
A pplication  o f  Im proved A utom ated Text 

M ining to  T ranscriptom e D atasets

by

Hui Sun Leong

A thesis submitted to Cardiff University 

for the degree of

Doctor o f P hilosophy

Department o f Pathology 

School o f Medicine 

Cardiff University

September 2009



UMI Number: U570958

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U570958
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Abstract

A major challenge in microarray data analysis is the functional interpretation of gene 

lists. A common approach to address this is over-representation analysis (ORA), 

which uses the hypergeometric test (or its variants) to evaluate whether a particular 

functionally-defined group of genes is represented more than expected by chance 

within a gene list. Existing applications of ORA have been largely limited to 

controlled vocabularies such as Gene Ontology (GO) terms and KEGG pathways. 

Therefore, this work aims at determining whether ORA can be applied to a wider 

mining of free-text. Initial explorations using the classical hypergeometric distribution 

to analyse tokens from PubMed abstracts revealed a hitherto unexpected feature: gene 

lists derived from a typical microarray experiment tend to have more annotation 

(PubMed abstracts) associated with them than would be expected by chance. This bias, 

a result of patterns of research activity within the biomedical community, is a major 

problem for the classical hypergeometric test-based ORA approach, as it cannot 

account for such bias. The negative effect of annotation bias is a marked over- 

representation of many common (and likely uninformative) terms, interspersed with 

terms that appear to convey real biological insight. Several solutions have been 

developed to address this issue. The first is based on the use of a permutation test, but 

this nonparametric approach is hampered by being computationally intensive. Two 

computationally tractable approaches were subsequently developed, which are based 

on the detection of outliers and the extended hypergeometric distribution. The 

performances of the proposed text-based ORA approaches were demonstrated on a 

wide range of published datasets covering different species. A comparison with 

existing tools that use GO terms suggests that mining PubMed abstracts can reveal 

additional biological insight that may not be possible by mining pre-defined 

ontologies alone.
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Chapter 1 

Introduction

1.1 M otivation and aims

The output of a microarray experiment is typically one or more lists of genes that 

show an “interesting” change in expression in the context of that experiment. This is 

often not the end point of the analysis, but the start of a complex process of deriving 

biological interpretation. Many researchers interpret their results by manually 

reviewing the function of each gene based on literature or database searches, in an 

attempt to make judgements about the underlying biology. Given the number and 

diversity of genes involved, deriving biological interpretation for such lists manually 

is a time-consuming and unwieldy task. Frequently, the list of candidate genes is too 

long to develop a parsimonious view of the underlying biological processes.

The need to formalise this interpretation process has led to the development of a range 

of methods, of which a statistical procedure known as Over-Representation Analysis 

(ORA) is becoming a common standard for interpreting microarray gene lists. The 

fundamental question asked by ORA is: what biological terms or functional categories 

are represented in the gene list more often than expected by chance. The most 

common approach to test this statistically is by using the hypergeometric test (or 

variants such as Fisher’s exact test) to calculate the probability of seeing at least a 

particular number of genes containing the biological term of interest in the gene list. 

To date, this mode of analysis has been implemented (with minor variations) in more 

than 40 software tools.

1
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However, existing applications of ORA are largely limited to the mining of pre

defined, controlled vocabularies such as Gene Ontology (GO) or pathway annotations 

from KEGG. These resources are mostly hand-crafted by experts, with the aim of 

providing a structured, distilled description of the biological knowledge about genes in 

the peer-reviewed published literature. Annotating genes with these controlled 

vocabularies is a labour-intensive task, and therefore these pre-defined functional 

annotations are inevitably limited in scope and cannot be expected to represent all of 

the concepts in all areas of biology that might be of interest to biologists. Scientific 

literature, on the other hand, contains a much greater wealth of information about 

genes and therefore constitutes a valuable resource for interpreting genome-wide 

experiments.

The aim of the research described in this thesis is to determine whether the successful 

applications of ORA can be extended beyond the mining of controlled vocabularies to 

a wider mining of free-text. Initial effort will focus on applying the classical 

hypergeometric distribution as the statistical model to mine text-based information 

encapsulated in the PubMed abstracts.

The objectives are:

• Address to what extent text-based ORA approach can assist in the biological 

interpretation of microarray gene lists.

• Develop approaches for mining literature-based information associated with a list 

of differentially expressed genes, and to search within them for terms that are 

significantly over-represented.

• Test and validate the proposed approaches using publicly available datasets.

• Provide an easily accessible web interface for the proposed methods.

Several aspects of microarray technology, gene expression data analysis and 

biological text mining will be treated in this Chapter, in order to provide a general 

background to the current research. Particular emphasis will be placed on the current 

applications of ORA and related methods (Section 1.3). The concepts of biological 

text mining and the methods they used will be introduced in Section 1.4. Existing
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ontology-based ORA methods and text mining tools dedicated to the mining of gene 

expression data will be surveyed and compared.

1.2 M icroarrays

Life depends on the ability of cells to store, retrieve, and translate the genetic 

instructions required to make and maintain a living organism. This genetic 

information is stored in deoxyribonucleic acid (DNA)1. The “central dogma” of 

molecular biology is a paradigm of genetic information flow in living organisms 

which states that the genetic information flows from DNA to mRNA to proteins 

(Figure 1.1). During transcription, the information contained in the DNA sequence is 

used to produce mRNA (messenger ribonucleic acid), and then mRNA is used as a 

template to synthesise proteins during translation. Proteins are the active components 

of the cells that are responsible for a wide range of intra- and extracellular activities, 

including enzymatic activity, transport, storage, and providing structural integrity to 

cells.

A gene is a segment of DNA that encodes specific information for making a protein. 

In addition to expressing mRNAs that encode proteins, genes could also encode 

transcripts (such as tRNA, snRNA and miRNA) that function directly as structural, 

catalytic or regulatory RNAs (Eddy 2001). The genome of an organism refers to the 

entire complement of DNA in any of its cells. The process by which a gene exerts its 

effect on a cell or organism via the synthesis of mRNA and protein is termed gene 

expression. Gene expression is regulated by a complex array of molecules, and only 

occurs when a specific protein is required. Knowing the alteration in patterns of gene 

expression in various tissues, developmental stages and under different physiological 

conditions can offer new insights concerning regulatory mechanisms and biochemical 

pathways, which is important for addressing questions such as: “what are the

1 DNA is the hereditary material in all present day cells, except for some RNA viruses, which use RNA 
instead of DNA to carry the hereditary information from one generation to another.
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A T T G C T A T C G G A A C G
DNA I I I I I I I I I I I I I I I 

T A A C G A T A G C C T T G C

Transcription 

mRNA A U U G C U A U C G G A A C G

Translation

Protein

Figure 1.1: The “central dogma” of molecular biology7: genetic information flows 
from DNA to RNA to proteins
Protein structure image was obtained from RCSB Protein Data Bank (PDB); 
http://www.rcsb.org/pdb/explore.do?structureId=lGZX.

functional roles of different genes and what cellular processes are they involved in”, 

“how are different genes regulated and with what molecules do they interact”, “how is 

gene expression changed by various diseases or compound treatments”.

Although mRNA is not the final product of a gene, changes in mRNA levels usually 

result in phenotypic and morphological differences because transcription is the first 

step in gene regulation. Therefore knowing the abundance of mRNA in the cell is 

useful. The correlation between the mRNA and protein levels in the cell is not 

straightforward due to factors like mRNA stability, post-transcriptional splicing, post- 

translational modifications and degradation; nevertheless the absence of mRNA in a 

cell is likely to indicate a not very high level of the respective protein, therefore at

http://www.rcsb.org/pdb/explore.do?structureId=lGZX


Chapter 1. Introduction 5

least qualitative estimates about the proteome can be based on the transcriptome (the 

collection of mRNA in a cell) information (Brazma and Vilo 2000).

Numerous techniques have been developed for detecting mRNA levels within cells 

and to use these as a measure of gene expression. These techniques include Northern 

blotting (Alwine et al. 1977), differential display (Liang and Pardee 1992), reverse 

transcription-polymerase chain reaction (RT-PCR) (Somogyi et a l 1995) and serial 

analysis of gene expression (SAGE) (Velculescu et a l 1995). These methods, 

however, are only suitable for studying the expression of a small subset of genes at a 

time. Under physiological conditions, genes do not act in isolation. Instead, tens or 

thousands of them could be actively transcribed at any time within the cell.

With the advent of DNA microarray technologies, it has become possible to 

simultaneously monitor gene expression at the mRNA transcript level in cells. These 

genetic snapshots of cells in different conditions can provide insights about the 

response of various genes under different situations. The term ‘microarray’ was first 

introduced by Schena et a l in 1995. By 1999, several landmark papers from Brown’s 

group and collaborators were published (DeRisi et al 1996; Iyer et a l 1999; Lashkari 

et a l 1997; Schena et a l 1996), which described the use of microarrays as methods 

for monitoring gene expression in the field of high-throughput functional genomics, 

and set off a trend that is still gaining momentum (Figure 1.2). To date, microarrays 

have found widespread applications in many biological fields, including cancer 

prognosis and classification (Golub et al 1999; van 't Veer et a l 2002), predicting 

gene function and identifying drug targets (Marton et al 1998), placing genes in 

different pathways (Hughes et a l 2000; Iyer et a l 1999) and evaluating mechanisms 

of toxicity (Waring et a l 2001).

The next section gives a brief overview of the microarray technology, focusing on the 

Affymetrix GeneChip® system. Issues related to data analysis will be covered in 

Section 1.2.3.
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example, the actual per annum total number of citations recorded in year 1994 is 
427556 but is plotted as 4275.56 here, (b) The number of publications that mention 
microarray increases exponentially from 119 publications at the end of 1999 to a 
cumulative tally of 30413 in 2008. Remarkably, there are more than 5000 additional 
microarray publications published each year between 2006 and 2008. In red is the per 
annum number of publications, in blue is the cumulative count.
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1.2.1 Introduction to microarray technology

A typical microarray comprises a solid support (which can be a glass slide, a custom 

surface, or a membrane) on which a large collection of distinct nucleic acid sequences, 

known as probes, are attached at defined locations. Each probe on a microarray is 

designed to bind to a specific target generated from a particular biological sample 

under study. Microarrays are based on the principle of preferential hybridisation 

between complementary, single-stranded nucleic acid sequences, which follows the 

Watson-Crick rule such that adenine (A) binds to thymine (T) (or uracil (U), in the 

case of mRNA), and cytosine (C) binds to guanine (G). The idea is that when the array 

is interrogated with labelled mRNA, and hybridisation will take place between the 

mRNA targets that contains sequences complementary to the sequences of the probes 

deposited on the surface of the array. Since the target is labelled with a fluorescent dye 

or a radioactive element, the hybridisation spot can be detected and quantified. The 

key to microarray technology is that a probe is detected at a level that is proportional 

(in a predictable manner) to the abundance of its target RNA in the labelled extract.

Although many microarray systems have been developed by academic groups and 

commercial suppliers, the field has been dominated in the past by two major systems: 

the complementary DNA (cDNA) and the high-density oligonucleotide microarrays.

cDNA microarrays (spotted arrays)

This is the oldest microarray technology and was developed at Standford University 

(Schena et al. 1995; Shalon et al. 1996). In this platform, cDNA of characterised 

genes or expressed sequence tags (ESTs) are used as probes. A cDNA is a single

stranded DNA molecule synthesised in the laboratory using mRNA as a template and 

the enzyme reverse transcriptase, while an EST is a short sub-sequence of a 

transcribed cDNA known to be expressed in the tissue but not yet characterised as a 

gene. The probes, each representing a gene, are immobilised by a printer or high

speed robot on a solid surface such as glass slide. Spots are typically 100 ~ 300 

microns in size. Using this technique, arrays consisting of 30,000 ~ 40,000 cDNAs 

can be fitted onto the surface of a conventional microscope slide.
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cDNA arrays are also referred to as two-channel microarrays because with this 

method, experimental and control samples are typically labelled with two different 

fluorescent dyes, for instance, a red dye (Cy5) for the RNA from the experimental 

population and a green dye (Cy3) for that from the control population. Both extracts 

are hybridised on the same microarray, and a measurement is obtained from each 

DNA spot on the array. The intensity differences of the two fluorescent images are 

read out as differences in gene transcript abundance between the experimental and 

control samples. If the RNA from the experimental sample was in excess, it will 

appear red; if the RNA from the control sample was in abundance, the spot will appear 

green. If experimental and control samples bind equally, the spot will be yellow; the 

spot will appear black if neither binds.

High-density oligonucleotide microarrays

These microarrays are manufactured commercially to an extremely high density and 

accuracy using short oligonucleotides of length between 20 ~ 25 bases as probes (in 

the case of Affymetrix). In contrast to spotted cDNA arrays, high-density 

oligonucleotide microarrays use a set of probes to represent a gene, thus providing 

independent measurement of expression changes for a particular gene. High-density 

oligonucleotide arrays are synthesised in situ, either by photolithography onto silicon 

wafers or by inkjet printing technology. The former fabrication technique was 

developed by Affymetrix (www.affymetrix.com/index.affx), while the latter was 

developed by Rosetta Inpharmatics (www.rii.com) and licensed to Agilent 

Technologies (www.agilent.com). An important difference between high-density 

oligonucleotide microarrays and spotted cDNA arrays lies in target preparation. The 

high reproducibility of in situ synthesis of high-density oligonucleotide arrays allows 

accurate comparison of signals generated by samples hybridised to separate arrays, as 

opposed to simultaneous hybridisations of two different samples on the same array as 

with spotted cDNA arrays. Moreover, single-channel technology used by high-density 

oligonucleotide microarrays offers the advantage of simpler and more flexible 

experimental design.

http://www.affymetrix.com/index.affx
http://www.rii.com
http://www.agilent.com
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The Affymetrix GeneChip® expression arrays are amongst the most popular single

channel platforms available on the market, with the largest panel of microarrays 

designed for a variety of different organisms, as reflected by the high number of 

datasets being deposited in public microarray repositories such as Gene Expression 

Omnibus (www.ncbi.nlm.nih.gov/geo/) (Barrett et al. 2009; Edgar et al. 2002) and 

ArrayExpress (www.ebi.ac.uk/microarray-as/ae/) (Brazma et al 2003; Parkinson et al. 

2009).

Other technologies

Microarray technology has been evolving rapidly in recent years due to the 

development of more powerful robots for arraying, new fabrication techniques, new 

labelling protocols, and the ever-increasing genome-sequence information for 

different organisms. Great efforts have been made in recent years to create higher 

density microarrays with more features; this means more genes covered and hence 

wider scope and more comprehensive results. An example is the exon arrays 

introduced by Affymetrix recently, which have about six times as many features as the 

previous generation of arrays, and provide comprehensive gene expression data at the 

level of individual exons. For instance, on the Human Exon 1.0 ST array, 

approximately 5.5 million probes (forming 1.4 million probesets) are used to 

separately interrogate one million known and predicted exon clusters (Affymetrix 

2005). Other new technologies that have recently entered the market include the bead- 

array system by Illumina (www.illumina.com) and the digital micromirror arrays by 

NimbleGen (www.nimblegen.com). A comprehensive comparison of the various 

microarray platforms from the different manufacturers can be found in Wheelan et al 

(2008) and Hardiman (2004).

1.2.2 Affymetrix GeneChip® expression array

A number of different GeneChip® expression arrays or array sets are commercially 

available from Affymetrix, including arrays for human, mouse, rat, Arabidopsis, 

Drosophila, yeast and zebrafish. The main one used in this project is the Human 

Genome U133A array (HG-U133A), which contains 22,215 probesets and provides

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/microarray-as/ae/
http://www.illumina.com
http://www.nimblegen.com
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coverage for 14,500 well-substantiated genes in the human genome. There are several 

publications discussing the fundamentals of the Affymetrix GeneChip® expression 

array technology (Lipshutz et al. 1999; Lockhart et a l 1996). However, for the 

purpose of this thesis, it will be useful to review some of the elements of this 

microarray platform.

Array design

Affymetrix GeneChip® expression arrays record the presence of a transcript in a 

solution by measuring the level of hybridisation between the transcript and a set of 

short (typically 25mer) oligonucleotide probes anchored to the array surface. As 

shown in Figure 1.3, each probeset consists of a series of perfect match (PM) probes 

and mismatch (MM) probes. The PM probe is designed to perfectly match the target 

transcript, while the MM probe is identical in sequence to its counterpart PM probe 

except for the central (13th) nucleotide, which is replaced with a mismatched 

nucleotide. Hybridisation conditions are controlled with the aim of maximising the 

binding between a transcript and its PM probes, while minimising the binding to its 

MM probes. The intention is that the PM probes record the presence of the transcript, 

while MM probes measure background and non-specific hybridisations. However, 

there is a non-linear functional relationship between the paired PM and MM probe 

intensities, so for weakly expressed mRNAs where the signal-to-noise ratio is smallest, 

subtracting MM from PM adds considerably to the noise in the data (Schadt et al

2000). Nevertheless, one advantage of this approach is that the combination of short 

oligos and strict hybridisation conditions makes it possible to use in silico searches to 

predict which probes are likely to bind to which transcripts - information that is 

important because many transcripts have similar sequences (e.g. alternate splicing can 

lead to a set of transcripts being encoded by a single gene).

Each probeset is typically designed to match the more variable 3’ non-coding region 

of its target transcript; however, it is not always possible to identify a set of probes 

that reliably and uniquely identify a particular transcript, and the design criteria are
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Figure 1.3: The design of a typical Affymetrix GeneChip* expression array
Distinct transcript (mRNA) is represented on the array by 11 to 20 probe pairs 
mapping on 600 bases of the most 3’ end of the transcript. Each of these probe pairs 
consists of a perfect match (PM) probe and a mismatch (MM) probe. A probe is a 
single-stranded oligonucleotide of 25 bases long that serves to detect the 
complementary target sequence. The majority of the eukaryotic 3’ chips are antisense- 
target arrays, in which the PM probe is identical to the coding sequence of the gene it 
represents (an example is shown in the diagram). The MM probe has the same 
sequence as the PM probe except that the central base is replaced with a mismatched 
nucleotide (highlighted in yellow). The group of PM and MM probe pairs that 
together represent a gene or mRNA transcript is called a probeset. This example is 
based on the HG-U133A chip and is broadly applicable to the previous generation of 
expression arrays. The designs of other Affymetrix arrays are slightly different. For 
example, in the newly introduced exon arrays (e.g. Human Exon 1.0 ST array), the 
probes are designed to interrogate the entire length of a transcript. Also, they no 
longer have a paired MM probe for each PM probe, and the number of probes per 
probeset is reduced from 11 to 4.
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relaxed accordingly, as reflected in the naming convention used for the probesets:

• Those ending with ‘ at’ are designed to recognise transcripts uniquely.

• Those ending with ‘_s_at’ or ‘_a_at’ are designed to recognise multiple transcripts 

from the same gene family.

• Those ending with ‘_x_at’ may cross-hybridise into completely unrelated 

sequences.

Other suffixes exist, and the exact meaning can be dependent on the array type.

The success of an array design is highly dependent on the quality of sequence 

information used. In the HG-U133A design, UniGene (Build 133) clusters were used 

as a starting point for the design process but were not used as the main source of 

sequence information. Instead, sequence information were collected from a number of 

primary sequence databases, including GeneBank, RefSeq, dbEST and Washington 

University EST trace repository (WUSTL). The draft assembly of the human genome 

(April 2001 Release) was used to verify sequence selection, sequence orientation and 

the quality of the sequence clustering (for more information, see Affymetrix 2001). 

Since the arrays are designed against sequence databases that are in a state of 

continual growth, each array therefore represents a snapshot based on the knowledge 

available at the time it was created. This should be kept in mind when designing and 

interpreting any microarray study.

Array hybridisation and image processing

Target RNA for array hybridisation is prepared by incorporating fluorescently labelled 

biotin in an in vitro transcription (IVT) reaction process. Following hybridisation, a 

scanning confocal microscope is used to detect fluorescence from the bound target 

molecules. An image data (DAT) file is created by the Affymetrix scanning software 

(e.g. MAS 5.0, GCOS) in which the raw image data are stored. After that, the 

Affymetrix software aligns a grid on the DAT files and computes the probe-level 

signal intensity from the pixel values, which is subsequently stored in a CEL file.
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1.2.3 Gene expression data analysis

The appropriate choice of data analysis technique depends both on the data and on the 

goals of the experiment. This section provides an overview of some of the common 

themes in gene expression data analysis, including pre-processing, detection of 

differential expression, and extraction of biological knowledge. Despite the 

differences between different microarray technology platforms, many issues discussed 

here are broadly applicable to all microarray technology.

Pre-processing

After image processing, the raw signal intensity or “probe-level” data (for the 

Affymetrix system, this is stored in the CEL file) need to be modified and normalised 

before multiple microarray measurements can be combined into a single analysis. This 

procedure is commonly referred to as pre-processing. The main steps of pre

processing are background adjustment, normalisation, summarisation and quality 

assessment. Background adjustment is needed to account for non-specific 

hybridisation and noise in the optical detection system. Two commonly used 

background adjustment methods are the MAS 5.0 algorithm (Affymetrix 2002) and 

the Robust Multi-chip Average (RMA) algorithm (Irizarry et al. 2003). Measurements 

made across different arrays are not directly comparable because the hybridisations 

might be obscured by various sources of variations, such as physical problems with 

the arrays, difference in the efficiencies of reverse transcription, labelling or 

hybridisation reactions, and the differences in the quantity of initial RNA in the 

samples. Normalisation adjusts for these variations and makes measurements from 

different arrays comparable. Many normalisation methods have been proposed in the 

microarray literature, including Affymetrix’s scaling method, dChip (Li and Wong

2001) and quantile normalisation (Bolstad et al. 2003). Summarisation is the process 

of combining the multiple probe intensities for each gene to produce an expression 

value that estimates an amount proportional to the amount of RNA transcript. This 

step is needed when each transcript is represented by multiple probes (such as 

Affymetrix arrays). The final step in pre-processing is quality assessment, which
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identifies divergent measurements that are beyond the acceptable level of random 

fluctuations. Non-informative data are usually flagged up or removed at this stage.

After pre-processing, the measurements from different arrays can be combined into a 

gene expression matrix with rows representing gene transcripts, columns representing 

different study conditions (e.g. various tissues, developmental stages and treatments), 

with each element in the matrix corresponding to the abundance (or relative 

abundance) of a particular gene in a particular condition (Figure 1.4). The set (row) of 

expression measurements for a gene in the microarray study is commonly referred to 

as the expression profile of that gene. The next task is to analyse the expression values 

in the matrix and try to extract from it some biological insights regarding the 

underlying microarray experiment.

Gene annotation SamPle ^ n o ta tio n
Experimental conditions

C1 C2 C3

G1
G2
G3

Gene expression levels

Figure 1.4: Schematic representation of a sample gene expression matrix
Each cell in the matrix corresponds to the expression levels of a particular gene 
measured under a particular experimental condition. The expression profile of a gene 
refers to the set (row) of expression measurements for that gene in the microarray 
study.
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Detection of differential expression

Fundamental to the task of analysing gene expression data is the need to identify 

genes whose levels of expression change significantly according to the phenotype or 

experimental condition. The choice of statistical approach depends on several issues, 

such as experimental design (e.g. two-sample comparison, multiple samples or time 

series), and the number of replicates available. The simplest and most intuitive 

approach is to select genes using a fold-change criterion, calculated as the ratio of 

expression levels between two samples (for example, control versus treatment 

conditions). Genes with a fold-change above a fixed cutoff, typically two- or three

fold, might be considered to be differentially regulated (Chu et al 1998; Schena et al. 

1996), although fold-change is widely considered as an inadequate test statistic for 

inference because it does not incorporate the assessment of variance. Genes measured 

at low amounts of expression often have less reliable measurements that result in poor 

reproducibility across samples (i.e. high variance); in this case, high fold-changes do 

not reflect the actual degree of change. This is the main reason for using established 

statistical tests for assessing differential expression.

Inference based on statistical tests generally involves calculating a test statistic and 

evaluating the statistical significance of that test statistic. Standard statistical tests for 

detecting differential expression include the /-test (for comparison between two 

conditions), and the ANOVA F-statistic (for comparison between multiple conditions). 

A fundamental problem with conventional statistical tests is that many microarray 

experiments involve only few replicates per condition, making it difficult to estimate 

the gene-specific variations. Alternative approaches that borrow strength across all 

genes to obtain a more stable estimate of gene-specific variance have been proposed. 

These include CyberT (Baldi and Long 2001), SAM (Tusher et al. 2001) and limma 

(Smyth 2004).

Parametric approaches such as those described above generally assume that the data 

are sampled from normal populations with equal variances. These constraints may 

only be partially fulfilled in practice. Often logarithmic transformation is used in order 

to make the distribution of replicated measurements per gene roughly symmetric and
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close to normal. Alternatively, one can consider nonparametric approaches, such as a 

permutation test that make less stringent assumptions on the data-generating 

distribution. However, as with conventional parametric approaches, the power of 

permutation tests will also be hampered by small sample size when there are not 

enough replicates to obtain an accurate estimate of experimental variance.

One common differential expression problem that has received much attention 

recently is time series analysis. These types of experiments are designed to study gene 

expression changes over time and trend differences between the various experimental 

groups. The complexity of study design and dynamic nature of time course study pose 

great challenges to data analysis. Approaches based on the use of ANOVA and 

Bayesian models have been proposed for analysing such data (Angelini et a l 2007; 

Bar-Joseph 2004; Nueda et al. 2007).

The approach of testing each gene for differential expression is popular, because it is 

relatively straightforward and a standard repertoire of methods is available. However, 

there are several issues concerning such an approach, including the problem of 

multiple hypothesis testing. Since microarrays typically monitor the expression levels 

of thousands of genes in parallel, a large number of hypotheses are tested, increasing 

the chance of finding false positives (Benjamini and Hochberg 1995). Multiple 

hypothesis testing procedures are often used to assess the overall significance of the 

results of a family of hypothesis tests. For examples, Bonferroni and FDR corrections 

can be applied to control the family-wise error rates and the false discovery rate, 

respectively. This topic is covered in detail by Dudoit et a l (2003). It should be noted 

that there is a trade-off between specificity and sensitivity. Multiple hypothesis testing 

methods improve specificity (by adjusting /7-value) at the expenses of sensitivity (that 

is, a reduced chance of finding true positives). One way to mitigate such problem is to 

reduce the number of hypotheses to be tested using some form of non-specific 

filtering strategy, such as by eliminating genes that do not show sufficient variation in 

expression across the samples, as these genes tend to provide little discriminatory 

power.
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Biological knowledge extraction

When the microarray experiment consists of a simple comparison between two 

conditions (such as control versus test), the subsequent data analysis will usually be 

limited to the identification of differentially expressed genes using the methods 

introduced above. When there are multiple experimental conditions (such as more 

than two phenotypes, or different time points), it is useful to group the significantly 

expressed genes into clusters that behave similarly over the different conditions.

A popular technique for detecting groups of genes demonstrating similar expression 

pattern is clustering. Clustering is the process of grouping together similar entities 

according to some distance metric that is computed for one or more features. Most 

microarray clustering algorithms use the Euclidean distance, Manhattan distance, 

angle between vectors or the correlation distance, as the distance metric to compute 

the similarity between two expression profiles. Changing the underlying distance 

metric may alter the number of clusters and the relationship between them, because 

each distance metric has specific properties that can be used to emphasise certain 

characteristics of the data (Draghici 2003).

Clustering can reveal potentially meaningful relationships among genes. Hierarchical 

clustering (Eisen et al 1998), k-means clustering (Tavazoie et al 1999), or self- 

organising maps (Tamayo et al 1999), have all been used to derive putative functional 

clusters of genes from gene expression data. In addition, clustering can be used to 

infer the biological functions of new genes. The assumption motivating such an 

approach is that simultaneously expressed genes often share a common function. If an 

uncharacterised gene is clustered with a group of genes known to be involved in a 

particular biological process, then it can be assumed that the uncharacterised gene is 

also involved in the same process. However, there are several core issues that cannot 

be addressed by using clustering alone. Co-expressed genes do not always share a 

common function. The reverse is also true: genes that are functionally related may 

demonstrate strong anti-correlation in their expression levels and cluster into different 

groups, blurring the relationship between them. Even when expression and function 

correlate well, the underlying biological mechanism is not always apparent.
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Additional database or literature searches are required to explore the underlying 

cellular responses in the context of available knowledge.

Various approaches have been proposed to incorporate existing biological knowledge 

into the analysis. The vast majority of these seek to infer whether a functionally- 

defined set of genes are enriched within the list of differentially expressed genes. 

Functionally-related genes are usually defined based on structured, controlled 

vocabularies such as Gene Ontology (GO) classifications (Ashbumer et a l 2000) or 

pathways information from KEGG (Kanehisa and Goto 2000). This mode of analysis 

is commonly referred to as “functional enrichment analysis”. Such enrichment 

approaches offer a summary of the most pertinent biology in a group of differentially 

expressed genes, and provides mechanistic clues regarding the biological processes 

underlying the observed change. To date, more than 60 functional enrichment tools 

have been developed, reflecting the popularity of this approach (Huang et al. 2008). 

The statistical models used and the current state-of-the-art in enrichment analysis are 

reviewed in Section 1.3.

Another approach to superimposing biological knowledge upon microarray results 

comes with efforts to find associations between genes in the scientific literature. Peer- 

reviewed published scientific text contains a distilled version of the most relevant 

biological discoveries and is a potent source of functional information. This 

information is invaluable in guiding the investigator in interpreting genomic data. A 

number of text mining approaches have been developed to process this textual 

information, and to link groups of genes found in microarrays based on the knowledge 

extracted from the literature (Blaschke et al 2001; Chaussabel and Sher 2002; Jenssen 

et al 2001; Shatkay et al 2000). Section 1.4 provides some background on text 

mining, and describes how it can be integrated with gene expression data mining 

framework to facilitate the biological interpretation of microarray results.
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1.3 Functional enrichm ent analysis

Despite increasingly elegant statistical approaches to analyse microarray data, making 

biological sense of microarray results remains a conundrum. To address this, a range 

of bioinformatics approaches have been developed over the past few years to help 

with the biological interpretation of microarray gene lists. One of the most widely 

used approaches is a family of statistical methods collectively known as “Over- 

Representation Analysis” (ORA). This approach takes a list of differentially expressed 

genes and test statistically whether particular functionally-defined groups of genes or 

gene sets are over- (or under-) represented in the condition under study. The gene sets 

are formed prior to the statistical analysis, and can be defined in a number of ways, for 

examples, by grouping together genes that are part of the same cellular components, 

involved in the same pathway or biological process, have the same molecular function, 

or are located on the same chromosome. Two of the most used resources for defining 

gene sets are Gene Ontology (GO) (Ashbumer et al. 2000) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Kanehisa and Goto 2000). The significance of over

representation can be assessed using the hypergeometric distribution or its binomial 

approximation. Since its inception, a large number of ORA-based methods have been 

published; many of these have been implemented (with minor variations) as web-tools, 

including EASE (Hosack et a l 2003), DAVID (Dennis et al. 2003), FatiGO (Al- 

Shahrour et al. 2004), GoMiner (Zeeberg et al. 2003), Onto-Express (Draghici et al. 

2003; Khatri et al. 2002) and GeneMerge (Castillo-Davis and Hartl 2003). In 2005, 

Khatri and Draghici (2005) and Curtis et al. (2005) collected 14 ORA-based 

ontological tools and performed a thorough comparison of their scope, statistical 

models, visualisation capabilities, corrections for multiple comparisons and reference 

sets. The development in this field continues to grow. Currently, there are over 40 

tools implementing ORA; a comprehensive and up-to-date review can be found in 

Huang et al. (2008).

An alternative statistical procedure to test for functional enrichment is Gene Set 

Enrichment Analysis (GSEA) (Mootha et al. 2003; Subramanian et al. 2005). This 

method has received a great deal of attention from researchers in the field in recent
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years. The appealing feature of GSEA is its ‘threshold-free’ strategy, which takes all 

genes from a microarray experiment without the need to pre-select a list of 

significantly differentially expressed genes prior to the enrichment analysis. GSEA 

follows a basic procedure: expression information on all the genes under study is 

retained; then an enrichment score is calculated for a given gene set using ranks of 

genes, and the statistical significance of this enrichment score is inferred against a 

background distribution generated by permuting the labels of the original dataset. The 

works of Mootha et al (2003) and Subramanian et al. (2005) have inspired the 

development of various GSEA methods, including globaltest (Goeman et al. 2004), 

PAGE (Kim and Volsky 2005) and GSA (Efron and Tibshirani 2007). Many of these 

were recently reviewed in Nam and Kim (2008).

A list of 46 functional enrichment tools using ORA and/or GSEA is shown in Table

1.1. The general features associated with each tool, such as the statistical methods 

employed, source of annotations, scope of analysis and web links are also listed. Both 

ORA and GSEA rely heavily on existing functional annotations about genes. 

Therefore, the data structure, quality and comprehensiveness of the annotation 

resources used to define gene sets are crucial to the success of these methods. Section

1.3.1 provides an overview of some of the key annotation resources used in functional 

enrichment analysis. Sections 1.3.2 and 1.3.3 describe the statistical and 

methodological aspects of ORA and GSEA, respectively.
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Table 1.1: Existing function enrichment tools

21

Software Class Methods Annotations (gene sets) Platform References URL

BayGO ORA Bayesian, 
Goodman and 
Kruskal's gamma 
factor

GO Web, R Vencio et 
al. 2006

http://blasto. iq.usp.br/~tk 
oide/BayGO/

BiNGO ORA Hypergeometric,
binomial

GO Java
plug-in

Maere et 
al. 2005

http://www.psb.ugent.be/
cbd/papers/BiNGO/

CLENCH ORA Hypergeometric, 
binomial, chi- 
squared

GO Perl Shah and 
Fedoroff 
2004

http://www.stanford.edu/
-nigam/cgi-
bin/dokuwiki/doku.php?i
d=clench#clench

DAVID ORA Fisher's exact test 
(modified as 
EASE score)

Over 40 annotation 
categories, including 
GO, protein-protein 
interactions, protein 
domains, disease 
associations, pathways, 
sequence features, 
homologies

Web Dennis et 
al. 2003

http://david.abcc.ncifcrf.
gov/summary.jsp

EASE ORA Fisher's exact test 
(modified as 
EASE score)

GO; KEGG; 
chromosomal locations

Window
s
standalo
ne

Hosack et 
al. 2003

http://david.abcc.ncifcrf. 
gov/contentjsp?file=/eas 
e/ease 1. htm&type= 1

EasyGO ORA Hypergeometric, 
binomial, chi-

GO Web Zhou and 
Su 2007

http://bioinformatics.cau.
edu.cn/easygo/

eGOn/GeneTo ORA 
ols

squared
Fisher's exact test GO

FuncAssociate ORA Fisher’s exact test GO

FunSpec

g.Profiler

ORA

ORA

Hypergeometric GO; MIPS; SMART 
and Pfam domains

GeneCodis ORA

Hypergeometric 
(support ranked 
list of genes)

Hypergeometric,
chi-squared

GeneMerge ORA Hypergeometric

GFINDer ORA

GO::TermFind ORA 
er

Fisher's exact test, 
binomial, chi- 
squared

Hypergeometric

GObar ORA Hypergeometric

goCluster ORA

GOEAST ORA

Hypergeometric

Hypergeometric, 
Fisher's exact, 
chi-squared

GO; pathways; 
transcription factor 
binding sites;
Reactome
GO; KEGG; InterPro 
motifs; microRNA; 
transcription factors; 
user-defined annotation

GO; MeSH; KEGG;
chromosomal
locations; RNAi
phenotypes
GO; pathways; protein
families and domains;
genetic disorders and
phenotypes
GO

GO

GO

GO

Web

Web

Web

Web

Web

Web,
Perl
standalo
ne
Web

Perl
standalo
ne

Web

R/Bioco
nductor
Html

Beisvag et 
al. 2006

Berriz et
a l i m __
Robinson 
era/. 2002 
Reimand 
etal. 2007

Carmona- 
Saez et al. 
2007; 
Nogales- 
Cadenas et 
al. 2009 
Castillo- 
Davis and 
Hartl 2003

Masseroli 
et al. 2005

Boyle et 
al. 2004

Lee et al. 
2005b 
Wrobel et 
al. 2005 
Zheng and 
Wang 
2008

http://www.genetools.mi
croarray.ntnu.no/egon/in
dex.php
http://llama.med.harvard, 
edu/fimcassociate/
http ://funspec.med.utoro 
nto.ca
http://biit.cs.ut.ee/gprofil
er/

http://genecodis.dacya.uc
rn.es/analysis/

http://genemerge.cbcb.u
md.edu/

http://www.bioinformatic
s.polimi.it/GFINDer/

http://search.cpan.org/dis
t/GO-
T ermF inder/lib/GO/Term
Finder.pm _______
http://katahdin.cshl.org:9 
331/GO/GO.cgi
http://www.biozentrum.u
nibas.ch/gocluster/
http://omicslab.genetics.a
c.cn/GOEAST

(continued over the page)

http://blasto
http://www.psb.ugent.be/
http://www.stanford.edu/
http://david.abcc.ncifcrf
http://david.abcc.ncifcrf
http://bioinformatics.cau
http://www.genetools.mi
http://llama.med.harvard
http://biit.cs.ut.ee/gprofil
http://genecodis.dacya.uc
http://genemerge.cbcb.u
http://www.bioinformatic
http://search.cpan.org/dis
http://katahdin.cshl.org:9
http://www.biozentrum.u
http://omicslab.genetics.a
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Table 1.1: Existing function enrichment tools (continued)

2 2

Software Class Methods Annotations (gene sets) Platform References URL

GOLEM ORA Hypergeometric GO Web,
Java
standalo
ne

Sealfon et 
al. 2006

http://function.princeton.
edu/GOLEM/

GoMiner ORA Fisher's exact test GO Java
standalo
ne

Zeeberg et 
al. 2003

http://discover.nci.nih.go
v/gominer/

GOStat ORA Fisher’s exact, 
chi-squared

GO Web Beissbarth 
and Speed 
2004

http://gostat.wehi.edu.au/
cgi-bin/goStat.pl

Gostats ORA Classical and 
conditional 
hypergeometric 
tests

GO R/Bioco
nductor

Falcon and 
Gentleman 
2007

http://www.bioconductor 
.org/packages/bioc/1.8/ht 
ml/GOs tats.html

GOTM ORA Hypergeometric GO Web Zhang et 
al. 2004

http://bioinfo.vanderbilt.e
du/gotm/

GOToolBox ORA Hypergeometric, 
Fisher's exact, 
binomial

GO Web Martin et 
al. 2004

http://burgundy.cmmt.ub
c.ca/GOToolBox/

L2L ORA Binomial GO; Reactome protein- 
protein interactions, 
cancer gene modules, 
1.21. microarray 
datasets

Web,
Perl
applicati
on

Newman
and
Weiner
2005

http://depts.washington.e
du/121/

MAPPFinder ORA Hypergeometric
Z-score

GO; pathways from 
GenMAPP

Java
standalo
ne

Doniger et 
al. 2003

http://www.genmapp.org
/

Onto-express ORA Hypergeometric, 
binomial, chi- 
squared, Fisher's 
exact test

GO Web Draghici et 
al. 2003; 
Khatri et 
al. 2002

http://vortex.cs.wayne.ed
u/projects.htm#Onto-
Express

PageMan ORA Fisher’s exact, 
chi-squared

GO; MIPS, KEGG Web,
Java
standalo
ne

Usadel et 
al. 2006

http://mapman.mpimp-
golm.mpg.de/general/ora
/ora.html

ProbCD ORA Yule's Q, 
Goodman- 
Kruskal's gamma, 
Cramer's T

GO Web, R Vencio
and
Shmulevic 
h 2007

http://xerad.systemsbiolo
gy.net/ProbCD

STEM ORA Hypergeometric GO Java
standalo
ne

Ernst and 
Bar-Joseph 
2006

http://www.cs.cmu.edu/-
jemst/stem/

THEA ORA Hypergeometric,
binomial

GO Java
standalo
ne
Java
standalo
ne

Pasquier et 
al. 2004

http ://thea.unice. fr/index- 
en.html

ErmineJ ORA,
GSEA

Permutations, 
Wilcoxon rank 
sum test

GO Lee et al. 
2005a

http://www.bioinformatic
s.ubc.ca/ermineJ/index.ht
ml

FatiGO
FatiScan
Babelomics

ORA,
GSEA

Fisher's exact test, 
segmentation test

GO, KEGG pathways, 
InterPro motifs, Swiss- 
Prot keywords, 
microRNA, 
transcription factor and 
cisRED cis-regulatory 
elements

Web Al-
Shahrour
etal.
2004;
Al-
Shahrour 
et al. 2006

http://www.babelomics.o
rg/

GeneTrail ORA,
GSEA

Hypergeometric, 
Kolmogorov- 
Smimov statistic

GO; pathways from 
KEGG and 
TRANSPATH; 
transcription factor 
from TRANSFAC

Web Backes et 
al. 2007

http://genetrail.bioinf.uni 
-sb.de/enrichment_ 
analysis.php?js=l &cc=l

(continued over the page)

http://function.princeton
http://discover.nci.nih.go
http://gostat.wehi.edu.au/
http://www.bioconductor
http://bioinfo.vanderbilt.e
http://burgundy.cmmt.ub
http://depts.washington.e
http://www.genmapp.org
http://vortex.cs.wayne.ed
http://mapman.mpimp-
http://xerad.systemsbiolo
http://www.cs.cmu.edu/-
http://www.bioinformatic
http://www.babelomics.o
http://genetrail.bioinf.uni
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Table 1.1: Existing function enrichment tools (continued)
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Software Class Methods Annotations (gene sets) Platform References URL

JProGO ORA,
GSEA

Fisher's exact, 
Kolmogorov- 
Smimov test, 
Student's t-test, 
unpaired 
Wilcoxon's test

GO Java
standalo
ne

Scheer et 
al. 2006

http ://www.jprogo. de

Catmap GSEA Permutations, 
Wilcoxon rank 
sum test

GO Perl
standalo
ne

Breslin et 
al. 2004

http://bioinfo.thep.lu.Se/c
atmap.html

FIVA GSEA Fisher's exact test GO, metabolic 
pathways, COG 
classes, regulatory 
interactions, UniProt 
keywords, InterPro 
domains

Java
standalo
ne

Blom et al. 
2007

http://bioinformatics.biol.
rug.nl/standalone/fiva/

GAzer GSEA Permutations, Z- 
statistic

GO; pathways; 
chromosomal 
locations; InterPro 
domains; cis- 
regulatory elements

Web Kim et al. 
2007

http://integromics.kobic.r
e.kr/GAzer/

global test GSEA Bayesian 
generalized linear 
model, sample 
permutations

GO; KEGG R/Bioco
nductor
package

Goeman et 
al. 2004

http://www.bioconductor
,org/packages/2.4/bioc/ht
ml/globaltest.html

GOdist GSEA Two-sample 
Kolmogorov- 
Smimov test

GO MATLA
B

Ben-Shaul 
et al. 2005

http://basalgangliahuji.a
c.il/links.htm

GO-Mapper GSEA Gaussian 
distribution, 
expression 
quotient (EQ) 
score

GO Perl
standalo
ne

Smid and
Dorssers
2004

http://www.gatcplatform.
nl/gomapper/index.php

GSA GSEA maxmean 
statistic, sample 
permutations

User-defined gene sets R
package

Efron and 
Tibshirani 
2007

http://www-
statstanford.edu/~tibs/G
SAJ

GSEA GSEA Kolmogorov- 
Smimov statistic

GO; pathways from 
KEGG, BioCarta and 
GenMAPP; 
transcription factors; 
microRNA; cancer

Java 
standalo 
ne, R

Subramani 
an et al. 
2005

http://www.broad.mit.ed
u/gsea/

modules; MSigDB
iGA GSEA Permutations, 

hypergeometric, 
probability of 
change (PC) 
values

GO Perl
standalo
ne

Breitling 
et al. 2004

Windows executable of 
iGA is available as 
additional file of the 
original publication

MetaGeneProf
iler

GSEA Z-score, inverse 
standard normal 
cumulative 
distribution 
function

GO Web Gupta et 
al. 2007

http://metagp.ism.ac.jp/

SAFE GSEA Local and global 
statistics, sample 
randomisations

GO; KEGG; Pfam 
domains

R/Bioco
nductor
package

Barry et 
al. 2005

http://www.bioconductor
.org/packages/release/bio
c/html/safe.html

T-profiler GSEA /-test GO; transcription 
factor binding motif; 
chromosomal location

Web Boorsma 
et al. 2005

http://www.t-profiier.org/

http://www.jprogo
http://bioinfo.thep.lu.Se/c
http://bioinformatics.biol
http://integromics.kobic.r
http://www.bioconductor
http://basalgangliahuji.a
http://www.gatcplatform
http://www-
http://www.broad.mit.ed
http://metagp.ism.ac.jp/
http://www.bioconductor
http://www.t-profiier.org/
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1.3.1 Resources for functional enrichm ent analysis 

Gene Ontology

The Gene Ontology (GO) project (http://www.geneontology.org/) (Ashbumer et al. 

2000) is a collaborative effort aimed at providing controlled vocabularies to describe 

gene products in the major model organisms. GO terms are organised into three broad 

areas of cell biology:

1. Molecular function, which describes the biochemical reactions that a protein 

catalyses.

2. Biological process, which describes the global physiological process that a protein 

is involved in.

3. Cellular component, which describes the compartment of a cell that a protein 

product is situated in.

As of 13 July 2009, there are 27,784 ontologies in GO, of which 16,774 are biological 

process terms, 2385 are cellular component terms, and 8625 are molecular function 

terms.

The GO ontology is organised hierarchically as a directed acyclic graph (DAG) in 

which the terms are nodes and the relationships among them are edges. The key 

characteristic of a DAG in the context of GO is the parent-child relationship between 

terms, with parent terms representing more general entities than their child terms, and 

a term can have multiple parents. So, if a gene is assigned a particular specific GO 

term, it will have the property associated with that term, and also inherits the 

properties of all the parent terms. For example, if a gene is known to be specifically 

involved in “glycolysis”, it will be annotated directly to that term, and implicitly 

annotated to its ancestor term “carbohydrate metabolic process”. All genes assigned 

the term “glycolysis” are by default involved in “carbohydrate metabolic process”. 

However, all “carbohydrate metabolic process” genes are not necessarily “glycolysis” 

genes.

The association between a gene and GO terms is established either by manual curation, 

or computationally through predictive methods (Rhee et al 2008). Genes are 

associated with as many terms as appropriate, and with the most specific terms

http://www.geneontology.org/
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available to reflect what is currently known about a gene. So, depending on the current 

status of knowledge, GO annotations for a gene can be made as specific or general as 

necessary.

Pathway information databases

The most popular source of pathway information is provided by the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/) 

(Kanehisa and Goto 2000; Kanehisa et al. 2008). KEGG is a database of manually 

compiled pathway maps representing the knowledge on the metabolic pathways, 

chemical reactions that genes are involved in, and protein-protein interaction networks. 

KEGG pathways are divided into six broad categories: metabolism, genetic 

information processing, environmental information processing, cellular processes, 

human disease, and drug development. As of July 2009, there are 328 reference 

pathways in KEGG.

Other resources of biological pathways and reactions besides KEGG include 

GenMAPP (http://www.genmapp.org/) (Salomonis et al. 2007), Biocarta (http://www. 

biocarta.com), and Reactome (http://www.reactome.org) (Joshi-Tope et al 2005).

The Molecular Signatures Database

The Molecular Signatures Database (MSigDB) (http://www.broadinstitute.org/gsea/ 

msigdb/index.jsp) is a collection of gene sets for use with GSEA software 

(Subramanian et al. 2005). As of this writing, MSigDB contains 5452 gene sets, 

which are divided into five major collections:

1. Positional gene sets. This collection contains 386 gene sets corresponding to genes 

in the human chromosomes and cytogenetic bands.

2. Curated gene sets. This collection contains 1892 gene sets. These are genes whose 

products are involved in specific metabolic and signalling pathways reported in 12 

manually curated pathway databases. This set also catalogs genes co-expressed in 

response to genetic or chemical perturbations as reported in literature.

3. Motif gene sets. This collection contains 837 gene sets representing genes sharing 

conserved regulatory motifs in the promoter regions of human genes.

http://www.genome.jp/kegg/
http://www.genmapp.org/
http://www
http://www.reactome.org
http://www.broadinstitute.org/gsea/
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4. Computational gene sets. This collection contains 883 gene sets, which were 

defined by mining large compendium of cancer-related microarray data.

5. GO gene sets. This collection contains 1454 gene sets, which were derived from 

the Gene Ontology terms.

Other annotation resources

In addition to the resources described above, a wide range of heterogeneous 

annotation data can be incorporated into the enrichment analysis framework to 

increase the comprehensiveness of the enrichment analysis results. As shown in Table

1.1, some recently developed enrichment tools or newly released early-generation 

tools have extended their backend annotation databases to include biological 

information coming from InterPro (http://www.ebi.ac.uk/interpro/) and Pfam (http:// 

pfam.sanger.ac.uk/) protein domains; TRANSFAC (http://www.biobase-intemational. 

com/pages/index.php?id=transfac) transcription factors binding sites; OMIM (http:// 

www.ncbi.nlm.nih.gov/omim/) gene-disease associations; and cisRED (http://www. 

cisred.org/) regulatory motifs.

1.3.2 Over-representation analysis

Given a list of differentially expressed genes pre-selected by the user, this method 

compares the number of differentially expressed genes found in a certain functional 

category of interest (gene set) with the number of genes expected to be found in that 

category just by chance. If the observed number is markedly different from that 

expected just by random chance, the category is considered as significant. Several 

statistical approaches can be used to calculate the probability of observing the actual 

number of genes just by change (p-value) for a given functional category. As can be 

seen from Table 1.1, the hypergeometric, binomial, chi-squared and Fisher’s exact test 

are the most widely adopted models. The chi-squared test describes how the observed 

proportion of hits deviates from what is expected due to chance, but it only gives an 

approximate /7-value and is restricted to situations where the number of observations 

of each type (e.g. differentially expressed genes that appear in the category) is greater 

than five. If there are fewer than five observations, alternative approaches that

http://www.ebi.ac.uk/interpro/
http://www.biobase-intemational
http://www.ncbi.nlm.nih.gov/omim/
http://www
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calculate the exact /7-values, such as the Fisher’s exact test and the hypergeometric test, 

can be used. On the other hand, the binomial distribution is only suitable for large 

arrays containing tens of thousands of transcripts (e.g. whole-genome arrays). In most 

cases, there will not be dramatic differences between the models (Khatri and Draghici 

2005). A detail discussion of these tests can be found in Draghici (2003) and Rivals et 

al (2007).

Approaches based on ORA continue to evolve and more sophisticated algorithms have 

been proposed to account for the dependencies among GO terms. Alexa et al (2006) 

developed a conditional hypergeometric test that calculates the significance of a GO 

term based on its neighbourhood; they showed that integrating the DAG structure of 

the GO terms in testing for enrichment reduce the false positive rate and enhanced 

inference. Grossmann et al (2007) measured the over-representation of a given GO 

term relative to its parent terms.

Existing ORA methods have been effective in adding value to expression results, but 

they remain limited for a number of reasons. First, its ‘threshold-based’ strategy 

means that only the genes that are pre-selected (based on their differential expression) 

are considered; the enrichment results therefore depend on the stringency of the cutoff 

used and the quality of the gene list produced, making ORA unstable to a certain 

degree. A second issue is that order of genes on the significant gene list is not taken 

into consideration, potentially leading to loss of information. These problems are 

addressed in the GSEA approach, as described below.

1.3.3 Gene set enrichm ent analysis

The goal of GSEA is to identify functional categories or gene sets that display modest 

but coordinated expression changes. GSEA is performed by first ranking all genes in 

the dataset based on the correlation between their expression and the given phenotypes. 

Then the rank positions of all members in a given gene set are identified. An 

enrichment score that reflects the difference between the observed rankings and that 

expected due to chance is calculated. After determining the enrichment score for each 

gene set across the phenotype, GSEA iteratively permutes the sample labels and re-
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evaluate the enrichment across the random classes. Statistical significance (/7-value) of 

the enrichment score is established with respect to a background distribution 

constructed by permutations of the class labels. The key idea is to determine whether 

the members of a given gene set are randomly distributed throughout the ranked list or 

primarily found at the extremes (top or bottom) of the entire ranked list.

The various GSEA methods that have been developed in recent years use the same 

basic procedure described above, but vary by the test statistic use to compute the 

enrichment score. For examples, Mootha et al. (2003) and Subramanian et al. (2005) 

used an enrichment score based on the Kolmogorov-Smimov statistic as the test 

statistic. Tian et al. (2005) and Kim and Volsky (2005) proposed a similar approach 

but instead of using the enrichment score, they used the two-sample /-statistic. 

Different extensions of GSEA have been proposed to make its application both 

simpler and richer. For examples, the SAFE procedure developed by Barry et al. 

(2005) extends GSEA to cover multiclass, continuous and survival phenotypes; Jiang 

and Gentleman (2007) extend GSEA to allow for covariate adjustments based on the 

use of linear modeling and posterior probabilities. Another interesting extension is the 

absolute enrichment score that accounts for gene sets with bi-directional changes 

(Efron and Tibshirani 2007; Saxena et al. 2006). In many homeostatic processes, 

when one component of the process is up-regulated, there is a controlling down- 

regulation in response and vice versa to maintain constancy of the system (Saxena et 

al. 2006). Such patterns are poorly captured by the standard formulation of GSEA 

because the effect of genes altered in the opposite directions in a gene set will cancel 

each other to make the enrichment score insignificant. By using absolute enrichment 

score (e.g. absolute signal-to-noise ratio) as the ranking metric, gene sets with bi

directional changes can be detected.

GSEA is complementary to the traditional ORA approach in several aspects: (i) it 

minimises the arbitrary factors in the typical gene selection step that could impact the 

conventional ORA approach; (ii) it adjusts for the correlation structure of gene sets; 

and (iii) it considers all information obtained from microarray experiments by
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allowing genes showing minimal expression changes to contribute to the enrichment 

analysis.

While the “threshold-free” strategy is the main advantage of GSEA, it is also 

becoming its limitation in some analyses. In many cases, the upstream data processing 

and comprehensive gene selection statistics simply cannot be duplicated by GSEA. 

For example, many clinical studies involve multiple factors and variants, such as ages, 

sex, drug treatment/control, disease/normal, etc. Under such complex situations, it can 

be difficult to summarise the effect of the various biological aspects into one 

meaningful score for use with the enrichment analysis. A second issue concerns the 

null hypothesis at work in the GSEA permutation. Many authors have discussed the 

differences between gene and sample randomisation in inferring the statistical 

significance of gene set scores (Goeman and Buhlmann 2007; Tian et al. 2005). 

Goeman and Buhlmann (2007) showed that sample randomisation is more appropriate 

than gene randomisation. However, sample randomisation requires a certain amount 

of sample replication to attain the desired levels of significance, and this condition 

often is not met in many studies (for example, time series analyses).

1.3.4 Other methods

More recently, a different approach called Signalling Pathway Impact Factor analysis 

(SPIF) was proposed for finding significant pathways in a dataset (Draghici et al 

2007; Tarca et al. 2009). Both ORA and GSEA, when used to mine pathway 

information, will consider only the set of genes on any given pathway and ignore their 

positions in those pathways. Therefore, these techniques will provide identical results 

as long as the pathway diagram involves the same genes, even if the interactions 

between these genes were completely redefined over time. In contrary to ORA and 

GSEA, SPIF incorporates the pathway topology into the analysis procedure, and 

calculates a global /?-value for each pathway based on evidence obtained from the 

enrichment analysis (such as the fold-change of differentially expressed genes and the 

statistical significance of the set of pathway genes) and the actual perturbation on a 

given pathway.
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1.4 Text m ining and its applications in microarray 
data analysis

Almost every known or postulated piece of functional information about genes and 

their role in biological processes is encapsulated in the peer-reviewed published 

literature. This ever expanding knowledge base constitutes a valuable resource for 

interpreting genome-wide experiments. However, the volume of published literature is 

growing at an exponential pace, making it increasingly difficult (or impossible) for 

biologists to stay abreast of their own field of expertise, let alone keeping up-to-date 

with publications in other related disciplines. Therefore, the ability to efficiently 

access, retrieve and manage the information in this published literature is a necessary 

step towards the biological interpretation of any genome-wide experiment. Automated 

text mining systems are indispensable tools in this regards.

The primary goal of text mining is to retrieve relevant information that is hidden in 

text and to present the distilled knowledge to users in a concise form without 

compromising the integrity of published data. This effectively shifts the burden of 

“information overload” from the researcher to the computer. Since the literature 

covers all aspects of biological science, there is almost no limit to the types of 

information that may be discovered through careful mining. Currently, text mining is 

being applied to various aspects of biological research, including the identification of 

proteins and gene names, construction of putative gene networks, extraction of 

protein-protein interactions, and analysis of microarray data.

The next section describes the main resources for biological text mining. This is 

followed by an overview of the disciplines involved in text processing along with the 

techniques and methods they use. Finally, we will look at how textual information can 

be incorporated into data mining framework to aid the interpretation of gene 

expression analysis.

1.4.1 Resources for biological text m ining

There are an increasing number of public resources from which the text of articles is 

readily available online for analysis. The primary source of textual information for
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biological text mining applications is the PubMed database (http://www.ncbi..nlm. 

nih.gov/pubmed/) developed by the National Center for Biotechnology Information 

(NCBI) at the National Library of Medicine (NLM). Currently, PubMed contains over 

19 million citations for biomedical articles indexed from 1948 to present . PubMed 

provides free access to MEDLINE (Medical Literature Analysis and Retrieval System 

Online; http://www.nlm.nih.gov/databases/databases_medline.html). MEDLINE is 

NLM's premier bibliographic database; it contains over 16 million references to 

journal articles in life sciences with a concentration on biomedicine.

Most of the text mining systems available today direct their focus on the analysis of 

the texts of abstracts from the PubMed/MEDLINE citations, because abstracts 

summarise the results of the scientific work in a concise form and are readily 

accessible. Each PubMed citation has a unique identifier (PMID) and can be 

conveniently searched using Entrez, a web-based search and retrieval system provided 

by NCBI (Wheeler et al 2008). Entrez enhances the keyword searches by translating 

the user query to Medical Subject Heading (MeSH) terms (Nelson et al. 2004). MeSH 

is a hierarchical set of controlled vocabulary terms assigned by expert curators who 

attempt to summarise the information presented in each indexed article and the genes 

described therein. In addition to the regular web query interface, PubMed also offers a 

programmatic access to its content through the Entrez Programming Utilities (eUtils) , 

which can be used alongside other popular open source projects, such as the BioPerl 

and BioJava integrated libraries, to build customised data pipelines for text mining 

applications.

Article abstracts contain short descriptions that highlight the most relevant aspects of a 

given article; however, they only cover a small fraction of the information contained 

in full-text articles (Schuemie et al. 2004). Therefore interests have begun to shift 

from PubMed/MEDLINE abstracts to full texts. Several efforts have been undertaken 

to build literature databases providing access to full texts. Such open access initiatives 

include PubMed central (PMC) (http://www.pubmedcentral.nih.gov/) and HighWire 

Press (http://highwire.stanford.edu/). PMC provides free online access to full-text

2 At the time of this writing (July 2009), PubMed contains 19,033,990 entries.
3 http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html

http://www.ncbi..nlm
http://www.nlm.nih.gov/databases/databases_medline.html
http://www.pubmedcentral.nih.gov/
http://highwire.stanford.edu/
http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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articles deposited by voluntary publishers from the life sciences and biomedical 

journals. Since every article in PMC has a corresponding entry in PubMed, articles 

archieved in PMC are therefore also accessible via PubMed. HighWire Press is a 

complementary resource to PubMed for accessing peer-reviewed science articles, and 

provides a search interface to over 1.9 million free full-text articles4.

Although a significant part of the current text mining efforts focuses on the analysis of 

biomedical and scientific literature, as we will see in Section 1.4.2 the use of domain- 

specific terminologies such as GO, MeSH and UMLS (Unified Medical Language 

System) (Bodenreider 2004)5 are sometimes required to support tasks such as entity 

recognition (e.g. the identification of gene and protein names in text) and relation 

extraction (e.g. the identification of relationships among genes or proteins). Many of 

these lexical and ontological resources are highly specialised, and to provide an 

exhaustive list of these resources is beyond the scope of this thesis. For a detailed 

discussion of the roles and applications of these resources in biomedical text mining, 

see Bodenreider (2006).

1.4.2 Text m ining in modern biology

Text mining is a modular process involving different computational and linguistic 

disciplines; the main building blocks are information retrieval (IR), information 

extraction (IE) and knowledge discovery. The first step in a text mining process is 

usually the identification of relevant documents (IR). Once documents are collected 

for computational analysis, an IE module is used to extract specific types of 

information or entities of interest from the texts. Then the information extracted is 

subjected for data mining to discover new knowledge.

4 As of July 2009, HighWire Press provides access to 1,920,292 free full-text articles and 6,059,906 
total articles.
5 The Unified Medical Language System (UMLS) (http://www.nlm.nih.gov/research/umls/) is the 
National Library of Medicine’s biological ontology. It contains information about many aspects of the 
biomedical domain, such as diseases, tissues and drugs.

http://www.nlm.nih.gov/research/umls/
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Information retrieval

Information retrieval (IR) is the activity of identifying documents (these can be full- 

text articles or abstracts) that are relevant to a certain topic (for example, all the 

articles mentioned a certain disease) within a very large set of documents. Many IR 

tools have been developed specifically to query the biomedical literature databases, of 

which the best-known system is PubMed (see Section 1.4.1 for more details on the 

PubMed database). PubMed uses Boolean query searches based on index look-up 

techniques, and a document-similarity search technique based on the vector-space 

model (Jensen et al 2006). The Boolean model allows the user to retrieve all 

documents that contain certain combinations of query terms (for example, “cancer” 

and “p53”). In the vector-space model, each document is represented as a vector of 

weighted terms. The weight is a function of the frequencies of the term in the 

document and in the whole corpus. Document-similarity is calculated by comparing 

these document vectors to each other; this strategy is used in PubMed to search for 

related articles (Wilbur and Coffee 1994).

In addition to PubMed, many advanced IR tools have been developed to support large- 

scale biomedical analysis, such as for explaining large-scale relationships among 

genes or other biological entities. Such systems include iHOP (http://www.ihop- 

net.org/UniPub/iHOP/) (Hoffmann and Valencia 2004) and Textpresso (http:// 

www.textpresso.org/) (Muller et al 2004). iHOP links the interacting proteins to their 

corresponding PubMed records and allows navigation in the resulting network of 

protein interactions, whereas Textpresso uses a custom ontology to search a collection 

of documents for information on specific classes of biological concepts (e.g. gene, 

allele, phenotype) and their relations (e.g. association, regulation).

