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Abstract

models from examples is considered. The key step in statistical appearance

modelling is establishing spatial correspondences between examples in order
that statistics on the corresponding features may be computed. This is known
as registration.

Groupwise registration methods, which aim to consider useful information
from the entire ensemble at once when searching for correspondences, have
been shown in the literature to be superior to pairwise methods. However, the
groupwise approach to registration is generally computationally expensive due
to the large dimensionality of the search space in which the globally optimal
solution is searched.

A novel, fast and reliable, stochastic algorithm is proposed to solve the
problem of groupwise non-rigid registration of large ensembles of images quickly
and more accurately than state of the art methods. The efficiency of the
proposed approach stems from novel dimensionality reduction techniques
specific to the problem of groupwise image registration and from comparative
insensitivity of the adopted optimisation scheme (Simultaneous Perturbation
Stochastic Approximation (SPSA)) to the high dimensionality of the search
space.

The proposed image registration algorithm is then generalised to the case
of textured 3D surfaces, allowing groupwise non-rigid registration of 3D data,
such as produced by widely available 3D surface scanners.

In evaluation of these approaches we show a high robustness and success
rate, fast convergence on various types of test data, including facial images
featuring large degrees of both inter- and intra-person variation, and show
considerable improvement in terms of accuracy of solution and speed compared
to traditional methods.

IN this thesis, the problem of automatic construction of statistical appearance



Finally, a novel application of 3D appearance modelling is proposed: a faster
than real-time algorithm for statistically constrained quasi-mechanical simu-
lation. Experiments demonstrate superior realism, achieved in the proposed
method by employing statistical appearance models to drive the simulation, in
comparison with the comparable state of the art quasi-mechanical approaches.
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Notation

Proof by cumbersome notation — best
done with access to at least four
alphabets and special symbols.

Folklore

Table 1 summarises the notational conventions used in this thesis for various
types of quantities and variables. Table 2 summarises frequently used symbols,
operators, functions and notational devices. All vectors are assumed to be
column vectors, unless otherwise specified.

TABLE 1: Notational convention for quantities.

Alphabet Quantity Description

a, N, p, . Scalar quantities (constants, Lower or upper case, italic
variables, functions). font, Latin or Greek letters.

x, f, ¢, ...  Vector quantities (constants, Lower case, bold font, Latin
variables, functions). or Greek letters.

MR, X, . Matrices. Upper case, upright font,

Latin letters.

F, &, B,... Vector-valued matrices, vec- Upper case, bold font, calli-
tor fields, and tensors. graphic Latin letters.

R,Z,N,... Number sets. “Blackboard bold” upper

case Latin letters.

xiii



TABLE 2: Commonly used symbols, operators, functions, notational devices.

Notation Description

M1 Inverse of a matrix M.

MT Transpose of a matrix M.

M, <k Matrix of n rows and k columns.

1 Matrix (or vector) of ones, of appropriate
dimensions.

0 Matrix (or vector) of zeros, of appropriate
dimensions.

) Matrix of n rows and k columns, filled with
ones.

Onxk Matrix of n rows and k columns, filled with

Lnxn or diag 1,51

A+B
{R,S} + poldec(X)

R‘n
M € R

x]-lxlc

reshape M

nxk

Zeros.

The identity matrix of n rows and n columns.
The diag 1, notation is preferred to “I,x,”
where confusion with image matrices is possible.

In algorithms, assignment of the value of vari-
able B to variable A.

Polar decomposition (see Lorusso et al. [168])
of matrix X into R and S.

n-dimensional Euclidean space.

An alternative way to indicate that matrix M
has n rows and k columns, when using subscripts
is undesirable, e.g. when other subscripts are
present.

Matrix of k columns, in which every column
is the (column) vector x, i.e. repeat vector x
“horizontally” k times. This is equivalent to
MATLAB expression repmat(x, 1, k).

Denotes a matrix of n rows and k£ columns,
whose elements are taken column-wise from
M (which contains a total of n X k ele-
ments). This is equivalent to MATLAB expres-
sion reshape(M, n, k).

continued on the next page. . .



TABLE 2: Commonly used symbols, operators, functions, and notational devices.

... continued from the previous page

Notation

Description

diagx

diagM,, x»n

expr(vi,...,v,) = min
VlyeeryUn

dimx

M(, 5)

x(2)

Apxk*Brxk

A./B

VM

Amxk * B(2n+1) % (2n+1)

If x is a vector of n components (x € R"),
this expression denotes a square matrix with
elements of x on the main diagonal. This is
equivalent to MATLAB expression diag(x).

Denotes a vector of n components, taken from
the main diagonal of matrix M. his is equivalent
to MATLAB expression diag(M).

Denotes that the espression ezpr is to be min-
imised with respect to variables vy, ..., v,.

Number of elements in vector x. This is equiva-
lent to MATLAB expression numel (x).

Denotes the element on the i-th row and j-th
column of matrix M. Enumeration of rows and
columns is 1-based. This notation is preferred
over subscripting (“M;;”) in this thesis.

Denotes the i-th element of vector x. Enumer-
ation of elements is 1-based. This notation is
preferred over subscripting (“x;”) in this thesis.

Hadamard product of matrices. For any
two matrices A and B of the same size,
(Anxk * Baxk) (3, 7)= A(4, /)B(5, j), i.e. element-
wise multiplication.

Hadamard division of matrices. For any
two matrices A and B of the same size,

(Anxke/Bnxk)(4,5) = A(3,35)/B(,5), ie
element-wise division.

Element-wise square root:

(.\/M) (z,y) = M(z,y).

Discrete 2D convolution of matrices A and B:
i=n j=n .
(Amxk * Bansx@ns1)(@,y) = . ¥ B+

i=—nj=-n
n+1,57+n+1)A(x — i,y — j). Values outside
A are treated as zeros.

continued on the next page. ..
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TABLE 2: Commonly used symbols, operators, functions, and notational devices.

... continued from the previous page

Notation

Description

Ak B Bini1yx@n+1)

M(, ), M(,,:), ete.

Gy

VA

min M, maxM

oAl

rescale’ M

lz]

randn(1...m)

Same as above, but values outside A are taken
from the nearest “border” value. This is equiv-
alent to MATLAB expression imfilter(A, B,
’same’, ’replicate’, ’conv’).

The colon notation semancically equivalent to
that in MATLAB.

Gaussian convolution kernel with SD= &, stored

in a w-by-w matrix. It is normalised so that
=r 2ia Goig) = 1.

For matrices, {G;,G,} = G = VA denotes

numerical approximation of the gradient.

When applied to a matrix or a vector, denotes
the smalest (largest) element of the matrix or
vector.

7

For vector-valued matrices the “dotted norm’
operator denotes the element-wise norm:
JANG, 5) = [IAG, 4,9, V3, 5.
Rescale the data in matrix M so that all values
lie in the interval [a, b].
(b—a)(M — 1 min M)

maxM — minM

rescale’ M = a +
The floor function.

A uinformly distributed natural radom number
between 1 and m inclusively.
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CHAPTER

1

Introduction

Poekhali! (Let’s go!)

Yuri Gagarin

HIS thesis is a study of methods for automatic construction of mod-
els of craniofacial' appearance and dynamics, for purposes of analysis,
synthesis, and simulation. The search for novel ways of modelling the

human craniofacial complex automatically, in an unsupervised fashion, is in-
spired by a number of important applications in the orthodontic practice
(Sidorov et al. [241], Kau et al. [140], Popat et al. [215], Popat and Rich-
mond [216], Beldie et al. [18]), computer graphics (Blanz and Vetter [28]),
psychology (Cosker et al. [69]), biometrics and security (Benedikt [20]), and
other fields.

The problem of accurately representing craniofacial appearance and its
temporal evolution is a very challenging one, considering the complexity,
diversity and variability of the geometry, topology, texture, reflectivity, self-
shadowing and other properties of the human head.

The dynamic nature of the craniofacial complex makes its study from the
computational point of view a fertile field of research, comprising such areas

as computer vision, image processing, statistical modelling, computational

1The term craniofacial, from Medizeval Latin cranium (“skull”), refers to the head or
skull and the facial structures together.



1.1. Motivation

geometry, non-rigid deformable object modelling, rheology, finite element (FE)
modelling and simulation, biometrics and facial identification, forensics, facial
expression recognition and facial tracking, visual speech analysis, emotion
psychology, computer graphics (CG) animation and many others.

In this thesis, the crucial component of appearance modelling is considered —
computing correspondences between examples, images or surfaces, in order
that deformable models of appearance may be built.

1.1 Motivation

The work described in this thesis was inspired by the need to develop novel
mathematical and engineering methods, models, and algorithms to capture,
represent, manipulate and simulate craniofacial appearance, kinematics and
dynamics. The motivation for this research comes from practising craniofacial
surgeons and orthodontists who seek to employ the advances in the fields of
computer vision and computational geometry to facilitate and automate the
analysis of growth and development of the craniofacial complex, to study its
abnormalities, to model and study variation in its appearance, and to simulate
its kinematics and dynamics for interactive surgery simulation and teaching
scenarios. Although the methods, models and algorithms presented in this
work are very generic and applicable to a wide variety of imagery, in order to to
illustrate the applicability of the proposed methods to problems of orthodontics
and craniofacial surgery, the results are exemplified and the experiments
are conducted mostly with craniofacial imagery, which also happens to be
a characteristic example of “difficult” data, due to its inherent enormous
variability.

The development of affordable non-invasive surface scanners (e.g. [6]) capa-
ble of capturing the shape and appearance of objects at video rate (“4D cam-
eras”) has recently provided the researchers in computer vision with a novel and
very valuable source of data. These instruments and the previously unattain-
able data that they provide, in turn, have opened the doors to a flood of
new ideas, inspired much interdisciplinary research, found a number of clever
applications, scientific, industrial, and medical, as well as caused the revival of
some of the familiar established techniques.



1.1. Motivation

Methods for automatic construction of craniofacial appearance models will
in the future underpin much of the orthodontics research, including realistic
modelling of influences of orthodontic treatment and injuries, predicting the
effects of ageing, simulation of surgical intervention, post-surgical evolution of
a patient’s appearance, optimisation of existing surgical procedures.

Outside of medicine, craniofacial appearance modelling also has a number
of important applications. One is motion analysis, including extraction of high-
level features (expression recognition) for purposes of biometrics and security
(recognition and identification, see Benedikt {20]). Another is advanced user
interfaces, which include facial expression driven control, lip-motion tracking to
potentially augment existing speech recognition engines. These are concerned
with facilitation of a man-machine interaction through reducing the need to
resort to traditional input devices and manipulators, such as keyboard or
mouse. Model-based video compression (Toelg and Poggio [271]) can be used
to transmit videos through very low-bandwidth channels. This can be useful
in video telephony if instead of transmitting a video stream only parsimonious
model parameters are transmitted and used on the receiving side to synthesise
the animated appearance of a person from a generative model. Synthesis of
highly realistic faces via a generative model of appearance in computer graphics
applications has commercial potential in video games and film industry.

Computer vision has been revolutionised by model-based methods which
have originated from the early 80’s. Instead of relying on some analytical —
algebraic, algorithmic or some other — description of objects, contemporary
model-based approaches are capable of describing appearance, properties or
features of objects in a parsimonious model which is learnt directly from images
of the objects (Gonzalez-Mora et al. [110]).

Currently, craniofacial modelling and animation are some of the most
important domains in computer vision and graphics. In recent years, the major
advances in digital imaging, both in acquisition and in processing, made it
possible for the human craniofacial complex to be studied in much greater detail
than has previously been possible. This study, for example, takes advantage of
the recent progress in the 3D scanning technology to gather data from which to
build computerised 3D models of human heads. With the advent of fast accurate
3D scanners [6] that provide non-invasive sequential capture capabilities at
video rate, it is possible to collect large amounts of real geometrical and
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colour data, which can be used to automatically build computerised models of
appearance, kinematics and dynamics. Previously available data acquisition
methods prevented research into craniofacial modelling that requires video-rate
3D data. Much of the relevant literature describes research using either static
2D images or short 2D sequences, and more recently — static 3D scans.
Scarcity of publications taking advantage of these new data sources suggests
that great potential exists now in the study of new methods, models and
algorithms applicable to more advanced modelling of craniofacial appearance.

Due to the fact that statistical modelling allows for automatic construction
of models (as opposed to hand-crafted ones which are inevitably inflexible and
often inaccurate) describing real-world data, adaptable statistical methods draw
more and more interest from the computer graphics and vision community.

While many kinds of appearance models have been proposed over the past
two decades, the question of automatic construction of good models (accurate,
with high specificity and generalisation ability) has only been raised recently.

The key step in statistical appearance modelling is establishing spatial
correspondences between examples in order that statistics on the corresponding
features may be computed — a process known as registration. This thesis
discusses the problem of groupwise non-rigid image registration, and its gen-
eralisation — groupwise non-rigid registration of surfaces, for the purpose of
appearance modelling,.

1.2 Main Contributions

The main contributions of this thesis are:

e A novel efficient stochastic algorithm for groupwise non-rigid registration
of images is presented. The proposed algorithm is shown to register
sizeable image ensembles quickly and more accurately than state of
the art methods. Experiments demonstrate the reliability of the pro-
posed approach on data with very high variability, in particular pio-
neering the notoriously difficult case of inter-subject registration. See
also Sidorov et al. [243)].

e A generalisation of the above algorithm to the case of textured 3D
surfaces. The proposed 3D registration algorithm retains all the desirable
properties of the above 2D algorithm and allows for groupwise non-rigid
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registration of 3D surfaces in a principled way. This opens new research
prospects by allowing a new valuable source of data to be leveraged:
textured 3D surfaces produced by video-rate surface scanners which have
recently gained popularity. See also Sidorov et al. [241,242,244].

e To show the usefulness of the proposed registration framework in ap-
pearance model building, a novel application of statistical appearance
modelling is presented: a faster than real-time quasi-mechanical simu-
lator of deformable objects using statistical constraints. Experiments
demonstrate the entire pipeline from acquisition, registration and model
building, to physically realistic real-time simulation of deformable objects.

1.3 List of Relevant Publications

¢ K. SIDOROV, S. RICHMOND, D. MARSHALL. An Efficient Stochastic
Approach to Groupwise Non-rigid Image Registration. In Proc. IEEE
Conf. on Comp. Vis. and Pat. Rec. (CVPR ’09), pages 2208-2213.
IEEE Computer Society, Los Alamitos, CA, USA, 2009.

¢ K. SiDOROV, S. RICHMOND, D. MARSHALL. Efficient Groupwise Non-
rigid Registration of Textured Surfaces. Accepted to IEEE Conf. on
Comp. Vis. and Pat. Rec. (CVPR 2011), 2011.

¢ K. SIDOROV, D. MARSHALL, S. RICHMOND. Nonrigid Image Registra-
tion Using Groupwise Methods. In C. H. Kau and S. Richmond (editors),
Three-Dimensional Imaging for Orthodontics and Mazillofacial Surgery,
pages 290-304. Blackwell Publishing Ltd., 2010. ISBN 9781405162401.

e K. A. SIDOROV, A.D. MARSHALL, P. L. RoSsIN, S. RiIcHMOND. To-
wards Efficient 3D facial Appearance Models. In D. Metax, J. Popovic
(editors), ACM SIGGRAPH Symposium on Computer Animation, 2007.

e K. A. SIDOROV, S. RICHMOND, A.D. MARSHALL. Statistically Con-
strained Real-time Meshless Simulation. (in preparation), 2010.

1.4 Organisation of the Thesis

The rest of the thesis is organised as follows.



1.4. Organisation of the Thesis

Chapter 3 describes the proposed framework for groupwise non-rigid
registration of ensembles of 2D images. A novel robust and efficient algo-
rithm is proposed that is capable of rapidly establishing correspondences
between a large set of images in a reliable and unsupervised fashion.
Chapter 4 extends the findings of chapter Chapter 3 and generalises the
proposed registration framework to registration of 3D surfaces.
Chapter 5 discusses a novel approach to pseudo-mechanical simulation,
based on employing statistical models, such as those build using the
framework of Chapter 4, to provide a very computationally cheap, faster
than real-time, unconditionally stable simulation of deformable objects.
Chapter 6 summarises the contributions and findings of this study and
establishes the foundation for potential future research.



CHAPTER

2

Background

Before attempting to create something
new, it is vital to have a good
appreciation of everything that already
exists in this field.

Mikhail Kalashnikov

HE purpose of this chapter is to place the research described in this
thesis into the broader context of the study of craniofacial modelling,
including the problem of image registration and simulation methods.

This thesis brings together and builds upon many ideas from computer vision,
statistics, computational geometry and even computational mechanics. An all
encompassing review of the literature related to these topics is therefore made
impossible not only by the vast amount of material accumulated over the years
in each of these fields, but also by the depth and breadth of these problems.
There are two main classes of approaches to craniofacial modelling. Ap-
proaches of the first class are concerned with modelling the craniofacial me-
chanics: measuring and modelling the material properties, construction of con-
stitutive mechanical models, and physical simulation. While these approaches
are perfectly valid and have found many applications, they are outside the
scope of this thesis and will only be briefly reviewed below, for context.
Approaches of the second class are concerned with modelling the appearance,
typically in a statistical framework, using only example imagery of the object
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as the input. These approaches play a very important role in computer vision
and are the main focus of this thesis. More precisely, this thesis focuses
not on the modelling itself, but on the key step required in construction
of appearance models — establishing correspondences between samples of a
deformable object, or registration. This is essential, because unsupervised
modelling typically involves analysis of multiple examples, and a meaningful
analysis is only possible if the spatial correspondences between examples are
known.

A brief overview of mechanical modelling, followed by the discussion of prop-
erties of craniofacial appearance, introduction to registration and a summary
of appearance modelling techniques are given below.

2.1 Mechanical Modelling of the Craniofacial Complex

Existing methods of measuring the mechanical properties (Young’s modulus,
Poisson’s ratio, Lamé parameters etc.) of living tissue are invasive to the degree
of being incompatible with the life of the subject (for example, dissection of
the head into small pieces before their Young’s moduli can be measured with
a dynamometer). Such measurements are indeed being made with dissected
human cadavers and other animals (pigs), which allows for development of
generalised, atlas-like mechanical models (Beldie et al. [18]). However, the latter
are of little use in medical practice where accurate subject-specific models
are required — in humans, the inter-subject variability in the craniofacial
proportions, in the character of fat deposits, and even the layout of muscle
tissue and ligaments is enormous (Wilkinson et al. [294]).

Modern non-invasive diagnostic tools, such as computed axial tomography
(CAT), magnetic resonance imaging (MRI) and other scanning techniques are
still of very limited use where automated measurement of tissue properties,
and especially the analysis of internal organisation (muscle attachment points,
fibre directions etc.) of the components of the head is required. Even if it was
not the case, practical difficulties would still exist in so measuring mechanical
properties of human soft tissue in bulk quantities by means of some robust
automated process, such as for conducting large-population latitudinal studies.

Furthermore, the knowledge of mechanical properties of human soft tissues
is still very limited. In particular, the behaviour of tissues in the presence of
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large deformations is poorly understood, as is the evolution of their mechanical
properties with time.

Despite acute interest in such mechanical craniofacial models and vast
theoretical support from the related fields of materials science, computational
mechanics, rheology etc., the history of mechanical craniofacial modelling over
the past 30 years has yielded poor results.

Hand-crafting of even a generic mechanical model of the human craniofacial
complex, suitable for simulation with a degree of realism and detail sufficiently
high for it to be useful in medical practice and research, is an extremely
challenging task, if not outright impossible. Simplification of the anatomy
represented by such hand-crafted models and numerous assumptions that will
have to be made about the properties of tissues in order to make the problem
tractable lead to insufficient degree of realism in simulation, despite the huge
amount of effort invested in building the models.

The pioneering work in modelling deformable surfaces and solids, particu-
larly in the domain of computer graphics, has been carried out by Terzopou-
los et al. [264], which arose wide interest in new efficient ways of mechanical
modelling and simulation within the CG community and stimulated further
research in accurate representation of material properties, questions of stability
in mechanical simulations and modelling advanced mechanical phenomena
(such as plasticity, fractures, viscosity etc.) Terzopoulos et al. [264] were first
to discuss practical (from the CG point of view) ways of discretisation of
the motion equations using finite difference approximations which produce
a linked system of ordinary differential equations (ODEs) and efficient ways
to numerically integrate such system over time. They foretold the increasing
importance of physically-based modelling of non-rigid curves, surfaces and
solids with properties similar to that of elastic materials in computer graphics
applications by demonstrating the computational tractability of that problem.
A number of attempts were made to drive a head model by simulating the
mechanical processes (e.g. muscle activations and contractions) thus providing
a biophysically meaningful basis for such models. One of the earliest such stud-
ies is presented in Waters [292], where modelling of simple muscle contraction
process suitable for generation of several varied facial expressions, controlled
by a limited number of parameters, is presented.



2.1. Mechanical Modelling of the Craniofacial Complex

Figure 2.1: Sifakis and Fedkiw [245] muscle structure and simulation mesh and their
deformable model fit to motion capture input (red and green are simulated and captured
markers respectively).

FIGURE 2.2: Illustration of the results by Sifakis ez al. [246]. Middle row: synthesis of facial
expression from speech. Top and bottom rows: simulation augmented with interaction of
the model with external objects.

Some of the more recent advances include Sifakis and Fedkiw [245], see,
where a finite element model simulation (configured by sampling deformations
of'the face surface over time) is used to determine the facial expression resulting
from muscle activations driving the associated rigid bones. Their model is
illustrated in Fig. 2.1. While simulating only 32 muscles of the face, this
model is extremely computationally expensive (requires 840 x 103 simplexes,
approximately 8 minutes per frame) and at the present time uses the quasistatic
(i.e. assuming equilibrium of forces at any given time) approximation to the
solution. Such models, however, can be trivially driven by various data sources;
for example, success is reported in speech simulation using such models, see
Sifakis et al. [246], also see Fig. 2.2. In reality, fast and accurate simulation
of elastic solids is still an open problem with a vast field of applications.
Teran et al. [263] present a novel quasistatic algorithm that alleviates geometric
and material indefiniteness allowing one to use fast conjugate gradient solvers
during Newton-Raphson iteration.
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FIGURE 2.3: Model of Kahler ez al. [138]. From left to right: head geometry with landmarks,
front and side views, skull and facial components, skull landmarks related to subset of skin
landmarks, detailed view.

A real time solution to realistic and non-linear deformations of elastic
bodies is presented by Allen et al. [7], where a model of human body shape
variation, learnt from a corpus of 3D range scans, is used to capture both
identity-dependent and pose-dependent shape variation in a correlated fashion.

Another anthropometrically meaningful model with anatomical structure
capable of real-time physics-based simulation and animation is presented by
Kahler et al. in [138]. Their model is deformable through landmark data
and adapts the underlying muscle and bone structure to match the deformed
model. Their model (see Fig. 2.3) comprises a skin surface (approximated by
a triangle mesh), a set of 24 virtual muscles capable of contracting in linear or
circular fashion, a solid skull with rotatable mandible and a mass-spring model
connecting skin, muscles and skull. In addition, they have experimented with
fitting their model to imperfect scan data and also with simulation of head
deformations due to ageing.

The problem of mechanical modelling of the craniofacial complex has been
attempted by Teschner et al. [266,267] with limited success. They present
a simple system for interactive craniofacial surgery simulation, in particular
of osteotomies of the facial and skull bones and for prediction of soft-tissue
changes caused by bone movement. The system utilises radiometric data
(CAT scanning) as well as pre-operative appearance data obtained from a laser
scanner. Their system uses a simplistic elastic spring model to represent the
mechanical properties of the multi-layer soft tissue. The model also attempts
to represent additional features such as skin turgor, gravity and sliding bone
contact.

In addition, a significant effort has been made in the recent years at INRIA
(Epidaure Group) related to mechanical simulation of soft tissues for interactive
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Figure 2.4: Laparoscopic surgery simulation (Picinbono et al. [210]).

surgery and other medical simulations. They have, in particular, developed a
minimally invasive hepatic surgery simulator prototype (see Fig. 2.4). A vast
list of publications resulted from this project includes Cotin and Delingette [70],
Picinbono et al. [210,211] and others. They are addressing two problems of
virtual surgery simulation: first, the geometrical and physical model of the
human organs must be very realistic; second, the model and simulation methods
must be sufficiently efficient to allow for real-time simulations. They find a
compromise in a novel deformable model based on non-linear elasticity and
FE simulation. They utilise non-linear tensor-mass model. Stiffness tensors
are pre-computed before the simulation. During the simulation, forces for each
vertex, edge, face and tetrahedron are computed from the model state and are
used to find the vertex positions in the next iteration. Like Teschner et al. [268],
they use explicit integration scheme to compute vertex positions from elastic
forces.

It is worth mentioning a dynamic simulation framework for topology-
changing deformable material, presented in Gissler [107]. Their model is
based on corotational FE approach for linear elasticity and plasticity, with
geometric constraints. Topology changes that are modelled in the paper
comprise fracturing and merging of deformable objects.

Koch and Bosshard [149] proposes a system for synthesis of facial ex-
pressions through superposition of facial actions in real-time. Notably, their
approach utilises biometric data for the FE simulation and takes into account
facial anatomy when defining muscle groups.

The challenges of the mechanical approach to craniofacial modelling lead us
to search for the solution in the field of computer vision. Some of the existing
computer vision techniques proved to be highly useful tools for modelling of
appearance (see e.g. Section 2.5) and great potential for further development
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FIGURE 2.5: Anatomical structures of the face can undergo highly non-rigid deformations
when expressing emotions and cognitive state.

exists, as indicated by the strong interest of the scientific community in such
methods. Looking at the problem from the computer vision point of view
allows for better utilisation of available data sources, such as 3D scanners.
Many of the modelling techniques in computer vision have a wider range of
applications, for example in computer graphics, and so are not limited to

medical problems.

2.2 Appearance of the Face

The face is the frontal part of the human craniofacial complex. It houses
important sensory organs, the exterior part of the speech-production apparatus,
and the entrance to the alimentary canal. The face is the most individual
part of the human body and its appearance exhibits enormous inter-personal
variability (faces convey identity) as well as temporal intra-personal variability:
faces deform to convey emotions (Fig. 2.5), during speech production, and
mastication.

In more detail, the variability of the craniofacial appearance is discussed
by Pantic in [197], where a classification of “facial signals” is proposed. For
example, relatively permanent features of the face, such as overall proportions
or the layout of the fat tissues, are static signals, at least within the subject, but
may significantly vary between subjects. Slow evolution ofthe facial appearance,
such as development of wrinkles due to ageing, is classified in Pantic [197]
as slow signals, and such signals are of significance in longitudinal studies.
Noticeable changes in facial appearance due do neuromuscular activity, such
as speech, expression of emotions and blushing, are called rapid signals. The
human face owes its vast repertoire of possible deformations to the complexity

of the underlying musculature, Fig. 2.6. In addition to the above time-varying
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Figure 2.6: Muscles of head, face, and neck. Image from Gray’s Anatomy [112].

signals, Pantic [197] also considers artificial signals. They include varying
exogenous features of the face, such as make-up or glasses.

In order to study the variation in appearance of the face, one must learn
to extract and aggregate useful information from ensembles of facial images
that show the variation of the face. This topic is discussed next.

2.3 Image Registration

In many imaging and computer-vision problems, it is often the case that
important information is contained in more than one image. To properly
extract and integrate the valuable information from an ensemble of comple-
mentary images, a procedure called image registration is employed (Fischer
and Modersitzki [98]).

Image registration is a process of computing the spatial transformations that
bring two or more images into correspondence, so that the analogous features
match. In the literature, image registration is occasionally referred to as spatial
normalisationl, particularly in the field of medical imaging (Park et al. [198]),
the correspondence problem, or image alignment, though more frequently

1More correctly, spatial normalisation includes first registration, to find the transfor-
mations between images, and then actually applying these transformations to warp the
images.
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the latter implies that only global transformations are being searched for.
In this thesis, the terms image registration and image alignment are used
interchangeably, to avoid monotony, referring to the general, non-rigid, case of
the problem. Image registration is a fundamental problem in computer vision
and is presently being used in a variety of applications. Examples include:
medical imaging (Maintz and Viergever [173], Twining et al. [277]), modelling
of facial dynamics (Cootes et al. [66]), character recognition (Miller et al. [182],
Learned-Miller [156]), fusion of multi-sensor, multi-resolution, multi-temporal
and multi-frequency imagery obtained from Earth observation satellites (Pohl
and Van Genderen [214]), augmented reality (Hoff et al. [128]).

During the past twenty years, the registration problem has been drawing
increasingly more attention from researchers, as the increase in the available
raw computing power made practical solutions to the problem a possibility, as
well as opened a number of important applications.

So far, a general theory or a unified treatment for all aspects of the
registration problem has not yet been established; and so, over the years a vast
range of techniques have been developed for registration of various kinds of
imagery and for various applications (Fischer and Modersitzki [98]).

While humans possess the remarkable ability for accurate and fast registra-
tion of images (including solving the stereopsis problem all the time in real
time!), teaching computers the same skill turns out to be a very difficult task.
Incidentally, human capacity for image registration sets the upper bound on
the complexity of the problem: it is definitely soluble.

2.3.1 Taxonomy of Image Registration

Many of the vast number of registration techniques can be categorised according
to the important properties of the algorithm used, and according to the nature
of the imagery to which they are applicable. A crude classification is given
below. A more detailed taxonomy and review can be found in Zitova and
Flusser [303].

BY SEPARATION. Depending on the application domain, images being regis-
tered can be spatially or temporally separated, or both, and can be acquired
with sensors of different modalities (Zitova and Flusser [303]). Spatial separa-

tion of images can be due to the relative motion of the camera and the scene,
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or due to the acquisition being performed with multiple spatially separated
cameras (Hartley and Zisserman [124]).

Examples of registration of images that are spatially separated include:
solving the stereopsis problem (shape from stereo), which involves establishing
dense correspondence between a pair of stereo images to compute the stereo
disparities and, therefore, depth (Ogale and Aloimonos [195], Scharstein and
Szeliski [230], Moravec et al. [185]); stitching panoramic or high-resolution im-
ages together out of several smaller images (Szeliski [259], Noirfalise et al. [192]),
and similarly surfaces? (Levoy et al. [161], Curless and Levoy [75]).

Examples of the registration of temporally separated images include: medi-
cal imaging (especially longitudinal studies for change detection and quantifica-
tion (Leow et al. [160]), monitoring of tumour development (Angelini et al. [10]),
study of the effects of ageing on the craniofacial complex (Andresen et al. [9]),
computer-aided surgery (Archip [11]), and others); surveillance and biometrics
(Benedikt [20]); statistical appearance modelling (Cootes et al. [66]) for anima-
tion (Cosker [68]), model-based video compression (Toegl and Poggio [271]),
and even study of emotion psychology (Cosker et al. [69]).

In any case, the scenes in the images to be registered undergo some kind of
evolution, in time or space, including substitution of the subject (for example,
inter-subject registration of facial images of several people in a latitudinal
study).

By INTERACTIVITY. Image registration can be performed in a manual, a
semi-automatic, or an automatic way. Tedious manual registration is sometimes
used in medical imaging, in applications for which automatic registration is not
yet feasible. While manual annotation of 2D images is possible, despite being
a laborious task, annotating higher-dimensional imagery is usually impractical.
Furthermore, manual annotation leads to suboptimal models, in addition to
being prone to subjective biases, as shown in Davies et al. [78]. Semi-automatic
approaches typically involve a less laborious manual bootstrapping stage, such
as placing a small number of landmarks or labelling the key features, to
initialise, guide, or constrain the consequent automatic registration. This
thesis is concerned only with the fully automatic methods.

2In this thesis, 3D surface scans are regarded just as a special kind of imagery.
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By MobpALITY. According to whether a registration method is applicable to
the images that were acquired with the same or different type of equipment or
probes, the registration methods are classified into multimodal and unimodal.
The various image modalities include: ordinary photographic imaging, Rént-
gen ray imaging, sonography, radar imagery, CAT, MRI, positron emission
tomography (PET) and others. A special case of multi-modal registration is
matching 2D images against 3D scenes (Walli and Rhody [288]).

Another special case of image registration is the registration of novel images
to some prior model. This includes atlas lookup (for example registering
and comparing CAT scans of a human brain with a healthy brain from an
anatomical atlas), and even, in a much more general sense, certain types of
model-based recognition and image interpretation tasks in computer vision:
fitting an Active Appearance Model (AAM) (Cootes et al. [61], Cootes and
Taylor [59]) or Morphable Model (MM) (Blanz and Vetter [28]) to novel
images is an example, regarding AAM to be just a special way (modality) of
representing images.

By DEFORMATION MODEL. Image registration methods are also classified
according to the space of admissible spatial deformations that is being searched.
In some cases only rigid or affine® deformations are considered, such as when
mosaicing images (Szeliski [259]), and in other cases a more complex model of
deformations is used. The former class models only the global transformations
(such as translation, rotation and scaling) which apply to the entire images.
The latter broad class, termed non-rigid registration, or sometimes elastic, or
non-linear registration, capable of modelling local geometric transformations
between images, is of special interest in the context of this thesis. The
various deformation models for non-rigid registration will be discussed in detail
in Section 3.4.1.

BY FEATURE UNDERSTANDING. According to the way in which the image
features are treated, the registration algorithms are classified into feature-based
and area-based (sometimes also called intensity-based).

Feature-based methods for image alignfnent rely on detection and matching
of salient features (such as edges, corners, points of high curvature) in the

3In the literature, the term rigid registration, as opposed to non-rigid registration, is
often confusingly used to indicate that the affine deformation model is used, not necessarily
rigid!

17



2.3. Image Registration

images. After the correspondence between a number of features in the images
is found, the sought transformation, which brings images into dense point by
point correspondence, is then computed by interpolation between features. For
example in Benedikt [20] fiducial points on 3D scans of the face (nasion and
the eye cavities) are extracted using Gaussian curvature and mean curvature
invariants, and are used to bring a corpus of 3D scans into crude alignment. In
Jiang and Yu [133], an interesting algorithm is proposed for simultaneous feature
point detection, matching and estimation of global geometrical transformations
for tracking of objects in videos. A classical method, Scale-Invariant Feature
Transform (SIFT), is used in Péchaud et al. [201] to extract key points in
vasculature images and use them for non-rigid registration; in Cheng et al. [56]
a matching method based on Belief Propagation (BP) to improve upon the
traditional SIFT-based registration methods is discussed.

In contrast, area-based approaches register the images without first detect-
ing any salient features. Instead, intensity information from the entire images,
or large areas thereof, is used to estimate correspondences. These methods
rely on some kind of intensity-based objective function that evaluates the qual-
ity of alignment given the images and the computed spatial transformations
between them. This information is used to drive the search for the solution.
The various objective functions used in intensity-based registration will be
discussed in Section 3.4.2, and the various approaches to searching for the
optimal solution will be discussed in Section 3.4.3.

By MULTIPLICITY PARADIGM. According to the number of images being
registered simultaneously, image registration methods are subdivided into
pairwise and groupwise. Given two images, pairwise registration finds the
suitable transformations that bring one of the images, called the target (or
template, or sensed) image, in correspondence with the other (source image),
chosen as the reference. Note that when multiple images are being registered
by aligning them one at a time to a single reference image, it still constitutes
just the repeated pairwise registration, see discussion in Section 3.2.

In contrast, the groupwise registration, given an ensemble of images, aims
to bring all the images into correspondence with each other simultaneously,
by using as much as possible of the available information from all the images
together to guide the registration.
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Note that in practical problems, various combinations of the above or-
thogonal classes of registration may occur. For example, multimodal pairwise
non-rigid registration of MRI cardiac scans against a reference CAT scan in
O’Donnell et al. [194], or unimodal groupwise affine alignment of handwritten
digits in Learned-Miller [156].

This thesis is primarily concerned with fully automatic groupwise non-rigid
unimodal area-based registration of images (Chapter 3) and surfaces (Chap-
ter 4). The background for non-rigid image registration and the review of
literature are found in Section 3.4.

2.4 Dimensionality Reduction Techniques

When dealing with visual data, one is usually given a large set of very low-level
features, such as measurements of light intensity?, taken at sufficiently small
spatial intervals — pixels or voxels. As the resolution of imaging increases, and
so does the size of images, it becomes necessary to preserve only those attributes
of images that are relevant for the task at hand, discarding unnecessary
information (Gonzalez-Mora et al. [110]). This explains the usefulness of
subspace dimensionality reduction methods in modelling imagery, the topic
which is discussed next.

Let I« be an r-by-c grayscale image®. It can also be represented as a vector
v € R™*¢ by scanning the pixels of the image in some predefined order and
concatenating them into a vector, written using the notation from Table 2 as
v = reshape,.,; . So, an 7-by-c image is a point in rc-dimensional Euclidean
space and an ensemble of such images corresponds to a point cloud in this
space.

Under the assumption that an ensemble of images is far from being randomly
distributed in the R"*¢ space, dimensionality reduction techniques are applied
to find a low-dimensional subspace spanned by the images.

Below the “workhorse” of the linear dimensionality reduction techniques,
Principal Component Analysis (PCA), ubiquitous in computer vision, will

40Other modalities are, of course, possible, such as Rontgen ray imaging, MRI, PET,
CAT, sonograms, etc.

5To simplify notation, it will frequently be convenient to assume the images to be
grayscale, stored in matrices, with one real number per pixel describing its intensity. In
cases when having multiple components (e.g. red, green, blue) per pixel is significant, the
vector-valued matrix notation for such multi-channel images will be used.

19



2.4. Dimensionality Reduction Techniques

be reviewed, leading to the explanation of some of the classical appearance
modelling techniques which are based on PCA.

