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ABSTRACT

Real-time and bandwidth problems prevail whenever medical images are
transmitted through internet or wireless network, especially in a low speed
connection environment. These problems can not be solved simply by us-
ing lossy compression algorithms, because medical images typically contain
a huge amount of important diagnostic information and therefore, distor-
tion can not be allowed. A novel adaptive source-channel coding scheme
for progressive transmission of medical images with a feedback system is
therefore proposed in this dissertation. The overall design includes Discrete
Wavelet Transform (DWT), Embedded Zerotree Wavelet (EZW) coding,
Joint Source-Channel Coding (JSCC), prioterization of region of interest
(Rol), variability of parity length based on feedback, and the corresponding
hardware design utilizing Simulink. The DWT and EZW are appropriate
embedded codings selected for progressive transmission and compression,
due to their efficiency and ease of implementation in hardware design. The
JSCC can achieve an efficient transmission by incorporating unequal error
protection(UEP) and rate allocation. The radius of the Rol and its location
within the image can be selected by the user through a user friendly interac-
tion interface designed to enable users to see the area of particular interest
in an error-free state in an early stage of transmission. An algorithm is also
developed to estimate the number of erroneous data in the receiver. This

number represents the practical transmission channel situation in terms of

iii
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noise. The algorithm detects the address in which the number of symbols
for each subblock is indicated, and reassigns an estimated correct data ac-
cording to a decision making criterion, if error data is detected. The evalu-
ated error message will be sent back to the transmitter through the feedback
system and the parity length will be adjusted automatically to provide ad-
equate protection for the next transmission of data. The proposed system
has been designed based on Simulink which can be used to generate netlist
for portable devices. A new compression method called Compressive Sens-
ing (CS) is also revisited in this work. CS exhibits many advantages in
comparison with EZW based on our experimental results. In industry, one
standard that is currently used is the Digital Imaging and Communications
in Medicine (DICOM) standard which comprises a file format definition
and a network communications protocol. DICOM JPEG2000 is an efficient
coding standard for lossy or lossless multi-component image coding. How-
ever, it does not provide any mechanism for automatic Rol definition, and
is more complex compared to our proposed scheme. The proposed system
significantly reduces the transmission time, lowers computation cost, and
maintains an error-free state in the Rol with regards to the above provided
features. A Matlab-based TCP/IP connection is established to demonstrate
the efficacy of the proposed interactive and adaptive progressive transmis-
sion system. The proposed system is simulated for both binary symmetric
channel (BSC) and Rayleigh channel. The experimental results confirm the

effectiveness of the design.
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Chapter 1

INTRODUCTION

Telemedicine is a rapidly developing tool for transferring clinical informa-
tion through phone, Internet or other networks for the purpose of consulting
or facilitating medical procedures or examinations. This requires an effi-
cient means of signal, image, and data communications. A simple scenario
would be a two health professionals discussing a case over the telephone,
whereas a complex case would be the use of satellite technology and video-
conferencing equipment to conduct a real-time consultation between medi-
cal specialists in different countries [6]. Telemedicine is particularly bene-
ficial for populations living in isolated communities and remote regions of
the world. It is currently being applied in virtually all medical domains [6].

Real-time telemedicine can be as simple as a telephone call or as com-
plex as robotic surgery. It requires the simultaneous presence of two in-
dividuals and a communications link between them that allows a real-time
interaction to take place. Video-conferencing equipment is one of the com-
mon forms of technology used in synchronous telemedicine. There are
also peripheral devices which can be connected to computers or the video-
conferencing equipment in order to assist an interactive examination. For
instance, a tele-otoscope allows a remote physician to see inside a patient’s
ear; a tele-stethoscope allows hearing the patient’s heartbeat remotely. Med-

ical specialties beneficent to this kind of consultation include psychiatry,
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family practice, internal medicine, rehabilitation, cardiology, pediatrics, ob-
stetrics, gynecology, neurology, speech-language pathology and pharmacy
[7].

Store-and-forward telemedicine involves acquiring medical data (such
as medical images, biosignals) and then delivering this data to a doctor or
medical specialist at a convenient time for an offline assessment. It does not
require the presence of both parties at the same time. Dermatology, radiol-
ogy, and pathology are specialties conducive to asynchronous telemedicine.
A properly structured Medical Record, preferably in electronic form, should
be a component of this transfer [7].

Generally, occupying a space or bed in a hospital by a patient is not fa-
vorable unless for urgent or continuous medical care. Home care telemedicine
allows remote observation and care of a patient and thereby circumvents the
inconveniences to both patients and medical departments. These require
newer systems with higher frequency bandwidth capabilities. Such systems
can also be employed for disease management, post-hospital care, and as-
sisted living [6].

As a result of progress in biomedical electronics, various medical imag-
ing methods, such as Ultrasound (US), Magnetic Resonance Imaging (MRI),
Functional Magnetic Resonance Imaging (fMRI), Computerized Tomogra-
phy (CT), Positron Emission Tomography (PET), Single Photon Emission
Computed Tomography (SPECT or SPET), and digital X-ray image are
now utilised to assist physicians. However, such medical imaging meth-
ods give rise to management, storage, and delivery problems, owing to the
huge amount of transmitted medical images. To this end, the development
of a highly reliable, high speed, and efficient transmission system for medi-

cal image is necessary. As medical images typically contain large amounts
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of crucial clinical data, no error generated over the transmission channel
can be tolerated. Advanced methodologies for gaining distortionless recon-
structed images, in fairly acceptable transmission courses, make it possible
to transmit a medical image over a noisy channel. However, even by utiliz-
ing current high-speed broadband connections, transmission of medical im-
ages is not entirely free of noise or artifacts. Although using more parity bits
for channel coding enables greater data error detection and correction, the
transmission time and the complexity of the channel coding considerably
increase. Given the requirements for distortionless reconstructed images,
shorter transmission time and low complexity, an appropriate compressor,
channel coder and variable length parity code against channel noise can

meet this aim.

1.1 Medical Images

Medical imaging refers to noninvasive techniques and processes used to pro-
duce images of the human body for clinical purposes or medical science.
Generally, scanners capture Ultrasound, X-ray or magnetic field signals and
then convert those data into images through reconstruction algorithms to
generate various medical image modalities. The DICOM standard was cre-
ated by the National Electrical Manufacturers Association (NEMA). Its aim
is to allow the distribution and viewing of medical images from various
medical modalities. A DICOM file contains a header and the image data.
The DICOM image data can be compressed by either lossless or lossy al-
gorithms to make best use of disk space and channel bandwidth and is a
common standard. Several popular medical image modalities are briefly

introduced in the following sub-sections.
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1.1.1 Digital Radiography

X-rays are the oldest, most basic form of medical images, and the most fre-
quently used. X-ray equipment is relatively inexpensive, easy to use and
widely available in hospitals. Digital imaging techniques were applied to
X-rays in the 1980s. Since then, digital X-ray sensors have been used in-
stead of traditional photographic film. Digital X-ray technique has many
advantages over traditional film-based X-ray, such as time efficiency due to
bypassing of the chemical processing, the ability to digitally transfer and

enhance images, and radiation reduction.

1.1.2 Ultrasound

Ultrasound imaging is based on principles of sonar and has been used for
medical diagnosis since the 1960’s. Ultrasound imaging in medicine is used
to detect changes in the appearance of organs, tissues, and vessels or detect
abnormal masses. Ultrasound scan can be repeated as often as necessary be-
cause of no known harmful effects on humans. Ultrasound is the preferred
imaging modality for the diagnosis and monitoring of pregnant women and
their unborn babies. In the ultrasound system, a small device called a trans-
ducer generates a stream of inaudible, high frequency sound waves into the
body. Different tissues reflect these sound waves differently, therefore, the
transducer receives varying sound waves back from tissues. These waves
can be turned into real-time pictures with the use of computers and recon-
struction software. Ultrasound imaging is a relatively inexpensive, faster
and easier to use than other imaging methods, and is also excellent for non-

invasive imaging.
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1.1.3 Computerized Tomography

Computerized tomography (CT) is a medical imaging method which em-
ploys tomography. CT scan is a painless, noninvasive diagnostic procedure
that uses X-ray equipment to take a large number of scans from the body
from different angles. The images are basically the results of X-ray absorb-
tion by the body and the image reconstruction algorithms embedded with
the imaging systems. CT scans can provide far more detailed images than
ordinary X-rays since a series of X-rays are taken of the body tissues at
different angles. With the aid of a computer, each cross-sectional image of
the body is added together to create a tomogram. Such scans provide good
pictures of soft tissues which do not show on ordinary X-ray diagraph. CT
scans are performed to analyze the internal structures of various parts of the

body.

1.1.4 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear medicine imaging tech-
nique used to generate a three-dimensional image. It is noninvasive and
helps physicians to examine the heart, brain, breast, lung and other inter-
nal organ. The system detects pairs of gamma rays emitted indirectly by
a positron-emitting radionuclide (tracer), which is introduced into the body
on a biologically active molecule. A camera generates images which show
the human body’s biological functions and reveal the mysteries of health
and disease. All the body’s organ systems can be captured within only one
image. Before imaging, a radiotracer is injected into the organ or area of
the patient’s body which is being examined. The PET scanner works to-
gether with a computer to record the amount of radiotracer absorbed by the

body and to reconstruct the signals from the gamma rays (given off by the
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radiotracer) into images. These images provide details with regard to both
the structure and function of organs and tissues. Today, most PET scanners
consist of both a PET and CT scanner, since such combination provides

more accurate diagnoses than when these scanners are used separately.

1.1.5 Single Photon Emission Computed Tomography

Single Photon Emission Computed Tomography (SPECT, or SPET) is an-
other nuclear medicine tomographic imaging technique which uses gamma
rays. A SPECT scan is a type of nuclear imagiﬁg test that shows how blood
flows to tissues and organs. SPECT is similar to PET in its use of radioactive
tracer material and detection of gamma rays. However, it is able to provide
true 3D information, typically presented as cross-sectional slices through
the patient, but which can be freely reformatted or manipulated as required.

The basic SPECT technique requires the injection of a gamma-emitting
radioisotope into the patient’s blood vessels. SPECT imaging is performed
by using a gamma camera to acquire multiple 2-D images from multiple
angles and then generate three-dimensional data by a tomographic recon-
struction algorithm. This data may then be manipulated to show thin slices
along any chosen axis of the body, similar to those obtained from other to-
mographic techniques, such as MRI, CT, and PET. SPECT scans, however,
are significantly less expensive than PET scans, in part because they are able
to use longer-lived more easily-obtained radioisotopes than PET. A SPECT
scan is primarily used to view how blood flows through arteries and veins in
the brain. Tests have shown that it might be more sensitive to brain injury
than either MRI or CT scanning, because it can detect reduced blood flow

at the injured sites.



Section 1.1. Medical Images 7

1.1.6 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) has been in use since the beginning of
the 1980s. An MRI scanner uses a strong magnetic field and radio waves
instead of X-ray radiation to create detailed digital images. The radio waves
are 10,000 to 30,000 times stronger than the magnetic field of the earth and
are sent through the body. The radio waves knock the protons from their
position. When the burst of radio waves stops, the protons realign back into
place and emit radio signals. The protons in different tissues of the body
realign at different speeds. The scanner picks up the radio signals and a
reconstruction algorithm converts them into images. These images are based
on the location and strength of the incoming signals and are displayed on a
computer screen as two-dimensional or three-dimensional images. Before
scanning, as with other medical imaging techniques, a special dye is injected
into the blood vessels to make the scans clearer. The drawbacks are that the
scans are very noisy and can be affected by movement. Using the MRI
scan, it is possible to take image slices from various angles, whereas the CT
scan only shows horizontal slices. Moreover, since CT and MRI scans are
sensitive to different properties of the tissue being scanned, the appearance
of the images obtained by the two techniques differs significantly. In CT,
X-rays must be blocked by some form of dense tissue to create an image.
Therefore, the image quality when looking at soft tissues is poor. MRI
on the other hand, has much higher detail in the soft tissues. But, in the

examination of bone, CT provides more detailed pathological information.

1.1.7 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is sequentially taking MRI

scans of the same subject. It measures the hemodynamic response related
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to neural activity in the brain or spinal cord of humans. fMRI is based on
the increase in blood flow to the local vasculature that accompanies neural
activity in the brain. It is one of the most recently developed forms of neu-
roimaging. Since the early 1990s, fMRI has come to dominate the brain
mapping field due to its relatively low invasiveness, absence of radiation ex-
posure, and relatively wide availability. fMRI as a technique to image brain
activity has several advantages over PET, for example, the signal does not
require injections of radioactive isotopes, and the total scan time required
is shorter. However, the expected resolution of PET images is much larger

than the usual fMRI pixel size.

1.1.8 Other imaging modalities

Electrical Impedance Tomography (EIT) is a noninvasive and inexpensive
method which injects currents with different waveforms, frequencies and
spatial patterns through electrodes on a object’s surface, and measuring the
resultant potentials developed on the same or other electrodes. The mea-
sured electrode voltages are used to calculate an image of the electrical ad-
mittance distribution within the object [8].

Optical coherence tomography (OCT) is a noninvasive cross-sectional
imaging technique in biological systems that is similar in principle to ultra-
sound, but with superior resolution. It relies on exposing a sample to a burst
of light and then measuring the reflective response from different depths and
is therefore capable of scanning non-invasively beneath the surface. The
ability to detect the positional delay of light reflecting from a tissue sample
is at the heart of OCT [9].

There are a number of other medical imaging modalities used for various

applications such as angiography, oximetry, intravascular imaging, and bone
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dosimetry (radio-isotope imaging).

1.2 Research Approach

In the Picture Archiving and Communication System (PACS), various med-
ical images based on DICOM standard are archived together and delivered
for the purpose of sharing image information. However, the images are
large and have different information contents. Moreover, archiving and
transmission of information of no interest within these images present a
computational challenge. In addition, the transmission channels (mainly
wireless), introduce nonstationary noise and multi-path interferences to the
reconstructed data in the receiver. Therefore, designing an efficient system
for transmission of such images is a big challenge for researchers and en-
gineers. In this research, the DWT, EZW, and Reed-Solomon (RS) coder
have been adopted for JSCC. A blind technique was used to evaluate the
status of the channel noise in the receiver part. A feedback scheme was also
developed. Such scheme sends the noise-level over practical transmission
channel back to the transmitter in order to appropriately adjust the parity
length for the next transmission. An efficient communication system adopts
a channel coding scheme which not only emphasizes the Rol through a pro-
gressive transmission strategy, but also compensates for the effect of channel
noise through an efficient feedback system. The source compression rate is
influenced by the proximity of surrounding subblocks from the Rol centre,
which includes significant diagnostic information. Also, the channel cod-
ing scalability is affected by both the Rol and the channel characteristics.
Accordingly, both the source compression rate and the parity code length
are jointly adapted to the Rol, channel characteristics, and the required bi-

trate or channel capacity. The experimental results verify the effectiveness
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of the design. Using the proposed system an effective transmission of large
medical images through narrowband mobile communication channels can
be achieved.

During the course of this research, I attended several courses, confer-
ences, workshops in order to acquire the background knowledge needed to
carry out my research. I also consulted design engineers involved in Math-
works regarding how to use the embedded Matlab function and Simulink
HDL coder in order to convert the developed algorithm in Matlab codes

into HDL codes. The main objectives of my research were therefore to

¢ understand the principles of JSCC, channel models, efficient image

transmission system, and favorably implementing in telemedicine.

o review the current research on the progressive transmission of medical

images.

e develop an effective source-channel coding technique, a blind tech-
nique for evaluating the level of noise in the channel, and a feedback
scheme to form an interactive and adaptive transmission system in

order to progressively transmit the images.

e understand the embedded Matlab function and Simulink HDL coder
and Altera FPGA in order to implement a real-time progressive sys-

tem.

1.3 Structure of the Thesis

Chapter 2 provides a comprehensive review of the literature on the progres-
sive transmission of images, and focuses on the principles of JSCC, and

progressive transmission. To implement the necessary hardware, the Haar
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Wavelet Transform (HWT) and EZW were adopted for source coding be-
cause those methods are suitable for implementing hardware into a portable
device and FPGA chip. The RS codes utilized here are block-based error
correcting codes and are widely used for current communication systems.
The RS(n,k) codes correct the symbol error, not the bit error, and are par-
ticularly useful in combating of random and burst errors. The JSCC and
UEP scheme in this approach tries to optimize the rate-distortion function
to achieve an efficient transmission.

The compression part of the proposed scheme is similar to that of JPEG2000’s.
However, unlike JPEG2000’s scheme, our scheme provides variable parity
length for an adaptive channel coding, which replaces EBCOT with EZW
for compression and progressive image transmission.

Chapter 3 presents the idea developed to form an interactive and adaptive
progressive transmission system. In most cases, the physician desires to in-
spect only one part of the transmitted image, therefore, the emphasis on the
Rol is to transmit the desired image part as distortionless as possible and to
speed up the transmission. The practical transmission channels are complex
and therefore the conditions should be examined before the development of
the transmission system. Generally, errors are detected in the receiver end.
A feature called Hybrid Automatic Repeat reQuest (HARQ) ask for retrans-
mission of erroneously received data and tradeofT bit-allocation between the
source and channel codes according to a rate-distortion optimization policy.
However, many studies on tradeoff for bit-allocation between source codes
and channel codes assume that the noise-level in the channel is known in
advance. Therefore, the feedback signal is determined based on the known
noise levels and the constraints set by the user. A blind technique is intro-

duced in this chapter to evaluate the actual channel noise and generate a
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feedback to the transmitter. Accordingly, the appropriate parity length is a
function of data location and feedback message.

Chapter 4 briefly introduces a new source coding called Compressive
Sensing (CS). A Hierarchical Alternative Least Squares (HALS) based CS
is used effectively for adaptive selection of the wavelet coefficients and non-
linearly thresholding the transform coefficients. HALS based CS provides a
sparse signal x € R’ with a few significant samples (m << J nonzero coef-
ficients) which can be recovered almost perfectly using a lower dimensional
signal. The performance of CS and EZW are also compared in this chapter.