Information extraction

Information extraction (IE) techniques are used to identify relevant phrases and pre

defined types of facts in texts. Early efforts in biomedical IE were focused on two 

areas: (i) name entity recognition (NER), which involves the recognition of terms 

denoting specific classes of biological entities; and (ii) the extraction of specific 

relationships between such entities. Biological entities can be genes, proteins,

http://www.ihop-
http://www.textpresso.org/
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chemicals, diseases or other pre-defined biological concepts. The identification of 

these entities in text is an important first step in many IE systems.

The main hurdle in biomedical NER is the lack of standardisation of names, especially 

in the case of genes and proteins. A variety of alternative names and abbreviations that 

refer to the same gene or protein are often encountered. For example, the official 

symbol for ‘cyclin-dependent kinase inhibitor 1A’ is ‘CDKN1A’; but it is also 

referred to in the literature as ‘p21’, ‘CIP1’ or ‘WAFT. Moreover, some gene and 

protein symbols are ambiguous and might be confused with common English words 

(for example, ‘lush’ in Drosophila that mediates responses to alcohol) or other 

biological terms (for example, the abbreviation ‘APC’ might correspond to 

‘adenomatous polyposis coli’ or ‘anaphase promoting complex’).

A range of different approaches to gene and protein names recognition and 

disambiguation have been developed. These methods fall into four general categories:

1. Rule-based approaches, which use some combination of regular expressions and 

patterns to match name entities in the literature (Fukuda et al. 1998).

2. Dictionary-based approaches, which use dictionaries to identify name entities in 

the literature (Krauthammer et al 2000). The dictionaries are usually based on a 

publicly available source of standardised, structured data curated by human 

experts, such as the HUGO gene nomenclature (Wain et al 2002) or UMLS 

(Unified Medical Language System) (Bodenreider 2004).

3. Machine learning-based approaches, which employ machine learning techniques, 

such as hidden Markov models (HMMs), support vector machines (SVMs), 

Bayesian learning and decision trees, to develop statistical models for gene and 

protein name recognition (Hatzivassiloglou et al 2001).

4. Hybrid approaches, which combine two or more of the above approaches (Proux 

e ta l  1998).

The next step after identification and disambiguation of biological entities is the 

extraction of relationships between those entities. Two fundamentally different 

approaches are currently being used for this task: the first approach is based on co

occurrence, while the second approach relies on natural language processing (NLP).
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Co-occurrence-based approaches assume that there are some forms of biological 

relationships between entities that occur in the same abstracts or sentences. It is 

possible that two unrelated entities were mentioned together simply due to chance, 

therefore most systems employ a frequency-based scoring scheme to rank the 

extracted relationship (Hoffmann and Valencia 2004; Jenssen et al 2001). The 

underlying rationale is that if two entities are repeatedly mentioned together, then it is 

likely that they are related. Co-occurrence-based approaches can be used to extract 

relationships of almost any type. However, this approach has difficulty in detecting 

directional relationships. Consider an example sentence: “These data demonstrate that 

huntingtin inhibits caspase-3 activity”. A co-occurrence-based approach will not be 

able to tell whether huntingtin inhibits caspase-3 or vice versa. In addition, it is unable 

to distinguish between direct and indirect relationships between the entities in 

complex sentences that contain multiple entities. These problems can, however, be 

resolved by using natural language processing (NLP), which involves the analysis of 

syntax (the order in which words are put together to form phrases and sentences) and 

semantics (the meaning that is implied by words and sentences).

The NLP techniques used to extract information from text is illustrated in Figure 1.5. 

The first step is tokenisation, which breaks the text up into basic textual units called 

‘tokens’. This is followed by an optional stemming step that reduce the tokens to their 

base form (for example, ‘inhibits’ becomes ‘inhibit’). Then the individual words (or 

tokens) are tagged with their part-of-speech, which are a set of word categories based 

on the role that words may play in the sentence in which they appear (such as noun, 

verb or adjective). On the basis of their part-of-speech tags, a syntax tree can be 

derived for each sentence to delineate noun phrases and represent their inter

relationships. Syntactically related words are subsequently grouped together; 

dictionaries and ontologies are then used to semantically tag the relevant biological 

entities (e.g. genes and proteins). Finally, a rule set is applied to identify relationships 

based on the syntax tree and the semantic tags.
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These data demonstrate that huntingtin inhibits caspase-3 activity.

Tokenisation and part-of-speech tagging

Morphology Grammar Syntax Semantics

Word Base Form Part-of-Speech Chunk Named Entity7

These These DT B-NP O

data datum NNS I-NP O

demonstrate demonstrate VBP B-VP O
that that IN B-SBAR O

himtingtin huntingtin NN B-NP B-protein

inhibits inhibit VBZ B-VP 0
caspase-3 caspase-3 NN B-NP B-protein

activity activity NN I-NP O

• O O

Apply rule to find relevant patterns such as 
[PROTEIN] inhibit [PROTEIN]

These data demonstrate that huntingtin inhibits caspase-3 activity'.

Figure 1.5: Information extraction using natural language processing techniques
The different natural language processing (NLP) layers, from tokenisation to 
semantics, for a given example sentence “These data demonstrate that huntingtin 
inhibits caspase-3 activity.” are shown here. This sentence was taken from PMID: 
17124493. First, the text was tokenised to produce individual words, which were 
subsequently stemmed to their base form. The stemmed words were tagged with their 
part-of-speech (i.e. grammatical tags), such as noun and verb. Dictionaries are then 
used to semantically tag the relevant biological entities (i.e. genes and proteins). In the 
last step, a rule set is applied to identify relationships on the basis of the syntax tree 
and the semantic labels. This example was based on the analysis performed with the 
GENIA tagger at http://textO.mib.man.ac.uk/software/geniatagger/. DT, determiner; 
IN, preposition; NN, Noun (singular); NNS, Noun (plural); VBP, Verb (present tense); 
VBZ, Verb (third person singular present). The B/I/O terminology refers to begin 
phrase (B), internal to phrase (I), or outside of phrase (O).

http://textO.mib.man.ac.uk/software/geniatagger/
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NLP-based systems are able to provide information on multiple types of associations, 

but suffer the limitation that a large number of rules are required to cover the many 

slightly different ways of expressing a particular relationship. These rules can either 

be manually crafted or learned automatically from a manually tagged corpus such as 

the GENIA corpus (Kim et al. 2003). Either way, it is a labour-intensive task.

So far, IE techniques have been used to extract various types of information from 

literature including protein-protein interactions (Thomas et al. 2000), drug-protein 

interactions (Rindflesch et al. 2000), information on gene regulation and protein 

phosphorylation (Saric et al. 2006).

Knowledge discovery

While information extraction focuses on extracting relationships between biological 

entities explicitly stated in the text, knowledge discovery attempts to uncover ‘hidden’ 

and previously unrecognised associations between these entities. The goal is to 

combine facts and information extracted from multiple publications to infer novel, 

indirect relationships worthy of further investigation. Most of the work in knowledge 

discovery follows the framework initiated by Swanson in the mid 1980s. Swanson 

proposed a simple model for detecting complementary structure in disjoint literatures, 

which state that “if A influences B, and B influences C, then A may influence C”. 

Based on this model, Swanson found a connection between fish oil and Raynaud’s 

disease (Swanson 1986). This literature-based hypothesis was later corroborated 

experimentally and clinically (Smalheiser and Swanson 1998). Since Swanson’s 

pioneering work, this kind of knowledge discovery work has attracted the attention of 

other researches (Lindsay and Gordon 1999; Srinivasan 2004; Weeber et al. 2001).

1.4.3 Integrated m ining of text and other non-text biological data

During recent years, several integrated text mining frameworks have been developed 

to perform synergistic mining of biological literature with other non-text data, in an 

attempt to facilitate the discovery of new knowledge. For examples, MacCallum et al. 

(2000) used text mining to assist in the identification of remote homolog proteins by
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combining sequence-similarity scores with document-similarity scores; Stapley et al 

(2002) used a machine learning approach (support vector machines) to predict the 

sub-cellular location of yeast proteins based on both sequence information about the 

proteins and term frequencies in their associated MEDLINE abstracts; Krauthammer 

et al. (2004) integrated literature-based protein networks with genetic linkage- 

mapping studies to find candidate genes for Alzheimer’s disease.

Most efforts to integrate the literature with biological data have so far been directed 

towards the annotation of data that has been obtained from high-throughput functional 

genomics studies such as microarrays. Given the diversity of genes involved and the 

amount of data generated by such studies, manually inspecting the literature for 

relevant information is equivalent to “attempting to drink from a fire hose”. In this 

respect, text mining can be employed as an integrated knowledge source to help guide 

the mining of gene expression data, as described in the following section.

1.4.4 Enhancing gene expression data analysis with literature 
knowledge

During the last few years, there has been a surge of interest in leveraging the valuable 

information from the literature in the data mining of microarray experiments. This has 

lead to the development of various integrated text mining systems for the biological 

interpretation of gene expression data (see Table 1.2 for examples). An early such 

system was MedMiner (Tanabe et al. 1999), which was designed to perform automatic 

literature searches on large number of genes found to be of significance in a 

microarray experiment. For each gene in the query gene list, MedMiner creates a 

Boolean search based on user-defined combinations of keywords, and retrieves 

citations of matching articles. This system offers a useful aid for searching 

information about a few genes at a time, but it does not address the need for finding 

links and functional relationships among genes.

More advanced and sophisticated approaches have been developed to address this 

problem. Most of them have focused on the identification of explicitly stated or
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Table 1.2: Text mining tools for microarray analysis
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Software Description/Methods References URL
Anni 2.0 For each gene in a gene list, a concept 

profile is created based on the context in 
which the gene is mentioned in MEDLINE 
literature. Then genes associated with 
similar topics in the literature are identified 
by hierarchical clustering of the 
corresponding gene concept profiles. 
Several classes of biomedical concepts are 
used, including genes, drugs and diseases.

Jelier et al. 
2007

http://www.bi0semantics.0rg/i 
ndex. php?page=anni-2-0

Chilibot Chilibot searches PubMed abstracts about 
specific relationships between proteins, 
genes, or keywords. Basic natural language 
processing techniques are used to identify 
sentences that describe stimulatory, 
inhibitory, and other relationships between 
pairs of genes.

Chen and Sharp 
2004

http://www.chilibot.net/

CoPub CoPub calculates keyword over
representation for a list of genes using the 
Fisher’s exact test. The keywords used in 
CoPub were generated by searching the 
MEDLINE abstracts with biological 
concepts from different thesauri 
encompassing gene names, GO terms, 
pathways, diseases, drugs, etc.

Frijters et al. 
2008

http://services.nbic.nl/cgi-
bin/copub/CoPub.pl

CoPub Mapper CoPub Mapper cluster genes and keywords 
extracted from MEDLINE abstracts based 
on their similarity in co-publications.

Alako et al. 
2005

http ://copub.gatcplatform. nl/

GEISHA GEISHA identify keywords significantly 
associated with cluster of similarly- 
expressed genes by comparing the 
frequencies of the words present in the 
associated MEDLINE abstracts.

Blaschke et al. 
2001

http://www.pdg.cnb.uam.es/bla
schke/cgi-bin/geisha

MILANO MILANO performs automatic searches in 
PubMed and the GeneRIF for texts 
containing co-occurrences of search terms 
with a list of genes.

Rubinstein and 
Simon 2005

http://simon4.md.huji.ac.il/

PubGene PubGene constructs functional association 
network for a group of genes based on their 
co-occurrence in the titles and abstracts of 
PubMed articles.

Jenssen et al. 
2001

http ://www. pubgene. org/

TXTGate TXTGate performs gene-based text 
profiling and clustering using the 
information extracted from MEDLINE 
abstracts.

Glenisson et al. 
2004

http ://tomcat. esat. kuleuven.be/t 
xtgate/

http://www.bi0semantics.0rg/i
http://www.chilibot.net/
http://services.nbic.nl/cgi-
http://www.pdg.cnb.uam.es/bla
http://simon4.md.huji.ac.il/
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indirect associations between genes and other biomedical concepts, based on keyword 

co-occurrences in the associated abstract texts. For examples, Shatkay et al (2000) 

used a probabilistic algorithm to find PubMed literature most relevant to each gene in 

a gene cluster, and then generated a list of keywords summarising the recurring theme 

in each set of the retrieved literature. Genes were associated with each other if their 

corresponding gene-by-article representations were similar. Jenssen et al. (2001) 

constructed a gene-abstract index and then used it to identify possible functional 

associations between genes on the basis of the co-occurrence of gene names in the 

titles and abstracts of PubMed articles. As opposed to Jenssen’s gene-gene co

occurrence approach, Chaussabel and Sher (2002) analysed the gene-term co

occurrences in indexed abstracts and demonstrated that such approach can produce a 

coherent picture of the functional relationships among genes. Their method involved 

generating a list of co-occurring keywords for each gene in the gene list, and then 

clustering the genes based on the keyword co-occurrences. Glenisson et al. (2004) 

used the vector space model to cluster a list of genes into functional categories on the 

basis of textual information extracted from MEDLINE abstracts. To obtain different 

views on the associations of a gene, they used concepts from five different thesauri as 

features, and identified terms in abstract texts referring to these thesaurus concepts.

An alternative to co-occurrence-based methods is to identify significantly over

represented keywords within the texts. An illustrative example is the GEISHA system 

developed by Blaschke et al. (2001), which analyses the statistical properties of words 

present in the underlying literature corpus and determines keywords or biological 

terms significantly associated with groups of genes exhibiting similar expression 

patterns. Blaschke et al. grouped genes according to the similarity of their expression 

patterns, and then MEDLINE abstracts that mentioned at least one gene in the cluster 

were collected to generate an associated literature cluster for each gene cluster. The 

words in the various literature clusters were subjected to a series of text analyses to 

account for morphological variations and composite word terms. A Z-score was 

calculated for each term in each gene cluster by comparing the frequency of the term 

in the cluster with the frequency of the term in the other clusters.
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A new perspective on the problem has been adopted by Raychaudhuri et al. (2002) 

who used the literature to evaluate the functional coherence of gene clusters. 

Specifically, they developed a computational method called the neighbor divergence 

per gene (NDPG), which calculates a numerical score that indicates how functionally 

coherent a group of genes is from the perspective of the published literature, such that 

groups of genes with shared function will receive a high score. In subsequent work 

Raychaudhuri et al (2003) showed that NDPG can be used to determine which level 

of the tree to cut during hierarchical clustering to produce biologically relevant cluster 

boundaries.

1.5 Summary

Technological advancements during the past decades have revolutionised genomic 

research. The combined abundance of genes discovered by genome sequencing 

projects, and the literature discussing them, represents a major bottleneck for 

interpreting genome-wide experiments such as microarrays. The current challenge lies 

in converting this voluminous data and information, which is stored in both structured 

and unstructured annotation resources (such as GO, KEGG, PubMed), into useful 

biological knowledge. Various functional enrichment tools have been developed to aid 

the biological interpretation of microarray data. As we have seen from the survey 

presented in Table 1.1, almost all are limited to the mining of pre-defined, controlled 

vocabularies, and do not fully exploit the wealth of biological knowledge about genes 

in the scientific literature. Examples described in Section 1.4.4 suggest that free-text 

can be used as a potentially more informative knowledge base for interpreting gene 

expression data. This shows that there is a need to expand the existing ORA 

framework beyond the mining of pre-defined functional annotations to use free-text. 

Explorations into this approach are presented in subsequent Chapters.
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1.6 Thesis layout

The remainder of this thesis is structured as follows:

Chapter 2, Data acquisition and text processing, describes the datasets used to 

evaluate the performance of the statistical methods presented in this thesis. This 

Chapter also details the text processing steps and how the unstructured textual data 

was converted into the appropriate numerical format expected by the data mining 

algorithms.

Chapter 3, Classical hypergeometric distribution-based ORA, reports initial 

explorations regarding whether the classical hypergeometric distribution-based ORA 

framework can be expanded to mine text-based information.

Chapter 4, Exploration o f factors contributing to annotation bias, and its effect on 

ORA. This Chapter describes an unexpected feature of gene lists derived from a 

typical microarray experiment, which is that they tend to have a greater level of 

associated PubMed articles than would be expected by chance. This bias is a major 

problem for the classical hypergeometric test-based ORA approach described in 

Chapter 3, as it leads to many common and non-specific terms to appear significantly 

enriched within the gene list. The potential causes of annotation bias are investigated 

in this Chapter, with particular reference to gene age and the historical development of 

scientific research activity.

Chapter 5, ORA based on the use o f a permutation test, describes a permutation test- 

based approach for overcoming annotation bias. The strengths and limitations of this 

approach are discussed.

Chapter 6, ORA based upon the detection o f outliers, describes an outlier detection- 

based approach for identifying terms in PubMed abstracts that are significantly over

represented in a list of differentially regulated genes.

Chapter 7, Extended hypergeometric distribution-based ORA, presents a statistical 

framework that uses the extended hypergeometric distribution to model token



Chapter 1. Introduction 43

frequency data associated with a list of differentially expressed genes, and to identify 

terms that are significantly over-represented.

Chapter 8, Performance properties o f OutlierDM and ExtendedHG. In this Chapter, 

the performance of the outlier detection-based method (OutlierDM) and the extended 

hypergeometric distribution-based method (ExtendedHG) are compared to existing 

publicly available literature- and ontology-based approaches. Issues concerning the 

feasibility of extending the proposed methods to other organisms outside human are 

described.

Chapter 9, PAKORA: a web application for interpreting microarray gene lists using 

text mining. This Chapter describes the implementation of a graphical user interface 

for accessing the text-based ORA algorithms developed in this work.

Chapter 10, Discussion and conclusions, reviews and discusses the main issues in this 

work and provides indications for future research.
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Data acquisition and text processing

2.1 Introduction

The main objective of this project was to develop algorithms to access and utilise the 

very large amount of information that is available as free-text in the published 

biomedical literature, in order to assist in the biological interpretation of lists of 

differentially expressed genes generated as the output from gene expression 

microarray experiments. The application of statistical algorithms to biomedical 

literature for enrichment analysis is part of a more general procedure, which involves 

three main phases shown in Figure 2.1 and described below:

1. Phase I involves the retrieval of relevant PubMed articles, followed by the 

processing and conversion of the unstructured textual information into a more 

computer readable format.

2. Phase II involves the development of statistical algorithms for performing text- 

based over-representation analysis (ORA).

3. Phase III involves the interpretation of results produced by the statistical 

algorithms developed in Phase II.

To evaluate the performance of the statistical methods presented in this thesis, a 

diverse range of microarray datasets were used. The characteristics and sources of 

these datasets are detailed in Section 2.2 of this Chapter. In Section 2.3, the protocols 

for document retrieval and text processing are provided. Section 2.4 explains how 

numerical values were extracted from the text-based data associated with a gene list

44
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that could then be passed to the statistical algorithms developed in this work (Chapters 

3, 5, 6 and 7).

Phase I
Document retrieval, text processing 

and data format conversion

Phase II
Development of statistical and data mining 
algorithms for identifying over-represented 

abstract terms

Phase III
Performance evaluation and interpretation of 
results using publicly available microarray 

datasets

Figure 2.1: The three phases of the proposed text-based ORA framework

2.2 Public datasets

When developing a text mining algorithm, it is important to evaluate its potential 

merit by comparing its performance to that of related methods by reference to one or 

more benchmarks. However, for exploratory procedure such as text-based ORA, there 

is currently a lack of “gold standard”, which is dataset or benchmark for which 

“ground truth” is known. Therefore a hybrid approach was undertaken in which the 

principle results presented in this thesis are complemented by biological discussions. 

The datasets used to demonstrate the distinct features and utility of the text-based 

ORA methods presented in this thesis are described below.
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2.2.1 ISG gene list

The main dataset used in this work is a list of interferon (IFN)-stimulated genes for 

which a substantial literature on the topic is available. This gene list is referred to as 

the ISG (interferon-stimulated genes) gene list throughout this thesis. The ISG gene 

list was used as the primary testbed because it constitutes a relatively simple and well- 

studied system of transcriptional regulation with well-known transcriptional targets.

The ISG gene list used in this thesis was derived from the gene expression study of 

Sanda et al (2006). The authors examined the genes induced by type I and type II 

interferons in A549 lung cells at 6h and 24h following treatment. The experiment was 

conducted using Affymetrix HG-U133A GeneChip® arrays, with four replicates per 

condition. For the purpose of this study, only the effect of type I interferon was 

considered. The MAS 5 expression data reported by the authors were downloaded 

from the Gene Expression Omnibus (GEO) database (accession number GSE5542) 

and analysed with the regularised /-test method (Baldi and Long 2001). Separate gene- 

level analyses were performed for each time period, i.e. IFN-treatment versus control 

at 6h, IFN-treatment versus control at 24h. Using the false discovery rate (FDR) 

method to correct for multiple testing, 194 and 118 probesets were found to be 

significantly differentially expressed (FDR/7-value < 0.05) at 6h and 24h, respectively. 

Then, a set of 106 probesets that were called significant at both time points were 

identified, which corresponds to a final gene list consisting of 78 unique genes.

2.2.2 Mitosis gene list

This gene list was extracted from Supplementary Table 3-1 reported in Lee et al. 

(2004). It contains 134 probesets on the Affymetrix HG-U133A array, representing 

82 different genes that showed more than three-fold induction in the intrathymic T 

progenitor (ITTP) and double positive (DP) thymocytes subpopulations than the 

subpopulations of SP4 thymocytes and CB4 and AB4 T cells. Lee et al concluded 

that these genes were predominantly involved in mitosis, cell cycle regulation and 

progression, DNA replication, recombination, or repair. For convenience this gene list
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is referred to below as the “mitosis gene list”, although recognising that the range of 

biological functions included is somewhat broader than this.

2.2.3 Glycolysis gene list

This gene list was reported in Vanharanta et al. (2006). It contains 179 probesets on 

the Affymetrix HG-U133A array, representing 147 genes that were up-regulated in 

fumarate hydratase mutant relative to wild-type fibroids. According to the conclusions 

drawn by the authors, this list includes genes involved in carbohydrate metabolism, in 

particular glycolysis. Therefore, this gene list is referred to as the glycolysis gene list 

throughout this thesis.

2.2.4 Nishimura gene list

This gene list was as reported in Nishimura et al. (2003). It contains 685 probesets on 

the Affymetrix Arabidopsis Athl array, representing 679 different genes that were 

differentially expressed in pmr4 mutant relative to wild type plants.

2.2.5 Literature gene lists

This is a collection of 402 gene lists that were collated from a wide range of published 

microarray experiments. These gene lists were used to study various aspects of the 

text-based ORA methods that cannot be reflected by using a single dataset alone, such 

as assessing their performance across different species. The 402 literature-derived 

gene lists are based on:

• 170 scientific papers

• 8 model organisms: human, mouse, rat, Arabidopsis, Drosophila, C. elegans, 

Xenopus and zebrafish.

• 10 Affymetrix arrays: HG-U133A, HG-U133 Plus 2.0, MG-U430 2.0, RAT230 

2.0, Athl, DrosGenomel, Drosophila 2.0, Xenopus laevis, C. elegans and 

Zebrafish.

The 10 Affymetrix platforms were selected for their gene coverage and popularity, 

with an emphasis on those arrays with the highest gene coverage and the most
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substantial numbers of available public datasets for exploration. A comparison of the 

comprehensiveness and popularity of these and several other major Affymetrix arrays 

is shown in Table 2.1. The number of probesets represented on a particular chip type 

was used as a measure of comprehensiveness, and the number of GEO series records1 

available for a chip type is used as an approximate measure of popularity.

Table 2.1: A comparison of gene coverage and popularity for several major 
Affymetrix GeneChip® arrays

Species Array name # Probesets # GEO series

HG-Focus 8793 40
HG-U95A 12626 266

Human 1 HG-U133A 1 22283 "[ 589
HG-U133B 22645 99
HG-U133Av2 22277 82
HG-U133 Plus 2.0 I 54675 580
Mu 1 IK-A 6584 26
MullK-B 6595 24
MG-U74A 12654 21
MG-U74Av2 12488 419

Mouse MG-U74Bv2 12477 66
MG-U74Cv2 11934 56
MG-U430A 22690 336
MG-U430B 22575 73

! MG-U430 2.0 ■ 45101 647
RN-U34 1322 7
RG-U34A 8799 135
RG-U34B 8791 10

Rat RG-U34C 8789 10
RAE230A 15923 96
RAE230B 15333 10

: RAT230 2.0 31099 128

Arabidopsis Ag 8297 19
! Athl 22810 ! 312

Drosophila : DrosGenomel 14010 ~ 1 88
Drosophila 2.0 j 18952 44

C. elegans
1 *“ 
| Celegans | 22625 ! 23

Xenopus laevis I Xenopus laevis 15611 ! 17
Zebrafish i Zebrafish <

----------------------------------------------------------------------------------- i_
15617 26

# Probesets refers to the number of Affymetrix probeset identifiers on a chip; # GEO Series refers to the 
number of series records submitted to the GEO database for a specific chip type (correct as of 29 
September 2008). Highlighted in grey are chips for which literature gene lists were collected.

1 A GEO series record is an original submitter-supplied record that describes a microarray experiment.
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Scientific publications relevant to each of the 10 selected chip types were obtained by 

using the “Scientific Publication” search tool provided by Affymetrix2. The number of 

individual gene lists reported per publication varies. For each chip type, up to twenty 

(if possible) different publications were identified, and from which lists of 

differentially expressed genes reported in the form of Affymetrix probeset identifiers 

were extracted. The numbers of gene lists and papers collected are summarised in 

Table 2.2. For the Drosophila 2.0, Xenopus laevis, C. elegans and Zebrafish arrays, 

there are less than 20 papers for which gene lists are readily extractable.

Details of all 402 gene lists, including their size and the PubMed articles from which 

they were extracted, can be found in Appendix A. The mitosis, glycolysis and 

Nishimura gene lists described in the previous sections are also part of the literature 

gene lists collection and were assigned the identifiers ‘hs2c’, ‘hs6b’ and ‘athl’, 

respectively.

Table 2.2: Number of literature gene lists collected for each chip type

Array name # Publication # Gene list

HG-U133A 20 52
HG-U133 Plus 2.0 20 54
MG-U430 2.0 20 40
RAT230 2.0 20 45
Athl 20 67
DrosGenomel 20 44
Drosophila 2.0 14 29
Celegans 14 28
Xenopus laevis 8 18
Zebrafish 14 25

2.3 Text processing

Texts in abstracts are by their nature almost completely unstructured. However, the 

text-based ORA algorithms proposed in this thesis require structured data, i.e. in 

numerical format that describes the number of times a term occurs in a gene list and in

2 http://www.affymetrix.com/publications/index.affx

http://www.affymetrix.com/publications/index.affx
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the background. Therefore it is necessary to transform the unstructured textual data 

into an appropriate numerical format that could be fed into the data mining algorithms. 

A first step into this approach involved the creation of a text corpus that connects the 

relevant PubMed abstracts with genes included in the microarray analysis. These 

abstracts were then processed through a successive number of steps and re-structured 

to generate a list of unique tokens for mining, as detailed below.

2.3.1 PubMed articles retrieval

The first step is to map all the genes represented on an array to their corresponding 

Entrez Gene identifiers (EGID). For all arrays listed in Table 2.2 except Athl, the 

mapping schemes provided by the appropriate Bioconductor metadata packages were 

used. The data versions of these metadata are listed in Table 2.3. A mapping scheme is 

not available for the Athl array at the time this research was carried out, and thus the 

associations between its probesets and genes were extracted from the annotation file 

‘ATHl-121501.na23.annot.csv’ provided by Affymetrix instead. Once the identities 

of genes represented on an array platform have been identified, PubMed articles 

associated with these genes were obtained from the ‘gene2pubmed’ file from NCBI4 

in the form of EGID to PubMed identifier (PMID) mappings. The relevant citations 

were then retrieved from the PubMed database using a Perl script that implements 

modules from the Entrez Programming Utilities (E-Utilities)5.

3 http ://www. affymetrix. com/support/technical/byproduct. affx?product=arab; time stamp: 12 Jul 2007.
4 ftp://ftp.ncbi.nih.gov/gene/DATA; time stamp: 25 Oct 2007.
5 http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html

ftp://ftp.ncbi.nih.gov/gene/DATA
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
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Table 2.3: Bioconductor packages used to convert Affymetrix probeset ID to 
EGID

Array name Package name Version

HG-U133A hgul33a 2.0.0
HG-U133 Plus 2.0 hgul33plus2 2.0.0
MG-U430 2.0 mouse4302 2.0.0
RAT230 2.0 rat2302 2.0.0
Athl N/A N/A
DrosGenomel drosgenomel 2.0.0
Drosophila 2.0 drosophila2 2.0.0
Celegans celegans 2.0.0
Xenopus laevis xenopuslaevis 2.0.0
Zebrafish zebrafish 2.0.0

2.3.2 Construction of a text corpus formed by unique PMIDs

Upon retrieval, only the text present in the abstracts was extracted from the citation 

records; PMIDs that had only a title and no abstract were discarded. PMIDs that are 

associated with more than one EGID were also omitted from the corpus; based on 

manual inspection, these tend to be large-scale sequencing, nomenclature, or protein 

family characterisation reports. As can be seen from the examples shown in Table 2.4, 

such abstracts contain little explicit information about gene functions, and this lack of 

specificity might adversely affect the performance of the text mining algorithms. In an 

attempt to maximise the number of abstracts that deal specifically with the biological 

role of a given gene, only PMIDs that cross-reference to one EGID were retained. The 

number of PMIDs passing this filtering criterion is listed in Table 2.5, and the 

resulting text corpus will be referred to as the “Unique PMID corpus” hereafter.
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Table 2.4: Examples of non-specific PMIDs and their abstract text

PMID: 14702039
Number of associated EGID: 5353

Complete sequencing and characterization of 21,243 
full-length human cDNAs.
As a base for human transcriptome and functional 
genomics, we created the "full-length long Japan" (FLJ) 
collection of sequenced human cDNAs. We determined 
the entire sequence of 21,243 selected clones and found 
that 14,490 cDNAs (10,897 clusters) were unique to the 
FLJ collection. About half of them (5,416) seemed to 
be protein-coding. Of those, 1,999 clusters had not been 
predicted by computational methods. The distribution 
of GC content of nonpredicted cDNAs had a peak at 
approximately 58% compared with a peak at 
approximately 42%for predicted cDNAs. Thus, there 
seems to be a slight bias against GC-rich transcripts in 
current gene prediction procedures. The rest of the 
cDNAs unique to the FLJ collection (5,481) contained 
no obvious open reading frames (ORFs) and thus are 
candidate noncoding RNAs. About one-fourth of them 
(1,378) showed a clear pattern of splicing. The 
distribution of GC content of noncoding cDNAs was 
narrow and had a peak at approximately 42%, relatively 
low compared with that of protein-coding cDNAs.

PMID: 16260502 
Number of associated EGID: 8

Cytoplasmic dynein nomenclature.
A variety of names has been used in the literature 
for the subunits of cytoplasmic dynein complexes. 
Thus, there is a strong need for a more definitive 
consensus statement on nomenclature. This is 
especially important for mammalian cytoplasmic 
dyneins, many subunits of which are encoded by 
multiple genes. We propose names for the 
mammalian cytoplasmic dynein subunit genes and 
proteins that reflect the phylogenetic relationships 
of the genes and the published studies clarifying 
the functions of the polypeptides. This 
nomenclature recognizes the two distinct 
cytoplasmic dynein complexes and has the 
flexibility to accommodate the discovery of new 
subunits and isoforms.

Table 2.5: Number of PubMed abstracts in corpus before and after filtering

Array name # PMID in 
unfiltered corpus

# Unique PMID 
(% o f unfiltered corpus)

HG-U133A 153520 107517 (70%)
HG-U133 Plus 2.0 159275 110811 (70%)
MG-U430 2.0 105594 64171 (61%)
RAT230 2.0 30156 23597 (78%)
Athl 6411 4101 (64%)
DrosGenomel 19998 6303 (32%)
Drosophila 2.0 20074 6303 (31%)
Celegans 1710 1161 (68%)
Xenopus laevis 2209 1689 (76%)
Zebrafish 2825 1030 (36%)
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2.3.3 Tokenisation

Abstracts in the text corpus were fragmented into single-word units (tokens) via a 

process known as tokenisation. This process involved breaking up the texts in the 

abstracts on whitespace or punctuation characters. Hyphens were treated as separable 

punctuation except in the following cases:

• Names of chemicals (e.g. 4-tert-butylphenol), enzymes (e.g. 6-phosphofructo-2- 

kinase), and gene aliases (e.g. Bcl-2, IL-8, E-cadherin) were not split at hyphens.

• Hyphenated words formed by connecting a noun to certain prefix such as anti- 

apoptotic, trans-activation, N-glycosylation, O-glycosylation, and pre-mRNA were 

treated as single tokens.

In order to reduce the size of the vocabulary list, the following tokens were eliminated:

• Extremely long amino acid or nucleotide sequences, such as Val-Lys-Ala-Val-Cys- 

Val-Ile-Asn-Gly and ACACCACCATCAT.

• Tokens composed exclusively of numbers.

• Non-alphanumeric characters, such as “@ ()o $  !?&#”.

Non-scientific English words that carry low domain-specific information content, such 

as the, o f  and is, were retained. They serve as control condition for testing if the text- 

based ORA methods developed are capable of extracting information against a 

background of uninformative “noise” in the system.

Biological concepts are often expressed as composite words, such as cell cycle, DNA 

polymerase, and CRE binding protein. However, the identification of multiword 

features adds an additional layer of complexity to the processing of text that is beyond 

the scope of the initial studies in this work. Possibilities for the extension of the 

current approach to the analysis of multiword and more complex text corpora will be 

discussed in Chapter 10.
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2.3.4 Stemming

After tokenisation, the tokens were subjected to a simple stemming procedure, which 

truncates suffixes from related terms and collapse them to a standard form. Porter’s 

stemming algorithm6 was adapted to perform the following operations:

• Reduce plurals to singular forms, e.g. convert kinases to kinase.

• Stem verb tenses to their root, e.g. collapse phosphorylates, phosphorylated to 

phosphorylate.

• Tokens that are less than three characters long were left unchanged as these 

usually represent gene symbols or protein names (e.g. FAS, FOS).

All tokens were converted into upper case at this stage. Other more elaborate analyses 

of spelling variants (e.g. catalyze, catalyse) was not explored at this stage.

2.4 From gene list to token frequencies

2.4.1 Linking Entrez Gene ID to tokens

Using the Affymetrix probeset ID-to-EGID mapping scheme described in Section 

2.3.1, all the probeset IDs for a particular array were converted to a non-redundant set 

of EGIDs. For each of the 10 Affymetrix arrays listed in Table 2.2, a binary gene-to- 

term matrix was constructed as depicted in Figure 2.2.

2.4.2 Calculation of Chip and List frequencies

Based on the gene-to-term matrix, the number of genes containing a certain token of 

interest on a given chip type can be calculated. This is the background frequency, and 

is denoted as Chip frequency throughout this thesis.

Given a gene list for which the query identifiers are in the form of Affymetrix 

probeset ID, the first step is to map the probeset IDs to their corresponding EGIDs 

based on the mapping scheme described in Section 2.3.1. By subsetting these EGIDs

6 Perl version, release 1; http://tartarus.org/~martin/PorterStemmer/

http://tartarus.org/~martin/PorterStemmer/
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Gene-to-PYHD mapping
PMID 1 PMID 2 PMID 3 PMID 4

Gene 1 0 1 1 1
Gene 2 1 1 0 0
Gene 3 1 1 1 1
Gene 4 0 0 0 0
Gene 5 1 1 0 1

+

PMID-to-token mapping
Token 1 Token 2 Token 3

PMID 1 1 1 0
PMID 2 0 0 0
PMID 3 0 0 1
PMID 4 0 1 1

1
Gene-to-token mapping

Token 1 Token 2 Token 3
Gene 1 0 1 1
Gene 2 1 1 0
Gene 3 1 1 1
Gene 4 0 0 0
Gene 5 1 1 1

Figure 2.2: Organising gene and token data into a numerical format suitable for 
use by downstream text mining algorithms
For each gene on a selected array, the relevant PubMed abstracts were retrieved and 
converted into a list of unique tokens as described in Section 2.3. These genes can 
then be represented in token space, in which multiple occurrence of a token associated 
with the same gene was reduced to a single binary count. The values 1 and 0 signify 
‘present’ and ‘absent’, respectively.

from the gene-to-term matrix, the number of genes that are associated with the token 

of interest in the query gene list can be calculated. This measurement is denoted as 

List frequency throughout this thesis.

The end result is that each token in a gene list will be associated with two scores - its 

Chip and List frequencies - which are then used as inputs to the statistical algorithm 

for over-representation analysis.



Chapter 3 

Classical hypergeom etric distribution-based  

ORA

3.1 Introduction

One of the challenges in the analysis of gene expression data is to use a list of 

differentially expressed genes (DEG) to gain an insight into the signalling and 

regulatory mechanisms that generate such changes, and the biological consequences 

of that change in gene expression. A first step towards (at least partly) addressing this 

issue is often to categorise a list of DEG into known functionally related groups, 

perhaps based on a combination of manual literature and database searches, or using 

prior familiarity with a gene(s) and plausible links to the biology under study. 

Literature databases such as MEDLINE or PubMed, and functional annotation and 

pathway databases such as Gene Ontology (GO) (Ashbumer et al 2000) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000), are 

amongst the most widely used resources. The result of this manual annotation process 

is usually a list of biological processes or pathways that are common between the 

regulated genes. Naively, one might reasonably expect that biological processes that 

occur more frequently in the list would be more relevant to the biology of the studied 

system. For example, if 100 genes were found to be differentially expressed and 60 of 

them are known to be involved in apoptosis, then one might be tempted to conclude 

that apoptosis is an important biological process in the context of the experiment. 

However, there is a significant confounding factor; consider whether such an 

interpretation would be valid if 60% the genes on the array used were part of the 

apoptotic pathway? Clearly, the answer is ‘no’, because the observed number of genes

56
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involved in apoptosis is no better than by chance alone. This example illustrates that 

statistical tests are required to guide interpretation, so that one can distinguish between 

significant and random events.

The need to address this problem systematically has led to the development of a 

family of methods collectively known as Over-Representation Analysis (ORA), which 

seeks to establish statistically whether particular functionally-defined groups of genes 

are significantly enriched within the DEG relative to all the genes in the background 

population. ORA generally consists of three steps. First, the number of genes 

associated with each of a series of functional categories or annotation terms of interest 

is determined for the DEG and the background population. Then, a /7-value for 

assessing over-representation is calculated for each annotation term using an 

appropriate statistical test. Finally, the /7-values are corrected for multiple testing in 

order to keep the number of false positives at an acceptable significance level. 

Significant annotation terms are then those whose adjusted /7-values pass some pre

determined cutoff threshold.

A number of statistical methods have been proposed for calculating the enrichment /?- 

values, including the chi-squared test for equality of proportions, the hypergeometric 

test, Fisher’s exact test and the binomial test. These approaches have been 

implemented (with minor variations) in several publicly available software tools for 

performing ontological analysis on gene lists; some popular ones include 

DAVID/EASEonline (Hosack et al. 2003), FatiGO (Al-Shahrour et al. 2004), 

GO::TermFinder (Boyle et al. 2004), GenMAPP (Dahlquist et al. 2002), GoMiner 

(Zeeberg et al. 2003) and OntoTools (Draghici et al. 2003). A comprehensive review 

of these tools, including the scope of analysis, underlying statistical models, sources 

of metadata and visualisation capabilities, can be found in Khatri and Draghici (2005).

Improvements of the methodological aspects of ORA continue to emerge. However, 

existing applications of ORA are largely limited to the mining of pre-defined 

functional annotations such as GO terms and KEGG pathways. These resources are, to 

a large extent, generated from manual literature reading by experts, with the aim of 

providing a structured, condensed and reduced description of the biological
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knowledge about genes in the scientific literature. Due to its labour-intensive nature, 

such pre-defined functional annotations are inevitably limited in scope and flexibility, 

and cannot fully reflect the detail of all areas of biology that might be of interest, nor 

are they designed to do so. The most up-to-date and perhaps richest source of 

biological knowledge about genes is primarily contained in the biomedical literature, 

which is readily accessed in the form of PubMed abstracts, and increasingly as full- 

text articles from selected biomedical journals. The use of free-text as a potentially 

more informative knowledge base for interpreting gene expression data has been 

demonstrated previously. For examples, Shatkay et al (2000) used a similarity-based 

scheme to map functionally descriptive kernel documents to genes and established 

connections between genes. Blaschke et al (2001), Chaussabel and Sher (2002) and 

Glenisson et al (2003) showed that clustering genes by literature profiles or keyword 

association derived from MEDLINE records can further discern informative pictures 

about the nature of genes and their functional relationships.

Therefore, the objective of this study is to determine whether the successful 

applications of ORA can be extended beyond the mining of controlled vocabularies to 

a wider mining of free-text. Initial exploration into this approach was based on a 

simple mining of tokens extracted from PubMed abstract using the classical 

hypergeometric test as statistical model. The statistical framework and implementation 

details of this text-based ORA approach are described in the following section.

3.2 Statistical framework for m ining PubMed abstract 
term s based on the classical hypergeom etric test

The general framework for performing over-representation analysis on textual 

information extracted from PubMed abstracts consists of two core components:

1. A text corpus and the corresponding annotation terms that are associated with the 

genes under study.

2. A statistical model for determining whether there are a higher proportion of genes 

with certain abstract terms among the DEG relative to genes on the entire array.
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The methodologies for retrieving the relevant abstracts and creating the text corpus are 

given in Section 2.3. The remainder of this section focuses on the second component, 

that is the theoretical basis underlying the classical hypergeometric distribution-based 

ORA approach, the construction of inputs to this model, and the p-value correction 

methods.

3.2.1 Hypergeometric test: formulations and assumptions

Consider a microarray containing N  genes, of which M  are associated with a certain 

annotation term of interest T. Suppose K  genes on the array are called differentially 

expressed based on some preliminary gene-level analysis, and x of them are found to 

be annotated with the term T. The question we are concerned with is: what is the 

probability of this happening due to chance? This statistical problem can be illustrated 

as a 2 x 2 contingency table (Table 3.1).

Table 3.1: A classical 2 x 2  contingency table

Annotated to T  Not annotated to T  Total

In DEG x K - x  K ~

Not in DEG M - x  N - K - M  + x N - K

Total M  N - M  N

If K  genes were sampled randomly from the array without replacement under the 

assumption that all the genes are independent and identically distributed, then the 

number of genes associated with term T in the sample can be modelled by the 

hypergeometric distribution. The probability of observing exactly x genes associated 

with T just by chance in the DEG is given by the formula:

( N - M \
K - x

Equation (3.1)

where max(0, M  + K  -  N) < x < min(AT, M). This range assures that all counts in the 

contingency table are non-negative.
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The p-value for testing whether the DEG presents an enrichment of genes annotated to 

T is given by the probability of observing x or more genes containing T, assuming that 

the null distribution specified in equation (3.1) is the true count distribution:

P - i - Z

( N - M \
K - i

Equation (3.2)

This corresponds to a one-sided test in which small /7-value satisfying certain pre

defined cutoff value is indicative of over-representation (this point is discussed further 

in Section 3.2.5).

Alternative statistical approaches for calculating the enrichment p-v  alue have been 

proposed. These include the Fisher’s exact test, the binomial test and the chi-squared 

test. The choice of statistical model depends on the size of the background population 

(N) and that of the sample. In the binomial model, the probability of picking a gene 

annotated to T is assumed to be fixed and is equal to the proportion of genes in the 

background. When N  is large, the probability of picking a gene annotated to T from 

the background barely changes after each gene is picked. However, when N  is small, 

this probability is influenced substantially by whether the previously picked genes 

were annotated to T (Rhee et al. 2008). Therefore, the binomial test is only 

appropriate for large N  (for example, whole-genome microarrays). On the other hand, 

the chi-squared test is not suitable when sample size is small. A general guideline is 

that at least 80% of the expected frequencies should be greater than or equal to 5 and 

all the expected frequencies must exceed 1 for the test to provide valid conclusions 

(Agresti 1984). Under these circumstances, the hypergeometric distribution or 

Fisher’s exact test are better models. When the marginal totals in the 2 x 2  

contingency table are fixed, the Fisher’s exact test is in fact equivalent to the 

hypergeometric test (Rivals et al. 2007).

Out of all the statistical models mentioned above, the hypergeometric test appears to 

be the most robust and adaptable, and was therefore chosen for exploring the 

feasibility of this initial text-based ORA framework.
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3.2.2 Gene universe

An important consideration when using the hypergeometric test to identify 

significantly enriched terms is the specification of an appropriate “gene universe”, i.e. 

the gene reference background against which the enrichment /7-values are calculated. 

Rhee et al (2008) and Falcon and Gentleman (2007) both pointed out that the gene 

universe has a substantial effect on the test results, and an incorrect gene universe can 

lead to incorrect conclusions.

For the text-based ORA approach described here, only those genes that are monitored 

in the microarray experiment and associated with at least one abstract term were 

included in the gene universe. This gene universe was constructed using the following 

procedures:

1. Correcting for multiple occurrences o f a gene. On some arrays, such as those from 

Affymetrix, the same gene can be represented by multiple probesets (see Section

1.2.2 for details). This multiplicity problem was resolved by mapping all probesets 

to their corresponding Entrez Gene identifiers (EGID) to ensure that each gene is 

represented only once on the array and will receive only one “vote” during the 

analysis. The metadata used for this conversion is detailed in Table 2.3. Probesets 

that do not map to any EGIDs were omitted.

2. Removal o f genes without annotations. The universe was further refined by 

removing genes that are not associated with any abstract terms. This is because the 

inclusions of EGIDs that have no chance to appear in any of the annotation terms 

will introduce an additional source of bias into the system. Their inclusion appears 

to produce apparently more significant enrichment /7-values, but “noisier” results 

(as illustrated in Section 3.3.2).

The phrases “gene universe”, “reference background” and “background population” 

are used interchangeably throughout this thesis.
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3.2.3 Chip and List frequencies

Each abstract term (token) associated with a given gene list is subjected to the same 

fixed set of two measurements. The first measurement, Chip frequency, is the number 

of genes that contains the token of interest on the chip (i.e. background). The second 

measurement, List frequency, is the number of genes that are associated with the token 

of interest in the query gene list. Only genes present in the gene universe were counted.

3.2.4 Jackknife adjustment

A concern with the hypergeometric test is that terms supported by a low number of 

genes can be over-weighted. Consider a list of DEG containing 200 members that 

were selected from a background population of 12500 genes. Suppose that the term 

Tymphogenesis’ is associated with only one gene in the background population, and 

that gene happens to be on the DEG list. This term would obtain a p-value of 0.016 

and appear to be significantly enriched in the list of DEG. However, a term or 

biological theme supported by just a single gene is neither stable nor interesting 

because it contains no information about the functional relationship amongst genes in 

the gene list. To address this problem, a more conservative p-value was calculated for 

each term based on the idea of jackknifing a probability. This method involves 

removing one gene from the set of genes associated with the given term on the gene 

list, and then calculates the hypergeometric /7-value based on the truncated sample. 

This is analogous to the calculation of EASE score as proposed in Hosack et al. 

(2003). The theoretical basis underlying jackknifing is that, by arbitrarily omitting a 

single observation at a time from the original sample and repeatedly recalculating the 

given statistic, one can ascertain the stability of the statistic and detect fluctuations in 

sampling error that may occur due to a single deleted observation’s uniqueness. The 

jackknifing operation entails a conservative adjustment to the hypergeometric p- 

values by penalising the significance of terms supported by few genes whilst 

negligibly penalising terms supported by many genes.
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Taken together, the hypergeometric p- value associated with each term was calculated 

by substituting the following values into Equation (3.2):

x = List frequency -jackknifescore 

N  = Number of genes in the gene universe 

M  = Chip frequency

K  = Number of genes in the gene list -  jackknife score 

where jackknife score is set at 1.

3.2.5 Multiple testing correction

The p-value threshold for determining whether a particular annotation term is over

represented depends on the required significance level. The significance level is the 

acceptable probability of making a type I error (false positive). For example, by 

setting the significance level at (say) 0.05, we are prepared to accept that there is a 1 

in 20 chance of calling a term significantly over-represented when in fact it is not. 

When many annotation terms are tested at the same time (which is usually the case in 

ORA), the number of false positive test results is expected to grow with the number of 

tests performed. If 1000 annotation terms are tested at a significance level of 0.05, 

then we would expect to find approximately 1000 x 0.05 = 50 false positives just by 

chance.

Classical multiple testing procedures call for the control of the probability of 

committing any type I error in the entire family of hypotheses under simultaneous 

consideration. A widely used methodology for controlling this family-wise error rate 

(FWER) is the Bonferroni correction (Hochberg 1988), in which the chosen 

significance level (a) is divided by the total number of terms being tested (R). In other 

words, to ensure that FWER < a, the /7-value from individual test (p) must satisfy p  < 

oJR. Based on this, the Bonferroni adjusted /7-values can be calculated as min(pxR, 1), 

and any terms with adjusted /7-values < a are deemed significant.

The Bonferroni correction is a conservative approach because it assumes that the 

individual tests are independent, and it becomes increasingly difficult to detect true
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positives as the number of tests increases. A less conservative approach to multiple 

testing is to control the false discovery rate (FDR) instead of the FWER. The FDR is 

the expected proportion of false positives amongst the rejected hypotheses. There is a 

potential gain in power with FDR-controlling procedures (Benjamini and Hochberg 

1995) because the FDR is a less stringent condition than the FWER.

For all analyses presented in this Chapter, a term is considered significantly over

represented in the gene list if its /7-value is less than or equal to 0.05 after Bonferroni 

correction (i.e. at 95% confidence level).

3.3 Experim ents and results

3.3.1 Performance on real datasets

The performance of the hypergeometric distribution-based ORA approach described 

above was tested using the ISG gene list from Sanda et al (2006) and the glycolysis 

gene list reported in Vanharanta et al (2006). Details of these two gene lists are given 

in Sections 2.2.1 and 2.2.3, respectively. Both studies used the HG-U133A microarray 

platform from Affymetrix. The text corpus used for this analysis was created 

according to the methodology given in Section 2.3. Briefly, PubMed articles 

associated with genes represented on the Affymetrix HG-U133A array were collected 

and filtered to give a corpus consisting of 107,517 abstracts. These abstracts were 

tokenised and stemmed to produce 219,857 unique single-word tokens for mining. Of 

these, 11,709 tokens are associated with the ISG gene list, while 17,088 tokens are 

associated with the glycolysis gene list. To reduce the token space, tokens with List 

frequency equal to 1 after jackknifing were removed because a token can only be 

useful in defining relationships among genes if it is shared by at least two of them. 

After this filtering, 3411 and 4927 tokens remained for testing in the ISG gene list and 

glycolysis gene list, respectively.
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Example 1: ISG gene list

Initial use of the classical hypergeometric distribution-based method produced 

encouraging results when applied to the ISG gene list. 81 tokens were identified as 

significantly over-represented at the 0.05 significance level after the p-values were 

corrected for multiple testing using the Bonferroni method. The results are shown in 

Table 3.2. Biologically-plausible terms such as ‘interferon’, ‘IFN’, ‘antiviral’, ‘IFN- 

alpha’, ‘IFN-beta’, TFN-gamma’, ‘viral’ and ‘immune’ were amongst the most 

significant hits being called over-represented. These terms are related in principle to 

the role of interferon in modulating host immune responses against viruses and 

infection. For examples, ‘MHC’, ‘histocompatibility’, ‘HLA-A’, ‘HLA-B’, ‘HLA-G’, 

‘antigen’, ‘beta2-microglobulin’, ‘LMP2’ and ‘LMP7’ are related to the induction and 

regulation of the complement and antigen presentation pathways by interferons, and 

terms such as ‘OAS’, ‘oligoadenylate’, ‘PKR’ and ‘MxA’ are related to interferon- 

inducible antiviral effectors.

However, these biologically relevant terms were interspersed with what appeared to 

be relatively uninformative terms, for which it seemed less plausible that they were 

specifically associated with the biology of interferon-regulated gene expression. These 

include common English words such as ‘treatment’ (rank 29), ‘line’ (rank 60), ‘intact’ 

(rank 72), ‘after’ (rank 73) and non-specific biological words such as ‘beta’ (rank 31), 

‘response’ (rank 37), ‘monoclonal’ (rank 55), ‘synthesis’ (rank 66). A similar mix of 

apparently specific and non-specific terms was generally seen for other gene lists that 

were analysed (data not shown), suggesting that this problem is not unique to the ISG 

gene list.

The amount of “uninformative” terms that were called over-represented varied 

substantially from gene list to gene list. In the ISG gene list, the uninformative terms 

were mostly found at the lower half (less significant portion) of the hit list. In some 

other gene lists tested, the uninformative terms were found to be given high rankings 

and scattered throughout the result table, as illustrated by the glycolysis gene list 

described below.
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Table 3.2: Significantly over-represented abstract terms in the ISG gene list as 
identified using the classical hypergeometric test

Term Chip
frequency

List
frequency p-value Bonferroni

/?-value Rank

INTERFERON 414 46 3.30E-46 1.13E-42 1
IFN 245 35 4.00E-37 1.36E-33 2
IFN-BETA 71 18 1.81E-22 6.16E-19 3
ANTIVIRAL 176 23 2.00E-22 6.81E-19 4
IFN-ALPHA 114 19 2.97E-20 1.01E-16 5
INDUCIBLE 1068 37 9.19E-18 3.14E-14 6
INTERFERON-ALPHA 59 14 8.18E-17 2.79E-13 7
INFECTION 1177 36 1.83E-15 6.25E-12 8
VIRAL 892 32 2.55E-15 8.69E-12 9
IMMUNE 1275 35 1.57E-13 5.36E-10 10
INNATE 363 21 2.25E-13 7.69E-10 11
TREAT 1817 40 8.76E-13 2.99E-09 12
IFN-GAMMA 443 22 9.32E-13 3.18E-09 13
DSRNA 60 11 7.52E-12 2.57E-08 14
IMMUNITY 387 20 7.85E-12 2.68E-08 15
OLIGO ADENYLATE 18 8 1.70E-11 5.81E-08 16
VIRUS 1408 34 1.73E-11 5.90E-08 17
ISRE 31 9 2.46E-11 8.41E-08 18
LYMPHOBLASTOID 239 16 5.84E-11 1.99E-07 19
INDUCTION 2048 39 2.23E-10 7.60E-07 20
ISG 14 7 2.58E-10 8.80E-07 21
HLA-A 30 8 1.02E-09 3.48E-06 22
MHC 353 17 1.53E-09 5.22E-06 23
HOST 800 24 1.58E-09 5.39E-06 24
STOMATITIS 52 9 2.10E-09 7.15E-06 25
HLA-CLASS 11 6 6.24E-09 2.13E-05 26
EVASION 65 9 1.31E-08 4.47E-05 27
HLA-B 25 7 1.43E-08 4.89E-05 28
TREATMENT 3120 45 2.16E-08 7.35E-05 29
ENCEPHALOMY OC ARDITIS 16 6 5.74E-08 0.0002 30
BETA 2127 36 5.82E-08 0.0002 31
INFECT 825 22 8.62E-08 0.0002 32
CYTOKINE 1266 27 1.14E-07 0.0003 33
HISTOCOMPATIBILITY 303 14 1.25E-07 0.0004 34
HEPATITIS 366 15 1.59E-07 0.0005 35
ANTIGEN 1687 31 1.88E-07 0.0006 36
RESPONSE 3630 47 2.44E-07 0.0008 37
MELANOMA 581 18 2.89E-07 0.0009 38
BET A2-MICROGLOBULIN 42 7 3.87E-07 0.0013 39
OAS 10 5 4.34E-07 0.0014 40
HLA-G 10 5 4.34E-07 0.0014 41
REPLICATION 830 21 4.70E-07 0.0016 42
EPSTEIN-BARR 233 12 5.08E-07 0.0017 43
GAMMA-INTERFERON 44 7 5.15E-07 0.0017 44

(continued over the page)



Chapter 3. Classical hypergeometric distribution-based ORA 61

Table 3.2: Significantly over-represented abstract terms in the ISG gene list as 
identified using the classical hypergeometric test (continued)

Term Chip
frequency

List
frequency /?-value Bonferroni

/7-value Rank

MXA 11 5 6.79E-07 0.0023 45
EBV 194 11 7.93E-07 0.0027 46
INDUCE 4669 53 8.93E-07 0.0030 47
TAPASIN 12 5 1.01E-06 0.0034 48
HLA 253 12 1.15E-06 0.0039 49
INTERFERON-GAMMA 313 13 1.35E-06 0.0045 50
LMP7 13 5 1.45E-06 0.0049 51
LMP2 13 5 1.45E-06 0.0049 52
INDIGENOUS 29 6 1.46E-06 0.0049 53
PKR 30 6 1.74E-06 0.0059 54
MONOCLONAL 1365 26 2.02E-06 0.0068 55
UPREGULATE 1087 23 2.09E-06 0.0071 56
PROMYELOCYTIC 216 11 2.1 IE-06 0.0072 57
LYSIS 169 10 2.26E-06 0.0077 58
INDUCIBILITY 131 9 3.13E-06 0.0107 59
LINE 4667 52 3.16E-06 0.0108 60
OR-C 5 4 3.18E-06 0.0108 61
IMMUNODEFICIENCY 472 15 3.37E-06 0.0115 62
TAP 61 7 3.70E-06 0.0126 63
AUTOIMMUNE 557 16 4.66E-06 0.0159 64
PROTEASOME 490 15 5.21E-06 0.0178 65
SYNTHESIS 2200 33 6.06E-06 0.0207 66
P69 6 4 6.33E-06 0.0216 67
MICROGLOBULIN 39 6 6.69E-06 0.0228 68
DEFENSE 370 13 7.62E-06 0.0260 69
VSV 19 5 7.64E-06 0.0261 70
LEUKEMIA 1182 23 8.37E-06 0.0286 71
INTACT 1382 25 9.14E-06 0.0312 72
AFTER 3913 46 9.47E-06 0.0323 73
CTL 154 9 1.04E-05 0.0355 74
LOAD 383 13 1.08E-05 0.0369 75
ISG 15 7 4 1.10E-05 0.0376 76
PEPTIDE-MHC 7 4 1.10E-05 0.0376 77
AND-C 44 6 1.23E-05 0.0419 78
INFLUENZA 75 7 1.24E-05 0.0424 79
REACTIVITY 534 15 1.39E-05 0.0475 80
C1R 22 5 1.42E-05 0.0484 81

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni
correction. Terms are ordered by increasing /7-values. This analysis was performed 
using genes existed on the HG-U133A chip and associated with at least one term in 
the corresponding text corpus as gene universe (N= 9638).
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Example 2: Glycolysis gene list

When the glycolysis gene list was analysed with the classical hypergeometric 

distribution-based ORA approach, 48 terms were called significantly enriched (Table 

3.3). Despite the successful identification of biologically relevant terms such as 

‘glycolytic’, ‘dehydrogenase’, ‘reductase’, ‘peroxidation’, ‘isoenzyme’ and ‘NAD’, 

approximately 50% of the hits identified appears to be noise, such as ‘resolution’ 

(rank 1), ‘level’ (rank 7), ‘had’ (rank 11), ‘one’ (rank 16), ‘correspond’ (rank 18), 

‘high’ (rank 20) and ‘library’ (rank 27). The enrichment of these uninformative terms 

would severely hamper the usefulness of the proposed approach. The explanation for 

this artefactual enrichment of uninformative terms, and methods to avoid it, are the 

subject of subsequent Chapters.

Table 3.3: Significantly over-represented abstract terms in the glycolysis gene list 
as identified using the classical hypergeometric test

Term Chip
frequency

List
frequency p-value Bonferroni 

p -value Rank

RESOLUTION 1006 39 1.21E-09 5.95E-06 1
GLYCOLYTIC 71 12 1.92E-09 9.44E-06 2
DEHYDROGENASE 465 25 7.91E-09 3.90E-05 3
NORMAL 4514 92 1.92E-08 9.47E-05 4
CRYSTAL 1292 42 3.74E-08 0.0001 5
REDUCTASE 328 20 5.71E-08 0.0002 6
LEVEL 5876 107 6.25E-08 0.0003 7
PEROXIDATION 102 12 9.41E-08 0.0004 8
NAD 187 15 1.66E-07 0.0008 9
LIVER 2545 62 1.75E-07 0.0008 10
HAD 3782 80 1.93E-07 0.0009 11
ISOENZYME 195 15 2.78E-07 0.0013 12
WESTERN 2347 58 4.03E-07 0.0019 13
ESCHERICHIA 1100 36 5.04E-07 0.0024 14
OXIDATIVE 672 27 5.83E-07 0.0028 15
ONE 5620 102 6.10E-07 0.0030 16
OXYGEN 632 26 6.65E-07 0.0032 17
CORRESPOND 1126 36 8.81E-07 0.0043 18
OXIDATION 431 21 9.00E-07 0.0044 19
HIGH 4674 90 1.01E-06 0.0049 20
NICOTINAMIDE 80 10 1.01E-06 0.0050 21
COLI 1297 39 1.13E-06 0.0055 22
CULTURE 3076 68 1.15E-06 0.0056 23

(continued over the page)
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Table 3.3: Significantly over-represented abstract terms in the glycolysis gene 
list as identified using the classical hypergeometric test (continued)

Term Chip
frequency

List
frequency />-value Bonferroni

/>-value Rank

METABOLITE 439 21 1.20E-06 0.0059 24
MUSCLE 2184 54 1.47E-06 0.0072 25
ABDOMINAL 162 13 1.49E-06 0.0073 26
LIBRARY 3443 73 1.50E-06 0.0074 27
PARAMETER 1008 33 1.91E-06 0.0093 28
RATE 2334 56 2.11E-06 0.0104 29
CANCER 2991 66 2.21E-06 0.0109 30
PHOSPHATE 680 26 2.54E-06 0.0125 31
CATALYSIS 345 18 2.89E-06 0.0142 32
NADP 69 9 3.29E-06 0.0162 33
KCAT 121 11 4.36E-06 0.0215 34
THREE 4884 91 4.37E-06 0.0215 35
GROUP 3121 67 4.79E-06 0.0236 36
PERCENT 401 19 5.35E-06 0.0264 37
EXPERIMENTAL 1218 36 5.44E-06 0.0268 38
OBSERVE 4529 86 6.49E-06 0.0320 39
REACTIVITY 534 22 6.55E-06 0.0323 40
CATALYZE 1072 33 7.1 IE-06 0.0350 41
SUBSTRATE 2428 56 7.60E-06 0.0374 42
TISSUE 6027 104 8.00E-06 0.0394 43
COMPARE 4021 79 8.10E-06 0.0399 44
ISOLATE 5186 94 8.34E-06 0.0411 45
PROFILE 1408 39 8.37E-06 0.0413 46
POINT 2122 51 8.67E-06 0.0427 47
NADPH 194 13 9.71E-06 0.0478 48

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni 
correction. Terms are ordered by increasing /7-values. This analysis was performed 
using genes existed on the HG-U133A chip and associated with at least one term in 
the corresponding text corpus as gene universe (N = 9638).
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3.3.2 Impact o f gene universe on ORA results

Setting up an appropriate gene universe is important in hypergeometric test-based 

ORA method as it can have a marked effect on the outcome. The analyses presented in 

Section 3.3.1 were performed with a strictly-defined gene universe Gannotated-, which 

consist of genes that are not only existed on the chip but also associated with at least 

one term in the corresponding text corpus.