2.4.1 Principal Component Analysis

The probability density function (PDF) of a random variable v € R" that has
the multivariate normal distribution is expressed as a multivariate Gaussian:

1 (=) TC-! (x—

G(x%, 4, Cnxn) = me( 28 Coxn ")), (2.1)
where n is the dimensionality of the space, R", x is any point in R"®, and the
distribution is characterised by its centre p and its positive-definite covariance
matrix C,xn-

The term eigenspace model or simply eigenmodel is sometimes used to
refer to such a multidimensional Gaussian distribution (Hicks [126]). Under
the assumption that points x; € R” have normal multivariate distribution, the
eigenmodel can built,

€= {l"'a Unxn, Lnxn}a (22)

which comprises the origin p of the data x; in the original space, u € R™; a
spanning basis of the eigenspace, defined by the matrix U, y, where columns
are orthonormal basis vectors, called eigenvectors, coinciding with the axes of
the Gaussian; and n eigenvalues, specifying the extent of the Gaussian along
the corresponding basis vectors, for convenience stored on the main diagonal
of matrix L.

Given an observation matrix O, the eigenmodel, Eq. (2.2), is built using
the discrete Karhunen-Loéve transform (KLT), more frequently referred to
as PCA in computer vision literature. More correctly, KLT refers to the
transformation of the observations, O, into the new coordinate space defined
by the eigenvectors U in Eq. (2.2).

PCA is a classical technique in statistics, invented as early as 1901 (Pear-
son [200]). Given an observation matrix Oy x, with columns corresponding to
observations, its mean is expressed as u = %Onx k1lkx1 and the corresponding
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2.4. Dimensionality Reduction Techniques

centered observation matrix is therefore O = O — plixk. The covariance
matrix, C, is then

1anp 1 1 1 T
00" = - (0 - E(Onxklkxl)llxk) (O - E(OnXklkXI)llﬂc) :

k k
(2.3)
The new basis, U, is obtained by decomposing O into O = ULU-! (= ULU7,
since U is orthonormal) using eigenvalue decomposition (EVD), the numerical

Cnxn =

solution to which was first proposed by Ky6nanosckas (Kublanovskaya) [305].
Let A be the vector of the eigenvalues: A = diag L. Assume also that the eigen-
values are sorted by magnitude in descending order, A(1) > A(2) > ... > A(n),
and the corresponding eigenvectors u;, us, .. ., u,, constituting the columns of
U, are also sorted in the same order. Projection of a vector x € R™, into the
eigenspace takes the form

p=UT(x—p), (24)

and since orthonormality of U implies U~! = UT, the reverse operation, pro-
jection from the eigenspace to the original space, is then

x = Up+ p. (2.5)

The Empirical Rule (Ross [225]) states that &~ 99.7% of the normally distributed
data lies within three SDs of the mean. Therefore, a linear combination of
the eigenvectors with no eigenvector contributing more than three times the
square root of the corresponding eigenvalue is sufficient to represent ~ 99.7%
of the normally distributed data (Hicks [126]). Because of this, PCA can be
used to reduce the dimensionality by simply discarding the eigenvectors that
do not significantly contribute to the linear combination.

Having sorted the eigenvalues and having rearranged the corresponding
eigenvectors (columns of U), one can discard the least significant ones, respon-
sible for the least amount of variation, keeping only m most important basis
vectors, m < n, thus: the reduced basis U;,,,, = U(:,1...m). Each original
data point x; € R" can be approximately described by a lower-dimensional
parameter vector, p’ € R™, by projecting it into the reduced dimensionality
eigenspace:

P =U7(x-p), (2.6)
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and, conversely, the original data points can be approximated using the reduced
dimensionality parameters p’, by unprojecting them back to the original space:

x ~ U'p’ + pu. (2.7)

As it is often the case with applying eigenanalysis to ensembles of images,
there are usually much fewer samples then there are dimensions in each sample.
If each r-by-c image is represented by a vector x € R™*¢, with r and c typically
a few hundred (pixels) each, and there are n images, yielding n < rc, the
covariance matrix would be of size rc X rc, i.e. very large. Since time complexity
of finding eigenvectors and eigenvalues requires cubic time, O((rc)?), in the size
of the covariance matrix (see Ky6manosckas (Kublanovskaya) [305]), the direct
approach to PCA described above becomes prohibitive. Luckily, as detailed in
Cootes and Taylor [59], there is a procedure for computing the eigenvectors and
eigenvalues from a much smaller n X n covariance matrix. Suppose Orexn 18 a
centered observation matrix and C = %()()T is the corresponding covariance
matrix, as in Eq. (2.3). Now let T be an n-by-n matrix T = 10T0. Then if
e, €y, ..., €, are the eigenvectors of T then vectors Oel, éez, ey Oe,, are
the eigenvectors of C (but they are not necessarily normalised to unit length).

Note, also, that a fast Expectation-Maximisation (EM)-based method for
performing PCA without solving the eigenvalue problem has been reported
by Roweis in [226]. It relies on probabilistic arguments and allows to very
efficiently, in both space and time, compute a small number of eigenvectors
and eigenvalues from large sets of data.

Further, methods for incremental PCA and for manipulating eigenspaces
are presented by Hall et al. in [121-123]. In particular, in Hall et al. [121], a
novel approach is proposed for merging two eigenmodels, each representing
a set of observations, to yield a new model representing the union of these
sets. These ideas can be used for making on-line modifications to the existing
eigenmodel.

2.5 Statistical Models of Appearance

The early work of Sirovich and Kirby [247] has pioneered modelling of ensembles
of images (there, they experimented with face images) using subspace methods
(PCA). In Sirovich and Kirby [247], it was remarked for the first time that
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2.5. Statistical Models of Appearance

the manifold of all faces has a much lower dimensionality than the space of
all pictures of the same size (in their particular experiments, the space of all
images is R'28%128 and they observe that a linear combination of fewer than 100
eigenpictures is usually sufficient to describe any picture of a face), and they
also note that this is even more true if the face images are compartmentalised
and a separate eigenmodel is used to model each part (left eye, right eye, nose,
mouth, etc.). The economy of such compartmentalised model is compared to
the way facial features of family members are described (“he has the eyes of his
father”). Moreover, they speculate that this is perhaps related to the way the
human visual system performs recognition tasks, although no proof is given.

EIGENFACES. Another notable early model of craniofacial appearance, called
eigenfaces, was proposed by Turk and Pentland in [274]. There, PCA is also
applied directly to a corpus of images that are not shape-normalised and the
resulting statistical model is used for classification and recognition of faces.
The early historical examples of Turk and Pentland [274] as well as Sirovich
and Kirby [247] have demonstrated the usefulness of statistical methods for
modelling of facial imagery and became a foundation of which later more
advanced modelling techniques were devised. A related technique, also for face
recognition, but based on Linear Discriminant Analysis (LDA) instead of PCA
was proposed in Belhumeur et al. [19] and is called Fisherfaces.

Facial recognition is indeed an important application of facial modelling.
In the seminal papers by Turk and Pentland [274,275], a system is described
that is capable of performing a near real-time location and tracking of subjects’
faces, followed by recognition, based on projecting face images onto the feature
space (eigenspace) that spans the significant variations in a training set of
face images. The recognition is achieved by comparing the low-dimensional
parameter vector, as in Eq. (2.6), of the face in question to that of the faces in
the database. The term eigenfaces was also coined in Turk and Pentland [274].
Note that in Turk and Pentland [274] no registration of face images is performed
when building the eigenmodel of the reference set, only a crude rigid alignment.
Thus, the per-pixel statistical computations on images are very approximate;
this might be sufficient for classification and recognition, but is not good
enough for most other purposes. In addition, they make strong assumptions
about the orientation of novel faces (faces are upright, frontal view), only
scaling of faces is performed when matching the face parameters against the
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database. Despite many limitations the original eigenfaces approach of Turk
and Pentland [274] is still an important early example of modelling face images
with dimensionality reducing statistical techniques.

Frequently, when the application at hand is model-based recognition or
classification, it is possible to achieve satisfactory performance with a relatively
poor model built with only a very rudimentary spatial normalisation of training
examples. This is exemplified by the above mentioned work of Turk and
Pentland [274], as well as by a more recent work of Chang et al. [52-54] and
Bowyer et al. [37]. The latter works investigate, in particular, the advantages
of using a combination of 2D and 3D models of appearance for recognition and
show that such approach is superior to using either of the modalities alone.

FISHERFACES. Another approach to the problem of classification, comparable
to Turk and Pentland [274] but based on Fisher’s Linear Discriminant (FLD)
instead of PCA to achieve greater between-class scatter in the low-dimensional
projection and, thus, simplify classification, is presented in Belhumeur et al. [19].
Their approach is reported to be less sensitive than that of Turk and Pent-
land [274] to large variation in lighting direction and facial expressions, due
to better separation of classes in the low-dimensional space achieved by FLD.
The term Fisherfaces was also coined in Belhumeur et al. [19)].

The application of kernel methods for learning low-dimensional representa-
tion of faces for the task of recognition is investigated in Yang [296], where
two novel methods are proposed, termed Kernel Eigenfaces (KE) and Kernel
Fisherfaces (KF), based on the Kernel Principal Component Analysis (KPCA)
and Kernel Fisher’s Linear Discriminant (KFLD) respectively, which are a
generalisation of PCA and FLD in the sense that to find the projection di-
rections they take the higher order correlation of samples into account. The
experiments conducted in Yang [296] demonstrate the superior performance of
kernel methods in face recognition over the classical approaches in terms of
representation of ensembles of images and lower recognition error rates.

2.5.1 Active Appearance Models

A powerful generative method for modelling deformable objects, Active Ap-
pearance Models (AAMs) were first proposed by Cootes et al. [60,61] as an
extension to the earlier Active Shape Models (ASMs) of Cootes et al. [65].
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The key idea behind AAMs, as a generative model of images, is to encode
in a single appearance parameter vector both the pixel intensities (texture)
and shape information (spatial deformations) of the images. Both models of
shape and texture are linear, but their combination yields a nonlinear model
(Kokkinos and Yuille [150]).

In natural time-varying imagery, videos, a lot of energy in pixel variation
can be explained in terms of movement of parts of, or of the entire images —
this is well known from the video compression literature (Netravali and Rob-
bins [191]). For example, the Moving Picture Experts Group (MPEG) video
compression algorithm uses motion compensation, the crudest form of shape
normalisation, on small blocks of 8-by-8 or 16-by-16 pixels to parsimoniously
explain and encode a significant portion of variation in pixel intensities arising
from movement of objects in a video, before encoding the residual variation
with a JPEG-like compression. Also, a curious example of this principle is
found in Black et al. [24] where the change of appearance of a mouth is modelled
as a mixture of the learnt motion (optical flow) and “iconic” model (texture
variation). They experimentally show that a model based on factoring the
changes in pixel intensities into two separate causes — smooth motion of pixels
and “iconic” change in pixel intensities — has a much greater representation
power.

This property of time-varying imagery, that it is often possible to encode
local, relative, motion of parts of the images (such as when an object undergoes
some deformation) and the residual appearance variation much more parsimo-
niously than to encode the appearance variation directly, is exploited AAMs
use to compactly represent ensembles of images.

A good overview of AAMs is found in Cootes et al. [61] and in even more
detail the AAMs are exposed in the ongoing report of Cootes and Taylor [59].
For completeness and to establish the nomenclature, the idea of AAMs is
summarised here (for a 2D case, to simplify explanation).

Suppose an ensemble of n images I,(i)(c of r-by-c pixels each is given. Assume
also that the correspondence problem is somehow solved and that the corre-
spondences between the positions of some control points have been established,
k points in each image. Let the coordinates of the j-th control point in the
i-th image be pg.i) € R2. Let vectors

i i 3 i i i T
8, = (pg )(1)’ pg )(2)’ pg)(l): pg )(2)) ey pgc)(l)’ ch)(l)) (28)
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represent the ensembles of control points in each i-th image as a vector in
R?, call them the shape vectors. By solving the Procrustes problem (see
Bookstein [33] or Seber [235]), the shapes s; are brought into alignment and
the average shape § is computed:

-1 _
s = ;ZS;. (29)

The images are then warped, see Section 3.4.1, to the mean shape (a process
called shape normalisation by Cootes and Taylor [59]) to obtain a new set
of “shape-free” images 1. Let vectors t; = reshape,,,; i) represent the
vectorised shape-free images I6) as points in R™¢, and let the mean shape-free

image be
=1 3t (2.10)
niz1

After concatenating the shape vectors and the texture vectors into the cor-
responding observation matrices, applying PCA as in Section 2.4 yields two
linear models of the same form as in Eq. (2.7), one for the shape, and one for
the shape-free texture:

t ~Ep,+1 (2.11)
s ~ E;p, +§, (2.12)

where E; and E; are the matrices whose columns comprise several most impor-
tant basis vectors, p, and p, are vectors of parameters that parsimoniously
summarise every example of shape and texture respectively; the “~” sign
indicates that the new basis has reduced dimensionality and the unprojection
is therefore inexact. To find further correlation between shape and texture,
a combined appearance model is built by applying PCA to the concatenated
shape and texture parameters vectors, to find the basis E. of the combined

po=| P J_oge=| B, (2.13)
tht E.

where W, is a scaling matrix to account for difference in units, c is a vector of

model:

parameters for the combined model. In practice (Cootes and Taylor [59]), W,

_ l Zi A7) o
W, = S () diag1. (2.14)
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—3a mean -fer Synth. Real

(a) First three modes of appearance variation, (b) Comparison of real

+3cr from the mean. Yellow dots are the con- images against synthesised

trol points used to shape-normalise the images, ones, using the first four
eigenvectors.

Figure 2.7: Demonstration of images synthesised by the classical 2D AAM.

The shape and texture can now be controlled just by the parameter vector c:

s(c) « E*"E*c+ s (2.15)
t(c) wEtW ErfC + i (2.16)

AAMs have beenpreviously used for modelling ofcraniofacial appearance
(Cootes and Taylor[64],Edwards et al. [92], Gross et al[114-116]), with
applications in face tracking, recognition, synthesis, video-assisted speech
recognition (Matthews et al. [180], Lan et al. [153]) etc. Despite their simplicity,
AAMs remain one of the state of the art modelling approaches due to their
representational power and computational efficiency (Gonzalez-Mora [110]).

An extension to AAMs is proposed by Gonzalez-Mora et al. in [110] where
it is termed Bilinear Active Appearance Model (BAAM). The idea behind
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BAAM is to decouple changes due to pose and expression (or identity). Com-
pared to the basic linear AAM, generalisation ability, as well as convergence
performance, when fitting the model to new images, are improved with BAAMs,
as demonstrated in Gonzalez-Mora et al. [110], in addition to better robustness
to pose changes when applied to the task of recognition. An excellent review
of AAMs, which includes a summary of their applications and various recent
advances and improvements, is presented by Gao et al. in [102].

Cosker et al. [69] have used a special kind of AAM, built from an artificial
training ensemble composed of a number of subsets of face images, such that
within each subset only a specific part of the face (left eye, right eye, mouth,
forehead, etc.) undergoes deformation while the rest of the face is artificially
set to a neutral expression. The purpose of the model in Cosker et al. [69]
is to investigate realistic facial dynamics based on the psychological analysis
of real people and to determine the relative contribution of various facial
actions to the resulting perception and psychological judgement, see Fig. 2.9.
Cosker et al. [69] argue that there exists a significant difference between simply
recognising a facial expression or action and truly believing in their genuineness.
Applications of the results due to Cosker et al. [69] include synthesis of ultra-
realistic facial animations (e.g. in computer games), and, conversely, automatic
evaluation of authenticity of facial expressions and actions in existing video
sequences.

Bettinger and Cootes [22] further applies AAMs to model and investigate
facial behaviour which is regarded as a sequence of short actions (samples
from a statistical model representing the action’s variability). Variable-length
Markov models are used to define the ordering of actions, and are trained from
long video sequences of a talking face.

A conceptually similar geometry-driven facial expression synthesis sys-
tem is presented by Zhang [300], capable of automatically augmenting the
performance-driven appearance with additional details (e.g. wrinkles).

2.6 3D Models of Appearance

The author of this thesis has first proposed an efficient extension of 2D appear-
ance models for modelling of 3D surfaces in Sidorov et al. [242].
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Neutral Caricature Male Female

Smile Frown Weight Hooked nose

(b) Top row: fitting a MM to an image
(left). Bottom row: rendering MM back
into the image.

(a) Various modes of variations in a
model of a single face [28].

Figure 2.8: Morphable Models of [28]
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Figure 2.9: Top: Distinct facial actions synthesised by the appearance model. Middle:
Result of tracking of a real person’s performance using the appearance model (value of the
feature parameters). Bottom: Value of the most significant feature parameter tracked from
a real person performing a real and a fake smile. Image from Cosker et al. [69],

A closely related class of models, a powerful technique for modelling textured
3D faces, proposed in the seminal paper by Blanz and Vetter [28] is named
Morphable Model (MM). It is similar to AAM, except it uses separate models
for shape and texture. Blanz and Vetter [28] derive a morphable face model
from an example set of 3D faces by transforming the texture and shape of
the samples into a vector space representation. The model is then capable of
synthesising new faces by forming the linear combination of the prototypes.

29



2.7. Summary

Related research done by Blanz et al. [27] resulted in a system that estimates
3D shape and texture along with other scene parameters from single images
and is capable of exchanging faces across large differences in the viewpoint and
illumination with minimal manual interaction.

In [26] Blanz et al. utilise their morphable model for PCA-based represen-
tation of faces, with applications including face recognition from 3D scans.

Ageing modelling and prediction is also an expanding area of research.
In Scherbaum [231], for example, an automated algorithm is described for
prediction of children’s facial growth based on an example-driven approach.
They claim that it is possible to estimate an age-progressed 3D head of a
person from a single photograph at the present age.

2.7 Summary

In this chapter, the work described in this thesis was placed in the broader
context of appearance modelling and its application. Mechanical models, even
though outside the scope of this thesis, were briefly discussed to prepare the
reader for Chapter 5 in which statistical models are applied to quasi-mechanical
simulation.

Since this thesis focuses on automatic preparation of statistical appear-
ance models, the appearance of the face was discussed in general terms, to
emphasise the difficulty of the problem, and some well established statistical
appearance modelling techniques were reviewed in order to give the reader a
better understanding of the importance of registration (spatial normalisation)
for the task at hand.

The problem of registration itself was reviewed and a brief taxonomy of
registration methods was given, to establish terminology and to place the
subsequent chapters in the broader context of image and surface registration
literature.

The next chapter, in which a novel stochastic algorithm for groupwise
non-rigid image registration is proposed, begins with a more thorough review
of techniques specific to this particular problem.
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CHAPTER

3

Groupwise Registration of
Images

In Soviet Russia, images register you.

Yakov Smirnoff

In this chapter, the groupwise registration of ensembles of 2D images
is discussed. After presenting the background and the relevant work, the
exposition proceeds to introduce the main contribution: a novel, fast and
reliable, fully unsupervised stochastic algorithm to search for optimal dense
groupwise correspondence in large sets of unlabelled images.

The efficiency of the proposed approach stems from novel dimensionality
reduction techniques specific to the problem of groupwise image registra-
tion, intimate integration of the deformation model and the optimisation
regime, and from comparative insensitivity of the adopted optimisation scheme
(Simultaneous Perturbation Stochastic Approximation (SPSA)) to the high
dimensionality of the search space.

The chapter concludes with the evaluation of the proposed method, which
demonstrates high robustness and success rate, fast convergence on various
types of test data, including facial images featuring large degrees of both inter-
and intra-subject variation. Further, considerable improvement in terms of
accuracy of solution and speed compared to traditional methods is shown.

Due to the robustness of the proposed approach it is capable of performing
inter-subject groupwise registration of face images: a corpus of individual face
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images is taken and successfully registered. This is a pioneering achievement:
for the first time in the world the automatic non-rigid registration of data
possessing such variety has been reported in our paper, Sidorov et al. [243] (in
CVPR ’09), on which this chapter is based.

Additionally, the proposed algorithm is formulated in a way which admits
efficient implementation. In particular, it is readily suited to implementation

on graphics processing units (GPUs), see Section 3.5.12.

3.1 Introduction

One of the primary concerns of computer vision is understanding of images.
A special case of that is understanding of ensembles of images. Either to
directly analyse variation across the ensemble, or to construct a statistical
model explaining the variation, the key technique (Cootes et al. [67]) in
computer vision is to first establish the dense, pixel-to-pixel, correspondences
between the images, in other words to register them. The fundamental challenge
is to find the dense correspondences between images of deformable objects
automatically.

Registration of image ensembles has now become an important problem
in computer vision, with numerous applications ranging from character recog-
nition (Learned-Miller [156], Miller [182]), medical imaging (Marsland and
Twining [174], Twining et al. [277]), to modelling of facial dynamics (Coo-
tes et al. [66]). Typically, such applications involve the analysis of deformable
structure in groups of images and the construction of some statistical model of
appearance (Davies et al. [76]). Registration allows the information about the
deformations between images, implicitly contained in the image ensemble, to
be quantitatively studied (Marsland and Twining [174]). In medical imaging,
for example, groupwise registration is frequently used for direct analysis of
the variation across a group of images: to assess change or to compare dif-
ferent examples within a group (Guimond et al. [119], Twining et al. [277]).
Model-based computer vision methods, such as those used for image inter-
pretation and require a statistical model to be built from a corpus of images
(Baker et al. [14], Cootes et al. [61,62]), also benefit from automatic groupwise
registration methods.
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Furthermore, unsupervised groupwise non-rigid registration is especially
important when dealing with large data sets for which manual or even semi-
automatic annotation is either too time consuming or impractical. It is,
therefore, of special importance in the context of study that the existence of
such methods makes it possible to automatically construct statistical models
of appearance in an entirely unsupervised fashion from a set of example images
or 3D scans.

Groupwise registration may be regarded as an inverse problem (Fischer and
Modersitzki [98]) that aims to recover the underlying process or phenomenon
which explains the variation between the images. For example, in the case
of temporally separated images of a deforming object, the aim of registration
is to recover and model the spatial transformations that lead to the (usually
highly non-linear) changes in pixel intensities in the resulting images.

The fact that image registration is an inverse problem, makes its general case
solution a very difficult task, which is true of many inverse problems, such as
that of inverse kinematics. The analogy can be drawn between registration and
some related inverse problems: shape-from-X, where a process or phenomenon
is being sought that transforms one modality into another (e.g. shape into
shadow); or that of stereopsis, wherein one aims to compute the disparity,
or depth, for each pixel, given a set of spatially separated images, and so
recovering the underlying structure of the scene that transforms one image
into another.

An intimate relationship exists between groupwise registration and the
problem of manifold learning (see Samko [228] for a review of manifold learning
methods). Consider an idealised example in Fig. 3.1 where two types of
interpolation between images are shown. In the top row, the interpolation is
performed without any prior knowledge of the manifold of valid hand images:
the middle image is simply a point half-way along the shortest path between
the left and the right images in the Euclidean space of all possible images
of that size. However, groupwise registration of a corpus of deforming hand
images would have shed light on the shape of the manifold of valid hand images,
for example by constructing an AAM from the ensemble of registered hand
images. Then, taking the middle image to be half-way along the shortest path
on such manifold, ideally a result akin to that in the bottom row would be
obtained.
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Figure 3.1: Interpolation between the images in the leftmost and the rightmost columns.
The result of the interpolation is shown in the middle column. Top row: linear interpolation
in the Euclidean space. Bottom row: hypothetical ideal interpolation on the manifold of
valid hand images.

Figure 3.2: Illustration of the benefits of information propagation for groupwise registration.

3.2 Motivation

When registering together multiple images, as mentioned in Section 2.3.1, one
of two general approaches can be adopted. The first approach is to select one
of the images as a reference and then repeatedly apply a pairwise registration
algorithm (for a review see Zitova and Flusser [303]) to align each of the images
in turn with this reference, thus decomposing and reducing the problem of
registering multiple images to a sequence of simpler subproblems or registering
two images.

While this naive procedure might work in uncomplicated cases, it suffers
from an important drawback. At any point in the algorithm, information from
only fwo images is being used, and no propagation of information between the
subproblems (of registering the reference and the z-th image) ever occurs.

That this is indeed a problem can be illustrated with the following example.
In Fig. 3.2, the right eye in image 1 is occluded, and in image 2 the left
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eye is occluded. When registering images 1 and 2 to each other, or to a
reference, the desired spatial transformations in the occluded regions cannot
be unambiguously established if no other information is given. However, the
ensemble also includes image 42, in which both eyes are present, and it therefore
contains valuable information about the spatial relationship between the eyes.
Propagating this information can help resolve the ambiguities that would have
arisen if image 42 was not given. This illustrates that ideally, in a well-designed
groupwise registration algorithm, all the available information from all the
images in the ensemble must be used.

In contrast, simple repeated application of a pairwise registration algorithm
will inevitably be affected by the choice of the reference image; this leads to er-
rors and inaccuracies in the final alignment (Marsland et al. [176]). In addition,
an unfortunate choice of the reference, for example an image that is missing
features or is not characteristic of the rest of the ensemble, will corrupt the
alignment further: the results will be statistically biased (Marsland et al. [176]).

To combat such issues, groupwise approaches have been recently devel-
oped. They consider the entire group of images simultaneously when bring-
ing the images into alignment (Cootes et al. [62,66], Cristinacce et al. [74],
Davies et al. [80] Marsland et al. [176], Petrovic et al. [205], Twining et al. [278]).
Broadly speaking, the idea of groupwise registration is to utilise as much infor-
mation as possible from the entire ensemble of images. Or, looking at it in
another way, to somehow propagate information from one image to another,
or from one subproblem to another, to increase the quality and robustness of
registration.

So, in such groupwise approaches, the information from the entire data
set is being utilised at each stage, rather than from only a pair. Only by
considering multiple examples simultaneously can the corresponding structures
be reliably and accurately identified. Additionally, only when the images in
an ensemble have been aligned in a groupwise fashion, to a common reference
frame, the correspondences between any pair of the images can be consistently
deduced, via the common reference frame (Marsland et al. [176)).

Indeed, the groupwise paradigi to finding dense correspondence across a
set of unlabelled examples (images or shapes) has been experimentally shown
to be superior to pairwise methods (Cootes et al. [66]).
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3.3 The Challenge of Groupwise Registration

The advantages of the groupwise approach come at a cost. Unlike with pairwise
methods, the dimensionality of the space in which the search for the optimal
solution has to be performed, grows very rapidly with the number of samples
in the set when a groupwise approach is employed.

The groupwise image registration problem is typically formulated in terms
of optimisation of an intensity-based objective function over a certain spatial
transformation space and so may be decomposed into three subproblems
(Davies et al. [80], Cootes et al. [67], Sidorov et al. [243]):

e A mechanism for representing and manipulating dense correspondence

between images (the model of admissible deformations).

e An objective function F' with a minimum at a point corresponding to

the desired good registration.

e A global minimisation algorithm which optimises F'.

Global minimisation of the objective function, F', whose arguments are cor-
respondences between all images and whose value measures the quality of
registration, solves the problem.

In practice, the very high dimensionality of the search space presents a
significant obstacle to finding the optimal solution (Davies et al. [76, 78]).
Suppose n images are to be registered, and the correspondences between
images are controlled by k degrees of freedom per image, yielding 2nk degrees
of freedom in total; even for a modest data set (say, hundreds of images) and
a modestly flexible model of deformations (say, tens of degrees of freedom per
image) the dimensionality of the space in which the solution is to be found is
measured in thousands.

The problem of efficient optimisation of the very high dimensional objective
function in the context of groupwise image registration has not been extensively
explored in the literature. Most traditional optimisation algorithms, applied
naively, cannot reliably deal with an optimisation problem of such magnitude
and tend to converge to local minima (Cootes et al. [62,66], Davies et al. [76,78]).
Some stochastic algorithms (for example, Simulated Annealing (SA) and genetic
algorithms (GAs)), which attempt to avoid local minima, have impractical
computation times even for small data sets, see Section 3.4.3.

I contend that the problem of optimisation of the objective function, the
key component of groupwise registration, needs to be addressed explicitly.
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The main contribution of this chapter is to describe an efficient optimisation
framework for many-dimensional groupwise objective functions for non-rigid
image registration that can quickly and reliably find very good (and in practice
almost always the best) minima.

The approach proposed in this chapter alleviates the “curse of dimensional-
ity” on two fronts:

e A novel solution that implicitly reduces the dimensionality of the search
space as the search progresses by incrementally learning optimal defor-
mations is proposed.

¢ A novel application of stochastic optimisation algorithms that do not
significantly degrade in performance as the dimensionality grows is pro-
posed.

Additionally, the algorithms are formulated in a way that is amenable to
efficient implementation, including harnessing the processing power of modern
GPUs. Indeed, apart from the control logic, all steps in the proposed algorithms
can be performed on a GPU, see Section 3.5.12.

3.4 Groupwise Registration Background

As discussed above, groupwise registration can be decomposed into three sub-
problems: modelling of deformations, evaluation of the quality of alignment
(objective function), and optimisation. In the literature, many various combi-
nations of approaches to each of these subproblems are found. Because of this,
rather than linearly discuss background by listing the contributions of individ-
ual papers, here the literature will be reviewed combinatorially, according to
the approach taken to solve each of the subproblems.

3.4.1 Deformation Models

The deformation models employed in groupwise approaches are typically bor-
rowed from the comparable pairwise methods, and so the vast literature of
results on deformation modelling for pairwise registration remains relevant.
Below some of the most important techniques are reviewed.
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THE AFFINE TRANSFORM. The simplest useful model of transformations is
the affine one. The affine transformation is a map f: R® — R" of the form

x' = f(x) = Ax + t, t e R", (3.1)

where A is a linear transformation of R™, ant t is the translation. For example,
in R?, a stretch by a factor (g, g,) along each axis, followed by shear (s, s,)
along each axis, then by rotation by the angle a counterclockwise around the
origin, and finally by translation by (¢, t,) yields

, _ [cos(a) —sin(a) 1 0\ (1 s\ (1 O\ (g, O x4 te)
= sin(a) cos(a)) \s, 1/ \0 1/\0 ¢,/ \O 1 ty B
(qz(cos a—sysina) —gy(sina — s;(cosa — sy sin a))) x4 (tw) .

gz(sina + sycosa)  gy(cosa + sy(sina + s, cosa)) ty
(3.2)

The 2-by-2 linear transformation matrix, A, together with the 2-by-1 trans-
lation vector t give the total of six degrees of freedom. In the case of rigid
transformations, the number of degrees of freedom is three (two for translation
and one for rotation). This is a global transformation, i.e. it is applied to the
entire images: it represents the gross relative motion of the images, but is of
course incapable of describing non-rigid, relative local deformations, which are
discussed next.

Several popular non-rigid deformation models rely on defining a translation
at a small number of control points, interpolating the deformations smoothly
everywhere in between. This can be regarded as scattered data interpolation
problem for which many solutions are known from scientific and engineering
literature (Spath [251], Lee et al. [157], Renka [221]).

PIECE-WISE AFFINE MODEL. The simplest local deformation model is the
piece-wise affine one (Ainidror [8], Cootes et al. [66,67], Petrovic et al. [205],
Twining et al. [278]). A set of control points are selected such that their convex
hull [219] covers the entire region of interest (Rol). A suitable tessellation of
the Rol is then computed, usually by means of Delaunay triangulation (see,
for example, [lenone (Delaunay) [304], Cksopros (Skvortsov) [306]).
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3.4. Groupwise Registration Background

Given a triangle with vertices v; = (x1,y1), V2 = (22, ¥y2), and vs = (x3, ys),
the barycentric coordinates (Coxeter [73]), call them (A, A2, A3), of a point
x = (z,y) can are expressed as

_1 (xg —z3) (z3—1x) _1 (z3 —z) (21— 23)
=Dl w-u' 2 Dlw-» w-w|
Aa=1=X =, where D = |G17%8) (@2=83)) g,

(Y1 —y3) (v2—y3)-

The symbol By, v, v, shall be used to denote the mapping between the Cartesian
and the barycentric coordinates, given the triangle vertices vi, v;, and vs:

T
A=<)\1 A2 /\3) = By, vy,vs(X). (3.5)

Conversely, the coordinates of a point with barycentric coordinates A =
(A1, A2, A3) in a triangle with vertices vy, va, V3 are simply

T
x =Bl N =Mvi+thvatdsvs=(vi v2 v3) (A A2 Ag) . (36)

(The concept of barycentric coordinates easily generalises to simplexes of higher
dimensions).

The piece-wise affine transformation x' = Wpwa (%,x), Wpwa : R? = R
on a triangulated domain ¥ is performed as follows. For each point x in the
Rol, its encompassing triangle is found by searching through all the triangles in
the tessellation ¥ to find the unique! triangle for which 0 < \; < 1, V4 (a point
x is inside or on the boundary of a triangle if and only if its barycentric
coordinates are all in [0,1]). Once such triangle {vi, vy, v3} is found, and
so is the corresponding transformed triangle {v}, v}, v} from the deformed
tessellation ¥’, the transformation can be written as

XI = WPWA(T, g/’ X) —_ %—llv’z,vé(%vl’v%vii (X)). (37)

Vi

For reasons discussed in Section 3.5.8, it is necessary that the deformations
be invertible and the inverse should be easily computable. In addition to that,
in non-rigid registration literature it is usually assumed that if a structure is

Mgnoring for simplicity the case when a point is on a shared boundary between two
triangles.
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3.4. Groupwise Registration Background

present in one image, it is also present in all other images (Marsland et al. [176],
but see the discussion in Section 3.7).

Because of this assumption, deformations models that are not just bi-
jective but diffeomorphic are used in some algorithms (e.g. Marsland and
Twining [174]). (A bijective map f: M — N is called diffeomorphic if it and
its inverse f~!: N — M are both differentiable to some order.)

While the piece-wise affine model is not diffeomorphic, as it is not differ-
entiable, it is desirable to ensure at least bijectivity. It is easy to see that
within each individual triangle this piece-wise affine transformation is bijective.
To ensure that it is also invertible across the entire triangulated Rol, it is
necessary to ensure that the no triangles ever overlap. This can easily be
done by ensuring the consistency of signs of the signed areas of all triangles
(Cootes et al. [67]). It should also be noted that interpolation on a triangulated

domain need not in general be affine (Amidror [8]).

THIN PLATE SPLINES. A classical technique for interpolation of scattered
data in many dimensions, Thin Plate Splines (TPSs), introduced by Duchon [90],
has found an application as a deformation model for image registration, (John-
son and Christensen [135]). An excellent introduction of TPSs is given in
Bookstein [32]. This interpolant minimises the bending energy of a thin metal
plate subject to control points constraints, hence the name. At the core of
TPS interpolation in R™ is the kernel function (Marsland and Twining [174],
Sprengel et al. [252], Bookstein [32])

X —c¢|*"log|x — ¢|, when n even and x # ¢
U(x,c) = | |*~" log| | # (3.8)
|x —c|*™, when n odd or x = c.
The TPS interpolant Weps: R™ — R” then, given a sparse set of control points
{c1, ¢z, ..., ci}, takes the form (Sprengel et al. [252])

k
x' = Weps(x) = (t + Ax) + ) w;U(x, ;). (3.9)
i=1
The constants t, A, that control the affine part of the warp, as well as the
vector-valued coeflicients w; are computed from constraints: the interpolant
must pass through the control points. This is a linear problem and its solution
is discussed in e.g. Sprengel et al. [252] and Chui [58].
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It should be noted that the TPS interpolant is based on radial basis func-
tions (RBFs), because the kernel U(x,c) in Eq. (3.8) depends only on the
distance r = |x — c¢| between a point x and a control point ¢. So, TPS is just
a particular example of interpolation with RBFs. Kernels that can be used
in place of Eq. (3.8) include: linear U(r) = r, cubic U(r) = 73, multiquadrics
U(r) = (1 +12/0%)1/2, the frequently used Gaussian U(r) = e(="*/2?*) whose
effect is more local than that of Eq. (3.8), and others. For more information on
RBF kernels and scattered data interpolation in general, the reader is referred
to Wendland [293] and Liu [167].

As discussed above, the deformation model in some approaches is assumed
to be diffeomorphic. Below, two popular techniques for which diffeomorphicity

can be guaranteed under well-known conditions are reviewed.

FREE-FORM DEFORMATIONS BASED ON B-SPLINES. A frequent choice in
the field of medical imaging, the B-spline free-form deformation (FFD) model,
given a regular lattice of control points c;;, can be formulated (in R?) as
follows (Lee et al. [158]):

3 3
x' = Wrrp(x = (z,7)) = ,;g Bi(z—|2]) Bi(y—y))Claj- 14k y) 141> (3:10)

where By(-) and By(-) are the uniform cubic B-spline basis functions, and c; ;
are the displaced control points. See Lee et al. [158] and Rueckert et al. [227]
for derivation of the coeflicients B;, By given c;; and the discussion of a
more useful model, there termed Multi-level Free-form Deformation (MFFD).
What is more important is that Lee et al. [158] prove an important bijectivity
theorem: the mapping Wypp in Eq. (3.10) is bijective if

— 048 < ¢} (k) — cij(k) < —0.48,  foralli, j, and k. (3.11)

Under these conditions the B-spline model is also diffeomorphic, as B-splines
are maximally differentiable (except possibly at the control points). A general-
isation of B-spline FFD to R3 applied to registration of volumetric brain scans
by Balci et al. in [15,16] illustrates the usefulness of the B-spline FFD as a

deformation model.
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CLAMPED-PLATE SPLINES. Twining et al. [276] introduced a representation
of deformation fields based on polyharmonic Clamped-Plate Splines (CPSs).
This representation is applied for groupwise registration of medical imagery by
Marsland et al. [175]. The CPS-based deformations are diffeomorphic: bijective
and differentiable to some order (Twining et al. [276]). They are also bounded,
hence the name, to a spherical region. Unlike the TPS interpolant, which
affects the entire space and decays only asymptotically, CPSs satisfy both
Dirichlet and Neumann boundary conditions: the effect of the CPS interpolant
vanishes smoothly at the boundary of the spherical region (Twining et al. [276]).
This is due to the fact that on the boundary of a unit ball in R”, the value
and the first normal derivative of the general Green’s function, G, given
in Eq. (3.12), of the biharmonic clamped plate equation (see Twining et al. [276]
and Marsland et al. [175] both citing Boggio [30]), on which the CPSs are
based, are both zero. In two dimensions G has the form

Gy =[x -y (5 (A y)? - 1) ~logA(xy)),  (312)

VIxPly2—2x -y +1
Ix -yl

where A(x,y) = , (3.13)

and in three dimensions (triharmonic clamped-plate spline), see Marsland and
Twining [174] citing Boggio [30]:

Gx,y)=|x-y| (A(x, y)+ - 2) , with A(x,y) as in Eq. (3.13).

