inhibitor and the corresponding proliferation 
compared with DMSO control all shown in the presence and absence of TG2. A representative 
experiment is shown in each case. The results are given as mean +/-SD of three replicates. 
Statistical significance denoted as follows; ** p<0.005, Dose curves were carried out twice and 
at least one further experiment was conducted at a single effective dose per inhibitor.
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A similar experiment was conducted using a PDGFR inhibitor (Fig 41 C and D). Part 

c indicates that proliferation is not inhibited up to a 3pM dose, whereas a 

concentration of lOpM reduced proliferation by about 50%and this effect is 

maintained at 30pM. This shows that PDGFR signalling is indeed one of the 

pathways that drives keratinocyte proliferation (PDGF is a serum component). 

However, when TG2 is added, TG2 is able to stimulate proliferation at all 

concentrations of inhibitor examined. This is most easily seen in Fig 41 d where an 

effective dose of lOpM of PDGFR inhibitor is applied in the presence and absence 

of TG2 and compared with the relevant DMSO controls. This shows that 

proliferation in the presence of PDGFR inhibitor is doubled by the addition of 

10pg/ml. The ability of TG2 to stimulate proliferation in the presence of this 

inhibitor indicates that TG2 driven keratinocyte proliferation is not dependent on 

PDGFR.

Figure 43 shows the corresponding dose response curves using inhibitors against 

EGFR and FGF/VEGFR in the presence and absence of TG2. The effect of these 

was tested at various doses twice before a single dose was tested again and 3 repeats 

were conducted for each inhibitor in the presence and absence of TG2. Figure 43A 

indicates that the inhibitor for EGFR was able to effectively inhibit proliferation both 

in the presence and absence of TG2 at concentrations of 10 and 30pM. However, 

there was only a small difference in the growth rate of cells in the presence of 

different inhibitor concentrations (0.3 to 30pM) without stimulation suggesting that 

proliferation under these culture conditions (no EGF in medium) is largely EGFR
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Figure 43: TG2 effects on proliferation are dependent on EGFR signalling.

EGFR (AG 1478) and FGF/VEGFR (PD173074) inhibitors were used to investigate the effects of 
inhibiting these growth factors in TG2 mediated stimulation of proliferation of keratinocytes. 
Part A shows proliferation of keratinocytes in the presence of EGFR inhibitor at 5 
concentrations, 0.33, 1, 3, 10 and 30pM in FAD medium containing 1% serum in the presence 
and absence of TG2 at lOpg/ml. Part B shows corresponding proliferation for EGFR inhibitor 
at a single dose of 10 pM compared with DMSO control all shown in the presence and absence 
of TG2. Part C show the corresponding results for FGF/VEGFR inhibitor at 3.75, 7.5, and 15 in 
FAD medium containing 1% serum plus and minus TG2 lOpg/ml. Part D shows a single dose of 
15pM and the corresponding proliferation compared with DMSO control all shown in the 
presence and absence of TG2. A representative experiment is shown in each case. The results 
are given as mean +/-SD of three replicates. Statistical significance denoted as follows; <*P, 
0.05, compared with DMSO control. Dose curves were carried out twice and a further 
experiment was conducted at a single effective dose per inhibitor.
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signalling independent. Figure 43b shows a single effective dose of lOpM of EGFR 

inhibitor in the presence and absence of TG2 compared with DMSO control. This 

shows that proliferation cannot be stimulated with TG2 in cells in which EGFR 

signalling has been blocked. This result indicates that EGFR is involved in TG2- 

mediated keratinocyte proliferation as stimulation with TG2 is not possible when 

signalling cannot take place through this receptor.

The FGF/VEGFR inhibitor had no effect on proliferation up to concentration of 

15|iM (Fig 41 c). The higher dose of 30pM must be discounted as this clearly 

showed a toxic effect on the keratinocytes and they were unable to proliferate under 

this condition. Live/dead staining of these cells was not carried out. However, an 

examination under the microscope revealed floating cells and a lack of colour 

development (translucent samples) in the MTT assay indicated the loss of most of 

the cells. Fig 42d indicates the proliferation seen at the single 15pM dose in the 

presence and absence of TG2 compared with the respective DMSO controls. This 

shows that proliferation was not inhibited in the presence of this inhibitor when 

compared with control, giving a relative proliferation rate of 1.2, and after 

stimulation with TG2, a rate of 1.4. Therefore, there may be a small degree of 

stimulation by TG2. However, this could not be ascertained under these conditions 

where in the presence of this inhibitor and DMSO keratinocytes proliferated at near 

maximal rate.

Figure 44 provides further evidence for the notion that the response of keratinocytes 

to TG2 is independent of IGFR. Insulin is a normal component in standard FAD
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media, and has been shown to stimulate keratinocyte growth (Fuchs and Green, 

1981; Gilchrest et al., 1982; Tsao et al., 1982). Enhanced proliferation in the 

presence of insulin is mediated via IGFR. We have therefore examined the ability of 

TG2 to stimulate proliferation in FAD medium (1% serum) in both the presence and 

absence of insulin. Figure 44 shows proliferation of keratinocytes at 3 doses of TG2 

0.1, 1.0 and lOpg/ml in the presence and absence of 5ng/ml insulin, which is the 

same dose used in standard FAD medium and corresponds to the dose of insulin that 

yields maximal increase in keratinocyte proliferation. Figure 44 shows that TG2 is 

able to stimulate proliferation in a dose-dependent manner in the presence and 

absence of insulin, with a 1.0-10pg/ml dose of TG2 more than doubling the growth 

rate. This result further indicates that IGFR is not involved in the proliferation 

pathway we are examining.
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Figure 44: TG2 and insulin-mediated stimulation of keratinocyte proliferation occurs through 
independent pathways.

5000 cells per well were added to a 24 well plate. Keratinocytes were allowed to settle for 6 
hours before medium was removed. A 1% serum-containing basic FAD medium was added to 
each well containing antibiotics, cholera toxin and hydrocortisone only. Cells were stimulated 
with 3 concentrations of TG2 in either the presence or absence of 5ng/ml insulin and cell growth 
was assessed over a 72h period. A representative experiment is shown. The results are given as 
mean +/-SD of three replicates. Statistical significance denoted as follows; <*P, 0.05, <**P, 
0.005, <***P, 0.0005. Dose curve was carried out twice. 2 repeats of the experiment were carried 
out, a representative experiment is shown.
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Figure 45 shows a comparison of the effect on keratinocyte proliferation of all 

effective doses of inhibitor of various growth factor receptors in the presence and 

absence of TG2 stimulation. All except FGF/VEGFR inhibitor are able to reduce 

proliferation when compared with the vehicle control (not shown). However, in the 

presence of TG2 only blocking EGFR yields a similar level of proliferation to when 

the inhibitor is added alone. These results when viewed collectively suggest that 

EGFR is the receptor likely to be involved in TG2-mediated stimulation of 

keratinocyte proliferation. Under physiological conditions TG2 would be present 

within the ECM therefore suggesting that localized mobilization of EGF ligands may 

play a role in regulation of proliferation in addition to serum-derived factors 

activating IGFR, PDGFR or FGF/VEGFR.
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Figure 45: Investigating growth factor receptor pathways involved in keratinocyte proliferation.

EGFR, IGFR, PDGFR and FGF/VEGFR inhibitors were used to investigate the effects of 
inhibiting these signalling pathways on proliferation of keratinocytes. A direct comparison of a 
single concentration for all 4 inhibitors is shown taken from the earlier individual experiments. 
A lOpM dose of IGFR, EGFR and PDGFR is compared to a I5pM dose of FGF/VEGFR 
inhibitor as the closest comparable dose. Further details are given in Figs. 41 and 42.
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5.6 EGFR Ligand Inhibition and the Effects on Keratinocyte Proliferation in 
the Presence and Absence of TG2.

The previous section has demonstrated the EGFR is the likely growth factor 

receptor involved in mediating the keratinocyte responses triggered by TG2 

stimulation. As EGFR requires ligands to bind to it in order to instigate further 

downstream signalling an attempt was made to determine the nature of the EGF 

ligand released during TG2 mediated keratinocyte proliferation.

Initially the CRM 197 inhibitor, a HB-EGF antagonist introduced in chapter 4 was 

used at 3 concentrations 2, 10 and 50pM in the presence and absence of lOpg/ml 

TG2 to determine any effect on proliferation. Results were compared to a 1% serum 

basic FAD media alone and 1% serum FAD media with 50pM BSA. BSA was 

chosen as a protein control for the addition of CRM 197. Figure 46 shows the results 

of a single representative experiment after 2 repeats had been carried out. CRM 197 

does not reduce proliferation when compared to control, neither in the presence nor 

absence of TG2. Even at the highest concentration of 50pM HB-EGF antagonist, 

there was no statistically significant reduction of proliferation. This is a similar result 

to that seen in the migration studies and potentially indicates that HB-EGF is not the 

EGFR ligand released in response to TG2 that stimulates proliferation and migration, 

or that CRM 197 is not a suitable (effective) inhibitor of HB-EGF in this system.

224



Role o f  Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

FAD 10 o 
senun

BSA
50|iM

2uM
CRM197

lOuM 
CRM 19'

50uM 
CRM 19'

■  i l l  I
FAD 1% BSA 2uM lOuM 50uM
serum + 50|.iM+ CRM 19" CRM197 CRM 19" 
lOug/ml TG2 + lOug/ml + lOug/inl + lOug/ml 

TG2 10 pg/ml TG2 TG2 TG2

Figure 46: HB-EGF antagonist CRM197 and its effects on keratinocyte proliferation.