To examine the impact of gene universe on the classical hypergeometric distribution- 

based ORA approach, the ISG gene list was re-analysed with a larger set of genes as 

background, in which all genes existing on the HG-U133A array were included in the 

gene universe regardless of whether they are associated with any annotation term in 

the corresponding text corpus. Let this more broadly-defined gene universe be Gtotai-

As can be seen from Table 3.4, an analysis performed with Gtotai leads to a greater 

amount of non-specific terms being called significantly enriched when compared to 

the results obtained with Gannotated- This finding is in accordance with the views of 

Huang et al (2009), who pointed out that larger backgrounds tends to produce more 

significant /7-values, as compared with a narrowed-down set of genes as a population 

background. This example highlights the importance of background reference against 

which the hypergeometric /7-values were calculated, an issue that has constantly been 

overlooked by existing ORA tools.
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Table 3.4: Results of re-analysing the ISG gene list with Gtotai as gene universe

Term Chip
frequency

List
frequency /7-value Bonferroni

/7-value
Rank

INTERFERON 414 46 1.67E-48 5.71E-45 1
IFN 245 35 2.90E-39 9.89E-36 2
ANTIVIRAL 176 23 5.39E-24 1.84E-20 3
IFN-BETA 71 18 9.52E-24 3.25E-20 4
IFN-ALPHA 114 19 1.38E-21 4.72E-18 5
INDUCIBLE 1068 37 7.02E-20 2.40E-16 6
INTERFERON-ALPHA 59 14 8.13E-18 2.77E-14 7
INFECTION 1177 36 1.60E-17 5.44E-14 8
VIRAL 892 32 3.09E-17 1.05E-13 9
IMMUNE 1275 35 1.58E-15 5.38E-12 10
TREAT 1817 40 6.32E-15 2.16E-11 11
INNATE 363 21 9.16E-15 3.13E-11 12
IFN-GAMMA 443 22 3.43E-14 1.17E-10 13
VIRUS 1408 34 2.07E-13 7.05E-10 14
IMMUNITY 387 20 3.78E-13 1.29E-09 15
DSRNA 60 11 1.25E-12 4.25E-09 16
INDUCTION 2048 39 1.92E-12 6.56E-09 17
OLIGO ADENYLATE 18 8 4.64E-12 1.58E-08 18
LYMPHOBLASTOID 239 16 4.80E-12 1.64E-08 19
ISRE 31 9 5.67E-12 1.93E-08 20
HOST 800 24 5.44E-11 1.85E-07 21
ISG 14 7 8.39E-11 2.86E-07 22
MHC 353 17 1.16E-10 3.97E-07 23
TREATMENT 3120 45 1.42E-10 4.83E-07 24
HLA-A 30 8 2.81E-10 9.58E-07 25
STOMATITIS 52 9 4.91E-10 1.67E-06 26
BETA 2127 36 7.56E-10 2.58E-06 27
RESPONSE 3630 47 1.53E-09 5.21E-06 28
HLA-CLASS 11 6 2.43E-09 8.30E-06 29
EVASION 65 9 3.10E-09 1.06E-05 30
CYTOKINE 1266 27 3.37E-09 1.15E-05 31
ANTIGEN 1687 31 3.93E-09 1.34E-05 32
INFECT 825 22 4.13E-09 1.41E-05 33
INDUCE 4669 53 4.27E-09 1.46E-05 34
HLA-B 25 7 4.71E-09 1.61E-05 35
HISTOCOMPATIBILITY 303 14 1.51E-08 5.17E-05 36
LINE 4667 52 1.62E-08 5.53E-05 37
HEPATITIS 366 15 1.71E-08 5.82E-05 38
MELANOMA 581 18 2.22E-08 7.59E-05 39
ENCEPHALOMYOCARDITIS 16 6 2.25E-08 7.67E-05 40
REPLICATION 830 21 2.66E-08 9.08E-05 41
AFTER 3913 46 7.39E-08 0.00025 42
MONOCLONAL 1365 26 7.45E-08 0.00025 43
EPSTEIN-BARR 233 12 8.20E-08 0.00028 44

(continued over the page)
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Table 3.4: Results of re-analysing the ISG gene list with Gtotai as gene universe
(continued)

Term Chip
frequency

List
frequency /?-value Bonferroni

/7-value Rank

UPREGULATE 1087 23 1.03E-07 0.00035 45
SYNTHESIS 2200 33 1.28E-07 0.00043 46
BETA2-MICROGLOBULIN 42 7 1.29E-07 0.00044 47
EBV 194 11 1.47E-07 0.00050 48
GAMMA-INTERFERON 44 7 1.72E-07 0.00058 49
HLA 253 12 1.89E-07 0.00064 50
INTERFERON-GAMMA 313 13 1.95E-07 0.00066 51
OAS 10 5 2.04E-07 0.00069 52
HLA-G 10 5 2.04E-07 0.00069 53
TYPE 4725 50 3.15E-07 0.00107 54
MXA 11 5 3.19E-07 0.00109 55
ALPHA 2422 34 3.50E-07 0.00119 56
DEFINE 2823 37 3.81E-07 0.00130 57
IMMUNODEFICIENCY 472 15 3.95E-07 0.00135 58
PROMYELOCYTIC 216 11 4.00E-07 0.00136 59
INTACT 1382 25 4.03E-07 0.00137 60
LEUKEMIA 1182 23 4.44E-07 0.00151 61
INDEPENDENT 2840 37 4.45E-07 0.00152 62
EACH 3117 39 4.60E-07 0.00157 63
TAPASIN 12 5 4.76E-07 0.00162 64
LYSIS 169 10 4.92E-07 0.00168 65
AUTOIMMUNE 557 16 4.94E-07 0.00169 66
INDIGENOUS 29 6 5.77E-07 0.00197 67
PROTEASOME 490 15 6.20E-07 0.00212 68
LMP7 13 5 6.84E-07 0.00233 69
LMP2 13 5 6.84E-07 0.00233 70
PKR 30 6 6.89E-07 0.00235 71
INDUCIBILITY 131 9 7.86E-07 0.00268 72
CORRESPONDING 2800 36 1.04E-06 0.00353 73
MOLECULE 3217 39 1.07E-06 0.00365 74
DEFENSE 370 13 1.16E-06 0.00396 75
DIFFERENTIAL 1923 29 1.17E-06 0.00398 76
ACTION 1806 28 1.18E-06 0.00403 77
TAP 61 7 1.25E-06 0.00428 78
STIMULATE 2564 34 1.35E-06 0.00460 79
CONFER 1265 23 1.41E-06 0.00480 80
LOAD 383 13 1.67E-06 0.00569 81
REACTIVITY 534 15 1.72E-06 0.00588 82
OR-C 5 4 1.79E-06 0.00612 83
MEDIATE 4505 47 2.06E-06 0.00702 84
RECOMBINANT 2880 36 2.06E-06 0.00704 85
CTL 154 9 2.67E-06 0.00910 86
MICROGLOBULIN 39 6 2.67E-06 0.00912 87
STRAND 1108 21 2.76E-06 0.00942 88

(continued over the page)
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Table 3.4: Results of re-analysing the ISG gene list with Gtotai as gene universe
(continued)

Term Chip
frequency

List
frequency p-value Bonferroni

/7-value Rank

RECOGNIZE 2007 29 2.77E-06 0.0094 89
ALSO 6842 60 3.03E-06 0.0103 90
DERIVE 3496 40 3.12E-06 0.0106 91
P69 6 4 3.57E-06 0.0122 92
VSV 19 5 3.61E-06 0.0123 93
DOUBLE 1235 22 3.76E-06 0.0128 94
INFLUENZA 75 7 4.27E-06 0.0146 95
AND-C 44 6 4.93E-06 0.0168 96
ADDITION 4483 46 5.24E-06 0.0179 97
NK 288 11 5.39E-06 0.0184 98
TNF 357 12 5.54E-06 0.0189 99
ISG 15 7 4 6.22E-06 0.0212 100
PEPTIDE-MHC 7 4 6.22E-06 0.0212 101
NEW 4044 43 6.40E-06 0.0218 102
TRANSCRIPTION 4045 43 6.44E-06 0.0220 103
C1R 22 5 6.73E-06 0.0230 104
NATURAL 979 19 7.61E-06 0.0260 105
EXTRACT 1876 27 8.41E-06 0.0287 106
NB4 49 6 8.47E-06 0.0289 107
MOREOVER 2653 33 9.13E-06 0.0311 108
CD8 378 12 9.51E-06 0.0325 109
HLA-C 24 5 9.70E-06 0.0331 110
EVADE 87 7 1.01E-05 0.0346 111
NECROSIS 809 17 1.09E-05 0.0373 112
ANALOGOUS 462 13 1.14E-05 0.0388 113
DAUDI 52 6 1.14E-05 0.0389 114
2-MICROGLOBULIN 25 5 1.15E-05 0.0392 115
INFLAMMATORY 1219 21 1.17E-05 0.0399 116
UBIQUITIN 552 14 1.35E-05 0.0460 117
FORM 4963 48 1.42E-05 0.0484 118
PATHOGEN 322 11 1.43E-05 0.0489 119

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni 
correction. Terms are ordered by increasing /?-values. This analysis was performed 
using all genes represented on the HG-U133A array as gene universe (N =13,441).
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3.4 D iscussion

This Chapter reports initial explorations regarding whether the classical 

hypergeometric distribution-based ORA framework can be expanded to mine text- 

based information, initially in the form of tokens extracted from PubMed abstracts. 

Analyses performed on selected public datasets show that plausible results that convey 

useful biological insights can be obtained using the proposed approach, provided that 

the gene universe is specified correctly. However, the usefulness of this approach is 

compromised by a marked over-representation of many additional and apparently non

specific and uninformative terms, which interspersed with the biologically relevant 

terms. These uninformative terms typically have relatively high frequencies in the 

background and in the studied gene list. It would thus appear that the probabilities of 

picking genes associated with these terms are higher than expected. This points to the 

background frequencies of these terms being under-estimated in the current statistical 

model.

As will be described in the following Chapters, the explanation for this effect appears 

related to an unequal representation of textual information across different genes on 

the array. An effect of this is that if a particular microarray experiment were focused 

on a particularly well-studied area of biology this can lead to a greater number of 

PubMed abstracts associated with the resultant gene list than might otherwise occur. 

This would in turn introduce a bias that affects the application of the classical 

hypergeometric test such that even a relatively modest increase in frequency of a 

common word would produce a significant /7-value. This is referred to as the 

annotation bias problem, and its cause is formally investigated in Chapter 4.



Chapter 4 

Exploration o f factors contributing to  

annotation bias, and its effect on ORA

4.1 Introduction

We have seen in the previous Chapter that the performance of the standard 

hypergeometric distribution-based ORA approach is not entirely satisfactory when it 

was applied to analyse terms extracted from PubMed abstracts. In addition to the 

biologically-plausible terms, many common and apparently somewhat uninformative 

terms were also identified as significantly over-represented. It was hypothesised that 

this undesirable effect is caused, at least in part, by an imbalance in the representation 

of textual information (as in the number of PubMed articles) across genes. 

Specifically, some areas of biology have traditionally been the subject of a greater 

level of research activity; this is reflected in relative coverage of different fields and 

topics in the biological literature. Gene lists generated from microarray experiments 

focusing on well-studied areas of biology are therefore more likely to be associated 

with a higher number of PubMed articles than might otherwise be expected. This in 

turn would introduce a bias that might affect the performance of the hypergeometric 

test.

The regulation of gene expression by the interferon-induced signalling pathway is an 

example of a well-researched biological system. Thus, the use of the ISG gene list for 

assessing the performance of the classical hypergeometric distribution-based ORA 

approach reflects what is a relatively well-studied area, with a substantial published 

literature. This can be illustrated by the number of PMIDs associated with the genes in
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this list. The 78 genes in the ISG gene list are annotated by 1382 PMIDs according to 

the EGID-to-PMID mapping scheme and the unique PMID corpus compiled as 

detailed in Sections 2.3.1 and 2.3.2. However, if one were to create a 78-gene list by 

random sampling from the same set of genes as the background, then (on average) 

only 625 PMIDs are expected to be associated with such a random gene list. In this 

example, the “real world” ISG gene list has more than twice the number of PMIDs 

associated with it than would be expected by chance. This phenomenon will be 

explored formally in the following sections with the use of a larger dataset.

4.1.1 Comparing the amount of PubMed citations in biologically- 
derived versus random gene lists

52 gene lists (the gene identifiers are in the form of Affymetrix probeset IDs) that 

were based on the use of the human HG-U133A array were collected from the 

published literature. The details of each list are summarised in Table A.l in Appendix 

A. For each of these gene lists, the probeset IDs were first reduced to a set of unique 

Entrez Gene IDs (EGIDs), then 1000 size-matched random gene lists were created by 

sampling the same number of unique EGIDs (without replacement) randomly from the 

same set of background genes on the reference array; the mean number of PMIDs 

associated with these random gene lists was compared with the amount of PMIDs in 

the corresponding literature gene list.

The results are summarised in Figure 4.1 and reveal two notable features. First, gene 

lists derived by experimental means (i.e. the result of mining a real biological dataset) 

tend to have more PMIDs associated with them than equivalently-sized random gene 

lists (Figure 4.1(a)). For some gene lists this effect is quite marked, with 22 (out of 52) 

gene lists have at legist 1.5-fold more PMIDs than expected by chance (Figure 4.1(b)). 

The same effect is seen in Figure 4.1(d), which shows a related metric, the annotation 

density (the number of PMIDs divided by the number of annotated genes in the gene 

list).

Second, one might expect the annotation bias to operate in two directions, insofar as a 

gene list from a popular area of research would be expected not only to have more 

well-annotated genes but also fewer very poorly-annotated genes. As shown in Figure
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4.1(c) there is evidence that this effect is present. Based on the text corpus used in this 

analysis, one would expect to find 26-30% unannotated genes (i.e. genes that do not 

have any PMID) in a random gene list of any size. However, as shown in Figure 

4.1(c), the experimentally-derived gene lists tend to contain a lower proportion of 

unannotated genes than would be expected by chance. Similar trends towards an over

representation of well-annotated genes, and an under-representation of poorly- 

annotated genes, was also seen for gene lists derived from experiments using the 

Affymetrix human HG-U133 Plus 2.0 array (Figure 4.2).

To determine if the same applies to other model organisms, the analysis was repeated 

on gene lists derived from microarray experiments using the mouse, rat, Arabidopsis, 

Drosophila, zebrafish, Xenopus and C. elegans arrays (details of these gene lists can 

be found in Appendix A). Indeed, gene lists based on popular model organisms such 

as mouse and rat produced similar trends as that seen in the human data (Figures 4.3 

and 4.4). The effect is also seen, albeit with a less dramatic fold difference between 

the observed and expected PMID counts, for literature gene lists derived from less 

well-annotated species such as Arabidopsis (Figure 4.5), Drosophila (Figures 4.6 and 

4.7), zebrafish (Figure 4.8) and Xenopus (Figure 4.9). The only exception is C. 

elegans, which produced a somewhat inconclusive picture (Figure 4.10), with a 

substantial number of smaller gene lists showing fewer associated PMIDs than would 

be expected by chance.
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Figure 4.1: Annotation bias analysis for gene lists from HG-U133A
52 gene lists that were based on the human HG-U133A chip were collated from the 
published literature, and for each of these 1000 equivalently-sized random gene lists 
were created, (a) A comparison of the number of PMIDs associated with the literature 
and random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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Figure 4.2: Annotation bias analysis for gene lists from HG-U133 Plus 2.0
54 gene lists that were based on the human HG-U133 Plus 2.0 chip were collated from 
the published literature, and for each of these 1000 equivalently-sized random gene 
lists were created, (a) A comparison of the number of PMIDs associated with the 
literature and random gene lists, (b) Fold-change in the amount of PMIDs between the 
literature (observed) and random (expected) gene lists, (c) A comparison of the 
proportions of genes without PMID citation in the literature and random gene lists, (d) 
A comparison of the annotation densities in the literature and random gene lists. 
Annotation density was calculated as the number of PMIDs divided by the number of 
annotated genes in the gene list.
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Figure 4.3: Annotation bias analysis for gene lists from MG-U430 2.0
40 gene lists that were based on the mouse MG-U430 2.0 chip were collated from the 
published literature, and for each of these 1000 equivalently-sized random gene lists 
were created, (a) A comparison of the number of PMIDs associated with the literature 
and random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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Figure 4.4: Annotation bias analysis for gene lists from RAT230 2.0
45 gene lists that were based on the RAT230 2.0 chip were collated from published 
the literature, and for each of these 1000 equivalently-sized random gene lists were 
created, (a) A comparison of the number of PMIDs associated with the literature and 
random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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Figure 4.5: Annotation bias analysis for gene lists from Athl
67 gene lists that were based on the Arabidopsis Athl chip were collated from the 
published literature, and for each of these 1000 equivalently-sized random gene lists 
were created, (a) A comparison of the number of PMIDs associated with the literature 
and random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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Figure 4.6: Annotation bias analysis for gene lists from DrosGenomel
44 gene lists that were based on the Drosophila DrosGenomel chip were collated 
from the published literature, and for each of these 1000 equivalently-sized random 
gene lists were created, (a) A comparison of the number of PMIDs associated with the 
literature and random gene lists, (b) Fold-change in the amount of PMIDs between the 
literature (observed) and random (expected) gene lists, (c) A comparison of the 
proportions of genes without PMID citation in the literature and random gene lists, (d) 
A comparison of the annotation densities in the literature and random gene lists. 
Annotation density was calculated as the number of PMIDs divided by the number of 
annotated genes in the gene list.
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Figure 4.7: Annotation bias analysis for gene lists from Drosophila2
29 gene lists that were based on the Drosophila2 chip were collated from the
published literature, and for each of these 1000 equivalently-sized random gene lists
were created, (a) A comparison of the number of PMIDs associated with the literature
and random gene lists, (b) Fold-change in the amount of PMIDs between the literature
(observed) and random (expected) gene lists, (c) A comparison of the proportions of
genes without PMID citation in the literature and random gene lists, (d) A comparison
of the annotation densities in the literature and random gene lists. Annotation density
was calculated as the number of PMIDs divided by the number of annotated genes in
the gene list.
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Figure 4.8: Annotation bias analysis for gene lists from Zebrafish
25 gene lists that were based on the Zebrafish chip were collated from the published 
literature, and for each of these 1000 equivalently-sized random gene lists were 
created, (a) A comparison of the number of PMIDs associated with the literature and 
random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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Figure 4.9: Annotation bias analysis for gene lists from Xenopus laevis
18 gene lists that were based on the Xenopus laevis chip were collated from the 
published literature, and for each of these 1000 equivalently-sized random gene lists 
were created, (a) A comparison of the number of PMIDs associated with the literature 
and random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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Figure 4.10: Annotation bias analysis for gene lists from Celegans
28 gene lists that were based on the Celegans chip were collated from the published 
literature, and for each of these 1000 equivalently-sized random gene lists were 
created, (a) A comparison of the number of PMIDs associated with the literature and 
random gene lists, (b) Fold-change in the amount of PMIDs between the literature 
(observed) and random (expected) gene lists, (c) A comparison of the proportions of 
genes without PMID citation in the literature and random gene lists, (d) A comparison 
of the annotation densities in the literature and random gene lists. Annotation density 
was calculated as the number of PMIDs divided by the number of annotated genes in 
the gene list.
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4.1.2 Comparing the amount of GO annotations in biologically- 
derived versus random gene lists

Due to its comprehensiveness and convenient data structure for high-throughput data 

mining, Gene Ontology (GO) is one of the most popular annotation resources used in 

existing ORA tools. To determine whether there is also an excess of GO annotations 

inherent with the literature gene lists, GO terms associated with genes represented on 

the selected human, mouse, rat, Drosophila, zebrafish, and C. elegans arrays were 

identified using the mapping scheme given in the 4gene2go’ file1. Due to the lack of 

GO-to-EGID mappings for Arabidopsis and Xenopus laevis, these two species were 

omitted from this analysis. All aspect of GO (biological process, molecular function 

and cellular component) was used, while GO terms without evidence codes were 

removed. Using the same approach as that described in Section 4.1.1, the number of 

GO terms annotated to genes in the literature gene lists were determined and 

compared with that expected in a set of equivalently-sized random gene lists.

Results based on the well-annotated and less well-annotated species were shown in 

Figures 4.11 and 4.12, respectively. With the exceptions of Drosophila and C. elegans, 

literature gene lists derived from the remaining species were generally associated with 

more GO terms than random gene lists. However, the magnitudes of the differences 

between the observed and expected GO counts are typically less dramatic than that 

seen for PubMed citations. To illustrate this point, consider the 52 literature HG- 

U133A literature gene lists. The fold-change between the observed and expected GO 

counts is between 0.8 and 1.3, with only three gene lists having 1.3-times more GO 

terms than expected by chance. In contrast, for the same set of gene lists, as many as 

22 gene lists (42%) have at least 1.5-times more PMIDs than expected by chance.

1 ftp://flp.ncbi.nih.gov/gene/DATA/gene2go.gz; time stamp: 24 Jan 2008.

ftp://flp.ncbi.nih.gov/gene/DATA/gene2go.gz
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Figure 4.11: GO-based annotation bias analysis for gene lists derived from well- 
annotated species
The amount of GO terms associated with genes in the literature and random gene lists 
derived from human (HG-U133A, HG-U133 Plus 2.0), mouse (MG-U430 2.0) and rat 
(RAT 230 2.0) were compared. ‘Observed #GO’ represents the number of GO terms 
in the literature gene lists; ‘Expected #GO’ represents the mean number of GO terms 
calculated from 1000 size-matched random gene lists.
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Figure 4.12: GO-based annotation bias analysis for gene lists derived from less 
well-annotated species
The amount of GO terms associated with genes in the literature and random gene lists 
derived from Drosophila (DrosGenomel, Drosophila 2.0), zebrafish (Zebrafish) and C. 
elegans (Celegans) were compared. ‘Observed #GO’ represents the number of GO 
terms in the literature gene lists; ‘Expected #GO’ represents the mean number of GO 
terms calculated from 1000 size-matched random gene lists.
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4.1.3 Implications for existing ORA approach

The above findings suggest that there is an excess of annotation associated with 

highly-annotated gene lists. The predicted consequence of this on the use of classical 

hypergeometric test for identifying over-represented PubMed tokens is that certain 

tokens (in particular common terms) would be shifted towards appearing over

represented simply because the background frequencies of these tokens are 

artefactually under-estimated (this phenomenon is illustrated with examples in Section 

5.1.1). Therefore even a modest increase in token frequency of these common terms 

would appear to yield a significant hypergeometric p-value. This would then result in 

a mixture of biologically-plausible and non-specific terms being called significantly 

over-represented by the classical hypergeometric test-based ORA approach, as is seen.

Since GO terms and PubMed tokens are fundamentally different in structure and 

nature, it is difficult to assess the extent to which annotation bias would affect the 

performance of GO-based ORA. In particular, GO involves a systematic 

representation of knowledge and links between processes and genes; whether a 

particular GO term is associated with a gene based on a handful of published papers, 

or several thousand, the result is still a single link. As such, one might expect some of 

the potential for annotation bias to have been removed in GO. However, if a particular 

biological process is better studied, it would seem intuitive that there may therefore be 

more genes involved in it to be known (all other things being equal), and thus the GO 

term associated with that process would be more likely to appear significant than 

others. Both Blaschke et al. (2001) and Khatri and Draghici (2005) have pointed out, 

such annotation bias present in the ontological databases should be taken into account 

during enrichment analysis. Unfortunately, this problem remains unresolved, and to 

date has largely been overlooked by existing ontological tools that implement ORA.

In the next sections, the relationships between annotation bias, gene age and trends of 

biological research will be investigated. Solutions for overcoming annotation bias and 

novel approaches for identifying significantly enriched PubMed tokens within a gene 

list will be presented in subsequent Chapters.
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4.2 Gene age

A well-studied gene may in part reflect one that has been known for many years, thus 

allowing time for a substantial corpus of literature regarding it to be accumulated. To 

investigate the possible effect of this aspect of the history of recent scientific research, 

the “ages” for 28,424 human genes were determined and the numbers of PMIDs 

associated with each were compared. Here, “gene age” is defined as an approximate 

measure of how long a gene has been “known” and researched upon relative to other 

genes, and this usage should not be confused with the concept of the molecular 

timescale of evolution in the genome.

In this analysis, the age of a gene was inferred on the basis of two criteria: i) when the 

gene was first cited in the published literature, and ii) when the gene was first 

integrated into the public databases. An overview of how the gene ages were derived 

is shown in Figure 4.13, while the methodological details are described below.

4.2.1 Gene age indicators

Using a combination of PubMed, OMIM (Online Mendelian Inheritance in Man) 

(Amberger et al. 2009) and HGNC (HUGO Gene Nomenclature Committee) (Bruford 

et al 2008), four types of possible age indicators were derived for each of the 28,424 

human genes.

1. PubMed earliest: date of the earliest PubMed article that described the gene

2. OMIM earliest', date of the earliest article cited in an OMIM record for which the 

gene is described

3. OMIM creation: date on which the gene first appeared in an OMIM record

4. HGNC approved: date on which the gene symbol was first approved by HGNC
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Figure 4.13: Overview of the steps in the computation of gene age
Step 1: Four age indicators, denoted as PubMed earliest, OMIMearliest, 
OMIMcreation and HGNC approved, were derived using a combination of resources 
including PubMed, OMIM and HGNC. Step 2: PubMedearliest and OMIM earliest 
were combined to give the age estimate called ‘Literature-based age’; while 
OMIM creation and HGNC approved were combined to give a second age estimate 
called ‘Database-based age’. Step 3: The literature- and database-based ages were 
combined to give the final gene age measure known as the ‘Consensus gene age’.

To obtain PubMed earliest, PubMed citations that are associated with the set of 

human genes were identified based on the mappings provided in the ‘gene2pubmed’ 

file . For each gene, the earliest article describing it was determined and the year of 

publication of this article was recorded. The values of PubMed earliest lie within the 

range [1950, 2007].

OMIM earliest and OMIM creation were inferred from OMIM. OMIM is a database 

of human genes and genetic disorders. Its content is based exclusively on the 

published biomedical literature. OMIM entries that are relevant to the set of human 

genes were downloaded in XML format from the NCBI database based on the 

mappings provided in the ‘mim2gene’ file . Each OMIM gene entry contains sections

2 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz; time stamp: 25 Oct 2007.
3 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene; file downloaded on 15 Nov 2007.

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene
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of text describing the current knowledge about the gene (e.g. structure, function, 

location and linkage information) and literature references. OMIM earliest and 

OMIM creation were derived from the sections “References” and “Creation Date”, 

respectively. The “References” section contains a list of all the articles cited in the 

OMIM entry. From this, the publication date of the earliest article was determined and 

this corresponds to OMIM earliest. The “Creation Date” field specifies the date on 

which the OMIM entry was created and this corresponds to OMIM creation. The 

values of OMIM earliest and OMIM creation lie within [1798, 2007] and [1986, 

2007], respectively.

HGNC approved was derived from the HGNC database. The “All Data” version of 

the database output was downloaded in text format from the HGNC website4. HGNC 

assigned four types of dates to each gene: 1) Date Approved, which represents the date 

when the gene symbol and name were approved by HGNC, 2) Date Modified, which 

represents the date when the database entry was modified by HGNC, 3) Date Symbol 

Changed, which represents the date on which the gene symbol was last changed by 

HGNC from a previously approved gene symbol, and 4) Date Name Changed, which 

represents the date on which the gene name was last changed by HGNC from a 

previously approved gene name. HGNC approved was based solely on Date 

Approved because the other dates are less informative as to when a gene was first 

integrated into the HGNC database. The values of HGNCapproved lie in the range 

[1986, 2007].

4.2.2 Consensus gene age

Based on PubMed earliest, OMIM earliest, OMIM creation and HGNC approved 

two age estimates were derived for each of the 28,424 human genes:

1. Literature-based age. This provides an approximate measure of the date on which 

a gene was first described in the scientific literature. It was calculated by 

averaging the values from PubMed earliest and OMIM earliest. Its values range 

from 1892 to 2007.

4 http://www.genenames.org/data/gdlw_index.html; file downloaded on 15 Nov 2007.

http://www.genenames.org/data/gdlw_index.html
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2. Database-based age. This represents the date on which a gene was first integrated 

into the public database. It was calculated as the mean of OMIM creation and 

HGNC approved. Its values range from 1986 to 2007.

The distributions of the literature- and database-based ages are shown in panels (a) 

and (b) of Figures 4.14, respectively. Literature-based age registered a pronounced 

peak at year 2002. This could in part be due to the prominence of Human Genome 

Project around that period, which triggered an active phase of research into the 

sequencing and characterisation of human genes.

As shown in Figure 4.14(c), there is a good correlation between the literature- and 

database-based ages. Therefore, in order to provide a single measure of relative (rather 

than absolute) gene age, a ‘consensus gene age’ was calculated for each gene by 

taking average of the literature- and database-based ages. The values of consensus 

gene age calculated using this method range between 1939 and 2007 and its 

distribution is shown in Figure 4.14(d).

In the context of this analysis, a gene with a consensus age of 1990 implies that it was 

discovered in approximately 1990, and is considered “older” (that is, has been studied 

for longer) than a gene with a consensus age of 1998. Throughout the rest of this 

Chapter, the concept “older genes” will be used to refer to genes that have been 

known for longer, whilst “younger genes” referring to genes that have only been 

described more recently.
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Figure 4.14: Distributions and characteristics of the literature-based age, 
database-based age and consensus gene age
(a) Histogram of literature-based age. (b) Histogram of database-based age. (c) Scatter 
plot of literature- and database-based ages. The red dashed line represent they = x line. 
Note that a small amount of ‘noise’ has been added to the data to break ties. This 
operation is only for plotting purpose and does not affect the calculation of consensus 
gene age. (d) Histogram of consensus gene age.
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4.3 Relationship between annotation bias and gene 
age

Scientific research is highly dynamic, with new fields continue to emerge, others gain 

or lose popularity over time. Some areas of biology and their constituent genes attract 

more interest from the scientific community (for example, if they are associated with 

major public health issues and thus attract significant levels of research funding), 

leading to a larger body of literature related to them being generated. A natural 

consequence of this is an unequal amount of publication data across genes. This is 

reflected in Figure 4.15, which examines the distribution of citation data over the 

28,424 human genes stratified by consensus gene age. As might be expected, one 

trend is that younger genes (those that have only recently been described) have 

markedly fewer PubMed citations associated with them, whereas older genes are 

generally better studied and cited by more PubMed articles.

The effect seen for individual genes is paralleled by a similar effect regarding the 

mean age of genes in biologically-derived gene lists. To explore this, a mean age was 

calculated for each of the 52 HG-U133A literature gene lists by averaging the 

consensus ages of its constituent genes, and this was then compared to the mean age 

of genes found in equivalently-sized random gene lists. As can be seen in Figure 

4.16(a), gene lists generated from “real-life” biological experiments tend to be biased 

towards containing older genes (that is, ones that have been studied for longer). Most 

literature-derived gene lists have an overall consensus age that is older than the mean 

age of a random gene list (i.e. 1996 in this case). There is a strong trend whereby those 

gene lists showing an excess of PMID annotation are also those whose constituent 

genes have been known for longer (Figure 4.16(b)). Similar trends were also observed 

for gene lists derived from the human HG-U133 Plus 2.0 array when a similar analysis 

was carried out (Figure 4.17).
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Figure 4.15: Amount of citation data by consensus gene age
The 28,424 human genes were split into groups according to their consensus gene age 
and the amount of PMIDs per gene across these age groups were compared. Age 
groups corresponding to consensus gene age below 1970 were excluded because there 
are not enough observations in them (less than five in most cases) for producing 
representative plot. The y-axis is on logarithmic scale.
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Figure 4.16: Gene age and annotation bias analysis for gene lists derived from 
HG-U133A
A mean age was calculated for each of the literature gene lists by averaging the 
consensus ages of its constituent genes, (a) The mean age of the literature gene lists 
were compared to that of the random gene lists, (b) Fold-change in PMID was 
calculated by dividing the number of PMIDs associated with a literature gene list by 
the average PMID count in 1,000 equivalently-sized random gene lists. The vertical 
dashed line represents the mean age of a random gene list, which is 1996 in this case; 
the horizontal dashed line represents the level at which there is no difference between 
the numbers of PMIDs associated with the literature and random gene lists.
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Figure 4.17: Gene age and annotation bias analysis for gene lists derived from 
HG-U133 Plus 2.0
A mean age was calculated for each of the literature gene lists by averaging the 
consensus ages of its constituent genes, (a) The mean age of the literature gene lists 
were compared to that of the random gene lists, (b) Fold-change in PMID was 
calculated by dividing the number of PMIDs associated with a literature gene list by 
the average PMID count in 1,000 equivalently-sized random gene lists. The vertical 
dashed line represents the mean age of a random gene list, which is 1998 in this case; 
the horizontal dashed line represents the level at which there is no difference between 
the numbers of PMIDs associated with the literature and random gene lists.
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4.4 The temporal dynamics of scientific research and 
annotation bias

To gain an insight into the trends in biological research over the years, a basic analysis 

was performed based on an examination of the distribution of gene age and the level 

of research activity across different biological topics. In this analysis, biological 

process terms in the GO annotations were used as the basis for defining biological 

topics. The results are presented in Figure 4.18.

In Figure 4.18(a), the rows of the heatmap correspond to the biological processes and 

the columns correspond to the consensus gene ages. Each cell in the heatmap 

represents the fraction of genes that falls into the corresponding consensus age group 

for a specific biological process. For example, the GO term “immune response 

(G0:0006955)” contains 43 genes with an age of 1997, and there are a total of 2,847 

genes in that age group across all data; the fractional gene count in this case is thus 

43/2,847 = 0.015. The colour intensity is proportional to the value of the cell, with a 

more intense colour (deeper orange) indicates a higher fractional gene count. For each 

biological process, a mean age was calculated by averaging the consensus gene age of 

its constituent genes, and this was then used to arrange the rows such that the 

“younger biological processes” (i.e. processes that are biased towards more recently 

discovered genes) are positioned at the top of the heatmap while the “older biological 

processes” (i.e. processes that are biased towards genes that have been known for 

longer) are at the bottom. The dynamics of these biological processes were estimated 

by determining the number of papers associated with genes involved in these 

biological processes for each publication year between 1985 and 2007. Due to the 

skewed nature of the citation count distributions, the absolute counts were 

subsequently divided by the total number of papers published in each year so that the 

citation counts can be compared directly across time. The dynamics of the 20 oldest 

and 20 youngest biological processes are shown in panels (b) and (c) of Figure 4.18, 

and the identities of these biological processes were shown underneath the plots.
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Figure 4.18: Trends in biological research and gene age
(a) Heatmap showing the age distributions of genes annotated to 495 GO biological 
process (bp) terms. The colour intensity in the heatmap was proportional to the value 
of the cell for which darker colour (deeper orange) indicates higher fractional gene 
count, (b) Temporal dynamics of 20 oldest biological processes. The identities of 
these processes are listed in the table below the plot, (c) Temporal dynamics of 20 
youngest biological processes. The identities of these processes are listed in the table 
below the plot. For (b) and (c), an overall trend was calculated as the mean fraction of 
citations per year and shown as a red trend line in each plot.

(continued over the page)
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Figure 4.18 (continued)
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It is apparent in Figure 4.18(a) that some biological processes tend to be associated 

with older genes. These include themes such as complement activation/antigen 

processing, heme biosynthesis and oxygen transport. Interestingly, analysis at the 

level of research activities associated with the 20 oldest biological processes shows 

that they undergone a gradual decrease in proportional popularity over time (see 

Figure 4.18(b) and table below the plot). On the other hand, the 20 “youngest: 

biological processes such as those involving snRNA/tRNA processing, regulation of 

signal transduction and perception of smell, show a continuing rise in popularity 

between 1994 and 2007 (see Figure 4.18(c) and table below the plot).

These findings are consistent with the idea that biological science is in a state of 

continuous flux, where some areas of biology are more thoroughly researched, with 

genes participating in these processes being generally discovered earlier in time and 

better studied.

4.5 D iscussion

This Chapter describes a hitherto under-appreciated feature of gene lists derived from 

a typical microarray experiment, which is that they tend to have a greater level of 

associated PubMed articles than would be expected by chance alone. In this Chapter, 

potential causes of this bias were investigated, with particular reference to gene age 

and the historical development of scientific research activity. It was found that gene 

lists generated from real-life biological experiments tends to favour groups of genes 

and more established areas of biology that have been studied for longer, and for which 

a greater amount of published literature are available.

Whilst giving an insight into trends within biological research and the progress of 

scientific endeavour, the consequence of annotation bias for text-based ORA is a 

negative effect on the performance of standard hypergeometric distribution-based 

approach (see Chapter 3 for examples). This is because the background frequencies of 

some tokens, in particular the common and uninformative terms, can become under

estimated, resulting in more impressive hypergeometric p- values.
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The next Chapters describe several solutions to address this, by taking into 

consideration the imbalance in the published literature. The first is based on the use of 

a permutation test, which makes no assumption about the underlying data distribution. 

The features and performance of this approach are presented in the next Chapter.



Chapter 5 

ORA based on the use o f a perm utation test

5.1 Introduction

An underlying concept in text-based ORA is that if a list of differentially expressed 

genes contain subsets involved in one or more common functional roles, then it should 

be possible to detect and identify this based on similarities in the text of the abstracts 

corresponding to these genes. The abstracts associated with a gene list would therefore 

have words and concept terms in common, which can be broadly categorised into 

three groups: (i) biological terms that carry meaning related to specific biological 

functions, such as ‘mitosis’, ‘apoptosis’ and ‘methylation’; (ii) biological terms that 

are relatively non-specific with regard to biological function, such as ‘gene’, ‘protein’ 

and ‘clone’; (iii) common English words that occur frequently in all abstracts but 

contain no useful biological information, such as ‘the’, ‘o f  and ‘analysis’.

The first group of tokens is potentially the most semantically useful for establishing 

any functional relationships among genes. One goal of text-based ORA is therefore to 

determine if any biologically-specific terms as described in (i) above is significantly 

over-represented in a list of differentially expressed genes. Initial attempts to address 

this (Chapter 3) were based on the use of a parametric approach that assumes the 

distribution of token frequency (i.e. the number of genes associated with a specific 

token) in a gene list follow the hypergeometric distribution. While this approach has 

been successfully applied to many ontology-based enrichment analyses, it was found 

to be inappropriate for mining tokens extracted from PubMed abstracts due to an 

under-appreciated annotation bias problem. This results in biologically-derived gene

106
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lists having more PubMed citations associated with them than equivalently-sized gene 

lists created by random sampling from the genes included on the microarray that was 

used (Chapter 4).

5.1.1 Effect of annotation bias on token frequency distribution

To devise an appropriate method for mining tokens, it is important to understand the 

potential effect of annotation bias on token frequency distribution. As discussed in 

Section 4.1.3, the significance of certain tokens (especially the common terms) in 

highly-annotated gene list tends to be artefactually inflated under the classical 

hypergeometric distribution model. This is because the frequency distributions under 

the null hypothesis (i.e. the reference distributions used to derive the p-values) for 

these tokens are distorted when the gene list is associated with more PubMed articles 

(PMIDs) than expected by chance. This phenomenon is illustrated in the following 

analysis, using tokens in the ISG gene list as examples.

There are 78 genes (unique Entrez Gene IDs) in the ISG gene list, of which 68 are 

linked to at least one PMIDs in the text corpus used in this analysis (see Sections 2.3.1 

and 2.3.2 for details in the construction of text corpus). These 68 genes have excellent 

coverage in scientific literature: they are cited by a total of 1382 PMIDs in the text 

corpus and the mean number of PMIDs per gene is 20.3. However, if one were to 

create a large number of random gene lists by sampling 78 genes without replacement 

from the HG-U133A chip, then on average only 625 PMIDs are expected to be 

associated with these random gene lists, and the mean number of PMIDs per gene will 

drop to 11.3. Therefore, there is a 2-fold difference between the observed and 

expected numbers of PMIDs. This excess annotation needs to be taken into 

consideration when deriving the reference distribution for inferring p-value. To 

demonstrate this idea, consider the simple analysis described below, in which the 

theoretical null distribution simulated under the hypergeometric model was compared 

with the empirical null distribution generated under two different settings.

In the first setting, the empirical null distribution for a specific token was generated 

based on 1000 random gene lists, each of which was created by selecting 78 genes
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randomly without replacement from the HG-U133A chip. When this empirical null 

distribution was compared to the theoretical null distribution generated with the 

rh y p e r  function, it was found that there is a good agreement in terms of location and 

shape between the two distributions. This is shown in Figure 5.1 for three tokens 

‘interferon’, ‘replication’ and ‘after’, each corresponding to a case from biological, 

non-specific biological and common term, respectively. The empirical and theoretical 

null distributions appear to come from the same population in all three types of terms.

In the second setting, the empirical null distribution for a specific token was derived 

from 1000 random gene lists created by a biased sampling approach, in an attempt to 

emulate the situation where there are more PMIDs than expected by chance. Random 

gene lists were created by sampling without replacement from the HG-U133A array 

but only gene list that contains exactly 68 annotated genes and 1382 PMIDs was 

retained during the randomisation process. As such, the random gene lists created 

were biased towards those for which the constituent genes are better annotated. Figure

5.2 compares the empirical null distribution derived from these ‘highly-annotated 

random gene lists’ with the theoretical null distribution generated with the rh y p e r  

function. It can be seen that the theoretical and empirical distributions have similar 

shapes; however, the excess PMIDs caused a rightward shift in the empirical null 

distribution; tokens with high occurrence in the background (such as the common 

terms) were generally affected to a greater extent.

The above observations suggest that if annotation bias is not present, then the 

frequency distributions of tokens in a given gene list will follow the hypergeometric 

distribution. However, if the gene list is generated from a microarray experiment 

focusing on well-studied areas of biology and are associated with a higher number of 

PMIDs than might otherwise be expected, then the null distributions could be under

estimated under the simple hypergeometric distribution model. A consequence of this 

is an apparent over-representation of many common and non-specific biological terms, 

as the hypergeometric /7-values were inferred from distorted null distributions.
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Figure 5.1: A comparison of the empirical null distribution and theoretical null 
distribution simulated under the classical hypergeometric distribution model
This figure shows the empirical and theoretical null distributions for three tokens in 
the ISG gene list. They correspond to three types of terms that one might find in a 
typical abstract: (a) ‘interferon’ represents a specific biological term; (b) ‘replication’ 
represents a non-specific biological term; (c) ‘after’ represents a frequently occurring 
English word. The theoretical null distribution was simulated with the R function 
rh y p e r  (nn,  m, n,  k ) . In this function, the parameter nn is the number of 
random observations to create, m is the number of genes that contain the token of 
interest in the reference population, n is the number of genes that are not associated 
with the token of interest in the reference population, and k is the number of annotated 
genes in the gene list. As an example, for the token ‘interferon’ shown in panel (a), the 
null hypergeometric distribution were created by using rh y p e r  (nn=1000 , m=414, 

n = l 3 4 4 l - 4 l 4 / k=78) ,  where 13441 is the number of unique genes present on the 
HG-U133A chip. The empirical null distribution was generated from 1000 random 
gene lists, each of which was created by sampling 78 genes without replacement from 
the HG-U133A chip. Then, the numbers of genes that are associated with the selected 
tokens in each random gene list were determined. The theoretical (hypergeometric) 
null distribution is shown as a grey histogram and the empirical null distribution as a 
blue histogram.

(continued over the page)



Chapter 5. ORA based on the use o f a permutation test 110

Figure 5.1 (continued)
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Figure 5.2: A comparison of the empirical null distribution generated with a 
biased sampling approach and theoretical null distributions simulated under the 
classical hypergeometric distribution model
This figure shows the shift in background frequency distribution when there are more 
PMIDs than expected by chance. The same set of tokens as shown in Figure 5.1 was 
used here. The theoretical null distribution was simulated with the rh y p e r  function 
as described in the legend of Figure 5.1. To derive the empirical null distribution, 
1000 random gene lists that contain exactly 68 genes and 1382 PMIDs each were 
created by sampling without replacement from the HG-U133A chip. Then, the 
numbers of genes that are associated with the selected tokens in each random gene list 
were determined. The theoretical (hypergeometric) null distribution is shown as a grey 
histogram and the empirical null distribution as a blue histogram.

(continued over the page)
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Figure 5.2 (continued)
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5.1.2 Parametric versus nonparametric approaches

In hypotheses testing, a statistical problem is classified as parametric if the underlying 

distribution is known, and it is nonparametric if the distribution from which the 

observations are sampled is unclear (Gibbons and Chakraborti 2003). The 

hypergeometric test is an example of a parametric method because it is based on a 

specific set of assumptions and parameters regarding the nature of the underlying 

population distributions. A shortcoming of this approach, as highlighted in the 

analysis presented in previous section, is that the patterns of token occurrence in a 

gene list cannot be fully captured by using the simple hypergeometric probability 

distribution model. This is because the classical hypergeometric distribution does not 

have enough distribution parameters to account for the excess citations inherent with a 

highly annotated gene list.

Having encountered problems with the classical parametric approach, a nonparametric 

approach that does not make formal assumptions about the underlying population 

distribution was explored. Briefly, this method generates a reference distribution for 

the token of interest by means of data permutation, based on which a /7-value is then 

calculated and used to evaluate if the token is over-represented. The theoretical basis 

of this permutation test-based approach and how it is integrated into the ORA 

framework for mining tokens are the subjects of this Chapter. The performance of this 

approach is illustrated on two public microarray datasets in Section 5.4. Its 

practicalities and limitations will be discussed in Section 5.5.

5.2 Permutation-based testing

A popular technique for establishing statistical significance when the data do not meet 

the assumed parametric distribution is to resample the data. Resampling methods are 

computer-intensive procedures for probability estimation in which the significance of 

a test statistic is evaluated based on the empirical distributions generated from the 

observed data instead of the unknown parametric distribution (Fortin et al. 2002; Roff 

2006).
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5.2.1 Basic concepts

Permutation tests are a variant of resampling-based significance tests that draw 

random samples from the original data without replacement. An important assumption 

behind permutation tests is that the observations are independent, such that the 

rearrangements of the data are equally likely and exchangeable under the null 

hypothesis (Good 2005). This assumption does not apply perfectly in the context of 

text-based ORA analysis, as will be discussed later in Section 5.5.

The principle underlying a permutation test is to determine if a certain type of pattern 

or tendency that appears in data is simply a chance effect of randomness. Much of the 

pioneering work about permutation tests were made in the 1930s by Fisher (1935) and 

Pitman (1937). Recent work and a detailed exposition of permutation tests can be 

found in Good (2005) and Edgington and Onghena (2007).

A permutation test consists of first calculating a test statistic, S0bs, from the observed 

data. The test statistic is chosen to measure the extent to which the data show the 

pattern in question. Under the null model of no effect, the data are randomly 

rearranged and the test statistic recalculated, Srand- This process is repeated a large 

number of times, via resampling without replacement, to produce a set of Srand for 

constructing the reference distribution of the test statistic. By comparing the observed 

test statistic SQbs to the reference distribution, the probability of obtaining a value of 

Sobs as extreme or more extreme under the null hypothesis can be estimated. This 

probability is the /7-value of the permutation test, which is simply the proportion of 

Srand that are greater than or equal to S0bs amongst all the randomisation runs 

performed. The idea behind this is that if the pattern seen in the data is indeed due to 

chance alone (i.e. the null hypothesis is true), then S0bs should appear as a typical 

value drawn from the reference distribution. If S0bs takes an extreme value in the 

reference distribution, then the permutation test will produce a small p-value.

5.2.2 Exact and approximate randomisations

There are two ways of permuting the data to calculate /7-values by means of 

randomisation: an exact method and an approximate method. The first calculates exact
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/7-values by exhaustive computation of all possible combinations of the data, and is 

therefore also known as the “exact randomisation test”. Since the number of 

permutations increases as the factorial of the sample size, an exact test is not 

computationally practical for large datasets. For example, a sample size of 8 results in 

40,320 possible permutations; but with only 2 extra observations the number of 

permutations increases to 3,628,800.

When the number of observations in a dataset precludes an exhaustive randomisation, 

an “approximate randomisation test” that estimates the /7-values based on a subset of 

all possible permutations is often used. This approach is an asymptotic approximation 

of the exact test. The precision of the /7-value thus calculated is determined by the 

number of randomisations performed. For instance, the smallest /7-value that can be 

resolved based on 1000 randomisations is given by 1/1000 = 0.001.

5.2.3 How many randomisations are required?

Many researchers advocate using 10,000 or more randomisations to ensure that the 

estimated /7-value is stable (Manly 2006). However, accepting this recommendation 

depends on how precise the need to estimate /7-values is viewed. With ORA, there is 

an additional factor that needs to be taken into consideration when choosing the 

number of randomisations to use, which is that many tokens are tested simultaneously 

in a typical over-representation analysis, so the p -values derived from the permutation 

test have to be adjusted for multiple testing. This therefore suggests the use of a 

greater number of permutations than might otherwise be the case.

To illustrate this, consider a list of differentially expressed genes containing T tokens. 

To keep the overall probability of making any type I error at a = 0.05 with the 

Bonferroni correction procedure, the empirical /?-value derived from individual 

permutation test (p) must satisfy the condition p  < a/T. If the gene list is associated 

with, say, 1000 tokens, then the precision of /7-value that must be resolved by 

individual test is 0.05/1000 = 5 * 10‘5. As mentioned previously, the smallest possible 

/7-value that can be directly measured by permutation test is given by 1 IN, where N  is 

the number of randomisations carried out. Therefore at least 1/(5 x 10‘5) = 20,000



Chapter 5. ORA based on the use o f a permutation test 116

randomisations would be needed in this case. Using less than 20,000 randomisations 

would result in none of the tokens could be called significant at the 0.05 significance 

level after Bonferroni correction.

For reasons of computational efficiency one would wish to keep N  as low as possible. 

When the Bonferroni procedure is used to correct for multiple testing, the minimum 

number of randomisations Nmin required can be estimated as Nmin = T/a. According to 

this formula, we can see that for a chosen significance level, the number of 

randomisations required is directly proportional to the amount of tokens subjected for 

testing. To help minimise the number of randomisations required it is possible to 

remove tokens that are associated with only one gene in the input gene list prior to 

performing the permutation test, because by definition they are of no utility in 

defining links between genes since this requires shared tokens. In the permutation- 

based ORA approach described below, N  is provisionally set at 100,000. This setting 

is sufficient to detect a Bonferroni adjusted /7-value as small as 0.05 when the 

proposed approach is applied to reasonably-sized gene lists containing less than 5000 

tokens.

5.3 A permutation test-based ORA framework

The fundamental idea underlying the permutation-based ORA method described 

below is to create random gene list that matches the experimentally-derived gene list 

not only in the number of genes but also the amount of associated PMIDs. This is 

achieved by replacing the abstracts for each gene in the experimentally-derived gene 

list with other abstracts selected randomly without replacement from the text corpus. 

As such, the number of genes and abstracts (hence PMID) for each random gene list 

are kept the same as that of the experimentally-derived gene list. This permutation 

procedure is repeated 100,000 times to generate a null reference distribution for each 

token, and based on which the significance of each token is evaluated.
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The permutation-based ORA method consists of the following steps:

1. Token space reduction. To minimise the multiple hypotheses testing issue, tokens 

with List frequency equal to one are removed.

2. Specify null hypothesis and calculate the observed test statistic. The null 

hypothesis is that the number of genes associated with a particular token of 

interest in the input gene list is not significantly different from that seen in an 

equivalently-sized gene list for which the constituent genes were picked at random 

from the background gene population. The test statistic used to test this hypothesis 

is the List frequency of each token, denoted as SQbs.

3. Create random gene lists and recalculate the test statistic for the randomised data. 

To account for the effect of annotation bias, the null reference distribution of S0bs 

is derived from random gene lists that match the input gene list in terms of (i) 

number of annotated genes, (ii) number of PMIDs, and (iii) partition pattern of 

associated PMIDs. Here, partition pattern is defined as the distribution of PMIDs 

per gene in the gene list. For example, if the first gene on the list is cited by 20 

PMIDs, the second gene by 110 PMIDs, the third gene by 15 PMIDs, and so on. 

Then the partition pattern is expressed as {20, 100, 15,...}. Maintaining the 

partition pattern of PMIDs ensures that the annotation density of the random gene 

list is identical to that of the input gene list. Random gene list that meet the three 

criteria stated above is obtained by substituting the abstracts for each gene in the 

input gene list with other abstracts picked randomly without replacement from the 

text corpus. For each token under testing, its List frequency in the random gene list 

is determined.

4. P-value calculation. Step 3 is repeated for n = 100,000 times. A jackknifed p- 

value is calculated for each token as the proportion of times its frequency in the 

random gene list (Rt) is equal to or greater than that seen in the input gene list (S0bs) 

after a single observation is arbitrarily omitted from S0bs-

1 w 
P = ~

n /=i

The jackknifing operation ascertains the stability of the empirical p-value by 

minimising the influence of fluctuations in sampling error that may occur due to a

J ] (Ri * Sobs -  1) Equation (5.1)
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single deleted observation’s uniqueness. The rationale underlying jackknife 

adjustment and the reasons for using it can be found in Section 3.2.4.

5. Multiple testing correction and criterion o f over-representation. A token is 

considered as significantly enriched if its p-value is less than 0.05 after Bonferroni 

multiple hypothesis correction.

A flowchart summarising the computational steps described above is presented in 

Figure 5.3. The scripts for this method were developed and tested under R-2.6 and 

Perl v5.8.7.
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Input gene list and calculate SabS

No
Is R greater than or equal to jackknifed S0bs ?

Yes

No

Yes

Output /?-value

Is this the final permutation ? 
(condition: ‘yes’ \in  = 100,000)

Create random 
gene list

Add 1 to counter

Compute test statistic R from 
random gene list

Divide counter total by 
n to get probability

Figure 5.3: Computational steps of the permutation test-based ORA approach
The first step is to determine the observed test statistic S 0bs, which is the List 
frequency associated with each token in the input (experimentally-derived) gene list. 
Then random gene lists that match the input gene list in both gene and PMID counts 
are created, based on which the test statistic is recalculated. The test statistic derived 
from the randomised data is denoted as R. This permutation process is repeated 
100,000 times. For each token under test, a counter is initialised and the tally is 
increased by 1 when the value of R obtained is greater than equal to the value of the 
jackknifed S0bs. Finally, a p-value is calculated by dividing the counter’s sum by the 
total number of permutations performed.
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5.4 Experiments and results

5.4.1 Performance on real datasets

The performance of the permutation test-based approach was tested on the ISG gene 

list from Sanda et al. (2006) and the mitosis gene list reported in Lee et al. (2004). 

Details of these two gene lists can be found in Sections 2.2.1 and 2.2.2, respectively.

Example 1: ISG gene list

The ISG gene list is associated with 11,709 unique tokens according to the text corpus 

created for the HG-U133A array. To reduce the multiple hypotheses testing problem 

the token space was reduced by removing tokens that are associated with only one 

gene in the gene list. After filtering, 4841 tokens remained for testing.

The significance of each of the 4841 tokens was determined by calculating an 

empirical /7-value based on the creation of 100,000 random gene lists, each of which 

was matched for the number of genes and the amount of associated PMIDs. Since the 

smallest p -value that can be directly measured based on 100,000 permutations is 10'5, 

the best possible Bonferroni adjusted /7-value that could be detected is 10‘5 x 4841 = 

0.04841. The /?-value of token for which none of the random gene lists (out of the total 

100,000) has List frequency greater than that seen in the real gene list was 

provisionally set to <10'5, and the corresponding Bonferroni adjusted /7-value was set 

to <0.04841.

The results of this analysis are shown in Table 5.1. 23 tokens were identified as 

significantly over-representation (Bonferroni /7-value < 0.05). A comparison of these 

results with those obtained by using the classical hypergeometric test-based approach 

(cf. Table 3.2) reveal a good agreement between the two. For example, nine out of the 

top ten hits found by the hypergeometric test were also called significant by the 

permutation test. In fact, the set of significant tokens listed in Table 5.1 is a subset of 

the hits produced by the hypergeometric test-based method. However, the permutation 

test-based approach produced an improvement over the classical hypergeometric test- 

based approach, insofar as it successfully retained those biologically-plausible terms
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such as ‘interferon’, ‘IFN’, ‘antiviral’, whilst no longer called those less-specific terms 

as significant such as ‘line’, ‘intact’, ‘after’, ‘response’ and ‘synthesis’.

Table 5.1: Significantly over-represented abstract terms in the ISG gene list as 
identified using the permutation test

Term Chip
frequency

List
frequency

Empirical
p-value

Bonferroni
/7-value

Rank from 
ClassicalHG

INTERFERON 414 46 A © <!a <0.04841 1
IFN 245 35 < 10’5 <0.04841 2
IFN-BETA 71 18 < 10’5 <0.04841 3
ANTIVIRAL 176 23 A © <!a <0.04841 4
IFN-ALPHA 114 19 < 10'5 <0.04841 5
INDUCIBLE 1068 37

>/■)©V <0.04841 6
INTERFERON-ALPHA 59 14 < 10'5 <0.04841 7
INFECTION 1177 36 A © 0* <0.04841 8
VIRAL 892 32 < 10'5 <0.04841 9
TREAT 1817 40 A ©

CA <0.04841 12
DSRNA 60 11

V
)bV <0.04841 14

IMMUNITY 387 20 A ©
Ca <0.04841 15

OLIGO ADENYLATE 18 8 A © <0.04841 16
ISRE 31 9

oV <0.04841 18
LYMPHOBLASTOID 239 16 A © <0.04841 19
ISG 14 7 A © CA <0.04841 21
STOMATITIS 52 9 A © <!a <0.04841 25
HLA-CLASS 11 6 A © <!a <0.04841 26
ENCEPHALOMY OC ARDITIS 16 6 < 10’5 <0.04841 30
OAS 10 5 < 10’5 <0.04841 40
EVASION 65 9 10‘5 0.04841 27
GAMMA-INTERFERON 44 7 10'5 0.04841 44
INDIGENOUS 29 6 10’5 0.04841 53

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni 
correction. 100,000 randomisations were performed for the permutation test. 4841 
tokens were being tested during the permutation test and the best possible Bonferroni 
p -value attainable is 10'5 x 4841 = 0.04841. Any term with an empirical /?-value less 
than 10'5 is provisionally assigned a value of < 10'5, and the corresponding Bonferroni 
/?-value is set to be < 0.04841. For the purpose of comparison the rankings of the 
significant tokens as determined by the classical hypergeometric test-based approach 
are also shown and listed in the column ‘Rank from ClassicalHG’.
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Example 2: Mitosis gene list

The mitosis gene list was based on a study by Lee et al. (2004), in which the gene 

expression profiles of human CD4+ T cells at the early and late stages of 

differentiation were investigated using the Asymetrix HG-U133A array. Lee and 

coworkers annotated the gene list manually and suggested that these genes were 

mainly involved mitosis, cell cycle regulation or progression, DNA replication, 

recombination, or repair.

The 82 genes in the mitosis gene list are cited by 1160 unique PMIDs and associated 

with 10,725 unique tokens. This set of tokens were trimmed by omitting candidates 

linked to only one gene in the gene list, leaving 4424 tokens for mining. When these 

tokens were subjected to permutation testing, 13 were identified as significantly over

represented (Bonferroni /7-value < 0.05), as shown below.

Table 5.2: Significantly over-represented abstract terms in the mitosis gene list as 
identified using the permutation test

Term Chip
frequency

List
frequency

Empirical
/?-value

Bonferroni
/j-value

Rank from 
ClassicalHG

MITOTIC 485 28 < 10'5 < 0.04424 1
SPINDLE 298 23 < 10'5 < 0.04424 2
MITOSIS 443 26 < 10'5 < 0.04424 3
ANAPHASE 126 17 A o <!a < 0.04424 4
CHECKPOINT 267 19 < 10'5 < 0.04424 5
KINETOCHORE 64 11 < 10’5 < 0.04424 6
CENTROMERE 181 13 < 10’5 < 0.04424 7
DIVISION 426 18 < 10'5 < 0.04424 8
HELA 1393 31 < 10'5 < 0.04424 9
PROLIFERATING 523 19 < 10‘5 < 0.04424 10
PROMETAPHASE 60 8 < 10'5 < 0.04424 16
INTERPHASE 253 13 10’5 0.04424 17
CONGRESSION 21 6 A © <!/» < 0.04424 18

100,000 randomisations were performed for the permutation test. 4424 tokens were 
being tested during the permutation test and the best possible Bonferroni /7-value 
attainable is 10'5 x 4424 = 0.04424. Any term with an empirical /7-value less than 10'5 
is provisionally assigned a value of < 10'5, and the corresponding Bonferroni /7-value 
is set to be < 0.0424. For the purpose of comparison the rankings of the significant 
tokens as determined by the classical hypergeometric test-based approach are also 
shown and listed in the column ‘Rank from ClassicalHG’.
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As shown in Table 5.2, the significant terms appear relevant to the biology under 

studied. For examples, ‘mitosis’, ‘mitotic’, ‘spindle’, ‘kinetochore’ and ‘anaphase’ are 

related to the process of cell cycle, which are also comparable to the biological themes 

reported by the authors.

5.5 D iscussion

Analyses in this Chapter based on selected datasets suggests that the proposed 

permutation test-based ORA approach is capable of producing biologically-plausible 

results, while at the same times avoids calling as significant common terms that are 

artefactually over-represented due to annotation bias. This approach has the 

advantages of flexibility and relative ease of implementation as it supports 

significance testing without making formal distributional assumptions.

The main limitation of the proposed approach is that it is extremely computationally 

intensive, requiring six hours on a standard desktop computer to analyse each of the 

two datasets described above. The computation time increases dramatically with the 

size of gene list and the number of tokens to be tested. There are two additional issues 

that merit attention and offer the possibility of further improvements.

The first issue is related to the precision of the /7-values produced by the proposed 

method. Since the empirical /7-value is computed as the fraction of simulated counts 

more extreme or equal to that observed (Equation 5.1), poor estimations may arise in 

cases where the actual /7-values are small, or when the token being tested has very low 

background occurrence frequency. For example, the /7-value associated with token for 

which none out of 100,000 of the random gene lists created has List frequency greater 

than that seen in the real gene list would be computed as 0/100,000 = 0. In the current 

implementation, the empirical /7-values associated with such tokens are provisionally 

set to 1/100,000 (i.e. <10"5). A problem with this remedy is that due to the ties in the 

assigned /7-values, there is no way to rank these tokens according to their relative 

importance in the gene list (see Table 5.1 for examples). The precision of the 

empirical /7-values estimated could be improved by increasing the number of
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permutations performed; but this would entail an impractical number of permutations 

in order to control the family-wise error rates, especially if the input gene list is 

associated with a large number of unique tokens, making the permutation test-based 

ORA procedure computationally-intractable and extremely time-consuming.

