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Summary

Streptococcus anginosus group (SAG) bacteria are opportunistic pathogens and a majér
cause of pulpal infection and subsequent abscess formation. The development of a
suitable model was needed to illustrate the processes involved in pulpal infection by SAG

bacteria.

The work presented in this thesis details the development of an ex vivo model system
which allows co-culture of an organotypic tooth slice with SAG bacteria. This was made
possible by the identification of novel media and conditions for use in the model. These
defined culture conditions support growth of both SAG clinical isolates and rodent tooth
slices and suggest that S. intermedius isolates have different nutritional requirements
from other SAG species. SAG bacteria were shown to attach to the pulpal tissue in focal
points causing disruption to the matrix and death of cells. Co-culture of tooth slices with
SAG bacteria for 4, 8 or 24 hrs resulted in a significant decrease in healthy nuclei in a
50pum? area. There was no significant difference in the effects caused by different SAG
species. Expression levels of TNF-a and IL-1f were increased in tooth slices incubated
with SAG bacteria, although IL-6 was not detectable in control or infected slices. Culture
of tooth slices with SAG supernatants also resulted in a significant decrease in healthy

nuclei in a 50pm? area.

The efficacy of common oral biocides against SAG bacteria was also tested. Exposure to
CHX at concentrations of 0.2% or above for 10 minutes resulted in complete eradication
of SAG bacteria. Whilst exposure to triclosan was shown to reduce bacterial numbers,

complete eradication could not be achieved after a contact time of 60 mins.

A reproducible model of infection of dental tissues by SAG bacteria has been produced
which shows attachment patterns of bacteria and the effect on host tissues. This model
can be used to further investigate processes involved in endodontic infections, including
expression of virulence factors by bacteria and the host response from the dental tissues.
It may also be used in the future for testing novel antimicrobials for use in treating pulpal

disease.
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Chapter 1: General Introduction

1.0 Introdqction

Pulpal disease, or pulpitis, is a common problem which can lead to loss of vitality of
the tooth. Pulpal disease is separated into a number of different classifications of
varying severity, which can be characterised by clinical symptbms (Pashley and
Liewehr 2006). At all severity levels, pulpal disease is characterised by inflammation
caused by an irritant. In most cases, this irritant is the presence of pathogenic bacteria

or their products (Levin et al. 2009).

A wide variety of microbial species have been identified as playing a role in pulpitis,
with the predominant species responsible for the infection shifting as the infection
advances (Featherstone 2000). The focus of this study is the Streptococcus anginosus
group (SAG) of bacteria, a group of bacteria present in the oral cavity but often
neglected in dental research. SAG bacteria are generally considered part of the body’s
commensal flora but pathogenic forms of the bacteria have been associated with a
number of infections (Hirai et al. 2005; Lamothe 1990). Infections of the pulpal
chamber which are caused by SAG are a particular problem as they can lead to the
formation of oral abscesses (Okayama et al. 2005). Abscesses result from bacteria
infecting the pulpal chamber of the tooth and invading the surrounding periradicular
tissue, stimulating a non-specific inflammatory response. Bacterial cells and |
metabolic by-products accumulate with inflammatory cells and their lysed contents,
forming the purulent exudate of the abscess which results in swelling and pain.
Bacteria from these sites have the capacity to spread from the pulpal chamber
resulting in bacteraemia or abscesses at other sites in the body such as the liver and
brain which can prove fatal (Verrall 1986; Whiley et al. 1992). SAG bacteria have
also been identified as primary colonisers of the pulpal chamber which enable further

infection by other bacterial species.

Treatment regimes for oral infections will vary from one patient to another, with the
common aim of eradicating the infection and, where possible, preventing destruction

of the pulp by the bacteria and their products. When an abscess has formed,



antibiotics are generally administered to the patient with the most commonly
prescribed antibiotics being amoxicillin, clarithromycin and metronidazole (Pashley
and Liewehr 2006). Prior to formation of an abscess, where pulpitis is treatable by
removal of the infection, the pulp may be capped with an antimicrobial treatment such
as calcium hydroxide (Desai and Chandler 2009). This is the most commonly used
pulp capping treatment but in recent years there has been an increased interest in
novel antimicrobials in for use in endodontic treatments and dentifrices. Due to the
inflammatory nature of pulpitis there has been particular interest in antimicrobials that
have also been identified as having anti-inflammatory properties, such as triclosan and
certain naturally expressed proteins known as antimicrobial peptides (AMPs)
(Mustafa et al. 1998; Yang et al. 2002).

Although triclosan has been incorporated into a number of commercially available
dentifrices, there is no research to indicate the efficacy of triclosan against SAG
bacteria, as the importance of these bacteria in pulpal infections is often overlooked.
To further understand the mechanism of pulpal infection, bacterial activity during
infection and how antimicrobials may be utilised as therapeutics, an appropriate
model is needed. Whilst in vivo models are beneficial for studying the effects of
antimicrobials, when substances are introduced into a complex in vivo system the
presence of naturally expressed AMPs and a vast commensal flora introduces
uncontrollable variables. In contrast, in vitro models are over simplified and do not
allow for consideration of the complex interactions between the closely associated
tissues within the tooth. The aim of this project is to develop an ex vivo model system
which will allow the study of the bacterial interactions with the host tissues in an
organotypic model which takes into account the importance of the close association
between the pulp and dentine. An ex vivo model can Study the tooth in isolation of
inflammatory interference whilst preserving the important connections between the
dental tissues. To study the infection of the pulp by SAG bacteria it will be necessary
to manipulate conditions and media to successfully co-culture bacteria and
mammalian cells. These conditions will then need to be validated to ensure that they
are suitable for both cell types to survive and grow and to ensure that they do not
result in different growth characteristics. Any changes that the novel conditions do
incur will need to be accounted for before further experimentation can be carried out.

FolloWing the identification of suitable conditions the SAG bacteria will then be



cultured on the ex vivo tooth slice model and the effects of infection assessed through
histological examination, vital dye staining and changes in cytokine expression.
Ultimately the aim is that a model can be produced that will be suitable for testing the

efficacy of novel antimicrobials for use in endodontic treatments.

As the dentine-pulp complex of the tooth has some natural ability to repair itself in
response to injury and infection (Smith et al. 1995) it is important to consider the
biological processes involved in this when developing new methods of treatment. It
has already been shown that the success of this repair mechanism depends on a
balance between cell necrosis through inflammation and the reparative abilities of the
tissue (Bergenholtz 1981; Smith et al. 1999). In addition to this, the presence of
different bacterial groups, different AMPs and the interactions between them will
influence the reparative abilities of the tissues (Brown and Hancock 2006). It will be
beneficial to limit the inflammatory response by limiting bacterial growth and, if
possible, exploiting the anti-inflammatory properties of some antimicrobials. This
introduction will therefore outline development of the dentine-pulp complex, the
processes involved in dentinogenesis and pulpal repair, the involvement of SAG in
pulpal disease, current treatment regimes and the scope for antimicrobial

development.

1.1 Dental Anatomy

1.1.1 Tooth Development

Each tooth consists of mineralised tissues surrounding a core of connective tissue.
The exterior layer which can be seen in the oral cavity is the hard mineralised tissue
enamel, which is formed by the ameloblast cells. Enamel is approximately 96%
mineral and as such is susceptible to erosion by acids from food, drink and bacterial
metabolism. As it is a non-vital tissue there are no repair mechanisms to counteract
this damage though some remineralisation may occur in favourable conditions
(Amaechi and Higham 2001, Silverstone 1973). Enamel is supported by dentine
which is a hard mineralised connective tissue which is tubular in structure. The
mineral component of dentine is approximately 70%, compared to the 96%

‘mineralisation of enamel. Unlike enamel, dentine is a vital tissue as it contains cell



processes which extend from the odontoblasts, the cells which form the dentine.
Odontoblasts reside in the outer layer of cells of the soft connective tissue beneath the
dentine, known as the dental pulp. The pulp contains blood vessels and so is capable
of mounting inflammatory and immune responses. It is also densely innervated and so
injury and inflammation results in pain. The cells in the pulpal chamber consist

- mainly of fibroblasts with the odontoblasts lining the periphery so the pulp is closely
associated with the vital dentine matrix. These tissues function together in repairing
damage which may occur during infection or injury. The tooth is attached to the bones
of the maxillary or mandibular jaw by cementum, periodontal ligament and alveolar
bone (Ten Cate 2003).

Teeth develop from two different tissues, the oral epithelium and the mesenchyme.
The oral epithelium is of ectodermal origin and the oral mesenchyme originate from
neural crest cells which forms from the nervous tissue of the developing embryo
(Lumsden 1988). Initiation of tooth development is stimulated by interactions
between the two cell types and is seen as the thickening of epithelial bands in the
mouth that are roughly horséshoe shaped (Slavkin 1991) which will later develop into
the dental arches of the maxillary and mandibular jaw. Neural crest cells migrate from
the neural folds to the jaws and interact with the epithelial cells, inducing proliferation
of the epithelium and formation of the dental lamina. There is a re-orientation of cells
within the lamina and as a result as the cells proliferate they invaginate as a sheet into
the underlying mesenchymal cells (Ruch 1985). This is the first sign of tooth
development which then continues in distinguishable stages defined according to the

shape of the epithelium which will eventually form the enamel of the tooth.

The initial bud stage of development is represented as the first invagination into the
mesenchyme with rounded localised growth of epithelial cells. As the epithelial cells
continue to proliferate it becomes possible to identify the formative elements of the
tooth. This stage is referred to as the cap stage as the epithelial cells, now known as
the enamel organ, form a cap shape above the mesenchymal cells which remain
closely aggregated and form the dental papillae. The dental papillae will eventually
give rise to the dentine;pulp complex. At this stage, epithelial cells and dental papillae
are separated by a continuous basement membrane which is composed mainly of

collagen and ground substance. It has been suggested that the basement membrane



plays an important role in terminal differentiation of cells (Ruch 1985) by
immobilizing and activating bio-active molecules such as TGF-f which stimulate the
odontoblast differentiation (Ruch 1995). Finally, at the bell stage of development, the
enamel organ differentiates into four components. The outer enamel epithelium is on
the inside of the enamel organ at the convex surface, the inner enamel epithelium
borders the dental papillae,b the stratum intermedium cells form a layer adjacent to the
inner enamel] epithelium and the stellate reticulum cells fill the remainder of the centre
of the enamel organ. The inner epithelium cells differentiate into ameloblasts which
function with the stratum intermedium cells to form the enamel. The outer enamel
epithelial cells assist in bringing nutrition to the ameloblasts. The cells in the
periphery of the déntal papilla elongate and differentiate into odontoblasts which will
form the dentine matrix (Ten Cate 2003).

Following the differentiation of the formative cells of the tooth the hard tissues of the
tooth begin to develop. Dentine, which will eventually form the majority of the tooth,
begins to form before enamel. Prior to the formation of the first layer of dentine,
known as mantle dentine, enamel proteins are secreted by the ameloblasts but do not
form an enamel layer until after the mantle dentine forms. It is thought that these
proteins may play a role in the terminal differentiation of the odontoblasts which is
required before they can begin to secrete the dentine matrix (Linde and Goldberg
1993). |

The dentine matrix is formed by odontoblast cells which are post-mitotic cells
differentiated from the mesenchymal cells of the dental papillae. Their differentiation
is controlled by sequential interactions between the mesenchymal cells and epithelial
cells of the oral environment (Yu et al. 2006). During the cell cycles before they
terminally differentiate the cells, known at this stage as preodontoblasts, have two
nuclei and exhibit an increase in cytoplasmic organelles which suggests they are about
to withdraw from the cell cycle (Linde and Goldberg 1993; Ruch 1985). The final cell
division before terminal differentiation then results in the formation of two daughter
cells, only one of which is in contact with the basement membrane. It is only this
latter cell which will differentiate into a functional odontoblast as specific tissue

interactions must take place for differentiation to occur (Thesleff and Hurmerinta



1981). It has been suggested that the basement membrane is necessary for this to
occur (Ruch 1985). It is possible that the basement membrance acts as a reservoir for
bioactive molecules involved in the terminal differentiation of odontoblasts (Begue-
Kirn et al. 1994; Lesot et al. 2001). A variety of such molecules have been identified
that play an important role in the commitment of cells onto a differentiation pathway
and include growth factors and extracellular matrix components. The growth factors
involved include transforming-growth factors (TGFs), fibroblast growth factors
(FGFs) and insulin-like growth factors (IGFs) (Thesleff and Aberg 1999; Tziafas et
al. 2000). This terminal differentiation is characterised by elongation and polarization
of the cells (Ruch 1985, 1998), with the nuclei located at the end of the cell which is
furthest from the basement membrane (Linde, 1985). These cells line the periphery of
the dental papilla which is now known as the pulp and begin dentine formation, a
process known as dentinogenesis. The cells in the inner layer, adjacent to the
odontoblasts do not differentiate and may form a cell-rich layer in the pulp of the
dev.eloped tooth known as the layer of Hohl (Ten Cate 2003). Following the final
mitotic division the odontoblasts then begin to secrete the extracellular matrix of the

dentine.

1.1.2 Enamel

After a few micrometers of mantle dentine has been formed, the ameloblasts begin
enamel formation, moving away from the dentinoenamel junction as they secrete the
matrix. An initial matrix of non-collagenous proteins is secreted and then mineralized.
Ameloblasts also develop a short cell process during their secretory phase, known as
Tomes’ processes. The majority of the matrix proteins secreted are low-molecular
weight amelogenins and mineralization of the matrix begins immediately after they
are deposited by the ameloblast. Initially, the matrix is approximately 30%
mineralized and the remainder organic material and water (Robinson et al. 1978). At
this stage there are small crystals rich in magnesium and carbonate. Crystal
development involves a decrease of these minerals and an increase in amelogenin and
albumin (Robinson et al. 1995). Once the full width of the enamel has been deposited
the crystals increase in size and organic content and water are removed by the

ameloblasts, causing mineral content to increase to 96%. This gives enamel a higher
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mineral concentration than any other tissue in the body but also makes it brittle and

susceptible to damage by acids and trauma (Ten Cate 2003).

1.1.3 Dentine

The presence of the odontoblast process makes dentine a vital tissue that is dynamic
in its ability to respond to external stimulus. The dentinal tubules are tapered
structures which extend through the dentine in an S-shaped path which follows that of
the odontoblast during dentinogenesis. This tubular nature makes dentine unusually |
permeable for such a hard tissue and this is of particular significance to infection as it
allows bacteria and their products to diffuse through the dentine to the pulp, where

they can elicit an immune response (Love and Jenkinson 2002).

Primary dentinogenesis is the secretion of dentine during tooth development before
the tooth is fully functional in the oral cavity. Primary dentine constitutes the majority
of dentine in the tooth as it is produced at a relatively high rate but after initial
development and eruption of the tooth, the rate of deposition is greatly reduced (Linde
and Goldberg 1993). The process is then known as secondary dentinogenesis to
distinguish between the two stages, although the physiology of the dentine is
ultimately very similar. In some cases secondary dentine can be identified as being
less regular in structure due to the overcrowding of the odontoblasts as they move
further into the pulpal chamber.

Dentine is a mineralised connective tissue which is originally deposited as an
unmineralised organic matrix consisting of collagenous and non-collagenous
components (Ten Cate, 2003). The majority of collagen in dentine is type I, and the
non-collagenous component consists mostly of proteoglycans including dentine
phosphoprotein (DPP) and dentine sialoprotein (DSP) (MacDougall et al., 1997). A
minor part of the organic matrix is made up of lipids such as phospholipids,
cholesterol and triacylglycerols (Lindé and Goldberg 1993). The collagenous
éomponents make up the majority of the dentine (approximately 90%) and are
particularly important when considering the establishment of pulpal infections, as
they provide an anchor for invading bacteria to attach to and grow (Yamakoshi 2009).
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The main inorganic component of the dentine matrix is hydroxyapatite. The initial
mineral formation is initiated through interactions of reactive groups of
macromolecules in the matrix, causing calcium and phosphate ions to be attracted and
form crystals, mineralizing the matrix (Linde, 1985). This is thought to be mediated
by DPP and DSP (Amaechi and Higham 2001). The unmineralised matrix is known as
predentine and the advancing area of mineralisation is known as the mineralisation

front.

DPP and DSP are translated as a single protein, dentine sialophosphoprotein, before
being cleaved into the two separate proteins by bone morphogenetic protein-1 (BMP-
1) (Feng et al. 1998). DPP is involved in dentine mineralization by binding to
collagen and initiating formation of apaptite crystals. It is then involved in the
regulation of the growth of these crystals (Butler and Ritchie 1995) . DPP has a high
affinity for binding calcium (Zanetti et al. 1981) which may contribute to the role it
plays in crystal formation at the mineralization front. The exact function of DSP
remains unclear, although it is expressed in odontoblasts during pre-dentine formation
before mineralization (D'Souza et al. 1992). Studies using DPP knockout mice have

indicated that DSP regulates the initiation of mineralization (Suzuki et al. 2009).

In addition to dentine matrix proteins the dentine contains a variety of growth factors
such as bone borphogenetic protein (BMP), transforming growth factor  (TGF-f)
(Cassidy et al. 1997; Sloan et al. 2000) and insulin-like growth factors (IGF) I and II
(Finkelman et al. 1990). These growth factors are incorporated into the matrix during
synthesis and, as previously outlined, are also involved in the differentiation of
odontoblasts (Ruch et al. 1995) when they may be associated with the basement
membrane (Begue-Kirn et al. 1994) and in stimulating matrix secretion (Begue-Kirn
et al. 1992). The presence of these proteins in the dentine is important as they may
“play arole in repair when they are released by the action of bacterial acids on the
tissue (Goldberg et al. 2008). During tissue repair the processes that occur mimic
those seen in development, highlighting their relevance to studies concerned with

bacterial destruction of host tissues.
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The mineralised component the dentine is comprised of intertubular dentine which
constitutes the majority of the dentine and the intratubular (peritubular) dentine which
is a hypermineralised ring of dentine that forms tubules within the matrix (Ten Cate
2003). Within the tubules formed by the intratubular dentine is a cell process
extending from the odontoblast in the pulpal chamber. There is evidence to suggest
that this process extends through the entire thickness of the dentine (Sigal et al. 1984)
although there is still some debate regarding this and other studies suggest the
odontoblast process only extends through a portion of the dentinal tubules (Weber and
Zaki 1986). It is the presence of this process that makes the dentine a vital tissue and
which forms the connection between the dentine and the pulp. These are also the first
cells of the tooth to come into contact with bacteria and their products during the
progression of a carious lesion or following trauma to the tooth. Using
immunohistochemistry, it has been demonstrated that certain Streptococcal species
are able to advance through carious lesions and attach to the odontoblast process
(Ackermans et al. 1981). As these cells are the first to detect an injury or infection
they are the first line of defence of the host tissues and have been shown to produce
immunoglobulins which assist in fighting an incoming infection (Okamura et al.
1980). HoWever, bacteria and their products are often able to overcome host defences
and advance further into the dentinal tubules, resulting in destruction of the

odontoblasts, which elicits a further immune response in the pulp.

1.1.4 Pulp

The pulp is an unmineralised connective tissue consisting mostly of fibroblasts. It
resides in the centre of the tooth in the space known as the pulpal chamber with the
odontoblasts lining the periphery. A cell free-zone separates the odontoblast layer and
the area which is particularly abundant in fibroblasts known as the cell-rich layer of
Hohl. This layer also contains a number of immune cells such as macrophages and -
lymphocytes. The fibroblasts within the pulp secrete an extracellular matrix consisting
mainly of collagens (Shuttleworth et al. 1980), the most abundant of which are type I
and III (Shuttleworth et al. 1978), and glycoproteins (Shuttlewoﬂh et al. 1982) such as
chondroitin sulphate and hyaluronic acid (Linde 1973). This extracellular matrix

(ECM) acts as support for the fibroblasts and also mediates many of the cellular
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interactions, as cell metabolites, nutrients and waste pass through the matrix between
the different cell types present in the pulp. In addition, the matrix acts as a source of
nutrients for invading bacteria, whilst the collagen components provide an anchor to
which many bacteria can attach, making the matrix composition an important point
for consideration when studying pulpal disease. As previously mentioned (1.1.3),
Streptococcal species have been shown to express adhesins which allow their
attachment to collagen in dental tissues. This enables these bacteria to adhere to the
pulpal tissues and initiate infection, where they proceed to produce other proteins
such as hyaluronidase and chondrotin sulphatase which are able to break down the

other components of the pulpal matrix.

In addition to the role of the pulpal matrix components in infection, they also give the
pulp its unique gelatinous form. It is unclear if this has any effect on bacterial
attachment and infection in vivo but it should be taken into consideration when
developing culture systems to model pulpal infection. Bacteria have been shown to
behave differently when grown on different substrates, in particular in some
conditions they are able to form biofilms which infer a level of protection to the
bacteria, whilst in other growth mediums they will grow only in suspension. Whilst
pulpal cells that are grown in vitro have been shown to produce extracellular matrix
proteins, this does not always result in a gelatinous matrix as seen in vivo (Martinez
2003). As such, the bacterial growth on pulpal cells grown in vitro may not accurately

represent the growth characteristics of bacteria which infect the pulp in vivo.

In addition to the pulpal fibroblasts and the ECM, the pulp also contains blood
vessels, nerves and cells of the immune system including lymphocytes (Hahn et al.
1989), mast cells (Walsh 2003) and macrophages (Pashley and Liewehr 2006). The
presence of immune cells, and blood vessels through which further immune cells can
reach the pulp, are essential in the host defence against infecting bacteria from the

oral cavity.

Recently, a population of clonogenic, highly proliferative cells has been identified in
the pulp which it has been suggested are dental pulp stem cells and may be the cells
from which a new generation of odontoblasts differentiate during reparative

dentinogenesis (Gronthos et al. 2000). Whilst these stem cells remain quiescent in the
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pulp when the tissue is healthy, death of the odontoblasts caused by invading bacteria
or other injury stimulates a complex cascade of signals which cause the stem cells to
proliferate and differentiate. The cells then form odontoblast-like cells to replace
those which have been damaged by the invading bacteria (Sloan and Waddington
2009). These cells may then secrete dentine to repair the damage that has occurred,
providing that conditions within the tooth are favourable with limited inflammation
(Sloan and Smith 2007).

As secondary dentinogenesis continues throughout the life of the tooth, the pulpal
chamber decreases in size and cell density decreases. This also occurs during repair
processes where dentine secretion is up-regulated as a response to injury or infection.
This decrease in cell number then affects the ability to respond to further stimulus
(Murray et al. 2002). As the pulp loses its ability to repair damage and fight infection
it is more likely that an unresolved inflammatory response will occur, resulting in

pulpal necrosis and an increased chance of tooth loss.

1.2 Dentine-Pulp Complex

1.2.1 Dynamic nature of the dentine-pulp complex

Dentine and pulp are mesenchymal in origin, both forming from the dental papillae
which develops during the cap stage of development (Ten Cate 2003). As has been
mentioned in the previous section (1.1), the physical interactions and the functional
coupling of these tissues result in them being considered together as the dentine-pulp

complex.

The complex nature of these tissues can be seen during an infection of the dentine
when inflammation in the pulp is observed. This is due to the diffusion of bacterial
products through the dentinal tubules and eliciting an immune response in the absence
of bacterial cells (Bergenholtz 1990). The physiological events that occur in the pulp
as a result of such infection or injury can also directly affect the dentine and the
odontoblasts which are secreting the dentine matrix as they reside within the pulpal

chamber.
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The dentine-pulp complex is dynamic in nature and reacts to changes in its
environment. If it is exposed to the oral cavity through trauma to the enamel or the
formation of a carious lesion it can become infected, causing damage to the tissues.
The dentine-pulp complex shows an extensive capacity for repair in response to such
injury and infection. The type of repair that occurs is determined by the severity of the
damage to the tissues and involves the secretion of a matrix termed tertiary dentine.
Tertiary dentine differs from secondary and primary dentine in that is only produced
as a result of an external stimulus (Smith et al. 1994, 1995). Also, tertiary dentine is
produced only by the odontoblasts which are in direct contact with the stimulus,

leading to specific foci of deposition (Sloan and Smith 1999; Smith et al. 1994).

There are two types of tertiary dentine which have been defined by Smith et al. (1995)
as:

e Reactionary dentine which is a tertiary dentine matrix secreted by surviving
post-mitotic odontoblast cells in response to an appropriate stimulus.

e Reparative dentine which is a tertiary dentine matrix secreted by a new
generation of odontoblast-like cells in response to an appropriate stimulus,
after the death of the original post-mitotic odontoblasts responsible for
primary and physiological secondary dentine secfetion.

The result of both forms of dentinogenesis is the rapid secretion of a dentine matrix
adjacent to the pulpal chamber which increases the distance between the pulp and the
advancing bacterial front. However the biological processes involved are different in

each case and as such they can be considered separately.

1.2.2 Reactionary Dentinogenesis

To confirm whether tertiary dentine is reactionary or reparative, chronological
information on the event following damage to the tissues is required. This makes it
possible to determine whether the dentine has been secreted by an existing generation
of odontoblasts or a newly differentiated population of odontoblast-like cells (Lesot et
al. 1993). It has also been suggested that reactionary dentine shows tubular continuity
with secondary dentine which is not commonly seen in reparative dentine (Mjor,

1983). However, it is possible that both kinds of tertiary dentine may be present
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beneath a carious lesion although they may not be able to be distinguished on
morphology alone (Smith et al. 1995). This can occur when a carious lesion initially
stimulates a reactionary response as it is a relatively mild stimulus. If it is then left
untreated it may cause more damage as it progresses and exposes the dentine. As this
allows direct infection of the dentine, which is a much stronger stimulus, this can then

result in a reparative response.

Reactionary dentinogenesis involves an up-regulation of the secretion of the matrix
that occurs during secondary dentinogenesis which continues throughout adult life
after the tooth has erupted. For this up-regulation to occur there must be an interaction
between the odontoblast which secretes the matrix and a molecular stimulus (Begue-
Kirn et al. 1992; Smith et al. 1990) which results from or is the cause of tissue
damage. It has been shown in an in vivo study that when components of isolated
dentine matrix are implanted into prepared cavities in ferrets, existing post-mitotic
odontoblasts are stimulated to secrete reactionary dentine (Smith et al. 1994). This
suggests that the molecular stimulus for reactionary dentine formation is bound within
the dentine and is released during infection of the tissue. This study also showed that
distance between the implanted dentine matrix components and the odontoblast had
an effect on the intensity of the response, from which the authors concluded that
molecular diffusion down the dentinal tubules was involved. Further studies have
suggested that members of the Transforming Growth Factor-p (TGF-p) family may
be involved in stimulating the odontoblasts to up-regulate secretion. Smith et al
(1995) used affinity chromatography to purify the EDTA-soluble fraction of dentine
matrix and implanted the fraction containing TGF-B1 into unexposed cavities in
ferrets. The results of this study showed that reactionary dentine was deposited at the
pulp-dentine interface in areas where the dentinal tubules were in contact with the
cavity. In addition to implicating the role of TGF-B1 in reactionary dentinogenesis
this also supports earlier suggestions that molecules diffuse through the tubules to
stimulate odontoblasts. A rodent tooth slice model has also been used to show that
TGF-B1 and 3 are able to stimulate reactionary dentinogenesis (Sloan and Smith
1999). This was achieved by direct application of the bioactive molecules to the
odontoblast layer of the tooth slice using agarose beads which had been soaked in

TGF-P solutions. The results showed a localised increase in reactionary dentine
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deposition which was associated with the bead that had been soaked in growth factors.

In addition, this study showed that TGF-B2 had a minimal effect on the tissues.

TGF-p isoforms 1, 2 and 3 are all expressed by odontoblasts (Sloan et al. 2000) and
TGF-P1 has been shown to be sequestrated within the dentine matrix (Cassidy et al.
1997). Latency-associated peptides (LAPs) influence the activity of TGF-Bs as they
form an association with TGF-B which must be cleaved before it can become active
(Munger et al. 1997). LAPs have been found to be expressed in the pulpal cells and
predentine of both carious and healthy teeth but not in mineralized dentine. This
suggests that TGF-p is present in this matrix in its active form (Sloan et al. 2002).
Therefore, it is possible that bacterial acids produced by organisms within a lesion of
caries can release these molecules as they dissolve the dentine matrix, allowing
diffusion down the dentinal tubules and stimulation of the odontoblasts to react to the
invading pathogens. As previously mentioned (1.1.3) dentine also contains other
growth factors such as BMPs and IGF I and II. It is likely that these are also released
along with TGF-P and that there is a cocktail of growth factors which are involved in

stimulating reactionary dentinogenesis (Begue-Kirn et al. 1994).