The overall system design, experimental results, analysis and compar-
ison are presented in Chapter 5. The system block diagram consists of
HWT/IHWT, EZW/IEZW, RS encoder/decoder, and the feedback strategy.
Several figures and tables are provided to demonstrate the performance of
the developed algorithm. The first transmitted image is the blur background
image. The physicians use the computer mouse to point to the centre of
Rol, and then the values of coordinate are sent back to the transmitter by
the receiver. The Rol size is expanded gradually in the next stages. The
variability in parity length significantly improve performance of the system.

The hardware implementation is described in Chapter 6. The design
technique is proved to speed up the IC design process. Conventionally, there

are three steps in the IC design process:
e Algorithm Development: Matlab, Simulink, C or C++ language,- - -

e Design and Simulation: VHDL, Verilog, Modelsim, Synopsys VCS,

Cadence,- - -
e Prototyping and Implementation: ASIC, FPGA, CPLD.

However, the design process above has a drawback; the developed algorithm
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needs to be designed by an algorithm developer and a separate hardware de-
scription language (HDL) is required. We therefore adopt the embedded
Matlab function and Simulink HDL coder to achieve the overall system de-
sign. The advantage of this design method is that only Matlab language is
used. The new system design process can reduce the design cost and shorten
the time to market.

The conclusions drawn from the research and future research directions

are presented in Chapter 7.



Chapter 2

PROGRESSIVE
TRANSMISSION OF IMAGES:
LITERATURE REVIEW

Transmission of medical images for medical consultation, diagnosis, treat-
ment, or training purposes requires highly reliable high-speed communica-
tion systems. Development of an efficient and reliable system for image
archival and transmission poses a serious challenge for researchers due to
the enormous amount of medical image data, limitation in bandwidth, and
the need to display the desired images as rapidly as possible. To achieve effi-
ciency, source coding techniques are adopted. Such techniques can be loss-
less or lossy. In lossless data compression, the source coding theorem [10]
states that the entropy H(x) of a source x is the minimum rate at which a
source can be encoded without information loss. The definition of entropy

of X is the following:

H(X) = ) p(e)I(x) == ) p(x;)log, p(x;)
i=1 i=1

where n is number of symbols in X, b is the base of the logarithm used,

p denotes the probability mass function of X. If p(x;)=0, the value of the

14
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correspbnding summand 0 log, 0 is taken to be 0, which is consistent with
the limit:

lim p(x;)log p(x;) = 0
p—0*

In lossy data compression however, the reconstructed data is not exactly
the same as the original data. In other words, some amount of distortion D is
tolerated. There are many methods for error-free coding such as run-length
encoding (RLE) [11], Huffman coding [12], and arithmetic coding [13].
Techniques such as those based on discrete cosine transform (DCT) [14],
fractal transform [15], wavelet transform (WT), EZW [16], set partitioning
in hierarchical trees (SPIHT) [17], and JPEG [18] are lossy algorithms. The
JPEG2000 [19] includes both lossy and lossless schemes. For reliable trans-
mission, error correction techniques are used. Although the channel coding
theorem states [20] that for error-free transmission over a channel with ca-
pacity C., the transmission rate needs to be smaller or equal to C.,. The

definition of C,, is the following:
S
Cq = Blog,(1 + ﬁ)

where B is the bandwidth of the transmission channel in hertz, S and N are
power of signal and noise, respectively.

In practice, channels always attain an arbitrarily small probability of
error. Channel coding techniques are used to reduce the probability of error
below any predetermined level.

The transmission of images over noisy channels is of fundamental im-
portance in many applications and is still an unsolved problem for many
types of channels. The channel code (referring mostly to the forward error

correction code) is used to detect and correct the corrupted signals caused by
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noisy channels. The Hamming [21], cyclic redundancy check (CRC) [22],
Reed-Solomon (RS) [23], BCH [23], rate-compatible punctured convolu-
tional (RCPC) [24], low-density parity-check (LDPC) [25] and turbo codes
[26] are widely used for channel coding. To achieve an efficient and reliable
transmission system, separately designed source and channel coders are not
suitable in practical applications, due to several drawbacks such as cater-
ing for infinite complexity and delay, and the invalidity for nonergodic and
multi-user channels. Joint source-channel coding (JSCC) is therefore used
instead of the current applications [27-34]. The aim of a JSCC approach
is to optimally allocate bits to both source and channel coders to minimize
total distortion while satisfying a constraint on the total rate [35].

The Digital Imaging and Communications in Medicine (DICOM) tech-
nique has been developed as a standard for the distribution and viewing of
medical images from different modalities. The JPEG 2000 has been adopted
as a standard compression component in the DICOM standard and is the ul-
timate state of the art image compression algorithm which includes both
lossy and lossless schemes. The DWT, exploitation of Rol, quantization,
and EBCOT (Embedded Block Coding with Optimization Truncation of the
embedded bitstream) [36], rate-allocation, and progressive transmission al-
gorithms are important technologies used in the JPEG 2000. EBCOT is the
compression engine of JPEG2000 and includes context model arithmetic
coding and post-compression rate allocation. These algorithms make the
JPEG 2000 more robust against communication error compared to other ex-
isting compression algorithms. In [37], the authors describe each feature in
detail and provide many experimental results to show the advantages of the
JPEG2000.

Progressive image transmission (PIT) is an image transmission tech-
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nique based on embedded source codes that allows the image to be trans-
mitted in several successive stages, and is particularly useful for low rate
channels. PIT can be achieved by first transmitting a low-resolution ap-
proximation of the image, then sending further information to progressively
improve the quality of the reconstructed image. PIT also allows the receiver
to interrupt the communication as soon as the necessary information is rec-
ognized, or the necessary quality is attained. However, even by having one
error bit at the entropy decoder, the reconstructed image will be profoundly
affected [38].

Many researchers have therefore proposed various methods such as JSCC,
rate-distortion (R-D), unequal error protection (UEP), and the Rol-based
technique in combination with PIT to achieve a reliable and efficient im-
age transmission. In [39], the authors adopted EZW, bit-rate constraint, and
Rol-based techniques to achieve a PIT scheme for medical image transmis-
sion. They showed several successive reconstructed images with/without
variable compression rates. Also, according to experimental results and a
comparison of EZW and JPEG2000 algorithms, the JPEG2000 achieved
better PSNR in the lower compression ratio (CR) than EZW, whereas EZW
had better performance in the higher CR. The proposed scheme also pro-
vides similar data protection for all transmission data. Generally, the data
in the Rol has to receive higher data protection because any error is not tol-
erated in the data protection strategy based on the Rol. Similar work was
carried out by [40]. In [41], although the authors provide a UEP scheme
in the proposed PIT system, the decoding was stopped and the image was
reconstructed from the correctly decoded packets if the decoder detected an
error.

Generally, any error in the reconstructed medical image can not be toler-
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ated, because medical images require a large amount of precise information,
which can be difficult to achieve under low rate channel condition. There-
fore, an image transmission system which is suitable for medical purposes
should include lossless or lossy, rate variability, progressive scheme, and
efficient rate-allocation features.

The goal of our proposed system is to develop a progressive medical im-
age transmission system for portable devices. In developing the proposed
scheme, we not only attempt to incorporate all the features previously imple-
mented, but also aim to develop a less complex and more flexible system.
Although EBCOT is a state-of-the-art image compression algorithm, it is
very complex and occupies over half of the computation time in the coding
process and is therefore memory intensive [42]. For ease of implementation
in portable devices and to take into account lower hardware circuit com-
plexity, we adopt the Haar transform and EZW as the source compression
instead of EBCOT in order to reduce the memory size and hardware cost,
while keeping all features similar to the JPEG2000. The schemes for both
source and channel codings mentioned above are combined together as de-

scribed in the following steps to achieve the proposed system.

e The DWT and EZW are used to compress images and allow grad-
ual streaming and reconstruction of images as for progressive trans-
mission. They are easy to implement and are therefore suitable for

portable devices.

e Conventional RS channel coding adds sufficient redundancy to the
data to protect it during transmission and to effectively detect and

correct the corrupted messages.

e The UEP, Rol, feedback and JSCC scheme are combined together to



19

make an efficient progressive image transmission system possible.

o The selectivity of the Rol is totally interactive and can be defined by

the user in the receiver. This makes the method favorable to clinicians

who require fast access to particular information embedded in the Rol.

e An algorithm is proposed for estimating and providing the informa-

tion about the noise-level in the transmission channel. Based on the

feedback, an appropriate data protection can be provided for the next

transmission.

The overall proposed JSCC system is shown in the block diagram in Fig.

2.1.
State of channel
The location of the Rol
Size of the Rol
v y
OIriginal Channel
mage » DWT EZW Encoder
(RS)
: : : Transmitter
I
I
R tructed
“?;chc ‘ l ‘ Channel
IDWT Inverse EZW Decoder
(RS)
Receiver

Figure 2.1. Block diagram of the proposed JSCC system.

Channel
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Figure 2.2. (a) Fourier basis functions, time-frequency tiles, and coverage
of the time-frequency plane, (b) Daubechies wavelet basis function, time-
frequency tiles, and coverage of the time-frequency plane [1].

2.1 Wavelet Transform and its Application in Image Compression

Windowed Fourier Transform or Short-Term Fourier Transform (STFT) is
proposed to overcome the drawbacks of the frequency domain approaches.
The STFT can be used to give information about signals in both time and
frequency domains simultaneously. It is a time-frequency localization tech-
nique with a fixed size and shape window. The STFT expresses the time-

frequency representation of the signal f(?) as:

. g - f(0g(1-2.1.1)

where g(?) is the basis function of the window and r is the shift location in
the signal.

Although, according to the Uncertainty Principle [43], it is impossible
to know the exact frequency and time of occurrence of this frequency in a
signal, the STFT is not a perfect solution for non-stationary signals, since

when using large windows it gives good frequency resolution but poor time
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resolution. On the other hand, small windows have poor frequency resolu-
tion, but good time resolution. The WT adopts the same window concept as
that used in the STFT, in which a fixed window size is used but the window
shape varies according to the frequency [1]. The wavelet analysis utilizes a
wavelet prototype function, called an analyzing wavelet or mother wavelet,
which can be dilated, translated and used to transform the signals. Wavelets
are therefore well-suited for approximating the data for sharp discontinu-
ities. As in Fig. 2.2(a), the window size is fixed in the STFT for any fre-
quency. In (b), the window size is fixed, and the window shape varies in

frequency.

2.1.1 Continuous wavelet transform

A WT involves convolving the signal with particular instances of the wavelet
at various time scales and positions. The mother wavelet, y/(?), is a continu-

ous function which has two properties [1,44]:

1. The function integrates to zero:

Y(Hdt=0 (2.1.2)

-0

2. It is square integrable or, equivalently, has finite energy:

ly(t)Pdt < oo (2.1.3)

-00

Other wavelets are dilations and translations of the mother wavelet:

1 t—-1
¥ 5T (t) = I 2.14
.0 ‘/mw( . ) ( )
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where parameters s and T show that the (s, 1) is dilated by a factor s, s <
1 for high frequency (narrow width) and s > 1 for low frequency (wider
width), and translated by factor 7, which is a position on the time axis. The
basic idea of the wavelet transform is to represent any arbitrary function f(#)

as a superposition of mother wavelets.

¥(s,T) = f@Oys, 7)dr (2.1.5)

where (-)* denotes complex conjugation.

In practical situations where the data is discrete, a discrete form namely
DWT is used. The WT coefficients are used to reconstruct the data by the
weighted sum of the orthogonal wavelet basis functions. To reconstruct the

data from its wavelet coefficients, we have [40]:
F@0 =) ¥(s, W) 2.1.6)

2.1.2 Discrete wavelet transform and its applications

The DWT provides a fast, local, sparse, multiresolution analysis of real-
world signals and images. The DWT may be performed using as a series of
filter banks, as used in subband coding. Each digital filterbank is made up of
a series of lowpass and highpass filters (see Fig. 2.3). In Fig. 2.3, x[n] is the
discrete input signal, g,[n] and h,[n] represent the half-band highpass and
half-band lowpass filters in analysis stage, g,[n] and h,[n] represent the half-
band highpass and half-band lowpass filters in synthesis stage respectively.
In this figure | 2 represents decimation by 2 and 1 2 represents upsampling
by 2. The DWT of a signal is then presented as filtering the signal by a

filter bank where the outputs of different filter stages are the transform co-
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efficients. The decomposition can be mathematically expressed as:

Yhiglk] = ) xln] - g[2k - n] 2.1.7)

n

YiolK1 = ) x[n] - In[2k — ] (2.18)

n

The reconstruction of the signal is expressed as:

X[n] = Z Onignlk] - g[—n + 2K]) + Qiowlk] - ho[-n + 2k])  (2.1.9)

k:—oo

where ypion[k] and yj,.[k] are the outputs of highpass and lowpass synthesis
filters respectively, after decimation by two. To achieve perfect reconstruc-

tion, the analysis and synthesis filters have to satisfy conditions as [45]:
g(n) = (=1)""hy(n)

&/(n) = (=1)"hy(n)
81(=n)gy(n) + hi(=2)hy(n) = 0 (2.1.10)
81(n)g,(n) + hy(nhy(n) = 2 (2.1.11)

Equation (2.1.10) implies that the reconstruction is aliasing-free and (2.1.11)
is to reconstruct signal, X.

An example of a filterbank output is shown as Fig. 2.4(a). In this trans-
form, the approximated data in LLy contains the most important part of the
information. Wavelet coefficients in a low subband can be thought of as
having four descendants in the next higher subband and each of the four
descendants has four other descendants in the next higher subband. The

corresponding quadtree structure of an 8 x 8 block is shown in Fig. 2.4(b).
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Figure 2.3.

wavelet filterbank, taken from [2].
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(a) 2-level forward wavelet filterbahk, (b) 2-level inverse
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Figure 2.4. (a) Different subbands in an 8 x 8 block after 3-level WT, (b)
Relations between wavelet coefficients in different subbands, and (c) The
relations expressed as quad-tree structure .
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The DWT has important applications in many domains, such as image
compression, computer graphics, numerical analysis, radar target localiza-
tion. In recent years, several wavelet-based coding algorithms for image
compression have been proposed, such as the EZW, SPHIT and EBCOT, as
in [36, 39,46—49]. In [46], the authors proposed an application of the EZW
algorithm in progressive medical image transmission which can specify and
control both the resolution and rate constraint. While the proposed system
in [39] is similar to ours, we adopted the UEP instead of the EEP scheme,
and the variable parity length based on the feedback. Such modifications are
to improve the performance of transmission system. In [47], a new modi-
fied SPIHT algorithm is proposed to compress ECG signals. The modified
SPIHT algorithm utilizes further the redundancy of the wavelet coefficients
among medium- and high-frequency subbands. The SPIHT image com-
pression algorithm is modified for application to large images with limited
processor memory in [48]. The subband decomposition coefficients are di-
vided into small tree-preserving spatial blocks which are each independently
coded using the SPIHT algorithm. The SPIHT encoding and decoding of the
spatial blocks can be carried out in parallel for real-time video compression.
EBCOT is a state-of-the-art compression algorithm and is adopted as a com-
pression component in JPEG2000. In [49], the authors used JPEG2000 to
compress medical images and compared the resolutions between Rol based
on the MAXSHIFT method and the general scaling method. A new image
compression algorithm is proposed based on EBCOT in [36]. The algo-
rithm produces a bit-stream with a rich set of features, including resolution
and SNR scalability together with a random access property.

Although the DWT is a powerful tool for signal and image process-

ing, it has three serious disadvantages: shift sensitivity, poor directional-
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ity, and lack of phase information [50]. The input signal shift causes an
unpredictable change in transform coefficients, which mostly arises from
downsamplers in the DWT implementation. Natural images are comprised
of several different orientations, but the separable 2D DWT only has three
orientations: horizontal, vertical and diagonal. Since the phase informa-
tion is very useful in signal processing application, a new algorithm called
complex wavelet transform (CWT) is proposed to overcome the disadvan-
tages in the DWT. The Dual Tree Complex Wavelet Transform (DTCWT)
is introduced and compared with the DWT in [51]. Although the DTCWT
can detect the details over more than three directions compared with the
DWT, it generates more redundancy. According to the experimental results
in [52], the resolution of reconstructed image utilizing DTCWT is better
than that obtained utilizing by the DWT. In [50], the authors proposed an
algorithm called mapping-based CWT to overcome the three disadvantages
of the DWT. The algorithm also possesses the additional benefits of flexi-
bility and controllable redundancy. According to the authors, the proposed
algorithm is one of a few CWT-based algorithms that can solve all the three

disadvantages of DWT.

2.1.3 Haar wavelet transform and its application in image pro-
cessing

Many kinds of mother wavelets have been developed by researchers. The
most basic WT is the Haar wavelet transform (HWT) described by Alfred
Haar in 1910 [53]. In our proposed scheme, we used 3-level HWT to achieve
the WT as it is easier for hardware implementation than other kinds of WT.

The HWT coeflicients are defined below:
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gy =SizSm (2.1.12)
2
a = __S"*ZS"“ 2.1.13)

where d; and a; represent the coefficients of detail and approximation af-
ter the HWT. S; is the element in the image and i is the location index.
The process is begun by systematically averaging and differencing paired
entries in a matrix and then entering the average in the first space of the
resulting matrix. The process subsequently finds the difference between
these paired entries and the average, and the result is entered as the halfway
point. For example, the procedure for a one-dimensional discrete signal

x[n] =[10,11, 12,13, 14,15, 16, 17] using 3-level HWT is as follows:

1. The averaging and differencing of each pair is shown below

Averaged pair Differenced
10.5 (10, 11) -0.5
12.5 (12, 13) -0.5
14.5 (14, 15) -0.5
16.5 (16, 17) -0.5

A new matrix is subsequently created after first-level HWT, i.e.

{105 125 145 165 -05 -05 -0.5 -05]

The averaged results are called approximation coefficients, and the

differenced results are called detail coefficients.