The second issue is related to the assumption behind the proposed method. The 

independence assumption is used in bioinformatics and text mining because it allows 

the construction of an easy-to-fit probabilistic framework, even if it does not always 

apply perfectly (Raychaudhuri 2006). The widely implemented statistical models for 

testing the over-representation of GO terms within lists of differentially expressed 

genes, such as the hypergeometric distribution and Fisher’s exact test, are built on the 

assumption that genes are independent. As with these conventional ORA approaches, 

the independence assumption is essential to the construction of the null distribution in 

permutation-based testing. The permutation test-based ORA approach described in 

this Chapter assumes that the PMIDs (and hence tokens) associated with the genes in a 

given gene list are independent. However, this assumption may not be perfect, 

because lists of differentially expressed genes derived by experimental means are 

likely to have correlated expression levels and hence similar biology, with the result 

that the tokens in the associated PMIDs may also be correlated.

To account for any inter-relatedness among genes that might exist, an alternative 

permutation approach, which treats the subjects (e.g. class labels, phenotypes) as 

opposed to the genes as the sampling units, could be considered. This method would 

require the actual gene expression measurements. The idea would be to permute the 

class labels among individuals, re-run the gene-level analysis and rank the genes in 

order of significance, followed by generating random gene lists by running down the 

ranked list until the total number of PMIDs is identical to that of the actual (real) gene 

list. The reference distribution for each token would then be derived as usual by 

repeating the above permutation procedure a large number of times, based on which a 

p- value could be calculated.

While a subject sampling-based permutation model might allow for the correlation 

structure between genes, it suffers several limitations: 1) the random gene list created
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with this approach will match the real gene list only in the number of associated 

PMIDs but not the number of genes, thus introducing another source of variation into 

the analysis; 2) the total number of permutations that can be performed is limited by 

the number of subjects featured in the microarray experiment, so the proposed method 

may not be applicable to small dataset. For example, a microarray experiment 

consisting of eight samples (say four treatments versus four controls) would entail 8! 

= 40,320 different permutations, which is insufficient if 5000 tokens are to be tested 

simultaneously at a family-wise error rate of 0.05.

In conclusion, the results presented in this Chapter suggest that it is possible to 

account for the effect of annotation bias by means of a permutation test-based ORA 

framework. However, the practicality of this approach is limited by it being 

computationally intensive and time-consuming, making it unsuitable for routine 

analysis. The independence assumption remains a subtle and controversial issue; how 

to formally adjust for the correlation structure in the data during permutation testing is 

beyond the scope of this work and is an issue for future study.

In Chapters 6 and 7 two computationally tractable approaches, which are based on the 

detection of outliers and the extended hypergeometric distribution, will be presented 

and discussed.



Chapter 6 

ORA based upon the detection  o f outliers

6.1 Introduction

In this Chapter, an outlier detection-based approach for identifying terms in PubMed 

abstracts that are significantly over-represented in a list of differentially regulated 

genes is described. This method is motivated by the observation that, on a scatter plot 

of Chip frequency (the number of genes that are associated with a token of interest on 

the entire chip) versus List frequency (the number of genes that are associated with a 

token in the query gene list), there are a set of biologically-plausible terms that deviate 

substantially from the main data cluster and appear as outliers. This feature is 

illustrated in Figure 6.1(a), where the List and Chip frequencies associated with tokens 

in the ISG gene were plotted in two dimensions. On this plot the majority of the data 

points, each of which represents a token, form a funnel-shaped distribution 

characterised by a high variance in the values measured at the low end of the scale (to 

the left) and a low variance in the values measured at the high end of the scale (to the 

right). Common English words like ‘the’, ‘o f  or ‘and’ are always located at top right 

portion of the plot (tip of the funnel) because they are present in almost all abstracts, 

and therefore have high Chip and List frequencies. On the other extreme (to the left of 

the plot) are rarely observed tokens that are shared by only few genes in the gene list, 

but may be associated with a few or many instances on the entire chip. A set of 

outlying observations can be seen to deviate substantially from the main cloud of data 

(the funnel-shaped cluster). Upon closer inspection, it can be seen that these tokens 

are pertinent to the biology of the ISG gene list, including ‘interferon’, TSRE’ and 

‘antiviral’. ISRE corresponds to the interferon-stimulated response element; it is a

126
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DNA sequence in the promoters of ISGs (interferon-stimulated genes). The antiviral 

effect of interferon is mainly mediated via the JAK-STAT signalling pathway, which 

leads to the activation of transcription factor complexes such as interferon-stimulated 

gene factor 3 (ISGF3). ISGF3 then binds to the ISRE sequence in ISGs promoters, 

resulting in the transcriptional activation of many antiviral proteins such as MxA, 2-5' 

oligoadenylate synthetase. These proteins are able to interfere with viral replication 

and therefore protect cells from infections by viruses (Platanias 2005).

When the same type of scatter plot was produced for tokens associated with an 

artificial gene list that matched the ISG gene list in terms of gene and PMID counts, a 

similar funnel-shaped distribution was obtained. However, this time all tokens were 

found to be tightly clustered, and as expected no obvious outliers are present (Figure 

6.1(b)). One explanation for these observations is that the majority of the tokens in a 

gene list will not be over-represented because they are either common words or non

specific biological terms that are shared by most abstracts, or rare words that are not 

biologically interesting. These will form the main cloud of data points on the plot (the 

funnel-shaped cluster). On the other hand, biologically-plausible terms in a list of 

differentially expressed genes will be associated with more genes in the gene list and 

assume different token frequency distributions, thus appear to be separated from other 

observations in the background.

In order to identify these biologically-interesting terms, an outlier detection procedure 

that tests for discordancy based on the calculation of Z-scores and p-values was 

developed. The rest of the Chapter is constructed as follows. Three outlier labelling 

techniques that are related to the proposed approach will be introduced in Section 6.2. 

The outlier detection-based ORA framework developed for mining textual 

information will be detailed in Section 6.3. In Section 6.4, the overall performance of 

the proposed approach will be evaluated through simulation studies and application to 

three biological datasets. The normality assumption underlying the proposed approach 

will also be tested.
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Figure 6.1: Scatter plots of Chip versus List frequencies showing (a) the presence 
of outliers in a real gene list, and (b) the absence of outliers in a random gene list
Each observation on the scatter plot represents a token. Only tokens that are associated 
with at least two genes in the gene list were plotted. For comparison purposes, the 
random gene list was created in such a way that it matches the ISG gene list in the 
amounts of genes and associated PMIDs. Both axes are on logarithmic scale (logio).
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6.2 Outlier detection

The precise definition of an outlier depends on assumptions regarding the data 

structure and the mechanisms generating it. Hawkins (1980) described an outlier as 

“an observation which deviates so much from other observations as to arouse 

suspicions that it was generated by a different mechanism”. A similar definition was 

given by Barnet and Lewis (1994), who described an outlier as “an observation (or 

subset of observations) which appears to be inconsistent with the remainder of that set 

of data”. Although outliers are often viewed as errors, or cases that do not fit 

expectations, some researchers suggest that outliers could be special cases that carry 

important information and should be examined closely. For example, Kruskal (1988) 

suggested that “...miracles are the extreme outliers of nonscientific life. It is widely 

argued of outliers that investigation of the mechanism for outlying may be far more 

important than the original study that led to the outlier”.

There are two types of outliers: univariate and multivariate. Univariate outliers are 

cases that possess extreme values on a single variable. Multivariate outliers are cases 

with unusual combinations of scores on two or more variables. Various approaches to 

test for the presence of outliers in univariate and multivariate datasets have been 

proposed. Selection of these methods depends on the type of target outliers, 

distribution and nature of the data, are discussed in detail in Hawkins (1980), Iglewicz 

and Hoaglin (1993), Barnett and Lewis (1994) and Ben-Gal (2005).

In the following sections, three univariate outlier detection methods that are directly 

relevant to the outlier detection approach developed in this work for identifying 

biologically-interesting tokens within a gene list are described.

6.2.1 Z-scores

One approach to detect for outliers is to assume that they have a different distribution 

from the remaining observations generated from a target distribution (Davies and 

Gather 1993). With the Z-score method, the target distribution is taken to be a normal
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distribution. The outlier identification problem is then translated into the problem of 

identifying those observations that deviated substantially from the normal distribution.

The normal distribution has several important characteristics. The distribution is 

symmetrical around the mean, with approximately 68%, 95% and 99.7% of the data 

fall within 1, 2 and 3 standard deviations of the mean, respectively (Figure 6.2). Based 

on these, the likelihood of seeing extreme values in a normally distributed data can be 

estimated.

d

68%£COc<DQ 95%

99.7%

H+1ct h+2ct h+3o

Figure 6.2: Probability density plot for a standard normal distribution
p represents mean and a represents standard deviation.

The Z-score method is based on the property of a normal distribution. Suppose the 

univariate variable Y follows a normal distribution, then the Z-score is distributed with 

mean zero and standard deviation of one, denoted as N  (0, 1). For observations Y= {yi, 

y2,---,yn}, the Z-scores are given by:

Z. = ———  , where sd = ] i '=1 Equation (6.1)
sd V n -1

where y  represents the sample mean, and sd is the standard deviation.
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A general guide is to flag as outliers those observations with Z-scores exceeding 3 in 

absolute value, that is observations that lie 3 standard deviations away from the mean 

(Iglewicz and Hoaglin 1993). Alternatively, a /7-value can be inferred from the normal 

distribution as a means for evaluating the significance of the Z-score. For example, in 

a two-tailed test, the absolute Z-score associated with a 95% confidence level are 1.96 

and the corresponding p- value is 0.05. So if the Z-score lies somewhere between -1.96 

and +1.96, then the /7-value will be greater than 0.05. If the Z-score falls outside this 

range, then the /7-value will be less than 0.05. The critical Z-scores for two-tailed and 

one-tailed test are different. In one-tailed test, the critical Z-score corresponding to a 

/?-value of 0.05 is 1.645. Regardless of whether it is a two-tailed or a one-tailed test, 

the key idea is that a large absolute Z-score value (i.e. one located in the tails of the 

normal distribution) and small /7-value are indicative of an unusual observation that 

deviates from the normal distribution. Therefore, an observation may be considered as 

outlier if the associated /7-value is less than or equal to 0.05.

6.2.2 Af-scores

The sample mean and standard deviation used in the Z-score method can be affected 

by a single or a few unusual observations. The standard deviation, for example, can be 

inflated by neighbouring extreme values, resulting in the so-called ‘masking’ effect. 

Masking occurs when discordant observations cancel the effect of more extreme 

observation and prevent the outlier detection procedure from declaring any of the 

observations as outliers (Acuna and Rodriguez 2004; Hadi 1992). This problem can be 

solved by using resistant (robust) estimators such as the sample median and MAD 

(median absolute deviation) in place of the mean and standard deviation (Iglewicz and 

Hoaglin 1993).

Median and MAD are said to have a high breakdown point. The breakdown point of 

an estimator is defined as the largest percentage of the data that can be replaced by 

arbitrary values without causing the estimator to become infinite (Hampel 1971). For 

example, the median will tolerate up to 50% gross error before it can be made 

arbitrarily large; we say that its breakdown point is 50%. In contrast, the breakdown 

point for the mean is 0%, i.e. even one observation moved to infinity would make the
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mean infinite. The breakdown points for sample standard deviation and MAD are 

approximately 0% and 50%, respectively.

The “modified Z-score”, or M-score, is an alternative outlier labelling criterion to the 

Z-score. Given n normally distributed observations y, ~ N (p, c2), M-score is calculated 

by replacing the sample mean and standard deviation by the sample median and MAD, 

respectively:

0.6745( u - y  )
M, = -------------------  Equation (6.2)

MAD

where y  represents the sample median, and MAD = median^! y t -  y  |}. The constant

0.6745 is required to ensure £(MAD) = 0.6745c for large n.

Iglewicz and Hoaglin (1993) suggested an observation is flagged as an outlier when 

the absolute M-score is greater than 3.5. This criterion is based on the observation 

from a simulation study they performed to determine the value of M-score that caused 

2.5%, 5% and 10% of random normal observations to be labelled as outliers in a large 

number of datasets with sample sizes of 10, 20 and 40. Their simulation results 

showed that M-scores can serve as a guide for labelling outliers in normally 

distributed data.

6.2.3 Tukey’s fences and boxplot

Tukey (1977) suggested a simple graphical method for identifying outliers that is 

based on the boxplot and involves the construction of “inner fences” and “outer 

fences”. This method is appealing due to its simplicity, and because it is less sensitive 

to extreme values (breakdown point is approximately 25%) since it uses quartiles to 

measure the spread of a distribution.

Boxplot provides an example summary of the location, spread and skewness of a 

univariate variable. A typical boxplot is illustrated in Figure 6.3, in which the central 

line in the box shows the position of the median. The lower and upper boundaries of 

the box represent the location of the lower quartile (Ql) and upper quartile (Q3), 

respectively. The interval between Ql and Q3 is called the inter-quartile range (IQR).
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Since Ql and Q3 are the 25th and 75th percentiles, thus IQR contains the central 50% 

of the data.

o_

-p- Upper fence

Upper quartile (Q3) 

Median

Lower quartile (Q1)

Lower fence

Figure 6.3: A typical boxplot showing the definitions of its components

Tukey (1977) proposed the following rules for labelling outliers:

1. Inner fences are defined as Ql -  1.5 IQR, Q3 + 1.5 IQR.

2. Outer fences are defined as Ql -  3 IQR, Q3 + 3 IQR.

3. Observations falling between the inner and outer fences are “outside” outliers, 

while those falls beyond the outer fences are “far out” outliers.

There is no statistical basis for Tukey’s choice of 1.5 and 3 regarding the IQR to

construct the inner and outer fences. However, if the data is normally distributed, then

95% of the observations would fall within the interval of the inner fences, and 99% 

would be within the range of the outer fences.

A limitation with the boxplot method is that when the data are skewed, the 

information about the tails as given by the boxplot can become unreliable. Hoaglin et 

al., (1986) studied the probability properties of the boxplot rule and found that for a 

sample size in the interval (5, 20), approximately 25% of the samples simulated from
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a normal distribution will contain at least one outlier based on the cutoff points 

defined by the inner fences. Therefore, the boxplot rule provides only an exploratory 

tool for labeling outliers; observations flagged as “outside outliers” would need to be 

followed up and confirmed by more powerful methods such as the Z-scores or M- 

scores methods, the generalised extreme studentised deviate (ESD), or Dixon-type 

tests proposed by Iglewicz and Hoaglin (1993).

6.2.4 Data transformation considerations

The outlier detection methods described above implicitly or explicitly assume that the 

data or the outlier scores are normally distributed. When the distribution of a variable 

is skewed, or in other regards departs from the normal distribution, it is sometimes 

possible to transform the values of that variable to create a new variable that is more 

closely normal in shape. There are a variety of possible data transformations, such as 

adding constants, multiplying, squaring or taking the square root of the values, or 

converting to logarithmic scales. In some cases, an appropriate transformation can be 

chosen based on theoretical considerations or knowledge of the process generating the 

data. For example, taking the logarithm of observations from a lognormal or positively 

skewed distribution tends to make the data appear nearly normal in shape. 

Unfortunately, the choice of the “best” transformation is not always obvious. This was 

recognised by Box and Cox in 1964 when they proposed a family of parametric power 

transformations techniques for formally estimating a suitable transformation so that 

the transformed variable approximates a normal distribution as closely as possible 

(Box and Cox 1964).

Box-Cox transformation

Given a random variable y  from some distribution with only positive data values, the 

Box-Cox power transformation is defined as:

^  . ^ 0
^  Equation (6.3)
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where lambda X denotes the power of the transformation, and is the transformed 

observations. Consider the column vector y(A) = {y ^ \. . . ,  yj®} with n transformed 

observations that satisfies the linear model:

£{y(A)}= a0 Equation (6.4)

where a is a known matrix and 0 a vector of unknown parameters associated with the 

transformed observations. The central assumption was that for some unknown X, the 

transformed observations yfX) (where i = 1,..., n) can be treated as independently 

normally distributed with constant variance a2 and with expectations specified by 

Equation (6.4).

Two methods were proposed by Box and Cox (1964) for estimating the transformation 

parameter X. The first approach is based on maximising the likelihood function, which 

leads directly to point estimates of the transformation parameters. The second 

approach is based on the Bayes’s theorem. Since the maximum likelihood (MLE) 

approach is conceptually simpler than the Bayesian method and the profile likelihood 

function is easier to compute, therefore only the MLE method is considered here. The 

general idea behind MLE inference of X is outlined below; for further details about the 

Bayesian approach, see the original paper by Box and Cox (1964) or Pericchi (1981).

Box and Cox (1964) showed that the profile likelihood function for X is

4n» W  = -  'Xlo8 2 W  + a - ' ) l ;  logO ,) Equation (6.5)
X /=i

where <r2(>l) is the residual sum of squares in the analysis of variance of y^k\  Box and 

Cox suggested that one way to select the power of transformation is to use X that 

maximises the log-likelihood Lm2J f )  in Equation (6.5).

In general, easily interpretable X values such as 0 (log), 0.5, (square-root) or -1 

(inverse) would be preferred. Practical considerations from the context will also 

provide further guidance in the choice of X. For examples, values of X < 1 tend to 

deflate large values of Y  and are useful for transforming positively skewed 

observations. In contrary, values of X > 1 tend to inflate Y  and are useful for 

transforming negatively skewed observations.
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Since the work of Box and Cox (1964) a number of modifications have been proposed. 

For examples, Manly (1976) suggested an alternative version that is valid for negative 

data values; John and Draper (1980) presented the so-called “modulus transformation” 

that can be used with distributions that are already somewhat symmetric. A review of 

the works relating to these alternative approaches can be found in Sakia (1992).

6.3 OutlierDM: an outlier detection framework for 
identifying over-represented PubMed abstract 
terms based on Z-scores

6.3.1 Basic ideas

As shown in Section 6.1, biologically-interesting terms that convey useful information 

about the functional relationships amongst genes in a gene list tend to lie away from 

the main data cluster formed by the remaining terms when the Chip frequencies of 

these terms are plotted against the corresponding List frequencies. This is because of 

the inherent assumption that the majority of tokens in a gene list would be largely 

irrelevant to the biology under study (e.g. common English words), thus forming a 

background cloud of points, with enriched and potentially interesting terms appearing 

as outliers.

A feature that distinguishes the biologically-interesting terms from the others is that 

they often have lower Chip frequency than expected by chance, and appear as outliers. 

This phenomenon is illustrated in Figure 6.4. Motivated by this observation, an outlier 

detection-based procedure, which seeks within a group of tokens corresponding to the 

same List frequencies any tokens that have lower than expected Chip frequencies, was 

developed.

Given a gene list, all tokens associated with it are first divided into groups according 

to their List frequency. Each such group is equivalent to a vertical slice in the scatter 

plot, as illustrated in Figure 6.4(b) and (c). A local mean and standard deviation of the
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Figure 6.4: Outlying tokens tend to have lower Chip frequencies than expected
(a) The log2-transformed Chip frequencies for tokens in the ISG gene list are plotted 
against their corresponding log2-transformed List frequency. Highlighted in red boxes 
are two groups of tokens corresponding to List frequency 7 and 35. The distributions 
of their Chip frequencies are illustrated as boxplots in panels (b) and (c), respectively. 
It can be seen that biologically-plausible terms that are relevant to the ISG gene list 
such as ‘ISG’, ‘gamma-interferon’ and ‘IFN’ tend to have lower Chip frequencies 
than other tokens in the same group and appear as potential outliers.
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Chip frequencies are calculated for each such group. Through polynomial curve fitting, 

these local means and standard deviations are smoothed, followed by the calculation 

of a Z-score for each token. The statistical significance of this Z-score is inferred from 

the normal distribution to derive a /7-value for each token. This method is denoted as 

OutlierDM hereafter.

6.3.2 Algorithm and procedure

OutlierDM consists of the following computation steps:

1. Data filtering and pre-processing. To reduce token space, only tokens that are 

associated with at least two genes after jackknifing (i.e. List frequency - 1) are 

retained for further analysis. Then, the Chip and List frequencies are log- 

transformed to base 2. The reasons of applying this transformation will be 

provided in Section 6.4.1.

2. Local mean and standard deviation (SD) estimation. All tokens in the gene list are 

stratified into groups according to their List frequencies. Consider a group of n 

tokens corresponding to List frequency L with Chip frequencies given by (x/,..., 

x„). For this group of tokens, the parameters that define the outlier region, i.e. 

mean and SD, are estimated as follow:

- If n > 10, local mean and SD are calculated directly from (x/,..., x„).

- If 1< 72 < 10, information is used from neighbouring observations to give a 

better estimation of the local mean and SD. This is done by capturing (10 - n) 

tokens from the adjacent group for which the corresponding List frequency is 

less than L and combine the Chip frequencies from them with (x/,..., x„). Then, 

a local mean and SD are calculated based on the combined data.

3. Local mean and SD smoothing. The means and SDs estimated in Step 2 are 

smoothed as a function of List frequency by fitting polynomial curves to the 

frequency data. Locally smoothed mean and SD are computed for each group 

based on the fitted values derived from the best-fitting curves as illustrated in 

Figures 6.5 (a) and (b). The purpose of smoothing is to stabilise the variance in the 

data so as to obtain representative mean and SD values for Z-score calculation. 

The effect of smoothing is shown in Figure 6.5 (c) and (d).
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(a) Fitted means ~ List frequency (b) Fitted SD ~ List frequency

CM _

c

o .
-CO

2 3 5 61 4

O
CO
CL

£ZO

o

2 3 5 61 4

List frequency List frequency

(c) Mean ± 3 SD lines before smoothing (d) Locally smoothed mean ± 3 SD lines

1
Q.2 o

CM

o

CO

<0
Mean
Mean ± 3*SD

2 3 5 64 2 3 4 5 6
List frequency List frequency

Figure 6.5: Diagnostic plots for outlier detection procedure
The data shown here is based on a random gene list that contains 78 genes and 1382 
PMIDs, which was created by sampling without replacement from the HG-U133A 
array. The Chip and List frequencies of the tokens from this gene list were log- 
transformed to base 2. Then, these tokens were stratified into groups according to their 
List frequencies. For each group, the local means and standard deviations (SD) were 
calculated, (a) The local means are smoothed as a function of List frequencies using 
polynomial fitting. The red dashed line represents the curve of best fit. (b) The local 
SDs are smoothed as a function of List frequencies using polynomial fitting. The blue 
dashed line represents the curve of best fit. (c) Local mean ± 3 SD lines before 
smoothing, (d) Local mean ± 3 SD lines after smoothing. Both axes are plotted on 
log2 scale.
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4. Z-score andp-value calculation. A Z-score for token i is calculated as:

(Xi -  x )
Z, = ----------  Equation (6.6)

sd

where x is the Chip frequency, x is the locally smoothed mean, and sd is the 

locally smoothed standard deviation. The Z-score reflects the number of standard 

deviations an observed Chip frequency is above or below the local mean. A p- 

value is derived from the Z-score based on the standard normal distribution. An 

assessment of the validity of the normality assumption is presented in Section 

6.4.1.

5. Multiple testing correction and criterion o f over-representation. A token is 

considered as an outlier and over-represented in the gene list if it has a significant 

/7-value (Bonferroni p  < 0.05) and a negative Z-score. The negative sign associated 

with the Z-score is indicative of a lower Chip frequency than the local mean and 

implies over-representation in the context of this analysis.

The scripts for OutlierDM were developed and tested under R-2.6. The R codes to 

perform the various steps described above are shown in the next page, while the 

complete source code of OutlierDM can be found in Appendix B.
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Input: dat, a data m atrix contain ing tokens and their raw List and Chip frequencies
1 # Step 1: Data f i l t e r in g  and pre-processing
2 dat$List <- dat$List - 1
3 dat <- dat[dat$List > 1, ]
4 dat$List <- log2(dat$List)
5 dat$Chip <- log2(dat$Chip)
6
*7

dat <- dat[order(dat$List, decreasing=T), ]
/
8 # Step 2: Local mean and standard deviation (SD) estim ation
9 tokenGroups <- sort(unique(dat$L ist))

10 uniqMean <- vector(length=length(tokenGroups))
11 uniqSD <- vector(length=length(tokenGroups))
12 smoothedMean <- vector(length=nrow(dat))
13 smoothedSD <- vector(length=nrow(dat))
14
15 fo r (j in  1 :len g th (tokenGroups)){
16 i  <- dat$List == tokenGroups[j ]
17 n <- sum(i)
18 i f (n >= 10){
19 x <- d a t[ i, "Chip"]
20 uniqMean[j] <- mean(x)
21 uniqSD[j] <- sd(x)
22 }else{
23 weHaveGot <- n
24 k <- dat$List < tokenGroups[j]
25 resDat <- dat[k, ]
26 x  <- c (d a t[ i, "Chip"], resD at[1:(10-weHaveGot), "Chip"])
27 uniqMean[j] <- mean(x)
28 uniqSD[j] <- sd(x)
29 }
30 }
31
32 # Step 3 : Local mean and SD smoothing
33 chipMean.model <- lm(uniqMean ~ tokenGroups + I (tokenGroupsA2) +

I (tokenGroupsA3 ) )

34 : chip.mean <- chipMean.model$coef %*% rbind(l, tokenGroups,
tokenGroups A 2, tokenGroups * 3)

35: chipSD.model <- lm(uniqSD - tokenGroups + I (tokenGroups*2) +
I(tokenGroupsA3 ))

36: chip .sd  <- chipSD.model$coef %*% rbind(l, tokenGroups, tokenGroupsA2 ,
tokenGroupsx3)

37
38 for(p in  1 :length(tokenGroups)) {
39 s e l <- dat$List == tokenGroups[p]
40 smoothedMean[sel] <- chip.mean[p]
41 smoothedSD[sel] <- chip.sdfp]
42 }
43
44 # Step 4: Z-score and p-value ca lcu lation
45 Z.score <- (dat$Chip - smoothedMean)/smoothedSD
46 Raw.pval <- pnorm(Z.score)
47 Bonferroni.pval <- p.adjust(Raw.pval, method="bonferroni")
48 O utliers <- paste(dat[which(Bonferroni.pval < 0.05) ,  "Token"])

Output: Z-scores, p-values and significant tokens
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6.4 Experim ents and results

6.4.1 Assessm ents of the normality assumption

A critical assumption behind OutlierDM is that the Z-scores derived from the token 

frequency data can be modelled by a normal distribution with mean zero and standard 

deviation of one. For this assumption to hold, the Chip frequencies of tokens 

associated with a specific List frequency are expected to be approximately normal (or 

have a nearly symmetric density) because the Z-scores are derived from the Chip 

frequencies. However, empirical observations based on simulated datasets show that 

the raw Chip frequencies are not normally distributed. This is illustrated in Figure 

6.6(a), in which the histograms of Chip frequencies for tokens with List frequency 

equal to 3, 5, 7, 10, 13, 15, 16, 19, 24, 29, 34, 39, 46, 55 and 60 in a random gene list 

containing 78 genes and 1382 PMIDs, are shown. Simulated gene lists were used for 

this analysis because the objective here is to examine the distribution of raw Chip 

frequencies under the null hypothesis (i.e. when the data is completely random and no 

token is significant).

Distribution of Chip frequencies under the null hypothesis

The distribution patterns of the Chip frequencies shown in Figure 6.6(a) can be 

broadly divided into two groups. The first group includes those cases for which the 

distributions are slightly positively skewed. This group of observations typically has 

low List frequency with values between 3 and 24. Histograms corresponding to List 

frequency greater than 24 are classified as the second group. Due to the limited 

number of observations in each case, objective judgment could not be made regarding 

the shape of the distributions in the second group; visually they bear no obvious 

resemblance to any well-known distribution.

To determine if it is possible to transform the raw Chip frequency data into a new 

variable that is more nearly normal in shape, an optimal power index X was 

determined for each of the cases shown in Figure 6.6(a) by means of the Box-Cox 

transformation technique introduced in Section 6.2.4. Using the b o x c o x .f i t
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function implemented in the R package geoR1, the log-likelihood vector for a range of 

X values were computed. The value of X corresponding to the maximum log-likelihood 

(or equivalently minimum negative log-likelihood) is taken as the optimal X. This is 

shown in Figure 6.6(b), where the maximised log-likelihood is plotted against X for a 

trial series of X values. The optimal X can be read off from the plots.

Figure 6.6(c) shows the histograms of Chip frequencies after Box-Cox transformation 

using the optimal X. It can be seen that there are improvements in symmetry and 

normality for those cases with List frequency less than 15, and which are 

predominantly positively skewed data before Box-Cox transformation. The optimal X 

values determined for these cases are typically less than one. This makes theoretical 

sense as values of X < 1 tend to reduce the relative spacing of scores on the right side 

of the distribution more than the scores on the left side. As for those cases with List 

frequency greater then 15, the distributions of the Chip frequencies are still not 

symmetric even after transformation.

The above analysis shows that, to transform the Chip frequencies across the range of 

List frequency in a gene list to normality, different X values are required. For the 

current dataset, the values of the optimal X range from -4.1 to 2.7 (Figure 6.7(a)). 

Similar trends were observed when Box-Cox transformation was applied to three 

other simulated gene lists of size 100, 300 and 500. These are shown in panels (b), (c) 

and (d) of Figure 6.7, respectively. Clearly, these are not easily interpretable X values. 

Applying such complex transformations to the original Chip frequencies data would 

change the relative distances between data points in the same dataset to different 

extent, complicating the interpretation of the results.

As can be seen from Figure 6.7, a substantial proportion of the optimal X determined 

lie between -1 and 1. It was decided to use the logarithm transformation (X = 0) of 

base 2 as a compromise choice because the log transformation provides values that are 

easily interpretable and, as will be seen later, the Z-scores calculated on the basis of 

the log2-transformed data is close to being normally distribution.

1 geoR: a package for geostatistical data analysis using the R software; http://leg.ufpr.br/geoR/

http://leg.ufpr.br/geoR/
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Figure 6.6: Box-Cox transformation of Chip frequencies
This is a three-part figure that shows the distributions of Chip frequencies associated 
with tokens found in a typical random gene list before and after Box-Cox 
transformation. The random gene list used in this analysis contains 78 genes and 1382 
PMIDs, and was created by sampling without replacement from the HG-U133A array 
(NB: this is the same gene list as the one used to produce Figure 6.5). The examples 
shown here are based on tokens for which the associated List frequency equal to 3, 5, 
7, 10, 13, 15, 16, 19, 24, 29, 34, 39, 46, 55 and 60. Panel (a) shows histograms of the 
raw Chip frequencies. Panel (b) shows the Box-Cox plots for the chosen examples. In 
each plot, the value of lambda, 2, that correspond to the maximum log-likelihood 
value was read off as the optimal L  Panel (c) shows the histograms of Chip 
frequencies after Box-Cox transformation with the optimal L  Abbreviations used in 
the plot: List freq = List frequency; n = number of observations in the example.

(continued over the page)
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Figure 6.6 (continued)

(a) Histograms of raw Chip frequencies
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Figure 6.6 (continued)

(c) Histograms of Chip frequencies after Box-Cox transformation
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(a) Gene list size = 78 (b) Gene list size = 100
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Figure 6.7: Plots of optimal lambda versus List frequency
The values of optimal X (lambda) required to transform the Chip frequencies to 
normality were plotted against the corresponding List frequencies. Random gene lists 
of different sizes were created by sampling without replacement from the HG-U133A 
array. Details of the gene lists used to produce these plots are as follow: Panel (a) is 
based on a simulated gene list with 78 genes and 1382 PMIDs. This is the same gene 
list used in the analysis described in Figure 6.6. Panel (b) is based on a simulated gene 
list with 100 genes and 1181 PMIDs. Panel (c) is based on a simulated gene list with 
300 genes and 2528 PMIDs. Panel (d) is based on a simulated gene list with 500 genes 
and 3973 PMIDs. The x-axis is on logarithmic scale.
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Distribution of Z-scores under the null hypothesis

Six random gene lists of lengths (as in number of unique genes) 50, 100, 300, 500, 

1000 and 2000, were created by sampling without replacement from the reference 

HG-U133A array. The List and Chip frequencies associated with tokens in these 

random gene lists were determined and a log2 transformation applied to them. A Z- 

score was calculated for each token using the outlier detection method outlined in 

Section 6.3.2.

To assess the validity of the normality assumption under the null hypothesis, 

histograms and normal probability plots for the Z-scores derived from these random 

gene lists were examined. The results are presented in Figure 6.8. In the histogram, the 

sample’s Z-scores (black density curve) are plotted alongside a normal distribution 

simulated with mean of 0 and standard deviation (SD) of 1 (red density curve). On top 

of the histogram, the mean and SD of the sample’s Z-scores are shown. It can be seen 

that the sample’s Z-scores have a nearly normal distribution, with the fit becoming 

better as the size of gene list grows from 50 to 2000.

The distributions of Z-scores from shorter gene lists (e.g. between 50 to 300 genes) are 

slightly negatively skewed. This skew is more apparent from the normal probability 

plot, which compares each data point in the sample with its expected value in a 

standard normal distribution. In order to examine if this presents a serious problem to 

the outlier detection procedure, a number of simulations were carried out to estimate 

the false positive rates associated with gene lists of specific lengths.
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Figure 6.8: Distribution of Z-scores under the null hypothesis
To evaluate the validity of the normality assumption underlying the proposed outlier 
detection-based ORA approach, six random gene lists of different lengths were 
created. 50, 100, 300, 500, 1000 and 2000 genes were drawn at random (without 
replacement) from the HG-U133A array. The List and Chip frequencies associated 
with the tokens found in these gene lists were log2-transformed and their Z-scores 
calculated as described in Section 6.3.2. Then histograms and normal probability plots 
for Z-scores derived from the six random gene lists were produced. In the histogram, 
the Z-scores calculated using the outlier detection procedure (black density curve) was 
plotted alongside the normal distribution simulated with the R command 
rnorm  (n=1000 0 , mean=0, sd= l)(red  density curve). The normal probability 
plot (QQ-plot) was created by comparing each token in the random gene list with its 
expected value in a theoretical normal distribution. The blue dashed line represents the 
y  = x line.

(continued over the page)
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Figure 6.8 (continued)
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Figure 6.8 (continued)
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6.4.2 False positive rates under the null hypothesis

From the specificity perspective, an ideal ORA method should not find any significant 

terms in a random gene list. However, even when the data is completely random (i.e. 

the null hypothesis is true), any statistical test will reject the null hypothesis for a 

number of cases directly controlled by the chosen significance level (e.g. by setting a 

= 0.05). Therefore, it is important to verify that the proportion of false positives 

generate by the proposed method does not exceed this expected proportion.

To estimate the false positive rates associated with the proposed outlier detection- 

based ORA approach, 1000 random gene lists were created by randomly sampling 

Ngene unique genes from the HG-U133A array, where Ngene = 50, 100, 300, 500, 1000 

and 2000. These random gene lists were then analysed with OutlierDM. For each Ngene, 

a mean false positive rate was determined as follows:

1. The false positive rate (FP) for each gene list was calculated as the proportion of 

falsely rejected cases among all the tests performed:

where i = 1,2,...«. Here, n = 1000, which is the total number of random gene lists 

created for a specific Ngene. In the context of this analysis, false positive is defined 

as tokens that were called significantly over-represented in the random gene list.

2. The mean FP rate was calculated by averaging the FP values obtained from Step 1:

FPt = ---------------------- -------------- --------------
Total number of tokens tested in gene list i

Number of false positives in gene list i
Equation (6.7)

Mean FP rate Equation (6.8)

The results of this analysis are summarised in Table 6.1.
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Table 6.1: False positive rates of the Z-score-based outlier detection method

N1 'gene
Mean number of token 

tested per gene list
Mean number of false 
positives per gene list Mean FP rate

5 0 1 5 5 4 1 . 8 4 0 . 0 0 1 2 3

1 0 0 2 5 4 0 1 . 9 7 0 . 0 0 0 7 9

3 0 0 5 0 2 5 1 . 6 7 0 . 0 0 0 3 4

5 0 0 6 6 7 0 1 . 1 4 0 . 0 0 0 1 7

1 0 0 0 9 9 3 5 0 . 4 7 4 . 8 1 E - 0 5

2 0 0 0 1 4 7 2 8 0 . 1 7 1 . 1 8 E - 0 5

The mean FP rate for OutlierDM ranges from 1.18 x10"5 to 0.001 at a = 0.05, with 

shorter gene lists {Ngene < 300) being more susceptible to false positives. On average, 

it is possible to find up to two false positives when the query gene list has less than 

300 genes. As previously shown in Figure 6.8, the Z-score distribution tends to show a 

slight negative skewness for short gene lists (containing 50 to 300 genes). This slight 

deviation from normality could lead to a small number of observations to be falsely 

identified as outliers at the left tail region, and hence the higher FP rates for shorter 

gene lists. However, the Z-scores tend to assume a more nearly normal distribution as 

the size of gene list increases, and this leads to a fall in the FP rates.

6.4.3 Performance on real datasets

The performance of OutlierDM will now be illustrated using three datasets: the ISG 

gene list from Sanda et al. (2006), the glycolysis gene list reported in Vanharanta et al. 

(2006), and the mitosis gene list reported in Lee et a l (2004). These gene lists have 

already been introduced in previous Chapters when the classical hypergeometric 

distribution-based and the permutation-based ORA approaches were presented. Using 

the same gene lists here to demonstrate the performance of the outlier detection-based 

approach allow for cross comparisons of the various text-based ORA methods 

presented in this thesis.
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Example 1: ISG gene list

In total, 23 tokens were identified as significantly over-represented (Bonferroni p- 

value < 0.05). These terms are listed in Table 6.2 and their locations on the scatter plot 

are shown in Figure 6.9. All significant terms appear to be relevant to the biology of 

an interferon-regulated response.

Table 6.2: Over-represented abstract terms in the ISG gene list as identified 
using the Z-score-based outlier detection approach

Term Chip
frequency

List
frequency Z-score p-value Bonferroni

p-value Rank

INTERFERON 414 46 -12.6197 8.22E-37 2.81E-33 1
IFN 245 35 -9.5951 4.19E-22 1.43E-18 2
IFN-BETA 71 18 -7.5764 1.78E-14 6.06E-11 3
ANTIVIRAL 176 23 -6.7487 7.46E-12 2.54E-08 4
IFN-ALPHA 114 19 -6.7135 9.50E-12 3.24E-08 5
INTERFERON-ALPHA 59 14 -6.6209 1.78E-11 6.09E-08 6
OLIGO ADENYLATE 18 8 -6.0755 6.18E-10 2.1 IE-06 7
ISG 14 7 -5.7749 3.85E-09 1.31E-05 8
ISRE 31 9 -5.7076 5.73E-09 1.95E-05 9
DSRNA 60 11 -5.3972 3.39E-08 0.0001 10
HLA-CLASS 11 6 -5.3042 5.66E-08 0.0002 11
HLA-A 30 8 -5.1818 1.10E-07 0.0004 12
HLA-B 25 7 -4.8328 6.73E-07 0.0023 13
INDUCIBLE 1068 37 -4.7870 8.47E-07 0.0029 14
ENCEPHALOMYOCARDITIS 16 6 -4.7508 1.01E-06 0.0035 15
STOMATITIS 52 9 -4.7475 1.03E-06 0.0035 16
OAS 10 5 -4.4576 4.14E-06 0.0141 17
HLA-G 10 5 -4.4576 4.14E-06 0.0141 18
MXA 11 5 -4.3337 7.33E-06 0.0250 19
EVASION 65 9 -4.3333 7.34E-06 0.0250 20
INNATE 363 21 -4.2752 9.55E-06 0.0326 21
TAPASIN 12 5 -4.2207 1.22E-05 0.0415 22
VIRAL 892 32 -4.1831 1.44E-05 0.0490 23

Over-represented terms were defined as having /?-value < 0.05 after Bonferroni 
correction. The results were ordered by increasing /7-values. The gene universe used is 
that based on the HG-U133A chip and contains 9638 genes. In total, 3412 tokens were 
tested. Note that the negative sign associated with the Z-score is indicative of a lower 
Chip frequency than the local mean and implies over-representation in the context of 
this analysis.
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Outlier detection analysis of ISG gene list
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Figure 6.9: A scatter plot of Chip versus List frequencies for tokens in the ISG 
gene list
Terms that were identified as significantly over-represented (Bonferroni /7-value < 
0.05) in the ISG gene list are circled in red and the adjacent numbers corresponding to 
their rankings. The Z-scores and /7-values associated with the significant terms can be 
found in Table 6.2.

This set of result is also very similar to that produced by the permutation-based 

method (cf. Table 5.1). Six tokens reported as over-represented by the permutation- 

based approach but not found by OutlierDM are ‘infection’, ‘treat’, ‘immunity’, 

‘lymphoblastoic’, ‘gamma-interferon’ and ‘indigenous’. These tokens were assigned 

ranks of 24, 40, 34, 28, 31 and 33, respectively, by the outlier detection-based 

approach and fall short of the /7-value cutoff used.

On the other hand, there are also six tokens that were identified as significantly 

enriched by OutlierDM but not by the permutation-based method. These are ‘HLA-A’ 

(rank 12), ‘HLA-B’ (rank 13), ‘HLA-G’ (rank 18), ‘MxA’ (rank 19), ‘innate’ (rank 21) 

and ‘tapasin’ (rank 22). Except for the term ‘innate’, these tokens are specifically
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related to the functions and biology of interferon. From the biological point of view, 

this set of tokens appears somewhat richer in information content when compared to 

the set of tokens identified only by the permutation test.

OutlierDM also produced an improvement over the classical hypergeometric test- 

based approach (cf. Table 3.2) insofar as it successfully discarded those less-specific 

terms (such as ‘synthesis’, ‘molecule’ and ‘after’) caused by annotation bias. It is 

reasoned that the annotation bias effect should, in principle, also affect the background 

distribution, and thus an outlier detection approach may intrinsically compensate for 

the underlying annotation bias.

Example 2: Glycolysis gene list

The second example to demonstrate that an outlier detection-based approach can be 

used to account for annotation bias is based on the glycolysis gene list, which contains 

genes mainly involved in carbohydrate metabolism. When the glycolysis gene list was 

first analysed with the classical hypergeometric distribution-based method, a mixture 

of biologically-specific and uninformative terms were obtained (Table 3.3). When this 

gene list was re-analysed using OutlierDM, only four tokens (i.e. ‘glycolytic’, ‘aldo- 

keto’, ‘peroxidation’ and ‘nicotinamide’) were called over-represented; but the 

uninformative terms were successfully avoided. The results are shown in Table 6.3 

and their positions on the scatter plot are displayed in Figure 6.10.

Table 6.3: Over-represented abstract terms in the glycolysis gene list as identified 
using the Z-score-based outlier detection approach

Term Chip
frequency

List
frequency Z-score p -\alue Bonferroni 

p -\alue Rank

GLYCOLYTIC 71 12 -5.6983 6.05E-09 2.98E-05 1
ALDO-KETO 12 5 -4.7037 1.28E-06 0.0063 2
PEROXIDATION 102 12 -4.6662 1.53E-06 0.0076 3
NICOTINAMIDE 80 10 -4.2967 8.67E-06 0.0427 4

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni 
correction. The results were ordered by increasing /7-values. The gene universe used is 
that based on the HG-U133A chip and contains 9638 genes. In total, 4927 tokens were 
tested.
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Outlier detection analysis of glycolysis gene list
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Figure 6.10: A scatter plot of Chip versus List frequencies for tokens in the 
glycolysis gene list
Terms that were identified as significantly over-represented (Bonferroni p -value <
0.05) in the glycolysis gene list are circled in red and the adjacent numbers 
corresponding to their rankings. The Z-scores and /7-values associated with the 
significant terms can be found in Table 6.3.

Example 3: Mitosis gene list

The third example is based on the mitosis gene list. It contains 82 genes that were 

differentially up-regulated during T-cells differentiation. When this gene list was 

analysed with OutlierDM, 16 tokens were called significantly over-represented 

(Bonferroni /7-value < 0.05). These terms are listed in Table 6.4 and their positions on 

the scatter plot are shown in Figure 6.11. The significant terms are linked to cell-cycle 

regulation, cell-cycle progression and mitosis, which is in good agreement with the 

manual annotation reported by Lee et a l (2004). This result is also comparable to that 

obtained by the permutation-based approach (cf. Table 5.2). However, the outlier 

detection-based approach appear to be more sensitive in that it is able to detect seven

^
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extra hits that are not found by the permutation-based approach, including ‘CENP-A’ 

(rank 8), ‘aurora’ (rank 9), ‘BUB1’ (rank 10), ‘CENP-H’ (rank 11), ‘MAD2’ (rank 12), 

‘kinetochore-microtubule’ (rank 15) and ‘MTOC’ (rank 16). All of them are useful for 

interpreting the biology under studied.

Table 6.4: Over-represented abstract terms in the mitosis gene list as identified 
using the Z-score-based outlier detection approach

Term Chip
frequency

List
frequency Z-score /7-value Bonferroni

/>-value Rank

MITOTIC 485 28 -7.5344 2.45E-14 7.72E-11 1
SPINDLE 298 23 -7.2629 1.89E-13 5.96E-10 2
ANAPHASE 126 17 -7.2477 2.12E-13 6.67E-10 3
MITOSIS 443 26 -7.0524 8.79E-13 2.77E-09 4
CHECKPOINT 267 19 -5.9056 1.76E-09 5.53E-06 5
KINETOCHORE 64 11 -5.8943 1.88E-09 5.92E-06 6
CONGRESSION 21 6 -4.9647 3.44E-07 0.0011 7
CENP-A 15 5 -4.7392 1.07E-06 0.0034 8
AURORA 26 6 -4.6190 1.93E-06 0.0061 9
BUB1 9 4 -4.6112 2.00E-06 0.0063 10
CENP-H 4 3 -4.5986 2.13E-06 0.0067 11
MAD2 18 5 -4.4676 3.96E-06 0.0124 12
CENTROMERE 181 13 -4.4515 4.26E-06 0.0134 13
PROMETAPHASE 60 8 -4.3942 5.56E-06 0.0175 14
KINETOCHORE-

MICROTUBULE 12 4 -4.2226 1.21E-05 0.0380 15

MTOC 12 4 -4.2226 1.21E-05 0.0380 16

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni 
correction. The results were ordered by increasing /7-values. The gene universe used is 
that based on the HG-U133A chip and contains 9638 genes. In total, 3148 tokens were 
tested.
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Outlier detection analysis of m itosis gene list
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Figure 6.11: A scatter plot of Chip versus List frequencies for tokens in the 
mitosis gene list
Terms that were identified as significantly over-represented (Bonferroni p -value < 
0.05) in the mitosis gene list are circled in red and the adjacent numbers 
corresponding to their rankings. The Z-scores and p -values associated with the 
significant terms can be found in Table 6.4.

6.4.4 Z-scores versus Af-scores in text-based ORA

A concern with the proposed outlier detection-based ORA approach is that it can be 

susceptible to a phenomenon termed “masking”, in which presence of one (or more) 

outliers conceals the appearance of another outlier. Masking occurs when a small 

cluster of outliers attracts the mean and inflates the standard deviation in its direction, 

yielding small values for Z-scores (Hadi 1992). From the point of view of robust data 

analysis, the problem of masking is due to the fact that the mean and standard 

deviation used in Z-score have low breakdown point. To prevent these two estimators 

from being affected by a single or a few extreme values, the means and standard
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deviations are adjusted via local polynomial smoothing before they were employed to 

calculate the Z-scores (Step 3 of the OutlierDM algorithm described in Section 6.3.2). 

The effectiveness of this step depends largely on the spatial distribution of the token 

frequencies data and hence may not work perfectly for all datasets. An alternative to 

Z-score is the M-score method introduced in Section 6.2.2. M-score uses robust 

estimators, median and MAD, to measure a sample’s location and spread, so should 

(in theory) be more resistant to masking.

Assessing the performance of the M-score-based outlier detection approach

To assess if the use of M-score would produce an improvement over Z-score, the 

outlier detection procedure described in Section 6.3.2 was modified by replacing the 

mean with median, and standard deviation with MAD, so as to yield an M-score for 

each token. Unlike Z-scores, M-scores cannot be approximated using the normal 

distribution and hence /7-values cannot be calculated. As such, a cutoff threshold for 

M-score needs to be specified for labelling outliers. Iglewicz and Hoaglin (1993) 

recommended that observations with |M-score| > 3.5 are labelled as outliers. Using 

this as a guide, the false positive rates associated with the M-score-based outlier 

detection approach were examined at several cutoff points in order to find a suitable 

threshold that generates the least number of false positive under the null hypothesis. In 

this analysis, the set of random gene lists created in Section 6.4.2 were re-analysed 

with the M-score-based outlier detection approach. The proportions of tokens with M- 

scores more extreme than the following thresholds: -3.5, -3.75, -4.0, -4.25 and -4.5, 

were considered as significantly over-represented (i.e. false positives). The average 

number of false positives and the mean false positive rates were calculated based on 

Equations (6.7) and (6.8) specified in Section 6.4.2. The results of this analysis are 

shown in Table 6.5 and Table 6.6.

As expected, the mean number of false positives and the false positive rates associated 

with gene lists of various sizes decrease when the stringency of the M-score cutoff 

criteria increases. The simulation results showed that the cutoff threshold 

recommended by Iglewicz and Hoaglin (1993) is too liberal for mining token data, as 

up to 15 false positives could be obtained per analysis when M < -3.5 is used, which is
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too high in practice for text-based ORA. The threshold M  < -4.5 is more appropriate 

for mining token data because the numbers of false positives and the corresponding 

FP rates are relatively low and at a level comparable to that of the Z-score-based 

approach (cf. Table 6.1).

Table 6.5: Mean number of false positives per gene list for several M-score cutoff 
values

N gene M  < - 3 . 5 M < -  3 . 7 5 M <  - 4 . 0 M <  - 4 . 2 5 M < - 4 . 5

5 0 7 . 6 3 5 . 1 6 3 . 4 3 2 . 2 9 1 . 5 4

1 0 0 1 0 . 5 7 6 . 9 3 4 . 5 6 2 . 9 5 1 . 9 5

3 0 0 1 4 . 4 2 8 . 8 3 5 . 3 2 3 . 1 6 1 . 8 4

5 0 0 1 4 . 9 3 8 . 5 8 4 . 7 4 2 . 5 6 1 . 2 3

1 0 0 0 1 4 . 1 8 6 . 3 9 2 . 7 2 1 . 2 0 0 . 5 6

2 0 0 0 8 . 3 5 3 . 4 6 1 . 5 4 0 . 6 1 0 . 2 7

Table 6.6: Mean false positive rates for several M-score cutoff values

N1 ' gene M <  - 3 . 5 M <  - 3 . 7 5 M <  - 4 . 0 M <  - 4 . 2 5 M <  - 4 . 5

5 0 0 . 0 0 5 0 4 0 . 0 0 3 4 3 0 . 0 0 2 2 8 0 . 0 0 1 5 3 0 . 0 0 1 0 4

1 0 0 0 . 0 0 4 1 9 0 . 0 0 2 7 5 0 . 0 0 1 8 1 0 . 0 0 1 1 7 0 . 0 0 0 7 8

3 0 0 0 . 0 0 2 8 9 0 . 0 0 1 7 7 0 . 0 0 1 0 7 0 . 0 0 0 6 4 0 . 0 0 0 3 7

5 0 0 0 . 0 0 2 2 4 0 . 0 0 1 2 8 0 . 0 0 0 7 1 0 . 0 0 0 3 8 0 . 0 0 0 1 9

1 0 0 0 1 . 4 3 E - 0 3 6 . 4 8 E - 0 4 2 . 7 5 E - 0 4 1 . 2 1 E - 0 4 5 . 7 2 E - 0 5

2 0 0 0 5 . 7 0 E - 0 4 2 . 3 6 E - 0 4 1 . 0 5 E - 0 4 4 . 1 3 E - 0 5 1 . 8 4 E - 0 5

For ease of discussion, the following notations will be used in the rest of this Chapter: 

Out (Z-score, Bonferroni-P<0.05) refers to the original approach (i.e. OutlierDM) that 

is based on the use of the Z-scores and Bonferroni /7-value < 0.05 as cutoff. Out(M- 

score<-4.5) refers to the modified version that uses M-score < -4.5 as outlier 

identification criteria.

When Out(M-score<-4.5) was applied to the ISG gene list, 56 tokens were called 

significantly enriched (Table 6.7). Among these significant terms, 33 were reported as 

non-significant by Out(Z-score, Bonferroni-P<0.05). These tokens were marked with 

‘No’ in the column entitled ‘Bonf in Table 6.7. As can be seen from Figure 6.12, 

those tokens that were uniquely identified as significant by the Out(M-score<-4.5) 

method (points circled in blue) are located nearer to the main data cluster while those
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tokens that were called significant by both Out(Z-score, Bonferroni-P<0.05) and 

Out(M-score<-4.5) appear as the most extreme outliers (points circled in red). It can 

be reasoned that the most extreme outliers artificially inflate the standard deviations, 

resulting in small Z-scores for those 33 tokens such that their p-values just fall short of 

the cutoff after Bonferroni correction.

By using a less conservative multiple testing correction procedure such as the false 

discovery rate (FDR) along with the Z-score-based outlier detection procedure, it is 

possible to obtain a set of significant tokens that is comparable to that produced by 

Out(M-score<-4.5). As shown in Table 6.7, the majority of the tokens that were 

reported as non-significant by Out(Z-score, Bonferroni-P<0.05) are called significant 

when the cutoff FDR-P < 0.05 were used instead. Only 8 tokens, e.g. ‘virus’, 

‘induction’, ‘host’, ‘treatment’, ‘hepatitis’, ‘Epstein-Barr’ and ‘EBV’, remain non

significant. A strong resemblance between the results reported by Out(M-score<-4.5) 

and Out(Z-score, FDR-P < 0.05) were again observed for other real datasets like the 

mitosis gene list (Table 6.8).
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Table 6.7: A comparison of the significant terms in the ISG gene list as reported 
by the Z-scores and M-scores-based outlier detection methods

Term Chip List M-scores Z-scores
frequency frequency M Rank Z Bonf FDR

INTERFERON 414 46 -24.95 1 -12.62 Yes Yes
IFN 245 35 -18.43 2 -9.595 Yes Yes
IFN-BETA 71 18 -12.52 3 -7.576 Yes Yes
ANTIVIRAL 176 23 -11.92 4 -6.749 Yes Yes
IFN-ALPHA 114 19 -11.28 5 -6.713 Yes Yes
INTERFERON-ALPHA 59 14 -10.27 6 -6.621 Yes Yes
INDUCIBLE 1068 37 -9.501 7 -4.787 Yes Yes
OLIGO ADENYLATE 18 8 -8.393 8 -6.075 Yes Yes
INFECTION 1177 36 -8.285 9 -4.166 No Yes
VIRAL 892 32 -8.127 10 -4.183 Yes Yes
ISRE 31 9 -8.049 11 -5.708 Yes Yes
DSRNA 60 11 -7.936 12 -5.397 Yes Yes
ISG 14 7 -7.852 13 -5.775 Yes Yes
INNATE 363 21 -7.484 14 -4.275 Yes Yes
IMMUNE 1275 35 -7.248 15 -3.636 No Yes
HLA-A 30 8 -7.186 16 -5.182 Yes Yes
HLA-CLASS 11 6 -7.137 17 -5.304 Yes Yes
IFN-GAMMA 443 22 -7.079 18 -3.982 No Yes
TREAT 1817 40 -7.038 19 -3.439 No Yes
STOMATITIS 52 9 -6.726 20 -4.748 Yes Yes
IMMUNITY 387 20 -6.712 21 -3.869 No Yes
HLA-B 25 7 -6.602 22 -4.833 Yes Yes
LYMPHOBLASTOID 239 16 -6.594 23 -4.047 No Yes
ENCEPHALOMYO-

CARDITIS 16 6 -6.413 24 -4.751 Yes Yes

EVASION 65 9 -6.155 25 -4.333 Yes Yes
VIRUS 1408 34 -6.135 26 -3.062 No No
HLA-G 10 5 -6.003 27 -4.458 Yes Yes
OAS 10 5 -6.003 28 -4.458 Yes Yes
MXA 11 5 -5.843 29 -4.334 Yes Yes
TAPASIN 12 5 -5.696 30 -4.221 Yes Yes
INDUCTION 2048 39 -5.641 31 -2.721 No No
MHC 353 17 -5.634 32 -3.376 No Yes
OR-C 5 4 -5.590 33 -4.099 No Yes
LMP7 13 5 -5.562 34 -4.117 No Yes
LMP2 13 5 -5.562 35 -4.117 No Yes
BETA2-

MICROGLOBULIN 42 7 -5.484 36 -3.990 No Yes

GAMMA-INTERFERON 44 7 -5.384 37 -3.914 No Yes
P69 6 4 -5.334 38 -3.901 No Yes
INDIGENOUS 29 6 -5.266 39 -3.872 No Yes
PKR 30 6 -5.200 40 -3.822 No Yes
HOST 800 24 -5.180 41 -2.794 No No
ISG 15 7 4 -5.117 42 -3.734 No Yes

(continued)
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Table 6.7: A comparison of the significant terms in the ISG gene list as reported 
by the Z-scores and M-scores-based outlier detection methods (continued)

Term Chip
frequency

List
frequency

M-scores Z-scores

M Rank Z Bonf FDR

PEPTIDE-MHC 7 4 -5.117 43 -3.734 No Yes
VSV 19 5 -4.923 44 -3.623 No Yes
HISTOCOMPATIBILITY 303 14 -4.714 45 -2.961 No No
TREATMENT 3120 45 -4.710 46 -2.186 No No
MICROGLOBULIN 39 6 -4.694 47 -3.435 No Yes
TAP 61 7 -4.680 48 -3.383 No Yes
C1R 22 5 -4.676 49 -3.433 No Yes
SP100 10 4 -4.615 50 -3.347 No Yes
ANTI-HLA 10 4 -4.615 51 -3.347 No Yes
ISGF3 10 4 -4.615 52 -3.347 No Yes
HEPATITIS 366 15 -4.545 53 -2.794 No No
HLA-C 24 5 -4.530 54 -3.320 No Yes
EPSTEIN-BARR 233 12 -4.525 55 -2.956 No No
EBV 194 11 -4.516 56 -3.013 No No

This table listed all terms with M-score < -4.5. The Z-score-based outlier detection 
method were used in conjunction with two multiple testing correction methods. 
Tokens with Bonferroni /7-value < 0.05 are marked with 4 Yes’ under the column Bonf 
and 4No’ otherwise. Tokens with FDR /7-value < 0.05 are marked with 4 Yes’ under the 
column FDR and 4No’ otherwise.
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Figure 6.12: Scatter plot showing the locations of outliers identified by using Z- 
scores and M-scores-based methods
The ISG gene list was analysed with the two methods: Out(Z-score, Bonf err oni- 
P<0.05) and Out(M-score<-4.5). Terms that were identified as significantly enriched 
by both methods are circled in red, whereas those that were reported as significant by 
only the Out(M-score<-4.5) method are circled in blue. All significant terms are 
located outside the region marked by the median ± 4.5 MAD lines. The Z-scores and 
M-scores associated with the significant terms can be found in Table 6.7.
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Table 6.8: A comparison of the significant terms in the mitosis gene list as 
reported by the Z-scores and M-scores-based outlier detection methods

Term Chip List M-scores Z-scores
frequency frequency M Rank Z Bonf FDR

MITOTIC 485 28 -10.300 1 -7.534 Yes Yes
SPINDLE 298 23 -9.649 2 -7.263 Yes Yes
MITOSIS 443 26 -9.550 3 -7.052 Yes Yes
ANAPHASE 126 17 -9.183 4 -7.248 Yes Yes
CHECKPOINT 267 19 -7.639 5 -5.906 Yes Yes
KINETOCHORE 64 11 -7.083 6 -5.894 Yes Yes
CONGRESSION 21 6 -5.757 7 -4.965 Yes Yes
CENP-H 4 3 -5.522 8 -4.599 Yes Yes
CENP-A 15 5 -5.496 9 -4.739 Yes Yes
CENTROMERE 181 13 -5.490 10 -4.452 Yes Yes
CYCLE 1882 36 -5.469 11 -3.871 No Yes
HELA 1393 31 -5.433 12 -3.879 No Yes
BUB1 9 4 -5.390 13 -4.611 Yes Yes
AURORA 26 6 -5.367 14 -4.619 Yes Yes
DIVISION 426 18 -5.286 15 -4.086 No Yes
MAD2 18 5 -5.191 16 -4.468 Yes Yes
PROMETAPHASE 60 8 -5.176 17 -4.394 Yes Yes
MICROTUBULE 523 19 -4.975 18 -3.806 No Yes
PROLIFERATING 523 19 -4.975 19 -3.806 No Yes
MTOC 12 4 -4.950 20 -4.223 Yes Yes
KINETOCHORE-

MICROTUBULE 12 4 -4.950 21 -4.223 Yes Yes

CENTROSOME 180 12 -4.947 22 -4.039 No Yes
G1 468 18 -4.930 23 -3.803 No Yes
CYTOKINESIS 152 11 -4.841 24 -3.989 No Yes
ANEUPLOIDY 74 8 -4.730 25 -4.004 No Yes
CHROMATID 74 8 -4.730 26 -4.004 No Yes
M-PHASE 38 6 -4.674 27 -4.005 No Yes
CDC20 15 4 -4.609 28 -3.921 No Yes
INTERPHASE 253 13 -4.514 29 -3.638 No Yes
MISSEGREGATION 16 4 -4.510 30 -3.834 No Yes

This table listed all terms with M-score < -4.5. The Z-score-based outlier detection 
method were used in conjunction with two multiple testing correction methods. 
Tokens with Bonferroni /7-value < 0.05 are marked with ‘Yes’ under the column Bonf 
and ‘No’ otherwise. Tokens with FDR /7-value < 0.05 are marked with ‘Yes’ under the 
column FDR and ‘No’ otherwise.
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Reasons for using Z-scores instead of M-scores for text-based ORA

Based on the above findings, it can be concluded that the problem of masking can be 

addressed by using either the M-scores method or an outlier detection procedure that 

uses Z-scores coupled with less stringent multiple correction procedure such as the 

FDR. For text-based ORA, the Z-scores-based outlier detection framework may be 

preferred because of the following advantages over the M-scores-based method.

First, the probability of making a type I error (calling a token over-represented by 

mistake) can be controlled precisely at the desired significance level in the Z-score- 

based approach, whereas the threshold used in the M-score approach has to be chosen 

arbitrarily or based on empirical observations from simulation study, which is less 

mathematically tractable. The lack of control over the type I error could be 

particularly problematic when the underlying distribution has heavy tails because the 

M-score method may yield more false positives than expected.

Second, /7-values can only be derived from Z-scores, and not from M-scores. 

