BINDING SERVICES Tel +44 (0)29 2087 4949 Fax +44 (0)29 20371921 e-mail bindery@cardiff.ac.uk # The Morphology and Molecular Physiology of Zygosaccharomyces Spoilage Yeasts Thesis presented in candidature for the degree of Philosophiae Doctor Christopher D. Nunn. B.Sc. (Cardiff) Cardiff School of Biosciences Main Building Museum Avenue PO Box 915 Cardiff CF10 3TL UK UMI Number: U583936 ## All rights reserved #### INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. #### UMI U583936 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 Dedicated to my children, Christopher Andrew and Dylan James Love Dad ## **Acknowledgements** This research was funded by a PhD studentship from Cardiff School of Biosciences supported by Unilver Bestfoods plc. Firstly, I would like to thank my supervisor Dr. J. Richard Dickinson (Cardiff University) for all his help, support and guidance, especially with the construction of this thesis. Dr. Malcolm Stratford (Unilever Bestfoods plc) for his support as an external supervisor and advice throughout this PhD. I would also like to thank Hazel Steels and the rest of the Stratford laboratory for their advice and support. I am also grateful to Dr. Steve James and the rest of the staff at the NCYC for conducting the 26S rDNA D1/D2 analyses and allowing me to include these results in support of my thesis. Thank you to the technical staff at Cardiff School of Biosciences for all their support. I would especially like to thank Mike Turner (electron microscopy), Mike O'Reilly (HPLC), Joan Hubbard (autoclaving), Guy Pitt and Vyv Williams (graphics) and Andy Rees (stores). To the current and former members of laboratory 1.57 thank you for providing such an enjoyable working environment. A special thanks to Dr. David Chrimes, Angela Marchbank, Dr. Esh Salgado, and Dr. David Sorrell. I would like to say a big thank you to Dr. Esh Salgado and Dr. David Sorrell for proofreading sections of this thesis. Finally, thank you to my parents for their continued love, support (especially financial) and faith in me throughout my life. To my brother, Matthew, for all his support and being blissfully unaware to the joys of scientific research. To my children, Christopher Andrew and Dylan James, thank you for all the pleasure you have brought into my life and for providing a welcome and sometimes not so welcome distraction. Most important of all, to Claire, for all her support, love and the sacrifices she's made over the last few years. I love you all very much. ## Summary Spoilage is a major problem for the food industry ultimately resulting in economic loss. Among the most prominent spoilage yeasts are members belonging to the *Zygosaccharomyces* genus. This research focuses on differences in organic acid resistance and the physiological basis of these differences between *Zygosaccharomyces bailii*, *Zygosaccharomyces kombuchaensis* and *Saccharomyces cerevisiae*. Z. bailii, Z. kombuchaensis and S. cerevisiae differ in resistance to short, medium and longer chain organic acids. Organic acid resistance was shown to be effected by alterations to growth conditions. S. cerevisiae was the most sensitive to organic acids followed by Z. kombuchaensis. Z. bailii was overall the most resistant to organic acids. Organic acid inhibition was shown to increase with increasing chain length. Electron microscopy was used to determine the effects of organic acids on yeast cell structure. Evidence is presented for short, medium and longer chain organic acids differing in their mode of inhibition. The cell wall was highlighted as differing between Z. bailii, Z. kombuchaensis and S. cerevisiae and as having a role in yeast organic acid resistance. Protoplast fusion was successfully applied to Z. bailii and Z. kombuchaensis with S. cerevisiae to study the role of mitochondria in yeast organic acid resistance. Differences in sensitivity to ethidium bromide and petite forming capabilities were demonstrated. Hybrids were characterized in terms of morphology, physiology and organic acid resistance. The ability of Z. bailii, Z. kombuchaensis and S. cerevisiae to form pseudohyphae in the presence of isoamyl alcohol was assessed. Isoamyl alcohol was shown to induce an osmotic stress with a role for the high osmolarity glycerol pathway being demonstrated. Z. bailii was shown to contain a subgroup based on differences in organic acid resistance, morphology, physiology and molecular composition. This is the first time that a subgroup with increased sensitivity to organic acids has been reported for Z. bailii. ## **Contents** | Declaration | ii | |---|-----------| | Dedication | iii | | Acknowledgements | iv-v | | Summary | vi-vii | | Contents | viii-xiii | | Abbreviations | xiv-xv | | List of Tables | xvi | | List of Figures | xvii-xix | | 1. General Introduction | 1-37 | | 1.1 Food spoilage | 2 | | 1.2 Sources of food spoilage | 2 | | 1.3 Food spoilage microorganisms | 2-4 | | 1.4 Food spoilage yeasts | 4-7 | | 1.5 Characteristics of yeast attributed food spoilage | 7-8 | | 1.6 Factors affecting the growth and survival of yeasts in food | 8-12 | | 1.6.1 Nutrients | 8-9 | | 1.6.2 Water activity (a _w) | 9 | | 1.6.3 pH | 10 | | 1.6.4 Redox potential (E_h) | 10 | | 1.6.5 Temperature | 10-11 | | 1.6.6 Oxygen and carbon dioxide | 11-12 | | 1.6.7 Implicit factors | 12 | | 1.7 Yeast Stress Responses | 13-16 | | 1.7.1 Starvation | 13-14 | | 1.7.2 Heat Stress | 14 | | 1.7.3 Osmolarity | 14-15 | | 1.7.4 Oxidative Stress | 15 | | 1.7.5 Low pH and weak-acid Stress | 16 | | 1.8 Methods of food preservation | 16-20 | | 1.8.1 Pasteurisation and appertisation | 17 | | 1.8.2 Refrigeration and freezing | 17-19 | | 1.8.3 Curing | 19 | | 1.8.4 Food preservatives | 19 | |--|-------| | 1.8.5 Radiation | 19-20 | | 1.8.6 Aseptic and modified atmosphere packaging | 20 | | 1.9 Organic acids as food preservatives | 21-27 | | 1.9.1 Weak-acid preservative theory | 21-24 | | 1.9.2 Acetic acid | 24 | | 1.9.3 Propionic acid | 24-25 | | 1.9.4 Sorbic acid | 25 | | 1.9.5 Benzoic acid | 25-26 | | 1.9.6 Human consumption of organic acid food preservatives | 26-27 | | 1.10 Yeast organic acid resistance | 27-33 | | 1.10.1 Reduced acid influx | 27-28 | | 1.10.2 Conversion of the acid into a metabolic product | 28-30 | | 1.10.3 Extrusion of hydrogen ions | 30-31 | | 1.10.4 Extrusion of anions | 31 | | 1.10.5 Increased intracellular buffering | 31-32 | | 1.10.6 Non-specific mechanisms | 32-33 | | 1.11 Assessment of food spoilage | 33-35 | | 1.11.1 Direct microscopic examination | 33 | | 1.11.2 Plate counts | 33-34 | | 1.11.3 Electrical impedance | 34 | | 1.11.4 Measurement of ATP | 34 | | 1.11.5 Predictive modelling | 34-35 | | 1.12 Identification of food spoilage microorganisms | 35-36 | | 1.12.1 Physiological identification | 35 | | 1.12.2 Molecular identification | 36 | | 1.13 Cleaning processes in the food industry | 36-37 | | 1.14 Aims | 37 | | | | | 2. Materials and Methods | 38-57 | | 2.1 Chemicals | 39 | | 2.2 Strains and media | | | 2.3 Growth conditions | | | 2.4 Assessment of inhibitor toxicity | | | | 2.4.1 Preparation of inhibitor stocks | 43 | |---------|--|-------| | | 2.4.2 Culture conditions | 43 | | 2.5 Ele | ectron microscopy | 45-46 | | | 2.5.1 Transmission electron microscopy | 45 | | | 2.5.2 Scanning electron microscopy | 45-46 | | 2.6 Ch | itin analysis | 46-47 | | | 2.6.1 Chitin distribution | 46 | | | 2.6.2 Chitin content | 46-47 | | 2.7 Ye | east protoplast formation | 47-48 | | | 2.7.1 β-glucoronidase | 47-48 | | | 2.7.2 Lysozyme | 48 | | | 2.7.3 Zymolyase | 48 | | 2.8 Ye | east protoplast fusion | 48-49 | | 2.9 Hi | gh-performance-liquid-chromatography (HPLC) | 49-50 | | | 2.9.1 Preparation of samples | 49 | | | 2.9.2 Sample analysis | 49-50 | | 2.10 I | Determination of total glycerol content | 50-51 | | | 2.10.1 Preparation of samples | 50 | | | 2.10.2 Sample analysis | 50-51 | | 2.11 N | Molecular genetic techniques | 51-54 | | | 2.11.1 Transformation of E. coli | 51 | | | 2.11.2 Plasmid preparation from E. coli | 51-52 | | | 2.11.3 Restriction digests and agarose gel electrophoresis | 52 | | | 2.11.4 Transformation of yeast | 52-53 | | | 2.11.5 Colony PCR to confirm transformants | 53 | | | 2.11.6 26S rDNA D1/D2 sequence analysis | 54 | | 2.12 (| General physiological techniques | 54-57 | | | 2.12.1 Cell wall/membrane phenotypic screens | 54-55 | | | 2.12.2 Determination of petite forming capabilities using ethidium | l | | | bromide | 55 | | | 2.12.3 Isoamyl alcohol induced pseudohyphal formation | 55-56 | | | 2.12.4 Assessment of total cell viability | 56 | | | 2.12.5 Colony forming unit (c.f.u) counts | 56 | | | 2.12.6 Determination of dry weight | 57 | | 2.12.7 Assessment of flocculation capabilities | 57 | |--|----------------| | 2.12.8 Ascospore formation | 57 | | 3. Differences in organic acid resistance between Z. bailii, Z. kombuc | haensis and S. | | cerevisiae | 58-76 | | 3.1 Introduction | 59 | | 3.2 Results | 60-74 | | 3.2.1 Differences in short chain organic acid resistance between | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 60-65 | | 3.2.2 Differences in medium chain organic acid resistance betwee | n | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 65 | | 3.2.3
Differences in longer chain organic acid resistance between | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 70 | | 3.3 Discussion | 75-76 | | 4. Effects of growth conditions on yeast organic acid resistance | 77-91 | | 4.1 Introduction | 78 | | 4.2 Results | 79-89 | | 4.2.1 Effects of YPD composition on yeast organic acid resistance | | | 4.2.2 Effects of glucose concentration on yeast organic acid | | | resistance | 79 | | 4.2.3 Effects of carbon source on yeast organic acid resistance | 82 | | 4.2.4 Effects of nitrogen source on yeast organic acid resistance | 82-86 | | 4.2.5 Effects of water activity on yeast organic acid resistance | 86 | | 4.2.6 Effects of vitamin source on yeast organic acid resistance | 88 | | 4.3 Discussion | 90-91 | | | | | 5. Yeast cell structure and organic acid resistance | 92-138 | | 5.1 Introduction | 93-99 | | 5.2 Results | 100-134 | | 5.2.1 Method development: Yeast electron microscopy | 100-102 | | 5.2.2 Comparison of Z. bailii, Z. kombuchaensis and S. cerevisiae | | | cell structure | 102-105 | | 5.2.2.1 Transmission electron microscopy | 102 | | 5.2.2.2 Scanning electron microscopy | 105 | |---|----------------| | 5.2.3 Effect of organic acids on yeast cell structure | 105 | | 5.2.3.1 Acetic acid | 105-114 | | 5.2.3.2 Sorbic acid | 114-121 | | 5.2.3.3 Nonanoic acid | 121-123 | | 5.2.4 Differences in sensitivity to cell wall/membrane disrupting a | gents | | between Z. bailii, Z. kombuchaensis and S. cerevisiae | 123-131 | | 5.2.5 Chitin analysis in Z. bailii, Z. kombuchaensis and | | | S. cerevisiae | 131 | | 5.2.5.1 Chitin distribution | 131 | | 5.2.5.2 Chitin content | 131 | | 5.2.6 S. cerevisiae cell wall mutants and organic acid resistance | 133 | | 5.3 Discussion | 135-138 | | 6. Role of mitochondria in yeast organic acid resistance: the applicati | on of | | protoplast fusion | 139-168 | | 6.1 Introduction | 140-142 | | 6.2 Results | 143-165 | | 6.2.1 Differences in ethidium bromide treatment between Z. bailii, | | | Z. kombuchaensis and S. cerevisiae | 143 | | 6.2.2 Organic acid resistance in S. cerevisiae grande and petite cel | ls143-146 | | 6.2.3 Yeast protoplast formation | 146-149 | | 6.2.4 Yeast protoplast fusion | 149-151 | | 6.2.5 Characterisation of protoplast fusants | 151-161 | | 6.2.5.1 Morphology of protoplast fusants | 151-156 | | 6.2.5.2 Growth of protoplast fusants | 156-158 | | 6.2.5.3 Effects of ethidium bromide treatment | 158-160 | | 6.2.5.4 Organic acid resistance of protoplast fusants | 160 | | 6.2.5.5 Organic acid utilisation by protoplast fusants | 163 | | 6.3 Discussion | 166-168 | | 7. Effects of glycerol on isoamyl alcohol induced pseudohyphal form | nation: a role | | for the HOG pathway | 169-198 | | 7.1 Introduction | 170-173 | | 7.2 Results | 174-194 | | 7.2.1 Effects of isoamyl alcohol on yeast growth and pseudohyp | hal | |--|----------------------| | formation | 174 | | 7.2.2 Effects of isoamyl alcohol on yeast cell structure | 174-177 | | 7.2.2.1 Transmission electron microscopy | 174-177 | | 7.2.2.2 Scanning electron microscopy | 177 | | 7.2.3 Effects of glycerol on yeast isoamyl alcohol pseudohyphal | | | formation | 177-180 | | 7.2.4 Effects of isoamyl alcohol and glycerol on c.f.u counts | 180-182 | | 7.2.5 Glycerol content and isoamyl alcohol induced pseudohyph | ıal | | formation | 182-184 | | 7.2.6 The HOG pathway in isoamyl alcohol induced pseudohyp | hal | | formation | 184-194 | | 7.2.6.1 Confirmation of plasmids and transformation | 184-187 | | 7.2.6.2 Isoamyl alcohol induced pseudohyphal formation | ı in | | S. cerevisiae hog1 mutant | 187-192 | | 7.2.6.3 Differences in sensitivity to cell wall/ membrane | | | disrupting agents between hog1 mutants | 192 | | 7.3 Discussion | 195-198 | | 8. Re-examination of Z. bailii classification | 199-216 | | 8.1 Introduction | 200 | | 8.2 Results | 201-214 | | 8.2.1 Differences in inhibitor resistance between strains of Z. ba | i <i>lii</i> 201-204 | | 8.2.2 Morphological differences between strains of Z. bailii | 204 | | 8.2.3 Growth differences between strains of Z. bailii | 204-208 | | 8.2.4 Molecular differences between strains Z. bailii | 211 | | 8.3 Discussion | 214-216 | | 9. General Discussion | 217-228 | | 9.1 Future Work | 227-228 | | 10. References | 229-261 | | 11. Appendix | 262-269 | #### **Abbreviations** The abbreviations given below are those used in section 2 to 9. The list does not include atomic and chemical symbols or names of genes. A adenine ABC ATP binding cassette ADI acceptable daily intake ADP adenosine diphosphate ATP adenosine triphosphate bp base pair BSA bovine serum albumin C cytosine cAMP cyclic adenosine monophosphate CAP controlled atmosphere packaging c.f.u colony forming units CIP cleaning-in-place CWPs cell wall proteins DNA deoxyribonucleic acid D/O drop-out EDTA ethylenediaminetetraacetate EM electron microscopy EtBr ethidium bromide g gravity G guanine GC-MS gas chromatography-mass spectrometry GPI-CWPs glycosylphosphatidylinositol-CWPs G418 geneticin hour HCl hydrochloric acid HOG high osmolarity glycerol HPLC high performance liquid chromatography HSE heat shock element Hsp heat chock protein IAA isoamyl alcohol ITS internal transcribed spacer JEFCA joint expert committee on food additives L litre LB Luria-Bertani medium MAP modified atmosphere packaging MBTH 3-methylbenzothiazol-2-one hydrazone hydrochloride microgram μĸ microlitre μl micrometer μm μM micromolar μmol micromoles milligram mg millimetre ml mM millimolar MIC minimum inhibitory concentration min. minute MM minimal medium MPa megapascals MPN most probable number nm nanometre NAD nicotinamide adenine dinucleotide NADH nicotinamide adenine dinucleotide (reduced) OD optical density PCR polymerise chain reaction PD peptone dextrose PEG polyethyleneglycol Pf protoplast fusant Pir-CWPs protein with internal repeats-CWPs QUACS quaternary ammonium compounds rDNA ribosomal deoxyribonucleic acid RNase ribonuclease ROS reactive oxygen species r.p.m revolutions per minute rRNA ribosomal ribonucleic acid s second Sc Saccharomyces cerevisiae SD standard deviation SDS sodium dodecyl sulphate SE standard error SEM scanning electron microscopy SHAM salicylhydroxamic acid SMT sorbitol magnesium chloride Tris-HCl STRE stress responsive elements T thymine TAE Tris-acetate EDTA Taq Thermus aquaticus TE Tris-HCl EDTA TEM transmission electron microscopy Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride Uni Unilever UHP ultra high purity UV ultra-violet v/v volume:volume ratio w/v weight:volume ratio wt weight WT wild-type YD yeast extract dextrose YP yeast extract peptone YPA yeast extract peptone acetate YPD yeast extract peptone dextrose YPE yeast extract peptone ethanol YPG yeast extract peptone glycerol Zb Zygosaccharomyces bailii Zk Zygosaccharomyces kombuchaensis # List of Tables | Table 1.1 | Food spoilage microorganisms of major industrial concern | 3 | |------------|---|------------| | Table 1.2 | Modern methods of food preservation | 17 | | Table 1.3 | Major organic acid food preservatives and their uses | 22 | | Table 2.1 | Yeast strains used in this study | 40-41 | | Table 2.2 | Plasmids used in this study | 42 | | Table 2.3 | List of media used in this study | 42 | | Table 2.4 | Organic acids used in this study | 44 | | Table 2.5 | Primers used for HOG colony PCR | 54 | | Table 3.1 | Differences in short chain organic acid MIC (mM) values between | | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 61 | | Table 3.2 | Differences in medium chain organic acid MIC (mM) values | | | | between Z. bailii, Z. kombuchaensis and S. cerevisiae | 66 | | Table 3.3 | Differences in longer chain organic acid MIC (mM) values between | | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 71 | | Table 4.1 | Effects of YPD composition on organic acid MIC (mM) in | | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 8 0 | | Table 4.2 | Effects of glucose concentration on organic acid MIC (mM) in | | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 81 | | Table 4.3 | Effects of carbon source on organic acid MIC (mM) in Z. bailii, | | | | Z. kombuchaensis and S. cerevisiae | 83-84 | | Table 4.4 | Effects of nitrogen source on organic acid MIC (mM) in Z. bailii, | | | | Z. kombuchaensis and S. cerevisiae | 85 | | Table 4.5 | Effects of water activity on organic acid MIC (mM) in Z. bailii, | | | | Z. kombuchaensis and S. cerevisiae | . 87 | | Table 4.6 | Effects of vitamin additions on organic acid MIC (mM) in Z. bails | | | | Z. kombuchaensis and S. cerevisiae | . 89 | | Table 5.1 | Differences in cell length and cell wall thickness between Z. bailing | | | m 11.60 | Z. kombuchaensis and S. cerevisiae | 104 | | Table 5.2 | Differences in organic acid resistance (mM) between S. cerevisiae | | | T-11- (1 | cell wall mutants | 134 | | Table 6.1 | Differences in organic acid resistance (mM) between S. cerevisiae | | | T-1- () | grande and petite cells | 145 | | Table 6.2 | Frequency of protoplast fusion between Z. bailii, Z. kombuchaens | | | T-bl- (2 | and S. cerevisiae | 152 | | Table 6.3 | Physical characterisation of protoplast fusants | 153 | | Table 6.4 | Organic acid resistance (mM) of Z. bailii, Z. kombuchaensis in | 161 | | Table 6.5 | comparison with S. cerevisiae and protoplast fusants Organic acid resistance (mM) of Z. bailii, Z. kombuchaensis in | 101 | | 1 aute 0.5 | comparison with S. cerevisiae and protoplast fusants after | | | | ethidium bromide treatment | 162 | | Table 7.1 | Differences in c.f.u counts between Z. bailii, Z. kombuchaensis an | | | 1 able /.1 | S. cerevisae | 181 | | Table 8.1 | Differences in inhibitor resistance between strains of Z. bailii | 202 | | Table 8.2 | Mean MIC (mM) ± standard error of
organic acids on Z. bailii, | 202 | | TWIC O.T | Z. kombuchaensis and S. cerevisiae | 203 | | Table 8.3 | Morphological and physiological differences between strains of | 203 | | TWING OW | Z. bailii | 205 | | | LI. UGIIII | 200 | # **List of Figures** | Figure 1.1 | Phylogenetic tree of the Zygosaccharomyces genus based on | 6 | |----------------|---|-----| | E! 1 0 | 26S rDNA D1/D2 sequences | 00 | | Figure 1.2 | Structure of common organic acids | 23 | | Figure 1.3 | Schematic representation of the possible resistance mechanisms | •• | | *** | adopted by yeasts to weak-acid preservatives | 29 | | Figure 1.4 | Organisation of nuclear rRNA genes | 36 | | Figure 3.1 | Effects of formic acid on Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae growth | 62 | | Figure 3.2 | Effects of acetic acid on Z. bailii, Z. kombcuahaensis and | | | | S. cerevisiae growth | 63 | | Figure 3.3 | Effects of propionic acid on Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae growth | 64 | | Figure 3.4 | Effects of hexanoic acid on Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae growth | 67 | | Figure 3.5 | Effects of sorbic acid on Z. bailii, Z. kombuchaensis and | | | · · | S. cerevisiae growth | 68 | | Figure 3.6 | Effects of benzoic acid on Z. bailii, Z. kombuchaensis and | | | • | S. cerevisiae growth | 69 | | Figure 3.7 | Effects of octanoic acid on Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae growth | 72 | | Figure 3.8 | Effects of nonanoic acid on Z. bailii, Z. kombuchaensis and | | | 1 1941 0 010 | S. cerevisiae growth | 73 | | Figure 3.9 | Effects of decanoic acid on Z. bailii, Z. kombuchaensis and | 13 | | riguic 3.7 | S. cerevisiae growth | 74 | | Figure 5.1 | S. cerevisiae cell wall structure and composition | 95 | | • | • • • • • • • • • • • • • • • • • • • | 93 | | Figure 5.2 | The effects of changing the standard transmission electron | 101 | | Fi 6.2 | microscopy fixative on yeast cell structure | 101 | | Figure 5.3 | Transmission electron microscopy comparison of yeast cell | 100 | | Dt | structure | 103 | | Figure 5.4 | Scanning electron microscopy comparison of yeast cell structure | 106 | | Figure 5.5 | Growth curves for Z. bailii, Z. kombuchaensis and S. cerevisiae | | | | grown in acetic acid | 107 | | Figure 5.6 | Transmission electron microscopy comparison of cell structure | | | | in the presence of 100 mM acetic acid | 109 | | Figure 5.7 | Scanning electron microscopy comparison of cell structure | | | | in the presence of 100 mM acetic acid | 110 | | Figure 5.8 | Transmission electron microscopy comparison of cell structure | | | | in the presence of 300 mM acetic acid | 111 | | Figure 5.9 | Scanning electron microscopy comparison of cell structure | | | | in the presence of 300 mM acetic acid | 112 | | Figure 5.10 | Transmission electron microscopy and scanning electron | | | | microscopy comparison of cell structure in the presence of | | | | 400 mM acetic acid | 113 | | Figure 5.11 | Growth curves for Z. bailii, Z. kombuchaensis and S. cerevisiae | | | 9 | grown in sorbic acid | 115 | | Figure 5.12 | Transmission electron microscopy comparison of cell structure | 113 | | 9 | in the presence of 1mM sorbic acid | 116 | | Figure 5.13 | Scanning electron microscopy comparison of cell structure | 110 | | a agust Joseph | in the presence of 1mM sorbic acid | 117 | | | in the presence of finital solute acid | 117 | | Figure 5.14 | Transmission electron microscopy comparison of cell structure in the presence of 2 mM sorbic acid | 118 | |--------------|---|---| | Figure 5.15 | Scanning electron microscopy comparison of cell structure | | | T1 | in the presence of 2 mM sorbic acid | 119 | | Figure 5.16 | Transmission electron microscopy and scanning electron | | | | microscopy comparison of cell structure in the presence of 3 mN | | | | and 4 mM sorbic acid | 120 | | Figure 5.17 | Growth curves for Z. bailii, Z. kombuchaensis and S. cerevisiae | 400 | | | in the presence of nonanoic acid | 122 | | Figure 5.18 | Transmission electron microscopy comparison of cell structure | | | | in the presence of 0.2 mM nonanoic acid | 124 | | Figure 5.19 | Scanning electron microscopy comparison of cell structure | | | | in the presence of 0.2 mM nonanoic acid | 125 | | Figure 5.20 | Transmission electron microscopy comparison of cell structure | | | | in the presence of 0.4 mM nonanoic acid | 126 | | Figure 5.21 | Scanning electron microscopy comparison of cell structure | | | | in the presence of 0.4 mM nonanoic acid | 127 | | Figure 5.22 | Differences in sensitivity to cell wall/cell membrane disrupting | | | | agents between Z. bailii, Z. kombuchaensis and S. cerevisiae 12 | 29-130 | | Figure 5.23 | Differences in chitin distribution between Z. bailii, | | | _ | Z. kombuchaensis and S. cerevisiae | 132 | | Figure 5.24 | Differences in chitin content between Z. bailii, | | | Ü | Z. kombuchaensis and S. cerevisiae | 134 | | Figure 6.1 | Differences in sensitivity to ethidium bromide and petite | | | • | forming capabilities between Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae | 144 | | Figure 6.2 | Protoplast formation for Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae in β-glucoronidase and lysozyme | 147 | | Figure 6.3 | Protoplast formation using Zymolyase for Z. bailii, | • | | 1 1941 0 010 | Z. kombuchaensis and S. cerevisiae | 148 | | Figure 6.4 | Confirmation of protoplast fusion between Z. bailii, | 1.0 | | riguic 0.4 | Z. kombuchaensis and S. cerevisiae | 150 | | Figure 6.5 | Transmission electron microscopy comparisons of protoplast | 150 | | riguit 0.3 | fusants | 154 | | Figure 6.6 | Scanning electron microscopy comparisons of protoplast fusants | | | Figure 6.6 | | | | Figure 6.7 | Growth curves for Z. bailii, Z. kombuchaensis, S. cerevisiae and | | | E! (0 | protoplast fusants in YPD and YPG | 157 | | Figure 6.8 | Differences in sensitivity to ethidium bromide and petite | 150 | | F1 (0 | forming capabilities between protoplast fusants | 159 | | Figure 6.9 | Differences in growth and acetic acid utilisation between | 1.64 | | T1 (10 | Z. bailii, Z. kombuchaensis, S. cerevisiae and protoplast fusants | 164 | | Figure 6.10 | Differences in growth and propionic acid utilisation between | | | | Z. bailii, Z. kombuchaensis, S. cerevisiae and protoplast fusants | 165 | | Figure 7.1 | Components of the S. cerevisiae MAP kinase pathways | 173 | | Figure 7.2 | Morphology of Z. bailii, Z. kombuchaensis and S. cerevisiae | _ | | | in the presence of isoamyl alcohol and glycerol | 175 | | Figure 7.3 | Effects of isoamyl alcohol and glycerol on yeast growth and | | | | pseudohyphal formation in Z. bailii, Z. kombuchaensis and | | | | S. cerevisiae | 176 | | rigure 7.4 | Transmission electron microscopy comparison of Z. bailii, Z. kombuchaensis and S. cerevisiae in the presence of isoamyl | | |-------------|---|---------| | | alcohol | 178 | | Figure 7.5 | Scanning electron microscopy comparison of Z. bailii. | | | 3 . | Z. kombuchaensis and S. cerevisiae in the presence of isoamyl | | | | alcohol | 179 | | Figure 7.6 | Effects of isoamyl alcohol on total glycerol content in | | | | Z. bailii, Z. kombuchaensis and S. cerevisiae | 183 | | Figure 7.7 | Plasmid confirmation by restriction endonuclease digests | 185 | | Figure 7.8 | Confirmation of yeast transformation by complementation of | | | · · | auxotrophic requirements | 186 | | Figure 7.9 | Transformation confirmation by colony PCR and growth on | | | J | sorbitol media | 188 | | Figure 7.10 | Morphology of S. cerevisiae hog mutants in the presence of | | | • | isoamyl alcohol and glycerol | 189-190 | | Figure 7.11 | Effects of isoamyl alcohol on yeast growth and pseudohyphal | | | · · | formation in S. cerevisiae hog mutants | 191 | | Figure 7.12 | Differences in sensitivity to cell wall/cell membrane disrupting | ž | | • | agents between hog mutants | 193-194 | | Figure 8.1 | Differences in colony morphology between strains of Z. bailii | 206 | | Figure 8.2 | Differences in cell morphology and pseudohyphal formation | | | | between strains of Z. bailii | 207 | | Figure 8.3 | Differences in growth in complex medium between strains of | | | • | Z. bailii | 209 | | Figure 8.4 | Dry weight comparison of Z. bailii strains | 210 | | Figure 8.5 | 26S rDNA D1/D2 sequence alignment of Z. bailii strains | 212-213 | | Figure 8.6 | Phylogenetic tree of Z. bailii 26S rDNA D1/D2 sequences with | | | - | other closely related Zygosaccharomyces species | 214 | | 1. General Intro | duction | | |------------------|---------|--| | | | | | | | | ## 1.1 Food spoilage Food spoilage can be considered as the undesirable changes caused by the presence or activities of microorganisms, which result in a food becoming spoiled and unacceptable for human consumption. Spoilage is a problem for the food industry as it ultimately results in economic loss (Loureiro, 2000). Economic loss as a result of spoilage may be incurred in several ways: loss of product, product recall, product disposal, customer compensation and loss of future sales. The actual number of food spoilage cases remains underestimated due to commercial confidentiality (Fleet, 1992). The prevention of food spoilage is, therefore, of major industrial concern. ## 1.2 Sources of food spoilage Food spoilage is known to occur during pre- and post-harvesting of food and during preservation, packaging, transportation and storage (Neves et al., 1994; Roller, 1999). The microorganisms, which cause spoilage, can be introduced from an external source during processing of food. Harmless commensal microorganisms can also become the
source of spoilage, depending upon the changes, which take place during harvesting (Adams and Moss, 2000). Spoilage from raw materials including fruits is believed to be one of the main sources of spoilage (Fleet, 1992). The means by which foods become spoilt is an area of considerable debate, and can often lead to costly legal disputes between suppliers and manufacturers. ## 1.3 Food spoilage microorganisms The types of microorganisms that cause food spoilage are vast in comparison with those, which cause food poisoning (Russell and Gould, 1991). Table 1.1 summarises the food spoilage microorganisms of major industrial concern. Bacteria comprise the Table 1.1 Food spoilage microorganisms of major industrial concern (adapted from Russell and Gould, 1991). | Microorganism | Food | |--|--| | Gram-negative, catalase-positive, oxidase- | Fish, meat, poultry and other protein rich | | positive rods e.g. Pseudomonas | foods stored at chilled temperatures | | Gram-negative, catalase-positive, oxidase- | Fish, meat, poultry and other protein rich | | negative rods e.g. Acinetobacter | foods | | Gram-positive, catalase-positive, non- | Cured meats and sausages, vegetables | | sporing rods e.g. Corynebacterium | and fresh meats in modified atmosphere | | | packaging | | Gram-positive, catalase-positive, cocci | Cured meat products and milk-based | | e.g. Staphylococcus | products | | Gram-positive, catalase-negative, non- | Milk and milk-based products, | | sporing rods e.g. Lactobacillus | vegetables and meat in vacuum or low | | | oxygen packs | | Gram-positive, catalase-negative cocci | Cured meats, particularly if low in salt | | e.g. Streptococcus | | | Gram-positive, catalase-positive, spore- | Heated foods with pH values above pH 4 | | forming rods e.g. Bacillus | e.g. rice | | Gram-positive, catalase-negative, spore- | Heated foods with pH values above pH 4 | | forming rods e.g. Clostridium | and with restricted oxygen availability | | Yeasts e.g. Zygosaccharomyces | Low pH and low water activity foods | | | independent of oxygen availability | | Moulds e.g. Penicillium | Low pH and low water activity foods | | | exposed to air | majority of food spoilage microorganisms, causing the spoilage of almost all food types including meats, vegetables and dairy products. Yeasts and moulds only become important as food spoilage microorganisms in conditions that do not permit bacterial growth: yeasts and moulds, therefore, predominant in foods at low pH and with low water activity. ## 1.4 Food spoilage yeasts The application of yeasts in baking and brewing means that man regularly consumes large numbers of viable yeast with no apparent adverse consequences (Fleet, 1992). In addition, the pathogenic yeasts associated with human infections, such as *Candida albicans* are not transmitted through foods (Hurley *et al.*, 1987). Research into food spoilage has, therefore, largely focused on that caused by bacterial contamination, with yeast attributed food spoilage receiving relatively little attention (Fleet, 1992). Research into yeast attributed food spoilage has recently been increased due to several factors. Firstly, consumers are demanding a more natural product, thereby, forcing manufacturers to find alternative strategies of food preservation. Secondly, European laws on both the types and concentrations of food preservatives are becoming restrictive. Thirdly, there is a growing trend for yeast-free diets as consumers become more concerned about possible allergic reactions. Finally, both the numbers and types of yeasts isolated from foods are increasing (Pitt and Hocking, 1997; Steels et al., 1999a, b). Yeasts commonly isolated from foods include abnormal Saccharomyces strains and members belonging to Brettanomyces, Kluyveromyces and Candida genera (Fleet, 1992). Davenport (1996; 1997) proposed the existence of three groups of yeasts, which could be isolated from a soft drinks factory. Group 1 yeasts, were true spoilage yeasts, being able to proliferate in soft drinks thereby causing their spoilage. Group 2 yeasts could cause spoilage as a result of a mistake in manufacturing and were termed hygiene spoilage yeasts. Group 3 yeasts were not capable of spoilage themselves, but were indicators of hygiene. Among the most prominent spoilage yeasts in group 1 are belonging to the Zygosaccharomyces genus. Members members the Zvgosaccharomyces genus share many similarities with the Saccharomyces yeasts and were originally classified under this genus (Steels et al., 1999a). Barker introduced the genus Zygosaccharomyces at the beginning of the twentieth century for yeasts in which the conjugation of two (zygo) individual cells resulted in the formation of asci, which contained smooth ascospores (van der Walt & Johannsen, 1975). Zygosaccharomyces spoilage yeasts until recently were regarded as a phylogenetically heterogeneous group being intermixed with species of Kluyveromyces, Saccharomyces and Torulaspora (James et al., 1994). Figure 1.1 shows the latest phylogenetic classification of the Zygosaccharomyces yeasts as proposed by Kurtzman (2003). In the new taxonomy the Zygosaccharomyces genus includes only six species with Z. cidri, Z. fermentati, Z. mrakii, Z. florentinus and Z. microellipsoides now being classified as Lachancea cidri and Lachancea fermentati, Zygotorulaspora mrakii and Zygotorulaspora florentinus, and Torulaspora microellipsoides, respectively (Kurtzman 2003). Characteristics shared by the *Zygosaccharomyces* yeasts include being osmotolerant, fructophilic, highly fermentative, vitamin requiring and preservative resistant. However, individual species of this genus have distinct characteristics, which allow them to proliferate in their own environment. *Z. rouxii* is the type species of this genus and is one of the most osmotolerant yeasts known, growing in environments of low water Figure 1.1 Phylogenetic tree of the Zygosaccharomyces genus as proposed by Kurtzman (2003) The phylogenetic tree is based on 26S rDNA D1/D2 sequences with S. cerevisiae being used as the outgroup species. Bar is representative of one substitution per 100 nucleotides. Bootstrap values $\geq 50\%$ are given. T = type strain. NCYC National Collection Figure reproduced from Steels et al. (2002) Yeast Cultures, Norwich UK, NRRL ARS Culture Collection, National Centre for Agricultural Utilization Research, Peoria, IL, USA activity and being found at a water activity of 0.62 in fructose (Tilbury, 1980). Z. rouxii therefore causes the spoilage of foods with low water activity including sugar syrups (Steels et al., 2000). Z. mellis is also osmophilic and is believed to be responsible for the spoilage of honey (Scarr and Rose, 1966). Z. mellis was distinguished from Z. rouxii by DNA relatedness (Kurtzman, 1990). Z. kombuchaensis has recently been isolated from 'Kombucha tea' (Kurtzman et al., 2001). Z. kombuchaensis has been identified as a potential spoilage yeast tolerating low pH conditions and is very closely related to Z. lentus (Steels et al., 2002). The species of Z. lentus was identified from yeasts previously mis-classified as Z. bailii (Steels et al., 1999a, b). Z. bailii itself is not a new species, having been identified as Saccharomyces bailii in 1895 by Linder and having its current nomenclature adopted in 1975 (Davenport, 1976). Z. bailii is very closely related to the slightly more osmotolerant, but more preservative sensitive Z. bisporus. Z. bailii and to a lesser extent Z. bisporus, are responsible for spoilage of preserved food (Thomas and Davenport, 1985). Z. bailii causes the spoilage of mayonnaise, pickles, marzipan, fruit concentrates, soft drinks, wines and several other foods and beverages (Thomas and Davenport, 1985). The most damaging of the Zygosaccharomyces yeast from a manufacturing point of view is often considered to be Z. bailii. Z. bailii is particularly problematic due to its ability to tolerate high levels of weak-acid preservatives under low pH conditions that inhibit the growth of most other food spoilage microorganisms. ## 1.5 Characteristics of yeast attributed food spoilage Over the years, there have been a number of reviews into yeast attributed food spoilage (Deak, 1991; Fleet, 1992; In't Veld, 1996; Brul & Coote, 1999; Loureiro and Querol, 1999; Roller, 1999; Loureiro, 2000; Piper et al., 2001; Brul et al., 2002). In general large numbers of yeast in excess of 10⁶ cells per gram are required before spoilage is apparent. Z. bailii has been reported to cause spoilage at as little as one cell per litre, making it very difficult to prevent spoilage (Thomas and Davenport, 1985). Food spoilage attributed to yeasts often manifests itself as distorted packaging due to carbon dioxide production (Fleet, 1992). Z. bailii has the ability to proliferate under high carbon dioxide levels (Malfeito-Ferreira et al., 1997) and can produce sufficient carbon dioxide to explode bottles, which may cause serious injury (Grinbaum et al., 1994). The other major products of yeast growth (all of which have the potential to spoil a product) include alcohols, organic acids and esters (Berry and Watson, 1987). The ability of Zygosaccharomyces yeasts to produce secondary products remains largely undetermined, even though Z. rouxii has been manipulated to enhance formation of isoamyl alcohol (Yoshikawa et al., 1995). Modifications associated with Z. bailii spoilage are haze formation and flavour impairment in the form of hydrogen sulphide (Thomas and Davenport, 1985). ## 1.6 Factors affecting the growth and survival of yeasts in food Yeasts as unicellular eukaryotes are exposed to various forms of stress, which have a direct and indirect effect on their growth and survival. The factors that affect yeast growth in food include: intrinsic factors (nutrients, water activity, pH and redox potential), extrinsic factors (temperature, oxygen and carbon