(3.14)
Then, given a set of control points {cy, ¢y, ...,cx}, the CPS-based transforma-

1
Ax,y)

tion takes the form (omitting the affine part)

k
x' = Weps(x) =x+ Y a;G(x,¢), (3.15)
i=1
where the vector-valued coefficients a; are found by solving the exact matching
conditions for the control points (Marsland et al. [175]).

This deformation model is used by Twining and Marsland in [277] for
groupwise registration of brain images. The bounding ball of the CPS in
Twining and Marsland [277] is chosen to be the circumcircle of the images.
They use 10 control points equally spaced around the skull.
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SUPERPOSITION OF ELEMENTARY WARPS. An approach closely related to
the RBF-based interpolation is the superposition of elementary warps. The
main difference is that the kernels of elementary warps are chosen to only
affect a bounded region of the image and the deformations induced by the
elementary warps are treated independently: the contributions of individual
elementary warps can be arbitrary, not necessarily such that they interpolate
a given function between control points.

For example, Lotjonen and Méakels [169] model the deformation of the
brain with a superposition of spherical elementary warps of the form

2
x—c
k

e r — e
1—ek

where k is the sharpness parameter, d is the free parameter controlling the

x' = WLétjénen(xa C, d, T, k) =x+ d» (316)

direction and magnitude of the warp inside the sphere of radius r with the
centre at ¢. As can be easily seen from Eq. (3.16), the deformation at the
centre of the sphere (|x — ¢| = 0) is d, and at the boundary of the sphere it is
Zero.

An elementary warp used by Cootes et al. in [67] has the form

dim x
X' = Wes(x,d) = x + ( I k(x(z))) d, (3.17)
i=1
where the kernel k(r) is

K(r) = (1+cos(mr))/2, |r|<1 (3.18)
0, r| > 1.

dimx times
A

It affects only the hypercubic region [~1,1] x [=1,1] x --- x [-1,1], and a
suitable affine transform can be used to apply Eq. (3.17) to some other region.
As in Eq. (3.16), d is the parameter controlling the magnitude and direction
of the elementary warp.

A similar elementary warp, acting on a unit ball and bounded by it, is
proposed in Cootes et al. [62):

+k , wh <1
Weootes(%,d) = X+ k(lxl), - when x| (3.19)

X, otherwise,
where d is the displacement of the centre of the ball, |d| < 1, controlling

the magnitude and direction of the deformation; k(|x|) is a smooth kernel
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satisfying k(0) = 1, k(1) = 0, ¥'(0) = 0, k¥’(1) = 0. Cootes et al. [62] point out

that Weootes(X, d) in Eq. (3.19) is diffeomorphic if
1

d| < .

U o F A

This elementary warp is useful because it can be guaranteed to be diffeomorphic

(3.20)

and works in arbitrary dimensions. Again, a suitable affine transform can be
used to apply Eq. (3.19) to an arbitrary ellipsoidal area.

If only one control point, placed at the centre of the CPS bounding ball, is
used, the CPS described above can also be regarded, in R?, as an elementary
bounded warp of the form in Eq. (3.19) if the following kernel is chosen:?

k(Ix|) = 1 — [x|* + [x[* log(|x/*). (3.21)

According to Cootes et al. [62], the warp in Eq. (3.19) with the kernel
from Eq. (3.21) is guaranteed to be diffeomorphic if |d| < 0.25e.

A computationally cheaper kernel k(|x|) = (1 — |x|?)? in place of Eq. (3.21)
is also proposed in Cootes et al. [62] for which the diffeomorphicity of Eq. (3.19)
is ensured when |d| < 3v/3/8 ~ 0.650.

The number of degrees of freedom in the above control points based defor-
mation models is nk, where n is the dimensionality of the space, and k is the
number of control points.

DENSE FIELDS AND FLUID MODELS. Deformation fields can be represented
simply by a dense vector-valued matrix, a deformation map, specifying dis-
placements of individual pixels. Such is the approach taken in the proposed
algorithm, see Section 3.5.2.

Dense representation of deformations is also used in methods based on
the ideas of fluid mechanics, which have recently been applied to image reg-
istration (Bro-Nielsen and Gramkow [40], Christensen et al. [57]). At the
core of such methods is the compressible fluid flow equation (Bro-Nielsen and
Gramkow [40]):

LV () + (A + ) V(V - v(x)) = £(x, u(x)), (3.22)

where v(-) is the velocity field, f(-) is the force field that drives the flow, u(-)
is the displacement field, u and X are viscosity constants. Under this model,
2?Defining additionally log(0) = 0.
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pixels are compressible, they can change volume, this is allowed by the term
V(V - v(x)). The viscous term Vv(-) spatially constraints the velocity field.
The force field f(-) is chosen such that it encourages the parts of the image
that are yet poorly aligned to move more. The numerical solution of Eq. (3.22)
is discussed by Bro-Nielsen and Gramkow in [40]. Viscous flow of a template
image towards alignment with the reference solves the above Eq. (3.22). How-
ever, this approach, combining the deformation model and the optimisation
procedure, does not fit in the framework of explicit optimisation and will not

be discussed further.

Note that the dense non-rigid deformations discussed above need not be
applied to the pixel grid directly. To gain computational efficiency, they can
be applied to the nodes of a sufficiently dense, but less dense than the grid
of pixels, triangular tessellation instead. The transformations of individual
pixels can be then computed with the piece-wise affine interpolation between
the nodes of the tessellation, which is usually a much cheaper operation. This
optimisation has been adopted by Cootes et al. in [66,67].

It is important to note that the spline-based deformation models (TPS and
CPS) are computationally expensive: each time the positions of the control
points are changed, the parameters of the interpolant need to be recomputed.
This is not a cheap operation (e.g. a large linear system has to be solved in the
case of TPS), and this is a significant drawback if spline-based interpolation is
to be used within the objective function.

In contrast, the piece-wise affine interpolation is extremely cheap (especially
if delegated to a GPU). The deformation models based on a composition of
elementary bounded warps are relatively cheap also, as the parameters for each
elementary warp are specified independently, without ensuring that some form
of interpolant smoothly passes through all the control points.

It is worth mentioning an interesting exception. In Miller [182] and Learned-
Miller [156] a problem very similar to groupwise registration (there termed
“congealing”) is addressed but applied to the optimisation of also non-spatial

modes of “deformations” (for examnple, brightness).
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3.4.2 Objective Function

Given a set of images {I;,I,,...,1,} and the corresponding deformation fields
{D1,Ds,...,D,}, the purpose of the objective function is to evaluate the
quality of alignment into which the deformation fields bring the images. The
objective function should be such that its global extremum corresponds to the
desired good alignment. Devising an efficient objective function is on its own
a challenging task considering the high dimensionality of the image set and
the parameterisation of deformations (Cootes et al. [62]).

It is common in groupwise registration literature (Cootes et al. [62, 66],
Marsland et al. [176], Twining et al. [278], Petrovic et al. [205], Davies et al. [80],
Cristinacce et al. [74]) that algorithms operate on one image “at a time”, for all
images in the ensemble in turn, repeating the entire process several times until
convergence. In such cases, efficiency can be achieved if the objective function
is chosen such that its value depends only on the deformation field that is
“currently” being optimised. For example, assume the objective function has

the form n
F=ZG(Di;M(Dly-'-,Di—laDi+1a---7Dn)), (323)

i=1
where M(-) is some model built from the rest of the ensemble and independent
from the “current” Dy, and the summation is done over all the images, treated
equally, in the ensemble. When optimising w.r.t. Dy, Eq. (3.23) can then be

rewritten as

F = G(Dk, COIlSt) + Z G(Dl, M(D], NN 7D'i—17 Di+1) e ,Dn)) (324)
ik
If the model M(-) is chosen such that it changes very little compared to the
change in G(-), when Dy is slightly changed to D,

|G(Dx, -) — G(Dy, )| > |G(const, M(Dy, -)) — G(const, M(D,,))|, (3.25)

then the second term in Eq. (3.24), which is the sum of dominating G’s
independent of Dy, is approximately constant:

F =~ G(Dx, const) + const, (3.26)
and these constants can be precomputed before optimising F' w.r.t. to Dy.

46



3.4. Groupwise Registration Background

In many algorithms the role of M(-) is played by the evolving reference (e.g.
Cootes et al. [67]), or some other model, computed from all images and the
corresponding deformation fields except the one “currently” being optimised.
The simplest, but surprisingly well working, choice of M(-) is the average of
images (Cristinacce et al. [74]). It should be noted that, indeed, in such case if
the number of images is large, the individual contribution of each image to
M(-) is small, and therefore the approximation in Eq. (3.26) is valid.

The function G(-) then is based on comparison of the “current” image I,
deformed with Dy, with the reference: G(Dy) = Q(W (Ix, Dk), M(-)). Leaving
the discussion of other models until the end of this section, the options for the
image comparison function @Q(-) will now be discussed. Since Q(-) compares
only a pair of images the abundant literature on pairwise registration is relevant
here.

The simplest, but well working in practice (Cootes et al. [66,67]), approach
is to compare all the corresponding pixels in the images and aggregate the

error:

Q(A,B) ZZP(A(z 7) — B(, ), (3.27)

J =1i=1
where P(.) is some per-pixel cost function, discussed below, and the scaling of
the sum by 1/rc serves to make Q(-) insensitive to the image size.

The choice of P(-) is based on the assumed distribution of the per-pixel
differences. The two most common assumptions are: the exponential distri-
bution, p(d) o< e~4/%, for which Pyp(d) = |d|, and the Gaussian distribution,
p(d) x e~/ for which Psp(d) = d?, see Cootes et al. [66]. The former
is more long-tailed and therefore leads to more robustness to outliers than
the Gaussian assumption (see Cootes et al. [66,67] where this is confirmed
experimentally). The corresponding sums in Eq. (3.27) in the literature are
then called the sum of absolute differences (SAD) and the sum of squared
differences (SSD) respectively. Under the assumption of Cauchy distribution
(Sebe et al. [234]),

d?
,82

In stereo matching literature (e.g. Sun et al. [257]), the following robust metric

2
p(d) x ﬁ the cost function is Poaychy(d) = '82 (1 + ) (3.28)

is often used:
Psun(d) = —In (1 = 7)e™ /7 47, (3.29)
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WAV VNV

Ppp Pcap Psp Pom Psua Pcauchy

FIGURE 3.3: Comparison of the shapes of the various per-pixel cost functions.

as well as clamped absolute difference: Pcap(d) = min(yp, |d|). The Geman-
McClure function (Black and Rangarajan [25])

d

Feu(d) = 1

(3.30)

is also a popular choice because it behaves quadratically near zero, but quickly
becomes less steep for larger d. In general, the choice of the per-pixel comparison
function is dictated by the desire to make it less sensitive to noise. The
shapes of the various such functions are summarised in Fig. 3.3. See also
Black and Rangarajan [25] for discussion of other robust error functions. In
Klaus et al. [148], gradient information is used addition to pixel intensities:

w([VzA(i, §) — VaB(5, 5)| + [VyAG, §) — VyB(, 5)I) . (3.31)

A similar gradient term in the objective function is employed in Létjonen and
Mékel4 [169].

A comparison of three similarity measures, SSD, SAD, mean absolute
difference (MAD), for the problem of registration is presented in Ulysses and
Conci [280]. They conclude that, at least for registration of medical imagery
of the same modality, their performance in terms of the resulting mean square
error (MSE), correlation coefficient (CC) and peak signal to noise ratio (PSNR)
is very similar. An analogous result is reported in Cootes et al. [66,67] with
SSD slightly outperforming SAD.

The objective function for joint alignment of Miller et al. [182], where the

joint alignment is called “congealing”, is the sum of univariate entropies along
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pixel stacks. For binary images (they apply their algorithm to handwritten
digits) the joint entropy is defined as (Miller et al. [182])

E= .VEH (v(p)), (3.32)

where p’s are coordinates of pixels, v(p) is a binary random variable defined
by the stack of pixels, across all images, at position p, and H(-) is the discrete
entropy function (Cover and Thomas [71]) of that variable. More precisely, the
entropy estimator of Miller et al. [182] for a binary pixel stack has the form

) =-— (%1% % + TN\; log, %) , (3.33)
where Ny and NV are the number of occurrences of the black and white pixels
respectively.

This approach is justified because when the images are well-aligned, the
intensities of pixels at the corresponding locations (in pixel stacks) form
a low entropy distribution, and vice-versa (Balci et al. [15]). Note that in
Miller et al. [182] the v(p)’s, from Eq. (3.32), are treated as independent random
variables, not accounting for the “lateral” redundancy between pixels, and
so Eq. (3.32) is an upper bound on the true entropy; minimisation of Eq. (3.32),
assumes Miller et al. [182], minimises the true entropy of the image distribution.

To apply the stack entropy measure to real-valued images, the objective
function, Eq. (3.32), of Miller et al. [182] is generalised by Learned-Miller3
in [156]. To do so, he uses the estimator of Vasicek [281] given in Learned-
Miller [156] as

. 1 n—p(n) < n )
Hasice 21,82y -yRn) = T~ lo —\Z(i+op(n)) — (i R 3.34
Vasicek(21, 22 )= 2 198\ o B —20) | (334)

where n is the number of pixels in the stack, z; are the pixel intensities, z(; are
the same intensities in rank order, and ¢(n) is a function such that ¢(n)/n — 0
as m,p(n) — oo, in [156] Learned-Miller uses ¢(n) = |\/n]. This has the
advantage of estimating the entropy directly from samples (intensities of pixels

in a stack) without first estimating the distribution itself, which is an expensive

3Erik G. Miller has changed his name to Erik G. Learned-Miller sometime between the
publication of [182] and [156].
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operation. A similar cost function, but for 3D voxel stacks and with a different
entropy estimator, is used by Balci et al. in [15].
Another classical measure is normalised cross correlation (NCC) [39, 162]

5 AG, 5)B(, 5)

Snoc(A,B) = = = , (3.35)
Vi AG, 4B, 5)?
where the tilded letters A and B indicate intensity-centered images:
z 1 .
I=Ly.—— ZIrxc(l,])- (336)
re 3

There are cases when an objective function based on comparing image
intensities cannot be devised, such as when the images have different modalities,
and so the functions like Eq. (3.27) or cross correlation, Eq. (3.35), cannot
be used (Rueckert et al. [227]). An information-theoretical measure, termed
mutual information (MI), which expresses the amount of information that one
image contains about another, has been proposed by Viola and Wells in [287].
Let H(A), H(B) denote the marginal entropies of images A and B. Then
H(A,B) denotes their joint entropy, computed from the joint histogram of
A and B. Thus the MI between A and B is expressed (Rueckert et al. [227],
Viola and Wells [287]) as

Cwi(A,B) = H(A) + H(B) — H(A,B), (3.37)

or, alternatively (Maes et al. [172])

Ci(A, B) ZZ pas(a,b)log pi"zs)(;;z) (3.38)

where for image intensity values, a and b, of the corresponding voxels, the
joint, pap(a,b), and the marginal, p4(a), pp(b), distributions are estimated by
normalisation of joint and marginal image histograms (Maes et al. [172]).
Pointing out that the expression in Eq. (3.37) for MI is sensitive to the
amount of overlap between the images, Studholme et al. [254] propose an

overlap-insensitive measure for MI, termed normalised mutual information

(NMI):

H(A)+ H(B)
H(A,B)

Note that MI is a measure of similarity: when images are well aligned, their

Crnmi(A, B) = (3.39)

mutual information (MI) is maximised. Naturally, MI can also be used to
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compare images of the same modality. Legg [159] discusses the application of
MI to non-rigid registration of retinal images in great detail. See also a brief
review and discussion of NMI by Bhatia et al. in [23].

Myronenko et al. [189] propose a supposedly superior, novel intensity-based
similarity measure, termed Residual Complexity (RC), that does not assume
independence of the intensities from pixel to pixel. In short, RC measures the
coding complexity of the difference image. Examples of artificial and real-world
problems for which RC-based registration succeeds while the classical measures
fail are also provided in Myronenko et al. [189).

In a number of works (Cootes et al. [66,67], Marsland et al. [176], Twin-
ing et al. [279]), an objective function based on the Minimum Description
Length (MDL) principle (see the original work by Rissanen [223]) has been
proposed. More specifically, Cootes et al. [66,67], Marsland et al. [176], Twin-
ing et al. [279] use the “old”, two-part coding formulation of MDL. In these
works, the objective function represents the length of the message required
to transmit images, using some encoding scheme based on some statistical
model. The total length of the message is then the sum of lengths of the data,
transmitted using the model, plus the length of the model:

L= ['data + ‘Cmodel- (340)

According to Shannon [239], the optimal number of bits required to commu-
nicate an occurrence of event whose probability is p(z) is L(z) = — log p(z),
and so when computing the message lengths in Eq. (3.40) the probability
distribution of the messages being sent has to be known.

Rather than aggregating the information from the image ensemble into an
evolving reference model, by applying the MDL principle the cost of encoding
the entire ensemble can be used as an objective function, thus using the
information from all the images directly, as done in Marsland et al. [175,176].
The MDL approach is elegant from the information-theoretical point of view,
but is very computationally expensive, as its full implementation requires the
construction of a statistical model at each objective function evaluation, as
well as estimation of the message length, Eq. (3.40), given the model: it is
especially expensive if the probability distributions are estimated empirically
from data.
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In discussing the MDL approach, Cootes et al. [67] point out that the
simplest model of texture is just the average of the deformed images, and is
works well in practice. The data term in Eq. (3.40) typically dominates, because
its contribution scales up with the number of images in the ensemble, and so
the approximation £ & Lgat, is valid [67]. A computationally cheaper way of
estimating the message lengths in Eq. (3.40) is to make an assumption on the
model PDF rather than estimate it empirically, as is done in Cootes et al. [66,
67). MDL then simply generalises the various per-pixel metrics discussed in
Section 3.4.2 depending on the assumptions on the form of PDF

3.4.3 Optimisation

Nothing takes place in the world whose
meaning is not that of some maximum
or minimum.

Leonhard Euler

As discussed in Section 3.3, the new challenge encountered by the groupwise
registration methods is that of a much greater magnitude of the optimisation
problem. This topic has not been extensively explored in the groupwise
registration literature, while the conventional pairwise methods, for which
extensive literature exists (e.g. Zitova and Flusser [303]), have never faced such
a problem.

I argue that optimisation is perhaps the dominant component of the regis-
tration framework, and it is surprising that the problem of optimisation for
groupwise registration has not received well deserved attention in the literature.

By a good optimisation strategy I do not mean merely plugging in the best
available general-purpose global optimiser and hoping for the best. On the
contrary, I argue that an intimate relationship exists between the optimiser
and the other two components of the problem: the deformation model and the
objective function. This is in accordance with the “No Free Lunch” theorem
(Wolpert and Macready [295]).

The deformation model and the objective function should therefore be
designed in such a way as to simplify optimisation, and vice-versa, the op-
timiser should be tailored for a particular choice of the objective function
and deformation model. This is well known (Kolmogorov and Zabin [152],
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Scharstein and Szeliski [230]) in the field of stereo matching, the field whose
competitive nature (see the Middlebury challenge [1]) has driven researchers
to look for more and more ingenious ways to intimately integrate optimisation
with the other components of the problem.

An unfortunate choice of the deformation model, for example such that
makes it hard to represent the optimal alignment, will make it hard, if not
impossible, for the optimiser to find it (see Davies et al. [80]). A poor choice of
the objective function, for example such that is very noisy and contains many
local minima, also makes its global optimisation difficult.

This is generally true for groupwise registration problems: the behaviour
of the objective function over the space of possible deformations is highly
non-linear and contains many local minima. This has led Davies et al. [78] to
adopt a stochastic optimisation approach. Without elaborating, Davies et al.
state in [78] that they have experimented with SA (Kirkpatrick [145]) and GAs
(Goldberg [109]) before settling on a GA in their experiments.

While these stochastic optimisers are capable of escaping local minima (and
so are truly global optimisers), the key disadvantage of SA and GA is that
they typically require orders of magnitude more objective function evaluations
than deterministic algorithms while exploring the space of solutions of the
same dimensionality. This makes their use prohibitive if the evaluation of the
objective function is itself a computationally expensive operation, as is the
case with the groupwise registration. In addition, SA is very sensitive to the
choice of parameters, notoriously hard to tune, and cannot easily detect when
the solution has been found. Particle Swarm Optimisation (PSO) has been
applied by Li et al. [164] as a global optimiser in the problem of registering
“shape images”.

The well-known deterministic global optimiser, the DIRECT algorithm
(Jones et al. [136]), also suffers from the problem of prohibitively large number
of the function evaluations.

An alternative is to use a local optimiser in the hope that it will find the
global optimum. Deterministic local optimisation algorithms that operate on
evolving a solution towards the optimum, rather than on sampling the entire
search space, can be classified into gradient-based and gradient-free methods
(Press et al. [220]). The former rely on the knowledge of the gradient of the
objective function, either analytical or numerically estimated, to move in the

53



3.4. Groupwise Registration Background

downhill direction. Numerical estimation of the gradient in R™ requires O(n)
evaluations of the objective function (Press et al. [220]), which alone makes
this approach prohibitive.

The latter class advances without an explicit computation of the gradient.
A well-known example of an algorithm of this class is the Nelder-Mead method
(also known as the Downhill Simplex method, see Press et al. [220]). Note that
it operates by evolving a simplex with n + 1 vertices in R™ and so the number
of function evaluations grows as O(n).

Gradient-based methods are rarely useful if the objective function is noisy or
contains many local minima, for the estimation of the gradient is then unreliable
and naively moving down the hill quickly leads to a local minimum. Another
obstacle is called the “zero-gradient” problem, discussed in Miller et al. [182]
and Learned-Miller [156], which occurs when the “current” solution happens to
be on a flat plateau and so the gradient of the objective function is zero in the
vicinity. This throws off course many downhill-descend algorithins (e.g. the
Nelder-Mead algorithm), and especially those based on the direct estimation of
the gradient (e.g. gradient descent (GD)). Miller et al. [182], suggest blurring
of the images as a crude solution to overcome this problem.

The higher is the dimensionality of the search space, the more prone are the
local optimisers to getting stuck in local minima. I found that Nelder-Mead
algorithm becomes increasingly useless in “more than a few”* dimensions, but
is quite robust for small-dimensional problems. For example, Nelder-Mead
algorithm it is perfectly suited to the estimation of affine parameters, such
as when initially aligning the images, as is done in Cootes et al. [67] (note
however, that to estimate translation they use an exhaustive search first).

A common heuristic (used, for example, in Davies et al. [79], Twining and
Marsland [279], Lotjonen and Mékela [169]), which allows to simultaneously
reduce the dimensionality of the search space and to apply a comparatively
fast local optimiser instead of a global one, is to perform optimisation along a
small subset of dimensions first, then along a different subset of dimensions
and so on, repeatedly. This heuristic is based on the assumption that along the

selected few dimensions the objective function has a single global minimum in

4The exact number depends, of course, on the nature of the function being optimised.
To illustrate, when optimising the piece-wise affine deformation model as in Section 3.5.2,
the Nelder-Mead algorithm becomes useless if the dimensionality is higher than 6-8 (corre-
sponding to 3—4 control points).
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the vicinity of the current solution. This heuristic is analogous to the classical
Powell’s method (see Press [220] for description), where the optimisation is
done along one axis at a time, and inherits its disadvantage of attaching to a
local minima when the direction towards the true solution is not found along
the selected dimensions.

For example, when aligning shapes, Davies et al. [79] deal with an enormous
configuration space of dimensionality 12n, x 42, where n, is the number of
shapes, with 12 x 4%¥-2 parameters per shape. They found that robust and
reliable global optimisation in the space of such dimensionality is difficult
and they use the above heuristic to reduce the dimensionality of the search:
they optimise a small number of parameters at a time using the classical
Nelder-Mead algorithm (Press et al. [220]). The same heuristic is adopted
by Twining and Marsland in [279] where they optimise the positions of a few
control points at a time, in one image at a time (the optimisation method not
specified).

Even with the above heuristic, optimisation is not trivial. This is why, when
optimising the displacement of the deformation spheres’ centres, Lotjonen and
Mékel4 [169] employ a combination of the above heuristic and the brute force(!)
approach. Several values are tried and the best one is then selected. Lotjonen
and Mékel4d [169] report that GD method proved ineffective, as it easily gets
stuck in local minima, and is outperformed by brute force optimisation of one
deformation sphere at a time.

Cootes et al. [67], borrowing many ideas from Lotjonen and Mékeld [169],
also use the brute force approach, at least in the early stages of the registration,
to estimate the optimal parameters of the elementary warps. They also report
it to be less prone to sticking in local minima than downhill descend techniques.
In the final stages of the registration, to refine the solution, Cootes et al. [67]
perform the line search along the direction of the gradient.

Brute force optimisation is, of course, a poor choice for the optimiser for
the same reason as SA or DIRECT are: it takes too many cost function
evaluations to explore the space of solutions adequately. This number grows
exponentially with the dimensionality of the search space, remarks Hicks [126]
citing MacCormick and Isard [171].

There are a few exotic examples in the literature in which traditional
continuous optimisation methods are not employed. In the highly original
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paper by Kokkinos and Yuille [150], global shape models and articulated models
are constructed by registering edge and ridge primal sketches, and an EM-style
optimisation regime is used.

An innovative approach to apply discrete optimisation instead of continuous
optimisation is proposed by Glocker et al. in [108]. There, to solve a non-rigid
volume registration problem, the authors replace the continuous optimisation
problem with a discrete one. The algorithm due to Glocker et al. [108] aims to
optimally assign discrete labels, corresponding to predefined displacements, to
control points on a grid, in the sense of minimising the Markov Random Field
(MRF) energy. Smoothness is modelled by the edges between neighbouring
vertices, and the cost of an assignment of labels to the grid nodes, once projected
to the entire volume domain, serves as an objective function. The approach due
to Glocker et al. [108], although promising, is applied only to pairs of images
and their framework cannot be readily extended to operate on ensembles of
images in a groupwise fashion. A conceptually similar treatment was proposed
for the problem of stereopsis, which is intimately related to registration, for
example in Kolmogorov and Zabin [151] as well as Yang et al. [297].

3.5 The Proposed Groupwise Registration Algorithm

Below, the main contribution of this chapter is presented: an efficient stochastic
algorithm for groupwise non-rigid registration of image ensembles.

The input to the registration algorithm is a (possibly unordered) set of
N images {Z;,i = 1... N} of different examples of a deformable object or a
deformable structure in an object. Automatically, without user intervention,
dense spatial correspondences between the examples should be derived. Defor-
mation fields, one for each image, define spatial correspondences between the
images, by specifying where each pixel on the underlying object structure is
located on that image.

As mentioned in Section 3.3, the problem of groupwise registration can be
regarded as an optimisation problem. Its three components will be addressed
next. Before explaining the optimisation regime, the deformation model and
the objective function which is to be minimised will be defined.
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(a) Cp and Cs (b) 1 mesh (c¢) 2 meshes (d) 8 meshes

FIGURE 3.4: (a) A dense mesh and its subset, (b)-(d) Superposition of random meshes.

351 Incrementally Learning Optimal Deformation

Let there exist a dense set of control points, Cd, and a sparse subset of Cd,
Cs € Cd- Suppose, for ease of explanation, that they are vertices of a triangular
mesh describing the piece-wise linear deformation of an image. In Fig. 3.4a, Cd
is all points, Cs is points on the solid lines. Let cp-s denote the set of points
in Cd that are not in Cs (in Fig. 3.4a they are solely on dashed lines). If it was
possible to express the optimal position of points in ¢p-s as a function of the
optimal position of points in Cs, this would obviously yield a dimensionality
reducing reparameterisation of the deformation: it would be possible to control
more complex deformations with the same number of control points (increased
resolution) or to control the deformations with a smaller number of control
points keeping the same resolution (dimensionality reduction).
Unfortunately, such a function is not known in advance. Instead, the
proposed algorithm incrementally learns and accumulates the optimal dense
deformation everywhere between the sparse control points. The power of the
proposed algorithm comes from this fact. The control points are used only
when searching for an optimal piece-wise linear improvement for an already
established dense deformation map. Moreover, instead of using only one set of
control points, as other approaches (e.g. Cootes et al. [66,67]) do, a completely
new set of control points at each iteration (see Alg. 3.2) is generated. This
allows the algorithm to approximate more and more complex deformation
fields as a sum of simple deformation fields (parameterised by control points at
each stage), as the algorithm progresses. Figs. 3.4b to 3.4d illustrate this idea:
as a new random parameterisation is used at each next iteration, the range
of representable deformations progressively grows. It is critical to note that
when a new set of control points is generated, the improvements obtained using
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the previous set are not lost but are accumulated in dense deformation maps.
Also note, the number of control points (and thus the number of optimisation
parameters) always remains low. The key to the power stems therefore from
the ability of the proposed algorithm to search for more and more complex
deformations whilst keeping the dimensionality of the search space constantly
low.

3.5.2 The Model of Deformations

The proposed algorithm represents the sought for deformation fields as a sum
of randomly chosen piecewise linear basis functions. This is performed in
an iterative fashion: each iteration, by adding a contribution of yet another
random piecewise linear function to a deformation field, gradually improves
the solution. This allows to keep the dimensionality of the search problem
constantly low (by maintaining only a small number of control points at each
iteration), while still computing smooth and detailed deformation fields in
the end. Small number of parameters being optimised additionally acts as a
regulariser.

The heuristic used by Cootes et al. [67]%, that of representing the deforma-
tion field as a sum of elementary warps of the form Eq. (3.17), is loosely compa-
rable. The important difference is that the basis functions of Cootes et al. [67]
are predefined and chosen ad hoc to approximately cover the space of defor-
mations of the human face. The question of what is the range of admissible
deformation under their model was not discussed by Cootes et al. [67], and it
is easy to construct an example for which the basis of Cootes et al. [67] might
be inappropriate. The proposed algorithm, on the other hand, makes no such
assumptions and, given sufficient time, will automatically explore the space of
all possible basis functions. This also excludes to possibility of getting stuck
with a poor choice of deformation model (Sidorov et al. [243]).

Since the proposed algorithm computes the optimal deformation field by
iteratively accumulating improvements to it, it is necessary that the deformation
fields be additive.

The deformation fields are stored on a dense discrete grid, or deformation

map, as in fluid models. The resolution of the deformation maps can be

It should be also noted that Cootes et al. [67] was published one year after
Sidorov et al. [243] on which this chapter is based.
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arbitrary (for example, it can be the same as the resolution of the images,
in which case every “pixel” of a deformation map stores the displacement,
(Az, Ay), of the corresponding pixel in an image). The addition of deformations
is then trivial: it can be performed by ordinary element-wise algebraic addition
of the deformation maps.

The choice to store deformation fields on dense discrete grids is explained,
therefore, by the following reasons. First, additivity of the fields is trivial,
which allows for the final solution to be built gradually. Second, application of
a deformation map to an image, or warping, is computationally cheap: it is
sufficient, for each pixel of the image to look up the deformation map at the
corresponding location to determine the displacement of the pixel. Third, a
multi-resolution regime is easily possible: images can be registered at reduced
resolution first, which is quicker, then the results (deformation maps) can be
reused, by simply rescaling them, to refine the registration at higher resolution,
and so on until the original resolution is reached. Finally, the regularity of the
deformation map can be exploited to efficiently perform the above operations
on a GPU (essentially, a parallel computer).

Parametric deformations are only used in Alg. 3.2, to parsimoniously repre-
sent the computed improvements. Each such improvement can be rasterised
(converted to a discrete map) and added to the solution. Any of the deforma-
tion models based on control points discussed in Section 3.4.1 can, therefore,
in principle be plugged into the proposed framework.

For computational efficiency, the piecewise affine model (Section 3.4.1), con-
trolled by a sparse set of control points, was chosen to represent the incremental
improvements to the solution. Although in some works this representation
has been criticised for being insufficiently smooth (Cootes et al. [62]), the
computational efficiency with which it can be manipulated outweighs this
minor drawback (as acknowledged by Cootes et al. [67]). This is even more
true if the GPU is employed: the operations of piece-wise affine interpolation is
fundamental in computer graphics, and all, even very old, GPUs can perform
it very quickly.

What is more important, is that because in the proposed algorithm the
final solution is constructed by adding together many piecewise linear models,
the resulting deformation fields can be arbitrarily smooth. And so, the choice

of the piecewise affine model to represent incremental improvements is justified
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by its computational efficiency and the fact that the incremental nature of
the proposed algorithm does not lead to sacrifices in smoothness of the final
solution (as will also be shown in Section 3.6).

Let Dy, xwx2 denote a dense deformation map, with two components per pixel
representing pixel displacements, (Ax, Ay). In the exposition of the algorithm,
two fundamental operations are needed. The first operation is the application
of a deformation map to an image (possibly followed by an affine transform),
or warping, and its inverse. Given an image Z, a dense deformation map D,
and an affine transform A, let the warped image Z’ be abstractly denoted as
I' = W(D, A,I). This operation is illustrated in Fig. 3.5. Additionally, let
W~1(-) denote the inverse of this operation: Z =W ~1(D,A,W(D, A, I)).

The second required operation is the generation of a dense deformation map
from a sparse set of control points at which the displacements are specified.
As discussed above, this is done by piecewise linear interpolation (see e.g.
Berg et al. [21]). Given a set of n, control points, with coordinates stored as
columns in matrix Caxn,, and the interpolated values at those points, stored as

columns in matrix Vaxp,, let the interpolated deformation map be abstractly
denoted as Dpxyx2 = L(C, V).

3.5.3 Objective function

Let D; denote the corresponding deformation map, and A; the corresponding
affine transform for image Z;. Then the groupwise objective function, Fygep,
measuring the overall quality of alignment of the entire ensemble is defined as
follows:

1 N
Fyoo(Ds,..-, D) = = 3 G(T, W(Dy, A, R)). (3.41)
i=1

This amounts to computing the average discrepancy, using a discrepancy
function G(-), between every original image in the ensemble and the model
of pixel intensities R warped to conform to each of the original images using
the current estimate of D; and A;. This function measures how well the
appropriately deformed model “explains” each of the original images. A minor
detail omitted in Eq. (3.41) for clarity is this: when an affine transform is
applied to R, the result will in general only partially overlap with Z; and so
G(-) should correctly compare the overlapping regions only.
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Sample Deformation Transformed

FIGURE 3.5: Samples from the data set [97] together with the computed deformation
maps and shape-normalised images. In deformation maps, colour indicates direction, and
brightness — the magnitude of the displacement.

It should be noted that for the purposes of registration only the arg min of
the objective function is important, not its actual values. Therefore, the choice
of the type of model 7Z and the comparison function G(-) is governed by two
factors: the objective function should be as cheap as possible to compute, and
it should have the minimum at a point corresponding to a good registration.

As discussed in Section 3.4.2, efficiency may be achieved by visiting each
image in turn and optimising its associated deformation map. The registration
may then be regarded as repeated optimisation of /ocal objective functions

FvJPi, Ai, AVi) = G(Ii, W(Vi + AVh A* ")), (3.42)

where 77 is a local model computed as

~ =wz1 E w B.43
v 6.43)

and AVi is the optimised improvement to the deformation map V¢ obtained
during previous iterations. Repeatedly optimising Ticc for each image in turn

optimises Fglb.
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The above model R;, is the simplest model of pixel colours: the average of
the shape-normalised original images. This model works well in practice (as
confirmed in Section 3.6, as well as by experiments of Cootes et al. [67]) and is
very cheap to compute. The exclusion of the i-th image when computing
the average serves to exclude a local minimum at zero AD;, as done in
Cootes et al. [66]. In such case, any of the image comparison functions
discussed in Section 3.4.2 can in principle be used for G(-). For reasons of
efficiency, a simple pixel-wise MAD, normalised by the number of pixels in
the overlapping region, is used in the proposed algorithm for G(-). This was
shown in the literature to work well (Sidorov et al. [243] and later confirmed
by Cootes et al. [67]).

More importantly, as mentioned above, only the arg min of the objective
function is important. In the experiments described in Section 3.6 values
of the objective function using various choices for G(-) are plotted as the
algorithm progresses. It is evident from these progress plots that optimising a
MAD-based objective function also optimises the other measures (mean pixel
stack entropy, MI, and NMI). Therefore, since the arg min of a MAD-based
objective function is at the same point, or very close for all practical purposes,
to that of other objective functions, as empirically verified in Section 3.6, the
reason of computation efficiency prevails and MAD is chosen for G(-).

MI or NMI can be trivially substituted for G(-). In order to efficiently use
the mean pixel stack entropy measure of Learned-Miller [156], a different kind
of model R; is required. Recall from Eq. (3.34) the efficient way of estimating
pixel stack entropies. The model would then consist of sorted pixel stacks for
all images except the i-th, and evaluation of the cost function would constitute
a fast update of the model and evaluation of Eq. (3.34).

It should be noted that there is no shape constraint (a term dependent
solely on D;) in the objective function. While various options for the shape
terms have been proposed (Cootes et al. [67]), experiments in Section 3.6 as
well as in Sidorov et al. [243] show that when enough features are present in
the images no additional shape constraints (e.g. to encourage more smooth
deformation maps) are needed. Even in “flat” regions smoothuness is still
achieved because the improvements to the deformation maps are strongly
regularised. Additionally, the inclusion of a shape term into the objective

function would necessitate a scaling coefficient in front of it, to account for
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difference in units and to control the relative contribution of the intensity-based
and the shape term. The need to tune this coefficient would have made the

algorithm less automatic.