Reporting the results of an over-representation analysis in terms of (adjusted) /7-values, 

as opposed to a binary decision of whether a token is significant or not, provides a 

summary of the strength of evidence against the null hypothesis. Besides, /7-values 

allow for direct comparisons of detection power between methods proposed in this 

thesis, e.g. permutation test and the hypergeometric distribution-based approaches.

Third, the Z-score-based outlier detection framework can be easily extended to include 

the common multiple testing correction procedures other than the Bonferroni and FDR, 

such as the Benjamini-Hochberg, Holm, Hommel and other methods. This feature is 

especially useful for exploratory analysis such as ORA because it enables researchers 

to explore the results generated from different correction methods at the desirable 

significance levels. The M-score-based method is lacking in this flexibility.
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6.5 Discussion

Although outlier detection techniques have been suggested for numerous microarray- 

related data-mining tasks, such as to detect abnormal gene expression pattern in 

cancer samples (Tibshirani and Hastie 2007; Tomlins et al. 2005) and psychiatric 

disease (Ernst et al. 2008), the potential application of outlier detection technique in 

text-based enrichment analysis has not been investigated before. This idea was 

explored in this Chapter, including the development of a Z-score-based outlier 

detection framework, termed OutlierDM, for identifying PubMed abstract terms that 

are significantly over-represented in a list of differentially expressed genes. This 

method exploits the observation that biologically-plausible terms are often associated 

with a lower Chip frequency than expected by chance for a specific List frequency, 

and thus appear as outliers on a scatter plot of Chip versus List frequencies. These 

outliers can then be identified through the calculation of Z-scores, which are defined 

using the location and scale estimates of the token frequency data. Simulation studies 

and applications to selected microarray datasets showed that OutlierDM is appealing 

in terms of both detection power and false positive rates. The terms reported as 

significant were found in most cases to convey useful information and shed light on 

the biology under study. In addition, the proposed method is computationally efficient, 

requiring approximately 20-30 seconds to analyse a reasonably-sized gene list (e.g. 

less than 500 genes) on a desktop PC.

OutlierDM has several advantages over the classical hypergeometric distribution and 

permutation-based methods described previously:

• Unlike the classical hypergeometric distribution-based approach (Chapter 3), 

OutlierDM can compensate for the underlying annotation bias when applied to 

well-annotated gene list.

• Theoretical significance-level results can be obtained through the outlier 

detection-based approach; whereas only empirical />-value can be obtained with 

the permutation-based method (Chapter 5). The latter is typically computationally 

intractable and lower bounded by the ratio of 1 to the total number of permutations 

performed.
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A central assumption underlying OutlierDM is that the Z-scores are normally 

distributed. Simulation results showed that the distributions of Z-scores from shorter 

gene lists are slightly negatively skewed, imposing a risk of finding up to two false 

positives when the query gene list has less than 300 genes (Section 6.4.2). However, it 

can be argued that since the text-based ORA analysis usually produces on average 

8-10 tokens (this approximation is based on the HG-U133A array and may vary for 

other systems), one or two false positives can be easily spotted and the researchers 

may be ready to accept a small number of false positives as long as biologically- 

plausible findings can be obtained.



Chapter 7 

Extended hypergeom etric distribution- 

based ORA

7.1 Introduction

A difficulty associated with text analysis in functional genomics is that the availability 

and quality of literature is biased towards well-studied areas. As a consequence, the 

amount of articles present per gene is highly skewed. Failing to account for such bias 

can hamper the performance of text mining algorithms, as seen with the classical 

hypergeometric distribution-based ORA method described in Chapter 3.

In this Chapter, an ORA framework that uses the extended hypergeometric 

distribution to model token frequency data associated with a list of differentially 

expressed genes and to search for terms that are significantly over-represented is 

presented. This method is an extension of the classical hypergeometric distribution- 

based approach. The principle idea is to use the extra parameters in the extended 

hypergeometric distribution model in an attempt to account for the bias within the 

published literature.

This Chapter is structured as follows. Section 7.2 describes the theory of extended 

hypergeometric distribution in general. Section 7.3 presents the algorithm developed 

for assessing over-representation in token data. In Section 7.4, the performance of the 

proposed approach is evaluated based on an assessment of false positive rate and 

applications to real datasets. Finally, the advantages and limitations of the proposed 

method are discussed in Section 7.5.

171
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7.2 Extended hypergeom etric distribution

The extended hypergeometric distribution, also known as the Fisher non-central 

hypergeometric distribution, is a generalisation of the classical hypergeometric 

distribution that is designed for situation where the sampling procedure is biased (Fog 

2008; Harkness 1965; Johnson et al 2005). To illustrate key concepts, consider what 

is known as the urn experiment. Assume that n balls are drawn without replacement 

from a population (the urn) containing N  balls, of which mi are red and m2 are white. 

The balls have different weights, where the weight for each red and white ball is wj 

and W2, respectively. When sampling is unbiased (w/ = W2), the balls have equal 

probability of being taken (pj = P2) and the results will follow the classical 

hypergeometric distribution. However, if sampling is biased such that the probability 

of taking a ball of one colour is proportional to its weight but independent of the other 

balls, then the number of balls of a particular colour drawn will follow the binomial 

distribution:

On the condition that the sum of the independent binomial variables is fixed

hypergeometric distribution. The probability of seeing jc red balls simply by chance is:

where max(0, n - m 2)<x  < min(mj, n ) ; the same limits apply to the summation in 

Equation (7.1). 6 is the odds ratio, which is a measure of bias and is equivalent to the 

probability ratio of red over white balls:

Let xj, X2,..., xs be a sample of S  independent observations from distribution specified 

by Equation (7.1). Harkness (1965) proposed obtaining the lower and upper bounds 

for the maximum-likelihood estimation for 6 based on the natural estimator:

Xt ~ binomial (mu pi), where z = 1,2

(i.e. y^jxl =«) ,  the number of red balls in our sample x will follow the extended

Equation (7.1)

0 . P 1O - P 2) 

P2O-.P1)
Equation (7.2)
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~ x(m, - n  + x) _ .
6 = --------------- ~  Equation (7.3)

(mx -  x){n -  x)

The most common application of the extended hypergeometric distribution is as a 

model for the alternative hypothesis in the analysis of contingency tables. By 

assuming 6 = 1 or equivalently pi = p 2, Equation (7.1) reduces to the classical 

hypergeometric mass function specified in Equation (3.1) in Chapter 3. This is the 

basis of the Fisher’s exact test of significance in 2 x 2 contingency tables.

7.3 ExtendedHG: a statistical framework for
identifying over-represented PubMed abstract 
terms using the extended hypergeom etric 
distribution

7.3.1 Basic ideas

When the amount of annotation associated with a gene list is higher than expected by 

chance, the sampling will be biased in favour of certain types of tokens. As a 

consequence, some common words or non-specific terms shared by most abstracts, 

such as ‘cell’, ‘analysis’ and ‘molecule’, will have higher probabilities of being 

selected along with genes in the gene list. As such, the token significance inferred 

from the classical hypergeometric distribution is likely to be misleading and erroneous, 

because this approach does not account for the excess annotation. In this Chapter it is 

reasoned that it may be possible to account for the effect due to annotation bias by 

using a biased sampling approach such as the extended hypergeometric distribution. 

To explore this idea an ORA system that uses the extended hypergeometric 

distribution to establish statistically which biological concepts or tokens from the 

PubMed abstracts are significantly over-represented within a gene list was developed. 

This method is denoted as ExtendedHG hereafter.
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7.3.2 Algorithm and procedure

ExtendedHG consists of the following computation steps:

1. Odds ratio estimation. Given a gene list of size n and a corpus of text that is 

relevant to the genes under study, the first step is to determine the List and Chip 

frequencies of tokens found in the input gene list. Let the number of genes 

associated with a particular token T in the background be my, and the number of 

genes associated with tokens other than T in the background be m2. The odds ratio 

of T is estimated by substituting «, mi and m2 into Equation (7.3) to give:

odds ratio = n + y) Equation (7.4)
0mx- y ) ( n - y )

where y  is the mean number of genes expected to be associated with T under the 

null hypothesis. There is no simple and explicit expression for ̂ because its value 

depends on the degree of annotation bias inherent with the input gene list, which 

will vary from gene list to gene list. In the current implementation, y  is determined 

empirically by fitting a degree 7 polynomial regression line through the token 

frequency data:

y  ~ x1 + x2 + x3 + x4 + x5 + x6 + x 7 Equation (7.5)

In this model, the explanatory variable x represents Chip frequency (equivalent to 

mi); the response variable y  represents List frequency. The best-fitting curve is 

obtained by the method of least squares implemented in the R function lm. For 

each token, the fitted value of List frequency expected for a given Chip frequency 

is determined from the best-fitting curve. This fitted value is a good approximation 

for y  and is used to calculate the odds ratio. The reason of using a degree 7 

polynomial fit is given in Section 7.3.3.

2. Jackknife adjustment. To ascertain that terms supported by few genes are not over

weighted, the List frequency is jackknifed (i.e. List frequency - 1). This operation 

entails a conservative adjustment to the /7-value by penalising the significance of 

terms supported by few genes. The rationale behind jackknife adjustment has been 

discussed in Section 3.2.4. Only tokens that are associated with at least two genes 

after jackknifing are retained for further analysis.
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3. P-value calculation. To calculate a p-value for each token based on the extended 

hypergeometric distribution, the pFNCHypergeo function implemented in the 

BiasedUm R package1 is used:

pFNCHypergeo(x, ml, m2, n, odds, precision, lower.tail)
where

x = Jackknifed List frequency -  1

ml = Chip frequency

m2 = Total number of genes in the gene universe -  Chip frequency

n = Number of genes in the gene list -  1

odds = Odds ratio determined from Step 1

The value for the argument precision is set at KT40. To obtain a one-tailed test 

for over-representation, the argument lower. tail is set to FALSE.

4. Multiple testing correction and criterion o f over-representation. A token is 

considered significantly over-represented in the gene list if the corresponding p- 

value is less than 0.05 after Bonferroni adjustment.

The script for ExtendedHG was developed and tested under R-2.6, and the source 

code can be found in Appendix B.

7.3.3 Odds ratio estim ation

In order to obtain an estimate for the odds ratio associated with a particular token T in 

a given gene list, four pieces of information are required: (1) the mean number of 

genes expected to be associated with T just by chance, pextended\ (2) the number of 

genes associated with T in the background; (3) the number of genes associated with 

tokens other than T in the background; (4) the size of the input gene list. All 

parameters, except for p.extended■> can be determined directly from the data itself. For the 

classical hypergeometric distribution, the mean number of genes expected to be 

associated with T just by chance, Pdassicah can be obtained simply as:

1 http://cran.r-prqject.org/web/packages/BiasedUm/index.html

http://cran.r-prqject.org/web/packages/BiasedUm/index.html
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M e = " x —  Equation (7.6)

where n = number of genes in the input gene list, M  = Chip frequency, and N  = total 

number of genes in the background. However, there is no simple explicit expression 

for the mean in the extended hypergeometric distribution.

In ExtendedHG, pextended is predicted from a polynomial regression fit to the token 

frequency data. This idea was motivated by the findings that the hypergeometric mean 

Pclassical for a specific token in a random gene list can be estimated by fitting a 

regression line through the Chip and List frequencies. This is illustrated in Figure 7.1, 

in which a random gene list containing 253 genes was created by sampling without 

replacement from the HG-U133A array, and then a seventh order polynomial 

regression line was fitted to the token frequencies in this random gene list according to 

the regression model specified in Equation (7.5). As shown in Figure 7.1(a), the 

goodness of fit as measured by R is 0.989, indicative of an apparently good fit to the 

data (the definition of R will be given later). The fitted values were compared to the 

corresponding p ciassicai values as calculated using Equation (7.6). It is clear from Figure 

7.1(b) that the fitted values provide a good approximation to pclassical- Similar results 

were also found for random gene lists of various lengths. Although illustrated here 

using simulated gene list, it is reasonable to assume that p extended can be estimated in 

the same way by fitting polynomials to real gene lists. The argument made here is that 

the polynomial regression model should be able to capture the general tendency and 

intrinsically account for the shift in token distribution caused by annotation bias (if 

any), and provides a reasonable estimation for p extended-
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Figure 7.1: A comparison of the hypergeometric mean and fitted values predicted 
from a seventh order polynomials fit to the token frequency data
(a) A scatter plot of Chip and List frequencies from a random gene list containing 253 
annotated genes. The red data points represent the fitted values predicted from a 
degree 7 polynomial regression model, (b) The hypergeometric means p classical are 
plotted against the corresponding fitted values derived from the polynomial regression 
shown in (a). The blue dashed line is the y=x line.
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Reasons for using a seventh order polynomial

A polynomial regression model allows for a flexible relationship between the response 

(List frequency) and explanatory variables (Chip frequency). Usually, a polynomial 

model that explains the data in the simplest way is preferred, e.g. a degree 3 

polynomial model will be used in favoured of a degree 6 polynomial model if both fit 

the data equally well. Model selection procedures such as the stepwise and criterion- 

based methods can be used to prune and extend regression models. Stepwise 

procedures search through the space of potential models and use hypothesis testing- 

based method for choosing between models, whereas criterion-based methods choose 

the best model according to some criteria such as the AIC (Akaike Information 

Criterion), BIC (Bayes Information Criterion), R2 and PRESS (Predicted Residual 

Sum of Squares). An overview of these criteria can be found in Faraway (2002).

The decision to use a seventh order polynomial for êxtended prediction was based on

the results of an analysis conducted with the criterion-based model selection method.
•  •  • « 2The selection criterion used is R , which is known as the coefficient o f determination

or percentage o f variance explained. R is a measure of the goodness of fit and is 

defined as the change in residual sum of squares relative to an empty model:

_2 , Residual sum of squares _ .R = 1--------------------------------------------------   Equation (7.7)
Total sum of squares (corrected for mean)

y

The range is 0 < R < 1, with values closer to 1 indicating better fits.

In this model selection analysis, polynomials with varying degrees were fitted to each 

of the 52 HG-U133A literature gene lists (the identities of these gene lists are detailed 

in Appendix A). During the process, higher order terms were added sequentially to the 

polynomial model such that the regression model was expanded from x to x10 in a 

stepwise manner. The R2 values corresponding to the models tested were recorded at 

each step. Then, an average R2 was calculated to yield an overall goodness of fit for 

each polynomial model. The results are shown in Figure 7.2. It can be seen that
£  7  O Q 1 f \

polynomial models containing the x , x , x , x and x terms have very similar average 

R2 values, which range from 0.9544 to 0.9545. It was observed that bigger models 

with higher terms are susceptible to over-fitting at high Chip frequency regions where
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data is sparse. Therefore the degree 7 polynomial model was chosen because it should 

be less susceptible to over-fitting compared to bigger models.
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Figure 7.2: Polynomial models selection based on R2
Polynomials were fitted to each of the 52 HG-U133A literature gene lists in a stepwise 
manner. Higher order terms were added sequentially to the regression model and the 
corresponding R2 values recorded. An average R2 was calculated for each polynomial 
model by taking the means of the individual R .
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Adjustment of the odds ratio

The odds ratio estimated using the procedures described above will always be in the 

interval (0, °°). For example, the odds ratios for tokens in the ISG gene list lie in the 

range (0.036, 82.545) and have a median value of 1.633. As illustrated in Figure 7.3(a), 

the majority of the tokens in the ISG gene list have similar odds ratios; but a small 

number of tokens that have low background frequencies (e.g. Chip frequency < 10) 

appear to be associated with relatively high odds ratios. Recall that the odds ratio is 

calculated as a function of mean ( y  ), which is predicted from the best-fitting curve. 

By way of intuition, tokens that are associated very few genes in a gene list and in the 

background are considered unstable; therefore y  values predicted for these tokens are 

less accurate. When a token has very low background frequency and the predicted 

mean y  is close to the value of its Chip frequency, the denominator in Equation (7.4) 

will become small and the numerator will become large, yielding a high odds ratio. In 

theory, the higher the odds ratio, the harder it is for a token to be called significant. A 

consequence of this is that tokens with low List and Chip frequency may never be 

detected as significant (even though they are truly enriched in the gene list), simply 

because their odds ratios are inflated. To prevent this problem, an ad hoc tuning 

procedure was devised. First, the median of the odds ratio for all tokens were 

calculated, say med. Then, tokens for which the odds ratios are 3 MAD (median 

absolute deviation) away from med were identified, and the odds ratios for these 

tokens were replace by med. The interval of the odds ratio for tokens in the ISG gene 

list becomes (0.036, 5.374) after the above adjustment has been applied. The 

distribution of the adjusted odds ratio is shown in Figure 7.3(b). It can be seen that the 

extreme odds ratios were adjusted to a level equal to the median (i.e. 1.623), whereas 

for most observations their odds ratios remain unchanged.
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Figure 7.3: Odds ratio before and after adjustment
The (a) raw odds ratio and (b) adjusted odds ratio for tokens in the ISG gene list 
plotted against their corresponding Chip frequencies. The red dashed line i s y  =1.
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7.4 Experim ents and results

7.4.1 False positive rates under the null hypothesis

A simulation study was performed to determine the false positive rate for the proposed 

method, ExtendedHG. To allow for a cross-comparison of results, the study was 

performed on the same set of random gene lists as that used in Section 6.4.2 for 

evaluating the outlier detection-based ORA method (OutlierDM). Briefly, a large 

number of random gene lists with sizes ranging from 50 to 2000 were constructed and 

analysed with ExtendedHG. The mean number of false positives and the mean false 

positive rates were calculated according to the methods outlined in Section 6.4.2.

The results of this analysis are summarised in Table 7.1.

Table 7.1: False positive rates for ExtendedHG

NJ ’ gene
Mean number of token 

tested per gene list
Mean number of false 
positives per gene list Mean FP rate

50 1554 0.005 3.90E-06
100 2540 0.005 2.12E-06
300 5025 0.003 5.98E-07
500 6670 0.004 6.33E-07

1000 9935 0.008 8.23E-07
2000 14728 0.015 1.01E-06

As seen in Table 7.1, the mean false positive rates for ExtendedHG ranges from 1.01 

xlO'6 to 3.9 xlO"6 at a = 0.05. The average number of false positives that one might 

find per gene list analysed is close to zero. In comparison to OutlierDM, the false 

positive rates for ExtendedHG are lower and more consistent as they are not affected 

by the size of gene list. Taken together, the results presented in Table 7.1 suggest that 

the proportion of false positives produced by ExtendedHG is kept within the level 

controlled by the chosen significance threshold a, and this is true regardless of the 

number of genes analysed.
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7.4.2 Performance on real datasets

As with OutlierDM, the performance of ExtendedHG was assessed by testing on the 

three datasets: ISG gene list from Sanda et al (2006), the mitosis gene list from Lee et 

al. (2004), and the glycolysis gene list from Vanharanta et al. (2006). A threshold of 

0.05 for the Bonferroni adjusted /?-values was used to identify significantly enriched 

terms.

Example 1: ISG gene list

38 tokens were identified as significantly over-represented in the ISG gene list by 

ExtendedHG. These tokens and their /7-values are presented in Table 7.2. All hits, 

except for ‘innate’ (rank 12), ‘treat’ (rank 20) and ‘host’ (rank 30), are biologically- 

specific terms and convey useful biological insights to the functions shared by the list 

of genes being analysed. Non-specific terms that were called significant by the 

classical hypergeometric test-based approach such as ‘synthesis’, ‘molecule’, ‘after’, 

were successfully avoided by using ExtendedHG.

A comparison of the results obtained by the permutation test, OutlierDM and 

ExtendedHG when applied to the ISG gene list is presented in Table 7.3. There 

appears to be a reasonable agreement in general between the different methods, in 

particular for the top ranking terms. 17 biologically-meaningful terms are common 

between the three methods, including ‘interferon’, ‘IFN’, ‘antiviral’, ‘IFN-beta’, ‘IFN- 

alpha’, ‘inducible’, ‘viral’, ‘oligoadenylate’, ‘interferon-alpha’, ‘ISRE’, ‘ISG’, ‘HLA- 

class’, ‘stomatitis’, ‘evasion’, ‘encephalomyocarditis’, ‘dsRNA’ and ‘OAS’.

The overlaps between OutlierDM and ExtendedHG were examined more closely. In 

many cases, OutlierDM and ExtendedHG capture similar information and appear 

generally comparable in terms of statistical power for this dataset (Figure 7.4(a)), 

although ExtendedHG did pick up some apparently relevant terms that OutlierDM 

missed, such as TFN-gamma’, ‘LMP2’, ‘LMP7’ and ‘beta2-microglobulin’ (Table 

7.3). The term ranks given to the top 100 tokens in this gene list by the two methods 

were compared and shown in Figure 7.4(b). Despite minor differences in rank order, 

there appears to be a good concordance between OutlierDM and ExtendedHG.
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Table 7.2: Significantly over-represented abstract terms in the ISG gene list as 
identified using the extended hypergeometric test-based ORA method

Term Chip
frequency

List
frequency

Odds
ratio />-value Bonferroni

/>-value Rank

INTERFERON 414 46 1.6646 4.64E-37 1.58E-33 1
IFN 245 35 1.8486 1.16E-28 3.95E-25 2
ANTIVIRAL 176 23 2.0648 4.84E-16 1.65E-12 3
IFN-BETA 71 18 3.3446 4.93E-14 1.68E-10 4
IFN-ALPHA 114 19 2.5199 1.59E-13 5.41E-10 5
INDUCIBLE 1068 37 1.6191 3.99E-12 1.36E-08 6
VIRAL 892 32 1.6129 1.88E-10 6.40E-07 7
INFECTION 1177 36 1.6228 3.39E-10 1.16E-06 8
OLIGOADENYLATE 18 8 1.6234 4.71E-10 1.61E-06 9
INTERFERON-ALPHA 59 14 3.7999 9.63E-10 3.28E-06 10
ISRE 31 9 1.6234 1.05E-09 3.58E-06 11
INNATE 363 21 1.6959 1.65E-09 5.63E-06 12
ISG 14 7 1.6234 4.47E-09 1.52E-05 13
IFN-GAMMA 443 22 1.6517 5.24E-09 1.79E-05 14
IMMUNE 1275 35 1.6255 1.28E-08 4.35E-05 15
IMMUNITY 387 20 1.6796 2.65E-08 9.05E-05 16
HLA-A 30 8 1.6234 2.70E-08 9.19E-05 17
HLA-CLASS 11 6 1.6234 6.74E-08 0.0002 18
STOMATITIS 52 9 1.6234 8.24E-08 0.0003 19
TREAT 1817 40 1.6256 9.67E-08 0.0003 20
LYMPHOBLASTOID 239 16 1.8617 1.71E-07 0.0006 21
HLA-B 25 7 1.6234 2.38E-07 0.0008 22
EVASION 65 9 1.6234 4.89E-07 0.0017 23
VIRUS 1408 34 1.6280 5.36E-07 0.0018 24
ENCEPHALOMYOCARDITIS 16 6 1.6234 6.09E-07 0.0021 25
DSRNA 60 11 3.7547 1.47E-06 0.0050 26
MHC 353 17 1.7037 1.54E-06 0.0052 27
OAS 10 5 1.6234 2.90E-06 0.0099 28
HLA-G 10 5 1.6234 2.90E-06 0.0099 29
HOST 800 24 1.6108 3.77E-06 0.0129 30
MXA 11 5 1.6234 4.52E-06 0.0154 31
INDUCTION 2048 39 1.6187 5.96E-06 0.0203 32
BETA2-MICROGLOBULIN 42 7 1.6234 6.04E-06 0.0206 33
TAPASIN 12 5 1.6234 6.72E-06 0.0229 34
GAMMA-INTERFERON 44 7 1.6234 7.98E-06 0.0272 35
LMP7 13 5 1.6234 9.62E-06 0.0328 36
LMP2 13 5 1.6234 9.62E-06 0.0328 37
OR-C 5 4 1.6234 1.33E-05 0.0455 38

Over-represented terms were defined as having /7-value < 0.05 after Bonferroni 
correction. The results were ordered by increasing /7-values. The gene universe used is 
that based on the HG-U133A chip and contains 9638 genes. 3412 tokens were tested.
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Table 7.3: A comparison of the results from permutation test, OutlierDM and 
ExtendedHG when applied to the ISG gene list

Term Chip
frequency

List
frequency

Bonferroni p-value 

Permutation OutlierDM ExtendedHG

INTERFERON 414 46 < 0.0484 2.81 E-33 1.58E-33
IFN 245 35 < 0.0484 1.43E-18 3.95E-25
ANTIVIRAL 176 23 < 0.0484 2.54E-08 1.65E-12
IFN-BETA 71 18 < 0.0484 6.06E-11 1.68E-10
IFN-ALPHA 114 19 < 0.0484 3.24E-08 5.41E-10
INDUCIBLE 1068 37 < 0.0484 0.0029 1.36E-08
VIRAL 892 32 < 0.0484 0.0490 6.40E-07
INFECTION 1177 36 < 0.0484 0.0529 1.16E-06
OLIGOADENYLATE 18 8 < 0.0484 2.11E-06 1.61E-06
INTERFERON-ALPHA 59 14 < 0.0484 6.09E-08 3.28E-06
ISRE 31 9 < 0.0484 1.95E-05 3.58E-06
INNATE 363 21 0.0968 0.0326 5.63E-06
ISG 14 7 < 0.0484 1.31E-05 1.52E-05
IFN-GAMMA 443 22 0.0968 0.1160 1.79E-05
IMMUNE 1275 35 0.5325 0.4720 4.35E-05
IMMUNITY 387 20 < 0.0484 0.1860 9.05E-05
HLA-A 30 8 1 0.0004 9.19E-05
HLA-CLASS 11 6 < 0.0484 0.0002 0.0002
STOMATITIS 52 9 < 0.0484 0.0035 0.0003
TREAT 1817 40 < 0.0484 0.9950 0.0003
LYMPHOBLASTOID 239 16 < 0.0484 0.0885 0.0006
HLA-B 25 7 1 0.0023 0.0008
EVASION 65 9 0.0484 0.0250 0.0017
VIRUS 1408 34 0.8714 1 0.0018
ENCEPHALOMYOCARDITIS 16 6 < 0.0484 0.0035 0.0021
DSRNA 60 11 < 0.0484 0.0001 0.0050
MHC 353 17 1 1 0.0052
OAS 10 5 < 0.0484 0.0141 0.0099
HLA-G 10 5 1 0.0141 0.0099
HOST 800 24 1 1 0.0129
MXA 11 5 1 0.0250 0.0154
INDUCTION 2048 39 0.4357 1 0.0203
BETA2-MICROGLOBULIN 42 7 1 0.1130 0.0206
TAPASIN 12 5 1 0.0415 0.0229
GAMMA-INTERFERON 44 7 0.0484 0.1550 0.0272
LMP7 13 5 0.3873 0.0656 0.0328
LMP2 13 5 0.3389 0.0656 0.0328
OR-C 5 4 0.0968 0.0709 0.0455
INDIGENOUS 29 6 0.0484 0.1840 0.0502

Abstract terms that were identified as over-represented by the corresponding methods 
are highlighted in yellow and in bold. The cutoff used is Bonferroni p-value < 0.05.
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Figure 7.4: Concordance between OutlierDM and ExtendedHG
(a) A comparison of the unadjusted p -values reported by OutlierDM and ExtendedHG 
for all tokens in the ISG gene list, (b) The rankings for the top 100 tokens in the ISG 
gene list as reported by OutlierDM are plotted against that of ExtendedHG. Tokens 
that were called significant only by ExtendedHG are labelled and circled in red. The 
grey dashed line is the y  = x line.
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Example 2: Glycolysis gene list

The classical hypergeometric distribution-based approach reported 48 terms as 

significantly enriched in this gene list, among which 50% were considered as “noise” 

due to annotation bias (Table 3.3). This problem appears to be largely avoided when 

using ExtendedHG; only one term, ‘glycolytic’ (Bonferroni p-value = 0.0299), was 

identified as significant at the chosen /?-value threshold of 0.05. OutlierDM appears to 

perform better in this dataset insofar as it detects three additional biologically- 

plausible terms (‘aldo-keto’, ‘peroxidation’ and ‘nicotiamide’) as significantly over

represented.

Example 3: Mitosis gene list

ExtendedHG identified 19 tokens as having a Bonferroni p-value < 0.05 in the mitosis 

gene list (Table 7.4), all of which - except for the term ‘hela’ (rank 15) - appear 

relevant to the biology of cell cycle progression and regulation. There are substantial 

overlaps between the significant terms produced by ExtendedHG, OutlierDM and the 

permutation test-based approach (Table 7.5). Terms that were assigned significant p- 

values by all three methods include ‘mitosis’, ‘mitotic’, ‘spindle’, ‘anaphase’, 

‘checkpoint’, ‘kinetochore’, ‘congression’, ‘prometaphase’ and ‘centromere’. It was 

observed that hits unique to OutlierDM are mainly associated with low Chip and List 

frequencies whereas hits unique to ExtendedHG tend to have higher Chip frequency 

(Figure 7.5). The latter group of tokens (e.g. ‘cycle’, ‘division’, ‘hela’) also appear to 

carry less specific biological information compared to the former group of tokens (e.g. 

‘BUB1’ ‘MAD2’, ‘kinetochore-microtubule’).
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Table 7.4: Significantly over-represented abstract terms in the mitosis gene list as 
identified using the extended hypergeometric test-based ORA method

Term Chip
frequency

List
frequency

Odds
ratio p-value Bonferroni

/7-value Rank

MITOTIC 485 28 1.3582 6.07E-14 1.91E-10 1
SPINDLE 298 23 1.4733 4.31E-13 1.36E-09 2
MITOSIS 443 26 1.3726 6.58E-13 2.07E-09 3
ANAPHASE 126 17 2.0132 2.82E-11 8.87E-08 4
CHECKPOINT 267 19 1.5141 6.07E-10 1.91E-06 5
KINETOCHORE 64 11 3.0085 1.02E-06 0.0032 6
DIVISION 426 18 1.3797 1.13E-06 0.0036 7
CONGRESSION 21 6 1.3192 1.64E-06 0.0052 8
PROMETAPHASE 60 8 1.3192 2.01E-06 0.0063 9
CENTROMERE 181 13 1.7171 2.79E-06 0.0088 10
PROLIFERATING 523 19 1.3482 3.07E-06 0.0097 11
MICROTUBULE 523 19 1.3482 3.07E-06 0.0097 12
G1 468 18 1.3636 3.50E-06 0.0110 13
AURORA 26 6 1.3192 5.10E-06 0.0161 14
HELA 1393 31 1.3189 5.49E-06 0.0173 15
CHROMATID 74 8 1.3192 8.33E-06 0.0262 16
ANEUPLOIDY 74 8 1.3192 8.33E-06 0.0262 17
CYCLE 1882 36 1.3159 1.14E-05 0.0359 18
CENP-A 15 5 1.3192 1.20E-05 0.0379 19

Over-represented terms were defined as having p-value < 0.05 after Bonferroni 
correction. The results were ordered by increasing p-values. The gene universe used is 
that based on the HG-U133A chip and contains 9638 genes. 3148 tokens were tested.
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Table 7.5: A comparison of the results from different methods when applied to 
the mitosis gene list

Term Chip List Bonferroni p-value
frequency frequency Permutation OutlierDM ExtendedHG

MITOTIC 485 28 < 0.0442 7.72E-11 1.91E-10
SPINDLE 298 23 < 0.0442 5.96E-10 1.36E-09
MITOSIS 443 26 < 0.0442 2.77E-09 2.07E-09
ANAPHASE 126 17 < 0.0442 6.67E-10 8.87E-08
CHECKPOINT 267 19 < 0.0442 5.53E-06 1.91E-06
KINETOCHORE 64 11 < 0.0442 5.92E-06 0.0032
DIVISION 426 18 < 0.0442 0.0691 0.0036
CONGRESSION 21 6 < 0.0442 0.0011 0.0052
PROMETAPHASE 60 8 < 0.0442 0.0175 0.0063
CENTROMERE 181 13 < 0.0442 0.0134 0.0088
PROLIFERATING 523 19 < 0.0442 0.2220 0.0097
MICROTUBULE 523 19 1 0.2220 0.0097
G1 468 18 0.3982 0.2250 0.0110
AURORA 26 6 1 0.0061 0.0161
HELA 1393 31 < 0.0442 0.1650 0.0173
CHROMATID 74 8 0.9290 0.0979 0.0262
ANEUPLOIDY 74 8 0.4866 0.0979 0.0262
CYCLE 1882 36 1 0.1710 0.0359
CENP-A 15 5 0.4424 0.0034 0.0379
MAD2 18 5 1 0.0124 0.0829
INTERPHASE 253 13 0.0442 0.4320 0.0893
BUB1 9 4 1 0.0063 0.2500
MTOC 12 4 0.7521 0.0380 0.6420
KINETOCHORE- 12 4 1 0.0380 0.6420MICROTUBULE
CENP-H 4 3 1 0.0067 1

Abstract terms that were identified as over-represented by the corresponding methods 
are highlighted in yellow and in bold. The cutoff used is Bonferroni p -value < 0.05. 
The raw ̂ -values and rankings of these tokens can be found in Tables 5.2, 6.3 and 7.4.
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Figure 7.5: A comparison of the significant tokens in the mitosis gene list as 
obtained with OutlierDM and ExtendedHG
Tokens that were called significant by OutlierDM but not by ExtendedHG are circled 
in red. Tokens that were called significant by ExtendedHG but not by OutlierDM are 
circled in blue. Significant tokens are defined as those having Bonferroni /7-value < 
0.05.

7.4.3 Im pact o f gene un iverse

The fundamental idea behind hypergeometric test-based enrichment analysis is that if 

a biological process is regulated or changed in a given study, the genes involved in the 

process will have a higher chance of being selected by gene-level analysis and 

therefore of being included into the gene list. To determine the degree of enrichment 

of this group of genes (and hence the biological process), a certain background or 

“gene universe” must be defined to perform the comparison, which means that the 

gene universe has an effect on the final conclusions of the analysis. The gene universe 

can be set up in many ways, e.g. use the total genes in the genome as a global 

background reference, or use a narrowed-down set of genes that only exist on a
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microarray. For all analyses presented above, only those genes that exist on the HG- 

U133A array and found to be associated with at least one abstract term in the 

corresponding text corpus were included in the gene universe. Let this gene universe

be Gannotated'

The impact of gene universe on the classical hypergeometric distribution-based ORA 

approach (denoted as ClassicalHG hereafter) was investigated in Section 3.3.2. It was 

found that when a more loosely-defined gene universe Gtotai encompassing all genes 

represented on the HG-U133A array (regardless of whether they are cited by any 

PubMed article in the text corpus) was used, more significant /7-values were given to 

the tokens by ClassicalHG. This effect is illustrated in Figure 7.6(a), in which the 

actual /7-values of all tokens in the ISG gene list as calculated by ClassicalHG based 

on the use of Gannotated and Gtotai are compared. It can be seen that the significance of 

most terms, especially the common English words and non-specific terms, tend to be 

artificially inflated when Gtotai was used. As a consequence, ClassicalHG becomes less 

conservative such that more tokens were called significant at the selected /7-value 

threshold when Gtotai was used instead of Gannotated•

To examine the impact of the gene universe on the performance of ExtendedHG, the 

ISG gene list was re-analysed with Gtotai, and the results were compared to that 

obtained based on Gannotated• Interestingly, the same set of terms was identified as 

significantly enriched by ExtendedHG irrespective of whether Garmotated or Gtotai was 

used. As can be seen from Figure 7.6(b), the /7-value of all terms calculated based on 

Garmotated and Gtotai were affected in a relatively similar manner, as opposed to the 

discrepancies seen for ClassicalHG. Similar trends were also observed when the 

rankings of the terms in the ISG gene list, analysed with different reference 

backgrounds, were compared (Figure 7.7). Such stable /7-values and term ranks 

suggest that the extended hypergeometric distribution is a better statistical model than 

the classical hypergeometric distribution for assessing text-based over-representation, 

because it can intrinsically account for changes made to the gene universe and 

produces consistent output.
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Figure 7.6: A comparison of the /7-values generated based on different gene 
reference backgrounds
The raw p-values of all tokens in the ISG gene list as given by (a) ClassicalHG and (b) 
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compared. The red dashed line is they = x line.
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7.5 Discussion

The development of a parametric approach based on the extended hypergeometric 

distribution, called ExtendedHG, is described in this Chapter. The key concept 

underlying this method is that annotation bias will cause common and non-specific 

terms to have higher probabilities of being selected than expected by chance. 

Therefore the sampling procedure is biased, with the token frequency distribution 

following the extended hypergeometric distribution. In ExtendedHG, the degree of 

bias is measured by the odds ratio, which is equivalent to the probability ratio of 

seeing a token of interest over other tokens simply by chance, and a p-value can 

therefore be calculated for each token as a means for assessing significance.

Through various examples, it was demonstrated that ExtendedHG is capable of 

identifying biologically-plausible terms and concepts that may then facilitate the 

process of gene list interpretation, using information from published biomedical 

literature. Several remarks can be made with regards to the performance of 

ExtendedHG in comparison to other text-based ORA approaches described in the 

previous Chapters:

• ExtendedHG is advantageous over the classical hypergeometric test-based 

approach in two aspects. First, it accounts for bias inherent with highly-annotated 

gene list. Second, the results produced by ExtendedHG are not affected by the 

choice of gene universe, whereas conventional ORA methods that use the classical 

hypergeometric distribution as statistical model are.

• ExtendedHG produced results similar to those produced by the permutation test- 

based approach. However, ExtendedHG is more efficient in terms of 

computational cost and processing time, with it taking approximately 20 to 30 

seconds to analyse a 500-gene list, as opposed to a minimum of 6 hours that is 

typically required by the permutation test-based method on the same machine.

• The performances of ExtendedHG and OutlierDM are comparable when applied to 

the ISG and mitosis gene lists. However, in some cases, the two methods appear to 

capture slightly different components of the enrichment signal, such that terms 

uniquely detected by OutlierDM tend to be highly specific biological terms with
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relatively low background frequencies, whereas terms uniquely detected by 

ExtendedHG are predominantly words with higher background frequency. This 

issue will be examined more closely in Chapter 8.

As with many conventional ORA approaches, ExtendedHG is built on the assumption 

that genes are independent. This assumption has been criticised because strong 

correlations between genes are frequently encountered in microarray data, especially 

between functionally related genes. Delongchamp et al. (2006) suggested that 

ignoring the correlations between genes can overstate the significance of the true p- 

value and proposed modified meta-analysis methods for combining p -values to adjust 

for correlation. Goeman and Buhlmann (2007) demonstrated how the use of models 

that implicitly or explicitly assume independence across genes can produce less 

conservative results. However, the extent to which this problem is a significant one is 

unclear. For example, Gold et al. (2007) have argued that ORA as conventionally 

applied is robust to the assumption of independence. They showed that the 

conventional Fisher’s exact test (which does not formally adjust for correlation) and a 

multivariate normal approximation approach (which accounts for correlation) 

produced similar biological conclusions. Although not the main focus of the present 

study the possible effects of among-gene dependence are important, and present an 

interesting topic for future research.



Chapter 8 

Perform ance properties o f OutlierDM and 

ExtendedHG

8.1 Introduction

Evaluation is a process to determine whether a given method or system effectively 

achieves its stated objective, and the extent to which it succeeds in performing a task 

and achieving the anticipated results (Zweigenbaum et al. 2007). The analysis of gene 

lists produced from high-throughput technology like microarrays is more of an 

exploratory computational procedure rather than a pure statistical solution. Evaluating 

the performance of such approaches, which include the text-based ORA approaches 

proposed in previous Chapters, is challenging for several reasons. First, there is no 

immediately available “ground truth” which could be used (that is, there is no “gold 

standard”). Second, it is difficult to define reproducible evaluation metrics in biology 

because new knowledge is constantly being added, and whole subfields may be re

structured. Tarca et al. (2009) suggested that best practice in the absence of a gold 

standard is to (i) analyse the results produced by the proposed method in the light of 

the existing biological knowledge regarding the condition studied, and (ii) compare 

the performance of the proposed method with related approaches in the context of the 

same existing biological knowledge regarding the condition studied.

A focused evaluation strategy was undertaken in this Chapter to assess the capabilities 

of the text-based ORA approaches developed in this work and described in earlier 

Chapters. Specifically, the performance of OutlierDM and ExtendedHG (but not the 

permutation-based approach, which presents significant logistical problems for a

196
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large-scale evaluation because of its computationally intensive nature) were compared 

to existing literature- and ontology-based approaches. The ISG gene list and the 

literature gene lists from the HG-U133A array were used as test gene lists. The 

biological relevance and plausibility of the over-represented tokens and GO terms 

produced by the selected methods were then assessed against the perceived biology of 

the original publications. This comparative analysis is presented in Section 8.2. 

Section 8.3 will then focus on extending the proposed methods to other organisms 

outside human. In Section 8.4, the behaviours and shortcomings inherent with the 

OutlierDM and ExtendedHG are discussed.

8.2 Comparison with related software

8.2.1 Comparison with literature-based method

A number of text mining methods have been developed for linking groups of genes 

displaying interesting expression patters in microarray experiments with textual 

information contained in biomedical literature. Some popular ones have been 

discussed in Chapter 1 and a list of these tools is given in Table 1.2. Among them, the 

one closest in spirit to OutlierDM and ExtendedHG is the CoPub system developed by 

Frijters et al. (2008). The principle underlying CoPub is similar to conventional 

ontology-based ORA tools. Specifically, CoPub calculates keyword over

representation for a list of genes using the Fisher’s exact test, in which the association 

of a given keyword with genes in the query gene list is statistically tested against a 

background reference. The keywords used in CoPub were generated by searching the 

MEDLINE abstracts with biological concepts from eleven thesauri encompassing 

gene names (only for human, mouse and rat), Gene Ontology (GO) terms, liver 

pathologies, pathways, diseases, drugs and tissues.

To examine how other popular literature-based approaches that are not based on the 

over-representation analysis would fare against OutlierDM and ExtendedHG, a system 

named TXTGate (Glenisson et al. 2004) is included in the comparative analysis. 

TXTGate is built on the ideas of textual profiling and clustering proposed in Blaschke



Chapter 8. Performance properties o f OutlierDM and ExtendedHG 198

et al. (2001) and Chaussabel and Sher (2002). It uses the vector space model to cluster 

a group of genes into functional categories based on textual information from 

MEDLINE and display the best-scoring terms associated with the group of genes. The 

document vectors used in TXTGate were restricted to abstract words or phrases that 

were pre-defined in functional vocabularies such as Gene Ontology (GO), Medical 

Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM). All 

textual information and domain vocabularies were stemmed and indexed with a 

normalised inverse document frequency (IDF) weighting scheme.

OutlierDM and ExtendedHG versus CoPub and TXTGate

The ISG gene list was analysed with CoPub (http://services.nbic.nl/cgi-bin/copub/ 

CoPub.pl) and TXTGate (http://tomcat.esat.kuleuven.be/txtgate/home.jsp); the results 

were compared to the outcome from OutlierDM and ExtendedHG. The ISG gene list 

was chosen as the benchmark because it constitutes a well-studied system of 

transcriptional regulation. As detailed in Section 2.2.1, the ISG gene list contains 78 

genes induced by type I and type II interferons in A549 lung cells at 6h and 24h 

following treatment. These genes are principally involved in the regulation of the 

complement pathway, antiviral response, JAK-STAT signaling pathway, apoptosis 

and cytokine interactions. Therefore, if a text mining method is successful, the terms 

that it identifies as significant should correspond (or be related) to the aforementioned 

biological processes.

The results of this analysis are summarised in Table 8.1, in which the significant terms 

returned by each individual method are ordered by their significance. CoPub reported 

40 keywords as significantly enriched in the ISG gene list at p-value < 0.01 after 

correction for multiple testing. The top-ranking keywords from CoPub, such as 

‘antigen presentation’, ‘antiviral response’, ‘peptide transport’, ‘virus-host interaction’ 

and ‘innate immune response’, are related to interferon-mediated immune responses. 

It can be seen that mutually corresponding biological concepts reflecting the 

immunomodulatory effects of interferons were also identified by OutlierDM and 

ExtendedHG; these include ‘immune’, ‘antiviral’, ‘OAS’, ‘HLA-A’ and ‘MxA’. 

While CoPub did pick up a few more additional biologically-plausible hits than

http://services.nbic.nl/cgi-bin/copub/
http://tomcat.esat.kuleuven.be/txtgate/home.jsp
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OutlierDM and ExtendedHG, such as ‘apoptosis’, ‘proteasome’, ‘natural killer cell 

activity’, the fact that these biological processes were due to interferon-stimulated 

gene expression changes is not particularly obvious. The only keyword that implicates 

the involvement of interferon in CoPub is ‘ifn gamma signaling pathway’ (ranked at 

15). In contrast, the term ‘interferon’ is the most significant hit found by the rest of the 

methods shown in Table 8.1.

TXTGate output the top 10 terms with the highest IDF scores by default. As shown in 

Table 8.1, the term ‘interferon’ was reported as the best-scoring term in all three 

domain vocabularies used by TXTGate. The other two biologically-plausible terms 

returned by TXTGate are ‘ifn’ and ‘interferon indue’ (i.e. ‘interferon induction’). 

However, except for the three cases just mentioned, the remaining hits are not very 

useful for the interpretation of the ISG gene list because they are predominantly non

specific biological terms like ‘length’, ‘gene’ and ‘protein’. This is a surprising 

outcome because the adoption of specific domain vocabularies coupled with an IDF 

weighting scheme should (by definition) reduce the impact of common words and 

non-specific biological terms that occur frequently in abstracts. OutlierDM and 

ExtendedHG did not suffer from this problem because the apparent over

representation of these uninformative terms due to annotation bias was effectively 

dealt with, as described in Chapters 6 and 7.

It can be concluded from the above findings that the algorithms proposed for mining 

textual information as implemented in OutlierDM and ExtendedHG are competitive 

with current literature-mining methods.
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Table 8.1: Comparison of terms found by OutlierDM, ExtendedHG with those 
found by TXTGate and CoPub in the ISG gene list

For OutlierDM and ExtendedHG, over-represented terms were identified using the 
threshold Bonferroni p -value < 0.05. The most significant tokens (i.e. smallest p- 
values) are listed at the top. The analysis with CoPub was performed in “species- 
specific” mode with the human HG-UU133A chip as background; “categories 
analysed” was set to biological process and pathway; the “minimal number of genes 
associated with keyword” = at least 5; “literature threshold” = 3 or more co
publications; “R-scaled threshold” = at least 35. A /?-value threshold of less than 0.01 
after Benjamini-Hochberg multiple testing correction was used to assign over
represented keywords. The CoPub database used here is based on MEDLINE abstracts 
as of February 2008. The most significant keywords (i.e. smallest values) are listed 
at the top. The analysis with TXTGate was performed with MEDLINE abstracts 
annotated to Entrez Gene entries as of April 2006. Only the top ten terms with the 
highest inverse document frequency (IDF) scores were shown here; vocabularies with 
the highest term weight are listed at the top.

(continued over the page)
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Table 8.1 (continued)

201

Outlier ExtendedHG CoPub TXTGate
INTERFERON INTERFERON antigen presentation GO vocabularv
IFN IFN antiviral response interferon
IFN-BETA ANTIVIRAL peptide transport accuraci
ANTIVIRAL IFN-BETA virus-host interaction length
IFN-ALPHA IFN-ALPHA antigen processing and gene
INTERFERON- INDUCIBLE presentation sequenc

ALPHA VIRAL innate immune response contain
OLIGO ADENYLATE INFECTION immune response complet
ISG OLIGO ADENYLATE viral replication distribut
ISRE INTERFERON- antigen processing ifn
DSRNA ALPHA immune system protein
HLA-CLASS ISRE proteasome
HLA-A INNATE response to virus OMIM vocabularv
HLA-B ISG disease resistance interferon
INDUCIBLE IFN-GAMMA natural killer cell activity health
ENCEPHALOMYOC IMMUNE ifn gamma signaling length

ARDITIS IMMUNITY pathway gene
STOMATITIS HLA-A cell-mediated immune protein
OAS HLA-CLASS response indue
HLA-G STOMATITIS t-cell selection function
MXA TREAT transcription and ma- cell
EVASION LYMPHOBLASTOID dependent gener
INNATE HLA-B cytolysis restrict
TAPASIN EVASION response to pathogen
VIRAL VIRUS cell maturation MeSH vocabularv

ENCEPHALOMYOC cell recognition interferon
ARDITIS lymphocyte activation human
DSRNA b-cell activation interferon indue
MHC cell activation public
OAS transcription orf
HLA-G t-cell proliferation, t-cell institut
HOST homeostatic proliferation nation
MXA t-cell differentiation clone
INDUCTION t-cell activation gene
BETA2- humoral immune response collect
MICROGLOBULIN mma transcription
TAPASIN protein modification
GAMMA- lymphocyte differentiation,
INTERFERON lymphocyte proliferation
LMP7 conjugation
LMP2 gene conversion

OR-C apoptosis 
ma splicing 
cell development 
cytokine biosynthesis, 

production, secretion 
monocyte activation, 

differentiation
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8.2.2 C om parison w ith  on tology-based  m ethod  

OutlierDM and ExtendedHG versus DAVID

Using the ISG gene list as the benchmarking dataset, the performance of OutlierDM 

and ExtendedHG was evaluated against an ontology-based functional enrichment tool, 

DAVID (The Database for Annotation, Visualization and Integrated Discovery; 

http://david.abcc.ncifcrf.gov/home.jsp) (Huang et al 2007; Huang et al 2009). The 

analysis was performed with the Functional Annotation Chart module from DAVID, 

in which the significance of GO terms associated with genes in the ISG gene list was 

determined using the modified Fisher’s exact test (or EASE score). A cutoff of 0.05 

was used such that GO terms with ^-values < 0.05 after the Bonferroni correction 

were considered as over-represented.

As shown in Table 8.2, a good agreement was observed between the biology 

associated with the enriched GO terms reported by DAVID and the PubMed abstract 

terms produced by OutlierDM and ExtendedHG (cf. Table 8.1), with concepts related 

to immune response highly-ranked by all three approaches. As an illustration of the 

limitations of pre-defined ontologies such as GO it was noted that none of the 

significant GO terms gives an indication of the involvement of interferon, thus 

demonstrating how mining of PubMed abstracts can potentially reveal additional 

biological insight that is not possible by mining controlled vocabularies alone.

In what follows, the evaluation was expanded beyond the ISG gene list to a larger set 

of data comprising of the 52 literature gene lists derived from experiments using the 

Affymetrix human HG-U133A array. The aim is to present a focused performance 

review of how the results produced by OutlierDM and ExtendedHG and standard 

ORA approach using GO terms compare, both in depth of information and also in 

biological plausibility.

http://david.abcc.ncifcrf.gov/home.jsp
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Table 8.2: Significant GO terms in the ISG gene list as reported by the functional 
enrichment tool DAVID

Term Population
Hits

List
Count p-value Bonferroni

p-value Ranking

Response to biotic stimulus 853 49 1.98E-36 6.40E-33 1
Immune response 737 44 2.54E-32 8.30E-29 2
Defense response 816 45 8.84E-32 2.90E-28 3
Response to stimulus 1765 52 3.49E-25 1.10E-21 4
Organismal physiological process 1660 46 6.17E-20 2.00E-16 5
Response to virus 70 14 6.67E-16 2.20E-12 6
Response to pest, pathogen or 503 25 7.37E-15 2.40E-11 7

parasite
Response to other organism 514 25 1.19E-14 3.90E-11 8
Response to stress 956 27 1.85E-10 6.00E-07 9
MHC protein complex 18 6 1.05E-07 6.30E-05 10
MHC class I protein complex 18 6 1.05E-07 6.30E-05 11
Antigen presentation, endogenous 27 7 2.07E-08 6.70E-05 12

antigen
Antigen processing, endogenous 28 7 2.62E-08 8.50E-05 13

antigen via MHC class I
MHC class I receptor activity 36 7 8.23E-08 2.00E-04 14
Antigen processing 36 7 1.30E-07 4.20E-04 15
Antigen presentation 42 7 3.38E-07 1.10E-03 16
Immunological synapse 31 6 1.95E-06 1.20E-03 17

The ontological tool DAVID 2.0 was used to identify over-represented GO terms in 
the ISG gene list. The analysis was performed using all levels of GO terms and HG- 
U133A chip as background (database version as of 19 Dec 2007). Over-represented 
GO terms were defined as having Bonferroni /7-value < 0.05 based on Fisher’s exact 
test (threshold settings: Count = 2, EASE = 0.1).
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OutlierDM and ExtendedHG versus GOstats

In this analysis, the GO terms identified as over-represented in the 52 HG-U133A 

literature gene lists were qualitatively assessed against the significantly over

represented PubMed tokens found by OutlierDM and ExtendedHG.

Experiment settings

For the text-based analysis, the 52 gene lists were analysed with OutlierDM and 

ExtendedHG as described in Sections 6.3.2 and 7.3.2, respectively. A threshold of 

Bonferroni-corrected p-value < 0.05 was used to identify significantly over

represented tokens.

For the GO-based analysis, the Bioconductor package GOstats (Falcon and Gentleman 

2007) was used. Specifically, the function hyperGTest implemented in GOstats 

(version 2.4.0) was used to identify GO terms (restricted to the biological process 

category only) that are significantly enriched in these gene lists, based on the classical 

hypergeometric test. This version of GOstats used the mappings provided in the 

annotation data packages hgul33a.db (version 2.0.2) and GO.db (version 2.0.0) to 

convert between Affymetrix probeset IDs, Entrez Gene IDs and GO terms. Only genes 

that exist on the HG-U133A array and found to be associated with at least one GO 

term were included in the gene universe. A cutoff of 0.05 (i.e. Bonferroni p-value < 

0.05) was used to identify significantly enriched GO terms.

Results

Three pieces of information were collected for each of the 52 gene list: (i) the number 

of GO terms reported as significantly enriched by GOstats; (ii) the number of abstract 

tokens reported as significantly over-represented by OutlierDM; and (iii) the number 

of abstract tokens reported as significantly over-represented by ExtendedHG. Out of 

the 52 gene lists, 4 gene lists do not have any hits in all three methods assessed; 2 

gene lists have at least one significant GO term but not tokens; 16 gene lists have at 

least one significant token but not GO terms. Those gene lists with at least one 

significant GO term and token are shown in Figure 8.1, where the number of over-
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represented GO terms was plotted against the number of tokens found in them. To 

give a consensus measure for the token-based analysis, only results from the text- 

based method (either Outlier or ExtendedHG) that produced the most number of 

significant tokens are shown here.

As shown Figure 8.1, there is a good correlation between the number of significant 

GO terms and the number of significant tokens identified across these gene lists; those 

gene lists with more apparent enriched biology, as defined by GOstats, also show a 

higher number of over-represented tokens according to the proposed text-based 

approach. The biological relevance and plausibility of the over-represented tokens and 

GO terms were then assessed against the perceived biology of the original 

publications. Table 8.3 shows the outcomes of GOstats, the proposed text-based 

approach (OutlierDM or ExtendedHG) and biology of the original publication in 

parallel. In most cases, the over-represented GO terms and tokens appear to be both 

interesting and plausible, and also in good agreement with the biological themes 

extracted manually.

It was found that the level of detail offered by the two resources (GO versus abstract 

token) is rather different. For example, in the two gene lists ‘hs5a’ and ‘hs5b’, while 

GOstats reported biological processes such as ‘immune response’, ‘lymphocyte 

activation’ as significant; text-based analysis with ExtendedHG revealed the key 

players involved in these processes including ‘CD3’, ‘CD4’, ‘CD8’, ‘TCR’ and ‘IL-2’. 

Consider another example based on the gene list ‘h s llb ’ in which no GO terms was 

found to be significant enriched; OutlierDM were able to pick up the term 

‘Metalloproteinase-2’ as significant. Indeed, matrix metalloproteinases were perceived 

to play an important role in mediating lung metastasis in this study.

These examples demonstrate that the text-based approaches proposed in this thesis are 

not a replacement to the classical GO-based ORA but a complement and extension of 

it, and when both were used in combination could (sometimes) give greater insights 

than using GO alone.
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Figure 8.1: A comparison of the number of significant GO (BP) terms versus the 
number of significant abstract tokens in 30 HG-U133A literature gene lists
Each point in the plot represents a gene list. For each gene list, the number of over
represented GO terms reported by GOstats was plotted against the number of over
represented tokens reported by the proposed text-based ORA approaches (the results 
shown here are based on the text-based method - either Outlier or ExtendedHG - that 
produced the most number of significant tokens). Details of these gene lists, the 
significant GO terms and tokens found in them can be found in Table 8.3. BP = 
biological process terms in GO. The axes are on log scale.
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Table 8.3: Significant GO terms versus PubMed tokens

ID Source of gene list Description and Over-represented GO Over-represented O/E

hs1b PMID: 16531451

Title: Global alterations 
in mRNA polysomal 
recruitment in a cell 
model of colorectal 
cancer progression to 
metastasis.

Extracted from 
Supplementary Table 
II.

hs2a PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table
1.

hs2b PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table
2.

biology under studied

Probesets changed in the 
polysomal RNA sample.

• Amine metabolism
• Amino acid activation 

and translation
• RNA transport and 

metabolism
• Cell proliferation
• Apoptosis
• tRNA aminoacylation 

pathway
Transcripts with greater 
than 3-fold enrichment in 
every T cell subpopulation 
compared to TSC.

• T cell differentiation and 
function

• Immune response
• TCR signalling
• Intrathymic 

differentiation
• ERK1/ERK2 activity
• Intrathymic T cell 

selection

Transcripts whose 
expression changed by 
more than 3-fold during T 
cell differentiation.

(Biological Process) 
terms
• Regulation of progression 

through cell cycle
• Regulation of cell cycle

• Immune system process
• T cell activation
• Lymphocyte activation
• Leukocyte activation
• Positive regulation of 

antigen receptor-mediated 
signaling pathway

• Hemopoietic or lymphoid 
organ development

• Immune system 
development

• Cell activation
• Hemopoiesis
• Regulation of T cell 

activation
• Immune response
• T cell differentiation
• Lymphocyte differentiation
• Regulation of lymphocyte 

activation
• Regulation of ceil 

activation

Cell cycle 
Cell cycle process 
Mitotic cell cycle 
M phase of mitotic cell 
cycle
Cell cycle phase 
Mitosis
Regulation of cell cycle 
DNA replication 
M phase
Regulation of progression 
through cell cycle 
Immune response 
Cell division
Spindle organization and 
biogenesis
Immune system process 
Programmed cell death 
Regulation of programmed 
cell death 
Apoptosis
Regulation of apoptosis
Cell death
Death

PubMed tokens

BREAST E
OVEREXPRESSION
METASTATIC
CANCER
FIBROBLAST
OVEREXPRESS
IMMORTALIZATION

T-CELL E
LYMPHOID
TCR
THYMOCYTE
CD3
LYMPHOCYTE
LINEAGE
HEMATOPOIETIC
NK
IL-2
IMMUNE
JURKAT
LYMPHOMA
T-LYMPHOCYTE
KILLER
B-CELL
CD45RA
NAIVE
CD4
CD2
CD8
LCK
ENGAGEMENT
ACTIVATION

LYMPHOID E
THYMOCYTE
CD8
LYMPHOCYTE
ANAPHASE
B-CELL
LYMPHOMA
T-CELL
MITOSIS
SPINDLE
TCR
CHECKPOINT
CD3
THYMUS
CD4
CYTOKINESIS
NK
IL-2
LEUKEMIA
INTERLEUKIN-2
INTERFERING
MITOTIC
KINETOCHORE
PROLIFERATING
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs2b
cont’d)

DNA metabolic process KILLER
Cell cycle checkpoint INTERPHASE
Microtubule-based process LYMPH

Antigen processing and PROMETAPHASE
presentation LINEAGE
Regulation of mitosis VIRUS
Positive regulation of TUMOR
apoptosis INDUCTION
Regulation of biological MIDBODY
process MAB
Positive regulation of NODE
programmed cell death PROLIFERATION
Cell development JURKAT
Negative regulation of GERMINAL
biological process

ENTER
Biological regulation

HEMATOPOIETIC
Regulation of cellular
process
Induction of apoptosis
Mitotic sister chromatid
segregation
Negative regulation of
cellular process
Induction of programmed
cell death
Sister chromatid
segregation
Spindle checkpoint
Negative regulation of
programmed cell death
DNA-dependent DNA
replication
Chromosome segregation
Negative regulation of
apoptosis
Cell differentiation
Cellular developmental
process

Mitotic cell cycle MITOTIC
Mitosis SPINDLE

M phase of mitotic cell MITOSIS
cycle ANAPHASE
Cell cycle phase CHECKPOINT
M phase KINETOCHORE
Cell cycle DIVISION
Cell cycle process CONGRESSION

Cell division PROMETAPHASE

Spindle organization and CENTROMERE
biogenesis PROLIFERATING
Microtubule-based process MICROTUBULE
Microtubule cytoskeleton G1
organization and AURORA
biogenesis HELA
Regulation of mitosis CHROMATID
Cytoskeleton organization ANEUPLOIDY
and biogenesis CYCLE
Regulation of progression CENP-A
through cell cycle
Regulation of cell cycle
Organelle organization and
biogenesis

hs2c PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table 
3-1.

Transcripts enriched in
both ITTP and DP by more
than 3-fold.

• DNA replication, 
recombination and 
repair

• Cell cycle regulation, 
progression, mitosis

• Lipid/glycolipid- 
presenting CD1 family

• Transcriptional 
regulation

• Regulation of apoptosis
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and 
biology under studied

Over-represented GO 
(Biological Process) 
terms

Over-represented 
PubMed tokens

O/E

(hs2c • Phosphoinositide-mediated
cont’d) signaling

• Second-messenger-
mediated signaling

• Chromosome segregation
• DNA metabolic process
• Spindle checkpoint
• Microtubule-based

movement
• DNA replication
• Mitotic sister chromatid

segregation
• Sister chromatid

segregation
• Cytoskeleton-dependent

intracellular transport
• Mitotic spindle organization

and biogenesis

hs2d PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table 
3-2.

Transcripts enriched in 
more mature cells (SP4, 
CB4, and AB4) by more 
than 3-fold.

• Intracellular 
communication

• Cell surface receptors
• Peptide-presenting 

MHC antigens
• Transcriptional 

regulation
• Regulation of apoptosis

Antigen processing and 
presentation of peptide 
antigen via MHC class I 
Antigen processing and 
presentation of peptide 
antigen
Immune response 
Antigen processing and 
presentation 
Immune system process

HLA-CLASS
HLA-A
OR-C
PERIPHERAL
CD8
HLA-C
HLA-B
HLA-G
IFN-GAMMA

hs2e PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table 
3-3.

Transcripts enriched by 
more than 3-fold in ITTP 
compared to other 
lymphocytes.

• Immune function

Nitric oxide mediated 
signal transduction 
CGMP biosynthetic 
process
CGMP metabolic process

INTERLEUKIN-2

hs2f PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table 
3-4.

Transcripts enriched by 
more than 3-fold in DP 
compared to other 
lymphocytes.