dioxide) and implicit factors (properties of the microorganisms present in the food and their interactions). These growth factors often interact in various combinations making the exact effects of each stress difficult to quantify. #### 1.6.1 Nutrients The inability of a microorganism to utilize a major component of a food can limit growth and act as a severe disadvantage (Adams and Moss, 2000). Carbohydrates are the most important nutrients for yeasts acting as both an energy and growth source (Deak, 1991). Differences in aerobic (assimilation) and anaerobic (fermentation) uses of carbon sources amongst yeasts, not only limits the food which they spoil but also acts as an important criterion in their taxonomic characterisation (Barnett *et al.*, 2000). In addition to a carbon source, yeasts also require a source of nitrogen, microelements and vitamins, all of which are normally provided in natural substances and foods (Deak, 1991). Z. bailii is known to require a source of B-group vitamins, including biotin and thiamine for growth (Thomas and Davenport, 1985). The problem food manufacturers' encounter between a desirable product, which will be appealing to customers, and a product that is free from spoilage is illustrated by the following example. The addition of fruits containing sucrose and various other sugars to yoghurt can lead to a more appealing product for consumers but also increases the amount of carbohydrates available, and can lead thereby to a more diverse spoilage microflora (Adams and Moss, 2000). #### 1.6.2 Water activity (a_w) Water activity can be defined as the amount of water available for microbial growth, which relates to the concentration of solutes in a food (Deak, 1991). Bacteria are sensitive to reduced water activity only being able to spoil foods with an aw of 0.90 or greater. Yeasts in general are more tolerant to reduced water activity, normally preferring an aw of 0.85 for growth. However, some yeasts, described as osmotolerant or xerotolerant, can grow at values of water activity as low as 0.62. The absolute limit for microbial growth in foods is a water activity of 0.61. Any spoilage that occurs below this level is the result of chemical rather than microbial spoilage (Garbutt, 1997). ## 1.6.3 pH pH (defined as -log[H⁺]) has a major influence on the growth and survival of microorganisms in foods. The pH of pure water is pH 7.0. The majority of foods are slightly acidic (pH <7.0), with alkaline (pH >7.0) foods generally having an unpleasant taste (Adams and Moss, 2000). Yeasts in general have a pH range between pH 3-8, with an optimum of around pH 4.5, and are less sensitive to pH than bacteria (Garbutt, 1997; Adams and Moss 2000). *Zygosaccharomyces spp.* grow at low pH, examples of which are *Z. bailii, Z. kombuchaensis* and *Z. lentus* with a minimum pH for growth of between pH 1.5-2.0 (Steels *et al.*, 2002). The pH tolerance of a yeast is dependent upon several factors, including temperature, nutrient availability, water activity and the presence of organic acids (Deak, 1991). Many organic acids lower the pH of foods and are therefore applied to many food substances as preservatives as discussed in section 1.9. ## 1.6.4 Redox potential (E_h) Redox potential is a measure of the tendency of a substance to become oxidised (lose electrons) or become reduced (gain electrons). The redox potential of a food is dependent upon a number of factors including oxygen concentration, density of food, processing of food, pH, and presence of reducing substances (Garbutt, 1997). Microbial growth in food reduces its redox potential either by using any oxygen present or by producing reducing substances such as hydrogen (Adams and Moss, 2000). The relationship between redox and microbial growth in foods is complex and far from understood. #### 1.6.5 Temperature Temperature is one of the most important factors affecting growth of all microorganisms. The vast majority of yeasts are mesophiles having an optimum temperature of between 20-30°C. Few types of yeasts are psychrophiles with an optimum temperature for growth below 20°C e.g. *Leucospoirdium spp*. Some *Candida spp*. are thermophiles with a minimum temperature of growth of 20°C (Walker, 1998). The majority of food spoilage yeasts are mesophiles. At temperatures exceeding the maximum for growth, yeast viability declines at an exponential rate (Walker, 1998). It has been speculated that the cell membrane is the primary site of action for most thermal damage, with changes in fluidity, permeability and ion leakage being evident (Walker, 1998). Fatty acids and lipids present within cell membranes play an important part in determining the range of temperatures at which growth is possible (Swan and Watson, 1997). Secondary, consequences of thermal damage include irregular cell growth, decline in intracellular pH, ribosome breakdown, DNA strand breakage (Dawes, 1976; Piper 1997; Walker, 1998) and induction of respiratory-deficient petites (Sherman, 1959). ## 1.6.6 Oxygen and carbon dioxide Oxygen can be considered as an important growth factor, as yeasts grow poorly in its complete absence (Walker, 1998). The requirement for oxygen differs amongst yeasts, with the majority being facultative anaerobes, switching from aerobic (respiration) to anaerobic (fermentation) metabolism depending upon the availability of oxygen (Pasteur effect) and glucose (Crabtree effect) (Deak, 1991; Walker, 1998). Fermentative spoilage is very common, as fermenting yeasts can grow under low oxygen conditions such as those frequently encountered in foods and beverages (Deak, 1991). The presence of oxygen within a cell leads to the generation of reactive oxygen species: which are powerful oxidising agents that can react with and destroy most cell constituents, including phospholipids in cell membranes (Garbutt, 1997; Dawes, 1999). The restriction of oxygen in foods and beverages that are rich in complex nutrients has recently been reported not to be an effective strategy for the inhibition of spoilage by Z. bailii due to the complex nutrients providing everything for growth (Rodrigues et al., 2001a). The inhibitory effect of carbon dioxide on yeast is due to several factors, whose individual contributions are yet to be fully determined (Adams and Moss, 2000). In yeast, growth and metabolic activity are normally impaired at carbon dioxide pressures of 0.3 MPa (Jones and Greenfield, 1982). However, *Z. bailii* can proliferate at carbon dioxide levels around 0.5 MPa. Carbon dioxide has the ability to act as a weak organic acid (section 1.9), and is, therefore, capable of penetrating the plasma membrane and acidifying the interior of a cell (Adams and Moss, 2000). The factors relating to the resistance or sensitivity of yeasts to carbonation are not fully understood (Deak, 1991). #### 1.6.7 Implicit factors These are the factors that arise from the microorganisms themselves and their responses to the environment and one another. The implicit factors determine the rate of growth within the given environment, they originate from the following microbial interactions: mutualism (both species benefit), antagonism (one species benefits at the detriment of the other), and commensalism (one species benefits while the other is not affected) interactions. An example of antagonism is as follows: yeasts in general are slow growing in comparison to bacteria, but can produce ethanol which is inhibitory to bacteria, thereby, allowing the proliferation of the yeast. ## 1.7 Yeast Stress Responses In response to adverse environmental changes yeasts undergo a series of stress responses, the aims of which are to protect the cell from the detrimental affects of the stress and to repair molecular damage (Mager and Hohmann, 1997). The stress conditions encountered by yeasts are largely those, which affect their ability to survive and grow in foods (section 1.6), and include starvation, heat, osmolarity, oxidative, low pH and weak-acid stress (Dawes, 1999). A consequence of a stress response is the acquisition of stress tolerance; therefore, a mild stress can lead to improved tolerance to a more severe stress (Mager and Hohmann, 1997). The stress response of yeasts can be divided into various sections; firstly, the sensing of the stress and the activation of signalling pathways, this is followed by either specific responses to that stress or a general response in which resistance to a number of stresses is gained. Both the specific and general responses result in changes in gene expression and in enzyme activities. The general response results in cross-protective mechanisms. The basis of the general stress response has been attributed to a large number of (general) stress responsive element (STRE) genes (Mager and Hohmann, 1997). The rationale behind the STRE genes is that under general stress conditions changes in the expression of a number of genes involved in stress responses will be beneficial to the cell. The outcome of the stress response, whether specific or general, is the acquisition of stress tolerance and the resumption of growth (Mager and Hohmann, 1997). #### 1.7.1 Starvation Nutrient starvation can be regarded as the utilisation of one or more essential nutrient sources so that it becomes limited resulting in the cell entering stationary phase. Stationary phase is when the cell enters G_0 of the cell cycle and includes a number of specific characteristics: elevated levels of storage carbohydrates, elevation of STRE genes (under the control of the cAMP-dependent protein kinase A), repression of ribosomal genes, and an increase in resistance to stress, in particular heat stress and resistance to cell wall lytic enzymes (Mager and Hohmann, 1997). A consequence of nutrient limitation is the induction of morphological change in the form of pseudohyphae. The nature of pseudohyphal development and the signalling pathways remain to be fully elucidated (Lorenz et al., 2001). #### 1.7.2
Heat stress The response of yeasts to heat shock is regarded as the best characterised stress response (Piper, 1997). Heat shock genes are induced on exposure to a shift in temperature via the activation of Hsf1p (a heat shock-specific transcription factor), which promotes transcription through the heat shock elements (HSEs), which are present in the promoter of target genes. A consequence of the induction of heat shock genes is the transient accumulation of heat shock proteins. Heat shock proteins (Hsp) thus far identified include the Hsp70 family, Hsp60, Hsp90, Hsp104 and Hsp26 (Dawes, 1999). The functions of heat shock proteins are to act as molecular chaperones in protein folding and transport and thus play an important role in protecting other proteins against thermal denaturation (Piper, 1997). The actions of the heat shock response result in the restoration of normal biological activity. #### 1.7.3 Osmolarity Osmotic stress in which changes in osmolarity takes place can be described as either hyper-osmotic stress in which cells are transferred to a high salt or sugar medium, or hypo-osmotic stress in which cells are transferred to a low salt or sugar medium. The hyper-osmotic response is the better characterised of the osmotic responses (Nevoigt and Stahl. 1997; Mager and Siderius, 2002). A hyper-osmotic shock results in a rapid loss of water and cell shrinkage and the recruitment of water from the vacuole (Hohmann, 1997; Mager and Siderius, 2002). The response to hyper-osmotic stress is firstly the temporary arrest of growth, followed by the closure of the glycerol channel Fps1p (Hohmann, 1997). The closure of Fps1p allows the intracelullar accumulation of glycerol, which as a major compatible solute helps to retain cell turgor (Mager and Varela, 2002). The high-osmolarity glycerol (HOG) mitogen activated protein (MAP) kinase pathway is also triggered (section 7.1). The HOG pathway regulates transcription of the glycerol-3-phosphate dehydrogenase (*GPD1*) gene, which results in the synthesis of glycerol. Once the cell has adapted to hyper-osmotic stress normal growth resumes. #### 1.7.4 Oxidative Stress Oxidative stress can be induced by reactive oxygen species (ROS) that can react with and destroy various constituents of the yeast cell (Dawes, 1999). The forms of ROS derived from oxygen include the superoxide anion (O₂⁻), hydrogen peroxide (H₂O₂) and the highly reactive hydroxyl radical (HO⁻). These ROS are known to cause a wide range of biological damage including damage to lipids, proteins and DNA (Storz et al., 1987). To combat the dangers of ROS generation, yeasts have developed a number of defence mechanisms. The aim of the defence mechanisms, which include both enzymatic and non-enzymatic systems are to maintain cellular redox state and protect cellular constituents (Jamieson, 1998). It is the balance between the ROS and the defence mechanisms of a cell, which determines the extent of the oxidative stress. The role of signal transduction pathways in the oxidative stress response of *S. cerevisiae* remains to be elucidated, but cAMP levels are known to be of importance (Jamieson, 1998). Recently, a role for the HOG pathway in oxidative stress has been shown (Navarro-Garcia et al., 2003), indicating overlap between osmotic and oxidative stress pathways. #### 1.7.5 Low pH and weak-acid Stress The ability of yeasts to tolerate high levels of weak-organic acid at low pH has been the subject of intense research (Krebs, et al., 1983; Warth, 1990; Piper, 1997; Steels et al., 1999; Stratford and Anslow, 1996, 1998; Piper et al., 2001). The possible resistance mechanisms utilised by yeasts and in particular by Z. bailii and S. cerevisiae to high concentrations of organic acids are discussed in section 1.10. However, at least in S. cerevisiae there is increasing evidence for the stress response to weak-organic acids being that of a previously uncharacterised stress response (Hatzixanthis et al., 2003; Kren et al., 2003). The induction of the weak-organic acid stress response, which manifests itself through the induction of PDR12 in S. cerevisiae, is not a response to oxidative stress, hypotonic stress, calcium/calmodulin signalling, organic alcohols or acetate (Hatzixanthis et al., 2003). The strongest inducers of PDR12 are unbranched monocarboxylic acids with chain length C₃-C₈ (Hatzixanthis et al., 2003). In summary, the stress response of S. cerevisiae to weak-organic acid stress is increasingly being found to represent a unique stress response. # 1.8 Methods of food preservation Modern food preservation procedures are based on the manipulation of factors affecting microbial growth (section 1.6). Food preservation in one form of another has been used for thousands of years. Smoking and the addition of salt to foods are some of the earliest food preservation methods (Adams and Moss, 2000). Food preservation techniques in current practice are summarised in Table 1.2. The majority of food preservation techniques focus on the delay or inhibition of microbial growth, with few acting on the direct inactivation of microorganisms. The application of several preservation methods to prevent microbial spoilage is called the 'hurdle effect'; each method on its own will not inhibit microbial growth, but do so when applied collectively (Leistner and Rodel, Table 1.2 Modern methods of food preservation (Modified from Adams and Moss, 2000) | Procedure | Factor affecting growth or survival | |---|---| | Cooling, chill distribution and storage | Low temperature to retard growth | | Freezing, frozen distribution and storage | Low temperature and reduction of water | | | activity to prevent growth | | Drying, curing and conserving | Reduction in water activity sufficient to | | | delay or prevent growth | | Vacuum and oxygen-free 'modified | Low oxygen tension to inhibit aerobes | | atmosphere' packaging | and delay growth of facultative anaerobes | | Carbon dioxide enriched 'modified | Specific inhibition of some | | atmosphere' packaging | microorganisms by carbon dioxide | | Addition of acids | Reduction of pH value and additional | | | acid inhibition | | Emulsification | Compartmentalisation and nutrient | | | limitation; water-in-oil emulsion foods | | Addition of preservatives | Inhibition of specific groups of | | | microorganisms | | Pasteurisation and Appertisation | Application of heat to inactivate target | | | microorganisms | | Radurisation and radicidation | Application of ionising radiation to | | | inactivate target microorganisms | | High hydrostatic pressure | Pressure inactivation of vegetative | | | microorganisms | 1976). An example of this approach includes lowering water activity, decreasing pH, restricting temperature and the addition of a preservative, all at sub-inhibitory levels, which collectively prevent microbial growth. Another advantage of the 'hurdle technology' is that consumers may find the product more acceptable as lower concentrations of preservatives are used. ### 1.8.1 Pasteurisation and Appertisation Pasteurisation involves heating foods to temperatures between 60-80°C. Pasteurised foods include milk, ice cream, fruit juices and pickles. The temperature and duration of pasteurisation is dependent upon the food (Garbutt, 1997; Adams and Moss, 2000). Appertisation is the heating of foods to temperatures above 100°C; examples include canning of low pH foods and UHT treatment of milk (Garbutt, 1997). The two aforementioned preservation techniques represent the main application of heat food preservation. Heat is primarily applied to kill bacterial pathogens, and their spores with a secondary application directed towards the prevention of spoilage microorganisms (Adams and Moss, 2000). ### 1.8.2 Refrigeration and freezing Refrigerated or chilled foods are stored at temperature between 0-5°C; frozen foods are stored at temperatures of -10 to -18°C (Russell and Gould, 1991). Psychrophiles, (including some yeasts), are capable of growth at chilled and refrigerated temperatures; therefore spoilage will eventually occur. Chilling or refrigerating foods increases the storage life of a product by increasing the lag phase of microbial growth. Storage life of chilled and refrigerated foods is dependent on several factors including composition of food, potential spoilage microflora and the use of complementary preservation techniques (Garbutt, 1997). Due to the absence of microbal growth, no spoilage of frozen foods takes place at temperature below around -10°C (Russell and Gould, 1991). #### **1.8.3 Curing** Curing as a preservation technique involves the removal of liquid water by salting, smoking or drying, leading to a reduction in water activity. The removal of water from foods is the oldest known preservation method. The techniques of water removal may have been modernised to become more reliable but the principles are the same (Adams and Moss, 2000). ### 1.8.4 Food preservatives Food preservatives are defined as 'substances that are capable of inhibiting, retarding or arresting the growth of microorganisms or any deterioration relating to the presence of microorganisms' (UK Food Regulations, 1989). Food preservatives can be divided into the following classes: organic acids and their esters (section 1.9), mineral acids (phosphoric acid), inorganic anions (sulphite and nitrite), carbon dioxide, sodium chloride, antibiotics (nisin and pimaricin) and smoke. Natural food preservatives (including vanillin, oregano and eugenol) are receiving increasing attention due to consumer pressure for more natural methods of food preservation. The regulations governing food preservatives do not include a number of substances, which are added to foods for other reasons but also provide broad preservative-resistance including food additives (Adams and Moss, 2000). #### 1.8.5 Radiation Radiation can act on microorganisms
indirectly (as do microwaves) or directly as with ultraviolet light and ionizing radiation. Microwave radiation (10⁹ Hz) acts on microorganisms indirectly in the presence of water by generating heat. Microwave ovens are used for cooking and re-heating foods domestically and throughout the catering industry. Microwave radiation has also been shown to have an application in the pasteurisation of milk; however, this has not been adopted on a commercial scale (Garbutt, 1997). Ultraviolet light (10¹⁵ Hz) can have a direct effect on microorganisms by damaging DNA replication: if sufficient damage is caused, cells will die. Applications of ultraviolet light to the food industry include: control of mould spores in bakeries and sterilisation of UHT milk packaging. Ionizing radiation (10¹⁸ Hz) is used on a limited scale for the decontamination of microorganisms in packaged foods. At the moment only foods that have received low-level irradiation including vegetables and poultry are commercially available (Garbutt, 1997). ### 1.8.6 Aseptic and modified atmosphere packaging The aseptic packaging of foods is vital for food manufacturers' in order to prevent contamination. The packaging of foods in modified atmospheres is aimed at the inhibition of fast growing microbes that could quickly cause spoilage (Adams and Moss, 2000). Modified atmosphere packaging can be classified as three different procedures; all of which are carried out in gas phase, which excludes atmospheric oxygen and retains moisture. In vacuum packaging, air is removed from the packaging causing it to collapse around the food. In modified atmosphere packaging (MAP), packaged food is flushed through with a gas containing a mixture of carbon dioxide, oxygen and nitrogen. Finally, in controlled atmosphere packaging (CAP) the product environment is maintained constant throughout storage (Adams and Moss, 2000). # 1.9 Organic acids as food preservatives The major organic acid preservatives and their uses are listed in Table 1.3. Figure 1.2 provides details of the structures of common organic acids. Organic acids employed as food preservatives in the main act to prevent the growth of yeasts and moulds with some antibacterial activity (Russell and Gould, 1991). The most common food preservatives are those classed as 'weak-acid preservatives' including acetic, propionic, sorbic and benzoic acid. Weak-acid preservatives in aqueous solution exist in a pH dependent equilibrium between undissociated uncharged acid molecules (HA) and a dissociated state with charge anions (A') and protons (H⁺). The pH at which the proportions of undissociated acid and dissociated charged anions/protons are equal is defined as the pK_a. This can be represented as an equilibrium expression $$pK_{a} = [H^{+}][A^{-}]/[HA]$$ The pK_a of an acid can be used to calculate the proportions of dissociated and undissociated forms of weak-acid preservatives at a given pH with the following formula: $$pH = pK_a + log[A]$$ [HA] The equation is referred to as the Henderson-Hasslebach equation. ### 1.9.1 Weak-acid preservative theory The 'weak-acid preservative theory' proposes that the highly lipophilic undissociated acid molecules, which predominate at low pH, diffuse across the plasma membrane into the cell. Once inside the cell the neutral pH of the cytoplasm causes the undissociated form to dissociate. The dissociation liberates protons and anions that cannot cross the plasma membrane and therefore accumulate in the cytoplasm. The result of dissociation is intracellular acidification, which inhibits microbial growth. Weak-acids known to Table 1.3 Major organic acid food preservatives and their uses (data compiled from Russell and Gould, 1991; Adams and Moss, 2000) | Organic acid | Typical uses | Concentrations (mg/kg) | |----------------|---|------------------------| | Formic acid | Pickles and mustard | 100 | | | Fruit juice concentrates | 4000 | | Acetic acid | Pickles | % levels | | | Chutneys | | | | Salad dressings | | | | Sauces | | | | Vinegars | | | Propionic acid | Bread | 2000-5000 | | | Flour confectionery | 1000-3000 | | | Jam and tomato puree | 1000 | | Sorbic acid | Non-alcoholic beverages | 100-1000 | | | Alcoholic beverages | 200 | | | Processed fruit and vegetables | 500-2000 | | | Bakery products | 1000-2000 | | : | Mayonnaise and salad dressings | 1000-2000 | | | Mustard | 250-1000 | | Benzoic acid | Non-alcoholic beverages | 100-500 | | | Alcoholic beverages | 200 | | | Fruit products | 500-2000 | | | Sugar and flour based confectionery | 1000 | | | Mayonnaise and salad dressings | 250-2500 | | | Mustard | 1000 | | Lactic acid | Fermented meat and dairy products | % levels | | | Carbonated drinks | | | Citric acid | Non-alcoholic drinks | % levels | | | Bakery products | | | A . 11 1 1 1 1 | stake ADI (ma ka ⁻¹ body sut) sorbic acid 25: ba | | Acceptable daily intake ADI (mg kg⁻¹ body wt) sorbic acid 25; benzoic acid 5, propionic acid 10, acetic and lactic acid no limit Figure 1.2 Structure of common organic acids Benzoic acid HOH $$C_3H$$ OH C_3H OH Formic acid Acetic acid Propionic acid $$C_3H$$ OH C_3H OH C_3H OH C_3H OH OH OH Octanoic acid Decanoic acid Cause a drop in intracellular pH include acetic acid (Neal et al., 1965; Arneborg et al., 2000), sulphite (Pilkington and Rose, 1988) and benzoic acid (Krebs et al., 1983). A number of mechanisms have been proposed for the inhibition of microbial growth: membrane disruption (Freese et al., 1973; Stratford and Anslow, 1996, 1998; Bracey et al., 1998), inhibition of the enzymes required for glycolysis (Krebs et al., 1983), stress on intracellular pH homeostasis (Cole and Keenan, 1987a; Holyoak et al., 1996; Bracey et al., 1998) and/or the direct accumulation of toxic anions (Eklund, 1983). #### 1.9.2 Acetic acid (E260) Acetic acid can be added in sufficient amounts to exert an effect on both flavour and product pH. Acetic acid in the main acts as a 'classic weak-acid preservative': inhibiting growth by reducing intracellular pH. Studies by Freese et al. (1973) have shown that acetic acid inhibits oxygen uptake and ATP production by over 70% in Bacillus subtilis. Acetic acid has also been shown to interact with the cell membrane to neutralise the electrochemical potential in bacteria (Sheu et al., 1972). In Escherichia coli acetic acid inhibition has been shown to be due to a problem with methionine biosynthesis, which leads to the accumulation of the toxic intermediate homocysteine (Roe et al., 2002). Recently, acetic acid has been shown to induce programmed cell death in S. cerevisiae (Ludovico et al., 2001) and Z. bailii (Ludovico et al., 2003), possibly as a result of oxidative stress. Interestingly, sugar induced apoptosis in S. cerevisiae has recently been reported (Granot et al., 2003). Therefore, the ability of sugar to induce cell death in the highly fermentative Z. bailii would prove of interest. ### 1.9.3 Propionic acid (E280) Propionic acid occurs naturally in a number of plants and in some cheeses through the activity of propionibacteria. Propionic acid is primarily used as an inhibitor of moulds with some bacterial and yeast inhibition. The inhibitor action of propionic acid has been shown to be predominantly that of a 'classic weak-acid preservative'. A secondary more general inhibitory mechanism involving the dissociated form of propionic acid may also be present (Moon, 1983). #### 1.9.4 Sorbic acid (E200) Sorbic acid is an unsaturated fatty acid 2-4-hexadienoic acid found as a precursor in the berries of the mountain ash. Sorbic acid and sorbates have a wide spectrum of action inhibiting fungi and bacteria. Sorbic acid has been shown to inhibit a number of enzymes including alcohol dehydrogenase, aspartase and succinic dehydrogenase (Martoadiprawito et al., 1963; York and Vaughn, 1964). Recently, research has questioned the action of some 'classic weak-acid preservatives'. Stratford and Anslow (1998) propose that sorbic acid acts as an inhibitor of membrane function in a similar manner to ethanol because it releases insufficient protons to inhibit as a 'classic weak-acid preservative' (Stratford and Ueckert, unpublished). The majority of studies on the action of sorbic acid have been conducted in bacteria. Freese et al. (1973) reported that sorbic acid inhibited amino acid uptake resulting in loss of membrane potential. Finally, sorbic acid has been shown to act on the cell wall, inhibiting the cell division of germinated spores of bacilli (Seward et al., 1982). ### 1.9.5 Benzoic acid (E210) Benzoic acid and sodium benzoate were the first antimicrobials permitted by the U. S. Food and Drug Administration (Jay, 1992). Benzoic acid occurs naturally in cranberries, plums, cherry bark and tea and is prepared synthetically for use in the food industry. It is believed to act via a multi-factorial mechanism, with its dominant aspect being as a 'weak-acid preservative'. Benzoic acid has been proposed to influence the membrane, either by interfering with membrane proteins, or by changing the membrane fluidity (Gomez and Herreo, 1983). It has also been shown to inhibit acetic acid metabolism (Bosund, 1962). # 1.9.6 Human consumption of organic acid food preservatives Consumer concerns over the use of food preservatives have increased in recent years. The main reason for the concern is that there are an increasing number of unsubstantiated reports of allergies, and other irritant-related problems to food preservatives (Parke and Lewis, 1992; Anon, 2001). Sorbic acid has been indicated as a possible skin irritant, while propionic acid has been speculated to cause migraines (Piper, 1999). Despite benzoic acid being regarded as safe as it is excreted in the urine as benzoylglycine (hippuric acid), the possibility of foods containing benzoic acid being toxic by inhalation could not be ruled out in a recent report (Anon, 2001). The main consumer concerns
regarding food preservatives relate to the use of nitrites and sulphites. Nitrites are used in the preservation of meat because they reduce the chance of spoilage and also give the appearance of a red colour, which consumers find appealing. The problem with nitrites is that when the meat is cooked the nitrites form nitrosamines, which are carcinogenic (Parke and Lewis, 1992). In a bid to alleviate fears, some producers have lowered the amount of nitrites in meat and added ascorbic acid to prevent the formation of nitrosamines. Sulphites have been reported to cause respiratory problems for asthmatics with those on steroids being particularly at risk (Piper, 1999). The main problem with ascertaining the potential of food preservatives to be detrimental for human consumption is that there is simply a lack of primary literature. Studies into the safety of food preservatives are not only scarce but are often inconclusive. The legislation on food preservatives also complicates matters with some food preservatives being banned from certain countries while permitted with restrictions in other countries, as is the case with formic acid (Pollard, 1991). The ADI values listed in Table 1.3 are compiled by the joint expert committee on food additives (JEFCA) and represent an area of debate, with not only the values being questioned but the means by which they are derived also raising some concern (Pollard, 1991). To add to the complications, organic acid food preservatives have recently been reported to cause oxidative stress (Piper, 1999). Therefore, the ability of these acids to generate oxidative stress within the human body needs addressing as oxidative stress has been implicated in genetic diseases (Church et al., 1993) and cancer formation (Dreher & Junod, 1996). In summary, until the effects of food preservatives on the human body are addressed, speculation relating to their safety will continue. # 1.10 Yeast organic acid resistance The protective response(s) invoked by yeasts in the presence of high concentrations of organic acids at low pH are believed to be focussed on maintaining intracellular pH (Krebs et al., 1983; Cole and Keenan, 1987a). Despite recent research efforts, the mechanism(s) by which some yeasts are able to tolerate higher levels of organic acids than others remains speculative (Brul and Coote, 1999). Recently, it was speculated that the organic acid resistance mechanism(s) adopted by S. cerevisiae and the spoilage yeast Z. bailii differ (Piper et al., 2001). A number of theories have been proposed to account for the resistance of yeast to organic acids and are summarised in Figure 1.3. #### 1.10.1 Reduction of acid influx The ability of yeasts to reduce initial acid influx and thereby restrict intracellular damage through differences in the cell wall or membrane could prove crucial in their ability to tolerate high levels of organic acids (Piper et al., 2001). S. cerevisiae is known to change its membrane composition in response to a wide variety of stress conditions including high levels of organic acids (Thomas et al., 1978; Sajbidor and Grego, 1992; Guerzoni et al., 1993; Alexandre et al., 1996; Fernandes et al, 2000). The ability of Zygosaccharomyces yeasts and in particular Z. bailii to change membrane composition under stress remains largely undetermined (Hosno, 1992; Balerias-Couto and In't Veld, 1995). The emphasis of research into cell membrane mediated mechanisms has led to a neglect of the cell wall as a means of restricting permeability. A number of yeasts have been shown to differ in their cell wall composition (Nguyen et al., 1998). The potential involvement of the cell wall in yeast organic acid resistance is supported by the findings of Bom et al. (2001). These researchers demonstrated that the combination of a membrane-perturbing compound with an agent that interfered with GPI-cell wall protein layers represented an effective strategy to prevent the growth of spoilage yeasts including Z. bailii. ### 1.10.2 Conversion of the acid into a metabolic product The ability of yeasts to metabolise organic acids represents another possible mechanism of yeast organic acid resistance. The metabolism of acetic acid by both Z. bailii and S. cerevisiae has received extensive attention. In S. cerevisiae the utilisation of acetic acid is inducible and subject to glucose repression (Cassio and van Uden, 1987; Cassio et al., 1993; Casal and Leáo, 1995). Therefore, S. cerevisiae is unable to utilise acetic acid in the presence of glucose: acetic acid therefore enters the cell via simple diffusion and causes intracellular acidification (Casal et al., 1996). In Z. bailii the intracellular metabolism of acetic acid is not subject to glucose repression and this compound is metabolised simultaneously with glucose; this could allow the intracellular free acetic acid to be maintained at values below which they exert toxic effects (Sousa et al., 1996). Figure 1.3 Schematic of the possible resistance mechanisms adopted by yeasts to weak-acid preservatives. Undissociated acid (HA) enters the cell via simple diffusion where the higher cytoplasmic pH causes the acid to dissociate liberating hydrogen ions (H⁺) and anions (A⁻) which accumulate causing intracellular acidification. Adapted from Loureirio (2000). ### ACIDIC EXTRACELLULAR ENVIRONMENT Mechanisms of yeast resistance may include one or more of the following: (1) Reduction in acid influx, (2) Conversion of the acid into a metabolic product, (3) Extrusion of hydrogen ions (H⁺) (4) Extrusion of anions (A⁻) (5) Increased intracellular buffering capacity and (6) Non-specific mechanisms. The metabolism of other organic acids (including propionic and formic acids) has been shown to be metabolised differently between yeasts, but are generally less well understood (Casal et al., 1996; Sousa et al., 1996). Merico et al. (2003) recently conducted a complete analysis of aerobic sugar metabolism in Z. bailii in a bid to elucidate more about its carbon and energy metabolism. Z. bailii has been shown to use benzoate and sorbate as sole carbon sources, a property not shown by S. cerevisiae (Mollapour and Piper, 2001a, b). The oxidative degradation of sorbate and benzoate by Z. bailii is dependent upon a gene ZbYME2, which when heterologously expressed in S. cerevisiae confers the ability to utilise sorbate, benzoate and phenylalanine (Mollapour and Piper, 2001a, b). #### 1.10.3 Extrusion of hydrogen ions An increase in hydrogen ion efflux would reduce the extent of intracellular acidification in the presence of organic acids at low pH. In yeast the plasma membrane H⁺-ATPase creates an electrochemical potential across the cell membrane thereby driving nutrient uptake and regulating pH through hydrogen efflux. The H⁺-ATPase pump has been shown to become activated in the presence of organic acids (Viegas and Sá Correira, 1991; Holyoak et al., 1996). In theory, the H⁺-ATPase pump can maintain intracellular pH by driving the expulsion of hydrogen ions, therefore, preventing intracellular acidification in the presence of organic acids. Research into the ability of H⁺-ATPase to provide organic acid resistance and to act as a general stress response is extensive for S. cerevisiae (Panaretou and Piper, 1990; Rosa and Sá Correira 1991; Holyoak et al., 1996). The H⁺-ATPase system is energetically expensive consuming 2 ATPs for each weak acid molecule that enters (Piper et al., 2001). Thus, organic acid resistance results in a diminished biomass (Stratford and Anslow, 1996; Piper et al., 1997). The ability of the H⁺-ATPase pump to provide organic acid resistance is therefore energy-dependent. The importance of the H⁺-ATPase pump in Z. bailii organic acid resistance remains to be determined. #### 1.10.4 Extrusion of anions Exposure of S. cerevisiae cells to benzoic acid results in an efflux of accumulated anions via an energy-dependent mechanism (Henriques et al., 1997). Piper et al., (1998) have shown that the plasma membrane Pdr12 ATP binding cassette (ABC) transporter is required for the development of sorbate and benzoate organic acid resistance in S. cerevisiae. Recently, the transcription factor Warl has been identified as the regulator of PDR12 in S. cerevisiae (Kren et al., 2003). Two other plasma membrane proteins Gpr1 (Augstein et al., 2003) and Azr1 (Tenereiro et al., 2000) have been implicated in resistance to organic acids and in particular to acetic acid. The expulsion of anions through the Pdr12 transporter or any plasma membrane transporter coupled with hydrogen ion expulsion via H⁺-ATPase pump has the potential to create a futile cycle: anions and hydrogen ions could recombine outside the cell and simply diffuse back into the cell. Research into how cells prevent a futile cycle of anion and hydrogen ion expulsion and re-entry is now required. However, it should be remembered that studies thus far using Z. bailii have shown no evidence for plasma membrane transporters being responsible for its exceptional organic acid resistance (Piper et al., 2001). In addition, the acetate sensitive phenotypes reported for Pdr12 and Azr1 mutants have been shown to be the result of using trp1 mutant strains (Bauer et al., 2003). ### 1.10.5 Increased intracellular buffering Increased buffering capacity by yeasts as a means of responding to organic acid stress has received little attention. Cole and Keenan (1987a) reported an increase in buffering capacity for Z. bailii in the presence of sorbic and benzoic acid. The reasons for the increased buffering capacity were attributed to a slower growth rate due to organic acid stress, which decreased protoplast volume and thereby increased the concentration of cellular components and their buffering capacity. A detailed comparison of the buffering capacities of *S. cerevisiae* and *Z. bailii* under organic acid stress conditions would prove of interest. ### 1.10.6 Non-specific mechanisms The possibility of a number of non-specific