3.5.4 Optimisation regime

A naive attempt to minimise F' in Eq. (3.41) would be to exhaustively search
in the space of all possible deformation maps, D;, for all n images. Instead,
as shown below, the proposed algorithm visits each image in turn to find an
optimal improvement for its corresponding deformation map using a small
set of parameters, which leads to minimisation of Eq. (3.41). (If there are
n images in the ensemble, and at each stage the improvement is controlled
by k parameters, this is equivalent to optimising a nk-dimensional objective
function along k£ dimensions at a time and is loosely analogous to Powell’s
classic optimisation method.)

The complete description of the registration procedure, which is summarised
in Alg. 3.1, is given below. Assume the optimal affine transforms A; have been
found previously. The groupwise affine alignment, preceding the non-rigid
stage, is done in the same fashion as the non-rigid alignment, described below
in Alg. 3.1, except that search is performed for the optimal affine transformation
parameters for each image, and instead of removing the embedding bias in
line 14 the affine parameters are normalised so that the average translation
and rotation across the ensemble is 0 and the average scaling is 1. Henceforth,
assume that all images are affinely aligned.

The deformation maps D for all images are initialised to identity trans-
form (line 2). The algorithm then operates by incrementally improving the
accumulated deformation maps, Dj, in an iterative fashion. The iterative
body (lines 4-15) is repeated until no further improvement is possible. In order
to avoid biasing the algorithm, the order in which the images in the set (and
their corresponding deformation maps) are processed is randomised: at each
iteration the set is randomly permuted.

When optimising deformations for each image Z;, first compute an estimate
of the texture model R;, by averaging all images Z; (except Z;) transformed to
the reference space using the deformation learnt at the previous stages D¢,

Jk—1
and the improvement AD;, learnt at the current step. For computational
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FIGURE 3.6: Evolution of the deformation map for selected images as the algorithm
progresses.

efficiency this is accomplished by first computing the sum of all transformed
images and corresponding masks (accounting for missing pixels due to affine
transformation) in lines 5-6. Then, when visiting each image in turn the
“current” image is subtracted from the sum, and its corresponding mask is
subtracted from the sum of masks, and a weighted average is then computed
(lines 9-10).

The optimal improvement AVik is then computed using Alg. 3.2 by min-
imising G(-) over the space of all possible improvements A} (line 11). After
the deformations of all images have been improved, the improvements are
added to the previously learnt deformations (line 12) and the process repeats.
The evolution of the deformation map for an image is illustrated if Fig. 3.6.

Line 14 serves to remove the deformation bias, the procedure discussed
in Section 3.5.10. To save processing time, removal of the deformation bias
can be performed less often than every iteration.

It is important that Alg. 3.2 is not allowed make a solution worse, it can
only improve it.

Next, it is necessary to address the outstanding problem of minimising the
objective function

(3.44)
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in line 11 as a function of AD which is exacerbated by its non-linear nature

and many local minima.

3.5.5 Stochastic optimisation

Algorithm 3.1 Register a batch of images
Require: Images Z;, i € {1... N}

1: k+1

2 D «0,Vie{l...N}

3: while not happy do
Randomly permute the order of images.
T 21{\;1 W-I(Diw Ai’Ii)
S SN WY D;,, A, Lhxwxd)
AD; «+0,Vie {1...N}
fori=1to N do

N W_I(DikyAia 1hxwxd)
10: Rik — (T - W_l(Dik, AZ,I,))./(.ma,x(l, S/))
11: Using Alg. 3.2, compute

AD;, + argArIr)lin G(Z;,, W(Dg._ + AD, A, Ry,))

12: Learn improved deformation map:
D « D; | +AD;,
13: end for
14: Remove deformation bias, see Section 3.5.10.
15 k+k+1

16: end while

SPSA is an attractive choice for the optimiser: it is capable of evading
local minima due to its stochastic nature and, when adapted for the proposed
framework, is orders of magnitude more efficient (Spall et al. [248]) than the
traditional stochastic algorithms. Moreover, while in traditional gradient-based
methods the number of function evaluations required to estimate the gradient
at a point grows linearly with the dimensionality of the space, SPSA offers
independence of the number of function evaluations at each iteration on the
dimensionality of the space. An overview of the SPSA algorithm can be found
in Spall [250], for completeness the idea of the algorithm is summarised below.

Let f(¢) be a real-valued function and ¢ be a p—dimensional vector of
parameters. Assume that only the direct measurements of f(¢) are available,
but not of its gradient. Measurements of f(¢) might also be noisy, and p might
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Algorithm 3.2 Optimise improvement AD to deformation D§, _ of I; into

M, using SPSA [249,250]
Require: Ry, Z;, D _|, Mmax, Co, G0, @, 7, A
1:m+1
2: while not converged and m < my., do
3:  Set gains ay (—147%%_)" and cp ¢+ %
4:  Select control points Cg randomly using FPS, see Section 3.5.7, and
initialise <2>m +«~0
Generate 6,,, 0,,, < Bernoulli(—1 or 1)
Using G(¢y,) = G (Ti, W (Riy, DL, + L($m, Cr)))
and ensuring that Df, _ + L(g,,, Cr) is invertible (else reject it), see Sec-
tion 3.5.9 ) A
estimate g,, < g(G(®,,), Om> Cm, Om), see Eq. (3.45)
7. Update ¢, 1 < @ — GmE,, see Eq. (3.46)
8 m+—m+1
9: end while
10: return The optimal AD « L(¢,,,Cr)

1

be very large. The aim is to minimise f(¢) to find ¢ = argmin f(¢). Let § =
(81,09, ... ,5,,)T be a vector of independent random variables with symmetric
Bernoulli distribution: §; = +1 and Pr(§; = 1) = Pr(§; = —1) = 1/2.

Let g(¢) denote the stochastic approximation of the gradient g(¢):

(f(Prt+erdic)—f(@rp—crbic))
20k6k1

g(f()v ¢’ Ck, 51() = ) (345)

(f(@r+ewdi) = f ($r—cxdi))
2Ck5kp

and let qAb denote the “current” estimate for ¢.
The SPSA algorithm incrementally updates gAb by the following process:

‘2’k+1 = ¢y — al(Py). (3.46)
The gain sequences ¢ and a;, are chosen as follows:
ao Co

=TT T na d = —. 3.47

ak A+ h)e an = (3.47)

Note that at each iteration k only two = O(1) evaluations of f are required,
as opposed to O(p) in traditional gradient-based methods. Extensive conver-
gence theory (Maryak and Chin [178]) establishes performance guarantees for
SPSA and shows that ¢, — argmin f(¢) as k — co.
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Alg. 3.2 summarises the proposed adaptation of SPSA for the task at hand.
As stochastic algorithms are notoriously hard to tune, the issue of tuning
SPSA will be addressed next. It should be noted that the maximal number of
iterations in Alg. 3.2 should be limited (to mpya.x) and instead Alg. 3.2 should
be called more often, in order to allow for the information to faster propagate
between images by more frequently updating the texture model. In practice,
values mmax = 10...50 work well.

In Alg. 3.2, the tuning parameters ¢y and ag are measured in units of image
size (say, pixels) and control the “greediness” of the algorithm — larger values
correspond to less greedy search. The parameter ¢ is chosen to be about 1-4%
of the image size and experimentally choose ag to be of the same order of
magnitude. The decay parameters a and v are set to the theoretically optimal
values & = 0.602 and v = 0.101 as discussed in Spall [249] which also covers

the choice of tuning parameters in various settings.

3.5.6 Normalisation of Images

While it is possible to perform registration of images using the RGB intensities
of pixels directly, it has been reported in Cootes et al. [67] that better results
may be achieved if the edge information in images is used more explicitly as
well as if some normalisation is used to remove the effects of lighting variation.
This has been known before; indeed, the invariance to lighting changes and,
in general, insensitivity to modality, is a desirable property of algorithms for
registration of medical imagery, and is achieved, for example, by using MI-based
cost functions (Pluim et al. [213], Maes et al. [172], Viola and Wells [287]).
Utilisation of edge information for groupwise registration has been shown to
be useful in Kokkinos and Yuille [150].

Departing from these observations, Cootes et al. [67] discuss various forms
of image representation that enhance the quality of registration. Global
linear normalisation is considered in Cootes et al. [67], akin to the approach
of Cootes et al. [61], as well as local normalisation and incorporation of
the gradient information as some of the image channels. They touch on
the subject very briefly, without giving detailed instructions nor providing
complete formulee and parameters for this procedure. So, below it is necessary
to explicitly summarise what was experimentally found to work well in the

experiments conducted in Section 3.6.
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Let r be the window radius for local normalisation. It was found experi-
mentally that for face images r = 10-30% of the image width is a good value
(80-160 pixels for a 512-by-512 image). Then let

1
Kortixor+1 = m12r+lx2r+l (3.48)

be the averaging kernel (a circular kernel may be used instead). Then, using
the notation from Table 2, the local average A of an image I (for each pixel,
the average of all pixels within a square window of radius r), and the local

average of the squared image Q are found as
A=I®mK and Q=(I-I)mK. (3.49)

The local bounded standard deviation is then computed as

S = Jmax <.\/Q Z(AeA), amin) . (3.50)

Clipping with the parameter o, serves to reduce the amplification of noise
in “flat” regions. Experiments show that good values are op;, = 0.15-0.25,
assuming the pixel intensities are in the range 0.0-1.0. The locally normalised
image is finally obtained as

N = (I-A)./S. (3.51)

For multi-channel images this normalisation is performed on each channel
independently. Further, let {G;, Gy} = VN be the gradient of the normalised
image N. Smoothing the gradient by convolution with a smoothing kernel and

scaling the result to compensate for difference in the units yields
G, =G, ®Gj) and G, =~(G,®G]). (3.52)

In the case of face images, the value for o in Eq. (3.52) of about 1% of the
image size (4-6 pixels for a 512-by-512 image) work well with a Gaussian mask
of size w = 3% of the image size (about 5 and 15 pixels respectively for a
512-by-512 image).

The resulting multi-channel image, Z’' is composed by concatenation of
N (converted to grayscale if necessary), G/, and G, so that Z'(:,:,1) = N,
7'(s,:,2) = G and 7'(:,:,3) = Gy. The scaling factor vy in Eq. (3.52) serves
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(a) Original image, (b) Normalised im-(c) Smoothed gradi-(d) Combined image
age. ent. (false colour).

Figure 3.7: Illustration of the image preparation process.

to scale the values of the smoothed gradient relative to the intensity values
N and can be adjusted to control the relative importance of the gradient and
intensity information in the registration process. Typical values of 7 range from
0.1-10.0 depending on the type of imagery. Figure 3.7 illustrates this process.
On the left, Fig. 3.7a, the original image is shown; the locally normalised
image, preserving the important features, but agnostic of lighting variation is
shown in Fig. 3.7b; the smoothed gradient (colour-coded, brightness indicates
the magnitude and colour indicates direction) is seen in Fig. 3.7c; finally,
Fig. 3.7d shows the complete result of the image preparation process, with
the normalised intensity and the gradient components combined into a single
false-colour image (with 7 = 2.0).

3.5.7 Selection of Control Points

The question of selecting the positions of the control points in a sensible fashion
will now be addressed.

In the very simplest case the control points may be positioned at the nodes
of a regular grid and then randomly perturbed. In Cootes ef al. [66] a better
performance is reported if the control points, placed initially on a regular grid,
are moved to nearby strong edges and those points that happened to be in the

areas of low variance are removed. This is unsurprising: removing the control

69



3.5. The Proposed Groupwise Registration Algorithm

points from low variance, “flat”, regions reduces the dimensionality of the
optimisation problem at virtually no cost; and positioning the control points
around the strong edges is a good heuristic if one wants to cover the most
important areas of the image using as few control points as possible, again
reducing the dimensionality of the optimisation problem. However, in images
of biological objects, such as faces or brain imagery, where pixel intensities
usually vary smoothly, edges tend to be an unreliable and unstable feature.
Additionally, the above approach of simply moving the control points to the
nearby edges leaves little control over the relative density of control points in
“interesting” and “flat” regions.

A more elegant solution to the problem of sensible positioning of control
points based on the concept of geodesic farthest point sampling is proposed
below. An adaptive FPS strategy that yields higher density of control points
in areas with finer details and covers the smoother parts less densely has
been first proposed in Eldar et al. [95]. The idea of using farthest point
sampling strategy to intelligently sample images has been successfully used
in Bougleux et al. [35], for image compression and approximation. These
approaches are made feasible by the advances in Fast Marching (FM) methods
(see Sethian [238] for a comprehensive overview, as well as Sethian [237], and
also the discussion in Chapter 4) which, among many other things, allow to
efficiently compute geodesic distances on discrete scalar fields. Specifically,
given a scalar cost function F'(y) (a scalar field) with positive values, the
geodesic distance G(y) = g(x,y) to a point y from a starting point x satisfies
the Eikonal equation (Arnold [12])

IVG(r)|| = F(r),r € Q (subject to Glaq = 0), (3.53)

which on discrete domains can be efficiently solved using the FM methods.
Given a scalar field F': R® — R, and an arbitrary smooth curve C, bi-

jectively parameterised as r: [a,b] — C, with r(a) and r(b) corresponding

to endpoints of C, the total effect of the field F' along the curve C can be

expressed as a line integral

L(C) = /C Fds= / P (@)IIF (1)) dt. (3.54)

Among all possible curves joining the points x = r(a) and y = r(b), the curve I'
that has the minimum length d(x,y) = L(T') is called the geodesic curve. If the
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(a) Original image. (b) Cost of movement (c) Original image with
(smooth gradient) with control points superim-
control points superim- posed,
posed.

FIGURE 3.8: Seeding control points with the FPS strategy. The number of control points
(N = 1000) is greatly exaggerated to illustrate the tendency, €= 0.20.

“cost of movement” through Rn is used as the field F, the physical meaning
of Eq. (3.54) becomes the length of the optimal path, which has a tendency to
pass through areas where F is small.

If F is selected to represent the “cost of movement” through an image, such
that F has higher values in the areas with fine detail and lower values in flat
regions, it is then possible to use the FPS algorithm to seed the control points
on the image, the farthest distance being understood in the geodesic sense on
the field F, as proposed in Bougleux et al. [35]. This will amount to seeding
more points in the areas of interest and fewer points in flat regions.

The simplest choice of F would be simply the magnitude of the gradient of
a smoothed image, essentially emphasising the edges, which was found to work
well in the experiments. A more sophisticated metric would be some per-pixel
local statistical measure of “interest”, such as local variance or entropy in the
neighbourhood of each pixel.

Figure 3.8 illustrates this idea. On the left, Fig. 3.8a, an image of the
human face is shown. In the middle, Fig. 3.8b, the control points generated
using the FPS strategy are superimposed on top of the colour-coded values of
the field F, whose values are stored in matrix F, which in this example is set
to be

F = rescalej (JV(I BG")||) + e, (3.55)

using the shorthand notation from Table 2. By varying the parameter e
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Algorithm 3.3 Perform greedy FPS sampling (e.g. Eldar et al. [95]).

Require: D,,x,, — a dissimilarity, or distance, matrix. N — number of
samples to draw, 1 < N < m.
1: Syx1 ¢ Onx1, S(1) « randn(1...m)
2: dpxy < 1mx100
3: fori=1to N—1do
4: forj=1tomdo
5: d(j) « min(d(s), D(s(3), j))
6
7
8
9

end for
s(i 4+ 1) « argmin(d)
: end for
: return indices of selected samples, s.

in Eq. (3.55) it is possible to finely control the degree to which the FPS strategy
prefers edges over flat regions, as illustrated in Fig. 3.9. It is important to note
that it is essential that the selection of control points with FPS is random, in
order to allow the algorithm to explore the space of all possible configurations
of control points as the registration progresses.

Since FPS strategy is used several times in this chapter and in Chapter 4,
it is convenient to write down the FPS algorithm abstracting from the nature
of relative “distances” being maximised. The simplest, yet very well working
in practice, form of FPS is a greedy algorithm (e.g. Eldar et al. [95]). It is
presented abstractly in Alg. 3.3 and greedily samples N farthest samples, the
“distances” between which are given in matrix D (or, more generally, a distance
function of two variables).

In Cootes et al. [67] the total number of control points used is 16 x 20 = 320.
They investigate the quality of registration as a function of the number of control
points used, and conclude that, at least for face images, noticeable degradation
of quality occurs if the number of control points is less than =~ 8 x 8 = 64, but
also that beyond a certain density, ~ 11 x 11 = 121, no further improvement is
observed, thus giving the golden number of control points in the region ~ 60—
120. Note, however, that in Cootes et al. [67] deformations are defined solely
by the displacements of the control points. In the proposed algorithm this is
not the case, because the final deformation maps are superpositions of simpler
deformation maps, and so are capable of modelling more complex deformations
with smaller number of control points. The estimation of Cootes et al. [67]
is thus an overly conservative upper bound on the number of control points
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M a
B
£=0.01 £=0.05 e= 0.10 £=0.20
t [ 3 Q 1 3
e =035 e= 0.50 £=1.00 £= 2.00

FIGURE 3.9: The effect of varying ¢ in Eq. (3.55) on control points generation. The number
of control points (N = 1000, same in all images) is greatly exaggerated to show the tendency.

needed. Unlike with methods of Cootes et al. [66,67] which rely on placing
control points on a grid in order to adequately cover the entire Rol, and so do
not allow an arbitrary number of control points to be used, with the FPS-based
strategy the number of points can be gradually varied from 1 to infinity. It has
been shown in Cootes et al. [66] that it is preferred to choose control points
that are on strong edges and not on flat areas.

3.5.8 Target vs. Reference Frame

There are two ways in which the images can be compared with the evolving
reference. The first way involves deforming the images, using the current
estimate of the deformation fields, to bring them into alignment with the
current estimate of the reference. The second way involves deforming the
reference image to align it with each of the original images. For the sake
of brevity, call these approaches: ‘“comparison in the reference frame” and
“comparison in the target frame” respectively. They have both advantages and
disadvantages which are discussed next.

Comparison in the reference frame involves only the application of
the deformation maps V, which are readily available in Alg. 3.2 and which are
used to compute the reference image in the first place, to the original images.
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This is therefore a computationally relatively cheap operation and is easy to
implement. The disadvantage of this is method is that unless special measures
are taken, it is possible that the registration algorithm may converge to a trivial
solution. For example, in such a failure mode, the algorithm may produce such
deformation maps that map all images into a point in the reference frame;
then of course the objective function will have a favourable value (all images
are successfully registered to a point), which is not at all a desirable outcome.

Comparison in the target frame can be used instead, to alleviate the
above problem. This, as Cootes et al. [67] put it, can be understood as
“explaining” the pixels in the original image using the model (estimate of
the reference). To use this method, the algorithm needs to know the inverse
transformations, D~!. Moreover, the deformations themselves must obviously
be invertible. It is not sufficient to substitute all D’s with D~!’s in the algorithm
and deal directly with the inverted deformations, because the forward transform
is still required to compute the reference image. Experimental confirination that

comparison in the target frame is indeed better, is given in Cootes et al. [67].

3.5.9 Invertibility of Deformation Maps

The question of the invertibility of deformations will now be discussed. The
deformation is invertible if it is a bijective mapping: each point in the deformed
image corresponds to only one point in the original image and vice-versa
(Tiddeman et al. [270]). There are two ways to ensure that the deformations
are always invertible. First method is to use such reparameterisations of
deformations for which there are known analytical bounds on the values
of parameters for which the deformation remains invertible, and to ensure
that the combinations of such deformations are also invertible. The latter
requirement, that the combinations of deformations are invertible, is important
for incremental accumulation of the final result out of multiple improvements
to the deformations. This is discussed in Section 3.4.1.

This approach is not readily suitable for the proposed framework. The
second method to ensure invertibility of deformations is found in Tidde-
man et al. [270]. Its advantage is that it is independent of the nature of
the deformation mechanism being used, as long as the deformation field can
be rasterised into a deformation map, as is exactly the case in the proposed

framework.
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Suppose a transformation is defined by two functions, one for each coordi-
nate, T,(r): R? - R and T,(r): R? - R that map the points

r = (z,y) = r' = (Ty(r), T,(r)). (3.56)

Tiddeman et al. [270] show, citing Meisters and Olech [181], that the so defined
deformation is invertible if and only if the Jacobian determinant
_ 01,01, OT,9T,

ox Oy Oy Oz
is positive. This argument is also extended to higher dimensions in Tidde-
man et al. [270].

This fact can be used in Alg. 3.2 when evaluating hypothetical improvements

J (3.57)

whether they, when added to the accumulated deformation map, will render
the deformation man non-invertible. In such case the hypothesis is rejected.
Alternatively, Alg. 3.2 may be allowed to produce “slightly” non-invertible
deformation maps and the approach described in Tiddeman et al. [270] can
then be applied, every few iterations, to recover from this failure mode by

forcing the non-invertible deformation maps to the closest invertible ones.

3.5.10 RemoVing Deformation Bias

It is possible that during the non-rigid registration stage the correspondences
between the images and the common reference space may become systematically
biased, which is equivalent to common reference space becoming distorted.
If not handled correctly, this effect might become a runaway process and
completely ruin the registration.

To preclude the above problem from happening, the deformation bias is
removed periodically (not necessarily at each iteration) in Alg. 3.1 in 14 by
adjusting the improvements D;, so as to annihilate the bias.

This is done in two steps. For each deformation map D; its inverse D;! is
computed (such that W (-, D) = W=1(., D;). The inverse deformation maps
are then averaged and the average subtracted from each:

N
75{1=D{1—iZD;1. (3.58)
N 1=1

Finally, the biasless deformation maps are computed by inverting the D;!.
Fig. 3.10 illustrates the idea. Two images are deformed (Fig. 3.10a, Fig. 3.10b),
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(a) (b) (c) (d)

FIGURE 3.10: Removing deformation bias, (a), (b) — deformations applied to two diiferent
images, in both cases biased to the right, (c), (d) — result of removing the bias.

using a deformation disk (as in Eq. (4.14)) placed at the centre, by (128,64)T
and (160, —48)T units respectively. Observe that the average deformation is
biased to the right. The result of removing the bias using the above procedure
is shown in Fig. 3.10c and Fig. 3.10d.

3.5.11 Applying Deformation Maps to Images

Invertibility of deformations, discussed above, is also important even when just
applying them to images. Suppose there is a transformation W that maps
points in image X to points in image X'. Then the image X' can be computed
by resampling:

X'{r) = Z(W-1(1)), V pixel coordinates r. (3.59)

Resampling is usually preferred, since it avoids holes and overlaps in the
target image X' as the intensity values are computed for each of its pixels
sequentially. A technique for forward warping, without the knowledge of
the inverse transformation, is called “splatting” and is more computationally
expensive.

Note that when sampling images, a good sampling scheme must be used
(such as bilinear sampling) to avoid small plateaus in the objective function
(and so potential zero-gradient problems) caused by discrete nature of the

images.

3.5.12 GPU-based Implementation

The proposed registration framework is amenable to an implementation harness-
ing the power of modern programmable graphics hardware. Observing Alg. 3.1
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and Alg. 3.2, note that there are three principal operations employed: per-pixel
arithmetic, generation of deformation map by interpolation between control
points, and the application of the deformation map to the images. All these
three operations can be easily delegated to the GPU. On modest hardware,
those take in the order of 1ms.

Surprisingly, the most expensive operation is the aggregation of the value
aggregation across the pixels. This requires a technique know as “gather”
in literature, which requires O(log(w)) passes, where w is the image width.
On modest GPUs this takes in the order of 10ms per evaluation of the cost
function.

Technical improvements here include simultaneous evaluation of the cost
function at two values in SPSA (to save an extra “gather” operation); combi-

nation of deformation map generation and application into one step.

3.6 Experiments

In this section, the experiments that were carried out to evaluate the efficiency
of the proposed optimisation framework are described.

Several registration experiments were conducted with artificial and real
data, including inter-subject registration, and performance of the proposed
algorithm was compared to the ground truth, manual annotation, and the
state of the art methods.

The following data sets were used during the experiments. The publicly
available FGNET “Talking Head” frontal face images of a single person, with
manual annotation [97]. The publicly available xm2vts (Session 1) frontal face
images of multiple individuals [4], also with manual annotation [5]. Note that
in this data set of notorious difficulty 41% of images include facial hair, glasses,
and other features making the registration very difficult. The publicly available
IMM face database (only frontal images) with manual annotation [193] was
also used. As an example of non-facial imagery, binary images of handwritten
zeros and twos used in Miller et al. [182] from NIST data base [118] were used.
Data captured by the author and artificial data sets were also used (see below).
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3.6.1 Registration of Synthetic Data

This experiment aims to evaluate the performance of the proposed algorithm
with respect to the ground truth. One way to compare the results of the
registration with the ground truth is to generate a synthetic dataset, for which
the deformations that bring images into alignment are known a priori. In this
experiment, one image was taken as a template, then deformation fields were
randomly generated and applied to this template, thus producing a synthetic
dataset with the known ground truth deformation field for each image.

The artificial deformation fields were generated by a superposition of 8
deformation balls as in Eq. (3.19), with the kernel from Eq. (3.21), each of
radius 1/4 of the image width. The centres of the deformation balls were
randomly chosen over the Rol of the image (uniformly distributed). The
displacement directions were also chosen randomly (uniformly distributed) and
the magnitudes of the displacement were set to 0.4 of the ball radius. This
way, 64 artificially deformed images were generated.

It should be noted that, in general, registration of the above synthetic data
set will not yield the original images ezactly, for two reasons. The first reason
is that warping of the template images itself introduces errors, in other words
W-1(-,-,W(-,-,Z)) # Z, but only approximately so. The second reason is
more important and has to do with the warping bias. Unless the average warp
across all images is zero, the resulting reference image, after the algorithm has
converged, will not be the same as the original template image. (Imagine two
synthetic images produced by warping the template image “to the right”. The
algorithm then will converge to a reference that is also warped “to the right”.)

The former effect can be alleviated by comparing the results of the registra-
tion with the images warped forward and then back, to account for quality loss
during warping. The latter effect can be approximately alleviated by ensuring
that the average warp is zero, as detailed in Section 3.5.10.

The algorithm was run on two artificial ensembles produced from the “Dave’s
Head” and the “Chequerboard” image. Selected immages from the artificial
ensembles are shown in the first row in Fig. 3.12 and Fig. 3.13. The second row
shows the reconstructed images, in other words the deformed images warped
to the reference frame after the correct deformation fields were established.
The third row shows the absolute difference between each reconstructed image
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(a) “Dave’s Head” (b) “Chequerboard”

FIGURE 3.11: Registration progress for the synthetic data sets.

and the original template image (scaled to 0... 1 for display). The fourth
row shows the ground truth deformation fields that were used to produce the
synthetic images from the template. Below them, in the fifth row, are shown
the deformation fields computed by the algorithm. Finally, in the sixth row
are shown the differences between the computed deformation fields and the
ground truth (scaled to 0... 1 for display).

The progress plots for the both ensembles are found in Fig. 3.11. (When
reading the results, remember that NMI is a measure of similarity (bigger
values are better), while the other metrics are measures of dissimilarity (smaller
values are better)).

The affine alignment stage was not performed in this experiment. The
algorithm was stopped when the relative change in the objective function
value became less than 0.1%. (The results would be improved further if the
algorithm was allowed to run longer.)

The same two artificial data sets were registered using the algorithm of
Cootes et al. [67]. The results of running the Cootes et al. [67] algorithm are
shown in Fig. 3.14 and Fig. 3.15.

The MAD between the ground truth images and their reconstructed coun-
terparts were computed. Additionally, the average Euclidean spatial recon-
struction error was computed. The latter is defined as

E=IIoTE E (Vfe>*=>1) - vip>x>1))2+ X 2) - (1,x,2))2,

1“1 i=i vx,yen
(3.60)
which amounts to averaging the Euclidean distance between the ground truth

deformation maps, Xef, and the reconstructed deformation maps, 7> for all
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FIGURE 3.12: Registration of a synthetic data set built from the “Dave’s Head” template.
First row: deformed template image. Second row: reconstructed images. Third row: absolute
difference between the original template and the reconstructed images (scaled to 0... 1 for
display). Fourth row: ground truth deformation fields. Fifth row: reconstructed deformation
fields. Sixth row: difference between the ground truth and the reconstructed deformation
fields (scaled to 0... 1 for display).

pixels. The results for both artificial data sets and for both algorithms are
summarised in Table 3.1 and Table 3.2.

Comparison shows that the proposed algorithm significantly outperforms the
method of Cootes et al. [67] both in terms of spatial and intensity reconstruction
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FIGURE 3.13: Registration of a synthetic data set built from the “Chequerboard” template.
First row: deformed template image. Second row: reconstructed images. Third row: absolute
difference between the original template and the reconstructed images (scaled to 0... 1 for
display). Fourth row: ground truth deformation fields. Fifth row: reconstructed deformation
fields. Sixth row: difference between the ground truth and the reconstructed deformation
fields (scaled to 0... 1 for display).

errors. For the “Dave’s Head” data, the proposed method produced a 68.71%
lower mean spatial error than that of Cootes et al. [67], and 43.81% smaller
intensity error. For the “Chequerboard” data these improvements are 37.53%
and 48.14% respectively.

This can be attributed to two factors. First is a better model of deformations
in the proposed method. Inspecting closely the difference images for the
recovered deformation fields, one can notice the triangular-shaped error patterns
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FIGURE 3.14: Registration of a synthetic data set “Dave’s Head” using the algorithm of
Cootes et al. [67]. First row: deformed template image. Second row: reconstructed images.
Third row: absolute difference between the original template and the reconstructed images
(scaled to 0...1 for display). Fourth row: ground truth deformation fields. Fifth row:
reconstructed deformation fields. Sixth row: difference between the ground truth and the
reconstructed deformation fields (scaled to 0... 1 for display).

in the case of Cootes et al. [67] method: their deformation model is limited to
one piece-wise affine field and cannot explain smooth deformations as well as
the proposed method does. Additionally, the optimiser of Cootes et al. [67]
seems to be worse. Inspecting the difference images reveals occasional crude

82



3.6. Experiments

i~ A
-1 Am 4%

S

Figure 3.15: Registration of a synthetic data set built from the “Chequerboard” template
using the algorithm of Cootes ef al. [67]. First row: deformed template image. Second row:
reconstructed images. Third row: absolute difference between the original template and the
reconstructed images (scaled to 0... 1 for display). Fourth row: ground truth deformation
fields. Fifth row: reconstructed deformation fields. Sixth row: difference between the ground
truth and the reconstructed deformation fields (scaled to 0... 1 for display).

errors in alignment which their optimiser failed to deal with (e.g. right eye in
the second column in Fig. 3.14, or third and fifth columns in Fig. 3.15. Further,
in areas where there are no texture clues (e.g. monotone background) the
algorithm of Cootes et al. [67] produces systematic spatial errors (e.g. columns
four and six in Fig. 3.14), whereas the proposed method does not.

6Reported in pixels and, in brackets, as a percentage of the image height.
7Reported in units of intensity, with the full range being 0... 255, and, in brackets, as a
percentage of the intensity range.
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Measure Proposed method Cootes et al. [67]
Mean spatial error®  0.4675 (0.12 %)  1.4939 (0.39 %)
Spatial error SD 0.4857 (0.13 % 1.8364 (0.48 %)

)
Mean intensity error” 1.4136 (0.55 %) 2.5157 (0.99 %)
Intensity error SD 1.8669 (0.73 %)  3.6799 (1.44 %)

TABLE 3.1: Comparison of registration results for the artificial “Dave’s Head” data set using
the proposed method and that of Cootes et al. [67].

Measure Proposed method Cootes et al. [67]

Mean spatial error ~ 0.6073 (0.24 %)  0.9722 (0.38 %)
Spatial error SD 0.5668 (0.22 %)  1.1119 (0.43 %)
Mean intensity error 3.3881 (1.33 %)  6.5379 (2.56 %)
Intensity error SD 10.246 (4.02 %) 19.769 (7.75 %)

TABLE 3.2: Comparison of registration results for the artificial “Chequerboard” data set
using the proposed method and that of Cootes et al. [67].

Comparison of the results between the datasets is also of interest. The
experiment with the “Chequerboard” template yielded higher pixel intensity
error, but lower spatial error than with “Dave’s Head”. This can be explained
by the presence of very strong edges in the “Chequerboard” image. Indeed,
even small spatial errors around strong edges produce high intensity errors.
On the other hand, strong edges is a valuable clue, present to a much lesser
extent in “Dave’s Head”, that helps the algorithm to better find the correct
alignment, hence the lower spatial error with the “Chequerboard” image.

Overall, the reconstruction errors with the proposed approach are sufficiently
small to call the results a success.

3.6.2 Comparison With Manual Annotation

To evaluate the quality of the results produced by the proposed registration
algorithm, comparison with the manual annotation has been performed. The
FGNET talking head dataset comes with publicly available annotation, with
68 control points placed in each image at corresponding locations across the
ensemble. The control points in the FGNET annotation cover the facial region
of the talking head. The IMM dataset is also annotated, with 58 control points
per image, also covering the facial area.
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METHOD The following metrics are computed and compared: MAD between
the reference and the images, mean NMI between reference and each image as
well as mean, pairwise MAD and pairwise NMI between every pair of shape
normalised images, and pixel stack entropies of the aligned ensemble. The
procedure to compute the above metrics for the alignment defined by sparse
set of control points is explained below, followed by the procedure to compute
these metrics given the deformation model of Section 3.5.2. The results are
compared in the end.

Since the control points in the manual annotation cover only the facial
region of the images, a fair comparison requires the results to be evaluated
only within the region covered by the control points (convex hull of the cloud
of control points).

First, all sets of control points (from each image) are aligned using Gene-
ralised Procrustes Analysis (GPA) and the reference configuration of points
is found by averaging the aligned point sets. To obtain shape-free patches,
the reference configuration of points is first triangulated and each image Z; is
warped to the reference configuration, yielding Z; = W;(Z;), using the piece-
wise affine deformation model (see Eq. (3.7)) defined by the above triangulation.
This procedure (shape normalisation) follows Cootes and Taylor [59] exactly.
The average image Rcp is computed by averaging the shape-free patches:
Rep = % Zq{i1 I{ .

Let MADgq(A, B) be the MAD between images A and B over the domain Q:

1

MADo(A,B) = — 3 (% ; |A(z, y, ¢) — B(z,y,0)| ] . (3.61)
IQl V. 3 c=1

z,y€N

The mean absolute difference in the reference frame (MAD,.f) is then computed
by warping each image in turn to the reference frame, computing the absolute
difference with the reference, and averaging the result (dividing the sum by

the number of images, pixels, and channels):
1 N
MAD, = i > MADq,,,(Rcp, Wi(Zs)), (3.62)
i=1

where N is the number of images, Q. is the domain of the reference image
(pixels covered by the convex hull of the control points).
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Similarly, the mean absolute difference in the original frame is computed
by warping the reference back, to align with each image in turn, computing

the difference between them, and similarly averaging the result:
1 N
MAD,ig = N Z MADq, (W, (Rcp), T), (3.63)
i=1

where, again, N is the number of images, {); is the domain of the i-th original
image and W, }(Rcp) denotes the reference warped back to conform with the
i-th original image Z,.

By analogy with Eq. (3.62) and Eq. (3.63), mean NMI (see Eq. (3.39)) is
computed in the reference and the original frame:

N

NMLt = % Z NMIQref (RCPa Wz(I)'z), (364)
=1
1 N

NMIorig = N Z NMIQ, (Wi_l (RCP)v Iz) (365)
i=1

Also computed is the the average pixel stack entropy (see Eq. (3.34)):

PSEwt = —— 3 HWil),z,y)), (3.66)

|Qref' T,Y€Eref
where I; are images Z; converted to gray scale, s(I, z, y) is a pixel stack obtained
by sampling all images I; at location (z,y), and H(-) is the entropy.
Finally, the MAD and NMI are computed between every pair of shape-

normalised images and the result averaged:

1 N i-1

MADE = jr—gy &5 (MADn, (W(Z) WH(T), (360
NI = Sy X (WMo, (K@) W@)) . (369)

Given the deformation fields D; and the affine transforms A;, computed
by the proposed algorithm, that bring the images Z; into correspondence, the
MADig metric from Eq. (3.63) can be computed trivially, by using the warp
2-1(A;, D;, ) in place of W, 1(-) to warp the reference image to each of the
original images. This is possible because the domains §Q; are already known
(from the control points defined on the original images).
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(a) Example image (b) Mean using manual (c) Mean using the pro-
with annotation. annotation. posed algorithm.

FIGURE 3.16: Comparison of the registration with the proposed algorithm vs. manual
annotation (IMM data set).

Computing the metrics in the reference frame, given 7 and Ay, is slightly
more involved, because for a fair comparison the domain in the reference
frame, fl'ef, needs to be estimated first. It should be noted that, in general,
f2'ef ~ f2ref. In other words, the location of features in the average of the
shape-normalised images (reference) depends, to an extent, on the registration
algorithm being used. So, to estimate fi'ef the following simple procedure
was employed. The control points ¢ in each image were first transformed to
the reference frame using the computed deformation fields 7> and the affine
transforms A* ¢ = QICI(A*,  Cij), Vi,j. The transformed sets of control
points were averaged to establish the reference configuration and so Q'ef.

The above metrics that are computed in the reference frame can now be
computed analogously, by substituting QUA* ¢ for Wi(-), and Q'ef for Qref
in the above equations.

Comparison Figure 3.16, Fig. 3.17, and Fig. 3.18 show the layout of the
control points in the manually annotated images, and the two averages of the
shape-normalised ensembles: the one obtained with manual annotation and
the one obtained with the proposed algorithm.

Table 3.3 summarises the comparison metrics for the FGNET dataset
(sample of 128 images). Table 3.4 summarises the same results for the IMM
dataset (all frontal colour images, 37 in total). In all cases the proposed method
noticeably outperforms manual annotation. The quantitative improvement
over manual annotation in the case of the xm2vts data set is more modest

(Table 3.5), because of much greater variation in pixel intensities that cannon
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(a) Example image (b) Mean using man- (c) Mean using the
with annotation. ual annotation. proposed algorithm.

FIGURE 3.17: Comparison of the registration with the proposed algorithm vs. manual
annotation (FGNET “Talking Head” data set).