• Thymocyte 
differentiation

• Thymocyte survival and 
positive selection

• Modulation of Th1 and 
Th2 response

• CD1 family proteins
• T cell co-stimulation

• Lymphocyte activation
• Leukocyte activation
• Cell activation
• T cell activation
• Antigen processing and 

presentation

LYMPHOPROLIFERA - O 
TION
MYCOBACTERIAL
MYCOBACTERIA
INTERACTION

hs2i PMID: 15210650

Title: Gene expression 
profiles during human 
CD4+ T cell 
differentiation.

Extracted from 
Supplementary Table 
4-1.

Transcripts showing 
SP4>CB4>AB4 pattern.

• Plasma membrane 
proteins

[ No hits found ] HMG-BOX 0  
MMP-2

hs3a PMID: 15897907 Genes which best 
discriminate apocrine vs

• Alcohol metabolic process
• Monocarboxylic acid

ACETOXYMETHYL o  
METABOLISM
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs3a Title: Identification of 
cont’d) molecular apocrine 

breast tumours by 
microarray analysis.

Extracted from 
Supplementary Table 
Sheet 2.

luminal (AL). metabolic process 
Carboxylic acid metabolic 
process
Organic acid metabolic 
process
Steroid biosynthetic 
process
Lipid metabolic process 
Sterol biosynthetic process 
Aldehyde metabolic 
process
Fatty acid metabolic 
process
Cholesterol biosynthetic 
process

ANTIANDROGEN
ANDROGEN

hs3b PMID: 15897907

Title: Identification of 
molecular apocrine 
breast tumours by 
microarray analysis.

Extracted from 
Supplementary Table 
Sheet 2.

G enes which best 
discriminate apocrine vs 
basal (AB).

Lipid metabolic process 
Carboxylic acid metabolic 
process
Organic acid metabolic 
process
Monocarboxylic acid 
metabolic process
Alcohol metabolic process 
Sterol biosynthetic process 
Cellular lipid metabolic 
process
Lipid biosynthetic process 
Steroid biosynthetic 
process
Fatty acid metabolic 
process
Cholesterol biosynthetic 
process
Sterol metabolic process

DESATURASE
FATTY

hs4a PMID: 16260967

Title: Effects of aerobic 
training on gene 
expression in skeletal 
muscle of elderly men.

Extracted from Table 
S2 in the main paper.

G enes whose expression 
increased after training.

• Energy metabolism or 
mitochondrion

• Lipid metabolism
• Proton pumps
• Collagen
• Protein, amino acid 

dephosphorylation
• Heme biosynthesis

Acetyl-CoA metabolic 
process
Tricarboxylic acid cycle 
intermediate metabolic 
process
Tricarboxylic acid cycle 
Acetyl-CoA catabolic 
process
Cofactor metabolic 
process
Coenzyme catabolic 
process
Cellular catabolic process 
Cofactor catabolic process

MITOCHONDRIAL
MITOCHONDRIA
CATALYSIS
BURY

hs4b PMID: 16260967 G enes whose expression • Translation RIBOSOMAL O

Title: Effects of aerobic
decreased after training. •  Macromolecule S14

training on gene • Ribosome and protein biosynthetic process R-PROTEIN
expression in skeletal catabolism • Biosynthetic process RRNA
muscle of elderly men. •  Muscle degradation • Cellular protein metabolic U14

Extracted from Table process

S3 in the main paper. • Cellular macromolecule
metabolic process 

• Protein metabolic process

hs5a PMID: 12958056

Title: Gene expression 
profiling of
bronchoalveolar lavage

G enes that are up- 
regulated in gene 
expression in acute 
rejection vs. no rejection 
(False Discovery Rate =

Immune system  process 
Immune response 
Leukocyte activation 
R esponse to stimulus

THYMOCYTE
CD8
NK
TCR
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs5a cells in acute lung
cont’d) rejection.

Extracted from 
Supplementary Table 
E1.

0.94%).

• Acute rejection 
response

• Immune response
• Inflammatory response
• Transcriptional 

regulation
• TGF-beta signalling
• Apoptosis
• Nucleotide GPCR 

receptors
• Peptide GPCR 

receptors
• Wnt signalling
• Cytokine-CXC 

chemokine pathways

Cell activation 
Lymphocyte activation 
Positive regulation of 
lymphocyte activation 
Regulation of lymphocyte 
activation 
Regulation of cell 
activation
Positive regulation of 
isotype switching to IgG 
isotypes
Lymphocyte mediated 
immunity
Cellular defense response
Leukocyte mediated 
immunity
Adaptive immune 
response
Adaptive immune 
response based on 
somatic recombination of 
immune receptors built 
from immunoglobulin 
superfamily domains 
Regulation of immune 
system process 
Regulation of immune 
response
Isotype switching to IgG 
isotypes
Regulation of isotype 
switching to IgG isotypes
Immunoglobulin mediated 
immune response 
B cell mediated immunity 
Positive regulation of B cell 
activation
Immune effector process 
Positive regulation of 
isotype switching 
Immune response- 
activating cell surface 
receptor signaling pathway 
Immune response- 
activating signal 
transduction
Immune response- 
regulating signal 
transduction 
Immune response- 
regulating cell surface 
receptor signaling pathway 
Antigen receptor-mediated 
signaling pathway 
Positive regulation of 
mononuclear ceil 
proliferation
Positive regulation of 
lymphocyte proliferation
Regulation of B cell 
activation
Signal transduction

CD4
CD3
KILLER
IL-2
T-CELL
IMMUNE
LYMPHOCYTE
MAB
LYMPHOCYTIC
LYMPHOMA
JURKAT
PRE-TCR
B-CELL
ANTIGEN
IMMUNOGLOBULIN

hs5b PMID: 12958056

Title: Gene expression

Genes with significant 
changes in gene 
expression in acute

Immune system process CD4
Immune response NK
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and 
biology under studied

Over-represented GO 
(Biological Process) 
terms

Over-represented 
PubMed tokens

O/E

(hs5b profiling of rejection vs. no rejection • Response to stimulus IL-2
cont’d) bronchoalveolar lavage (False Discovery Rate = • Leukocyte activation CD3

cells in acute lung 4.63 %). CD8rejection. • Lymphocyte activation
• Acute rejection • Cell activation KILLER

Extracted from 
Supplementary Table 
E2.

response 
• Immune response

• Cell surface receptor 
linked signal transduction

THYMOCYTE
ENGAGEMENT

• Inflammatory response • T cell activation TCR
• Transcriptional • Regulation of lymphocyte T-CELL

regulation activation CYTOLYTIC
• TGF-beta signalling • Regulation of cell IMMUNE
• Apoptosis activation MAB
• Nucleotide GPCR • Cellular defense response LYMPHOCYTE

receptors • Signal transduction CD16
• Peptide GPCR • Positive regulation of CD56

receptors lymphocyte activation IMMUNOGLOBULIN
• Wnt signalling • Cell communication IL-12
• Cytokine-CXC • Regulation of T cell INTERLEUKIN

chemokine pathways activation
• Defense response
• Regulation of multicellular 

organismal process

CD2
PBL
LIGATION
ALLOGENEIC
CTL
CYTOTOXICITY
PERIPHERAL
JURKAT
MONOCYTE
CYTOKINE
EFFECTOR
RAFT
TH1
MONONUCLEAR
IFN-GAMMA
BLOOD
ANTI-CD3
PHYTOHEMAGGLUTIN
IN
GRANZYME
LYMPHOID
MEMORY
NATURAL
SURFACE

hs6a PMID: 16319128 Down-regulated genes in • Anatomical structure MICROFIBRIL 0

Title: Distinct 
expression profile in

FH mutant relative to FH development TRANSFORMING
wild-type fibroids. SMOOTH

fumarate-hydratase- • Extracellular matrix
deficient uterine 
fibroids.

• Cell mobility
• Muscle contraction

Extracted from • Organogenesis
Supplementary Table 
1. • Muscle development

• Cell adhesion
• Plasma membrane

hs6b PMID: 16319128

Title: Distinct 
expression profile in 
fumarate-hydratase- 
deficient uterine 
fibroids.

Up-regulated genes in FH 
mutant relative to FH wild- 
type fibroids. Extracted 
from Supplementary Table 
1.

•  Glycolysis
•  Carbohydrate 

metabolism

• Glucose catabolic process
• Glycolysis
• Hexose catabolic process
• Monosaccharide catabolic 

process
• Alcohol catabolic process
• Glucose metabolic process
• Cellular carbohydrate

GLYCOLYTIC
ALDO-KETO
PEROXIDATION
NICOTINAMIDE
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs6b Extracted from 
cont’d) Supplementary Table

1.

•  Hexose metabolism
• Iron ion homeostasis
• Oxidoreductase activity
• Membrane lipid 

catabolism
• Integral to endoplasmic 

reticulum membrane
• Electron transporter 

activity

catabolic process
Hexose metabolic process
Monosaccharide metabolic 
process
Carbohydrate catabolic 
process
Cellular catabolic process 
Cellular carbohydrate 
metabolic process 
Carbohydrate metabolic 
process
Catabolic process 
Cellular macromolecule 
catabolic process 
Alcohol metabolic process 
Phospholipid catabolic 
process
Macromolecule catabolic 
process
Cellular iron ion
homeostasis
Iron ion hom eostasis

hs6d PMID: 16319128

Title: Distinct 
expression profile in 
fumarate-hydratase- 
deficient uterine 
fibroids.

Extracted from 
Supplementary Table 
3.

Up-regulated genes in FH 
mutant relative to normal 
myometrium.

• Carbohydrate 
metabolism

• Glycolysis

Glucose catabolic process
Hexose catabolic process
Monosaccharide catabolic 
process
Alcohol catabolic process 
Cellular carbohydrate 
catabolic process 
Carbohydrate catabolic 
process 
Glycolysis
Glucose metabolic process 
Cellular carbohydrate 
metabolic process 
Hexose metabolic process 
Monosaccharide metabolic 
process
Carbohydrate metabolic 
process
Cellular catabolic process 
Macromolecule catabolic 
process
Alcohol metabolic process
Catabolic process
Cellular macromolecule
catabolic process
NADP metabolic process
Nicotinamide metabolic
process
Cellular iron ion
hom eostasis
Iron ion hom eostasis

GLYCOLYTIC
NONSPHEROCYTIC
NADP
HEMOLYSIS
APOFERRITIN
RESOLUTION
ISOENZYME

hs7 PMID: 15817885

Title: Reprogramming 
of the human atrial 
transcriptome in 
permanent atrial 
fibrillation: expression 
of a ventricular-like 
genomic signature.

Genes differentially 
expressed in atrial 
fibrillation.

• Transcriptional 
processes and activities

• Calcium-dependent 
signalling pathway

• CaMK pathway

Enzyme linked receptor 
protein signaling pathway 
Developmental process

OVEREXPRESSION
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and 
biology under studied

Over-represented GO 
(Biological Process) 
terms

Over-represented 
PubMed tokens

O/E

(hs7
cont’d)

Extracted from 
Supplementary Table
3.

• MAPK pathway
• Extracellular matrix 

composition and 
turnover

hs8 PMID: 15971941

Title: Derivation of 
multi potent 
mesenchymal 
precursors from human 
embryonic stem cells.

Extracted from 
Supplementary Table 
S2.

Genes shared between 
primary and hESC-derived 
mesenchymal precursors 
but significantly different 
from undifferentiated 
hESCs.

MSC markers including 
mesenchymal stem cell 
protein DSC54, hepatocyte 
growth factor, neuropilin I, 
forkhead box D1, notch 
homolog.

• Organ development
• Hemostasis
• Cell cycle arrest
• Blood coagulation
• Coagulation
• Wound healing
• Response to wounding
• Regulation of body fluids

COLLAGEN
ECM
STROMAL

hs10 PMID:16203770

Title: Molecular 
alterations in primary 
prostate cancer after 
androgen ablation 
therapy.

Extracted from 
Supplementary Data.

Unabridged list of genes 
differentially expressed 
between AD and Al 
prostate cancer.

• Translation
• Macromolecule 

biosynthetic process
• Biosynthetic process

RIBOSOMAL
S16

hs11a PMID: 16049480

Title: G enes that 
mediate breast cancer 
metastasis to lung.

Extracted from 
Supplementary Table
2 .

G enes differentially 
expressed between 
parental MDA-MB-231 and 
LM2 cell lines selected to 
be highly metastatic to 
lung.

• Lung metastatic activity
• Growth and survival 

factors
• Chemokines
• Cell adhesion receptors
•  Extracellular proteases
• Intracellular enzym es
• Transcriptional 

regulators

Antigen processing and 
presentation of peptide or 
polysaccharide antigen via 
MHC class II
Immune response 
Immune system process

METALLOPROTEIN-
ASE-2
SBT

hs11b PMID: 16049480 Lung m etastasis candidate [ No hits found ] METALLOPROTEIN- O
genes. ASE-2

Title: G enes that LINEmediate breast cancer Extracellular proteins (eg.
metastasis to lung. SPARC, MMP2) act a s

Extracted from
virulence genes that may
allow tumours to invade,

Supplementary Table colonise and grow in the
4. lungs.

hs12b PMID: 16089502

Title: Functional 
analysis of human 
hematopoietic stem cell 
gene expression using 
zebrafish.

Extracted from 
Supplementary Table 
S2.

Probesets differentially 
expressed between adult 
bone marrow derived Rho- 
lo and Rho-hi cells.

• Cell cycle control

Cell cycle
Mitotic cell cycle
Cell cycle process
Cell cycle phase
DNA metabolic process
M phase of mitotic cell
cycle
Mitosis
M phase
DNA replication
Cellular metabolic process
Cell division
Primary metabolic process

CHECKPOINT
MITOSIS
ANAPHASE
MITOTIC
RIBOSOMAL
INTERPHASE
CYTOKINESIS
CYCLE
G1
REPLICATION
KINETOCHORE
PROLIFERATING
CDK2
ERYTHROID
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs12b
cont’d)

Metabolic process 
Regulation of cell cycle 
Macromolecule metabolic 
process
Regulation of progression 
through cell cycle
Chromosome organization 
and biogenesis 
Translation
Chromosome organization 
and biogenesis (sensu 
Eukaryota)
Cell cycle checkpoint 
Chromosome segregation 
Response to DNA damage 
stimulus
DNA-dependent DNA 
replication
Response to endogenous 
stimulus
Nucleosome assembly 
Mitotic sister chromatid 
segregation
Spindle organization and
biogenesis
Interphase
Macromolecule 
biosynthetic process
Sister chromatid 
segregation 
DNA repair
Organelle organization and 
biogenesis
Biopolymer metabolic 
process
Chromatin assembly 
Biosynthetic process 
Mitotic spindle organization 
and biogenesis 
Nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process

DOUBLE-STRAND
G2
KI-67
CHROMATID
ANEUPLOIDY

hs12c PMID: 16089502

Title: Functional 
analysis of human 
hematopoietic stem cell 
gene expression using 
zebrafish.

Extracted from 
Supplementary Table 
S3.

Probesets differentially 
expressed between Rho-lo 
and Rho-hi cells from both 
umbilical cord blood and 
adult bone marrow.

• Hematopoietic 
differentiation and 
development

• Cell cycle control

Oxygen transport 
G as transport 
Antigen processing and 
presentation of peptide or 
polysaccharide antigen via 
MHC class II 
DNA replication 
Antigen processing and 
presentation

THAL
BETA-CHAIN
DELTA-GLOBIN
HBA2
THALASSEMIA
ANODE

• Wnt signalling
• Germ cell development
• Globins

• DNA metabolic process

hs15a PMID: 12756304

Title: A global view of 
the selectivity of zinc 
deprivation and excess 
on genes expressed in 
human THP-1 
mononuclear cells.

Extracted from

Group 1 zinc responsive 
genes.

• Nucleic acid binding
• Apoptosis
• Metabolism
• Cell growth and 

development

• RNA metabolic process
• Transcription from RNA 

polymerase II promoter

SCLEROTOME
CD4
RNAP
EFFECTOR

0
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and 
biology under studied

Over-represented GO 
(Biological Process) 
terms

Over-represented 
PubMed tokens

O/E

(hsl5a
cont’d)

Supplementary Table
3.

• Signal transduction
• Immune, cytokine
• Cytoskeleton

hs17b PMID: 16804116

Title: Gene-expression 
profiling of 
Waldenstrom 
macroglobulinemia 
reveals a  phenotype 
more similar to chronic 
lymphocytic leukemia 
than multiple myeloma.

Extracted from 
Supplementary Table 
S1: MM Unique Genes.

G enes that displayed 
distinct expression profile 
in MM compared to CLL 
and WM.

• Signal transduction and 
intracellular signalling

• Cell-surface receptor- 
linked signalling e.g. 
AKT, IGF-1R and Wnt 
signalling

• Prostacyclin synthesis
• angiopoientin signalling
• Integrin-mediated cell 

adhesion
• Early B-cell receptor 

signalling

Regulation of biological 
process
Regulation of cellular 
process
Biological regulation

MB-1

hs17c PMID: 16804116

Title: Gene-expression 
profiling of 
Waldenstrom 
macroglobulinemia 
reveals a phenotype 
more similar to chronic 
lymphocytic leukemia 
than multiple myeloma.

Extracted from 
Supplementary Table 
S1: CLL Unique 
Genes.

G enes that displayed 
distinct expression profile 
in CLL compared to WM 
and MM.

• Apoptosis regulation
• Immune response
• Cell cycle regulation

[ No hits found ] APC

hs17d PMID: 16804116

Title: Gene-expression 
profiling of 
Waldenstrom 
macroglobulinemia 
reveals a  phenotype 
more similar to chronic 
lymphocytic leukemia 
than multiple myeloma.

Extracted from 
Supplementary Table 
S1: WMCLL B-cell 
cluster.

A cluster of genes that 
were over-expressed in B- 
cell, WM and CLL.

• Cell cycle regulation

• Immune system process
• Immune response
• Cell communication
• Signal transduction
• Lymphocyte activation
• Leukocyte activation
• Cell activation
• B cell activation
• Defense response
• Immune response- 

activating cell surface 
receptor signaling pathway

• Immune response- 
activating signal 
transduction

• Immune response- 
regulating signal 
transduction

• Immune response- 
regulating cell surface 
receptor signaling pathway

• Antigen receptor-mediated 
signaling pathway

• Immune system 
development

• T cell activation

LYMPHOID
B-CELL
HEMATOPOIETIC
LYMPHOCYTE
LINEAGE
ENGAGEMENT
CD8
CD19
TCR
LYMPHOMA
IMMUNE
CD4
PRE-B
SRC
MONOCYTE
NAIVE
THYMOCYTE
BCR
IL-4
CD21
IMMUNOGLOBULIN
BURKITT
GERMINAL
JURKAT
LYMPHOCYTIC
EXTRANODAL
CD3
HISTOCOMPATIBILITY
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and 
biology under studied

Over-represented GO 
(Biological Process) 
terms

Over-represented 
PubMed tokens

O/E

(hs17d ZAP70
cont’d) NK

PRO-B
RESTING
EFFECTOR
KILLER
T-CELL
F-ACTIN
CYTOSKELETON
LEUKOCYTE
LEUKEMIA

hs18a PMID: 16836768

Title: Signatures of 
human regulatory T 
cells: an encounter with 
old friends and new 
players.

Extracted from 
Additional file 1.

Up-regulated genes 
comparing CD4+CD25+ T 
cells versus CD4+CD25- T 
cells.

All differentially expressed 
genes can be classified 
into:
•  Cytokines/chemokines 

and their receptors
• Cell cycle and 

proliferation
• Apoptosis
• Signal transduction
• Transcriptional 

regulation

The authors identified 3 
signalling modules using 
Pathway Analysis 
software:
• G enes that control T cell 

receptor signalling, 
activation and 
proliferation

• G enes that control 
differentiation and 
maintenance

• G enes that control 
survival/apoptosis

Antigen processing and 
presentation of peptide or 
polysaccharide antigen via 
MHC class II
Antigen processing and 
presentation 
Immune response 
Response to stimulus 
Immune system process

DPB1
DRB1
DRB
DR2
DPA1
HLA-DPB1
DQB1*0602
HLA-DRB1
DQW1
AND-DQ
DQB1*0302
PCR-SSOP
HLA-DR
HLA-D
OLIGOTYPING
DQA1
SBT
CD4

hs18c PMID: 16836768

Title: Signatures of 
human regulatory T 
cells: an encounter with 
old friends and new 
players.

Extracted from 
Additional file 4.

G enes differentially 
expressed in Foxp3 over
expressing CD4+ Th cell 
lines cells relative to the 
GFP transduced CD4+ Th 
controls.

• TNF receptor 
superfamily

• Activation of signal 
transduction pathways 
eg. NFkB, JNK, P38, 
ERK and PI3K

• Immune response

[Only top 50 are shown] 
Immune system process 
Immune response 
Response to stimulus 
Signal transduction 
Cell communication 
Lymphocyte activation 
Leukocyte activation 
T cell activation 
Cell death 
Death
Biological regulation 
Apoptosis
Programmed cell death 
Cell activation 
Defense response 
Cell development 
Regulation of cellular 
process

[Only top 50 are shown]
LYMPHOID
T-CELL
CD4
CD3
CD8
IL-2
LYMPHOCYTE
ANTI-CD3
CD25
NAIVE
TCR
HELPER
ENGAGEMENT
CD28
IMMUNODEFICIENCY
INFECT
JURKAT
TH1
IMMUNE
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs18c
cont’d)

Regulation of biological 
process
Positive regulation of 
biological process
Regulation of lymphocyte 
activation
Positive regulation of 
cellular process
Regulation of cell
activation
Cell differentiation
Cellular developmental
process
Cell surface receptor 
linked signal transduction
Regulation of apoptosis 
Regulation of programmed 
cell death
Negative regulation of 
biological process 
Negative regulation of 
cellular process 
Positive regulation of 
lymphocyte activation 
Elevation of cytosolic 
calcium ion concentration 
Cytosolic calcium ion 
homeostasis 
Cytokine biosynthetic 
process
Cytokine metabolic 
process
Developmental process 
Regulation of cytokine 
biosynthetic process 
Cell proliferation 
Regulation of T cell 
activation
Cellular di-, tri-valent
inorganic cation
homeostasis
Di-, tri-valent inorganic
cation homeostasis
Cellular cation
homeostasis
Cation hom eostasis
Cellular calcium ion
homeostasis
Calcium ion homeostasis
Inflammatory response
Response to external
stimulus
Cellular ion homeostasis 
Cellular chemical 
homeostasis
Somatic recombination of 
immunoglobulin genes 
during immune response
Somatic diversification of 
immunoglobulins during 
immune response

NK
THYMOCYTE
B-CELL
PBMC
REJECTION
IL-10
LYMPHOCYTIC
FOXP3
KILLER
MONOCYTE
UNINFECT
IMMUNITY
LYMPHOMA
COSTIMULATORY
HIV-1
T-LYMPHOCYTE
IL-4
CYTOMETRY
INFECTION
INTERLEUKIN
CYTOKINE
HIV
INTERLEUKIN-2
VIRAL
STIMULATION
ALLOGENEIC
IFN-GAMMA
MAB
PROLIFERATE
MONONUCLEAR
IL-6

hs19a PMID: 15869706 

Title: Clinical and

Up-regulated genes in 
FGFR3 mutated tumors 
relative to FGFR3 wildtvpe

Multicellular organismal 
process

COMMENSURATE
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and Over-represented GO Over-represented O/E
biology under studied (Biological Process) PubMed tokens

terms
(hs19a biological tumors,
cont’d) characteristics of

cervical neoplasias • G enes involved in
with FGFR3 mutation. transcriptional regulation

Extracted from 
Additional file 2:
Positive Significant 
Genes.

hs19b PMID: 15869706

Title: Clinical and 
biological 
characteristics of 
cervical neoplasias 
with FGFR3 mutation.

Extracted from 
Additional file 2: 
Negative Significant 
Genes.

Down-regulated genes in 
FGFR3 mutated tumours 
relative to FGFR3 wild type 
tumours.

• G enes involved in 
transcriptional regulation

Immune response 
Immune system process 
Response to stimulus 
Defense response 
Response to wounding
Antigen processing and 
presentation 
Inflammatory response 
R esponse to external 
stimulus
Antigen processing and 
presentation of peptide or 
polysaccharide antigen via 
MHC class II 
Activation of immune 
response
Positive regulation of 
immune system process
Positive regulation of 
immune response 
Innate immune response 
Cell adhesion 
Biological adhesion 
Regulation of immune 
system process 
Regulation of immune 
response
Positive regulation of 
multicellular organismal 
process
Immune effector process 
Humoral immune response 
Chemotaxis 
Taxis
Leukocyte mediated 
immunity
Adaptive immune 
response 
Adaptive immune 
response based on 
somatic recombination of 
immune receptors built 
from immunoglobulin 
superfamily domains 
Activation of plasma 
proteins during acute 
inflammatory response 
Complement activation 
Leukocyte activation 
Locomotory behavior 
Regulation of multicellular 
organismal process 
Cell activation

IFN-GAMMA
IMMUNE
MONOCYTE
KILLER
HISTOCOMPATIBILITY
INFLAMMATORY
CD8
CD3
NK
MHC
INFLAMMATION
CYTOKINE
RHEUMATOID
CHEMOTACTIC
IMMUNITY
MOLECULE
DECIDUAL
TNF-ALPHA
HLA-DR
CD4
NATURAL
DC
SCLEROSIS
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and
biology under studied

Over-represented GO
(Biological Process)
terms

Over-represented
PubMed tokens

O/E

(hs19b
cont'd)

Lymphocyte mediated
immunity
Behavior
Cell motility
Localization of cell
Prostaglandin biosynthetic
process
Prostanoid biosynthetic 
process
Immunoglobulin mediated 
immune response 
B cell mediated immunity 
Acute inflammatory 
response
Response to stress

hs20 PMID: 15604246

Title: Androgen- 
induced differentiation 
and tumorigenicity of 
human prostate 
epithelial cells.

Extracted from 
Supplementary Table
1 .

G enes differentially 
expressed between LHSR 
and LHS.

• Androgen receptor 
signaling

Mitotic cell cycle 
Cell cycle phase 
Cell cycle process 
Cell cycle 
M phase
M phase of mitotic cell
cycle
Mitosis
Cell division
Regulation of progression 
through ceil cycle 
Regulation of cell cycle 
Chromosome segregation 
DNA replication 
Regulation of mitosis 
Mitotic sister chromatid 
segregation 
Regulation of cellular 
process
Sister chromatid
segregation
Cell cycle checkpoint
Spindle organization and
biogenesis
Regulation of biological 
process
Microtubule-based process 
Biopolymer metabolic 
process
Organelle organization and 
biogenesis 
Cell proliferation 
Interphase of mitotic cell 
cycle
DNA metabolic process 
Microtubule cytoskeleton 
organization and 
biogenesis
Cellular component 
organization and 
biogenesis 
Interphase 
Mitotic cell cycle 
checkpoint
Cytoskeleton organization 
and biogenesis

MITOTIC
CHECKPOINT
SPINDLE
ANAPHASE
MITOSIS
ARREST
CYCLE
MICROARRAY
G2
PROMETAPHASE
INTERPHASE
CHROMATID
CYTOKINESIS
KINETOCHORE
BREAST
OVEREXPRESSION
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Table 8.3: Significant GO terms versus PubMed tokens (continued)

ID Source of gene list Description and 
biology under studied

Over-represented GO 
(Biological Process) 
terms

Over-represented 
PubMed tokens

O/E

(hs20
cont’d)

• Nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process

O/E: Text-based ORA method that produced the results shown in ‘Over-represented 
PubMed tokens’ column (O = OutlierDM; E = ExtendedHG). Abbreviation “cont’d” 
means continued from the results for that particular gene list.

8.3 Performance in different organisms

The examples presented have so far been focused on human datasets. Since the human 

system has been extensively researched upon, literature in this organism is more 

extensive and most genes have some publications documenting their functions. 

Therefore the proposed text-based approaches work relatively well in datasets derived 

from the human system. For most other organisms, however, there is a relative paucity 

of literature the scope of which can often be very narrow. For example, literature and 

studies on Xenopus laevis are largely focused on developmental biology, while 

investigations of molecular biology and biochemistry are relatively limited.

OutlierDM and ExtendedHG can be readily extended to other species for which an 

associated corpus of PubMed abstracts is available. However, their power will depend 

on the availability and quality of literature. To get an indication of the extent of 

annotation available for different organisms, literature indices for genes in human, 

mouse, rat, Arabidopsis, Drosophila, C. elegans, Xenopus and zebrafish were 

assembled based on the Entrez Gene ID (EGID) and PubMed ID (PMID) mappings 

provided by NCBI; the amount of genes with at least one PubMed article as of 

October 2007 were extracted from the ‘gene2pubmed’ file1. For each organism, the 

number of PubMed articles (PMID) per gene and the number of gene associated with 

each PMID were determined. The descriptive statistics about the literature index for 

each of the eight species are shown in Table 8.4.

1 ftp://flp.ncbi.nih.gov/gene/DATA; time stamp: 25 Oct 2007.

ftp://flp.ncbi.nih.gov/gene/DATA
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Table 8.4: Summary of literature index across eight model organisms

Organism Gene PMID
PMID per gene Gene per PMID

mean median max mean median max

Human 25689 168156 13.44 5 1973 2.05 1 18007
Mouse 42005 113463 12.21 7 1467 4.52 1 24752
Rat 13675 32420 4.12 2 300 1.74 1 5810
Arabidopsis 13521 6787 2.45 2 39 4.89 1 2883
Drosophila 14793 21991 14.82 7 2652 9.97 3 14118
C. elegans 15424 2381 2.85 2 142 18.47 1 10495
Xenopus 11947 2631 2.12 2 263 9.61 1 10755
Zebrafish 13461 3189 2.22 1 217 9.38 2 11117

It can be seen that human, mouse and Drosophila have substantially more PMIDs 

linked to their genes than other species. On average, each gene in these species was 

cited by more than 13 articles, while less well-studied species such as Arabidopsis, C. 

elegans, Xenopus and zebrafish have on average less than 3 articles per gene. There is 

also a noticeable difference in the mean number of genes per PMID across different 

species. For example, each PMID referred to a mean of 2.05 and 4.52 genes, 

respectively, in human and mouse, while the mean number of genes cited per article is 

over 9 for Drosophila, Xenopus and zebrafish, and 18.47 for C. elegans.

While most articles are scientifically-specific and address individual genes, others 

may describe the biology of a large number of genes. Therefore the distributions of 

the number of genes per PMID are extremely skewed. For human genes, a total of 88 

articles were found to be linked to more than 100 genes, and 929 referred to more than 

10 genes; the highest number of genes referred to by a single abstract was 18007 (as 

of Oct 2007). Such inequalities in the published literature need to be taken into 

consideration during enrichment analysis. For the text-based ORA approaches 

developed in this thesis, only PubMed articles that cross-reference to a single gene 

were used to construct the text corpus. This is a reasonable solution because, as can be 

seen from Table 8.4, the median of the number of genes per PMID is either one or 

close to one for all organisms, indicating that a large proportions of the articles are 

dealing with one gene, and hence the removal of the less specific articles should not 

cause a marked loss in information.
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8.3.1 Performance on 402 literature gene lists

To assess the performance of OutlierDM and ExtendedHG across different species, 

402 gene lists collected from published literature spanning human, mouse, rat, 

Arabidopsis, Drosophila, C. elegans, Xenopus and zebrafish were analysed. These 

gene lists were based on 10 major Affymetrix arrays including HG-U133A, HG-U133 

Plus 2.0, MG-U430 2.0, RAT230 2.0, Athl, DrosGenomel, Drosophila 2.0, Xenopus 

laevis, Celegans and Zebrafish (see Section 2.2.5 and Appendix A for details of these 

gene lists). The text corpora used in this analysis were built according to the 

procedures described in Section 2.3.

As shown in Figures 8.2 and 8.3, the number of tokens identified as over-represented 

by OutlierDM and ExtendedHG varies substantially between species. This appears to 

be related to the amount of literature available to each species in the text corpus used. 

Those species with a higher amount of overall annotation per gene (i.e. mean number 

of PMIDs per gene) tend to produce, on average, more significant tokens per gene list 

tested (Figure 8.4). As can be seen from Table 8.5, gene lists derived from 

experiments using the human-based arrays (i.e. HG-U133A, HG-U133 Plus 2.0) show 

the strongest performance; it has over 100,000 articles and an approximately 10:1 

ratio of PMIDs to genes. C. elegans, Xenopus and zebrafish, on the other hand, each 

have a relatively small corpus with 1-2 % the number of articles of the human 

literature index, and less than 2 PMIDs per gene. The amount of significant tokens 

obtained for these organisms is low, and less than one in most cases.
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Figure 8.2: Histograms of the number of tokens identified as over-represented by 
OutlierDM in different species
The number of tokens identified as significantly over-represented by OutlierDM in 
gene lists derived from experiments performed on 10 Affymetrix platforms, n is the 
number of gene lists available for each platform.
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Figure 8.3: Histograms of the number of tokens identified as over-represented by 
ExtendedHG in different species
The number of tokens identified as significantly over-represented by ExtendedHG in 
gene lists derived from experiments performed on 10 Affymetrix platforms, n is the 
number of gene lists available for each platform.
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Figure 8.4: A comparison of the performance of OutlierDM and ExtendedHG 
across different species
The average number of tokens called significant by OutlierDM and ExtendedHG is 
plotted against the annotation density (number of PMID per gene) for experimentally- 
derived gene lists that were performed on 10 Affymetrix platforms. These arrays 
represent 8 different species: human (HG-U133A, HG-U133 Plus 2.0), mouse (MG- 
U430 2.0), rat (RAT230 2.0), Arabidopsis (ATH1), Drosophila (DrosGenomel, 
Drosophila 2.0), Xenopus (Xenopus laevis; abbreviated as ‘Xenopus’ in the plot), C. 
elegans (Celegans) and zebrafish (Zebrafish).
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Table 8.5: Performance of OutlierDM and ExtendedHG in relation to literature 
index for 10 Affymetrix arrays

Array Gene PMID n Mean PMID Mean significant tokens
per gene OutlierDM ExtendedHG

HG-U133A 9638 107517 52 11.16 3.75 7.00
HG-133 Plus 2.0 11358 110811 54 9.76 3.43 4.33
MG-U430 2.0 8515 64171 40 7.54 2.40 2.78
RAT 230 2.0 5424 23597 45 4.35 1.29 0.98
Athl 2290 4101 67 1.79 1.54 1.64
DrosGenomel 1694 6303 44 3.72 1.61 0.82
Drosophila 2.0 1722 6303 29 3.66 0.72 0.10
Celegans 767 1161 28 1.51 0.68 0.79
Xenopus laevis 1219 1689 18 1.39 0.44 1.61
Zebrafish 685 1030 25 1.50 0.36 0.20

n = number of gene lists analysed for a particular array.

8.3.2 Application to an A rabidopsis dataset

From the data presented above, it would appear that at this time gene lists based on 

well-researched species such as human and mouse produce a more detailed insight 

than those from less well-studied organisms. Nevertheless, useful information can still 

be obtained from species that have a smaller body of associated literature such as 

Arabidopsis, as shown by an analysis of data presented in Nishimura et al. (2003). 

They studied the effect of the pmr4 mutation on pathogen response in Arabidopsis and 

concluded that the basis for the resistance in pmr4 mutant plant to pathogens was due 

to an enhanced activation of the salicylic-acid (SA) signal transduction pathway. The 

list of differentially expressed genes reported by Nishimura et al. was re-analysed 

using a “trimmed” version of the text corpus built from only those papers published 

before 2003, so as to mine no more than the knowledge that was available to the 

authors of the original paper.

As shown in Table 8.6, three tokens, ‘salicylic’, ‘SA’ and ‘resistance’ were identified 

as over-represented in the gene list; ‘salicylic’, ‘SA’ were called significant by both 

OutlierDM and ExtendedHG, hence recapitulating the key conclusions by Nishimura 

et al. This demonstrates that despite the lower level of available literature,



Chapter 8. Performance properties o f OutlierDM and ExtendedHG 228

biologically-plausible results can still be obtained for less well-annotated species by 

using the text-based ORA approaches proposed in this work.

Table 8.6: Significant abstract terms in the Nishimura gene list

(a) OutlierDM

Term Chip
frequency

List
frequency Z-score p-value Bonferroni 

p-value Rank

SALICYLIC
SA

43
22

11
8

-4.1935
-4.1774

1.37E-05
1.47E-05

0.0095
0.0102

1
2

(b) ExtendedHG

Term Chip
frequency

List
frequency

Odds
ratio p-value Bonferroni

p-value Rank

SA
SALICYLIC
RESISTANCE

22
43

117

8
11
16

1.7724
1.2529
1.0064

2.1 IE-05 
4.23E-05 
7.17E-05

0.0146
0.0292
0.0495

1
2
3

Over-represented terms were defined as having Bonferroni p-value < 0.05. The results 
were ordered by increasing /7-values. The text corpus used in this analysis is a 
trimmed version that contains only articles that were published before 2003. The gene 
universe used is that based on the Athl chip and contains 21,566 unique genes, of 
which 1360 have abstracts in the trimmed text corpus. A total of 690 tokens were 
analysed.

8.4 Behaviour of OutlierDM and ExtendedHG

Despite the difference in the underlying mechanisms for assessing over-representation, 

the results produced by OutlierDM and ExtendedHG generally show a good 

concordance in most analyses that have been performed (see Figure 7.4 for an 

example). However, close examination of the significant terms reported by the two 

methods reveal an interesting characteristic: tokens that were reported as significant 

by OutlierDM but not by ExtendedHG tend to be terms with relatively low Chip and 

List frequencies, whereas terms that were uniquely identified by ExtendedHG as 

significant are mostly associated with high Chip and List frequencies. This 

phenomenon is illustrate in Figure 8.5, in which the literature gene lists from the 

human arrays, that is HG-U133A and HG-U133 Plus 2.0, were analysed with both
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OutlierDM and ExtendedHG, and the tokens that were uniquely identified as 

significantly enriched by the two approaches were compared. OutlierDM appears to 

have greater sensitivity in smaller gene lists, since significant tokens that were unique 

to this method tend to be terms that are supported by few genes in small gene lists. In 

contrast, ExtendedHG has better power than OutlierDM in detecting enriched terms 

supported by lots more genes in larger gene lists. A similar pattern recurs for datasets 

from other organisms besides human, as illustrated in Figure 8.6. Possible 

explanations for this behaviour are suggested as follows.

Recall that in OutlierDM, all tokens associated with a given gene list are first divided 

into groups according to their List frequency, then local mean and standard deviation 

of the Chip frequencies are calculated for each such group, based on which a Z-score 

is derived for each token as a means for scoring over-representation. Since there are 

always more observations in groups corresponding to low List frequencies (see the 

scatter plot of List versus Chip frequencies in Figure 6.1 for an example), therefore the 

estimation of mean and standard deviation are more accurate for these tokens than 

tokens corresponding to moderate to high List frequencies, for which considerably less 

observations are available for the estimation of mean and standard deviation. Another 

factor contributing to the reduced sensitivity of OutlierDM at moderate to high List 

frequency regions is that tokens falling in these regions are susceptible to the masking 

effect described in Section 6.4.4, preventing potential outliers to be detected.

ExtendedHG scores significance based on the calculation of hypergeometric />-values. 

The odds ratio, which is required for the calculation of p-value, is determined as a 

function of the mean; this is predicted by fitting polynomial regression model to the 

token frequency data. As discussed in Section 7.3.3, for tokens associated with low 

List and Chip frequencies, the odds ratio can be over-estimated due to a poorly 

predicted mean. Although an adjustment has been implemented to mitigate this 

problem, there can still be loss of sensitivity in some cases, especially in smaller gene 

lists.
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Figure 8.5: Characteristics of significant tokens unique to either OutlierDM or 
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over-represented by ExtendedHG only.
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8.5 Discussion

Evaluating the performance of any exploratory approach such as the text-based ORA 

approaches proposed in this thesis is a challenging task because it is difficult to find 

datasets for which “ground truth” is known. Therefore a focused approach was 

undertaken to assess the performance of the proposed methods. Specifically, the 

evaluation focused on gene lists based on the HG-U133A array, and compared the 

outputs from OutlierDM and ExtendedHG with those obtained from (i) existing 

literature-based tools, and (ii) standard ORA approaches that mines GO terms. Such 

comparative analyses show that the results produced by the proposed text-based ORA 

approaches (OutlierDM and ExtendedHG) are both biologically relevance and 

plausible, and in most cases are in accordance with the manually determined 

annotations (see examples given in Table 8.3). In addition, the proposed text-based 

methods appear to provide distinct insights into the biological themes over

represented in a gene list compared to the results from undertaking ORA using GO 

terms, suggesting that the proposed approaches can be used to complement and extend 

existing ontology-based functional analysis tools for guiding the biological 

interpretation of microarray data.

Although the proposed text-based methods appear somewhat less effective for non

human species (cf. Table 8.5, Figures 8.2 and 8.3), apparently biologically-meaningful 

conclusions can still be obtained for dataset derived from certain less well-annotated 

species like Arabidopsis, as illustrated by the analysis based on the Nishimura gene 

list (Section 8.3.2). It is anticipated that as the biological knowledge and scientific 

publications accumulate over time, the quality of the results obtained for the less well- 

studied species such as C. elegans, Xenopus and zebrafish will also improve.
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PAKORA: a  w eb  a p p lic a t io n  for  in te r p r e t in g  

m icro a rra y  g e n e  l is t s  u s in g  te x t  m in in g

9.1 Introduction

Having demonstrated the potential of text-based ORA in guiding the biological 

interpretation of microarray data in the previous Chapters, the focus of this Chapter is 

on the implementation of a graphical user interface for the proposed text mining 

algorithms. As pointed out by Alterovitz et al. (2008), approximately 97% of the 

bioinformatics applications hosted in SourceForge1 do not have a graphical user 

interface, and these applications might not be utilised to their full potential simply 

because they are not accessible to a biologist with limited computational skills. A 

web-based application (named PAKORA) was created during the course of this work, 

with the aim of providing an easily accessible web interface from which the text-based 

ORA results can be analysed and visualised. The hope is that this will allow for more 

widespread dissemination of the proposed text mining algorithms within the 

biomedical community. The two computationally tractable approaches for performing 

ORA mining on PubMed abstract texts, based on the use of detection of outliers and 

the extended hypergeometric test, were implemented within PAKORA. The 

permutation test-based approach was not implemented because it is extremely 

computer-intensive, and hence is not suitable for routine analysis via a web service. 

PAKORA is publicly available at http://www.pakora.cf.ac.uk/pakora.php. Its main 

features and functionality are described in the following sections.

1 SourceForge is a web-based open source software repository (http://sourceforge.net). As of July 2009, 
around 2097 software in SourceForge were categorised as “Bioinformatics” applications.
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9.2 Using PAKORA to find significantly over
represented terms in a gene list

The core functionality of PAKORA is to calculate term over-representation for a list 

of differentially expressed genes, and offers an informative visual representation of 

the analysis results. Currently, PAKORA supports analysis based on 10 Affymetrix 

microarray platforms (HG-U133A, HG-U133 Plus 2.0, MG-U430 2.0, RAT230 2.0, 

Athl, DrosGenomel, Drosophila 2.0, Xenopus laevis, Celegans and Zebrafish), and 8 

species (human, mouse, rat, Arabidopsis, Drosophila, C. elegans, Xenopus and 

zebrafish). Mappings of Affymetrix probeset IDs to Entrez Gene IDs and the relevant 

PubMed abstracts were retrieved from various databases as described in Section 2.3.1; 

the text corpora required were constructed according to the text processing procedures 

outlined in Section 2.3.2.

9.2.1 Input to PAKORA

The query interface of PAKORA adopts a simple design (Figure 9.1). An analysis can 

be initiated in three steps:

Step 1: Upload gene list. The primary input to PAKORA is a list of gene identifiers 

from any of the currently supported Affymetrix microarray platforms or species (see 

above for details). Three types of gene identifiers are accepted, including Affymetrix 

probeset IDs, Entrez Gene IDs and gene symbols. The user can upload the list of gene 

identifiers either by copy-paste into the web form or as a text file.

Step 2: Select analytical method. After the gene list has been uploaded, the user must 

specify which of the two text-based ORA algorithms should be used for identifying 

over-represented terms in the gene list: the outlier detection method or the extended 

hypergeometric test.

Step 3: Set results filtering options. To identify significantly over-represented terms, 

the multiple hypothesis testing correction method and the threshold for the p-value 

significance level must be specified. Two multiple testing correction methods are 

currently implemented within PAKORA, including the method of Bonferroni that
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controls the family-wise error rate, and the false discovery rate (FDR) method that 

controls the expected proportion of false discoveries amongst the rejected hypotheses. 

The default setting is set to the Bonferroni correction and a cutoff of 0.05, i.e. any 

terms with p-values less than or equal to 0.05 after Bonferroni correction will be 

reported as significantly over-represented in the gene list.

P A K O R A
Upload Gene List

© A f ly m e tr ix  P r o b e  ID s  O E n t r e z  G e n e  ID s O G e n e  S y m b o l s

Salact bacfcqiound:
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Figure 9.1: User interface of PAKORA

9.2.2 Output and rep resen tation  o f resu lts

The primary output of PAKORA, irrespective of which of the two text-based ORA 

algorithms was used, is a set of enriched terms from PubMed abstracts relevant to the 

list of genes uploaded to the system. An example of the result page produced by

H o m e

L i te i  a n u e  G e n e lis ts

D o w n l o a d s

C o n t a c t
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PAKORA is shown in Figure 9.2. This set of results was generated by submitting the 

list of interferon-stimulated genes in the ISG gene list (details of this gene list can be 

found in Section 2.2.1) to the PAKORA server in the form of Affymetrix probeset IDs, 

and analysing them with the outlier detection-based method with Bonferroni adjusted 

/7-value < 0.05 as the cutoff.

As can be seen from Figure 9.2, the main result table is preceded by a graphical 

summary, in which those tokens identified as significantly over-represented in the 

gene list are circled in red on a scatter plot of Chip versus List frequencies. This plot is 

interactive such that when mouse is moved over a point, the identity of the selected 

token, its /7-value and ranking as assigned by the chosen text mining algorithm is 

shown. The interactive plot offers a flexible means for exploring the token enrichment 

results; especially when very few (or no) significant tokens were found at a certain 

cutoff, the user can navigate through the points that deviate substantially from the 

main data cluster (as shown in previous Chapters biologically-plausible terms tend to 

appear as outliers), check the identity and /7-values given to these tokens, and then 

decide if the analysis should be re-run with a less stringent multiple testing correction 

method and/or cutoff.

The result table lists the significantly over-represented terms in order of significance, 

so terms with the smallest /7-values are at the top of the table. Every term shown in 

this table is accompanied by the following information: the number of genes 

associated with the term in the query gene list (.List frequency), the number of genes 

associated with the term in the background population {Chip frequency), the Z-score 

(for outlier detection method) or the odds ratio (for extended hypergeometric test), the 

statistical significance (raw and corrected /7-values) of such enrichment and the term 

rank.



Chapter 9. PAKORA : a web application for interpreting microarray 237
gene lists using text mining

Home

L ite ia n u e  Geneltets

D ow nloads

C ontact

R eiun Options

P-value c o lle c tio n :

O N on e

<♦> Bonferroni

O for

P-value cutoff:

0 05

1 Rerun |

Varaon 1 0 (S^aam ba 2006)

T o k e n  E n r i c h m e n t  A n a l y s i s  R e s u l t s

2 3  tokens d ie  found to  bo s ig n ifica n tly  en riched 

Go to  Result Tab le

PA K O R A

Current mode o f analysis : 

p-value correction and cutoff 

Number of gene identifiers submitted 

Number o f annotated genes 

Number of associated PM C

— Graphical summary ~

Each data point in the plot represents 
a term Significant te im s are circled 
in red List (»-a»is) represents the 
number of genes associated with 
each term in the gene list Chip 
(y-axie) represents the number of 
genes associated with each term on 
the whole chip

Outlier Detection

Bonfenoni corrected p-value < 0 05 

106

G rap h ica l S u m m a ry
(mouse over me data pert to see detats ot the selected term)

O

CO

CD

Chip : 71
Raw.Pval : 1.78e-14 
Adjusted.Pval : 6 .0 6 e -ll 
Ranking : 3____________

(N

4

log2-List frequency

Result Table 

T erm

INTERFERON

IFN

IFN-BETA

ANTIVIRAL

IFN-ALPHA

INTERFERON-ALPHA

OUSOADENYLATE

ISG

ISRE

DSRNA

HLACLASS

H IA A

H LA B

INDUCIBLE

ENCEPHALOM Y OCARDITIS

STOMATtnS

OAS

H LA G

MXA

EVASION

INNATE

TAPASIN

VIRAL

(Back te  top ]

L if t C hip Z - tc o r t R aw  P-value C orrec te d  P -va lue R anking L inks

46 414 -12.62 8.223»-37 2 8 0 5 *3 3 1 Genes PubMed

36 245 -9 595 4 1 9 *2 2 1 4 2 9 *1 8 2  Genes PubMed

18 71 -7.576 1 .77 6*1 4 6  0 5 9*11 3  Genes PubMed

23 176 ■6.749 7 .4 5 7 *1 2 2 5 4 4 *0 8 4 Genes PubMed

19 114 -6.713 9 .5 0 1 *1 2 3 .2 4 1 *0 6 5  Genes PubMed

14 59 -6.621 1.785*11 6.0 8 7 *0 8 6  Genes PubMed

B IB -6.075 6 1 8 * 1 0 2 10 8*06 7 Genes PubMed

7 14 -5 775 3 6 5 * 0 9 1.31 3*0 5 6 Genes PubMed

9 31 -5.706 5 .7 2 7 *0 9 1 9 5 4 *0 5 9 X ^ub N hT

11 60 -5397 3 .38 5*0 8 0.0001155 10 G enes Pub ed

6 11 -5 304 5 .6 5 8 *0 8 0  000193 11 G cries Pub ed

8 X -5.182 1 .09 9*0 7 0.0003748 12 G nes Pub! ed

7 25 -4.833 6  7 3 1 *0 7 0  002296 13 G nes Publi ed

37 1068 -4 787 8.4 6 7 *0 7 0.002888 14 G nes Pubti ed

E 16 -4 751 1 .01 3*0 6 0  003456 15 C mes PublV ed

9 52 -4.748 1 0 3 *0 6 0003512 16 C enes PubM id

5 10 -4.458 4 .1 4 4 *0 6 0.01414 18 ( enes PubM d

5 10 •4 458 4 .14 4*0 6 0.01414 17 ( enes PubM d

5 11 -4.334 7 .3 3 *0 6 0.025 19 enes PubM id

9 65 ■4.333 7 .3 4 4 *0 6 0.02505 20 .enes PubM 1

21 363 -4 275 9 .5 4 7 *0 6 00 3257 21 enes PubM e l

5 12 ■4.221 1.218*05 0.04154 22 .enes PubM el

32 892 -4.183 1.43 8*0 5 0.04904 23 Ic enes PubM el

Figure 9.3 Figure 9.4

Figure 9.2: Screenshot of PAKORA showing the result page from analysing the 
ISG gene list using the outlier detection-based approach
The result page contains two main parts: (i) an interactive plot with the over
represented terms circled in red, and (ii) a result table listing the over-represented 
terms. Hyperlinks are provided so that user can find out the genes significantly 
associated with the analysed terms (see Figure 9.3 for an example) and the PubMed 
abstracts from which they were extracted (see Figure 9.4 for an example).
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Context analysis of the over-represented terms

While the over-represented terms listed in the result table provides a first impression 

of the biological processes or themes related to the gene list, the user can ‘drill down’ 

into these results by following the hyperlinks labelled Gene and PubMed 

corresponding to these terms. For example, by clicking on the Gene hyperlink 

corresponding to the term ‘ISRE’ in the result table shown in Figure 9.2, the user will 

be link to another web page as that shown in Figure 9.3, which lists the genes 

(including probeset IDs and Entrez Gene IDs, symbols and gene names) that are 

significantly associated with the selected term. On the other hand, by clicking on the 

PubMed hyperlink, the user can see the PubMed abstracts in which the over

represented term and genes in the query gene list co-occur. These abstracts provide 

contextual clues to the over-represented terms, allowing the user to explore both the 

meaning and relationships of the over-represented terms. An example is given in 

Figure 9.4, in which three PubMed abstracts related to the term ‘ISRE’ are shown. 

Consider the following sentences taken from the third abstracts (PMID: 9726442) 

shown in Figure 9.4 (the over-represented terms are underlined for easy identification):

“The double-stranded RNA-dependent protein kinase (PKR) is a 

serine/threonine kinase that plays an important role in the antiviral 

activities o f interferon (IFN) ... Sequence analysis o f the PKR 5'-flanking 

region identified a canonical IFN-stimulated response element (ISRE), 

GAAAACGAAACT. Transient transfection o f PKR promoter constructs 

linked to a luciferase reporter gene into human T98G cells indicated that 

this 5'-flanking region is capable o f functioning as a basal promoter that 

is also inducible by IFN-alvha and IFN-beta but not IFN-gamma. ”

We can see from the above examples that the relationships of the over-represented 

terms (such as ‘antiviral’, ‘interferon’, ‘ISRE’, ‘inducible’, ‘IFN-alpha’ and ‘IFN- 

beta’) and their interpretation becomes clearer when considered in the original 

sentences from which they were extracted. This simple example showed that the 

information contained in the significant terms was of biological relevance; however, 

their meaning could be better understood by considering the terms in the context of 

the co-occurring terms and relevant abstracts.
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ISRE
9  E n t r e z G e n e  ID s a r e  f o u n d  t o  b e  a s s o c i a t e d  w ith  t h i s  t o k e n  in  t h e  q u e r y  g e n e  l is t

E n t r e z G e n e  ID S y m b o l F u l l  N a m e P r o b e  ID

5 6 1 0 E IF 2 A K 2 e u k a r y o t i c  t r a n s la t io n  in it ia t io n  
f a c t o r  2 - a lp h a  k i n a s e  2 2 0 4 2 1 1 _ x _ a t

4 5 9 9 MX1
m y x o v ir u s  ( in f lu e n z a  v iru s )  
r e s i s t a n c e  1 ,  in te r f e ro n - in d u c ib le  
p r o te in  p 7 8  ( m o u s e )

2 0 2 0 8 6 _ a t

2 6 3 3 G B P 1 g u a n y l a t e  b in d in g  p r o te in  1 ,  
in te r f e r o n - in d u c ib le ,  6 7 k D a 2 0 2 2 6 9 _ x _ a t  2 0 2 2 7 0 _ a t

3 6 6 5 IR F 7 in te r f e ro n  r e g u la t o r y  f a c t o r  7 2 0 8 4 3 6 _ s _ a t

5 6 7 8 2 M b e ta - 2 - m ic r o g lo b u l in 2 0 1 8 9 1  _ s _ a t  2 1 6 2 3 1  _ s _ a t

8 5 1 9 IFITM 1 in te r f e ro n  i n d u c e d  t r a n s m e m b r a n e  
p r o te in  1 (9 -2 7 ) 2 0 1 6 0 1  _ x _ a t

9 6 3 6 IS G  1 5 I S G 1 5  u b iq u it in - l ik e  m o d if ie r 2 0 5 4 8 3 _ s _ a t

5 3 7 1 P M L p r o m y e l o c y t i c  l e u k e m ia
2 0 6 5 0 3  x a t  2 0 9 6 4 0  a t  2 1 0 3 6 2  x  a t  
2 1 1 0 1 2  s  a t  2 1 1 0 1 3  x  a t 2 1 1 0 ? 4  s  a t  
2 1 1 5 8 8 _ s _ a t  2 1 1 5 8 9 _ a t

3 4 2 9 IF I27 in te r f e ro n ,  a i p h a - i n d u c i b le  p r o te in
2 7 2 0 2 4 1 1 _ a t

Figure 9.3: Output from PAKORA showing genes and Affymetrix probeset IDs 
in the ISG gene list that were significantly associated with the term ‘ISRE’
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ISRE
1 2  P u b M e d  a r t i c l e s  a r e  fo u n d  to  b e  a s s o c i a t e d  w ith  t h i s  t o k e n  in  t h e  q u e r y  g e n e  l is t  

Q u e r y  t e r m  is  h ig h lig h te d  in  y e llo w , o t h e r  o v e r - r e p r e s e n te d  t o k e n s  a r e  in o i a n g e .

P u b M e d  ID A b s t r a c t

9 3 1 5 6 3 3  IR F -7 .  a  n e w  I n t e r f e i o n  r e g u l a t o r y  f a c t o r  a s s o c i a t e d  w i t h  E p s t e i n - B a r r  v i r u s  l a t e n c y
T h e  E p s t e i n - B a r r  v iru s  (E B V ) B a m H I Q  p r o m o te r  (Q p )  i s  t h e  o n ly  p r o m o te r  u s e d  fo r  t h e  t r a n s c r i p t io n  o f  E p s t e i n - B a r r  
v iru s  n u c le a r  a n t ig e n  1 (E B N A -1 )  m R N A  in  c e l l s  in  t h e  m o s t  r e s t r i c t e d  ( ty p e  I) l a t e n t  in f e c t io n  s t a t e .  H o w e v e r ,  Q p  is  
in a c t iv e  in t y p e  III l a t e n c y .  W ith  t h e  u s e  o f  t h e  y e a s t  o n e - h y b r id  s y s t e m ,  a  n e w  c e l l u la r  g e n e  h a s  b e e n  id e n t i f ie d  t h a t  
e n c o d e s  p r o t e i n s  w h ic h  b in d  t o  s e q u e n c e  in Q p  T h e  d e d u c e d  a m i n o  a c i d  s e q u e n c e  o f  t h e  g e n e  h a s  s ig n i f ic a n t  
h o m o lo g y  to  t h e  i n t e r f e r o n  r e g u la to r y  f a c t o r s  ( IR F s ) . T h is  n e w  g e n e  a n d  p r o d u c t s  in c lu d in g  tw o  s p l i c in g  v a r i a n t s  a r e  
d e s i g n a t e d  IR F -7 A , IR F -7 B , a n d  IR F -7 C . T h e  e x p r e s s i o n  o f  IR F -7  i s  p r e d o m i n a n t l y  in s p l e e n ,  t h y m u s ,  a n d  p e r ip h e r a l  
b lo o d  l e u k o c y t e s  (P B L ). IR F -7  p r o t e i n s  w e r e  id e n tif ie d  in p r im a ry  P B L  w ith  s p e c i f i c  a n t i s e r u m  a g a i n s t  IR F -7 B  p r o te in .  
IR F -7 s  c a n  b in d  to  i n t e r f e i o n - s t i m u l a te d  r e s p o n s e  e l e m e n t  ( I S R E )  s e q u e n c e  a n d  r e p r e s s  t r a n s c r i p t io n a l  a c t iv a t io n  b y  
b o th  i n t e i f e i o n  a n d  IR F-1 A d d i t io n a l ly ,  a  f u n c t io n a l  v i t a l  IS R E  s e q u e n c e ,  5 -G C G A A A A C G A A A G T -3 ',  h a s  b e e n  
id e n tif ie d  in Q p . F in a lly , t h e  e x p r e s s i o n  o f  IR F -7  i s  c o n s i s t e n t l y  h ig h  in  t y p e  III l a t e n c y  c e l l s  a n d  a l m o s t  u n d e t e c t a b l e  
in  t y p e  I l a t e n c y ,  c o r r e s p o n d in g  t o  t h e  a c t iv ity  o f  e n d o g e n o u s  Q p  in  t h e s e  l a t e n c y  s t a t e s  a n d  t h e  a b il i ty  o f  t h e  IR F -7  
p r o te in s  t o  r e p r e s s  Q p - r e p o r t e r  c o n s t r u c t s .  T h e  id e n t i f ic a t io n  o f  a  f u n c t io n a l  v i t a l  I S R E  a n d  a s s o c i a t i o n  o f  IR F -7  w ith  
t y p e  III l a t e n c y  m a y  b e  re le v a n t  t o  t h e  m e c h a n i s m  o f  r e g u la t io n  o f  Q p .