mechanisms being utilised by yeasts to combat organic acid stress also exists. Z. bailii has been shown to secrete an antifungal toxin zygocin, which has promise in combating fungal infections (Weiler et al., 2002; Weiler and Schmitt, 2003). The secretion of zygocin by Z. bailii may, therefore, aid its proliferation in foods by killing of competitors. Overproduction of glycerol in S. cerevisiae resulted in double the amount of acetic acid being produced under anaerobic conditions (Eglinton et al., 2002). It is therefore conceivable that if Z. bailii and Z. kombuchanesis had a greater production of glycerol they would be able to withstand higher concentrations of acetic acid. Pearce et al. (2001a) have shown benzoic acid resistance in S. cerevisiae to be effected by the genetic manipulation of 6phosphofructo-1-kinase (PF1K) or fructose 2, 6 bisphosphate levels. Therefore, if a yeast were to contain differing levels of the enzymes involved in glycolysis it may have an altered resistance to organic acids. This is supported by the work of Krebs et al. (1983) which has shown organic acids to inhibit glycolysis. The application of proteome and transcriptome analysis to S. cerevisiae under sorbic acid stress has indicated the involvement of the heat shock protein Hsp26 (de Nobel et al., 2001). Hsp26 is induced by a range of stresses including osmotic stress (Blomberg, 1997), exposure to hydrogen peroxide (Godon et al., 1998) and heat shock. de Nobel et al. (2001) propose that in the case of sorbic acid stress, Hsp26 prepares proteins for degradation or refolding. Sorbic acid also caused the induction of genes involved in oxidative stress (de Nobel et al., 2001). The ability of organic acids to induce oxidative stress has been previously reported (Piper, 1999). Therefore, yeasts with the ability to tolerate oxidative stress may be able to withstand higher levels of organic acid stress. # 1.11 Assessment of food spoilage The assessment of food spoilage forms a fundamental part of food production. Microbiological analysis will be conducted on raw materials, line samples and final products to determine the presence or absence of microorganisms. The total numbers and types of any microorganisms present will then be determined (Garbutt, 1997). In the processing environment tests are conducted on the microbiological quality of the air, water and microbial contamination of surfaces (Garbutt, 1997). The following sections describe the methods used in the assessment of yeast attributed food spoilage. ### 1.11.1 Direct microscopic examination The direct microscopic examination of foods provides one of the quickest and most inexpensive methods of assessing yeast spoilage. The limitation of the method is that only large numbers of organisms in excess 10^6 cells ml⁻¹ will be detectable. Fluorescence microscopy provides a variation on this technique and allows the distinction between viable and non-viable cells. Methylene blue is also widely used in the brewing industry as an indicator of yeast viability (Willetts *et al.*, 1997; Smart *et al.*, 1999). #### 1.11.2 Plate counts Plate counts (spread or pour plate) represent the most common method for isolating and enumerating yeasts involved in food spoilage (Fleet, 1992). Variations on the plate count technique include membrane filtration. In this method a known volume of sample is passed through a membrane, which is then placed on an agar plate to assess growth. Most probable number (MPN) is used in the detection of low numbers of microorganisms. A recent development, which is based on the plate count technique, is the use of selective differential plating media; these are used to assess target organisms. Several types of selective differential plating media have been designed specifically for the identification of *Z. bailii* (Hocking, 1996; Makdesi and Beuchat, 1996). ### 1.11.3 Electrical impedance Microbial growth will change the electrical properties of their environment, and these charges can be detected. The application of impedance technology is widely used for detecting bacterial populations and is now receiving greater attention in yeast food spoilage assessment (Fleet, 1992). #### 1.11.4 Measurement of ATP Measurement of ATP in viable yeast cells provides good correlation with plate counts. Determination of bioluminescence provides the most common method for ATP assessment. However, the measurement of ATP has not been applied on a wide scale in the assessment of yeast food spoilage due to several factors including the cost of reagents, interference and difficulty in distinguishing between bacterial and yeast spoilage without further assessment (Fleet, 1992). ### 1.11.5 Predictive modelling An alternative to direct assessment of food spoilage is that of predictive modelling. Predictive modelling focuses on the development of a mathematical model to predict the probability of microbial contamination of a food or beverage. The model uses various physico-chemical properties of the food including pH, redox potential and nutrient availability to predict spoilage. The application of predictive modelling to determine the probability of a yeast causing spoilage has been reported, with many models focusing on the spoilage yeast Z. bailii (Cole et al., 1987b; Deak and Beuchat, 1994; Battey et al., 2002). Predictive modelling, therefore, represents an alternative to direct assessment of spoilage as it can provide rapid information about the microbial stability of a product which may reduce overall costs (Battey et al., 2002). # 1.12 Identification of food spoilage microorganisms The confirmation of food spoilage must be followed by the identification of the spoilage microorganism(s). This allows the exact nature of the spoilage to be assessed and aid the prevention of potential future spoilage. The ability to identify microorganisms in foods must therefore be both reliable and quick. ### 1.12.1 Physiological identification In addition to the differential selective plating media discussed in section 1.10.2 physiological tests used in the identification of yeasts can include aerobic growth tests, fermentation tests, mode of sexual reproduction, microscopic appearance of cells and biochemical characteristics (Barnett *et al.*, 2000). There are also commercial kits available that allow for the identification of yeasts. The analytical profile index (API) strips (BioMérieux, France) are probably the best well known. The ability of these kits to lead to accurate identification of yeasts is largely dependant on the skills of the scientist conducting the analysis. #### 1.12.2 Molecular identification The molecular identification of yeasts has largely focused on differences in rDNA sequences (Scorzetti et al., 2002). The highly conserved 18S, 5.8S and 28S rRNA domains are separated by internal transcribed spacer (ITS) regions (Figure 1.4). The 26S rDNA D1/D2 variable domains (large subunit) and the 18S rDNA (small subunit) represent coding regions used in yeast systematics. The 26S rDNA (large subunit) and ITS regions have received more attention in yeast systematics than 18S rDNA (small subunit) due to their smaller size (~600 bp) and higher rate of divergence. The extensive use of all three molecular chronometers has lead to the establishment of several databases for the classification and identification of yeasts (Takashima et al., 1995; Kurtzman & Robnett, 1998; Sugita et al., 2000). Mitochondrial DNA and cytochrome oxidase II (COX II) genes are also being increasingly used in yeast systematics (Esteve-Zarzoso et al., 2003; Kurtzman and Robnett, 2003). Molecular methods are also used to assess yeast populations in food (Andrighetto et al., 2000; Sujaya et al., 2003). Figure 1.4 Organisation of nuclear rRNA genes. # 1.13 Cleaning processes in the food industry The processing of foods to a high and consistent standard free of microbial spoilage requires the application of efficient and vigorous cleaning processes. A cleaning process can be considered to consist of two steps: the physical cleaning of surfaces directly and secondly, microbiological cleaning (disinfection) to remove any microorganisms, which survive physical cleaning. Chemical disinfectants have a broad spectrum of mechanisms including the generation of oxidative stress and the disruption of cell integrity. Several common disinfectants used in the food industry include chlorine, iodophors, amphoterics, acid anionic surfactants, peracetic acid, QUACS (quaternary ammonium compounds) and hydrogen peroxide. All the aforementioned methods of disinfection are active against yeasts; the application of each is dependent on several factors including cost, nature of the food, spoilage micro-flora and the acid (Adams and Moss, 2000). The majority of cleaning in modern food processing is practised as cleaning-in-place (CIP) systems, which are automated. ### **1.14 Aims** The broad aim of the work presented in this thesis was to provide further insights into the morphology and physiology of *Zygosaccharomyces* spoilage yeasts, and how these may relate to organic acid resistance. Despite recent research efforts, the differential mechanisms utilised by yeasts to tolerate high levels of organic acid stress remains unknown. The research presented in this thesis focuses on the preservative resistant and notorious spoilage yeast *Z. bailii*, the recently identified potential spoilage yeast *Z. kombuchaensis* and the model yeast *S. cerevisiae*. The specific aims of this research were: - Determination of the differences in organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae (Section 3). - Investigation into the effects of growth conditions on yeast organic acid resistance (Section 4). - Exploration into differences in morphology and physiology between Z. bailii, Z. kombuchaensis and S. cerevisiae (Sections 5, 6 and 7). - Re-examination of Z. bailii classification (Section 8). | 2. Materials and Methods | |
--------------------------|--| | | | # 2.1 Chemicals The chemicals used in this study were obtained from Sigma-Aldrich (Sigma-Aldrich Company Ltd, Dorset, UK) unless otherwise stated. Yeast extract, Bacteriological peptone and Yeast Nitrogen Base without amino acids and ammonium sulphate were purchased from Becton-Dickinson (BD Biosciences, Oxford, UK). HPLC consumables were obtained from Supelco (Sigma-Aldrich Company Ltd, Dorset, UK). All organic acids were of HPLC grade. Electron microscopy consumables were supplied by Agar Scientific (Agar Scientific Limited, Stansted, UK). ### 2.2 Strains and media Yeast strains used in this study are as listed in Table 2.1, and plasmids in Table 2.2. The media used for the cultivation of microorganisms are as detailed in Table 2.3. Yeast strains were maintained on YPD plates re-streaked monthly for short-term storage. For long-term storage strains were maintained on YPD agar slopes at 4°C or in 10% (v/v) glycerol at -80°C. # 2.3 Growth Conditions Starter cultures consisting of 20 ml medium in 50 ml conical flasks were incubated at 25°C without shaking. The OD of cultures was monitored at 600 nm with a Pye-Unicam SP8-400UV/VIS spectrophotometer. Samples were diluted in sterile medium to keep readings below 0.7 and allow for linear determination. Mid-exponential phase starter cultures (1-5 × 10⁸ cells ml⁻¹) were used to inoculate cultures containing 40 ml medium in 100 ml conical flasks. Cultures were incubated under the same conditions as starter cultures. Bacteria were grown in 3 ml medium in 14 ml falcon tubes at 30°C, with shaking at 220 r.p.m. Any variations to these conditions are as indicated in the text. Table 2.1 Yeast strains used in this study. | Strain | Habitat/Genotype | Source | |---|--|------------------------------| | Z. bailii NCYC 1766 | Grape and blackcurrrant juice | NCYC * | | Z. bailii NCYC 1416 ^T | Fermentation associated | NCYC | | Z. bailii 11 | Soft drinks factory | M. Stratford [¶] | | Z. bailii NCYC 385 | Fermentation associated | NCYC | | Z. bailii NCYC 1520 | Unknown | NCYC | | Z. bailii 20 | Orange concentrate | M. Stratford | | Z. bailii 80 | Mexican topping sauce | M. Stratford | | Z. kombuchaensis (102) NRRL YB4810 | Russian, Kombucha tea | C. P. Kurtzman * | | Z. kombuchaensis (198) NRRL Y27163 | USA, Kombucha tea | C. P. Kurtzman | | Z. kombuchaensis (199) NRRL Y27162 | USA, Kombucha tea | C. P. Kurtzman | | Z. kombuchaensis (200) NRRL YB4811 ^T | Russian, Kombucha tea | C. P. Kurtzman | | S. cerevisiae (X2180-1B) NCYC 957 | MATa SUC2 mal gal2 CUP1 | NCYC | | S. cerevisiae NCYC 1324 | Polyploidy brewing (lager) strain | NCYC | | S. cerevisiae NCYC 1119 | Brewing (ale) strain | NCYC | | S. cerevisiae BY4741 | MATa his3∆1 leu2∆0 met15∆0 ura3∆0 | EUROSCARF† | | S. cerevisiae CDN1 | Diploid; S. cerevisiae 957 × S. cerevisiae BY4741 | J. R. Dickinson [§] | | S. cerevisiae JRD895 | MATa his3Δ1 leu2Δ0 LYS2 MET15 ura3Δ0 ADH3 | EUROSCARF | | S. cerevisiae YLR342W (fks1 mutant) | BY4741 MATa his3\(\Delta\)1 leu2\(\Delta\)0 met15\(\Delta\)0 ura3\(\Delta\)0 YLR342w::kan\(MX4\) | EUROSCARF | | S. cerevisiae YPR159W (kre6 mutant) | BY4741 MATa his3\(\Delta\)1 leu2\(\Delta\)0 met15\(\Delta\)0 ura3\(\Delta\)0 YPR159w::kan\(MX4\) | EUROSCARF | | S. cerevisiae YPL050C (mnn9 mutant) | BY4741 MATa his3\(\Delta\)1 leu2\(\Delta\)0 met15\(\Delta\)0 ura3\(\Delta\)0 YPL050c::kanMX4 | EUROSCARF | | S. cerevisiae YBR023C (chs3 mutant) | BY4741; MATa his3\Delta1 leu2\Delta0 met15\Delta0 ura3\Delta0 YBR023c::kanMX4 | EUROSCARF | | S. cerevisiae (X2180-1B) NCYC 957x | Petite | This study | | S. cerevisiae NCYC 1324x | Petite | This study | | S. cerevisiae NCYC 1119x | Petite | This study | | S. cerevisiae BY4741x | Petite | This study | | S. cerevisiae CDN1x | Petite | This study | | S. cerevisiae JRD895x | Petite | This study | Table 2.1 cont Yeast strains used in this study. | Strain | Habitat/Genotype | Source | |---|--|-------------------------| | Pf1Z. bailii NCYC 1766 – S. cerevisiae
JRD895x | Protoplast fusion | This study | | Pf2Z. bailii NCYC 1766 – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf3Z. bailii NCYC 1766 – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf1Z. bailii NCYC 1416 ^T – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf2Z. bailii NCYC 1416 ^T – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf3Z. bailii NCYC 1416 ^T – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf1Z. kombuchaensis (200) NRRL
YB4811 ^T – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf2Z. kombuchaensis (200) NRRL
YB4811 ^T – S. cerevisiae JRD895x | Protoplast fusion | This study | | Pf3Z. kombuchaensis (200) NRRL
YB4811 ^T – S. cerevisiae JRD895x | Protoplast fusion | This study | | S. cerevisiae IWD72 | МАТа | I. W. Dawes * | | S. cerevisiae L5528 | MATa ura3-52 his3 | S. Hohmann [©] | | S. cerevisiae YSH1137 | MATa leu2::hisG trp1::hisG ura3-52 hog1::TRP1 | S. Hohmann | | S. cerevisiae YSH1137-pRS426 | MATa leu2::hisG trp1::hisG ura3-52
hog1::TRP1+ pRS426 (URA3) | This study | | S. cerevisiae YSH1137-pRS426-HOG1 | MATa leu2::hisG trp1::hisG ura3-52
hog1::TRP1+ pRS426-HOG1 (URA3) | This study | $^{^{}T}$ = Type strain. ^{*} National Collection of Yeast Cultures, Institute of Food Research, Colney, Norwich, NR4 7UA. Food Processing Group, Unilever R & D Colworth, Colworth House, Sharnbrook, Bedford, MK44 1LQ, UK. ^{*} Agricultural Research Service Culture Collection, Microbial Genomics and Bioprocessing Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, Illinois 61604, USA. ⁹ Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK. [†] EUROSCARF, Institute for Microbiology, Johann Wolfgang Goethe-University Frankfurt, Marie-curie-Strasse 9, Building N250, D-60439, Frankfurt, Germany. ^{*} School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 NSW, Australia. ^Ф Cell and Molecular Biology, Göteborg University, Box 462, S-405 30, Göteberg, Sweden. Table 2.2 Plasmids used in this study. | Plasmid | Details | Source | |-------------|--|--------------------------| | pRS426 | A 2μm based yeast episomal plasmid | Christianson et al. 1992 | | pRS426-HOG1 | A 2µm based yeast episomal plasmid containing S. cerevisiae HOG1 gene with its own promoter. | S. Hohmann [©] | [©] Cell and Molecular Biology, Göteborg University, Box 462, S-405 30, Göteberg, Sweden. Table 2.3 List of all media used in this study. All percentages are (w/v). For solidified media, agar was added at a concentration of 2% (w/v) and 3% (w/v) for regeneration agar. All media was sterilized by autoclaving at 121°C 1.3 MPa for 15 min. These recipes are the basic ingredients any additions or modifications are as described in the text. | Medium | Recipe | |--------------|--| | YPD | 2 % D-Glucose, 2 % Bacto peptone, 1 % Bacto yeast extract | | MM | 2 % D-Glucose, 0.5 % Ammonium sulphate, 0.17 % Yeast Nitrogen Base without amino acids and ammonium sulphate | | Regeneration | 3 % Glycerol, 18.2 % Sorbitol, 0.5 % Ammonium sulphate, 0.17 % Yeast Nitrogen Base without amino acids and ammonium sulphate | | Sporulation | 0.06 % D- Glucose, 0.22 % Bacto yeast extract, 2 % Potassium acetate | | ĹB | 1 % D-Glucose, 1 % Bacto tryptone, 0.5 % Sodium chloride | | soc | 0.18 % D-Glucose, 2 % Bacto tryptone, 0.5 % Bacto yeast extract, 0.05 % Sodium chloride, 0.05% $MgCl_2$ | "Drop-out" solutions consisting of 40 mg of each amino acid and the bases adenine and uracil, (except for the amino acid or base required to confirm auxotrophic requirements) were added to 10 ml distilled water and autoclaved at 121°C 1.3 MPa for 15 min. A 100 µl aliquot of the required drop-out solution was spread over a solidified MM plate. For liquid MM cultures 200 µl of each drop-out solution was added per plate resulting in a concentration of 20 µg ml⁻¹ for each amino acid and base. # 2.4 Assessment of Inhibitor Toxicity ## 2.4.1 Preparation of inhibitor stocks The organic acids used in this work are as detailed in Table 2.4. Short chain organic acids (formic, acetic, propionic) were added directly to sterilized pH-corrected growth media. Medium (hexanoic, sorbic, benzoic) and longer (octanoic, nonanoic, decanoic) chain organic acids were prepared as stock solutions in ethanol (to ensure solubility) and added to sterilized media. Salt (NaCl) was added to the growth media prior to sterilization. Hydrogen peroxide was added to cultures immediately after yeast inoculation to avoid inhibitor decomposition. #### 2.4.2 Culture conditions Starter cultures consisting of 20 ml medium (adjusted to pH 4.0 with concentrated HCl) in 50 ml conical flasks were grown until mid-exponential phase at 25°C without shaking. Cell numbers were determined using a Neubauer Haemocytometer and cell suspensions prepared in sterile peptone water (Bacto peptone 0.1% w/v). Susceptibility to inhibitors was determined as described previously (Steels *et al.*, 1999b; 2000; 2002; Stratford *et al.*, 2002; Fitzgerald *et al.*, 2003). In brief, inhibitors were added to 10 ml medium (pH 4.0) in 30 ml universal bottles and inoculated with 1 × 10³ cells ml⁻¹. Cultures were incubated at 25°C for 14 days without shaking. Minimum Inhibitory Concentrations (MICs) were defined as the lowest concentration of inhibitor, which inhibited visible growth. Control cultures containing 3% (v/v) ethanol were
set up for medium and longer chain organic acids. Effects of inhibitors on growth were assessed by measuring culture OD600 nm. Results are presented as the mean of at least two independent experiments (four replicates), ± the standard error. Alterations to the culture medium are as indicated in text. Table 2.4 Organic acids used in this study. | Systematic name | Common name | Number of Carbons | Chain Classification | pK. | |-----------------------|----------------|-------------------|----------------------|------| | Methanoic acid | Formic acid | 1 Carbon | Short Chain | 3.75 | | Ethanoic acid | Acetic acid | 2 Carbons | Short Chain | 4.76 | | Propanoic acid | Propionic acid | 3 Carbons | Short Chain | 4.87 | | Hexanoic acid | Caproic acid | 6 Carbons | Medium Chain | 4.87 | | 2, 4-hexadienoic acid | Sorbic acid | 6 Carbons | Medium Chain | 4.74 | | Benzoic acid | Benzoic acid | 7 Carbons | Medium Chain | 4.19 | | Caprylic acid | Octanoic acid | 8 Carbons | Longer Chain | 4.89 | | Pelagronic acid | Nonanoic acid | 9 Carbons | Longer Chain | 4.88 | | Capric acid | Decanoic acid | 10 Carbons | Longer Chain | 4.90 | | | | | | | The name most used for the organic acid is in bold. pK_a values were obtained from Freese et al., 1973; Adams and Moss 2000. # 2.5 Electron Microscopy ### 2.5.1 Transmission Electron Microscopy (TEM) All EM preparation was carried out in a fume cupboard due to the harmful nature of the reagents. Cells were pelleted at 1000 × g for 10 min. in an MSE2 Centaur centrifuge and washed twice with sterile distilled water. Washed cells were fixed in a 0.1 M sodium cacodylate buffer (pH 6.9) containing 3.2% (v/v) paraformaldehyde, 3.0% (v/v) glutaraldehyde, 4% (w/v) sucrose and 0.02% (w/v) calcium chloride at 4°C for 24 h. Cells were washed twice in 0.1 M sodium cacodylate buffer and then osmicated in 1% osmium tetroxide (OsO₄) at 4°C for 1 h. Pellets were embedded in 2% (w/v) agar. Solid samples were cut into small sections and dehydrated with successive ethanol washes (30, 50, 70 and 90% v/v) for 15 min. at 4°C. Two final ethanol washes of 100% (v/v) for 30 min. one at 4°C and the other at room temperature were carried out. Samples were then infiltrated in Spurr resin with ethanol (at the following ratios 25:75, 50:50, 75:25 v/v) in a rotor mixer for 1 h. Samples were then placed in 100% Spurr resin overnight followed by fresh 100% Spurr resin for 8 h at room temperature. Samples were transferred to casts and placed in an oven at 60°C for 48 h to polymerize. Ultrathin (approximately 60-90 nm) sections were obtained with an LKB Ultratome III (Stockhom, Sweden) and mounted onto 0.5% pioloform coated copper grids. Sections were stained with uranyl acetate for 10 min. and Reynolds lead citrate (pH 12) for 5 min. and washed three times with UHP water. Stained grids were viewed and photographed using a Jeol 1210V transmission electron microscope (Tokyo, Japan). Variations to this standard protocol are as detailed in the text. ### 2.5.2 Scanning Electron Microscopy (SEM) Cells were processed and fixed as section 2.5.1. After treatment with 1% OsO₄ samples were taken through the following successive ethanol washes (30, 50, 70 and 90% v/v) for 15 min. at 4°C. Samples were then placed in Beem capsules and washed twice in 100% ethanol at 4°C. All the ethanol in the samples was replaced with liquid CO₂, by placing samples into a critical point dryer (BAL-TEC AG, Balzers CPD 030, Liechenstein) as per manufacturer's instructions. Samples were placed onto aluminium stubs and gold coated (Edwards Sputter Coater S150B, Crawley UK). Samples were viewed under a Philips XL20 scanning electron microscope (Eindoven, The Netherlands). # 2.6 Chitin analysis #### 2.6.1 Chitin distribution Cells were grown in YPD pH 4.0 at 25° C without shaking for 48 h and centrifuged at $1000 \times g$ for 10 min. in a MSE2 centaur centrifuge. Cells were washed twice with sterile distilled water and re-suspended in 0.5 ml sterile distilled water containing 20 µl of a 1 mg ml⁻¹ Calcofluor white (Fluorescent Brightener, Sigma) stock. Samples were incubated at room temperature for 15 min. Samples were then washed twice in sterile distilled water and re-suspended in 200 µl sterile water. Samples were mounted onto slides and viewed using an Olympus BH2 triocular fluorescent microscope (Olympus UK Ltd, Middlesex, UK). Images were taken with a digital camera (HC 3002 Fujitsu, Tokyo, Japan). ### 2.6.2 Chitin content A method based on that of Ride and Drysdale (1972) of converting chitin to chitosan with nitrous acid was employed. Yeast cells were grown as described in section 2.6.1 and homogenized to get a uniform suspension. A sample of 0.5 ml of homogenized cells was added to 9.5 ml of 0.24 M sodium hydroxide. Suspensions were centrifuged at 1000 \times g for 10 min. and washed in 10 ml distilled water. To the pellet was added 3 ml potassium hydroxide and heated at 100°C for 1.5 h with even mixing. Samples were cooled and 8 ml of 75% (v/v) ethanol added for 15 min. on ice followed by 0.9 ml of a Celite 545 (Acros, Fisher Scientific Ltd, Loughbrough, UK) suspension (1 g in 20 ml 75% v/v ethanol). The sample was centrifuged at $1000 \times g$ for 10 min. and the supernatant discarded and the pellet washed once in 40% (v/v) ethanol and twice in distilled water. The supernatant was then discarded and the pellet re-suspended in 1.5 ml sterile distilled water and chitosan content determined. For chitosan determination 1.5 ml 5% (w/v) sodium nitrite and 1.5 ml 5% (w/v) potassium hydrogen sulphate (generating nitrous oxide) was added to the samples. Samples were shaken at 30°C and 160 r.p.m for 30 min. and then centrifuged for 10 min. at 1000 × g. Ammonium sulphamate 12.5% (w/v) was added and shaken for 5 min. followed by 0.5 ml of 0.5% (w/v) MBTH (prepared fresh each day). Sample was heated at 100°C for 3 min. and cooled. Finally, 0.5 ml of 0.5% (w/v) iron (III) chloride was added to the samples and shaken for 30 s. Samples were allowed to stand at room temperature for 30 min. for the colorimetric conversion (clear to blue) and the OD650 nm measured with reference to a blank containing 1.5 ml water only and taken through the chitosan conversion protocol. OD values were converted to chitosan and then to chitin levels with reference to calibration curves. The chitin and chitosan calibration curves obtained were conducted in triplicate and produced R² values greater than 0.95, over the range of concentrations examined. Results are the means of three independent cultures each performed in duplicate and converted to % chitin per mg dry weight, ± the standard error. # 2.7 Yeast Protoplast formation ### 2.7.1 β-glucoronidase Starter cultures were set up as in section 2.3 and used to inoculate 40 ml YPD in 100 ml conical flasks. Cultures were incubated for 48 h at 25°C without shaking and harvested at $1000 \times g$ for 10 min. A cell suspension of 1×10^8 cells ml⁻¹ for each, yeast, was prepared in peptone water as in section 2.4.2. Cells were centrifuged at $1000 \times g$ for 10 min. and washed twice in sterile distilled water. Pellets were re-suspended in 5 ml β -glucoronidase buffer containing 1 M sorbitol, $500 \, \mu l$ β -glucoronidase and $10 \, \mu l$ 2-mercaptoethanol in 5 mM Tris-HCl, pH 7.5. Suspensions were incubated at 30° C with gentle shaking (120 r.p.m). Protoplast formation was monitored by change in % OD600 nm and by the examining cells microscopically. Results are presented as the mean of an experiment performed in triplicate, \pm the standard error. # 2.7.2 Lysozyme As a negative control the bacterial active lysozyme was examined. Protoplast formation was performed as described in 2.7.1 replacing the β-glucoronidase buffer with 5 ml 0.10 g lysozyme (5000 Units/g solid), 10 μl 2-mercaptoethanol in 50 mM Tris-HCl, pH 8.0. #### 2.7.3 Zymolyase Protoplast formation was performed as 2.7.1 replacing β-glucoronidase with Zymolyase (Lyticase, Sigma). The β-glucoronidase buffer was replaced with 5 ml SMT buffer consisting of 1.2 M sorbitol, 10 mM MgCl₂, 0.10 g Zymolyase (200 Units/mg solid), 10 μl 2-mercaptoethanol in 2 mM Tris-HCl, pH 7.2. # 2.8 Yeast Protoplast Fusion Protoplasts from Zymolyase treatment were harvested at $1000 \times g$ for 10 min. and washed twice in 10 ml SMT buffer. Cells from each of the donor yeasts were resuspended in 3 ml SMT buffer mixed in equal proportions and harvested at $1000 \times g$ for 10 min. Pellets were resuspended in 2 ml 60% (w/v) PEG 3350 and 0.2 ml 1.0 M calcium chloride at room temperature for 5 min. A control replacing the 2 ml 60% (w/v) PEG 3350 with 2 ml SMT buffer was also set up. To both suspensions 6 ml SMT buffer was added and left at room temperature for an additional 10 min. Cells were harvested at $1000 \times g$ for 10 min. and re-suspended in 1 ml SMT buffer. Protoplasts were plated out on to selection plates as follows: $2 \times 100 \,\mu$ l undiluted suspension and $2 \times 100 \,\mu$ l of a 10 fold serial dilution were plated out onto regeneration agar containing 200 μ g/ml of the aminoglycoside G418 (Melford Laboratories Ltd, Ipswich, UK). A 100 μ l aliquot of undiluted suspension was plated out onto YPD as a control for protoplast formation. Plates were incubated at 25°C for 3-10 days. The frequency of protoplast fusion was calculated by comparing the number of c.f.u on selective and non-selective agar. Results are the mean of at least two independent experiments. # 2.9 High-performance-liquid-chromatography (HPLC) #### 2.9.1 Preparation of samples Cultures consisting of 10 ml MM pH 4.0 in 30 ml universal bottles with either 50 mM acetic or 25 mM propionic acid were set up as in section 2.4.2. Samples of 1 ml were taken at the indicated time intervals and centrifuged in 1.5 ml microfuge tubes at 13500 \times g. Samples were then filtered through a 0.20 μ m Millipore filter directly into a 2 ml analytical vial. Samples were
stored at -20°C prior to analysis. #### 2.9.2 Sample analysis A Dionex HPLC system (Dionex Ltd, Surrey, UK) was used for the detection and quantification of acetic and propionic acid. Samples of 20 µl were injected via an auto-sampler onto a Supelco C-610H organic acid column (30cm × 7.8mm ID). The mobile phase was 0.2% (v/v) orthophosphoric acid at a flow rate of 0.7 ml/min. The run time was 20 min. and a UV detector at 210 nm was used for the detection of acids. The PRIMETM HPLC software (HPLC Technology Ltd, UK) was used for data analysis. Eluted peaks were compared to the retention times and peak areas of authentic standards. The retention times for acetic and propionic acids were 11.44 min. and 13.67 min., respectively. All concentrations of acids examined produced calibration graphs with R² values greater than 0.98. Results are the mean of two independent experiments (four replicates), ± the standard error. # 2.10 Determination of total glycerol content ### 2.10.1 Preparation of samples Starter cultures were set up as in section 2.3 and used to inoculate 40 ml YPD in 100 ml conical flasks with and without 0.5% (v/v) isoamyl alcohol. At various time intervals, 1.5 ml of culture were removed, placed in sterile microfuge tubes and boiled for 15 min. to stop enzymatic reactions. The samples were then centrifuged at $13500 \times g$ to remove cell debris and the supernatant used as source for total glycerol measurements. Samples were stored at -20° C prior to analysis. #### 2.10.2 Sample analysis Enzymatic analysis of total glycerol content was conducted according to the manufacturer's instructions (Glycerol determination kit, r-biopharm, Rhóne Ltd, Glasgow, UK). The principle of the assay is as follows: Glycerol is phosphorylated in the presence of ATP to L-glycerol-3-phosphate by glycerol kinase, giving ADP. Coupling ADP with *phosphenolpyruvate* in the presence of pyruvate kinase regenerates the ATP lost in the initial reaction. This leads to the formation of pyruvate. Pyruvate is reduced to L-lactate using L-lactate dehydrogenase. NADH is oxidised to NAD in this reaction, which is directly proportional to the amount of glycerol present. Therefore, the greater the change in absorbance at 340 nm the more NADH being oxidised and the more glycerol present in the sample. Results were converted to μ mol glycerol/mg dry weight/l and are presented as the mean of two independent experiments (four replicates), \pm the standard error. # 2.11 Molecular genetic techniques #### 2.11.1 Transformation of E. coli Escherichia coli DH5α competent cells (gift from H. Rogers, Cardiff University, Cardiff, UK) were thawed on ice from -80°C storage and a 100 μl aliquot transferred to a round bottomed 14 ml sterile tube. A 2 μl volume of plasmid DNA (typically 0.5 μg μl⁻¹) was added and the mixture inverted several times. The sample was incubated on ice for 20 min. and heat shocked for 45 s in a water bath at 42°C and incubated on ice for a further 2 min. A 900 μl aliquot of SOC medium (Table 2.3) was added and the sample incubated at 37°C for 1 h with gentle shaking. A 100 μl volume of transformation mixture was then spread onto plates LB containing 50 μg ml⁻¹ ampicillin. Plates were incubated at 37°C overnight and transformants picked. ### 2.11.2 Plasmid preparations from E. coli Transformed *E. coli* DH5 α cells were grown overnight in 3 ml LB medium containing 50 µg ml⁻¹ ampicillin in a 14 ml sterile tube and harvested for 3 min. at 13500 × g in a bench top microcentrifuge. Plasmid preparations were performed using the Q1Aprep Miniprep kit (Qiagen Ltd., Crawley, UK). In brief, pellets were re-suspended in 250 µl re-suspension buffer (buffer P1; 50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 100 µg ml⁻¹ RNase A), followed by 250 µl lysis buffer (buffer P2; 200 mM NaOH, 1% (w/v) SDS) and inverted 4-6 times to mix. To the viscous and now slightly clear preparation 350 µl of neutralization buffer (buffer N3; 25-50% (w/v) guanidium chloride, 10-25% (v/v) acetic acid) was added and the tube inverted as described previously. Preparations were centrifuged at $13500 \times g$ and supernatants decanted into Q1Aprep spin columns. The columns were centrifuged at $13500 \times g$ for 1 min. and the eluate discarded. The Q1Aprep spin columns were washed twice in 750 μ l wash buffer (buffer PE: 80% (v/v) ethanol) and the eluate discarded. Samples were centrifuged at $13500 \times g$ for an additional 1 min. to remove residual wash buffer. Q1Aprep spin columns were transferred to clean microfuge tubes and the DNA was eluted by adding 50 μ l elution buffer (buffer EB: 10 mM Tris-HCl, pH 8.5 warmed to 60° C). Samples were allowed to stand at room temperature for 5 min and centrifuged at $13500 \times g$ for 1 min. Plasmid preparations were stored at -20° C. # 2.11.3 Restriction digests and agarose gel electrophoresis Restriction endonucleases and buffers were purchased from Promega (Southampton, UK). Restriction digests were performed in sterile microfuge tubes. Each restriction digest consisted of 2 µl plasmid DNA (typically 0.5 µg µl⁻¹), 2 µl of an appropriate 10 × buffer, 0.2 µl BSA (10 mg ml⁻¹), 0.5 µl restriction endonuclease (*EcoR 1* 12 Units/µl and/or *Pst 1* 10 Units/µl) made up to 20 µl with sterile UHP water. Digests were incubated at 37°C for 1 h. A 5 µl aliquot of each digest mixed with 1 µl loading buffer (0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol FF, 15% (w/v) ficoll) was run on a 1% (w/v) agarose gel in 1 × TAE (40 mM Tris-acetate, 2mM EDTA) and stained using ethidium bromide. A 5 µl volume of Hyper ladder 1 (Bioline Ltd, London, UK) was added to estimate fragment sizes. DNA was visualized using a Gene Genius gel documentation analysis system under UV light (Syngene, Cambridge, UK). #### 2.11.4 Transformation of yeast A modified version of the Ito et al., (1983) lithium acetate whole cell transformation protocol was used. In brief, a 20 ml overnight YPD culture incubated at 30°C 160 r.p.m to an OD 600 nm 1-2 ($1 \times 10^7 - 5 \times 10^7$ cells ml⁻¹) was harvested at $1000 \times g$ for 10 min. The pellet was washed twice in 4 ml TE buffer (10 mM Tris-HCl pH 7.6, 1mM EDTA) and re-suspended in 400 µl of lithium acetate solution (0.1 M lithium acetate in TE buffer) and incubated at 30°C 160 r.p.m for 60 min. A 5 µl volume of plasmid DNA (typically 0.5 µg µl⁻¹) was added to 150 µl of competent cells. Next 350 µl of a 50% (w/v) PEG 4000 solution in water was added to the transformation mixture and inverted several times. The transformation mixture was heated at 30°C for 1 h in a water bath and then heat shocked at 42°C for 5 min. and cooled immediately on ice. Finally, 100 µl of the transformation mixture was plated onto MM plates containing 100 µl uracil "drop-out" solution and incubated at 25°C for 2-4 days. Transformants were taken through several rounds of auxotrophic confirmation. #### 2.11.5 Colony polymerase chain reaction (PCR) to confirm transformants A single colony grown at 25°C for two days on YPD was used for the colony PCR. A small amount of colony was transferred to the PCR reaction using a sterile toothpick. The reaction consisted of 45 μl 1.1 × ReddymixTM (ABgene, Surrey, UK) PCR master mix (1.25 units *Taq* DNA polymerase, 75mM Tris-HCl pH 8.8 at 25°C, 20 mM (NH₄)₂SO₄, 1.5 mM MgCl₂, 0.01% (v/v) Tween 20, 0.2 mM each of dATP, dCTP, dGTP and dTTP and red dye for electrophoresis), 1μl P1 and 1μl P2 at a concentration of 50 pmoles μl⁻¹ (Table 2.5) sterile UHP water was added to give a total volume of 50 μl per reaction. The PCR program was 94°C for 4 min. to denature followed by 35 cycles at 94°C for 30 s, 55°C for 45 s and 72°C for 80 s with a final extension at 72°C for 7 min. Amplification product size was assessed by resolving on a 1% (w/v) agarose gel which was stained with ethidium bromide and visualised under UV light as described in section 2.11.3. Table 2.5 Primers used for HOG colony PCR | Primer | Target | Binding site | Sequence (5 -3) | |--------|--------------------|--------------|-------------------------| | P1 | S. cerevisiae HOG1 | 389-411 | GGGGTTTAAAATACGTTCACTCC | | P2 | S. cerevisiae HOG1 | 764-786 | AATTGGATCTCTGTGTGGTAACG | Primers were designed using the *HOG1* gene sequence as a template (appendix) with oligonucleotides being produced by Sigma-Genosys (Sigma-Aldrich Company Ltd, Dorset, UK). # 2.11.6 26S rDNA D1/D2 sequence analysis The variable D1 and D2 domains of 26S rDNA were PCR-amplified directly from individual yeast colonies using the method as described in James et al., (1994). The conserved fungal oligonucleotide primers NL1 (5' GCATATCAATAAGCGGAGG AAAAG) and NL4 (5' GGTCCGTGTTTCAAGACGG) were used (O' Donnell., 1993). Amplified 26S rDNA D1/D2 PCR products were purified using a Qiagen QIAquick PCR purification kit (Qiagen Ltd., Crawley, UK), and sequenced directly using a Taq DyeDeoxy terminator cycle sequencing kit (PE Biosystems, Warrington, UK) and an Omnigene thermal cycler (Hybaid). The amplification primers NL1 and NL4 were used to determine 26S rDNA D1/D2 sequences. Purified sequence reaction mixtures were electrophoresed in a PE Biosystems model 373A automated DNA sequencer. The 26S rDNA D1/D2 sequence alignment and the phylogenetic tree were constructed using the program DNAMAN version 5.1.5 (Lynnon BioSoft, Quebec, Canada). The 26S rDNA D1/D2 sequence analysis was kindly conducted by S. A. James (NCYC, Norwich, UK) # 2.12 General physiological techniques #### 2.12.1 Cell wall/membrane phenotypic screens A method based on that used by Ram et al., 1994 and Martin-Yken et al., 2001 was used. In brief, a cell suspension of 2×10^7 cells ml⁻¹ was prepared in peptone water as described in section 2.3 and used to prepare 3 subsequent 10 fold serial dilutions. A 3 μ l volume of each dilution (neat, 10^{-1} , 10^{-2} and 10^{-3}) was spotted on agar plates containing the relevant chemical and incubated at