(a) Example image (b) Mean using manual (c) Mean using the pro-
with annotation. annotation. posed algorithm.

Figure 3.18: Comparison of the registrationwith the proposed algorithm vs. manual
annotation (xm2vts Session 1 data set).

Table 3.3: Comparison of registration results: proposed algorithm vs. manual annotation.
FGNET “Talking Head” data set (sample of 128 images).

Metric Manual annotation Proposed algorithm Improvement
MADref 6.7197 5.8299 13.24 %
MADajg 7.2824 6.1324 15.79 %
MADET 9.1288 7.9491 12.92 %
NMIref 1.2304 1.2528 1.82 %
NMlaig 1.2233 1.2440 1.69 %
PSEref 4.1768 4.0620 2.75 %

NMipr 1.2069 1.2213 1.19 %
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TABLE 3.4: Comparison of registration results: proposed algorithm vs. manual annotation.
IMM data set (all colour frontal images, 37 in total).

Metric Manual annotation Proposed algorithm Improvement

MAD,¢ 15.7575 13.8267 12.25 %
MAD i 16.4288 14.7785 10.04 %
MADE 22.6327 19.8833 12.15 %
NMIes 1.1910 1.2175 2.22 %
NMorig 1.1823 1.2005 1.54 %
PSEe 4.7194 4.6705 1.04 %
NMIP-Y- 1.1606 1.1812 1.77 %

ref

TABLE 3.5: Comparison of registration results: proposed algorithm vs. manual annotation.
xm2vts Session 1, 295 images.

Metric Manual annotation Proposed algorithm Improvement

MAD,¢ 19.3037 18.3413 4.99 %
MAD orig 20.1811 18.8650 6.52 %
MADPY 27.7852 26.4328 4.87 %
NMI,f 1.0905 1.0996 0.84 %
NMIorig 1.0888 1.0958 0.64 %
PSE,f 6.1772 6.1261 0.83 %
NMIP} 1.0664 1.0695 0.29 %

ref

be explained by deformation alone, due to the nature of imagery and greater
length of the data set. However, the qualitative improvement in this case is
noticeable: observe the shady lines around the eyes in Fig. 3.18c. These are
the rims of the glasses present in some images of the data set. The proposed
algorithm, unlike the manual annotation, managed to correctly align the rims
of the glasses which, being in alignment, manifest themselves in the average
image. Note also the visually noticeable better alignment of the deep wrinkles

which run from the nose to the corners of the mouth.

3.6.3 Registration of Various Data Sets
3.6.3.1 FGNET “Talking Head” (Within-subject Registration)

In this and the following experiments, in order to visually inspect the progress
of registration, at each iteration the current estimate of the reference image

was saved. Initially, averaging unregistered images leads to a blurry reference,
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Figure 3.19: Example images from the FGNET “Talking Head” data set.

A A

Initial 8 (affine) 11 16 32 131 (final)

Figure 3.20: Evolution of the texture model for the FGNET “Talking Head” data set.

as the averaging operates on stacks of pixels that do not yet correspond do each
other. As the algorithm progresses and incrementally establishes the correct
correspondences, the shape-normalised average of the images converges to a
true, crisp picture of the underlying structure. A sharp final reference image
means that all images have been well aligned by the groupwise registration.
This is a useful technique to visualise the progress. Figure 3.20 shows the
evolution of the reference after k iterations (the iteration number is shown
below each image). The leftmost image shows the average of the unregistered
images, the next image shows the reference after the completion of the affine
stage, and the remaining images show the evolution during the non-rigid
stage. Note that iteration numbers are given inclusive of the affine stage,
e.g the third image in Fig. 3.20 shows the reference after iteration 3 of the
non-rigid stage (11-th overall), as the affine stage required 8 iterations. This
convention is followed throughout the thesis in other analogous figures. (Note
that the texture model obtained by shape normalisation and averaging of the
original images is shown, even though the registration relies on the model
built from the preprocessed images.) To analyse the registration progress
more quantitatively, at every iteration the following measures were computed
and recorded: the value of the cost function (average MAD between each
shape-normalised image and the reference), similarly the average MI and NMI
between each image and the reference, and finally the mean pixel stack entropy
of the entire shape-normalised ensemble. It should be noted that while pixel
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Measure Initial Final  Impr.

MAD 12.839 4.1799 67.45 %

42

f 38 ¢ i Ml 0.9024 2.2778 152.40 %
ﬁ3'6 z14 NMI 1.0758 1.2148 12.92 %
N Entropy 4.2492 3.2340 23.89 %

3.4-

32

Iteration

FIGURE 3.21: Registration quality measures (FGNET “Talking Head”).

stack entropy and MAD are measures of dissimilarity, and so expected to
decrease the algorithm progresses, the MI and NMI are measures of similarity,
and so expected to increase. The plot in Fig. 3.21 illustrates the evolution
of these measures. The dotted vertical line demarcates the affine and the
non-rigid stages. The dotted horizontal line show the final value of the cost
function. This convention is followed throughout in all similar plots.

The entire FGNET “Talking Head” video comprises 5000 frames. For this
experiment, a subset of 256 images was sampled from the full set using the
procedure described in Section 3.6.5.

Having registered the images, it is possible to construct statistical appear-
ance models, using deformation maps directly to build high resolution shape
model. If memory is a concern, however, one might obtain traditional control
point-based representation of shape in the end by sampling the deformation
maps. The first two modes of variation of combined model of the FGNET data
set are shown in Fig. 3.22.

To show that the proposed algorithm can be applied not only to facial im-
agery, the experiment on registration of handwritten digits from Miller et al. [182],
Learned-Miller [156] was replicated. The example images from these data set
are shown in Fig. 3.23 and Fig. 3.25. The evolution of the texture model as the
registration progresses are shown in Fig. 3.24 and Fig. 3.26. The progress plots
are found in Fig. 3.27 and Fig. 3.28. It is evident that the proposed algorithm
admirably copes with this task.
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—2(7 mean +2(7

Figure 3.22: An Active Appearance Model of a talking head obtained by registering the

images using the proposed method.

Figure 3.23: Example images from the handwritten zeros data set.

Initial 16 (affine) 18 22 40 61 (final)

Figure 3.24: Evolution of the reference image for the handwritten zeros data set.

3.6.3.2 Inter-subject Registration

For this experiment, frontal images from Session 1 of the xm2vts data set were
used. The total number of images is 295. Some of the example images from
this data set are shown in Fig. 3.29. Note the presence male and female faces,
glasses in some images as well as significant variation in facial hair. Images
were cropped to 342 x 366 pixels to contain the facial region. The images were
then registered. The evolution of the texture model is shown in Fig. 3.30 and

the progress plots in Fig. 3.32. To illustrate the usefulness of the proposed
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a

FIGURE 3.25: Example images from the handwritten twos data set.

Initial 16 (affine) 19 31 50 67 (final)

FIGURE 3.26: Evolution of the reference image for the handwritten twos data set.

registration framework for appearance model building, an AAM was built from
registered images, as in the previous experiment. The first three modes of

variation are shown in Fig. 3.31.

Comparison W ith State of The Art. Cootes et al. [67] also experiment
with the xm2vts data set and provide quantitative results. It seems interesting,
therefore, to compare the output oftheir method with the algorithm proposed in
this chapter. After registering the images, Cootes et al. [67] warp the manually
placed control points (more precisely, their subset of 20 points defined in the
paper) using the computed deformation fields. The warped positions of the
control points are then averaged in the reference coordinate space and the
average is warped back to the space of the original images. These are compared
to the manually placed control points: Euclidean distance is measured and
normalised by the interocular distance. To illustrate, for a single image the

error measure of Cootes et al. [67] is

where N is the number of control points, 7 is the interocular distance, [ ]
is the position of the j-th manually placed control point in the z-th image,
Wi and W~I are the computed deformation field and its inverse for the z-th
image. Cootes et al. [67] report the values of this spatial error measure for

various variants of their algorithm, and their best median value is 3.5 pixels.
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Figure 3.27: Registration quality measures (handwritten zeros).
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Figure 3.28: Registration quality measures (handwritten twos).

FIGURE 3.29: Example images from the xm2vts (Session 1) data set.

The algorithm proposed in this chapter yields the median value of 3.56 pixels,
which compares favourably (subject to minor differences in the experimental
setup). Importantly, the best result (3.5 pixels) in Cootes et al. [67] is obtained
using an ad hoc shape term in the cost function, while the algorithm in this
chapter does not use one and still shows the same performance. Without the
shape term, the method of Cootes et al. [67] produces a much worse value of
4.3 pixels, a 18% difference.

To ensure that the algorithm can perform inter-subject registration reliably,
the experiment was repeated using IMM data set. The example images from

this ensemble are shown in Fig. 3.33, the evolution of the texture model
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FIGURE 3.30: Evolution of the reference image for the xm2vts (Session 1) data set.
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FIGURE 3.31: First three modes of variation for the xm2vts (Session 1) data set.

-NMI
-Ml

Entropy Measure Initial Final Impr.
MAD 9.5460 7.2760 23.78 %
MI 0.4359 0.6365 46.00 %
NMI 1.0341 1.0544 1.97%

Entropy 4.6869 4.4733 4.56 %
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FIGURE 3.32: Registration quality measures (xm2vts Session 1).

in Fig. 3.34, the progress plots in Fig. 3.36, and the first three modes of
variation of the resulting AAM in Fig. 3.35.
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FIGURE 3.33: Example images from the IMM data set.

Initial 12 (affine) 15 32 70 111 (final)

FIGURE 3.34: Evolution of the reference image for the IMM data set.
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FIGURE 3.35: First three modes of variation for the IMM data set.
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MAD 11.1349 8.3587 2493 %
MI 0.4911 0.8949 82.23 %
NMI 1.0394 1.0761 3.53 %

Entropy 4.1843 3.8737 742 %

FIGURE 3.36: Registration quality measures (IMM).
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Measure Without With Impr.

! MAD 71320 72763 -2.02 %
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FIGURE 3.37: Effect of the affine stage (xm2vts Session 1).
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MAD 4.3727 4.1799 441 %
MI 2.0968 22778  8.63 %
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Entropy 3.1605 3.2340 -232 %

Iteration

FIGURE 3.38: Effect of the affine stage (FGNET “Talking Head” data set).

3.64 The Effect of The Affine Stage

This experiment aims to determine the contribution of the affine stage of
registration to the overall progress. To determine this, several data sets were
registered with and without the affine stage of the algorithm, and the results
compared. Additionally, the exclusion of the affine stage stresses the algorithm
more (as the more difficult non-rigid stage begins with a less favourable initial
configuration) and the successful registration further confirms the robustness
of the proposed algorithm.

In Fig. 3.37 the comparison of progress with and without the affine stage is
shown for the xm2vts data set. The solid lines correspond to the experiment
with the affine stage, and dotted lines — without. In this case, the affine stage
was not beneficial (small improvement in MI and NMI and slightly worse final
MAD and mean pixels stack entropy). This is because the amount of affine
movement in the data set was not significant for the affine stage to have a
significant positive effect; on the other hand, the initial model in the beginning
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of the affine alignment was very poor and could not be improved much with
the affine model alone, which led the affine stage to greedily drive the situation
to a state which turned to be a slightly worse initial state for the non-rigid
stage.

In Fig. 3.38 the comparison of progress with and without the affine stage
is shown for the FGNET data set. Here, unlike in the previous example, the
inclusion of the affine stage was beneficial: the original data contains a fair
amount of affine motion but significantly less texture variation than the xm2vts
data set.

To summarise, the necessity of the affine stage is governed by the amount
of affine motion in the data as well as by the amount of texture variation, and
is beneficial in many but not all cases.

It should be noted that in none of the experiments the crude pairwise affine
alignment with a selected image, as done in Cootes et al. [67], was performed.
This makes the affine stage more difficult, but is more congruent with the
overall groupwise paradigm. However, such an initialisation might still be

necessary if the amount of affine movement in the ensemble is very high.

3.6.5 Scalability

To investigate how the performance of the algorithm changes as a function of
the number of images in the ensemble, the algorithm was run several times on
ensembles of varying lengths and the results compared. The experiment was
performed with two data sets: FGNET “Talking Head” and DAVE, as these
are sufficiently long.

To draw N samples from a data set, the following procedure was used.
First, a matrix of pairwise differences, D, between each possible pair of the
unregistered images was computed and saved: D(3, j) = |Z; — Z;|. Then, to
draw N samples, the FPS strategy was employed to select N most dissimilar
images from the dataset, using D to determine the relative “distances” between
images. This way of sampling produces subsets which are more characteristic
of the entire set, than, say, taking the first N, or every k-th frame. This
also makes the problem harder, because the images are selected that are most
dissimilar to each other.

The registration was done on the subsets of lengths from 16 to 256 in
increments of 16, totalling 16 experiments with each dataset.
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Since increasing the number of images in the ensemble typically leads to
more variance in pixel colours, even in perfectly registered images, the measures
of the final alignment quality are expected to get worse as the length of the
ensemble increases, regardless of the performance of the algorithm. And so,
for a fair evaluation, this effect needs to be accounted for. To do so, in this
experiment the final quality measures for each registration run were divided by
those of the corresponding unregistered ensemble. In other words, the relative
change was examined.

It should be noted, parenthetically, that while larger data sets take more
time to register, their registration is not necessarily harder. Indeed, the more
“intermediate stages” are present between the images in the ensemble, the
easier it is for the algorithm to construct an accurate model (as more useful
information is present) and so is easier to register the images.

The performance measures for the above experiments are given in Fig. 3.39
and Fig. 3.40. The solid lines in the plots indicate the results of the non-rigid
stage only, and the dotted lines —the results inclusive of the affine stage.

In both cases, there is no evidence of the performance degrading significantly
as the number of images grows, despite the selection of samples that maximised
inherent texture variation in the data sets.

In the case of the FGNET data (Fig. 3.39) the trend is better discernible:
as the number of images increases, so does the amount of the inherent texture
variation (indicated by the growing mean pixel stack entropy), which cannot
be explained, even in principle, by spatial deformations alone. This leads to
the decreasing relative improvement, but only to some extent. Above a certain
number of images (about 160), the trend stabilises and no further degradation
of performance is noticeable. This trend is less discernible in the case of “Dave’s
Head” data (Fig. 3.40).

The experiment was repeated with the same data sets, but this time the
samples were drawn in sequential order. The corresponding results are shown
in Fig. 3.41 and Fig. 3.42.

In this case, as the number of images increases, the relative improvement
(compared to the unregistered data) also increases, but only to some extent.
This is due to the fact that in in this experiment the samples were not drawn
to maximise the inherent texture variation in the data, and the measured

intensity errors are largely due to misalignment of images (which the algorithm
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Figure 3.39: Results of the scalability experiment using the FGNET “Talking Head” data
set. Dotted lines indicate the results of the entire registration process, solid fines are indicate
the results of the non-rigid stage only.

later improves), not due to texture variation inherent in the data. As the
size of the ensemble grows, assuming the algorithm neutralises most of the
spatial alignment error, the remaining error due to inherent variation does not
grow as fast as in the previous experiment. This leads to increasing relative

improvement. This behaviour is the expected and intuitively pleasing result.

3.6.6 Comparison of The Optimisers

To justify the choice of SPSA as the optimiser, the algorithm was run on two
image ensembles (FGNET and xm2vts) with the SPSA and then with the
Nelder-Mead method as the optimisers, and the results compared. To make
the comparison fair, both algorithms were allowed to use the same number of
the objective function evaluation.

The comparative progress plots are found in Fig. 3.43 and Fig. 3.44. The

solid lines correspond to SPSA and dotted lines — to Nelder-Mead. While
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FIGURE 3.40: Results of the scalability experiment using the “Dave’s Head” data set.
Dotted lines indicate the results of the entire registration process, solid lines are indicate the
results of the non-rigid stage only.

the final quality measures are comparable (SPSA slightly outperforming),
the important result here is the total number of iterations (running time) is
significantly smaller (relative difference was 178.03% and 107.69% in the two
experiments) when SPSA is employed. This confirms its advantages in the

proposed registration framework.

3.7 Future Work

Apart from the incremental improvement of each part of the registration
framework — deformation modelling, objective function, and optimisation —
which is a natural continuation of this research, several important outstanding
problems were identified, solutions to which, it can be speculated, would greatly
advance the field of groupwise image registration and automatic appearance
model building. They are outlined below.
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FIGURE 3.41: Results of the scalability experiment using the FGNET “Talking Head” data
set, using sequential samples. Dotted lines indicate the results of the entire registration
process, solid lines are indicate the results of the non-rigid stage only.

The first problem with current groupwise registration algorithms is that
the objective function is based on some sort of per-pixel statistics. Be it an
evolving estimate of a “reference” image, obtained by averaging the partially
registered images (Sidorov et al. [243]), or the entropies of the pixel stacks
(Miller et al. [182]), or some other kind of statistical method — the problem is
that such per-pixel computations are not entirely appropriate before the images
are fully registered and the correspondences between pixels are determined.
This is a “chicken and egg” problem. In such algorithms, it is assumed that
if the images are initially approximately aligned, then the use of such per-
pixel statistics on “approximately corresponding” pixels is sufficient to slightly
improve the knowledge of correspondence between pixels on the first iteration;
then this improved correspondence can be used to do more accurate statistics

on the second iteration and so on. This leads to the question: how exactly
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FIGURE 3.42: Results of the scalability experiment using the “Dave’s Head” data set, using
sequential samples. Dotted lines indicate the results of the entire registration process, solid
lines are indicate the results of the non-rigid stage only.

Iteration

Measure NM SPSA  Impr.
MAD 42601 4.1799 1.88 %
MI 22276 2.2778 225 %
NMI 1.2101 1.2148 0.39 %
Entropy 3.2334 3.2340 -0.02 %
Iter. 367 132 178.03 %

FIGURE 3.43: Comparison of the optimisers (FGNET “Talking Head” data set).

does this assumption influence the basin of convergence? Of interest would

be a comparative quantitative study evaluating the basin of convergence for

various choices of the objective function, deformation models and optimisation

regimes in groupwise registration algorithms.
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Measure NM SPSA  Improvement
MAD 7.8667 7.7097 2.00 %

MI 0.5789 0.5788 -0.02 %
NMI 1.0494 1.0502 0.07 %
Entropy 4.4925 4.4546 0.85 %
Iter. 243 117 107.69 %

[teration

FIGURE 3.44: Comparison of the optimisers (xm2vts data set).

In algorithms that are based on an evolving reference texture model, be
it just an average or some other statistical model, this reference model is the
bottleneck through which the information is propagated between images. In
such algorithms, useful information from image 42, that would assist in learning
correspondences between images 1 and 2, has to be aggregated in the reference
model, before it can be used. This is an important drawback, because this
approach does not scale up well. Since the exact correspondences between
pixels are not known in advance, computing an aggregate reference model
with per-pixel statistics has the effect of filtering out useful high-frequency
information {e.g. average image is blurry). This undesirable effect increases
with the number of images being registered. (Note that the other side of
the medal is the desirable effect of filtering out noise and transient features).
Attempts to alleviate this problem by using more robust statistics yield only
minor improvements (Cootes et al. [67]).

The first important step in solving this problem was made by Cristi-
nacce et al. [74]. They note that it is easier to register similar images first
and then aggregate the result across the entire ensemble. (This is unsur-
prising for reasons discussed above, since when averaging small number of
similar, i.e. initially better relatively aligned, images, the loss of valuable
high-frequency information due to averaging is less significant). The approach
of Cristinacce et al. [74] is to cluster the images and construct the shortest
path tree over the clusters. The order in which the images are registered with
an evolving estimate of the mean is dictated by this tree. Cristinacce et al. [74]
show that a more accurate result can be achieved with this method than when
all images are registered at once. This quantitatively confirms the argument

outlined above.
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Furthermore, Blezek and Miller [29] also point out that it is common for
an ensemble of images to have a multi-modal distribution and so a single
reference (termed “atlas” in Blezek and Miller [29]), essentially an assumption
of unimodality, might not be appropriate. They address this problem by using
the mean-shift algorithm, considering pairwise distances between samples, to
detect the modes in the population, and determine the references (atlases)
with which the subsets of samples are registered.

The research of Cristinacce et al. [74] and Blezek and Miller [29] are the first
steps in the right direction and it would be interesting to further investigate the
possible approaches to alleviate the above problem. Consider an extreme case
with no loss of information: when no per-pixel statistics are ever computed,
and the hypothetical objective function only ever compares the original images
between themselves directly. The important question is whether such algorithm
is possible. The search for such method is one of the topics of potential future
research.

While so far primarily the linear appearance models and their automatic
construction were discussed, recent developments in the field of multilinear
modelling suggest that potential exists in the application of multilinear algebra
methods to modelling of appearance. The key papers exploring such possibility
include Vasilescu and Terzopoulos [282-284, 286] and especially Vasilescu
and Terzopoulos [285]. Conventional linear modelling approaches, such as
PCA, assume that the apparent variation in an ensemble of images is due
to a single contributory factor. Natural images, however, result from the
contribution of multiple factors, such as scene orientation, subject identity,
deformation, illumination etc. Exploiting multilinear algebra, Vasilescu and
Terzopoulos [285] elegantly and effectively deals with the multifactor variation in
image ensembles, by introducing a powerful tensor-based modelling framework.
In Vasilescu and Terzopoulos [285], the primary proposed applications are
recognition and synthesis.

The multilinear modelling paradigm is very promising, but a number of
outstanding question remains. The work of Vasilescu and Terzopoulos [282-280]
concentrates on modelling the pixel intensities only, the spatial transformations
(such as due to rotation of the subject) being modelled as contributing factors.
The first question then is: is it possible to augment the multilinear models
with the idea of explicitly modelling the spatial deformations, together with
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the intensity variation, in a fashion similar to AAM? Groupwise registration
of images can be used to create an explicit model of deformations, just like
for AAM. The second question is then: can an algorithm be developed
that would, given an assorted ensemble of images, automatically extract the
contributing factors? (Presently, in multilinear methods, it is assumed that the
contributing factors are known, and the training images can be arranged into
an observation tensor, with dimensions corresponding to factors). Can this
process be integrated with groupwise registration, perhaps to give “groupwise
registration and factor decoupling”? Can such models be used for something
more demanding that recognition and classification? These questions could be
a basis for potential future research.

As groupwise image registration has been related to the problem of manifold
learning in Section 3.1, it would be interesting to investigate exactly which
ideas can be borrowed from one area and applied to the other. It can be
speculated that merging ideas fromn both fields can be fertile.

Another potential direction of future research is modelling of deformations
that are inherently non-diffeomorphic. This is of interest in medical imaging, as
well as in craniofacial modelling. This problem is mentioned, but not addressed,
by Cootes et al. [62]: “In cases where structures appear or disappear between
one image and the next, these should be explicitly modelled as creation or
destruction processes.” Indeed, the appearance and growth of a tumour in CAT
brain scans, or the appearance of teeth when the mouth is opened, cannot be
adequately modelled with existing techniques — the non-diffeomorphic features
are explained as simply intensity variation, not a spatial process. It can be
speculated that such imagery may be modelled with composite, or layered,
AAMs, a technique proposed by Jones and Soatto [137] or a variation thereof.
However, an automatic construction of such layered models appears to be an
extremely difficult task: on top of the existing challenges of the groupwise
registration, the algorithm will have to automatically separate each of the
images into layers, simultaneously align the contents of each layer. This is a
“chicken and egg” problem: if the demarcation of the images into layers was
known, the groupwise registration of each layer can be done relatively easily; if
the images were registered, by measuring the degree of “non-diffeomorphicity”

the layers could be detected. Perhaps an iterative solution that would perform
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demarcation and registration simultaneously is possible. This question can

also be a promising direction of potential future research.

3.8 Conclusion

A novel approach to groupwise non-rigid image registration which is fast,
reliable and requires no manual initialisation was proposed. Methods that
implicitly reduce the dimensionality of the search space by representing in-
creasingly complex deformations as a superposition of simpler deformations
were developed. Due to this formulation it was possible to take advantage
of the simplicity and efficiency of piece-wise affine interpolation to represent
deformations and overcome previous limitations of this model due to limited
smoothness and flexibility. A novel efficient and reliable, fully unsupervised
stochastic optimiser — an adaptation of SPSA — whose performance in terms
of the number of function evaluations at each iteration is independent on
the dimensionality of the space was intimately integrated into the groupwise
registration framework and proved to be a very efficient solution.

In evaluation of the proposed method, high robustness and success rate
were demonstrated, as well as fast convergence on various types of test data
which shows considerable improvement in terms of accuracy of solution and
speed compared to existing methods. Due to the robustness of the proposed
approach, inter-subject registration is possible. At the time of publishing
the CVPR ’09 paper (Sidorov et al. [243]), this was the first time that the
groupwise registration of data possessing such variety (faces of multiple people)
had been reported.

Due to the efficient formulation of the proposed approach, it is easily
amenable for GPU implementation — in the experiments, apart from the
control logic, all steps were performed on a GPU.
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CHAPTER

4

Registration of Textured
Surfaces

I remember, once, Peter the Great had
a problem like that. ..

Pavel Chekov (Star Trek)

EGISTRATION of textured! surfaces, such as those obtained with the mod-

ern commercially available photogrammetric surface scanners (e.g. [6]),

is a problem which is closely related to the problem of 2D image

registration, but presents a number of challenges that prevent it from being

immediately amenable to a solution by existing 2D registration methods. In

this chapter, a methodology to effectively reduce the problem of groupwise

registration of textured surfaces to a problem similar to that of registering 2D
images is proposed.

More specifically, the method proposed in this chapter, focuses on the reg-
istration of textured genus-0 disk-like orientable open surfaces (Massey [179])
represented by triangulated manifolds, or meshes, defined in Section 4.3.1,
since this is the most common type of surface data in orthodontic practice
as well as in the fields of computer graphics and vision. However, with some
modifications, the proposed approach can be adapted to surfaces of other kinds
(such as closed surfaces, as discussed in Section 4.7).

!Texture, in this chapter, refers to any scalar or vector field (for example, RGB colours)
defined on a surface. See also the discussion on page 135.
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In short, this chapter discusses a variation on the method described in Chap-
ter 3 which is adapted to the registration of textured 3D surfaces, using primar-
ily texture information, and incorporating additionally geometrical information
which is not present in 2D images. Note that this problem is related to, but is
in general different from the problem of surface registration based on purely

geometric information.

4.1 Motivation

The solution to the above problem is important for craniofacial appearance
modelling for several reasons. Readily available textured surface scans are
becoming an important and highly practical noninvasive diagnostic tool in
orthodontics (Kau et al. [140], Popat et al. [215], Popat and Richmond [216],
Sidorov et al. [241]). Having an automatic pipeline from acquisition to regis-
tration and modelling of ensembles of textured 3D face scans would allow for
such diagnostic procedure to be performed on a massive scale, very cheaply
and rapidly, providing valuable information to the clinician within minutes
after scanning the patients (currently, manual analysis takes many hours of
clinicians’ time).

In longitudinal studies, the ability to reliably establish correspondences
between features in multiple face scans of a patient would provide a valuable
insight into dynamics of craniofacial development, disease progress, or post-
surgical recovery. In latitudinal studies, large databases of patient face scans,
which are presently being actively created, could be subjected to registration
and then to statistical analysis, in order to discover novel facts about the
variability and properties of the human craniofacial complex.

In biometrics, identification methods based on facial dynamics (see e.g.
Benedikt [20] and references therein) will also greatly benefit from automatic
registration of textured meshes as this would allow for a quick and easy creation
of subject databases.

In computer graphics, and especially in the game industry, registration of
textured surfaces from photogrammetric scanners, which are already ubiquitous
in the field, would enormously facilitate the otherwise laborious process of
creating animated head and face models by artists. The entire procedure, from

scanning an actor’s face with a non-invasive surface scanner, without using the
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traditional physical landmarks (such as special lipstick or reflective labels glued
to the face) to establishing the correspondences between features in multiple
frames, to the final polygonal model of the head, will be streamlined by the
proposed method for automatic registration of textured surfaces.

Additionally, in Chapter 5 a novel application of statistical 3D appearance
models is proposed: statistically constrained meshless mechanical simulation.
This application also greatly benefits from an automated pipeline for registering
textured surfaces.

4.1.1 Information Content of Texture and Shape

Contemporary 3D surface scanners most frequently employ either passive (using
only ordinary visible light cameras) or active (additionally using projected
infrared patterns) photogrammetry to achieve 3D shape reconstruction [6],
in addition to capturing the appearance (texture) of the object. These are
the only types of scanners that can presently operate at video-rate. They
typically sample 3D surfaces at a much lower resolution than that of the
corresponding textures (many pixels of a texture per triangle of a mesh). This
is unsurprising, not simply because high-resolution digital photography is ahead
in the resolution race, but because such scanners compute the 3D shape of
an object (typically by solving the simplified stereopsis problem) from images
obtained with the same class of cameras as those that capture the texture.

Additionally, even in the state of the art commercial photogrammetric
scanners, the errors in determining the 3D shape from images are still significant.
This results in noisy surfaces and makes registration based on shape features
(such as those discussed in Section 4.7) unreliable.

What is more important, in the case of craniofacial imagery, is that the 3D
geometry (shape) of the head and face is relatively smooth, contains few details,
and its information content is lower than that of the images (texture) of the
head: the shape of the head is essentially a low-frequency signal. Therefore,
since the texture data is readily available from photogrammetric scanners and
usually has high information content (including important detail not found in
shape data), it must be used to guide registration.

Incidentally, the higher information content of textures might be the reason
why humans have evolved to be more sensitive to the texture of the face than to
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(a) Original surface, (b) Original tex- (c) Same surface, (d) Same surface,
ture. texture of G. Bush, texture of Osama
bin Laden.

Figure 4.1: Human visual system is more sensitive to texture than shape. Image from Bron-
stein et al. [46].

its shape when performing facial recognition tasks (Bronstein et al. [46]). This
property of the human visual system is exemplified by Fig. 4.1 as well as by
make-up artists in theatres who are known to radically change the appearance
of actors by altering the facial texture with make-up, without altering the
shape of the face (Bronstein et al. [46]).

For synthesis then, a good quality model of texture is more important
than a good model of shape, so it seems important to drive the registration

predominately by texture information.

4.2 Background

One approach to registration of textured meshes is to parameterise the meshes
(see Section 4.2.3), thus mapping the corresponding textures to a plane, and
then register the resulting flat textures as images, using, for example, the
approach of Sidorov et al. [243] or Cootes et al. [66]. Using the computed
correspondences between the flattened textures, the correspondences between
points on the original meshes can be established.

This approach was used by the author in Sidorov et al [241]. While
it proved to work in many cases, the planar model of deformations in this
approach has an important drawback: it is agnostic of the 3D geometry of the
meshes. In other words, small displacements in the flattened textures, induced

by the deformation model, do not necessarily correspond to small displacement
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(a) Original surface (b) Surface pro- (¢) Cylinder unwrapped
jected onto a cylin-
der

Figure 4.2: A naive mapping of a surface onto a rectangle as in Sidorov et al. [243] or
Blanz and Vetter [28].

on the original 3D surfaces and vice versa. The more the surfaces differ from a
flat disk, the more pronounced is this effect.

The above drawback was further exacerbated by a naive choice of the
flattening scheme in Sidorov et al. [241], where a simple cylindrical unwrap-
ping (see Fig. 4.2) was used instead of a more elaborate scheme discussed
in Section 4.2.3 below. This introduced additional unpredictable deformations
dependent on the orientation of the meshes and, therefore, sensitive to the
initial alignment with respect to the cylinder. These are essentially noise mixed
with useful signal, the genuine deformations of the original meshes that are to
be recovered. It should be noted that cylindrical parameterisation was also
used in the classic work by Blanz and Vetter [28], in which the cylindrical
representation was due to the scanning process which sampled facial geometry
r(h,f) as a function of angle (f and height 4, and similarly sampled the colour.

Note that in the approach of Sidorov ef al. [241], the cumulative result of
first embedding the meshes into 2D, followed by computing the 2D deformations
that bring them into alignment, is still an embedding of 3D meshes into a 2D
plane, except performed in two steps.

With this in mind, this chapter offers a more principled approach (an
improvement of the approach due to Sidorov et al. [241]).

The main idea is to maintain the correspondences between surfaces and
to operate with textures in a common flat reference space while performing

optimisation on the original 3D surfaces. This can be regarded as gradually
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computing the embeddings R® — R? of the surfaces into a plane such that
they also bring all surfaces into alignment simultaneously. To accomplish this,
the algorithm begins by computing maximally isometric embeddings (reviewed
in Section 4.2.3) which implicitly define correspondences between surfaces and
continues iteratively improve them.

This is an improvement because the “embedding model” (the analogue of
the deformation model) in the proposed method is optimised on the original
manifolds, with geodesic distances along the surface of the manifold being
used instead of the Euclidean ones in the plane. This makes the registration
(embedding) algorithm aware of the shape of the meshes and the above drawback
is eliminated. Additionally, performing optimisation on the original 3D meshes
gives easy access to the 3D information, such as curvature.

The method described in this chapter is then, technically, a groupwise
embedding (or a groupwise parameterisation) algorithm, but for consistency
and parallelism with Chapter 3 it shall continue to be called registration, and
so shall the changes in embedding be called deformations.

The idea of doing registration of surfaces by mapping them to a plane first
and applying planar registration has been described in the literature before.
Li et al. [164], addressing the problem of shape registration via the shape
images representation, remark that image-based representations of shapes
are more useful for registration, than point-based representations, as they
provide more constraints and supporting information from neighbouring areas
of shape. This, essentially, means that the application of area-based registration
methods becomes easier. While Li et al. [164] focus on registration of shapes
based on geometry only, via shape images, this argument equally applies to
photometry-based registration.

Below, the computational tools and concepts which are needed for the
exposition of the proposed algorithm are reviewed: geodesic operations on
meshes, embedding of meshes into a plane, and filling holes.

4.2.1 Geodesic Distances and Fast Marching

One of the early algorithms for computing geodesic paths on triangulated
manifolds was proposed by Mitchell et al. in [183]. On a mesh with n edges,
their algorithm runs in O(n%logn) time and O(n?) space. After the initial
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pass, the “single source to single destination” distance can be found in O(logn)
time, and the actual path recovered in O(k + logn), where k is the number of
faces crossed by the path.

Later, Chen and Han [55] improved upon this result by proposing an
algorithm to compute exact geodesics in O(n2) time in the worst case.

A breakthrough occurred when a method for solving the Eikonal equation
(Eq. (4.3)) on a regular grid of m points in O(mlogm) steps, called Fast
Marching Method (FMM), was originally proposed by Sethian [236]. Two
years later, Kimmel and Sethian proposed an extension to this method in their
seminal paper [144], in which their technique is applied to triangulated domains
and has the same computational complexity O(mlogm). The Fast Marching
Method (FMM) resembles Dijkstra’s algorithm [87] in that a moving front is
advanced outward from the source in all directions. The reader is addressed to
Kimmel and Sethian [144] and Sethian [238] for full details. It should be noted
that a similar algorithm has been proposed even earlier, by Tsitsiklis [273].

Importantly, the appearance of FMM on triangulated domains, such as the
original approach of Kimmel and Sethian [144] and their extensions, made the
solution to the problem of finding “single source to all targets” and even “all
sources to all targets” geodesic paths computationally very cheap.

Following the exposition of Peyré and Cohen [208], the main idea is sum-
marised below. Given a manifold 901, two points on it, Xy and X3, and a strictly
positive metric P(s)ds defined on 90, the weighted geodesic distance between
Xo and x; is defined as (Peyré and Cohen [208])

&, x0, 1) = i ([ IV OIP(r(e)at) (41)

where 4’s are all possible piecewise linear curves on 9t such that v(0) = xo
and v(1) = x;. Fixing the point xo as the starting point, the distance
U(x) = B(M, xq,%) to all other points, x, can be computed by propagating
the level set curve £; = {x: U(x) = t} using the evolution equation

F0 = 5 (42
where n, is the exterior unit normal to £; at point x and U(x) satisfies the
Eikonal equation

IVU)|| = P(x). (4.3)
The FMM method of Kimmel and Sethian [144] does just that on triangulated

meshes.
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A number of improvements to the original FMM has been proposed. For
example, Giard and Macq [105] point out redundancies in the previous Fast
Marching solutions to the geodesic distance problems and propose a method
to estimate geodesic distances between some of the vertices by reusing the
information obtained during computation of the geodesic distances between
other vertices. This makes the solution even cheaper.

Pointing out that the method of Mitchell et al. in [183] typically runs much
faster than the worst case analysis suggests (rather, typical time complexity is
better than O(n?)), Surazhsky et al. [258] extend it and propose a family of fast
and accurate approximation algorithms (with bounded error) for computing
geodesics in O(nlogn) time. Bommes and Kobbelt [31] generalise the algorithm
of Surazhsky et al. [258], maintaining its properties, but further allow the
geodesic distances from an arbitrary, possibly open, curve on the surface, not
just from points, to be computed.

Grossmann et al. [117] proposed a voxel-based method for computing
geodesic distances on surfaces that are not represented as polygonal meshes.
This is useful, for example, when the surface in question is based on some voxel
data, such as a cortex boundary in an MRI brain scan.

In the remainder of this chapter, abstracting from the particular algorithm
used to compute the geodesic distances, the notation (91, a, b) denotes the
geodesic distance between points a and b on a mesh 9.

In practice, several good implementations of geodesic path algorithms exist.
For example, an implementation of the approach due to Mitchell et al. [183]
by Kirsanov is found at [147] and [146]. An implementation of the FMM of
Kimmel and Sethian [144] by Bronstein is found at [41]. The same method
was implemented by Peyré and is available at [206].