1 4 7 4 1 0 4 5  N u c l e a r  ( a c t o r - k a p p a B  m o t i f  a n d  i m e i f e i o n - a l p h a - s t i n i u l a t e d  r e s p o n s e  e l e m e n t  c o - o p e r a t e  i n  t h e  a c t i v a t i o n
o f  g u a n y l a t e - b i n d i n y  p i o t e i n - 1  e x p r e s s i o n  b y  i n f l a m m a t o r y  c y t o k i n e s  i n  e n d o t h e l i a l  c e l l s
T h e  la rg e  G T P a s e  G B P -1  ( g u a n y la te - b in d in g  p r o te in -1 )  i s  a  m a jo r  I F N - g a m m a  ( in te r f e r o n - g a m m a ) - i n d u c e d  p r o t e i n  w ith  
p o te n t  a n t i - a n g io g e n ic  a c t iv ity  in e n d o th e l ia l  c e l l s .  A n  I S R E  ( I F N - a lp h a - s f im u la te d  r e s p o n s e  e le m e n t )  i s  n e c e s s a r y  
a n d  s u f f ic ie n t  fo r  t h e  in d u c t io n  o f  G B P -1  e x p r e s s i o n  b y  I F N - g a m m a  R e c e n t ly ,  w e  h a v e  s h o w n  t h a t  in  vivo G B P -1  
e x p r e s s i o n  is  s t r o n g ly  e n d o th e t i a F c e l F a s s o c i a t e d  a n d  i s .  in  a d d it io n  t o  I F N - g a m m a .  a l s o  a c t i v a t e d  b y  
in te r le u k in -1  b e ta  a n d  t u m o u r  n e c r o s i s  f a c t o r - a l p h a ,  b o th  in v itro  a n d  in  vivo [ L u b e s e d e r - M a r te l l a t o ,  G u e n z i ,  JO rg ,
T O po lt, N a s c h b e r g e r ,  K r e m m e r ,  Z ie t z ,  T s c h a c h l e r ,  H u tz le r .  S c h w e m m l e  e t  a l. ( 2 0 0 2 )  A m . J .  P a t h o l .  1 6 1 ,  1 7 4 9 - 1 7 5 9 ;  
G u e n z i ,  T d p o tt ,  C o rn a li ,  L u b e s e d e r - M a r te l la t o ,  JO rg , M a t z e n ,  Z ie t z ,  K r e m m e r ,  N a p p i ,  S c h w e m m l e  e t  a l. ( 2 0 0 1 )  E M B O  
J .  2 0 ,5 5 6 8 - 5 5 7 7 ] .  In t h e  p r e s e n t  s t u d y ,  w e  id e n t i f ie d  a  N F - k a p p a B  ( n u c le a r  f a c t o r  k a p p a B ) - b in d in g  m o t i f  t h a t ,  t o g e t h e r  
w ith  I S R E ,  i s  r e q u ire d  fo r t h e  in d u c t io n  o f  G B P -1  e x p r e s s i o n  b y  i n t e r l e u k i n - l b e t a  a n d  t u m o u r  n e c r o s i s  f a c t o r - a l p h a .  
D e a c t iv a t io n  o f  t h e  N F - k a p p a B  m o ti f  r e d u c e d  t h e  a d d it iv e  e f f e c ts  o f  c o m b i n a t i o n s  o f  t h e s e  c y t o k i n e s  w i th  I F N - g a m m a  
b y  m o re  t h a n  5 0 % . Im p o r ta n t ly ,  N F - k a p p a B  p 5 0  r a t h e r  t h a n  p 6 5  a c t i v a t e d  t h e  G B P -1  p r o m o te r  T h e  N F - k a p p a B  m o ti f  
a n d  IS R E  w e r e  d e t e c t e d  in  a n  a lm o s t  id e n t i c a l  s p a t i a l  o r g a n iz a t i o n ,  a s  in  t h e  G B P -1  p r o m o te r ,  in  t h e  p r o m o te r  
r e g io n s  o f  v a r io u s  i n f l a m m a t io n - a s s o c i a t e d  g e n e s  T h e re fo r e  b o th  m o ti f s  m a y  c o n s t i t u t e  a  c o o p e r a t i v e  i n f la m m a to r y  
c y to k in e  r e s p o n s e  m o d u le  t h a t  r e g u la t e s  G B P -1  e x p r e s s i o n .  O u r  f in d in g s  m a y  o p e n  n e w  p e r s p e c t i v e s  fo r  t h e  u s e  o f  
N F - k a p p a B  in h ib i to r s  t o  s u p p o r t  a n g i o g e n e s i s  in in f la m m a to r y  d i s e a s e s  in c lu d in g  i s c h a e m i a

9 7 2 6 4 4 2  G e n o m i c  f e a t u r e s  o f  h u m a n  P K R :  a l t e r n a t i v e  s p l i c i n g  a n d  a  p o l y m o r p h i c  C G G  r e p e a t  i n  t h e  5 ' - u n t r a n s l a t e d
r e g i o n
T h e  d o u b l e - s t r a n d e d  R N A - d e p e n d e n t  p ro te in  k i n a s e  (P K R )  i s  a  s e r i n e / t h r e o n i n e  k i n a s e  t h a t  p l a y s  a n  i m p o r ta n t  ro le  in 
t h e  a n t i v i i a l  a c t iv i t ie s  o f  i n t e i f e i o n  (IFN ). T o  d e te r m in e  t h e  o r g a n iz a t i o n  a n d  r e g u la t io n  o f  t h e  P K R  l o c u s ,  l a m b d a  
p h a g e  a n d  b a c te r i a l  a r tif ic ia l c h r o m o s o m e  (B A C ) c l o n e s  c o n ta i n in g  t h e  h u m a n  P K R  g e n e  w e r e  i s o l a t e d .  
C h a r a c t e r i z a t io n  o f  t h e s e  c l o n e s  r e v e a le d  t h a t  P K R  h a s  1 7  e x o n s  a n d  1 6  i n t r o n s  d i s p e r s e d  in  a  g e n o m i c  r e g io n  o f  5 0  
k b  S e q u e n c e  a n a l y s i s  o f  t h e  P K R  5 - f l a n k in g  r e g io n  id e n tif ie d  a  c a n o n i c a l  I F N - s t im u l a t e d  r e s p o n s e  e l e m e n t  ( I S R E ) ,  
G A A A A C G A A A C T  T r a n s ie n t  t r a n s f e c t i o n  o f  P K R  p r o m o te r  c o n s t r u c t s  l in k e d  t o  a  l u c i f e r a s e  r e p o r te r  g e n e  in to  h u m a n  
T 9 8 G  c e l l s  i n d ic a te d  t h a t  t h i s  5 - f l a n k in g  r e g io n  i s  c a p a b l e  o f  f u n c t io n in g  a s  a  b a s a l  p r o m o te r  t h a t  i s  a l s o  i n d u c i b l e  
b y  IF N -a lp h a  a n d  IF N -b e ta  b u t  n o t  I F N - g a m m a  I n te r e s t in g ly ,  t h e  P K R  g e n e  c o n t a i n s  a  p o ly m o r p h ic  C G G  
t r in u c le o t id e  r e p e a t  in e x o n  1 In a d d it io n ,  fo u r  P K R  a l l e l e s ,  v a ry in g  in r e p e a t  n u m b e r  f ro m  7  t o  1 0 ,  w e r e  d e t e c t e d  in  3 0  
in d iv id u a l c h r o m o s o m e s  T h e  P K R  g e n e  u n d e r g o e s  a l t e r n a t iv e  s p l i c in g  o f  e x o n  2 ,  w h ic h  g iv e s  r i s e  t o  tw o  f o r m s  o f  
5 - u n t r a n s la t e d  e x o n s  o f  d iffe re n t le n g th  A l th o u g h  t h e  h u m a n  a n d  m u r in e  P K R  p r o t e i n s  h a v e  h ig h  h o m o lo g y ,  
c o m p a r i s o n  o f  th e i r  g e n e  s t r u c t u r e s  r e v e a ls  d iv e r g e n c e  in  5 - f l a n k i n g  r e g io n s ,  s u g g e s t i n g  d i s t in c t  r e g u la t io n  a t  t h e  
g e n o m ic  leve l.

Figure 9.4: Output from PAKORA showing a subset of PubMed abstracts for 
which the term ‘ISRE’ and the genes in the ISG gene list co-occur
The over-represented terms were highlighted in different colours for easy 
identification. Term selected by the user is highlighted in yellow; whilst other over
represented terms are highlighted in orange. This analysis was performed based on the 
text corpus constructed as of 25 Oct 2007.
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9.3 Using PAKORA to browse and download the 
literature gene lists

In Section 8.2.2, a comprehensive performance assessment was carried out to compare 

results produced by the proposed text-based approaches with that from GOstats when 

applied to the 52 human HG-U133A literature gene lists. Similar analyses were also 

performed for literature gene lists derived from other arrays, except for those based on 

the Arabidopsis and Xenopus laevis chips, because the Bioconductor GO annotation 

library files as required by GOstats are not available for these two chip types. For chip 

types where this analysis is possible, their text-based ORA and GOstats results are 

readily accessible via PAKORA for review by researchers with the relevant biological 

background. The user can browse through these pre-processed results by following the 

link “Literature Genelists” featured at the main menu. The 402 literature gene lists 

were organised according to the microarray platform on which they were based 

(Figure 9.5). From the expandable menu, the user can view all the gene lists available 

for a particular chip type and the biological conditions under study. By clicking on the 

gene list’s identifier, the user will be presented with result tables summarising the 

text-based ORA results associated with that gene list. An example is shown in Figure 

9.6, from which we can see that the outlier detection-based and the hypergeometric 

test-based approaches found three significant tokens each when applied to the 

literature gene list with identifier ‘ms3a’. The results of applying GOstats to the same 

dataset can be viewed by clicking on the link “View enriched GO (biological process) 

terms in this gene list”; the user will then get a table listing the GO terms that were 

reported as significantly enriched by GOstats at a threshold of 0.05 after Bonferroni 

correction, as shown in Figure 9.7. This kind of comparison would help the user to 

make a judgement regarding the performance of the proposed text-based ORA 

methods, as opposed to standard ORA tools that mine GO (such as GOstats), in 

different species for which the amount and quality of literature data varies 

substantially.
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Figure 9.5: Screenshots showing how the text-based ORA results for each of the 
literature gene lists used in this work can be viewed within PAKORA
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Outlier detection-based ORA lesults

Term List Chip Z-score Raw P-value Corrected P-value Ranking

COLLAGEN 47 592 -5.71 5.53e-09 2.96e-05 1

PROCOLLAGEN 12 47 -4 69 1.33e-06 0.00714 2

ELASTOGENESIS 4 5 -4.34 7.06e-06 0.0379 3

Extended hypergeometric distribution-based ORA results

Term List Chip Odds ratio Raw P-value Corrected P-value Ranking

COLLAGEN 47 592 4.33 7.536-09 0.000104 1

PROCOLLAGEN 12 47 4.75 9.88e-07 0.0137 2

INFARCTION 19 142 4.62 3.26e-06 0.0452 3

Figure 9.6: Screenshot from PAKORA showing the text-based ORA results for a 
literature gene list derived from the mouse MG-U430 2.0 array
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Over-represented GO terms in ms3a
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Figure 9.7: Screenshot of PAKORA showing the GOstats results for a literature 
gene list derived from the mouse MG-U430 2.0 array
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9.4 Conclusions

It has been demonstrated in the previous Chapters that the outlier detection algorithm 

and extended hypergeometric test can be effectively integrated into a wider statistical 

framework for mining textual information and discern a coherent picture that exists 

within complex groups of genes. In this Chapter, a web application named PAKORA 

is presented. PAKORA was designed to provide an easily accessible interface to the 

proposed text-based ORA algorithms and offers an intuitive visual representation of 

the analysis results. With PAKORA, the user gets an overview of the over-represented 

term shared by genes in a gene list and can quickly follow the links to find the 

relevant publications. This makes the exploratory analysis of complex microarray 

gene lists more efficient. At this stage in its development, PAKORA only outputs the 

results as a web page. Future incarnations of this tool could look into providing textual 

output that can be imported into Excel spreadsheets or saved automatically via HTTP. 

In conclusion, PAKORA provides a gateway to explore text-based information 

associated with a list of differentially expressed genes, with the advantage of 

obtaining this information consistently and automatically, making it a useful



C h ap ter  10 

D isc u ss io n  a n d  c o n c lu s io n s

10.1 Accomplishments

The aims of this research were (i) to determine whether existing applications of over

representation analysis (ORA), which are generally performed using GO terms or 

related controlled vocabularies as the associated annotation resource, can be extended 

to a wider mining of free-text; and (ii) to develop improved text mining approaches 

for identifying significantly over-represented terms or biological concepts within a list 

of differentially expressed genes by mining the associated literature information.

Initial exploration was based on a simple tokenisation of PubMed abstracts (Chapter 

2), followed by the identification of over-represented tokens using the classical 

hypergeometric distribution (Chapter 3). When this approach was tested on 52 gene 

lists derived from microarray experiments using human arrays (Affymetrix HG- 

U133A chip), a dramatic and hitherto under-appreciated feature was observed, which 

is that gene lists generated from a typical microarray experiment tend to have more 

PubMed articles (as in PMID count) associated with them than equivalently-sized 

random gene lists. A similar trend was also seen for gene lists based on other popular 

model organisms such as mouse and rat (Section 4.1.1). These findings suggest that 

there is an excess of PMID annotation inherent with highly annotated gene lists. 

Further investigations into the potential causes of annotation bias found that there is a 

strong trend whereby those gene lists showing an excess of PMID annotation are also 

those whose constituent genes have been known for longer period of time (Section 

4.3). It thus seems that gene lists generated from real-life biological experiments tends 

to favour groups of genes and areas of biology that have been studied for longer, and
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for which a greater amount of published literature are available. This may suggest that 

the (funded) research using microarrays to date has been rather conservative and 

largely focused on well-established areas of biology (such as immunology) where the 

genes that are likely to be differentially expressed have been known for a while. When 

then combined with the accumulated biological knowledge about these genes, the 

result is the annotation bias effect described above.

Annotation bias has a negative impact on ORA approaches that use the standard 

hypergeometric distribution to assess over-representation. Failing to account for such 

bias can lead to many common and apparently uninformative terms to be reported as 

significantly enriched (Section 3.3.1). This is because there is simply more text 

associated with the highly-annotated gene list than expected by chance, therefore even 

a relatively modest increase in frequency of a common word would produce a 

significant hypergeometric p-value. Experimentally-derived gene lists are generally 

associated with more GO terms than random gene lists as well (Section 4.1.2), 

suggesting that annotation bias may have a similar influence on other ORA-based 

functional enrichment tools that mine different annotation resources, such as GO 

terms or KEGG pathways. The issue of annotation bias has been raised by Blaschke et 

al. (2001), who stated that “It is not clear whether the over-representation of genes or 

abstracts constitutes a real problem, because they represent true biological or editorial 

biases; but certainly they bring a different type of information which should be taken 

into account during analysis”. Similar concerns were also voiced by Khatri and 

Draghici (2005) and Krallinger et al (2005). However, no solution has been proposed 

to address this problem in the context of enrichment analysis (be it using ffee-text or 

controlled vocabularies), and it has so far been overlooked by existing ORA tools.

Three different text-based ORA approaches have been developed during the course of 

this research to address the effect due to annotation bias. The first approach is based 

on the use of a permutation test (Chapter 5); this method produces biologically- 

plausible results and no longer considers those common and apparently uninformative 

terms as significant. However, the usefulness of this approach is hampered by being 

extremely computationally intensive, and therefore not suitable for routine analysis.
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Two computationally tractable approaches were subsequently developed, which are 

based on the detection of outliers (OutlierDM) and the extended hypergeometric 

distribution (ExtendedHG). Analyses based on selected datasets showed that 

OutlierDM and ExtendedHG are able to identify tokens that are of biological 

relevance whilst compensating for the effect of annotation bias. Although they differ 

in the underlying statistical algorithms used to assess over-representation, the results 

produced by OutlierDM and ExtendedHG generally show a good concordance in most 

datasets that have been analysed (Chapters 6 and 7). In addition, the results are very 

similar to those generated by the permutation test-based method. These methods can 

be applied not only to well-studied species but also to less well-annotated species such 

as Arabidopsis (Section 8.3.2).

Due to the lack of a “gold standard” and appropriate evaluation metrics, it is not 

possible to formally evaluate the performance the approaches proposed herein against 

related ontology-based or text mining approaches. An alternative strategy has been 

adopted instead, which focused on the 52 literature gene lists using the HG-U133A 

array, and compared the outcome from OutlierDM and ExtendedHG with those 

obtained from a standard ORA approach that mines GO terms when applied to these 

gene lists. The biological relevance and plausibility of the over-represented tokens and 

GO terms were assessed against the perceived biology of the original publication. This 

focused performance review showed that the proposed approaches not only provide a 

similar but also distinct insight into the themes over-represented in a gene list 

compared to the results from undertaking ORA using GO terms (Section 8.2.2).

Several groups have undertaken the challenge of incorporating literature-based 

information into data mining algorithms to interpret the underlying biological 

significance of a list of differentially expressed genes (Blaschke et al. 2001; 

Chaussabel and Sher 2002; Frijters et al. 2008; Glenisson et al. 2004; Jelier et al. 2007; 

Jenssen et al. 2001; Shatkay et al. 2000). Their approaches are briefly reviewed in 

Section 1.4.4. The majority of these methods aim at finding functional associations 

between genes and terms, based on their co-occurrences in literature. The two 

methods that carry out text mining in a similar spirit to the approaches proposed here
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are GEISHA (Blaschke et al. 2001) and CoPub (Frijters et al. 2008). GEISHA 

evaluates the significance of terms associated with a gene cluster by comparing their 

frequency of abstracts with the frequency of abstracts containing these terms in 

different gene clusters. This system typically requires more than one gene cluster 

(gene list) to calculate the test statistic for testing over-representation, which is lacking 

in flexibility. Based on the work examples presented in Blaschke et al. (2001), it is 

clear that GEISHA is also susceptible to the effect of annotation bias. The CoPub 

system, on the other hand, calculates keyword enrichment for a list of differentially 

expressed genes using the Fisher’s exact test. Since in this system CoPub maps the 

terms in abstracts to thesauri concepts, it is not apparent if its performance is affected 

by annotation bias as conventional tools implementing Fisher’s exact test might.

The text-based ORA approaches developed in this project can be viewed as a 

complement to, and extension of, the existing functional enrichment tools. A web 

application PAKORA was implemented to provide an easily assessable interface to 

the proposed text-based ORA algorithms (Chapter 9). Taken together, the work 

presented here is a contribution to the more general need currently experienced in 

high-throughput genomics analysis, where data mining methods that access the 

literature efficiently and effectively are in demand. Inevitably, there are many 

unresolved issues and future possibilities raised by the work presented in this thesis. In 

the following sections, I will provide a general discussion on aspects where additional 

opportunities exist to improve their potential, and more general future research 

directions will also be suggested.

10.2 Limitations, open problem s and future work

Conceptually, the text-based ORA mining framework proposed in this thesis can be 

viewed as having three major components: (i) an annotation database, which contains 

the textual information; (ii) statistical algorithms for assessing term over

representation; and (iii) output and result presentation. Each of these can affect the 

performance of the proposed methods and the comprehensiveness of the analytical



Chapter 10. Discussion and conclusions 250

results. Specific issues and possible extensions related to these components are 

discussed below.

10.2.1 Issues concerning the selection of PubMed articles

The methods described here depend on a corpus of articles relevant to the genes being 

studied (e.g. all genes appearing on an array), and an index that links the articles to the 

appropriate genes. Currently, the manually-curated citations provided by NCBI were 

used to retrieve the relevant gene-related PubMed abstracts. Although such curation 

provides high quality literature index, this process, together with the volume of 

research activity in different areas, means that the coverage of less heavily studied 

species is still limited, and this has a direct effect on the power of the proposed 

methods. Incorporation of additional gene-citation links, perhaps from species-specific 

databases, would increase the amount of textual information in the corpus and 

improve the power of the text mining methods proposed in this work. To improve the 

comprehensiveness of the results, the annotation database could be expanded to 

include textual information extracted from other specialised resources such as OMIM 

(Amberger et al. 2009), which provides a high level of details about genes and disease 

phenotypes. With full-text articles become increasingly accessible, future explorations 

should also tap into these resources. It has been reported that information density is 

highest in abstracts, but the information coverage in full texts is much greater than in 

abstracts (Schuemie et al. 2004). So it would be interesting to investigate if an 

expansion to mine full-text articles would add values or reduce the specificity of the 

proposed text-based methods.

As mentioned previously, articles that deal with large-scale sequencing, nomenclature, 

or protein family characterisation studies are typically associated with a large number 

of genes (Section 2.3.2). The inclusion of these articles in the text corpus is 

undesirable because their abstracts typically contain little explicit information about 

gene function. Tokens extracted from these articles are more likely to appear as 

significant simply because the articles are linked to most of the genes found in a given 

gene list (which is possible for articles such as sequencing reports, which are typically 

tagged with >1000 genes). To address this issue, the text corpus used in the current
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system was filtered to retain only those PMIDs that cross-reference to one EGID. 

While maximising the number of abstracts that deal specifically with the biological 

role of a given gene, this strategy inevitably leads to loss of information. For example, 

only 70% of all the articles indexed for the human genes were retained after filtering 

(Table 2.5). A more elaborate document retrieval approach that weighs the 

information content in an abstract according to the context could be adopted in future 

to improve the quality and quantity of the text corpus. For example, one might use 

Gene Reference Into Function (GeneRIF) (Mitchell et al 2003) as the document 

selection criterion. GeneRIF is a curated resource that provides annotated links 

between PubMed articles containing functional information about the gene (or protein) 

and the corresponding Entrez Gene record. A GeneRIF entry is a short statement (up 

to 225 characters in length) summarising the function related to a specific gene as 

reported in the article. Therefore, by considering only articles that are supported by at 

least one GeneRIF entry, it is possible to identify a set of articles that contain 

functional information about genes. Further rounds of the document retrieval process 

could be performed by using those articles tagged with GeneRIFs as “seeds”, followed 

by a search of the literature database for articles related or most relevant to the seeds. 

Document similarity measures described in Weiss et al. (2004), or the probabilistic 

algorithms proposed by Shatkay et al. (2000), could be explored in the future for their 

applicability to this task.

10.2.2 Issues concerning corpus manipulation and text processing

Much of the work presented in this thesis has focused on the development of statistical 

techniques for accurate identification of over-represented terms. So far, only very 

basic text processing such as simple tokenisation and stemming have been performed 

on the text in the corpus. There are two reasons to support the choice of performing as 

little by way of corpus manipulation at this stage. First, it enables the issue of 

annotation bias to be explored, and solutions to be developed, without the potentially 

confounding effect of a heavily pre-manipulated corpus. Since only minimal 

modifications have been done on the text in the corpus, any effects observed can then 

be confidently categorised as a real effect of annotation bias, and not some side-effect
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due to text manipulation. Second, it defines a baseline state for which to assess the 

improvements made by applying more elaborate natural language processing (NLP) 

on free-text.

There are several areas concerning text processing that could be made more 

sophisticated and complex in the future. These include the removal of stopwords and 

the use of name entity recognition techniques in combination with established thesauri 

(e.g. UMLS metathesaurus, MeSH and GO) to allow for the identification of multi

word biological concepts and synonyms, as well as to provide mapping to the same 

gene. These steps should reduce the noise caused by natural language variation and 

improve the information content of the over-represented tokens. On the other hand, 

popular term-weighting strategy such as the TF-IDF scheme (where the term 

frequency is multiplied by the inverse document frequency; see Weiss et al. 2004 for 

more details) could be used to weigh terms according to their relevance in the 

abstracts. This weight can also be used as a guide to remove common words with less 

semantic values from the corpus prior to conducting downstream statistical analysis. 

This will reduce the token space and minimise the problem of multiple hypothesis 

testing described in Section 3.2.5.

10.2.3 Issues concerning ORA’s threshold-based strategy

Like other ORA approaches, the methods proposed in this thesis require an initial 

selection of differentially expressed genes by an arbitrarily chosen cutoff threshold. A 

major criticism to such “threshold-based” approach is that different choices of the 

cutoff value will produce different lists of differentially expressed genes and alter the 

result of the enrichment analysis. Moreover, many genes with moderate but 

meaningful expression changes may be discarded by the selected threshold regardless 

of their relative position in the ranked list, leading to a loss in statistical power. In 

recent years, an alternative mode of analysis that does not involve an initial gene 

selection step has been proposed. Examples of these include Gene Set Enrichment 

Analysis (GSEA) (Mootha et al. 2003; Subramanian et al. 2005; Tian et al. 2005) and 

Functional Class Scoring (FCS) (Pavlidis et al. 2004). These methods consider the 

distribution of a functionally-defined group of genes in the ranked list of genes and
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allow adjustments for their correlation structure. While a few studies have shown that 

such threshold-free approach enables the detection of more subtle functional 

categories that were overlooked by ORA (Ben-Shaul et al 2005; Pavlidis et al. 2004), 

Manoli and coworkers (Manoli et al. 2006) found that ORA produced more consistent 

results than GSEA with respect to the concordance between analyses on differentially 

expressed genes obtained by different statistical methods from three prostate cancer 

data sets. Although it would be computationally challenging in scale, it may be 

possible to develop threshold-free methods that can accommodate annotation bias and 

thus be applied to the mining of PubMed tokens; works are currently underway to 

explore this question.

10.2.4 Issues concerning presentation of results

In many cases, the information contained in the over-represented terms can provide a 

first impression of the biological processes or themes related to a gene list. However, 

the interpretation of these significant tokens would become clearer when considered in 

the context of related terms and their associations with genes in the gene list. A simple 

illustration is given in Figure 10.1, where the 23 terms that were identified as 

significantly enriched in the ISG gene list by using OutlierDM are represented in the 

form of a dendrogram, in which the distances between terms are proportional to the 

number of genes the terms shared such that terms that have many genes in common 

are grouped together (the genes associated with each of the significant term are shown 

in Figure 10.2). We can see from the dendrogram that terms corresponding to 

interferon-inducible antiviral proteins such as ‘OAS’, ‘oligoadenylate’, and ‘MxA’ are 

close to each other, whereas terms related to antigen presentation by major 

histocompatibility complex (MHC) molecules such as ‘HLA-A’, ‘HLA-B’, ‘HLA-G’, 

form another cluster. MHC-dependent antigen presentation is another level of 

interferon action that augments the adaptive and acquired immune responses, which is 

different from the direct inhibition of viral replication by ISGs (such as MxA or 2’-5’ 

OAS). By organising the output in this way, the relation between the significant terms 

becomes more specific and clearer.
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Figure 10.1: Dendrogram showing association between terms
The associations between 23 significantly over-represented terms in the ISG gene list 
as identified by using OutlierDM is represented as a dendrogram. The distances 
between the terms are proportional to the number of genes they have in common. 
Specifically, cosine similarity was calculated for each pair of terms based on the 
corresponding gene vectors.
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ADAR 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0
B2M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1
C1R 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
C1S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

C3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0
DDX58 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0

EIF2AK2 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
CBP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1

HERC5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0
HLA-A 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0
HLA-B 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0
HLA-C 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
HLA-E 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0
HLA-F 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HLA-G 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0
HLA-J 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IFI16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0
IFI27 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1
IFI35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
IFI44 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0
1FI6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

IFIH1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
IFIT1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0
IFIT3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
IFIT5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

IFITM1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1
IFITM3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

IRF7 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
IRF9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0

ISG15 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
I8G20 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0

LGALS3BP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
MX1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1
MX2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0

MYD88 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0
NMI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

OAS1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
OA82 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0
OAS3 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0
OASL 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
OGFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

PLSCR1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0
PML 1 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1

PSMB8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
PSME2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
PYHIN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

SP100 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0
SP110 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0
STAT1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

TAP1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
TREX1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0

TRIM21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
TRIM22 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0
TRIM34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
USP18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0

Figure 10.2: A binary matrix of the significant tokens and genes
The columns of the matrix correspond to the significantly over-represented terms in 
the ISG gene list (based on OutlierDM), and the rows are genes associated with these 
term. The values 1 and 0 signify ‘present’ and ‘absent’, respectively.
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To access contextual clues that go beyond the isolated meaning of individual terms, it 

is necessary to examine the text from which these terms are extracted. Methods that 

select sentences or abstracts containing the maximum concentration of significant 

terms have been found to be particularly useful in this respect and facilitate biological 

interpretation by human experts (Blaschke et al 2001). On the other hand, literature 

profiling approaches that clustered genes based on keyword (or significant term) co

occurrence in abstracts have also shown promise in guiding the interpretation of large 

and heterogeneous gene lists (Alako et al. 2005; Chaussabel and Sher 2002; Jelier et 

al. 2007), and could be evaluated in future work.

10.2.5 Other considerations

In addition to the annotation data and statistical algorithms used, another factor that 

can influence the performance o f the proposed text-based approaches is the quality of 

the gene list. Intuitively, the proposed methods will perform better on gene lists 

containing a notable portion of up- or down-regulated genes that are participated in 

certain interesting biological processes than on less specific gene lists whose 

constituent genes are spread throughout all possible biological processes. Other 

factors such as the size of gene list, the amount of annotation associated with the 

genes and the dependency among genes will also affect the sensitivity and specificity 

of the proposed approaches. For this reason, the enrichment /7-values are not directly 

comparable across gene lists, and should only be treated as a scoring system that plays 

an advisory role rather than decision-making role (Huang et al. 2008). Functional 

enrichment analysis such as that presented herein is therefore considered more of an 

exploratory procedure rather than a pure statistical solution.

While the peer-reviewed scientific literature will continue to be the prime resource for 

accessing biological knowledge, in the future it may become increasingly necessary to 

integrate other sources of information (such as protein interactions, pathways 

information and annotated data from previous gene expression analysis) to provide a 

more comprehensive data-mining environment, because results jointly learnt from 

more than one type of data are likely to produce insights that might not be apparent
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from mining one type of data in isolation. The construction of a gold standard and 

standard evaluation procedure will facilitate the growth and development of the field.

10.3 Conclusions

To conclude, the aims and objectives of this research have been broadly achieved. I 

have described the problems and challenges associated with existing ORA methods 

when adapting them for mining text-based information, and three novel approaches 

have been proposed to address some of these problems. Analysis performed on several 

independent datasets show that the proposed methods produce biologically- 

meaningful results that are in good agreement with the manually determined 

annotations. These examples also demonstrate that a coherent picture that exists 

within complex group of genes can be discerned by incorporating textual information 

embedded in literature as a knowledge source into the analysis of gene expression data. 

Collectively, the text-based ORA approaches presented in this thesis can be used to 

complement and extend existing ontology-based functional analysis tools for guiding 

the biological interpretation of complex microarray data.



A p p en d ix  A  

D e ta ils  o f  l ite r a tu r e  g e n e  l i s t s

402 different gene lists were collected from 170 scientific papers for testing the 

performance of the text-based ORA methods presented in this thesis. These gene lists 

were derived from microarray experiments performed on 10 major Affymetrix 

platforms, including HG-U133A, HG-U133 Plus 2.0, MG-U430 2.0, RAT230 2.0, 

Athl, DrosGenomel, Drosophila 2.0, Celegans, Xenopus laevis and Zebrafish arrays. 

The gene identifiers in these gene lists are in the form of Affymetrix probeset IDs; 

these gene lists are included on the CD-ROM attached to this thesis. Details of each of 

these gene lists, including its size and the PubMed article from which it was extracted, 

are detailed as follow.

258
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Table A.1: Literature gene lists based on the HG-U133A array

259

List
ID

PubMed
ID

F irst
a u th o r

Year # Probe 
s e ts

D escription

hs1a 16531451 Provenzani 2006 867 Probesets differentially expressed in the total RNA 
sample. Extracted from Supplementary Table I.

hs1b 16531451 Provenzani 2006 2018 Probesets changed in the polysomal RNA sample. 
Extracted from Supplementary Table II.

hs1c 16531451 Provenzani 2006 397 Probesets common to polysomal and total RNA 
sample. Extracted from Supplementary Table III.

hs2a 15210650 Lee 2004 269 Transcripts with greater than 3 fold enrichment in 
every T cell subpopulation compared to TSC. 
Extracted from Supplementary Table 1.

hs2b 15210650 Lee 2004 1521 Transcripts whose expression changed by more than 
3 fold during T cell differentiation. Extracted from 
Supplementary Table 2.

hs2c 15210650 Lee 2004 134 Transcripts enriched in both ITTP and DP by more 
than 3 fold. Extracted from Supplementary Table 3-1.

hs2d 15210650 Lee 2004 76 Transcripts enriched in more mature cells (SP4, CB4, 
and AB4) by more than 3 fold. Extracted from 
Supplementary Table 3-2.

hs2e 15210650 Lee 2004 28 Transcripts enriched by more than 3 fold in ITTP 
compared to other lymphocytes. Extracted from 
Supplementary Table 3-3.

hs2f 15210650 Lee 2004 28 Transcripts enriched by more than 3 fold in DP 
compared to other lymphocytes. Extracted from 
Supplementary Table 3-4.

hs2g 15210650 Lee 2004 16 Transcripts enriched by more than 3 fold in SP4 
compared to other lymphocytes. Extracted from 
Supplementary Table 3-5.

hs2h 15210650 Lee 2004 25 Transcripts enriched in naive CD4 T cells (CB4, and 
AB4) by more than 3 fold. Extracted from 
Supplementary Table 3-6.

hs2i 15210650 Lee 2004 32 Transcripts showing SP4>CB4>AB4 pattern. 
Extracted from Supplementary Table 4-1.

hs2j 15210650 Lee 2004 240 Transcripts showing more than 2 fold higher 
expression in CB4 than in AB4. Extracted from 
Supplementary Table 4-2.

hs3a 15897907 Farmer 2005 400 Genes which best discriminate apocrine vs. luminal 
(AL). Extracted from Supplementary Table Sheet 2.

hs3b 15897907 Farmer 2005 400 Genes which best discriminate porcine vs. basal 
(AB). Extracted from Supplementary Table Sheet 2.

hs3c 15897907 Farmer 2005 400 Genes which best discriminate basal vs. luminal (BL). 
Extracted from Supplementary Table Sheet 2.

hs4a 16260967 Radom-
Aizik

2005 181 Genes whose expression increased after training. 
Extracted from Table S2 in the main paper.

hs4b 16260967 Radom-
Aizik

2005 216 Genes whose expression decreased after training. 
Extracted from Table S3 in the main paper.

hs5a 12958056 Gimino 2003 135 Genes that are up-regulated in gene expression in 
acute rejection vs. no rejection. Extracted from 
Supplementary Table E1.

hs5b 12958056 Gimino 2003 858 Genes with significant changes in gene expression in 
acute rejection vs. no rejection. Extracted from 
Supplementary Table E2.
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Table A.1: Literature gene lists based on the HG-U133A array (continued)

List PubMed First
ID ID au th o r

Year #  Probe 
s e ts

Description

hs6a 16319128 Vanharanta 2006

hs6b

hs6c

hs6d

hs7

hs8

16319128

16319128

16319128

15817885

15971941

hs9a 15558013

hs9b 15558013

hs10 16203770

hs11a 16049480

hs11b 16049480

hs12a 16089502

hs12b 16089502

hs12c 16089502

hu13
16205643 

hs14a 14872006

hs14b 14872006 

hs14c 14872006 

hs14d 14872006

Vanharanta

Vanharanta

Vanharanta

Barth

Barberi

O'Donnell

O'Donnell

Best

Minn

Minn

Eckfeldt

Eckfeldt

Eckfeldt

Liu

Hall

Hall

Hall

Hall

2006

2006

2006

2005

2005

2005

2005

2005

2005

2005

2005

2005

2005

2006 

2004

2004

2004

2004

181

179

228

199

1434

412

26

93

256

113

65

2707

4677

304

235

299

144

97

22

Down-regulated genes in FH mutant relative to FH 
wild-type fibroids. Extracted from Supplementary 
Table 1.

Up-regulated genes in FH mutant relative to FH wild- 
type fibroids. Extracted from Supplementary Table 1.

Down-regulated genes in FH mutant relative to 
normal myometrium. Extracted from Supplementary 
Table 3.

Up-regulated genes in FH mutant relative to normal 
myometrium. Extracted from Supplementary Table 3.

Genes differentially expressed in atrial fibrillation. 
Extracted from Supplementary Table 3.

Genes shared between primary and hESC-derived 
mesenchymal precursors but significantly different 
from undifferentiated hESCs. Extracted from 
Supplementary Table S2.

Genes down-regulated in N+ primary 
Extracted from Supplementary Figure 1.

tumours.

Genes up-regulated in N+ primary tumours. 
Extracted from Supplementary Figure 1.

Unabridged list of genes differentially expressed 
between AD and Al prostate cancer. Extracted from 
Supplementary Data.

Genes differentially expressed between parental 
MDA-MB-231 and LM2 cell lines selected to be 
highly metastatic to lung. Extracted from 
Supplementary Table 2.

Lung metastasis candidate genes. Extracted from 
Supplementary Table 4.

Probesets differentially expressed between umbilical 
cord blood derived Rho-lo and Rho-hi cells. Extracted 
from Supplementary Table S1.

Probesets differentially expressed between adult 
bone marrow derived Rho-lo and Rho-hi cells. 
Extracted from Supplementary Table S2.

Probesets differentially expressed between Rho-lo 
and Rho-hi cells from both umbilical cord blood and 
adult bone marrow. Extracted from Supplementary 
Table S3.

Genes induced by c-Myb and v-Myb in MCF-7 cells. 
Extracted from Supplementary Table 1.

Genes differentially expressed in 19 paired human 
samples comparing pre and post mechanical 
unloading with a LVAD. Extracted from 
Supplementary Table S1.

Genes differentially expressed in non-ischemic 
cohort. Extracted from Supplementary Table S3.

Genes differentially expressed in ischemic cohort. 
Extracted from Supplementary Table 4.

Genes differentially expressed in acute Ml cohort. 
Extracted from Supplementary Table 5.
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Table A.1: Literature gene lists based on the HG-U133A array (continued)

List
ID

PubMed
ID

First
au thor

Year # Probe 
s e ts

D escription

hs15a 12756304 Cousins 2003 104 Group 1 zinc responsive genes. Extracted from 
Supplementary Table 3.

hs15b 12756304 Cousins 2003 86 Group 4 zinc responsive genes. Extracted from 
Supplementary Table 4.

hs16 16116475 Chow 2006 57 Genes differentially expressed in C666-1 RASSF1A- 
transfected clones. Extracted from Table 1 in the 
original paper.

hs17a 16804116 Chng 2006 73 Genes that displayed distinct expression profile in 
WM compared to CLL and MM. Extracted from 
Supplementary Table S1: WM Unique Genes.

hs17b 16804116 Chng 2006 1247 Genes that displayed distinct expression profile in 
MM compared to CLL and WM. Extracted from 
Supplementary Table S1: MM Unique Genes

hs17c 16804116 Chng 2006 396 Genes that displayed distinct expression profile in 
CLL compared to WM and MM. Extracted from 
Supplementary Table S1: CLL Unique Genes.

hs17d 16804116 Chng 2006 314 A cluster of genes that were over-expressed in B-cell, 
WM and CLL. Extracted from Supplementary Table 
S1: W MCLL B-cell cluster.

hs18a 16836768 Pfoertner 2006 46 Up-regulated genes comparing CD4+CD25+ T cells 
vs. CD4+CD25- T cells. Extracted from Additional file 
1.

hs18b 16836768 Pfoertner 2006 21 Down-regulated genes comparing CD4+CD25+ T 
cells vs. CD4+CD25- T cells. Extracted from 
Additional file 1.

hs18c 16836768 Pfoertner 2006 313 Genes differentially expressed in Foxp3 over
expressing CD4+ Th cell lines cells relative to the 
GFP transduced CD4+ Th controls. Extracted from 
Additional file 4.

hs19a 15869706 Rosty 2005 262 Up-regulated genes in FGFR3 mutated tumours 
relative to FGFR3 wild-type tumours. Extracted from 
Additional file 2: Positive Significant Genes.

hs19b 15869706 Rosty 2005 552 Down-regulated genes in FGFR3 mutated tumours 
relative to FGFR3 wild-type tumours. Extracted from 
Additional file 2: Negative Significant Genes

hs20 15604246 Berger 2004 1207 Genes differentially expressed between LHSR and 
LHS. Extracted from Supplementary Table 1.
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Table A.2: Literature gene lists based on the HG-U133 Plus 2.0 array

List
ID

PubMed
ID

First
au thor

Year #  Probe 
s e ts

Description

hu1 15361855 Donninger 2004 1191 Differentially regulated genes identified in advanced 
papillary serous tumour specimens. Extracted from 
Supplementary Table S1.

hu2
16205643

Liu 2006 1527 Genes induced by c-Myb and v-Myb in human 
monocytes. Extracted from Supplementary Table 3.

hu3a 16982809 Szatmari 2006 81 Genes regulated by PPAR-gamma agonist, RAR- 
alpha agonists and the RAR-alpha antagonist 
(referred to as cluster 3 in the main text). Extracted 
from Supplementary Table S1.

hu3b 16982809 Szatmari 2006 72 Genes down-regulated by PPAR-gamma ligand 
(referred to as cluster 6 in the main text). Extracted 
from Supplementary Table S2.

hu4a 16926187 Vendelin 2006 195 Genes differentially expressed in contrasts 1 and 2 
(NPS stimulated vs. unstimulated NPSR1-A cells, 
and NPS stimulated NPSR1-A vs. NPS stimulated 
HEK-293H, respectively). Extracted from 
Supplementary Table S1.

hu4b 16926187 Vendelin 2006 43 Co-regulated genes. Extracted from Supplementary 
Table 3.

hu5a 16210406 Jaatinen 2006 690 Differentially expressed genes in CD133+ relative to 
CD133-. Extracted from Supplementary Table 2.

hu5b 16210406 Jaatinen 2006 257 Genes expressed only in CD133+ and absent in 
CD133- samples. Extracted from Supplementary 
Table 3.

hu6 16242812 Dunckley 2006 225 Genes whose expression differed significantly when 
comparing ND non-NFT neurons to AD non-NFT 
neurons and then to AD NFT neurons. Data 
downloaded from
http://www.tgen.org/research/index.cfm?pageid=502

hu7 16949412 Hassan 2006 50 Top 50 probesets that displayed differential 
expression between TL samples and TNL samples. 
Extracted from Table II in the main paper.

hu8a 16772347 Lampron 2006 724 Probesets related to GIP-dependent AIMAH. 
Extracted from Supplementary Table 2.

hu8b 16772347 Lampron 2006 94 Probesets with intensity levels linked to the presence 
of a GIP-dependent nodule. Extracted from 
Supplementary Table 4.

hu9a 16728703 Zhan 2006 51 Top 50 over-expressed genes unique to PR 
subgroup. Extracted from Supplementary Table S2.

hu9b 16728703 Zhan 2006 56 Top 50 over-expressed genes unique to LB 
subgroup. Extracted from Supplementary Table S2.

hu9c 16728703 Zhan 2006 52 Top 50 over-expressed genes unique to MS 
subgroup. Extracted from Supplementary Table S2.

hu9d 16728703 Zhan 2006 53 Top 50 over-expressed genes unique to HY 
subgroup. Extracted from Supplementary Table S2.

hu9e 16728703 Zhan 2006 53 Top 50 over-expressed genes unique to CD-1 
subgroup. Extracted from Supplementary Table S2.

hu9f 16728703 Zhan 2006 57 Top 50 over-expressed genes unique to CD-2 
subgroup. Extracted from Supplementary Table S2.

hu9g 16728703 Zhan 2006 52 Top 50 over-expressed genes unique to MF 
subgroup. Extracted from Supplementary Table S2.

http://www.tgen.org/research/index.cfm?pageid=502
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Table A.2: Literature gene lists based on the HG-U133 Plus 2.0 array (continued)

List
ID

PubMed
ID

First
au thor

Year # Probe 
se ts

Description

hu9h 16728703 Zhan 2006 52 Top 50 under-expressed genes unique to PR 
subgroup. Extracted from Supplementary Table S3.

hu9i 16728703 Zhan 2006 58 Top 50 under-expressed genes unique to LB 
subgroup. Extracted from Supplementary Table S3.

hu9j 16728703 Zhan 2006 55 Top 50 under-expressed genes unique to MS 
subgroup. Extracted from Supplementary Table S3.

hu9k 16728703 Zhan 2006 54 Top 50 under-expressed genes unique to HY 
subgroup. Extracted from Supplementary Table S3.

hu9l 16728703 Zhan 2006 55 Top 50 under-expressed genes unique to CD-1 
subgroup. Extracted from Supplementary Table S3.

hu9m 16728703 Zhan 2006 54 Top 50 under-expressed genes unique to CD-2 
subgroup. Extracted from Supplementary Table S3.

hu9n 16728703 Zhan 2006 58 Top 50 under-expressed genes unique to MF 
subgroup. Extracted from Supplementary Table S3.

hu9o 16728703 Zhan 2006 172 Genes commonly dysregulated in CD-1 and CD-2 
groups. Extracted from Supplementary Table S5.

hu9p 16728703 Zhan 2006 131 Genes that were differentially expression between 
CD-1 and CD-2 subgroups. Extracted from 
Supplementary Table S6.

hu10 16670265 Radmacher 2006 157 Bullinger Validation Signature that separated AML 
from normal karyotype. Extracted from 
Supplementary Table S1.

hull 16953664 Maier 2006 70 Genes differentially expressed in response to 
retrovirally mediated MDR1 over-expression. 
Extracted from Table 1 in the original paper.

hu12a 16638148 Oudes 2006 4176 Genes detected in sorted cells but not in the whole 
tissue. Extracted from Supplementary Table 2.

hu12b 16638148 Oudes 2006 239 Genes detected in whole prostate but not in sorted 
cells. Extracted from Supplementary Table 4.

hu12c 16638148 Oudes 2006 197 Genes detected only in prostate luminal cells. 
Extracted from Supplementary Table 5.

hu12d 16638148 Oudes 2006 150 Genes detected only in prostate basal cells. 
Extracted from Supplementary Table 6.

hu12e 16638148 Oudes 2006 632 Genes detected only in prostate stromal cells. 
Extracted from Supplementary Table 7.

hu13 16863911 Fruehauf 2006 123 Genes differentially expressed in AMD3100 + G- 
CSF-mobilized PBPC compared to G-CSF-mobilized 
cells. Extracted from Table 1 in the original paper.

hu14 16474848 Hooi 2006 361 Genes present 2 fold expression changes by ST7-1 a 
expression in PC-3 cells. Extracted from 
Supplementary table.

hu15a 16682435 Peddada 2006 183 Genes significantly increased upon differentiation. 
Extracted from Supplementary Table 1.

hu15b 16682435 Peddada 2006 12 Genes significantly increased upon differentiation 
and significantly increased in D-UT vs. D-MT 
comparison. Extracted from Supplementary Table 2.

hu15c 16682435 Peddada 2006 8 Genes significantly increased upon differentiation

comparison. Extracted from Supplementary Table 3.
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Table A.2: Literature gene lists based on the HG-U133 Plus 2.0 array (continued)

List
ID

PubMed
ID

First
au thor

Year # Probe 
s e ts

Description

hu15d 16682435 Peddada 2006 45 Genes significantly decreased upon differentiation. 
Extracted from Supplementary Table 4.

hu15e 16682435 Peddada 2006 4 Genes significantly decreased upon differentiation 
and significantly increased in D-UT vs. D-MT 
comparison. Extracted from Supplementary Table 5.

hu15f 16682435 Peddada 2006 26 Genes significantly changed upon differentiation in 
D-MD vs. D-CD comparison. Extracted from 
Supplementary Table 6.

hu16 16507782 Mense 2006 133 Hypoxia-regulated genes in both astrocytes and 
HeLa cells. Extracted from Table S1.

hu17 16785517 Fulcher 2006 1521 Genes differentially expressed between LPS and 
galectin-1-treated MDDCs. Extracted from 
Supplementary Table 1.

hu18 16379004 DeFilippis 2006 859 Differentially regulated genes between HCMV- 
infected versus uninfected human fibroblasts treated 
with control siRNA at both 4h and 8h post-infection. 
Extracted from Supplementary Table 1.

hu19a 16288205 Charafe-
Jauffret

2006 1233 Probesets significantly differentially expressed 
between luminal cell lines and basal cell lines. 
Supplementary. Extracted from Supplementary 
Table 2.

hu19b 16288205 Charafe-
Jauffret

2006 1309 Probesets significantly differentially expressed 
between luminal cell lines and mesenchymal cell 
lines. Extracted from Supplementary Table 3.

hu19c 16288205 Charafe-
Jauffret

2006 227 Probesets significantly differentially expressed 
between basal cell lines and mesenchymal cell lines. 
Extracted from Supplementary Table 4.

hu20a 16644866 Armstrong 2006 205 hESC-specific transcripts. Extracted from 
Supplementary Table S1.

hu20b 16644866 Armstrong 2006 84 Highly expressed transcripts in both hES-NCL1 and 
H1 cell lines. Extracted from Supplementary Table 
S2.

hu20c 16644866 Armstrong 2006 61 Genes which were unique to hES-NCL1. Extracted 
from Supplementary Table S3.

hu20d 16644866 Armstrong 2006 49 Genes which were unique to H1. Extracted from 
Supplementary Table S3.

hu20e 16644866 Armstrong 2006 110 New hESC markers. Extracted from Supplementary 
Table S4.
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Table A.3: Literature gene lists based on the MG-U43Q 2.0 array

265

List PubM ed ID First 
ID au th o r

Year # Probe 
s e ts

Description

ms1 16949565 Yu 2006 294

ms2a 16860309 Potireddy 2006 490

ms2b 16860309 Potireddy 2006 1808

ms3a 16368875 Mitchell 2006 185

ms3b 16368875 Mitchell 2006 251

ms3c 16368875 Mitchell 2006 257

ms4a 16940520 Kunz 2006 98

ms4b 16940520 Kunz 2006 77

ms5 16943279 Lindsley 2006 1583

ms6a 16926388 Reece 2006 123

ms6b 16926388 Reece 2006 220

ms7a 16926395 He 2006 1138

ms7b 16926395 He 2006 288

ms8 16772024 Korostynski 2006 1528

ms9a 16945109 Heinitz 2006 75

ms9b 16945109 Heinitz 2006 14

ms9c 16945109 Heinitz 2006 15

m s10a 16105979 Kaw agoe 2005 36

Significantly differentially expressed genes in Get-1- 
/- back skin relative to wild-type. Extracted from 
Supplementary Table 4.

List of transcripts enriched at Mil stage. Extracted 
from Supplementary Table 2.

Genes enhanced in the late one-cell embryos. 
Extracted from Supplementary Table 3.

Genes differentially expressed in HRas-v12 hearts 
(RAS-regulated). Extracted from Supplementary 
Table 2.

Genes differentially expressed in MKK3bE hearts 
(p38-regulated). Extracted from Supplementary 
Table 2.

Genes differentially expressed in MKK7D hearts 
(JNK-regulated). Extracted from Supplementary 
Table 2.

Genes whose expression is consistently changed 
between LCMV-cgPi and mock infected animals. 
Extracted from Supplementary Table S1.

Genes whose expression is significantly changed 
between the two mock animals. Extracted from 
Supplementary Table S2.

Genes whose expression is Wnt dependent during 
ES cell differentiation. Extracted from 
Supplementary Table 1.

Up-regulated genes in both WT and SCID mice by 
DPI. Extracted from Supplementary Table S2.

Genes that were differentially expressed in the lungs 
of WT and SCID mice at days 2, 4, and 12 post- 
Nippostrongylus brasiliensis infection. Extracted 
from Supplementary Table S3.

Significantly down-regulated probesets at 4h post B. 
melitensis infection. Extracted from Supplementary 
Table 1.

Significantly up-regulated probesets at 4h post B. 
melitensis infection. Extracted from Supplementary 
Table 2.

Probesets differentially expressed among the four 
inbred strains of mice. Extracted from 
Supplementary Table S2.

Differentially expressed genes in differentiated 
SN56.B5.G4 cells after treatment with Abeta(1-42). 
Extracted from Table 1 in the main paper.

Differentially expressed genes in differentiated 
SN56.B5.G4 cells after treatment with H202. 
Extracted from Table 2 in the main paper.

Differentially expressed genes in differentiated 
SN56.B5.G4 cells after treatment with Abeta(1-42) 
and H202. Extracted from Table 3 in the main 
paper.

Genes up-regulated by more than 5 fold in MN1- 
TEL+/HOXA9+ AML cells in mice. Extracted from 
Supplementary Table S1.
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PubM ed ID First
au th o r

Year # Probe 
se ts
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ms10b 16105979 Kawagoe 2005 32 Genes down-regulated by more than 5 fold in MN1- 
TEL+/HOXA9+ AML cells in mice. Extracted from 
Supplementary Table S2.

ms11a 17227850 Jankovic 2007 388 CMP-associated transcript. Extracted from 
Supplementary Dataset 1.

ms11b 17227850 Jankovic 2007 2038 HSC-associated transcript. Extracted from 
Supplementary Dataset 2.

ms 12a 17183314 Niedernhofer 2006 1674 Genes differentially expressed in Erccl-/- compared 
with wild-type liver. Extracted from Supplementary 
Table III.

ms12b 17183314 Niedernhofer 2006 1665 Genes differentially expressed in aged (130-wk-old) 
wild-type mouse liver compared to young (2-mo-old) 
controls. Extracted from Supplementary Table V.

ms12c 17183314 Niedernhofer 2006 1773 Genes differentially expressed in adult (4-mo-old) 
wild-type mouse livers compared to young (2-mo- 
old) controls. Extracted from Supplementary Table 
VI.

ms13a 15967997 Rossi 2005 595 Age-up-regulated genes in LT-HSC. Extracted from 
Supplementary Table 4.

ms13b 15967997 Rossi 2005 383 Age-down-regulated genes in LT-HSC. Extracted 
from Supplementary Table 4.

ms 14a 16110338 Corbo 2005 252 Genes up-regulated in rd7 mutant retina at P21. 
Extracted from Supplementary Table S4.

ms14b 16110338 Corbo 2005 138 Genes down-regulated in rd7 mutant retina at P21. 
Extracted from Supplementary Table S5.

ms15a 16373508 Shiina 2005 767 Down-regulated genes in 8-week-old AR-/- ovaries. 
Extracted from Supplementary Table 1.

ms15b 16373508 Shiina 2005 346 Up-regulated genes in 8-week-old AR-/- ovaries. 
Extracted from Supplementary Table 2.

ms 15c 16373508 Shiina 2005 323 Down-regulated genes in 3-week-old AR-/- ovaries. 
Extracted from Supplementary Table 3.

ms15d 16373508 Shiina 2005 516 Up-regulated genes in 3-week-old AR-/- ovaries. 
Extracted from Supplementary Table 4.

ms 16a 16399799 Beverdam 2006 266 Genes specifically up-regulated in 11.5 dpc male 
somatic cells. Extracted from Supplementary Table 
S1.

ms 16b 16399799 Beverdam 2006 50 Genes specifically down-regulated in 11.5 dpc male 
somatic gonad cells. Extracted from Supplementary 
Table S3.

ms 16c 16399799 Beverdam 2006 243 Genes specifically up-regulated in 11.5 dpc female 
somatic cells. Extracted from Supplementary Table 
S5.

ms 17a 16166195 Denolet 2005 509 Transcripts down-regulated in SCARKO as 
compared to control mice at day 10. Extracted from 
Supplementary Table 1.

ms 17b 16166195 Denolet 2005 342 Transcripts up-regulated in SCARKO as compared 
to control mice at day 10. Extracted from 
Supplementary Table 1.

ms18 16423883 Jeong 2006 492 Genes differentially expressed in the liver of SRC-2- 
/- mice as compared to wild-type mice. Extracted 
from Supplementary Table 2.
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PubM ed ID First
a u th o r

Year # Probe 
se ts
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ms19 16641092 Costinean 2006 429 Genes differentially expressed in transgenic relative 
to wild-type mice. Extracted from Supplementary 
Table 3.

ms20 16847333 Sun 2006 248 Genes differentially expressed in day 5 postpartum 
Mkl1 KO vs. wild-type mammary glands. Extracted 
from Supplementary Table S1.
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ratla 16854511 Mainwaring 2006 1215 Genes with altered expression post paraquat dosing 
compared to control lung. Extracted from 
Supplementary Table 2.

rat 1b 16854511 Mainwaring 2006 543 This is a subset of genes in ratla, selected based on 
a more stringent statistical test. Extracted from 
Supplementary Table 3.

rat2 16770850 Bardag-
Gorce

2006 95 Differentially expressed genes between the peaks of 
UAL (group 3) and controls (group 1). Extracted 
from Table 2 in the main paper.

rat3 16574311 Chen 2006 257 Genes regulated by PPARy in RIE cells. Extracted 
from Supplementary data.

rat4a 16202214 Jaster 2005 22 Genes up-regulated in PPARyl-overexpressing LTC 
cells. Extracted from Table 1A in the main paper.

rat4b 16202214 Jaster 2005 19 Genes down-regulated in PPARyl-overexpressing 
LTC cells. Extracted from Table 1B in the main 
paper.

rat5a 16715494 Ko 2006 18 Genes up-regulated by haloperidol and clozapine. 
Extracted from Table IA in the main paper.

rat5b 16715494 Ko 2006 14 Genes down-regulated by haloperidol and clozapine. 
Extracted from Table IB in the main paper.

rat5c 16715494 Ko 2006 17 Genes up-regulated by amphetamine. Extracted 
from Table IIA in the main paper.

rat5d 16715494 Ko 2006 5 Genes down-regulated by amphetamine. Extracted 
from Table MB in the main paper.

rat5e 16715494 Ko 2006 15 Genes up-regulated by amphetamine, but down- 
regulated by haloperidol and clozapine. Extracted 
from Table IIIA in the main paper.

rat5f 16715494 Ko 2006 6 Genes down-regulated by amphetamine, but up- 
regulated by haloperidol and clozapine. Extracted 
from Table IIIB in the main paper.

rat5g 16715494 Ko 2006 23 Genes up-regulated by haloperidol, clozapine, and 
amphetamine. Extracted from Table IVA in the main 
paper.

rat5h 16715494 Ko 2006 12 Genes down-regulated by haloperidol, clozapine, 
and amphetamine. Extracted from Table IVB in the 
main paper.

rat6a 16809437 Lahousse 2006 1777 Genes that displayed a significant expression 
change within 12 h of MEHP exposure. Extracted 
from Supplementary Table 1.

rat6b 16809437 Lahousse 2006 536 Genes altered significantly at 1, 3, 6, or 12 h 
following fetal DBP exposure. Extracted from 
Supplementary Table 2.

rat6c 16809437 Lahousse 2006 176 Genes showed altered expression at fetal and 
prepubertal ages. Extracted from Supplementary 
Table 3.

rat7a 17082646 Geoffrey 2006 2410 Genes over-represented in DRIyp/lyp. Extracted 
from Supplementary Table A.

rat7b 17082646 Geoffrey 2006 2660 Gene over-represented in DR+/+ . Extracted from 
Supplementary Table B.
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First
au th o r

Year #  Probe 
se ts

Description

rat8a 16401727 Luyendyk 2006 315 Genes differentially expressed in LPS/Veh/RAN- 
treated rats relative to LPS/Veh/FAM-treated rats. 
Extracted from Supplementary Table 1.

rat8b 16401727 Luyendyk 2006 145 Heparin-responsive probesets in LPS/RAN-treated 
rats. Extracted from Supplementary Table 2.

rat8c 16401727 Luyendyk 2006 29 Subset AB: Genes differentially expressed in 
LPSA/eh/RAN-treated rats relative to LPSA/eh/FAM- 
treated rats, and also by heparin. Extracted from 
Supplementary Table 3.

rat9a 17069981 Coyle 2007 113 Genes significantly up-regulated in Allodynic rats. 
Extracted from Supplementary Table 3.

rat9b 17069981 Coyle 2007 20 Genes significantly down-regulated in Allodynic rats. 
Extracted from Supplementary Table 3.

ratio 17187413 Yovchev 2007 30 Genes up-regulated in the oval cell enriched 
fractions. Extracted from Table 1 in the main paper.

rat11a 17332525 Xia 2007 436 Transcripts with more than 2 fold changes in their 
expression by day 4 after Adjudin treatment. 
Extracted from Supplementary Table 1.

rat11b 17332525 Xia 2007 1466 Transcripts that were significantly altered following 
Adjudin treatment (P < 0.05 by ANOVA). Extracted 
from Supplementary Table 2.

rat12a 18158353 Frank 2008 164 Genes significantly up-regulated by biaxial stretch in 
neonatal rat ventricular cardiomyocytes. Extracted 
from Supplementary Table S2.

rat12b 18158353 Frank 2008 21 Genes significantly down-regulated by biaxial stretch 
in neonatal rat ventricular cardiomyocytes. Extracted 
from Supplementary Table S2.

rat12c 18158353 Frank 2008 238 Genes significantly up-regulated by phenylephrine in 
neonatal rat ventricular cardiomyocytes. Extracted 
from Supplementary Table S3.

rat12d 18158353 Frank 2008 211 Genes significantly down-regulated by 
phenylephrine in neonatal rat ventricular 
cardiomyocytes. Extracted from Supplementary 
Table S3.

rat 13a 18366630 Yukhananov 2008 512 Genes differentially expressed with p < 0.01 at 24h 
following injection of carrageenan (24h vs. control). 
Extracted from Additional file 1.

rat13b 18366630 Yukhananov 2008 629 Genes differentially expressed with p < 0.01 at 28d 
following injection of carrageenan (28d vs. control). 
Extracted from Additional file 1.

rat14a 17540011 Brouillette 2007 42 Genes differentially expressed between trained and 
naive saline treated rats. Extracted from 
Supplemental Table S1.

rat14b 17540011 Brouillette 2007 32 Genes differentially expressed between 
scopolamine and naive saline treated rats. Extracted 
from Supplemental Table S2.

rati 5a 18436381 Pedersen 2008 663 Genes affected by traumatic brain injury (TBI) only. 
Extracted from Supplementary data file 2.

rat15b 18436381 Pedersen 2008 82 Genes affected by both FGL treatment and TBI. 
Extracted from Supplementary data file 3.
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First
au th o r

Year #  Probe 
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rat16a 18095365 Dihal 2008 42 Genes significantly up-regulated by quercetin in the 
distal colon mucosa of rats. Extracted from 
Supplementary Table 1.

rat 16b 18095365 Dihal 2008 165 Genes significantly down-regulated by quercetin in 
the distal colon mucosa of rats. Extracted from 
Supplementary Table 1.

rat17 18355885 Hirode 2008 78 Genes significantly differentially expressed in 
response to 5 drugs that induce hepatic 
phospholipidosis in rats (including amiodarone, 
amitriptyline, clomipramine, imipramine, and 
ketoconazole). Extracted from Table 3 in the main 
paper.

rat 18a 18405950 Rodd 2008 220 Genes that were differentially expressed in the 
nucleus accumbens (ACB) of iP rats between the 
ethanol and water groups. Extracted from 
Supplemental Table A.

rat18b 18405950 Rodd 2008 253 Genes that were differentially expressed in the 
nucleus accumbens (ACB) of iP rats between the 
ethanol and saccharin groups. Extracted from 
Supplemental Table B.

rat 19a 17693601 Schmidt-Ott 2007 854 Probesets that were significantly up-regulated during 
epithelial differentiation when compared with freshly 
isolated metanephric mesenchyme (baseline). 
Extracted from Supplemental Table S1.

rat19b 17693601 Schmidt-Ott 2007 552 Probesets that were significantly down-regulated 
during epithelial differentiation when compared with 
freshly isolated metanephric mesenchyme 
(baseline). Extracted from Supplemental Table S2.

rat20 17033635 Conti 2007 272 Genes affected in two out of three antidepressant 
treatments: deprivation (SD), and fluoxetine (FLX). 
Extracted from Table 4 of the main paper.
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athl 12920300 Nishimura 2003 685 Genes response to pathogen attack. Extracted from 
Supplementary Table S2.

ath2a 16243906 Vanneste 2005 3110 Differentially expressed genes in the wild type 
versus the slr1 mutant (denoted as the 3110 
significant genes in the main text). Extracted from 
Supplementary Table 1.

ath2b 16243906 Vanneste 2005 913 Lateral root initiation genes (denoted as the 913 LRI 
genes in the main text). Extracted from 
Supplementary Table 2.

ath2c 16243906 Vanneste 2005 99 LRI genes with arf7 arf19-dependent auxin 
inducibility. Extracted from Supplementary Table 6.

ath3a 16299223 Biasing 2005 222 3h glucose-repressed genes. Extracted from 
Supplementary Table 6.

ath3b 16299223 Biasing 2005 218 3h glucose-induced genes. Extracted from 
Supplementary Table 6.

ath3c 16299223 Biasing 2005 223 3h sucrose-repressed genes. Extracted from 
Supplementary Table 6.

ath3d 16299223 Biasing 2005 224 3h sucrose-induced genes. Extracted from 
Supplementary Table 6.

ath3e 16299223 Biasing 2005 223 4h photomorphogenesis repressed genes. Extracted 
from Supplementary Table 6.

ath3f 16299223 Biasing 2005 219 4h photomorphogenesis induced genes. Extracted 
from Supplementary Table 6.

ath3g 16299223 Biasing 2005 220 30min N03 repressed genes. Extracted from 
Supplementary Table 6.

ath3h 16299223 Biasing 2005 219 30min N03 induced genes. Extracted from 
Supplementary Table 6.

ath3i 16299223 Biasing 2005 235 3h N03 repressed genes. Extracted from 
Supplementary Table 6.

ath3j 16299223 Biasing 2005 209 3h N03 induced genes. Extracted from 
Supplementary Table 6.

ath3k 16299223 Biasing 2005 217 3h mannitol repressed genes. Extracted from 
Supplementary Table 6.

ath3l 16299223 Biasing 2005 228 3h mannitol induced genes. Extracted from 
Supplementary Table 6.

ath3m 16299223 Biasing 2005 232 4h carbon fixation repressed genes. Extracted from 
Supplementary Table 6.

ath3n 16299223 Biasing 2005 218 4h carbon fixation induced genes. Extracted from 
Supplementary Table 6.

ath3o 16299223 Biasing 2005 221 4h light repressed genes. Extracted from 
Supplementary Table 6.

ath3p 16299223 Biasing 2005 228 4h light induced genes. Extracted from 
Supplementary Table 6.

ath3q 16299223 Biasing 2005 643 Genes responsive to carbon fixation and glucose. 
Extracted from Supplementary Table 8.

ath4a 17006513 Mouchel 2006 189 Gene regulated due to residual Uk-1 loci other than
brx. Extracted from Supplementary Table 1: root 
introgression drag bg.
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ath4b 17006513 Mouchel 2006 4006 Genes strongly regulated in root of brx. Extracted 
from Supplementary Table 1: >2x, brx vs. Sav+resc.; 
root.

ath4c 17006513 Mouchel 2006 3072 Up-regulated genes in root and seedling of brx 
relative to Sav-0. Extracted from Supplementary 
Table 1: >2x, vs. Sav+resc., root+seedling.

ath4d 17006513 Mouchel 2006 26 Genes not rescued by BL treatment. Extracted from 
Supplementary Table 1.

ath5a 16805732 Mandaokar 2006 19 Jasmonate-responsive genes in stamens at 0.5h. 
Extracted from Supplementary Table S1.

ath5b 16805732 Mandaokar 2006 198 Jasmonate-responsive genes in stamens at 2h. 
Extracted from Supplementary Table S1.

ath5c 16805732 Mandaokar 2006 491 Jasmonate-responsive genes in stamens at 8h. 
Extracted from Supplementary Table S1.

ath5d 16805732 Mandaokar 2006 811 Jasmonate-responsive genes in stamens at 22h. 
Extracted from Supplementary Table S1.

ath6a 16107481 Nagpal 2005 911 Genes whose expression changes during 
development and peaks at stages 13-14. Extracted 
from Supplementary Table S1.

ath6b 16107481 Nagpal 2005 417 Genes whose expression changes during 
development and peaks at stages 11-12. Extracted 
from Supplementary Table S1.

ath6c 16107481 Nagpal 2005 387 Genes whose expression changes during 
development and peaks pre-stage 11. Extracted 
from Supplementary Table S1.

ath6d 16107481 Nagpal 2005 79 Genes whose expression in stage 1-10 flowers is 
greater in Columbia flowers than in the arf6 arf8 
flowers. Extracted from Supplementary Table S2.

ath6e 16107481 Nagpal 2005 472 Genes whose expression in stage 11-12 flowers is 
greater in Columbia flowers than in the arf6 arf8 
flowers. Extracted from Supplementary Table S2.

ath6f 16107481 Nagpal 2005 692 Genes whose expression in stage 13-14 flowers is 
greater in Columbia flowers than in the arf6 arf8 
flowers. Extracted from Supplementary Table S2.

ath6g 16107481 Nagpal 2005 35 Genes induced by auxin-treatment. Extracted from 
Supplementary Table S3.

ath7a 15908603 Tatematsu 2005 1592 Down-regulated genes in axillary bud. Extracted 
from Supplementary Table 1b.

ath7b 15908603 Tatematsu 2005 1184 Up-regulated gene in axillary bud. Extracted from 
Supplementary Table 1c.

ath7c 15908603 Tatematsu 2005 272 SRE-containing down-regulated genes in axillary 
bud. From Supplementary Table 2a.

ath7d 15908603 Tatematsu 2005 162 Up1-containing up-regulated genes in axillary bud. 
From Supplementary Table 2b.

ath7e 15908603 Tatematsu 2005 193 Up2-containing up-regulated genes in axillary bud. 
From Supplementary Table 2c.

ath8a 15894741 Tung 2005 115 Genes regulated in the stigmas relative to wild-type 
stigmas. Extracted from Supplementary Table 1.

ath8b 15894741 Tung 2005 33 Genes regulated in ablated ovary samples. 
Extracted from Supplementary Table 2.
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ath9 15937231 Sibout

athlOa 16021403 Zhang

ath10b 16021403 Zhang

ath10c 16021403 Zhang

ath10d 16021403 Zhang

ath11a 16299169 Suh

ath11b 16299169 Suh

ath11c 16299169 Suh

ath12 16492731 Braybrook

ath13 16299182 Lin

ath14 16299171 Umbach

ath15 16330762 Brown

ath16a 16372013 Leibfried

ath16b 16372013 Leibfried

ath17a 16183833 Davletova

ath17b 16183833 Davletova

ath 17c 16183833 Davletova

2005 547 Genes with altered expression in the double mutant.
Extracted from Supplementary Table 10.