25° C for 5 days. Chemicals were prepared as follows: Calcofluor white (Fluorescent Brightener, Sigma) and congo red were prepared as 1% (w/v) stock solutions in water and filter sterilized. The aminoglycoside G418, caffeine, sodium orthovanadate (Na₃VO₄) and calcium chloride (CaCl₂) were prepared as 10 fold stock solutions in sterile UHP water. All chemicals were added to sterilized agar just before solidification. Assays were performed at least in duplicate and photographs of the plates were taken after 5 days incubation at 25° C. # 2.12.2 Determination of petite forming capabilities using ethidium bromide Cell starter cultures were set up as described in section 2.3. A cell suspension of 2×10^5 cells ml⁻¹ was prepared and 100 µl of each suspension was spread plated onto a YPD agar plate containing 10 µl of 10 mg ml⁻¹ ethidium bromide in the centre. Plates were incubated at 25°C for 3 days. Zones of inhibition were based on two independent experiments (four replicates) and standard errors calculated. Small colonies patched on to YPD plates to determine viability. Viable patches were then replica plated on to YPG, YPE and YPA plates to assess petite forming capabilities. # 2.12.3 Isoamyl alcohol-induced pseudohyphal formation Induction of pseudohyphal formation was carried out by addition of 0.5% (v/v) isoamyl alcohol (4.6 mM) as described previously (Dickinson, 1996). In brief, cultures were set up as described in section 2.3. To main cultures isoamyl alcohol was added to give a final concentration of 0.5% (v/v) by placing the tip of a pipette into the sterilized media and dispensing the isoamyl alcohol. The tip was subsequently washed three times in the media to ensure that all the isoamyl alcohol was dispensed. At various time intervals growth and pseudohyphal formation was assessed by measuring the culture OD600 nm and scoring 400 cells for ability to form pseudohyphae. Results shown are the mean of at least three independent experiments \pm the standard error. ## 2.12.4 Assessment of total cell viability Citrate methylene blue was used for the determination of total cell viability as described by Smart et al. (1999). In brief, methylene blue was dissolved in 1 ml ethanol and mixed with 2% (w/v) sodium citrate solution to give a final concentration of 0.01% (w/v). A volume of 0.5 ml of yeast culture was mixed with 0.5 ml of the citrate methylene blue solution and the cells were examined microscopically after 5 min. The viability of 400 cells was determined by scoring stained blue cells as non-viable and unstained cells as viable. To serve as a control, 1 ml of culture for each yeast was heat killed at 70°C for 15 min. and the viability determined by methylene blue staining, which all cells appeared blue. #### 2.12.5 Colony forming unit (c.f.u) counts Cultures were set-up as described in section 2.3 and serial dilutions prepared in peptone water at 24, 48 and 72 h incubation. A 100 µl aliquot of each dilution was spread onto a YPD plate and incubated at 25°C. After 3 days incubation the number of colonies on each plate were counted and the plates, which yielded counts between 30-300 colonies were used to determine the number of c.f.u per ml of the original sample. Results are presented as the means of at least two independent experiments with two or more determinations being made at each time interval. ### 2.12.6 Determination of dry weight Culture samples of 1 ml were removed at various time intervals and centrifuged at $13500 \times g$ for 3 min. in pre-weighed 1.5 ml microfuge tubes. Supernatants were removed and tubes placed in a hot oven until they reached constant weight. Dry weights are the mean of three independent determinations with standard errors <10%. # 2.12.7 Assessment of flocculation capabilities Flocculation was tested by dispersal with EDTA and aggregation with calcium chloride (Stratford, 1996a). Cultures were set up as described in section 2.3. Cultures were harvested at $1000 \times g$ for 10 min. and washed twice in 10 ml distilled water. Pellets were re-suspended in a buffer of 50 mM sodium succinate (pH 4.0) containing 10 mM calcium chloride. Suspensions were agitated at 30° C 120 r.p.m and after 1 h sample supernatants were removed and dispersed in EDTA. The ability of cells to flocculate was then scored microscopically at each stage in comparison to the flocculent yeast S. cerevisiae NCYC 1119. #### 2.12.8 Ascospore formation Strains were streaked onto YPD plates for two days at 25°C and replica plated to sporulation medium for the same period of time. Microscopic examination was employed to assess sporulation capabilities. Strains were scored as either positive or negative for ascospore formation. # 3. Differences in organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae Nunn C. D., Stratford, M. & Dickinson, J. R. (2002) Differences in organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae. Poster Presentation at British Yeast Group Meeting, Swansea, UK. # 3.1 Introduction The ability of certain yeasts to spoil foodstuffs has been widely reported (Deak, 1991; Fleet 1992). Among the most high-profile spoilage yeasts is Z. bailii with its ability to proliferate in millimolar rather than micromolar levels of food preservatives (Piper et al., 2001). The ability of Z. bailii to grow at high levels of preservatives causes considerable problems for the food and drink manufacturing industries. However, the factors contributing to yeast food spoilage remain far from fully understood. Previous research has largely been conducted on the mechanisms of yeast organic acid resistance (Krebs et al., 1983; Stratford and Anslow, 1996; Piper et al., 1998; Cheng et al., 1999; Mollapour and Piper, 2001b), with few studies focusing on the concentrations of organic acids required to inhibit growth. In this section, the aim was to further characterize the concentration of organic acids required to inhibit yeast growth. Several strains of Z. bailii from both foodstuffs and culture collections were selected along with the four currently know strains of the recently identified potential spoilage yeast Z. kombuchaensis (Kurtzman et al., 2001). Several strains of the organic acid sensitive S. cerevisiae were also included. The acids selected were short (formic, acetic, propionic), medium (hexanoic, sorbic, benzoic) and longer (octanoic, nonanoic, decanoic) chain organic acids. The organic acids were selected on the basis that many of them are used in the food industry as 'weak-acid preservatives'. The experiments reported in this section were conducted in the complex media YPD at pH 4.0 at 25°C under static conditions with MICs and the effects of organic acids on growth being recorded after 14 days incubation. The conditions selected represent the closest laboratory conditions in which yeast cause spoilage and are used by researchers within the food industry (Steels et al., 1999b; 2002; Stratford et al., 2002; Fitzgerald et al., 2003). ## 3.2 Results # 3.2.1 Differences in short chain organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae Z. bailii, Z. kombuchaensis and S. cerevisiae differ in resistance to short chain organic acids (Table 3.1). S. cerevisiae proved the most susceptible to short chain organic acids, having MICs lower than the other two species. S. cerevisiae and Z. kombuchaensis exhibited little strain variation, with similar MIC results being obtained for all strains. Z. bailii showed strain variation. Z. bailii strains NCYC 1416 and NCYC 385 having the lowest MICs of the Z. bailii strains examined for both acetic and propionic acid. Z. bailii, Z. kombuchaensis and S. cerevisiae required higher levels of acetic acid to inhibit growth than either formic or propionic acid. Z. bailii and S. cerevisiae showed a similar pattern of sensitivity to formic acid as they did to propionic acid. Z. kombuchaensis, however, proved more resistant to propionic acid than to formic acid; having MICs higher than those of the Z. bailii strains. Z. kombuchaensis strains showed MICs for butyric acid (C4) and for valeric acid (C5) intermediate between Z. bailii and S. cerevisiae (data not shown). Measuring culture optical densities assessed the effects of short chain organic acids on Z. bailii, Z. kombuchaensis and S. cerevisiae growth. Figures 3.1-3.3 show that all three short chain organic acids caused a decrease in growth with increasing concentration. The S. cerevisiae strains examined showed good growth for all three short chain organic acids, at concentrations below the MIC. Z. bailii and Z. kombuchaensis showed a similar growth pattern on exposure to formic acid, acetic and propionic acid with growth decreasing progressively. Z. bailii strains NCYC 1416 and NCYC 385 reached considerably lower OD values than the other Z. bailii strains, even in the absence of Table 3.1 Differences in short chain organic acid MICs (mM) between Z. bailii, Z. kombuchaensis and S. cerevisiae | | Formic acid | Acetic acid | Propionic acid | |---|----------------|-----------------|----------------| | Z. bailii NCYC 1766 | 110 ± 8.16 | 400 ± 20.41 | 100 ± 8.16 | | Z. bailii NCYC 1416 ^T | 90 ± 14.14 | 300 ± 28.87 | 80 ± 11.55 | | Z. bailii 11 | 90 ± 8.16 | 350 ± 20.41 | 100 ± 0.00 | | Z. bailii NCYC 385 | 70 ± 9.57 | 300 ± 20.41 | 80 ± 11.54 | | Z. bailii NCYC 1520 | 90 ± 8.16 | 400 ± 20.41 | 100 ± 8.16 | | Z. bailii 20 | 90 ± 9.57 | 350 ± 28.87 | 100 ± 0.00 | | Z. bailii 80 | 90 ± 8.16 | 400 ± 0.00 | 100 ± 8.16 | | Z. kombuchaensis NRRL YB4810 | 70 ± 8.16 | 300 ± 0.00 | 120 ± 0.00 | | Z. kombuchaensis NRRL Y27163 | 70 ± 8.16 | 300 ± 20.41 | 120 ± 0.00 | | Z. kombuchaensis NRRL Y27162 | 70 ± 0.00 | 350 ± 28.87 | 120 ± 0.00 | | Z. kombuchaensis NRRL YB4811 ^T | $70
\pm 8.16$ | 300 ± 0.00 | 120 ± 0.00 | | S. cerevisiae NCYC 957 | 50 ± 0.00 | 125 ± 10.20 | 50 ± 4.08 | | S. cerevisiae NCYC 1324 | 50 ± 0.00 | 75 ± 10.20 | 50 ± 0.00 | | S. cerevisiae NCYC 1119 | 50 ± 8.16 | 100 ± 0.00 | 50 ± 4.08 | | S. cerevisiae BY4741 | 50 ± 0.00 | 100 ± 10.20 | 50 ± 0.00 | $^{^{}T}$ = Type strain Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25° C, \pm the standard error. Figure 3.1 Effects of formic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Figure 3.2 Effects of acetic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Figure 3.3 Effects of propionic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Propionic acid (mM) organic acids. # 3.2.2 Differences in medium chain organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae All three yeast species examined proved more sensitive to medium chain organic acids than short chain organic acids as shown by the lower MICs for hexanoic, sorbic and benzoic acid (Table 3.2). Differences are evident in medium chain organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae. S. cerevisiae showed a similar MIC for all three medium chain organic acids with little strain variation. Z. kombuchaensis proved particularly sensitive to sorbic acid, having an average MIC of 1.25 mM in comparison with 6.29 mM and 3.50 mM for Z. bailii and S. cerevisiae. Z. kombuchaensis showed resistance intermediate between Z. bailii and S. cerevisiae on exposure to hexanoic and benzoic acid and exhibited little strain variation. Z. bailii strains proved to be the most resistant to all three medium chain organic acids; except strains NCYC 1416 and NCYC 385, which had MICs lower than any other Z. bailii strains. Hexanoic, sorbic and benzoic are inhibitory to a similar extent in Z. bailii as illustrated by their similar MIC values. Figures 3.4-3.6 show the effects of hexanoic, sorbic and benzoic acid on the growth of Z. bailli, Z. kombuchaensis and S. cerevisiae. S. cerevisiae strains showed good growth followed by poor or no growth at values close to the MIC. Z. kombuchaensis showed a progressive decrease in growth with increasing concentration of organic acid. At high concentrations, Z. bailii growth with all three medium chain organic acids was poor, with low OD values indicating the presence of only a few cells at each concentration. The growth of Z. bailii strains NCYC 1416 and NCYC 385 showed poor growth at all concentrations as with short chain organic acids. Table 3.2 Differences in medium chain organic acid MICs (mM) between Z. bailii, Z. kombuchaensis and S. cerevisiae | | Hexanoic acid | Sorbic acid | Benzoic acid | |---|---------------|----------------|--------------| | Z. bailii NCYC 1766 | 8 ± 0.41 | 8 ± 0.71 | 9 ± 0.48 | | Z. bailii NCYC 1416 ^T | 4 ± 0.58 | 4 ± 0.58 | 5 ± 1.22 | | Z. bailii 11 | 6 ± 0.00 | 5 ± 0.71 | 9 ± 1.08 | | Z. bailii NCYC 385 | 3 ± 0.41 | 3 ± 0.91 | 5 ± 0.71 | | Z. bailii NCYC 1520 | 8 ± 0.91 | 8 ± 0.33 | 9 ± 0.48 | | Z. bailii 20 | 6 ± 0.00 | 8 ± 0.58 | 8 ± 0.00 | | Z. bailii 80 | 8 ± 0.91 | 8 ± 0.33 | 9 ± 0.71 | | Z. kombuchaensis NRRL YB4810 | 4 ± 0.41 | 1.5 ± 0.13 | 6 ± 0.71 | | Z. kombuchaensis NRRL Y27163 | 5 ± 0.58 | 1.2 ± 0.14 | 6 ± 0.00 | | Z. kombuchaensis NRRL Y27162 | 5 ± 0.58 | 1.2 ± 0.82 | 6 ± 0.41 | | Z. kombuchaensis NRRL YB4811 ^T | 4 ± 0.41 | 1.2 ± 0.18 | 6 ± 0.71 | | S. cerevisiae NCYC 957 | 3 ± 0.00 | 4 ± 0.58 | 3 ± 0.00 | | S. cerevisiae NCYC 1324 | 3 ± 0.00 | 3 ± 0.33 | 3 ± 0.41 | | S. cerevisiae NCYC 1119 | 3 ± 0.41 | 4 ± 0.58 | 3 ± 0.00 | | S. cerevisiae BY4741 | 3 ± 0.00 | 3 ± 0.00 | 4 ± 0.58 | $^{^{\}mathrm{T}}$ = Type strain Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25° C, \pm the standard error. Figure 3.4 Effects of hexanoic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Figure 3.5 Effects of sorbic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Figure 3.6 Effects of benzoic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth # 3.2.3 Differences in longer chain organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae Table 3.3 shows the differences in longer chain organic acid resistance between Z. bailii, Z. kombuchaensis and S. cerevisiae. The ability of longer chain organic acids to inhibit yeast growth is greater than that of the short and medium chain organic acids examined. S. cerevisiae and Z. kombuchaensis showed similar levels of resistance to all three longer chain organic acids; with S. cerevisiae being slightly more resistant to nonanoic acid. Z. bailii strains were the most resistant to the longer chain organic acids examined. Z. bailii NCYC 1416 and NCYC 385 appear to be slightly more susceptible than the other strains as indicated by lower MICs to both octanoic and nonanoic acid. No strain variation in resistance to decanoic acid is evident for any strains examined. The effect of longer chain organic acids on the growth of Z. kombuchaensis and S. cerevisiae is that of a progressive decrease in growth with increasing concentration of organic acid (Figures 3.7-3.9). Z. bailii strains show good growth at low concentrations of octanoic and nonanoic acid with poor growth at concentrations approaching the MIC, indicating the growth of only a few cells. In the presence of decanoic acid all Z. bailii strains show good growth at concentrations of 0.1 mM or below (except NCYC 1416 and NCYC 385) with poor growth at 0.15 mM. Table 3.3 Differences in longer chain organic acid MICs (mM) between Z. bailii, Z. kombuchaensis and S. cerevisiae | | Octanoic acid | Nonanoic acid | Decanoic acid | |---|----------------|----------------|-----------------| | Z. bailii NCYC 1766 | 2.1 ± 0.17 | 0.6 ± 0.00 | 0.20 ± 0.00 | | Z. bailii NCYC 1416 ^T | 1.5 ± 0.21 | 0.5 ± 0.11 | 0.20 ± 0.04 | | Z. bailii 11 | 1.8 ± 0.00 | 0.6 ± 0.04 | 0.20 ± 0.00 | | Z. bailii NCYC 385 | 0.6 ± 0.00 | 0.4 ± 0.11 | 0.20 ± 0.04 | | Z. bailii NCYC 1520 | 2.1 ± 0.00 | 0.7 ± 0.09 | 0.20 ± 0.00 | | Z. bailii 20 | 1.8 ± 0.00 | 0.7 ± 0.04 | 0.20 ± 0.00 | | Z. bailii 80 | 2.1 ± 0.17 | 0.8 ± 0.00 | 0.20 ± 0.02 | | Z. kombuchaensis NRRL YB4810 | 1.2 ± 0.12 | 0.4 ± 0.00 | 0.15 ± 0.00 | | Z. kombuchaensis NRRL Y27163 | 0.9 ± 0.12 | 0.4 ± 0.04 | 0.15 ± 0.00 | | Z. kombuchaensis NRRL Y27162 | 0.9 ± 0.00 | 0.4 ± 0.04 | 0.15 ± 0.02 | | Z. kombuchaensis NRRL YB4811 ^T | 1.2 ± 0.00 | 0.4 ± 0.00 | 0.15 ± 0.00 | | S. cerevisiae NCYC 957 | 0.9 ± 0.00 | 0.5 ± 0.00 | 0.15 ± 0.02 | | S. cerevisiae NCYC 1324 | 1.2 ± 0.00 | 0.5 ± 0.04 | 0.15 ± 0.00 | | S. cerevisiae NCYC 1119 | 1.2 ± 0.12 | 0.5 ± 0.04 | 0.15 ± 0.00 | | S. cerevisiae BY4741 | 0.9 ± 0.00 | 0.4 ± 0.00 | 0.15 ± 0.00 | $^{^{}T}$ = Type strain Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25° C, \pm the standard error. Figure 3.7 Effects of octanoic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Octanoic acid (mM) Figure 3.8 Effects of nonanoic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth Figure 3.9 Effects of decanoic acid on Z. bailii, Z. kombuchaensis and S. cerevisiae growth # 3.3 Discussion This study shows that Z. bailii, Z. kombuchaensis and S. cerevisiae differ in resistance to short, medium and longer chain organic acids. As many of the organic acids used in this study are routinely used within the food industry as food preservatives, the results are of direct relevance. For example on the basis of MICs Z. bailii and Z. kombuchaensis appear to have a means of tolerating high concentrations of short chain organic acids, which is absent in S. cerevisiae. This means that foods preserved with short chain organic acids are at a greater risk of spoilage from Z. bailii and Z. kombuchaensis than S. cerevisiae. The resistance of the potential spoilage yeast Z. kombuchaensis to propionic acid suggests foods preserved with this, including bread and cheese, are at a greater risk of spoilage while foods preserved with sorbic acid would be at a low risk of spoilage. Collectively, the inhibitory data gathered from this study can be used to conduct risk assessments on foodstuffs and could influence the preservation strategies of certain foodstuffs. The Z. bailii strains unlike Z. kombuchaensis and S. cerevisiae showed variation in resistance to all organic acids. The results suggest that two groups exist within Z. bailii, one which is resistant and another relatively sensitive to organic acids. The two strains of Z. bailii that show increased sensitivity to organic acids are NCYC 1416 and NCYC 385. The existence of a more organic acid sensitive group in Z. bailii means has not been reported previously (Warth, 1991; Steels et al., 2000; 2002; Mollapour and Piper, 2001a, b). The relevance of a more organic acid sensitive group for Z. bailii to the food industry means that not all Z. bailii strains are capable of exceptional organic acid resistance. Indeed, by studying the differences between organic acid resistance and sensitive strains the basis of the Z. bailii resistance to organic acids may be revealed. The fact that Z. kombuchaensis is very sensitive to sorbic acid (MIC 1.25 mM) but resistant to acetic acid (MIC 300 mM) adds to the theory that a number of mechanisms may be involved in yeast
organic acid resistance (Brul and Coote, 1999; Piper et al., 2001). If sorbic acid (pK_a 4.74) and acetic acid (pK_a 4.76) acted as 'classic weak-acid preservatives' both would have similar inhibitory concentrations, the fact they do not supports the findings of Stratford and Anslow (1998) that sorbic acid does not act as a 'classic weak-acid preservative'. The ability of an acid to act as a 'classic weak-acid preservative' can be extended to propionic acid and hexanoic acid both of which have a pK_a of 4.87 and should therefore also have a similar inhibitory capacity, but were shown experimentally to have differing MICs. Therefore, there are a number of organic acids, which should have similar inhibitory capacities on the basis of the 'classic weak acid preservative' theory, but in reality do not. The application of weak-acid preservatives on the basis of the weak-acid preservative theory and pK_a values within the food industry without prior information about MICs could therefore lead to a higher incidence of spoilage. Analysis of the growth of all three yeast species in the presence of organic acids showed differences. S. cerevisiae strains exhibit good growth to the MIC, at which growth ends abruptly for all classes of organic acids. The general poor growth of Z. bailii and Z. kombuchaensis at extreme organic acid concentrations could be the result of highly-resistant "super" cells, as reported for Z. bailii in the presence of sorbic acid (Steels et al., 2000). The presence of "super" cells for Z. bailii and Z. kombuchaensis could be one of the most significant factors contributing to the ability of these yeasts to cause spoilage and means that spoilage could occur from only a few cells. The existence of "super" cells for Zygosaccharomyces yeasts warrants further investigation. 4. Effects of growth conditions on yeast organic acid resistance #### 4.1 Introduction Numerous factors are known to influence yeast growth. The most common factors affecting yeast growth include temperature, pH, water activity and nutrient availability (section 1.6). The factors affecting growth of many yeasts including *S. cerevisiae* are well documented (Barnett *et al.*, 2000). However, the influence of growth conditions on the food spoilage yeast *Z. bailii* remains largely unknown. The only concern of many researchers towards *Z. bailii* until relatively recently has been to kill it as opposed to studying its uniqueness (Dickinson, 2000). In the previous section, differences in organic acid resistance were shown between *Z. bailii*, *Z. kombuchaensis* and *S. cerevisiae*. In a bid to further understand the interaction between growth conditions and organic acid resistance I examined the influence of YPD composition, glucose concentration, carbon source, nitrogen source, water activity and vitamin additions on MICs to short (acetic and propionic), medium (sorbic and benzoic) and longer (nonanoic) chain organic acids. The experiments reported in this section were conducted at pH 4.0 in YPD except for the nitrogen source experiments, which were conducted in minimal medium. Strains of Z. bailii, Z. kombuchaensis and S. cerevisiae were selected on the basis of results obtained in section 3. Two strains of Z. bailii were selected: one that is resistant to organic acids and the other more sensitive. Two strains of Z. kombuchaensis were also selected, as this potential spoilage yeast has only recently been identified with little being known about its spoilage capabilities (Kurtzman et al., 2001; Steels et al. 2002). Only one strain of S. cerevisiae was included in this section as the strains examined in section 3 exhibited little strain variation. The strain selected for S. cerevisiae has been previously used in studies on preservative resistance (Stratford and Anslow, 1996; 1998). # 4.2 Results ## 4.2.1 Effects of YPD composition on yeast organic acid resistance The effects of changing the composition of YPD upon yeast organic acid resistance were analysed. Table 4.1 shows the effects of omitting one of the components from YPD on yeast organic acid resistance. Alterations to the YPD composition increased the sensitivity of all three yeast species to the organic acids examined. The omission of yeast extract had the greatest effect, while the omission of peptone had the smallest effect, on organic acid resistance, for all three yeast species. Table 4.1 shows that both strains of Z. bailii and Z. kombuchaensis produced some results which gave no growth over the concentration range examined, when grown in PD. S. cerevisiae, however, showed growth under all conditions examined for all three classes of organic acids. The longer chain organic acid exhibited the greatest inhibitory action to all three species; with acetic acid being the least inhibitory as shown by the high MICs. Z. bailii NCYC 1766 was the most resistant yeast to all classes of organic acids except propionic acid in YD, to which the two Z. kombuchaensis strains were the most resistant. #### 4.2.2 Effects of glucose concentration on yeast organic acid resistance All three yeast species showed growth for all organic acids examined in YPD with 0.5, 5 and 10% (w/v) glucose (Table 4.2). The results show that the MICs obtained for each yeast under the three different concentrations of glucose remain relatively constant e.g. the MIC of acetic acid to S. cerevisiae in 0.5, 5 and 10% glucose is 90, 95 and 90 mM, respectively. The pattern of Z. bailii NCYC 1416 being the more sensitive of the two Z. bailii strains to organic acids remained constant. S. cerevisiae still proved the most sensitive to organic acids with Z. kombuchaensis giving results intermediate between Z. bailii and S. cerevisiae; except for sorbic acid where it proved the most sensitive and propionic acid where it was the most resistant. Table 4.1 Effects of complex medium composition on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | | <i>Zb</i> 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | YPD | | | | | | | Acetic acid | 400 ± 20.41 | 300 ± 28.87 | 350 ± 28.87 | 300 ± 20.41 | 125 ± 10.20 | | Propionic acid | 100 ± 8.16 | 80 ± 11.55 | 120 ± 0.00 | 120 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 8 ± 0.71 | 4 ± 0.58 | 1.2 ± 0.82 | 1.2 ± 0.18 | 4 ± 0.58 | | Benzoic acid | 9 ± 0.48 | 5 ± 1.22 | 6 ± 0.41 | 6 ± 0.71 | 3 ± 0.00 | | Nonanoic acid | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.5 ± 0.00 | | YP | | | | | | | Acetic acid | 250 ± 28.87 | 200 ± 28.87 | 175 ± 20.41 | 175 ± 28.87 | 65 ± 6.64 | | Propionic acid | 60 ± 4.08 | 30 ± 8.16 | NG | NG | 10 ± 1.21 | | Sorbic acid | 7.0 ± 0.00 | 1.0 ± 0.04 | 0.9 ± 0.14 | 0.6 ± 0.18 | 1.5 ± 0.14 | | Benzoic acid | 10 ± 1.22 | 4.5 ± 0.48 | 3.5 ± 0.71 | 2.0 ± 0.71 | 1.5 ± 0.18 | | Nonanoic acid | 0.7 ± 0.21 | 0.4 ± 0.17 | 0.2 ± 0.17 | 0.2 ± 0.21 | 0.3 ± 0.12 | | YD | | | | | | | Acetic acid | 300 ± 20.41 | 275 ± 20.41 | 225 ± 28.87 | 225 ± 28.87 | 100 ± 10.41 | | Propionic acid | 80 ± 0.00 | 65 ± 0.00 | 85 ± 8.16 | 95 ± 11.54 | 55 ± 4.08 | | Sorbic acid | 6.5 ± 0.91 | 4.5 ± 0.91 | 1.2 ± 0.13 | 1.2 ± 0.13 | 3.5 ± 0.18 | | Benzoic acid | 9.0 ± 1.08 | 4.5 ± 1.22 | 4.5 ± 1.22 | 3.5 ± 0.71 | 3.5 ± 0.58 | | Nonanoic acid | 0.7 ± 0.11 | 0.5 ± 0.09 | 0.4 ± 0.04 | 0.4 ± 0.04 | 0.5 ± 0.11 | | PD | | | | | | | Acetic acid | 100 ± 10.41 | NG | 200 ± 20.41 | 150 ± 28.87 | 80 ± 10.20 | | Propionic acid | NG | NG | NG | NG | 30 ± 1.21 | | Sorbic acid | 4.0 ± 0.91 | NG | NG | 0.6 ± 0.18 | 0.5 ± 0.33 | | Benzoic acid | 2.0 ± 0.58 | NG | NG | 1.0 ± 0.33 | 2.0 ± 0.33 | | Nonanoic acid | 0.6 ± 0.09 | 0.3 ± 0.04 | 0.3 ± 0.02 | 0.3 ± 0.04 | 0.4 ± 0.09 | NG = no growth Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25° C, \pm the standard error. Table 4.2 Effects of glucose concentration on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | | Zb 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | YPD 2% (w/v)
Glucose | | | | | | | Acetic acid | 400 ± 20.41 | 300 ± 28.87 | 350 ± 28.87 | 300 ± 20.41 | 125 ± 10.20 | | Propionic acid | 100 ± 8.16 | 80 ± 11.55 | 120 ± 0.00 | 120 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 8 ± 0.71 | 4 ± 0.58 | 1.2 ± 0.82 | 1.2 ± 0.18 | 4 ± 0.58 | | Benzoic acid | 9 ± 0.48 | 5 ± 1.22 | 6 ± 0.41 | 6 ± 0.71 | 3 ± 0.00 | | Nonanoic acid | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.5 ± 0.00 | | YPD 0.5% (w/v)
Glucose | | | | | | | Acetic acid | 250 ± 20.41 | 200 ± 10.20 | 200 ± 10.20 | 200 ± 20.41 | 90 ± 10.20 | | Propionic acid | 90 ± 11.55 | 60 ± 8.16 | 80 ± 4.08 | 80 ± 4.08 | 55 ± 4.08 | | Sorbic acid | 7.0 ± 0.71 | 2.0 ± 0.00 | 0.9 ± 0.00 | 0.6 ± 0.13 | 3.5 ± 0.00 | | Benzoic acid | 9.0 ± 0.91 | 3.0 ± 0.58 | 3.0 ± 0.71 | 3.0 ± 0.00 | 3.0 ± 0.00 | | Nonanoic acid | 0.7 ± 0.09 | 0.4 ± 0.04 | 0.3 ± 0.04 | 0.3 ± 0.04 | 0.5 ± 0.04 | | YPD 5% (w/v) | | | | | | | Glucose
Acetic acid | 350 ± 20.41 | 175 ± 20.41 | 250 ± 10.20 | 250 ± 10.20 | 95 ± 10.20 | | Propionic acid | 100 ± 8.16 | 70 ± 8.16 | 120 ± 0.00 | 120 ± 4.08 | 55 ± 4.08 | | Sorbic acid | 7.0 ± 0.91 | 4.0 ± 1.22 | 0.9 ± 0.12 | 0.9 ± 0.13 | 3.5 ± 0.18 | |
Benzoic acid | 9.5 ± 1.08 | 3.0 ± 1.22 | 4.0 ± 0.00 | 4.0 ± 0.58 | 3.5 ± 0.00 | | Nonanoic acid | 0.8 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.09 | 0.4 ± 0.04 | 0.5 ± 0.09 | | YPD 10% (w/v)
Glucose | | | | | | | Acetic acid | 250 ± 20.41 | 200 ± 28.87 | 250 ± 20.41 | 200 ± 20.41 | 90 ± 10.20 | | Propionic acid | 90 ± 0.00 | 70 ± 8.16 | 100 ± 0.00 | 100 ± 0.00 | 55 ± 4.08 | | Sorbic acid | 6.0 ± 1.22 | 4.0 ± 1.22 | 1.2 ± 0.12 | 1.2 ± 0.12 | 4.0 ± 0.91 | | Benzoic acid | 7.0 ± 0.00 | 3.5 ± 0.71 | 4.5 ± 0.58 | 4.5 ± 0.33 | 3.0 ± 0.33 | | Nonanoic acid | 0.8 ± 0.09 | 0.4 ± 0.04 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.4 ± 0.00 | Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25°C, ± the standard error. # 4.2.3 Effects of carbon source on yeast organic acid resistance The effects of changing carbon source in complex medium upon yeast organic acid resistance were also analysed. Glucose was replaced with the similarly fermentable carbon sources fructose, sucrose and mannose plus the non-fermentable carbon sources ethanol and glycerol (at 2% w/v except glycerol, which was at 3% w/v). Glucose and glycerol (both at 1%) in the growth media were also used. Table 4.3 shows that the MICs obtained for the fermentable carbon sources are higher than those obtained for the two non-fermentable carbon sources, with the 1% glucose and 1% glycerol giving MICs intermediate between fermentable and non-fermentable carbon sources. The results show that the two Z. bailii strains had their highest MICs for all classes of organic acids examined in YPSucrose (except standard YPD). Z. kombuchaensis and S. cerevisiae exhibited greatest resistance to all organic acids in YPFructose media. In YPGlycerol media Z. bailii NCYC 1416, S. cerevisiae NCYC 957 and the Z. kombuchaensis strains showed no growth over the range of organic acid concentrations examined. Z. bailii NCYC 1766 gave MICs in the presence of YPglycerol which were considerably lower than those obtained using fermentable carbon sources (Table 4.3). For YPEthanol, some strains failed to grow at all concentrations of organic acids tested. #### 4.2.4 Effects of nitrogen source on yeast organic acid resistance The effects of nitrogen source on Z. bailii, Z. kombuchaensis and S. cerevisiae organic acid resistance were studied in minimal medium. Minimal medium normally contains ammonium sulphate as the nitrogen source at 0.5% (w/v), in these experiments the ammonium sulphate was compared to media containing two non-polar amino acids proline and leucine at the same 0.5% (w/v) concentration. S. cerevisiae exhibited similar MICs to all three classes of organic acids irrespective of the nitrogen source (Table 4.4). The two Z. bailii strains examined NCYC 1766 and NCYC 1416 also exhibited little Table 4.3 Effects of carbon source on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | | Zb 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |---------------------------|-----------------|-----------------|-----------------|-----------------|----------------| | YPD
Acetic acid | 400 ± 20.41 | 300 ± 28.87 | 350 ± 28.87 | 300 ± 20.41 | 125 ± 10.20 | | Propionic acid | 100 ± 8.16 | 80 ± 11.55 | 120 ± 0.00 | 120 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 8 ± 0.71 | 4 ± 0.58 | 1.2 ± 0.82 | 1.2 ± 0.18 | 4 ± 0.58 | | Benzoic acid | 9 ± 0.48 | 5 ± 1.22 | 6 ± 0.41 | 6 ± 0.71 | 3 ± 0.00 | | Nonanoic acid | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.5 ± 0.00 | | YPFructose
Acetic acid | 325 ± 28.87 | 225 ± 20.41 | 325 ± 28.87 | 325 ± 28.87 | 110 ± 15.55 | | Propionic acid | 100 ± 0.00 | 70 ± 8.16 | 110 ± 8.16 | 110 ± 4.08 | 60 ± 8.16 | | Sorbic acid | 8.0 ± 0.71 | 4.5 ± 0.58 | 1.8 ± 0.18 | 1.8 ± 0.18 | 3.5 ± 0.33 | | Benzoic acid | 9.0 ± 0.58 | 4.0 ± 1.22 | 6.5 ± 1.22 | 5.5 ± 0.91 | 4.0 ± 0.00 | | Nonanoic acid | 0.8 ± 0.09 | 0.6 ± 0.04 | 0.6 ± 0.00 | 0.6 ± 0.04 | 0.5 ± 0.00 | | YPSucrose
Acetic acid | 375 ± 20.41 | 280 ± 28.87 | 250 ± 20.41 | 275 ± 10.20 | 95 ± 10.20 | | Propionic acid | 100 ± 8.16 | 85 ± 8.16 | 105 ± 4.08 | 105 ± 0.00 | 55 ± 4.08 | | Sorbic acid | 8.5 ± 1.22 | 5.0 ± 0.91 | 1.2 ± 0.12 | 1.2 ± 0.13 | 3.5 ± 0.18 | | Benzoic acid | 10.0 ± 1.22 | 6.0 ± 0.58 | 6.0 ± 0.33 | 5.0 ± 0.58 | 3.5 ± 0.33 | | Nonanoic acid | 0.8 ± 0.11 | 0.5 ± 0.09 | 0.4 ± 0.09 | 0.5 ± 0.04 | 0.5 ± 0.09 | | YPMannose
Acetic acid | 350 ± 20.41 | 250 ± 28.87 | 250 ± 20.41 | 250 ± 20.41 | 95 ± 10.20 | | Propionic acid | 95 ± 4.08 | 80 ± 8.16 | 105 ± 0.00 | 105 ± 8.16 | 60 ± 0.00 | | Sorbic acid | 6.5 ± 0.71 | 4.5 ± 0.58 | 1.4 ± 0.18 | 1.4 ± 0.18 | 2.5 ± 0.58 | | Benzoic acid | 7.5 ± 0.00 | 3.5 ± 0.58 | 5.0 ± 0.00 | 4.5 ± 0.71 | 3.5 ± 0.33 | | Nonanoic acid | 0.8 ± 0.11 | 0.6 ± 0.09 | 0.6 ± 0.04 | 0.6 ± 0.00 | 0.4 ± 0.04 | Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25°C, ± the standard error. Table 4.3 cont Effects of carbon source on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | | Zb 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | YPEthanol | | | | | | | Acetic acid | 225 ± 20.41 | 100 ± 20.41 | 75 ± 10.20 | 75 ± 10.20 | NG | | Propionic acid | 75 ± 4.08 | NG | NG | NG | 15 ± 1.21 | | Sorbic acid | 5.0 ± 0.48 | 2.5 ± 0.33 | NG | NG | 1.0 ± 0.09 | | Benzoic acid | 5.0 ± 0.58 | 1.0 ± 0.11 | NG | 0.5 ± 0.04 | NG | | Nonanoic acid | 0.7 ± 0.04 | 0.3 ± | NG | NG | 0.2 ± 0.02 | | YPGlycerol | | | | | | | Acetic acid | 150 ± 10.20 | NG | NG | NG | NG | | Propionic acid | 60 ± 0.00 | NG | NG | NG | NG | | Sorbic acid | 5.0 ± 1.22 | NG | NG | NG | NG | | Benzoic acid | 6.0 ± 0.71 | NG | NG | NG | NG | | Nonanoic acid | 0.7 ± 0.11 | NG | NG | NG | NG | | YP1% Glucose + | 1% Glycerol | | | | | | Acetic acid | 200 ± 20.41 | 175 ± 20.41 | 225 ± 10.20 | 225 ± 10.20 | 105 ± 10.20 | | Propionic acid | 75 ± 4.08 | 65 ± 8.16 | 75 ± 4.08 | 75 ± 0.00 | 45 ± 4.08 | | Sorbic acid | 5.5 ± 1.22 | 3.5 ± 0.71 | 0.9 ± 0.09 | 0.9 ± 0.06 | 3.5 ± 0.00 | | Benzoic acid | 6.5 ± 0.00 | 4.5 ± 0.58 | 4.5 ± 0.33 | 4.5 ± 0.33 | 3.5 ± 0.58 | | Nonanoic acid | 0.7 ± 0.09 | 0.6 ± 0.09 | 0.5 ± 0.00 | 0.5 ± 0.04 | 0.6 ± 0.09 | NG = no growth. Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25° C, \pm the standard error. Table 4.4 Effects of nitrogen source on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | | Zb 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | YPD | | | | | | | Acetic acid | 400 ± 20.41 | 300 ± 28.87 | 350 ± 28.87 | 300 ± 20.41 | 125 ± 10.20 | | Propionic acid | 100 ± 8.16 | 80 ± 11.55 | 120 ± 0.00 | 120 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 8 ± 0.71 | 4 ± 0.58 | 1.2 ± 0.82 | 1.2 ± 0.18 | 4 ± 0.58 | | Benzoic acid | 9 ± 0.48 | 5 ± 1.22 | 6 ± 0.41 | 6 ± 0.71 | 3 ± 0.00 | | Nonanoic acid | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.5 ± 0.00 | | MM Ammonium | | | | | | | sulphate
Acetic acid | 250 ± 20.41 | 250 ± 28.87 | 150 ± 10.20 | 150 ± 10.20 | 80 ± 5.97 | | Propionic acid | 60 ± 0.00 | 40 ± 4.08 | 60 ± 4.08 | 70 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 5.0 ± 0.71 | 3.0 ± 0.58 | 0.6 ± 0.04 | 0.3 ± 0.04 | 2.0 ± 0.09 | | Benzoic acid | 5.0 ± 0.58 | 3.0 ± 0.91 | 1.0 ± 0.12 | 1.0 ± 0.12 | 2.5 ± 0.00 | | Nonanoic acid | 0.5 ± 0.09 | 0.4 ± 0.04 | 0.1 ± 0.02 | 0.2 ± 0.04 | 0.4 ± 0.09 | | MM Proline | | | | | | | Acetic acid | 250 ± 20.41 | 200 ± 28.87 | 250 ± 28.87 | 250 ± 20.41 | 80 ± 10.20 | | Propionic acid | 70 ± 4.08 | 50 ± 8.16 | 60 ± 8.16 | 70 ± 4.08 | 50 ± 0.00 | | Sorbic acid | 6.0 ± 0.91 | 3.0 ± 0.58 | 0.6 ± 0.09 | 0.6 ± 0.09 | 2.5 ± 0.33 | | Benzoic acid | 4.0 ± 0.71 | 3.0 ± 0.71 | 3.0 ± 0.00 | 3.0 ± 0.58 | 2.5 ± 0.33 | | Nonanoic acid | 0.5 ± 0.00 | 0.4 ± 0.09 | 0.2 ± 0.00 | 0.3 ± 0.00 | 0.4 ± 0.04 | | MM Leucine | | | | | | | Acetic acid | 250 ± 20.41 | 250 ± 20.41 | 300 ± 20.41 | 300 ± 20.41 | 80 ± 0.00 | | Propionic acid | 60 ± 0.00 | 50 ± 4.08 | 70 ± 0.00 | 70 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 6.0 ± 1.22 | 4.0 ± 0.58 | 0.9 ± 0.00 | 0.6 ± 0.12 | 2.5 ± 0.33 | | Benzoic acid | 6.0 ± 1.22 | 4.0 ± 0.71 | 3.0 ± 0.58 | 3.0 ± 0.00 | 3.0 ± 0.58 | | Nonanoic acid | 0.6 ± 0.04 | 0.4 ± 0.09 | 0.3 ± 0.02 | 0.3 ± 0.04 | 0.4 ± 0.00 | Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25° C, \pm the standard error. variation in all organic acid MICs in media containing different nitrogen sources. The MIC for acetic acid against the two *Z. bailii* strains were around the 250 mM level in all three nitrogen sources; while for the remaining organic acids *Z. bailii* strain NCYC 1766 was the most resistant as
indicated by the higher MICs. The results show that both strains of *Z. kombuchaensis* were the most sensitive to changes in nitrogen source. The lowest MICs for *Z. kombuchaensis* to all organic acids were generally in minimal media containing ammonium sulphate, while the highest MICs were obtained in the presence of leucine. The MIC for acetic acid was double in leucine minimal medium than it was for ammonium sulphate, the propionic acid MICs, however, remained similar at around 60-70 mM for all three nitrogen sources for both *Z. kombuchaensis* strains. The pattern of longer chain organic acids being the most inhibitory remained constant in minimal medium as in complex medium. #### 4.2.5 Effects of water activity on yeast organic acid resistance The altering of medium water activity in yeast organic acid resistance was explored by the addition of glycerol and the two non-metabolisable sugars sorbitol and mannitol to YPD pH 4.0 at a concentration 10% (w/v). Table 4.5 shows that the MICs obtained for all three yeast species in the presence of glycerol were similar to those obtained for mannitol and sorbitol additions. The biggest difference in MIC between growth conditions was obtained for *Z. kombuchaensis* on exposure to sorbic acid. The MIC for both strains of *Z. kombuchaensis* to sorbic acid was 1.8 mM in YPD containing sorbitol and mannitol in comparison to 2.4 mM with glycerol supplementation. The yeasts collectively were the most resistant to acetic acid and the most sensitive to nonanoic acid as indicated by MICs. **Table 4.5** Effects of water activity on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | Zb 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |-----------------|---|---|---|---| | 400 ± 20.41 | 300 ± 28.87 | 350 ± 28.87 | 300 ± 20.41 | 125 ± 10.20 | | 100 ± 8.16 | 80 ± 11.55 | 120 ± 0.00 | 120 ± 0.00 | 50 ± 4.08 | | 8 ± 0.71 | 4 ± 0.58 | 1.2 ± 0.82 | 1.2 ± 0.18 | 4 ± 0.58 | | 9 ± 0.48 | 5 ± 1.22 | 6 ± 0.41 | 6 ± 0.71 | 3 ± 0.00 | | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.5 ± 0.00 | | | | | | | | 350 ± 28.87 | 250 ± 28.87 | 250 ± 20.41 | 300 ± 28.87 | 110 ± 10.20 | | 110 ± 0.00 | 100 ± 8.16 | 110 ± 4.08 | 120 ± 0.00 | 80 ± 4.08 | | 7.0 ± 0.33 | 6.0 ± 0.58 | 2.4 ± 0.24 | 2.4 ± 0.27 | 3.5 ± 0.33 | | 10.0 ± 1.22 | 6.0 ± 1.22 | 8.0 ± 0.91 | 8.0 ± 0.58 | 4.0 ± 0.00 | | 0.4 ± 0.04 | 0.3 ± 0.09 | 0.3 ± 0.04 | 0.3 ± 0.00 | 0.3 ± 0.00 | | | | | | | | 350 ± 20.41 | 300 ± 20.41 | 250 ± 15.55 | 300 ± 20.41 | 110 ± 10.20 | | 120 ± 0.00 | 100 ± 8.16 | 120 ± 0.00 | 120 ± 0.00 | 80 ± 4.08 | | 7.0 ± 0.58 | 5.0 ± 0.58 | 1.8 ± 0.24 | 1.8 ± 0.18 | 4.0 ± 0.33 | | 10.0 ± 1.22 | $6.0 \pm .71$ | 7.0 ± 1.22 | 7.0 ± 1.22 | 3.5 ± 0.58 | | 0.4 ± 0.00 | 0.3 ± 0.09 | 0.3 ± 0.00 | 0.3 ± 0.09 | 0.3 ± 0.00 | | | | | | | | 350 ± 20.41 | 300 ± 20.41 | 300 ± 28.87 | 300 ± 28.87 | 120 ± 15.55 | | 120 ± 8.16 | 90 ± 4.08 | 120 ± 0.00 | 120 ± 0.00 | 80 ± 4.08 | | 6.0 ± 0.33 | 6.0 ± 0.58 | 1.8 ± 0.12 | 1.8 ± 0.21 | 4.5 ± 0.00 | | 10.0 ± 1.22 | 7.0 ± 0.91 | 7.0 ± 1.22 | 7.0 ± 0.00 | 4.5 ± 0.58 | | 0.4 ± 0.00 | 0.3 ± 0.09 | 0.3 ± 0.04 | 0.3 ± 0.00 | 0.3 ± 0.04 | | | 400 ± 20.41 100 ± 8.16 8 ± 0.71 9 ± 0.48 0.6 ± 0.00 350 ± 28.87 110 ± 0.00 7.0 ± 0.33 10.0 ± 1.22 0.4 ± 0.04 350 ± 20.41 120 ± 0.00 7.0 ± 0.58 10.0 ± 1.22 0.4 ± 0.00 350 ± 20.41 120 ± 8.16 6.0 ± 0.33 10.0 ± 1.22 | $400 \pm 20.41 \qquad 300 \pm 28.87$ $100 \pm 8.16 \qquad 80 \pm 11.55$ $8 \pm 0.71 \qquad 4 \pm 0.58$ $9 \pm 0.48 \qquad 5 \pm 1.22$ $0.6 \pm 0.00 \qquad 0.5 \pm 0.11$ $350 \pm 28.87 \qquad 250 \pm 28.87$ $110 \pm 0.00 \qquad 100 \pm 8.16$ $7.0 \pm 0.33 \qquad 6.0 \pm 0.58$ $10.0 \pm 1.22 \qquad 6.0 \pm 1.22$ $0.4 \pm 0.04 \qquad 0.3 \pm 0.09$ $350 \pm 20.41 \qquad 300 \pm 20.41$ $120 \pm 0.00 \qquad 100 \pm 8.16$ $7.0 \pm 0.58 \qquad 5.0 \pm 0.58$ $10.0 \pm 1.22 \qquad 6.0 \pm .71$ $0.4 \pm 0.00 \qquad 0.3 \pm 0.09$ $350 \pm 20.41 \qquad 300 \pm 20.41$ $120 \pm 0.00 \qquad 0.3 \pm 0.09$ $350 \pm 20.41 \qquad 300 \pm 20.41$ $120 \pm 0.00 \qquad 0.3 \pm 0.09$ $350 \pm 20.41 \qquad 300 \pm 20.41$ $120 \pm 0.00 \qquad 0.3 \pm 0.09$ | $400 \pm 20.41 \qquad 300 \pm 28.87 \qquad 350 \pm 28.87$ $100 \pm 8.16 \qquad 80 \pm 11.55 \qquad 120 \pm 0.00$ $8 \pm 0.71 \qquad 4 \pm 0.58 \qquad 1.2 \pm 0.82$ $9 \pm 0.48 \qquad 5 \pm 1.22 \qquad 6 \pm 0.41$ $0.6 \pm 0.00 \qquad 0.5 \pm 0.11 \qquad 0.4 \pm 0.04$ $350 \pm 28.87 \qquad 250 \pm 28.87 \qquad 250 \pm 20.41$ $110 \pm 0.00 \qquad 100 \pm 8.16 \qquad 110 \pm 4.08$ $7.0 \pm 0.33 \qquad 6.0 \pm 0.58 \qquad 2.4 \pm 0.24$ $10.0 \pm 1.22 \qquad 6.0 \pm 1.22 \qquad 8.0 \pm 0.91$ $0.4 \pm 0.04 \qquad 0.3 \pm 0.09 \qquad 0.3 \pm 0.04$ $350 \pm 20.41 \qquad 300 \pm 20.41 \qquad 250 \pm 15.55$ $120 \pm 0.00 \qquad 100 \pm 8.16 \qquad 120 \pm 0.00$ $7.0 \pm 0.58 \qquad 5.0 \pm 0.58 \qquad 1.8 \pm 0.24$ $10.0 \pm 1.22 \qquad 6.0 \pm .71 \qquad 7.0 \pm 1.22$ $0.4 \pm 0.00 \qquad 0.3 \pm 0.09 \qquad 0.3 \pm 0.00$ $350 \pm 20.41 \qquad 300 \pm 20.41 \qquad 300 \pm 28.87$ $120 \pm 8.16 \qquad 90 \pm 4.08 \qquad 120 \pm 0.00$ $6.0 \pm 0.33 \qquad 6.0 \pm 0.58 \qquad 1.8 \pm 0.12$ $10.0 \pm 1.22 \qquad 7.0 \pm 0.91 \qquad 7.0 \pm 1.22$ | $400 \pm 20.41 300 \pm 28.87 350 \pm 28.87 300 \pm 20.41$ $100 \pm 8.16 80 \pm 11.55 120 \pm 0.00 120 \pm 0.00$ $8 \pm 0.71 4 \pm 0.58 1.2 \pm 0.82 1.2 \pm 0.18$ $9 \pm 0.48 5 \pm 1.22 6 \pm 0.41 6 \pm 0.71$ $0.6 \pm 0.00 0.5 \pm 0.11 0.4 \pm 0.04 0.4 \pm 0.00$ $350 \pm 28.87 250 \pm 28.87 250 \pm 20.41 300 \pm 28.87$ $110 \pm 0.00 100 \pm 8.16 110 \pm 4.08 120 \pm 0.00$ $7.0 \pm 0.33 6.0 \pm 0.58 2.4 \pm 0.24 2.4 \pm 0.27$ $10.0 \pm 1.22 6.0 \pm 1.22 8.0 \pm 0.91 8.0 \pm 0.58$ $0.4 \pm 0.04 0.3 \pm 0.09 0.3 \pm 0.04 0.3 \pm 0.00$ $350 \pm 20.41 300 \pm 20.41 250 \pm 15.55 300 \pm 20.41$ $120 \pm 0.00 100 \pm 8.16 120 \pm 0.00 120 \pm 0.00$ $7.0 \pm 0.58 5.0 \pm 0.58 1.8 \pm 0.24 1.8 \pm 0.18$ $10.0 \pm 1.22 6.0 \pm .71 7.0 \pm 1.22 7.0 \pm 1.22$ $0.4 \pm 0.00 0.3 \pm 0.09 0.3 \pm 0.00 0.3 \pm 0.09$ $350 \pm 20.41 300 \pm 20.41 300 \pm 28.87 300 \pm 28.87$ $120 \pm 8.16 90 \pm 4.08 120 \pm 0.00 120 \pm 0.00$ $6.0 \pm 0.33 6.0 \pm 0.58 1.8 \pm 0.12 1.8 \pm 0.21$ $10.0 \pm 1.22 7.0 \pm 0.91 7.0 \pm 1.22 7.0 \pm 0.00$ | Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25° C, \pm the standard error. ## 4.2.6 Effects of vitamin source on yeast