Keratinocyte proliferation in the presence and absence of TG2 (lOpg/ml) and with inclusion of 
different concentrations of HB-EGF antagonist CRM 197 (3 concentrations, 2, 10 and 50pM) 
was assessed. Cells were grown in A 1% serum-containing FAD medium minus insulin and 
EGF A representative experiment is shown and the results are given as mean +/-SD of three 
replicates. No statistical difference was seen. Dose curves were carried out three times.
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Finally, as these initial efforts targeting HB-EGF were not successful, a different 

approach to determining the EGFR ligand involved was adopted. Blocking 

antibodies to TGFa, HB-EGF and EGF, all known EGFR ligands released by 

ADAM 17, were selected and were added in various combinations into the culture 

medium. These experiments were conducted in 1% serum containing FAD media 

(minus EGF) and a matching amount of non-specific IgG was included as a control. 

Initially, individual antibodies were tested at different concentrations but the effect 

was small despite the fact that concentrations were employed (10pg/ml) which were 

known to completely block the response of ligand at a concentration of up to 

50ng/ml. This led us to hypothesize that more than one ligand might be involved and 

we therefore tested each of the antibodies individually, in the 3 combinations of 

groups of 2 and finally all 3 antibodies together. The experiments were carried out as 

previously described, i.e. cell number was determined at 24 and 72 hours and the 

growth rate derived there from. Growth rates were expressed relative to control. It 

should be noted, however, that only one experiment included all conditions. 

However 2 replicate experiments were carried out where all 3 blocking antibodies 

were added together and or each was tested individually.

Figure 47A shows the reduction in proliferation rate when all 3 blocking antibodies 

are added together as compared with IgG control. TG2 is able to stimulate 

proliferation in the presence of control IgG, giving a proliferation rate of 1.5 times 

that in its absence. However, TG2 was not able to stimulate proliferation in the
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Figure 47: Antibodies to EGFR ligands block TG2-mediated stimulation of 
keratinocyte proliferation.

Blocking antibodies to three of the known EGFR ligands were tested to investigate the effects of 
blocking one, two or three of these ligands in combination on proliferation. FAD 1% serum 
media was prepared as a basis for all conditions. Part A: FAD medium containing 1% serum 
was added to Jackson Anti-goat IGG antibody control lOpg/ml in the presence and absence of 
TG2 lOpg/ml. This was compared with FAD containing 1% serum added with a-TGFa lOpg/ml 
a-EGF lOpg/ml and a-HB-EGF lOpg/ml. Part B shows all conditions in the presence of TG2 
lOpg/ml. Control IgG was compared with single blocking antibodies, a-EGF lOpg/ml, a-TGFa 
lOpg/ml and a-HB-EGF lOpg/ml. a-HB-EGF lOpg/ml and a-EGF lOpg/ml was compared with 
a-EGF lOpg/ml and a-TGFa lOpg/ml and a-HB-EGF lOpg/ml with a-TGFa lOpg/ml. Finally 
all 3 blocking antibodies were compared in the presence of TG2 lOpg/ml. A representative 
experiment is shown in each case. The results are given as mean +/-SD of 3 replicates. 
Significance denoted as follows; <***P, 0.0005, <**P, 0.005, <*P, 0.05. Dose curves were carried 
out twice with at least one further experiment was conducted at a single effective dose per 
blocking antibody.
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presence of all 3 blocking antibodies. Furthermore, in the presence of EGF ligand 

blocking antibodies the proliferation rate was reduced to 0.7 times that in the 

presence of control IgG indicating that EGFR signalling contributes to keratinocyte 

proliferation even in the absence of TG2. These results are in line with the previous 

results with EGFR tyrosine kinase inhibitor. To examine the contribution of 

individual EGFR ligands to proliferation further, a comparison of proliferation rates 

for all samples in the presence of TG2 is given in Figure46b. When a single blocking 

antibody was added in the presence of TG2, a statistically significant reduction in 

proliferation was observed as compared to IgG control. a-EGF was the most 

effective blocking antibody when examined singularly.

These results together indicate that all of the 3 tested ligands could be involved in 

keratinocyte proliferation, and that a degree of compensation may occur when 

individual ligands are blocked. This may also explain why we have not seen a 

significant effect with CRM 197. These results suggest a ligand redundancy system is 

in place where if one ligand is unavailable EGFR signalling continues with a 

different ligand.
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5. 7.Conclusion.

Chapter 5 has shown that proliferation of keratinocyte cells is similarly controlled to 

keratinocyte migration in the presence of TG2. Firstly, we could show that TG2 by 

itself is able to stimulate this response in keratinocytes suggesting that TG2 may 

indeed be the active component in fibroblast ECM that promotes re-epithelialisation 

in our wound model. Initial experiments to determine what conformation of TG2 is 

important to the stimulation of proliferation revealed an interesting result. Figure 37 

indicated that proliferation in the presence of TG2 is greatest when TG2 is in its Ca 

-activated form, while TG2 in a closed catalytically inactive conformation (TG2- 

GTPys and TG2-GTP) was not able to stimulate proliferation. This was further 

confirmed by the experiment shown in Figure 39. Figure 39 also showed that TG2 

stimulation of keratinocyte proliferation is not controlled by the open conformation 

of TG2 but by its activity since the 115 inhibited TG2 is trapped in its open 

conformation but is inactive and is unable to stimulate proliferation. Together this 

data shows that TG2 mediated proliferation may be conformation dependent and that 

active TG2 is necessary to stimulate proliferation. Hence, crosslinking of 

keratinocyte cell surface proteins may play a role. However, this is not consistent 

with the observation in Chapter 3 that ECM produced by fibroblasts expressing 

crosslinking deficient TG2 promotes epithelial motility similar to native TG2.

TG2 had been shown to stimulate proliferation therefore a series of experiments 

were undertaken to examine whether TG2 could stimulate proliferation in the 

presence of various inhibitors against known components of signalling pathways 

regulating keratinocyte proliferation. Initially the general metalloproteinase inhibitor 

GM6001 was tested in the presence and absence of TG2 (Figure 40). A 50%
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reduction in proliferation was produced by the inhibitor alone. However, TG2 

stimulated proliferation in the presence of the inhibitor at 50pM (the effective dose 

for this inhibitor), therefore this suggests that a different pathway may be active in 

TG2 control of keratinocyte proliferation. It is however important to note that 

proliferation in the presence of TG2 in control medium was not stimulated as much 

as would be expected due to the selected conditions already supporting near 

maximum proliferation. Therefore, no overt stimulation of proliferation occurred in 

controls without inhibitor. This result suggests that metalloproteinase activity in 

general contributes to regulation of keratinocyte proliferation but does not play a 

major role in the TG2-mediated keratinocyte response as cell proliferation is 

stimulated despite the presence of the inhibitor,

Given the importance of ADAMS 10 and 17 in migration shown in the previous 

chapter the next step was to examine the effects of ADAM 10 and ADAM 17/10 

inhibitors on keratinocyte proliferation in the presence and absence of TG2. When 

the ADAM 10 inhibitor was tested, it reduced proliferation substantially (down to 

0.1). In contrast, in the presence of TG2 no inhibition of proliferation occurred at its 

effective dose of lOpM (Figure 41) suggesting that AD AMI 0 may not be involved 

in TG2 mediated keratinocyte proliferation. When this was compared with the 

ADAM 10/17 inhibitor a different result was seen. This showed that in the presence 

of TG2 at its effective dose of lOpM proliferation rate was reduced to approximately 

0.2 relative to control in both the presence and absence of TG2 suggesting that 

ADAM 17 is involved in regulating both basal and TG2 mediated keratinocyte 

proliferation.
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Having found both TG2 and ADAM 17 to be involved in regulating keratinocyte 

proliferation, we went on to examine the major pathways known to regulate 

keratinocyte proliferation, such as growth factor receptors. Growth factor receptors 

for IGF, EGF, PDGF, FGF and VEGF were all examined as to their role in 

regulating keratinocyte proliferation under our culture conditions. Figure 42 showed 

that in the presence of TG2, proliferation can be stimulated in cells where IGFR has 

been blocked. Furthermore, Figure 44 showed that TG2 can stimulate proliferation 

similarly in both the presence and absence of insulin, which if TG2 mediated 

proliferation was dependent on the IGFR would not be expected in the presence of 

near ‘saturating’ concentrations of insulin. Figure 42 showed the PDGFR to not 

appear be involved in keratinocyte proliferation. When the inhibitor to PDGFR was 

added alone, keratinocytes proliferation rate reduced to 0.5 that of control at its 

effective dose of lOpM, however in the presence of TG2 proliferation rate increased 

to 1.1 suggesting that PDGFR is not involved in TG2-mediated stimulation of 

keratinocyte proliferation. An inhibitor known to block FGFRs 1&3 as well as 

VEGFR had no effect on keratinocyte proliferation either in the presence or absence 

of TG2 suggesting that neither of these pathways plays a major role under these 

conditions. In contrast, proliferation was found to be inhibited in both the presence 

and absence of TG2 with EGFR inhibitor where proliferation rate was found to be at 

0.5 and 0.4 respectively when compared to control. This showed that TG2 mediated 

stimulation of proliferation of keratinocytes is dependent on EGFR mediated 

signalling. This result is in line with the previous finding that EGFR signalling was a 

downstream effector of TG2 in the pathway regulating re-epithelialisation.
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As the data had suggested EGFR was the candidate growth factor receptor involved, 

attempts were made to identify a potential EGFR ligand that may be released by 

ADAM 17. Figure 46 shows CRM 197 the HB-EGF antagonist to be ineffective in 

reducing proliferation in both the presence and absence of TG2. This observation is 

similar to that seen in chapter 4 where this inhibitor was unable to reduce 

keratinocyte migration. Therefore blocking antibodies to HB-EGF, EGF and TGFa 

were used instead to determine if one of these EGFR ligands was involved in 

modulating keratinocyte proliferation.