2005 104 Genes preferentially expressed in young
inflorescences. Extracted from Supplementary Table 
6 .

2005 105 Genes preferentially expressed in all three
reproductive organs (i.e. the young inflorescences, 
stage-12 floral buds and developing siliques). 
Extracted from Supplementary Table 7.

2005 82 Genes preferentially expressed in young
inflorescences and stage 12 floral buds. Extracted 
from Supplementary Table 8.

2005 92 Genes preferentially expressed in stage 12 floral
buds and silique. Extracted from Supplementary 
Table 9.

2005 614 Genes up-regulated in the epidermis of the base of
the stem and the epidermis of the top of the stem. 
Extracted from Supplementary Data: Up regulated 
top and base epid.

2005 630 Genes up-regulated in the epidermis of the top of
the stem only. Extracted from Supplementary Data: 
Up-regulated top epidermis only.

2005 657 Genes found to be up regulated in the epidermis of
the base of the stem only. Extracted from 
Supplementary Data: Up-regulated base epidermis 
only.

2006 718 Genes induced by LEC2. Extracted from
Supplementary Table 2.

2005 1122 Differentially expressed genes under At5PTase13
deficiency. Extracted from Supplementary Table 1.

2005 203 Genes differentially expressed in antisense versus
wild-type leaves. Extracted from Supplementary 
Table II.

2005 72 Genes induced by UV-B in wild type but show much
reduced UV-B induction in uvr8-1 mutant. Extracted 
from Supplementary Table 2.

2005 1 04 Genes up-regulated by WUS but not to STM or LFY
induction. Extracted from Supplementary Table S1.

2005 44 Genes down-regulated by WUS but not to STM or
LFY induction. Extracted from Supplementary Table 
S1.

2005 668 Transcripts significantly changed by more than 2 fold
in wild type plants following treatment with hydrogen 
peroxide. Extracted from Supplementary Table 2.

2005 8 Transcripts significantly enhanced in Zat12 over
expressing plants more than in WT plant. Extracted 
from Supplementary Table 3.

2005 90 Transcripts significantly enhanced by more than 2
fold in Zat12 over-expressing plants in response to 
hydrogen peroxide. Extracted from Supplementary 
Table 4.
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ath17d 16183833 Davletova 2005 637 All transcripts significantly elevated in Zat12- 
overexpressing plants in response to hydrogene 
peroxide stress. Extracted from Supplementary 
Table 5.

ath18 16648214 Kolbe 2006 44 Genes responsive to short-term DTT treatment. 
Extracted from Supplementary Table S2.

ath19a 15608331 Yang 2005 64 Genes down-regulated by MSBP1. Extracted from 
Supplementary Table 1.

ath19b 15608331 Yang 2005 116 Genes up-regulated by MSBP1. Extracted from 
Supplementary Table 1.

ath20a 15505214 Monte 2004 579 Genes response to 1-h continuous red light (Rc) in 
wild-type (WT) Arabidopsis seedlings. Extracted 
from Supplementary Table 3.

ath20b 15505214 Monte 2004 370 Genes that were induced in the WT by 1-h Rc. 
Extracted from Supplementary Table 4

ath20c 15505214 Monte 2004 210 Genes that were repressed in the WT by 1-h Rc. 
Extracted from Supplementary Table 5.
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drosl 16277749 Wertheim 2005 159 Probesets differentially expressed between 
parasitised and control larvae. Extracted from 
Additional data file 1.

dros2 15345053 Wang 2004 1454 Genes up-regulated in tubule. Extracted from 
Additional data file 1.

dros3a 15777795 Johansson 2005 150 Genes induced in Drosophila mbn-2 cells 6 h post
challenge with crude LPS. Extracted from 
Supplementary Table 2.

dros3b 15777795 Johansson 2005 518 Differentially expressed genes in Drosophila mbn-2 
cells 6 h post-challenge with crude LPS or E. coli. 
Extracted from Supplementary Table 3.

dros4a 16357214 Goodliffe 2005 272 Genes up-regulated in response to Myc. Extracted 
from Supplementary data 1.

dros4b 16357214 Goodliffe 2005 214 Genes were elevated upon reduction of Pc. 
Extracted from Supplementary data 2.

dros4c 16357214 Goodliffe 2005 129 Genes that were repressed by a factor of 0.533 or 
more by the ectopic accumulation of dMyc. 
Extracted from Supplementary data 3.

dros5 12777520 Michalak 2003 51 Transcripts differed significantly in F1 hybrids from 
both D. simulans and D. mauritiana. Extracted from 
Supplementary Table 1.

dros6a 16356271 Beckstead 2005 4188 Genes that change their expression by more than 
1.5 fold in at least one time point in EcRi animals. 
Extracted from Additional data file 1.

dros6b 16356271 Beckstead 2005 743 20E-regulated and 20E primary-response genes. 
Extracted from Additional data file 2.

dros7 16264191 Baden horst 2005 286 Genes differentially expressed in Nurf301 mutants 
compared with wild-type larvae. Extracted from 
supplementary data downloaded from 
http://home.ccr.cancer.gov/badenhorst.

dros8a 12586708 Asha 2003 1286 Genes that were up-regulated in Ras-act 
hemocytes. Extracted from Supplementary Table 1.

dros8b 12586708 Asha 2003 260 Genes that were down-regulated in Ras-act 
hemocytes. Extracted from Supplementary Table 2.

dros9 16616121 Terry 2006 403 Candidate stem cell genes: genes enriched in Os+ 
bgcn- compared to bgcn-. Extracted from 
Supplementary Table 1.

droslOa 16333985 Serensen 2005 34 Genes early up-regulated by stress. Extracted from 
Table 3A in the original paper.

droslOb 16333985 Serensen 2005 123 Genes early down-regulated by stress. Extracted 
from Table 3B in the original paper.

droslOc 16333985 Sorensen 2005 34 Genes late up-regulated by stress. Extracted from 
Table 3C in the original paper.

drosl 1a 16204451 Yang 2005 2308 Genes under-represented in fly photoreceptor cells 
relative to whole head. Extracted from 
Supplementary Table 1.

drosl 1b 16204451 Yang 2005 1499 Genes enriched in fly photoreceptor cells relative to 
whole head. Extracted from Supplementary Table 2.

drosl2a 16584578 Girardot 2006 4503 Genes that showed age-dependent expression in 
body parts. Extracted from Additional file 1.

http://home.ccr.cancer.gov/badenhorst
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drosl 2b 16584578 Girardot 2006 126 Most head- or thorax-enriched genes. Extracted 
from Additional file 2.

drosl 2c 16584578 Girardot 2006 112 Common age-responsive genes. Extracted from 
Additional file 4.

drosl3 16798875 Mack 2006 539 Genes whose expression levels differed significantly 
in the reproductive tract of unmated vs. mated 
females at 0, 3, 6, or 24 h postmating. Extracted 
from Supplementary Table 3.

drosl 4a 15136717 Landis 2004 168 Genes up-regulated with age. Extracted from 
Supplementary Table 1: old up.

drosl4b 15136717 Landis 2004 494 Genes down-regulated with age. Extracted from 
Supplementary Table 1: old down.

drosl4c 15136717 Landis 2004 108 Genes up-regulated with oxidative stress. Extracted 
from Supplementary Table 1: 02  up.

drosl4d 15136717 Landis 2004 234 Genes down-regulated with oxidative stress. 
Extracted from Supplementary Table 1: 02  down

drosl4e 15136717 Landis 2004 97 Genes up-regulated with age and oxidative stress. 
Extracted from Supplementary Table 1: old 02  up

drosl 4f 15136717 Landis 2004 154 Genes down-regulated with age and oxidative 
stress. Extracted from Supplementary Table 1: old 
02  down

drosl4g 15136717 Landis 2004 8 Genes down-regulated with age but up-regulated 
with oxidative stress. Extracted from Supplementary 
Table 1: old down 02  up

drosl4h 15136717 Landis 2004 6 Genes up-regulated with age but down-regulated 
with oxidative stress. Extracted from Supplementary 
Table 1: old up 02  down

drosl5 16754642 Osada 2006 353 Probesets differentially expressed in MMM and 
777 . Extracted from Supplementary Table 1.

drosl6 15090076 Loop 2004 321 Genes differentially expressed between brat/k06028 
and wild type control. Extracted from Additional file
3.

drosl7a 16938865 Kadener 2006 552 Genes down-regulated in TIM-MJD fly heads. 
Extracted from Supporting Table 5.

drosl7b 16938865 Kadener 2006 368 Genes up-regulated in TIM-MJD fly heads. Extracted 
from Supporting Table 6.

drosl7c 16938865 Kadener 2006 597 Genes down-regulated in TIM-MJD fly brains. 
Extracted from Supporting Table 7.

drosl7d 16938865 Kadener 2006 739 Genes up-regulated in TIM-MJD fly brains. Extracted 
from Supporting Table 8.

drosl8 14749722 Roxstrom-
Lindquist

2004 427 Genes that were significantly up-regulated following 
infection with virus, bacteria or fungi in parallel. 
Extracted from Supplementary Table 2.

drosl9a 15695583 Apidianakis 2005 133 Genes up-regulated by P. aeruginosa strain CF5. 
Extracted from Supplementary Table 1.

drosl9b 15695583 Apidianakis 2005 80 Genes down-regulated by P. aeruginosa strain CF5. 
Extracted from Supplementary Table 1.

drosl9c 15695583 Apidianakis 2005 16 Genes up-regulated by P. aeruginosa strain PA14.
Extracted from Supplementary Table 2.
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Table A.6: Literature gene lists based on the DrosGenomel array (continued)

List ID PubMed
ID

First
au th o r

Year # Probe 
se ts

Description

drosl9d 15695583 Apidianakis 2005 12 Genes down-regulated by P. aeruginosa strain 
PA14. Extracted from Supplementary Table 2.

drosl9e 15695583 Apidianakis 2005 241 Genes differentially expressed in CF5-infected vs. 
PA14-infected flies. Extracted from Supplementary 
Table 3.

dros20 15458575 Girardot 2004 1368 Stress responsive genes. Extracted from 
Supplementary Table S1.
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Table A.7: Literature gene lists based on the Drosophila 2.0 array
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List ID PubM ed
ID

First
au th o r

Year # Probe 
se ts

Description

dm1 15851659 Mackay 2005 3727 Genes differentially expressed between fast and 
slow selection lines. Extracted from Supplementary 
Table 5.

dm2a 16269142 Barmina 2005 16 Genes differentially expressed between Male T1- 
Male T2. Extracted from Supplementary Table 1.

dm2b 16269142 Barmina 2005 23 Genes differentially expressed between Female T1- 
Female T2. Extracted from Supplementary Table 2.

dm2c 16269142 Barmina 2005 143 Genes differentially expressed between Male T1- 
Female T1. Extracted from Supplementary Table 3.

dm2d 16269142 Barmina 2005 35 Genes differentially expressed between Male T2- 
Female T2. Extracted from Supplementary Table 4.

dm3a 16581772 Rehwinkel 2006 187 Genes regulated in PIWI and AUB knockdowns. 
Extracted from Supplementary Table I.

dm3b 16581772 Rehwinkel 2006 472 Genes changed by at least 1.5 fold in expression 
levels in cells depleted of Drosha. Extracted from 
Supplementary Table II.

dm3c 16581772 Rehwinkel 2006 1081 Genes regulated in AGOI -depleted cells. Extracted 
from Supplementary Table III.

dm3d 16581772 Rehwinkel 2006 372 Genes regulated in AG02-depleted cells. Extracted 
from Supplementary Table IV.

dm3e 16581772 Rehwinkel 2006 137 Genes up-regulated in cells depleted of Drosha and 
A G O I. Extracted from Supplementary Table VI.

dm4 16907832 Sun 2006 33 Genes that were differentially expressed after a 24 h 
exposure to phenobarbital in the diet of third-instar 
larvae as compared with larvae reared on control 
diet. Extracted from Table 1 in the main paper.

dm5 16624921 Hughes 2006 2329 Genes that displayed significant variation among 
isogenic lines. Extracted from Supplementary Table 
S1.

dm6a 17044737 Edwards 2006 1593 Probesets differing significantly for the main effect of 
selection line. Extracted from Supplementary Table 
S2.

dm6b 17044737 Edwards 2006 1539 Probesets that displayed significant differences in 
contrast statements. Extracted from Supplementary 
Table S3.

dm6c 17044737 Edwards 2006 12 Probesets that displayed sexually antagonistic 
expression. Extracted from Supplementary Table 
S4.

dm7 17054780 Morozova 2006 582 Probesets differentially expressed following alcohol 
exposure. Extracted from Additional data file 2.

dm8a 16258543 Liu 2005 127 Genes commonly affected in both males and 
females after depletion of HP1. Extracted from 
Supplementary Table 1.

dm8b 16258543 Liu 2005 203 Genes specifically affected in males after depletion 
of HP1. Extracted from Supplementary Table 2.

dm8c 16258543 Liu 2005 119 Genes specifically affected in females after depletion 
of HP1. Extracted from Supplementary Table 3.

dm9a 18408154 Wang 2008 141 Probesets that were up-regulated in single- vs. 
group-housing condition. Extracted from 
Supplemental dataset S1.
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Table A.7: Literature gene lists based on the Drosophila 2.0 array (continued)

List ID PubM ed First
ID au th o r

Year # Probe 
s e ts

Description

dm9b 18408154 Wang 2008 48

dm10a 18367466 Rand 2008 74

dm 10b 18367466 Rand 2008 213

dm11 18628398 Gilchrist 2008 243

dm12a 18296696 Kopp 2008 102

dm 12b 18296696 Kopp 2008 22

dm 13a 17578907 Kadener 2007 73

dm 13b 17578907 Kadener 2007 46

dm 14 17448252 Qin 2007 500

Probesets that were down-regulated in single- vs. 
group-housing condition. Extracted from 
Supplemental dataset S1.

Probesets that were up-regulated in response to 
methylmercury treatment. Extracted from Figure 3 in 
the main paper.

Probesets that were down-regulated in response to 
methylmercury treatment. Extracted from 
Supplementary Figure 2.

Genes affected by the negative elongation factor 
(NELF)-depletion. Extracted from Supplementary 
Table S1.

OR, OBP, and GR genes that were detected in the 
third antennal segment and did not show evidence 
of sex-biased expression. Extracted from 
Supplementary Table 2.

OR, OBP, and GR genes that were detected in the 
third antennal segment and showed evidence of 
sex-biased expression. Extracted from 
Supplementary Table 3.

Direct CLK target genes from heads. Extracted from 
Supplementary file TargetHeads.xls.

Direct CLK target genes from S2 cells. Extracted 
from Supplementary file TargetS2cells.xls.

Top 500 genes that showed the most significant 
changes of their ribosomal occupancy between the 
development periods. Extracted from Additional data 
file 2.
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Table A.8: Literature gene lists based on the Celegans array
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List ID PubM ed
ID

First
au th o r

Year # Probe 
s e ts

Description

cela 16626960 Vartiainen 2006 433 Up-regulated genes in transgenic C. elegans over
expressing alpha-synuclein. Extracted from 
Supplementary Table S7.

celb 16626960 Vartiainen 2006 67 Down-regulated genes in transgenic C. elegans 
over-expressing alpha-synuclein. Extracted from 
Supplementary Table S3.

ce2a 16480708 Wang 2006 167 Genes that are up-regulated upon over-expression 
of both CeTwist and CeE/DA. Extracted from 
Supplementary data S1.

ce2b 16480708 Wang 2006 34 Genes that are down-regulated upon over
expression of both CeTwist and CeE/DA. Extracted 
from Supplementary data S2.

ce3 16184190 Shen 2005 816 Genes differentially regulated by ire-1 and xbp-1. 
Extracted from Supplementary Table S10.

ce4a 15256590 Huffman 2004 1092 Genes that showed significant regulation by Cry5B. 
Extracted from Supplementary Table 2.

ce4b 15256590 Huffman 2004 1083 Genes that showed significant regulation by 
cadmium. Extracted from Supplementary Table 3.

ce5a 15308663 McElwee 2004 1348 Genes that were up-regulated in daf-2 compared 
with daf-16;daf-2. Extracted from Supplementary 
data <- Final gene lists.xls <- worksheet: Daf-2 final 
gene list.

ce5b 15308663 McElwee 2004 926 Genes that were down-regulated in daf-2 compared 
with daf-16;daf-2. Extracted from Supplementary 
data <- Final gene lists.xls <- worksheet: Daf-2 final 
gene list.

ce6a 16809667 O'Rourke 2006 71 Genes up-regulated following infection of C. elegans 
with M. nematophilum. Extracted from 
Supplementary data S1.

ce6b 16809667 O'Rourke 2006 22 Genes down-regulated following infection of C. 
elegans with M. nematophilum. Extracted from 
Supplementary data S1.

ce7a 17096597 Troemel 2006 144 Genes differentially expressed between daf-2 and 
daf-2;pmk-1. Extracted from Supplementary Table 
S2.

ce7b 17096597 Troemel 2006 449 Genes differentially expressed between exposure to 
E. coli strain OP50 and wild-type P. aeruginosa 
strain PA14. Extracted from Supplementary Table 
S4.

ce7c 17096597 Troemel 2006 287 Genes differentially expressed between exposure to 
gacA mutant and wild-type P. aeruginosa strain 
PA14. Extracted from Supplementary Table S5.

ce8a 16962739 Towers 2006 44 Up-regulated genes in the two mutant alleles cx35 
and cx18 as compared to the wild-type. Extracted 
from Supplementary Table 1.

ce8b 16962739 Towers 2006 71 Down-regulated genes in the two mutant alleles 
cx35 and cx18 as compared to the wild-type. 
Extracted from Supplementary Table 2.

ce8c 16962739 Towers 2006 124 Differentially expressed genes between wild-type 
and dys-1 mutant. These genes were selected 
based on transcript presence calls and a statistical 
confidence level of 0.05. Extracted from 
Supplementary Table 3.
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Table A.8: Literature gene lists based on the Celegans array (continued)

List ID PubM ed
ID

First
a u th o r

Y ear # P robe 
s e ts

D escription

ce9 17187676 Chen 2006 466 Genes that show a down regulation of 2 fold or 
higher in daf-19(-) animals compared to the daf- 
19(+) control animals. Extracted from Additional data 
file 3.

ce10a 15620651 Colosimo 2004 167 Genes differentially expressed between AFD and 
AWB. Extracted from Supplementary Table S1.

ce10b 15620651 Colosimo 2004 1513 Genes differentially expressed between AFD and 
AWB and the unsorted whole embryonic cells. 
Extracted from Supplementary Table S2.

ce11a 15780142 Fox 2005 1012 unc-4::GFP enriched genes. Extracted from 
Additional data file 9.

ce11b 15780142 Fox 2005 1586 N2 enriched genes. Extracted from Additional data 
file 10.

ce12 18627611 Greiss 2008 190 Genes up-regulated by at least 1.5 fold 2 hours after 
X-ray treatment. Extracted from Additional file 2.

ce13 17368442 Kirienko 2007 1949 Genes that showed altered expression in the lin-35
mutant background compared with wild type. 
Extracted from Supplementary file 1.

ce14a 17612406 Von Stetina 2007 1637 Embryonic Pan-neural enriched genes. Extracted 
from Additional data file 1.

ce14b 17612406 Von Stetina 2007 1562 Larval Pan-neural enriched genes. Extracted from 
Additional data file 1.

ce14c 17612406 Von Stetina 2007 995 Embryonic A-class enriched genes. Extracted from 
Additional data file 1.

ce14d 17612406 Von Stetina 2007 412 Larval A-class enriched genes. Extracted from 
Additional data file 1.
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Table A.9: Literature gene lists based on the Xenopus laevis array
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List ID PubM ed First
ID au th o r

Year # Probe 
s e ts

D escription

xp1

xp2

16872594

16651540

Urban

Sinner

xp3a 16756679 Hufton

xp3b 16756679 Hufton

xp4a 17024524 Malone

xp4b 17024524 Malone

xp4c 17024524 Malone

xp4d 17024524 Malone

xp4e 17024524 Malone

xp5a 15901671 Gurvich

xp5b 15901671 Gurvich

xp6a 16871633 Grow

xp6b 16871633 Grow

xp6c 16871633 Grow

xp6d 16871633 Grow

2006 463 Genes regulated by hedgehog. Extracted from
Supplementary material Part I.

2006 276 Endoderm-enriched genes that were differentially
expressed between vegetal and animal cap regions.
Extracted from Supplementary Table S1.

2006 188 Genes regulated by ectopic organizer signalling.
Extracted from Additional file S2.

2006 220 Genes that showed similar regulation in the full
organizer conditions. Extracted from Additional file 
S3.

2006 25 Top 25 male biased differentially expressed genes
in both species. Extracted from Supplementary 
Table 4.

2006 25 Top 25 female biased differentially expressed genes
in both species. Extracted from Supplementary 
Table 4.

2006 25 Top 25 differentially expressed genes that showed
unbiased expression in both species. Extracted from 
Supplementary Table 4.

2006 25 Top 25 male biased genes that showed no
difference in expression between species. Extracted 
from Supplementary Table 4.

2006 25 Top 25 female biased genes that showed no
difference in expression between species. Extracted 
from Supplementary Table 4.

2005 666 Genes most stimulated by both VPA and TSA in
xenopus. Extracted from Supplementary data 
xenopus.stim key.

2005 599 Genes most inhibited by both VPA and TSA in
xenopus. Extracted from Supplementary data 
xenopus.inhib key.

2006 1108 Comparison A: St53 1 dPA Versus st57 1 dPA.
Genes differentially expressed between st53 
blastemas and st57 pseudoblastemas at day 1 
postamputation. Extracted from Supplementary 
Table using P (Welch's T-test) < 0.05.

2006 2428 Comparison B: St53 5dPA Versus st57 5dPA.
Genes differentially expressed between st53 
blastemas and st57 pseudoblastemas during 
regeneration of the limb (st53) or during spike 
formation (st57) at 5 days postamputation.
Extracted from Supplementary Table using P 
(Welch's T-test) < 0.05.

2006 1677 Comparison C: St53 1dPA Versus st53 5dPA.
Genes differentially expressed from day 1 to day 5 
during the regeneration of the st53 limb. Extracted 
from Supplementary Table using P (Welch's T-test) 
< 0.05.

2006 115 Comparison D: St57 1dPA Versus st57 5dPA.
Genes differentially expressed from day 1 to day 5 
during st57 spike formation.Extracted from 
Supplementary Table using P (Welch’s T-test) < 
0.05.
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Table A.9: Literature gene lists based on the Xenopus laevis array (continued)

List ID PubM ed
ID

First
au th o r

Y ear # Probe 
s e ts

D escription

xp7 18650498 Tonge 2008 172 Genes up-regulated by at least 5 fold in 3-day in- 
vitro conditioned compared to the primary DRG. 
Extracted from Supplementary Table S1.

xp8a 17705306 Cha 2007 20 Top 20 genes that showed up-regulated expression 
levels in the presence of FoxC1 morpholino. 
Extracted from Table 1A in the main paper.

xp8b 17705306 Cha 2007 20 Top 20 genes that showed down-regulated 
expression levels in the presence of FoxC1 
morpholino. Extracted from Table 1A in the main 
paper.
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Table A.10: Literature gene lists based on the Zebrafish array
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List ID PubM ed
ID

First
au th o r

Y ear # P robe 
s e ts

D escription

zf1 16631158 Cheng 2006 295 Liver-enriched genes. Extracted from Supplementary 
Table 1.

zf2 16869712 Lien 2006 662 Genes that were differentially expressed during 
heart regeneration process. Extracted from dataset 
S1.

zf3a 16443690 Andreasen 2006 67 Transcripts enhanced at least 2 fold by TCDD 
exposure in comparison with their time matched 
vehicle control. Extracted from Table 2 in original 
paper.

zf3b 16443690 Andreasen 2006 132 Transcripts repressed at least 2 fold by TCDD 
exposure in comparison with their time matched 
vehicle control. Extracted from Table 3 in original 
paper.

zf4 15827125 Weber 2005 387 Genes differentially regulated between clo and WT 
siblings. Extracted from Supplementary Table S1.

zf5a 16322560 Chen 2005 141 Transcript down-regulated between def mutant and 
WT. Extracted from Supplementary material Table 1.

zf5b 16322560 Chen 2005 23 Transcript differentially up-regulated between def 
mutant and WT. Extracted from Supplementary 
material Table 2.

zf6 16714409 Carney 2006 163 TCDD-induced genes in the zebrafish heart at 73, 
74, 76 and 84 hpf. Extracted from Supplementary 
data S1.

zf7a 17251491 Leung 2007 78 Over-expressed genes in the RPE Compared with 
the Retina at 52 hpf. Extracted from Table 2 from the 
main paper.

zf7b 17251491 Leung 2007 988 Under-expressed genes in the RPE Compared with 
the Retina at 52 hpf. Extracted from Supplementary 
Table S3.

zf8 16484454 Giraldez 2006 811 Genes that were up-regulated in MZdicer compared 
to wild type and MZdicer+miR-430 at 9 hpf. 
Extracted from Supplementary Table S1.

zf9 16638810 Link 2006 220 Differentially expressed genes between ectodermal 
and mesendodermal cells. Extracted from 
Supplementary Table S2.

zflOa 15901671 Gurvich 2005 600 Genes most stimulated by both VPA and TSA in 
zebrafish. Extracted from Supplementary data 
zebrafish.stim key.

zflOb 15901671 Gurvich 2005 617 Genes most inhibited by both VPA and TSA in 
zebrafish. Extracted from Supplementary data 
zebrafish.inhib key.

zf11a 18495758 Mathew 2008 66 Genes enhanced at least 1.7 fold by TCDD 
exposure in regenerating fins of larvae. Extracted 
from Supplemental Table S1.

zf11b 18495758 Mathew 2008 69 Genes repressed at least 1.7 fold by TCDD 
exposure in regenerating fins of larvae. Extracted 
from Supplemental Table S2.

zf11c 18495758 Mathew 2008 30 Genes enhanced at least 1.7 fold by TCDD 
exposure in regenerating fins of larvae and adults. 
Extracted from Supplemental Table S3.

zf11d 18495758 Mathew 2008 58 Genes repressed at least 1.7 fold by TCDD 
exposure in regenerating fins of larvae and adults. 
Extracted from Supplemental Table S4.
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Table A.10: Literature gene lists based on the Zebrafish array (continued)

List ID PubM ed
ID

First
au th o r

Year # Probe 
s e ts

D escription

zf12a 17698971 Bahary 2007 302 Genes differentially regulated in VegfAa morphants. 
Extracted from Supplementary Table S1.

zf12b 17698971 Bahary 2007 301 Genes differentially regulated in VegfAb morphants. 
Extracted from Supplementary Table S2.

zf12c 17698971 Bahary 2007 39 Genes differentially regulated in both VegfAa and 
VegfAb morphants. Extracted from Supplementary 
Table S3.

zf13a 17699609 Maves 2007 188 Genes regulated in control MO versus pbx2-MO; 
pbx4-MO at 10-somite stage. Extracted from 
Supplementary Table S1.

zf13b 17699609 Maves 2007 258 Genes regulated in control MO versus pbx2-MO; 
pbx4-MO at 18-somite stage. Extracted from 
Supplementary Table S2.

zf14a 17369489 Liu 2007 87 Genes down-regulated in udu-sq1 mutant. Extracted 
from Supplementary Table S3.

zf14b 17369489 Liu 2007 56 Genes up-regulated in udu-sq1 mutant. Extracted 
from Supplementary Table S4.
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Computer codes and scripts

Three text-based ORA approaches have been developed for mining the abstract text 

associated with a list of differentially expressed genes and to search within them for 

terms or biological concepts that are significantly over-represented. The first approach 

is based on the use of a permutation test; the second approach is based on the 

detection of outliers (OutlierDM); the third approach uses the extended 

hypergeometric distribution to assess over-representation (ExtendedHG). The source 

code for these methods is written in R and Perl, and has been tested on a Microsoft 

Windows platform with a 2.8 GHz processor and 2 GB of RAM. The R scripts were 

developed under R-2.6 and BioConductor-2.1, while the Perl scripts were developed 

under Perl v5.8.7.

Besides the list of differentially expressed genes, the proposed text-based ORA 

methods required three additional pre-processed data files, which link the gene 

identifiers in the query gene list with the relevant abstracts and token frequency data.

• array annfile.data: provides mappings between the Affymetrix probeset IDs, 

Entrez Gene IDs and PubMed IDs.

• array termfile.data: contains pre-processed tokens extracted from the abstracts.

• array chiphits.data: records the Chip frequencies, that is the number of genes 

containing a certain token of interest on a given chip type.

Pre-processed data files for the 10 Affymetrix GeneChip® arrays used in this work are 

provided on the CD-ROM attached to this thesis. The scripts for creating these data 

files are also included in the CD-ROM; the procedures for creating the associated text 

corpus and processing the abstract text can be found in Chapter 2.

286
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B .l R functions for perform ing text-based ORA

This section provides an overview of the three R functions - r u n .P e r m u ta tio n ,  

run . outlierDM  and r u n . ExtendedHG -  that were developed for performing ORA 

using tokens extracted from PubMed abstracts.

Function r u n . P e r m u ta t io n

Description

A method for identifying significantly over-represented abstract terms within a list of 
differentially expressed genes based on the use of a permutation test, as described in 
Chapter 5 of this thesis.

Usage
ru n .p erm u ta tion (x , in p u t . file=NULL, runname="myRun", chip="hgul33a" , 
idT ype="affy" , ja c k k n ife = l,  ad j.m eth od = " b on ferron i" , c u to f f= 0 .0 5 ,  
nperm=100000, d a ta .d ir )

Arguments

X

in p u t . f i l e

runname

chip

idType

A vector of gene identifiers. This argument can be ignored when the 
input is read from a file.
File that contains the list of genes to be analysed; one entry per line. Set 
to "null" when the input is a vector of gene identifiers.

Name of the analysis. Default to "myRun".

Name of the chip type on which the gene list was based. This should be 
one of: "hgul33a" , "hgul32plus2" , "mouse4302",
"rat2302", " a th ll2 1 5 0 1 " , "drosgenom el",
" d roso p h ila 2 " , " c e le g a n s" , " xenopuslaev is"  , 
" zeb rafish " , which correspond to the Affymetrix arrays HG-U133A, 
HG-U133 Plus 2.0, MG-U430 2.0, RAT230 2.0, Athl, DrosGenomel, 
Drosophila 2.0, Celegans, Xenopus laevis, and Zebrafish, respectively.
The type of gene identifier in the query gene list. This can be in the form 
of Affymetrix probeset ID or EntrezGene ID (EGID). For probeset ID, 
set idType = "affy" . For EGID, set idType = "egid". Default to
"affy".

ja ck k n ife Jackknife score (integer). The greater the value, the more conservative 
the p-value will be. Default to 1.
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adj . m ethod Methods used for adjusting the raw /7-values for multiple hypothesis
testing. This is done by a call to p . a d j  u s t ,  so the argument should be
one of: "holm", "hochberg", "hommel", "bonferroni", "BH",
"BY" or "fdr". Default to "bonf erron i" .

c u t o f f  Cutoff value for the adjusted p - values. Default to 0.05.

nperm Number o f  permutations to be performed. Default to 100000.

d a t a . d i r  Directory in which the pre-processed data files are located.

Values

Three files are generated by this function:

# runname_Empiri ca lC o u n t. t x t  This file records the empirical counts for the test 
statistics based on the randomised data.

# ru n n am e_R esu itT ab le .tx t This file contains all the tokens and their p-  
values as calculated by the permutation test.

# runname EnrichedTerm s. t x t  This file contains the significant tokens and their 

/7-values as determined using the specified cutoff value.

Examples
# Assume th a t  th e  p r e -p r o c e sse d  d ata  f i l e s  a re  s to r e d  in  th e
# d ir e c to r y  . /D a ta , and th a t  th e  d i f f e r e n t i a l l y  ex p ressed  gen es
# are s to r e d  in  a f i l e  named “s a m p le G e n e lis t .tx t” in  th e  form o f
# A ffym etrix  p r o b e se t ID.

# Example 1: Input gene i d e n t i f i e r s  a s  v e c to r

testDEG <- s c a n ( " sa m p le G e n e lis t . t x t ", strip .w hite=T R U E , sep="\n", 
w hat="character")

run.perm utation(x=testD E G , in p u t . file=NULL, runname="Testrun", 
ch ip="hgul33a", idT ype="affy" , ja c k k n ife = l ,  ad j.m eth od = " b on ferron i" , 
c u to f f= 0 .05 , nperm=100000, d a t a . d ir = " ./D a ta " )

# Example 2: Read th e  gene l i s t  d i r e c t l y  from f i l e

ru n .p erm u ta tio n (in p u t. f i l e = "sa m p le G e n e lis t . t x t " , runname="Testrun", 
chip= "hgul33a", id T y p e= " a ffy ", ja c k k n ife  = l ,  ad j.m eth od = " b on ferron i" , 
c u t o f f = 0 .05 , nperm=100000, d a ta . d ir = " . /D a ta " )

Source code

The source code is included in the CD-ROM attached to this thesis.
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Function r u n . O u t  l i e  rDM

Description

A method for identifying significantly over-represented abstract terms within a list of 
differentially expressed genes based on the detection of outliers, as described in 
Chapter 6 of this thesis.

Usage
run.O utlierD M (x, in p u t . file=NULL, runname="myRun", chip="hgul33a" , 
idT ype="affy" , ja c k k n ife = l,  ad j.m eth od = " b on ferron i", c u to ff= 0 .0 5 ,  
windowSize=10, d a ta .d ir )

Arguments

X

in p u t . f i l e

runname

chip

idType

ja ck k n ife  

adj.m ethod

c u to ff  

w indowsize

d a ta . d ir

A vector of gene identifiers. This argument can be ignored when the 
input is read from a file.
File that contains the list of genes to be analysed; one entry per line. Set 
to "null" when the input is a vector of gene identifiers.

Name of the analysis. Default to "myRun".

Name of the chip type on which the gene list was based. This should be 
one of: "hgul33a", " hgu l32p lus2" , "mouse4302",
"rat23 02", " a th ll2 1 5 0 1 " , "drosgenomel",
" d ro so p h ila 2 " , " ce legan s" , " x en o p u sla ev is" , 
" zeb ra fish " , which correspond to the Affymetrix arrays HG-U133A, 
HG-U133 Plus 2.0, MG-U430 2.0, RAT230 2.0, Athl, DrosGenomel, 
Drosophila 2.0, Celegans, Xenopus laevis, and Zebrafish, respectively.
The type of gene identifier in the query gene list. This can be in the form 
of Affymetrix probeset ID or EntrezGene ID (EGID). For probeset ID, 
set idType = "affy" . For EGID, set idType = "egid". Default to 
" a ffy " .

Jackknife score (integer). The greater the value, the more conservative 
the p-value will be. Default to 1.
Methods used for adjusting the raw /7-values for multiple hypothesis 
testing. This is done by a call to p . adj u s t , so the argument should be
one of: "holm", "hochberg", "hommel", "bonferroni", "BH",
"BY" or "fdr". Default to "bonferroni" .

Cutoff value for the adjusted /7-values. Default to 0.05.
The minimum number of observations used to estimate local mean and 
standard deviation. Default to 10.
Directory in which the pre-processed data files are located.
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Values

The result is a list with the following names-values:

EnrichedTerms This contains the significantly over-represented terms whose adjusted 
/7-values satisfy the cutoff threshold after correcting for multiple 
hypothesis testing. The results are presented as a table with the 
following columns:

Token: Significantly enriched terms

Chip: Total number of genes associated with a particular token in the 
background
L is t:  Total number of genes associated with a particular token in the 
input gene list
z . s c o r e : Note that a negative sign associated with a Z-score implies 
over-representation
Raw.pval: Raw /7-values

A d ju sted .p v a l: Adjusted/7-values

Ranking: Rank of the terms according to their raw /7-values

R esu ltT ab le This contains all tokens that were subjected for testing. The results are 
presented as a table with columns same as those for EnrichedTerms.

Examples
# Assume th a t th e  p r e -p r o c e sse d  data  f i l e s  are s to r e d  in  th e
# d ir e c to r y  ./D a ta .
# Example 1: Input gene i d e n t i f i e r s  as v e c to r

testDEG <- s c a n ("sa m p le G e n e lis t . t x t ", s t r i p . white=TRUE, sep="\n", 
what="c h a r a c te r ")

o u tl <- run.O utlierDM (x=testDEG , in p u t . file=NULL, runname="Testrun", 
chip="hgul33a", idT ype= "affy" , ja c k k n ife = l,  adj.m ethod="bonferroni"  , 
c u to f f= 0 .05 , w indowSize=10, d a ta . d ir = " . /D ata" )

# Example 2: Read th e  gene l i s t  d i r e c t ly  from f i l e

out2 <- ru n .O utlierD M (inp u t. f i le = " s a m p le G e n e lis t . t x t " , runname= 
"Testrun", ch ip="hgul33a" , id T yp e= " affy", ja c k k n ife = l, adj.m ethod=  
"bonferron i" , c u to f f  = 0 .0 1 , w indow Size=10, d a ta . d ir = " ./D ata" )

Source code

The R script implementing this approach is shown in Section B.2, and the Perl script 
called by this function is shown in Section B.4. The source code is included in the 
CD-ROM attached to this thesis.
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Function r u n . E x t e n d e d H G

Description

A method for identifying significantly over-represented abstract terms within a list of 
differentially expressed genes based on the extended hypergeometric distribution, as 
described in Chapter 7 of this thesis.

Usage
run.ExtendedHG(x, in p u t . file=NULL, runname="myRun", chip="hgul33a", 
idT ype="affy" , ja c k k n ife = l,  a d j . m ethod="bonferroni", c u to ff= 0 .0 5 ,  
d a ta . d ir )

Arguments

in p u t . f i l e

runname

chip

idType

ja ck k n ife  

adj.m ethod

A vector of gene identifiers. This argument can be ignored when the 
input is read from a file.

File that contains the list of genes to be analysed; one entry per line. Set 
to "null" when the input is a vector of gene identifiers.

Name of the analysis. Default to "myRun".

Name of the chip type on which the gene list was based. This should be 
one of: "hgul33a", " hgu l32p lus2" , "mouse4302",
"rat23 02", " a th ll2 1 5 0 1 " , "drosgenomel",
" d rosop h ila2" , " ce legan s" , " x en o p u sla ev is" , 
" zeb ra fish " , which correspond to the Affymetrix arrays HG-U133A, 
HG-U133 Plus 2.0, MG-U430 2.0, RAT230 2.0, Athl, DrosGenomel, 
Drosophila 2.0, Celegans, Xenopus laevis, and Zebrafish, respectively.

The type of gene identifier in the query gene list. This can be in the form 
of Affymetrix probeset ID or EntrezGene ID (EGID). For probeset ID, 
set idType = "affy" . For EGID, set idType = "egid". Default to 
" a ffy " .

Jackknife score (integer). The greater the value, the more conservative 
the /7-value will be. Default to 1.
Methods used for adjusting the raw /7-values for multiple hypothesis 
testing. This is done by a call to p . a d j u s t ,  so the argument should be
one of: "holm", "hochberg", "hommel", "bonferroni", "BH",
"BY" or "fdr" . Default to "bonferroni".

c u to f f  

d a ta . d ir

Cutoff value for the adjusted /7-values. Default to 0.05. 

Directory in which the pre-processed data files are located.
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Values

EnrichedTerms This contains the significantly over-represented terms whose adjusted 
/?-values satisfy the cutoff threshold after correcting for multiple 
hypothesis testing. The results are presented as a table with the 
following columns:

Token: Significantly enriched terms

Chip: Total number of genes associated with a particular token in the 
background
L is t:  Total number o f genes associated with a particular token in the 
input gene list
Odds. r a t io  : Odds ratios associated with the tokens

Raw. p v a l: Raw /7-values

Adj us t e d . p v a l: Adjusted p-values

Ranking: Ranks o f the terms according to their raw /7-values

Re s u i t  Table This contains all tokens that were subjected for testing. The results are
presented as a table with columns same as those for EnrichedTerms.

Dependencies

This method depends on the B iasedurn  R package.

Examples
# Assume th a t  th e  p r e -p r o c e sse d  data  f i l e s  are s to r e d  in  th e
# d ir e c to r y  ./D a ta .
# Example 1: Input gene i d e n t i f i e r s  a s  v e c to r

testDEG <- s c a n ("sa m p le G e n e lis t . t x t ", s t r i p . white=TRUE, sep="\n", 
w hat="character")

o u tl <- run.ExtendedHG(x=testDEG, in p u t . file=NULL, runname="Testrun" , 
chip="hgul33a" , idT ype= "affy" , ja c k k n ife = l,  ad j.m eth od = " b on ferron i" , 
c u to f f= 0 .05 , d a ta . d ir = " ./D ata" )

# Example 2: Read th e  gene l i s t  d i r e c t ly  from f i l e
ou t2 <- run.E xtendedH G (input. f i l e = "sa m p le G e n e lis t . t x t " , runname= 
"Testrun", ch ip="hgul33a" , id T yp e= " affy" , ja c k k n ife = l, adj.m ethod=  
"bonferroni" , c u t o f f = 0 .0 5 , d a ta . d ir = " ./D ata" )

Source code

The R script implementing this approach is shown in Section B.3, and the Perl script 
called by this function is shown in Section B.4. The source code is included in the 
CD-ROM attached to this thesis.
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B.2 S ou rce  cod e  o f  O utlierD M
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run.OutlierDM <- function(x, input.file=NULL, runname®"myRun", chip®"hgul33a", 
idType®"affy", windowSize=10, jackknife=l, adj.method®"bonferroni", cutoff®0.05, 
data.dir)
{

# Check if the input.genelist is a vector or a file 
if(is.null(input.f ile)){

myGenelist <- "tmpGL.txt"
write.table(x, file=myGenelist, sep="\n", quote=FALSE, row.names=FALSE, 

col.names®FALSE)
}else{

myGenelist <- input.file
>

# Locate the pre-processed data files 
data.dir <- paste(data.dir, chip, sep®"/") 
annotationFile = paste(chip, "_annfile.data", sep®"") 
termFile = paste(chip, "_termfile.data", sep®"") 
chipFile = paste(chip, "_chiphits.data", sep®"")

# Determine List frequency associated with the tokens in Perl 
working.dir <- getwdO
peri.dir <- paste(working.dir, "Perlcodes", sep®"/") 
cat(myGenelist, idType, data.dir, annotationFile, termFile, chipFile, 

chip, runname, file®"param.txt", sep®"\t") 
peri.command <- paste(‘peri peri.dir, VgetListhits.pl"*, sep®"")
xx <- as.vector(system(paste(peri.command), show.output.on.console®TRUE, 

invisible=TRUE, intern=TRUE))

inputID.count <- paste(xx[l])
Chip.totalEGID <- as.numeric(xx[2])
List.totalEGID <- as.numeric(xx[3])
Chip.annEGID <- as.numeric(xx[4])
List.annEGID <- as.numeric(xx[5])
List.totalPMID <- as.numeric(xx[6])
Count.file <- paste(runname, "_PmFreq.txt", sep®"")

# Token frequency data filtering and pre-processing
dat <- read.table(file=Count.file, header=TRUE, sep="\t", na.string®"")
colnames(dat) <- c("Token", "Chip", "List")
dat$List <- dat$List - jackknife
dat <- dat[dat$List > 1, ]
set.seed(1234)
idx <- sampled rnrow(dat))
dat <- dat[idx, ]
dat[ , c(2:3)] <- log2(dat[ , c(2:3)])
dat <- dat[order(dat$List, decreasing=TRUE), ]

# Initialise some variables 
smChipMean <- vector(length=nrow(dat)) 
smChipSD <- vector(length=nrow(dat)) 
uniqChipMean <- sort(unique(dat$List)) 
uniqChipSD <- sort(unique(dat$List)) 
countPoints <- sort(unique(dat$List))
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# Local mean and SD estimation 
for(n in 1:length(countPoints)) {

i <- dat$List == countPoints[n] 
if(sum(i) >= windowSize) { 

myData <- dat[i, "Chip"] 
uniqChipMean[n] <- mean(myData) 
uniqChipSD[n] <- sd(myData)

}else{
veHaveGot <- sum(i)
ni <- dat$List < countPoints[n]
resDat <- dat[ni, ]
myData <- c(dat[i, "Chip"], resDat[1:(vindowSize-veHaveGot), "Chip"]) 
uniqChipMean[n] <- mean(myData) 
uniqChipSD[n] <- sd(myData)

>
>

# Local mean and SD smoothing
chipMean.model <- lm(uniqChipMean ” countPoints + I(countPoints~2) +

I(countPoints~3))
chip.mean <- chipMean.model$coef 7,**/, rbind(l, countPoints, countPoints“2 , 

countPoints*3)
chipSD.model <- lm (uniqChipSD ~ countPoints + I (countPoints^) +

I(countPoints^3))
chip.sd <- chipSD.model$coef '/,**/, rbind(l, countPoints, countPoints~2, 

c ountPo int s ~ 3 )

for(n in 1:length(countPoints)) { 
i <- dat$List == countPoints[n] 
smChipMean[i] <- chip.mean[n] 
smChipSD[i] <- chip.sd[n]

>

# Z-score and p-value calculation 
mcDat <- cbind(dat,

"Z.score"=vector(length=nrow(dat)),
"Raw.pval"=vector(length=nrow(dat)),
"Adjusted.pval"=vector(length=nrow(dat)),
" Ranking"■=vector (length=nrow (dat) )

)
mcDat[ ,c(2:3)] <- 2',mcDat[ ,c(2:3)] 
mcDat$List <- mcDat$List + jackknife 
mcDat$Z.score <- (dat$Chip - smChipMean)/smChipSD 
mcDat$Raw.pval <- pnorm(mcDat$Z.score)
mcDat$Adjusted.pval <- p.adjust(mcDat$Raw.pval, method=adj.method) 
mcDat$Ranking <- rank(mcDat$Raw.pval, ties.method="first") 
sorted.res <- mcDat[order(mcDat$Raw.pval, decreasing=FALSE, na.last=NA), ] 
hits <- sorted.res[sorted.res$Adjusted.pval < cutoff, ]

# Clean up
unlink(c("param.txt", Count.file, "tmpGL.txt"))
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# Output
cat("\n//------- Text-based ORA results for ", runname, "  //\n",

sep="")
cat("Current mode of analysis: OutlierDM", "\n", sep*"") 
cat("Current analysis setting: ", adj.method, " corrected p-value < ", 

cutoff, "\n", sep*"")
cat("Gene identifiers submitted for analysis: ", inputID.count, "\n", 

sep="")
cat("Annotated genes in the gene list: ", List.annEGID, "\n", sep*"") 
cat("Annotated genes in the background: ", Chip.annEGID, sep*"", "\n") 
cat("Total PMID associated with the gene list: ", List.totalPMID, "\n", sep*"") 
cat(nrow(hits), ” tokens are found to be significantly over-represented", 

"\n\n", sep*"") 
print(hits)

results <- (list(EnrichedTerms=hits, ResultTable=sorted.res)) 
invisible(results)

>
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B.3 Source code o f ExtendedHG
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run.ExtendedHG <- function(x, input.file=NULL, runname*"myRun", chip="hgul33a", 
idType*"affy", jackknife*l, adj.method*"bonferroni", cutoff*0.05, data.dir)

require("BiasedUrn")

# Check if the input.genelist is a vector or a file 
if (is.null(input.file)H

myGenelist <- "tmpGL.txt"
write.table(x, file=myGenelist, sep="\n", quote=FALSE, row.names=FALSE, 

col.names=FALSE)
}else{

myGenelist <- input.file
>

# Locate the pre-processed data files 
data.dir <- paste(data.dir, chip, sep*"/") 
annotationFile = paste(chip, "_annfile.data", sep*"") 
termFile = paste(chip, "_termfile.data", sep*"") 
chipFile = paste(chip, "_chiphits.data", sep*"")

# Determine List frequency associated with the tokens in Perl 
working.dir <- getwdO
peri.dir <- paste(working.dir, "Perlcodes", sep*"/") 
cat(myGenelist, idType, data.dir, annotationFile, termFile, chipFile, 

chip, runname, file="param.txt", sep="\t") 
peri.command <- paste(‘peri "*, peri.dir, VgetListhits.pl" ’, sep*"") 
xx <- as.vector(system(paste(peri.command), show.output.on.console=TRUE, 

invisible=TRUE, intern=TRUE))

# Get the output from Perl 
inputlD.count <- paste(xx[l])
Chip.totalEGID <- as.numeric(xx[2])
List.totalEGID <- as.numeric(xx[3])
Chip.annEGID <- as.numeric(xx[4])
List.annEGID <- as.numeric(xx[5])
List.totalPMID <- as.numeric(xx[6])
Count.file <- paste(runname, "_PmFreq.txt", sep*"")

# Token frequency data filtering and pre-processing
dat <- read.table(file*Count.file, header*TRUE, sep*"\t", na.string*"") 
colnames(dat) <- cO'Token", "Chip", "List")
lm.mu <- lm(dat$List ” dat$Chip + I(dat$Chip~2) + I(dat$Chip“3) +

I(dat$Chip',4) + I(dat$Chip“5) + I (dat$Chip~6) + I(dat$Chip~7)) 
estList <- lm.mu$coef %**!, rbind(l, dat$Chip, dat$Chip~2, datSChip^S, 

dat$Chip'"4, dat$Chip~5, datJChip^S, dat$Chip"7) 
dat <- cbind(dat, "Mu"=as.vector(estList)) 
dat <- dat[dat$Chip > 1, ] 
dat <- dat[dat$List - jackknife > 1, ]
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# Function for calculating odds ratio
calOdds <- function(x, mu.index, Chip.Gene, List.Gene)
{

chip.hit <- as.numeric(x[2]) 
list.hit <- as.numeric(x[3]) 
myMu <- as.numeric(x[mu.index])

if(myMu < List.Gene) 
p2 <- myMu

if(myMu > List.Gene)
p2 <- List.Gene * 0.999

pi <- List.Gene - p2

if(myMu >= chip.hit) 
myOdds = 1

else
myOdds <- (p2/(chip.hit-p2))/(pl/(Chip.Gene-chip.hit-pl))

>

# Function for calculating Fisher non-central hypergeometric P-values 
nchyperGPval <- function(x, odds.index, Chip.Gene, List.Gene, jackscore)

chip.hit <- as.numeric(x[2])
list, hit <- as .numeric(x[3] )
myOdds <- as.numeric(x[odds.index])
myOdds <- ifelse(myOdds <0, 1, myOdds)
pFNCHypergeo(x=list.hit-jackscore-1, ml=chip.hit,

m2=Chip.Gene-chip.hit, n=List.Gene-jackscore, 
odds=myOdds, precision=lE-40, lower.tail=FALSE)

>

# P-value calculation
res <- data.frame(cbind(dat,

"Odds" = vector(length=nrow(dat)),
"Adj.odds" = vector(length=nrow(dat)),
"Raw.pval"=vector(length=nrow(dat)),
"Adjusted.pval"=vector(length=nrow(dat)),
"Ranking"=vector(length=nrow(dat))

))
res[ ,"0dds"] <- apply(res, 1, calOdds, mu.index=4, Chip.Gene=Chip.annEGID,

List.Gene=List.annEGID) 
idx <- res$0dds > median(res$0dds) + 3*mad(res$0dds) ft res$List < 10 
res$Adj.odds <- res$0dds
res[idx, "Adj.odds"] <- median(res[!idx, "Odds"]) 
res$Raw.pval <- apply(res, 1, nchyperGPval, odds.index=6,

Chip.Gene=Chip.annEGID, List.Gene=List.annEGID, jackscore=jackknife) 
res$Ad jus ted. pval <- p. adjust (res$Raw. pval, method=adj .method) 
res$Ranking <- rank(res$Raw.pval, ties.method="first") 
sorted.res <- res[order(res$Raw.pval, decreasing=FALSE, na.last = NA) , ] 
hits <- sorted.res[sorted.res$Adjusted.pval < cutoff, ] 
hits <- hits[ ,-c(4,5)]
colnames(hits) <- cC'Token", "Chip", "List", "Odds.ratio", "Raw.pval", 

"Adjusted.pval", "Ranking")
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# Clean up
unlink(c("param.txt", Count.file, "tmpGL.txt"))

# Output
cat("\n//-----  Text-based ORA results for ", runname, "  //\n",

sep*"")
cat("Current mode of analysis: ExtendedHG", "\n", sep*"") 
cat("Current analysis setting: ", adj.method, " corrected p-value < ", 

cutoff, "\n", sep*"")
cat("Gene identifiers submitted for analysis: ", input ID.count, "\n", 

sep*"")
cat("Annotated genes in the gene list: ", List.annEGID, "\n", sep*"") 
cat("Annotated genes in the background: ", Chip.annEGID, sep*"", "\n") 
catO'Total PMID associated with the gene list: ", List.totalPMID, "\n", 

sep*"")
cat(nrov(hits), " tokens are found to be significantly over-represented", 

"\n\n", sep*"") 
print(hits)

results <- (list(EnrichedTerms*hits, ResultTable*sorted.res)) 
invis ible(results)

>
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B.4 Perl script invoked in OutlierDM and ExtendedHG

#!/usr/bin/perl 
#
# Name: getListhits.pl
# Description: a script for calculating the List frequency associated with
# each token in a given gene list

use strict; 
use warnings;

# Get parameters from OutlierDM or ExtendedHG

my ®params=();
my $paramfile="param.txt";
open(IN, $paramfile) or die "Cannot open $paramfile\n"; 
while « I N » {  

chomp $_;
Oparams=split(/\t/, $_);

>
close IN;

my $genelist=$params[0]; 
my $idType=$params[1]; 
my $dataDirs$params[2]; 
my $annotationFiles$params [3] ; 
my $termFile=$params [4] ; 
my $chipFiles$params [5] ; 
my $chipType=$params[6]; 
my $identifier=$params[7];

# Get the mapping between PMID and tokens 
my 7,pmid2term= ( ) ;
open(IN, M$dataDir\/$termFile") or die "Cannot open $dataDir\/$termFile\n"; 
while « I N » {  

chomp $_;
my ©col=split(/\|/f $_); 
my $pmid=$col[0]; 
my $terms=$col[l]; 
if($pmid and $terms){

$pmid=~s/\s+//g;
$pmid2term{$pmid>=$terms;

>
>
close IN;

# Map Entrez Gene ID to PubMed ID

my y,chipLL2PM=(); 
my %chipAFFY2LL=(); 
my y,annChipEGID= ( ) ;
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open (IN, "$dataDir\/$annotationFile") or die "Cannot open $dataDir\/$annotationFile\n"; 
while (<IN»{

next unless ($. >1); 
chomp $_;
my ®col=split(/\t/,$_); 
my $probesetid-lc $col[0]; 
my $geneid=$col[1] ; 
my $pmid=$col[2];

if ($probesetid=~/'*AFFX/i or $geneid eq ‘NA’H  
»

}else{
$chipLL2PM{$geneid}=$pmid;
$chipAFFY2LL{$probesetid}=$geneid; 
if($pmid ne ‘NA’H

$annChipEGID{$geneid}++;
>

>
>
close IN;

my $ChipAllGenes = scalar keys %chipLL2PM; 
my $ChipAnnotatedGenes = scalaLr keys 7,annChipEGID;

# Get Chip frequency from pre-processed data files 

my y,chipHits=();
open(IN, "$dataDir\/$chipFile") or die "Cannot open $dataDir\/$chipFile\n”; 
while(<IN>){ 

chomp
my ®col=split(/\t/, $_); 
my $term=$col[0];

$term="s/\"//g; 
my $count=$col[l];

if($term and $count){
$chipHits{$term>=$count;

>
>
close IN;

# Associate the user input gene identifiers with the corresponding PMIDs

my %mygenelist=(); 
my $inputIDcounter=0;
open (IN, $genelist) or die "Cannot open $genelist\n"; 
while(<IN>){

next if /“[ \t]*$/ ; 
chomp
my ®col=split(/\t/,$_); 
my $query=lc $col[0];

$query*“s/\s+//g;
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if($idType eq ‘affy’H
if(exists $chipAFFY2LL{$query»{

my $queryGeneID=$chipAFFY2LL{$query>; 
$mygenelist{$queryGeneID}=$chipLL2PM{$queryGeneID>;

>
>elsif ($idType eq ‘egid’H

if (exists $chipLL2PM{$query}){
$mygenelist{$query}=$chipLL2PM{$query>;

>
>
$inputIDcounter++;

>
close IN;

# Build a hash where the keys are term and the values are Entrez Gene ID

my 7,listHits=(); 
my %uniquePMID=(); 
my $ListAllGenes-0; 
my $ListAnnotatedGenes=0;

foreach my $gene (keys %mygenelist){ 
my %seen=0;
my ®pmid_array=split(/\s+/, $mygenelist{$gene»;

if($mygenelist{$gene> ne (NA’){
$ListAnnotatedGenes++;

>

foreach my $pubmedID (®pmid_array){ 
if (exists $pmid2term'($pubmedID» { 

chomp $pmid2term{$pubmedID};
my Cterm_array=split("\t",$pmid2term{$pubmedID>); 
foreach my $term(Cterm_array){

$listHits{uc $term>.=$gene." " unless $seen{$term>++;
>

>
$uniquePMID{$pubmedID}++ if($pubmedID ne ‘NA’);

>
$ListAllGenes++;

>

my $L i s t PMIDCount = seal ear keys 7,uniquePMID;

# Output token frequencies to file 

my $outfile=$identifier."_PmFreq.txt" ;
open(OUT, ">$outfile") or die "Cannot write to $outfile\n"; 
print OUT "Token\tChip\tList\n";
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# Loop through the listHits hash and calculate term occurrence

foreach my $vord (keys %listHits){
$vord *“s/\"//g;
$listHits-C$word}=~s/\s$//; 
if(exists $chipHits{$word>){

my $list = [split(" ", $listHits{$word>) ]; 
my $wordFrequency = scalar C$list;
print OUT "V'$vord\"\t$chipHits{$word}\t$vordFrequency\n";

>
>

# Output

print "$inputIDcounter\n"; 
print "$ChipAllGenes\n"; 
print "$ListAllGenes\n"; 
print "$ChipAnnotatedGenes\n"; 
print "$ListAnnotatedGenes\n"; 
print "$ListPMIDCount\n";

exit;

### Subroutine

sub getFreq{
my ($ref,$delim) = ©_; 
my filistssplit($delim, $ref); 
my CuniqToken=keys %{ -(map-C$_,l>®list> >; 
my $count=scalar ©uniqToken; 
return $count;
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