organic acid resistance Z. bailii is known to require certain B group vitamins for growth (Thomas and Davenport, 1985). Therefore, the effects of adding 10 times the concentration of the three B group vitamins riboflavin, pyroxidine and thiamine that are collectively found in YPD (appendix 1) was analysed in relation to yeast organic acid resistance. The vitamins were made in stock solutions and filter sterilised to avoid the pressures and temperatures of autoclaving. Table 4.6 shows that the MICs for all three classes of organic acids obtained did not vary considerably with the different vitamins added. S. cerevisiae proved the most susceptible to all organic acids except sorbic acid in which the two Z. kombuchaensis strains were the most sensitive. The two Z. bailii strains showed differences in organic acid resistance in all three-vitamin addition media, with Z. bailii NCYC 1416 being the more sensitive. Table 4.6 Effects of vitamin additions on organic acid MICs (mM) in Z. bailii, Z. kombuchaensis and S. cerevisiae | | Zb 1766 | Zb 1416 | Zk Y27162 | Zk YB4811 | Sc 957 | |---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | YPD
Acetic acid | 400 ± 20.41 | 300 ± 28.87 | 350 ± 28.87 | 300 ± 20.41 | 125 ± 10.20 | | Propionic acid | 100 ± 8.16 | 80 ± 11.55 | 120 ± 0.00 | 120 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 8 ± 0.71 | 4 ± 0.58 | 1.2 ± 0.82 | 1.2 ± 0.18 | 4 ± 0.58 | | Benzoic acid | 9 ± 0.48 | 5 ± 1.22 | 6 ± 0.41 | 6 ± 0.71 | 3 ± 0.00 | | Nonanoic acid | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.4 ± 0.04 | 0.4 ± 0.00 | 0.5 ± 0.00 | | YPD +
10×Riboflavin | | | | | | | Acetic acid | 300 ± 28.87 | 200 ± 20.41 | 250 ± 20.41 | 250 ± 20.41 | 120 ± 10.20 | | Propionic acid | 100 ± 0.00 | 70 ± 4.08 | 100 ± 0.00 | 110 ± 8.16 | 60 ± 0.00 | | Sorbic acid | 8.0 ± 1.22 | 5.0 ± 0.91 | 1.2 ± 0.12 | 1.2 ± 0.18 | 4.0 ± 0.58 | | Benzoic acid | 8.0 ± 0.71 | 5.0 ± 0.91 | 5.0 ± 1.22 | 5.0 ± 0.91 | 4.0 ± 0.71 | | Nonanoic acid | 0.4 ± 0.02 | 0.3 ± 0.09 | 0.2 ± 0.04 | 0.2 ± 0.00 | 0.3 ± 0.00 | | YPD+ | | | | | | | 10×Pyridoxine Acetic acid | 300 ± 20.41 | 200 ± 10.20 | 250 ± 20.41 | 250 ± 20.41 | 120 ± 10.20 | | Propionic acid | 110 ± 8.16 | 90 ± 4.08 | 120 ± 0.00 | 120 ± 8.16 | 60 ± 4.08 | | Sorbic acid | 8.0 ± 0.71 | 6.0 ± 1.22 | 1.2 ± 0.58 | 1.2 ± 0.58 | 4.0 ± 0.33 | | Benzoic acid | 10.0 ± 1.22 | 6.0 ± 0.91 | 5.0 ± 0.00 | 5.0 ± 0.58 | 4.0 ± 0.71 | | Nonanoic acid | 0.4 ± 0.00 | 0.3 ± 0.09 | 0.2 ± 0.04 | 0.2 ± 0.00 | 0.3 ± 0.09 | | YPD+ | | | | | | | 10×Thiamine Acetic acid | 350 ± 20.41 | 200 ± 20.41 | 250 ± 0.00 | 250 ± 20.41 | 120 ± 10.20 | | Propionic acid | 110 ± 8.16 | 80 ± 4.08 | 120 ± 8.16 | 120 ± 0.00 | 60 ± 8.16 | | Sorbic acid | 8.0 ± 1.53 | 5.0 ± 0.91 | 1.2 ± 0.18 | 1.2 ± 0.24 | 4.5 ± 0.71 | | Benzoic acid | 9.0 ± 0.00 | 5.0 ± 0.71 | 5.0 ± 0.71 | 5.0 ± 0.00 | 4.0 ± 0.58 | | Nonanoic acid | 0.3 ± 0.09 | 0.3 ± 0.11 | 0.3 ± 0.09 | 0.3 ± 0.04 | 0.3 ± 0.00 | Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25°C, ± the standard error. #### 4.3 Discussion This section shows that the alteration of growth conditions can have an effect on yeast organic acid resistance. All three yeast species were more susceptible to organic acids in minimal medium than in the complex growth media YPD. The omission of yeast extract from the complex growth media resulted in no growth for strains of Z. bailii and Z. kombuchaensis to some organic acids. The S. cerevisiae strain included in the study, however, did not show a similar pattern. Therefore, foodstuffs lacking complex nutrients such as those present in yeast extract would be at a greater risk of spoilage by S. cerevisiae than by Z. bailii. The results showed that the omission of Bacto peptone had little influence on yeast organic acid resistance. Both yeast extract and Bacto peptone contain similar components (appendix), but yeast extract contains a higher level of B group vitamins. Z. bailii has previously been reported to be dependent upon B group vitamins to cause spoilage (Thomas and Davenport, 1985). This study analyzed the effects of vitamin additions on yeast organic acid resistance but experiments in which vitamins were omitted from the growth media would be of interest as they could isolate the specific vitamins which Z. bailii and Z. kombuchaensis are dependent upon. This section highlights the need within the food industry to conduct analyses on the factors affecting yeast growth as these may allow new preservation strategies to be developed while providing an accurate risk assessment of spoilage. Experiments performed with non-fermentable carbon sources showed the need of Z. bailii NCYC 1416, Z. kombuchaensis and S. cerevisiae for a fermentable carbon source to cause spoilage. The more organic acid resistant Z. bailii strain NCYC 1766 was able to grow in the presence of the organic acids examined with a non-fermentable carbon source. This strain, therefore, appears to be less dependent upon fermentation as a means of spoiling food than may have been thought previously. This suggests that this highly resistant organic acid strain is dependent upon its mitochondria and a low level of respiration in order to cause spoilage. The importance of respiration in organic acid resistance is an avenue of investigation still remaining to be pursued. Z. kombuchaensis had slightly higher MICs to medium chain organic acids in the presence of 10% (w/v) glycerol, mannitol and sorbitol than in their absence. A link between water activity and medium chain organic acid resistance could help explain the mode of action of this group of organic acids. Sorbic acid has been speculated to act primarily on the yeast membrane (Stratford and Anslow, 1998; Stratford and Ueckert, unpublished). If this were the case, then any change in the water activity of the growth media would have a direct influence on resistance. The fact that water potential had little effect on the resistance to acetic acid a known 'classic weak-acid preservative' supports this theory. The results from this section provide some of the first evidence in detailing how growth conditions can affect yeast organic acid resistance. The information can be applied to the food industry in order to conduct risk assessments on the potential spoilage miroc-flora of a product depending on carbon, nitrogen source, the presence of key vitamins and the food preservative. The results may also aid the development of new products in which the potential incidence of spoilage must also be considered as a factor. An extension to the study would be to examine extrinsic factors including temperature and oxygen availability on yeast organic acid resistance. However, the restriction of oxygen in complex media has recently been shown not to be an effective strategy for the prevention of *Z. bailii* spoilage (Rodrigues *et al.*, 2001a). This section and the findings of Rodrigues *et al.*, (2001a) both highlight the dependence of the spoilage yeast *Z. bailii* on the intrinsic properties of the food to provide the essentials for growth. # 5. Yeast cell structure and organic acid resistance #### 5.1 Introduction The cell structure of yeasts share many similarities to higher eukaryotes and have been used as model organisms for studying cell organization (Walker, 1998; Daum, 2000). Yeast cells exhibit great diversity in terms of cell size, shape and colour. Many of the morphological differences between yeasts are used in their classification (Barnett *et al.*, 2000). Yeast cells are highly organised consisting of the following structures: nucleus, mitochondria, golgi apparatus, secretory vesicles, endoplasmic reticulum, vacuoles and sometimes peroxisomes. All of the aforementioned structures are contained in the cytosol, which is surrounded by the cell envelope. The cell envelope consists of a plasma membrane, periplasm and cell wall. All of these structures interact and allow cells to adapt to various environmental conditions. The cell envelope plays a major role in yeast cells by controlling osmotic and permeability properties of the cell (Walker, 1998). The plasma membrane provides the primary barrier for the passage of hydrophilic molecules and keeps the yeast unicellular. S. cerevisiae has provided much of the research focus for studying the plasma membrane. The plasma membrane consists primarily of a lipid bilayer with globular proteins. In the S. cerevisiae plasma membrane is located the ATP binding cassette (ABC) transporter proteins, including Pdr12 which has been shown to have a role in yeast organic acid resistance (Piper et al., 1998). The plasma membrane also contains the ATPase proton pumps, which become activated in the presence of organic acids (Viegas and Sá-correira, 1991; Holyoak et al., 1996). The periplasm functions to separate the plasma membrane and cell wall. The cell wall of *S. cerevisiae* has been extensively studied with much being known about its structure and composition (Klis, 1994; Stratford, 1994; Klis *et al.*, 2002). The function of the cell wall is primarily to provide physical protection and osmotic support from the external environment (Smith et al., 2000). The cell wall is not a static structure and changes constantly with its environment (Popolo et al., 1997). The yeast cell wall accounts for 15-25% of cell dry weight (Stratford, 1994). The main components of the cell wall are 1, 3 β-glucan, 1, 6 β-glucan, mannoproteins and chitin. Theses components account for 55, 5, 40 and 1-2% of cell wall dry weight (Kapteyn et
al., 2001). The molecular organisation of the S. cerevisiae cell wall is shown in Figure 5.1. The mannoproteins (highly glycosylated proteins rich in mannose) form the outer layer of the cell wall and determine the surface properties of the cell such as immunogenicity, hydrophobicity, flocculence and porosity (Klis et al., in press). The mannoproteins are heavily glycosylated and consist of N-linked carbohydrate side-chains and shorter Olinked side chains (Cutler, 2001). The isolation of a number or mannan (mnn) mutants deficient in glycosylation showed the MNN9 gene whose product is a transmembrane protein to be one of the most important genes in glycosylation; mnn9 strains exhibiting serious defects in glycosylation and sensitivity to hygromycin B (Jaafar et al., 2003). The mannoproteins consist of two classes of covalently linked cell wall proteins (CWPs): the first class consists of the glycosylphosphatidylinositol (GPI) dependent CWPs, which represent the most abundant class of CWPs (Klis et al., in press). The majority of GPI-CWPs are located in the plasma membrane while the ones present in the cell wall are only expressed under specific growth conditions. The GPI-CWPS are linked indirectly to 1,3 \(\beta\)-glucan through the highly branched 1,6 \(\beta\)-glucan (Klis et al., 2002). The GPI-CWPs form the external protein layer while the second more minor class of mannoproteins, protein with internal repeats (Pir)-CWPs through an alkalisensitive direct linkage to 1,3 \(\beta\)-glucan, form the inner skeletal layer (Kapteyn et al., 1999). Pir-CWPs have been identified in Z. rouxii (Toh-e et al., 1993). The mechanical strength of the cell is mainly due to the highly elastic 1,3 β-glucan meshwork, which Figure 5.1 S. cerevisiae cell wall structure and composition. The cell wall is located adjacent to the plasma membrane and consists of two layers. The cell strength is provided by the complexes formed between chitin and 1,3/1,6 β-glucans. Mannoproteins are covalently linked to the inner glucan layer and are involved in determining surface properties of the cell. The inner skeletal layer contains the periplasmic enzymes. Adapted from Walker (1998). forms around the entire cell and is maintained by hydrogen bonding (Klis et al., in press). There are two plasma membrane-located 1,3 β-glucan synthase complexes formed in S. cerevisiae, which contain either Fks1p or the related Fks2p/Gsc2p and the regulatory G protein Rholp (Cabib et al., 2001). FKS1 (so called due to its sensitivity to the immunosuppressive agent FK506) is believed to encode proteins responsible for the catalytic activity of the 1,3 \(\beta\)-glucan synthase complexes and to form a channel allowing newly formed 1,3 β-glucan chains through the plasma membrane (Klis et al., 2002). The 1,6 β-glucan molecules as mentioned previously function to link the GPI-CWPs to 1,3 β-glucan molecules. The molecular organisation of 1,6 β-glucan remains unknown but genetic screens have identified several proteins required for normal 1,6 \beta-glucan levels. One screen used to identify 1,6 \(\beta\)-glucan associated proteins involves sensitivity to the K1 killer toxin. The K1 killer toxin is a protein toxin that binds to 1,6 β-glucan and is secreted by strains carrying the M1 RNA virus (Shahinian and Bussey, 2000). Cells deficient in 1,6 β-glucan are more resistant to the K1 killer toxin and such mutants are termed killer-resistant mutants (kre). KRE6 is one of four genes know to be involved in 1,6 β-glucan synthesis with the kre6 mutant possessing half the normal level of wildtype cell wall 1,6 β-glucan. The Kre6p is believed to be a β-glucan synthase but this is yet to be proven experimentally (Kapteyn et al., 1999). Chitin is a polymer of Nacetylgluocasmine, which despite being present in small amounts has an important role in cell wall structure contributing to the strength of the cell through linkage to 1,3 βglucan (Stratford, 1994). Mutations affecting chitin cause osmotic sensitivity, abnormal morphologies and aggregation (Bulawa, 1992; Klis, 1994). In S. cerevisiae, chitin is mainly located at the bud scars with a small amount dispersed in the cell walls. In Z. rouxii chitin has been shown to be present not only in the budscars but over the whole surface of the cell (Tomita et al., 1996). Visualisation of chitin is achieved by staining with Calcofluor white which is a fluorescent anionic dye that binds to 1,4 β-glucans such as chitosan, cellulose and chitin (Klis *et al.*, 2002). Chitin and 1,3 β-glucan synthesis takes place at the plasma membrane and there is increasing evidence for 1,6 β-glucan also being synthesized at the plasma membrane (Klis *et al.*, in press). Chitin synthesis in *S. cerevisiae* and *C. albicans* involves three chitin synthases each with a different function (Kim *et al.*, 2002). In *S. cerevisiae*, *CHS1* plays a role in response to the primary septum dissolving and has a repair function; *CHS2* synthesizes the primary septum separating the daughter and mother cell. *CHS3* roles include synthesis of chitin at the bud site forming a chitin ring, deposition of chitosan in the ascospore cell wall and depositing chitin in the lateral walls on exposure to cell wall damage (Klis *et al.*, in press). Collectively, all the evidence indicates that the assembly of the cell wall takes place entirely at the cell surface (Klis *et al.*, 2002). Damage to the cell wall results in three main responses, firstly, there is an increase in chitin which alters the balance of cell wall polysaccharides. Secondly, the association between β-glucan, mannoproteins and chitin becomes altered. A consequence of the second response is an increase in cell wall proteins being linked to 1,3 β-glucan and chitin as a result of a lowering of 1,6 β-glucan. A third response of cell wall damage is a transient redistribution of cell wall synthesis and repair mechanisms, which ensures strengthening of the cell wall at the site of damage (Lagorce *et al.*, 2003). Cell wall damage can be induced by temperature, osmotic shock and chemical drugs (Smith *et al.*, 2000). Indeed, the application of chemical drugs known to interfere with the cell wall, proved invaluable in deciphering the genes involved in cell wall construction (Klis *et al.*, 2002). In *S. cerevisiae* sensitivity to these compounds identified cell wall mutants defected in all aspects of cell wall construction (Klis *et al.*, 2002). 1,3 β-glucanases, Calcofluor white, congo red, SDS, Hygromycin B and caffeine have all been applied in the detection of cell wall mutants (Ram *et al.*, 1994; van der Vaart *et al.*, 1995; Lussier et al., 1997; Dean, 1999; Martin-Yken et al., 2001). The application of such compounds to other yeasts may aid in the elucidation of their cell wall composition. The yeast cell wall is a primary target for antifungal compounds as it represents a unique structure to these microorganisms (Klis et al., in press). There is an increasing demand to elucidate more about the yeast cell wall in a bid to identify new targets for antifungals, particularly against the human pathogen C. albicans. The antifungal agents currently available include: polyenes, systematically active azoles and sterol synthesis inhibitors (Odds et al., 2003). One of the major problems for the food industry is the lack of information about the cell wall of spoilage yeasts such as Z. bailii. Only one study has been reported which targets the cell wall of Z. bailii, which was based on disruption of GPI-CWPs (Bom et al., 2001). In addition the cell wall of food spoilage yeasts may actually contribute to their resistance to organic acids contributing to spoilage capabilities and is an area that needs to be studied. The application of EM to study the effects of stress agents or in deciphering the role of genes in yeast is extensive (Shimada et al., 1993; Cappellaro et al., 1994; Popolo et al., 1997; Cid et al., 1998; Osumi et al., 1998; Granot et al., 2003). The aim of TEM is to produce a sample representative of the actual structure of the yeast at harvesting. Yeast TEM is regarded as particularly difficult due to two main factors. The first being cell density, if too few cells are present then there will be insufficient sample, while if there are too many cells they may be insufficiently fixed. Secondly, the yeast cell wall is impermeable to many fixatives. The yeast EM procedure can be divided into three stages. The first stage is fixation. Chemical fixation is the most common method for yeast ultrastructure analysis and is achieved in two steps, the first of which is pre-fixation with an aldehyde crosslinker. Glutaraldehyde is a bifunctional crosslinker that irreversibly cross-links proteins and this is often used with formaldehyde. Formaldehyde penetrates the sample quickly and temporarily stabilises structure until the entry of glutaraldehyde (Hayat, 1981). The second step in chemical fixation is termed post-fixation, which involves the application of osmium tetroxide or potassium permanganate. Osmium tetroxide reacts well with unsaturated fats, which provides good fixation of membranes and lipids. Potassium permanganate proves particularly useful in the fixation of membranes, but has been reported to result in a grey cytoplasm with little definition of organelles (Rambourg et al., 1993). At this stage the yeast sample can be set in agar to minimise sample loss. En Bloc staining can also be included in the fixation protocol; it involves placing the sample in uranyl acetate, which is believed to aid the fixation of nucleic acid containing structures. Dehydration is the second stage of the yeast EM procedure and is carried out with increasing concentrations of ethanol (or acetone). The final stage of an EM procedure is to infiltrate the sample with resin. The aim of infiltration is to ensure that the thin section required for EM analysis does not contain large holes as this will lead to a loss of structural information. After
polymerization of the resin the sample is cut into thin sections (60-90 nm) via a microtome, placed onto grids, stained and viewed under an electron microscope. This section examines the effects of short, medium and longer chain organic acids on yeast cell structure using EM in a bid to elucidate more about their modes of inhibition. Differences in cell structure between Z. bailii, Z. kombuchaensis and S. cerevisiae are also examined via the application of TEM and SEM, sensitivity to cell wall chemicals and analysis of cell wall chitin. The final part of the section looks at whether differences in cell wall composition can contribute to yeast organic acid resistance by using organic acid challenge assays against S. cerevisiae cell wall mutants. #### 5.2 Results #### 5.2.1 Method development: Yeast electron microscopy In a bid to improve upon the EM fixation protocol described in section 2.5.1, various modifications were attempted as shown in Figure 5.2. The first modification attempted was replacing post-fixation for 1 h with osmium tetroxide to 24 h with 1% (w/v) potassium permanganate (a-b). Permanganate treated cells have a well-defined cell wall, with dark staining throughout. However, permanganate caused a loss of cytoplasmic components, with the intracellular contents appearing grey and poorly defined. Another problem with permanganate treatment of yeast cells was that "flecks" were produced on the cell wall, which may be interpreted as damage when examining the effects of stress agents e.g. organic acids. Infiltration is one of the major problems in yeast TEM work, due to the yeast cell wall (Wright, 2000). One of the most common resins in yeast TEM work is the low viscosity Spurr resin. Figure 5.2 (c-d) shows the effect of Araldite resin a slightly higher viscosity resin on yeast TEM. Araldite generally, resulted in a greater number of holes in the sections, which limited the cell structure information that could be taken from each section. The fixative described in section 2.5.1 contained sucrose. The effect of omitting sucrose from the fixative with and without En Bloc staining was examined. Figure 5.2 (e-f) shows the results obtained with the yeast Z. kombuchaensis. Two possible consequences of omitting sucrose may have been slightly less definition of cytoplasmic components and perhaps not as efficient fixation as shown by the darkly stained band in (e). En Bloc staining appeared not to increase the resolution of the final TEM image obtained as shown by the similarity of images (e-f). Finally, the effect of calcium chloride on yeast TEM fixation was examined. One of the concerns regarding the inclusion of calcium chloride in the fixation protocol was that it might promote yeast flocculation, making the fixation of samples more difficult. Images (g-h) illustrate the effects of omitting calcium chloride from the fixative for Z. bailii NCYC 1766 and Z. kombuchaensis. The omission of calcium chloride had drastic effects on the TEM image obtained for Z. bailii NCYC 1766 with poor definition of cell structure arising; including lack of cell wall definition and no cytoplasmic components. The omission of calcium chloride for Z. kombuchaensis had little influence on cytoplasmic components but did result in lack of cell wall fixation. The modifications attempted appeared not to add to the original fixation protocol in terms of better quality TEM images. # 5.2.2 Electron microscopy comparison of Z. bailii, Z. kombuchaensis and S. cerevisiae cell structure ### 5.2.2.1 Transmission electron microscopy (TEM) Figure 5.3 shows the results of a TEM comparison between an organic acid resistant Z. bailii strain NCYC 1766, a more organic acid sensitive strain NCYC 1416, Z. kombuchaensis and S. cerevisiae. The fixation protocol was as described in section 2.5.1. The TEM images illustrate that the cell structure of these three yeast species differ in a number of aspects. Firstly, cell size, Z. bailii NCYC 1416 contained the largest cells followed by Z. bailii NCYC 1766, then Z. kombuchaensis with S. cerevisiae having the smallest cells (Table 5.1). The cell shape of the yeasts differed in that Z. bailii (both strains) contain cells that are long oval, Z. kombuchaensis contains cells that are more spherical while the S. cerevisiae cells appeared to be round. Table 5.1 shows that the three Zygosaccharomyces yeasts have cells with a thicker cell wall than S. cerevisiae. The cell wall of Z. bailii and Z. kombuchaensis also appears more electron dense than S. cerevisiae. The TEM images obtained for all four yeasts show that the cell structures are well maintained and that cytoplasmic organelles are visible. The cell structures evident include cell membrane (CM), cell wall (CW), mitochondria with cristae (M), nucleus (N), endoplasmic reticulum (ER) and vacuole (V). Figure 5.3 Transmission electron microscopy comparison of (a, b) Z. bailii NCYC 1766 (c, d) Z. bailii NCYC 1416 (e, f) Z. kombuchaensis NRRL YB4811 (g, h) S. cerevisiae NCYC 957 grown in YPD pH 4.0 at 25°C without shaking and fixed at 48 h incubation. CW = Cell Wall, CM = Cell Membrane, M = Miotchondria, ER = Endoplasmic Reticulum, V= Vacuole, N = Nucleus. Bar = 1 μ m. Table 5.1 Differences in cell length and cell wall thickness between Z. bailii, Z. kombuchaensis and S. cerevisiae | Cell length (μm) ± SD | Cell wall thickness (μm) ± SD | | |-----------------------|--|--| | 5.75 ± 0.500 | 0.191 ± 0.023 | | | 6.02 ± 0.423 | 0.196 ± 0.017 | | | 4.16 ± 0.322 | 0.168 ± 0.022 | | | 3.44 ± 0.489 | 0.111 ± 0.019 | | | | 5.75 ± 0.500 6.02 ± 0.423 4.16 ± 0.322 | | Results are the average lengths based on examining at least 20 cells that appeared to have been cut in the same plane \pm standard deviation from TEM images. #### 5.2.2.2 Scanning electron microscopy (SEM) A SEM comparison of the three yeast species was also conducted to compare cell topology (Figure 5.4). The SEM images illustrate that relatively small amounts of cell debris are evident under control conditions for *Z. kmobuchaensis* and *S. cerevisiae* (e-h). The differences in both cell size and shape detailed in 5.2.2.1 are reinforced by the SEM images. The images for *Z. bailii* NCYC 1416 confirm the aggregating nature of this yeast with chains of cells being clearly evident. *Z. bailii* NCYC 1416 is also the strain which appears to exhibit the most variation in cell morphology, having cells of numerous shapes and sizes (c-d). The SEM images show multiple bud scars (BS) for all the yeasts. Apart from the bud scars, the cell wall appeared intact, smooth and continuous, being indicative of little structural damage. # 5.2.3 Effect of organic acids on yeast cell structure #### 5.2.3.1 Acetic acid Initial EM attempts focussed on harvesting cells from inhibitor-treated cultures as described in section 2.4. However, these cultures yielded insufficient material to fix cells for EM analysis. Therefore, cultures were set up in 40 ml YPD pH 4.0 as in section 2.3 containing various concentration of organic acids. Growth was assessed by measuring culture OD600 nm at various time intervals. This method yielded a sufficient number of cells at 48 h incubation to be fixed for EM analysis. Figure 5.5 shows the growth curves obtained for *Z. bailii*, *Z. kombuchaensis* and *S. cerevisiae* in YPD pH 4.0 with concentrations of acetic acid from 100 to 500 mM. *Z. bailii* NCYC 1766 was able to grow in acetic acid concentration of 400 mM, while the other yeasts could only grow in a maximum concentration of 300 mM. Despite the low OD values reached by *Z. bailii* NCYC 1416 even in the absence of acetic acid, sufficient cells were yielded to Figure 5.5 Growth curves for (a) Z. bailii NCYC 1766 (b) Z. bailii NCYC 1416 (c) Z. kombuchaensis NRRL YB4811 (d) S. cerevisiae NCYC 957 grown in YPD pH 4.0 at 25°C without shaking with concentrations of acetic acid as indicated in legend. Results are representative of two independent experiments (four replicates) with standard errors <10%. prepare EM samples. TEM and SEM analysis was conducted on acetic acid concentrations of 100 mM and 300 mM for all yeasts plus 400 mM for Z. bailii NCYC 1766. Figures 5.6-5.10 show the effects of acetic acid on yeast cell structure. The TEM images for 100 mM acetic acid treatment (Figure 5.6) illustrate that considerable structural changes are evident for Z. bailii NCYC 1416. The images (c-d) show that the cytoplasmic contents have become granular and detached from the periplasm. The mitochondria (M) when present appeared granular with leakage of cytoplasmic contents evident throughout the sections. The S. cerevisiae images (g-h) show cell debris and evidence of a granular cytoplasm. Z. kombuchaensis (e-f) appears to have sustained relatively little cellular damage with several cytoplasmic organelles evident including mitochondria (M) and the nucleus (N). The only difference in Z. kombuchaensis is that the plasma membrane appears more darkly stained than in controls. This additional staining could be indicative of some structural damage. Images (a-b) show that Z. bailii NCYC 1766 appeared as control cells. The SEM images obtained in Figure 5.7 supports the TEM images by confirming considerable cell debris sustained for all yeasts except Z. bailii NCYC 1766, which shows a similar level of debris as control. The SEM images also illustrate that the topology of the cells remain largely unchanged. At 300 mM acetic acid all yeasts show extensive cellular damage (Figure 5.8). All images are granular with no cytoplasmic organelles. The SEM images (Figure 5.9) show extensive cell debris. Z. bailii NCYC 1766 (a) appears to have become elongated in a similar manner to a pseudohyphal or hyphal cell in the presence of high concentrations of acetic acid. No other yeast examined showed evidence of morphological change in the presence of acetic acid. Z. bailii NCYC 1766 was the
only yeast able to grow in acetic acid concentrations of 400 mM and the EM images obtained are shown in Figure 5.10. The granular image as obtained with 300 mM acetic acid treatment is still evident, with the cell wall appearing undamaged. The SEM images for Z. bailii NCYC 1766 show increased cell debris and cell lysis as for S. cerevisiae at 300 mM acetic acid. # 5.2.3.2 Sorbic acid The growth curves obtained for Z. bailii, Z. kombuchaensis and S. cerevisiae in the presence of sorbic acid are shown in Figure 5.11. Z. bailii NCYC 1416, Z. kombuchaensis and S. cerevisiae were only able to grow in a maximum sorbic acid concentration of 2 mM, while Z. bailii NCYC 1766 could grow in concentrations of 4 mM. The effects of 1 mM and 2 mM sorbic acid on yeast cell structure were analysed via EM for all the yeasts. Z. bailii NCYC 1766 was also analysed in concentrations of 3 mM and 4 mM. The results of the TEM and SEM analyses for the effects of sorbic acid on yeast cell structure are shown in Figures 5.12-5.16. Figure 5.12 shows the images obtained for 1 mM sorbic acid treatment. These images show that *Z. kombuchaensis* (e-f) sustained extensive structural alteration. The structural effects include cell debris plus a cytoplasmic compartment lacking visible organelles and appearing darkly stained. The biggest change in structure is that the plasma membrane and cell wall have become altered in shape, with folds being evident. Sections of the plasma membrane appear to be darkly stained and could be indicative of damage. The *Z. kombuchaensis* cells also exhibit an outgrowth from the cell wall, which appears similar to a bud scar but could be an aberration to the cell wall as a result of sorbic acid treatment. The *Z. bailii* and *S. cerevisiae* yeast exhibit fewer structural alterations than *Z. kombuchaensis*. *Z. bailii* and *S. cerevisiae*, however, contain a distinct lack of organelles and exhibit some evidence of increased staining around the area of the plasma membrane. The SEM analysis Figure 5.11 Growth curves for (a) Z. bailii NCYC 1766 (b) Z. bailii NCYC 1416 (c) Z. kombuchaensis NRRL YB4811 (d) S. cerevisiae NCYC 957 grown in YPD pH 4.0 at 25°C without shaking with concentrations of sorbic acid as indicated in the legend. Results are representative of two independent experiments (four replicates) with standard errors <8%. (Figure 5.13) shows that 1 mM sorbic acid treatment does not result in considerable cell leakage for Z. bailii. S. cerevisiae cells exhibit some cell leakage, but at a lower level than Z. kombuchaensis. The Z. kombuchaensis images (e-f) show that cells contain alterations to the smooth outer wall. Figure 5.14 shows the effects of 2 mM sorbic acid on yeast cell structure. Z. bailii NCYC 1766 (a-b) contains relatively little damage as with 1 mM sorbic acid. Z. bailii NCYC 1416 shows signs of separation from the periplasm. S. cerevisiae (g-h) contains evidence of the cytoplasm becoming granular, which is not exhibited by the other yeast. S. cerevisiae also contains some evidence of plasma membrane folding. The effects of 2 mM sorbic acid on Z. kombuchaensis resulted in cell lysis (f) with extensive cell debris visible. The damage appears to be consistent with rupture of the cell membrane or cell wall. The SEM images for Z. bailii and S. cerevisiae at 2 mM sorbic acid show an increase in cell leakage from that visible at 1 mM sorbic acid treatment, but not evidence of cell lysis. Exposure of Z. bailii NCYC 1766 to 3 mM and 4 mM sorbic acid (Figure 5.16) results in an increase in plasma membrane staining with increased evidence of membrane and cell wall damage #### 5.2.3.3 Nonanoic acid Figure 5.17 shows the growth curves obtained for Z. bailii, Z. kombuchaensis and S. cerevisiae in the presence of YPD pH 4.0 containing 0.2-1.0 mM nonanoic acid. The results showed that the four yeasts only exhibited growth in YPD control and cultures containing 0.2 mM and 0.4 mM nonanoic acid. On the basis of OD values S. cerevisiae was inhibited to the smallest degree by 0.2 mM nonanoic acid. The OD values reached for all yeasts in 0.4 mM nonanoic acid were very low and only just enough cells were harvested for EM fixation. Figure 5.17 Growth curves for (a) Z. bailii NCYC 1766 (b) Z. bailii NCYC 1416 (c) Z. kombuchaensis NRRL YB4811 (d) S. cerevisiae NCYC 957 grown in YPD pH 4.0 at 25°C without shaking with concentrations of nonanoic acid as indicated in legend. Results are representative of two independent experiments (four replicates) with standard errors <8%. Figures 5.18-5.21 shows the results of TEM and SEM analysis for the effects of nonanoic acid on yeast cell structure. Nonanoic acid at a concentration of 0.2 mM resulted in cell leakage for all four yeasts, being most pronounced in *Z. kombuchaensis* as confirmed by TEM and SEM (Figures 5.18-5.19). The SEM images for *Z. kombuchaensis* (e-f) also showed some modulation of cell shape as a consequence of nonanoic acid exposure. TEM analysis reveals a granular image for all yeasts with evidence of increased vacuole formation. Mitochondria (M) are evident for some cells of each yeast but lack clear cristae. There is some evidence of cell wall (CW) modulation for both *Z. bailii* NCYC 1416 and *Z. kombuchaensis*. The effects of 0.4 mM nonanoic acid on *Z. bailii* NCYC 1766 and *Z. kombuchaensis* are similar to those of 0.2 mM nonanoic acid with a slight increase in cell leakage and debris (Figures 5.20-5.21). *Z. bailii* NCYC 1416 is more granular in the presence of 0.4 mM nonanoic acid, with no evidence of cell organelles. *S. cerevisiae* also contains a very granular cytoplasm with evidence of the cytoplasm separating from the periplasm. *Z. bailii* NCYC 1416 showed increased levels of cell leakage with 0.4 mM nonanoic acid (Figure 5.21). # 5.2.4 Differences in sensitivity to cell wall/membrane disrupting agents between Z. bailii, Z. kombuchaensis and S. cerevisiae In S. cerevisiae the application of a number of chemicals or drugs has been applied to identify cell wall mutants. The results presented in Figure 5.22 show the differences in sensitivity between Z. bailii, Z. kombuchaensis and S. cerevisiae to several of these common chemicals. The aim being to identify possible differences in the cell wall composition between these yeasts. The control plate (a) shows that Z. bailii NCYC 1766, Z. kombuchaensis and S. cerevisiae showed good growth at all four dilutions. Z. bailii NCYC 1416, an aggregating yeast showed good growth for the first two dilutions but poor growth at the final two dilutions. Calcofluor white has been used to identify all types of cell wall mutants except for those deficient in chitin in S. cerevisiae (Ram et al., 1994). The results showed that both Z. bailii strains were more sensitive to Calcofluor white (b-c). Congo red is used to detect cell wall mutants defected in \beta 1, 3glucan synthesis. No difference in sensitivity between Z. bailii, Z. kombuchaensis and S. cerevisiae were found at congo red concentrations of 0.025 and 0.25 mg/ml (d-e). SDS is used for the identification of cell wall mutants with possible defections in cell wall permeability. The results (f-g) show that S. cerevisiae was able to grow at both 0.005% and 0.05% SDS concentrations with Z. bailii NCYC 1766 exhibiting partial growth and Z. bailii NCYC 1416 growth at zero dilution on 0.005% SDS. Z. kombuchaensis proved the most sensitive to SDS showing no growth at either SDS concentrations. Sensitivity to caffeine is indicative of potential differences in cell wall assembly through the cell integrity pathway PKC1-controlled MAP kinase pathway (Costigan et al., 1992). Both strains of Z. bailii proved caffeine sensitive showing diminished growth at 1.0 mg/ml and no growth at a caffeine concentration of 2.0 mg/ml. Z. kombuchaensis also showed sensitivity to caffeine but to a smaller extent than Z. bailii. S. cerevisiae showed growth at both concentrations of caffeine. The caffeine sensitive phenotype exhibited by Z. bailii and Z. kombuchaensis was partially rescued by 2 M sorbitol (data not shown). Sodium orthovanadate has been used in the identification of possible mutants defected in glycocosylation (Dean, 1999). The four yeasts used in this study showed no differences in sensitivity to the two concentrations of sodium orthovanadate used (j-k). Hypersensitivity to calcium, which is related to morphogenetic events, has been applied as a means of identifying cell wall mutants (Ruiz et al., 1999). Z. bailii NCYC 1416 was the most sensitive to calcium chloride with Z. bailii NCYC 1766 and Z. kombuchaensis proving slightly less sensitive. S. cerevisiae was the most resistant to both concentrations of calcium chloride. The S. cerevisiae strain used (which does not contain a Kanamycin insertion cassette) was also more resistant to the aminoglycolyside G418 (data not shown). The results collectively point to potential differences in the cell wall and possibly membrane structure of Z. bailii, Z. kombuchaensis and S. cerevisiae. # 5.2.5 Chitin analysis in Z. bailii, Z. kombuchaensis and S. cerevisiae ### 5.2.5.1 Chitin distribution Calcofluor white is a fluorophore used for the staining of bud scars and other chitin rich areas within yeast cells (Pringle et al., 1991). Calcofluor white was applied to Z. bailii, Z. kombuchaensis and S. cerevisiae to look for differences in chitin distribution (Figure 5.23). Z. bailii NCYC 1416 gave the most fluorescent cells followed by Z. bailii NCYC 1766, Z. kombuchaensis and S. cerevisiae. The distribution of chitin on the basis of fluorescence appeared to be all over the cell for Z. bailii (both strains) and Z. kombuchaensis with fluorescence being restricted to bud scars for S. cerevisiae. Therefore, on the basis of Calcofluor white fluorescence, the distribution of chitin appears to differ between the Zygosaccharomyces yeasts and the S. cerevisiae strain examined #### 5.2.5.2 Chitin content In a bid to confirm the chitin distribution