4.2.2 Multidimensional Scaling

One of the approaches to embedding a point cloud into a Euclidean space,
possibly of lower dimensionality, well known in statistics, is termed Multi-
dimensional Scaling (MDS), see e.g. Borg and Groenen [34], Cox et al. [72].
Several variants of MDS have been proposed, differing in the objective
function and optimisation framework. Below, the main idea behind the clas-
sical MDS algorithmn, first proposed by Young and Householder in [299], is
summarised for completeness, following the exposition given by Platt in [212].
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Given n points x; € R, i = 1...n, a dissimilarity matrix D, is con-
structed, such that D(7, j) = |x; — x;|. The classical MDS algorithm attempts
to find a set of n points y, € R™, ¢ = 1...n, with m < k, to minimise

Ca\2 .
% (Ily: =¥, =D 7)) = min_ . (4.4)

To do so, first a Gram, or kernel, matrix K is computed by “double-centering”
the distance matrix D,x, (see Platt [212]):

K(i,) = 3 (D(z',jf -2 ¥ DGgf -~ 3 D)+

i=1...n j=l.n

+_‘Z... Z D(i,j)2)) = (1 - 1) (_%D.D> (1 _ 1n>

n
(4.5)

If D is a Euclidean (in R") distance matrix, then K is a positive semi-
definite symmetric matrix of dot-products of points’ radius vectors in the
same space (Scholkopf [232]). The matrix K is then decomposed using EVD
into K = ALA7, where the eigenvectors (columns of A) constitute the derived
coordinates up to a similarity transform. The embedding then consists of
simply selecting m (m < k) eigenvectors from A corresponding to the m largest
eigenvalues in L.

When the size, n-by-n, of the dissimilarity matrix becomes large, the
solution of the eigenvalue problem (with time complexity O(n3), see the original
paper by Ky6manosckaa (Kublanovskaya) [305]) may become unfeasible due
to time and space limitations. This can be overcome by employing a variant
of MDS that scales better with the size of the dissimilarity matrix. Options
include: Landmark MDS (De Silva and Tenenbaum [82]), FastMap (Faloutsos
and Lin [96]), MetricMap (Wang et al. [291]). These are compared and
discussed by Platt in [212].

Alternatively, the size of the dissimilarity matrix may be reduced by re-
ducing the size of the point cloud. Since, as explained below, MDS is used
in the proposed method for embedding of mesh vertices into a plane, this
can be accomplished by strategic decimation of the meshes, as discussed
in Section 4.5.1.
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It is worth mentioning that embedding can be done onto another manifold
instead of a Euclidean space. A method for doing so, called Generalised Multi-
dimensional Scaling (GMDS) was proposed by Bronstein et al. [47-49]. The
possible applications of GMDS in the context of this chapter are discussed
in Section 4.7.

4.2.3 Flattening, Parameterisation and Bending Invariants

Parameterisation of triangulated manifolds, or meshes, is a fundamental and
frequently used operation in computational geometry and computer graphics
(Desbrun et al. [85]). Embedding and parameterisation of surfaces are two
closely related concepts. Both are concerned with bijective mapping of a
surface to a lower dimensional Euclidean space (usually a plane, in which
case the term flattening is sometimes used) while trying to preserve some
desirable properties, local, global, or both, such as distances, angles, areas,
connectivity etc. The term parameterisation usually refers to a special case?
of embedding that bijectively maps the surface in question to a unit square
(sometimes a unit disk) on a plane, thus mapping the Euclidean coordinates
on a unit square to the corresponding curvilinear coordinates (Moon and
Spencer [184]) on the original surface. Embedding of a triangulated manifold,
or mesh, amounts to embedding its vertices in such a way that the resulting
planar mesh is isomorphic to the original mesh (Desbrun et al. [85]).

The purpose of embedding or parameterising meshes is to simplify pro-
cessing, by performing operations in the flat Euclidean space rather than
on the curved surface. The benefits of doing so were originally realised by
Schwartz et al. [233], who applied MDS to flattening of the surface of a macaque
monkey’s visual cortex (a highly convoluted surface).

Not all surfaces can be bijectively mapped to a plane, so it must be stipulated
that from now on the discussion is focused on R2-embeddable surfaces, in other
words surfaces that can be bijectively embedded into R2.

There are presently many methods for mesh flattening and parameterisa-
tion, and some theoretical breakthroughs have been made in the last decade.
A classical approach, due to Floater [99], is an early example of a shape

2However, in Peyré and Cohen [208] the meaning is reversed: flattening, or embedding
in R?, is understood as a particular approach to parameterisation.
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preserving parameterisation based on the graph drawing theory. A number
of improvements to Floater’s original parameterisation scheme has been pro-
posed. For example, the heuristic method of Yoshizawa et al. [298] starts with
Floater’s parameterisation and proceeds to improve it via an iterative process
which minimises the weighted quadratic stretch energy. Another approach
due to Floater et al., is found in [100]. The main idea of their approach is to
partition a complex triangulated surface into geodesically-triangular patches
(i.e. patches bounded by three geodesic curves) and then parameterise each
patch individually. The so obtained coarse triangulation is then parameterised
globally.

Desbrun et al. [85] proposed a family of approaches, called Intrinsic Pa-
rameterisations that are capable of finding parameterisations minimising the
distortion of some intrinsic measure in a linear-algebraic framework. An im-
portant contribution of Desbrun et al. [85] is the detailed discussion of various
types of energies that can be used to govern the flattening of a mesh.

Sander et al. [229] propose a method of parameterisation, especially useful
in the case of textured surfaces, that minimises the texture stretch ensuring ho-
mogeneous sampling density of the texture. The method of Sander et al. [229] is
shown to deal with closed surfaces as well as disks: a procedure for partitioning
the surfaces into “charts” is proposed as well is a procedure for combining the
individual charts into an atlas.

Of special interest in the context of this chapter is a family of parameter-
isation methods that try to preserve distances. For such purpose, MDS is a
useful technique as it computes the embedding that minimises the distortion of
distances (stress) supplied to it in the dissimilarity matrix. Such embeddings
that preserve distances are called isometric. If MDS is fed a matrix of pairwise
geodesic distances between points on a mesh, the resulting Euclidean distances
between the points on the embedded mesh will approximate the original geo-
desic distances as closely as possible (e.g. in least squares sense, depending
on the particular formulation of MDS). In case the embedding is performed
into R3, the result is a bending invariant, a concept first proposed by Elad and
Kimmel [93] (but see also Elad and Kimmel [94]).

Parenthetically it should be noted that, in general, a surface cannot be
embedded into any R" perfectly isometrically (without distortion of distances),
unless it is of a special kind (see Linial et al. [166]). For example, mapping
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of a 3D surface onto a 2D plane can only be isometric if the surface has
zero Gaussian curvature (see e.g. Do-Carmo [88] or O’Neil [196]), otherwise
distortion of distances occurs. MDS computes the best approximation to
isometry.

Bronstein et al. [42-44,50,51] showed empirically that geodesic distances
on the surface of a face are significantly less sensitive to changes in expression
than Euclidean distances. This means, therefore, that bending invariants of
Elad and Kimmel [93], in which Euclidean distances between points corre-
spond to the geodesic distances on the original surfaces, change only slightly
due to the change in facial expression and so can be used as an excellent
starting point with which to initialise the proposed registration algorithm.
This is indeed a useful property, because a small part of the registration
job is essentially done just by embedding alone. (Of course the invariance
of geodesic distances to expression change is only very approximate, as the
geodesic distances between corresponding points on the face still do sometimes
change significantly, for example when yawning). This useful property was
applied by Bronstein et al. [42-45,50,51] to the task of face recognition. In
principle, this property of bending invariants is useful not only in the case of
craniofacial imagery, but, in general, in all cases in which removing the bending
component of the deformation, leaving only stretching, assists in establishing
correspondences.

It should be noted that isometric embedding need not necessarily be per-
formed into a flat Euclidean space: Bronstein et al. [44,45] discuss embeddings
into spaces with spherical and hyperbolic geometries, the choice of the space
being governed by the anticipated embedding error. Bronstein et al. [44,45]
indeed show that embedding of face scans onto a sphere leads to smaller
embedding errors and, in turn, leads to better performance of their recognition
algorithm.

The bending invariants of some meshes can be seen in Fig. 4.3. In the
left column (Fig. 4.3a) the original meshes in R® are shown, in the middle
(Fig. 4.3b) — their bending invariants (choose any two points on the original
mesh and compare the geodesic distance between them with the geodesic
distance between the corresponding points on the bending invariant), and in
the right column (Fig. 4.3c) — the result of embedding the meshes into R?,
with the discarded third component of the bending invariant shown in colour.
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€

(a) Original mesh. (b) Bending invariant. Embedding into R2, with
discarded depth colour-coded.

FIGURE 4.3: Bending invariants and embedding of meshes into M2.

The distance-preserving property of MDS has been exploited in a number
of works on mesh parameterisation and flattening. For example, in the classic
paper by Zigelman et al. [302], MDS is applied to the problem of distortion-
minimising texture mapping. The method of Zigelman et al. [302] is shown to
compare favourably to that of Floater et al. in [100].

Grossmann et al. [117] discuss the application of MDS to flattening of
surfaces that are not represented by polygonal meshes, with their main contri-
bution being a novel voxel-based method for estimating geodesic distances.

To summarise, the main advantage of MDS-based parameterisation, in the

context of this chapter, is that the embedding is maximally isometric. This
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allows to compute bending invariants of meshes. The bending invariants are
relatively insensitive to change in expression, because the bending component
of deformation is removed, and only the stretch, or change of geodesic distances,

remains.

4.2.4 Interpolation on Meshes

Just as in the case of the flat images, a convenient way of parameterising the
deformations of the surfaces with a small number of parameters, amenable
to numeric global optimisation, is needed. As discussed in Chapter 3, this
can be regarded as the problem of interpolation of scattered data, and so
parameterising deformations is most easily done by specifying the values of
the deformation field sparsely, at some selected locations on the mesh, and
appropriately interpolating them everywhere else.

Two approaches are discussed below. The first approach attempts to
closely mimic the procedure discussed in Chapter 3, based on superposition of
piecewise affine fields, and will be addressed first. The second approach is a
generalisation, for the case of 3D meshes, of controlling the deformations (or,
in this case, embedding) via a superposition of bounded deformation “disks”
(residing on the 3D surfaces), analogous to the formulation in Cootes et al. [62].
The latter approach is computationally cheaper and was chosen to control
deformations in the proposed algorithm. It is discussed in Section 4.4.1.

4.2.5 Geodesic Delaunay Triangulation on Meshes

The idea to introduce an analogue of Delaunay triangulation on an arbitrary
triangulated manifold has first been discussed in the remeshing literature
(e.g. Peyré and Cohen [207]), where it is used as a straightforward solution to
the problem of resampling and remeshing a triangulated manifold. The simple
yet effective approach of Peyré and Cohen [207] is to first select a set of points
on a surface, using some appropriate sampling technique, then to compute
an analogue of the Delaunay triangulation of those points (on the original
manifold, with edges of the “triangles” being the geodesic curves between
vertices), thus yielding a new triangulated mesh. A conceptually similar idea
was used by Floater et al. in [100] to partition a complex mesh into large

geodesic triangles which are then parameterised individually.
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(a) Original mesh. (b) Geodesic Voro- (c) Geodesic Delau- (d) A very coarse
noi cells with cen- nay triangulation. mesh obtained from
tres at yellow dots. this triangulation.

FIGURE 4.4: Geodesic Delaunay triangulation on meshes, using the approach due to Peyre
and Cohen [207,209].

Given the operation 0(9Jt, a, b) which computes geodesic distances between
any two point, geodesic Delaunay triangulation can be easily obtained by first
computing a geodesic Voronoi diagram (essentially, finding for each vertex on
the original dense mesh the geodesically nearest selected control point) and
computing its dual (Peyre and Cohen [207]). This is illustrated in Fig. 4.4: the
geodesic Voronoi diagram, Fig. 4.4b, of the original mesh, Fig. 4.4a, is used
to produce the geodesic Delaunay triangulation, Fig. 4.4c, which Peyre and
Cohen [207] use for decimation, Fig. 4.4d, of the original mesh.

This idea can be adapted to interpolation on meshes. Piecewise affine
interpolation on a plane, discussed in Section 3.4.1, can be to some extent
generalised to triangulated manifolds. Recall, from Section 3.4.1, that in
the case of piecewise affine interpolation two operations are required to find
the interpolated value at some point on the triangulated domain: the point-
in-triangle test to find the encompassing triangle, and a way to interpolate
between the values defined at vertices of that triangle.

A geodesic analogue of these operations was proposed by Peyre and Cohen
in [207]. Indeed, since distances between any two points on a mesh can be
readily computed with fast marching methods, an analogue of areal coordinates
can be used instead of barycentric coordinates.

Denote by s448c the area of the a triangle AABC. Assume that a point
P is inside the triangle A ABC, and D = SapaB + SarBc + S&prca- Then
the areal coordinates of P are: {Ai = Spa8/D ,A2= Srec/D , A3= SpPca/D}.
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As remarked by Peyré and Cohen in [207], the areas of the triangles can be
found using the Heron’s formula, which requires only the distances between
points to be known. Therefore, using only the geodesic distances between a
point P and the vertices of the encompassing triangle AABC, as well as the
geodesic lengths of the sides of AABC, areal coordinates of P can be easily
found and the interpolation between the vertices of the encompassing triangle
performed.

The deformation fields defined by the geodesic Delaunay triangulations as
in Fig. 4.4c can be added together, by summing their influence at each vertex.
This allows for a compete analogue of the algorithm proposed in Chapter 3
to be implemented. However, computing geodesic Delaunay triangulation is
not a cheap operation and so cannot be performed frequently, as required by
the method of Chapter 3. So, while elegant, this solution is not very practical.
Instead, a superposition of radial basis functions, detailed in Section 4.4.1,
which is cheaper to compute, is used in the proposed method.

4.2.6 Filling Holes

Finally, a method of dealing with imperfect data will be needed in the proposed
algorithm, particularly for resampling the registered meshes in Section 4.4.5.
Holes in the textures and shape images, inevitably arising from the deficiencies
of the scanning process, can be filled using Poisson interpolation as proposed
in the seminal paper by Pérez et al. [204].

The main idea behind Poisson interpolation, presented here following the
exposition of Pérez et al. [204], is to complete the missing areas in an image
as smoothly as possible. Let F* = F*(r) be a scalar function from pixel
coordinates, R?, to pixel values, representing the pixel values in the known area
of the image. Similarly let F' = F(r) be the image in the unknown area, and
let 2 represent the domain of the unknown area. The desired interpolant F is
the solution to the following minimisation problem (Pérez et al. [204]):

arg min // |[VF|?, subject to Flaq = F*|sq, (4.6)
F Q
with the minimiser F satisfying the corresponding Euler-Lagrange equation:

V2F =0 over 2, subject to Flsq = F*|aq- (4.7
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One solution to this problem, a somewhat simplified variant of the procedure
due to Pérez et al. [204], is summarised below, following the exposition in
Leyvand [163].

On a discrete pixel grid of an image F, the analogue V2F of the Laplacian
V2F can be approximated as

V2F(z,y) ~ F(z + 1,y) — 2F(z,y) + F(z — 1,y)+
F(z,y+1) - 2F(z,y) + F(z,y — 1) =
=F@z+1,y)+Flz—-1,y)+F(z,y+1)+F(z,y — 1) —4F(z,y) =0 (4.8)

because the partial derivatives can be approximated, in the discrete case, with

finite differences:

B 2F
6_ ~F(z+1,y) —F(z,y) and §— ~F(z+1,y) —2F(z,y) +F(z — 1,y).

Oz Ox?
(4.9)
Suppose there are n pixels in the “unknown” area of the image. One can
construct a sparse linear system, relating the values of the missing pixels to
the values of known pixels, with n equations and n unknowns, in which each
unknown corresponds to the value of a missing pixel. The solution of such a
system gives the desired interpolation. Let the unknowns be u®, v ... 4™
corresponding to some unknown pixel values at (z1,v1), (2,Y2), - - (Zn, Yn)-
If the value of a pixel at (z,y) is unknown and the value of a pixel just above
it is also unknown, denote by u;y the unknown variable corresponding to
the pixel above (z,y). Similarly denote by ui,y, ug, and ug’, the unknown
variables corresponding to pixels below, to the left, and to the right of the
pixel at (z,y) respectively. An unknown pixel at (z,y), surrounded by four
unknown pixels (in the sense of the 4-connected neighbourhood), gives rise to
an equation
ul , +ul, — gy +ug, +up, = 0. (4.10)

If, say, the value of a pixel directly above it is known (= F(z,y — 1)) then the
equation becomes

F(z,y — 1) +ug, — duzy +ug, + ui,y = 0, or, rearranging, (4.11)
u:y - 4u$:y + u;:y + ui,y = _F(I, y— 1) (412)

For all other situations of known and unknown pixels the equations are formed

in a similar fashion, substituting the unknown variables with known values.
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FIGURE 4.5: Set up of the video-rate 3D surface scanner [6], frontal view. 1, 2 — powerful
“cold” lights; 3 — stand to hold the instructions for the subject; 4, 5 — “warm?” lights; 6,
8, 9, 11 — infrared cameras; 7, 10 — colour (texture) cameras; 12, 13 — infrared pattern
projectors; 14 — power supply; 15 — tripod and support frame; 16 — microphone stand.

The known pixels values contribute, therefore, to the right hand side of the
equations after rearranging the terms, as, for example, in Eq. (4.12). The

complete set of such equations, one for each unknown pixel, has the form
Ax = b, (4.13)

where A is a sparse matrix of coefficients, x is a vector of unknowns and b is
the right hand side — contributions from the known pixels. Solving Eq. (4.13)
for x gives the interpolated values for the missing pixels.

It is possible to apply the same concept to fill holes directly on triangulated
meshes, as, for example, proposed by Zhao et al. [301].

4.3 Data Acquisition and Preparation

Figure 4.5 illustrates the set up of the video-rate 3D surface scanner (“4D
camera”) that was used for data acquisition in the experiments in Section 4.6.
This is a slightly customised version of a commercial photogrammetric sys-
tem [6]. The four infrared cameras (ordinary grayscale cameras with an infrared
filter fitted), two on the left (6, 8 in Fig. 4.5) and two on the right (9, 11
in Fig. 4.5), with sufficient vertical separation, capture the speckle pattern
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which is projected onto the subject by the two infrared projectors (12, 13
in Fig. 4.5). More than one projector is typically required to better cover
the side areas of the subject’s head. The resulting speckled infrared images
are shown in Fig. 4.6, top and bottom rows, together with the texture of
the subject (Fig. 4.6, middle row) captured by two horizontally separated
ordinary colour cameras (7, 10 in Fig. 4.5). The detail of the infrared patter
is shown in Fig. 4.8, the same small area of the face (in this example, bridge
of the nose) as it is seen from the four infrared cameras. For completeness,
Fig. 4.7 shows the side view of the experimental setup, supplemented with an
adjustable seat for the subject, a microphone for recording synchronous audio
and, more importantly, the arrangement of light sources used to create a more
controllable light situation. Powerful “cold” gas-discharge lights on both sides
of the subject, as well as two in front (1, 2 in Fig. 4.5 and also in Fig. 4.7) serve
to provide favourable lighting conditions without overpowering the infrared
emissions from the projectors. The spectrumn of the light is fine-tuned by
addition of small “warm” incandescent light sources (4, 5 in Fig. 4.5).

4.3.1 Mesh Representation

There are many ways of representing triangle meshes. Here, for ease of
explanation, the simplest useful representation — the Face-Vertex mesh — is
adopted. A triangle mesh of this form is a set of ny faces (triangles) and n,
vertices: I = {Vixn,, Faxn f}, where the matrix Vsy,, contains as columns
the coordinates of all vertices, and each column of the matrix F3x,, contains
the three indices (into columns of V) of the three vertices of each triangle.
Later in this chapter, when dealing with textured meshes, the above structure
is augmented to additionally contain a texture map, 7, and, for each vertex,
the corresponding texture coordinates, U, in the space of the texture map:
M = {Vaxn,, Faxnss Uzxny, Twxhxe}-

A mesh can also be regarded as a graph, with vertices of the mesh cor-
responding to the vertices of the graph and the edges of the mesh faces
corresponding to the edges of the graph (vertex-edge connectedness). Alterna-
tively, a mesh can be regarded as a graph in which mesh faces correspond to
the vertices of the graph and the edges shared between two adjacent faces of
the mesh correspond to edges of the graph (face-edge connectedness).
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FIGURE 4.7: Same 3D scanner
as in Fig. 4.5, side view.

FIGURE 4.8: Patches of the
FIGURE 4.6: Images acquired by the six cam- infrared speckle (bridge of the
eras. Layout of the images corresponds to the nose) as seen by the four infrared
layout of the cameras in Fig. 4.5. cameras.

FIGURE 4.9: Left: the original texture map composed of two separate views of the subject.
Right: the corresponding resampled continuous texture map.

4.3.2 Mesh cleaning

The raw meshes that come from scanners are often imperfect and are not
readily suited to the processing discussed later in this chapter. The geometry
is served as a disorganised triangle soup. Due to imperfections of the scanning
process the surfaces contain holes (missing triangles), there are disjoint regions,
duplicate vertices etc. The preliminary step is therefore to “clean” the input

127



4.3. Data Acquisition and Preparation

meshes. Without such cleaning, algorithms that assume the meshes to be
well-formed manifolds, for example the geodesic path algorithms (Section 4.2.1),
will not produce the expected results.

First, the duplicate vertices are removed and the triangle soup is converted
to a Face-Vertex representation (see Section 4.3.1).

Since the textures in the experimental setup are acquired with two spatially
separated cameras, see Section 4.3 and Fig. 4.5, the texture map is discon-
tinuous, Fig. 4.6 (middle row), and so it is impossible to trivially remap the
original texture coordinates to the Face-Vertex representation: in the original
triangle soup more than one vertex can exist with the same 3D coordinates, but
with different texture coordinates, corresponding to the disjoint parts of the
texture. Therefore, as the second step, the textures are resampled to produce
one continuous texture map. This procedure is optionally combined with mesh
decimation, see Section 4.5.1, in which case the texture is resampled so as to
conform to the decimated mesh. The discontinuous raw texture from cameras
and the resampled continuous texture map are shown in Fig. 4.9.

The input meshes might contain several disjoint objects, for example the
main subject and small bits of the background scene. To filter those out, the
connected components of the mesh graph (see Section 4.3.1) using vertex-edge
connectedness are computed and the connected component with the largest
number of vertices in it is selected. The largest connected component is assumed
to contain the main subject (Rol), and the other connected components are
discarded. The procedure is repeated using the face-edge connectedness.
Finally, other pathological cases, e.g. more than two triangles sharing an edge,
are detected and removed.

After this cleaning procedure the meshes are assumed to be well formed
manifolds, with one connected component containing the subject, and with a
continuous texture map.

Note that the input meshes contain different number of vertices and have
vastly different topologies, see Fig. 4.10, and so no assumptions can be made
about the correspondence of vertices between meshes, even if they are of the
same object.
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FIGURE 4.10: Illustration of the mesh topology problem. Three meshes obtained from a
3D scanner approximating the same human nose, at small time intervals. Notice how the
topology of the meshes is very different even though variation of shape is minimal.

4.4 Groupwise Registration of Textured Meshes

The proposed algorithm takes as input as set of N textured meshes, 9Hj, or,
more precisely, using the symbols defined in Section 4.3.1, 971% = {F*, V¥ U* 71 L

For every mesh, the algorithm maintains a 2x n f matrix E* of the embedded
vertex coordinates in the common reference plane. The algorithm aims to
find such embeddings E* that bring the analogous features in all meshes into
alignment. Having done this, one can easily recover the correspondences
between points on the original 3D meshes, assuming the embedding is bijective.

As in Sidorov et al. [243], Davies et al. [80], the problem of groupwise
registration is regarded here as an optimisation problem consisting of three
components: a mechanism for representing and manipulating deformations
(changes in embedding), an objective function ' measuring the alignment error,
and a global minimisation algorithm which optimises . These components

are addressed below.

44.1 Model of Deformation (Embedding)

Radial basis interpolation on meshes proves useful in applications like defining
surface vector fields or mesh watermarking (Praun ef al. [217,218]) in which
certain values are specified at specific points on a surface and have to be
interpolated elsewhere. (Praun et al. [217,218] use Dijkstra’s algorithm [87] to
approximate true geodesic distances.)

For the method proposed in this chapter, deformations need only be specified
at a small number of control points and smoothly interpolated elsewhere, but
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not necessarily interpolated between the control points. It is therefore sufficient
to represent the total deformations as a superposition of some radial basis
functions, without necessarily solving for the contribution coefficients to ensure
that the superposition interpolates some function between the control points.
This was the approach successfully adopted by Létjonen and Mékeld [169] and
Cootes et al. [62].

Suppose ny; vertices on the mesh are selected as control points (centres
of the “deformation disks”, in this algorithm residing on the surfaces of the
meshes). Radii of the disks are selected to be proportional to the average
distance between the nearest disks. By analogy with Egs. (3.20) and (3.21),
using the elementary warp formulation of Cootes et al. [62], let the influence
of a disk be a function of the geodesic distance along the surface of the mesh
from the disk’s centre. For a vertex v on a mesh 9, the influence of a disk
with geodesic radius r and centre at ¢ € 9 can be written, using the symbol
® from Section 4.2.1, as

1—d?(1+log(d?), de(0,r)
B(M,v,c,r) =141, d=0 where d = (0, ¢, v).
0, d r

(4.14)
Note the desirable properties of this representation: since the magnitude of
influence of a disk depends only on the geodesic distance from its centre, there
is no need to define a coordinate system on the mesh, unlike, for example,
with Eq. (3.18).

If p,,; is a vector of parameters controlling the contribution of this disk
(displacement at its centre), the coordinates of the embedded vertices E; are
affected by AE; = pB(9M, v, c,r). Given n, disks, the complete configuration
space (the space of all possible deformations) is described by a matrix of
parameters Pay,,, where the columns are parameters (contributions) of the
individual disks P(:, ) = p;.

Once the disks {c;,r;} are selected, the magnitudes of their influences on
vertices of the mesh can be precomputed and stored in the influence matrix

Qnyxn,» Where the i-th row stores the influence of the i-th disk on the vertices:
Q(i,5) = B(OM,V(,7),¢i,mi) - (4.15)
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Figure 4.11: Left: magnitude of influence of several randomly placed individual disks
(using Eq. (4.14) with r = 110 mm). Right: colour-coded mixture of their influence.

Given Q, the effect of all disks together on all vertices of the mesh is then
simply AD = PQ. The effect of individual deformation disks as well as their
superposition is illustrated in Fig. 4.11.

4.4.2 Objective Function

Now, the objective function is addressed. The purpose of the objective function
is to measure how well the correspondences between the analogous features on
different surfaces have been established. Instead of operating on the correspon-
dences between surfaces directly, the algorithm operates with correspondences
between the surfaces and a common reference space (a Euclidean plane, as-
suming the surfaces can be bijectively embedded in it). Mapping the textures
to this reference space makes it possible to adopt any suitable intensity-based
objective function from the 2D image registration literature: the textures in
the flat parametric space can be manipulated as ordinary images. This also
facilitates GPU-based implementation.

The standard practice in groupwise image registration literature is to
maintain an evolving model of pixel colours (e.g. average of shape-normalised
images) in some reference space to which all samples are aligned. In the
proposed algorithm, such a model of texture can also be easily computed by
mapping the textures from curved surfaces onto the common reference plane
using the estimated correspondences between surfaces and the reference plane
and averaging them.

Figure 4.12 illustrates the idea: vertices of the mesh are mapped to the
reference plane, in which the evolving model of texture is maintained. The
correspondences between any points on any two meshes can be consistently
deduced given the correspondences between the points and the reference
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v

FIGURE 4.12: Correspondences via a flat parametric space.

plane. In practice, the mapping between surfaces and the reference plane
can be represented by specifying for each vertex of a mesh the corresponding
coordinates in the reference plane, storing these as columns in a 2 x n} matrix
Ej, and interpolating between the vertices.

In practice, operations on the textures in the reference plane can be most
easily performed on a discrete grid. Two operations are now defined which
map the textured surfaces to such a discrete buffer in the reference plane.

Let {Bhxwx4,M } = tH(F, E2xn,,5U2xnv, 7 txtitx4) denote the result of ras-
terising a textured mesh, with connectivity defined by faces F, and a 4-channel
texture T into a w x & buffer B with 4-component pixels, using columns of E
as target vertex coordinates in the reference plane, and columns of U as the
texture coordinates. (This essentially amounts to piecewise affine warping of
texture T, using the triangulation defined by F and using U and E as the
source and the destination coordinates of vertices respectively.) A stencil mask,
mMhxwx:, which records the pixels of the buffer affected by the rasterised mesh
as 1’s, with 0’s elsewhere, is also returned. The size of the buffer may be chosen
to accommodate the entire rasterised mesh or just the Rol. This is illustrated
in Fig. 4.13.

Additionally, let {Bhxwx4, M } = SK\(F, E2xnv" :xnv™ix N v, Thtxwtx;) simi-
larly denote the result of rasterising a textured mesh, but this time the first
three channels of the buffer, B(:,1:3), is the result of rendering the textured
mesh (equipped with a 3-channel texture), and the fourth channel of the buffer,
#(:,:,4), receives the interpolated values of depth Z, appropriately scaled.
Incorporating the depth component in addition to pixel colours helps to more
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4.4. Groupwise Registration of Textured Meshes

Figure 4.13: The result of the rasterisation operation 91. Left: the first three components
of the buffer, B(:,: 1:3), in this case RGB values. Middle: the fourth component of the
buffer &(:, :,4) receiving interpolated “depth” values. Right: The stencil mask M.

quickly perform rough alignment in the early stages of registration, but is
detrimental in the later stages, where it is not used.

Note that the above operations can be trivially performed on any GPU
and are easily implemented on a CPU.

Suppose at some point the “current” estimate of the model of texture is 77.
For a mesh DI* with the initial embedding E* and a computed improvement Djf
to this embedding, the quality of alignment (embedding) can be evaluated by
comparing the rasterised versions of the embedded mesh with the model 77.
As advocated in Cootes et al. [67], it is preferable to compare the model,
warped using the current estimate of the correspondences, with the original
undeformed samples: in other words, measuring how well the model of texture
“explains” the original samples.

The purpose of the local objective function is to evaluate a particular
embedding hypothesis

H(P) = E*+ Dik + ADik = Ei + Dik + PQik (4.16)

where E* is the initial embedding, D*€ is the “current” accumulated embedding
improvement, and ADit = PQik is the hypothetical improvement due to
geodesic deformation disks, with the influence matrix Qik and parameters P.
The affine component of the transformation is omitted for brevity: assume
henceforth that before the non-rigid stage all E*are already affinely aligned.

Using the above notation, the local objective function which evaluates a
hypothesis H(P) is

C(77, H(P)) = S({Bsrc M sic}, £ 1ef), (4.17)

where {#src, Adsrc} = 9V(Fi, Ej, U¥,  71) is the rasterisation of the origi-

nal flattened mesh, which is to be explained by the deformed model, and
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{Bret, -} = R(F;, E;, H(P), R) is the model R warped back to conform to the
original mesh in the reference space. Note that since with the assumption above,
after the affine alignment stage {Bgr, Marc} never change, as they depend only
on the initial, affinely aligned, embeddings E;, they can be precomputed in
advance.

Function S({Bsc, Msrc}, Bret) compares the buffer B, with respect to B,
such that only pixels masked by Mg, are considered. As in Chapter 3, the
exponential distribution of pixel intensity errors is assumed, and, consequently,
the mean absolute difference between masked pixels is used for S(-). More
precisely, let the comparison of two buffers, Apxwxe and Bhxwxe, With respect

to the buffer A which has an associated stencil mask M} «wxe, be defined as:

c

w h
3 S S IBy, i) — Aly, z,9) | M(y, z,9).  (4.18)

r=1y=14=1

1

S{A,M},B) = M

The multiplication by mask M in Eq. (4.18) serves to ensure that S(-) compares
only the content (masked pixels) of A. The result is normalised by scaling by
the number of affected pixels and channels, |M|.

Repeated optimisation of C(-) for one mesh at a time, and evolving the
model R appropriately, optimises the groupwise alignment of the whole ensem-

ble, which can be expressed as a global objective function
1 N
Cyob = > C(R,E; + Dy,). (4.19)
i=1

4.4.3 Optimisation Regime

The first stage of the process is to compute the bending invariants (Elad and
Kimmel [93]) of the meshes using MDS on the pairwise geodesic distances
between all vertices in each mesh. The first two components of the bending
invariants (or, equivalently, the result of embedding the vertices of the mesh
with MDS in R?) form the initial maximally-isometric embeddings E;, and the
third component, call it depth, is kept in a matrix Z; (Fig. 4.3). Note also
that no initial centering or other alignment of the meshes in the 3D space is
needed, as MDS operates only on the relative distances between vertices and
so is insensitive to the absolute position and orientation of the meshes. In
addition, MDS produces the embeddings centered around the origin.
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Note that textures need not necessarily be RGB images, but can in general
be any features (vector or scalar) associated with every point on the surface.
As advocated in Cootes et al. [67] and as was done with images in Chapter 3,
better performance can be achieved if local brightness normalisation is applied
to images (textures) and the gradient information is also incorporated as
image channels. This idea can be also applied here: assume henceforth that
textures 7; are in this form (but see also Section 4.5.2).

The registration begins with a crude alignment of the embedded meshes to
a template (say, the first mesh). Since MDS performs the embedding up to a
similarity transform, including reflection, this needs to be accounted for. In
practice, for the crude alignment brute force search is used to test for the eight
possible reflection combinations (by 1 or —1 along each of the three dimensions
of the bending invariant) and to approximately estimate rotation (trying all
angles in increments of 10°).

The crude alignment is followed by a groupwise affine alignient stage.
This is done in the same fashion as the non-rigid alignment, described below
in Alg. 4.1, except that search is performed for the optimal affine transfor-
mation parameters for each embedded mesh, and instead of removing the
embedding bias in line 18 the affine parameters are normalised so that the
average translation and rotation across the ensemble is 0 and the average
scaling is 1. Henceforth, assume that all E; are affinely aligned.

The most important, non-rigid alignment stage, is addressed next. The idea
from Sidorov et al. [243] and Chapter 3 that proved to work well is used in the
proposed algorithm: accumulate the solution additively, gradually composing
the resulting optimal embeddings over several iterations.

The non-rigid registration procedure is summarised in Alg. 4.1. The
algorithm maintains the improvements to the initial embedding in a matrix
D;, for each mesh. They are initialised to zero (line 1). This is the analogue of
the deformation fields that in Chapter 3 were stored on a dense discrete grid
(“deformation maps”).

The iterative body of the algorithm (lines 3-20) is repeated until con-
vergence. Each iteration begins by computing the current estimate of the
texture model in the reference plane by rasterising and summing all embedded
meshes using the current estimate of the optimal embedding E; + D;,_,, lines
(5-8). The embedding of each mesh in turn is then improved (lines 9-17). In
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Algorithm 4.1 Perform non-rigid registration of an ensemble of textured
meshes.

Require: Textured meshes M; = {F;, V;, U;, T}, their initial embeddings E;

(produced by MDS in advance and affinely aligned), depth components
of the bending invariants Z;, ¢ € {1... N}. User-controllable parameters:
termination conditions (line 2) and the schedule to decrease the sizes of
the deformation discs (and increase their number, n;), lines 14 and 19.

1: Initialise: £ + 1; D;, < 0, V2
2: while not happy do

3:

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:

20:

Randomly permute the order of meshes.
Bsum «— Ohxwx4; Msum A Ohxwx4
fori=1to N do
{B, M} «— SR’(Fi, Ez + Dik-w Ui, Zi, 7:)
Bsum — Bsum + B; Msum «~ Msum + M
end for
fori=1to N do
{Binis; Minis} < R'(Fs, E; + Dy _,, Ui, Z3, To)
MR «— Msum - Mthis
Rik «— (Bsum - Bthis)o/ max(l, MR)
bm,xl «— FPS(@(M,, * '), ’I’l,b)
Q « influence(M;, b)
Using C(-) from Eq. (4.17) and with
H(P) = E; + D;, + PQ, optimise w.r.t. P to compute the optimal
improvement
AD'ik « (a'rg l’ninP C(Rik’ H(P))) Q
Dik «— D’ik—1 + AD%
end for
Remove embedding bias, see Section 4.4.4.
If improvement becomes slow, increase the number, 1y, and decrease the
size of the deformation disks according to schedule.
k—k+1

21: end while
22: return (E; + D, _,) — the optimal embedding of V; into R?, that brings

all meshes, 9;, into alignment.

order to avoid a local minimum around the zero improvement hypothesis, the

“current” sample is excluded from the model (lines 11-12), as suggested in

Cootes et al. [66]. At each iteration a random deformation model is selected,

comprising n, deformation disks on the current 3D mesh. Using the FPS

strategy np mesh vertices with indices by, x; are randomly selected as the
centres of the disks (line 13, see also Alg. 3.3).

136



4.4. Groupwise Registration of Textured Meshes

This selection of the centres of the deformation disks is performed using
adaptive FPS strategy, using mesh curvature to control the sampling density,
analogously to using gradient information in Chapter 3. The reader is referred
to Peyré and Cohen [207,209] for details. Result of adaptive FPS sampling
is illustrated in Fig. 4.14. As in Chapter 3, this allows to more frequently
visit and improve the embedding of the “more interesting” parts of the surface
which are assumed to be areas with higher curvature. It should be noted that
adaptive FPS sampling based on texture gradient, as in Chapter 3, can also
be used.

The radii of the deformation disks are chosen such that the adjacent disks
overlap by one radius. FPS sampling ensures that the entire area of the mesh
is covered evenly. The reason for choosing a random deformation model each
is to allow the algorithm the progressively explore the space of all possible
deformation models and to exclude to possibility of getting stuck with a poor
choice of deformation model, as proposed in Sidorov et al. [243].

The influence matrix Q describing the effect of the disks on each vertex is
then computed (line 14). In practice, to avoid geodesic computations in line 14,
memory can be traded for speed. If memory permits, for a given radius r the
influences of the deformation disks can be precomputed at each vertex as its
potential centre and stored in a sparse matrix. Since the influence of each
disk is bounded its influence on most vertices is zero and the above matrix is
sparse. (An alternative but less memory efficient way is to precompute the
pairwise distances between vertices in each original 3D mesh to avoid geodesic
computations in the main loop).