1.2.3 Reparative Dentinogenesis

Reparative dentinogenesis occurs when there is more severe damage to the dentine-
pulp coniplex which results in the death of the post-mitotic odontoblasts. Therefore,
for a reparative dentine matrix to be secreted it is necessary for a new generation of
odontoblast-like cells to differentiate, a process which involves cell division,
chemotaxis, cell migration, cell adhesion and cytodifferentiation. This is a more
complex cascade of events than those required for the production of reactionary

dentine, which involves only the up-regulation of odontoblast activity.

The formation of reparative dentine is dependent on conditions in the pulp being
favourable for tissue healing which is defined as the absence of inflammation and a
sufficient supply of oxygen (Tziafas 1995). Under such conditions reparative dentine

commonly forms as a tubular matrix which is secreted by columnar, polarized
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odontoblast-like cells. When conditions are not favourable for tissue healing the
matrix may be atubular with cellular inclusions and is secreted by cells which are
cuboidal or spindle-shaped (Tziafas 1995). The cellular inclusions may contribute to
further pulpal inflammation as they degrade and the resulting degeneration products
act as inflammatory stimuli (Trowbridge 1981). The formation of an irregular matrix
by cuboidal cells is known as fibrodentinogenesis and though it may be a non-specific
wound healing response it has also been suggested that the formation of this initial
matrix results in the induction of differentiation of odontoblast-like cells (Baume
1980), possibly by providing a substrate for signalling molecules to be immobilised
on (Smith 2002). However, direct induction of odontoblast-like <;e11 differentiation by
dentine matrix implantation has also been shown (Tziafas 2004) so it is possible that
there are different mechanisms involved in reparative dentinogenesis which may

explain the heterogeneity of the resulting matrix.

There has been much debate regarding the derivation of the cells which give rise to
the odontoblast-like cells which secrete the reparative dentine matrix. The cell-rich
layer of the pulp, perivascular cells, undifferentiated mesenchymal cells and pulpal
fibroblasts have all been suggested as the possible source (Ruch 1998) and more
recently a small population of clonogenic, highly proliferative cells has been
identified in the pulp (Gronthos et al. 2000). These cells have been termed dental pulp
stem cells (DPSCs) as they are capable of self renewal and the formation of a dentine-
like structure in vivo and are similar to other stem cell populations in possessing the
ability to develop into developmentally diverse phenotypes (Gronthos et al. 2002;
Sloan and Smith 2007). Following death of the odontoblasts due to bacterial invasion
or tooth injury these cells may proliferate and differentiate into odontoblast-like cells
which are able to secrete a dentine matrix to repair damage to the existing matrix
(Sloan and Waddington 2009). |

Little is known about the processes involved in recruitment and cytodifferentiation of
these progenitor cells for reparative dentinogenesis, although EDTA-soluble fractions
of dentine have been shown to induce the formation of reparative dentine (Smith et al.
1990) which suggests that, as in reactionary dentinogenesis, there is an involvement
of bio-active molecules contained in the matrix. It has been shown that members of

the TGF-P superfamily, including TGF-$1, BMP-4 and BMP-2, may be involved in
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the initial differentiation of the DPSCs and the subsequent stimulation of these cells to
secrete the extracellular matrix (Nakashima et al. 1994). The release of these
molecules from the primary dentine matrix and possible immobilisation on
fibrodentine may allow odontoblast differentiation in the absence of a basement

membrane.

Both types of repair mechanisms outlined here are important processes in tissue
regeneration and overcoming infections as they facilitate protection of the pulp. This
is necessary if the tooth is to remain viable as if the pulp is destroyed or has to be
removed the tooth may be lost as damage is more likely to occur to the mineralised
tissues which the pulp supports and the healing capacity is reduced. An understanding
of the molecular and biochemical basis of repair in both reparative and reactionary
dentinogenesis is important if pulp therapies are to be developed which can utilise the
innate ability of the dentine-pulp complex to regenerate and heal and so research in
this area is of particular importance. In addition to understanding what drives repair it

is also important to understand the factors which inhibit repair such as inflammation.

1.2.4 Pulpal inflammation

Inflammation occurs as a response to an advancing lesion of caries and the infiltration
of bacteria and their products into the pulp. This pulpal inflammation is known as
pulpitis and it can be reversible or irreversible, depending on the severity of the
damage that has been occurred in the vital tissues of the tooth. Reversible pulpitis has
been defined as mild inflammation that is capable of healing if the irritant is removed.
Irreversible pulpitis is characterized by a more severe degeneration of the tissues
which will not heal and will lead to necrosis of the pulp if left untreated. This type of
pulpitis requires endodontic treatment which involves the removal of some or all of
the dental pulp to eradicate the bacterial infection from the tooth and prevent
progression of the infection and necrosis of the pulp (Levin et al. 2009). It is also
accepted that there is a difference in cytokine expression in reversible and irreversible
pulps. An example of this is the expression of the cytokine TNF-a in irreversible

pulpitis which does not occur in less severe infections (Kokkas et al. 2007).
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Pulpitis occurs as part of the host response which is orchestrated by immune cells that
are found within the pulp and are recruited through the blood vessels of the pulpal
chamber. In the initial pulpal response, polymorphonuclear lymphocytes (PMNs) and
monocytes are recruited. These cells are part of the non-specific innate immune
response and are stimulated by the detection of generalised pathogen-associated
molecules such as lipopolysaccharides and lipotechoic acid components of the
bacterial cell wall, flagellin, peptidoglycans and lipoproteins (Cooper et al. 2010). The
main role of the PMN:Ss is to actively phagocytose microbes, whilst the monocytes
differentiate to become macrophages. The macrophages also have a role in the
phagocytosis of microbes in addition to stimulating other immune cells to respond to

the bacterial invasion.

The activation of macrophages and the continuation of the immune response is co-
ordinated by the secretion of cytokines. These are proteins which are secreted by cells
of the immune system, allowing interaction between the different cell types as they
bind to the receptors of target cells. Cytokines are divided into different groups
depending on their function with the most important and extensively researched being

the interleukins (IL), tumour necrosis factors (TNF) and interferons (IFN).

Macrophages produce a number of cyokines, including IL-1f, which plays a central
role in pulpal inflammation. The stimulation of its production in response to bacterial
products has been well documented by using enzyme-linked immunosorbent assays
(ELISAs) and reverse-transcriptase-polymerase chain reaction (RT-PCR).
Co.mpariSon of the cytokine levels seen from pulpal fibroblasts cultured in the
presence and absence of bacterial lipopolysaccharide (LPS) showed an increased
expression of IL-1f in those cells exposed to bacterial products (Bletsa et al. 2006;
Silva et al. 2009), confirming its roles in inflammation as a response to bacterial
invasion. Similar patterns of expression have been detected for IL-1a, IL-6 and TNF-
a through use of ProteoPlex antibody arrays to compare cytokine expression in
healthy and diseased pulp (Cooper et al. 2010). The upregulation of these cytokines in-
disease states is probably due to induction by IL-1p rather than a direct response to
bacterial products, as IL-1f has been shown to stimulate the production of TNF-a in
oral fibroblasts (Agarwal et al. 1995). '
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In addition to the direct role of bacterial products in stimulating an inflammatory
response, it has also been demonstrated that dentine matrix extracts are able to induce
recruitment of inflammatory cells and the production of IL-18 and TNF-a (Lara et al.
2003). This suggests that as the bacterial acids dissolve the dentine, components of
the matrix diffuse into the pulp along with the bacterial products and are involved in

stimulating the innate immune response.

The production of these cytokines by the host cells promotes the phagocytosis of
bacteria and infected host cells by macrophages and PMNss in an attempt to eliminate
the bacterial infection. The subsequent pulpal necrosis that may result from this if the
inflammation is not resolved may also act as a defence mechanism as it provides a
harsh environment for the survival of invading bacteria due to the lack of available
oxygen and nutrients in necrotic tissues (Stashenko et al. 1998).

Inflammation is of particular significance to the success of vital pulp therapy as it can
result in the destruction of host tissues if the inflammatory reaction is unresolved,
therefore negating the innate repair mechanisms of the tooth. However, recent
research has shown that whilst severe inflammation will degrade the pulpal tissues
and may prevent regeneration, a low-grade level of inflammation may be
advantageous for the dental repair processes (Cooper et al. 2010). In particular, it has
been suggested that TNF-o may promote the differentiation of pulp cells towards an
odontoblastic phenotype (Paula-Silva et al. 2009) and increases dentine mineralisation
along with the expression of DPP and DSP, therefore aiding the repair mechanisms

involved in tertiary dentinogenesis.

1.3 Oral Microbiology

1.3.1 Commensals of the oral flora

Bacteria colonise all animal surfaces with specific bacterial species being associated
with specific environments in their host. In humans, Escherichia coli is a species
associated with the digestive tract and Staphylococcus aureus is found on the skin of a

large proportion of the population (Liljemark and Bloomquist 1994). The oral cavity
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contains a particularly large number of bacteria, approximately 10" organisms from
more than 500 species (Paster et al. 2001). The majority of these bacteria are
Streptococci and Actinomyces species (Tlaskalova-Hogenova et al. 2004). These
bacterial species are categorised as commensal or transient based on their prevalence
in the oral cavity. Commensal species are almost always present and are divided into
those bacteria which are present in high numbers as a dominant population and are
considered indigenous and those which are present only in low numbers which are
known as supplemental species. Transient species are only found occasionally and
may be introduced into the oral cavity by food or drink. These species rarely colonise
the cavity due to the competition with normal species but some pathogens such as
Porphyromonas gingivalis and Streptococcus mutans (Hahn et al. 1991; Macarthur
and Jacques 2003) are able to pass quickly from the transient stage to being the

predominant bacterial population if conditions are favourable (Loesche 1994).

Commensal bacteria of the oral cavity are predominantly anaerobic species with an
optimal growth temperature of approximately 37°C. Many have complex nutritional
requirements which are only met by growing on animal tissues. Commensals are
considered to have entered into a stable relationship with the host and generally do not
cause damage to the host tissues. However, it is possible for some species which are
considered commensals, such as Streptococcus oralis, to cause infections when
certain environmental changes occur (Byers et al. 1999). These are known as
opportunistic pathogens (Cole and Arnold 1982).

1.3.2 Plaque and Dental Caries

Bacteria in the oral cavity will adhere to the exposed tooth surfaces and form plaque.
This adherence is possible due to the expression of cell-surface adhesins by primary
colonisers of the tooth such as Streptococcus gordonii (Heddle et al. 2003). Bacteria
initially adhere to an organic film known as the pellicle which forms over the teeth
from glycoprotein precipitated from the saliva. The bacteria form a biofilm and the
spécies within this change over time. This microbial succession is possible as bacteria

such as Streptococcus mutans adhere to other species in the plaque, including
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Streptococcus sanguis and Actinomyces viscosus. Although this mechanism is not
fully understood it has been shown that it is enhanced by salivary agglutinin (Lamont
etal. 1991).

The primary colonisers of the pellicle consist mostly of streptococci but as the plaque
formation progresses the bacterial composition changes to a mixed flora of cocci, rods
and ﬁlafnents (Jenkinson and Lamont 2005). These bacteria produce organic acids
when they metabolise fermentable carbohydrates found in food and drink (Loesche
1986) and these acids can dissolve the mineral component of enamel and eventually
dentine, a.process known as demineralisation (Featherstone 2000). Demineralisation
increases the porosity of the enamel, enabling increased diffusion of bacterial acids
through the tissue and thus further damage can occur deeper in the enamel (Kidd and
Joyston-Bechal 1998). This demineralisation, if left untreated, leads to dental caries
and cavity formation. Dental caries first appears as an area of demineralisation
beneath the dental plaque known as a “white spot” lesion. In the most advanced area
of this lesion up to 50% demineralisation may have occurred but the surface remains
intact due to remineralisation (Silverstone 1973). If bacterial plaque is removed at this
point the demineralisation can be arrested and some degree of lesion regression may
occur (Thylstrup et al. 1994). This remineralisation is possible as the surface of the
tooth is exposed to the saliva which has a neutralising effect on the bacterial acids and
provides minerals to replace those which have been lost (Amaechi and Higham 2001).
Therefore, caries is a dynamic disease process which can be reversed if conditions are
favourable. For this to occur the lesion of caries must not have progressed into the
dentine and the bacterial plaque must be removed from the enamel. This then allows
neutralisation of the bacterial acids and remineralisation of the enamel. However if
the plaque is not removed and there are conditions which favour progression of the
carious lesion, a cavity will form and caries will progress into the dentine, which is
irreversible without clinical intervention. Cavity formation also results in the exposure
the dentine-pulp complex to the oral cavity and the vast number of bacteria which
colonise it (Featherstone 2004). The exposure of the dentine provides an environment
for bacterial growth which is more protected than the tooth surface, allowing
opportunistic bacteria to thrive. The microaerophilic nature of bacteria such as those
in the Streptococcus anginosus group gives these species an ecological advantage in

these conditions (Facklam 2002).
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1.3.3 Dentine infection

Dentine, as discussed previously, is a vital tissue containing the odontoblast processes
and it is capable of initiating defence mechanisms against invading bacteria. As
outlined previously, dentine is highly permeable due to its tubular nature and once it
is exposed to the oral cavity and the bacteria in the advancing carious lesion it is
possible for bacterial products to diffuse through to the pulp. Therefore, an initial
response is to up-regulate the deposition of peritubular dentine, causing the dentinal
tubules to become occluded and block the tubules, reducing permeability and
producing sclerotic dentine (Kidd and Joyston- Bechal 1998). If this is unsuccessful
and bacterial products diffuse through to the pulp, repair mechanisms will be initiated,
producing tertiary dentine (Smith et al. 1995). In addition to this, an immune response
will be stimulated. This inflammatory response may be acute or chronic and this will
differ depending on how rapidly the carious lesion is progressing (Trowbridge 2002).
In acute inflammation the response is rapid and involves innate immunity which does
not recognise antigens of specific species but reacts to highly conserved antigens
present in a large number of bacterial species such as LPS (Kidd and Joyston- Bechal
1998). A chronic inflammatory response occurs over a longer time period than an
acute response and involves lymphocytes, macrophages and T-helper cells which are
part of the adaptive immune system (Trowbridge and Stevens 1992). In other areas of
the body it is common for chronic inflammation to follow an acute response if the
infection is not resolved. However, pulpal inflammation that occurs as a result of
caries is characteristically chronic in nature, since caries generally progresses
gradually and the bacterial products diffuse through the tissue and illicit an immune
response prior to the bacteria reaching the pulpal chamber and infecting the pulp
(Trowbridge 2002).

Streptococcus mutans and lactobacilli are widely considered to be the main bacterial
species involved in caries (Loesche 1986; Munson et al. 2004) but, as with plaque
formation, the dominant bacterial species will change as the cavity advances deeper
into the tissues as there will be environmental changes such as the availability of

nutrients and oxygen (Marsh 2006). Two types of deep lesion of caries have been
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characterised; those with a high number of lactobacilli (where more than 90% of the
flora are lactobacilli) and those with low numbers. In both types of deep lesion, the
number of S. mutans is much lower than in shallow lesions of caries. In those lesions
classified as having low numbers of lactobacilli there was found to be a diverse flora
with the predominant species being Bacteroides, Gram positive cocci, Gram positive
non-branching rods and branching rods (Hahn et al. 1991).

1.3.4 Pulpal and Periapical Infection

Following infection and necrosis of the pulp, it is possible for a periapical lesion to
develop which can be in the form of an abscess or granuloma, depending on the types
of bacteria present in the root canal. Whilst it is possible for a number of bacterial
species to form abscesses and it has been shown they are often polymicrobial in
nature (Lewis et al. 1990), there are certain species which are more commonly
associated with periapical infections. When abscesses were formed using dental
plaque as an inoculum it was found that the majority of isolates from the abscess were
from the Streptococcus anginosus group of bacteria, despite their usual low number in
plaque (Okayama et al. 2005). These results have been supported by further clinical
studies where 16 of 45 patient samples taken contained SAG bacteria, the majority of
which were Streptococcus anginosz)s (Fisher and Russell 1993). Although these are
not the only abscess-forming bacteria it is evident that they play an important role.
Infection with the SAG bacteria, along with other pyogenic organisms such as
Prevotella intermedia and Porphyromonas endodontalis, is more likely to lead to |
abscess formation than infection by less virulent organisms which may result in a

granuloma (Trowbridge and Stevens 1992).

In addition to their role in abscess formation, it has also been suggested that SAG
bacteria may be involved in the primary colonisation of the pulp (Love and Jenkinson
2002). Following the attachment of SAG bacteria to the pulp, other bacterial species
may then be able to attach to them, allowing for further infection of the pulp.

The formation of abscesses greatly increases the chance of a tooth being lost as the

bacterial infection and resultant inflammation cause necrosis of the supportive
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periodontal tissues and may result in resorption of the bone surrounding the affected
tooth, causing it to become loose (Herrera et al. 2000). Long term studies of patients
with periodontal abscesses have shown that a tooth that has had an abscess associated
with it is unlikely to survive and as a result of this many clinicians may choose to
extract the tooth as part of the treatment regime to avoid further complications
(Becker et al. 1984). There is also evidence to suggest that infection can spread from
periradicular tissues to other sites in the body (Wagner et al. 2006) particularly in
individuals with a compromised host defence system such as cancer patients (Manian
1997). As SAG bacteria have been indicated as important pathogens in abscess
formation and the initiation of pulpal infection, it is necessary to have a clearer
understanding of their prevalence and virulence to aid treatment and control of such

infections.

1.4 Streptococcus anginosus Group Bacteria

1.4.1 Taxonomy

There has been much controversy regarding the taxonomy and nomenclature of the
bacteria which have previously been referred to as Streptococcus milleri, S.
anginosus-constellatus and S. MG-intermedius, amongst other terms. It was then
shown that what had previously been grouped as one species consisted of three
distinct genetic groups (Whiley and Hardie 1989). These species were then termed the
Streptococcus milleri group but this has now been changed to the Streptococcus
anginosus group (SAG). The SAG is now considered to be Gram positive bacteria
from the species S. anginosus, S. intermedius and S. constellatus. They are generally
regarded as being microaerophilic but show enhanced growth in the presence of CO,
and are generally grown in laboratory conditions under anaerobic conditions on blood
agar or fastidious anaerobe agar (Facklam 2002). They are part of the group known as
viridans streptococci which originally referred to oral bacteria which were a-
haemolytic. The term is now used to describe all oral streptococci, despite the
heterogeneity that is observed amongst the species. Streptococci can be grouped
according to their haemolytic ability. a-haemolytic strains cause partial lysis of red
blood cells whilst B-haemolytic strains cause complete lysis of red blood cells which

is seen on blood agar plates as a clear halo around colonies. a-haemolysis results in
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the formation of a greenish halo around colonies. Within the SAG there are a-
haemolytic and both $-haemolytic and non-f-haemolytic strains of each species
(Facklam 2002). -haemolytic strains can be further characterised based on the
presence of specific carbohydrates in the cell wall, known as Lancefield group
antigens. SAG bacteria may possess one of four Lancefield group antigens or the

antigen may be absent (Whiley and Beighton 1998).

The three species may be distinguished from each other using biochemical tests as
SAG show variation in their glycosidase activity which refers to their ability to
metabolise sugars. S. intermedius produces -galactosidase, B-glucosidase, f3-
fucosidase, neuraminidase, N-acetyl-B-D-glucosaminadase and N-acetyl-p-D-
galactosaminadase and sialidase (Whiley et al. 1990) and is the only species that has
mannosidase activity (Homer et al. 1993). This allows it to be distinguished from the
other two species. S. constellatus has a-glucosidase and hyaluronidase activity whilst
S. anginosus shows limited a-glucosidase activity and no hyaluronidase activity but
does produce B-glucosidase (Whiley et al. 1990). This gives a distinct profile for the
three species using simple tests although there is evidence of strain variations within a

species (Willcox et al. 1995).

Hyaluronidase is an enzyme produced by some bacteria which catalyses the
hydrolysis of hyaluronic acid, causing an increase in tissue permeability and so
enhancing the ability of the bacteria to invade the tissue. Studies have confirmed that
SAG bacteria exhibit hyaluronidase activity (Whiley et al. 1990) and that it tends to
be present more frequently in S. intermedius and S. constellatus than in S. anginosus
(Jacobs and Stobberingh 1995). This study also showed a similar profile for the
enzyme chondroitin sulphatase which also facilitates bacterial spread (Jacobs and
Stobberingh 1995). However, some studies found that only S. intermedius produced
chondroitin sulphatase, mainly the strains isolated from liver and brain abscesses
(Homer et al. 1993). These findings may be affected by the variation that can occur
between strains of a species. The production of hyaluronidase and chondroitin
sulphatase by SAG bacteria is of particular significance when considering pulpal
infection as the pulpal matrix is rich in the substrates of these enzymes, suggesting

that SAG may have a prominent effect on matrix degradation.
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1.4.2 Virulence

Little is known about the pathogenicity and specific virulence factors of the SAG
bacteria. However, it has been shown that S. intermedius produces the toxin
intermedilysin, a human-specific cytolysin that can directly damage host cells
(Nagamune et al. 1996). Intermedilysin is classified as a cholesterol-dependent
cytolysin as its ability to form pores in host cell membranes is dependent on the
presence of cholesterol, although its ability to bind to the cell is not (Polekhina et al.
2005) PCR and Southern blot hybridisation for the intermedilysin gene in all SAG
bacteria has demonstrated that Streptococcus intermedius is the only species in the
group to produce the toxin (Nagamune et al. 2000). This study also shows a
correlation between higher expression of the intermedilysin gene and abscess
formation iﬁ the liver and brain (Jacobs et al. 2000), indicating that this may be an
important virulence factor in purulent infection. Intermedilysin has also been shown
to reduce the numbers of fully functional PMNs during an infection, possibly through
pore formation and subsequent cell lysis, although this has not been confirmed
(Macey et al. 2001). The production of hyaluronidase and chondroitin sulphatase may
also contribute to pathogenicity of some strains by facilitating bacterial spread and
enabling bacteria to liberate nutrients from host tissues (Shain et al. 1996). In contrast
to intermedilysin expression, there is no clear correlation between enzymatic activity

and severity of infection (Nagamune et al. 2000).

Another SAG product which may increase virulence is antigen I/II, which is found on
the surface of SAG and is involved in adherence to the pulpal matrix. This antigen has
also been implicated in protecting the bacteria from the host immune system due to its
antibody suppressive traits (Jenkinson and Demuth 1997). There is also evidence to
suggest that certain SAG strains are able to produce an extracellular protein (Ep-Si)
which assists the bacteria in evading the host immune system by reducing the efficacy
of B and T lymphocytes. This non-cytotoxic protein was discovered in 1978 and was
found to suppress the fibroblast formation and lymphocyte response irn vivo (Higerd et

al. 1978). More recently, the protein has been re-named protein P90 and studies have
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shown that mice treated with high levels of P90 were 50 times more susceptible to
infection by S. intermedius strains (Lima et al. 1992). This was demonstrated to be a
result of B cells being unable to respond normally to the antigens of invading bacteria

in the presence of P90.

There is some evidence to suggest that the presence of a capsule in SAG strains may
also contribute towards pathogenicity by inhibiting the function of PMNs as
encapsulated strains are more resistant to phagocytosis and phagocytic killing by
PMNss (Kanamori et al. 2004). As evasion of the host response is particularly
important in abscess formation, encapsulated SAG bacteria are likely to play an
important role. This has been demonstrated by injecting mice with both encapsulated
and non-encapsulated forms of SAG bacteria, which showed that whilst the
encapsulated forms were capable of forming abscesses those without a capsule were
less likely to do so. However, in the presence of encapsulated isolates SAG bacteria
which do not have a capsule were also isolated from the resulting abscess that formed
(Brook and Walker 1985), indicating that the presence of the capsule is needed for

abscess formation.

Abscesses are polymicrobial in nature (Lewis et al. 1990) and there is some evidence
to suggest that pathogenicity of SAG bacteria may be enhanced by co-infection with
certain other species. A study using a murine model showed that co-infection of SAG
with Fusobacterium nucleatum caused an increase in abscess size and in the number
of bacteria of each species isolated from the abscess compared to mono-inoculation
(Nagashima et al. 1999). The strongest synergistic effect was seen with S.
constellatus and F. nucleatum, and this has been confirmed in further studies which
found co-inoculation with these species killed all test mice whilst none died from
mono-inoculation (Kuriyama et al. 2000). The mechanism of this synergy is not clear
although it has been suggested that the co-infection increases the growth of SAG or
inhibits the bactericidal activity of the host (Shinzato and Saito 1995).
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1.4.3 Infections caused by SAG

The confusion regarding taxonomy and nomenclature has made it difficult to fully
determine incidence of infections caused by the group and as such it is estimated that
their pathogenicity has previously been greatly underestimated. It is now accepted
though that whilst SAG bacteria can be harmless commensal organisms they are also
associated with a number of infections, including meningitis, endocarditis, brain, liver
and oral abscesses (Lamothe 1990) and pneumonia, pulmonary abscesses and thoracic
empyema (Shinzato and Saito 1995). It has also been shown that certain species may
be more often associated with certain infections than others (Whiley et al. 1992). In

this study S. anginosus was the most commonly isolated species.

An association of SAG with head and neck infections has also been shown in a study
by Fisher and Russell (1993) in which 45 samples were taken from periapical
abscesses. 37% were found to contain strains from the SAG with the vast majority
being S. anginosus strains. It has also been shown, using Amplified Fragment Length
Polymorphism analysis, that SAG isolated from the blood and oral abscesses in the
same patient are identical, suggesting that infection may be capable of spreading from
oral abscesses to other sites in the body (Jacobs et al. 2003). The importance of pulpal
infections to patient health may be underestimated but studies such as this emphasise
the need for effective treatments to limit bacterial spread; Abscesses that can then

form in the liver and brain can be life-threatening (Wagner et al. 2006).

SAG bacteria have been found to associated with abscesses as part of a polymicrobial
infection in the liver and spleen (Brook and Frazier 1998) and in oral abscesses. As
abscesses tend to be polymicrobial in nature there generally is not one antibiotic
which will work against all infections. In the treatment of oral abscesses, it is most
likely that a penicillin would be given as an initial treatment and in the event of its
failure, administration of a broad-spectrum antibiotic such as metronidazole (Lewis et
al. 1990). In vitro tests have shown the most common causal agents of oral abscesses
to have approximately 85-90% susceptibility to penicillin and 45% susceptibility to
metronidazole (Baumgartner and Xia 2003; Lewis e't al. 1989).
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The use of broad spectrum antibiotics creates an environment which selects for the
growth of species carrying resistance. In addition to this, the natural defensive flora is
reduced so these antibiotic resistant bacteria can become pathogenic (Madigan 2005).
Therefore, it would be beneficial to find alternative therapies to combat pulpal
infection and to prevent the formation of abscesses with more effective methods for
limiting pulpal inflammation. This is important due to the increased chance of tooth
loss in those teeth which have been affected by an abscess (Herrera et al. 2000) and
due to the ability of oral infections to cause more serious infections at other sites in

the body (Jacobs et al. 2003).

1.5 Pulpal infection and current treatment regimes

Current treatments for pulpal infections vary from administration of antibiotics to
more invasive surgical procedures. The aim of any of these treatments is to eradicate
the bacterial infection to leave the pulpal chamber sterile and prevent recurrent
infection. As previously mentioned, the use of antibiotics has many disadvantages and

surgical options, known as endodontics, are often preferred.

'Endodontics is a branch of dentistry which is concerned with the treatment of pain
caused by inflammation in the pulpal and periapical tissues and eliminating the source
of inflammation (Reit et al. 2010). Endodontics can often result in the pulp being
removed from the tooth to prevent further infection or spread of the bacteria within
the pulp. The loss of the vital pulp can leave a tqoth more susceptible to fracture and

consequent removal (Tang et al. 2010).