2. We can repeat the process for only the averaged values (not differ-

enced values), until only a signal averaged value or a number of data
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layers is achieved. The final results after 3-level HWT are as follows.

x[n] 10 11 12 13 14 15 16 17

Istlevel [ 105 125 145 165 -05 -05 -05 -0.5
2ndlevel | 11.5 155 -1 -1 -05 -05 -05 -05
3ndlevel {135 -2 -1 -1 -05 -05 -05 -05

Normally, an image can be considered as a two-dimensional matrix. In
the proposed scheme, we decompose the image into an 8 x 8 block for the
HWT to reduce computational cost. The HWT of a two dimensional ma-
trix deals with each column of coefficients first, and then deals with each
new row of coefficients. Accordingly, the result after the first level of Haar

wavelet transform can be expressed as :

T, = NTAN, (2.1.14)
1

where A denotes the input matrix and T is the result of the first level wavelet
transformation. The result of the second level WT is T, = NZT TN, and the
result of the third level wavelet transform matrix is 73 = N3T T,N;. The

3-level wavelet transform matrix can thus be expressed as follows:

T = NTAN (2.1.15)

where N* = NTNTNI, N = N;N,N;, respectively. Nj, Ny, N3 are defined

below:
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The inverse HWT can be expressed as:

A=((THN YN =WNH'TN! (2.1.16)

where the inverse of matrix N is N~ = N;'N;!N;L.

A hardware-oriented image coding processing scheme based on the HWT
is presented in [54]. The procedure computes a variant of the HWT to gain
the lowest circuit complexity hardware implementation. In our proposed
system, we chose a 3-level HWT to perform the DWT for each subblock,
due to its simplicity and it being faster and easier to implement than other

DWT methods.

2.2 Joint Source-Channel Coding

In many image transmission applications, it is not only the end-to-end per-
formance that is important, but also the performance during the transmis-
sion. For a reliable and efficient image transmission design, both source and
channel coders are needed to achieve this. For source coding, state-of-the-
art wavelet-based coding algorithms are EZW, SPIHT, and EBCOT. Data
protection techniques, as the major component of channel coding, can be

classified into four main categories [55]:

1. Automatic repeat request (ARQ) [23]: in this process, the receiver
checks the received data and asks the transmitter to retransmit the
message if errors are detected or packets are lost. However, ARQ can
be used only in a feedback system and may not be acceptable in strict

time constraint applications.

2. Error resilience and concealment techniques: in error resilience tech-

niques, the bitstream is modified to make it more robust to channel
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noise, such as interleaving, tiling, or packetization techniques. Error
concealment techniques are used to exploit redundant information in

a sequence to recover missing data.

3. Forward error coding (FEC) [23]: the extra redundant symbols are
added to the transmitted data, allowing the receiver to detect and cor-
rect errors caused by the transmission channels. Such coding may be

CRC, RS, RCPC, and LDPC coding.
4. Hybrid techniques: these combine any number of the above methods.

In practical transmission systems, a JSCC scheme has better perfor-
mance and more robustness than schemes with separate source and channel
coding designs. Generally, system designers select prefabricated compo-
nents for the source coder, and the channel coder and must achieve the best
performance within these constraints. A major step in designing a JSCC
scheme is to model the distortion introduced in the received image due to
quantization and channel errors. This distortion is then used either as an ob-
Jjective function to be minimized or as a constraint in the design of a JSCC
scheme [34]. The error protection strategy (EPS) algorithm optimally al-
locates a transmission rate budget for JSCC schemes. In [56], JSCC ap-

proaches are classified into four broad categories:

1. joint source-channel coders: where the source and channel coding

operations are truly integrated.

2. concatenated source-channel coders: which allocate a fixed bit rate

between a cascaded source coder and a channel coder.

3. unequal error protection source-channel coders: in which the output
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of the source encoder is afforded unequal protection based on the ef-

fect of errors on the reconstruction sequence.

4. constrained joint source-channel coders: where a given source and/or
decoder is modified to account for the presence of a given noisy chan-

nel.

For many applications, the channel condition cannot be predicted pre-
cisely before the transmission. Accordingly, as JSCC techniques usually
require adequate knowledge about the transmission channel, a channel con-
dition mismatch could cause devastating decoding effects. It is therefore
highly desirable that JSCC applications are able to tolerate a certain amount
of residual error caused by nonergodic channel behavior or from other error
sources [57]. Generally, the JSCC scheme is combined with the rate allo-
cation algorithm to achieve an efficient transmission system. The rate allo-
cation algorithm is used to trade off the transmission rate between source
coding and channel coding to obtain the best visual quality with the lowest
bit rate. The UEP feature is another feature added to the JSCC transmis-
sion system. The main idea behind the UEP is that it provides different
levels of data protection based on the importance of the transmitted data. In
our proposed system, the UEP feature is based on the data location in the
transmitted image and transmission channel condition.

In [58], the authors proposed a concatenation of an outer cyclic redun-
dancy check (CRC) code for error detection and an inner rate-compatible
punctured convolutional (RCPC) code for error correction in order to pro-
tect the SPIHT bitstream to achieve an efficient progressive JSCC system.
The SPIHT compressed bitstream is segmented into blocks of fixed length
for the error resilience model and the EEP is employed, not the UEP scheme.

The decoding is stopped when the first uncorrectable error is detected. The
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JSCC scheme in [59] is the same as in [58], but [59] provides about 0.3
dB improvement over the method in [58] with the same source and channel
coders because the UEP is used to replace the EEP. The authors in [60] pro-
posed a hybrid coder that combines the packetized zerotree wavelet (PZW)
coder in [61] and CRC/RCPC coders in [58], and showed that the proposed
scheme had better performance than that introduced in [58,61] in the vary-
ing channels. This proposed scheme was improved by [62] using an optimal
packetization scheme and CRC/RCPC to replace the PZW. In [63], the work
of [58] is extended to fading channels by adding a second layer of protection
using RS codes in the framework of product codes. The proposed scheme
in [62] uses RS and RCPC as an FEC scheme and provides a linear-time
algorithm, similar to that used in [63], for the efficient selection of both RS
and RCPC code rates to improve the hybrid approach of [60]. In [64], an
efficient rate allocation is proposed based on the available source rate cri-
terion from [65]. It achieves optimal protection with reduced complexity
for the SPIHT image coder. In [41], the authors proposed a linear-time al-
gorithm for computing a UEP scheme that maximizes the average of the
expected number of correctly received source bits over a set of intermediate
transmission rate in a JSCC scheme.

In [66], the authors proposed a progressive time-varying source-channel
coding system for transmitting images over wireless channels. The core re-
sult was a systematic method of instantaneous rate allocation between the
progressive source coder and channel coder. In [4], the authors used the
sequence maximum a posteriori method to design a joint source channel de-
coder under the Gilbert-Elliott channel (GEC) and estimate the parameters
of the GEC model through the hidden Markov model. Based on [59], the

authors in [67] adopted the JSCC technique to develop a transmission sys-
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tem usiﬁg different channels, such as BSC, GEC, and fading channels using
finite-state Markov channel (FSMC). Employing an effective tool called er-
ror sequence analysis, they analytically obtained the probability distribution
of the error sequence and used a concatenation of RCPC and CRC codes to
form a UEP scheme and find the optimal rate allocation solutions for pro-
gressive image transmission over noisy channels based on the FSMC model.
The authors in [68] proposed a JSCC method for transmission of images
over fading channels and demonstrated the application of rate-compatible
low-density parity-check (RC-LDPC) codes constructed by the progressive
edge-growth algorithm. They used the UEP to protect the images over fad-
ing channels.

The JSCC system with feedback channel is proposed in [69-71]. The
feedback signal can shift the optimal rate allocation point, resulting in higher
rates for error-correcting codes and smaller overall distortion. According to
the simulation results on both memoryless and fading channels, the system
with feedback channel shows improvement in PSNR compared to a similar
system without feedback.

The JPEG2000 is being widely used because it is a state-of-the-art com-
pression algorithm [19]. The authors in [72] used a Viterbi-algorithm (VA)-
base rate allocation approach to create a transmission system utilizing turbo
codes and JPEG2000 to simulate performance over a BSC. A similar algo-
rithm was used in [73]. However, the algorithm discussed in [72] is simpler
than in [73] because it starts from a rate-optimal solution, and converges to
a local distortion optimal solution, and also has better quality of the recon-
structed image than that of [S8]. In [74], the JPEG2000 as source coder and
RCPC as channel coder are used to form a JSCC scheme for image transmis-

sion. A combination of the JPEG2000 and rate-compatible punctured turbo
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(RCPT) codes forms the JSCC scheme in [75] for the parallel transmission
of scalable images in multichannel systems. In [31], the authors proposed
a JSCC scheme with UEP for transmission of JPEG2000 codestreams over
memoryless channels. The proposed scheme combines the FEC capability
provided by channel codes, together with the error detection and localization
functionality provided by the JPEG2000 error resilience tool in an effective
way.

Presently, with current state-of-the-art source-coding technology, many
communication channels are now capable of delivering several compressed
images or video sequences concurrently. This makes it possible for some
applications to transmit multiple images together sharing a common chan-
nel. In [33], a JSCC algorithm is proposed for the transmission of multiple
image sources over memoryless channels. The proposed algorithm uses
a quality scalable image coder to optimally allocate a limited bit budget
among all the sources to achieve the optimal overall distortion reduction for
the multiple reconstructed images.

In our proposed system, we adopt a 3-level HWT and EZW for source
coding and the RS codes are adopted as channel coding to achieve a JSCC
scheme. The reason for selecting the Haar wavelet is because it is simpler,
needs lower computation time, and is easier to implement into portable de-
vices. The RS codes are block-based and efficient burst error correcting

codes used widely in digital communication and storage.

2.2.1 Embedded zerotree wavelet and its applications

The EZW is briefly introduced in this subsection. The EZW was proposed
by Shapiro [16] and has become a popular image compression algorithm

in various communication systems. The EZW was specifically designed to
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be used with the WT and is a simple, efficient, and flexible compression
algorithm for low bitrate image coding. The EZW coders work based on the

following steps:

1. After WT, the wavelet coefficients are distributed in various subbands.
The most important coefficients are located in the lowest subbands,

and the order of importance of the subbands can also be obtained.

2. Larger wavelet coefficients are more important than smaller wavelet
coefficients. Generally, most larger wavelet coefficients are in the

lower subbands.

3. The EZW encoder can terminate the encoding at any point according
to the pre-set parameters, such as for a given bitstream and the amount
of received data. More details can be added and a higher resolution of

the reconstructed image can be obtained.

The EZW suits progressive data transmission since it allows hierarchical
encoding and decoding by means of various threshold values. Accordingly,
the first step in the EZW algorithm is to determine the initial threshold. In
order to obtain a perfectly reconstructed image we need to repeat the process
by lowering the threshold until the threshold has become smaller than the
smallest coefficient value, or the iteration is stopped by request. The initial

threshold ¢, is defined below:

0=2", N =log,{max(ly(x,y))} 22.1)

where max(-) refers to the maximum coefficients in the subblock and y(x, y)
represents the coefficient with (x, y) coordinates. After the initial threshold
to is found, the EZW algorithm compares the initial threshold 7y with each

coefficient in a predefined scan order as shown in Fig. 2.5.
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(a) (b

Figure 2.5. Scan order in the EZW, (a) raster scan, and (b) Morton scan. [3]

Table 2.1. Definition of symbols
Symbols Description
P y(jc,y) > r,, called significant coefficients at threshold

n y(x,y) < 0 and |y(e,y)] > m called negative
significant

2 y(jc,y) < tm, but some of its descendants have a value
greater than ¢,, called isolated zero.

f y(*>y) < and all its descendants have magnitudes
less than m, called zerotree zero.

1,0 Refinement bits for reconstructing image

In our proposed scheme we adopt a Morton scan. In each scan there is a
dominant pass and subordinate pass. The dominant pass generates a series
of symbols and the subordinate pass quantizes all significant coefficients.
The definitions of the symbols are shown in Table 2.1:

The final threshold level determines the length of the bitstream output.
Thus, the length of the output bitstream M, is related to the number of times

the threshold is defined as:
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M, = ZT: B() (22.2)
k=0
where B (to,./ 2") is the output bitstream of the EZW based on the threshold
t0,/2*. to, is the initial threshold in the i subblock, and nr, is the number of
times the threshold is halved in the i subblock.

The subordinate pass performs pixel values quantization which allows
the decoder to reconstruct the symbol with more precise pixel values. Fig.
2.6 and Fig. 2.7 present examples of 8 x 8 blocks for the EZW process.

The authors in [16, 39, 46, 76] have used the DWT and EZW in their

proposed system.

2.2.2 Reed-Solomon codes and their applications

In real world applications, the decoder often receives erroneous data by
means of physical transmission channels. Therefore, we need a suitable
channel coding strategy to effectively protect the transmitted data. RS coders
are popular and have a wide range of applications, ranging from deep-
space communication to compact disk (CD) and are easy to implement into
portable devices. In this subsection, we briefly introduce the fundamental
definition of RS codes. RS codes are block-based error correcting codes
developed by Irving S. Reed and Gustave Solomon in 1960 [77] and widely
used in wireless communication and storage systems. RS codes are non-
binary cyclic codes with symbols made up of m-bit sequence, and are very
effective in correcting random burst errors. The RS coder is a coding scheme
which works by first constructing a polynomial from the data symbols to be
transmitted and then sending an over-sampled plot of the polynomial instead

of the original symbols themselves. The meanings of symbols in RS codes
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Figure 2.6. Example of the EZW process, (a) 8 x 8 block data, (b) the first
dominate pass output under #y, (c) the reconstruction value refined at R, and
(d) the compression output after the first dominate and subordinate pass [2].
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Figure 2.7. Compression continued based on the new threshold #,, (a) some
coefficients are replaced by O after the first compression process, (b) the sec-
ond dominate pass output under the threshold t,, (c) refine the reconstruction
value refined at R;, and (d) the compression output after the second domi-
nate and subordinate pass [2].
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Table 2.2. Definition of parameters in RS codes

Symbols Meaning
m Number of bits per symbol.
n Number of symbols per codeword, n < 2™ — 1.
k Number of symbols per message, k < n.
t Error-correction capability of the code, t = (n — k)/2.

are shown in Table 2.2 [23]:

In an RS(n, k) code, k is the number of data symbols being encoded and
n is the total number of symbols in the codeword. Where n = k+2t, t is the
number of error symbols which can be corrected, and 2t is the number of
error symbols that can be detected. The specification for the RS coder in our
proposed scheme is set as RS(255, k), and the parity length 2t is variable.
The RS(255, k) design process is as follows:

e RS(255, k) encoder design: The Galois Fields (GF) concept is used
in the design of RS codes. From the specification of RS(255, k), the
symbol length in each codeword is 255 and each symbol can be ex-
pressed by m = 8 bits. In this case, the linear feedback shift register
(LFSR) circuit is adopted to generate the elements of GF(2%) based
on the selected primitive polynomial p(x) = x® + x* + x> + x> + 1. The

LFSR for generating a GF(2%) code is as in Fig. 2.8:

lsollso {"\ 50) {') 5 %‘5 Jso L sl lsm L sp L

Figure 2.8. LFSR circuit for generating the elements of GF(28)
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The initial condition for [S(1),5(2),5(3),5(4),5(5),5(6),5(7),S(8)] is

set as [10000000]. & indicates logical AND operation. In each clock

cycle, a new S value is generated as an element of GF. After 255

cycles, the LFSR circuit generates 256 elements for GF(28). Thus, the
3

GF(2®) has 256 roots. This can also be expressed as {0, 1,2, a?, 2, - -

-,a®*}. Each element can be expressed as:

Q’i =ai,0+a,-,1x+a,;2x2+a,-,3x3+a,»,4x4+a,-,5x5+ar,;6x6+a,-’7x7 (223)

After the elements are generated, the next step is to find the generator
polynomial for 2t capability of error-detecting. The degree of gen-
erator polynomial g(x) is based on the error-detecting capability and

defined as follows:

g(x) = (x + a)(x + az)(x + a3) ......... (x + 0_,2’) (224)

=g tgx+ g2x2 +g3x3 +-e "'gzz-v“m-1 +g2rx2’

Accordingly, the RS encoder circuit for a 2t error-detecting capability

is designed as Fig. 2.9, where g,,=1:

& & & & & 8y 81
b, b » b b * 0 0 0 b, o5 b, D
0 | T\ 1 [T\ : [T 3 22 [T Yo 'H v
|
Data Input u(x)

Figure 2.9. RS encoder circuit for 2¢ capability.
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where ® indicates the multiply operation. Thus, for encoding, each

code polynomial v(x) in an (n, k) cycle code is expressed as below:

v(x) = u(x) - g(x) = (g + wx + - -+ XN gx)  (2.2.5)

where u(x) is the input message codes. The multiplier circuit based
on the primitive polynomial p(x) = x® + x* + x> + x2 + 1 is designed

as in Fig. 2.10.

) 4 y ) 4 v
Q: R(1) D RO) =(§~ RO =(P » R(4) ;g)~ R(5) D RO D> R()| R®
4 4 1
b| bz b} ba bs bc b7 ba

a,a,a,a,a,0,0,0y —p————

Figure 2.10. The multiplier circuit, R = a - b, based on the primitive poly-
nomial p(x) = ¥ +x* + P+ 22 + 1.

InFig. 2.10, the multiplier is used in both the RS encoder and decoder.

o The RS(255, k) decoder design process:

The RS decoding process is very complex in comparison with the
encoder part. Decoding of an RS code requires determination of both
locations and values of the error symbols. First, we assume that the

transmitted code polynomial v(x) is as below:

V(X)=vo+vix+---- +V,,_1.X}'_l (2.2.6)
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and the received transmitted code polynomial in the RS decoder is as
below:

r(x) =rg+rx+---- +rn_1x"_1 (227)

Therefore, the error pattern is:
e(x) = r(x) —v(x) = eg+ e x+ -+ -+ +e, 1 X" (2.2.8)

where e; = r; — v; is a symbol in GF(g). Suppose the error pattern e(x)
contains v errors with 0 < j; < j,-- < j, £ n— 1. The e(x) can be

rewritten as:

e(x) = e X+ ejzsz 4. +ejv_xj" (2.2.9)

where (ej,, e}, - -, e;,) denote the error values and (x/', x72,- - -, x/*)
are error locations. There are four steps to be taken to decode the RS

code.

— Compute the syndrome (S, 52,53, -+, S2).
~ Evaluate the error-location polynomial o(¢).
— Determine the error-value evaluator Zy(x).