results an analysis of chitin content was performed on the four yeast species growing in YPD pH 4.0, using a method based on that of Ride and Drysdale (1972). Figure 5.24 shows the results obtained for *Z. bailii*, *Z. kombuchaensis* and *S. cerevisiae*. The two *Z. bailii* strains both contained the highest levels of chitin, with *Z. bailii* NCYC 1416 having the highest level. *S. cerevisiae* contained the least amount of chitin expressed as a percentage of dry weight, with *Z. kombuchaensis* showing an intermediate level. The chitin content results support the quantitative differences seen in chitin distribution between *Z. bailii*, *Z. kombuchaensis* and *S. cerevisiae*. ### 5.2.6 S. cerevisiae cell wall mutants and organic acid resistance A lack of cell wall mutants for Z. bailii and Z. kombuchaensis, meant that S. cerevisiae cell wall mutants were used for elucidating whether cell wall composition can influence yeast organic acid resistance. A selection of mutants (EUROSCARF) all defective in a particular aspect of cell wall construction were selected and treated to short, medium and longer chain organic acids as described in section 2.4. The genes are involved in the following aspects of cell wall construction; FKSI is involved in β 1, 3-glucan synthesis; KRE6 β 1, 6-glucan synthesis; MNN9 mannoprotein construction and CHS3 chitin biosynthesis. Table 5.2 shows the MICs obtained for each of the cell wall mutants and the wild-type BY4741. The MICs obtained for medium (sorbic and benozoic) acids and the longer chain (nonanoic) acid showed little difference between wild-type and mutants. The MICs obtained for the two short chain (acetic and propionic) organic acids showed differences between wild-type and mutants. fks I gave MICs similar to those of the wild-type, exhibiting only a slightly higher MIC for acetic acid. The other cell wall mutants, kre6, mnn9 and chs3 gave MICs greater than those for the wild-type by 10-20 mM (two to four culture differences). Both wild-type and mutants exhibited good growth at sub-inhibitory organic acid concentrations (data not shown). The results show that differences in cell wall composition can influence yeast organic acid resistance. Figure 5.24 Differences in chitin content between Z. bailii, Z. kombuchaensis and S. cerevisiae grown in YPD pH 4.0 at 25°C without shaking and examined at 48 h incubation. Results are the means of three independent cultures each performed in duplicate and converted to % chitin per mg dry weight, ± the standard error. Table 5.2 Differences in organic acid resistance (mM) between S. cerevisiae cell wall mutants | | BY4741 | fks1 | kre6 | mnn9 | chs3 | |----------------|----------------|----------------|----------------|----------------|----------------| | Acetic acid | 100 ± 4.08 | 110 ± 7.07 | 130 ± 4.08 | 130 ± 4.08 | 130 ± 5.77 | | Propionic acid | 60 ± 5.77 | 60 ± 4.08 | 70 ± 0.00 | 70 ± 0.00 | 80 ± 7.07 | | Sorbic acid | 3.5 ± 0.20 | 3.5 ± 0.46 | 4.0 ± 0.91 | 3.5 ± 0.91 | 4.0 ± 0.20 | | Benzoic acid | 4.0 ± 0.00 | 4.0 ± 0.00 | 4.0 ± 0.20 | 4.0 ± 0.46 | 4.0 ± 0.46 | | Nonanoic acid | 0.5 ± 0.04 | 0.5 ± 0.00 | 0.5 ± 0.04 | 0.6 ± 0.09 | 0.6 ± 0.04 | Values are mean MICs measured from at least two independent experiments (four replicates) following 14 days incubation at 25° C, \pm the standard error. ### 5.3 Discussion In this study, the effects of acetic, sorbic and nonanoic acid on yeast cell structure were shown to differ. The effects of acetic acid on yeast cell structure included the cytoplasmic contents becoming very granular with poor definition of organelles. The cell wall remained largely unaffected at all concentrations of acetic acid. SEM analysis at for S. cerevisiae and Z. bailii NCYC 1766 showed evidence of cell lysis. The ability of acetic acid to induce programmed cell death has recently been reported for both S. cerevisiae (Ludovico et al., 2001) and Z. bailii (Ludovico et al., 2002). The morphological change induced by acetic acid to Z. bailii NCYC 1766 is to the best of my knowledge, the first time that morphological change has been reported for Z. bailii. Sorbic acid treatment caused some structural changes different to those caused by acetic acid. Z. kombuchaensis was the most sensitive of the yeasts to sorbic acid. The effects of sorbic acid appeared to be concentrated on the cell wall and plasma membrane with alterations to both evident. The action of sorbic acid has been questioned in recent years with speculation that it does not act as a 'classic weak-acid preservative' but acts more on membrane disruption (Stratford and Anslow, 1996b, 1998). The data provided from this study is believed to be the first direct evidence for sorbic acid actually acting primarily as a membrane active substance. The work presented in this section for longer chain organic acids focussed on the less studied nonanoic acid. Nonanoic acid caused the cytoplasm of all four yeasts to become granular with little definition of organelles. The shape of the cells also became slightly altered with evidence of cell leakage. The images obtained for nonanoic acid are therefore in agreement with those reported for octanoic and decanoic acid with membrane alteration being the site of action (Viegas et al., 1989; Viegas & Sá-Correira, 1995; Alexandre et al., 1996; Stratford and Anslow, 1996; Cabral et al., 2001). The mitochondria appear to be severely disrupted by the actions of all organic acids, as previously reported (Cole, 1987c). Previous studies on yeast organic acid resistance involving Z. bailii and S. cerevisiae have not focused on differences in cell structure; even though differences in structure could relate to their ability to reduce acid influx, which has recently been identified as a potentially crucial factor in the ability of yeasts to tolerate high levels of organic acids (Piper et al., 2001). In this study, differences were shown relating to cell size, shape, cell wall thickness and cell wall composition of Z. bailii, Z. kombuchaensis and S. cerevisiae. The Zygosaccharomyces yeasts contained cells with a thicker and more electron dense cell wall than S. cerevisiae. Despite recent innovations in the methods available to study the cell wall including the application of various analytical techniques: HPLC and GC-MS (Hong et al., 1994; Mislovicova et al., 2000; Magnelli et al., 2001) the cell wall is still very difficult to analyze. In this study I examined the cell wall in terms of chitin distribution and content. The results showed that staining of chitin by Calcofluor white produced fluorescence all over the cell for the three Zygosaccharomyces yeast but appeared only at the bud scars for S. cerevisiae. These results were supported by analysis of chitin content in which Z. bailii NCYC 1416 had the highest chitin content and S. cerevisiae the lowest. Chitin is known to increase for S. cerevisiae on exposure to cell wall stress (Dallies et al., 1998). The higher chitin levels as indicated from this study for Z. bailii, Z. kombuchaensis may contribute to differences in withstanding organic acid induced cell stress. The phenotypic plate assays showed potential differences in the cell walls of Z. bailii, Z. kombuchaensis and S. cerevisiae. Sensitivity to Calcofluor white and SDS are indicative of differences in chitin and permeability properties, while caffeine and calcium chloride sensitivity indicate possible differences in cell wall assembly and morphogentic events. A recent study has looked at the effects of growth conditions on yeast cell wall composition and structure, in S. cerevisiae, concluding that growth conditions can alter cell wall composition (Aguilar-Uscanga and Francois, 2003). A similar study for Z. bailii and Z. kombuchaensis may prove particularly fruitful for the food industry. In a bid to determine whether modulation of the cell wall could alter organic acid resistance, a selection of *S. cerevisiae* cell wall mutants were exposed to various organic acids and their MICs determined. The mutants selected *fks1*, *kre6*, *mnn9* and *chs3* represent different aspects of cell wall construction and have recently been used in a study on genome wide analysis of cell wall mutations in *S. cerevisiae* (Lagorce *et al.*, 2003). The results show that the mutants overall were equally resistant to medium and longer chain organic acids as the wild-type. In the case of the short chain organic acids (acetic and propionic acid), mutants were generally more resistant. This provides direct evidence that in *S. cerevisiae*, differences in the cell wall composition can lead to differences in organic acid resistance. Any differences in cell wall composition between Z. bailii, Z. kombuchaensis and S. cerevisiae could also lead to the development of new preservation strategies. This study has shown both strains of Z. bailii be more sensitive to Calcofluor white than S. cerevisiae. It is therefore possible that chitin synthesis could be a target to prevent Z. bailii food spoilage. Nikkomycin Z, Fluconazole and Itraconazole are all drugs that target chitin synthesis and have been shown to work against the human pathogen C. albicans (Kim et al., 2002; Li and Rinaldi, 1999). The fact that these are effective against C. albicans makes their inclusion in food unlikely but the principle remains. Chitosan, a deacetylated form of chitin, has been shown to have antifungal activity of its own (Rhoades and Roller, 2000) and increases the antimicrobial action of sodium benzoate on spoilage yeasts (Sagoo et al., 2002). Indeed, Bom et al., (2001) targeted the cell wall of Z. bailii by interfering with GPI-CWPs; unfortunately, due to the lack of information on the cell wall of Z. bailii this study is the only one of its kind thus far. In summary, the actions of short, medium and longer chain organic acids on yeast cell structure have been
examined with the first direct evidence for the actions of sorbic acid being illustrated. The cell wall has been highlighted as an area of particular interest with a possible role in organic acid resistance, while at the same time representing a possible target for new preservation strategies. A detailed biochemical analysis of the cell wall of *Z. bailii* and *Z. kombuchaensis* is now required to elucidate its role in yeast attributed food spoilage. 6. Role of mitochondria in yeast organic acid resistance: the application of protoplast fusion # 6.1 Introduction Yeasts have traditionally been divided into two categories on the basis of their ability or inability to produce respiratory deficient mutants (Bulder, 1964). Yeasts which have the ability to form either spontaneously or when induced by various stress conditions respiratory deficient mutants which give rise to smaller (petite) colonies than wild-type and who are unable to produce ATP through respiration are classed as petite-positive. S. cerevsiae is known to readily give rise to petites (Piškur et al., 1998). Petite-positive yeasts are characterised by large deletions in their mitochondrial DNA (rho) or a complete loss of mitochondrial DNA (rho^o). It is also possible to have petites as a result of nuclear mutations; these are referred to as nuclear petites (pet). Petite phenotypes can be induced by the intercalating agent ethidium bromide, and also at low levels by heat, ethanol and the preservatives sorbic and benzoic acid (Piper, 1999). The majority of yeasts can be classed as petite-negative due to their inability to form respiratory deficient mutants (Møller et al., 2001). The greater dependence of petite-negative yeasts on the integrity of their mitochondrial DNA could be the result of the one or more of the following: an inability to achieve redox balance without fully functioning mitochondria, inability to generate a membrane potential in mitochondria lacking mitochondrial DNA and the need to form an active respiratory chain to disperse reducing substances from basal metabolism (Schafer, 2003). The possibility of non-mitochondrial encoded genes required for normal cellular functioning being dependent upon the presence of fully functioning mitochondria also exists. Indeed, only recently have developments into the physiological and biochemical basis of the petite-negative phenotype been made (Møller et al., 2001; Fernet et al., 2002; Schafer, 2003). It is now known that in the petite-negative yeast Debaromyces occidentalis the mitochondrial genome can be altered or lost without lethal effect (Fernet et al., 2002). Therefore, the classification of yeasts as either petite-positive or petite-negative may be insufficient. Indeed, the focus of research into understanding the role of mitochondria in different species seems to be focused on sequencing the mitochondrial genome. A number of mitochondrial genome sequences are already available including S. cerevisiae (Foury et al., 1998), Candida albicans (Kerscher et al., 2001), Schizosaccharomyces pombe (Bullerwell et al., 2003) and Candida glabrata (Koszul et al., 2003). The conclusions form the mitochondrial genomes available so far are that they show a high degree of diversity regarding size, gene content and organization (Koszul et al., 2003). This section describes the attempts to investigate the role of mitochondria in yeast organic acid resistance. The first part of this research focuses on the application of ethidium bromide to induce petites in *Z. bailii*, *Z. kombuchaensis* and *S. cerevisiae*. Previous researchers have reported *Z. bailii* to be petite negative (Mollapour and Piper, 2001b; Merico et al., 2003), but these authors used slightly differing methods to induce petites and examined different strains to those used in this study. The petite status of *Z. kombuchaensis*, however, has not been previously examined. The effect of the petite mutation on organic acid resistance in *Z. bailii*, *Z. kombuchaensis* and *S. cerevisiae* is examined by challenge assays and hydrogen peroxide a known inducer of oxidative stress is also included. The stimulus for the research is that weak organic acid food preservatives have recently been shown to be pro-oxidants and mutagenic towards mitochondria (Piper, 1999). Therefore, under aerobic conditions these organic acids cause oxidative stress. Mitochondrial DNA is regarded to be particularly susceptible to the effects of oxidative stress due to a lack of protective histones and an incomplete mechanism of DNA proof reading (Kowaltowski et al., 1999). The second part of this section focuses on the application of protoplast fusion as an alternative approach in studying the involvement of mitochondria in yeast organic acid resistance. Protoplast fusion as a technique represents an alternative means by which to perform genetic analyses on non-conventional (classed as non-Saccharomyces) and industrial yeasts (Zimmermann and Sipicki, 1996). The principle of protoplast fusion is that the yeast cell wall is removed enzymatically yielding protoplasts. Protoplasts are then maintained in a stabilised osmotic environment, normally containing sorbitol. Protoplasts are encouraged to aggregate and then fuse via the application of fusogenic agents, such as polyethylene glycol (PEG) and calcium chloride. The fusion of protoplasts allows the exchange of cytoplasms, organelles and nuclei of different strains. Fusants can be classified as intraspecific, interspecific or intergeneric depending upon the donor strains used in the fusion event. Protoplast fusions have been reported previously for a number of yeasts (Gumpert, 1980; Spencer and Spencer, 1981; Evans and Conrad, 1987; Philipova and Venkov, 1990; Heluane et al., 1993; Lucca et al., 1999; 2002). The aim of the protoplast fusion attempts was to obtain intergeneric hybrids between Z. bailii-S. cerevisiae and Z. kombuchaensis-S. cerevisiae. The final part of the section focuses on the characterization of protoplast fusants. The hybrids were characterized in terms of morphology, physiology, petite forming capabilities, organic acid resistance and organic acid utilization. The hybrids were characterized in the aforementioned parameters in a bid to compare the differences and or similarities between donor and hybrids and how they may reflect on organic acid resistance capabilities. # 6.2 Results # 6.2.1 Differences in ethidium bromide treatment between Z. bailii, Z. kombuchaensis and S. cerevisiae Ethidium bromide was used to elucidate the petite forming capabilities of Z. bailii, Z. kombuchaensis and S. cerevisiae. Both Z. bailii and Z. kombuchaensis were more sensitive to ethidium bromide than S. cerevisiae (Figure 6.1). Z. bailii NCYC 1416 proved the most sensitive to ethidium bromide treatment having an average zone of inhibition of 17.5 mm (radius) in comparison to 11.25 mm for Z. bailii NCYC 1766 and 14.25 mm for Z. kombuchaensis NRRL YB4811. S. cerevisiae had the smallest inhibition zone of 8.75 mm. Ethidium bromide treatment induced small colonies for all four yeasts. Selecting several hundred small colonies from ethidium bromide treated plates and examining for growth on non-fermentable carbon sources assessed petite forming capabilities. Figure 6.1 shows that the small colonies from ethidium bromide treated plates for both Z. bailii and Z. kombuchaensis were non-viable, exhibiting no growth on YPD plates. The small colonies selected for S. cerevisiae were viable on YPD but non-viable on non-fermentable carbon sources (glycerol and ethanol). Z. bailii, Z. kombuchaensis and S. cerevisiae non-ethidium bromide treated cells exhibited poor growth on acetate plates. Acetate was therefore not examined as a non-fermentable carbon source. Several other strains from each species were also screened for petite formation, with the same results (data not shown). Z. bailii and Z. kombuchaensis were therefore classed as petite-negative and S. cerevisiae as petite-positive. ### 6.2.2 Organic acid resistance in S. cerevisiae grande and petite cells The petite cells of several strains of *S. cerevisiae* were compared to grande cells for differences in organic acid resistance. The *S. cerevisiae* strains selected represent strains associated with fermentation in lager (NCYC 1324) and ale (NCYC 1119). In addition Figure 6. 1 Z. bailii, Z. kombuchaensis and S. cerevisiae (a) differences in sensitivity to ethidium bromide (b) petite forming capabilities. Zones of inhibition were calculated using $10~\mu l$ of $10~mg~ml^{-1}$ ethidium bromide in the centre of each plate and the images are representative of an experiment based on four replicates, \pm the standard error. Table 6.1 Differences in organic acid resistance (mM) between S. cerevisiae grande and petite cells | | NCYC 957 | NCYC 1324 | NCYC 1119 | CDN1 | JRD895 | |----------------|-----------------|----------------|-----------------|-----------------|-----------------| | Grande | | | | | | | Acetic acid | 115 ± 10.20 | 75 ± 10.20 | 100 ± 10.20 | 100 ± 0.00 | 100 ± 10.20 | | Propionic acid | 50 ± 4.08 | 50 ± 8.16 | 50 ± 4.08 | 50 ± 4.08 | 50 ± 4.08 | | Sorbic acid | 4.0 ± 0.00 | 3.0 ± 0.33 | 4.0 ± 0.58 | 3.0 ± 0.33 | 3.0 ± 0.58 | | Benzoic acid | $3.0 \pm .041$ | 3.0 ± 0.41 | 3.0 ± 0.33 | 3.5 ± 0.00 | 3.0 ± 0.00 | | Nonanoic acid | 0.5 ± 0.00 | 0.5 ± 0.02 | 0.5 ± 0.04 | 0.5 ± 0.00 | 0.5 ± 0.00 | | Petite | | | | | | | Acetic acid | 115 ± 10.20 | 95 ± 0.00 | 90 ± 10.20 | 105 ± 10.20 | 105 ± 10.20 | | Propionic acid | 50 ± 0.00 | 45 ± 4.08 | 50 ± 8.16 | 50 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 3.5 ± 0.71 | 3.5 ± 0.58 | 3.0 ± 0.58 | 3.0 ± 0.00 | 3.5 ± 0.00 | | Benzoic acid | 3.5 ± 0.41 | 3.5 ± 0.58 | 3.0 ± 0.00 | 3.0 ± 0.41 | 3.0 ± 0.58 | | Nonanoic acid | 0.5 ± 0.00 | 0.3 ± 0.04 | 0.4 ± 0.02 |
0.4 ± 0.04 | 0.4 ± 0.02 | Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25° C, \pm the standard error. to a strain (CDN1) which is a diploid created from a cross between the two commonly used laboratory strains NCYC 957 and BY4741 (kindly constructed by J. R. Dickinson, Cardiff University, UK). Finally, strain 895 has been included as a strain that carries a convenient marker for protoplast fusion (section 6.2.4). Table 6.1 shows the MICs of short, medium and longer chain organic acids against both grande and petite S. cerevisiae cells. The MICs overall for both grande and petite cells being similar. The biggest difference in MIC between grande and petite cells is shown for strain NCYC 1324 on exposure to acetic acid. The grande MIC is 75 mM in comparison to 95 mM for the petite result. The difference in MICs for NCYC 1324 to acetic acid is representative of a difference in growth of 3-4 cultures. The MICs obtained for the other yeasts for all three classes of organic acids only show a small difference being indicative of a difference in growth of 1-2 cultures. The pattern of longer chain organic acids being the most inhibitory as shown by the lowest MICs and short chain organic acids the least inhibitory, remains constant for both grande and petite cells. In summary, S. cerevisiae petite cells appear to demonstrate an equivalent level of resistance to organic acid acids as grande cells. # 6.2.3 Yeast protoplast formation The previous results showed S. cerevisiae to be petite-positive with petites having a level of organic acid resistance equal to that of grande cells. The role mitochondria have if any in the petite-negative yeasts Z. bailii and Z. kombuchaensis remained unknown. Therefore, it was decided to attempt to create fused protoplasts for Z. bailii and Z. kombuchaensis with a petite S. cerevisiae and then attempt to create petites in any protoplast fusants. A precursor for protoplast fusion is the generation of a sufficient number of protoplasts. Attempts were therefore made to induce protoplasts in the yeasts Z. bailii, Z. kombuchaensis and S. cerevisiae. At the concentrations used β - Figure 6.2 Protoplast formation for Z. bailii, Z. kombuchaensis and S. cerevisiae in (a) 100 μl ml⁻¹ β-glucoronidase (b) 10 mg ml⁻¹ lysozyme Results are the mean of an experiment performed in triplicate, \pm the standard error. Figure 6.3 Protoplast formation using 1mg ml⁻¹ Zymolyase (Lyticase, Sigma) for Z. bailii, Z. kombuchaensis and S. cerevisiae in (a) distilled water (b) 2 M sorbitol Results are the means of an experiment performed in triplicate, \pm the standard error. glucoronidase and lysozyme failed to induce protoplasts, as shown by the %OD which remained constant over the time frame examined (Figure 6.2). Zymolyase at the concentration indicated in Figure 6.3 induced protoplasts for Z. bailii, Z. kombuchaensis and S. cerevisiae. Z. kombuchaensis and S. cerevisiae were the most sensitive to the effects of Zymolyase as shown by them having the greatest fall in %OD. The two Z. bailii strains examined proved more resistant to the effects of Zymolyase, with NCYC 1416 showing the smallest change in %OD, therefore, being the most resistant. Even though Z. bailii NCYC 1416 proved the most resistant to protoplast formation, sufficient protoplasts were still generated. Protoplast formation was also confirmed microscopically for all four yeasts. Sorbitol is commonly used to prevent the lysis of protoplasts and was used in this study for that purpose. A concentration of 1 M sorbitol prevented lysis of S. cerevisiae protoplasts but a concentration of 1.5 M was required for Z. kombuchaensis. Protoplast lysis for the Z. bailii strains was only reduced in the presence of at least 2 M sorbitol (Figure 6.3). Zymolyase was therefore chosen for creating protoplasts in Z. bailii, Z. kombuchaensis and S. cerevisiae. # 6.2.4 Yeast protoplast fusion Two Z. bailii strains were selected as donors one, which is very resistant to organic acids (NCYC 1766) and one more sensitive (NCYC 1416). The Z. kombuchaensis donor was NRRL YB4811. The S. cerevisiae donor was the petite version of 895, which contains a Kanamycin insertion cassette and therefore provides a marker for protoplast fusion in the form of resistance to the aminoglycoside G418. The basis of the fusion for both Z. bailii and Z. kombuchaensis with S. cerevisiae was that the Zygosaccharomyces yeasts would provide the ability to grow on non-fermentable carbon sources as they contain mitochondria. S. cerevisiae would provide the ability to grow in the presence of G418. Any protoplast fusants between Zygosaccharomyces and S. cerevisiae would, Figure 6.4 Confirmation of protoplast fusion (a) YPD (b) YPG (c) YPD + 200 μ g/ml G418 (d) YPG + 200 μ g/ml G418 plates incubated for 5 days at 25°C incubation | | _ | | |-----------|------------------|----------------| | Zb 1766 | Pf 1766-895xH1 | <i>Sc</i> 895x | | Zb 1416 | Pf 1416-895xH1 | <i>Sc</i> 895x | | Zk YB4811 | Pf YB4811-895xH1 | <i>Sc</i> 895x | | | | | therefore, be able to grow on non-fermentable carbon sources containing G418. Attempts to produce protoplast fusants for Z. bailii and Z. kombuchaensis with S. cerevisiae were successful as shown in Figure 6.4. A number of intergeneric protoplast fusants were produced for each attempted fusion (Table 6.2). The fusion of protoplasts between Z. kombuchaensis and S. cerevisiae generated the greatest number of fusants with Z. bailii NCYC 1416 and S. cerevisiae generating the fewest. One attempt at creating fusants using Z. bailii NCYC 1416 as the donor Zygosaccharomyces resulted in no protoplast fusants. Putative protoplast fusants were selected and taken through several rounds of marker selection to confirm stability of fusants. Finally, three fusants from each of the attempted protoplast fusions were selected for characterisation. # 6.2.5 Characterisation of protoplast fusants # 6.2.5.1 Morphology of protoplast fusants The morphology of the protoplast fusants created between strains of Z. bailii and Z. kombuchaensis with that of S. cerevisiae was compared to that of their donor strains. Table 6.3 summarizes some of the differences in morphology between the protoplast fusants and donors. All protoplast fusants from the three different fusions showed the same morphological attributes and resemble the S. cerevisiae donor more than the Zygosaccharomyces donors. The protoplast fusants like their S. cerevisiae donor are round, occurring as single cells, which are non-flocculent. The protoplast fusants differ from both donor strains in that they form natural pseudohyphae or hyphae, as shown in Figures 6.5-6.6. The only donor strain capable of exhibiting natural pseudohyphae is Z. bailii NCYC 1416 and this is only after around 10 days incubation with YPD. The average cell sizes of the protoplast fusants are larger than those of the S. cerevisiae donor as a result of this natural pseudohyphal or hyphal formation. The pseudohyphal or hyphal cell morphology is clearly shown in the SEM images obtained in Figure 6.6. The Table 6.2 Frequency of protoplast fusion between Z. bailii, Z. kombuchaensis and S. cerevisiae | Protoplast fusant | c.f.u on non-selective
regeneration agar | c.f.u on selective regeneration agar | Frequency of protoplast fusion | |-------------------|---|--------------------------------------|--------------------------------| | Pf 1766-895x | 1.2×10^{5} | 36 | 3.0×10^{-4} | | Pf 1416-895x | 6.7×10^6 | 11 | 1.6×10^{-6} | | Pf YB4811-895x | 3.6×10^5 | 52 | 1.4×10^{-4} | Non-selective regeneration agar is the same as selective regeneration (Table 2.3 of Methods chapter) with the absence of G418 and using glucose and not glycerol as carbon source. Results are the mean of two independent experiments for 1766-895x and YB4811-895x. Results for 1416-895x are based on four experiments, as one set yielded no hybrids. Table 6.3 Physical characterisation of protoplast fusants | | | | | | *************************************** | *************************************** | | |-------------------------------|-------------------|-------------------|-------------------|-------------------|---|---|--| | Physical Characteristic | Zb 1766 | Zb 1416 | Zk YB4811 | Sc 895x | Pf 1766-895x | Pf 1416-895x | Pf YB4811-895x | | Morphology: | | | | | | | | | Shape | oval | long-oval | spherical | round | bemon | ound | TO UTO | | Arrangement | single | pair | single | single | single | single | single | | Cell size (µm) ± SD | 5.75 ± 0.500 | 6.02 ± 0.423 | 4.16 ± 0.322 | 3.23 ± 0.268 | 6.02 ± 1.567 | 5.87 ± 1.089 | 6.24 ± 1.023 | | Cell wall thickness (µm) ± SD | 0.191 ± 0.023 | 0.196 ± 0.017 | 0.168 ± 0.022 | 0.123 ± 0.034 | 0.133 ± 0.026 | 0.139 ± 0.019 | 0.128 ± 0.031 | | Texture on agar | smooth | wrinkled | smooth | smooth | smooth | Smooth | smooth | | Deposit in broth | non-flocculent | flocculent | non-flocculent | non-flocculent | non-flocculent | non-flocculent | non-flocculent | | Natural pseudohyphae/hyphae | • | + | • | • | | | *** | | Growth on: | | | | | | | | | Glucose | + | + | + | + | | -1- | 4 | | Maltose | • | | + | + | | | 4 | | Ethanol | + | + | + | ı | + | | 4- | | Glycerol | + | + | + | · | | | 4 | | Growth at: | | | | | | | | | 4°C | + | • | + | + | + | . | • | | 25°C | + | + | + | + | | | ###################################### | | 30°C | + | + | + | + | | • | + | | 37°C | + | • | • | + | | • | 4 | | Sexual spores: | | | | | | | | | Ascospores | + | | + | • | | | • | Presence of physical characteristic is indicated by a + sign and its absence by a - sign. Results are based on at least
two independent data sets. Sc 895 which contains mitochondria gave same results as Sc 895x which lacks mitochondria, except it gave positive growth on ethanol and glycerol. Size measurements based on 20 cells. TEM comparison of fusants shows that their cell walls are of a similar thickness to the S. cerevisiae donor and are thinner than those of the Zygosaccharomyces donors. The TEM micrographs show that each protoplast fusant contains several darkly stained bodies, which appear to be peroxisomes (P). Peroxisomes are largely absent from the S. cerevisiae donor appearing in only one or two cells (Figure 6.5). The Zygosaccharomyces donors appear devoid of peroxisomes (section 5, Figure 5.2). Mitochondria (M) are present for the fusants but lack clear distinct cristae. The morphology of the mitochondria also appears to vary in both size and shape. The S. cerevisiae petite donor, which lacks all or some mitochondrial DNA as a result of ethidium bromide treatment, still exhibits some remnants of mitochondria (Figure 6.5, g-h). # 6.2.5.2 Growth of protoplast fusants The ability of protoplast fusants to grow on a number of fermentable and non-fermentable carbon sources was examined. The Z. bailii donor strains (Zb 1766 and Zb 1416) were unable to grow with maltose as a carbon source (Table 6.3). The fact that the protoplast fusants created between these strains and S. cerevisiae 895 are able to grow on medium with maltose as the carbon source means that this ability has been inherited from the S. cerevisiae donor. The protoplast fusants were also able to use the non-fermentable carbon sources glycerol and ethanol as a result of mitochondria being inherited from the Zygosaccharomyces donor strains. The ability of the protoplast fusants to grow in the fermentable carbon source glucose was compared to the non-fermentable carbon source glycerol (Figure 6.7). The results show that the fusants exhibited a similar pattern of growth in glucose containing media to that of the donor strains. The exception to this is the Z. bailii 1416 donor, which is known to be a slow growing aggregating yeast. The growth pattern for the fusants in the presence of Figure 6.7 Growth curves for Z. bailii, Z. kombuchaensis, S. cerevisiae and protoplast fusants in (a) YPD (b) YPG pH 4.0 incubated at 25°C without shaking. Results are the means of three experiments with standard errors <5%. glycerol differed to that of donor strains. The fusants exhibited better growth than either of its donor strains (Figure 6.7). S. cerevisiae 895x with its petite status was unable to grow in the presence of glycerol, its grande equivalent; however, still exhibited poorer growth in glycerol than fusants (data not shown). It would, therefore, appear that the fusants have a greater ability to grow on the non-fermentable carbon source glycerol than their donor strains. The growth of the fusants at various temperatures was also examined (Table 6.3). The results show that the fusants were capable of growth at all four temperatures examined. The Z. bailii 1766 and S. cerevisiae 895 donor strains were also capable of growth over the same temperature range. Z. bailii 1416 and Z. kombuchaensis YB4811 exhibited no growth for at least one temperature examined. The growth of the protoplast fusants can be accounted for by their donor strains, except for the enhanced ability to grow in media containing glycerol. ### 6.2.5.3 Effects of ethidium bromide treatment on protoplast fusants In a bid to elucidate the potential role of mitochondria from Z. bailii and Z. kombuchaensis in organic acid resistance, it was decided to attempt to create petites in the protoplast fusants. The mitochondria present in the fusants as confirmed by TEM analysis (Figure 6.5) and ability to grow on non-fermentable carbon sources (Table 6.3) were inherited from the Zygosaccharomyces donors. Ethidium bromide was used to determine the petite status of the fusants. Figure 6.8 shows that all three types of protoplast fusants were resistant to ethidium bromide treatment. The average radius of the inhibition zones being 7 mm for Pf 1766-895x and 9 mm for fusants Pf 1416-895x and YB4811-895x. Small colonies were formed for all three fusants in the presence of ethidium bromide. Several hundred small colonies for each fusant were selected and viability determined on YPD plates. All colonies selected were viable. Colonies were then replica plated onto plates containing the non-fermentable carbon sources ethanol Figure 6.8 Protoplast fusants (a) differences in sensitivity to ethidium bromide (b) petite forming capabilities Zones of inhibition were calculated using 10 μ l of 10 mg ml⁻¹ ethidium bromide in the centre of each plate and the images are representative of an experiment based on four replicates, \pm the standard error. **YPG** **YPD** YPD Pf 1416-895xH1 Pf YB4811-895xH1 and glycerol. Figure 6.8 shows that the ethidium bromide treated cells could not be distinguished from the non-ethidium bromide treated cells in terms of growth on glucose and glycerol media. Therefore, even though ethidium bromide treatment induced small petite like colonies in the fusants these colonies did not exhibit a respiratory deficient phenotype. # 6.2.5.4 Organic acid resistance of protoplast fusants The organic acid resistance capabilities of protoplast fusants pre- and post-ethidium bromide treatment were assessed. Table 6.4 shows the MICs obtained for protoplast fusants pre-ethidium bromide treatment on exposure to short, medium and longer chain organic acids. The MICs obtained for all three types of protoplast fusants were closer to those of the S. cerevisiae donor than the Z. bailii and Z. kombuchaensis. All fusants were more sensitive to both acetic and propionic acid than those of their respective donors. Differences in MICs between the S. cerevisiae donor and the protoplast fusants for medium (sorbic and benzoic) and longer (nonanoic) chain organic acids were representative of a difference in growth of 1-2 cultures. The fusants were also exposed to oxidative stress in the form of hydrogen peroxide. Hydrogen peroxide was included in the MICs determinations due to the differences growth on non-fermentable carbon sources shown between the fusants and donor strains (section 6.2.5.2). Fusants showed an average MIC of 14 mM to hydrogen peroxide being considerably greater than that obtained for the donor strains (Table 6.4). The only donor strain to have an MIC for hydrogen peroxide close to that of the fusants was Z. bailii 1766 with an average MIC of 10 mM. The organic acid resistance capabilities of fusants post-ethidium bromide treatment were also tested (Table 6.5). Ethidium bromide appeared to exert little effect on the MICs obtained for fusants with the results for pre and post-ethidium bromide treatment being similar. Table 6.4 Organic acid resistance (mM) of (a) Z. bailii NCYC 1766 (b) Z. bailii NCYC 1416 (c) Z. kombuchaensis NRRL YB4811 in comparison with S. cerevisiae 895x and protoplast fusants | (a) | | | Pf 1766- | Pf 1766- | Pf 1766- | |-------------------|-----------------|-----------------|-------------------|-------------------|-------------------| | | Zb 1766 | Sc 895x | 895x1 | 895x2 | 895x3 | | Acetic acid | 400 ± 20.41 | 125 ± 10.20 | 100 ± 0.00 | 100 ± 10.20 | 100 ± 10.20 | | Propionic acid | 110 ± 8.16 | 60 ± 4.08 | 50 ± 8.16 | 50 ± 0.00 | 50 ± 4.08 | | Sorbic acid | 8.0 ± 0.71 | 3.0 ± 0.33 | 4.0 ± 0.71 | 4.0 ± 0.71 | 3.0 ± 0.33 | | Benzoic acid | 10 ± 0.48 | 4.0 ± 0.48 | 4.0 ± 0.91 | 5.0 ± 0.71 | 5.0 ± 0.48 | | Nonanoic acid | 0.7 ± 0.17 | 0.5 ± 0.04 | 0.6 ± 0.11 | 0.6 ± 0.09 | 0.6 ± 0.00 | | Hydrogen peroxide | 10 ± 0.93 | 6 ± 0.85 | 14 ± 1.18 | 14 ± 0.85 | 14 ± 0.93 | | (b) | | | | | | | | Zb 1416 | Sc 895x | Pf 1416-