The use of vital pulp therapies which aim to reverse pulpal injury whilst maintaining
pulp vitality and function are now being proposed as an alternative to other treatments
which involve the removal of the pulp and lead to an increased incidence of tooth loss
(Tziafas 2004; Tziafas et al. 2000). For vital pulp therapies to be successful it is
crucial that the tissues which have been exposed to the oral flora are treated to prevent
recurring infection in the pulp (Siqueira and Rocas 2008). Calcium hydrdxide is the
more commonly used treatment for pulpal wounds as its high pH is thought to have a

general antibacterial effect whilst encouraging pulpal repair (Desai and Chandler
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2009; El Karim et al. 2007). However, since the introduction of calcium hydroxide in
the early 20™ century, many other compounds with more specific antimicrobial and
anti-inflammatory properties have been developed (Tervit et al. 2009). These include
substances such as antimicrobial peptides and triclosan and may be of clinical
significance. However, a suitable model system is required for testing their efficacy in
a clinical situation, highlighting the importance of the development of the model in
this study.

1.6 Antimicrobial Peptides

Antimicrobial peptides (AMPs) are proteins which have a broad range of
antimicrobial activity against Gram positive and negative bacteria, fungi and viruses
and are expressed by all complex species. Over 700 have been identified to date and
they are known to play an important role in innate immunity. They are defined as
peptides of 12-50 amino acids which are amphipathic and have an excess of basic
amino acids, giving them a net positive charge (Hancock and Diamond 2000). They
are generally constitutively expressed although a small number are induced shortly

after microbial infection.

AMPs have a direct antimicrobial killing effect against a variety of bacterial
pathogens in vitro (Hancock and Diamond 2000; Zasloff 2002). These direct killing
effects are due to an interaction with the bacterial membrane which results in
disruption of the bilayer, although the exact mechanism of this interaction is yet to be
confirmed. Two models have been proposed in which the amphipathic structure of the
peptides play an important role:
e Barrel-stave model
- involves the binding of peptide monomers and insertion into the membrane
to form transmembrane pores cdnsisting of bundles of a helices, dissipating
the transmembrane potential.
e Carpet model
- peptides bind to the surface of the membrane and cover it in a carpet-like

manner. They orientate themselves so that the hydrophilic surface faces the
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phospholipids head groups. When the peptides reach a critical concentration

they permeate the membrane and cause disruption of the bilayer (Shai 2002).

AMPs are seen to bind preferentially to bacterial rather than mammalian membranes
(Reddy et al. 2004). This is due to the electrostatic charges between the positively
charged AMPs and the negatively charged headgroups of the phosopholipids in the
bacterial membrane (Zasloff 2002), whilst the phospholipid headgroups of mammals
tend to carry no net charge.

In addition to membrane associated methods of direct killing, some AMPs have been
seen to have intracellular killing mechanisms. The proteins are internalised into cells
and can have a variety of effects depending on the specific peptide, such as inhibition
of enzymatic activity, inhibition of nucleic acid synthesis and inhibition of cell wall
synthesis (Brogden 2005).

Although direct antimicrobial killing mechanisms have been demonstrated in vitro
this is generally when they are applied at concentrations that are significantly higher
than they would be found in vivo. It is likely that the majority of AMPs act by
alternative means in vivo because their direct activity is antagonised by physiological
concentrations of ions such as sodium and magnesium (Bowdish et al. 2005a). It is
thought that they have a broad range of functions relating to innate immunity by
stimulating or inhibiting a variety of biological events and as such they are often
referred to as host defence peptides (Brown and Hancock 2006; Finlay and Hancock
2004).

The exact effect that each peptide has on the host immune system will differ and can
result in immune activation, immune suppression or immune enhancement (Brown
and Hancock 2006). Some effects which have been observed include promoting
recruitment of cells involved in adaptive immunity to sites of infection by increasing
secretion of chemokines and cytokines (Bowdish et al. 2005b). Others function by
promoting phagocytosis and stimulating apoptosis of macrophages and activated
lymphocytes (Hancock and Diamond 2000). These processes all contribute to
clearance of bacterial cells without direct killing and may involve pro-inflammatory

processes. In contrast to this, some AMPs have an important anti-inflammatory effect
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by suppressing cytokine production (Finlay and Hancock 2004; Marta Guarna et al.
2006). This allows natural tissue regeneration processes to occur which may be
enhanced by certain defence proteins which stimulate fibroblast growth and inhibit
certain proteases (Hancock and Diamond 2000; Hancock and Sahl 2006). If such
properties can be harnessed for therapeutic use this would be particularly useful in
treatment of pulpal disease where inﬂémmation has been shown to be a major a
problem and where there is a great potential for healing if inflammation can be

controlled.

To develop AMPs as a novel therapeutic for treatment of pulpal inflammation it is
important to consider the AMPs that are being expressed naturally in the oral cavity

which may effect treatment.

hBD-1 and -2 are found to widely expressed in healthy oral tissues with hBD-1 being
more frequently detected than hBD-2. Whilst both hBD-1 and -2 were found to be
expressed by oral keratinocytes, neither were found to be expressed by fibroblasts,
suggesting that their expression is confined to the epithelial compartment of the oral
cavity (Dunsche et al. 2001). However, there are some reports that RT-PCR on
extracted pulp cells showed expression of hBD-1 and 2 (Dommisch et al. 2005).
Immunohistochemical analysis showed that this expression occurs in the cytoplasm of
the odontoblasts. These AMPs may therefore also be important in defence of the pulp
as these are the first cells invading bacteria will encounter (Dommisch et al. 2005).
hBD-1 is expressed constitutively by the oral mucosa and salivary glands whilst
hBD-2 expression can be induced by LPS found in the bacterial cell wall (Mathews et
al. 1999). The more recently discovered hBD-3 has a similar expression profile to
hBD-1 and -2 as it is also widely expressed in oral tissues but absent in fibroblasts
(Dunsche et al. 2002).

In addition to its antimicrobial and immunomodulatory effects it has been suggested
that a synthetic p-defensin-2 may also have the ability to stimulate the differentiation
of pulpal fibroblasts into odontoblasts. This is thought to be regulated by the
chemokine receptor CCR6 (Shiba et al. 2003). This is an important discovery as

differentiation of pulpal fibroblasts into odontoblasts is required for reparative
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dentinogenesis. Therefore, this may be a target for development as a therapy for

pulpitis.

A number of oral streptococci, including all SAG bacteria, have been shown to have
some degree of susceptibility to hBD-2 (Landrygan-Bakri 2006). However, there is
variation between strains, with some strains of S. anginosus having an MIC of more
than 100pg/ml (Nishimura et al. 2004). This is an important consideration when
developing novel therapeutics as high concentrations of AMP may incur toxic effects

to host cells.

1.7 Triclosan

Triclosan is a broad-spectrum antimicrobial agent that has been used for over 25 years
in a wide range of dermatological preparations such as deodorants, soaps and
cosmetics (Bhargava and Leonard 1996) and has become particularly popular in
recent years due to its efficacy in handwashes against methicillin-resistant

Staphylococcus aureus (Zafar et al. 1995).

At high concentrations triclosan acts against most susceptible bacteria, including
Streptococcus species, by disrupting the phospholipid membrane of bacteria and
interfere with its normal functions (Cottell et al. 2009; Villalain et al. 2001). Leakage
titration experiments have been used to study the effects of triclosan on the bacterial
membrane of the oral bacteria Pseudomonas ginigivalis and Streptococcus sobrinus,
which showed that whilst the bacterial growth was inhibited there was negligible cell
leakage. This indicates that when triclosan acts upon the cell membrane it destabilises
the phospholipid structure in a way which compromises its functional integrity, but
that it does not induce cell lysis (Villalain et al. 2001).

Triclosan is also effective against E. coli and some other bacterial species at lower
concentrations by specifically inhibiting the enoyl-acyl carrier protein reductase
enzyme Fabl (Escalada et al. 2005; Zhang et al. 2004). Fabl has an essential role in
the type II fatty acid synthase system, so its inhibition results in bacterial cell death.

Some E. coli strains which have been selected for their resistance to triclosan have
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been shown to have mutations in the Fabl gene which result in an overproduction of
the enzyme or the production of an insensitive form (Russell 2004). More recent
studies have shown there are also other mechanisms which may infer triclosan
resistance, including efflux mechanisms which pump the triclosan out of the cell,
capture of the triclosan to prevent it affecting the cell and over expression of

important enzymes and metabolic regulators (Yu et al. 2010).

In recent years triclosan has been incorporated into a number of oral health care
products such as toothpastes and mouthwashes (Bhargava and Leonard 1996; Binney
et al. 1995; Blinkhorn et al. 2009) with the aim of reducing bacterial plaque numbers
and protecting against periodontal disease. However there have been mixed views on
the efficacy of these products, with some studies showing a significant inhibition of
plaque growth (Haraszthy et al. 2010; Vered et al. 2009) whilst others indicate that
there is no significant advantage of triclosan containing products over regular
toothpastes (Andrade Acevedo et al. 2009). There has also been increasing debate
regarding the cross-resistance of triclosan and antibiotics, particularly in drug-
resistant strains of Staphylococcus aureus (Bayston et al. 2007; Brenwald and Fraise
2003; Seaman et al. 2007). Some research suggests that bacteria which develop a
resistance to triclosan through efflux mechanisms may also be able to pump out
antibiotics, or that modifications to the target enzyme of triclosan may also infer
resistance to antibiotics that act on a similar enzyme (Schweizer 2001). However,
there are also suggestions that whilst bacteria may be shown to have an increased
resistance to triclosan following in vitro exposure, this may not relate to a resistance
to the ‘in-use’ concentrations of triclosan found in widely used disinfectants and
dentifrices (Maillard 2007)

One of the important factors when considering triclosan as a potential therapeutic in
pulpal disease is its role as an anti-inflammatory, in addition to its antimicrobial
properties. As previously outlined, low-grade inflammation may be beneficial for
promoting natural repair mechanisms of the tooth, whilst severe inflammation will
result in pulpal necrosis. Therefore, antimicrobials that can downplay the
inflammatory response may be advantageous for use in endodontic treatments and
pulp capping to promote host repair processes whilst eradicating the bacterial

infection.
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To investigate the effect of antimicrobials such as triclosan and AMPs on bacterial
and mammalian cells, and to study how these antimicrobials effect the interactions
between the two cell types, it is necessary to develop an effective model. In vivo
studies can be problematic due to the presence of commensal bacteria and naturally
expressed antimicrobials which may make it difficult to obtain clear results. Whilst in
vitro studies may overcome some of these problems and provide a more easily
manipulated model, they are unable to take into consideration the dynamic nature of
the dentine-pulp complex. Therefore an ex vivo model system may provide the
benefits of studying whole tissues rather than single cell populations whilst providing

a model which is easier to manipulate.

1.8 Ex-vivo model systems

As discussed in this introduction, the processes involved in pulpal disease and the
resulting inflammation that occurs are complex and varied, with a large number of
host and bacterial proteins present in the pulpal chamber. To elucidate the events that
occur during pulpal infection, a wide array of in vivo and in vitro models have been
used. Whilst these have led to many advances in the treatment of pulpal disease in
recent years there are drawbacks in all currently available models. I vitro models
using pulpal fibroblast cells grown in culture are an over-simplified representation of
the multi-cellular dentine-pulp complex. In particular, the lack of spatial arrangement
of the cells as they would be found within the tooth is a disadvantage as this is an
important consideration when modelling events within the tooth. It has also been
shown that odontoblasts must remain in contact with the dentine matrix in order to
maintain the phenotypic and secretory activity that would be seen in vivo
(Munksgaard et al. 1978). In addition to the limitations of in vitro mammalian models,
the majority of experiments which study the antimicrobial efficacy of biocides such as
triclosan are also tested on bacteria ir vitro, which involves the bacteria growing in
suspension. Whilst this may represent how the bacteria grow within the fluid of the
dentinal tubules, the majority of bacteria found in the tooth will be attached to cells of
the pulp, the odontoblast processes or the walls of the dentinal tubules (Love et al.

1997; Perez et al. 1993). When an infection becomes established biofilms may also
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form, which have been shown to have an increased resistance to biocides and may
also express different proteins from those expressed when grown in suspension
(Aslam 2008). As such, in vitro models may represent an oversimplified version of
events and may not take into account the effect of bacterial attachment to a multi-

layered tissue such as the pulp.

Whilst one of the main disadvantages of in vitro models is an oversimplification, in
vivo models have the opposite problem in that the presence of systemic influences
may make it difficult to obtain clear data. This is particularly true in the case of
microbiological models as it is difficult to obtain animals which do not have some
degree of microbial contamination. Although germ-free animals are available, this
will further increase the extensive expenses associated with whole animal models.
Such models require a number of extra considerations, including the maintenance of
the animal housing, ethical approval and will generally require a large number of

animals as each animal represents only one experiment.

In an attempt to overcome some of the problems associated with in vitro and in vivo
models, a number of ex-vivo models have been developed. These models allow cells
to be cultured in the spatial arrangement they would be found in in vivo whilst
removing the systemic influénces that are associated with animal models. Existing ex-
vivo models have been used to study a wide variety of developmental, physiological
and pathological conditions. One such model that has beén established is the ex vivo
tooth slices organ culture model, which has been used to study the secretion of growth
factors in the dentine-pulp complex, dentinogenesis and the effect of mechanical
strain on the dentine-pulp complex (Dhopatkar et al. 2005; Sloan et al. 1998; Sloan
and Smith 1999). Modification of the existing tooth slice model has also led to the
development of a mandible model which has been used to study the processes
involved in bone repaii' (Smith et al. 2010). These models have shown that tooth slices
taken from 28 day old Wistar rats can be cultured for up to 14 days at the liquid-gas
interface with no detrimental effect on the tissues (Sloan et al. 1998) and have
provided an alternative to the existing in vivo models which use live rats, rabbits and
dogs. Research to date has used the development of these models to study
development and repair in healthy tissues and the introduction to microbes to mimic a

diseased tooth state has not been a focal point of these investigations. Currently,

39



models of microbial infection of the pulp are focussed on in vivo models (Balto et al.
2002; Kurland et al. 2006). Modification of the existing ex vivo models of the dentine-
pulp complex may provide a model for co-culture of bacteria involved in pulpal
infection and abscess formation which would reduce the numbers of animals needed
in research, in addition to reducing experimental costs. Such a model would also
provide a system for studying one or two bacterial species in isolation without the
complications of commensal organisms. A further benefit of the existing models is
that there is no blood system associated with the model, meaning that inflammatory

responses would be limited to those mediated by the cells found within the pulp.
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1.9 Aims and Objectives.

The aim of this project is to:

e develop the existing tooth slice system to model infection of the pulp by SAG
bacteria, focussing on the interactions that occur between bacterial and

mammalian cells

This will provide information on how bacteria interact with the tissues of the
dentine-pulp complex and the effect that SAG bacteria have on the pulpal matrix

and the cells within it.

As there has been very limited investigation into the effect of SAG bacteria on the
pulpal matrix and such a model has not been previously established, the main focus of
this work is to establish appropriate co-culture conditions which will support the
growth of both mammalian and bacterial cells. Validation of the model will be
required to assess the effect of these co-culture conditions on both cell types and to
enéure that they do not have deleterious effects on normal cell growth. The model will

then be used to:

identify any patterns of bacterial attachment to the tooth slices

o assess the effect of co-culture on the viability of cells of the tooth slice and
the structural integrity of the pulpal matrix

e assess the effect of the bacterial supernatants on the cells of the tooth slice

and the pulpal matrix

e investigate the efficacy of currently available biocides on SAG bacteria

Ultimately, the aim of this study is to develop an ex vivo co-culture model which will
allow further investigation into the process of pulp infection by SAG bacteria so that
this model may be used in future work for development of novel antimicrobials for
use in endodontics. This may make it possible to improve bacterial elimination from
the infected root canal, providing an environment in which natural tissue regeneration

of the dentine-pulp complex can occur, and it may be possible to reduce pulpal
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inflammation and necrosis. Consequently, infections of the pulp by SAG are less

likely to result in the formation of abscesses and their associated complications.
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Chapter 2: Characterisation of SAG clinical isolates and
validation of the culture conditions for the co-culture system

2.1 Introduction

As outlined previously, SAG bacteria have the ability to infect various sites within the
human body and have a predisposition to causing abscesses (Ruoff 1988). During a
pulpal infection in which SAG bacteria may be involved, there is increased
inflammation in the pulpal chamber causing a rise in pressure which may result in
tooth pain. If this inflammation is not resolved by the host responses of the tooth then
pulpal necrosis may occur. It is under such instances that an acute dentoalveolar
abscess may form (Trowbridge 2002). These are the most commonly occurring
orofacial bacterial infections and SAG bacteria are often isolated from them,
indicating a role in their formation (Lewis et al. 1990). The formation of such an
abscess results in the patient having to have treatment to drain the abscess, extirpate
the pulp or remove the tooth, all of which can be expensive and painful. In the event
that there is evidence of systemic spread of the bacteria, antimicrobial treatments will
also be required (Marsh 2009).

The development of a system to model the infection of pulpal tissues by SAG bacteria
is needed to provide information on the processes that occur prior to abscess
formation. Currently, very little is known as to the role these bacteria play in the
progression from carious lesion to abscess formation except that when plaque bacteria
is used as an infective agent, these bacteria are isolated from the majority of the
resulting abscesses in high numbers, despite being present in the plaque at relatively
low numbers (Okayama et al. 2005; Thurnheer et al. 2001). A model is required that
enables the bacteria to interact with host tissues not just as a planktonic suspension
but also as a biofilm, as the characteristics of bacteria have been found to be greatly
altered in these different growth states, in particular biofilms have an increased
resistance to antimicrobials (Aslam 2008; Fux et al. 2005). As the dentine and pulp of
the tooth are closely associated in vivo it is also important that any model that is to be
developed accounts for this. Other models may focus on pulp fibroblasts grown in

culture and such isolated growth without the structural organisation of cells found
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within the tooth may not accurately represent how the cells behave in vivo. Similarly,
there are limitations with in vivo models as they are expensive, parameters are more

difficult to define and they pose ethical problems.

For thcse'reasons, an established ex vivo organotypic tooth slice culture system, where
the dentine-pulp complex is cultured in situ (Sloan et al. 1998), will provide the basis
for the development of a model for SAG infection. This allows observation of
bacterial growth on the tissues as would be found in vivo, without the normally
associated complications such as host inflammation and the presence of commensal
oral microflora. Although such a model addresses a number of problems faced with in
vivo and iﬁ vitro models there is still a major challenge to be faced in its development,
that of identifying the culture conditions that will support the growth of both the

bacterial and mammalian cells.

SAG ba;:teria are normally grown under anaerobic conditions in nutrient rich media
such as BHI broth (Facklam 2002). The mammalian tooth slices need to be grown in
supplemented cell culture medium and incubated at 5% CO,, Although SAG bacteria
are generally incubated anaerobically they are facultativ¢ aerobes and have been
found to have enriched growth when grown at 5% CO; (Pulliam et al. 1980).
However a culture medium that enables growth of SAG bacteria and maintains culture
of the tooth slice needs to be developed for use in the model. Any effects this media

has on the components of the model must also be assessed.

In addition to the generalised effect that different culture conditions have on the
bacterial group as a whole, there are also differences between strains. Expression of
virulence factors may be upregulated in some strains within the group or they may
have characteristics that enable them to infect the host more easily. SAG bacteria are
found as commensals in the oral cavity (Poole and Wilson 1979) but the strains
isolated from infected sites are known as pathogenic strains as they are found to be
actively causing infection. The bacteria used in this study are pathogenic clinica‘l
strains that have been isolated from various infected sites in the body and as such their
idenitification needs to be confirmed before their use in the study. Purification and
positive identification of strains is of particular importance when using SAG bacteria

as there have been a number of changes in the classification and nomenclature of
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these bacteria in recent years, leading to confusion regarding their role in abscess
formation (Facklam 2002) .
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2.2 Methods

2.2.1 Preparation of bacterial stocks

The bacterial species to be studied were selected from the culture collection of the
Oral Microbiology Unit, Cardiff School of Dentistry. These strains were
genotypically and phenotypically characterised in previous work and are listed in
Table 2.1. Bacteria were grown on fastidious anaerobe agar (FAA) (Lab M™
International Diagnostic Group plc, Bury, UK) supplemented with 5% (v/v)
defibrinated sheep blood (TCS Bioscience Ltd., Buckingham, UK).

Brain-heart infusion (BHI) broth (Oxoid Ltd., Basingstoke, UK) was inoculated from
colonies on FAA plates to prepare bacterial suspensions. Bacteria were incubated in
an anaerobic cabinet (10% v/v CO,, 20% v/v Ha, 70% v/v N3), at 37°C (Don Whitley
Scientific Ltd., Shipley, UK). Gram stains were performed on colonies from FAA
plates. A pure sample of the microbe was taken from the plate using a sterile loop and
smeared on a glass slide with a drop of PBS on it. The slide was air-dried prior to
heat-fixation in a Bunsen flame. The slide was flooded with crystal violet stain for 30
s, washed under running water and flooded with iodine for 5 s. The slide was
decolourised by rinsing with acetone before the counterstain, fuchsin, was applied for

30 s. The slide was then rinsed and air-dried before being viewed by oil-immersion

microscopy.

Species Reference Clinical source

S. anginosus 39/2/14A Unknown

S. anginosus 670/95 Dentoalveolar abscess
S. anginosus 447/95 Dentoalveolar abscess
S. constellatus 45386 High vaginal swab

S. constellatus 350/96 Dentoalveolar abscess
S. constellatus 322/95 Dentoalveolar abscess
S. intermedius 127/95 Dentoalveolar abscess
S. intermedius HW13 Dentoalveolar abscess

Table 2.1 Identity and source of clinical isolates used
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2.2.2 Identification of Bacterial Strains

2.2.2.1 API Rapid ID 32 Strep bacterial identification strips

API rapid ID 32 Strep (bioMerieux, Marcy-1’Etoile, France) is a micro-method
designed to identify streptococcal species using standardised enzymatic tests. The
system consists of 32 test cupules which contain a dehydrated enzymatic substrate
(see Table 2.2). Collating the results from each cupule allows an enzymatic profile of

each bacterial strain to be complied, enabling species identification.

A bacterial suspension was prepared by using a sterile loop to select colonies grown
on fastidious anaerobe agar for 48 h and transferring to distilled water until a turbity
of 4 MacFarland was reached. The enzyme strip was then assembled according to
manufacturer’s instrucﬁons. Fifty-five pl of suspension was added to each cupule and
incubated aerobically for 4 h at 37°C. Following incubation, 1 drop of VP A and 1
drop of VP B reagents (supplied in kit) were added to cupule 0.0 (see table 2.2), 1
drop of FB reagent (supplied in kit) was added to cupules 0.1 to 0.5 and 1 drop of
NIN reagent (supplied in kit) was added to cupule 0.6. No further reagents are needed
for colour to develop in the other cupules. Following the addition of the required
reagents, colour was allowed to develop for 5 min before reading the strip using the
table provided. Collation of the results generates an identification code relating to a

species which can be identified using the Strep 32 ID reference catalogue.

2.2.2.2 16S rDNA sequencing

2.2.2.2.1 Extraction and amplification of 16S rDNA from SAG clinical isolates
DNA was extracted from suspensions of each pure bacterial isolate using a Puregene
DNA isolation kit (Gentra Systems, Minneapolis, USA), following the “DNA
Isolation from 1ml Gram-positive Bacteria Culture Medium” protocol

(http://www.gentra.com/technical assistance/protocols.asp).

16S rDNA genes were PCR amplified using the D88/E94 primers at a working
concentration of 0.5 pM. PCR was performed in a total volume of 50 pl using 3 pl of
DNA template and 25 pl GoTaq Green (Promega) which contains 7ag DNA
polymerase, nucleotides and buffer. Total volume was made up using nuclease free

water. A PCR protocol was used in which denaturation was performed at 95°C for 8
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Cupule Reaction Negative Result Positive Result
1.0 Arginine dihydrolase Yellow Red/Orange-red
1.1 B-glucosidase Pale orange Pink/Red-orange
1.2 B-galactosidase Orange Pink/Red-orange
13 B-glucuronidase
14 a-galactosidase Colourless Yellow
1.5 Alkaline phosphatase Colourless/Very pale yellow Yellow
1.6 Ribose (acidification) Red/Red-orange Yellow/Orange
1.7 Mannitol (acidification)
1.8 Sorbitol (acidification)
1.9 Lactose (acidification)
1A Trehalose (acidification)
1B Raffinose (acidification)
1.C Sucrose (acidification)
1.D L-arabinose (acidification)
1.E D-arabitol (acidification)
1.F Cyclodextrin (acidification)
0.0 Acetoin production Colourless Pink
0.1 Alanine-phenylalanine-proline Colourless/Pale orange Orange
arylamidase
02 B-galactosidase Colourless/Pale orange/Pale Purple
purpie
0.3 Pyroglutamic acid arylamidase Colourless/Pale orange Orange
04 N-acetyl-B glucosaminidase Colourless/Pale orange/Pale Purple
purple
0.5 Glycyl-tryptophane arylamidase Colourless/Pale orange Orange
0.6 Hydolysis of hippurate Colourless Blue
0.7 Glycogen (acidification) Red/Red-orange Yellow/Orange
08 Pullulan (acidification)
09 Maltose (acidification)
0A Melibiose (acidification)
0B Melezitose (acidification)
0.C Methyl-B-D Glucopyranoside
(acidification)
0.D | Tagatose (acidification)
0.E B-manosidase Colourless Yellow
0.F Urease Yellow/Beige-pink Pink/Red-violet

Table 2.2 Rapid ID 32 Strep reading table
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min, primer annealing was performed at 60°C for 1 min and elongation was
performed at 72°C for 1 min 45 s (single cycle). 30 cycles were then performed with
further denaturing steps lasting 45 s and each elongation step increasing by 5s. A
final elongation step runs for 10 min before the PCR products were stored at 4°C

before purification for sequencing.

PCR products were purified by precipitation and washing with ethanol. Firstly, a
solution of equal volumes of 40% polyethylene glycol (Mol. Wt 8000; Sigma-
Aldrich, Poole, UK) and 5 M NaCl (Sigma) was prepared which enables DNA
precipitation by preferentially suspending proteins. This was added to the PCR
product at a volume that is half that of the final PCR reaction and mixed by pipetting
prior to centrifugation (13,000 rpm, 15 min). The resulting supernatant was discarded
and the pellet re-suspended in 200 pl chilled ethanol prior to further centrifugation
(13,000 rpm, 15 min). This centrifugation and ethanol washing step was repeated
prior to a final centrifugation step after which the PCR products were air-dried under
a fume hood overnight. Products were re-supsended in 30 pl nuclease-free water and

stored at -20°C.

2.2.2.2.2 Sequencing of amplified 16S rDNA genes

PCR products were sequenced using ABI Prism BigDye terminator cycle sequencing
ready reaction kits (Applied Biosystems, Warrington, UK). BigDye Terminator
Reaction premix and Sequencing Buffer were added to PCR tubes containing
approximately 5-20 ng of PCR product. Sequencing was performed using the primers
357F and 1492R (Invitrogen) at a concentration of 0.5 uM to give a sequence of at
least 1200 nucleotides. Primer sequences are listed in table 2.3. Reactions comprised
of 1 min of denaturation at 95°C followers by 30 cycles of denaturation at 95°C (30 s),
annealing at 50°C (15 s) and elongation at 60°C (5 min).

Extension products were purified by addition of 1pl sodium acetate (3M, Sigma), 1ul
EDTA (0.5M, Sigma) and 80pl 100% chilled ethanol. Products were then centrifuged
(13, 000rpm, 15 mins) and supernatant was aspirated and replaced with 70% chilled

ethanol. The centrifugation step was then repeated and products air-dried overnight in

a fume hood before being resuspended in formamide (30ul) and run on an automated
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DNA sequencer (ABI PRISM 3100 Genetic Analyser; Applied Biosystems). This

resulted in sequences being obtained that could then be compared to those in the

public databases.