Optimising over all possible parameters Pyy,,, inducing a hypothetical
embedding H(P) = E; + D;, + PQ, the algorithm computes the optimal
improvement AD;, to the embedding (line 15). In experiments, the following
optimisation scheme proved to work well. During the first few iterations,
when the disks are large, optimise each disk, one at a time (a 2-dimensional
optimisation problem). First, brute-force search (as in [67]) is performed,
trying several displacements within a given evaluation budget and selecting
the best one. Then the solution is refined with the Nelder-Mead method.

At later stages, when the deformation disks become small and the correspon-
dences are already roughly established, the hypothesis is refined by optimising
all disks at once using the stochastic optimiser, SPSA (see Spall [249], Maryak
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and Chin [178]), as proposed in Sidorov et al. [243]. Recall from Chapter 3
that the advantage of SPSA is that its performance, in terms of the number
of objective function evaluations, is relatively insensitive to the dimensionally
of the search space. Optimisation with SPSA, is summarised in Alg. 4.2 as
is similar to Alg. 3.2. The symbol & in line 8 denotes the gradient of the
local objective function (which takes a matrix P, of parameters), estimated
by sampling it at two points as before, reshaped as a matrix of the same size
as P,,.

Finally, the computed improvement is learnt (line 16).

Parenthetically it is worth noting that when evaluating hypotheses during
optimisation, the heuristic discussed in Section 3.4.3 can be also used, especially
in the early stages when the disks are large. In such case the rasterisation
operations can be sped up by only considering the triangles that are affected
by the disks being optimised.

Line 18 serves to remove the embedding bias, the procedure discussed
in Section 4.4.4. To save processing time, removal of the embedding bias can
be performed less often than every iteration.

As the algorithm approaches the solution and the improvement slows down,
the number of deformation disks is increased and their radii are accordingly
decreased (line 19), to allow the algorithm to finesse the improvements with a
progressively detailed deformation model.

The algorithm is stopped either when a maximum number of iterations has
exceeded, or when relative improvement to the value of the overall cost function
becomes less than a certain threshold. As the result, the algorithm returns
the optimal embeddings for each mesh: (E; + D;,_,). After the registration is
complete, correspondences between any point on one mesh and any point on
any other mesh are known via the common reference frame. So, for applications
that require only the correspondences to be found nothing else needs to be
done. To build an appearance model from the registered meshes are resampled
at corresponding locations yielding a set of topologically consistent meshes

and corresponding surfaces, see Section 4.4.5.

4.4.4 Removing Embedding Bias

It is possible that during the non-rigid registration stage the correspondences
between the surfaces and the common reference plane may become systemati-
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Algorithm 4.2 Improve embedding of a mesh
Require: = {V3xnt), F3xn/, U2xn,,, T} — mesh the embedding of which to

p—

10:
11:

12:

%N R

improve, IZ— model, 7ib — number of control points, @ nbxnv — influence
matrix for control points, E2Xn, — initial embedding of the mesh, D —
difference from initial embedding accumulated so far, ngt — number of
control points to optimise at once. User-controllable parameters a, 7, do,
co, A, mnex are discussed on page 67.

: mnoptXi «—randomly choose nopt indices of control points to optimise.

QnoptXn. Q(m, :)

Po *—O2xnopt

m <—1

while not converged and m < mnux do
am (AHm<*an(” rii
Generate \£m G M2xn°pt, with Bernoulli(— or 1)
Using C(P, E + D + PmQ') from Eq. (4.17), estimate the gradient (re-
shaped as matrix Tm)
Tm<- 6 (C(Pm,-),Pm. Gn * m), by analogy with in Eq. (3.45)
Update Pm+1 <—Pm —anr m, by analogy with Eq. (3.46)
m 4—m + 1

end while

return the optimal improvement parameters Pm.

Figure 4.14: Adaptive, curvature based, farthest-point sampling on a mesh. Left: magni-
tude of the mesh curvature. Right: various number, n, of points seeded using FPS with the
curvature magnitude as cost of movement in FM, as proposed in Peyre and Cohen [207,209].

cally biased, which is equivalent to common reference space becoming distorted.

If not handled correctly, this effect might become a runaway process and

completely ruin the registration.

To alleviate this problem, Cootes et al. [67] apply GPA (see e.g. Dryden [89])

to align together all sets of control points, from each image, and then average
them, thus computing a biasless reference coordinate frame. The approach of
Cootes et al. [67] is feasible in their case since the number of control points
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Algorithm 4.3 Remove embedding bias

Require: Ensemble of n meshes 9; (each having n,, vertices), their initial
embeddings E;, affine transforms A;, non-affine displacements D;.
1: Initialise accumulators S; « 02xn,, Vi=1...n
2: Initialise counters c¢; + On,, x1, Vi=1l...n
3: fori=1ton do
4: X « affine(A;, E; + D;)

5: for j=1tondo
6: Y « aﬁ"me(Aj, Ej + DJ)
7: for all points p;, = X(:, k) do
8: if p;, is on the mesh defined by {F;,Y} then
9: ci(k) « ci(k)+1
10: S:i(:, k) «+ S;(:, k)+(sample D; on mesh {F;,Y} at point p;).
11: end if
12: end for
13: end for
14: end for

15: return biasless D; « D; — S;o/(cilin2)?, Vi=1...n.

in each image is the same and so GPA and averaging are defined. In the
framework described in this chapter, each mesh may contain a different number
of vertices, and so the approach of Cootes et al. [67] is not applicable. A
different procedure, discussed below, is used instead.

To preclude the above problem from happening, the embedding bias is
removed (line 18) by adjusting the improvements D;, so as to annihilate
the bias. Instead of manipulating the reference coordinate frame, the non-
affine component of the displacements, D;, is adjusted so as to annihilate the
bias. First, a point cloud Asy,, is formed by concatenating the transformed
embedded vertices (E; + D;, ), Vi from all meshes. Each embedded mesh 9; in
turn is sampled to determine the non-affine displacements at points A due to
9; (for points in A that lie on the mesh). The contribution from all meshes is
then averaged and subtracted from the displacements D;,. Since the transforms
are invertible, the above procedure ensures that for any point in the reference
coordinate frame, its inverse non-affine transform, averaged across all meshes,
remains zero. The entire procedure is summarised in Alg. 4.3. To save on
computation time, bias removal need not necessarily be performed after each

iteration, but every few iterations instead.
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This procedure is analogous to removing the deformation bias in Chapter 3
(see also Fig. 3.10).

4.4.5 Resampling

After the registration is complete, correspondences between any point on one
mesh and any point on any other mesh are known. So, for applications that
require only the correspondences to be found nothing else needs to be done.

However, in case building of a statistical model of shape or appearance, or
both, is required, it is necessary to produce a set of meshes, approximating the
original meshes, with the same number of vertices (at corresponding locations)
and the same topology, in order that statistics on corresponding vertices can
be computed.

There are two ways of doing it. One way is to select one mesh as a reference,
and repeatedly warp it to conform to all other meshes in the ensemble, using
the computed correspondences. The second, more flexible, approach is to
resample the registered meshes and is discussed below.

Recall that after the registration is complete, the result is a set of embed-
dings of meshes into the common reference plane with associated embedding
improvements D;, that bring all the meshes into alignment. For any point
on a mesh embedded into the common reference plane it is therefore trivial
to recover the corresponding position in the original 3D space, because the
original 3D coordinates of all vertices are known (stored away before flattening),
and so for any point on an embedded mesh the corresponding 3D coordinates
can be found by barycentric interpolation between the 3D coordinates of the
encompassing triangle.

The resampling is again done using the FPS strategy to select the points in
the 2D plane which to map back to 3D. To improve the quality of the resulting
meshes, the seeding is again done adaptively — this time using the gradient of
the depth image as a movement cost. This serves to create more vertices in
areas that steeply go “into the plane”, and vice-versa.

When resampling the stack of aligned meshes, it is likely that due to
imperfections in the original data (holes) there will be some points in the
common reference plane for which the 3D coordinates and pixel colours are

not known for all meshes. If the original data is very poor, it might even be
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that at most points the picture is incomplete. Two strategies can be used here.
The first is to use the fact that the meshes are now aligned and, therefore,
statistical methods can be used to fill in the missing information. For instance,
a hole in a particular mesh can be patched with the weighted average taken
from the other meshes. This works well for pixel colours (textures), but doesn’t
always work for the 3D coordinates. The second strategy is to use the Poisson
interpolation, described in Section 4.2.6.

4.5 Performance and Space Complexity Considerations

4.5.1 Mesh Decimation

It is now worth addressing the problem of time and space complexity when
dealing with sizable meshes. Consider the problem of applying the MDS
algorithm, as discussed in Section 4.2.3, to the matrix of pairwise geodesic
distances between the vertices of a mesh. The time complexity of MDS is
O(n®), where n is the number of vertices in the mesh (and, therefore, the
number of rows in the square distance matrix). This is due to the fact
that MDS requires solving an eigenvalue problem of complexity O(n?), see
Ky6nanosckasa (Kublanovskaya) [305], and this alone makes operating on the
raw high-resolution meshes undesirable.

On top of that, the space complexity of MDS is at least O(n?), because one
needs to store the n-by-n distance matrix. This makes the maximum useful
size of the mesh bounded by the amount of available memory. The meshes
that come from scanners can easily have up to N, ~ 20000 vertices. The
storage requirement for the distance matrix alone is then at least n2 x 8 bytes
~ 2.98 GB, which usually exceeds the available contiguous memory size on
desktop PCs, not to mention the additional storage required for the actual
computations.®

Efficiency can be achieved if the dense meshes are decimated first. In Zigel-
man et al. [302], for example, MDS is performed on a subset of vertices, but
using the full model for geodesic computations, and the result is interpolated

to the remaining vertices.

3The most widely used double precision floating point representation of numbers, the
IEEE 754-2008 Standard for Floating-Point Arithmetic, requires 64 bits = 8 bytes per
number.
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FIGURE 4.15: Projection of the dense mesh (violet line) onto a coarse mesh.

In Sidorov et al. [242] a way to operate on coarse decimated meshes without
significantly sacrificing the final result was shown. (In Sidorov et al. [242] a
special kind of combined appearance model is discussed, in which the shape of
the coarse mesh, the texture, and the difference between the coarse and the
dense mesh were modelled). The idea is simple: the decimated mesh is chosen
to consist of a subset of vertices of the original dense mesh, appropriately
triangulated, and additionally the difference between the coarse and the dense
meshes (see below) is computed and stored. The necessary operations are then
performed on the coarse mesh, significantly reducing storage requirements and
running time. Finally, using the previously computed difference, the results
are interpolated to the missing points to give the final high-resolution mesh.

The projection of the dense mesh onto the coarse mesh is a simple geometric
operation which is now derived. Assume it has been established that a point p,
belonging to the dense mesh (drawn in violet in Fig. 4.15), projects onto a
triangle T' = {v1, vy, v3} of the coarse mesh. Denote by {n;, ny, ns} the vertex
normals, usually computed as the weighted sum of the normals to the faces
that share the vertex, at vertices {v1, Vs, vs}. The interpolated normal, @, at
point p’ inside the triangle is defined as it = (v1vav3) By, v, v (P'). Projection
of the point p along the interpolated normal (light blue lines in Fig. 4.15 on the
right) then involves simply finding the corresponding point p’ on the triangle
T such that the vector (p — p’) is parallel to fi. Denote by T" = {Vv}, v5, v3}
a triangle whose vertices are the intersection points of the plane parallel to
T and passing through p, and the rays from {v;, v, vs} in the direction of
normals {n, nz, n3}, shown in red dashed lines in Fig. 4.15. The “side view”
of the situation is shown in Fig. 4.15 on the right. Since (v} — v;) is parallel

to n;, one can write v; parametrically: v; = v; + ¢;n;. If n is a unit normal
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toT,then0=mn-(p—vj) =n-(p— ¢n; —v;), because T || T'. Therefore,
i =m-(p—v;))/(n-n;) and finally

n'(P—Vz').

/
vV, =V;+n
n-n;

(4.20)
Having found the vertices v; of 7", the barycentric coordinates of p in 7" can

be found used to find the position of the projected point p':

p'= ("1 V2 Vs) B;vyvy (P)- (4.21)

To determine, for each point on the dense mesh, onto which of the triangles T;
of the coarse mesh it should be projected, the vertices of 7] are computed for
each T; and the barycentric point-in-triangle test is applied, see Section 3.4.1.

The signed displacements, «, along the interpolated normals, are stored
away for all the projected points. After performing some operations on the
coarse mesh, the projected points of the dense mesh can be reconstructed
by elevating them by « along the corresponding interpolated normals, as
summarised in Sidorov et al. [242].

The method of Peyré and Cohen [207], which involves selecting the subset
of vertices, of the dense mesh, using the FPS strategy can be used. The
resulting subset of vertices is then triangulated: geodesic Voronoi tessellation is
computed and so is its dual — the geodesic Delaunay triangulation, as detailed
in Section 4.2.5.

There are, of course, many other ways of decimating meshes, e.g. QSLIM [2],
Garland [103] etc. The reader is referred to a survey by Talton [260]. The
FPS based approach was chosen for two reasons. The first reason is that it
can be used for adaptive decimation Peyré and Cohen [207] in a way similar
to the way the control points in Section 3.5.7 are seeded, but using curvature
information instead. The second reason is that FPS is used elsewhere in the

algorithm, and so the implementation and the explanation become easier.

4.5.2 Compressing Texture Data

Another trick to reduce storage requirements is based on the observation that
in face images the colour variation does not usually span the entire RGB space

but is typically constrained to a limited gamut (“skin tones”). This suggests
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(a) Original texture. (b) Texture recovered
from 2-channel colour

space.

(d) Projection into the (e) Projection into

(¢) Texture recovered
from 1-channel colour
space.

(f) Projection into
the reduced 1-channel

new colour space (all 3 the reduced 2-channel

channels). colour space. colour space.

FIGURE 4.16: Colour space compression.

that the texture colour information can be compressed into a smaller number
of channels without any noticeable degradation of registration quality.

One approach to colour space compression, proposed by Cosker in [68]
is to simply construct a look up table of colours using the luminance as a
key, reducing three channels to just one. This amounts to projecting colour
values from R3 to a R 1 subspace using a predefined projection operator that is
independent of the data.

In the experiments of Section 4.6 a more general procedure in was used.
The projection operator from R3 (RGB) to a lower dimensional colour space is
computed from a sample of pixel colours using PCA. This ensures that the
projection retains maximum variance.

The procedure is straightforward. First, RGB colours of pixels from all
images are sampled and concatenated into an observation matrix Ocoious- (To
avoid wasting memory, 2000 randomly selected pixels are sampled from each
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image.) Applying PCA to Oclours yields the basis vectors for the new colour
space. Discarding one or two least significant ones yields a data-dependent
projection operator. Retaining just one basis vector would amount to a
conversion to grayscale that retains maximum variance. In the experiments
of Section 4.6 two channels were retained. For the particular gamut of texture
in Fig. 4.16 the eigenvectors E and the corresponding eigenvalues X are

0.8091 —-0.5877  0.0036 0.053365
E=104771 0.6532 —0.5879 and A=0.001659 | . (4.22)
0.3432  0.4774  0.8089 0.000238

The result is illustrated in Fig. 4.16. The example texture is shown
in Fig. 4.16a. The projection of pixel colours onto the new basis with all
the three, then two, and finally just one basis vector are shown (appropriately
scaled for display) in Fig. 4.16d (with the projected components displayed
as RGB), Fig. 4.16e (same as above, with the blue channel set to zero), and
Fig. 4.16f (as grayscale) respectively. To illustrate the degree of lossiness due to
colour space compression, also shown are the images obtained by unprojection
of the pixel colours back into the original RGB space: from the 2-channel
colour space (Fig. 4.16b) and from the 1-channel colour space (Fig. 4.16c¢).

Note that more than 96.5% of the eigenenrgy corresponds to just the
first eigenvector. This result is typical for skin textures. It should be noted
that no significant loss occurs when compressing the colours to 2-channels
(compare Fig. 4.16b with Fig. 4.16a) because the third eigenvalue A(3) is so

small.

4.5.3 Distance Computations on Meshes

Despite fast marching on meshes being relatively cheap, for very large meshes
it might still be too slow. If the mesh in question is very dense (compared
to the typical density of control points), geodesic path computations can be
approximated with the computations of shortest paths on a graph, whose
vertices are vertices of the mesh and edges are the edges of the polygons of the
mesh, which amounts to restricting the valid paths on a mesh to be along the
edges only. This allows one to use classical shortest path algorithms on graphs,
e.g. Dijkstra’s algorithm [87], that are faster than geodesic computations
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as well as more memory efficient. Such approximation to the true geodesic
distances was employed by Praun et al. {217,218]. In addition, there has been
research into efficiently solving shortest path problems on graphs using the
highly parallel architecture of modern GPUs, see e.g. [139].

The approximation of geodesic paths with paths on the mesh graph is very
crude and might lead to incorrect results, because the true geodesic paths can
cut across faces and so cannot be found by Dijkstra’s algorithm.

This approximation was not used in the experiments of this chapter. How-
ever, it might be useful as a last resort in problems of very large magnitude.

4.6 Experiments

In order to validate the proposed approach, several registration experiments
were conducted with artificial and real 3D data, including inter-subject regis-
tration. For all experiments the values of a various alignment quality measure
at each iteration as the algorithm progresses, were plotted to monitor improve-
ment. These are the values of the Cyop from Eq. (4.19) (MAD), mean average
mutual information and normalised mutual information between the texture
model and each shape normalised sample (MI and NMI), and average pixel
stack entropy across the shape normalised ensemble (by analogy with Sec-
tion 3.6)} To visually inspect the registration progress, the evolution of the
model of texture and average shape is also shown: as the algorithm establishes
the correspondences more and more accurately these converge to a true crisp

representation of the underlying structures.

4.6.1 Comparison with the ground truth

For this experiment, one mesh was selected as a template and randomly
deformed by selecting 32 control points on it, displacing each control point
randomly by +24 mm (uniformly distributed) and interpolating the defor-
mation with thin-plate splines. The obtained 64 synthetic meshes (examples
shown in Fig. 4.17), with the ground truth correspondences known, were then
registered. Figure 4.18 shows the evolution of the average shape and texture
as the registration progressed, and Fig. 4.19 show the progress plots. In order

to evaluate the accuracy of the registration, two measures were computed.
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FIGURE 4.17: Example meshes from the artificial data set.

FIGURE 4.18: Evolution of the mean surface and texture for the artificial data set.
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FIGURE 4.19: Registration quality measures (ground truth experiment).

The average pairwise distance between corresponding vertices in the aligned
meshes was 0.838 mm (median 0.633 mm, a = 0.773 mm). The algorithm was
stopped after 160 iterations (the results would be improved even further if the
algorithm was run for longer), see the progress Fig. 4.19.

The final spatial errors between every shape-normalised mesh and the tem-
plate warped to the mean of the shape-normalised meshes were also measured.
The average pairwise distance between corresponding vertices in the aligned
meshes was 0.570 mm (median 0.408 mm, a = 0.570 mm).

These results show that the proposed method performed well and converged
to within the expected accuracy (subject to the finite number of iterations, flat

areas in the texture, and small imperfections due to texture warping).
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FIGURE 4.20: Example meshes from the PERSONI data set.

FIGURE 4.21: Evolution of the mean surface and texture for the PERSONI data set.

4.6.2 Within-subject registration

To demonstrate that the proposed algorithm can register a sequence of meshes,
a 3D video was captured of two people (PErRsoNI and PERsoN2) performing
various facial actions. Every fifth frame was taken from each video yielding two
sequences of 182 and 221 meshes respectively (examples are shown in Fig. 4.20
and Fig. 4.23). The sequences were registered. The progress of registration is
shown in Fig. 4.25 and Fig. 4.26, the evolution of the texture model and the
average shape are shown in Fig. 4.21 and Fig. 4.24: observe the crisp texture in
the final stage of alignment. Having registered the sequences, a 3D appearance
model for each person was built. The first three modes of variation are shown
in Fig. 4.22 and 4.28. The results are excellent, demonstrating the usefulness

of the proposed algorithm for automatic 3D appearance model building.

4.6.3 Inter-subject registration

To demonstrate that the proposed algorithm can easily handle inter-subject
registration, a corpus of facial scans of 32 different individuals, 11 of which
are women, was captured. Some examples from this data set are shown
in Fig. 4.27. Note the degree of variation, both in shape and texture (e.g. facial
hair). The algorithm successfully registered this data set. The progress plot is
shown in Fig. 4.32, and the evolution of the texture model and average shape

in Fig. 4.30 and Fig. 4.31. The appearance model from registered samples
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FIGURE 4.22: The first three modes of variation (+39) of the 3D AAM built from the
registered PERSONI data set.

Figure 4.23: Example meshes from the PERSON2 data set.

Figure 4.24: Evolution of the mean surface and texture for the PERSON2 data set.
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FIGURE 4.26: Registration quality measures (PERSON2 data set).

Figure 4.27: Example meshes from the inter-subject data set.
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were also built. The first three modes of variation are shown in Fig. 4.29.
Inter-personal registration is a notoriously challenging problem, with which

the proposed algorithm admirably copes.
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Figure 4.28: The first three modes of variation (£3cr) of the 3D AAM built from the
registered Person2 data set.

4.7 Future work

Below, some possible improvements to various parts of the proposed method
and some possible directions of future research are outlined.

MoORE EXPLICIT USE OF SHAPE INFORMATION. Note that in the proposed
algorithm only the depth of the bending invariant was used in addition to
pixel colours. This depth is a very crude feature and in case of face data
is a low frequency signal. However, without any changes to the algorithm,
other shape-based features can be added as additional channels. One example
would be the gradient of the depth component of the bending invariants.
Some of the other features (essentially scalars or vectors associated with every
point on the surface) that can be used, include: spin images (Johnson and
Hebert [134]), curvature (Gal and Cohen-Or [101]), moments and spherical
harmonics (Sharp et al. [240]), integral descriptors (Gelfand et al. [104]), Fast
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FIGURE 4.29: The first three modes of variation (£3<r) of the 3D AAM built from the

registered inter-subject data set.

FIGURE 4.30: Evolution of the texture model in the flat parametric space for the inter-subject
data set.

FIGURE 4.31: Evolution of the mean surface and texture for the inter-subject data set.
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FIGURE 4.32: Registration quality measures (inter-subject data set).

Fourier Transform (FFT) and Discrete Cosine Transform (DCT) coefficients
(Li and Guskov [165]), cluster signatures (Huang and Pottmann [130]) and
others. These features are discussed in great detail in the review paper of
Tam et al. [261].

STRESS TERM IN THE CosT FuncTtioN. It is also possible to augment the
cost function with an additional term that measures the quality of embedding.
The stress the embedded point cloud, as used in MDS, can serve for this
purpose. In the proposed method, such a term was not used for two reasons.
First, adding an extra term that is not commensurate with the texture-based
term would require a scaling coefficient that is hard to determine automatically,
and so the algorithm would gain one extra parameter which requires tuning.
Second, as the experiments demonstrate, in the case of 3D face surfaces and
similar data, there is usually enough clues in texture for registration to succeed
without the additional stress term. It is possible that the inclusion of the stress
term could be useful if the registration was guided by the above discussed
shape features alone, without the textures.

OTHER KINDS OF SURFACEs. It is possible to modify the proposed algo-
rithm in order to register surfaces other than those homeomorphic to a disk.
A related work here is the groupwise approach applied to the registration
of 3D data (in this case, closed genus-0 surfaces) via parameterisation by
Davies et al. [77,81]. In Davies et al. [77], the surfaces are mapped to a unit
sphere and Davies et al. [81] discuss a computationally cheaper option of first
mapping a closed surface to a unit sphere, then to an octahedron which is
then cut and unfolded to a square. This mapping of a closed surface to a

square makes the manipulation of deformation fields analogous to the case of
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2D images, and therefore computationally cheap.

“BENDING INVARIANTS” OF IMAGES. Seeing how the bending invariants
of Elad and Kimmel [93] proved very useful for registration of surfaces, the
following question occurs: is it somehow possible to apply this idea to registra-
tion of images, by computing an analogue of the bending invariants for the
case of images?

One possible way of doing so is evoked by the stereo vision literature.
Remarkably, the 11-th ranking algorithm in the Middlebury Stereo Evaluation
rank [1] is an algorithm based on local window matching. It was proposed
by Hosni et al. [129]. (In contrast to all other state of the art stereo dispar-
ity algorithms which these days typically rely on some global optimisation
framework.) The clever idea of Hosni et al. [129] is to compute the support
weights, for a square window being matched, using geodesic distances between
the centre of the window and all other pixels in it. The geodesic distance
between two adjacent pixels (“cost of movement” from one pixel to the next)
depends on the difference in their colours. To illustrate: moving across a strong
edge then results in higher geodesic distance and lower support weight for
pixels demarcated by that edge, which, in turn, results in the block matching
algorithm treating the regions demarcated by the edge as potentially different
objects having potentially different disparities.

Combining this idea with the concept of bending invariants, it is conceivable
that “bending invariants” of images can be computed, using the geodesic
distances understood in the above sense. It is possible that such image
“bending invariants” can be used for classification and recognition straight away
(as ordinary surface bending invariants were used by Bronstein et al. [44,45])
and possibly could be used to initialise image registration algorithms.

REGISTRATION WITHOUT EMBEDDING. It is conceivable that all opera-
tions could be performed directly in 3D, without resorting to flattening first.
Bronstein et al. [47-49] considered the problem of reducing the distortion of
distances introduced by embedding of a manifold into R”, in order to improve
the performance of their face recognition system. In doing so, they developed
a method, called Generalised Multidimensional Scaling (GMDS), which allows
for embedding of a manifold to be performed into another manifold.
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On the other hand, in Section 3.7 a possibility of performing groupwise
registration without creating an aggregate model, by only ever comparing the
original samples between themselves, was discussed.

Fusing these two ideas, it is possible to contemplate a groupwise textured
surface registration algorithm that would not need to resort to embedding
of the surfaces into R? first. Instead, using the scheme from Section 3.7
the hypothetical algorithm would perform comparisons between (deformed)
original surfaces by embedding one into another with GMDS. This, it can be
speculated, may improve the performance of registration.

4.8 Conclusion

A novel, efficient and reliable, fully automatic method for performing groupwise
non-rigid registration of textured surfaces was presented. Using a novel com-
bination of ideas from geodesic mesh processing and traditional registration
methods, it was shown how to reliably, in a principled manner, solve the
problem of registering 3D surfaces in a fashion analogous to the previously
solved (Chapter 3, Sidorov et al. [243]) problem of 2D image registration. The
resulting algorithm is computationally efficient, reliable, fully automatic, and
is, additionally, readily amenable to a GPU implementation. Its usefulness
in accurately establishing correspondences between textured meshes and, es-
pecially, in building high quality 3D appearance models was experimentally
demonstrated. The proposed method copes with data exhibiting significant
variation in shape and texture, such as in the case of notoriously difficult

inter-subject registration, with which the proposed algorithm copes admirably.
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CHAPTER

5

Statistically Constrained
Real-time Meshless
Simulation

Ideas become a force when they
control the masses.

Vladimir Lenin

N this chapter, the topics discussed earlier are combined, and a novel
application of automatic craniofacial appearance modelling — statistically
driven simulation — is proposed.

Inspired by statistical modelling, and leveraging the surface registration
methods for automatic construction of models, this chapter improves upon the
ideas from recent works on meshless geometrically based quasi-mechanical sim-
ulation methods. A new real-time approach is proposed to simulate deformable
objects, using a learnt statistical model to achieve a higher degree of realism
while retaining the advantages of geometrically based meshless simulation
methods. The improvement in realism over the state of the art approaches
is attained by capturing important nuances of an object’s kinematics, and
additionally its dynamic texture variation, in a statistical appearance model,
and using it to drive the simulation.

In the previous chapters, all the required components of the automated
pipeline, from data acquisition to modelling, were presented and will now be
supplemented with fast quasi-mechanical simulation, as a natural extension.

In Section 5.5, examples of non-trivial biomechanical objects simulated

on a desktop machine in real-time are presented, demonstrating superior
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realism of the proposed method over current geometrically motivated simulation
techniques.

5.1 Background

The earliest mention of applying mechanical principles in computer graphics is
found in the discussion by Lasseter [154], who summarised the principles which
were well known in the field of hand drawn animation (“cartoon physics”),
and suggested that they may be used to enhance the realism of animated 3D
computer graphics.

The history of numerical mechanical simulation for computer graphics
begins around the same time with the pioneering work on elastic models by
Terzopoulos et al. [265] and continues to this day. In the past two decades
the field of mechanical simulation and, in general, physically motivated mod-
elling for computer graphics has made a remarkable progress, with break-
throughs in fundamental numerical methods (solution of partial differential
equations (PDEs), numerical integration, modal analysis, fast real-time approx-
imation algorithms etc.), as well as modelling of various phenomena and object
characteristics (fracture, plasticity, in non-Newtonian mechanics, modelling of
gases, liquids, thin shells, cloth and hair in addition to solids).

In this field, some of the landmarks that applicable to computer graphics
are briefly given below. Baraff and Witkin [17] address the problem of large
time steps in cloth simulation via implicit integration. Desbrun et al. [86], using
a clever approximation to implicit integration, developed a stable and efficient
algorithm for simulating mass-spring systems. Pentland and Williams [203]
describe an approach to couple the model of mechanics based on modes of
vibration with a volumetric geometrical model, trading accuracy for efficiency.
James and Pai [132] use Boundary Element Method (BEM) to simulate linear
elastic objects at interactive rate, including elastic interactions between objects.
Efficiency is achieved in their method through precomputation of state space
dynamics and impulse response functions. A number of works focuses on
simulation of particle systems. Desbrun and Gascuel [84], for example, represent
objects as clouds of massive particles smeared in space and use explicit “leap-
frog” integration to update particle positions given forces. Self-organising

particle systems for fluid objects are proposed by Tonnesen in [272]. Miiller et al.
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[188] use particle system to simulate plasticity and melting. The traditional
FE and finite volume (FV) methods from computational mechanics have
also been widely employed. Miiller and Gross [186] simulate elasto-plastic
deformations and fractures in real time. Debunne et al. [83] proposed an
approach which by adaptively changing the resolution of the FE model is
capable of animating visco-elastic deformable objects with a guaranteed frame
rate. Teran et al. [262] use the FV method to simulate contracting muscle tissue
using a quasi-incompressible, transversely isotropic, hyperelastic constitutive
model.

Even a brief summary of this vast field is difficult here. For a comprehensive
review of key developments see Gibson and Mirtich [106] followed by a more
recent review of Nealen et al. [190], and also references within Miiller et al. [187].

To summarise, the main focus of the traditional deformable object modelling
approaches has always been on increasing the fidelity and accuracy of modelling
properties of materials, increasing the range of behaviours that can be simulated
(realistic collision detection and response, modelling of fractures, melting,
plastic deformations etc.), and improving the stability of numerical simulation
methods. In other words, physical realism and fidelity have been receiving
more emphasis than speed.

However, the interactive applications of mechanical modelling (such as
computer games or virtual surgery simulators) have been neglected until
recently. This is evident from the observation of mechanical modelling in
computer games — the industry which has been a dominant stimulus for the
development of computer graphics in the past two decades. While some recent
games feature plausible simulation of cloth, vegetation etc., in general the
game physics is still dominated by rigid, possibly articulated, objects.

Miiller et al. [187] discuss the reasons why more complex mechanical
phenomena cannot yet be modelled in interactive scenarios. One reason is the
hard performance constraint imposed by interactive scenarios: only a fraction of
computational resources can be dedicated to the mechanical simulation, in other
words the performance of the simulator has to be faster than real-time. The
other, more important, reason is that interactive scenarios require numerical
stability under all circumstances. While there are ways to ensure the stability
of simulation by using implicit integration schemes (e.g. Irving et al. [131]),
for objects with complex mechanical properties and non-trivial complexity
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they are prohibitively computationally expensive. Additionally, volumetric
representations of objects, required for FE modelling, are hard to produce and
are rarely, if ever, used in the computer games industry.

Recently, approaches have been proposed (Miiller et al. [187,188], Guo and
Qin [120]) which attack the problem on two fronts: by employing a point-based,
or meshless, representation of bodies, and by replacing a physically based
simulation paradigm with a geometrically motivated one. These approaches
have been drawing more and more attention as a possible solution to the faster
than real-time interactive simulation of deformable objects. In this sphere, a
minor degradation in physical realism is a small price to pay for computational
efficiency as long as visual realism is preserved. Efficiencies may be achieved by
abandoning the physical model (e.g. elastic energies and forces) and replacing
it with a geometrically based model.

Point-based, or meshless, representations of surfaces and solids have some
distinct advantages in interactive applications. First, point-based represen-
tations are much easier to obtain than volumetric ones since commercially
available 3D scanners only sample the geometry of the surface (and capture
surface texture). Second, data from 3D scanners typically comes as a point
cloud, and so no preprocessing, such as meshing the surfaces or domain mesh-
ing, is required. Third, meshless methods offer higher spatial adaptivity: node
insertion and deletion, modelling of fractures etc. do not require remeshing.
Finally, meshless methods require minimal storage and data manipulation
overhead: complex, memory intensive data structures are not required during
the simulation.

The work that is most relevant in the context of this chapter is that by
Miiller et al. [187]. To achieve efficiency, they reject the idea of implicit
integration (which is stable, but requires a solution to a large system of
equations at each step, making it prohibitive in real-time scenarios), and use
explicit integration. To guarantee stability of explicit integration, the core
idea of the approach due to Miiller et al. [187] is to replace physically based
simulation with a geometrically based one: their method relies on a generalised
shape matching (Kent et al. [143]) between an undeformed, or rest, state
and a deformed state of a point cloud. In other words, the main idea of
Miiller et al. [187] is to replace energies with geometric constraints and forces
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FIGURE 5.1: Illustration of the shape matching process in Miiller et al. [187].

by distances of current positions to goal positions which are determined via a
shape matching algorithm.

The shape matching process of Miiller et al. [187] can be summarised as
follows. Let x? be the initial, and x; the target positions (displaced due to
external forces, say) of particles with masses m;. Let x_  and X., be the
mass centres of the point clouds x? and x; respectively. A rigid transformation
{R,t} is computed that best matches the cloud x? to x; in the least squares

sense:
S mi(R(x? — x2) +t —x;)? - rﬁigl. (5.1)

The optimal translation t is simply X, and the optimal rotation R is found

via polar decomposition (see Lorusso et al. [168]):

R = Ap\/AL Ay, , where Ay = 3 ma(xi — Xem)(x? = x%)7,  (5.2)

see Miiller et al. [187] for full derivation. The goal positions of points can then
be expressed as g; = R(x? — x% ) + Xcm. The matching process is illustrated
in Fig. 5.1. The modified Euler integration step in Miiller et al. [187] uses
these goal positions to avoid overshooting:

vi(t + At) = vi(t) + agﬁ%‘ﬂ + At foxs () /s, (5.3)

where a is a parameter controlling stiffness. Miiller et al. [187] derive that
for 0 < a < 1 this integration step never overshoots and the system always

remains stable. Compare this with ordinary Euler integration:

Vi(t =+ At) =V; (t) + Atfext (t)/mz (56)
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Figure 5.2: Modes of deformation admissible under the model of Muller ez al. [187].

The latter can become unstable if At is insufficiently large to account for
the displacements occurring during each step, leading to overshooting and
erroneous increase in the total energy of the system.

The above rigid shape matching model, Eq. (5.1), is further extended in
Muller et al. [187] to allow for linear and quadratic deformations (shear, stretch,
bend and twist, illustrated in Fig. 5.2). Regardless of the deformation model
the principle remains the same: find the optimal matching configuration of
points and use it to constrain the Euler integration step.

The approach of Muller ef al. [187] has been adopted for animating skin
deformation (Park and Hodgins [199]) and has recently been extended by
Henriques ef al. [125] for interactive medical applications. A point-based ap-
proach is presented by Guo and Qin [120] where a solid volumetric octree-based
interior is simulated using Meshless Moving Least Squares shape functions.

One issue with such models is the level of deformation detail that can be
represented, and a variety of approaches have been designed to remedy this,
for example subdividing objects into clusters in Muller et al. [187] or warped
modal analysis in Guo and Qin [120]. Fast Lattice Shape Matching (FLSM) is
a procedure developed by Rivers and James [224] to account for many more
degrees of freedom than Muller by overlapping many rigid clusters of points
in a lattice and using the regularity of the lattice to achieve efficient shape
matching. The FLSM approach has been extended (Steinmann et al. [253])
with an octree-based fast adaptive shape matching algorithm.

These techniques help to make the degree of representable deformations of
the objects more detailed, but this does not necessarily lead to more realistic
behaviour. The main problem remaining is how to measure mechanical proper-
ties of an object. In the proposed system, a more sophisticated geometric model
is adopted, which is based on learnt statistics of an observed real deforming
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object, see Section 5.4, to combine the advantages of Miiller’s geometrically
driven approach (speed and stability) and the high degree of realism typical of
physically-based simulation methods.

To summarise, data-driven meshless simulation approaches to simulation,
such as those proposed in Guo and Qin [120], Miiller et al. [187], have proved
to be extremely valuable in interactive scenarios, such as computer games or
virtual surgery simulators, as they allow for unconditionally stable dynamic
simulation at much lower computational expense of more traditional meth-
ods, e.g. finite element (FE) modelling. As demonstrated in Miiller et al. [187],
the idea of shape matching with a quadratic model of deformations (or a
piecewise combination of such models) is plausible when simulating simple
elastic objects.

However, the range of deformations which their approach affords is very
limited and is not well suited to simulating complex objects, such as human
faces and other biomechanical entities which are known to undergo very complex
deformations and are non-trivially constrained.

The proposed system allows for the capture of idiosyncratic characteristics
of an object’s dynamics which for many simulations (e.g. facial animation) is
essential. In existing geometrically motivated animation methods the assump-
tions about the mechanical properties of objects are too generic and, therefore,
preclude this.