Only the combination of the 3 blocking antibodies together reduced proliferation 

effectively in both the presence and absence of TG2 suggesting that at all 3 ligands 

are involved in stimulation of keratinocyte proliferation. Furthermore, blocking all 3 

ligands together reduced proliferation rate to a similar level as that observed with 

EGFR tyrosine kinase inhibitor, thereby lending further support to the notion that 

these are indeed the major EGFR ligands involved. When added individually, EGF 

blocking antibodies had the most significant effect (although small). When the 

blocking antibodies were added in combinations anti-HB-EGF together with anti- 

EGF was most effective. This suggests that TGFa may be the least effective ligand 

of the 3 as proliferation rates whenever TGFa is inhibited are slightly higher than 

when HB-EGF or EGF are inhibited. Thus results for EGF and HB-EGF would 

suggest a possible preferential use of either of these ligands when compared with 

TGFa.

The results shown in this chapter have delineated a pathway involved in TG2

mediated enhanced keratinocyte proliferation. The results have shown that

proliferation can be stimulated by TG2 when it is in its catalytically active
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conformation, further, we have identified ADAM 17 and the EGFR as both being 

necessary components in this signalling pathway. Although a single EGFR ligand 

could not be identified in this system, the results would suggest ligand redundancy in 

activation of the receptor, presumably erbBl. It is known that all of these EGFR 

ligands can bind erbBl and induce signalling. It would be interesting to extend this 

investigation to other EGF ligands to see if the redundancy system continues or 

whether a different ligand would be preferentially used to those tested here. 

Nevertheless, we have investigated the key EGFR ligands known to be produced by 

keratinocytes and to be processed by AD AMI 7 (Sahin et al., 2004). Taken together, 

these results suggest that TG2 itself mediates EGFR transactivation in keratinocytes.

The proliferation assay was based around keratinocyte monoculture. This is a simple 

yet effective model to test the role of the various components of a hypothesised 

proliferation pathway. Nevertheless this could not be considered representative of 

skin wound healing where multiple cell types may contribute to the pool of soluble 

signalling factors and different upstream signalling factors may use EGFR signalling 

as an effector pathway (Pucinilli et al., 2010; Stoll et al., 2010).
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Chapter 6 GPR56: a Potential Receptor Linking 
Extracellular TG2 to Cell Migration and Proliferation.
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6.1 Introduction.

TG2 has been shown in the previous two chapters to be able to influence 

keratinocyte migration and proliferation through activation of ADAM proteinases to 

release an EGFR ligand allowing the EGFR to signal. However, how TG2 is able to 

initiate this signalling process is unknown. TG2 is derived from the fibroblasts in our 

model, and is therefore found in the ECM. In order for TG2 activity to influence 

keratinocyte behaviour it must act through a cell surface protein/molecule found on 

the keratinocytes. Iismaa et al 2006 identified TG2 as interacting with and having 

involvement in signalling by the super family of heterotrimeric guanine nucleotide- 

binding protein (G protein) coupled receptors (GPCRs). GPCRs are principle 

membrane proteins that transmit various extracellular stimuli into intracellular 

signalling events. When a GPCR is activated by a specific signal or cognate ligand, 

the GPCR catalyses the exchange of GTP for GDP on the Ga subunit which 

facilitates the release of Ga from the complex with Gpy (Hamm, 1998). However, in 

the case of p-adrenergic receptor, TG2 acts as a G-protein intracellulary by binding 

with ai-adrenergic receptor and couples the receptor to phospholipase C8 (Nakaoka 

et al., 1994; Aeschlimann and Thomazy, 2000) to mediate downstream signalling. 

More recently, Richard O’ Hynes group identified that TG2 could interact with a 

different GPCR, GPR56 (Xu et al., 2006). In this case, extracellular TG2 modulated 

cell adhesion by binding to the GPCR on the cell surface However; it is at present 

not clear whether TG2 is a receptor agonist or a scaffolding protein in the cell’s 

surface. Therefore, TG2 can potentially interact with GPCRs and trigger cellular 

responses in one of two ways: (i) through activation of guanosine triphosphate-
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binding proteins that activate intracellular effectors, such as phospholipase C; 

(Nakaoka et al., 1994) or (ii) by direct interaction with GPCRs (but not activation).

GPR56 is a G protein coupled receptor (GPCR) and a member of the adhesion 

GPCR family, a secretine like family which may maintain the balance between cell 

adhesion and detachment during cell migration. GPR56 contains 7 transmembrane 

domains and a mucin-like domain in the N-terminal region. Currently, 7 splice forms 

have been identified in man from comparison of transcripts in the DNA database 

with the respective genomic sequence. GPR56 possesses a large extracellular domain 

and a cysteine box which is located immediately upstream of the first transmembrane 

domain (Bjamadottir et al., 2004). GPR56 is autocatalytically processed within this 

GPS domain during trafficking but the cleaved extracellular portion remains 

associated with the membrane portion of the receptor. Processing is necessary for 

targeting to the cell surface.

GPR56 mRNA is selectively expressed in hematopoietic stem cells and neural

progenitors suggesting a role in multipotent cell identity and tissue development (Jin

et al., 2007). It can also be detected in various mature tissues with highest expression

being in the brain and thyroid tissues (Jin et al., 2007). Mutations in GPR56 have

been detected especially in the extracellular domain, including frameshift, splicing

and point mutations which appear to compromise normal proliferation and migration

of cells, particularly in the frontal cortical region of the brain during early

development (Kim et al., 2010). A complex splicing and glycosylation pattern for

GPR56 has been reported. Kim et al., 2010 observed that Hek293 cell lysates

contained GPR56 with molecular weights between 100 and 70kDa, with alternative

splice variants around 40-50 kDa. The latter bands are thought to correspond to
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truncated C terminal regions. Several prominent bands have also been detected 

above lOOkDa suggesting GPR56 may exist at the membrane in complex with itself 

or another protein (Kim et al., 2010). GPR56 also contains multiple glycosylation 

sites such as its amide nitrogen in asparagine (Asn) or at the oxygen in serine (Ser) 

and threonine (Thr) side chains. Jin et al, 2007 identified a shift in molecular weight 

of both GPR56 and mutated variant forms where the size of the higher bands >80 

and 60kDa were reduced after PNGase (Peptide N-Glycosidase) treatment. In fact, 7 

sites for N-linked glycosylation are present and introducing point mutations in any of 

these sites yielded a shift in Mr suggesting that all 7 sites are functional. Further, 

GPR56 has also been documented to undergo alternative splicing leading to changes 

in trafficking of GPR56 resulting in altered cell surface expression and secretion (Jin 

et al., 2007; Della Chiesa et al., 2010).

Xu et al., 2006 has identified GPR56 as an important G protein coupled receptor in 

metastatic melanoma cells, where a reduced expression of GPR56 enhanced tumour 

progression. Furthermore, TG2 was identified as the binding partner of GPR56 in the 

extracellular matrix and this interaction was suggested to be mediated through the 

TG2 C- terminal two beta barrel domains (Xu et al., 2006). GPR56 has also been 

identified as necessary for the regulation of granule cell adhesion seen in rostral 

cerebellar development, with mutations causing bilateral front parietal 

polymicrogyria (BFPP) (Bai et al 2009). The latter phenotype was suggested to be a 

consequence of improper ECM assembly. Taken together, these data suggest that an 

interaction of extracellular TG2 with GPR56 may control cell behaviour including 

adhesion, motility and gene expression in specific biological contexts. Hence, this 

interaction may also initiate the signalling cascade to drive TG2 mediated migration
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of keratinocytes, and more specifically, the binding of TG2 to GPR56 may 

potentially activate ADAM 17.

239



Role o f  Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

6.1.1Aims of Experiments.

Firstly, it is necessary to establish whether the keratinocytes express GPR56. GPR56 

like other GPCRs is likely to be tightly controlled via sequestration by 

internalization and its activity controlled by restricted cell surface availability. 

Therefore, we performed an investigation as to where GPR56 can be found, and 

whether it is upregulated, in keratinocytes upon ‘wounding’. This will provide 

evidence of whether GPR56 is involved in the regulation of migration and 

proliferation of keratinocytes occurring during epithelial regeneration. Furthermore, 

in order to test the hypothesis that GPR56 is the GPCR involved in TG2 mediated 

signalling in keratinocytes a method to inhibit GPR56 function must be established.
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6.2 Investigating GPR56 Protein Levels and Processing in GPR56 Transfected 
CHO Cells using Candidate Antibodies.

GPR56 may be the candidate cell surface receptor in keratinocytes that links TG2 to 

ADAM 17 enabling this signalling cascade. In order to investigate the expression of 

GPR56 in keratinocytes, initially the specificity and suitability of GPR56 antibodies 

were evaluated. This was done by western blotting of cell lysates from an in house 

generated stably transfected GPR56 over-expressing CHO cell line. As a further 

positive control, HeLa cell lysates were tested, since HeLa cells endogenously 

express GPR56 (Huang et al., 2008). Two GPR56 antibodies raised against the N 

and C terminus of the protein (Santa Cruz, clones N 15 and N 19) failed to identify 

GPR56. However, an antibody from R& D systems with an epitope in the 

extracellular domain of GPR56 was able to detect GPR56 in control cell lysates from 

Chinese Hamster Ovary (CHO) cells over-expressing GPR56 (Figure 48 lanes 1 and 

2 HeLa and CHO control samples). To test whether time after seeding (=degree of 

confluence of culture) can affect GPR56 expression and processing, CHO cell 

lysates were examined from 6 to 72 hours after seeding on plastic. Figure 48 

indicates that several bands appear to be detected by this antibody to GPR56. The 

broad band detected at ~94kDa is thought to be a glycosylated form of GPR56 as 

previously identified by Jin et al., 2007 and Kim et al., 2010. A further band is also 

seen around 76kDa 6 and 12 hours after seeding, which corresponds to the 

previously published GPS (GPCR protein cleavage site) cleaved GPR56 size (Kim et 

al., 2010) (corresponding to the N-terminal extracellular domain). Further bands seen 

at lower molecular weights are likely to be proteolytically processed
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Figure 48: GPR56 Levels in GPR56 Transfected CHO cells.