Primer Sequences 5-3 Source

D88 F: GAGAGTTTGATYMTGGCTCAG Paster et al. 2001
E9%4 R: GAAGGAGGTGWTCCARCCGCA Paster et al. 2001

Table 2.3 Primer sequences for 16S rDNA sequencing

2.2.2.2.3 Identification of clinical SAG isolates by 16S rDNA sequence analysis

Sequences that were obtained were identified by comparison to the GenBank DNA
sequence database using the FASTA sequence homology search

(http://www.ebi.ac.uk/services/index.html). 16S sequences were compared to those of

the type strain for S. intermedius, S.anginosus and S. constellatus. A homology of
>99% was the criterion used to identify an isolate to the species level. If there were no
definitive matches to any of the reference strains the isolate was identified using the

results of the indiscriminant GenBank search.

2.2.2.3 Expression of intermedilysin gene

Bacterial DNA was extracted and amplified as previously described (2.2.2.2.1). The
intermedilysin gene was PCR amplified using the ILY-NFw/CBw primer pair, as
listed in table 2.4 (0.5uM of each, Invitrogen). A PCR protocol was used in which
denaturation was performed at 95°C for 5 min, primer annealing was performed at
55°C for 1 min and elongation then performed at 72°C for 2 min. Thirty cycles were
performed with further denaturing steps lasting 45 s and each elongation step
increasing by S s. A final elongation step for 10 min was carried out and the PCR
products stored at 4°C before purification for sequencing. PCR products were run on
1.5% (w/v) agarose gels containing 125 ng/ml ethidium bromide (Sigma) and
visualised under UV light using a GelDoc system (Bio-Rad Laboratoried Ltd, Hemel
Hempstead, UK). |
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Primer Sequences 5°-3’ Source

ILY-NFw | F: AACACCTACCAAACCAAAAGCAGC | Nagamune, H. et al. 2000

CBw R: ACTGTGGATGAAGGGTTGTTCCCC | Nagamune, H. et al. 2000

Table 2.4 Primer sequences for PCR of intermedilysin gene

2.2.3 Bacterial growth in various culture media

2.2.3.1 Growth at 5% CO2

Bacterial suspensions were prepared as previously described (2.1) in BHI broth.

Suspensions were then incubated overnight in gas jars at 37°C, 5% CO,,
2.2.3.2 Bacterial growth under mammalian cell culture conditions

Protocol 1 — Bacterial growth in DMEM

Bacterial suspensions were prepared as previously described in Dulbecco’s Modified
Eagle’s Medium (DMEM) without phenol red (Sigma 41965-047) supplemented with
10% heat inactivated foetal calf serum and 0.15 mg/ml vitamin C. Suspensions were

incubated overnight in gas jars at 37°C, 5% CO,,

Protocol 2 — Bacterial growth in DMEM supplemented with BHI
Bacterial suspensions were prepared in DMEM without phenol red (Sigma)
supplemented as in protocol 1. BHI was also added at concentrations of 10, 20, 30 and

40%. Suspensions were incubated as above.

Protocol 3 — Bacterial growth in DMEM supplemented with BHI and haemin
Suspensions of S. intermedius 127/95 and HW13 were prepared in DMEM without
phenol red (Sigma) supplemented as in protocol 1. Media was further supplemented
with 10% BHI and 2 p.M haemin, 10% BHI and 4 uM haemin, 20% BHI and 2 pM

haemin and 30% BHI and 2 pM haemin. Suspensions were incubated as above.

2.2.4 Bacterial growth characteristics under modified culture conditions
Bacterial suspensions of 45386, 39/2/14A and HW13 were prepared in both BHI

broth and DMEM+10% BHI and incubated overnight at 37°C, 5% CO,. 1 ml of each
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overnight culture (ONC) was transferred to 9 ml of fresh broth and incubated under

the same conditions. A sample was taken every hour and the absorbance measured at
550 nm.

2.2.5 Tooth Siice Culture under standard conditions

Upper and lower incisor teeth were dissected from freshly sacrificed 28 day old male
Wistar rats by removing the bone from around the teeth using a sterile scalpel. The
teeth were then placed in sterile DMEM prior to being cut into 2mm thick transverse
sections on a diamond edged rotary saw (TAAB, Berkshire, UK). The blade was
sterilised using 70% ethanol and was kept cool with sterile DMEM in a well at the
base of the blade. The cut sections were immediately transferred to fresh sterile
supplemented DMEM for no more than 20 min before being cultured in 2ml of
supplemented DMEM at 37°C, 5% CO,. Storage of the dissected incisors and
resulting tooth slices in supplemented DMEM before culture is vital to maintain
maximum viability of the cells within the slices. Tooth slices were cultured for 7 and

14 days with fresh media provided every 2 days.

2.2.6 Histological, fixation, processing and staining methods

2.2.6.1 Fixation and demineralisation

Following culture, incisor slices were removed from culture using sterile forceps and
transferred to 10% (v/v) neutral-buffered formalin solution for 24 h for fixation of
tissues to occur. The slices were then transferred to a minimum of 5 ml 10% (v/v)

formic acid for 48 — 72 h with constant agitation to allow for demineralization.

2.2.6.2 Processing of tissue

Protocol 1: Automated processing
Tooth slices were transferred to individual biopsy cassettes and processed through a

series of graded alcohols on an automatic tissue processor as shown below:

1. 70% ethanol, 1 h
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90% ethanol, 1 h

100% ethanol, 1.5 h

100% ethanol, 1.5 h

100% ethanol, 1.5 h

100% ethanol, 1.5 h
Xylene, 1.75 h

Xylene, 1.75 h

Xylene, 1.5 hr

10. Molten wax, 2.5 h, 60-65°C
11. Molten wax, 2.5 h, 60-65°C

A S SR L ol

Protocol 2: Manual processing
Tooth slices were transferred to individual biopsy cassettes and processed through

graded chemicals as shown below:

—

50% ethanol, 2 h

70% ethanol, 2 h

95% ethanol, overnight
100% ethanol, 2 h
100% ethanol, 2 h
100% ethanol, 2h

100% ethanol overnight
100% ethanol 1h
Methyl salicylate, 1h
10. Methyl salicylate, 1h
11. 0.5% necloidine in methyl salicylate, 1 h

© % N A W N

12. 0.5% necloidine in methyl salicylate, 1 h
13. 1% necloidine in methyl salicylate, 1 h
14. 1% necloidine in methy] salicylate, 1 h
15. Molten wax, 60°C, 1h

16. Molten wax, 60°C, 1h

17. Molten wax, 60°C, 1h

18. Molten wax, 60°C, overnight
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Following both methods ofprocessing the tissues were embedded in paraffin wax
using a processing machine (Shandon Pathcentre, Thermo Scientific, Surrey, UK) and
aligned so that transverse sections ofthe slice can be cut. Fig. 2.1 demonstrates the
orientation ofthe tooth slice from which the section is cut, relative to its position in

the incisor.

Pulp Dentine

2mm

2mm

Fig. 2.1. Schematic diagram ofrat skull showing position of incisors. Blue areas
on schematic represent 2mm sections that are cut along the length ofthe incisors. The
right-hand side ofthe diagram shows how the tooth slices appear after being cut and

how the tooth slice is orientated in relation to its previous position in the tooth.

2.2.6.3 Sectioning of tooth slices

Sections of 7pm thickness were cut from the wax blocks using a Leitz 1400
microtome (Leica, Buckinghamshire, UK). The embedded sections were floated on
warm water (40°C) and mounted on glass slides. These were then placed in a slide

drying oven (60°C) before staining to improve adhesion ofthe section to the slide.

2.2.6.4 Staining histological sections

Histological sections were mounted on uncoated microscope slides and placed on an
automated tissue stainer. The slides were taken through xylene, alcohol and water
washes followed by haemotoxylin and eosin (H&E) stains. They were then taken
through a further series of alcohol washes before finally being immersed in xylene.
The slides were then removed and a coverslip glued over the stained section for

viewing by an Olympus AX40 light microscope.
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2.2.6.5 Vital dye staining

A working solution of acridine orange/ethidium bromide was prepared by mixing 1ml
of a 0.25% acridine orange solution to 0.25 ml of ethidium bromide at 10 mg/ml. This
was then made up to 25 ml using DMEM working media to give a final concentration
of both acridine orange and ethidium bromide of 100 pg/ml. At the end of a culture
period the tooth slice was removed from the embedding media and placed into the
well of a culture dish containing 4 ml of the acridine orange/ethidium bromide for 10
s. The slice was then removed and washed in 4ml of phosphate buffered saline (PBS)
and placed on a microscope slide so the cut surface of the slice could be viewed. The
slice was then immediately viewed on an Olympus Ax40 fluorescence microscope
under UV light.

2.2.7 Tooth slice culture under modified conditions

Upper and lower incisors were dissected from 28 day old male Wistar rats and
cultured as previously described (2.2.5) for 5 days. Tooth slices were then transferred
to DMEM+10% BHI for 4, 8 and 24 h prior to fixation and processing for H&E
staining. Image Pro-Plus analysis was used to count the number of nuclei in a 50 pm®
area. For each time point sections were cut from 5 tooth slices. 5 random fields of
view (RFV) were taken within each section and the nuclei counted in five 50 umz

areas in each RFV to obtain an average nuclei number for each time point.
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2.3 Results

2.3.1 Bacterial identification

Identification of the bacterial strains was initially performed using Strep 32 ID test
strips. A mimber of the clinical isolates tested did not generate a code that had an
exact match and so the species was taken as that having the most closely matched
code number. The identification of each clinical isolate was confirmed using 16S

rDNA sequencing, as shown in table 2.5.

PCR of the intermedilysin gene resulted in bands produced by strains HW13 and
127/95, indicating the presence of the intermedilysin gene (Figure 2.2).

2.3.2 Bacterial growth in various culture media

The growth of clinical isolates in the various culture media tested is summarised in
table 2.6. All clinical isolates showed normal growth when cultured in BHI at 5%
CO;, which was defined as an absorbance of above 1.0 at 550nm after overnight
incubation. A minimum absorbance of 0.5 is required as this relates to a cell number
of 10% cfu/ml and therefore provides adequate bacterial load for further experiments.
However, growth was variable between the different isolates when they were
inoculated in DMEM. The overnight absorbance varied from 0.001 to 0.133 but as
none of the isolates reached the minimum absorbance level required, this medium was
concluded to be inadequate for supporting bacterial growth. An addition of a
minimum of 10% BHI to the DMEM resulted in overnight absorbance increasing
back to levelé that were comparable to growth in undiluted BHI for S. anginosus and
S. constellatus strains, indicating that this may be a possible growth media mix for use
in the model. However, S. intermedius strains failed to reach sufficient growth levels
in any of the concentrations of BHI tested.

As S. intermedius growth can be limited by iron-deficient culture medium, haemin
was added in various concentrations to the media. However this also failed to produce

sufficient and reproducible growth of all S. intermedius clinical isolates (Table 2.7).
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2.3.3 Bacterial growth characteristics under modified culture conditions.

SAG isolates 45386, 39/2/14A and HW13 were used as representative strains for each
species as these were found to give higher bacterial yields than others within the
species or, as in the case of HW13, they provided more reproducible growth results,
with absorbance levels being similar each time the growth experiments were carried
out. The isolates showed standard bacterial growth characteristics when grown at
37°C and 5% CO; in both BHI and DMEM+10% BHI, shown in their growth curves
as an initial lag followed by exponential growth until the nutrients are limited and
stationery phase is reached. However there were differences in growth rate and yield
between the different species and this was also effected by the media the bacteria are
grown in (Figure 2.3). S. intermedius HW13 showed very slow growth in BHI with
absorbance levels remaining below 0.2 after 7 h compared to 0.8 and 1.1 for S.
constellatus 45386 and S. anginosus 39/2/14A. Growth of S. intermedius HW13 was
further impaired when grown in DMEM+BHI with no measurable growth after 7 h.
Similarly, growth of S. anginosus 45386 occurs at a slower rate when grown in
DMEM+10% BHI compared to BHI alone and the total growth after 7 h is lower.
Only S. constellatus 39/2/14A does not follow this trend, with growth rate and total
bacterial yield being increased when grown in DMEM+10% BHI.

2.3.4 Tooth slice culture under standard conditions

Tooth slices were processed either automatically or manually prior to sectioning and
staining with H&E. Following both processing methods the general morphology of
the tissues could be observed with the dentine, odontoblasts and pulp clearly
identifiable. Blood vessels could also be observed in the centre of the pulpal chamber
(Fig. 2.4a). However it was also seen that the tissue architecture had been affected by
the automatic processing as the pulp shrank and became separated from the dentine
(Fig. 2.4a and b). Tears could also be seen in the dentine layef (Fig. 2.4¢). As the
odontoblast processes extend through the dentinal tubules these structures are required
to remain in contact following culture and processing.

During manual processing tissues were dehydrated gradually using a series of graded
alcohols. In these slices tissue architecture was maintained and the odontoblasts

remained associated with the dentine matrix. Areas of dentine and predentine could be
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seen with a clear mineralisation front and the tubular structure of the dentine was
observed. The odontoblasts were seen as tall columnar cells with darkly stained nuclei
at the basal end. The cell rich layer of H6hl could be seen below the odontoblast layer.
The pulpal fibroblasts appeared as spindle shaped cells with darkly stained nuclei
(Fig. 2.5). Upon extension of the culture period to 14 days, a similar level of tissue

maintenance and cell viability was seen (Fig. 2.6).

The vitality of tooth slices was confirmed by acridine orange and ethidium bromide
staining. Fig 2.7 shows the majority of cells fluorescing bright green, indicating that
ethidium bromide was being actively extruded from these viable cells. Non-viable
cells are unable to remove ethidium bromide from the cells and the resultant
fluorescence appears orange, as seen in the control, where only a small number of

viable cells were present and fluorescing green.

2.3.5 Tooth slice culture under modified culture conditions

Tooth slices cultured in DMEM+10% BHI were processed manually to avoid
shrinkage caused by automatic processing. As is seen under standard culture
conditions, tissue architecture and morphology is maintained for up to 24 hr culture in
DMEM+10% BHI (Fig 2.8). Areas of both dentine and predentine can be observed
with odontoblasts remaining as tall columnar cells, the viability of which can be seen
from the darkly stained purple nuclei. Healthy pulp fibroblasts are seen as spindle
shaped cells with dark purple nuclei. At higher magnifications, the densely packed
odontoblasts are easily distinguishable from a healthy cell rich zone and staining of
the matrix can be seen between the cells, all of which are indicators that the tooth
slice§ are surviving in the modified medium with no deleterious effects (Fig. 2.9).
This was confirmed using cell counts on the pulp and odontoblast layer which were
performed using Image Pro-Plus software. Five counts were performed over a 50pm’ |
area for each section with five sections being studied for each time point. ANOVA
tests showed no significant decrease in cell number at 4, 8 or 24 hr incubation in
DMEM+10% BHI compared to a control (Fig 2.10).
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Strain number Identification by Identification by % homology to
API 16s rDNA type strain
sequencing
45386 S. anginosus S. constellatus 94.1
350/96 S. constellatus S. constellatus 99.9
322/95 S. constellatus S. constellatus 99.9
447/95 S. intermedius S. anginosus 99.7
670/95 S. anginosus S. anginosus 99.7
39/2/14A S. anginosus S. anginosus 99.9
127/95 S. intermedius S. intermedius 71.2
HW13 S. intermedius S. intermedius 99.9

Table 2.5 Identification of clinical isolates by API and 16s IDNA sequencing.

Inconsistencies indicate importance of 16s rDNA sequencing.

BHI |DMEM | D DMEM + | DMEM + | DMEM + | DMEM +
10% BHI | 20% BHI | 30% BHI | 40% BHI

S. anginosus
670/95 1.365 | 0.035 1.121 1.164 1.298 1.334
39/2/14A 1.023 | 0.133 1.166 1.276 1.289 1.275
447/95 1.125 | 0.067 0.837 1.091 1.195 1.201
S. constellatus
350/96 1.132 | 0.078 0.835 0.965 1.023 1.069
322/95 1.65 |0.013 0.596 0.863 1.135 1.163
45386 1.523 | 0.103 1.200 1.275 1.076 1.2039
S. intermedius
HW13 1.203 | 0.001 0.001 0.061 0.027 0.056
127/95 1.032 | 0.007 0.013 0.079 0.086 0.090

Table 2.6 Bacterial growth in different media after overnight culture, measured by

absorbance at 550nm.
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Media HW13 growth 127/95 growth
DMEM+10% BHI 2uM haemin | 0.177 0.137
DMEM+10% BHI 4pM haemin | 0.050 0.060
DMEM+20% BHI 2uM haemin | 0.180 0.070
DMEM+30% BHI 2pM haemin | 0.090 0.660

Table 2.7 Effect of addition of various concentrations of haemin to media on growth

of S. intermedius isolates, measured by absorbance at 550nm.
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Fig. 2.2 PCR of intermedilysin gene in SAG clinical
isolates. PCR confirmed presence of the gene encoding
intermedilysin toxin only in isolates HW13 and 127/95
which belong to the S. intermedius species. No bands
were visible for other strains or negative control lane.
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Figure 2.3 SAG isolates growth curve. Absorbance of bacterial suspension grown in BHI and
DMEM+10% BHI, showing bacterial growth rates and total growth of isolates after 7 hours incubation at
37°C, 5% CO02. Error bars represent standard error.
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Fig 2.4 Tooth slice following automatic processing showing
pulpal shrinkage and separation from dentine. A) 7 day
cultured tooth slice x 20 mag. B) 7 day cultured tooth slice x 10
mag. C) 14 day cultured tooth slice x 10 mag. d = dentine, o =
odontoblasts, p = pulpal cells, bv = blood vessel. Arrows indicate
pulpal shrinkage away from dentine layer. Circled areas indicate
tearing of the odontoblast layer.



Fig 2.5 7 day cultured tooth slices following manual processing,
showing maintenance of tissue architecture. A) x 10 mag. B) x 20
mag. C) x 40 mag. d = dentine, pd = predentine, o = odontoblasts,

h = cell rich layer of Hohl, p = pulpal cells.
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Fig 2.6 14 day cultured tooth slices following manual
processing, showing maintenance of tissue architecture. A)
14 day cultured tooth slice x10 mag. B) 14 day cultured tooth
slice x 20 mag. C) 14 day cultured tooth slice x40 mag. d =
dentine, o = odontoblasts, p = pulpal cells.
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Fig. 2.7 Vital dye staining of tooth slices cultured for 7 and
14 days. Staining with acridine orange and ethidium bromide
demonstrates tooth slice viability following culture under standard
conditions. Green staining = live cells, red staining = dead cells.
A) 7 days x 4 mag. B) 14 days x 4 mag. C) Control tooth slice
represents the appearance of dead tissues and confirms
presence of ethidium bromide in the stain x 4 mag. d=dentine,

p=pulp.
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Fig. 2.8 Tooth slices cultured in DMEM+10% BHI show no
significant cell death or altered tissue morphology. A) 4 hr
incubation x 20 mag. B) 8 hr incubation x 20 mag. C) 24 hr
incubation x 20 mag. O = odontoblasts, d = dentine, p = pulp.



Fig. 2.9 High magnification H&E stained sections from tooth
slices cultured in DMEM+10% BHI (x40 mag.). Odontoblasts are
densely packed and columnar and pulpal fibroblasts are densely
stained. Some thinning of the collagen matrix can be observed in the
24 hr image. A) 4 hr incubation B) 8 hr incubation C) 24 hr incubation.
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Fig 2.10 Cell count for tooth slices cultured in DMEM+10% BHI.
Nuclear counts were performed to provide an average cell number in
a 50pm2area of the pulp and the odontoblast layer Counts indicate
that culture of tooth slices in DMEM+10% BHI for up to 24hrs has no
significant effect on cell number. Error bars represent standard error.



2.4 Discussion

Confirming the identity of the clinical isolates used in this study is particularly
important as SAG bacteria have been incorrectly classified in the past, resulting in
confusion regarding their role in oral infections. Due to changes in nomenclature and
classification guidelines SAG isolates are often incorrectly classified when using
Strep 32 ID alone (Facklam 2002). For this reason, 16S rDNA sequencing was used in
addition to Strep32 ID. 16S rDNA of bacteria contains highly conserved regions of
DNA present in all bacteria alongside highly variable regions which allow
identification of different species. A universal primer which recognises the conserved
regions is used to amplify the DNA which can then be identified by comparing
homology with a known species (Lane et al. 1985). A homology of >99% indicates a
positive species match. Identification is generally confirmed by comparison with the
species type strain but due to previously mentioned problems in SAG classification,
homology to the type strain may be less than 99%. This occurred in the case of strain
127/95 which showed only 71 .2% homology to the type strain S. intermedius ATCC
27335 (GenBank accession number AF104671). However this homology was higher
than that with the type strains of S. anginosus or S. constellatus and homology of
99.8% was found with sequence data from another closely related strain, S.
intermedius (AF104672). This study also used PCR to confirm that the only SAG
bacteria that produce the intermedilysin toxin are classified as S. intermedius strains,

which concurs with results found in previous studies (Nagamune et al. 2000).

Following culture of the tooth slices under standard conditions, one of two tissue
processing methods was used to prepare the tooth slices for histological sectioning
and examination. Previously published work with similar model systems used only
routine histological processing, taking the samples rapidly through graded alcohols
and xylene (Dhopatkar et al. 2005; Smith et al. 2010). However, results from this
model show that there is significant pulpal shrinkage caused by the rapid dehydration
involved in standard histological processing. As the odontoblasts are shown to be
healthy and viable it can be concluded that this shrinkage and subsequent separation
of the pulp from the dentine occurs after fixation and is not a result of preparation or

culture of the tooth slices. In order to conclude that any effects seen in later co-
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cultures are caused only by the presence of bacteria it was imp-ortant to eliminate
these processing artefacts. As such, a second processing method was used where
alcohol dehydration is performed mofe gradually and xylene is replaced with methyl
salicylate and necloidine as these clearing agents have been found to cause less tissue
shrinkage (Bucher et al. 2000). This successfully eliminated problems with pulpal
shrinkage, allowing any effects observed in co-culture to be confidently attributed to

the presence of SAG bacteria.

In order to develop the co-culture model it was necessary to identify conditions under
which both the mammalian and bacterial cells could be successfully cultured. The
gaseous environment used in standard mammalian culture conditions was introduced
into bacterial incubation first, as SAG bacteria have previously been shown to
respond favourably to increased carbon dioxide levels in their environment (Ruoff
1988). As expected this had no detrimental effect on bacterial growth when cultured
in BHI media, as absorbance of overnight cultures remained at similar levels when
measured at 550nm. However, culture of mammalian tooth slices was not possible in
BHI as it does not contain the appropriate serum components and sugars to support
cell growth, making it necessary to develop a media which could support the bacterial
growth without disrupting the delicate balance of nutrients required to successfully
culture the tooth slices. There has been no history of SAG bacteria being co-cultured
with mammalian cells, the main focus of such co-culture work has centred on
Escherichia coli and Psudomonas aeruginosa and the infection of monolayers rather
than organotypic cultures as used in this study (Claesson and Gotthardsson 1988;
Hirakata et al. 2010; Kim et al. 2010). As such, the production of an appropriate
medium was particularly time consuming due to the ‘trial and error’ nature of its
development. The process was further complicated by the differences in nutritional
requirements between the different bacterial species. As there are different types of
mammalian cells in the tooth slice system, having more complex nutritional
requirements than the bacterial cells, the decision was taken to maintain the balances
found in supplemented DMEM used in tissue culture and to adapt it for co-culture by
further supplementing it with the minimum possible amount of bacterial medium.
This concept was developed under the assumption that the less the medium was

changed, the more successful it would be in maintaining vitality of the complex
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organotypic tooth slice cultures and that this could be confirmed with further

experiments when a suitable growth medium had been defined.

As an addition of 10% BHI to the DMEM was found to support the growth of the
majority of the SAG clinical isolates, this medium was carried through into the next
stage of experiments to assess the effect on bacterial growth rates and characteristics.
Growth curves and absorbance levels of overnight cultures confirmed that it had no
significant effect on growth of S. anginosus or S. constellatus species, although S.
intermedius strains showed no growth. Culture medium was further supplemented
with haemin as available iron in the culture medium is essential for the growth of S.
intermedius and it has been shown that growth may be induced upon addition of an
iron source to a deficient media (Brochu 1998). Failure of S. intermedius strains to
grow following the addition of haemin indicates that iron is not limited in the media
and that this species has different growth requirements from other SAG bacteria. For
this reason, S. intermedius strains were omitted from further study due to
complications in finding a suitable growth medium. However, the differences in
growth requirements of SAG bacteria is of interest and warrants further study as this
may play an important role in their ability to cause purulent infection and form

abscesses in vivo.

The success of culturing the tooth slice in DMEM+10% BHI was assessed using
Image ProPlus software to enumerate live pulpal cells after a defined time period.
This involves defining parameters that represent a healthy cell and selecting an area in
which to identify cells which match the characteristics set. For each time period 5
tooth slices were analysed with five Sum sections taken from each slice. Counts were
performed in 5 random fields of view covering a 50pm? area for each section and the
total counts averaged for each time period. Prior to culture in DMEM+10% BHI,
tooth sliées were cultured as normal in supplemented DMEM under standard
conditions for 5 days. This was necessary due to damage that occurs to cells on the
surface of the tooth slice during the cutting process. By day 5 of culture these cells are
able to slough off, leaving the healthy tissue underneath. It is important that this
period of culture is allowed before exposing the tooth slices to any other external
factors that may affect tissue health in order to confidently assess the influence these

factors may have. In addition, tooth slices were cultured for up to 14 days when under
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standard conditions with both H&E and vital dye staining, showing no significant cell
death or alteration of tissue architecture. Whilst such a long culture period is not
required when incubating the bacteria with the tooth slices, this indicates that effects
of culture period up to 14 days are negligible and that any changes seen when

incubated with bacteria are due to their activity.
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Chapter 3: Development of a Bacterial and Mammalian Co-
Culture System

3.1 Introduction

During a pulpal infection, tissue destruction arises as a result of inflammation (Baume
1980; Marsh 2009). This manifests itself as clinical symptoms such as pain and
swelling and if the inflammation remains unresolved it can lead to pulpal necrosis and
abscess formation. Although these are widespread clinical problems the underlying
mechanisms of bacterial infection are poorly understood due to a lack of adequate

model systems, resulting in fewer developments in new treatment regimes.

SAG bacteria ai‘e thought to be involved in the initial infection of the pulp and may
play an important role in the environmental changes that occur in the pulpal chamber,
allowing further colonisation by other bacterial species that are prevalent during
pulpal infection and abscess formation (Sundqvist 1992; Sundqvist et al. 2003). SAG
bacteria and other facultative anaerobes predominantly ferment carbohydrates to
obtain energy. As the infection advances further into the root canal such nutrients
become less easily available as the direct contact with the oral cavity is lost. In
addition to the change in nutrients available, oxygen availability also decreases as the
infection advances, creating perfect conditions for anaerobic pathogens to thrive.
Targeting antimicrobials towards SAG bacteria may enable the clinician to limit
further infection by other bacterial species. Therefore these bacteria were chosen for
use in the model system developed in this study. As the model comprises dental
tissues in situ and is sterile prior to the introduction of SAG bacteria, it is
representative of an initial pulpal exposure to the oral cavity whilst having the

advantage of studying the effects of an individual species.

As SAG bacteria have not been studied in such a model before it was important to
first establish how the bacteria interacted with the pulpal tissues; whether they
attached to the pulp or dentine or simply secreted proteins that affected the tissues.
Bacteria can adhere to the surfaces of cells and tissues and interact directly with them
directly, which is common when bacteria move into the dentinal tubules of the tooth

and when they attach to the enamel surface (Love et al. 1997; Yamaguchi 2004).
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However, as the dentinal tubules and pulpal chamber are filled with fluid around the
cells and their processes it is possible for the bacteria to release endotoxins into the
fluid which diffuse through the pulp and cause damage to cells that have no direct
contact with the bacteria (Love and Jenkinson 2002). To effectively target oral
pathogens it is important to first elucidate their mode of action. This was achieved
through use of both fluorescence and histological staining on vital and devitalised

pulp tissue.