~ Evaluate error-location numbers and error values and perform

error correction.

m Syndrome computing:

As with binary BCH codes, the syndrome S is a 2t-tuple over GF(g™):

(51,82, 82)
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According to r(x) = (x) + e(x), we have
S; =v(@)) + e(@) = e(a’) (2.2.10)

Therefore, based on equation (2.2.10), we can rewrite the following

set of equations:
S = ejlajl + ejzarjz +oree +ejvaj”
. s 2 'v
Sz =e; (@) +e;, (@) +- -+ +e (0’
: . 2
S =€) (azt)h + e.iz(az’)n R +ejv(a Y

m Evaluate the error-location polynomial o(x)

If o(x)S (x) is divided by x*, the remainder is [o(x)S (x)]2:.

o(0)S(x) = [0()SW)]  mod x*

=Zy(x) mod x*

which is called the key equation in the decoding of BCH codes. Here,
mod refers a remainder function. There are two methods to solve the
key equation: Berlekamp and Euclidean algorithms [23]. We adopted
the Berlekamp algorithm in the RS decoder because the Berlekamp

decoding algorithm has more efficiency than Euclidean [23]. Assum-
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ing that the error-location polynomial o(x) is defined as:
o(x) =(1-pix)1 =Bx)- - (1-Byx) (2.2.11)

=00+ X+ + - +a,x

=1+0'1x+0'2x2+--~+0",x".

The following set of equations relate the coefficients o; of o(x) and

the syndrome components S ;:
Sv+1 +0'1Sv+0'2SV_1 + .- "+O'VSI =0

Svia + 01801 +0'2Sv+--"+0'\,52=0

Su+o1Sy1 +02Su2+ - +00,S2%-v =0

The above equations are known as generalized Newton’s identities.
We need to find the minimum degree polynomial o-(x) whose coef-
ficients satisfy these generalized Newton’s identities. If we can find
o(x), that means we can determine the error values and locations. In

the u™ step, we can determine a polynomial of minimum degree,

o) =’ + x4+ oxle (2.2.12)
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whose coefficients satisfy the following u — £, identities. This means
St +0Sg +- - +008) =

S(“+2 +0"(1u)Sgu+1 +--- +0'§,:)SZ =0

Su+ VS, i+ 408, =0

An iterative algorithm is required for finding the error-location poly-
nomial o(x). The first step of the iterative process is to find the mini-
mum polynomial oV (x) whose coefficients satisfy the first Newton’s
identity. The next step is to test whether the coefficients of o"(x) also

satisfy the second Newton’s identity. If yes, then:

o P(x) = o V(x)

If no, we need to add a correction term to o(x) to form c®(x). The
process of finding the minimum of the polynomial then iterates until
@ (x) = o(x). Thus, the final o(x) equation is the desired error-

location polynomial.

®m Next it is crucial to determine the error-value evaluator Zy(x) and
correct the error data.

To correct the error values, we have to find the roots of the error-

2"-1 into the error-location

location polynomial. Substituting @, @2, -+,
polynomial, where m = 8 for RS(255, k), if o(a”) =0, 1< tt < 2™ -1,
this means a” is a root of o(x). The error-location is the reciprocal of

the root. Next, we have to find the error-value which is in the error
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locéﬁon. Based on Z(x) = o(x) - S(x), Z(x) is
Z(x) = (1+0(X)+ 022+ -+, )(S 1 + S px++--+8 37 1) (2.2.13)

=S 1+(S2+0'1S1)X+(S3+S20'1+S 10'2)x2+--+(Sv+Sv_10'1+Sv_20'2+--+S ]0",_]).)(?‘}_1

where o(x) is the error-location polynomial, S(x) is the syndrome
polynomial, and Z(x) is called the error-value evaluator. The cor-

rupted data in the error-location is computed as:

ZBh

6 -—
C T Bl - BB

(2.2.14)

where B, is the kth error-location. The value of §; expresses the cor-
rupted data in the error-location B;. The corrected data will therefore

be added to the received message to correct the error data.

Several researchers such as [63, 78] have adopted RS coders as FEC.
In [63], an RS code was added to each packet to protect it against the er-
rors caused by memoryless and fading channels. In [78], the RS coders
were used to protect the source coded video bitstream in a JSCC scheme.
Since burst packet losses occur frequently in transmission, the researchers
in [79] proposed a data recovery method that generates redundant data using
a combination of RS codes and convolution of neighboring blocks to pro-
tect transmitted images. The proposed method exhibited better performance
than when RS codes are only used, but it results in an extra small amount of

redundancy.
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2.3 Progressive Image Transmission

Unlike in conventional image transmission systems, PIT techniques allow
a low-resolution approximate image to be first transmitted and then the re-
ceived background image is progressively improved over a number of trans-
mission passes. The decoder has therefore at each stage an approximation
of the full resolution image, rather than a part of it only. The advantage
of PIT is that the gross structural information of the image appears im-
mediately at the beginning of transmission so that it is possible for the
user to make a decision on whether further transmission is necessary. The
PIT scheme is particularly useful for transmitting large images in narrow-
band channels at minimum cost. Progressive transmission can be classified
into three categories [80]: spatial domain [81], transform domain [82], and
pyramid-structure [83]. The bit-plane method (BPM) is the simplest way
to implement the PIT system. The image does not rely on any encoding
process and the transmitter transmits one bit for each pixel in each round
and the transmitted bits are arranged from the most significant bit (MSB) to
the least significant bit (LSB). The final transmitted image is therefore the
same as the original. In the transform domain, an image undergoes block
compression, such as using EZW, SPIHT, and the compressed symbols are
transmitted progressively in an importance order. In the pyramid-structure
domain, the data in different levels in a pyramid structure is transmitted
progressively, therefore, the decoder image can be reconstructed by trans-
mitting the pyramid data structure from the top level to the bottom level.
In [84], in the spatial domain, the authors proposed a guessing by neighbors
(GBN) method based on an interleaving strategy. On average, only 50%
of the image data is transmitted in the GBN method, the remaining 50%

is interpolated by guessing the average values of the neighborhood pixels.
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The GBN rapproach produces better results compared to the BPM approach.
In [80], the authors proposed a new GBN method based on the old GBN
method. The new GBN method provides a multiple resolution for each
pixel box. According to the experimental results, the new GBN method had
better performance in terms of both PSNR and compression ratio than the
old GBN method.

However, progressive transmission is problematic in the presence of
noisy channels. In practice, progressive transmission over noisy channels
has to be accompanied by appropriate channel coding or JSCC, and other
properties, such as UEP and Rol, to achieve an efficient PIT scheme. PIT
based on the transform domain method is adopted in our proposed system.
The input image undergoes block transform, EZW based on DWT, and the
transformed coefficients are transmitted progressively in a relative impor-
tance order by a preset scan order. The properties of being progressive and
emphasis on the region of interest are exploited simultaneously to achieve
better efficient transmission in our proposed system. The two united fea-
tures not only allow a faster transmission, but also sufficient resolution of

the desired region in a limited capacity channel.

2.3.1 Region of interest

In this subsection, we describe a communication protocol for interactive
image transmission, with the emphasis on the Rol in a narrowband network
system. The aim of utilizing the Rol is to allow users to recognize the
desired part as quickly as possible since important diagnostic information
may occupy part of the medical image called the Rol. The information in
the Rol is often transmitted using a lossless compression technique to ensure

that the physicians (or other users) have access to the entire and correct
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diagnostic information in a shorter time. The information is transmitted
after applying a lossy compression. However, the overall resolution can be
increased gradually. In our proposed scheme, the location of the Rol within
the image and its radius can be selected by the user through a user friendly
interface.

As an example, Fig. 2.11 shows three areas: Rol, R1 and R2. The Rol
is centered at point (jco,yo)- The importance of information in area R2 is the
lowest and that of the Rol is the highest. The quality of the reconstructed
subblocks and consequently the compression rate therefore depends on the

size of the embedded coefficients.

Rol

Figure 2.11. Areas of different priorities in an image used in the proposed
scheme.

This is set by the distance from the center of the Rol. Based on the
assigned parameters for EZW, the data in each subblock will be compressed
at different rates depending on the location of the subblock. As an example,

the areas in the reconstructed image can be defined as:
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For Rol: V=i +@-jr<r,
For R1: r; < \/(x—i)2+(y—j)23rb
For R2: NE=2+G-j2>n

where x and y are the coordinates of the center of the Rol assigned by the
physician using a mouse click. Thereafter, both values are sent back to the
host. The values of r, and r, are the radius of the Rol and R1, and i and j
express the x — y Cartesian coordinate of the subblock centered at (i, j). In
the successive progressive stages, the values of r, and r,, gradually expand
to include a larger area and finally the whole image, and therefore create
the reconstructed image of a higher quality. In our proposed algorithm, the
first transmitted image is the background low resolution image. Then, the
reconstruction is progressively continued starting from the Rol.

The authors in [85-87, 87-89] have also considered the Rol and the re-

lated procedures.

2.3.2 Unequal error protection

When the data is transmitted over a noisy transmission channel, we have
to add redundant data to protect it and achieve a reliable transmission. Si-
multaneously, it is desirable to compress the transmitted data to reduce the
redundancy and achieve an efficient transmission. Obviously, the two meth-
ods are different but often coexist to form an efficient and reliable trans-
mission system. From an efficient communication point of view, the error
code should be as short as possible, but if too short, an acceptable quality
of the decoded images may not be achieved. Classical theoretical frame-

work for communication systems assumes that all information is equally
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important, and uniform error protection is provided to protect all messages
over the noisy channels. Nevertheless, wavelet-based image compression
algorithms and error resilient techniques are widely used in practical com-
munication systems and in these compression algorithms, each compressed
coefficient represents different levels in the image, making it easy to rec-
ognize the order of importance of the compressed coefficients. Moreover,
based on tiling and packetization techniques, we can assume which block
or messages packet is more important. Based on the above concepts, we
can provide different amounts of data protection for different transmitted
bitstreams.

Generally, error protection can be divided into two categories: EEP and
UEP. In EEP, the entire bitstream receives the same amount of protection
from a channel coder. UEP schemes, however, apply different amounts
of protection to different sections of a bitstream, and can effectively shift
uncorrectable bit errors toward the less importance sections. As a conse-
quence, a better performance is likely to achieved with UEP than with EEP.
UEP therefore attracts more attention because it takes advantage of the hi-
erarchical structure of the source data. A UEP scheme using RCPC was
proposed for SPIHT in [59] and produced an improvement of around 0.3
dB over the EEP employed in [58].

The packetization technique is used for robust image transmission. There
are two types of packetization according to packet size form: fixed and vari-
able length. Each type has its advantages and disadvantages. UEP was
adopted in [90] and variable packet length was used for the following rea-
sons: 1) in rate-distortion at low bit rate, the variable length scheme is more
efficient than a fixed length scheme; 2) a priority on the specific tree struc-

tures can be imposed by using the packet length; and 3) a fixed length packet
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may cause severe overhead for some trees. UEP with fixed packet length
was adopted in [41]. The types of EEP and UEP with variable/fixed length
schemes are shown in Fig. 2.12.

In our proposed transmission system, we adopt UEP with the packet
fixed length scheme, the same as that in Fig. 2.12(C) to provide appropriate
data protection with minimum overhead. The amount of data protection is
not only based on the order of information importance, but also depends on
the physical transmission channel conditions. Such a scheme significantly

increases the efficiency.

T
* o Ls cn
T T T
N N N
1 1 1
() ®) ©)

Figure 2.12. Error protection schemes, where Lp indicates packet length,
Ls is the sources code length, Lc is the parity length, and N is the number of
packets, (a) an EEP structure, (b) a UEP structure; the Ls are fixed, but Lp
and Lc are variable, and (c) a UEP structure; Lp is fixed, but Ls and Lc are
variable.

2.4 Transmission of Encoded Data

There are two types of communication networks: wired and wireless. The
fixed wired Ethernet connections are not prone to interference and fluctua-
tions in available bandwidth because ofrealistic wire connection. Compared
with wireless, the wired networks are faster, more reliable, and more secure.

In the wireless network, the transmission of signals is modulated by elec-
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tromagnetic waves and transmitted through air to the destination. Since the
wireless transmission media is air, generally, wireless networks have lower
bandwidth but are easier to setup and manage. However, the signals trans-
mitted in air are more prone to interference.

Due to the increasing demand for healthcare, medical treatment, mes-
sage exchange, and consultation, and the growing number of emergency
cases, wireless systems are highly demanded in clinical environments. Those
technologies used in wireless telemedicine systems include the Global Sys-
tem for Mobile Communication (GSM), General Packet Radio Service (GPRS),
satellite communication links, and wireless local area networks (WLANSs).
The third generation (3G) GSM system provides much faster data transfer
rates. Therefore, enabling the development of telemedicine systems requires
high data transfer rates, which were available only by means of wired com-
munication networks before. Satellite systems are able to provide a variety
of data transfer rates and also have the advantage of covering the whole
globe. The WLAN is a flexible data communications system implemented
as an extension of wired local area networks (LANs). WLANSs transmit
and receive data over the air, minimizing the need for wired connections.
However, the transmitted data is influenced by interference from air trans-
mission channels and can cause degraded quality of the information. The
main problems associated with wireless channels are noise and fading. The
occurrence of interference is random and unpredictable. In [91], the au-
thors proposed emerging applications of wireless information-technology in
health systems. In [92], the author describes transmission problems which
are caused by the wireless channel, channel characteristics and diversity
techniques, and proposes diversity techniques as one way to overcome fad-

ing and noise problems in wireless communication systems. Wireless com-
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munication channels suffer from many impairments, such as thermal noise,
path loss and fading, shadowing due to the presence of fixed obstacles in the
radio path, and rapid movement of mobile reflectors. In a typical wireless
communication environment, due to scattering by different objects, mul-
tiple propagation paths from a transmitter to a receiver often exist. The
receiver therefore receives signals from different paths and undergoes dif-
ferent attenuations, distortions, delays, and phase shifts. To tackle these
problems, different kinds of diversities are commonly employed in wireless
communication systems to fully exploit the existing information and trans-
mission capacity: frequency diversity [93], time diversity [94], and space
diversity [95]. The diversity approaches increase the efficiency and enhance

the quality of the reconstructed data in the receiver.

2.5 Conclusions

In this chapter, a comprehensive survey of the existing algorithms in PIT
and JSCC has been presented. In addition, the major tools to be utilized
in our proposed system, including HWT, EZW, RS, Rol concept and feed-
back scheme have been addressed. For the purpose of telemedicine, we
consider not only limited channel capacity or memory and computational
complexity, but also ease of implementation into portable devices. In ad-
dition, the important concepts of EEP and EUP have been reviewed and
the survey has shown that it is crucial to integrate both source and channel
coding components within an image transmission system, including feed-
back. The feedback enables an interaction between the transmitter and the
receiver, and also influences the priority of the image region to be coded. It

is also affected by the status of the transmission channel.



Chapter 3

ESTIMATING CHANNEL
ERROR USING A RECEIVED
DATA SEQUENCE

When considering the image transmission over a noisy channel, the chal-
lenge in transmitting data is to minimize the corrupted data caused by the
channel errors. Several techniques can be employed: 1) error resilience
techniques, 2) FEC-based protection algorithms, and 3) error concealment
techniques. Although transmitted images are becoming more robust due to
these algorithms, the success or failure of decoding is determined by the
error detection mechanism. Many JSCCs methods with rate allocation have
been described in section 2.2 of Chapter 2. In such JSCC methods, the
channel code rate is carefully chosen to match the properties of the source
coders and the conditions of the transmission channel. The rate allocation
naturally depends on the BER of the channel and is known to the transmitter
before transmission. However, in real-world environments, channel condi-
tions frequently change over time and are still unknown in the transmitter
part. Thus, FEC-based systems might not be able to perfectly adapt their
error-protection strategy to the actual channel conditions, because the re-

quired appropriate level of FEC depends on an accurate estimation of the
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channel’é behavior. While systems using FEC can provide good protec-
tion for known channel conditions, if a precise statistical description of the
channel is unavailable, then one typically designs FEC code for the worst
possible channel that can be anticipated.

Another useful method used in the transmission system is the feedback
scheme, which tries to send back the decoding results from the receiver to
the transmitter. Using FEC with the feedback scheme allows the transmitter
to receive information about the practical transmission channel. Thus, the
transmitter has another opportunity to adjust its error-protection strategy for
next transmission according to feedback information. In [70], the received
packet decoding result, success or failure, is conveyed back to the encoder
by sending one bit through the feedback channel. The encoder stops trans-
mission for the current packet and proceeds with the transmission of the
next packet if the decoding is successful. Otherwise, the encoder provides a
stronger channel code according to the decision policy to decode the packet
again. According to the results in [70], the use of a feedback channel can
significantly improve the average PSNR of the received image, compared
to a system without feedback channel. In [69] a feedback signal was shown
to be able to shift the rate allocation point to receive a better performance.
The simulation results showed that a transmission system with a feedback
signal resulted in up to 1 dB improvement in PSNR compared to a trans-
mission system without a feedback signal. Hence, the feedback scheme can
not only be used for retransmission but also to estimate the state of the cur-
rent channel. In [96], the authors investigated the JSCC scheme with and
without feedback signals. In this work, the authors developed an empirical
model of decoded BER in terms of the channel code rate for the progressive

source-channel rate allocation problem. In general, the presence of feed-



Section 3.1. Wireless Channel Model 60

back chaﬁged the optimal rate allocation, resulting in higher code rates for
error-correcting codes and smaller overall distortion. Simulation results for
memoryless and fading channels in [96] indicated that the feedback signal
provides up to 1 dB improvement in PSNR. Obviously, the image trans-
mission system with a feedback channel shows better performance than a
transmission system without a feedback channel, because the encoder side
has more information about the state of the current channel. However, in or-
der to take full advantage of feedback, some delay needs to be tolerated. The
delay time can be ignored in a high speed transmission, regardless whether
encoding is implemented or not.

Based on the above results, it can be deduced that the performance of
transmission system is affected by the channel information. Accordingly,
I attempted to capture as much information as possible about the practical
transmission channel in order to provide an adaptive protection of the trans-
mitted data. However, it is a big challenge to estimate exactly the practical
channel transmission because there are still many unknown events. In the
next sections, we provide background knowledge about the BSC and wire-

less channel model, and present a method for estimating the channel state.