GPR56 levels in cell lysates from GPR56 CHO cells. Samples were collected at 6,12, 24 and 72 
hours after seeding. Cells were lysed in buffer containing SDS and samples processed for 
western blotting along with two previously used GPR56 CHO samples to confirm presence of 
GPR56. Samples were separated in 2-20% SDS-PAGE gel under reducing conditions and 
transferred to nitrocellulose. All samples were probed with polyclonal R&D GPR56 antibody 
at lpg/ml. Migration of Mr standards is indicated on the right. R and D GPR56 antibody 
identified bands at ~94kDa, 76Kda, labelled by the arrows. It also appears to identify processed 
forms of GPR56 at lower molecular weight as identified by the stars. The membrane was 
stripped and re-probed with antibodies to GAPDH to demonstrate equal protein loading.

242



Role o f  Transglutaminases in Signalling that Regulates Epithelial Responses in Wound Healing.

forms of the protein. This Figure also indicates that GPR56 expression and 

processing is influenced by cell density. At early time points of 6 hours and 12 hours 

after seeding, where cells are at lower density and more motile, GPR56 protein is 

expressed and molecular weights correspond to intact functional receptor. By 72 

hours, where cells would be expected to be confluent the ~94 and 76kDa band is not 

identifiable and processed forms of GPR56 are prevalent.
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6.3 Investigating GPR56 Protein Levels in Keratinocyte Cells.

6.3.1 GPR56 Protein Expression of Keratinocytes in Culture at Different Cell 

Densities.

A similar experiment was conducted on the keratinocytes as had been carried out on 

the GPR56 over-expressing CHO cells to investigate GPR56 protein expression in 

keratinocytes. In addition, a 1 hour sample was examined from both a suspension 

culture and a culture plated on plastic to identify whether GPR56 expression was 

dependent on cell adhesion. It was expected that trypsinisation carried out in other 

experiments not involving lysing cells would strip the cell surface from any receptor 

present and that the presence of mature protein, at this very early time point would 

reflect GPR56 protein sequestered in intracellular stores.

Keratinocytes express GPR56 protein after 1 hour regardless of whether being in 

suspension or adherent (Figure 49A). Mature GPR56 is present up to 24 hours, with 

some processed forms of GPR56 appearing after 12 hours. The 94kDa form of 

GPR56 is down regulated by 72 hours although some processed forms are still 

present, a pattern reminiscent of that seen in the GPR56 CHO cells (Figures 47 and 

48). Jin et al., 2007 had confirmed that wild type GPR56 could be released into 

conditioned medium as the large GPR56N (N terminus) subdomain. To investigate 

whether keratinocytes were releasing GPR56 into the medium, corresponding 

conditioned medium samples were taken at the same time points and tested. GPR56 

is released into conditioned medium by keratinocyte cells after 1 hour with increased 

levels seen at 6 and 12 hours (results not shown). Only degraded forms of
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Figure 49: GPR56 expression in keratinocyte cells

Keratinocyte cells were counted and 5000 seeded per well of 6-well plates in normal FAD 
medium (containing 10% FCS, lOpg/ml EGF) and incubated for 1,6,12,24 and 72 hours. In 
addition, a one hour samples was prepared, which was left in medium in a cell suspension 
culture. At the various time points, the medium was removed and kept as conditioned medium 
samples. The keratinocytes cell layer was lysed using buffer containing SDS and prepared for 
western blotting as had been done previously for the GPR56 CHO cells. Samples were 
separated in 2-20% SDS-PAGE gel under reducing conditions and transferred to nitrocellulose. 
A GPR56 CHO sample was run as a control for GPR56 identification (not shown). The first 
lane on the left shows the suspension culture. The next five lanes contain all time points of the 
cell lysate samples (panel A). Samples were probed with R&D GPR56 antibody at lpg/ml. R 
and D GPR56 antibody identified intact GPR56 as a broad band at 94kDa labelled by the 
arrow. It also appears to identify bands of 60kDa and 33kDa. These are likely processed forms 
of GPR56. Migration of Mr Standards is shown on the right. B: corresponding microscopic 
phase contrast images of the cultures at 6,12, 24 and 72 hours are shown.
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GPR56 were detected in conditioned medium samples at 24 and 72 hours. After 72 

hours the keratinocyte monolayer is confluent (Figure 49B). This result indicates that 

GPR56 protein levels and processing change in response to cell density and indicates 

that once a continuous epithelial cell layer is established the receptor is down 

regulated. Conversely, high levels of GPR56 are expressed over the first 24h in 

culture when the cells are motile indicating that its expression may be linked to 

disruption of cell-cell or cell-ECM contacts and may be part of stress response of 

cells that promotes motility.
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6.4 Investigating GPR56 Protein Expression Under Conditions Promoting 
Keratinocyte Differentiation.

To further investigate GPR56 expression in relation to keratinocyte differentiation, 

an investigation was carried out under conditions which would be expected to 

promote cell differentiation. Extracellular calcium a known inducer of differentiation 

was shifted from a low (0.5mM supporting a proliferative state) to a high (2.0mM 

inducing differentiation) concentration to investigate this (Xie et al., 2005). Figure 

50 (part A) shows the results of the experiment conducted in the presence of 0.5mM 

calcium in the medium (low concentration). In cell lysates from cells cultured in 

0.5mM calcium GPR56 protein can be seen up to 24 hours as previously shown and 

has disappeared at 72 hours. A small amount of the ~94kDa glycosylated band has 

appeared under these conditions in conditioned medium samples. This is unlikely to 

be ‘free soluble’ protein but probably reflects contamination of the medium with 

membrane bound particles released by the cells or cell envelopes from dying cells. 

Morphological analysis of the keratinocytes was also conducted under these 

conditions. The appearance of the keratinocytes had not altered from that of 

keratinocytes treated with normal FAD only (results not shown).
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Figure 50: GPR56 expression in keratinocyte cells is unaffected by differentiation.

The same time points 1, 6, 12, 24, and 72 hours were used to investigate GPR56 levels in 
keratinocyte cells in FAD medium containing either 0.5mM (panel A) or 2.0mM (panel B) 
calcium. The addition of calcium to the medium induces terminal differentiation. Keratinocyte 
cells were counted and 5000 seeded per well of 6 well plates in normal FAD medium containing 
10% serum and lOpg/ml EGF and incubated for 1,6,12,24 and 72 hours as described for the 
previous experiment. At the indicated time points, the medium was removed and kept as 
conditioned medium samples. The keratinocyte cell layer was lysed using buffer containing SDS 
and prepared for western blotting as had been previously shown. Conditioned medium was 
spun before analysis at 1500g. Samples were separated in 2-20% SDS-PAGE gel under reducing 
conditions and transferred to nitrocellulose. Lanes contain 6, 24 and 72 hour cell lysates and 
24 and 72 hour conditioned medium samples in either low calcium ( panel A) or high calcium 
(panel B). R and D antibody identified intact GPR56as a broad band at 94kDa labelled by the 
arrow. It also appears to identify bands of 60kDa and 33kDa. These are likely processed forms 
of GPR56. Migration of Mr Standards is shown on the right.
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When calcium concentration in the medium was raised to 2mM, (Figure 5 OB) it does 

not appear to overtly affect GPR56 expression. However, some differences were 

noted. GPR56 is present in the cell lysates after 6 hours in abundance and continues 

to be present up until 24 hours before disappearing completely at 72 hours. In the 

presence of high Ca , downregulation of expression appears to occur more quickly 

(compare samples at 24h). Conversely, comparing the conditioned medium samples 

indicates an accumulation of intact GPR56 in the presence of high calcium after 72h 

in contrast to low calcium conditions. This suggests that cell envelopes containing 

GPR56 accumulate in the cell supernatant, consistent with enhanced keratinocyte 

differentiation and crosslinked envelope formation under these conditions. 

Collectively, these results suggest that GPR56 protein expression appears to be 

largely unaffected by differentiation, and strongly indicate that GPR56 is not 

upregulated in association with terminal differentiation.
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6.5 GPR56 Protein Localisation in Motile, Proliferating Keratinocytes.

Scratch wounding a confluent cell monolayer is a simple model to mimic an injury 

and investigate the cellular response to wounding. Since the previous experiments 

have suggested that GPR56 expression may be associated with a motile phenotype of 

keratinocytes, we decided to use immunocytochemistry to localise GPR56 in this 

model and investigate whether a correlation between cell activation and GPR56 

expression could be seen. In order to compare GPR56 protein localisation and levels 

from monolayer keratinocytes with wound edge keratinocytes, cells were seeded and 

left for 24 hours. Keratinocytes were then scratched and left for 6, 12, 24 and 72 

hours in FAD medium containing 10% FCS,10pg/ml EGF, before being fixed and 

processed for immunocytochemical analysis. Figure 51 shows GPR56 staining over 

the 4 time points. There was positive staining for GPR56 at both the wound edge and 

at the confluent cell layer. However, the expression of GPR56 was low indicated by 

the fluorescence detected being very faint. GPR56 staining was seen in all samples 

and was still visible at 72 hours following scratching although the wound is not 

closed. A secondary antibody only control confirmed that the staining for GPR56 

was the result of specific interaction with the primary antibody and not non-specific 

cell staining or autofluorescence. Figure 5IB shows higher magnification images of 

keratinocytes at the wound edge after 12 hours. GPR56 is found throughout the cells. 