Although it is known that SAG and other bacteria cause generalised inflammation and
subsequent tissue destruction within the pulp, nothing is known about the specific
patterns of this infection process. For the validation of this model and its future use in
testing antimicrobials it is important to know how the bacterial and mammalian cells
interact. The response of the mammalian tissues to infection by SAG must be assessed
in order to evaluate the effect of bacterial attachment on cell death and expression of
inflammatory markers such as TNF-q, IL-1B and IL-6. These are pro-inflammatory
cytokines which are expressed by mammalian cells in response to the presence of
bacterial antigens. TNF-a and IL-1p are produced by activated monocytes to recruit
other cells of the immune system to the site of infection to fight the bacterial invasion
(Hahn and Liewehr 2007a, b; Stashenko et al. 1998), IL-6 is involved in the
production of neutrophils from the bone marrow which then may be recruited to the
site of infection (Hahn and Liewehr 2007b). These and other cytokines play an
important role in pulpitis and are sometimes used to establish the clinical severity of
an infection (Kokkas et al. 2007). Measuring their expression in the model enables
data to be extrapolated to the clinical condition and to determine how effective

treatments may be on limiting inflammation caused by bacterial invasion.

The effect of the bacterial infection on the tissues of the tooth slice was visualised
through histological and vital dye staining which also enabled patterns of bacterial
attachment to be observed. RT-PCR was used to investigate the expression of pro-
inflammatory cytokines in pulpal cells from both sterile and infected tooth slices. This
gives an indication of the processes which occur in the host tissues as a response to

bacterial invasion into the pulpal chamber.
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3.2 Methods
3.2.1 Co-culture of SAG and devitalised pulpal matrix

3.2.1.1 SAG growth on devitalised pulpal matrix

Protocol 1 — Co-culture of SAG bacteria and unsterilised pulpal matrix

Upper and lower incisors were dissected from 28 day old male Wistar rats and pulp
was extirpated using a sterile 21 gauge disposable needle. Three pulps were pooled
and placed into the bottom of a six well tissue culture dish prior to three freeze-thaw
cycles (-80°C overnight, room temperature 30 min) to devitalise the pulpal matrix.
An overnight culture of S. anginosus 39/2/14A was prepared in BHI broth. One ml of
this culture was transferred to 9ml of fresh broth and further incubated for 4 h at
37°C, 5% CO,. The suspension was then diluted to Absso,m=0.5 which had been
previously calculated to contain 10® cfu/ml bacteria. The suspension was further
serially diluted to 10 cfu/ml before being incubated with the devitalised matrix for 24
h at 37°C, 5% CO;, 60 rpm.

Due to the problems associated with extracting large amounts of pulp from the rat
teeth only one SAG isolate was used for this experiment. S. anginosus 39/2/14A was
chosen as this isolate had been shown to have the most successful growth in BHI (Fig.
2.2).

Following incubation, the bacterial suspension was aspirated and pulpal matrix
transferred to a glass slide for staining with BacLight LIVE/DEAD. Samples were
viewed immediately after staining by UV microscopy. The aspirated bacterial

suspension was plated out on FAA and incubated aerobically and anaerobically.

Protocol 2 — Co-culture of SAG bacteria and sterilised pulpal matrix

As previously described in protocol 1, pulp was extirpated from the incisors of 28 day
old male Wistar and pooled in six well tissue culture dishes. Following devitalisation
by freeze-thawing, pulps were decontaminated by a wash step in 70% ethanol for two
h and exposure to UV irradiation for 10 min. Pulpal matrices were then cultured as

previously described in protocol 1.
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3.2.1.2 Identification of bacterial species isolated from pulpal matrix post-
culture.

Aspirated bacterial suspension from cultured pulpal matrix was plated out on FAA
plates which were incubated anaerobically or aerobically. Resulting bacterial growth
was initially identified as SAG isolates if colonies appeared smooth, pale yellow in
colour and around 0.5 mm in diameter, as seen in the colony morphology of the
isolates used to inoculate the broth. The colonies also produce a characteristic
caramel-like odour. The identity of all isolates, including those which did not appear

to be SAG bacteria, was confirmed using 16S rDNA sequencing, as previously
described (2.2.2.2).

3.2.1.3 Enumeration of bacterial cells attached to devitalised matrix

Following culture for 4, 8 or 24 h as previously described (3.2.1.1), pulpal matrix was
removed from the culture dish and macerated using a sterile scalpel blade. The
remaining matrix and associated bacterial cells were re-suspended in 1ml of PBS and
vortexed for one min. This suspension was serial diluted to 1 x 10 and a 50 pl
sample of each serial dilution spiral plated on FAA. Plates were incubated
anaerobically for 72 h prior to colony counting. Counts were taken from three
dilutions for each condition and the average obtained to give the count after each

incubation period.

3.2.2 Co-culture of SAG bacteria and vital tooth slices

Upper and lower incisors were dissected from 28 day old male Wistar rats and cut
into 2 mm thick transverse sections, as previously described (2.2.5). Tooth slices were
cultured in DMEM supplemented with 10% heat inactivated foetal calf serum and
0.15 mg/ml vitamin C for a minimum of 5 days before further culture in
DMEM+10%BHI containing SAG clinical isolates.

An overnight culture of S. constellatus 45386 or S. anginosus 39/2/14A was prepared
in DMEM+10%BHI broth. One ml of this culture was transferred to 9 ml of fresh
broth and further incubated for 4 h at 37°C, 5% CO,, The suspension was then diluted
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to 10 cfu/ml before being incubated under agitation with the tooth slices for 4, 8 or
24 h at 37°C, 5% CO,_ 60 rpm. Control toothslices were cultured in sterile
DMEM+10% BHI for the co-culture period. In all conditions tooth slices were

cultured in a volume of 2 ml of media or bacterial suspension.

Following culture, tooth slices were fixed in 10% neutral buffered formalin overnight
demineralised in formic acid for 72 h under constant agitation and manually processed
or stained with acridine orange and ethidium bromide, as previously described (2.2.6).
Tooth slices which were manually processed were stained with H&E and histological
sections were examined by light microscopy. Nuclear counts were performed over 50

pm? areas of the pulp and odontoblast layer, as previously described (2.2.7).

3.2.3 Fluoroscein Diacetate (FDA) staining of SAG bacteria

Bacteria were prepared for inoculation of the tooth slices system in DMEM+10% BHI
as previously described (3.2.2). One gram of FDA (Sigma F7378) was dissolved in
100 ml of acetone to give a 1% solution (w/v). Following dilution of the bacteria to
10? cfw/ml, 20 pl of 1% FDA in acetone was added for every millilitre of bacterial
suspension. The bacteria were then incubated at room temperature in the presence of
the FDA stain for 30 min before being filtered using a 0.2 um cellulose acetate
disposable filter (VWR, Leicestershire, UK). Bacteria captured in the filter were then
re-suspended in sterile DMEM+10% BHI and used to inoculate the tooth slice system.
In the control condition sterile media was used in place of bacterial suspension. Tooth
slices were incubated for 4, 8 and 24 h in inoculated or sterile media before they were
transferred to formalin for 24 h for fixation. Tooth slices were fixed, demineralised |
and manually processed as previously described (2.2.6). Sections were cut and viewed

under UV microscopy.

3.2.4 Expression of inﬂammatory markers in healthy and infected pulpal tissue

3.2.4.1 RNA Extraction

Tooth slices were cultured as previously described in supplemented DMEM for 5
days before being transferred to sterile DMEM+10% BHI or a suspension of S
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constellatus 45386 in DMEM+10% BHI at a concentration of 10? cfu/ml. The tooth
slices were further cultured for 24 h before pulps were extirpated and pooled in 350 pl
RLT lysis buffer from the RNeasy™ mini kit (Qiagen Ltd, Crawley, UK) containing
10% B-mercaptoethanol (Sigma M3148). Tissue was homogenized using a rotot-stator
homogeniser followed by passing through a QIAshredder spin-column (Qiagen Ltd,
UK) by centrifugation at 13,600g for 2 min. Isolation of total RNA was then carried
out using a Qiagen RNeasy mini kit (Qiagen Ltd, UK) which consisted of RW1 and
RPE wash buffers and spin columns to bind the mRNA. An equal volume of ethanol
was added to the lysate collected from the QIAshredder spin-column and this was
then added to an RNeasy spin column for centrifugation at 12,000 g. The mRNA
attached to the membranes within the spin column whilst other cell components
passed through the membranes and were discarded. 350 ul of RW1 wash buffer was
added to the column prior to another centrifugation step at 12,000 g for 30 s. Ten
microlitres of DNase enzyme (Qiagen) were then added to the column to digest any
traces of DNA that may have been contaminating the sample. The sample was then
incubated at room temperature for 15 min before repeating the RW1 wash step. This
was followed with two washes with 500 pl of RPE buffer which were carried out by
centrifugation at 12,000 g for 30 s each. Finally, mRNA was eluted by adding 40 pl of
sterile water and centrifuging at 12,000 g for 1 min. All reagents were stored on ice
throughout the experiment and steps were performed rapidly at room temperature to

minimise RNA degradation.

3.2.4.2 Reverse transcription

Extracted RNA was converted to cDNA prior to PCR reaction. This was carried out in

a sterile environment at room temperature with all reagents stored on ice.

250 ng of extracted RNA was added to a sterile 0.25 ml PCR tube with 1 pl of
random primer and made up to 15 pl sterile water. This was then incubated at 70°C
for 5 min in a G-storm™ GS1 thermal cycler (Genetic Research Instrumentation Ltd,
Essex, UK). Following cool down this was then stored on ice whilst a reverse
transcription master mix was prepared. The master mix consisted of 5 pl of 5x
MMLYV reaction buffer (Promega), 1.25 pl dNTPs, 0.6 pl RNasin (Promega), 1 ul
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MMLYV enzyme (Promega) and 2.15 pl sterile water for each reaction. 10 pul of master
mix was added to the RNA/primer mix and incubated at 37°C for 1 h in the thermal
cycler to convert the RNA to cDNA. cDNA was then stored at -20°C until required

for PCR reactions.

3.2.4.3 Polymerase Chain Reaction (PCR)

PCR was performed on cDNA from both healthy and infected tooth slices to amplify
the genes for tumour necrosis factor-a (TNF-a), interleukin-1p (IL-1B) and IL-6.
These cytokines were chosen as they are widely documented as playing an important
role in inflammation. The rat housekeeping gene B-actin was used as a positive

control.

1 pl of cDNA products and RT negative control were added to a PCR mix containing
primers for amplification of one of the aforementioned gene sequences. Primer
sequences are listed in table 3.1. PCR mix was prepared on ice and consisted of 10 pl
GoTagq flexi buffer (Promega), 3 ul 1.5 mM magnesium chloride, 1 pl 0.2 mM
dNTPs, 0.5 pl GoTaq DNA polymerase (Promega) and 2.5 pl of forward and reverse
primers at a concentration of 0.04 pg/ul. The volume of the reaction mixture was
made up to 50 pl with nuclease free water. Reactions were run on a G-storm™ GS1
thermal cycler (Genetic Research Instrumentation Ltd) with an initial denaturing step
of 95°C for 5Smin, followed by 30 cycles of a 1 min 95°C denaturing step, a 1 min
56°C annealing step and a 1 min 72°C extehsion step. A final extension step at 72°C
for 5 min was run, ending the reaction. All PCR products were stored at 4°C until

visualisation.

PCR products were visualised on TBE agarose gels containing ethidium bromide. 5x
TBE buffer containing 0.5 M tris-base (Sigma Aldrich), 0.5 M boric acid (Sigma
Aldrich), 0.03 M EDTA (Sigma Aldrich) with a pH of 8.1 was used to make agarose
gels and was also used as a running buffer. The TBE buffer was diluted 10 times to a
concentration of 0.5x prior to use. To prepare the gel, 1g of agarose (Sigma) was
added to 100 ml of the diluted TBE buffer and heated in a microwave for
approximately 45 s prior to the addition of 5 pl of 10 mg/ml ethidium bromide
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(Promega). The agarose solution was immediately poured into a casting tray and left

to cool.

10 pul of each PCR product were loaded into wells on the agarose gel. A molecular
marker was run in the first well, which consisted of 7 ul of a 100bp DNA ladder
(Promega). The loaded gel was run in 0.5x TBE buffer at 120 mA for 45 min. Gels
were removed from the casting tray and placed on a Gel Doc™ scanner (Bio-Rad,
Hemel Hempstead, UK) for visualization by UV light. Images were captured using
Quantity One image analysis software (Bio Rad) and band intensity was measured
using Image Pro-Plus version 6.0.0.260 image analysis software (Media Cybernetics
Inc. Bethesda, MD).

Primer | Sequences 5’-3’ Source

TNF-a | F:CCAGCGTGCCAACGCCCTCCTGGCCAAT | SigmaGenosys
R:GGGGTCAGAGTCGGGGACAGGGGCTGGG | primer design

IL-6 F:CCGCAAGAGACTTCCAGCCAGTTGCCTT | SigmaGenosys
R:TGGATGGTCTTGGTCCTTAGCCACTCCT | primer design

IL-13 | F:-GCCCGTGGAGCTTCCAGGATGAGGACCC | SigmaGenosys
R:CTCCAGCTGCAGGGTGGGTGTGCCGTCT | primer design

B-actin | FTGAAGATCAAGATCATTGCTCCTCC Gatto et al. 2008
R:CTAGAAGCATTTGCGGTGGACGATG

Table 3.1 Primer sequences for PCR

3.2.5 Statistical analysis

Statistical analysis was performed on cell counts from histological staining of tooth
slices using Graph Pad statistical software. Cell counts were performed as previously
deécribed (2.2.7). One-way analysis of variance (ANOVA) was performed to
determine the relative significance of the difference between experimental cell counts
and the controls. Tukey-Kramer’s test was used in conjunction with ANOVA to
compare the significant difference between all possible pairs of means. This allowed
comparison of the mean cell counts between tooth slices exposed to different bacterial

species, in addition to comparison with the control.
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3.3 Results
3.3.1 Co-culture of SAG bacteria and devitalised pulpal matrix

3.3.1.1 SAG growth on devitalised pulpal matrix

Protocol 1 — Co-culture of SAG bacteria and unsterilised pulpal matrix

SAG bacteria were found to attach to the surface of devitalised pulpal matrix after 24
h incubation at 37°C, 5% CO, (Fig. 3.1). Baclight LIVE/DEAD stain was used
primarily for the staining of bacteria but also stains the remnants of the pulpal cells in
the matrix which were seen in the control tissues as oval shaped cells fluorescing red,
indicating that they were no longer vital due to the freeze-thaw cycles (Fig 3.1C).
Bacterial and mammalian cells could be distinguished on the basis of size as
mammalian fibroblasts are typically around five times larger than Streptococcus spp.
cells. At x20 magnification the bacteria appeared as green fluorescence extending
across the pulpal matrix (Fig 3.1A), with a red fluorescence from the pulpal cells
beneath showing through in areas where bacteria have not grown across the matrix.
These areas were more pronounced at higher magnifications (Fig 3.1B), where the
dead pulpal cells can be clearly seen through the bacterial lawn, indicating

intermittent areas of sparse and dense bacterial attachment and growth.

The bacterial lawns seen on the pulpal matrix using this method appeared to consist of
different bacterial types. In Fig. 3.1A the black circle indicates cocci shaped bacteria
which are typical of SAGs, whilst the white circles indicate the presence of bacilli,
which appear as groups of rod-shaped green fluorescence. This suggests that there is

contamination from other bacterial species.

Protocol‘2 — Co-culture of SAG bacteria and sterilised pulpal matrix

SAG bacteria formed a more dense bacterial lawn when grown on previously
sterilised pulpal matrix, with bacteria appearing more closely associated with each
other and the majority of the pulpal matrix being covered by bacterial growth. This
was seen as bright green fluorescence across the pulpal matrix with minimal red
fluorescence from dead pulpal cells showing through (Fig. 3.2). When the matrix was

viewed at low magnifications (x20), to observe the attachment of the bacteria across
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the whole sample, only small areas of the pulp were visible between the areas of
bacterial growth (Fig. 3.2a). In contrast, when the bacteria were incubated with pulpal
matrix which had not been sterilised there were extensive breaks between the areas of
bacterial growth (Fig. 3.1a). Even at higher magnifications (Fig 3.2B), where breaks
in the bacterial lawn were more apparent, the enhanced growth of the SAG bacteria
on sterilised pulp was evident, with red fluorescence from pulpal cells almost
completely absent. This indicates that the presence of pulpal contaminants in
untreated pulp may have an adverse effect on the growth of SAG bacteria introduced
into the system. Pulpal contaminants compete with the SAG bacteria for nutrients and
space for attachment so when they are eradicated this provides a more beneficial

growth environment for the SAG bacteria.

3.3.1.2 Identification of bacterial species isolated from pulpal matrix post-
culture.

The FAA plates inoculated with the post-culture media from protocol 1 showed
extensive growth of bacteria that appeared to be a mixture of SAG bacteria and a
number of unidentified isolates. This was seen on the plates as colonies which
matched the morphology of SAG isolates as previously described (3.2.1.2) growing
amongst other colonies of mixed morphologies distinct from those of the SAG
bacteria. All plates inoculated with post-culture media from protocol 2 showed only
pure growth of SAG bacteria. 16S rDNA sequéncing was performed to identify the
isolates (Table 3.2). This confirmed that the colonies appearing to be SAG bacteria
were formed from the strain with Which the system had been inoculated and the
sequence data matched that which had been previously recorded (2.2.2.2.3). The
contaminants that grew on the matrix were found to consist of species that would be
expected to be found as commensals on rats, e.g. Escherichia coli, Streptococcus
thoraltensis and Enterococcus faecalis, found in the environment the rats have been
caged in, e.g. Bacillus subtilis, or to have come from the dissection environment e.g.

Staphylococcus aureus.

74



Species Accession number of % homology to type
type strain strain
Escherichia coli K12 U00096 100
Streptococcus thoraltensis S69 109007 99.3
Staphylococcus sciuri DSM 20345 99.7
Bacillus subtilis 168 799104 100
Staphylococcus aureus MSSA476 | BX571857 100
Enterococcus faecalis V583 AEO16830 100
S. anginosus 39/2/14A AF104678 99.9

Table 3.2 Bacterial species isolated from unsterilised pulp following culture with

SAG bacteria.

3.3.1.3 Enumeration of bacterial cells attached to devitalised matrix

The number of bacteria recovered from the pulp increased with increased incubation
time (Fig 3.3). The bacterial numbers rose from 2.1 x 10° cfu/ml at 8 hto 1.9 x 10’
cfu/ml at 24 h, which ANOVA statistical analysis indicated was significant (P<0.05).
A significant rise in bacterial numbers recovered from the pulp suggests that in
addition to baéterial attachment to the pulp there was also bacterial reproduction

occurring, as the pulp was only initially inoculated with 10? cfu/ml.

3.3.2 Co-culture of SAG bacteria and vital tooth slices

3.3.2.1 Histology and viability staining

Following co-culture with S. anginosus 39/2/14A and S. constellatus 45386 for 4 h,
tooth slices showed few signs of tissue damage with the majority of cells still
appearing histologically normal and comparable to control sections (Fig 3.4 and 3.5).
Odontoblasts were columnar with basal nuclei and remained in densely packed layers
in contact with the dentine layer whilst pulp cells were darkly stained with round

nuclei and staining visible in the surrounding matrix. However, histological sections
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of tooth slices inoculated with S. anginosus 39/2/14A showed evidence of cocci
shaped organisms attached to the pulp in small clumps that were stained pink by the
H&E (Fig 3.5A).

After 8 h of incubation a greater number of bacteria appeared to be attached to the
pulp as the foci of bacterial attachment increased in size (Fig 3.6 and 3.7) and an
associated breakdown of the surrounding collagen matrix was apparent. This matrix
degradation was seen in the photomicrographs as clear areas between cells where
there had previously been staining and is particularly pronounced around areas of
bacterial attachment (Fig 3.6b and 3.7b). This indicates that the bacteria may be

producing enzymes which digest the matrix, enabling their growth and reproduction.

After 24 h of incubation S. constellatus 45386 showed extensive attachment to the
pulp in localised areas, with a noticeable decrease in viable pulpal cells (Fig 3.8).
However, there were still a large number of viable odontoblasts surrounding the pulp
and cell death within the pulp appeared much less extensive than that which occurred
with S. anginosus 39/2/14A (Fig 3.9). With this isolate there is much less attachment
seen but the pulpal matrix is completely disintegrated with almost no remaining viable
cells (Fig 3.9b). Cell death can also be seen to have extended into the odontoblast
layer (Fig 3.9a).

Viable cell counts were performed using Image Pro-Plus software to count the
average number of viable cells in a 50 pm? area at each time point. Counts were
performed on cells in the pulp and odontoblast layer. The results from the counts in
the pulp showed a trend of decreasing cell number with increasing incubation time
with SAG bacteria when compared to the controls (Fig. 3.10), which supports the
observations made from studying the histological sections. Also, the observation that
S. anginosus 39/2/14A appears to cause cell damage to the tooth slice more rapidly
than S. constellatus 45386 was supported by the statistical analysis of the cell counts.
These showed that after 4 h incubation with S. constellatus 45386, whilst there was a
decrease in cell number compared to the control, it was not statistically significant.
However, after 4 h incubation with S. anginosus 39/2/14A there was a significant
decrease in cell number (P=0.0057), indicating that this strain is more efficient at

rapid colonisation and infection of the dental tissues.
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Cell counts in the odontoblast layer confirmed that, as seen in the histological
examination of the tooth slices, these cells remained unaffected by the presence of
SAG bacteria for up to 24 h of incubation (Fig. 3.11). Incubation with S. constellatus
453856 showed no significant decrease in odontoblast number after the maximum
incubation time of 24 h, despite the significant decrease in pulpal cells at this time
point. Similarly, there was no significant cell death in the odontoblast layer after 8 h
incubation with S. anginosus 39/2/14A and the decrease in cell number at 24 hhas a
higher P value than that observed in the pulpal layer, indicating that there is less

significance to this decrease than that seen in the pulpal region.

ANOVA analysis showed that after 8 and 24 h of incubation both strains caused a
significant amount of cell death in the pulp (P<0.0001). Tukey-Kramer’s test was
used to compare the means of all possible pairs and indicated there were no

significant differences in cell counts between tooth slices incubated with different

bacterial species.

Viability was related to cell counts and histology by staining co-cultured tooth slices
with acridine orange and ethidium bromide, as seen in Fig. 3.12. After 4 h (Fig. 3.12a)
there was very little red staining visible, indicating that after 4 h of infection with
SAG bacteria there were minimal dead cells. There was an increased amount of red
staining seen when the tooth slices were incubated with bacteria for 8 h, relating to an
increased number of dead cells being present on the surface of the tooth slice (Fig.
3.12b). There was almost no green fluorescence visible on the surface of the tooth
after 24 h incubation with the bacteria (Fig. 3.12¢), indicating almost total cell death.
These experimental findings confirm that the viability decreases with increasing

exposure to the bacteria and reflect the results seen in histological sections.

3.3.2.2 FDA staining

FDA staining of bacteria was used to confirm that the bacteria were attaching to the

tooth slices as observed in the histological examination of the sections. Sections
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Fig. 3.1 UV microscopy of S. anginosus 39/2/14A on unsterilised
devitalised pulpal matrix. Baclight LIVE/DEAD stain results in live cells
fluorescing green and dead cells fluorescing red. A) x20 mag. White circles
indicate rod-shaped bacteria and black circles indicate groups of cocci.
Arrows point to areas of red fluorescence from pulpal cells of the matrix
where no bacterial lawn has grown. B) x40 mag. Arrows point to areas of
red staining which is caused by dead pulpal cells. These are around ten
times larger than bacterial cells C) x40 mag. of control pulp with no bacteria.



Fig. 3.2 UV microscopy of S. anginosus 39/2/14A on sterilised
devitalised pulpal matrix. Baclight LIVE/DEAD stain results in live
cells fluorescing green and dead cells fluorescing red. A) x20 mag.
Arrow indicates one small area where bacterial lawn is absent and red
fluorescence from pulpal cells can be seen. B) x40 mag. Arrow indicates

red fluorescence from pulpal cells. C) x20 mag. of control pulp with no
bacteria.
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Fig. 3.3 Bacterial numbers recovered from devitalised pulpal
matrix after 4, 8 and 24 hrs incubation with SAG bacteria in BHI.
Bacterial load is significantly increased at 24 hours, indicating bacterial
growth has occurred on the matrix. Error bars represent standard error.
ANOVA statistical analysis was used to determine significance.
**=significant, P<0.01.
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Fig. 3.4 4 hr co-culture of S. constellatus 45386 and tooth
slices. Cells appear darkly stained and tissue architecture remains
unaltered compared to control, a) Co-culture x20 mag. b) Co-culture
x40 mag. c) Control x20 mag.
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Fig. 3.5 4 hr co-culture of S. anginosus 39/2/14A and tooth
slices. After 4 hrs some bacterial attachment is evident but cells in
the infected tooth slices appear darkly stained and tissue
architecture remains unaltered compared to control, a) Co-culture
x20 mag. Arrows indicate attached bacteria in the centre of the pulp.
Mammalian cells appear healthy despite bacterial attachment, b)

Co-culture x40 mag. Arrow indicates bacterial attachment, c) Control
x20 mag.
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Fig. 3.6 8 hr co-culture of S. constellatus 45386 and tooth
slices. Bacterial attachment is visible as areas of dense staining. At
higher magnifications the breakdown of the matrix is apparent as a
clear area between cells which is stained in controls, a) Co-culture
x20 mag. Arrows indicate bacterial attachment, b) Co-culture x40
mag. Arrow indicates bacterial attachment surrounded by an area
free from staining, indicated by the circle, which suggest a
breakdown of the matrix, ¢) Control x40 mag.
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Fig. 3.7 8 hr co-culture of S. anginosus 39/2/14A and tooth
slices. Cells appear more sparse but many are still viable,
particularly in the odontoblast layer. Clear areas between fibroblasts
are present indicating matrix breakdown, a) Co-culture x20 mag.
Arrows represent bacterial attachment in the centre of the pulp, b)
Co-culture x40 mag. Arrows represent bacterial attachment. Black
circle highlights matrix breakdown in the surrounding area of the
bacteria, c) Control x40 mag.
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Fig. 3.8 24 hr co-culture of S. constellatus 45386 and tooth
slices., a) Co-culture x20 mag. Arrows indicate bacterial
attachment, b) Co-culture x40 mag. Large areas of bacterial
attachment can be seen as pink stained areas in the centre of the
pulp. Arrows point to breakdown of matrix, ¢) Control x40 mag.
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Fig. 3.9 24 hr co-culture of S. anginosis 39/2/14A and tooth
slices, a) Co-culture x20 mag. Arrows indicate bacterial attachment
surrounded by extensive cell death which is marked by black circles.
Very few cells within the pulp remain viable though a large number
of odontoblasts remain viable, b) Co-culture x40 mag. Arrows
indicate bacterial attachment. A complete breakdown of the matrix
can be seen with only very sparse staining between few remaining
cells, c¢) Control x40 mag.
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Fig. 3.10 Pulpal cell counts for tooth slices cultured in
DMEM+10% BHI with SAG bacteria. Nuclear counts were performed
to provide an average cell number in a 50pm2 area of the pulp. Counts
indicated that culture in the presence of S. constellatus 45386 there
was a significant decrease in cell number after 8 hours and that cell
number continues to significantly decrease up to 24 hours in culture.
Culture in the presence of S. anginosus 39/2/14A resulted in a
significant decrease in cell number after 4 hours incubation with

increasing cell loss at 8 and 24 hours. Error bars represent standard
error.

*=P<0.01 ** = P<0.001
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Fig. 3.11 Odontoblast counts for tooth slices cultured in DMEM+10%
BHI with SAG bacteria. Nuclear counts were performed to give an
average cell number for a 50pm2area of the odontoblast layer. There was
no significant decrease in cell number in those slices incubated with S.
constellatus 45386. A significant decrease was seen in tooth slices
incubated with S. anginosus 39/2/14A for 24 hrs. There was no significant
difference between the results seen for either SAG species.