895x1 | Pf 1416-
895x2 | Pf 1416-
895x3 | | Acetic acid | 300 ± 28.87 | 125 ± 10.20 | 100 ± 10.20 | 100 ± 10.20 | 100 ± 20.41 | | Propionic acid | 80 ± 11.55 | 70 ± 8.16 | 50 ± 0.00 | 50 ± 4.08 | 50 ± 4.08 | | Sorbic acid | 5.0 ± 0.71 | 4.0 ± 0.58 | 5.0 ± 0.00 | 5.0 ± 0.33 | 5.0 ± 0.71 | | Benzoic acid | 5.0 ± 1.22 | 4.0 ± 0.91 | 5.0 ± 0.33 | 5.0 ± 0.58 | 5.0 ± 0.58 | | Nonanoic acid | 0.6 ± 0.09 | 0.5 ± 0.04 | 0.6 ± 0.09 | 0.6 ± 0.00 | 0.6 ± 0.00 | | Hydrogen peroxide | 6 ± 1.22 | 6 ± 0.85 | 14 ± 0.93 | 12 ± 1.22 | 14 ± 1.22 | | (c) | | | | | | | | Zk
YB4811 | Sc 895x | Pf 4811-
895x1 | Pf 4811-
895x2 | Pf 4811-
895x3 | | Acetic acid | 300 ± 20.41 | 125 ± 10.20 | 75 ± 20.41 | 100 ± 10.20 | 75 ± 10.20 | | Propionic acid | 120 ± 0.00 | 60 ± 8.16 | 40 ± 0.00 | 40 ± 4.08 | 40 ± 4.08 | | Sorbic acid | 1.2 ± 0.13 | 3.0 ± 0.58 | 3.0 ± 0.91 | 3.0 ± 0.71 | 3.0 ± 0.58 | | Benzoic acid | 5.0 ± 0.71 | 4.0 ± 0.71 | 5.0 ± 0.00 | 5.0 ± 0.33 | 5.0 ± 0.71 | | Nonanoic acid | 0.5 ± 0.09 | 0.5 ± 0.11 | 0.6 ± 0.00 | 0.6 ± 0.04 | 0.6 ± 0.04 | | Hydrogen peroxide | 4 ± 0.91 | 6 ± 0.00 | 14 ± 0.00 | 14 ± 0.93 | 14 ± 1.22 | | | | | | | | Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25° C, \pm the standard error. Table 6.5 Organic acid resistance (mM) of (a) 1766-895x protoplast fusants (b) 1416-895x protoplast fusants (c) NRRL YB4811-895x protoplast fusants after ethidium bromide treatment | | Pf 1766-
895x1 | Pf 1766-
895x2 | Pf 1766-
895x3 | |----------------------------|---|---|---| | Acetic acid | 100 ± 10.20 | 100 ± 10.20 | 100 ± 0.00 | | Propionic acid
| 60 ± 4.08 | 50 ± 4.08 | 50 ± 4.08 | | Sorbic acid | 4.0 ± 0.33 | 3.5 ± 0.58 | 3.5 ± 0.58 | | Benzoic acid | 4.0 ± 0.33 | 4.0 ± 0.71 | 4.0 ± 0.33 | | Nonanoic acid | 0.5 ± 0.00 | 0.5 ± 0.00 | 0.6 ± 0.04 | | Hydrogen peroxide | 14 ± 0.93 | 14 ± 1.22 | 14 ± 0.93 | | | De 1 11 (| De1446 | D61417 | | | Pf 1416-
895x1 | Pf 1416-
895x2 | Pf 1416-
895x3 | | Acetic acid | 895x1 | 895x2 | 895x3 | | Acetic acid Propionic acid | | | 895x3 | | | 895x1
110 ± 20.41 | 895×2 100 ± 10.20 | $895x3$ 100 ± 10.20 | | Propionic acid | $895x1$ 110 ± 20.41 50 ± 7.01 | 895×2 100 ± 10.20 50 ± 0.00 | 895×3 100 ± 10.20 60 ± 4.08 | | Propionic acid Sorbic acid | 895×1 110 ± 20.41 50 ± 7.01 5.0 ± 0.58 | 895×2 100 ± 10.20 50 ± 0.00 4.0 ± 0.33 | 895×3 100 ± 10.20 60 ± 4.08 5.0 ± 0.71 | (a) | | Pf 4811-
895x1 | Pf 4811-
895x1 | Pf 4811-
895x1 | |-------------------|-------------------|-------------------|-------------------| | Acetic acid | 80 ± 20,41 | 90 ± 20.41 | 80 ± 10.20 | | Propionic acid | 40 ± 8.16 | 50 ± 4.08 | 40 ± 7.01 | | Sorbic acid | 3.0 ± 0.33 | 3.5 ± 0.58 | 3.5 ± 0.58 | | Benzoic acid | 5.0 ± 0.71 | 5.0 ± 0.00 | 4.0 ± 0.58 | | Nonanoic acid | 0.5 ± 0.02 | 0.5 ± 0.04 | 0.5 ± 0.00 | | Hydrogen peroxide | 14 ± 0.93 | 14 ± 0.93 | 14 ± 1.22 | Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25° C, \pm the standard error. # 6.2.5.5 Organic acid utilisation by protoplast fusants The ability of fusants to utilise acetic and propionic acid were compared to those of their donors. The ability to utilise acetic acid is shown in Figure 6.9. All six yeasts examined were able to grow in the presence of 50 mM acetic acid in minimal medium. The yeasts were grown in minimal medium as complex medium produced a complicated chromatogram with many peaks making the identification and quantification of acids difficult. Z. bailii 1766 was the only yeast clearly capable of using acetic acid. The acetic acid concentration for Z. bailii 1766 reached approximately 35 mM after 4 days incubation. Propionic acid was not utilised by any of the yeasts investigated (Figure 6.10). The results for S. cerevisiae grande and petite cells in terms of both growth and acetic and propionic acid utilisation are very similar. The growth for some of the yeasts for both acetic and propionic acid show a trough. The trough in growth could be the result of the acids on addition to culture generating a precipitate giving a slightly higher OD value in addition to some growth variation between cultures. The inclusion of the growth data was to show that the yeasts could grow in these concentrations of acids and in all cases the OD values are at the greatest at the end of the experiment. The significance of the OD values being at the greatest at the end of the experiment is that the cells have had sufficient time to grow and utilise the acid. The results for both acetic and propionic acid even at time zero shows that the concentration of acid detected by HPLC was lower than those originally added to the cultures. The difference in the level of acid detected and that added to the cultures could be the result of the following: the acids are volatile and this would cause some loss, some of the acid would be attached to the yeast, differences may be evident in sampling and some variation would be evident between HPLC runs. Figure 6.9 Differences in growth and acetic acid utilisation between (a) Z. bailii NCYC 1766 (b) Z. bailii NCYC 1416 (c) Z. kombuchaensis NRRL YB4811 (d) Pf 1766-895x (e) S. cerevisiae 895 (f) S. cerevisiae 895x. Results are the mean of two independent experiments (four replicates) conducted in 10 ml minimal medium pH 4.0 with 50 mM acetic acid incubated for 14 days at 25°C without shaking, \pm the standard error. Figure 6.10 Differences in growth and propionic acid utilisation between (a) Z. bailii NCYC 1766 (b) Z. bailii NCYC 1416 (c) Z. kombuchaensis NRRL YB4811 (d) Pf 1766-895x (e) S. cerevisiae 895 (f) S. cerevisiae 895x. Results are the mean of two independent experiments (four replicates) conducted in 10 ml minimal medium pH 4.0 with 30 mM propionic acid incubated for 14 days at 25° C without shaking, \pm the standard error. ### 6.3 Discussion Ethidium bromide, a common inhibitor of mitochondrial function, was used to determine the petite status of Z. bailii and Z. kombuchaensis. (Grant et al., 1997; Møller et al., 2001; Pearce et al., 2001b; Fernet et al., 2002). Z. bailii and Z. kombuchaensis were both more sensitive to ethidium bromide treatment than S. cerevisiae. The small colonies produced as a result of ethidium bromide treatment were non-viable for both Z. bailii and Z. kombuchaensis. Loss or considerable damage to the mitochondria of these yeasts therefore appears to represent a lethal event. Z. bailii and Z. kombuchaensis were therefore classified as petite-negative. Previous researchers have found Z. bailii to be petite-negative (Mollapour and Piper, 2001b; Merico et al., 2003). The petite-positive yeast S. cerevisiae showed no overall difference in organic acid resistance between grande and petite cells. Therefore, loss or considerable damage to the mitochondria of S. cerevisiae has no detrimental effect on organic acid resistance. The possible role of mitochondria in Z. bailii and Z. kombuchaensis organic acid resistance remained unknown due to the inability to form petites. I therefore produced fusants between the respiratory competent Z. bailii and Z. kombuchaensis with that of the respiratory deficient S. cerevisiae. Three different enzymes were used in a bid to induce protoplasts. Lysozyme and β-glucroronidase at the concentrations examined did not yield protoplasts. Zymolyase was able to produce protoplasts to differing degrees in Z. bailii, Z. kombuchaensis and S. cerevisiae and was used to form protoplasts. The restoration of respiratory function to a petite yeast via protoplast fusion with a respiratory competent yeast has been previously reported (Ferenczy and Maráz, 1977; Spencer and Spencer, 1981; Goodey and Bevan, 1983). To the best of my knowledge this is the first time that protoplast fusion has been used as a means of studying yeast organic acid resistance. The fusants generally resembled their S. cerevisiae donor more than their Zygosaccharomyces donor. The shape of fusants' varied with many cells exhibiting natural pseudohyphae or hyphae. The shape and size of protoplast fusants have been shown to differ from those of their donors (Ferenczy and Maráz, 1977; Groves and Oliver, 1984). The TEM images obtained for the protoplast fusants show the presence of several mitochondria of various shapes and sizes but with no clear cristae (Figure 6.5). The mitochondria present in the hybrids are probably the result of the fusion of S. cerevisiae mitochondrial remnants (from ethidium bromide treatment) with those of the fully functioning Zygosaccharomyces mitochondria. The presence of a large number of peroxisomes in the protoplast fusants may explain several of their unusual properties. The fusants were able to grow on YPG (a non-fermentable carbon source) better than their respective donors. They also showed hydrogen peroxide resistance greater than that of their donor strains. Peroxisomes are known to contain catalase and several oxidases involved in the oxidative utilisation of specific carbon sources (Walker, 1998). Catalase is known to be important for resistance to hydrogen peroxide as it catalyses the breakdown of hydrodgen peroxide to oxygen and water (Jamieson, 1998). Therefore, if yeasts were to contain a greater number of peroxisomes it would seem logical for them to be more resistant to hydrogen peroxide. The fusants showed a similar sensitivity to ethidium bromide treatment as *S. cerevisiae* being more resistant than the *Zygosaccharomyces* donors. The small cells selected from ethidium bromide treatment were capable of growth on fermentable and non-fermentable carbon sources. This result differs from that of either donor and one can only speculate the reason for this unusual and unexpected result. The result suggests the following possibilities; the fusants can use glycerol without mitochondria, and/or that fusants contain a means of overcoming the effects of ethidium bromide treatment. The organic acid resistance of the fusants before and after ethidium bromide treatment was determined. Ethidium bromide treatment resulted in no overall differences in organic acid resistance. All the fusants were slightly more sensitive to short chain organic acids than the *S. cerevsiae* donor. These results are of interest in that common food preservatives many of which are organic acids including acetic acid have been reported to exert an oxidative stress (Piper, 1999). The results here show the protoplast fusants, which are considerably more resistant to hydrogen peroxide a known inducer of oxidative stress, to be the most sensitive of the yeasts examined to short chain acids. The exact nature of the oxidative stress induced by organic acids appears not to be fully elucidated. Z. bailii unlike S. cerevisiae has been reported to metabolise acetic acid simultaneously with glucose (Sousa et al., 1996). The only yeast clearly capable of using acetic acid under the conditions examined was Z. bailii NCYC 1766. None of the yeasts appeared able to utilise propionic acid. The resistance of Z. kombuchaensis unlike that of Z. bailii NCYC 1766 to acetic acid is therefore not based only the metabolism of the acid, suggesting more than one mechanism is involved in resistance to acetic acid. In conclusion, the mitochondria of the petite-positive yeast S. cerevisiae were shown
to have little influence on organic acid resistance. Z. bailii and Z. kombuchaensis have been shown to be petite-negative with loss or damage to mitochondria representing a lethal event. The ability of organic acids to be mutagenic towards mitochondria and generate oxidative stress warrants further investigation. 7. Effects of glycerol on isoamyl alcohol induced pseudohyphal formation: a role for the HOG pathway ## 7.1 Introduction This section was stimulated by the observation of elongated Z. bailii cells in the presence of acetic acid (section 5). The first part of this research examines the ability of isoamyl alcohol, a known inducer of yeast pseudohyphal formation, to induce morphological change in Z. bailii, Z. kombuchaensis and S. cerevisiae. The second part of this section investigates the nature of the morphological change induced by isoamyl alcohol, as this still remains speculative (Lorenz et al., 2000; Martínez-Anaya et al., 2003). The final section shows a role for the HOG pathway in isoamyl alcohol induced pseudohyphal formation. Yeast dimorphism (in which yeasts exist in at least two morphological forms) has been reported for numerous yeasts including; S. cerevisiae (Gimeno et al., 1992; Dickinson, 1994; 1996; Kron, 1997), D. hansenii (Cruz et al., 2000) and C. albicans (Alonso-Monge et al., 1999; Tzung et al., 2001). The filamentous forms of C. albicans have been implicated in its pathogenic ability (Gow et al., 1995; Alonso-Monge et al., 1999). The majority of research into yeast dimorphism has been conducted in the model yeast S. cerevisiae. The ability of S. cerevisiae to grow in a filamentous form was reported over 80 years ago (Guilliermond, 1920). However, it is only since the work by Gimeno et al. (1992) that yeast dimorphism has become an area of intense research. It is now known that under certain environmental conditions a variety of yeasts will differentiate into hyphal-like extensions (Black et al., 1995; Dickinson, 1996) or pseudohyphae (Gimeno et al., 1992). Pseudohyphae can be defined as elongated chains of cells, in which unipolar budding predominates (Dickinson, 1999). Hyphal-like extensions are elongated cells in which no bud formation takes place, resulting in an extended form of the cell, but which lacks the isotropic swelling characteristic of the normal cell (Dickinson, 1996). In S. cerevisiae haploid strains form what has been termed "invasive filaments" as they penetrate the surface of the agar. The ability of diploids to form pseudohyphae and haploids to form invasive filaments is not mutually exclusive (Gancedo, 2001). There have also been some reports of S. cerevisiae mutants forming rod shaped cells rather than the typical ovoid (Blacketer et al., 1995). The general view regarding yeast pseudohyphal formation is that it provides a means for yeast to forage for more favourable conditions when under nutrient stress (Martinez-Anaya et al., 2003). The signal for yeast to form pseudohyphae is believed to be mainly the result of nitrogen starvation (Kron et al., 1994). Pseudohyphal formation in addition to being induced by nutrient limitation can be induced by fusel alcohols. Fusel alcohols are the end products of amino acid catabolism in S. cerevisiae. Isoamyl alcohol, isobutyl alcohol, 2-phenylethanol and tryptophol are the end products of leucine, valine, phenylalanine and tryptophan catabolism respectively (Dickinson et al., 1997; 1998; 2003). The fusel alcohols known to induce filamentous growth are isoamyl alcohol (Dickinson, 1996; Martínez-Anaya et al., 2003), isobutyl alcohol (Lorenz et al., 2000) and butanol (Ashe et al., 2001). The means by which fusel alcohols induce morphological change still remains speculative, despite recent research (Ashe et al., 2001; Martínez-Anaya et al., 2003). Isoamyl alcohol and butanol have been shown to cause a rapid inhibition of translation at the initiation step by targeting the translation initiation factor eIF2B (Ashe et al., 2001). This however does not account for their ability to induce a morphological switch. It has been proposed that S. cerevisiae detects a combination of nutrient limitation and metabolic by-products to regulate pseudohyphal differentiation (Lorenz et al., 2000). It is therefore possible that the production of fusel alcohols and the depletion of nitrogen source collectively result in pseudohyphal formation. A number of other factors including oxygen (Wright et al., 1993; Kuriyama & Slaughter, 1995) and carbon source (Vivier et al., 1997) have been shown to be involved in pseudohyphal formation. The toxic nature of isoamyl alcohol also requires further research as this may point to the means of pseudohyphae induction. The control of filamentous growth in S. cerevisiae has recently been the subject of several reviews (Pan et al., 2000; Gancedo, 2001; Palecek et al., 2002). In brief, the basic elements of filamentous control are as follows. In S. cerevisiae two signal transduction pathways are required for the induction of pseudohyphae both of which are activated by Ras2. The first pathway is a Mitogen Activated Protein (MAP) kinase pathway. The MAP kinase pathways in S. cerevisiae and the current known elements for each pathway are shown in Figure 7.1. There is generally accepted to be cross-talk between the various MAP kinase pathways (Levin & Errede, 1995; Pan et al., 2000). The second pathway for pseudohyphal formation is the cAMP dependent pathway (Pan & Heitman, 1999). The cAMP dependent pathway consists of three main components that are required for pseudohyphal formation: G-protein, protein kinase A and cAMP. The importance of the cAMP dependent pathway is illustrated by the ability of external cAMP to stimulate pseudohyphal formation (Kübler et al., 1997; Lorenz & Heitman, 1998; Jung and Stateva, 2003). Both the MAP kinase and cAMP dependent pathways converge on FLO11, which encodes a cell-surface flocculin necessary for pseudohyphal formation (Lo & Dranginis, 1998). The cAMP pathway has also been shown to be involved with cell wall biogenesis (Tomlin et al., 2000; Jones et al., 2001; 2003). The cell cycle is also known to play a role in pseudohyphal formation as such growth requires an extended G2 in addition to a switch to more extensive polarised growth (Kron et al., 1994). Figure 7.1 Components of the S. cerevisiae MAP kinase pathways. Reproduced from Tamás and Hohmann (2003) #### 7.2 Results # 7.2.1 Effects of isoamyl alcohol on yeast growth and pseudohyphal formation Preliminary experiments analysing the inhibitory effects of acetic acid against Z. bailii, Z. kombuchaensis and S. cerevisiae revealed the formation of elongated cells for one strain of Z. bailii (NCYC 1766). These cells appeared similar to pseudohyphae in S. cerevisiae. The effects of isoamyl alcohol a known inducer of morphological change on growth and pseudohyphal formation have been investigated in the three aforementioned yeasts. The results in Figure 7.2 show that both S. cerevisiae and Z. kombuchaensis formed pseudohyphae in the presence of 0.5% (v/v) isoamyl alcohol (4.6 mM). Z. bailii showed no morphological change. In YPD without 0.5% (v/v) isoamyl alcohol neither Z. bailii, Z. kombuchaensis nor S. cerevisiae exhibited morphological change. Isoamyl alcohol caused a significant reduction in growth for all three yeasts, with S. cerevisiae showing the greatest suppression of growth and highest pseudohyphal count (Figure 7.3). The peak of pseudohyphal formation for S. cerevisiae was at 24 h and at 48 h for Z. kombuchaensis, with a considerable reduction evident by 72 h for both yeasts (Figure 7.3). Growth in the presence of isoamyl alcohol increased with time for all three yeasts, being at its maximum after 72 h. #### 7.2.2 Effects of isoamyl alcohol on yeast cell structure ### 7.2.2.1 Transmission electron microscopy comparison The effects of isoamyl alcohol on yeast cell structure were analysed via TEM. The results in Figure 7.4 shows the effects of 0.5% (v/v) isoamyl alcohol on the cell structure of Z. bailii, Z. kombuchaensis and S. cerevisiae. Isoamyl alcohol at a concentration of 0.5% (v/v) caused the development of vacuoles (V) and a proliferation of mitochondria (M) for all three yeasts in comparison to control YPD cultures (Figure 7.4 g-h and section 5; Figure 5.3). Differences in cell structure on exposure to isoamyl Figure 7.2 Morphology of (a-c) Z. bailii NCYC 1766 (d-f) Z. kombuchaensis NRRL YB4811 (g-i) S. cerevisiae IWD72 grown in (left to right) YPD, YPD + 0.5% (v/v) isoamyl alcohol and YPD + 0.5% (v/v) isoamyl alcohol + 10% (w/v) glycerol at 48 h incubation. Bar = $10 \mu m$. Figure 7.3 Effects of isoamyl alcohol and glycerol on yeast growth and pseudohyphal formation in (a, b) Z. bailii NCYC 1766 (c, d) Z. kombuchaensis NRRL YB4811 grown in YPD at 25°C without shaking and (e, f) S. cerevisiae IWD72 grown at 30°C at 160 r.p.m Results are the means of three experiments, \pm the standard error. alcohol are also evident. Z. kombuchaensis and S. cerevisiae have cells exhibiting a granular (G) cytosol with extensive cell damage being evident. In such cells the cytosol appears to have detached from the cell envelope. No structural damage was evident for Z. bailii. S. cerevisiae cells also appear to contain a number of peroxisomes (P) which are absent for the Zygosaccharomyces yeasts. The cell wall (CW) for all three yeasts appears to have remained undamaged. # 7.2.2.2 Scanning electron microscopy comparison The scanning electron micrographs shown in Figure 7.5 show the range of shapes formed by pseudohyphal cells of *Z. kombuchaensis and S. cerevisiae* in the presence of 0.5% (v/v) isoamyl alcohol. The SEM images show no pseudohyphae for *Z. bailii* with cells remaining long oval in YPD with and without isoamyl alcohol. The *S. cerevisiae* (e, f) and *Z. kombuchaensis* (c, d) cells show variation in size with the *S. cerevisiae* pseudohyphal cells appearing the longer. The cells for all three yeasts show no
evidence of cell leakage, with cells appearing intact. Bud scars are largely absent for the majority of cells for all three yeasts. Figure 7.5 (g) shows the range of contortions formed by *S. cerevisiae* cells in the presence of 0.5% (v/v) isoamyl alcohol. The contortions are reminiscent of aged 'mothers' as they reach senescence (Nestelbacher *et al.*, 1999). ## 7.2.3 Effects of glycerol on isoamyl alcohol induced pseudohyphal formation The effects of glycerol were studied in the presence of 0.5% (v/v) isoamyl alcohol for Z. bailii, Z. kombuchaensis and S. cerevisiae. Glycerol at a concentration of 10% (w/v) resulted in at least a five-fold improvement in growth for S. cerevisiae IWD72 in the presence of 0.5% (v/v) isoamyl alcohol (Figure 7.3). The addition of 10% (w/v) glycerol to Z. kombuchaensis cultures containing 0.5% (v/v) isoamyl alcohol resulted in a marginal increase in growth but similar reduction in pseudohyphae as S. cerevisiae (Figures 7.2 and 7.3). Glycerol (10% w/v) in the presence of 0.5% (v/v) isoamyl alcohol for both *S. cerevisiae* and *Z. kombuchaensis* caused the pseudohyphal counts to remain below 40% throughout the experiments. The peak in pseudohyphal formation of 24 and 48 h for *S. cerevisiae* and *Z. kombuchaensis* remained unchanged when glycerol was added to cultures containing 0.5% (v/v) isoamyl alcohol. The addition of glycerol to *Z. bailii* cultures containing 0.5% (v/v) isoamyl alcohol resulted in a slight reduction in growth than was evident in 0.5% (v/v) isoamyl alcohol cultures alone. The addition of 10% (w/v) glycerol to YPD cultures for all three yeasts in the absence of isoamyl alcohol resulted in slight suppression of growth in comparison to YPD alone and resulted in no morphological change (Figure 7.2 and 7.3). # 7.2.4 Effects of isoamyl alcohol and glycerol on c.f.u counts The application of methylene blue to samples withdrawn from cultures of Z. bailii, Z. kombuchaensis and S. cerevisiae containing 0.5% (v/v) isoamyl alcohol showed many cells to be stained blue indicating a loss of viability (data not shown). In order to further study the effects of 0.5% (v/v) isoamyl alcohol on growth of Z. bailii, Z. kombuchaensis and S. cerevisiae c.f.u counts were performed at various time intervals. Table 7.1 shows that the addition of 0.5% (v/v) isoamyl alcohol to YPD cultures caused a reduction in c.f.u counts. The biggest difference in c.f.u counts was shown for S. cerevisiae after 24 h incubation in which the number of c.f.u were just 0.02% of that in an equivalent culture without isoamyl alcohol. Indeed, all three yeasts only showed a maximum c.f.u count of approximately 10% that of an equivalent culture without isoamyl alcohol. Isoamyl alcohol therefore causes a significant reduction in c.f.u counts. The number of c.f.u counts increased with time for S. cerevisiae. The percentage of c.f.u counts for Z. bailii and Z. kombuchaensis showed a percentage trough at 48 h. All three yeasts reached a similar c.f.u count at 72 h incubation of 1-2 ×108. The addition of 10% to isoamyl alcohol in the absence and presence of glycerol. Values in brackets show the % c.f.u counts in the corresponding culture without isoamyl Table 7.1 Differences in c.f.u counts between (a) Z. bailii NCYC 1766 (b) Z. kombuchaensis NRRL YB4811 and (c) S. cerevisiae IWD72 on exposure | 9.0 × 10 ⁶ (12.9) (w/v) glycerol YPD + 10% (w/v) glycerol + 0.5% (v/v) IAA 2.42 × 10 ⁵ (0.64) 4.00 × 10 ⁶ (4.40) | % | YPD + 0.5% (v/v) IAA
6.70×10^4 (0.02)
8.00×10^5 (0.31) | 2.60×10^{8} | 48 | | |--|------------------------|--|------------------------|----------|----------| | | % | YPD + 0.5% (v/v) IAA
6.70 × 10^4 (0.02) | | | | | | _ 1 1 | YPD + 0.5% (v/v) IAA | 2.86×10^{8} | 24 | | | 9.0 × 10 ⁶ (12.9) | 7.00 × 10 ⁷ | The second secon | YPD | Time (h) | <u>©</u> | | $9.0 \times 10^6 (12.9)$ | 7.00×10^7 | | | | | | | 1.*0*10 | $2.10 \times 10^8 (10.00)$ | 1.10×10^9 | 72 | | | $1.50 \times 10^6 (0.11)$ | 1 40 ~ 109 | $2.70 \times 10^{6} (0.25)$ | 1.06×10^9 | 48 | | | $2.22 \times 10^5 (2.7)$ | 8.20 × 10 ⁶ | $6.60 \times 10^{5} (2.90)$ | 2.21×10^{7} | 24 | | | (w/v) glycerol YPD + 10% (w/v) glycerol + 0.5% (v/v) IAA | YPD + 10% (w/v | YPD + 0.5% (v/v) IAA | YPD | Time (h) | (b) | | | | | | | | | $9.07 \times 10^7 (17.60)$ | 5.20×10^{8} | $1.28 \times 10^{8} (2.56)$ | 5.00 × 10 ⁹ | 72 | | | $3.90 \times 10^6 (0.40)$ | 9.08×10^{8} | $1.42 \times 10^7 (1.30)$ | 1.07×10^9 | 48 | | | $4.90 \times 10^5 (4.7)$ | 1.05×10^7 | $1.10 \times 10^6 (5.90)$ | 1.93×10^{7} | 24 | | | (w/v) glycerol YPD + 10% (w/v) glycerol + 0.5% (v/v) IAA | YPD + 10% (w/s | YPD + 0.5% (v/v) IAA | YPD | Time (h) | (a) | Data is representative of an experiment performed in duplicate with similar result (w/v) glycerol to YPD cultures had no effect on the overall c.f.u counts for S. cerevisiae with the c.f.u counts remaining similar for both YPD and YPD with glycerol. Glycerol additions alone, however, did have a detrimental effect on the c.f.u count of both Z. bailii and Z. kombuchaensis (Table 7.1). These results are in agreement with OD results, which showed 10% (w/v) glycerol to cause slight inhibition of growth (Figure 7.3). The addition of 10% (w/v) glycerol to cultures containing 0.5% (v/v) isoamyl alcohol resulted in an increase in percentage c.f.u counts for all three yeasts, in comparison to cultures containing glycerol addition alone. Isoamyl alcohol therefore caused a reduction in the percentage c.f.u counts for all three yeasts that was counteracted by the addition of 10% (w/v) glycerol. # 7.2.5 Glycerol content and isoamyl alcohol induced pseudohyphal formation Glycerol caused a reduction in the percentage of isoamyl alcohol-induced pseudohyphal cells for Z. kombuchaensis and S. cerevisiae. Z. bailii did not exhibit pseudohyphal formation in the presence of 0.5% (v/v) isoamyl alcohol and is known to be osmotolerant. Since glycerol is a compatible solute synthesised in response to osmotic shock, it seemed prudent to compare the glycerol content of these three yeasts with and without isoamyl alcohol. The glycerol content of the three yeasts differed from one another and showed a different pattern in the presence of isoamyl alcohol (Figure 7.6). In the absence of isoamyl alcohol Z. kombuchaensis had the highest glycerol content followed by Z. bailii and S. cerevisiae. S. cerevisiae showed a level of glycerol at least four times lower than that of Z. bailii and Z. kombuchaensis at each time interval. Isoamyl alcohol caused an increase in total glycerol content for S. cerevisiae at 24 and 48 h. The glycerol levels at 72 h for S. cerevisiae with and without isoamyl alcohol being equivalent. In Z. kombuchaensis the glycerol levels in the presence of isoamyl alcohol were significantly lower than those without isoamyl alcohol. The glycerol levels Figure 7.6 Effects of isoamyl alcohol on total glycerol content in (a) Z. bailii NCYC 1766 (b) Z. kombuchaensis NRRL YB4811 grown in YPD at 25°C incubation without shaking and (c) S. cerevisiae IWD72 grown at 30°C 160 r.p.m Results are the mean of two independent experiments (four replicates), ± the standard error. for Z. kombuchaensis without isoamyl alcohol decreased with time while in the presence of isoamyl alcohol they remained constant. Z. bailii showed the highest level of total glycerol in the presence of isoamyl alcohol being at its highest at 24 h. In the absence of isoamyl alcohol glycerol content decreased with time for all three yeasts. # 7.2.6 The HOG pathway in isoamyl alcohol induced pseudohyphal formation # 7.2.6.1 Confirmation of plasmids and transformation Salgado (2001) showed a hog1 mutant to exhibit isoamyl
alcohol induced pseudohyphae even in the presence of glycerol. This work extends on that by complementing the hog1 mutant with a plasmid containing a functional HOG1 gene (pRS426-HOG1). The same plasmid (pRS426) lacking the HOG1 gene was used as an empty vector control. The plasmid identities were confirmed by EcoR1 and Pst1 restriction sites prior to transformation via restriction endonuclease digests. Figure 7.7 shows that the expected restriction fragments were obtained. The three bands present in the uncut pRS426-HOG1 digest are representative of the different coiled circular forms of the plasmid, which all migrate at different rates. The pRS426 and pRS426-HOG1 plasmids were confirmed to be approximately 6000 bp and 8000 bp respectively by the bands produced with EcoRI digests. A plasmid map of pRS426 and pRS426-HOG1 can be found in appendix. The hog1 mutant was in a different background to S. cerevisiae IWD72 therefore the parent of the hog1 mutant L5528 was used as wild-type in all experiments relating to the HOG pathway. Figure 7.8 shows confirmation of hog1 mutant with plasmids pRS426 and pRS426-HOG1 by complementation of auxotrophic requirements. Both plasmids contain a functional URA3 gene and transformation is confirmed by growth on minimal medium + uracil D/O. The other auxotrophic requirements of each strain are also confirmed. To confirm the presence of each plasmid colony PCR was used to amplify a section of the HOG1 gene. The sequence of the **Figure 7.7** Plasmid confirmation by restriction endonuclease analysis (a) pRS426 (b) pRS426-HOG1 Method used for restriction analysis can be found in section 2.11.3 L5528 (WT) YSH1137 (hog1) YSH1137 YSH1137 (pRS426-*HOG1*) HOG gene is located in the appendix. Figure 7.9 (a) shows that only the pRS426-HOG1 plasmid control, wild-type (L5528) and the strain transformed with pRS426-HOG1 (YSH1137 pRS426-HOG1) gave positive PCR bands. The size of this fragment is in the region of 400 bp, which is the correct size for the length to be amplified by the HOG primers. The transformation of both pRS426 and pRS426-HOG1 was also confirmed phenotypically by growth on media containing sorbitol (Figure 7.9, b). All four yeasts were capable of growth on YPD while only L5528 and YSH1137 (pRS426-HOG1) were capable of growth on media containing 1 M sorbitol. This confirms a functional HOG pathway for YSH1137 (pRS426-HOG1) and the lack of such a functional pathway in the empty vector control YSH1137 (pRS426). # 7.2.6.2 Isoamyl alcohol induced pseudohyphal formation in a S. cerevisiae hog1 Isoamyl alcohol induced pseudohyphae in the wild-type, *hog1* mutant, *hog1* mutant plus empty vector (YSH1137-pRS426) and the reconstituted *HOG1* wild-type (YSH1137-pRS426-HOG1) as shown in Figure 7.10. The pseudohyphal count for L5528 (WT) and YSH1137 (pRS426-HOG1) in the presence of isoamyl alcohol was greater than that of YSH1137 (*hog1* mutant) and the empty vector control YSH1137 (pRS426). Glycerol caused a decrease in percentage pseudohyphae for both wild-type and complemented *hog1* mutant (YSH1137-pRS426-HOG1). The level of pseudohyphae produced by the *hog1* mutant and empty vector control (YSH1137-pRS426) remained unchanged by the presence of glycerol (Figure 7.11). The addition of 10% (w/v) glycerol in the absence of isoamyl alcohol, however, induced morphological change in the *hog1* mutant and its empty vector control (YSH1137-pRS426). These cells in the presence of glycerol addition alone exhibited a range of morphologies. The strains used in this work were less sensitive to the effects of isoamyl alcohol than *S. cerevisiae* IWD72 as shown by **Figure 7.9** Confirmation of pRS426 and pRS426-*HOG1* transformation by (a) colony PCR (b) Growth on YPD and YPD + 1.0 M sorbitol A suspension of 2×10^7 cells for each yeast was prepared and 10 fold dilutions prepared in peptone water. A 3 μ l aliquot of each dilution was spotted onto each plate and incubated at 25°C for 5 days. Figure 7.10 Morphology of (a) S. cerevisiae L5528 (WT) (b) S. cerevisiae YSH1137 (hog1) (c) S. cerevisiae YSH1137-pRS426 (d) S. cerevisiae YSH1137-pRS426-HOG1 grown for 48 h incubation at 30°C 160 r.p.m in media as indicated above micrographs. Bar = $10 \, \mu m$ Figure 7.10 cont Morphology of (a) S. cerevisiae L5528 (WT) (b) S. cerevisiae YSH1137 (hog1) (c) S. cerevisiae YSH1137-pRS426 (d) S. cerevisiae YSH1137-pRS426-HOG1 grown for 48 h incubation at 30°C 160 r.p.m in media as indicated above micrographs. Bar = $10 \mu m$ Figure 7.11 Effects of isoamyl alcohol and glycerol on yeast growth and pseudohyphal formation in S. cerevisiae (a, b) L5528 (WT) (c, d) YSH1137 (hog1) (e, f) YSH1137-pRS426 (g, h) YSH1137-pRS426-HOG1 grown in YPD at 30°C 160 r.p.m Results are the means of three experiments, ± the standard error. the L5528 background strains reaching higher OD values (Figure 7.11). All the strains examined in this investigation into the role of the HOG pathway in isoamyl alcohol resistance exhibited similar levels of growth in both YPD and YPD + 10% (w/v) glycerol. The hog1 mutant (YSH1137) and the empty vector control (YSH1137-pRS426) reached lower OD values in the presence of isoamyl alcohol with and without glycerol than the wild-type (L5528) and reconstituted HOG1 wild-type (YSH1137-pRS426-HOG1). Therefore, the hog1 mutant and empty vector control were more sensitive to the effects of isoamyl alcohol on growth. # 7.2.6.3 Differences in sensitivity to cell wall/membrane disrupting agents between hog1 mutants The HOG pathway was shown to have an influence on isoamyl alcohol induced pseudohyphae (7.2.6.2). The nature of the involvement of the HOG pathway in isoamyl alcohol induced pseudohyphal formation remained unknown. In a bid to elucidate more information on the interaction between the HOG pathway and pseudohyphal formation it was decided to examine whether there were differences in the cell wall. Figure 7.12 shows the results obtained for sensitivity to several cell wall/membrane disrupting agents. All four strains showed growth at all dilutions examined on YPD. No differences in sensitivity were observed on exposure to congo red or caffeine over the concentrations examined. However, differences in sensitivity to Calcofluor white and SDS were observed. All strains exhibited some sensitivity to 0.25 mg/ml Calcofluor white, which was more pronounced for strains carrying the pRS426 and pRS426-HOG1 plasmids (Figure 7.12, c). SDS an indicator of differences in cell membrane permeability showed the wild-type (L5528) and the reconstituted HOG1 wild-type (YSH1137-pRS426-HOG1) to be more resistant than the hog1 mutant and empty vector control (YSH1137-pRS426) to 0.05% SDS. **Figure 7.12** Differences in cell wall/cell membrane disrupting agents between *S. cerevisiae* wildtype and HOG strains (a) YPD (b) 0.025 mg/ml Calcofluor white (c) 0.25 mg/ml Calcofluor white (d) 0.025 mg/ml congo red (e) 0.25 mg/ml congo red. Cell suspensions of 2×10^7 cells ml in peptone water and 10 fold dilutions were prepared. A 3 μ l aliquot of each dilution was spotted onto each plate and incubated for 5 days at 25°C in an inverted position. **Figure 7.12 cont.** Differences in cell wall/cell membrane disrupting agents between *S. cerevisiae* wildtype and HOG strains (a) YPD (f) 1.0 mg/ml caffeine (g) 2.0 mg/ml caffeine (h) 0.005% SDS (i) 0.05% SDS. Cell suspension of 2×10^7 cells ml in peptone water and 10 fold dilutions were prepared. A 3 μ l aliquot of each dilution was spotted onto each plate and incubated for 5 days at 25°C in an inverted position. # 7.3 Discussion In this section, the first known study of morphological change in the *Zygosaccharomyces* yeasts, isoamyl alcohol was shown to induce pseudohyphae in *S. cerevisiae* and *Z. kombuchaensis* but not *Z. bailii*. One possible reason for this is that isoamyl alcohol causes an osmotic stress that triggers pseudohyphal formation. The osmotic stress caused by isoamyl alcohol could be insufficient to cause the development of pseudohyphae in the more osmotolerant *Z. bailii* (Thomas and Davenport, 1985; Steels *et al.*, 2000). The TEM results support the possibility of isoamyl alcohol causing an osmotic stress as many of the pseudohyphal cells for *Z. kombuchaensis* and *S. cerevisiae* show evidence of the cytosol detaching from the cell envelope, which is characteristic of hyper-osmotic stress (Tamás and Hohmann, 2003). Vacuoles are known to play an important role in plant osmoregulation by acting as a water reservoir for the cytosol (Chrispeels *et al.*, 2001). The presence of large vacuoles particularly for *Z. kombuchaensis* in the presence of isoamyl alcohol is therefore indicative of osmotic stress. Isoamyl alcohol, therefore, causes a number of changes to the cell structure that are characteristic of hyper-osmotic stress. Salgado (2001) exposed *S. cerevisiae* to glycerol, in the presence of isoamyl alcohol on the basis that isoamyl alcohol exerted some sort of osmotic stress. Glycerol at an optimal concentration of 10% (w/v) was shown to increase growth and reduce pseudohyphal formation in the presence of isoamyl alcohol for *S. cerevisiae*. Salgado (2001) showed this response to be specific for glycerol with other compatible solutes including sorbitol, mannitol, trehalose and the di-ol 1, 3-butanediol having no effect despite being involved in osmotic stress responses (Rains & Valentine, 1980; Nevoigt & Stahl, 1997). Glycerol was also shown to reduce isoamyl alcohol induced pseudohyphal formation for *Z. kombuchaensis* (Figure 7.3). Therefore, glycerol has been shown to specifically reduce isoamyl alcohol induced pseudohyphal formation in both S. cerevisiae and Z. kombuchaensis. The addition of 10% (w/v) glycerol in the presence of 0.5% (v/v) isoamyl alcohol resulted in an increase in percentage c.f.u for Z. bailii, Z. kombuchaensis and S. cerevisiae. Therefore, even though isoamyl alcohol does not induce pseudohyphae in Z.