However, cells migrating from the wound edge appeared brighter when compared 

with the staining of the confluent keratinocytes. This suggest that GPR56 may be 

upregulated in motile keratinocytes but a further experiment where GPR56 staining 

in keratinocyte scratch wounds could be observed by confocal microscopy would be 

advantageous to determine whether GPR56 staining reduces over time in the scratch
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Figure 51: GPR56 is expressed in motile keratinocytes at the wound edge.A: 400,000 
keratinocytes were seeded overnight before being scratched with a metal loop the following day. 
Keratinocytes were left for 6, 12, 24 and 72 hours after scratching in FAD medium containing 
10% FCS, lOpg/ml EGF before being fixed with 4% paraformaldehyde in PBS. The cells were 
labelled with the R&D GPR56 antibody at lpg/ml and binding visualized using a monoclonal 
FITC anti-goat IGG. Images were captured on a Carl Zeiss Microscope with a 20x objective, 
Axiocam 2000 CCD camera and Openlab 4.3.1 software. Phase contrast and fluorescent images 
are shown from 6, 24 and 72 hour time points. In addition a secondary antibody only control 
photograph is shown. B: The 12 hour time point picture shown has been zoomed using 
photoshop zoom, indicated by the red boxes to 2X and 5X the original 20X magnification to 
indicate the staining of GPR56 on a few cells at 2X and a single cell at 5X original 
magnification.
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wound and to investigate its precise localization within the cells.
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6.6 Investigating siRNA Knockdown of GRP56 in GRP56 Over expressing CHO 

Cells.

To test the hypothesis that TG2 induces cell migration through GPR56, siRNA 

approaches were tested to block GPR56 expression in GPR56 over-expressing CHO 

cells as well as keratinocytes. Initially, siRNA in two variants was transfected into 

stably expressing GPR56 CHO cells to determine whether either variant of siRNA 

could reduce GPR56 expression levels seen by Western blot. Figure 52 shows that 

when compared to untransfected cells or cells transfected with scrambled negative 

control siRNA, variant 1 was the most effective in reducing GPR56 expression.
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Figure 52: SiRNA knockdown of GPR56 in GPR56 over expressing CHO cells.

A: : Western showing GPR56 CHO cells transfected with GPR56 SiRNA variants 1, 2, as well 
as untransfected GPR56 CHO cells and a scrambled SiRNA control using the Dharmacon 
protocol for transfection. Lanes contain: (1) Untransfected GPR56 expressing CHO cells, 
(2)GPR56 over expressing CHO cells transfected with GPR56 variant 1 SiRNA (Ambion), (3) 
GPR56 over expressing CHO cells transfected with GPR56 variant 2 SiRNA (Ambion), (4) 
GPR56 CHO cells transfected with a scrambled negative control, (Ambion). Samples were 
separated in 2-20% SDS-PAGE gel under reducing conditions and transferred to nitrocellulose. 
Primary GPR56 antibody was added at alpg/ml for one hour at room temperature. Secondary 
Anti Goat IGG was added at 1:2000 concentration for 1.5 hours at room temperature. Western 
blot was developed using ECL plus and fdm exposed for five minutes before developing. A 
duplicate GAPDH blot is shown in the lower panel indicating equal loading of the samples. 
Western indicates partial knock-down of GPR56 by GPR56 Variant 1 SiRNA.
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6.7 Investigating the Effect of siRNA Knockdown of GRP56 in Keratinocyte 

Cells.

When a similar experiment was carried out on keratinocyte cells the results were 

inconclusive. The Dharmacon protocol used on the overexpressing GPR56 CHOs 

showed no effect on GPR56 expression in keratinocytes. Therefore a different 

transfection protocol using the reagent Interferin was tried. SiRNA variants 1 and 2 

along with the scrambled control were transfected into keratinocyte cells and were 

compared to untransfected keratinocytes and GPR56 CHO controls (Figure 53). The 

results indicate no effect of either variant of the siRNA on the keratinocytes. 

Unfortunately, as there was no reduction in the amount of GPR56 detected in 

keratinocytes using the interferin© protocol neither transfection protocol worked to 

transfect siRNA effectively into the keratinocytes compared with the overexpressing 

GPR56 transfected CHO cells. These results suggest that further optimisation of the 

conditions are required, i.e. the transfection was inefficient in these cells, or the 

siRNA selected may not be an effective suppressor of GPR56 in keratinocytes. In 

addition, as the longevity of siRNA knockdown was not fully tested by these 

experiments, even if successful in such a short-term experiment, this may not be a 

suitable method for investigating the effects of GPR56 expression in TG2 dependent 

signalling in our spheroid migration model due to the length of time it takes to set up 

and carry out one of these experiments.
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Figure 53: SiRNA knockdown of GPR56 expression in Keratinocytes.

Western showing SiRNA transfection of GPR56 variant 1, 2, and scrambled negative control 
into keratinocyte cells using Interferin protocol. Samples were separated in 2-20% SDS-PAGE 
gel under reducing conditions and transferred to nitrocellulose. Lanes contain: (1) GPR56 
expressing CHO cells, (GPR56 control) (2)Untransfected keratinocytes (3) Keratinocytes 
transfected with GPR56 SiRNA variant 2 (Ambion), (4)Keratinocytes transfected with GPR56 
SiRNA variant 1 (Ambion) (5) Keratinocytes transfected with scrambled negative control 
(Ambion). Western indicates little \(weaker band) removal of GPR56 by either SiRNA 
Variant. Primary GPR56 Antibody was added at alpg/ml 5% Milk/PBS and left for one hour at 
room temperature. Secondary Anti Goat IGG was added at 1:2000 concentration for 1.5 hours 
at room temperature. Western was developed using ECL plus, exposed for five minutes before 
developing. A GAPDH blot is show in the lower panel indicating equal loading control.
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6.8 Inhibition of Keratinocyte Migration over Fibroblast ECM by Blocking 

TG2.

As no blocking agents were available to interfere with GPR56 on keratinocytes, we 

decided to at least confirm that TG2 indeed was the “active component” of fibroblast 

ECM that enhanced keratinocyte motility and thereby to tie the findings from 

Chapters 4 and 5 together. In order to investigate the effect of inhibiting TG2 within 

the matrix on migration of keratinocytes from a spheroid as described previously an 

experiment was set up where over expressed TG2 matrix was pre-treated overnight 

using either a blocking anti-TG2 antibody or a TG2 inhibitor (115) which inactivates 

TG2 (Figure 54). Subsequently, keratinocyte spheroids were plated on pre-treated or 

control matrix and migration analysed at 24h and 48h. Migration was unaffected by 

the presence of non-specific mouse IgG, but was reduced with the CUB7402 

monoclonal antibody at the same concentration (Fig 53). Furthermore, migration was 

reduced even more effectively by 115 treatment, which is in line with our observation 

that TG2-I15 was unable to stimulate keratinocyte proliferation and demonstrates 

that a specific form of TG2 is required to promote keratinocyte motility.
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O hours 24 hours

Spheroids treated with FAD 
medium only

Spheroid Treated with Mouse IGG 
lOpg/ml

Spheroid Treated with TG2 
antibody CUB7402 lOpg/ml

Spheroid Treated with TG2 inhibitor 
115 25pM

Figure 54: Enhanced keratinocyte motility is dependent on TG2 in fibroblast ECM

Overexpressed TG2 matrix was pre-treated with either standard FAD medium, mouse IgG at 
lOpg/ml (control for TG2 antibody), TG2 antibody CUB7402 at lOpg/ml, or TG2 inhibitor 115 
(25pM) in FAD medium overnight before the addition of keratinocyte spheroids (n=6). The 
matrix was washed twice in PBS before spheroids were plated on the matrix and keratinocyte 
migration was observed in standard FAD medium.
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6.9 Conclusion.

GPR56 is a relatively novel G protein coupled receptor that is the subject of much 

recent investigation, especially in brain development and cancer studies. The link 

between TG2 and GPR56 was first investigated in 2006 by Xu et al., where GPR56 

was found to be down regulated in metastatic tumours, and where it’s up regulation 

could suppress tumour growth and further metastasis. Experiments in figures 47 

showed that over expressing GPR56 CHO cells did produce mature GPR56 only 

when cultured at low density. This not only suggests that GPR56 may be associated 

with a motile cell phenotype but also that post-transcriptional regulation is key in 

control of protein levels in the cell. Similar results were obtained in keratinocyte 

cells ( Figure 49) and a calcium shift experiment revealed that GPR56 protein levels 

were unaffected by the presence of high calcium concentration, confirming that its 

expression is not linked to terminal differentiation of keratinocytes (Xie et al., 2005).

Further experiments indicated that GPR56 could be seen in a scratch wound more 

abundantly in cells migrating into the wound space, again suggesting that there may 

be a link to cell motility. However, further analysis using confocal microscopy is 

needed to indicate more clearly the changes in GPR56 expression and localisation 

during re-establishment of a continuous cell layer.

Figures 51 and 52 showed that GPR56 could be suppressed in GPR56 over

expressing CHO cells but not in keratinocytes by siRNA gene silencing. This could

be an effect of the siRNA being isoform/splice variant specific and reflect the

different expression of these in different cell types. Furthermore, it is not clear

whether this experimental set up could be applied to a migration model due to the

time needed to perform the transfection before the production of keratinocyte
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spheroids. However, as this experiment indicated GPR56 could be knocked down, it 

is possible to speculate that maybe a siRNA treated scratch wound of keratinocytes 

by an alternative transfection reagent or an alternative siRNA, would heal ‘less well’ 

due to keratinocytes being unable to respond to TG2 for enhanced migration and 

proliferation. It would also be interesting to investigate what would happen to 

migration and proliferation in the absence of TG2 if GPR56 was inhibited. It is 

important to realise that while TG2 may interact with GPR56 it may not be an 

agonist or alternatively, there may be much more potent physiological ligands.