** = P<0.01



Fig. 3.12 Staining of tooth slices with acridine orange and ethidium
bromide following incubation with SAG bacteria for 4, 8 and 24 hrs.
a) 4 hrs, x 4 mag. Predominantly green fluorescence indicates minimal
cell death, b) 8 hrs, x 4mag. Increased red fluorescence indicates an
increase in cell death, c) 24 hrs, x 4mag. Extensive cell death is indicated

by predominantly red fluorescence.
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Fig. 3.13 FDA staining of bacteria on tooth slices following
incubation for 4, 8 and 24 hrs. a) 4 hrs, x20mag. b) 8 hrs, x20mag. c)
24 hrs, x 20mag. Arrows indicate areas of bacterial attachment.



Fig. 3.14 PCR of inflammatory markers in sterile (-) and infected
(+) pulp. Bands for TNF-a (438bp) and IL-1 p (359bp) expression
are noticeably stronger in pulp extracted from tooth slices infected
with SAG bacteria compared to those which were cultured in a
sterile environment. The rat house-keeping gene p-actin (155bp)
was used as a control and expression remained the same in both
sterile and infected cultures. Water was used as a negative control

(©).



3.4 Discussion

During the initial stages of the development of the model used in this study the SAG
bacteria were exposed to devitalised pulpal tissues in BHI, the standard SAG growth
medium. This allowed observation of the bacteria interacting with the pulpal matrix
without altering the growth conditions. This was an important factor to consider as the
pulp is a unique substance with very different characteristics from the normal solid
phase media that bacteria are grown on and it was not previously known if SAG
bacteria would be able to attach to this matrix. In addition, the presence of host
defence proteins and cytokines which may be found in the pulp could also inhibit
bacterial growth. The successful growth and attachment of the bacteria on the pulp
confirmed that this tissue is a suitable growth substrate for the bacteria and that there
are no components within this to prevent infection of the viable tissue in the tooth

slice model.

Bacteria were initially grown directly on pulp that had been devitalised by freeze-
thaw cycles but had no other pre-treatment prior to inoculation. When samples of the
post-culture media were plated out on FAA plates it was found to be infected by a
number of organisms which were not part of the SAG bacteria. These were identified
using 16S rRNA sequencing and were found to be commensals from the rat or the
dissection environment. Escherichia coli, Streptococcus thoraltensis and
Enterococcus faecalis are all commonly found in the normal flora of the gut of
mammals (Facklam 2002; Madigan 2005) and are likely to have been present on the
skin of the animal from contamination from faeces in the cage. Similarly, Bacillus
subtilis is commonly found in soil or hay (Madigan 2005) and is likely to have come
from the rats bedding. Staphylococcus sciuri is a commensal organism which can be
isolated from a variety of animals, particularly rats (Hauschild et al. 2010), whilst
Staphyloéoccus aureus is frequently isolated from humans (Madigan 2005) and as

such was likely to be present in the dissection environment.

The effect that pulpal contaminants were having on the growth of SAG bacteria was
unknown and it is possible for the presence of other bacteria to enhance or decrease
growth of SAG bacteria. In some cases of co-infection, particularly in abscesses, a

synergistic relationship between certain species has been observed (Kuriyama et al.
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2000; Nagashima et al. 1999). Other studies have shown that the growth of one
species may impair the growth of those bacteria also in the environment due to the
production of antimicrobials or by causing a change in pH (Hibbing et al. 2010;
Horiuchi et al. 2009). It was therefore important to eliminate infection of the model by
these contaminants to assess the ability of the SAG to attach and grow on the pulp
without interference from other species. This was achieved by the addition of a
disinfection step to the protocol prior to inoculation with SAG. Alcohol washes and
UV irradiation eradicated the contaminants and appeared to provide a more
favourable environment for the growth of the SAG bacteria, as their growth on the
pre-treated pulp appeared denser and to spread across the entire surface with less
breaks between areas of aggregated bacteria. In the contaminated sample the bacteria
showed less dense growth, which is likely to be caused by competition between the
different species for nutrients and resources, in addition to the previously outlined
techniques that bacteria employ to compete with other species. With the
contaminating bacteria eliminated from the pulp, SAG bacteria were able to grow
across the entire surface, forming a bacterial lawn. As the bacteria are in close
association with each other they may be able to begin the formation of a biofilm. This
is an organised community of bacterial cells which are embedded in a matrix which
has been secreted by the bacteria (Hall-Stoodley and Stoodley 2009). Biofilms have
been shown to provide protection to the bacteria against environmental factors such as
heat and irradiation and increase their chances of survival against antimicrobials (Cos
et al. 2010). This would be of particular importance when considering the uses of this
model, as bacterial senstitivity is often tested in vitro in suspension where they are
much more susceptible to antimicrobials (Aslam 2008) so the use of a model which
allows biofilm formation and antimicrobial testing would be particularly
advantageous. Therefore, in addition to identifying the ability of SAG bacteria to
attach to the pulpal tissue, these experiments also emphasise the importance of the
system to be free from any environmental contaminants as they may effect the growth

of the bacteria being studied.

Further imaging and investigation of the infected pulp would be required to confirm
bacterial numbers and if there is biofilm formation, as exact quantitative measurement
of bacterial numbers using the LIVE/DEAD stain is not possible. In this study

bacterial numbers have been estimated by macerating the infected pulp, washing in
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PBS and plating out the resultant bacterial suspension. However, if a biofilm does
begin to form this may not give an entirely accurate representation of bacterial
numbers, as this may not be sufficient to remove all bacteria from the tissue. Also,
although this was effective in estimating total bacterial numbers, it would not be
sufficient for accurately recording numbers of different species. An alternative to this
may be to use scanning electron microscopy, although this also has limitations as the
processing required to view the tissues often causes the bacteria to detach completely
from the matrix, giving an inaccurate measurement of numbers when the tissue is

examined.

Following culture with the devitalised matrix, SAG bacteria were co-cultured with the
mammalian tooth slices under the modified culture conditions that had been
previously defined (3.2.2). Areas of pink staining by H&E were confirmed as bacteria
attaching to the pulp using FDA fluorescence staining. Bacteria appeared to attach to
the pulp in focal points which increased in size with increasing incubation time,
indicating that bacteria in the media may be attaching to those bacteria already fixed
onto the pﬁlpal matrix. Progressive attachment of bacteria to the enamel during the
formation of plaque and caries has been extensively reported (Love and Jenkinson
2002), with streptococci being identified as the primary colonisers of the oral cavity
whose attachment to the salivary pellicle on the enamel is essential to the colonisation
of the tooth. The streptococci have been shown to express multiple adhesins that
allow them to attach to these salivary components, as well as enabling them to attach
to other microbial cells and host cells (Hasty et al. 1992). Of particular interest is the
antigen I/II adhesin, the production of which has been shown to be up-regulated by a
collagen type I signal characteristically produced by the collagen fibrils found in
dentinal tubules (Heddle et al. 2003). However, there is little research on the
attachment of bacteria to pulpal tissues. The data from this study suggests that the
chain-forming ability of streptococcal species may be important in pulpal invasion, as
in caries formation, and that the attachment of streptococcal species which has been
seen to occur in the dentinal tubules may also happen in the pulp. This also supports
suggestions that SAG are involved in the primary colonisation of the pulp (Aderhold
et al. 1981), and that they may enable further invasion by other bacterial species by
providing an anchor for attachment of other species which can not directly adhere to

the pulpal matrix but are able to attach to the adhesins on the surface of the SAG
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bacteria, similar to the processes involved in plaque formation (Love and Jenkinson
2002). In addition to this, the action of SAG bacteria changes the gaseous
environment and available nutrients as they advance further into the pulpal tissues,
providing a environment more favourable to anaerobic species than that found at the
site of initial infection (Fisher and Russell 1993). For example, at the dentine surface
during initial pulpal exposure the cavity is still in contact with the oral cavity and so
bacteria such as SAG, which are able to metabolise carbohydrates, are at an
advantage. However, as the cavity advances further into the tooth direct contact with
the oral cavity is lost, which affects the availability of nutrients and the gaseous
environment. In such inflamed environments asaccharolytic bacteria may thrive as
they are able to utilise the amino acids and peptides released from tissues decomposed
during inflammation (Djais et al. 2006). Without the primary colonisers of the pulp
such as SAG, which change the nutrient availability and gaseous conditions of the
infection environment, these anaerobic bacteria with different growth requirements
would be unable to infect the root canal. Therefore, by eliminating early infection this

may help prevent inflammation progressing and causing extensive pulpal damage.

The formation of the bacterial clumps seen in the histological examination of the SAG
infected tooth slices appeared to be associated with a breakdown of the

collagen matrix, which can be seen as an absence of staining between fibroblasts. It is
particularly pronounced around areas of bacterial attachment, indicating that the
attached bacteria are having a direct localised effect on the surrounding tissues. It is
possible that the bacteria are secreting enzymes which breakdown the matrix, such as
hyaluronidase and chondroitin sulphatase. These enzymes are known to be produced
by SAG bacteria (Jacobs and Stobberingh 1995; Whiley et al. 1990) and dental pulp is
rich in their substrates (Bartold et al. 1995), suggesting that their breakdown, along

with that of collagen, is important in the advancement of pulpal infection.

Hyaluronidase has been thought to be of particular importance in the invasion of SAG
bacteria into connective tissues (Unsworth 1989), though many researchers argue that
this enzyme is not widely produced in all SAG strains, particularly S. anginosus
strains (Whiley et al. 1990). Also, it has been suggested that the production of
hyaluronidase in SAG bacteria is not as important to the infection process as the

production of chondroitin sulphatase (Jacobs and Stobberingh 1995). Chondroitin
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sulphatase has been shown to play an important role in facilitating bacterial spread
throughout a tissue and also liberating nutrients from the surrounding area (Shain et
al. 1996). Further investigation of the SAG infection process using this model should
consider in more detail the bacterial production of such hydrolytic enzymes and the

role they play in pulpal infection and necrosis.

In addition to the tissue damage caused by SAG infection, there was also a direct
effect on viable cell numbers within the pulp and odontoblast layer. Cell numbers
were assessed using Image Pro Plus software which has been previously described
(Section 2.2.7). Cells within the pulp and odontoblast layer were counted in a 50 pm’
area after 4, 8 and 24 h of infection with SAG bacteria. ANOVA and Tukey-Kramer’s
statistical testing showed that there was a significant decrease in viable cell numbers
after 8 and 24 h of infection with both S. anginosus 39/2/14A and S. constellatus
45386 (P<0.0001). This confirms that incubation of the tooth slices with these strains
for 8 h or more results in a significant amount of cell death which is caused by the
presence of the bacteria and that no other changes to the culture conditions are
resulting in this cell death. Odontoblast counts did not show the same pattern of cell
death, with cells resisting significant levels of necrosis for up to 24 h incubation with
S. constellatus 45386. Incubation with S. anginosus 39/2/14A did not result in a
significant decrease in odontoblast number until 24 h incubation (P<0.01). In all tooth
slices incubated with SAG bacteria, attachment of the bacteria appeared to be
focussed in the central areas of the pulp and was absent from the odontoblast layer.
This resistance to cell necrosis in the odontoblast layer indicates that when SAG
bacteria are incubated with tooth slices in this model, the bacteria preferentially attach
to and destroy cells of the pulp. The preferential attachment to the pulp may be due to
the large amounts of collagen found in the matrix surrounding the pulpal fibroblasts,
as streptococcal species express adhesins to allow attachment to collagen (Heddle et
al. 2003). Also, the densely packed nature of the odontoblast layer may prevent the
bacteria from accessing appropriate points of attachment and may limit the space for
bacterial growth. In the pulp there are large areas between fibroblasts which consist
mostly of matrix compohents, and these areas may provide a more favourable
environment for attachment and growth of SAG bacteria. These attachment patterns
are likely to play a role in fhe pattern of cell necrosis that is seen in the tooth slices, as

the increased cell death is seen in the regions surrounding the areas of bacterial
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attachment, whilst less cell necrosis is seen in areas without bacterial attachment, such
as the odontoblast layer. This suggests that the bacteria may be having a mechanical
effect on the matrix and surrounding cells, with their growth causing a physical
disruption to the adjacent mammalian cells. However it is also possible that this
localised cell death is caused by the enzymes and toxins which are being secreted by
the attached bacteria as they diffuse into the surrounding tissues. This would account
for the increased necrosis in the pulp and the limited effect on the odontoblast layer,
as it would require longer for the bacterial products to reach the odontoblast layer and
may be limited to later incubation times when the bacterial number has increased to a

sufficient level to produce enough supernatant to diffuse out into the odontoblasts.

Although some bacterial attachment and matrix breakdown was observed in H&E
staining after 4 h of infection with S. anginosus 39/2/14A, there was no significant
loss in cell numbers. Similarly, infection of the tooth slices with S. constellatus 45386
did not result in significant cell death after 4 h and H&E staining for this isolate did
not reveal any bacterial attachment. This suggests that it may take at least 8 h for the
bacteria to establish an infection of the pulp that leads to production of sufficient
levels of enzymes to cause significant cell damage. This suggests that early
intervention in pulpal infection may help to arrest the infection and further study on
how this may impact on treatment regimes should be considered. This data also
confirms previous observations that there are differences in the growth and infection
rates between the different isolates. Growth curves showed that S. anginosus
39/2/14A had a higher total bacterial yield than S. constellatus 45386 and its growth
rate was higher, particularly in early stages of incubation (2.3.3). This may account
for its enhanced ability to attach and cause damage to the tooth slices at an earlier

time point.

After 24 h of incubation with S. anginosus 39/2/14A there was extensive cell death in
both the pulp and the odontoblast layer, whilst cell death in the tissues incubated with
S. constellatus 45386 did not chang significantly from that which occurred after 8 h of
incubation. Cell death also seemed to be confined mainly to the pulpal area rather
than the odontoblast layer, suggesting that this particular strain of S. constellatus may
be less adept at penetrating the mammalian tissues, as the production of hydrolytic

enzymes that promote tissue invasion has been found to be variable between strains
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(Grinwis et al. 2010; Jacobs and Stobberingh 1995). The more extensive cell death
seen in those tooth slices incubated with S. anginosus 392/14A may also be due in
part to the ability of S. anginosus to reach a higher bacterial yield than S. constellatus
over the same time period when grown in the modified medium at 37°C and 5% CO,,
Such extensive cell death as seen with S. anginosus would have a severe impact on
the ability of the pulp to repair itself. However as it does not seem to reach
irreversible levels until at least 8 h of infection, early treatment may prevent pulpal
necrosis and allow the tooth to be saved. In addition to this, the cells within the tooth
and the host immune response may produce cytokines which may help to protect the
cells of the tooth.

The production of cytokines as part of the immune response within the tooth slice is
limited due to the lack of blood supply. However there is an increased expression of
TNF-a and IL-1P in infected tooth slices, which indicates that the model responds to
the introduction of SAG bacteria into the system. These cytokines have been found to
be expressed early on in the response to infection (Silva et al. 2007; Stashenko et al.
1998), as seen in this study, and so this ex-vivo model accurately represents events
that occur in vivo. This is important when considering a model for use for testing
antimicrobials and other anti-inflammatory treatments. These cytokines are often
produced in vivo by cells such as macrophages and T-lymphocytes but, due to the lack
of circulatory system in this model, they are most likely to be produced by the
fibroblasts themselves, in addition to any immune cells residing within the pulp, as
has also previously been reported in other studies (Silva et al. 2005). This non-
specific immune response seen in the model is representative of the early in vivo
situation, where non-specific inflammation occurs prior to a specific response led by
immune cells in the blood stream which enter the pulp through the blood vessels
which extend through the tissue (Hahn and Liewehr 2007a, b).

Although IL-6 expression was not detected in sterile or infected tooth slices this may
be detectable if the infection period was extended, as TNF-a and IL-1f are thought to
be able to induce its expression (Silva et al. 2007), so it may become detectable later

in the cytokine cascade.
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The ability to quantify the damage caused to cells in the tooth slice as a result of
incubation with SAG bacteria enabled this model to be used to study pulpal infection
in a controlled system which reduced the use of animal materials. Histological
examination of tooth slices has shown that whilst cell necrosis and tissue breakdown
was associated with bacterial attachment, there appeared to be production of enzymes
or toxins which were able to spread throughout the tissue and cause cell death at sites
distant from the bacteria. The role of these bacterial products is investigated in
Chapter 4. In addition to evaluating the effects of bacterial infection on the
mammalian tissues this model has also been used to study the host responses which
may occur during a pulpal infection. A model such as this, which will allow
elucidation of these inflammatory processes, is essential for further research into

possible antimicrobials for use in endodontic treatments.
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Chapter 4: Characterisation of SAG bacterial supernatants
and their introduction into the tooth slice culture system

4.1 Introduction

Bacterial attachment to the pulpal tissues of teeth has been shown in the previous
chapter to cause significant and quantifiable damage to the tissues. The development
of this model provides a template for investigation into endodontic infection of pulpal
tissues using novel methods which allow examination of the direct interaction of
bacteria with dental tissues cultured in an organotypic system. However, in the early
stage of infection, when caries has not advanced through the dentine, pulpal damage
may still occur due to the bacterial production of enzymes and toxins which can
diffuse from the dentinal tubules into the pulpal cavity and illicit an immune response
(Bergenholtz 1981; Love and Jenkinson 2002). These products include enzymes that
are capable of degrading the matrix, such as hyaluronidase and chondrotin sulphatase,
toxins and components of the bacterial cell wall such as LPS, lipotechoic acid,
flagella, peptidoglycans and lipopeptides, as well as the nuclear material of bacteria

lysed by the host immune system (Akira et al. 2006).

Invasion of the dentinal tubules is important to pulpal inflammation as, in addition to
the diffusion of bacterial products into the pulp, it also causes a reduction in outward
flow of fluid from the tubules, causing an increase in pressure in the pulpal chamber.
This increase in pressure may contribute to pulpal necrosis which hinders the natural
reparative ability of the tooth (Heyeraas and Berggreen 1999). The generation of a

model system which is representative of this clinical situation may provide a method

of testing anti-inflammatory capping agents that could be used in future treatments.

In the clinical situation, the bacterial products diffuse through the dentinal fluid that
surrounds the odontoblast process in the dentinal tubules. When bacteria are cultured
in vitro these products are excreted into the culture medium. The bacterial products

can then be collected and applied to tissues to assess their enzymatic and toxic effects.

Previously, the cause of pulpal inflammation prior to pulpal colonisation has been

attributed to caries bacteria and their products diffusing through the dentine into the
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pulp (Hahn and Liewehr 2007a, b). Recently, there has been an increased interest in
the role of different bacterial species, such as SAG bacteria and other anaerobes,
which reside in the dentinal tubules and later advance into the pulpal cavity and
colonise the pulpal tissues. Studies on the effect of supernatants from black pigmented
Bacteroides have revealed that such bacteria are capable of producing cytokines and
enzymes which result in pulpal necrosis and matrix degradation (Chang et al. 2002;
Yang et al. 2003c). The effects of supernatants from SAG bacteria on pulpal
fibroblasts have not been previously studied, and the experiments with other
endodontic bacteria have been carried out using pulpal fibroblasts which are cultured
in an in vitro environment and are separated from the odontoblasts (Killough et al. .
2010, Dabija-Wolter et al. 2009). As such the model which has been developed in this
study would be beneficial for investigating the effect of SAG bacteria supernatants on
the pulpal matrix, fibroblasts and odontoblasts when cultured iz situ in an 6rganotypic

model.

Characterisation of the SAG bacteria supernatants is needed to give an indication of
what components are present and which of these are having an effect on the
mammalian tissues. The characterisation of the supernatants produced by the different
SAG species will also highlight differences in protein expression that exist between
the species. It has previously been established that certain strains of SAG are more
likely to be associated with infection than others, due to their increased pathogenicity

and expression of virulence factors (Jacobs and Stobberingh 1995; Unsworth 1989).

The colonisation of the dentinal tubules and diffusion of the bacterial products into
the pulpal chamber is an important phase in the development of a pulpal infection. It
is important to understand these events as they can lead to the formation of tertiary
dentine and the stimulation of repair mechanisms within the tooth. It would be
advantageous to be able to use the model to represent the events that occur during this
time. To do this the diffusible products produced by the bacteria must be collected
and applied to the tooth slice in a controlled system at a known concentration. A
bicinchoninic acid (BCA) assay was used to calculate the total protein concentration
in bacterial supernatants. Sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) was used to determine differences in supernatants between the species.
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These supernatants were then applied to the established model and histological

examination was used to identify their effect on the pulpal tissue.
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4.2 Methods

4.2.1 Supernatant collection

S. constellatus 45386 and S. anginosus 39/2/14A were inoculated into BHI and
incubated overnight at 37°C, 5% CO,, Resultant ONCs containing bacteria in
stationary phase were centrifuged at 4000 rpm for 10 min to pellet the bacterial cells
which were then discarded. The remaining supernatant was filtered through a 0.2 uM
Millipore filter and stored at -20°C in 1ml aliquots until required. A control

supernatant was prepared by treating sterile BHI with the same process.

4.2.2 Supernatant analysis

4.2.2.1 SDS-PAGE

Pre-cast NuPAGE Bis-Tris mini gels (Invitrogen, Paisley, UK) with a 4-12% gradient
were used to analyse the protein composition of the bacterial supernatants, in order to
identify differences in protein expression between the strains. SDS-PAGE was
performed according to manufacturer’s instructions. 2.5 ul of NuPage LDS sample
buffer and 1.5 pl of reducing agent was added to10 ul of each supernatant. Samples
were then heated at 70°C for 10 min in a heating block. The Bis-Tris mini gel was
loaded into the XCell SureLock mini-cell (Invitrogen) and the anode and cathode
chambers filled with running buffer consisting of 50 ml 20x NuPage MES SDS
running buffer made up to 1 L with deionised water. 200 ml of running buffer was
added to the inner chamber and 500 pl of NuPage antioxidant was added. The
remaining running buffer was used to fill the outer chamber of the cell. 10 pul samples
were then loaded into the gel and run at 200 volts for 35 min. Supernatants were run

on the gels, either undiluted or diluted 1:10. Each run was performed in triplicate.

4.2.2.2 BCA Assay

A BCA protein assay kit (Pierce, Northumberland, UK) was used to determine the
total protein concentration in the bacterial supernatants and the BHI broth control.
The BCA assay works by adding the BCA reagent which contains bicinchoninic acid

and cupric sulphate to the protein solution. The peptide bonds in the protein reduce
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the copper ions in the cupric sulphate which are then chelated by the bicinchdninic
acid which causes the formation of a purple product which can be measured by
absorbance. As the amount of copper ions reduced is proportional to the amount of
the protein in the sample, the colour change and associated change in absorbance is

relative to the protein concentration.

For each assay, a standard curve was generated by adding 25 pl of known BSA
standards in a range of concentrations from 20 pg/ml to 2,000 pg/ml to wells of a 96
well plate. On the same plate, 25 pl of bacterial supernatant and sterile BHI was also
placed into triplicate wells. 200 pl of BCA reagent was then added to each of the
standards and samples. This BCA reagent was prepared combining a sodium
bicinchoninate solution with a cupric sulphate solution in a 50:1 ratio. Absorbance at
570nm was read using on a Microplate™ reader (BioTek Instruments Limited,
Bedfordshire, UK). A standard curve was plotted by using the absorbance values from
the BSA standards and a best-fit line was generated. The equation of the best-fit line

allowed the concentrations of the bacterial supernatants to be calculated.

4.2.3 Culture of tooth slices in the presence of bacterial supernatants

Two protocols were devised to examine the effects of the bacterial supernatants on the
cultured tooth slices. The initial method described in protocol 1 below appeared to

inhibit bacterial growth and it was therefore necessary to alter this method.

Protocol 1

Upper and lower incisors from 28 day old Male Wistar rats were dissected and sliced
into 2mm transverse sections as previously described (2.2.5). Tooth slices were then
cultured for 5 days in DMEM which contained no BHI. Tooth slices were then
transferred to sterile DMEM+10% BHI within a section of dialysis tubing. The
enclosed tooth slices were then transferred to a well containing DMEM+10% BHI
inoculated with SAG bacteria and cultured for 4, 8 and 24 h. The dialysis tubing was
then removed from the well, washed in PBS and cut open to remove the tooth slice.

Tooth slices were then fixed in formalin for histological processing (2.2.6). If visible
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turbidity was not observed in the inoculated medium a sample was plated onto

fastidious anaerobe agar and incubated overnight to confirm bacterial growth.

Protocol 2

Upper and lower incisors from 28 day old Male Wistar rats were dissected and sliced
into 2mm transverse sections as previously described (2.2.5). Tooth slices were then
cultured in DMEM which contained no BHI for 5 days. Following this a culture
medium was prepared which consisted of supplemented DMEM+10% BHI and
0.6ug/ml of bacterial supernatant or BHI supernatant control. This medium was then
applied to the tooth slices which were cultured in its presence for 4, 8 and 24 h before
being fixed for histological examination (2.2.6). Cell counts were performed on 5
tooth slices which were representative of each experimental group. 5 sections were
taken from each tooth with 5 counts performed within 5 random fields of view for

each section.

4.2.4 Statistical analysis

Statistical analysis was performed on'cell counts from histological staining of tooth
slices using Graph Pad statistical software. Cell counts were performed as previously
described (2.2.7). One-way analysis of variance (ANOVA) was performed to
determine the relative significance of the difference between experimental cell counts
and the controls. Tukey-Kramer’s test was used in conjunction with ANOVA to
compare the significant difference between all possible pairs of means. This allowed
comparison of the mean cell counts between tooth slices exposed to supernatants from

different bacterial species, in addition to comparison with the control.
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4.3 Results
4.3.1 Supernatant analysis

4.3.1.1 SDS-PAGE

The proteins in the supernatants produced by S. constellatus 45386 and S. anginosus
39/2/14A were separated using SDS-PAGE and stained using silver staining to allow
a comparison of the protein content of the supernatants between the two species (Fig
4.1). To obtain adequate staining on the gels, supernatants were run undiluted.
Preliminary runs used supernatants diluted 1:10 in PBS which did not give sufficient
staining, bands became faint and it was difficult to distinguish between different
bands. Undiluted supernatant samples were then run in triplicate to allow comparison
of the different samples and ensure similar banding was seen in all replicates. It was
found that the supernatant produced by S. constellatus 45386 had a far greater number
of distinct proteins than that produced by S. anginosus 39/2/14A and that it appeared
as easily distinguishable bands without smearing. A band was visible at
approximately 130kDa in the supernatant produced by S. anginosus 39/2/14A which
shows streaking. There were also visible bands at around 100 and 200kDa in the
supernatants of both bacteria. Whilst these were visible in both protein profiles they
appeared more densely stained in the profile produced by S. constellatus 45386. In
addition, this supernatant also produced a distinct and densely stained band at
approximately 45kDa, which was absent from the supernatant of S. anginosus
39/2/14A.

4.3.1.2 BCA assay

A standard curve was plotted (Fig. 4.2) that generated an equation that relates
absorbance (y) to protein concentration (x). From this, the protein concentration of
bacterial supernatants was calculated. The total protein concentration in the
supematants was approximately 6pg/ml for each of the different SAG strains. This
was repeated in triplicate, with average concentrations and standard deviation
displayed in Table 4.1,

93



Supernatant sample Protein concentration (pg/ml)

S. anginosus 39/2/14A 5.66 (S.D=0.36)

S. constellatus 45386 5.98 (S.D = 0.43)

Table 4.1 Protein concentration in supernatant samples from overnight culture

at 37°C, 5% CO, in BHI. S.D = standard deviation.

4.3.2 Culture of tooth slices in the presence of bacterial supernatants

Protocol 1

The turbidity of the inoculated media in which the dialysis tubing containing the
sterile tooth slice was incubated remained unchanged after 24 h of incubation,
suggesting that bacterial gfowth was inhibited, as a noticeable change in turbidity is
normally seen when SAG strains are incubated in DMEM+10% BHI for 24 h. A
sample of the inoculated media was plated onto fastidious anaerobe agar and
incubated overnight at 37°C in an anaerobic cabinet. No bacterial growth was evident
on the plate, confirming that the bacteria which had been inoculated into the media
had died and there had been no growth in the media. Subsequently, there was no
supernatant formation and the tooth slice inside the dialysis tubing was unaffected.
This protocol was then abandoned in favour of applying collected supernatants
directly to the tooth slice by adding them to the culture media, eliminating the need

for concurrent bacterial growth.