3.1 Wireless Channel Model

The channel model is used to represent the practical transmission chan-
nel designed for simulating the transmission systems. Normally, the chan-
nel model is classified as either memoryless or memory. When signalling
through the channel, the channel is called a memoryless channel if the out-
put signal depends only on the input signal. If the output signal depends on
both current and previous signals this kind of channel is called a memory

transmission channel.
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A BSC model is the simplest communication channel model for a mem-
oryless channel. The BSC is a binary channel which can transmit only one
of two symbols, 0 or 1, over a transmission channel, and it has one pa-
rameter only, the bit error rate (BER), to describe the error condition. In a
BSC, the error probabilities of sending a one but receiving a zero, and alter-
natively sending a zero but receiving a one, are the same; accordingly, the
BER can be found as probability of one bit being received in error. The BSC
model is a very popular channel model because it significantly simplifies the
analysis. The Additive White Gaussian Noise (AWGN) channel is another
memoryless channel, where the distortion of one bit is independent of all
other bits in the data stream. In the AWGN channel model, the distortion
in the transmission channel is due to the addition of a zero-mean Gaussian
random value to each bit.

The BSC model is defined as follows: The input data transmitting over
the BSC is a string of binary bits. Assume the BSC is a noisy channel, and
the probability of p changing the transmitted data from zero to one and from

one to zero is the same, i.e. P(0[1) = P(1|0) = pand P(1|1) = P(0|0) = 1-p.

0 1=p 0

encoder P p decoder

1-p

Figure 3.1. Definition of probabilities of error in a BSC model.
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In this case, the overall error is simply calculated as:

plerror) = Z P(jli)p() (3.1.1)
i#j
The AWGN channel is another simple and popular channel model for the
analysis of the performance of an image transmission system over a memo-
ryless channel. The AWGN channel for a discrete memoryless channel can
be described as:
yln] = x[n] + z[n]

where x[n] is the input data at the discrete time event index n, z[n] is the
additive Gaussian noise in the channel, and y[n] is the channel output.

In a real-world channel, error events are generally not independent. Thus,
we need a channel model that can handle memory. For wireless communi-
cation, the simplest and most popular discrete memory model is the Gilbert-
Elliott channel (GEC) [97]. A two-state Markov model is well known as a
GEC model. This model is widely used in representing the error character-
istics of a wireless channel between two stations. The two states are: the
good state and the bad state. In the good state, the errors occur with low
probability Pg, such as P; ~ 0, while in the bad state the errors occur with
high probability P, such as Pz ~ 0.5. Both P; and Pg are assigned by de-
signers to simulate the noisy channel state. The channel is in the good state
most of the time, but on occasional shifts to the bad state owing to a change
in the transmission characteristic of the channel. Each state can be treated
as a BSC model. In a BSC model the BER is used to express the amount of
errors in it. Sometimes, more complex models with three or more states are
needed. Due to the underlying Markov nature of the channel, it has memory

that depends on the transition probabilities between the states. The FSMC
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models ﬁave been shown to be good approximations for binary transmission
over slow varying flat fading channels [98]. Details about discrete channels
with memory can be found in [99]. The transition probabilities from one
state to the other are represented by b and g, as shown in Fig. 3.2; (1 - b)
and (1 — g) are the probabilities of staying at the good state and bad state

respectively. The average bit error rate produced by the GEC is [100]:

BER,, = £Fc*bPs (3.12)
g+b
b
-5 o o -2
g
1-F 1-P
0 — 0 0 3 0
Pg Pg
1 | 1 1
1- P, 1-P,

Figure 3.2. GEC model, P; and P are the channel crossover probabilities
in the good and bad states, and g and b are transition probabilities between
states [4].

In wireless mobile communications, the most popular channel model is
the Rayleigh flat-fading channel. Rayleigh flat-fading models assume that

the magnitude of a signal that has passed through a communication channel
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varies randomly, or fades according to a Rayleigh distribution. Such mod-
els are well suited for radio communications, where the transmitted signal
reaches the receiving antenna via multiple paths, and the delay between the
received paths is short compared to a bit interval. No dominant propagation
along a line of sight between the transmitter and receiver is considered.
Another channel model commonly used in packet-switched networks is
the erasure channel. If the input data are partitioned into packets, so that
either all symbols within a packet are received or all are lost, this is called
packet erasure channel. The simplest of such model is memoryless and it

assumes that the packets are lost randomly.

3.2 Directly Estimating the State of the Transmission Channel

A bit error uncorrectable in the decoder often leads to a complete loss of
synchronization and often makes the reconstruction impossible. Although
increasing the parity length provides more data protection, it also increases
the overhead in transmission channel. The parity length selection is the main
point for an efficient and reliable image transmission system design. Re-
searchers have therefore proposed many methods and algorithms to achieve
this. These include JSCC, variable parity length, UEP, and feedback schemes.
However, in these algorithms the channel state is assumed known, which
may not be the current channel condition. In the image transmission with-
out feedback system, collapse of the reconstructed image is possible if the
data is not well protected. On the other hand, if we offer much data pro-
tection over a low noise channel, the transmission system becomes less ef-
ficient and the overhead information in the bandlimited channel increases.
It is very difficult to provide an adequate data protection under an unknown

channel state. Thus, in order to reduce the possibility of data collapsing,
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another method has been proposed to address this problem. This approach
sends a sequence of signals called the training signal sequence first, and then
compares the original training signal with the received signal and evaluates
the channel errors. However, this may not be acceptable in the real world
application because it causes a long delay.

A feedback system is another solution which has shown better perfor-
mance compared to a channel without no feedback, because a decoding re-
sult (success or failure) can be sent back from the receiver to the transmitter
through the feedback channel. Therefore, the transmitter has the opportu-
nity to change the parity length for data protection in the subsequent trans-
mission. However, the feedback information only indicates that the parity
length is enough or not for data correction; it neither shows the exact chan-
nel state, nor provides any rough estimation of channel data. For lowering
the system complexity, in some cases, the transmitter may regard the noisy
channel as the worst case and provide the largest parity length for the next
transmission data if the decoding failure is acknowledged. Thus, the main
problem is that the encoder has no exact or even rough information about
how many errors are caused by the noisy channel.

To design an image transmission over noisy channels, the best perfor-
mance can be achieved if the parity length is adaptive and variable, accord-
ing to the channel state. To achieve this goal, we have to capture more
accurate information about the channel condition. Although it is difficult to
measure the channel error in real applications, in the next subsection, we
present a simple method to evaluate the channel state. This algorithm de-
tects, assigns and calculates the amount of header information errors caused
by the channel and sends back to the transmitter. This information is used

by the proposed adaptive procedure in the transmitter to readjust the parity
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and therefore enhance the system reliability.

3.2.1 Algorithm development

An algorithm, for direct estimation of the state of the transmission chan-
nel was developed specifically for our proposed transmission system based
on the nature of WT and EZW coding. This algorithm is able to detect
the corrupted header information, count the amount of the corrupted header
value and reassign new values to such a header information. The output
of EZW compressed symbols consists of header and compressed symbols.
The header information represents the number of compressed symbols per
compression process followed by the compressed symbols. In detecting the
corrupted header information, the algorithm checks the value which holds
the header information position, and then assigns a new value based on the
decision policy if the corrupted data is detected. Assigning new values re-
duces the probability of collapsing the reconstructed images and therefore
allows the detection process to continue. The corrupted header data amount
is sent back to the transmitter via feedback channel to evaluate the channel
state. Although it is hard to evaluate exactly the current channel conditions
under various noise levels, I attempted to capture the channel state more pre-
cisely using the proposed technique, since the transmission system should
have better performance if the transmitter has more information about the
channel state. According to the experimental results, the developed algo-
rithm had better performance in a less noisy channel than in a more noisy
channel and was more able to capture the channel state.

The proposed algorithm was developed in the following steps:

o The original images were segmented into subblocks. We could there-

fore find out the amount of data in each block. For example, an 8 x 8
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subblock was used in our proposed scheme, and the amount of data

was 64 in each subblock.

e DWT and EZW were performed. The EZW encoded each subblock
independently. Accordingly, the number of EZW compressed output
symbols was between 4 and 64, and was also divisible by 4 in the 8x 8

subblocks.

e The EZW compressed output symbols consisted of the number of
compressed symbols and header followed by the compressed sym-
bols. The output of EZW compressed symbols over a channel was

formatted as in Fig. 3.3.

compressed symbols in compressed symbols in
|‘" the subblock N |—' the subblock "I
N | N2 se 0
T_ number of compressed symbols in _T
the subblock

Figure 3.3. Format of the EZW plus the symbol number information trans-
mitted over the channel.

We could enforce some constraints from the header information, such as
4 < header information < 64 and that the header value is divisible by 4 for
the case of 8 x 8 subblocks. Such constraints could be changed according to
the size of subblocks and used as the criteria to check the header values if
they have been corrupted. A flowchart of the algorithm to directly estimate
the state of the transmission channel is shown as Fig. 3.4.

The detailed information in the flowchart is explained below:

o Is the header address out of the range of data length? If not, then
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Figure 3.4. Flowchart of the direct state estimation of the transmission

channel algorithm.
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the algorithm will be continued until the header address is out of the

range of input data length.

o Check the header information, N, to see if it matches the criteria.
Here, the checking criteria are: 4 < header information < 64 and the
header value is divisible by 4 because only 8 X 8 subblocks are used
in our proposed scheme. Therefore, N, is considered to be probably

clear header information if it can pass the detection criteria.

e Check the next header information N, to see if it matches the criteria.
Check the next header information N, to ascertain whether the previ-
ous header information N, is corrupted or not. The position of N, is
based on N and is equal to N, address plus N; + 1. A double detection
method is used to avoid the situation where N, has passed the detec-
tion criteria but N has not passed the detection criteria. Such situation
indicates that maybe N, is corrupted. Accordingly, N, is considered
to be clear header information only if both N; and N, pass the de-
tection criteria. The amount of corrupted data is incremental once
the corrupted N, is detected. The final amount of corrupted header

information is used to indicate the state of the noisy channel.

e Assign the a new value to replace the corrupted header information
according to the preset decision policy and send the new header ad-
dress back for the next header information checking. In the case of N,
not passing the detection criteria, a new value is assigned to replace
the corrupted header information and the data structure is rearranged
by the preset decision policy. In the decision policy algorithm, each
symbol is detected until a symbol can pass the criteria. The symbol

that has passed is considered to be the header information, not the
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transmission data. The distance d between N, and the information N
(which has passed the criteria) is then estimated. The output of EZW
compressed symbols are represented by p, n, z, t, where, in this case
p=112, n=110, z=122, and t=116 and is expressed in ASCII codes.
Because the length of the EZW output compressed symbols is divis-
ible by 4, four possible formats exist in between N) and N. We can
therefore rearrange the data structure based on the remainder m of

(d - 1)/4. Each new data structure is described as follows:

— m=0: referring to condition m=0, we assume N, is corrupted
and no other header information exist in such data structure. N,
will then be replaced by d-1 and the address of the N sent out

for the next detection. This is shown as in Fig. 3.5(a).

— m=1.: this is the case where N, is correct and N, is corrupted. We
therefore assign a new value to replace the corrupted information
N, according to the considered decision rule. The new value is
equal tod — 2 — N, under the d — 2 — N; > N, condition. This is
shown in Fig. 3.5(b).

— m=2: under the m=2 condition, we assume N is correct and N,
is corrupted. We also assume there exists another header infor-
mation in distance d. The decision is therefore: N, is correct, N,
is replaced by 4, and the other header value, N; is d— N;—7. The
N3 address is equal to the N, address plus five. [see Fig. 3.5(c)].

— m=3: in this situation, we assume N, is correctly received and
N, is corrupted, and two other headers exist in distance d. N, is
therefore set to 4, and the other two headers, N5 and Ny, are set

to 4 and d — N, — 12, respectively. The address of Nj; is equal to
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the N, address plus five and the address of N, is equal to the N3

address plus five. This is shown in Fig. 3.5(d).

— —»  Distance between the two header information, 4 ~ €———
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Figure 3.5. Based on the decision rule new header values are assigned
in four types of data structure: (a) N; is considered corrupted, but N, is
considered correct under the m=0 condition, (b) in the m=1 condition, N, is
considered correct, but N, is considered corrupted, (c) in the m=2 condition,
N, is replaced by four, Ns is created and is set to d — Ny — 7 according to the
data structure and criteria, and (d) reassigning the data structure in the m=3
condition, N, and N3 are replaced by 4, and N, is replaced by d — N; — 12.
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3.2.2 Experimental results

The proposed algorithm is simulated for both BSC and flat fading Rayleigh
channels. The BSC is the simplest channel model, since only zeros and
ones are conveyed in the channel. We can therefore simplify the analysis
and thereby facilitate fast software implementation. However, flat fading
Rayleigh noise is often present in mobile communication channels, there-
fore, we simulated both BSC and flat-fading channel models and tested the
performance of the proposed techniques against both models. RS(255,k) is
used in the proposed scheme. The RS codes correct the symbol error and
not the bit error. The BER used here was not the output BER but an exper-
imental setup to denote the noise level in the channel. For example, 7 error
bits were generated when the BER was set at 0.003, because RS codes are
systematic linear block codes. When the errors are uniformly distributed
the average parity length is 14 for a 255 length code length. Accordingly,
the parity length in the RS coder should be at least 14 symbols in the worst
case scenario in order to be able to correct the data errors. The Rol and UEP
schemes were also included in this simulation.

Fig. 3.6 shows the frequency of the set of parity lengths in 10 trials for
when the BER was set at 0.003 equivalent to the occurrence of 7 errors. The
results showed that the proposed algorithm had channel state information
very near to the practical channel state in nine of the ten trials. Since data
in the Rol was the most important data in the overall image; the length of
parity codes was longer than that for the data outside Rol. The output image
format was based on Fig. 2.11 in Chapter 2. In the proposed algorithm,
the codeword length of RS codes was 255 and the number of error bits was
generated at random.

The parity lengths were found by averaging the results of 10 trials under
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(frequencies in 10 times,
[set of parity lengths])

Figure 3.6. Average distribution (frequency) of the set of parity lengths in
10 trials for BER=0.003. [i, j, k] refers to three parity length i, j and k
corresponding to three regions in the image.

< 10

0.0 0.001 0.002 0.003 0.004 0.005
BER

Figure 3.7. Lengths of the parity codes based on various channel noise
levels.
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various noise-levels (see Fig. 3.7). These were estimated by the algorithm
developed for detection of the amount of errors in the receiver. The initial

parity lengths for Rol, R1 and R2 are 6, 4, and 2, respectively.

3.3 Conclusions

In this chapter, the BSC and wireless channel model have been briefly in-
troduced. Both models are simple, popular, and widely used in transmis-
sion channel simulation. The performance of a transmission system is se-
riously affected by the channel errors. Although it is impossible to develop
an algorithm which can estimate exactly the channel state because of too
many unknown events, an algorithm which directly estimates the state of
transmission channel was developed to capture more accurately the channel
conditions. The proposed algorithm is simple and implementable and was
simulated for both BSC and Rayleigh channels. Based on the experimental
results in Fig. 3.6, it was demonstrated that the proposed algorithm could
estimate the required channel information in nine out of ten trials. Fig. 3.7
shows the experimental results for various noise levels and indicates that
the capability of data correction increases when the channel noise increases.
According to the experimental results and as expected, the proposed algo-

rithm has better performance in the lower noise channels.



Chapter 4

A COMPRESSIVE SENSING
APPROACH FOR
TRANSMISSION OF IMAGES

In this chapter, a compressive sensing approach as a source coding tech-
nique for progressive transmission of images is proposed. Hierarchical al-
ternative least squares (HALS) based compressive sensing (CS) is used for
adaptive selection of the wavelet coefficients and nonlinearly thresholding
the transform coefficients. CS is a relatively new coding paradigm which
seeks to capture only the significant coefficients in the signal by a random
matrix, and then uses nonlinear recovery algorithms (based on convex opti-
mization) to reconstruct the signal with as few measurements as possible. In
this chapter, we have evaluated both EZW and CS algorithms and compared
with CS and EZW in the progressive transmission of images mentioned in
previous chapters. Generally, the CS algorithm is easier to use, more ef-
ficient, provides better resolution, and entails lower computation. Under a
similar compression rate, the resolution of reconstructed image utilizing the
CS algorithm is better than that obtained when the EZW algorithm is used.

The overall JSCC system block diagram is the same as that depicted in
Fig. 2.1 in Chapter 2.
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4.1 Introduction to Compressed Sensing

Generally, in conventional image compression techniques based on trans-
form domain, the images are transformed into a domain where the corre-
lation among the samples becomes minimum and the signal energy is dis-
tributed among a small number of samples only. This procedure acquires
the full signal, computes the complete set of transform coefficients, encode
the largest coefficients and discard all the others. The compression is funda-
mentally achieved when a small set of transform samples (coefficients) are
selected and the image is decoded (reconstructed) using these coefficients
and an inverse transformation. CS also known as compressed sensing, de-
veloped by Candes and Donoho [101, 102], shows that a direct reconstruc-
tion using a smaller observations/samples is indeed possible if the data in
that particular domain is sufficiently sparse. This allows sampling of the
data at rates less than Nyquist rate. This technique combines two key ideas:
sparse representation based on wisely choosing a linear basis for image;
and incoherent measurements of the signal to extract the maximum amount
of information from the image using a minimum amount of measurements.
The key requirement of a successful CS system is sparsity which requires a
significant number of signal samples in the sparse domain to be zero. Sparse
signals have a small number of non-zero samples compared to their length.
Although sparsity might exist in other basis rather than the present domain,
it is an essential characteristic of a signal to make it suitable for applying
CS. CS provides a different compression method to build the data compres-
sion directly into data acquisition and provides a great reduction of sampling
rate, power consumption and computational complexity to acquire and rep-
resent a sparse signal [103]. As this theory has a direct connection with

sparse signal recovery, many researchers attempted to take the advantage
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of CS in related applications. Some applications for medical imaging are

in [104, 105].