This chapter has identified that keratinocytes produce GPR56 and that it might be 

localised predominantly to the wound edge. GPR56 expression can be suppressed by 

siRNA knockdown in overexpressing GPR56 CHOs. Further experiments 

investigating whether TG2 could up-regulate GPR56 production in keratinocytes 

would be an interesting experiment, as well as adapted migration and proliferation 

experiments incorporating the siRNA silencing of GPR56 to see if this caused a 

change in the keratinocytes proliferating and migration behaviour. Results from the 

Xu et al papers of 2006 and 2007 may suggest that suppression or enhancement of 

the interaction between TG2 and GPR56 could alter cell behaviour and this may in 

the future lead to tumour suppression strategies or potentially be targeted to stimulate 

re-epithelialisation in non-healing wounds. The summary diagram in Figure 55 

speculates as to the role of GRP56 in enhancing keratinocyte proliferation and 

migration. Results in previous chapters have identified that TG2 activates ADAM 17 

to release an EGFR ligand by shedding (potentially EGF, HB-EGF or TGFa) which 

binds to the EGFR to cause motility and proliferation. Here we confirm that 

enhanced keratinocyte motility in response to contact with fibroblast ECM is indeed
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mediated by TG2 itself which is assembled into this ECM. GPR56 may potentially 

be the missing link as a binding partner for TG2 on the keratinocyte cell surface 

which would allow this signalling cascade to take place, although we have not been 

able to conclusively proof this last point.

EGFR
Liztnd

EGFR

EGF

Motility and 
Growth

EGF
Precursor

Singh
keratiii'Kvtt'

ADAMIO'17.

TG2TG2

TG2 Matrix

Figure 55:Summary Diagram of the Chapter.

The results chapters so far have indicated that in the presence of TG2 ADAM 10 or 17 is able to 
release an EGFR ligand, potentially EGF or HB-EGF which binds to the EGFR and stimulates 
kerationcyte migration. The linking factor between TG2 and ADAM 17 is not yet known, 
however it is possible to speculate that GPR56 present on the cell surface may be the linking 
factor which promotes kerationcyte motility.
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Chapter 7: General Discussion.
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The process of wound healing is highly complex, several in vitro models have been 

developed to mimic the re-epithelialisation process such as a two dimensional 

scratch wound assay (Rodriguez et al., 2005), or the more complex multiple cell skin 

equivalent (Nakagawa et al 1989). We have adapted a co-culture model developed to 

investigate angiogenesis by Korff and Augustin, 1998, to investigate the re- 

epithelialisation process using fibroblasts and keratinocytes (Rosser-Davies, PhD 

thesis 2006). Fibroblasts have previously been shown to produce ECM which is 

instrumental in regulating the overlying epithelium as well as encouraging 

proliferation and differentiation of keratinocytes (El Ghalbzouri et al., 2002; Locke 

et al., 2007). Positive proliferative effects of fibroblasts have been shown in 

numerous studies (Bell et al, 1981, Prunieras et al., 1983, Asselineau et al., 1986, Xu 

and Clark., 1996) indicating fibroblasts are able to stimulate proliferation of 

keratinocytes for example by regulating the expression of two critical paracrine- 

acting cytokines, keratinocyte growth factor (KGF) and granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Florin et al., 2005).

TG2 is ubiquitously expressed in many tissues. For example work by Van Strein et 

al., showed that TG2 mediates the enhanced interaction of astrocytes with 

fibronectin in the extracellular matrix increasing astrocyte adhesion and migration 

leading to extensive tissue remodelling (Van Strein et al., 2010). Previous work by 

Rosser Davies, (PhD thesis 2006) had shown that keratinocytes seeded onto an ECM 

derived from fibroblasts expressing TG2 had increased motility when compared with 

TG2 null fibroblasts. My work has shown that keratinocyte migration was reduced
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on matrix with live fibroblasts, when compared to matrices without fibroblasts 

present in a TG2 dependent manner.

In order to distinguish between matrix and fibroblast signals in regulating 

keratinocyte migration, experiments were designed to only measure the contribution 

of the matrix. For this purpose fibroblasts were killed by freeze thawing and 

keratinocyte migration analysed over matrices synthesised by fibroblasts positive or 

negative for TG2. In our co-culture model in the presence of endogenous, over 

expressed and TG2 null matrices the result showed that keratinocytes migrate further 

in the presence of endogenous TG2 (220pm), than matrices prepared with TG2 null 

fibroblasts (130pm). These data suggest that an increase in keratinocyte motility 

occurred in the presence of TG2, when compared to TG2 null conditions (Figure 17, 

page 148). However, the increased concentration of TG2 present in fibroblasts 

overexpressing TG2 yielded a median distance migration and thus did not increase 

keratinocyte migration further when compared to endogenous TG2. It was not clear 

at this point whether TG2 deposited into the fibroblast ECM mediated these affects 

or whether post translational modification or gene expression in these fibroblasts was 

responsible. This result may therefore suggest that a high level of TG2 present within 

this matrix increases crosslinking sufficiently to impede keratinocyte migration. 

Alternatively, depending on whether the keratinocytes respond directly or indirectly 

to TG2, the increased concentration is in excess of saturation of a keratinocyte 

signalling pathway or the generation of the signal may be regulated separately from 

gene expression, e.g., by TG2 adopting a specific conformation.
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An experiment to confirm the effects on migration of keratinocytes with endogenous, 

overexpressed or TG2 null matrix in the presence of live fibroblasts was analysed 

(Figure 18, page 150). This experiment confirmed earlier work by Dr Sally Rosser 

Davies that keratinocyte migration decreases in the presence of endogenous or over 

expressed TG2 matrix in the presence of live fibroblasts. Further, the overexpressed 

TG2 matrix supported the least amount of keratinocyte migration in the presence of 

live fibroblasts. This was reduced to the level of migration seen in the presence of 

TG2 null matrix in the absence of fibroblasts (approximately 75 pm). This is thought 

to be a basal level of migration induced by contact of cells with a collagenous ECM 

(Grenache et al., 2007). Therefore in the presence of live fibroblasts either an anti- 

migratory signal is sent by the fibroblasts or cross talk between the fibroblasts and 

the keratinocytes reduces migration in response to an increased presence of TG2.

The effects of conditioned medium from different fibroblasts was also examined to 

determine if conditioned medium from TG2 deficient fibroblasts could support an 

increased amount of keratinocyte migration (Figure 20, page 154). Keratinocyte 

migration was most extensive on matrix from fibroblasts overexpressing TG2 in the 

presence of the corresponding conditioned medium. Migration was less in the 

presence of matrices with endogenous and TG2 null fibroblast conditioned medium. 

This is thought to be a consequence of a pro-migratory signal in the conditioned 

medium that is expressed by fibroblasts in a TG2 dependent manner and potentially 

due to a released growth factor such as EGF or TGFp. However, it is interesting to 

note that conditioned medium analysis by Dr Mathew Caley in our lab (2009, 

unpublished) indicated increased MMP1-protein levels in conditioned medium from
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fibroblasts expressing TG2. Therefore this suggests migration in the presence of 

conditioned medium may be dependent on MMP1 signalling or activity. MMP1 has 

previously been shown to be an intrinsic part of the wound healing process as 

inhibition of MMP1 causes a reduction in cell proliferation and migration (Shyu et 

al., 2007). Furthermore, MMP1 is thought to signal through the PARI receptor 

causing an increase in migration of keratinocyte cells in the presence of conditioned 

medium from TG2 overexpressing fibroblasts (Dr Mathew Caley, unpublished, 

2009; Yang et al., 2009). Nevertheless, these data also showed that the absence of 

TG2 did not simply lead to an accumulation of a signalling factor in the medium as a 

consequence of the inability to cross link it into the ECM.

The experiments containing the live fibroblasts together with the effects of 

conditioned medium indicated the presence of alternative and contrasting signalling 

pathways and the analysis thereof would be beyond the scope of this thesis. 

Therefore, it was decided to pursue the effects of ECM synthesised by fibroblasts 

expressing TG2 in instructing keratinocyte migration and proliferation. This would 

simplify the model by ablating the anti-migratory signals from the live fibroblasts 

and would allow us to compare the migration data with subsequent work addressing 

the regulation of keratinocyte proliferation by TG2 dependent signalling.

Metalloproteinase activity had previously been linked to keratinocyte resurfacing, 

wound contraction, and granulation tissue organization (Mirastschijski et al, 2004). 

Therefore experiments were conducted in the presence and absence of TG2 to 

determine the effects of metalloproteinase inhibition in our keratinocyte migration
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model system. Initial experiments utilising general metalloproteinase inhibitors 

GM6001 and TAPI1 showed keratinocyte migration reduced in the presence of these 

inhibitors on TG2 positive matrix but not on TG2 null matrix (Figures 24/25, page 

171-2). TAPI1, as well as being a general metalloproteinase inhibitor shows some 

specificity to ADAMs, a sub family of metalloproteinases (Daniela et al., 2003). A 

literature search had indicated that keratinocytes express ADAMs 9, 10 and 17 all of 

which have been linked with keratinocyte motility (Toriseva and Kahari, 2008). 

Commercially available inhibitors to ADAM 10 and ADAM 10/17 were obtained 

from GSK, and a migration experiment in the presence of these inhibitors was 

conducted (Figure 28-30, page 178-80). These experiments showed that keratinocyte 

migration is reduced in the presence of inhibitors to ADAM 10 and 17 in the presence 

of endogenous and overexpressed TG2 matrix to a level seen with TG2 null matrix. 

Furthermore, migration in the absence of TG2 remained unaffected by the presence 

of ADAM 10 and 17 inhibitors. This data showed that migration of keratinocytes is 

dependent on metalloproteinases; specifically either ADAM 10 or both ADAM 10 

and 17 in the presence of TG2 but not in its absence. Therefore this suggests ADAM 

10 and 17 are part of the pathway through which TG2 enhances keratinocyte 

motility.

A literature search indicated ADAMs 10 and 17 had been linked with the release of 

EGFR ligands to enhance keratinocyte motility and proliferation (Sunnarbourg et al., 

2002; Lee et al., 2003; Li et al., 2004; Iacob et al., 2008). However IGFR and 

PDGFR have also been previously linked with increased cell motility (Barrientos et 

al., 2008; Iacob et al., 2008). Therefore an experiment was devised where inhibitors
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to EGFR along with IGFR and PDGFR were investigated (Figure 31, page 188). 