The proposed method allows for the plausible simulation of mechanically
complex objects without the knowledge of their inner workings. This is
especially useful where an object’s mechanical properties are hard to measure
directly (e.g. human face, see the discussion in Section 2.1): to drive realistic
simulations, it is sufficient that the typical surface behaviour is learnt. The
main idea of the proposed approach is to utilise a flexible statistical model to
achieve a geometrically-driven simulation that allows for arbitrarily complex yet
easily constrained deformations while at the same time preserving the desirable
properties (stability, speed and memory efficiency) of current geometrically
driven shape-matching simulation systems.

Statistical modelling, as discussed in Chapter 1, has a long tradition
in computer vision, and there is now a considerable literature on applica-
tions of statistics-based deformable models. As discussed earlier, PCA has

been the mainstay of a variety of linear approaches (e.g. Point Distribution
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Model (PDM), ASM for modelling of shape, and AAM, MM allowing to model
texture in addition to shape, see, for example, Cootes and Taylor [59], Blanz
and Vetter [28]). Other linear and non-linear approaches (Linear Discrim-
inant Analysis, Kernel PCA, Multidimensional Scaling, Isomap, non-linear
PCA, Locally Linear Embedding and many others) (van der Maaten [170])
have also been utilised. The advantage of linear models such as PCA eigen-
models is their ability to represent principal modes of variation within the
data with components spanning the reduced dimensionality space for which
two-way projection/unprojection is computationally cheap, which is important
for the purposes of this chapter. Some work has been reported on building
statistical models from 3D time-varying point clouds (Kaus et al. [141], Siiba-
muth et al. [255], Wand et al. [289,290]) but these have mostly concentrated
on only reconstructing the geometry of the articulated rigid objects.

Recently, fully automated registration methods have been developed, such
as the one described in this thesis or Davies et al. [76], Sidorov et al. [241,243].
These new non-rigid groupwise image and surface registration techniques allow
for automatic construction of statistical models of shape and appearance and
therefore can be used to prepare models for the proposed quasi-mechanical
simulation.

Learning motion from statistical models has also been an active area of
research with many approaches utilising Hidden Markov Models (HMMs) to
encode motion within a statistical model framework, e.g. Brand and Hertz-
mann [38]. A Gaussian Process Latent Variable Model (GPLVM), described
in detail in Lawrence [155], is used in Grochow et al. [113] to learn a model of
complex articulations of the body from motion capture data to solve the inverse
kinematics problem. However, this approach is not suitable for the purposes of
this chapter as it does not provide a cheap mapping between the data space and
the reduced dimensionality space — it has to solve an optimisation problem
each time a mapping is required. While GPLVM is an excellent method for es-
timating the likelihood function from very few samples, for reasons of efficiency
the approach due to Gray and Moore [111] is used instead to estimate kernel
density in the reduced dimensionality space, see Section 5.3. Meshless inverse
kinematics (Sumner et al. [256]) attempts to overcome the potential explosion

in degrees of freedom when using meshes instead of skeleton configurations (as
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in Grochow et al. [113]) by relying on the non-linear multi-way interpolation
of unstructured meshes using a deformation-gradient based feature space.

Parenthetically it is worth mentioning an early historic example of com-
bining mechanical ideas with statistical ones in which traditional FE modal
analysis methods (Pentland and Sclaroff [202]) have been combined with a
statistical model (Martin et al. [177]). Both are underpinned by eigenanalysis.
Modal analysis can generate a set of vibrational modes from a single shape
example, point based statistical methods can model variation between more
than one example. In Cootes and Taylor [63] a combined model is built where
they generate a large set of new examples from individual variational modes
which are then used to augment a point distribution model. These is an early
historic example of combining mechanical ideas with statistical ones.

5.2 The Proposed Approach

FIGURE 5.3: Realistic real-time simulation of complex biomechanical entities.

By extending the aforementioned techniques of Muller et al. [187] and,
in particular, by integrating a statistical model into the meshless dynamic
simulation paradigm, a system was built with an automated pipeline from
capturing characteristic object deformations, encoding these deformations into
a learnt statistical model, to finally rendering a faithful simulation (Fig. 5.3).
The proposed system preserves all the desirable properties of the algorithm
due to Muller ef al. [187], which are: stability of the dynamic simulation under
all circumstances and for all deformed geometry configurations, applicability
to a large variety of objects, and computational efficiency in terms of memory
requirements and speed. At the same time, the approach is augmented to
account for the following:

More realistic simulation. Provided with multiple samples of deformed

shapes of an object, for example by observing its evolution in a dynamic
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3D surface scanner, important nuances in the underlying space of rep-
resentable deformations are captured, and, by using this information,
much more realistic simulation is achieved.

Texture Synthesis. The additionally available corresponding texture infor-
mation for each sample of the deforming object is incorporated into the
statistical model and then the correct texture appearance of the object,
as it undergoes deformation in the proposed simulator, is resynthesised.
This greatly increases visual realism.

Automatic Customisability. Mechanical properties of objects are notori-
ously hard to measure. Therefore, current mechanical simulation ap-
proaches are forced to either use generic or tediously hand-crafted models.
In contrast, the proposed system enables the capturing of an object’s
idiosyncrasies into fully automatically constructed customised models
using commercially available 3D surface scanners.

Efficiency and Speed. While providing exceptional realism, the proposed
simulator still runs much faster than real-time which makes it especially

useful for computer games and other interactive environments.

5.3 Model of Shape and Texture

The proposed system takes as an input an ensemble of textured surfaces. For
training of the model, samples representative of typical deformations that are
to be captured in the model are selected. In order that a statistical model
be built, the correspondences between samples are established by using the
approach of Chapter 4. Taking advantage of the embedding of meshes into R?,
an artist can additionally specify masses at this point by “painting” a map of
masses in the same 2D texture space.

For simulation purposes, the manifold of all plausible configurations that
an object can assume has to be represented. A data driven approach was
adopted, as it is desirable to be able to build such a model of plausible object
shapes from measurements of a real physical object undergoing characteristic
deformations.

Consider a parameterised generative model of the form x = Q(b,), where b,
is a vector of model parameters, that can be used to generate new instances

of shape x and given an instance of x would give estimates of parameters
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b, = Q71(x). By enforcing constraints on parameters b, it can be ensured
that the model generates only plausible shape configurations.

While in general x = Q(b,) can be any generative model of shape with the
above properties, in the proposed approach it is exemplified with a classical
linear model, of the same type as AAM of Cootes and Taylor [59], or in 3D
case of Sidorov et al. [242], which use the well established technique of PCA
for dimensionality reduction. The linear reduced dimensionality model of the
form x ~ Eb, + p, is now derived for completeness.

Suppose the surface of a deforming object has been sampled at corresponding
locations over time as the object undergoes deformation (or, equivalently, an
ensemble of surfaces of a deforming object taken over time has been registered
using the approach of Chapter 4 and later resampled).

This yields a set of N, point clouds of N, points each: P; € R3*Mr
i=1...N,. Each point cloud is centered around its centre of mass and
groupwise Procrustes Analysis is applied thus compensating for linear motion
in the training data, yielding P;.

Following the exposition given in Chapter 1, the 3N, x N, observation
matrix O, is constructed by reshaping P;’s into column vectors (observations)
and concatenating them together. Let 1, be the mean of observations and let
mean-centred observations be (53 = O; — p,lixn,. The basis E; is then simply
the first D eigenvectors of the covariance matrix C = GSGST corresponding to
the D largest eigenvalues. Thus the statistical model of shape {E,, u,}.

The proposed method is also concerned with recovering the realistic de-
formation dependent texture of an object. This follows the standard AAM
technique (Cootes and Taylor [59], Sidorov et al. [242]). Let O, be the obser-
vation matrix for the texture, constructed by reshaping textures into column
vectors and concatenating them together. Applying PCA to O, results in a
linear model of texture a = E,b, + 1.

For texture recovery, the relationship between shape and texture must be
learnt. To accomplish this, a combined model of appearance (Cootes and Tay-
lor [59]) is build. For each example in the training set, compute the correspond-
ing parameters b, and b,, concatenate them in a vector b, = [bf WabaT]T,

with scaling coefficients W, to account for difference in units, and construct
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the observation matrix for the combined parameters O, by concatenating b,’s.
Finally, applying PCA again to O, produces a linear model b, = E.c:

b E
b, = * | =Eee=| "= :
( W.b, ) c ( B, ) c (5.7)

It is important to note that the above model of shape is linear, while
in reality the behaviour of objects will typically be highly non-linear. It is
convenient to postpone the discussion of modelling non-linearity (Section 5.4.2)
until after the simulation algorithm is explained.

5.4 Simulation

The proposed algorithm for simulation, summarised in Alg. 5.1, will now be
described. The main idea behind the proposed method is to use explicit Euler
time integration, using a statistical model that defines plausible deformations,
to ensure that it never overshoots and is unconditionally stable. The algorithm
iteratively evolves a point cloud X, representing the current shape of the object,
over time. Each iteration begins with the Euler integration step (lines 5 and 6)
which updates the velocities given the accelerations due to external forces (such
as gravity). These updated velocities are then used to find the deformed shape
Xpew (line 6). The mass centre, Xnew, 0f Xpew is then computed and the points
are centered around it to obtain Xnew (lines 7 and 8). Using Alg. 5.2, described
in Section 5.4.1, the best legitimate configuration of points, S,;, permitted by
the statistical model, is computed, as well as a vector of model parameters, by,
corresponding to this configuration.

If it is also desirable to maintain the tendency of the object to return to
its “undeformed” shape, it is needed to also compute (see below) the best
match Siigia between an “undeformed” shape of the object, X¢yp, and X ew-
(The choice of Xy, is application dependent, it could be any plausible shape
(typically one at a rest state) or even a mean shape p, provided this is a likely
configuration).

After Sy and Syigia are computed, they are blended linearly (line 12) with
parameter 3 to give a goal shape, Xgoal- Since Xgoa is a mixture of the
deformed and undeformed shapes, the object will have a tendency (controlled
by B € [0...1]) to return to its undeformed state. (When 8 = 0, the object
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Algorithm 5.1 Perform simulation

Require: {E, € R®NxD) ¢ RBNox1)} _ gtatistical model, At — time

1:
2:
3:
4:
5:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

slice, Xo — (3 x ) initial configuration of points, mxn,) = {m;} —
masses of points; Xy, — “typical” undeformed shape; g — accelerations
due to external “forces”, e.g. gravity; precomputed texture operator Z; the
stiffness parameter a € [0...1] and the shape blending weight 8 € [0...1]
(a and 8 have the same meaning as in Miiller et al. [187]; see also discussion
on pages 168-169).
Vo <= O3xn,
ﬁtyp «— (Xtyme) / (llprmT)
Xtyp — Xtyp - &typ]-lxN,,
loop

Apply accelerations, e.g. Viiar <= Ve + (8A1)11xn,

Xpew ¢ X¢ + VieparAt

inew — (Xneme) / (llprmT)

Xnew — Xnew - ﬁnewllpr

Using Alg. 5.2 compute: _

{Sur, by} + match({E;, p,}, Xnew)

{R, S} + poldec(X e diag(m)XZ,)

Srigid — RXtyp

Xgoal «— (BSnr + (1 - IB)Srigid) + )’\(newllpr

N  aXgoa + (1 — 0)Xpew

Xpew  collision (world, X, N)

b, < p, + E.(WELELDbs) = p, + Zb,

Vt+At — (Xnew - X)/At

Xt+At — Xnew

t—t+ At
end loop

will return to the undeformed state immediately, and when 8 = 1 there will be

no such tendency at all.)

As in Miiller et al. [187], the points are moved a-way towards their goal

potions (line 13) to simulate stiffness. The fact that 0 < oo < 1 ensures that
the points never overshoot their legitimate goal positions Xgoa. (Note that
when o = 1 it is a rigid body simulator, and when a = 0 there are no internal

“elastic” forces at all).

At this point in the algorithm, the interactions with the external world

(line 14) need to be considered. The new positions, Xnew, are updated to account
for collisions. The application-dependent routine Xyew «— collision (world, X, N)
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here applies hard constraints (such as those arising from collision of the
deformable object with obstacles) and returns the deformed configuration of
points subject to such constrains. The topic of collision detection and response
between multiple deformable objects is outside the scope of this chapter, and
is shown only schematically here (the exact mechanism is very application-
dependent), for recent innovations see Keiser et al. [142], Teschner et al. [269).

Computing S,gq involves finding the pose parameters (rotation and trans-
lation) that best map in the least squares sense the undeformed shape, Xiyp,
to the deformed shape X,.,. The translation is already known (= Xpew) since
X¢yp has already been centered (lines 2-3), and so was X,ew. The rotation
between X¢yp and X,ew is found by solving the orthogonal Procrustes problem
via polar decomposition of the weighted correlation matrix Xye,, diag(m) ~7;,p,
see Lorusso et al. [168], Miiller et al. [187]. The notation {R,S} < poldec(A),
in line 10, denotes the polar decomposition of a matrix A. See Higham [127]
for definition and a detailed discussion of efficient computation (but see also
Miiller et al. [187]). The point “masses”, m, can be used to fine tune the
dynamic behaviour of the model by specifying the relative importance of
points in the shape matching stage. These, together with the coefficients «,
B and ~y, allow the artist to tweak the response of the object to external forces.
As mentioned above, having a 2D reparameterisation of surfaces (during the
registration) provides an artist with a convenient way of tweaking the point
“masses”: the artist can simply “paint” them.

Further, the most plausible texture corresponding to the current shape Xpew
is computed (line 15). Given a vector of shape parameters b, it is possible to
take advantage of the linear nature of the models to estimate the corresponding
texture parameters b, by first computing ¢ = E_'b, = ELb, and using it to
estimate b, = W™ E_c. Precomputing Z = W‘lEmEZ; off-line, the texture
parameters b, = Zb, can be very quickly estimated. Texture is then recovered
at runtime using the linear model a = E,b, + p,. Note that this amounts to
computing a linear combination of basis textures E, and adding the mean;
this can be straightforwardly accomplished on a GPU, by keeping E, in video
memory and synthesising novel textures on the fly. This has an added benefit of
having to store only a relatively small basis set in video memory to synthesise
a variety of novel textures. This simple approach to texture recovery assumes
a bijective (and, moreover, linear) relationship between shape and texture.
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Model Matching

TZk(Ssb + ns) + tk

FIGURE 5.4: Find the most plausible shape given the statistical model and constraints.

Despite the strong assumption, in practice this approach is a good compromise
between computational efficiency and realism.

Finally, the velocities V are updated to reflect by how much the points
have actually moved during this iteration.

54.1 Shape Matching

The problem of computing the most plausible shape permitted by the statistical
model that best matches a given point configuration with a priori known
correspondences (Alg. 5.2) is now addressed. Solving this problem involves

minimising the expression
[P —(RQ(bs) + t)||2—min w.r.t. R, bsand t. (5.8)

Here, Q(bs) denotes an instance of shape generated by the model given
parameters bs. In the case of a linear model, Q(bs) is simply Esbs + fis. This
is an optimisation problem and it is solved in an iterative fashion similarly
to Cootes and Taylor [59]. To avoid conflict of subscripts, in Alg. 5.2 shape
parameters bs are denoted as simply b. The search begins by initialising the
model parameters, b0, to zero (or the last known value biast) and the pose
parameters to the identity transform and, also, ensuring that input points are
centred around the centre of mass (lines 2 and 3).

The iterative body of the algorithm operates as follows. Constraints
(Fig. 5.6) are applied to b i to ensure that it corresponds to a plausible shape
(line 6). The constraints are made less hard with a mixing coefficient 7 to allow
for the object to assume any pose while still possessing a strong tendency to
evolve towards valid shapes (line 7, see below). An instance of shape Ok is then
computed using the model controlled by parameters bf 1 and is centred around
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Algorithm 5.2 Compute most plausible shape permitted by the statistical
model parameters that best matches a given point configuration

Require: {E, € RC®N>*D) p e RGNoxD} — statistical model, Paxn,) —
current configuration, mxy,) = {m;} — masses of points, last known bya
(or Opx1); User-controllable €, €, €g — tolerances, and kpax — maximum
number of iterations.

1: by ¢ bpast or Opx1, Ro <= Isxs, to ¢ 03x1, K 0
2: P+ (PmT) / (llprmT)

3: f) +~— P - ﬁllpr

4: repeat

5 k+—k+1

6:  beons < constrain(by_y)

7: bk~1 «— (1 - 7)bk—1 + ’chons

8 Qg ¢ reshapep, n ) (Esby—1 + p,)

9 Qg (QemT) / (11xn,m7)
10 Q< Qr — qxlixn,
11:  {Rg,S} + poldec(Q diag(m)PT)
12t <— D — Qy
13: Y « 1:{19(1’5 — tkllpr)
14: by« ET (reshapeBprl] (Y) - p,s)

15: AR «+ Ry — Ri_1

16: until k£ > kp,, or (||t — tx—1]| < ¢ and

b — be-1ll < & and y/trace(ARTAR) < €g)
17: return {S, « Rk“le + trlixn,, br}

its centre of mass (lines 810). The pose parameters, Ri and ti, are then
found that best map P to hypothesis Qx as described above (lines 11-12). Note
that the physical meaning of computing the optimal rotation and translation
parameters, Ry and tg, in addition to the non-rigid shape parameters, b, is to
make sure that the angular momentum and momentum are preserved. Using
this pose estimate, Y is computed, which is the new position of P, in the model
coordinate frame (line 13). New model parameters by are computed that best
approximate Y. This process is illustrated in Fig. 5.4. Lines 5-15 are repeated
until convergence when there are no significant changes in R,t, and b. In
practice convergence occurs after only a few iterations.

Finally, the last estimate of Qy, is transformed back into the coordinate

frame of P to give to most plausible shape Sp.
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\Y

FIGURE 5.5: A 10-component GMM fit- Figure 5.6: Probability density esti-
ted to shape data in the reduced dimen- mated using the method of Gray and
sionality space. Colour indicates PDF  Moore [111], and its level set serving as
(annealed, for display, by raising it to ¢onstraints on

power 0.1).

5.4.2 Modelling Non-linearity and Constraining the Shape Parameters, b

The distribution of shape parameters b will not in general form a simple
Gaussian assumed by the linear eigenmodel of shape. One of the established
techniques for modelling non-linear data sets is to assume that although the
whole data set is non-linear it can be approximated with a mixture of locally
linear models (Hicks [126]). A classical approach to such approximation are
GMMs which have the form (Duda et al. [91])

KX)=J2ai°(X> Ci> (59)
i=1

where n is the number of Gaussians in the mixture, /z are the centres of the
Gaussians, and Ci are the corresponding covariance matrices, and a* are the
prior probabilities. The parameters of the GMM are estimated using the
well-known EM algorithm (Duda et al. [91], Press et al. [220]). Fitting a
GMM to the original data set would be impractical (not only because of the
high running time, but also because the fitting procedure is fragile in high
dimensions), so a standard (Hicks [126], Aubrey [13], Cosker [68]) approach is
to fit a GMM to the data in the reduced dimensionality space. Fitting of a
GMM to a reduced dimensionality shape eigenmodel is illustrated in Fig. 5.5.

In practice, fitting a GMM to data suffers from a number of drawbacks:
potential danger of over- and under-fitting, the need to select the number of
components in the mixture, and the danger of the EM procedure getting stuck
in local minima. These problems become particularly prominent if the number
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of data points, approximating the “true” distribution, is small. These problems
are also pointed out in Grochow et al. [113].

Having estimated the distribution of parameters b, with PDF p(b), de-
fine a configuration b as plausible if p(b) is greater than some threshold p;,
see Fig. 5.6. One way to ensure that b tends to assume values corresponding
to plausible shapes is to estimate the likelihood at each point in the reduced
dimensionality space and then move it uphill in the direction of the gradient.
Such is the approach adopted in Grochow et al. [113], where GPLVM is used to
estimate the PDF of the distribution. This is an optimisation problem which
is solved with an iterative algorithm whose convergence properties depend on
the data and are hard to predict. It is also possible to accomplish the same
using a GMM, especially since the gradient of the PDF of the mixture can be
derived analytically (Rennie [222]).

Since GMMs and GPLVMs have the above shortcomings, a different ap-
proach was adopted, remarking that the actual PDF is of no interest: only
a method (a classifier) to separate plausible shapes from implausible ones is
required, together with a procedure to move an implausible shape towards the
nearest plausible one.

When enforcing constraints on values of b the aim is to achieve absolute
stability and predictability, which is important in interactive scenarios, as well
as to make enforcement of constraints computationally very cheap. In the
proposed algorithm, this is achieved by pre-computing the likelihood L(b) at
each point (on a regular grid, say) in the reduced dimensionality space off-line
at the model building stage. To do so, the procedure described in Gray and
Moore [111] for kernel density estimation is used. It proves to work very well
even if the data set is sparse and doesn’t suffer from the drawbacks of the
GMM approach. The level set of this function L(b) = p; (Fig. 5.6) is then
computed and stored. For low dimensional b’s this level set is stored as a
set of polygons (or polygonal surfaces) that divide the reduced dimensionality
space into regions of plausible and implausible values for b.

This approach is computationally very cheap, however polygonal constraints
do not generalise well if the dimensionality of b is higher than three. In practice,
it is sufficient to apply constraints only to the first 2-3 most significant modes
which capture most of the variation. During the simulation, implausible
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parameters b are adjusted by forcing them y-way towards the nearest point
(line 7) on the level set (polygon).

An alternative approach, due to Bowden et al. [36], is to approximate the
manifold with an ensemble of locally bounding boxes. Bowden et al. [36] apply
cluster analysis to the points in the reduced dimensionality space and, having
clustered the points, compute a bounding box for each cluster. The superposi-

tion of bounding boxes thus constraints the subspace of valid configurations.

5.5 Experiments

A simulator has been constructed with which the superior realism of the
proposed statistical approach and its potential can be demonstrated. The
results are illustrated on a selection of biomechanical objects: a human face,
an artificially created model of a human hand and a human abdomen. Results
from applying time-varying hard constraints to objects as well as constraints
due to interactions (collisions) between them are shown. Also shown is the
inclusion of texture resynthesis as an object undergoes deformation which is not
currently afforded by any meshless simulation algorithms. All the simulations
were performed on a typical PC and run much faster than real-time (collision
detection, a topic not discussed here, being the only bottleneck).

5.5.1 Human Head Simulation

For this experiment, 3D video data from a 3D dynamic scanner capturing high
resolution (= 20k—30k triangles) meshes and accompanying texture maps at 48
frames per second was acquired, preprocessed, and registered. A human face
undergoing deformations that sampled enough variation to model were captured:
the head making typical chewing, cheek blowing, lip pursing and moving pursed
lips sideways, were sampled thus creating automatically customised models of
kinematics. See Chapter 4 for the description of the source data used. It is
sufficient to select a characteristic subset of training video frames; typically,
30-100 samples are used when constructing the statistical models.

Fig. 5.7 shows a series of frames from a simulation sequence where hard
constraints were applied to the points on the boundary of the face and varied
over time (quickly rotating and moving) to simulate how the rest of the face
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FIGURE 5.7: Human head simulated with the proposed method (Top: side to side motion,
Bottom: “nodding” motion)

FiGURE 5.8: Same side to side head simulation with Muller’s method. Note the unnatural
behaviour.

realistically responds. In Fig. 5.7 one can clearly see that the deformations
in the soft tissues around the mouth and nose are realistically computed and
rendered. For comparison, the proposed method was compared with a vanilla
implementation of meshless simulation due to Muller et al. [187]. However, a
direct comparisons is not possible as even the piecewise multi-cluster extension
of Muller’s approach does not offer enough controllability to plausibly simulate
a human face. Figure 5.8 shows Muller’s approach in a similar scenario, clearly
the proposed approach is incomparably an improvement.

Figure 5.7 shows results from a similar experiment to above, except that
now the head has “nod” constraints moves it up and down fairly vigorously.

176



5.5. Experiments

Again comparison to Muller’s approach shows a much more biomechanically
realistic simulation.

In order to illustrate the advantages of texture resynthesis, consider a close
up of the above simulation, Fig. 5.9. It is important to not only simulate
the shape (Fig. 5.9(c)) but also to resynthesise the textures accordingly. Fig-
ure 5.9(d) shows the resynthesised texture. Visually important details, such
as deep wrinkles in the human face, synthesised as part of the texture greatly
increase the realism.

(a) (b)

(c) (d)

FIGURE 5.9: (a) Surface in rest state, (c) Surface after deformation, but using the same
texture as (a), (d) Texture recovered to reflect the deformation, (b) Underlying mesh.
Notice how the deep wrinkles are synthesised in the texture, they are not a result of shading
in the mesh.

5.5.2 Artificial Hand Simulation

Artificially created models were also simulated. For this experiment, an
animated model of a human hand from the Utah 3D Animation Repository [3]
was obtained. Note that the texture is static in this model.
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Figure 5.10: Artificial hand simulated with the proposed method.

Figure 5.11: Face slap simulation with the proposed method.

This simple sequence encompasses some basic individual finger movement
as well as a simple clenching action between the thumb and forefingers. This
experiment simulates the hand falling under gravity and colliding with a hard
uneven surface, see Fig. 5.10. This involves some collision detection, the
methods of which are beyond the scope of this chapter. A basic collision
detection procedure was implemented. Here, the hard constraints come from
the collision with the world. Even such a simple model yields a realistic
simulation: when points of the hand collide with the surface the rest of the

hand responds naturally.

5.5.3 Face Slap Simulation

In this experiment the face and hand model from above were used to simulate
the hand slapping the face. Figure 5.11 shows the hand coming into contact
with the face and simulating a realistic face slap. As above, the objects objects

respond faithfully to collisions.
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Figure 5.12: Balls hitting abdomen simulation with the proposed method.
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(a) Rotating head experiment. (b) Falling hand experiment.

FicurRe 5.13: RMS difference from reference set.

554 Multiple Balls Hitting a Human Abdomen Simulation

Finally, consider an example where multiple balls hit a human abdomen. A
person “wobbling his belly” was captured with a 3D video scanner and a
statistical model of the abdomen deformations was built. The simulation
in this experiment consisted of firing multiple balls at the abdomen, again
observing realistic results (Fig. 5.12).

Finally, in Fig. 5.13, a basic empirical comparison with Muller’s original
method is shown. Two similar sets were constructed for this experiment: a
training set and a reference set. The training set consists of all even frames
from the original data sequence, with which the statistical model was built.
The reference set (constructed by taking all odd samples from the original
data sequence) was used to quantify the plausibility of the simulation: at
every time step of a simulation the difference between the current state of the
object and the nearest rigidly matching example from the reference set was
computed. This difference measure is plotted in Fig. 5.13(a) and (b) for the
above mentioned rotating head and falling hand examples. As expected, the
plots show that the proposed method is closer to the “ground truth” reference
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data than Miiller’s due to the fact that the simulation uses a statistical model
that is built from similar data and is efficiently constrained.

5.5.5 Note on performance

Last night the Chernobyl Nuclear
Powerplant fulfilled the Five Year Plan
of heat energy generation in just under
4 microseconds.

“Pravda”, Soviet newspaper

In all experiments, a straightforward implementation of the proposed
algorithm performs at 50-100 FPS (10-20 ms per frame) on a typical desktop
computer (collision detection phase not included). The face model consists of
8390 points, the face model of 3502 points, and the belly of 3249 points. The
reduced dimensionality models were trained to keep the largest 3—4 eigenvectors,
in these examples capturing more than 90% of total variation. This means, for
example, that the proposed texture resynthesis method has a memory footprint
only 3—4 times bigger than would have been needed for a straightforward texture
mapping. Measurements show that the most expensive part of the simulation
is the shape matching Alg. 5.2. However, in all experiments (D =3-4) it
always converged in between 1-4 iterations, depending on the magnitude of
the “current” deformation. The maximum number of permitted iterations kmax
can be capped to a smaller value, to further increase the speed by slightly
sacrificing the accuracy. Same applies to tolerances €, €, and eg. This works
because even if at frame n the matching procedure is stopped slightly too early,
before attaining the optimal target configuration of points, the points are then
moved towards this approximately optimal configuration, and at the next,
n+ 1’st, iteration the matching procedure begins with the new improved initial
state and so on. In other words it is sufficient that the matching algorithm
converges each time to a solution that is “ahead of the game”.

Further improvement in speed can be achieved by simulating only a subset
of points, interpolating the results to the rest of the object.
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5.6 Future Work

Future work includes enhancing the proposed approach to accommodate for
multiple models per object (akin to piecewise clusters in Miiller et al. [187]).
This would be relatively simple to achieve and would lead to even more
flexibility when rendering complex articulated objects. In particular, for
objects consisting of multiple independently moving parts, this would help
overcome the exponential explosion of the model size, by creating a separate
simple model for each of the parts (with an overlap as in Miiller et al. [187])
and simulating them independently. This will also help overcome some of the
limitations of the linear nature of the shape models. In the proposed method,
constraints on the shape parameters enforce the non-linear plausible behaviour,
but in case of e.g. large rotational deformations or deformations extrapolating
way beyond the training data even they might not be appropriate.

Another direction involves incorporation of more complex dynamic con-
straints such as HMMs. It would be interesting to apply the proposed method
and its future extensions to full human body motion, skin modelling, medical
applications (including virtual surgery), as well exploring further applications
in human facial animation.

While excellent visual realism was demonstrated qualitatively, admittedly,
more experiments are required to better evaluate the proposed method quan-
titatively. This is a difficult task since visual realisim is not easy to quantify.
Additionally, since this is a niche approach, a direct comparison with some
of the other mechanical simulation methods (other than geometry-based) is

non-trivial.

5.7 Conclusions

A new way to use statistical models to achieve a high degree of realism in
addition to the advantages of existing meshless methods when simulating
deformable objects in real-time was presented. In particular, a system was
built with a fully automated pipeline to construct customised models capturing
idiosyncratic object deformations, encode these deformations into a learnt
statistical model, and finally render a faithful simulation. Thus, this chapter

offers a plug-and-play computationally cheap replacement for the method of
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Miiller et al. [187], at no extra cost in terms of preparation, which also features
a significant improvement in quality, provided with a few training samples
from readily available surface scanners, and makes no further assumptions
(material properties are not known, nor are the dynamic properties of the
object). Realism is improved by capturing important nuances of an object’s
deformation as well as incorporating texture resynthesis as an object undergoes
deformation. The benefits of the proposed system were demonstrated with
a few simulations of biomechanical objects (which are notoriously hard to
simulate). The experiments demonstrate great potential and applicability of
the proposed real-time approach.
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CHAPTER

6

Conclusions and Future Work

Life has improved, comrades. Life has
become more joyous.

Joseph Stalin

HIS thesis primarily focuses on methods to enable automatic construction
of models of craniofacial appearance, for purposes of analysis, synthesis,
and simulation. This research was in part motivated by the needs of

orthodontics to automate the analysis and modelling of patients’ craniofacial
complex using 2D and 3D imagery. However, the methods developed and
presented in this work are not limited to craniofacial imagery, but are generic
and have much wider applicability in computer vision and graphics.
Chapters 3 and 4 concentrate on the problem of groupwise non-rigid regis-
tration itself and consider the cases of 2D images and 3D textured surfaces
respectively. Chapter 3 offers a novel, fast, reliable, and fully automatic ap-
proach to groupwise non-rigid image registration. The efficiency is achieved
through implicitly reducing the dimensionality of the search space by represent-
ing increasingly complex deformations as a superposition of simpler ones. At
the heart of the optimisation framework is a stochastic optimiser, an adaptation
of SPSA, intimately integrated into the groupwise registration framework.
To leverage the new source of data, video-rate 3D surface imagery, which

is becoming an important medical imaging tool as well as proving valuable in
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computer graphics and vision, Chapter 4 offers a generalisation of the approach
presented in Chapter 3 to register ensembles of textured 3D surfaces.

The proposed registration approaches, are formulated in a way that is
amenable for GPU implementation, allowing one to leverage the power of
modern graphics hardware.

In all experiments, both methods demonstrate high robustness and success
rate, accuracy, as well as fast convergence on various types of test data. This
includes the notoriously difficult case of inter-subject registration. At the time
of publishing the CVPR ’09 paper (Sidorov et al. [243]), this was the first
time that the groupwise registration of data possessing such variety (faces of
multiple people) had been reported.

Experiments in Chapter 3 also show considerable improvement in terms of
accuracy of solution and speed compared to existing methods. The usefulness
of the proposed registration algorithms for appearance model building is further
illustrated by examples of automatically constructing both 2D and 3D models
of appearance from raw data.

Chapter 5 illustrates the usefulness of the ideas presented in the previous
chapters by offering a novel application of statistical appearance modelling:
statistically driven simulation. Chapter 5 presents a new way to use statistical
models to achieve a high degree of realism in addition to the advantages of
existing geometrically motivated methods when simulating deformable objects
in real-time. This is illustrated by a system which was built comprising a fully
automated pipeline to construct customised models capturing idiosyncratic
object deformations, encode these deformations into a learnt statistical model,
and finally render a faithful simulation.

Essentially, the proposed simulation approach is a plug-and-play compu-
tationally cheap replacement for the state of the art geometrically driven
methods, at no extra cost in terms of preparation. However, the proposed
approach features a significant improvement in quality, provided with a few

training samples from readily available surface scanners.

In summary, the main contributions of this thesis, with respect to their

appearance in the text, are:
e A novel efficient stochastic algorithm for groupwise non-rigid registration

of images. The proposed algorithm is shown to register sizeable image
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ensembles quickly and more accurately than state of the art methods
(Chapter 3). Experiments demonstrate the reliability of the proposed
approach on data with very high variability, in particular pioneering the
notoriously difficult case of See also Sidorov et al. [243]. inter-subject
registration.

e A generalisation of the above algorithm to the case of textured 3D surfaces
(Chapter 4). The proposed 3D registration algorithm retains all the
desirable properties of the above 2D algorithm and allows for groupwise
non-rigid registration of 3D surfaces in a principled way. This opens
new research prospects by allowing a new valuable source of data to be
leveraged: textured 3D surfaces produced by video-rate surface scanners
which have recently gained popularity. See also Sidorov et al. [241,242,
244].

e To show the usefulness of the proposed registration framework in ap-
pearance model building, a novel application of statistical appearance
modelling is presented: a faster that real-time quasi-mechanical simulator
of deformable objects using statistical constraints (Chapter 5). Experi-
ments demonstrate the entire pipeline from acquisition, registration and
model building, to physically realistic real-time simulation of deformable

objects.

While it is unlikely that a perfect general solution to the problem of
groupwise image registration will be found in the nearest future, good practical
solutions are perfectly possible, as demonstrated in this thesis and is constantly
demonstrated by the human visual subsystem.

The work presented in this thesis has a lot of potential and opens new
directions of future research. The possible avenues for future work were outlined
at the end of each chapter and are now briefly summarised.

The research in Chapter 3 can be continued with an investigation of tech-
niques to avoid using a single model of texture in the groupwise registration
framework, and so avoid the problem of using the per-pixel statistics from
initially poorly registered ensembles. The related question is that of investigat-
ing the pathways of information propagation between images, in the general
sense. The problem of automatic construction of multilinear models is also
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a possible extension of the research in Chapter 3, as well as modelling of
non-diffeomorphic deformations, with e.g. layered appearance models.

The research in Chapter 4 can be followed up with an investigation of
whether “bending invariants” of images, by analogy with those of surfaces, can
be leveraged for image registration. It is also important to research whether
the framework proposed in Chapter 4 can be modified to avoid embedding of
surfaces into a reference plane, for example by using GMDS.

The simulation framework presented in Chapter 5 will benefit from the
ability to simulate composite objects, i.e. simulating several interacting models
simultaneously. This would allow to further increase the usefulness of the
algorithm in applications like full human body motion, skin modelling, medical

virtual surgery, as well further applications in human facial animation.
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List of Acronyms

AAM  Active Appearance Model

ASM Active Shape Model

BAAM Bilinear Active Appearance Model
BEM Boundary Element Method

BP Belief Propagation

CAT computed axial tomography
CcC correlation coefficient

CG computer graphics

CPS Clamped-Plate Spline
DCT Discrete Cosine Transform

EM Expectation-Maximisation
EVD eigenvalue decomposition
FE finite element

FFD free-form deformation

FFT Fast Fourier Transform
FLD Fisher’s Linear Discriminant

FLSM Fast Lattice Shape Matching
FM Fast Marching

FMM  Fast Marching Method

FPS Farthest Point Sampling

FV finite volume
GA genetic algorithm
GD gradient descent

GMDS Generalised Multidimensional Scaling
GMM  Gaussian Mixture Model

GPA Generalised Procrustes Analysis
GPLVM Gaussian Process Latent Variable Model
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GPU
HMM
KE
KF
KFLD
KLT
KPCA
LDA
MAD
MDL
MDS
MFFD
(Y]]
MM
MPEG
MRF
MRI
MSE
NCC
NMI
ODE
PCA
PDE
PDF
PDM
PET
PSNR
PSO
RBF
RC
Rol
SA
SAD
SD
SIFT
SPSA
SSD
TPS

graphics processing unit

Hidden Markov Model

Kernel Eigenfaces

Kernel Fisherfaces

Kernel Fisher’s Linear Discriminant
Karhunen-Loéve transform
Kernel Principal Component Analysis
Linear Discriminant Analysis
mean absolute difference
Minimum Description Length
Multidimensional Scaling
Multi-level Free-form Deformation
mutual information

Morphable Model

Moving Picture Experts Group
Markov Random Field

magnetic resonance imaging
mean square error

normalised cross correlation
normalised mutual information
ordinary differential equation
Principal Component Analysis
partial differential equation
probability density function

Point Distribution Model
positron emission tomography
peak signal to noise ratio

Particle Swarm Optimisation
radial basis function

Residual Complexity

region of interest

Simulated Annealing

sum of absolute differences
standard deviation
Scale-Invariant Feature Transform

Simultaneous Perturbation Stochastic Approximation

sum of squared differences
Thin Plate Spline
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