4.1.1 Mathematical expression of CS

Consider x is a real-valued, finite-length, one-dimensional and discrete-time
signal, which can be viewed as an N X 1 column vector in R" with elements
x[n], n=1, 2,... N. Assume that the basis is orthonormal, using the N X
N basis matrix ¥ = [Yl¢»]-- - lwn] with the vector ¢ as columns of ‘P.
Any signal in the space of real numbers, R", can be represented as sum of

weighted N x 1 vectors and expressed as
N
x=Zs,~n,0,~ or x=Ws @4.1.1)
i=1

where s is the N x 1 column vector of the transform coefficients s; = (x, ¢;),
Obviously, x and s are equivalent representations of the signal, with x in the
time or space domain and s in the ¥ domain. If the signal x is K sparse,
which means there are k non-zero coefficients and therefore, the K largest
coefficients are encoded and the (N — K) smallest coefficients are discarded.
If the representations in equation (4.1.1) has a few large coefficients and
many small coefficients, K << N, the signal x is compressible.

Assume that we have a set of few non-adaptive linear measurements
obtained from the entire input image, the aim in compressed sensing is to
reconstruct the entire signal accurately and efficiently from those measure-
ments. The purpose of CS is to recover the sparse signal x by taking ran-
dom measurements less than N. For taking CS’s measurements, we first let
measurement matrix ® denote an M X N with M << N. The ® should be

uncorrelated with ¥. The choice of the test function, ®,, allows us to choose
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in which domain we gather information about the image. For example, if O*
are sinusoids at different frequencies, we are essentially collecting Fourier
coefficients, if they are delta ridges, we are observing line integrals, and if
they are indicator functions on squares, we are back to collecting pixels.
Imagers that take these generalized kinds of samples are often referred to
as coded imaging system, as the measurement yi, ***,ymare in some sense
a coded version of the image X rather than direct observations. Various
types of measurements can be found in [106-108]. Therefore, the number
of measurements, M, and each measurement yk in our acquisition system is

an inner product against a different test function ¢k and shown in Fig. 4.1:

yi=<*,0i>, yi =&, " y* = G(>k. fo=1, -*Af  (4.1.2)

y:OX:OTS

sparse
signal

nonzero

measurements entries

Figure 4.1. Compressive data acquisition [5].

We choose ¢k in such a way to minimize the number of measurements
M needed to reconstruct x. One idea is that we reconstruct the image by

finding the closest image that matches the observed projection onto the span
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{#1,-++ . dm}. The reconstructed image X is [109]

% = O (dP*) y. (4.1.3)

where @ is the linear operator that maps an image to a set of M measure-
ments. ®* is its adjoint, and y is the M-vector of observed values. However,
this type of linear-coded imaging system have a severe shortcoming, the
measurement process is not adaptive, meaning that @ is fixed and does not
depend on the signal x and therefore, the same M transform coefficients
are recorded for every image [109]. Therefore, to reconstruct x from y, the
number of measurements in y is almost equal to the number of coefficients
recoded by a traditional transform coder. The sparsity and incoherence are
the most important properties to make CS possible. CS exploits the fact
that many natural signals are sparse or compressible in the proper basis Y.
Incoherence implies that sampled waveforms have an extremely dense rep-
resentation in . For solving the problem for ®, we find that the ¢, should
be completely unstructured and look more like random noise than any fea-
ture we would expect to see in the image.

The selected number of measurements is highly related to the level of
sparsity; more sparsity allows us to take smaller M. The CS theory states
that the signal could be recovered exactly if the number of measurements
M obeys the condition M,,;, > Clog(N/K) [101]. C is a constant and is
an over-measuring factor greater than 1. Since y is lower dimension vec-
tor compared to x , it is impossible to get exact x directly by the inverse
transform of equation (4.1.2). In order to have an effective CS system, ®
and ¥ must be as incoherent as possible in their columns. This refers to the

theory of Uniform Uncertainly Principle (UUP) [110]. The UUP states that
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for any arbitrary k-sparse vector h, the energy of the measurements ®h is

comparable to the energy of h itself,

- — - [l < ||@h|]} < - |Ih)j3 (4.1.4)

[STEN
X|=
N W
X|=

The proportion of the energy of h appearing as energy in the measure-
ments is roughly the same as the undersampling ratio N/M [109], and so
this is called an uncertainty principle. While h is entirely concentrated on a
small set in sparse domain, it is spread out more or less evenly in the mea-
surement domain. In order to understand how the UUP relates to sparse
recovery problem, suppose that equation (4.1.4) holds for sets of size 2k.
We measure our k-sparse vector as: y = ®sp, assuming ¥ = I is an identity
matrix. Is it possible to make any other k-sparse vector sy # s that has the
same measurements? The answer is no. If there were such a vector, then the
difference h = s — sy would be 2k-sparse and ®h=0. These two properties
are incompatible with the UUP [109]. The UUP confirms that the connec-
tion between presenting basis matrix ¥ should be as much incoherent as
possible with the sensing matrix @. The coherency measure between the @

and the ¥, sometimes called mutual coherency [110], can be expressed:
p(®,¥) = Vn max Ky (4.1.5)

ls,uS\/ﬁ

In fact, mutual coherency is the largest correlation between any two columns
of ® and ¥. u = 1 represents the minimum coherency. There are many
pairs with good incoherency in the literature [110]. However, it is proven

that random matrices are largely incoherent with any fixed bases. This is
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a very important property that allows us to choose the measurement matrix
non-adaptively [110]. The ® is the canonical or spike basis () = 6(t — k)
and V¥ is the Fourier basis, y;(f) = n~1/2¢2"/"/" are ideal examples. Since
® is the sensing matrix, this corresponds to the classical sampling scheme
in time or space. The time-frequency pair obeys u(®, '¥)=1 and, therefore,
we have maximal incoherence. The second example can be wavelets bases
as the sparse transform ¥ and noiselets [111] for measurement matrix ®.
The coherence between noiselets and Haar wavelets is V2 and that between
noiselets and Daubechies D4 and D8 wavelets is, respectively, about 2:2 and
2:9 across a wide range of sample sizes N [110].

Another significant property for the CS signals is the theory of Restricted
Isometry Property (RIP) that should be considered as an effective factor in
the robustness of CS [110]. For each integer k = 1,2,--- the isometry

constant §; << 1 of a matrix @ is defined as the smallest number such that:

(1= 6l < OxI < (1 + 6lIxll2 (4.1.6)
where || - || refers to £,-norm. For 1 < p < oo, we denote || - ||, as the usual
p-norm,

i=d
Ihll 1= O lxed?) 7 @.1.7)
i=1

¢,-norm refers to the case where p= 2. This equation (4.1.6) holds for all
k-sparse vectors [110]. Suppose now we only have the measurements y
and the measurement matrix ® in hand; we want to recover signal x from
y. Obviously, we are dealing with an underdetermined system with more
unknowns than knowns (N >> M). In order to solve such a system ap-
propriately, we have to consider sparsity constraints. In other words, we

are always seeking for the sparsest solution either in sample domain x or
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in sparse transform domain s which is proven to be unique [101]. The most
straightforward solution is £,-norm which calculates the number of non-zero

elements K in the sparse signal s can be expressed by:

X =arg min|x|lp s.z. y=>d¥Yx (4.1.8)

Although solving equation (4.1.8) is an intractable problem in general,
some greedy techniques such as MP (Matching Pursuit) and OMP (Or-
thogonal MP) [112] have been reported to find the sparsest vector. This
is achieved either using £, or £;-norm which is defined by replacing | - llo
with ||-|]; in equation (4.1.8). It has been shown that we can have the sparsest
unique solution by applying £,-norm optimization as well.

Solving equation (4.1.8) is also an intractable problem in general. How-
ever, there have been recent attempts to solve this problem directly using
iterative methods [113]. The most feasible and commonly used methods in
this case, are greedy techniques mentioned above. When the support s of the
signal has been calculated, the signal x can be reconstructed from its mea-
surements y = ®x as x = (Ps)y, where x = ®s is actually the measurement
matrix @ restricted to the columns indexed by s. On the other hand, it has
been shown that we can reconstruct the sparsest unique solution by solv-
ing £-norm optimization. It leads to a convex optimization problem which
is solved by linear programming. Basis Pursuit (BP) is one of the major
approaches of this type which relaxes the £,-minimization problem to an
£,-minimization problem. Basis Pursuit requires a stronger condition on the
measurement matrix than the simple injectivity on sparse vectors, but many
kinds of matrices have been shown to satisfy this condition. In general, the

¢£,-minimization methods provide solution guarantees and stability, but rely
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on methods in Linear Programming which impose high complexity to the
system. Moreover, since there is yet no known strongly polynomial bound,
or more importantly, no linear bound on the runtime of such methods, these
approaches are often not optimally fast.

The samples are nonadaptive and measure random linear combinations
of the transform coefficients. Approximate reconstruction is obtained by
solving the transform coefficients consistent with measured data and hav-
ing the smallest possible £; norm. [101,110,111, 114-116] demonstrate the
feasibility of recovering sparse signals using a small number of linear mea-

surements.

4.2 Hierarchical Alternative Least Squares

The fundamental idea underlying hierarchical alternative least squares (HALS)
is based on compressive sensing and suggests that a sparse signal x € R’
with a few significant samples m (m < J nonzero coefficients) can be re-
covered almost perfectly using a lower dimensional signal. The CS model

is described as:

Y = AX 4.2.1)

where X = [xy, Xy, ..., Xy] € RN represents an unknown family of J at least
k-sparse source signals, and Y = [y, Y5, ..., yy] € R’V are the compressed
signals obtained by applying a known projection matrix A = [a,,a,,...,a;] €
RK&*/ (usually K < J) on the source signals. This means that each J-sample
signal x,, (n-th column of the matrix X) is represented by a K-sample signal
Yy, (n-th column of the matrix Y). The primary objective is to reconstruct

the sources represented by the rows of matrix X from Y by exploiting the
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sparsity property in a suitable transform domain (such as wavelet in this
case). This problem is nontrivial since the system of linear equations (4.2.1)
is undetermined and generally provides an infinite number of solutions.

In [117], the iterative thresholding concept originally proposed in [118]
has been followed. This has been modified to incorporate an adaptive non-
linearly decreasing trend, (also known as shrinkage), which allows very suc-
cessful reconstruction of sparse sources. The model is represented in the

following form:

S=ATY = ATAX = CX 4.2.2)

where S =[s;,85,- - ,sy] € R>X, C = [c1,¢,--- ,¢;]= ATA =¢ R,
The columns of A and C are normalized to unit length and the sparse
sources X can be estimated when both S and C are known. In order to do

this, the samples of X are estimated based on minimization of

S 1 -
DO 1 x) = 3 114 - e, 1B (4.2.3)
where x ; is the jth row of X and
J
u? =5 - Z cik,,  j=1,2,.,J (4.2.4)

r=l.r#j
By taking the gradient and after some manipulation [117] and considering

thathj =1:

x, —ul=x+r (4.2.5)

where r; is the j-th row of the residue matrix R = § — CX which is updated

as [117]:
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x |00 01 02 1.0
9| 1.0 08 04 00

RED — RO _ Cj({j'ﬁl) - 55_")) 4.2.6)

After each update of x ; and before each update of R, a shrinkage rule based

on adaptive thresholding is applied to the estimated x ; values as follows:

X, — P,,@j) 4.2.7)

where P,(-) represents a suitable shrinkage rule/transformation and A =
[A1, A, ..., Ay] is the adaptive threshold. This nonlinear shrinkage transfor-
mation is to enable the achievement of a unique sparse solution and also
robustness to noise. A number of functions have been introduced in the
literature as stated in [117], and it has been demonstrated that the best per-
formance can be achieved using the non-negative Garrotte and Abramovich

rules almost equivalently. Therefore, the latter one can be defined as

P,(x) = sign(x) Vx2 — A2 forjx| > A (4.2.8)

for any variable x, is used here.

In our source coding application, as for the EZW algorithm, we need
to establish a thresholding criterion here. A monotonically non-increasing
function (-) has to be used, as for many CS algorithms, for the selected
shrinkage rule. Such a function should comply to ¥(0) = 1 and ¢(1) ~ 0.
Often, it decreases faster at the start and gradually becomes slower as the
argument tends to 1. In practice, this function can be designed, for example,
by the shape-preserving piecewise cubic Hermite interpolation with only

four initial points as in [117]: Alternatively, an exponential function such as
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Y(x) = exp(—Bx), B > 0, can be used. It has been shown that the algorithm
[117] performs best when 3 < 8 < 5.

4.3 Simulation Results

Both the EZW and the proposed HALS-CS algorithms have been applied to
a 512 x 512 monochrome X-ray bone image. Fig. 4.2(a) is the test image.
Figs. 4.2(b) and (c) show respectively the results of EZW and HALS-CS
both for 100 times compression. Obviously, the quality of reconstructed
image by HALS-CS is better than that by EZW. The image has diagnos-
tic information in the region of a bone fracture as indicated in Fig. 4.3(a).
To test the overall performance of the system, the error bits are generated
by randomly inverting a certain percentage of bits in the EZW or CS bit
streams. To verify the effectiveness of the system initially, the image re-
gions are progressively transmitted in the four stages P, to P4 using fixed
parity length as mentioned in Chapter 2. During P,, the background image
is transmitted. Stages P, and P; are for the transmission of the Rol, R1, and
R2. Stage P, is mainly for transmitting the details of the Rol. The trans-
mission can continue to achieve the desired compression rate in the final
stage. The results of both schemes for progressive transmission of the bone
image for a fixed parity length are given in Figs. 4.3(b) and (c). The data
for both methods were compressed approximately 50 times. The signal-to-
noise ratio (SNR-defined as the square of the original image divided by the
Euclidean norm of the difference between the original and the reconstructed
image in dB) for EZW-based compression SNR was found to be SNR g7y =
15.02 dB, whereas this ratio for the CS-based method was SNRs = 20.39
dB. With regards to peak signal to noise ratio (PSNR =max(X)) divided by

the norm of difference between the original and the reconstructed image) for
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EZW, this was found to be PSNR£ZW = 23.3 dB, whereas for the CS-based
approach it was PSNR G =29.8 dB.

In the second experiment, using the HALS-CS method, a feedback was
provided and the parity length was varied. The reconstructed data becomes
much less sensitive to the changes in the channel noise and the system per-
formed much better for the regions closer to the Rol center. The results are
shown in Fig. 4.3. The source compression rate was approximately equal
to 50. This confirmed the adaptivity of the variable parity length scheme
to changes in both the region content and the channel noise level. Obvi-
ously, the overall compression rate is based on change in parity length in
order to provide protection for the data. On average, the increase was up to
25%. From Fig. 4.3 it is clear that the error for the Rol and its vicinity has
been effectively mitigated and the overall system has been improved due to
scalability of the system. Fig. 4.4 shows that the parity lengths in the pro-
posed system are automatically adjusted based on both the three designated

regions and the noise level in the transmission channel.

Muitiscals CS with HALS

(a) (b) (©)

Figure 4.2. Source coding and decoding of 512x512 bone image: (a) origi-
nal image, (b) using the EZW algorithm, and (c) using HALS-CS algorithm.
In both cases, the data was compressed 100 times.
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Figure 4.3. Progressive transmission of bone image; the Rol is at the point
of bone fracture shown in (a), for (b) EZW and (c) HALS-CS algorithms
for fixed parity length. The compression ratio is approximately 2%. In this
experiment, the image was divided into subblocks of 16 x 16.

— b — ROI
v Region 1
— «= — Region 2

-5
0.000005 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01
Channel noise in terms of BER

Figure 4.4. SNR for adaptive parity lengths for the three designated regions
versus the noise level (in terms of bit-error rate or BER) in the channel.
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4.4 Conclusions

With the help of compressive sensing using the recently developed HALS
algorithm based on nonlinear thresholding a progressive transmission sys-
tem has been introduced in this chapter. The main contributions of this
work are: a) the selection and coding of a small number of samples (sam-
pled below Nyquist rate) and b) the introduction of an adaptive thresholding
technique for selection and reconstruction of those samples. The results
have been compared with the previously introduced EZW with crisp thresh-
olding and it has been shown that by using the new proposed technique, a
much higher compression rate can be achieved for a high quality reconstruc-
tion of medical images. Generally, CS changes the rules of data acquisition,
meaning that data is both captured and compressed. As a consequence, the
CS algorithm will become increasingly important and widely utilized in the
future. In addition, the feedback system provides flexibility in selection of

the region to be streamed first, and interactivity of the system.



Chapter 5

PROPOSED PROGRESSIVE
TRANSMISSION SYSTEM
AND ITS IMPLEMENTATION

The proposed progressive medical image transmission with feedback sys-
tem of Fig. 2.1 is implemented here and the outcomes are assessed. The
proposed system consists of JSCC, UEP, and feedback (to exploit Rol and
channel noise) modules. The JSCC scheme consists of a quantizer, entropy
and channel coders to meet the target source rate, to achieve the required
robustness in channel coding, and to find an optimal bit allocation between
source and channel coding. In our JSCC scheme, a three-level HWT is
adopted as a source coder and RS coders as channel coders. For medical
image transmission, the UEP and both lossy and almost lossless compres-
sion methods based on HWT are adopted. The quality of the reconstructed
medical images, especially for the Rol, should be acceptable. Which means
having no visible error. This can be set as the constraint for the quantizer
and the compression algorithm in advance. However, the quality of the
reconstructed image is also affected by the channel state and proximity to
the image Rol. An estimator for the noise level in the transmission channel

is therefore developed. The noise estimate is sent back to the transmitter
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through the feedback channel. The parity length is also varied to achieve an
adaptive and efficient transmission system. The feedback signal in the pro-
posed scheme updates the parity length without the need for retransmission
of the data or addition of any extra overhead. The parity length is automat-
ically adjusted by the feedback channel. Since the reconstructed image is
divided into three areas for faster observation by the user, the UEP strat-
egy is adopted to reduce the transmission channel load, and maintain the
Rol region with minimum error. The proposed system is very user-friendly
since the selection of the Rol, its size, overall code rate, and a number of
test features, such as noise level, can be set by the user at both ends.