Protocol 2

After 4 h incubation in the presence of supernatants collected from S. anginosus
39/2/14A and S. constellatus 45386 tooth slices appeared similar to the control slices
when viewed at lower magnifications, indicating the cells were healthy and viable
throughout the sections (Fig 4.3A and 4.4A). However, when viewed at higher
magnifications, some degree of tissue breakdown was observed (Fig 4.3B and 4.4B).
This suggested that at this time point there was only a minimal effect on the cells and
that the majority of dafnage is to the surrounding connective tissue. The control
sections which were incubated with a sterile sample of the bacterial growth media
which was filtered in the same manner as the collected supernatants had no effect on

the tooth slices, with them appearing healthy and with extensive staining of the
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connective tissues between cells at both low and high maghiﬁcations (Fig 4.3 C and
4.4 C). This confirmed that the effects seen in the sections incubated with the

supernatants were due to bacterial products and not components of the media.

Sections which were incubated for 8 h with the bacterial supernatants appeared to
have a notable decrease in cells in the pulpal area (Fig 4.5A and 4.6 A). Histological
examination indicated that there was a decrease in the structural integrity of the
tissues as there was less staining seen surrounding the cells (Fig 4.5 B and 4.6 B).
This may indicate matrix breakdown by bacterial enzymes secreted into the
supernatant. However, the majority of damage appears to be confined to the pulpal
area with the cell-rich zone clearly distinguishable and the odontoblast layer
remaining relatively unaffected, with densely packed cells that appear darkly stained

and healthy.

Incubation of the tooth slices with bacterial supernatants for 24 h resulted in an
increase in cell death and further effects on the structural integrity of the matrix
throughout the pulp, with effects seen to extend into the odontoblast layer. In these
sections the cell-rich zone became indistinguishable in some areas (Fig. 4.7b and
4.8a) and widespread matrix breakdown was observed. The most notable difference
between the tooth slices incubated for 24 h and those incubated for shorter time
periods was the effect on the odontoblast layer. At longer incubation times the
odontoblasts appeared to be less densely packed with fewer stained nuclei visible
(Fig. 4.7b and 4.8b).

The observed changes in cell number which were seen in the histological sections
were confirmed using average cell counts over a 50 pm? area for each time point.
These counts demonstrated that for both S. constellatus 45386 and S. anginosus
369/2/14A there was a significant decrease in pulpal cell number after 4 h of
incubation with the supernatants and that this decrease continued with increasing
incubation time (Fig. 4.9). The counts also confirmed that the odontoblasts remained
relatively unaffected by fhe supernatants until 24 h of incubation, when a significant
decrease was seen to occur (Fig. 4.10). Prior to this, the average cell count for a 50
pm? area was approximately 25, which was not significantly different from the control

counts.
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The significance of the cell count results was tested using ANOVA and Tukey
Kramer’s test which also indicated that in addition to a significant decrease in cell
number compared to the control, there was also a significant difference in cell number

over the same area for the different incubation times.
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Fig. 4.1 SDS-PAGE analysis of supernatants collected from
overnight growth of S. constellatus 45386 and S. anginosus
39/2/14A in BHI. Protein bands are seen in both supernatants at
200 and 100kDa. The densely stained area at 130kDa in the
supernatant from S. anginosus 45386 may represent unseparated
proteins. A number of proteins appear in the supernatant from S.

constellatus 45386 which are not seen in S. anginosus 39/2/14A.
BHI control shows no protein bands.
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Fig. 4.2 Standard curve generated from BCA assay relating protein concentration to absorbance. The equation of
the line y=0.0003x + 0.3685 allowed calculation of protein concentration in the supernatants of a known absorbance.
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Fig. 4.3 4 hr incubation of sterile tooth slices with supernatant
from S. constellatus 45386 at 0.6pg/ml. A) With supernatant x20
mag. Tissue architecture is unaffected by the presence of the
supernatants and dark staining of nuclei throughout the section
indicates healthy cells. B) With supernatant x40 mag. Some areas
of tissue breakdown can be seen (marked by black circles) at higher
magnifications, indicating that supernatants are beginning to effect

the mammalian tissues. C) Control x40 mag.
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Fig. 4.4 4 hr incubation of sterile tooth slices with supernatant
from S. anginosus 39/2/14A at 0.6pg/ml. A) With supernatant x20
mag. Areas where cells are absent can be seen (indicated by circle).
B) With supernatant x40 mag. Some areas of tissue breakdown can
be seen (marked by black circle) at higher magnifications, indicating
that supernatants have begun to degrade the mammalian tissues.
C) Control x40 mag. Staining of the matrix between cells confirmed
tissue breakdown seen in test slices is an effect of supernatants and
not a processing artefact.



Fig. 4.5 8 hr incubation of sterile tooth slices with supernatant
from S. constellatus 45386 at 0.6pg/ml. A) Co-culture x20 mag.
Cell numbers appear to be decreasing with large areas with no cells
present being apparent (marked by circle) B) Co-culture x40 mag.
Tissue breakdown around the cells is apparent and can be seen as
a lack of dense staining in the surrounding area (indicated by circle).
Majority of damage appeared to be confined to the pulpal area, cell-
rich zone and odontoblasts appear relatively unaffected (Arrow). C)
Control x40 mag.
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Fig. 4.6 8 hr incubation of sterile tooth slices with supernatant
from S. anginosus 39/2/14A at 0.6 pg/ml. A) With supernatant x20
mag. Acellular areas can be seen throughout the pulp (indicated by
circles). B) With supernatant x40 mag. Acelllular areas are more
apparent (indicated by arrow) and breakdown of tissues surrounding
the cells can be seen as a lack of matrix staining (indicated by
circle). C) Control x40 mag.
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Fig. 4.7 24 hr incubation of sterile tooth slices with supernatant
from S. constellatus 45386 at 0.6mg/ml. A) Co-culture x20 mag.
Large areas of tissue breakdown and an absence of viable cells
(indicated by circle). Odontoblast layer appears less densely
packed. B) Co-culture x40 mag. Cell rich zone appears markedly
depleted of cells (indicated by arrow). Cell death in the pulpal region
is seen as areas without staining (indicated by circles). C) Control
x40 mag.
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Fig. 4.8 24 hr incubation of sterile tooth slices with supernatant
from S. anginosus 39/2/14A at 0.6mg/ml. A) Co-culture x20 mag.
Cell numbers appear reduced, particularly in the cell-rich zone which
has become indistinguishable from the odontoblasts in some areas
(indicated by arrow). B) Co-culture x40 mag. Large areas of tissue
breakdown and absence of viable cells are visible (indicated by
circles). Odontoblast layer appears less densely packed with
increasing gaps between cells (indicated by arrow). C) Control x40
mag.
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Fig. 4.9 Pulpal cell counts for tooth slices cultured in DMEM+10%
BHI with an addition of approximately 0.6 pg/ml supernatant
protein. Nuclear counts were performed to provide an average cell
number in a 50|im2area of the pulp. Counts indicated that culture in the
presence of supernatants from S. anginosus 39/2/14A and S.
constellatus 45386 causes a significant decrease in cell number after 4
hours and that cell number continues to significantly decrease up to 24
hours in culture. Error bars represent standard error.

*** = 5<0.001
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Fig. 4.10 Odontoblast counts for tooth slices cultured in DMEM+10%
BHI with an addition of approximately 0.6 pg/ml supernatant protein.
Nuclear counts were performed to give an average cell number for a
50pm2 area of the odontoblast layer. There was no significant difference
between the results seen for either SAG species. Cell counts at4 and 8
hours were similar and showed no significant difference from the control
counts. After 24 hours incubation there was a significant decrease in
odontoblast number.

*xk <0 001



4.4 Discussion

The introduction of supernatants into the tooth slice culture system resulted in a
significant decrease in cell number within the pulpal tissues of the tooth. Similar
results were observed for both S. constellatus 45386 and S. anginosus 39/2/14A,
suggesting that the proteins which are present in both supernatants play a major role

in the matrix breakdown and cell death seen in tooth slices.

Analysis of the supernatants produced by the different SAG species was important to
establish any differences or similarities between the supernatants. SDS-PAGE was
used to separate proteins in the supernatants according to their molecular weight.
Silver staining was then used to visualise the proteins. SDS-PAGE of the BHI control
showed no bands, indicating that the control was free of protein. A comparison of the
protein profiles produced by supernatants from S. anginosus 39/2/14A, S. constellatus
45386 and the BHI control revealed that there were a far larger number of distinct
proteins in the supernatant of S. constellatus 45386. Using the protein molecular
weight ladder as a reference, the approximate molecular weight of these proteins was
calculated, as the ladder consists of protein extracts of known weight which separate
on the gel according to their weight. Comparing the position on the gel of the bands
from the supernatants with those in the DNA ladder, their weight could be estimated.
There were 2 distinct bands that were apparent in both supernatants and these proteins
were of molecular weights of approximately 200 and 100kDa. Previous studies have
identified a variety of proteins in the supernatants of SAG bacteria, including
neuraminidase, a-galactosidase and N-acetyl-B-D-glucosaminidase (Willcox et al.
1995). The enzymatic activities of these proteins may have a role in infection as they
are able degrade host tissues and facilitate the spread of bacteria. They have also been
found to assist in the adhesion of other bacteria to the infected tissue by modifying

surrounding host proteins (Beighton and Whiley 1990).

Previous studies have identified an enzymatically active form of hyaluronidase that
has a molecular weight of 107kDa and is expressed by streptococcal species (Berry et
al. 1994). This suggests that the densely stained band seen in S. constellatus 45386
supernatant at approximately 100kDa may be produced by a hyaluronidase enzyme.

The band at the same molecular weight in the supernatant produced by S. anginosus
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39/2/14A is fainter and may indicate that there is less of this protein being produced
or that this is a different protein of a similar weight, as strains of S. constellatus have
been shown to have an increased incidence of expression of hyaluronidase (Homer et

al. 1993; Takao 2003) compared to other SAG species.

The band seen at 200kDa is in the molecular weight range of a number of bacterially
produced proteases which degrade host proteins including albumin, collagen and
salivary proteins (Juarez and Stinson 1999). Although further analysis is required to
confirm the identity of this protein, the tissue degradation seen in histological
examination of tooth slices cultured with the SAG supernatants could be explained by
the presence of proteases, in particular a collagenase as there are large amounts of

collagen in the pulpal matrix (Linde 1985).

A band can be seen in the protein profile produced from the S. constellatus 45386
supernatant at approximately 45kDa that is absent in the supernatant from S.
anginosus 39/2/14A. This band may indicate the expression of chondroitin sulfatase
as this enzyme has been shown to have a molecular weight of around 45kDa (Yoshida
et al. 2002) and has also been shown to be produced by S. constellatus species. In
contrast, a number of S. anginosus isolates which have been tested have been found
not to express chondoritin sulfatase (Homer et al. 1993; Jacobs and Stobberingh
1995).

The densely stained band at approximately 130kDa that is present in the supernatant
of S. anginosus 39/2/14A does not appear to have a corresponding band in the
supernatant of S. contellatus 45386. Although it was not possible to ascertain a
potential identity of this protein from the literature it is unlikely to be a result of
unseparated proteins as replicates of the experiment showed similar results, with a

larger number of bands in the supernatant of S. constellatus 45386.

The difference in protein profiles of the supernatants is not unexpected as a number of
previous studies have identified different protein expression between the SAG species
(Grinwis et al. 2010; Jacobs and Stobberingh 1995; Willcox et al. 1995). Also, despite
there being an increased number of distinct proteins present in the supernatant of .

constellatus 45386 compared to that of S. anginosus 39/2/14A, the total protein
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concentration of each supernatant was calculated to be approximately 0.6 pg/ml and
appeared to have a similar effect on tooth slices when introduced into the culture

system.

As in the tooth slices incubated directly with bacteria, the cell death seen in the tooth
slices incubated with supernatants is likely to be the result of necrosis, rather than
apoptosis. This is characterised by the loss of nuclei that were present in control
sections and the presence of cells with a cloudy appearance in the histological
sections. These factors result in a decreased cell count compared to control sections,

as the cells which do not fall within set parameters were not counted.

Following incubation of tooth slices with collected supernatants, histological
examination showed a significant decrease in cell number over a 50 pm? area after 4 h
of incubation, from an average of 25 cells in the control to 19 cells in those incubated
with bacteria. Cell death continued to increase with increased periods of incubation,
with extensive necrosis seen after 24 h. This was seen as a decrease in cell number to
an average of 7 cells in a 50 um? area, with fewer cells stained throughout the pulp,
gaps which appeared between the previously densely packed cells of the odontoblast
layer and the degradation of the cell-rich zone. The pattern of cell necrosis and matrix
degradation appeared to be similar to that which was observed when tooth slices were
incubated directly with bacterial suspension (3.3.2), as pulpal cells were affected first,
with cell death and matrix breakdown increasing with longer incubation times.
However, the effect seen when the tooth slices were incubated with the supernatants
did appear to be more rapid and less localised. When tooth slices were incubated
directly with the bacteria, a significant decrease in pulpal cell numbers was not seen
in those tooth slices incubated with S. constellatus 45386 until 8 h of incubation,
whilst a significant amount of cell death had already occurred after 4 h incubation
with S. constellatus 45386 supernatant. Effects seen after 8 h of incubation were
similar for both supernatants and bacteria, whilst after 24 h of incubation there were
fewer cells in those tooth slices incubated with supernatants, an average of 7 cells per
50 um? area, compared to those tooth slices incubated directly with bacteria, which

still had an average of 15 cells per 50 pm? area.
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In addition to an increase in pulpal necrosis, the histological examination of tooth
slices incubated with SAG supernatants also confirmed that there was a significant
decrease in cell numbers in the odontoblast layer after 24 h incubation with the
supernatants. Prior to this, the decrease in cell number was limited to the pulpal
region, as seen in the tooth slices incubated directly with SAG bacteria. Whilst the
tooth slices incubated with the bacteria appeared to have a pattern of cell death which
was focussed in the centre of the pulpal chamber, those slices incubated with
supernatants showed cell death throughout the pulp. Tooth slices incubated directly
with bacteria and those incubated with supernatants showed a similar pattern of
matrix degradation which was seen as a decrease in the staining around the cells and,
in tooth slices incubated directly with bacteria, was associated with microcolonies of
SAG that attached to the pulp. However, there was no significant decrease in cell
number of the odontoblast layer after 24 h of incubation, this being observed only in
those tooth slices incubated with SAG supernatants. This suggests that the supernatant
production by bacteria in dentinal tubules may be of particular importance in the
clinical situation as the degradative and cytotoxic components appear to be able to
spread freely throughout the pulp, rather than being limited to areas of bacterial
attachment. This highlights the significance of dentinal tubule infection and its role in
pulpal inflammation and necrosis. These findings suggest that in addition to
antimicrobials that are targeted towards eradicating the presence of infecting
organisms, substances which protect the pulp from their products should also be
investigated. Studies have shown that albumin is able to inhibit the cytotoxicity of
zinc-oxide eugenol in vivo (Schmalz et al. 2000). Whilst this compound is found as an
ingredient in filling materials rather than being a bacterial product, it indicates that
there is potential for development of other such substances which may be of use in
pulp protection against bacterial supernatants which enter the pulp from the dentinal

tubules.

The increased incidence of pulpal necrosis seen in tooth slices incubated with sterile
supernatants can be accounted for because of the difference in bacterial protein levels
at the initial point of culture. When tooth slices were incubated with bacterial
suspension, the bacterial numbers were at approximately 10% cfu/ml when they were
introduced into the co-culture system and were in the log phase of growth. The

supernatant which was collected for introduction into the tooth slice system was
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collected from an overnight culture of bacteria which contained an excess of 10°
cfu/ml of bacteria which were in the stationary phase of growth. Whilst the bacteria
which were introduced into the system would require some time to begin producing
sufficient level of enzymes and toxins to have a visible effect on the tooth slices, the
collected supernatants already contain proteins produced from all bacterial growth
phases. The protein concentration is also likely to be higher than that initially
produced by the viable bacteria due to the higher bacterial load from which the

supernatant was collected.

Cell counts which were performed over a 50pm? area on tooth slices which had been
exposed to the supernatants from the different species for the same length of time
showed no significant different in cell number, indicating that the supernatants from
the two species had a similar effect on the tooth slices, despite their different protein
profiles. This further supports the hypothesis that the proteins which are present in
both profiles play a role in tissue breakdown. Further investigation into the identity of
these proteins and their role in infection may be beneficial to understanding the

processes involved in pulpal infection.

The role of the supernatants of SAG bacteria in pulpal inflammation and necrosis has
not been reported in the literature, although there are some studies which focus on the
effect of other bacterial supernatants and by-products, particularly those produced by
the black-pigmented Bacteroides. Pulpal fibroblasts which have been exposed to
supernatants from these bacteria have been shown to have an inflammatory response,
producing cytokines such as IL-6 and IL-8 (Yang et al. 2003a; Yang et al. 2003b) and
stimulating production of matrix metalloproteinases (MMPs) (Chang et al. 2002).
Secretion of such products by pulpal fibroblasts has been shown to result in matrix
degradation and stimulation of inflammatory cells. Tissue breakdown that is
associated with the presence of SAG supernatants may therefore indicate that they are

stimulating a similar response from the pulpal fibroblasts.

The results presented in this chapter have demonstrated that the bacterial products
which diffuse into the surrounding growth media play an important role in the cell
necrosis and matrix breakdown that is seen in tooth slices incubated with SAG

bacteria. Investigation of the effects of the supernatants in the absence of bacterial

101



attachment suggested that bacterial proteins may be the principal cause of the tissue
damage observed, rather than mechanical action of bacterial attachment, as cell counts
revealed that there was an increased incidence of cell death in tooth slices incubated
with supernatants. Although this cell death may have been more pronounced due to
the increased protein concentration in these experiments, it suggests that bacterial
products are important in the infection process, as the tissue breakdown that was
observed is likely to release nutrients for further bacterial growth. SDS-PAGE
analysis, in conjunction with calculation of protein concentration of the supernatants,
suggested that whilst different SAG isolates may produce a variety of different
proteins, their overall effect on mammalian tissues is similar, resulting in no
significant difference in cell death between different isolates. In summary, these
results have highlighted the importance of SAG supernatants in pulpal inflammation
and cell death and have demonstrated a further use of the model presented in this

study.
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Chapter S: Antimicrobial activity of chlorhexidine and
triclosan against SAG bacteria in vitro.

5.1 Introduction

The use of antimicrobials in endodontic infection has been an important development
in eradicating bacteria from the root canal. This is important as re-infection is one of
the major reasons for treatment failure (Dahlen 2002; Siqueira and Rocas 2008) and
improved methods of root canal disinfection have been shown to increase the chances
of treatment success and therefore decrease the chances of subsequent tooth loss
(Abou-Rass and Bogen 1998).

Calcium hydroxide is the most commonly used antimicrobial in fillings but, as
previously discussed (1.5), there is no specific action of this antimicrobial on the
bacteria, its activity being based upon the pH change that it incurs (E1 Karim et al.
2007; Desai and Chandler 2009), and this may not be effective against all bacterial
species present in the root canal (Desai and Chandler 2009). To further improve the
disinfection of the tooth before filling, novel antimicrobials need to be developed
which have a specific bacterial activity, particularly against those organisms which
have been identified as playing a role in endodontic infection. As inflammation plays
an important role in pulpal necrosis and impacts upon the resolution of infection in the
root canal, there has been particular interest in antimicrobials that also have anti-
inflammatory properties (Farges 2009), such as triclosan (Mustafa et al. 1998), or
utilisation of naturally occurring anti-inflammatory antimicrobial peptides such as

defensins (Dhople et al. 2006).

The standard protocol for testing the efficacy of antimicrobials against specific
bacterial species involves calculation of the minimum inhibitory concentration (MIC).
When bacteria grow in liquid media under standard conditions, the media will become
turbid or ‘cloudy.” The inhibition of this visible growth is used to measure the
efficacy of an a}ntimicrobial, with the MIC being defined as the lowest concentration
of the antimicrobial which inhibits visible growth after overnight incubation. Whilst
the MIC of an antimicrobial relates to the level required to prevent the bacterial

growth, it does not always cause bacterial death and decrease of cell number. The
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lowest concentration of an antimicrobial that causes bacterial cell death is known as
the minimum bactericidal concentration (MBC), though this is not as widely used as a

test of antimicrobial efficacy as the MIC test.

In this study, the effect of triclosan on SAG growth was studied. Triclosan was chosen
as it has already been incorporated into a number of dentifrices and its anti-
inflammatory properties, in addition to its action as an antimicrobial, make it a
potentially useful substance in controlling pulpal disease (Mustafa et al. 1998). Whilst
the effect of triclosan has been studied on many organisms such as Pseudomonas
aeruginosa (Escalada et al. 2005), Escherichia coli (Yu et al. 2010) and
Staphylococcus aureus, including methicillin-resistant strains (Zafar et al. 1995), its
efficacy against SAG bacteria has not been previously studied. The efficacy of
triclosan against SAG bacteria was compared to the efficacy of chlorhexidine
gluconate (CHX) in its commercially available forms. CHX is effective against both
Gram positive and negative bacteria through disruption of the bacterial membrane.
Triclosan is also thought to act by disruption of the membrane, as previously
described (1.7). CHX has previously been shown to be effective against S. anginosus
biofilms in vitro (Chavez de Paz et al. 2010), thus providing a suitable antimicrobial

for comparison with triclosan.

The efficacy of triclosan and CHX was tested using 2 different methods — one which
counts viable cells following exposure to the biocides and one which employs the
Bioscreen C system. This is an automated incubator which is able to measure turbidity
using a technique that is more sensitive than a spectrophotometer. The Bioscreen C

system allows analysis of the bacterial growth kinetics following biocide exposure.

The development of the co-culture model in this study may be useful in the testing of
novel antimicrobials, and the suitability of existing antimicrobials such as triclosan
and chlorhexidine, for use as endodontic disinfectants. As the model allows for the
quantification of tissue damage by the bacteria (3.3.2), it may be further developed to
assess the efficacy of antimicrobials in reducing this bacterial tissue damage. In
addition, it provides a model which can be used in preliminary testing of antimicrobial
toxicity, which may have benefits over existing models. As previously outlined (1.6),

in vifro models using single mammalian cell populations do not consider the
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importance of spatial arrangement of the dental cells and the effect this may has on
dental repair and bacterial attachment. Similarly, there are drawbacks of the available
in vivo models due to ethical implications, costs and the complications of systemic
influences and commensal bacteria. The model proposed here may overcome some of
these problems with current model systems with the aim of improving the accuracy of

antimicrobial testing.
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5.2 Materials and Methods

S.2.1 Minimum inhibitory concentration of triclosan

Triclosan, under the brand name Irgasan, was dissolved in 5% (w/v) B-cyclodextrin in
DMEM-+10% BHI to give a triclosan concentration of 512 pg/ml. A doubling dilution
series was produced to give a series of triclosan concentrations ranging from 512 -
0.5 pg/ml. 180 pl of each dilution was transferred to the wells of a 96-well plate to
produce a dilution series of triclosan in the plate. A control well containing only 5%
B-cyclodextrin in DMEM+10% BHI with no triclosan was set up for each dilution

series. This was performed in triplicate for each strain being tested.

Overnight cultures of S. anginosus 39/2/14A and S. constellatus 45386, grown in
DMEM+10% BHI, were diluted to an absorbance of Ab550nm = 0.5 to give a
bacterial count of 10® cfu/ml. 20 pl of diluted suspension was then added to each of
the wells containing broth. The plate was then incubated overnight at 37°C, 5% COa.
The MIC was recorded as the lowest concentration of triclosan which inhibited visible

bacterial growth following overnight incubation.

5.2.2 Biocide contact time

To identify an appropriate time period needed for chosen biocides to be effective on
SAG bacteria, 5 proposed contact times were tested. Overnight cultures of S.
constellatus 45386 and S. anginosus 39/2/14A grown in BHI broth were centrifuged
at 4000 rpm for 10 min. Supernatant was discarded and the resultant pellet was re-
suspended in sterile PBS to an absorbance of 0.5 at 550 nm, giving a bacterial
suspension of 10% cfu/ml. 1 ml of diluted bacterial suspension was added to 1 ml of
biocide or control. The biocides used were chlorhexidine gluconate at 4, 0.5 and
0.2%, and triclosan dissolved in 5% (w/v) B-cyclodextrin at 64 and 125 ug/ml. PBS
was used as a control. The suspension and biocide mix were incubated at room
temperature with a 100 pl sample taken at 10, 20, 30, 45 and 60 min. The sample was
transferred to 900 pl of neutraliser to immediately neutralise the effect of the biocide
and prevent further cell death. The resulting bacterial sample was then serially diluted
and spiral plated onto FAA to allow cell counting and calculation of bacterial

numbers in the original suspension.
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5.2.3 Bioscreen C antimicrobial testing

Control protocol

Overnight cultures of S. anginosus 45386 and S. constellatus 39/2/14A grown in
DMEM+10% BHI broth were centrifuged at 4000 rpm for 10 min. Supernatant was
discarded and the resultant pellet was re-suspended in sterile PBS to an absorbance of
0.5 at 550 nm, giving a bacterial suspension of 10® cfu/ml. This suspension was then
diluted ten-fold to give a dilution series from 10® cfu/ml to 101. cfu/ml. 350 pl of sterile
DMEM+10% BHI broth was added to 90 wells of a 100 well Bioscreen plate (Oy
Growth Curves AB Ltd, Helsinki, Finland). To each of the test wells 50 pl of the
diluted suspensions were added to each of the test wells to give 10 wells of each
dilution. Into the final 10 wells 50 pl of sterile PBS was added. The plate was then
incubated in the Bioscreen for 20 h with an absorbance reading taken using a wide
band filter every 15 min. Viability counts were performed from dilutions from 10*
cfu/ml to 10 cfu/ml to allow calculation of the number of viable bacteria in the
original inoculum. 10 pl drops were plated in triplicate on FAA and incubated
overnight at 37°C, 5% CO,,

Biocide test protocol

Overnight cultures of S. anginosus 45386 and S. constellatus 39/2/14A were cultured
and diluted to 10® cfu/ml as previously described. The biocides and controls used are
listed in Table 5.1. As for the control plate, 350 pl of DMEM+10% BHI was added to
80 wells, allowing 10 wells for testing of each of the biocides and their controls and
10 wells for the PBS growth control. 1 ml of bacterial suspension was then added to
1ml of biocide or control and incubated for 10 min. 1 ml of each biocide and
suspension mixture was then transferred to 9 ml of neutraliser and mixed. 50 pl of
each mix was then added to 10 wells of the plate. In the final 10 wells 50 pl of PBS
was added to the broth. The plate was then incubated in the Bioscreen for 20 h with an

absorbance reading taken using a wide band filter every 15 min.
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Biocide

1

4% chlorhexidine

0.5% chlorhexidine

0.2% chlorhexidine

125ug/ml triclosan in 5% B-cyclodextrin

64pg/ml triclosan in 5% B-cyclodextrin

2
3
4
5
6

PBS control

Table 5.1 List of biocides and controls used in the Bioscreen C test
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5.3 Results

5.3.1 Minimum inhibitory concentration of triclosan

Following overnight incubation at 37C, 5% CO2 in the presence of various triclosan
dilutions dissolved in 5% B-cyclodextrin solution, both S. anginosus 39/2/14A and S.
constellatus 45386 were found to be inhibited by 125 pg/ml triclosan. Inhibition of
growth was determined by visual examination of the plate and the MIC was defined
as the lowest triclosan concentration that inhibited visible turbidity, with media
remaining the same absorbance as that in the control wells. Control wells containing

5% B-cyclodextrin with no triclosan showed no inhibition of bacterial growth.