Migration of keratinocytes is significantly reduced in the presence of EGFR inhibitor 

on TG2 containing matrix, but not in its absence (TG2 null). Migration in the 

presence of IGFR and PDGFR inhibitors was unaffected in our model system in both 

the presence and absence of TG2. Therefore my data indicated that TG2 stimulated 

enhanced motility keratinocytes is dependent on EGFR signalling.

The next step was to determine whether EGFR ligand release could be affected in the 

migration model. The literature indicated ADAMs 10 and 17 release EGF, HB-EGF, 

TGFa, amphiregulin and neuregulin (Sahin et al., 2004). In order to examine 

potential EGFR ligands in our keratinocyte migration model system, EGF and HB- 

EGF were investigated as both ligands had been linked to cell proliferation, and 

migration (Barradon and Green 1987, Joslin et al., 2007). Initially, TG2 null matrix 

was supplemented with EGF in a 2, 10 or 50ng/ml concentration to determine 

whether EGF could independently of TG2 stimulate keratinocyte migration (Figure 

32, page 185) . Interestingly, migration in the presence of EGF in a TG2 null 

background is stimulated at a 1 Ong/ml concentration. However, an increase of EGF 

to 5 Ong/ml does not increase keratinocyte motility further. This suggests that 

maximal activation of this pathway occurs at 1 Ong/ml which is in line with studies in 

keratinocytes. It has been shown that high doses of EGF-ligand leads to rapid 

internalisation of ligand bound EGFR which will then be degraded in intracellular 

compartments. This may explain reduced affect that the high dose tested in this 

thesis (Wang et al., 2009). Most importantly, this result suggests EGF can support 

enhanced keratinocyte migration independently of TG2 which is known from the
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literature (Wang et al., 2010; Pucinilli et al., 2010). It also shows that TG2 with 

ECM can support enhanced motility and therefore that the observed differences are 

likely due to fundamental changes in the matrix causing differences in cell matrix 

interactions.

The potential contribution of HB-EGF ligand to keratinocyte migration was 

examined using a TG2 positive matrix and the commercially available inhibitor 

CRM197, which blocks this ligand specifically. TG2 positive matrix was chosen 

since EGFR signalling had been shown above to be involved in keratinocyte 

migration using the kinase inhibitor AG 1478. CRM 197 was added initially as a pre­

treatment to an overexpressed TG2 matrix for 16 hours in FAD medium containing 

1% serum before the addition of keratinocyte spheroids. CRM 197 was added at a 3, 

10, 30 and lOOpg/ml concentration (Figure 33, page 187). Inhibition of keratinocyte 

migration appeared at a lOpg/ml concentration and this effect increased as the dose 

of inhibitor increased. This initial result suggested that HB-EGF could be inhibited 

in the co-culture model and that its inhibition by CRM 197 reduced keratinocyte 

motility. However, further experiments using TG2 null and overexpressed TG2 

matrices failed to yield the same result in the presence of FAD containing 1% serum.

Results so far, had indicated that in the presence of TG2, an ADAM (either 

ADAM 10 or 17 or both) was able to facilitate EGFR signalling and thereby enhance 

keratinocyte motility. Further, EGF a known EGFR ligand was able to stimulate 

migration in the absence of TG2. Although our results are inconclusive regarding 

HB-EGF, it would appear that HB-EGF may also be involved in TG2 mediated
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signalling. For example, Stoll et al., 2010 showed human keratinocytes to express 

multiple EGFR ligands and amphiregulin and HB-EGF to be strongly induced in 

human skin culture. Multiple EGFR ligands may similarly be involved in stimulating 

keratinocyte migration in our model. It has been shown that keratinocyte migration 

in scratch wound assays was highly metalloproteinase and EGFR dependent, and 

was markedly inhibited by EGFR ligand antibodies (Stoll et al., 2010). This was 

confirmed by Rahman et al., 2010 where HB-EGF was found to stimulate the growth 

and migration of human oesophageal keratinocytes in a dose dependant manner. In 

this study recombinant HB-EGF was found to stimulate oesophageal epithelial cell 

migration at a 1 and 1 Ong/ml concentration.

In parallel with the migration studies, an examination of TG2 dependent keratinocyte 

proliferation was undertaken using an MTT proliferation assay. This allowed us to 

independently assess the importance of TG2 in EGFR signalling and to test in detail 

the role of individual components in a high throughput assay. TG2 concentration and 

conformation dependence of keratinocyte proliferation was analysed to determine 

whether direct signalling may occur. Currently, it is unknown which conformation 

TG2 assumes in the matrix and whether any of those do stimulate keratinocyte 

migration. Furthermore, it was not known whether TG2 activity was required to 

stimulate keratinocyte proliferation. Pinkas et al, had determined that depending on 

the binding of GTP, calcium or substrate the conformation of TG2 was altered 

(Pinkas et al., 2007). Therefore the present experiments were designed to gain 

insight into this important question.
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The proliferation assay was used to investigate if keratinocytes respond to TG2 and 

whether this was TG2 conformation dependent (Figure 37, page 203). TG2 was 

tested in its native form at different concentrations (up to lOpg/ml) and compared 

with TG2 bound to GTP or GTPyS (a non hydrolysable form) or to TG2-I15 

(inhibited form). Additionally, TG2 stimulated with calcium, to ensure it is in the 

catalytically active conformation was compared. This assay showed that keratinocyte 

proliferation in response to TG2 is conformation dependent. TG2 added in its native 

form stimulates a dose dependent increase in proliferation which was enhanced in 

the presence of TG2 stimulated with calcium. Contrastingly, in the presence of TG2- 

GTPyS no increase in proliferation is seen. This may be because TG2-GTPyS cannot 

be hydrolysed and therefore is stably trapped in a closed conformation unable to bind 

Ca2+. TG2 bound to GTP, undergoes hydrolysis of GTP, causing GDP or GTP to 

dissociate from TG2, potentially allowing the TG2 conformation to change from 

closed to active. Indeed, a low level of stimulation of proliferation was seen at the 

highest dose of lOpg/ml TG2-GTP only. Therefore the results suggest that only TG2 

in its open or catalytically active conformation is able to stimulate keratinocyte 

proliferation.

A further experiment was undertaken to examine whether TG2 cross linking activity 

as well as an open conformation is needed for stimulation of proliferation (Figure 39, 

page 208). Native TG2 was compared with TG2 incubated with a peptide based 

active site targeting inhibitor similar to that described in (Pinkas et al., 2007) and 

developed by Zedira. The cross-linking defective TG2-I15 is trapped in the open 

conformation the results clearly show that no stimulation of proliferation occurs in
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the presence of TG2-I15 i.e. the small amount of stimulation at higher concentration 

is likely being caused by a small amount of TG2 not inhibitor bound that is present 

in the preparation. This result suggests that the cross-linking activity of TG2 may be 

necessary to stimulate proliferation but likely not a cryptic binding site exposed in 

this open conformation.

In order to examine other potential signalling mechanisms regulating keratinocyte 

proliferation, metalloproteinase activity was again examined to determine whether 

their activity was part of the TG2 dependent proliferation pathway. The general 

metalloproteinase inhibitor GM6001 was initially tested in the presence and absence 

of TG2 to determine the effects of inhibiting metalloproteinase activity (Figure 40, 

page 210). This experiment showed only a single dose of GM6001 of 50pM was 

able to reduce proliferation in both the presence and absence of TG2, which 

indicated that metalloproteinase activity could be important in regulating basal but 

not TG2 stimulated proliferation. However, the rate of proliferation seen in this 

experiment under control conditions were close to the maximum and further 

stimulation by TG2 may have been masked. Furthermore the use of DMSO as a 

solvent control can increase shedding of ligands from the cells which may explain 

the increased growth rate (Watanabe et al., 1986). An alternative inhibitor of 

metalloproteinase activity was considered in future experiments outlined below. A 

further experiment to examine the effects of inhibition of ADAM 10 and ADAM 17 

revealed that both inhibitors alone could reduce proliferation (Figure 41, page 213). 

When TG2 was added to the keratinocytes, proliferation was not inhibited in the 

presence of the ADAM 10 inhibitor suggesting ADAM 10 may not be involved in
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keratinocyte proliferation. Contrastingly, proliferation in the presence of the ADAM 

17 inhibitor was inhibited in both the presence and absence of TG2. This would 

suggest that ADAM 17 may be involved in TG2 stimulated keratinocyte 

proliferation. These data are in good agreement with literature data showing 

regulation of EGFR ligand shedding by AD AMI 7 (Fang et al., 1999; Sahin et al., 

2004; Cao et al., 2006; Koivisto et al., 2006; Stoll et al., 2010; Puccinelli et al., 

2010).

In order to confirm that EGFR signalling was initiated by TG2 treatment, 

keratinocytes were seeded with 4 growth factor receptor inhibitors in the presence 

and absence of TG2 (Figure 42/3 pages 216-218). Proliferation was stimulated by 

TG2 and only the EGFR inhibitor blocked TG2 dependent enhanced proliferation, 

while inhibitors for IGFR, PDGFR and receptor FGFR were ineffective. These 

results collectively indicate that EGFR may also be involved in TG2 dependent 

signalling regulating keratinocyte proliferation as well as inducing migration as 

shown earlier. A critical role of EGFR is in line with the current literature (Xu et al., 

2004; Koivisto et al., 2006; Mendelson et al., 2010)

So far my data has indicated that ADAM 17 releases a ligand to bind to the EGFR to 

promote keratinocyte proliferation. An attempt was made to determine which EGFR 

ligand was released by ADAM 17 and regulating proliferation. Blocking antibodies 

to EGF, HB-EGF and TGFa (another EGFR ligand known to be released by 

ADAM 17) were tested individually, or in combination to investigate whether they 

could block TG2 mediated enhanced proliferation HB-EGF (Stoll et al., 2010), EGF
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(Puccinelli et al., 2010) and TGFa (Poindester et al., 2010) have all been previously 

linked with enhanced keratinocyte proliferation. Blocking antibodies were used to 

block the activity of all 3 EGFR ligands at the same time and the data showed 

proliferation to be reduced to the rate seen in the presence of the EGFR tyrosine 

kinase inhibitor both in the presence and absence of TG2 (Figure 47 page 227). 