The principal idea behind all these methods is that in a progressive trans-
mission framework, the receiver reconstructs the transmitted image at vari-
ous bit rates, which makes fast and reliable retrieval of large images pos-
sible. That is to say, the quality of the reconstructed image is entirely
dependent upon the volume of the received data and the images can be
reconstructed in any reasonable bitrate. Further, the image subblocks are
coded separately. Due to the high sensitivity to transmission noise, pro-
gressive transmission of images over noisy channels has to be accompanied
by an appropriate channel coding, or a JSCC scheme. Any noise in the
current communication system may be due to the electronic components,
fading, Doppler shift for mobile systems, bad weather, interference, attenu-
ation, etc. The RS codes utilized here are block-based error correcting codes
which are widely used for channel coding. The RS(n, k) codes correct the
symbol error and not the bit error. Accordingly, RS is suitable for burst
error detection and correction. By utilizing our flexible system, minimum
distortion of the transmitted images in a fairly short transmission time can

be achieved. As the main contribution of this research, we adaptively con-
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trol the lengths of parity codes simultaneously with respect to the selected
region (i.e. longer lengths correspond to the areas closer to the centre of the
Rol) and the amount of corrupted received data in the receiver.

A Matlab-based TCP/IP connection has been established to demonstrate
the proposed interactive and adaptive progressive transmission system. The
proposed system is simulated for both a binary symmetric channel (BSC)
and Rayleigh channel. The experimental results verify the effectiveness of
the design. A block diagram of the proposed system is shown in Fig. 2.1 in

Chapter 2.

5.1 Description of the System

5.1.1 System analysis

Wireless transmission of medical images involves construction of an effec-
tive JSCC to not only preserve the diagnostic information but also to enable
progressive streaming of the data from the host to the receiver. Thus, based
on progressive encoding, we can compress a block into a bitstream with
increasing accuracy. Traditionally, the input images are decomposed into
many subblocks which can each be coded, compressed, and transmitted in-
dividually. First, the input image is segmented into a number of subblocks.
An 8 x 8 subblock structure is adopted in our proposed system. Although
larger subblocks compression rate is slightly better, the computation cost
and the required memory size increases with the subblock size. For appli-
cation in portable devices, memory and computation are of our concerns.
WT decomposes each subblock into different time-frequency components.
A 3-level HWT is utilized as the WT function in our proposed system.

After computing the HWT and quantizing the HWT coefficients, we
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compress the quantized data in each subblock independently according to
a variable thresholding mechanism governed by the EZW. The WT coeffi-
cients are coded into streams of four symbols, namely,( p, n, z,t,) according
to the threshold value, as detailed in section 2.2.1 of Chapter 2. EZW suits
progressive data transmission, since it enables hierarchical encoding and de-
coding. The suitable approach in the EZW is to use a variable threshold and
transmit only those coefficients to the decoder that are larger than the thresh-
old. The first step in the EZW algorithm is to determine the initial threshold
level 7, and then repeatedly lower the threshold by half at a time until the
threshold has become smaller than the smallest coefficient to be transmitted,
or the iteration is stopped by request. Lowering of the iteration threshold by
half at a time is used to determine the compression ratio and resolution in
the subblock. The reconstructed image is divided into three areas, as shown
in Fig. 2.11 in Chapter 2. Each area has a different resolution, which means
the compression ratio in each subblock is based on the subblock location.
The Morton scan is adopted as the scan order as shown in Fig. 2.5(b) in
Chapter 2.

The RS (255, k) codes utilized here are block-based error correcting
codes as detailed in section 2.2.2 of Chapter 2. The HWT and RS coders
are utilized to achieve a JSCC scheme in our proposed system. In which,
the parity length is adaptive and automatically adjusted by the channel state.
In the proposed algorithm, the data in different image regions, as denoted in
Fig. 2.11 in Chapter 2 for three regions, are protected by variable length par-
ity codes as for the UEP. The data in the Rol is treated as the most important
information and protected by longer length parity codes. Thus, according

to the UEP, the ratio of parity to overall code length for the (n+1) regions
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should be as follows:
Crot > Cri >CR2>"'>CR,,. (511)

where Cg,, refers to this ratio for the Rol and so on. Further, the length of
the parity code is affected by the noise in the channel, i.e. Cyeion ~ (1, N),
where r is the distance from the center of the Rol and N expresses the noise
in the practical transmission channel.

An adaptive variable parity allocation requires the error between the
transmitted image, I(x, y), and the received image, /(x, y) to be minimized

under the desired conditions. Suppose the error is defined as

&= I(x,y) - I(x,y)ll (5.1.2)
where || - || is the Euclidean-norm. Generally, we want to have the optimum
parity length such that:

Copt =mine subject to e<er (5.1.3)

where g7 is an acceptable error level in the receiver. According to the above

discussion, the parity length can be defined as:

C = g(r,S/N) = f(r,BER) (5.14)

where S/N, BER and r respectively stand for signal-to-noise ratio, bit error
rate and distance from the center of the Rol. The functions g and f are
generally nonlinear functions which can be defined empirically based on

examining the system for a number of trials. Fig. 5.3, f ~ (a9 — a,) for a
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fixed BER, where r is measured with respect to the number of pixels. From
Fig. 3.7 in Chapter 3, it can be concluded that f ~ (BBER + B,) for a
fixed proximity distance r. In more general applications, a more accurate
and possibly complicated function may be adopted. For such applications,

a reasonably accurate function can be modeled as
f(r,BER) = (ag — a,)(BBER + By). (5.1.5)

or

f(r,BER) = u3BER — y,r.BER — 17 + o (5.1.6)

where ;s are constant coefficients and can be easily found based on Fig.
5.3 and Fig. 3.7 in Chapter 3.

Fig. 3.6 in Chapter 3 shows the frequency of the set of parity lengths in
10 trials for when the channel noise is set to BER=0.003 equivalent to the
occurrence of 7 errors in 2048 transmitted bits. As long as the error in the
receiver remains higher than a threshold ¢#,, the length of parity increases.
If the error falls below a level 7, < t, the parity length will also increase.
These threshold levels are empirically selected by following the constraint
in equation (5.1.3). In these cases, the parameters in equations (5.1.5) and
(5.1.6) are approximately ap=0.08, @ = 2 x 107, Bo=5, 8 = 5 x 10* and
accordingly o = @¢Bo=0.4, y = afo = 1073, u, = af=1, and u3 = @B =
4x1072.

The performance of the system subject to different noise-levels is evalu-

ated using the peak signal-to-noise ratio, PSNR, defined as:

2
PSNR(dB) = 10log,, MA_SE (5.1.7)
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where A=1 if the image 0< I < 1, and MSE is defined as:

g I-12
11

(5.1.8)

where I represents the reconstructed subblock of the image, / is the subblock

of the original input image, and || - ||, represents the Euclidean norm.
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Figure 5.1. The transmitter including the proposed channel coding block
diagram.
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Figure 5.2. The block diagram for the receiver.
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Figs. 5.1 and 5.2 show channel coding structures in our proposed sys-
tem. The data in the same area is accepted as having the same data protec-
tion capability, and different data protection capability between areas. The

two figures also show the UEP scheme.

5.1.2 Experimental results

The proposed system is simulated for both the BSC and flat-fading Rayleigh
channel models. The BSC is the simplest channel model, which facilitates
the analysis and enables a fast software implementation. Since wireless
mobile communication channels are often considered to be with flat-fading
Rayleigh noise, we simulated both the BSC and flat-fading channel models
and tested the performance of the proposed technique against both models.
RS(255, k) was used in the proposed scheme. The RS codes correct the
symbol error and not the bit error. The noise in the simulated channel was
considered such that a BER of 0.01 was set in the receiver end. When the
errors are uniformly distributed, the average parity length is 42 for a 255
length code length. This recovers the Rol perfectly when either the BSC or
Rayleigh channel is considered and the channel noise is equivalent to BER
=0.01.

The developed algorithm was tested for a number of images, two of
which are analyzed here. The first image is a 123 x 150 pixel color dental
implant image, and the second image is a 508x512 pixel monochrome X-ray
bone image, both of which are to be transmitted via TCP/IP. The proposed
system follows the diagram in Fig. 2.1 in Chapter 2. Each noisy channel
involves a BSC and flat-fading Rayleigh channel with a certain BER. In the
simulation, the error bits are generated by randomly inverting a certain per-

centage of bits in the RS bitstream. To verify the effectiveness of the system,
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the image regions are progressively transmitted through four stages, namely,
Py, P;, P3, and P,4. During the P, stage, the background image is transmit-
ted. P, and P; are the second and third stages, both for the transmission
of the Rol, R1, and R2. P, is the fourth stage, mainly to transmit the de-
tails of the Rol (and the rest of the image if necessary). In the approach
presented here, first, the user (physician) specifies the address of the trans-
mitted medical image in the transmitter within the dialogue-based software.
After receiving the low resolution background image, the user identifies the
center of the Rol by a mouse and the radius of the Rol by entering a value
within the dialogue-based software. Then, the algorithm adjusts the length
of the parity codes initially proportional to the proximity to the center of the
Rol as Cy, Cy-2, Cp-4 for Rol, R1, and R2, respectively.

Accordingly, the receiver detects and counts the packages in error by
estimating the status of the channel. The parity lengths remain the same if
the distortion in the reconstructed image is acceptable. Otherwise, the codes
will be adjusted automatically. Typically, the ratio of the parity code to the
overall code length is larger for the clinically higher priority areas, that is,
the areas closer to the center of the Rol as stated in equation (5.1.1). Fig.
5.3 shows the ratios of the parity length and the overall codeword according
to the experimental results.

Table 5.1 summaries the average compression ratios for various regions
before the channel coding during the four successive transmission stages.
The compression ratio is defined as the ratio between the data volume of
the coded data and the original data. However, by changing one of the
Rol coordinates, or its radius r, and r;, data in Tables 5.1 and 5.2 are also
changed.

In Fig. 3.7 in Chapter 3, the parity lengths are found by averaging the
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BER=0.0
BER=0.001
BER-0.002
BER=0.003
BER=0.004
BER=0.005

I

Figure 5.3. The ratios between the lengths of the parity code C, and overall
codeword of 255 symbols in different regions at various fixed noise levels
with respect to proximity to the Rol.

Table 5.1. The average compression (bpp) for various regions for the four
stages of the progressive image transmission (bone image).

Compression ratios p) D2 p$ P4
Overall image 0.188 0.773 1.08 1.545
Rol 0 2.62 1.86  1.545
R1 0 0.372 0.406 0
R2 0.188 0.219 0.291 0

Table 5.2. The average PSNR (dB) for various regions corresponding to the
four progressive image transmission stages (dental implant image).

PSNR px p2 Pi p4
Overall image 21.02 23.05 27.03 39.79
Rol 0 39.44 39.68 39.79
Rl 0 25.08 27.01 0

R2 21.02 21.24 22.11 0
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Table 5.3. Comparison between UEP and EEP channel coding (dental im-
plant image).

PSNR, (UEP/EEP) P p2 ps P4
Rol 0/0 39.44/13.65 39.68/8.45 39.79/7.4
R1 0/0 9.06/11.28 17.74/8.45 0
R2 16.70/13.91 10.39/10.69 15.96/7.64 0

results of 10 trials under various noise levels. These are estimated by the
algorithm developed for detection of the blocks in error in the receiver. The
data in the Rol is the most important data in the overall image; thus, the
length of the parity code is longer than that relating to R1 and R2. In the
proposed system, the codeword length of RS codes is 255, and the number
of error bits is generated at random.

Table 5.3 shows the qualities of reconstructed image comparison in UEP
with in EEP data protection strategy in same compression ratio. The number
of error data being corrected is not always same because the RS corrects a
corrupted symbol not a bit and the noise is random signal. However, the
data in Rol is error-free based on the experimental results in UEP strategy.

In Table 5.4 shows the compression ratio and PSNR based on various
blocksizes in three areas in the EZW, where BS8, BS16, and BS32 express
the blocksizes are 8 x 8, 16 x 16, and 32 X 32, respectively. Rol, R1 and
R2 are three area with different compression rates adopted in the experi-
ment. According to the results, the compression rate is increased when the
blocksize is increased, but the quality is decreased.

Fig. 5.4 shows the PSNRs for the four successive transmission stages
under various noise-level conditions. Fig. 5.5(a) shows the background im-
age sent during the P; stage. Fig. 5.5(b) is the progressively reconstructed
image after stage P,, in which the Rol, R1, and R2 are reconstructed. At

this stage, the center of the Rol is denoted by the user via a mouse click.
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Table 5.4. Compression ratio and PSNR based on various blocksizes in
three areas in EZW.

area \ (bpp\PSNR) BS8 BS16 BS32

Rol 4.88/39.79  4.19/39.92  4.00/39.66
RI 2.15/27.92  1.255/27.08 0.934/25.90
R2 0.885/21.01 0.368/19.96 0.218/18.54

PSNR of reconstructed images in four stages under various noisy channels
M 1

5 -} 1
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Figure 5.4. PSNR for four successive transmission stages at different BERs
under various noise-level conditions.
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Fig. 5.5(c) represents the reconstructed image at stage P3 during which the
regions Rol, R1, and R2 are reconstructed. The Rol and R1 regions are
gradually increased in resolution. Fig. 5.5(d) is the final and complete im-
age after stage P4. The same procedure can be followed for encoding and
transmitting other medical image. However, the coordinates of the center
of the Rol as well as the size of the Rol may be adjusted according to the
user’s requirement. For example, in Fig. 5.6, the Rol is selected in the cor-
ner. Figure 5.7 demonstrates that a fixed-size parity code is not suitable for
an efficient transmission system. Accordingly, the system has been modi-
fied based on the proposed method to allow variable lengths of parity. Fig.
5.8 and Fig. 5.9 show no error in the Rol, indicating that the overall system
has been remarkably improved. In Fig. 5.10, another example of a decoded
image (a 508 x 512 monochrome X-ray bone image) is given, and the vari-
able length parity has been examined. The background image suffers from
heavy noise. However, the transmission can continue until the last stage

during which a complete error-free image is reconstructed.

5.2 Conclusions

In this chapter, we present a new adaptive source-channel coding with feed-
back for the progressive transmission of medical images. The system is
adaptive to both image content and channel specifications. However, this
application is merely for wireless channels (generally narrowband). Data
error detection capability and correction with automatic adjustment, low
image transmission time, and efficient communication are the key features
of this proposed system. The length of parity codes can be adjusted au-
tomatically based on the location of the image subblocks and the practical

characteristics of the communication channel to provide adequate data pro-
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© C)

Figure 5.5. The transmitted image over the low noise: (a) the background
image at stage P\ and the location of the Rol in the center of the image, (b)
the transmitted image after stage P2, (c) the transmitted image after stage
P3, and (d) the completely decoded image after stage P4.
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Figure 5.6. Similar results as in Fig. 5.5 when the Rol is selected in the
comer of the image.
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(© (d)

Figure 5.7. An example of the quality of the decoded image with fixed
length parity: (a) background image with the location of the Rol in the
center, (b) the image reconstructed at stage P2; several subblocks in error in
the area of the Rol and some error subblocks in the vicinity of the Rol, (c)
the number of subblocks in error increases when the volume of the data in
the receiver increases, that is, the resolution of the higher-priority regions
increases, and (d) the complete transmitted image.
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(© (d

Figure 5.8. The decoded image with variable parity code length over a noisy
channel, (a) A background image and the location of'the Rol selected in the
center of the image reconstructed after stage Pu (b) the reconstructed im-
age after stage P2, no error subblocks are found in the reconstructed image
because the parity code length are adjusted automatically based on the pre-
vious volume of incorrect data in the receiver, (c) the reconstructed image
after stage P 3; the lengths of parity bits in stage P3 are same as in stage P2
because no incorrect data was found in the reconstructed image after P2, and
(d) the complete transmitted image with no subblocks in error subblocks.
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@ (b)

© (d

Figure 5.9. A decoded image with variable parity code length over a noisy
channel: (a) several error subblocks are detected in stage Pi, (b) several
error subblocks are still found in stage P2, indicating that the feedback mes-
sage is incorrect or the channel condition is becoming noisier. However,
the Rol is still error-free based on the UEP, (c) no error subblock is de-
tected in stage P3 because the parity length is adjusted again according to
the previous channel state, although there can still be some error, and (d) the
complete transmitted image with no subblocks in error subblocks.
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(c) (d)

Figure 5.10. A decoded image with variable parity length, which is a 508
x 512 pixel monochrome X-ray bone image: (a) a background image and
the location of the Rol selected in the center of the image reconstructed
after stage PI; many subblocks are in error in the background image, (b)
the reconstructed image after stage P2, no error subblock is found in the
reconstructed image, (c) the reconstructed image after stage P3, and (d) the
complete transmitted image with no subblocks in error.
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(a) (b)

(c) (d)

(e)

Figure 5.11. A 197 x 200 pixel brain MRI image including a tumor in the
sulcus region: (a) the input image, (b) a background image and the location
of the Rol selected in the right of the image reconstructed after stage PI,
and (c)-(e) are the successive reconstructed images.
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(e

Figure 5.12. A 256 x 256 pixel brain PET image including a tumor in
the left and posterior region: (a) the input image,(b) a background image
and the location of the Rol selected in the bottom left comer of the image
reconstructed, and (c)-(e) are the successive reconstructed images.
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tection. The overall code length for the channel encoder/decoder is fixed.
This makes it easy for hardware implementation. A wide range of fluctua-
tions in the channel characteristics (mainly noise level) can be tolerated in
the system. The algorithm for detecting the errors in subblocks can detect
the header error in the receiver and provide feedback to the transmitter for
adjustment of the parity length. The proposed system has also been tested
for communication channels with different capacities and noise levels. The
presented results verify the effectiveness of the system in terms of both adap-
tivity and flexibility of interaction. A Matlab-based TCP/IP connection has
been established to demonstrate the proposed interactive and adaptive pro-
gressive transmission system. This system provides a practical, flexible, and

interactive method which suits medical applications.



Chapter 6

HARDWARE
IMPLEMENTATION USING
SIMULINK TOOLS

In this chapter, we briefly describe the circuit design methods and demon-
strate our proposed system circuit design using embedded Matlab function
blocks. Based on the information in Fig. 6.1, in the fast-moving market, the
product revenue loss is 47% if the product to the market is delayed 6 months.
If the delay is 12 months, 90% revenue is lost. Therefore, to simplify the de-
sign process, decrease in the design time, and enabling early and rapid ver-
ification are very important steps in the circuit design process. Mathworks
provides a new tool called Simulink HDL coder, a new feature provided by
Matlab within the 2008a version, that allows the engineers to generate au-
tomatically bit-true, cycle-accurate, synthesizable VHDL and Verilog codes
from the Simulink models and Stateflow diagrams. I therefore, attempt to
convert my developed progressive medical image transmission with feed-
back system into VHDL codes utilizing the Simulink HDL coder, because
this design method can increase the circuit design’s efficiency, cut down the
design cost, and reduce the gap between algorithm development and hard-

ware implementation. The design flow of adopting Simulink HDL coder

112
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directly generates hardware description language (HDL) codes as shown in
Fig. 6.2. The major advantage of this approach is to use the same language

in both development and implementation of the algorithm.