5.3.2 Biocide contact time

Bacteria were initially cultured at a concentration of 10% cfu/ml. Following dilution in
the biocide and neutralisation, bacterial concentration was 10° cfu/ml. The minimum
contact time that the bacteria were exposed to biocides was 10 min. Following the 10
min incubation period there was no growth on the FAA plates inoculated with
bacteria that had been exposed to the chlorhexidine solutions. The maximum contact
time tested was 60 min. After this time point, strains which were exposed to triclosan
continued to grow. Bacterial counts were taken for each strain following each
incubation period (Fig 5.1 and 5.2). Bacterial isolates incubated with triclosan at a
concentration of 125 pg/mi showed a greater reduction in number at shorter
incubation times. For S. anginosus 39/2/14A, a 10 minute incubation with 125 pg/ml
triclosan resulted in a reduction of bacterial numbers by 2.5 x 10° cfu/ml whilst
incubation with 64 pug/ml triclosan over the same time period resulted in a reduction
of 1.9 x 10° cfw/ml (Fig. 5.1). However, at 60 min, both concentrations showed a
reduction of approximately 2.3 x 10’ cfu/ml, indicating that higher concentrations of
triclosan only have an increased biocidal effect at shorter incubation times. Bacteria
incubated with controls had a bacterial count of 4.1 x 10% cfu/ml. Results for S.
constellatus 45386 were similar, with bacterial numbers being reduced by
approximately 2.2 x 10° cfu/ml after 60 min incubation with both 64 and 125 pg/ml
triclosan (Fig. 5.2). This indicates that at these concentrations triclosan has a similar

effect on the different SAG strains.
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5.3.3 Bioscreen testing of antimicrobial efficacy

Following the results of the biocide contact time experiment, bacteria were incubated
with biocides for 10 min prior to growth in the bioscreen system. The control for each
strain consisted of growth curves generated by bacterial suspension, which had not
been exposed to the biocide, with different bacterial concentrations at the start point.
Each diluted suspension of S. anginosus 39/2/14A showed standard growth curve
characteristics with a defined lag, log and stationary phase (Fig 5.3). Diluted
suspensions of S. constellatus 45386 showed a lag and log phase, although those
suspensions which had an initial bacterial load of 10 cfu/ml or below did not reach
stationery phase after 20 h of incubation (Fig 5.4). However, as this strain was shown
to have slower growth when grown in DMEM+10% BHI (Fig 2.3), this represents
normal growth under these conditions and it unlikely to be a result of exposure to
triclosan. From these curves, an absorbance value was taken which related to a point
at which all suspensions had reached the log phase of growth. For these bacteria the
absorbance value was 0.2. This was then plotted to give an equation that related the
time taken to reach an absorbance of 0.2 with bacterial number (Figs 5.5 and 5.6).
Growth curves were then plotted for bacterial suspensions which were exposed to
biocides prior to growth in the bioscreen system. The equation relating absorbance to
time to reach an absorbance of 0.2 was used to calculate the bacterial numbers

following biocide exposure.

As seen in the previous experiments where bacteria were plated out immediately after
exposure to biocides, all chlorhexidine solutions demonstrated a complete eradication
of both S. anginosus 39/214A and S. constellatus 45386. S. anginosus 39/2/14A
suspensions which were exposed to triclosan and the control solutions of 5% [-
cyclodextrin and PBS showed similar growth characteristics following neutralisation
which mirrored the growth seen in the control (Fig 5.7). However, the bacteria which
had been exposed to the biocides showed an increased lag period, indicating that the
bacteria had been adversely affected by the treatment with biocides. S. constellatus
45386 was also eradicated by the chlorhexidine solutions used. More variation was
seen in the growth curves of bacteria incubated with triclosan and control solutions
than was observed with S. anginosus 39/2/14A (Fig 5.8). In addition to this, S.
constellatus 45386 did not enter stationary phase as seen with S. anginosus 39/2/14A.
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Cells appeared to start dying after the log phase, with the maximum absorbance

reached at approximately 800 min after incubation.

Using the information from the bioscreen analysis of the SAG bacterial growth
following exposure to the biocides, the efficacy of the biocides was assessed by

calculating the bacterial reduction (Fig 5.9).
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Fig. 5.1 Reduction in numbers of S. anginosus 39/2/14A following incubation with biocides for up to 60 min.
Incubation with all chlorhexidine solutions results in eradication of bacteria after 10 min incubation. Triclosan solutions cause
a reduction in viable bacterial numbers but do not fully eradicate growth after maximum incubation time. Higher
concentrations show an increased reduction in bacterial numbers at shorter incubation times.
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Fig. 5.2 Reduction in numbers of S. constellatus 45386 following incubation with biocides for up to 60 min.
Incubation with all chlorhexidine solutions results in eradication of bacteria after 10 min incubation. Triclosan solutions cause
a reduction in viable bacterial numbers but do not fully eradicate growth after maximum incubation time. Higher
concentrations show an increased reduction in bacterial numbers at shorter incubation times.
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Fig 5.3 Growth curves generated by cultures of S. anginosus 39/2/14A incubated for 20 hr in the Bioscreen system.

Suspensions ranging from 108cfu/ml to 101cfu/ml were cultured and absorbance measured every 15 min. Each dilution
shows a standard bacterial curve with defined lag, log and stationary phases.
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Fig 5.4 Growth curves generated by cultures of S. constellatus 45386 incubated for 20 hr in the Bioscreen system.
Suspensions ranging from 108 cfu/ml to 101 cfu/ml were cultured and absorbance measured every 15 min. Diluted cultures
show a lag and log phase of growth. However suspensions which had an initial bacterial number of 106 cfu/ml or below do

not appear to reach stationery phase after 20hr of incubation.
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Fig. 5.5 Time taken for diluted cultures of S. anginosus 39/2/14A to reach an absorbance of 0.2 when grown in a
bioscreen system. The gradient of the line allows calculation of bacterial number of an initial solution by using the time
taken to reach an absorbance of 0.2 in a bioscreen system.
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Fig. 5.6 Time taken for diluted cultures of S. constellatus 45386 to reach an absorbance of 0.2 when grown in a

bioscreen system. The gradient of the line allows calculation of bacterial number of an initial solution by using the time
taken to reach an absorbance of 0.2 in a bioscreen system.
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Fig. 5.7 S. anginosus 39/2/14A growth curves following 10 minute incubation with biocides. Suspensions incubated
with chlorhexidine show no growth. All other suspensions show a standard bacterial growth curve with defined lag and log
phase and all reach stationary phase at approximately 700 min.
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Fig. 5.8 S. constellatus 45386 growth curves following 10 minute incubation with biocides. Suspensions incubated
with chlorhexidine show no growth. All other suspensions show a standard bacterial growth curve with defined lag and log
phase prior to reaching an absorbance of around 0.6, at which the bacterial numbers begin to decrease. This point was

reached at approximately 800 min after incubation.
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Fig. 5.9 Bacterial numbers remaining following 60 minute
incubation of SAG bacteria with biocides. Chlorhexidine exhibits
complete biocidal activity against the bacteria, whilst triclosan does not
completely inhibit growth after 60 minutes. For S. anginosus 39/2/14A,
125ug/ml triclosan results in a 3-fold reduction of bacterial number.
64ug/ml triclosan results in only a 1.5-fold reduction. For S.
constellatus 45386, 125ug/ml triclosan results in a 2.5-fold reduction of
bacterial number. 64ug/ml triclosan results in a 1.8-fold reduction.



5.4 Discussion

Prior to this study, there had been very limited investigation into the efficacy of
chlorhexidine and triclosan against SAG bacteria. This is possibly due to the
relatively limited research into the role of SAG bacteria as endodontic pathogens that
ha been conducted in the past. However, as recent research in this area has advanced
and revealed the significance of these organisms in pulpal infection and abscess
formation, it has become apparent that investigation into antimicrobial control of
these bacteria is necessary. The results from the study in this chapter have
demonstrated that at concentrations from 0.2% and above, chlorhexidine is able to
completely eradicate SAG bacteria in suspension after a 10 minute exposure period.
In contrast, whilst triclosan has been shown to cause a reduction in bacterial number,

it did not demonstrate an ability to completely eradicate bacterial infection.

The different methods used in this chapter highlight the importance of thorough
testing of potential antimicrobials. As previously discussed, bacteria behave
differently under different growth conditions (2.1) and have been shown to have an
increased resistance to antimicrobials when growing in a biofilm, as they become
embedded in an extracellular matrix which infers protection against antimicrobials to
the bacterial cells within (Aslam 2008; Fux et al. 2005). Plating out bacterial
suspensions that had been exposed to biocides and counting the colonies allowed
calculation of the number of surviving bacteria. This gave an indication of
bactericidal efficacy and revealed that chlorhexidine was more effective than triclosan
against SAG bacteria. However, it did not reveal any information about the effect the
biocides had on the surviving bacteria. This is important as it has been shown that the
use of biocides can select for a bacterial sub-population which may have different
growth characteristics (Maillard 2007) and which may then have a different effect on
the host tissues. Bacteria that survive exposure to sub-MIC levels of biocides may
develop a resistant to the biocide, and in some cases this can lead to further resistance
to other biocides or antibiotics which have a similar mechanism of action (Cottell et
al. 2009). This may be of particular significance with SAG bacteria due to their role in
abscess formation, as antibiotics are commonly used in treatment of abscesses. It is

therefore important to identify the risks of resistance to a biocide that is being
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proposed for use in endodontics and to assess the likelihood that cross-resistance to

antibiotics could occur.

Another important factor that should be considered when testing a novel antimicrobial
for use in endodontics is the effect it has on the bacteria that remain viable after its
use. If bacteria that survive are able to function and grow as normal, such a biocide
may not be suitable for use in endodontic treatment as the survival of bacteria
following endodontics is one of the major reasons for treatment failure (Abou-Rass
and Bogen 1998; Sundqvist et al. 2003). In this study, Bioscreen C has been used to
assess the growth of bacteria following exposure to biocides. This showed that the
exposure to triclosan did not have an effect on the growth curves of the surviving
bacteria. The bacteria showed normal growth when compared to their growth prior to
biocide exposure and reached a similar maximum absorbance level. This indicates
that triclosan does not affect all of the bacteria within a population at the
concentrations that were used in this study. The mode of action of triclosan has been
shown to involve incorporation of the biocide into the bacterial membrane, disturbing
its function and preventing replication of the bacteria (Villalain et al. 2001). As not all
bacteria were affected in this study, it may indicate that the concentration of triclosan
was too low to act on all bacterial cells present, and that whilst it may have been
incorporated into the membranes of some of the cells, others were left unaffected.
Therefore a higher concentration or a longer incubation time may assist in reducing
bacterial numbers further. This mode of action may be adequate for use of triclosan in
applications where a reduction in bacterial numbers is sufficient, such as handwashing
and cleaning of surfaces. However, in endodontics this is not appropriate as the
bacteria which would remain in the pulpal chamber would be able to grow as normal
on the removal of triclosan. Failure to fully disinfect a pulpal chamber following
endodontic treatment can lead to re-infection of the surrounding periodontal tissue,
which is a leading cause of treatment failure and tooth loss. As triclosan does not
appear to completely eradicate all SAG bacteria it may not be an appropriate

antimicrobial agent for use in endodontics.

Whilst chlorhexidine has been widely used in antibacterial mouthwashes for several
decades (Beighton et al. 1991; Daneshmand 1978; Okada 1980), its use in

endodontics may be considered as a more recently investigated application. Despite
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this, it has already been shown that chlorhexidine has activity against a wide range of
Gram positive and negative bacteria, as well as some fungi, including Candida
albicans (Karami et al. 2009; Valera et al. 2009). In addition to its broad spectrum of
activity, chlorhexidine is an attractive antimicrobial for use in endodontics due its
substantivity, as the control of bacterial numbers following treatment is particularly
important for a successful outcome. As this study has demonstrated it is also effective
against SAG bacteria, chlorhexidine may be an antimicrobial of interest to study using
the co-culture model that has been developed. Chlorhexidine has previously been
shown to be effective against S. anginosus biofilms in vitro (Chavez de Paz et al.
2010), so to progress from this its efficacy needs to be tested on bacteria that are
attached to the tissue structure of the dentine-pulp complex. The model presented here

provides a method in which to study this in a controlled system.

The use of triclosan as an antibacterial agent has been widely documented, and it has
been incorporated into a number of toothpastes and mouthwashes (Bhargava and
Leonard 1996). However, its effect against different bacterial species is variable.
Also, due to it’s non-ionic nature, triclosan does not bind to the oral surfaces for more
than a few hours and may need to be used at relatively high concentrations (Davies
2007), which has also been shown in this study. As a result, it often has to be
formulated with a co-polymer, such as Gantrez, to increase its substantivity and
enhance its antimicrobial efficacy (Nudera et al. 2007; Zambon et al. 1990). This

makes the production of triclosan-containing dentifrices more complex and expensive.

There has been limited research on the efficacy of triclosan against endodontic
pathogens, as the main focus of its use has been on dental plaque and caries bacteria.
Investigations into its efficacy against bacteria found in the pulpal chamber has been
conducted in vitro on bacteria grown in suspension (Nudera et al. 2007), which may
not reflect an accurate MIC for organisms in vivo, as they are more resistant to
biocides when grown in a biofilm. There have been recent developments into the
incorporation of a triclosan-containing composite which is proposed for use in
restorative resins and has demonstrated some antibacterial activity against common
oral bacteria (Rathke et al. 2010). As triclosan has previously been shown to have
anti-inflammatory properties (Mustafa et al. 1998), in addition to its effectiveness

against oral bacteria, this makes it an attractive biocide for potential use in endodontic
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treatments as it may promote the natural repair processes of the tooth, as previously
described (1.2.3). However, the results from this study have shown that triclosan
alone is not effective at complete eradication of SAG bacteria, which could lead to
problems in endodontic treatment. This is due to the high levels of failure in
endodontically treated teeth in which bacteria survive and are able to re-infect the root
canal. Despite these disadvantages, the model presented here provides a system which
could be used to investigate the use of triclosan on bacterial biofilms of the dentine-
pulp complex. In particular, it may be of use in assisting the development of triclosan
containing resin composites and testing of co-polymers which enhance the
antimicrobial efficacy of triclosan. Such developments could produce a triclosan

containing product that would be useful in future treatments of pulpal infection.
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Chapter 6: General Discussion

6.1 General discussion

The aim of this thesis was to develop an alternative model system to those currently
available which could be used to investigate pulpal infection by SAG bacteria. To
achieve this, the culture conditions and media of an existing tooth slice model system
were modified to support the co-culture of tooth slices and SAG bacteria. This
provided a novel ex-vivo system which was used to assess the effect of SAG bacteria
on the tissue structure and cell viability of an organotypic tooth slice model. This
enabled identification of a pattern of attachment of the bacteria to the pulpal tissues
which has not previously been observed. Using this model, it was also possible to
assess the initial inflammatory response of the pulpal tissues to the attachment of the
bacteria and demonstrate the effect of supernatants in the absence of bacterial
attachment. These findings are important in identifying the role of SAG bacteria in
pulpal infection, and the development of the model system provides a basis for the

testing the efficacy of new antimicrobials.

It is widely accepted in the dental community that the main reason for endodontic
treatment failure is viable bacteria remaining in the root canal (Abou-Rass and Bogen
1998; de Paz et al. 2005; Siqueira and Rocas 2008). Although SAG bacteria have
been identified as common pulpal pathogens that have a role in primary infection and
are routinely isolated from abscesses, there has been limited research into how these
bacteria behave in association with dental tissues or their susceptibility to common
biocides. One of the major reasons for this could be the lack of an available model
which allows reproducible results to be produced whilst limiting the costs and

complications associated with in vivo models.

The major hurdle to overcome in the development of this model was the identification
of a set of conditions which would support the growth of the fastidious SAG bacteria
whilst maintaining the viability of the established tooth slice model. The previously
published uses of the tooth slice model demonstrated the ability to culture the tooth

slice at the liquid-gas interface (Dhopatkar et al. 2005; Sloan et al. 1998; Smith et al.
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2010). This involves the tooth slices being embedded in a semi-solid mix of DMEM
culture medium and agarose and floated on liquid DMEM through the use of a plastic
support and a Millipore filter. In order to culture the tooth slice in contact with
bacterial suspension this was modified in the model presented in this study, with the
tooth slices cultured on the base of a tissue culture dish and the inoculated media then
added to surround the slice. Histomorphometric analysis and viability staining was
used to confirm that the tooth slices could be successfully cultured in this way at no
detriment to the cells prior to using this method in co-culture. Further to this, the
media for the co-culture of the bacteria and the tooth slice together needed to be
modified to support the growth of both cell types. This was an important step in the
development of the model and was a major focus of this study, as each proposed
media composition had to be tested to ensure its suitability as a culture medium for
both SAG bacteria and tooth slices. Development of a suitable medium was achieved
by creating a combination of tissue culture medium and bacterial growth medium, the
exact composition of which was decided by assessing the effects of possible

combinations on the growth of both bacterial and mammalian cells.

As the growth conditions of the established tooth slice system had been modified for
use in this model, any effects these changes may have had on the tissues needed to be
assessed. This was necessary to obtain an accurate representation of how healthy
tooth slices grown in this novel model would appear, in order to use this for
comparison with tooth slices that had been infected with SAG bacteria. Also, as the
SAG bacteria were to be cultured in a previously unused media and under different
gaseous conditions from how they would generally be incubated, their growth under
the modified culture conditions was also assessed. This was necessary to ensure that
the bacteria were able to reach sufficient yields for use in the model and also to
represent an active infection as it may be found irn vivo. The success of the modified
medium in supporting the culture of the tooth slices was assessed using histological
analysis and viability staining which demonstrated that there was no significant
decrease in cell number in the modified system and that the cells remained viable. The
appearance of the tooth slices cultured in the novel medium were also comparable to
those which have been used in similar models which have previously been published.
Whilst the growth rates of S. anginosus and S. constellatus strains grown in the

modified medium did appear to be altered slightly when compared to growth in BHI
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this was not considered to be detrimental. This was based on the findings that whilst
the growth appeared slower, the final bacterial yield supported by the medium was
higher. However, S. intermedius strains were not able to reach sufficient yields for use
in the model when grown in the modified culture medium. Further supplementation of
the medium with haemin did not improve the growth and as such the S. intermedius
strains were excluded from this study. The differences in growth requirements
between the different species of the SAG bacteria was an interesting observation that

warrants further study as this may influence their ability to establish pulpal infections.

Following validation of the model conditions, SAG bacteria were co-cultured with the
tooth slices to mimic the events that occur in a pulpal infection following exposure of
the pulp to the oral cavity. The co-culture model demonstrated that SAG bacteria
appear to preferentially attach to the centre of the pulp in focal points and that these
focal points of attachment are associated with tissue damage and cell death. This was
characterised by a significant decrease in pulpal cell number and a decrease in the
amount of staining surrounding the cells. These findings highlight the importance of
SAG bacteria in pulpal infection, as such tissue breakdown and cell death as seen in
the model will result in an impaired ability for repair inthe in vivo situation as the cell
death extends into the odontoblast layer. Odontoblast cell death was particularly
pronounced in experiments where bacterial supernatants were applied to the tooth
slices in the absence of bacterial attachment, which suggests the importance of these
bacteria in cell destruction prior to their colonisation of the pulp. This is
representative of the clinical situation where bacteria reside within the dentinal
tubules and their supernatants are able to diffuse into the pulp through the dentinal
fluid. As these bacteria are normally regarded as a problem associated mainly with
abscesses, these novel findings highlight that they may also be affecting the pulpal
tissues before they have established a pulpal infection, which may not previously have
been considered. Also, their ability to attach directly to the pulp is an interesting
revelation as it has previously been noted that many other bacterial species are able to
attach to the surface of SAG bacteria. As such, the confirmation that these bacteria
preferentially attach to the central areas of the pulp is important as it may create a
pathway for other species to attach and infect the pulpal chamber (Love and
Jenkinson 2002).
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Extraction of the RNA from tooth slices that had been cultured in the presence or
absence of SAG bacteria revealed that the tooth slices responded to infection by up-
regulating the expression of the pro-inflammatory cytokines TNF-a and IL-1pB. As
previous in vivo studies have shown that this is a response of infected pulpal
fibroblasts, this confirms that the tooth slice is responding in a way which is
representative of the in vivo situation (Bletsa et al. 2006; Coil et al. 2004; Kokkas et
al. 2007; McLachlan et al. 2004). The model may therefore be useful for assessing the
efficacy of antimicrobials that have immunomodulatory properties such as some
AMPs and triclosan, as it has already been acknowledged that an antimicrobial with
anti-inflammatory properties would be of use in promoting the natural repair
processes of the tooth. This model, which has no complications from circulating
inflammatory factors, could be used to assess the direct effect of such antimicrobials

on the inflammatory response of the pulpal tissues.

Previously, the susceptibility of SAG bacteria to commonly used biocides such as
chlorhexidine and triclosan had not been investigated. In this study, the MIC of
triclosan for two SAG strains was calculated at 125ug/ml when using a triclosan
solution dissolved in B-cyclodextrin. Following this, the effect of exposure to MIC
and sub-MIC concentrations of triclosan on SAG growth was investigated, along with
exposure to commonly used concentrations of chlorhexidine. These experiments
utilised a Bioscreen C, which enables study of the bacterial growth curves following
exposure to biocides. The findings from the Bioscreen method were also compared to
a direct plate count method which was used to calculate decrease in viable bacterial
numbers following exposure to the biocide, but did not give any information about
changes to the growth characteristics. The effect of biocides and disinfectants on the
growth of bacteria which remain viable following exposure is of particular importance
when considering bacteria which play a role in endodontic infection. This is due to the
high incidence of endodontic treatment failure that occurs as a result of bacteria which
survive disinfection of the root canal. The findings from the experiments using the
Bioscreen suggest that triclosan may not be a suitable biocide for use in endodontic
disinfection at the concentrations used in this study. Further testing of triclosan at
higher concentrations is needed to identify if this will enable complete eradication of

SAG bacteria. This model may also be used to test the development of biocide and co-
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polymer complexes which may increase the efficacy of triclosan, as has previously

been seen with Gantrez (Andrade Acevedo et al. 2009; Zambon et al. 1990).

The findings from the experiments in this study have demonstrated that this model
provides a novel culture system for investigation of the processes involved in SAG
infection of the pulp. In contrast to previous investigations into the role of SAG in
pulpal infection and abscéss formation (Nagashima et al. 1999; Okayama et al. 2005),
this model does not require the inoculation of live animals with bacteria and therefore
reduces the associated costs and ethical implications. The model allows culture of the
dental tissues in the spatial arrangement seen in vivo, which has allowed the pattern of
SAG bacterial attachment to be identified for the first time. SAG bacteria showed
preferential attachment to the central areas of the pulp rather than the odontoblast
layer, and excessive breakdown of the pulpal matrix following incubation times in
excess of 24 h. This suggests that in the clinical situation these bacteria will also
attach to the pulpal matrix, and that their removal from the pulpal chamber will

require extraction of the pulp or extensive disinfection of the tissues.

As has been previously outlined, all available culture models have limitations. With
this model, there is no circulatory system. As such, any investigations into the
inflammatory response of the tooth to invading bacteria can only take into account the
effect if immune cells present in the pulp. Also, the model is curréntly limited to
studying the effect of co-culture over a maximum of 24 h. To improve the model the
infection period could be extended to study the inflammatory responses at different
time periods and to study the changes in histology with increased incubation time. As
the investigation using the supernatants has shown that the odontoblasts are affected
after 24 h, an increased exposure time to viable bacteria is needed to see if this effect
is mimicked at longer incubation times. Identification of the cytokines expressed as a
response to supernatant exposure could also be compared to that which occurs during
contact with the bacteria in the co-culture model. Further to this, Western blot ‘
analysis to identify the proteins that are present in the supernatant of the different
SAG species is required. This would then allow the role of the proteins in tissue
breakdown to be further investigated and allow identification of specific proteins that

are essential to pulpal infection in necrosis. Identification of these proteins may assist
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in the development of more successful treatment methods than those currently

available.

The model presented here can be used for further investigation into the processes
involved in pulpal infection. Research into the immune response of the tooth slices as
a reaction to invading bacteria may be elucidated to determine the events that cause
abscess formation by these bacteria. Différent bacterial species that are associated
with pulpal infection may also be used to co-infect the tooth slice to further
investigate the synergistic relationships between the different species. Some work has
already been done in this area but a suitable model has not been previously available
(Kuriyama et al. 2000; Nagashima et al. 1999). Identification of the main causes of
pulpal infection that cause endodontic treatment failure and abscesses may allow for

use of antimicrobials that are spéciﬁcally targeted at problem organisms.

The major focus of this study was on the development of the model by identification
of suitable culture conditions and validating their effects on the components of the
model. Following its development there are a number of applications for which the
model can be used. One of the major advantages of the model is its potential use for
screening novel antimicrobials. In particular, as the model has been shown to have
some inflammatory response, the model can be used to investigate novel
antimicrobials that also have anti-inflammatory properties, such as AMPs and
triclosan. AMPs are costly and difficult to investigate in in vivo models due to the
innate expression of AMPs in the oral cavity. The ex vivo co-culture model presented
here allows for smaller amounts of AMP to be used and provides a condition where
there are fewer influences from naturally expressed proteins. This can be achieved by
modifying previously published methods of delivering specific products to the tooth
slice using agarose beads (Sloan and Smith 1999). This allows for smaller volumes of
AMP or other products to be used as the beads can be soaked in the product prior to
application to the tooth slice, rather than adding the solution directly to the tooth slice
or the surrounding media. The small size of the agarose beads also enables application

to specific areas of the tooth.

The development of this co-culture model has allowed co-culture of SAG bacteria and

an organotypic tooth slice in an ex-vivo system for the first time. This has revealed a
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number of characteristics of SAG infection which have not previously been seen. This
model can now be used in further studies to elucidate the events that occur during
abscess formation and can be used to test the efficacy of novel antimicrobials in
preventing such infections. It is hoped that this model will allow for a reduction in the
number of animals required in such experiments whilst providing an accurate
representation of the clinical situation and will improve the currently available

endodontic treatments.
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6.2 Conclusions

The aim of the work contained in this thesis was to develop a model system which

allowed the co-culture of SAG bacteria with organotypic tooth slices. The

development of this model has further expanded the understanding of SAG growth

characteristics and the processes that occur during pulpal infection. The key findings

and their relevance to future work are outlined below:

The different SAG species have varied growth requirements with S.
intermedius species being the most fastidious organisms of the group. As a
result of this, whilst it was possibly to culture S. anginosus and S. constellatus
strains in a modified culture medium consisting of DMEM supplemented with
BHI, S. intermedius strains could not be successfully cultured in any media
except for BHI. These differences in growth requirements may also affect the
ability of the different bacterial strains to colonise the pulp in vivo. Further
research into the different growth requirements of the SAG bacteria may

therefore be beneficial in fully understanding their role in pulpal infection.

Co-culture of SAG bacteria and organotypic tooth slices resulted in attachment
of the bacteria to the pulpal region of the tooth slices in small foci of bacteria
which appear to penetrate into the tooth slice causing tissue damage. This
damage is visible as cell death and breakdown of the pulpal matrix. These
visible signs of damage increased with increasing periods of incubation with
the invading bacteria. The cell death caused by the SAG bacteria was
quantified using Image ProPlus software. This model can therefore be used to
compare the relative amounts of cell death caused by the different SAG
bacteria and may allow the protective abilities of different compounds to be

studied in future work.

Culture of the tooth slices with bacterial supematahts in the absence of the
viable bacteria resulted in similar patterns of cell death and tissue damage as
seen in the co-culture system. This indicated that these effects may be a result
of soluble factors produced by the bacteria and are not entirely dependent on

the physical attachment of the bacteria to the tooth slice. This is significant to
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the clinical treatment of SAG infections as it emphasises the importance of
early intervention and treatment as the bacteria may not need to colonise the
pulp in order to cause cell death and damage if their products are able to

diffuse to the pulpal chamber through the dentinal tubules.

The efficacy of the biocides CHX and triclosan against the SAG bacteria after
different periods of exposure was tested. These experiments revealed that
commercially available forms of CHX were the most efficient at reducing
bacterial numbers, whilst triclosan allowed significant bacterial numbers to
remain viable in suspension and continue to grow after the biocide was
removed. This data supports the use of CHX in endodontic disinfection and
emphasises the importance of using biocides which eliminate the bacterial
load, thus preventing re-growth of the bacteria after removal of the biocide.
Introduction of these biocides into the co-culture model would provide further
information on the efficacy of these antimicrobial formulations in an
environment which is more representative of the in vivo situation. Such
experimentation may enable the development of novel antimicrobials for use

in endodontic treatments.
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