Inhibition of proliferation under these conditions shows that one or more of these 

ligands is involved in TG2 dependent keratinocyte proliferation. Antibodies were 

added in various combinations to determine if proliferation decreased in the presence 

of particular antibodies. The treatment with blocking antibodies to HB-EGF with 

EGF showed 50% less proliferation then control IgG in the presence of TG2. 

Proliferation seen with antibodies to EGF and TGFa combined gave a growth rate 

40% less than control IgG. The highest growth rate was seen in the presence of 

antibodies targeting HB-EGF and TGF-a where a proliferation rate 10% less than 

control IgG was seen. This suggested that TGFa is the least effective or least 

abundant ligand used in EGFR signalling in keratinocytes. TGFa has nevertheless 

been previously linked with keratinocyte proliferation and so cannot be discounted 

from EGFR signalling in keratinocytes (Stoll et al., 2010; Poindester et al., 2010). 

Due to the reduction in proliferation seen in the presence of all 3 blocking antibodies 

this shows that a degree of ligand redundancy was occurring in keratinocytes which 

preferentially use EGF or HB-EGF for signalling (Rahman et al., 2010; Stoll et al., 

2010). This is consistent with the overlap in ligand specificity of the EGFR and also 

the ability of ADAM 17 to process the relevant precursors and release the soluble 

ligands for binding to EGFR.
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In addition to the blocking antibody studies CRM 197, a HB EGF inhibitor was tried 

at different concentrations in the presence and absence of TG2 to determine its effect 

if any on proliferation (Figure 46, page 225). CRM197 failed to inhibit proliferation, 

which agrees with the data showing a lack of inhibition in the migration assay. The 

blocking antibodies showed that three ligands contribute to the increase in 

proliferation; therefore we can expect that any inhibitory activity of CRM 197 alone 

would be marginal.

So far my work has shown that ADAM 17 can release an EGFR ligand to bind to the 

EGFR to stimulate both keratinocyte proliferation and migration. However, the 

mechanism regulating activation of ADAM 17 in a TG2 dependent manner had not 

been addressed. In 2006 Richard O’Hynes group identified an orphan G-protein 

coupled receptor, GPR56, as an extracellular binding partner for TG2 (Xu et al., 

2006). There are a number of well characterised cases where a GPCR is responsible 

for assembling a signalling platform leading to activation of ADAMs. We therefore 

speculated that the interaction of TG2 with GPR56 may initiate the signalling 

cascade to drive TG2 mediated migration and proliferation of keratinocytes by 

potentially activating ADAM 17. Therefore an attempt was made to determine 

whether GPR56 could be identified in keratinocytes (Figure 49, page 245). Western 

blotting of cell lysates was undertaken to determine if GPR56 was expressed in 

keratinocytes at 1, 6, 12, 24 and 72 hours after seeding and if its protein expression 

changed over that time. This experimental setup was chosen as it was likely that a 

GPCR regulating motility was not constitutively expressed and may not therefore be 

present in confluent cultures. GPR56 protein appeared to be present in keratinocytes
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1 hour after seeding and continued to be seen until 24 hours. By 72 hours protein 

expression appeared down regulated. Multiple bands were identified by the R and D 

antibody to GPR56 including a broader band of a larger than published size (for 

recombinant protein). This was thought to be the result of glycosylation of GPR56 

(Kim et al., 2010). Further protein bands seen at lower molecular weights on the blot 

were thought to be the processed forms of GPR56. Kim et al, 2010 observed that 

cell lysates from different splicing variants of GPR56 produced different protein 

banding patterns. However, GPR56 processing in its GPS domain is thought to be 

important for its trafficking and cell surface expression (Jin et al., 2007; Kim et al., 

2010). With the exception of the low Mr band (40kDa), the bands observed likely 

correspond to receptor with varying extent of glycolysalation and GPS cleaved 

extracellular domain.

These experiments confirmed that GPR56 can be expressed by keratinocytes. 

Furthermore, this indicated that it may be present only in activated motile
I

keratinocytes. This was further confirmed by Ca shift experiments which showed 

that induction of keratinocyte differentiation did not induce GPR56 expression 

(Figure 50, page 248) Therefore, we evaluated the expression of GPR56 after 

wounding of a keratinocyte monolayer. In order to evaluate whether GPR56 

expression was localised to the leading edge of a scratch wound immunolocalisation 

experiments were performed (Figure 51, page 251). The data showed that GPR56 is 

expressed at low level in the keratinocyte monolayer but upregulated in cells 

migrating from the edge of the scratch wound. This may not entirely reflect the result 

seen by Western blot which suggests GPR56 may be released or degraded by
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keratinocytes after reaching confluencency after 72 hours. Therefore further 

experiments are needed which double label the N and C-terminal of GPR56 to 

understand receptor upregulation and processing that may occur upon wounding.

In order to evaluate the contribution of GPR56 in keratinocyte migration siRNA 

transfections were designed to ablate its expression. For this purpose CHO cells 

expressing GPR56 were transfected with 2 variants of SiRNA to determine if GPR56 

could be successfully knocked down. CHO cells transfected with SiRNA to GPR56 

showed successful knockdown of GPR56 by variant 1 SiRNA (Figure 52, page 254). 

Therefore, keratinocytes were transfected with the same SiRNA, but unfortunately 

this was unsuccessful (Figure 53, page 256). It is notoriously difficult to achieve 

high levels of transfection of keratinocytes using conventional lipid based 

transfection reagents. Subsequent transfection of keratinocytes with GPR56 SiRNA 

using an alternative reagent failed to yield any reduction in GPR56 protein 

expression in these cells and unfortunately time constraints did not allow me to 

optimise transfection conditions or use viral delivery systems to ablate GPR56 in 

keratinocytes.

GPR56 is a member of the adhesion GPCR family, a secretine like protein, which 

may maintain the balance between cell adhesion and detachment during cell 

migration (Bjamadottir et al., 2004; Iguchi et al., 2008). GPR56 expression has been 

studied in both the heart and brain but transcripts are actually present in most tissues 

(UNIGENE data, NCBI, NIH) (Iguchi et al., 2008). Mutations within the 

extracellular as well as intracellular domains of GPR56 have been recently identified 

in patients with bilateral frontoparietal polymicrogyria (BFPP). These mutations
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include frameshift, splicing and point mutations, and they affect neuronal progenitor 

proliferation and migration to the frontal cortical region of the brain during early 

human development (Kim et al., 2010). These observations are also apparent in the 

GPR56 knock out mouse which also displays a severe malformation of the rostral 

cerebellum (Koirala et al., 2009). These defects are thought to result from defects in 

basement membrane assembly. TG2 has been shown to be a basement membrane 

constituent also in the brain (Aeschlimann and Paulsson, 1991). Thus, an interaction 

between TG2 and GPR56 may not only be important to regulate keratinocyte 

motility but may also contribute to establishment of a new basement membrane.

Final Words.

This thesis has attempted to determine the relationship of TG2 and various other 

matrix related proteins to extracellular remodelling and wound healing. It has 

concentrated on the role that TG2, Metalloproteinases, growth factor ligands and 

receptors have on the behaviour of keratinocyte cells seeded on a fibroblast derived 

ECM. This thesis has delineated a mechanism for TG2 mediated stimulation of 

keratinocyte motility. The release of an EGFR ligand by ADAM 17 allows 

signalling through the EGFR to take place. Experiments which would further 

substantiate this pathway would be to establish if phosphorylation of the EGFR 

occurs and affects downstream signalling. EGFR phosphorylation could be 

examined by immunoprecipitation of the receptor following TG2 treatment. 

Alternatively, downstream ERK phosphorylation leading to MAPK activation could 

be investigated.
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The experiments in this thesis were carried out using N-tert immortalised human 

keratinocytes and TG2 transfected fibroblasts (human skin). While both of these cell 

lines are good models further experiments to examine the effects of using primary 

fibroblasts derived from a TG2 knock out mouse would be used to confirm the role 

of TG2 in this signalling pathway. TG2 null mice have been shown to have defective 

healing of excision skin wounds and it would be interesting to examine whether this 

relates to the pathway outlined in this thesis.

GPR56 could also be investigated further. Transfection of SiRNA to inhibit its 

activity had proven unsuccessful so far in keratinocytes; this transfection could be 

optimised to cause ablation of GPR56 in the keratinocytes. Unpublished data has 

indicated that over expression of GPR56 causes an increase in EGFR ligand 

shedding (Gaweska and Knauper, unpublished, 2010) providing further support of a 

direct link between GPR56 and EGFR signalling. A successful knockdown could 

then directly prove GPR56 involvement in TG2 dependent migration and 

proliferation.

Finally, this thesis has shown that TG2 can stimulate keratinocyte migration and 

proliferation through activation of the EGFR via EGFR ligand release by ADAM 17 

shedding. This has indicated a novel function of TG2 in instigating this signalling 

cascade and may in future contribute to better understanding of the process of re- 

epithelialisation in wound healing.
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ADAM10/17.

Motility and 
Growth

TG2 Matrix

Figure 56:Summary Diagram of the Thesis.
The results chapters have indicated that in the presence of TG2 ADAM 10 or 17 is able to 
release an EGFR ligand, potentially EGF or HB-EGF which binds to the EGFR and stimulates 
kerationcyte migration. The linking factor between TG2 and ADAM17 is not yet known, 
however it is possible to speculate that GPR56 present on the cell surface may be the linking 
factor which promotes kerationcyte motility. This thesis has demonstrated a novel function of 
TG2 is controlling this signalling cascade however results in this thesis are by no means 
exhaustive, further experiments could be conducted which would lead to better understanding 
of the process of re-epithelialisation in wound healing.
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