100
90% ,
° In a fast-moving market,
a 6-month delay means
47% revenue loss. nSlow-moving market
j n Medium-moving market
| 3%
| J Fast-moving market
30%
100
3 months 6 months 9 months 12 months

Figure 6.1. Revenue loss because due to product delay, Source: Return on
Investment in Simulink for Electronic System Design, IBS study, 2005

For many modem real-time image transmission systems, which require
large memories for storage, and a high network speed and bandwidth for
transmission activity. Although the software provides greater flexibility of
operation, performance is often too slow for high-end multimedia applica-
tions. In such instance, conversion of the system from software to hard-
ware is one solution to increase the operational speed. Algorithm devel-
opers often create Matlab-based algorithms due to the extensive function
libraries in the Matlab and its feasible simulation environment. As the de-
sign evolves towards circuit implementation, real-world constraints must be

incorporated, which typically requires the designer to manually translate
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Figure 6.2. Design flow using Matlab and Simulink, Source: The Math-
works

Matlab algorithms into HDL codes. Obviously, in this design process, same
algorithm is reduplicated design by two different design languages, Matlab
and HDL, at this stage, the designer faces the task of verifying that these
copies remain equivalent throughout multiple design stages.

Simulink provides an environment for simulation model-based design
for dynamic and embedded systems, interactive graphical models, and a cus-
tomizable set of block libraries that allow to design, simulate, implement,
and test a variety of time-varying systems, including communications, con-
trols, signal processing, video processing, and image processing [119]. The
Matlab HDL coder under Simulink can automatically convert a well-defined
subset of embedded Matlab codes into HDL codes, such as VHDL and Ver-
ilog codes. This technology can reduce the development and verification
cost of manual translation from Matlab to HDL. Working within the Em-
bedded Matlab subset, designers can maintain one copy of the developed

algorithm and elaborate it directly within Matlab to incorporate hardware
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implementation requirements. The advantages of design in the Simulink
environment are the design, interactive debugging and visualization capa-
bilities still in Matlab development platform. This approach provides the
algorithm developer and the hardware engineer with a common language
and shared understanding of the design intent and it can also automatically
generate HDL codes from the Embedded Matlab code, eliminating the cost
of producing and verifying hand-written HDL codes. However, unlike many
Matlab algorithms, the embedded Matlab code for hardware implementation
is not an abstract representation of the design. Memory size, input and out-
put should therefore be fixed and are not variable as Matlab. Accordingly,
the code developed in Matlab has to comply with the Embedded Matlab
requirements.

To generate the VHDL codes of our proposed system, we adopted em-
bedded Matlab function blocks to create a system-level model under Simulink.
The Embedded Matlab Function block is specifically designed for the pur-
pose of integrating Matlab codes into a Simulink model. The process starts
by defining a top-level Matlab function in the Embedded Matlab Function
block. Input variables of the top-level function automatically become either
input ports or parameters of the block, and output variables of the func-
tion become output ports on the block. Each block becomes a user-defined
model after complying with the embedded Matlab function syntax. We can
therefore move those user-defined models to build up our required system.
To increase our system’s operation frequency, a concurrent architecture is
adopted in our design.

A few companies have adopted the new design flow to reduce their de-
sign life cycle, for example, the latest Digital Video Infrastructure Plat-

form (DVIP) manufactured by Sundance Multiprocessor Technology Ltd
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now adopts Simulink HDL Coder to generate HDL for implementation into
FPGA [120].

6.1 Introduction to Hardware Design Flow

Image transmission systems are increasing in complexity at an alarming
rate, implying that market pressure is also growing. The pressure results in a
growing demand for high quality electronic design automation (EDA) tools
to aid the designer. For example, Maltab and Simulink are used for algo-
rithm design. VHDL, Verilog, Modelsim [121], Synopsys VCS [122], and
Cadence [123] are used for the design and simulation of Register Transfer
Level (RTL) circuit. The RTL is a synchronous digital circuit which consists
of two kinds of elements, registers and logical gates. Normally, the hard-
ware description languages VHDL and Verilog are the two most widely used
in RTL design. VHDL was originally developed for the US Department
of Defense’s need to document the behavior of the ASICs. Prototype and
integrated circuit (IC) are application-specific integrated circuits (ASIC),
field-programmable gate arrays (FPGA), and complex programmable logic
device (CPLD). A simplified IC design process is shown in Fig. 6.3. Of
course, no design necessarily follows the flowchart shown in Fig. 6.3 ex-
actly.

As can be seen in Fig. 6.3, the hardware design process is extremely
complex. In each block of this figure, we need to utilize one or more EDA
tools to design and verify those circuits. Several IC design manufacturers
may be involved in the IC fabrication. Although Matlab platform is used
to create the algorithm and generate the HDL code from the Simulink HDL
coder, normally the RTL generated in the HDL code has to be verified again

by test bench. Generally speaking, the time spent on testing the function is
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Figure 6.3. A very simplified flowchart of the IC design process

often more than the time required for the algorithm development and hard-
ware design. While the comparison between the embedded Matlab function
and VHDL design methods both need to exactly define the input and output
pins, Matlab provides more model commands than VHDL.. In the embedded
Matlab function block, concurrent activity is not available, but concurrent
activity can be designed in each component by VHDL.. The parallel architec-
ture only exists in the graphical approach in Simulink model. However, the
benefit of hardware design using Simulink is that the designers can adopt the
models offered by Simulink libraries. Unfortunately, the models provided
by Simulink libraries are not suitable for our proposed system. Therefore,
we adopted the embedded Matlab function blocks to generate models and

then utilized those developed models to achieve the system design.
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6.2 The Circuit Diagram

The objective here is to implement the system using FPGA. For the pro-
posed system, the aim is to reduce the circuit complexity and its compu-
tational cost. To simplify the design procedure, we adopted the Simulink
HDL coder directly in order to transform the embedded Matlab code to the
VHDL code. Each block in the Simulink Model is generated from the em-
bedded Matlab function. The circuit architectures are shown in Fig. 6.4
for the transmitter and Fig. 6.5 for the receiver, respectively. The proposed
system is designed with parallel architecture to increase the system’s oper-
ational speed. Therefore, it has three kinds of data for color image input.

These are described below:
e The transmitter part (see Fig. 6.4):

— Haar block: In this block, the input data is segmented into 8 X 8
subblocks as a tiling technique and then each subblock is trans-
formed by the three-level HWT. The three-level HWT is per-
formed by preset matrices, as in section 2.1.3 of Chapter 2. Per-
forming matrix operations in Matlab makes the whole process

faster.

— Area block: In the original proposed system, three areas are de-
fined in the reconstructed image as in Fig. 2.11. In the block,
both the location and radius of the Rol can be assigned by the
user after stage P;. The block output provides the compression
level information in each subblock for EZW. Therefore, the res-

olution in each area is defined by the area block output.

— EZW block: In this block, each 8 x 8 subblock is compressed
by the EZW based on the information from the Area output.



Section 6.2. The Circuit Diagram 119

To achieve the UEP strategy, the compressed symbols generated
in those subblocks in the same area are put together for trans-
mission. Therefore, there are three compressed symbol group
output based on the design area. In this situation, we can assign
different parity lengths to different groups based on the data pro-
tection approach. Therefore, dominant and subordinate symbols
are defined. Normally, the amount of the subordinate symbols is
smaller than that of the dominant symbols. Therefore, the sub-
ordinate symbols in the three areas are assigned together to out-
put, namely, SS (see Fig. 6.4), and treated as the most-important
data, as in the case of Rol in the channel coding strategy. The
DR and DS represent the compressed information in the domi-
nant and subordinate passes, respectively in each subblock after
the EZW process. The output Thr (threshold) records the initial

threshold values in each subblock.

— PL block: This PL block provides variable parity length to the
RS encoder based on both feedback information and data pro-

tection strategy.

— RS encoder block: This block performs the RS encoder function.
The variability of error correction is defined by the PL output.
Generally, the data computation time in a component is much
more than the data transmission. Therefore, the proposed system
is designed in concurrent architecture to increase the operational

speed.
e The receiver part (see Fig. 6.5):

— RS decoder block: The transmitted error data is detected and
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corrected here.

— Integration block: The compressed symbols in the dominant
pass in the three areas are combined according to the Area com-

ponent output in the transmitter.

— Reconst block: Inversing EZW, inversing three level HWT, es-
timating channel state, and reconstructing image algorithms are
all implemented in this block. The noise output is the evaluated

amount of error caused by the transmission channel.

— Ns block: The noise output in this component is fed back to

enable variable channel coding rate in the transmitter.

6.3 Experimental Results

The proposed system is designed using the embedded Matlab function block
and the experimental results are shown in Fig. 6.6. We developed the
RS(255, k) encoder and decoder in Matlab codes, the parity length is vari-
able. Unfortunately, variable RS codes were hard to implement using the
embedded Matlab DHL tool. However, for the rest of the system, a suc-
cessful implementation of the proposed system is achieved. To my best
knowledge, there is no RS model in the Simulink library, therefore the RS
coder is not presented in the circuit architecture. Here, the input image is
a 123 x 150 pixels color dental implant image. The proposed progressive
scheme was simulated in four stages. The original input image is shown
in Fig. 6.6(a). Fig. 6.6(b) shows the reconstructed test image. The result
shows that both the developed three level HWT and inverse HWT design
are successfully implemented. Here, the decoded image is 120 x 144, since

we adopted 8 x 8 blocks to tile the image and the remainder was discarded.



121

Section 6.3. Experimental Results

ey RS

4

ndut e

¢ emp SEupogns 4—i INoC LT - —!
wposus gy 1 e WL ‘
HTRNE [0 U Emep W— jnoc] W - L1'S(T. s eq
Ppostd sy ] e AT uay ufg MO0,
§TERIE 1 3 T RRp Alfusoﬂuqnu :mnuu TH Mmﬂ mOod go»uwmm
e a1 A g old sy uoioe J
qere Z3 Ut eEp +—INog ek 8d
, L1 g mza
1ppos £y f—
u)nﬁzuuvﬁuﬂﬁ
u..u,.lu ﬂaﬂﬂgnlll o] uJie -
Wpooua gy  } m@ LS e uda Mo
. - : sSs )
A woam 1oy UL BIEp — H:QQA , ,ED - 1 €la . MO0, Oiounmum
, . - OId sy uotoe
Teom 1y ursmp «— Mo Ui e |G o mza 64
, Bpodu S ] e
Cg T mn Zauremp — O] udd e |
, | por Gy ] -9 _ _.||mMH Hp e neq
. T pICgToRy mont - 4 ( U o1
Tammpicans &%— - , _[MM I udfq M
TEEp REUPIoGn s 4— INOCT W I cra M0 e 032.“5&
aspoous Sf 1 1 01 I uouoejed
A" Bm, 103 U mup: 4— nogt (T 18 -
wpous gy 1 e fiow L uza 1 1" uoyse
- B3y
ATBE. [ W eTEp. @— NO(]. uyg 13 o b %
sposue sy 1 24 g
iMeme g wemp 4— N0 @
1pONR S ] e
u
mmﬁmﬂm ,

E=pEt

Figure 6.4. Block diagram of the transmitter of the proposed system.
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In Fig. 6.6(c), the background image after stage P, is presented. The user
can assign both the radius and center of the Rol in the background image.
The assigned information are sent back to the transmitter via the feedback
channel. In this simulation, the location of the Rol is set in the center of
the image. The reconstructed image in Fig. 6.6(d) is after stage P,, in the
proposed progressive scheme. The quality of the reconstructed image de-
teriorates with the distance away from the Rol center. Fig. 6.6(¢) is the
reconstructed image after stage P3, the clarity of the area has gradually ex-
panded and Fig. 6.6(f) shows the reconstructed image after the final stage,

Py.

6.4 Conclusions

A new hardware design flow is described in this chapter to link the algo-
rithm development and the system-level hardware design using Embedded
Matlab code and Simulink models. The method provides the following ben-
efits: 1) algorithm developers can use the Embedded Matlab subset to gen-
erate IP for hardware component implementation, 2) designers can also use
the Embedded Matlab function block to test their algorithms for real-time
data and verify those specifications while keeping the debugging and anal-
ysis capabilities of Matlab, 3) the model created by the embedded Matlab
function block is a user-defined Simulink model, and 4) HDL codes can
be automatically generated from Simulink models for embedded hardware
implementation by Simulink HDL coder.

Matlab is widely used for algorithm development, because it provides
rich libraries and a powerful simulation environment for designers. In my
view, the new design method has two problems: first, more models and

libraries have to be added into Simulink to increase the design efficiency,
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Figure 6.6. Experimental results, (a) input image, (b) the reconstructed im-
age when testing the HWT and inverse HWT, (c) the reconstructed image
after stage P\, (b) the reconstructed image after stage P2, (e) the recon-

structed image after stage P 3, and (f) the reconstructed image after stage P4,
the final stage.
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because the models and libraries in Simulink are more limited than those
in Matlab. Second, the Simulink HDL coder is a new function, and the
quality of generated HDL code needs to be compared with those HDL codes
generated using other similar tools. Therefore, the Simulink HDL coder
needs more design examples to demonstrate that the generated HDL codes
are useful in practical applications. Although, the digital design community
still prefer to use HDL for their design, due to the market pressure and as
more models and libraries will be added, the Simulink HDL will be likely

to provide more flexibility in design.



Chapter 7

SUMMARY, CONCLUSIONS
AND FUTURE RESEARCH

7.1 Summary and Conclusions

In this dissertation, a new method for progressive medical image transmis-
sion with feedback has been developed. The transmitted data is protected by
adaptively generating variable parity length channel codes based on the level
of data importance and the channel-related feedback messages. In addition,
a simple and efficient method has been developed to estimate the transmis-
sion channel state. The feedback system together with consideration of the
Rol provide variability of the parity code (while the overall message length
is kept fixed) to achieve an efficient progressive transmission system. Also,
through a user friendly interaction with the system and using the feedback,
both the centre and size of the Rol can be set by the user. Furthermore,
for real world applications, the proposed system developed using embedded
Matlab functions can be converted by Simulink HDL coder into HDL netlist
for FPGA implementation.

Chapter 2 comprehensively reviewed the state-of-the-art in progressive
transmission system techniques for medical images, including JSCC, UEP,

prioterization of Rol and feedback schemes. The first contribution of the

126



Section 7.1. Summary and Conclusions 127

dissertation is design of an adaptive JSCC with feedback system for pro-
gressive transmission and simulated with both BSC and fading channel as-
sumptions. In this system since the level of protection is recursively adapted
to the channel state there won’t be any failure in transmission and therefore
the messages won’t need to be re-transmitted.

Many researchers have focussed on the bit-allocation algorithm to achieve
an efficient transmission system. Such methods however, are developed
based on a pre-defined transmission channel state, not a practical channel
state. The simple method proposed in Chapter 3 is used to evaluate the
practical transmission channel state. Accordingly, the evaluation of trans-
mission channel state method in Chapter 3 is the second contribution of this
dissertation. WT has been used here for source coding. However, other
source coding methods can also be used instead. When the channel noise is
described in terms of BER, the proposed system can completely recover the
data in BERs as high as 0.005, that means at least 11 errors are generated in
each transmitted package. In heavier noise however, the proposed method
loses its accuracy.

CS is briefly introduced as a new source coding alternative in Chapter 4.
The comparison of the results of the HALS-based CS and the EZW shows
that the CS has better performance than EZW. Therefore, application of
CS as a source coder is highly recommended as a new approach in source
coding.

Chapter 5 shows the experimental results of the proposed system. Ac-
cording to those results, the center and radius of Rol can be assigned by
the user at any point in the first stage and the quality of decoded images are
improved sequentially. The source compression rate is based on the number

of times the threshold is halved. However, the compression rate can be fur-
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ther improved if the EZW follows another lossless compression algorithms,
such as Huffman coding. Also, the code can be easily modified any arbitrary
shape Rol.

Such a system enables transmission of large images into portable de-
vices such as note-pads mainly in hospitals in the case of emergency. Ac-
cordingly, another contribution in the dissertation is in Chapter 6 where the
proposed system is implemented using Simulink HDL coder to convert the
Matlab codes into HDL netlist for FPGA implementation. Implementation
of the design using Simulink HDL coder is therefore less time consuming.
Although variable RS code is successfully implemented in MATLAB, its
hardware implementation through Simulink HDL coder is hard to achieve.
As far as I know, no RS code with variable parity length has been devel-
oped in hardware for practical applications. According to the experimental

results in Chapter 6, the new hardware process works successfully.

7.2 Future Work

Medical image transmission is very important in telemedicine. DICOM and
PACS standards are used in the hospitals equipped with powerful compu-
tational systems. However, doctors out of hospital still have problem in
having access to those systems in the case of emergency. An effective and
efficient progressive transmission system for delivering the biomedical data
is therefore, highly demanded.

The work in this dissertation may be improved mainly to make it more
accessible by portable devices. Both source and channel coding components
can be improved to accommodate a lower bitrate and more efficient system.
The new source coding systems such as CS can be improved and used for

this purpose. The channel coding may be modified if a suitable interleaving
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is used to keep the data more immune against channel errors. Also, mi-
nor modification to the current design enables transmission of signals and
bioinformatics data as well as images.

A more realistic channel model can be estimated by developing more
complex mathematical tools and implemented for a better feedback system.
Consequently, the system tuning and adaptation will be significantly im-
proved.

To make the system fully operational, the overall algorithm should be
well integrated within portable devices using an efficient hardware imple-
mentation. Therefore, all ports including the variables RS codes should be
fully and efficiently transferred into hardware. Finally, the technique should
be flexible enough to be integrated within the current communication sys-

tems.
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