bailii the addition of glycerol still leads to an increase in c.f.u counts. The formation of glycerol is an integral part of osmoregulation, which in S. cerevisiae is closely linked to the high osmolarity glycerol (HOG) pathway (Tamás et al., 2000). A number of the MAP kinase pathways have a number of areas of overlap including Cdc24, Cdc42, Ste20 and Ste11 (Tamás and Hohmann, 2003). It is therefore possible for cross-talk to occur between many of the pathways. Any cross-talk between MAP kinase pathways could account for the role of glycerol in isoamyl alcohol induced pseudohyphal formation. The HOG pathway could sense isoamyl alcohol, which leads to the initiation of pseudohyphal formation via the morphological switch MAP kinase pathway. This could then lead to an accumulation of glycerol which, when present at a given threshold, prevents the initiation of pseudohyphal formation. There is a variety of evidence in support of this hypothesis. The fact that the percentage of pseudohyphae is reduced at 72 h suggests that the cells have adapted to the effects of isoamyl alcohol. The glycerol content for S. cerevisiae was shown to increase at 24 and 48 h in the presence of 0.5% (v/v) isoamyl alcohol, which may be sufficient to prevent further pseudohyphal formation. The hog1 mutant and empty vector control showed no reduction in percentage pseudohyphal formation in the presence of isoamyl alcohol and glycerol. The wild-type and the re-constituted HOG1 wild-type, however, did show a reduction in isoamyl alcohol induced pseudohyphae in the presence of glycerol. There are a number of observations from the experiments conducted that suggest isoamyl alcohol may not just be causing an osmotic stress. Indeed, if the effect of isoamyl alcohol on yeasts were only that of osmotic stress then one would expect any alcohol to have some morphological effect. The fact that only a few alcohols including isoamyl alcohol (Dickinson 1996; Ashe et al. 2001; Martínez-Anaya et al. 2003) induce morphological change suggests that osmotic stress is not the only factor. This is further supported by the mitigation of the effects of isoamyl alcohol being specific for glycerol and not any compatible solute. Z. kombuchaensis had a glycerol content of 5-10 times greater than S. cerevisiae both in the absence and presence of isoamyl alcohol. If the ability of isoamyl alcohol to induce pseudohyphae was only related to osmotic stress then Z. kombuchaensis with its higher glycerol content should not exhibit pseudohyphal formation. Indeed, isoamyl alcohol actually caused the glycerol content of Z. kombuchaensis to decrease rather than increase as with S. cerevisiae. In a bid to understand the role of glycerol in isoamyl alcohol induced pseudoyphal formation in S. cerevisiae, experiments in which the activity of key glycerol metabolic enzymes including glycerol-3-phosphate dehydrogenase (Gpd) and glycerol-3-phosphate phosphatase (Gpp) would prove of interest. The activity of these enzymes in the presence of isoamyl alcohol, ethanol and sorbitol would aid the understanding of glycerol in isoamyl alcohol stress. Isoamyl alcohol has recently been reported to cause a proliferation of mitochondria for S. cerevisiae (Martínez-Anaya et al. 2003). The same proliferation was evident for Z. kombuchaensis and Z. bailii. The reason for the proliferation of mitochondria in the presence of isoamyl alcohol remains unknown. It could be the result of some form of oxidative stress. Evidence to support this theory is shown by the HOG pathway being activated by oxidative stress in C. albicans (Alonso-Monge et al., 2003; Navarro-Garcia et al., 2003). The *hog1* mutant and its empty vector control were shown to be more sensitive to the effects of SDS a known indicator of differences in permeability than the wild-type and complemented *hog1* mutant. This is an interesting result and means that permeability may play a role in the effects of isoamyl alcohol on yeast pseudohyphal formation. Evidence has recently been presented for the HOG pathway being stimulated by turgor pressure rather than water stress (Tamás *et al.*, 2000). It is therefore possible for isoamyl alcohol to cause an alteration in turgor rather than water stress, which is detected by the HOG pathway. The HOG pathway could then trigger the morphological switching pathway resulting in the formation of pseudohyphae and the activation of glycerol accumulation. Isoamyl alcohol is also known to target eIF2B in order to allow regulation of translation (Ashe *et al.*, 2001). The possibility of the HOG pathway altering eIF2B function in response to alcohols cannot be dismissed. Overall, Z. bailii unlike Z. kombuchaensis and S. cerevisiae did not from psedudohypahe in the presence of isoamyl alcohol. Isoamyl alcohol would appear to cause some degree of osmotic stress with a role for the HOG pathway being demonstrated. The involvement of oxidative stress, turgor pressure and a role for the eukaryotic initiation factor eIF2B in isoamyl alcohol induced pseudohyphae remain interesting possibilities. | 8. | Re-exam | ination o | f Z. bai | <i>lii</i> classif | ication | |----|---------|-----------|----------|--------------------|---------| | | | | | | | | | | | | | | ### 8.1 Introduction Traditionally the physiological identification of Zygosaccharomyces species has proved difficult due to the limited ability of these yeasts to ferment or assimilate carbon sources (Kurtzman, 1990). On the basis of traditional physiological tests eight species of Zygosaccharomyces were identified (Yarrow, 1984). These comprised of Z. bailii, Z. bisporus, Z. cidri, Z. fermentati, Z. florentinus, Z. microellipsoides, Z. mrakii and Z. rouxii. A ninth species, Z. mellis was identified as a separate species from Z. rouxii on the basis of DNA relatedness (Kurtzman, 1990). Two additional species of Zygosaccharomyces have been identified: Z. lentus was identified on the basis of molecular and physiological differences from yeasts originally classed as Z. bailii (Steels et al., 1999a, b). The latest species of Zygosaccharomyces to be identified is Z. kombuchaensis, which was isolated from 'kombucha tea' with four strains being currently known (Kurtzman et al., 2001). The application of 26S rDNA D1/D2 sequence analysis has shown Z. kombuchaensis to be closely related to Z. lentus (Steels et al., 2002). The eleven aforementioned species of Zygosaccharomyces based on physiological and molecular data have recently been reduced to the following six species: Z. bailii, Z. bisporus, Z. kombuchaensis, Z. lentus, Z. mellis and Z. rouxii (Kurtzman 2003). The classification of Zygosaccharomyces yeasts is therefore one under constant review. In this section, differences in organic acid resistance between strains of Z. bailii (described in section 1) are re-examined in addition to resistance to the inhibitors ethanol, sodium chloride and hydrogen peroxide. The morphology, physiology and molecular composition of the Z. bailii strains are also examined. The overall aim was to determine whether the differences in Z. bailii were due to strain variation or represented a greater divergence within the species. ## 8.2 Results ### 8.2.1 Differences in inhibitor resistance between strains of Z. bailii The organic acid resistance results for Z. bailii reported in section 3 were re-examined in addition to the inhibitors ethanol, sodium chloride and hydrogen peroxide. The collective results are presented in Table 8.1. The results show Z. bailii NCYC 1416 and NCYC 385 to have lower MICs to all inhibitors except decanoic acid and ethanol. The biggest differences in inhibitor resistance within the Z. bailii strains were found for medium chain organic acids (hexanoic, sorbic and benzoic acid). On the basis of the inhibitor MICs the Z. bailii strains examined were divided into two groups. Group A included Z. bailii NCYC 1766, 11, NCYC 1520, 20 and 80. The two remaining yeasts Z. bailii NCYC 1416 and 385 were designated as group B. Despite Z. bailii 11 (an isolate from an American soft drinks factory) exhibiting MICs for hydrogen peroxide, sodium chloride and sorbic acid similar to those of the more sensitive (NCYC 1416 and NCYC 385) Z. bailii strains it was placed into group A on the basis of the majority of MICs. The mean MICs for organic acids (including standard errors) for the two Z. bailii groups were compared to those of Z. kombuchaensis and S. cerevisiae. The results are presented in Table 8.2. The small standard errors for Z. kombuchaensis and S. cerevisiae for all organic acids except acetic acid are indicative of little strain variation. Z. bailii group B also had small standard errors for the MICs to all organic acids. Z. bailii group A, generally, shows the most strain variation as shown by the standard errors. The placing of all Z. bailii strains into one group resulted in considerably larger standard errors for all organic acids except decanoic acid (data not shown). The two groups of Z. bailii are distinct from one another on the basis of MICs except for formic acid in which the standard errors are indicative of a small overlap of MICs. Z. bailii group B shows a similar level of resistance to medium and longer chain organic acids as Z. kombuchaensis and S. cerevisiae (except for the known extreme sorbic acid Table 8.1 Differences in inhibitor resistance between strains of Z. bailii | Inhibitor | NCYC 1766 | NCYC 1416 | 11 | NCYC 385 | NCYC 1520 | 20 | 80 | |------------------------|------------------------|-----------------|-----------------|--------------------|-----------------|------------------------|----------------| | | | | | | | | | | Formic acid (mM) | 110 ± 8.16 | 90 ± 14.14 | 90 ± 8.16 | 70 ± 9.57 | 90 ± 8.16 | 90 ± 9.57 | 90 ± 8.16 | | Acetic acid (mM) | 400 ± 20.41 | 300 ± 28.87 | 350 ± 20.41 | 300 ± 20.41 | 400 ± 20.41 | 350 ± 28.87 | 400 ± 0.00 | | Propionic acid (mM) | 100 ± 8.16 | 80 ± 11,55 | 100 ± 0.00 |
80 ± 11.5 4 | 100 ± 8.16 | 100 ± 0.00 | 100 ± 8.16 | | | | | | | | | | | Hexanoic acid (mM) | 8 ± 0.41 | 4 ± 0.58 | 6 ± 0.00 | 3 ± 0,4 1 | 8 ± 0.91 | 6 ± 0.00 | 8 ± 0.91 | | Sorbic acid (mM) | 8 ± 0.71 | 4 ± 0.58 | 5 ± 0.71 | 3 ± 0.91 | 8 ± 0.33 | 8 ± 0.58 | 8 ± 0.33 | | Benzoic acid (mM) | 9 ± 0.48 | 5 ± 1.22 | 9 ± 1.08 | S±0.71 | 9 ± 0,48 | 8 ± 0.00 | 9 ± 0.71 | | | | | | | | | | | Octanoic acid (mM) | 2.1 ± 0.17 | 1.5 ± 0.21 | 1.8 ± 0.00 | 0.6 ± 0.00 | 2.1 ± 0.00 | 1.8 ± 0.00 | 2.1 ± 0.17 | | Nonanoic acid (mM) | 0.6 ± 0.00 | 0.5 ± 0.11 | 0.6 ± 0.04 | 0.4 ± 0.11 | 0.7 ± 0.09 | 0.7 ± 0.04 | 0.8 ± 0.00 | | Decanoic acid (mM) | 0.2 ± 0.00 | 0.2 ± 0.04 | 0.2 ± 0.00 | 0.2 ± 0.04 | 0.2 ± 0.00 | 0.2 ± 0.00 | 0.2 ± 0.02 | | | | | | | | | | | Ethanol (M) | 1.8 ± 0.12 | 1.8 ± 0.17 | 1.8 ± 0.17 | 2.3 ± 0.24 | 1.8 ± 0.12 | 1.8 ± 0.12 | 1.8 ± 0.17 | | Sodium Chloride (M) | 2.4 ± 0.00 | 2.0 ± 0.18 | 2.0 ± 0.08 | 2.0 ± 0.18 | 2.4 ± 0.08 | 2.4 ± 0.00 | 2.4 ± 0.14 | | Hydrogen peroxide (mM) | 10 ± 0.41 | 6 ± 0.91 | 6 ± 0.00 | 6±0,41 | 10 ± 0.41 | 8 ± 0.71 | 8 ± 0.00 | Values are mean MICs measured from at least two independent experiments (four replicates) in YPD pH 4.0 following 14 days incubation at 25°C, ± the standard error. Table 8.2 Mean MIC (mM) ± SE of organic acids on Z. bailii, Z. kombuchaensis and S. cerevisiae. | | Z. bailii group A | Z. ballii group B | Z. kombuchaensis | S. cerevisiae | |-------------------------------------|-------------------|-------------------|------------------|-------------------| | Short chain acids Formic acid | 94 ± 4.00 | 80±10, 0 0 | 70 ± 0.00 | 5 0 ± 0.00 | | Acetic acid | 380 ± 14.43 | 300 ± 0.00 | 313 ± 12.5 | 100 ± 10.21 | | Propionic acid | 100 ± 0.00 | 80 ± 0.00 | 120 ± 0.00 | 50 ± 0.00 | | Medium chain acids
Hexanoic acid | 7.20 ± 0.49 | 3.50±0.50 | 4.50 ± 0.29 | 3.00 ± 0.00 | | Sorbic acid | 7.40 ± 0.60 | 3.50 ± 0.50 | 1.25 ± 0.08 | 3.50 ± 0.29 | | Benzoic acid | 8.80 ± 0.20 | 5.00 ± 0.00 | 6.00 ± 0.00 | 3.25 ± 0.08 | | Longer chain acids Octanoic acid | 1.98 ± 0.07 | 1.05 ± 0.45 | 1.05 ± 0.09 | 1.05 ± 0.09 | | Nonanoic acid | 0.68 ± 0.04 | 0.45 ± 0.05 | 0.40 ± 0.00 | 0.48 ± 0.03 | | Decanoic acid | 0.20 ± 0.00 | 0.20 ± 0.00 | 0.15 ± 0.00 | 0.15 ± 0.00 | Results are based on at least duplicate experiments in YPD pH 4.0 following 14 days incubation at 25°C. Z. bailii group A comprises NCYC 1766, 11, NCYC 1520, 20 & 80. Z. bailii group B comprises NCYC 1416 & NCYC 385. Z. kombuchaensis comprises NRRL YB4810, NRRL Y27163, NRRL Y27162 & NRRL YB4811. S. cerevisiae comprises NCYC 957, NCYC 1324, NCYC 1119 & BY4741. sensitivity of Z. kombuchaensis) but is clearly more resistant than S. cerevisiae to short chain organic acids. Overall, the differences in organic acid resistance between Z. bailii strains allow the formation of two groups: one that is resistant and the other more sensitive to inhibitors. #### 8.2.2 Morphological differences between strains of Z. bailii During the investigations into the differences in inhibitor resistance between Z. bailii, Z. kombuchanesis and S. cerevsiae, two strains of Z. bailii were shown to exhibit a number of morphological differences. The morphological differences between strains of Z. bailii are summarised in Table 8.3. Z. bailii strains NCYC 1416 and NCYC 385 even though differing in shape with the former being long-oval and the latter round, showed a number of morphological properties distinct from the other Z. bailii strains. The two strains were shown to form pairs and to aggregate, the latter property being classed as flocculation. These two strains were also shown to form rough colonies on agar while all the other strains represented by Z. bailii NCYC 1766 and Z. bailii 11 were shown to form smooth colonies (Figure 8.1). The ability of Z. bailii strains to form natural pseudohyphae was assessed. Z. bailii NCYC 1416 and NCYC 385 were the only strains to show natural pseudohyphae on prolonged culture to YPD (Figure 8.2). In summary, the two Z. bailii strains, which were shown to differ in inhibitor resistance, could also be distinguished from the other Z. bailii strains by morphological differences. ### 8.2.3 Physiological differences between strains of Z. bailii The inhibitor resistance and morphological differences reported between strains of Z. bailii were extended to look for physiological differences. The two strains of Z. bailii NCYC 1416 and NCYC 385 were again shown to differ from the other Z. bailii strains examined (Table 8.3). Testing for growth on media with different carbon sources Table 8.3 Morphological and physiological differences between strains of Z. ballii | Physical Characteristic | NCYC 1766 | NCYC 1416 | 11 | NCYC 385 | NCYC 1520 | 20 | 80 | |--|-------------------------|-----------------------|----------------|-----------------------|------------------------|----------------|----------------| | Morphology: | | | | | | | | | Shape | oval | Long-oval | oval | 78
176. | oval | oval | oval | | Arrangement | single | '& | single | ja
H | single | single | single | | Texture on agar | smooth | wrinkled | smooth | wrinkled | smooth | smooth | smooth | | Deposit in broth | non-flocculent | flocculent | non-flocculent | flocculent | non-flocculent | non-flocculent | non-flocculent | | pseudohyphae | 1 | + | • | + | • | | • | | Growth on: | | | | | | | | | Glucose | + | + | + | + | + | + | + | | Fructose | + | -1 | + | 4 | + | + | + | | Sucrose | + | 4 | + | 4 | + | + | + | | Sorbose | • | + | + | -4- | ı | • | • | | Mannose | + | | + | + | + | + | + | | Maltose | • | 4 | 4 | 9: | | • | • | | Galactose | + | | + | • | + | + | + | | Growth at: | | | | | | | | | 4°C | + | | + | 7 | + | + | + | | 25°C | + | 4 | + | + | + | + | + | | 30°C | + | + | + | • | + | + | + | | 37°C | + | • | • | T. | + | + | + | | Dracence of physical phomotomictic is indicated by | stic is indicated but a | Laism and its absonce | her sim Dank | and based on at least | tion in demandant data | Ca+c | | Presence of physical characteristic is indicated by a + sign and its absence by a - sign. Results are based on at least two independent data sets. **Figure 8.1** Colony morphology after 48 h incubation at 25°C on YPD plates (a) *Z. bailii* NCYC 1766 (b) *Z. bailii* NCYC 1416 (c) *Z. bailii* 11 and (d) *Z. bailii* NCYC 385 **Figure 8.2** Cell morphology after 10 days incubation at 25°C on YPD plates (a) *Z. bailii* NCYC 1766 (b) *Z. bailii* NCYC 1416 (c) *Z. bailii* 11 and (d) *Z. bailii* NCYC 385. Bar = $10 \mu m$. showed the two aforementioned yeasts to be the only Z. bailii strains examined to be unable to grow on galactose. Z. bailii 11, NCYC 1416 and NCYC 385, however, were the only Z. bailii strains capable of growth on sorbose. The ability of Z. bailii strains to grow at different temperatures was also examined. Strains NCYC 1416 and NCYC 385 could not grow at 4°C after prolonged incubation (six weeks). Growth at 37°C was also absent for strains NCYC 1416 and NCYC 385 in addition to Z. bailii 11. All the remaining Z. bailii strains showed growth at all four temperatures examined. The composition of complex medium was shown to have an influence on yeast organic acid resistance (section 4). Therefore, the effects of complex medium on the growth of Z. bailii strains were examined (Figure 8.3). The results show that the Z. bailii strains examined could be divided into two groups; one group comprising NCYC 1416 and 385 which showed the absence of dextrose to cause the greatest reduction in growth. The second group consisting of all the remaining Z. bailii strains showed growth most affected by the absence of yeast extract. The OD values reached by Z. bailii NCYC 1416 and NCYC 385 even in complete complex medium (YPD) were considerably lower than those of the remaining strains. The time taken to reach stationary phase by the two aforementioned strains was also longer than those of the other Z. bailii strains. On the basis of differences in OD values corresponding to stationary phase between Z. bailii NCYC 1416 and NCYC 385 with the remaining Z. bailii strains, dry weights were compared. The dry weight results are shown in Figure 8.4. The dry weight determinations show that despite strains NCYC 1416 and NCYC 385 reaching lower OD values, their dry weights were at least equivalent to those of the other Z. bailii strains examined. Z. bailii NCYC 1416 reached the lowest OD values but showed the highest dry weight. The results collectively point to a number of physiological differences between the proposed Z. bailii groups. Figure 8.3 Differences in growth in complex medium between strains of Z. bailii (a) NCYC 1766 (b) NCYC 1416 (c) 11 (d) NCYC 385 grown at 25°C at 160 r.p.m Results are the means of two independent experiments (four replicates) with standard errors of <5% Figure 8.4 Dry weight comparison of Z. bailii strains (a) NCYC 1766 (b) NCYC 1416 (c) 11 (d) NCYC 385 grown in YPD pH 4.0 at 25°C without shaking #### 8.2.4 Molecular differences between strains of Z. bailii To extend upon the differences in inhibitor resistance, morphology and physiology reported for Z. bailii potential differences in their molecular composition were examined. An analysis of the 26S rDNA D1/D2 sequences of the Z. bailii strains used throughout this investigation was kindly conducted by S. A. James (NCYC, Norwich, UK) and is presented with permission in Figures 8.5 and 8.6. An analysis of the two atypical Z. bailii strains NCYC 1416 and NCYC 385 revealed 100% sequence identity for the 26S rDNA D1/D2 sequences (data not shown). The 26S rDNA D1/D2 sequences of Z. bailii NCYC 1416/NCYC385 were compared to the
other Z. bailii strains. The sequence alignment showed that three subgroups of Z. bailii could be identified with a number of sequence differences (indicated by *) being evident (Figure 8.5). Z. baiilii NCYC 1416 and 385 formed one distinct group with NCYC 1520 and 11 another and the final group comprising NCYC 1766 and 80. Z. bailii 20 was not included into a group due to variation in the end sequence, despite several sequence attempts. The sequence alignments of the three Z. bailii groups were compared as a phylogenetic tree to the type strains of several closely related members of Z. bailii (Figure 8.6). Z. bailii is, thus far, the only one of these closely related species to exhibit subgroups in its 26S rDNA D1/D2 sequences. In summary, molecular examination shows differences in the 26S rDNA D1/D2 sequences of Z. bailii with the atypical strains NCYC 1416 and NCYC 385 compromising of a distinct subgroup. Figure 8.5 26S rDNA D1/D2 sequence alignment of Z. bailii strains | NCYC_385/1416
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | AACCGGGATT
GGGATT | GCCTTAGTAA
GCCTTAGTAA | CGGCGAGTGA
CGGCGAGTGA | AGCGGCAAAA
AGCGGCAAAA | GCTCAAATTT
GCTCAAATTT
GCTCAAATTT | |---|--|--|--|--|--| | NCYC385/1416
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | GAAATCTGGT
GAAATCTGGT
GAAATCTGGT
GAAATCTGGT | ACCTTCGGTG
ACCTTCGGTG
ACCTTCGGTG
ACCTTCGGTG
ACCTTCGGTG
ACCTTCGGTG | CCCGAGTTGT
CCCGAGTTGT
CCCGAGTTGT | AATTTGTAGA
AATTTGTAGA
AATTTGTAGA
AATTTGTAGA | AGGCGACTCT
AGGCGACTCT
AGGCGACTCT | | NCYC_385
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | GGGGCTGGTC
GGGACTGGTC
GGGGCTGGTC | CTTGTCTATG
CTTGTCTATG
CTTGTCTATG
CTTGTCTATG
CTTGTCTATG | TTCCTTGGAA
TTCCTTGGAA
TTCCTTGGAA | CAGGACGTCA
CAGGACGTCA
CAGGACGTCA | TGGAGGGTGA
TGGAGGGTGA
TGGAGGGTGA
TGGAGGGTGA | | NCYC_385/1416
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | GAATCCCGTA
GAATCCCGTA
GAATCCCGTA | TGGCGAGGAT
TGGCGAGGAT
TGGCGAGGAT
TGGCGAGGAT
TGGCGAGGAT | CCCAGTTCTT
CCCAGTTCTT
CCCAGTTCTT | TGTAGAGTGC
TGTAGAGTGC
TGTAGAGTGC
TGTAGAGTGC | CTTCGAAGAG
CTTCGAAGAG
CTTCGAAGAG
CTTCGAAGAG | | NCYC_385/1416
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | TCGAGTTGTT
TCGAGTTGTT
TCGAGTTGTT
TCGAGTTGTT | TGGGAATGCA
TGGGAATGCA
TGGGAATGCA
TGGGAATGCA
TGGGAATGCA | GCTCTAAGTG
GCTCTAAGTG
GCTCTAAGTG
GCTCTAAGTG | GGTGGTAAAT
GGTGGTAAAT
GGTGGTAAAT
GGTGGTAAAT | TCCATCTAAA
TCCATCTAAA
TCCATCTAAA
TCCATCTAAA | | NCYC_385/1416
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | GCTAAATATT
GCTAAATATT
GCTAAATATT | GGCGAGAGAC
GGCGAGAGAC
GGCGAGAGAC
GGCGAGAGAC
GGCGAGAGAC | CGATAGCGAA
CGATAGCGAA
CGATAGCGAA
CGATAGCGAA | CAAGTACAGT
CAAGTACAGT
CAAGTACAGT
CAAGTACAGT | GATGGAAAGA
GATGGAAAGA
GATGGAAAGA
GATGGAAAGA | | NCYC_385
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | TGAAAAGAAC
TGAAAAGAAC
TGAAAAGAAC | TTTGAAAAGA
TTTGAAAAGA
TTTGAAAAGA
TTTGAAAAGA
TTTGAAAAGA
TTTGAAAAGA | GAGTGAAAAA
GAGTGAAAAA
GAGTGAAAAA
GAGTGAAAAA | GTACGTGAAA
GTACGTGAAA
GTACGTGAAA
GTACGTGAAA | TTGTTGAAAG
TTGTTGAAAG
TTGTTGAAAG
TTGTTGAAAG | | NCYC_385/1416
Uni_20
NCYC_1766
Uni_80
NCYC_1520
Uni_11 | GGAAGGGCAT
GGAAGGGCAT
GGAAGGGCAT | TTGATCAGAC
TTGATCAGAC
TTGATCAGAC
TTGATCAGAC
TTGATCAGAC
TTGATCAGAC | ATGGTGTTTT
ATGGTGTTTT
ATGGTGTTTT | GCGCCCTCG | CCTCTCGTGG
CCTCTCGTGG
CCTCTCGTGG | |---|--|--|--|------------|--| | | | * | | | | | NCYC_385/1416
Uni 20 | | CTCGCAGTTC | | | | | NCYC 1766 | | CTCGCAGTTC
CTCGCAGCTC | | | | | Uni 80 | | CTCGCAGCTC | | | | | NCYC 1520 | | CTCGCAGCTC | | | | | Uni 11 | | CTCGCAGCTC | | | | | _ | | | | | | | | | | | | | | NCYC_385/1416 | - | GGAATGTAGC | | | | | Uni_20 | | GGAATGTAGC | | | | | NCYC_1766 | | GGAATGTAGC | | CGTGGCGGAC | | | Uni_80 | | GGAATGTAGC | | CGTGGCGGAC | | | NCYC_1520
Uni 11 | | GGAATGTAGC | | | | | 011711 | TAAATCCCTG | GGAATGTAGC | TCTACCACTT | CGTGGCGGAC | GAACTTATAG | | | | | | | ** | | NCYC 385/1416 | TCCAGGGGAA | TACTGCCAGC | TGGGACTGAG | GAATGCGACT | TTTAGTCA | | Uni $\overline{2}$ 0 | TCCAGGGGAA | TACTGCCAGC | TGGGACTGAG | GAATGCGACT | TTTATACA | | NCYC 1766 | TCCAGGGGAA | TACTGCCAGC | TGGGACTGAG | GAATGCGACT | TTTTTAGTCA | | Uni 80 | TCCAGGGGAA | TACTGCCAGC | TGGGACTGAG | GAATGCGACT | TTTTTAGTCA | | NCYC_1520 | TCCAGGGGAA | TACTGCCAGC | TGGGACTGAG | GAATGCGACT | TTTTTAGTCA | | Uni_11 | TCCAGGGGAA | TACTGCCAGC | TGGGACTGAG | GAATGCGACT | TTTTTAGTCA | | | | | | | | | NCYC 385/1416 | እርርእጥርርጥርር | CATAATGGTT | אשאשרכרכר | CCTCTTCXXX | CACCC | | Uni 20 | CAG | | AINIGCCGCC | | | | NCYC 1766 | | CATAATGGTT | ATATGCCGCC | CGTCTTGAAA | CACGG | | Uni 80 | | CATAATGGTT | | | | | NCYC 1520 | | CATAATGGTT | | | | | Uni $\overline{1}$ 1 | | CATAATGGTT | | | | | | | | | | | # Sequence-based subgroups Group 1: NCYC 385, NCYC 1416^T Group 2: NCYC 1520, (Unilever) 11 Group 3: NCYC 1766, (Unilever) 80 Sequence for Z. bailii NCYC 1416 and NCYC 385 are 100% identical. Z. bailii 20 could not be placed into any of the subgroups due to slightly differing 26S rDNA D1/D2 sequences. - * Differences in the 26S rDNA D1/D2 sequence. - No sequence obtained. - _ Variable sequence obtained. Bar is representative of one substitution per 1000 nucleotide position. Bootstrap values >50% are given. Sequence alignment and phylogenetic tree were constructed using DNAMAN version 5.1.5 (Lynnon BioSoft). Type strain. Figure constructed by S. A. James NCYC, Norwich, UK. Figure 8.6 Phylogenetic tree of Z. bailii 26S rDNA D1/D2 sequences with other closely related Zygosaccharomyces species. ## 8.3 Discussion Z. bailii has been shown to contain a subgroup which shows differences relating to inhibitor resistance, morphology, physiology and molecular classification compared with the other Z. bailii strains. The subgroup consists of NCYC 1416 and NCYC 385 with the main group consisting of NCYC 1766, 11, NCYC 1520, 20 and 80. The former being the more sensitive to all inhibitors examined except for decanoic acid and ethanol. The mean MICs of these two groups allowed clear distinction of their organic acid resistance. The exception to this was formic acid in which the standard errors were indicative of a small overlap of the mean MIC. The biggest difference in mean MICs between the two proposed groups of Z. bailii were shown for medium chain organic acids; comprising hexanoic, sorbic and benzoic acid. The mean MICs obtained for all three of these medium chain acids in the resistant group were almost double that of the mean MICs obtained for the more sensitive group. There are therefore some strains of Z. bailii with a mechanism of resistance to medium chain organic acids that is absent in other strains. Morphological differences between the two aforementioned subgroups included: texture on agar, aggregation or flocculation capabilities and ability to form natural pseudohyphae. Physiological differences in the form of carbon source utilisation, range of growth temperatures, growth in complex medium and dry weight analysis also allowed the distinction of *Z. bailii* NCYC 1416 and NCYC 385 from the other *Z. bailii* strains. The type strain of *Z. bailii* (NCYC 1416) has recently been shown to have a lower UV resistance and smaller DNA content than a highly resistant weak carboxylic acid *Z. bailii* strain (Rodrigues *et al.*, 2003). This is further supportive of differences between the strains of *Z. bailii*. The 26S rDNA D1/D2 sequence alignments proposed the existence of three subgroups in Z. bailii. Z. bailii NCYC 1416 and NCYC 385 comprised of one subgroup, NCYC 1520 and 11 another with the final subgroup comprising NCYC 1766 and 80. Z. bailii 20 (isolated from an orange concentrate) could not be placed into any one of the three subgroups due to slightly differing 26S rDNA D1/D2 sequences. This phenomenon has recently been reported for a number of Clavispora lusitaniae strains (Lachance et al., 2003). The level of divergence between the subgroups proposed by 26S rDNA D1/D2 classification, however, was less than the 1% value generally used for the identification of a new species (Kurtzman & Blanz, 1998). The level of divergence for 26S rDNA D1/D2 sequences is indicative of a species currently diverging (S. A. James, personal communication). The divergence in Z. bailii is somewhat akin to that reported for the Saccharomyces sensu stricto complex (Edwards et al., 2003; Fernandez-espinar et al., 2003; Kurtzman and Robnett, 2003, Kurtzman, 2003). A recent study examining the molecular characterisation of the genus Zygosaccharomyces highlighted Z. bailii as showing considerable variability supporting the results in this thesis (Esteve-Zarzoso et al., 2003). In summary, evidence has been presented for a subgroup in Z. bailii molecular classification extended upon this by proposing the existence of three subgroups in Z. bailii. The relevance to the food industry is that for the first time Z. bailii has been shown to contain a subgroup of organic acid sensitive strains, and by studying the differences between resistance and sensitive groups the mechanisms of extreme organic acid resistance utilized by some Z. bailii strains could be
revealed. 9. General Discussion The lack of research into yeast attributed food spoilage, in comparison to that of bacterial spoilage, is now beginning to be re-addressed. The primary reason for this is that food spoilage, as a result of yeast contamination, is becoming increasingly well reported. The results presented in this thesis add to our understanding of yeast attributed food spoilage by examining differences in organic acid resistance and the basis of these differences between Z. bailii, Z. kombuchaensis and S. cerevisiae. The following considers the results of this research, future work and the relevance of this research to the food industry. This is the first known study to compare organic acid resistance in Z. bailii, Z. kombuchaensis and S. cerevisiae. The data showed that organic acid resistance for the three aforementioned yeast species differed. In general, S. cerevisiae was the most sensitive to organic acids followed by Z. kombuchaensis. Z. bailii was shown to be a diverse species containing strains both resistant and sensitive to organic acids. The information on organic acid resistance gathered from this research can be applied directly to the food industry providing a detailed account of the capabilities of these yeasts to grow in the presence of organic acid food preservatives. The method used in determining MICs was challenge assays in universal bottles (Steels et al., 1999b; 2000; 2002; Stratford et al., 2002; Fitzgerald et al., 2003). This method has many advantages including the fact that many inhibitors can be assessed simultaneously, a number of yeasts can be examined, it is of relatively low cost, low skill and relatively quick. The biggest advantage is that this method simulates many of the conditions in which yeast cause spoilage including growth in complex media (with an excess of nutrients), under static conditions and with limited oxygen. The potential problems with this method are that it is very labour intensive, it requires the use of large incubators and the recording of MICs can be considered subjective. The subjectivity of the method, which is based on the accurate recording of MICs by visual inspection of each culture, was not considered to be problematic in these investigations as the MICs obtained from duplicate experiments were found to differ by only 1-2 cultures. Alternative methods to record MICs included solid media, micro-titre plates and large flasks. Experiments examining the effects of growth conditions on yeast organic acid resistance produced a number of interesting results. Z. bailii and Z. kombuchaensis had lower MICs in complex media in which yeast extract was omitted. As yeast extract contains a complex series of nutrients (appendix), experiments in which individual components of yeast extract are omitted from the growth media would allow for the elucidation of the dependency of yeasts on specific nutrients. Discovering the effects of nutrients on growth particularly for S. cerevisiae would be of interest to brewing and biotechnology industries. The inability of some Z. bailii strains to grow in the presence of maltose and for some strains galactose, could lead to the development of new food products with a reduced risk of spoilage, by Z. bailii. In fact, there is currently, a high energy sports drink available called 'G-PUSH' (source of information http://www.gpush.com). 'G-PUSH' contains galactose instead of glucose as the main carbon source. Therefore, in addition to this product appealing to a specific area of the market, it also has a reduced risk of spoilage. A similar situation exists for Z. kombuchaensis in which organic acid resistance varied with nitrogen source. Collectively, the data provides a greater understanding of the factors affecting yeast growth in foods and beverages. Z. bailii and Z. kombuchaensis at extreme concentrations of organic acids produced low OD values being indicative of growth of only a few cells. S. cerevisiae did not show a similar pattern with growth ending abruptly at the MIC. The poor growth of Z. bailii and Z. kombuchaensis at extreme organic acid concentrations could be the result of "super" cells as, previously, described for Z. bailii in the presence of sorbic acid (Steels et al., 2000). The presence of "super" cells could account for the ability of Z. bailii to cause spoilage from as little as one cell per litre (Thomas and Davenport, 1985). Recently, a review on phenotypic heterogeneity, defined as 'non-genetic variation that exists between individual cells within an isogenic population' in S. cerevisiae was published (Sumner and Avery, 2002). It is possible that the cells which are able to grow at extreme concentrations of organic acids for Z. bailii and Z. kombuchaensis are representative of phenotypic heterogeneity. If Z. bailii were shown to contain a higher natural pool of "super" cells then this could be crucial regarding their proliferation in high concentration of organic acids. The EM analyses showed that the Zygosaccharomyces yeasts under organic acid stress form multiple buds. The formation of multiple buds may be a means of surviving cell stress and could contribute to the phenomenon of phenotypic heterogeneity. If this is the case then the application of flow-cytometry, which can differentiate at the single-cell level (Attfield et al., 2001) and has been previously applied to Z. bailii (Prudêncio et al., 1999), could prove extremely useful. Elucidating more about the ability of Zygosaccharomyces yeasts to form "super" cells could aid research into yeast organic acid resistance and the general phenomenon of phenotypic heterogeneity. The application of electron microscopy in this study has added to our knowledge on the modes of inhibition caused by organic acids. For example, the actions of sorbic acid have been found to be concentrated on the plasma membrane and/or cell wall, where it results in cell lysis for the sorbic acid sensitive *Z. kombuchaensis*. This is believed to be the first direct microscopic evidence for sorbic acid acting as a membrane active substance supporting the theory of Stratford and Anslow (1996b, 1998) that sorbic acid does not act as a 'classic weak-acid preservative'. The 'weak-acid preservative theory' is based upon undissociated acid molecules entering the cell via simple diffusion and dissociating releasing protons and anions. The anions and protons accumulate within the cytoplasm resulting in intracellular acidification. If the 'weak-acid preservative theory' holds then acids with similar pKa values should inhibit yeast at similar concentrations. Differences in the MIC of acetic and sorbic acid both of which have similar pKa values have been discussed previously in relation to the 'weak-acid preservative theory' (Stratford and Ueckert, submitted). In this study, possible further discrepancies in the 'weak-acid preservative theory' have been highlighted. Propionic acid and hexanoic acid both have a pK_a of 4.87, but show a 15-30 fold difference in MICs. Therefore, the 'weak-acid preservative theory' does not account for differences in inhibitory concentrations between organic acids with similar pK_a values. On the basis of these findings it may be appropriate to revise the 'classic weak-acid preservative theory'. Any such review would have to take into account the importance of intracellular acidification and the relevance of other mechanisms utilised by organic acids to inhibit yeast growth. A large part of the research presented in this thesis was conducted to build upon the limited information regarding the morphology and physiology of *Zygosaccharomyces* spoilage yeasts. In this thesis, three main questions relating to morphology and physiology of *Zygosaccharomyces* yeasts were addressed. Each question will be considered individually. Are there differences in morphology and physiology between Z. bailii, Z. kombuchaensis and S. cerevisiae? A number of morphological and physiological differences have been highlighted between Z. bailii, Z. kombuchaensis and S. cerevisiae. Differences relating to the cell structure in terms of cell size, cell wall thickness, sensitivity to cell wall enzymes, cell wall composition and pseudohyphal formation were found. A detailed analysis of the cell wall of Z. bailii and Z. kombuchaensis to build upon the data presented in this thesis represents one of the more immediate aspects of future work. Z. bailii, Z. kombuchaensis and S. cerevisiae were also shown to differ in sensitivity to ethidium bromide and isoamyl alcohol, in petite forming capabilities and glycerol production in addition to a number of physiological growth tests (e.g. carbon source utilisation). ## Do any differences relate to organic acid resistance? A number of the differences in morphology and physiology reported in this thesis for Z. bailii, Z. kombuchaensis and S. cerevisae relate to organic acid resistance. The cell wall was shown to be involved in yeast organic acid resistance as cell wall mutants of S. cerevisiae exhibited differences in organic acid resistance to the wild-type. Z. bailii contains a higher chitin level than S. cerevisiae with chitin being distributed throughout the cell, and not restricted to the bud scars. This is correlated with the higher resistance of Z. bailii to Zymolyase (an enzyme known to breakdown β -1, 3 glucans) and indicates that Z. bailii is likely to contain more chitin and β -1, 3 glucan complexes. The increased number of these complexes could add additional mechanical strength and change permeability properties. An even simpler way in which the cell wall could contribute to the differences in organic acid resistance between Zygosaccharomyces yeasts and S. cerevisiae, could be that the thicker cell wall of the Zygosaccharomyces yeast allows the cells more time to adapt to the stress. Z. bailii and Z. kombuchaensis were also shown to have considerably higher glycerol levels than S. cerevisiae. The addition of
compatible solutes in the form of glycerol, sorbitol and mannitol resulted in a slight increase in organic acid resistance for all three yeast species. Therefore, organic acids may exert some osmotic stress, which the *Zygosaccharomyces* yeasts with their higher glycerol levels are better able to tolerate. Mitochondria may also have a role to play in yeast organic acid resistance, as organic acids have recently been shown to cause an oxidative stress (Piper, 1999). The following supports this: firstly, *Z. bailii* and *Z. kombuchaensis* are more dependent upon mitochondria than *S. cerevisiae* as cells in which mitochondrial DNA had been damaged or lost were non-viable. Secondly, *ZbYME2* a gene isolated from *Z. bailii* allows the utilisation of sorbate and benzoate when heterologously expressed in *S. cerevisiae*. Expression of *ZbYME2* as a functional fusion to green fluorescent protein (GFP) in *S. cerevisiae* on benzoate was largely localised to the mitochondria (Mollapour and Piper, 2001 b). # Do any differences present alternative targets for food preservation? Z. bailii was shown to be more sensitive to Calcofluor white which in yeast preferentially binds to chitin. The application of a compound to target chitin would be one possible strategy to target food preservation. Both the Zygosaccharomyces yeasts were also shown to be more sensitive to SDS, caffeine, calcium chloride and the aminoglycoside G418 all of which have been used in S. cerevisiae as indicators of differences in cell wall composition. The cell wall would, therefore, appear to be a potential target in the prevention of Z. bailii and Z. kombuchaensis attributed spoilage. This hypothesis is strengthened by the fact that the cell wall in Z. bailii and S. cerevisiae has been targeted as a means of inhibiting growth during the course of conducting this research (Bom et al., 2001). The mitochondria of Zygosaccharomyces appear to play a role in yeast organic acid resistance as mentioned previously, but the fact that these yeasts are non-viable when the mitochondria are damaged also makes it a potential target for food preservation. Z. kombuchaensis and S. cerevisiae formed pseudohyphae in the presence of isoamyl alcohol. Pseudohyphal cells are induced in response to stress with the rationale being that they provide a means of foraging for more favourable conditions (Kron et al., 1994). The viability of pseduohyphal cells and ability to switch back into yeast form, however, remains to be fully elucidated. If pseudohyphal cells showed a reduction in cell viability then the addition of a substance to induce pseduohyphae in the case of yeast contamination, would present a possible strategy to prevent food spoilage. Isoamyl alcohol has also been shown to be inhibitory to Z. bailii, Z. kombuchaensis and S. cerevisiae. The application of fusel alcohols and their esters to the preservation of food is also a possibility. Isoamyl acetate for example has a banana like smell and would, therefore, also add a unique taste to the product. Collectively, the information relating to morphological and physiological differences between Z. bailii, Z. kombuchaensis and S. cerevisiae should give new insights into the mechanisms used by yeasts to high levels of organic acids, and provide alternative targets for food preservation. The cell wall would appear to be an area of particular interest by contributing to organic acid resistance, while at the same time presenting a possible target for preventing food spoilage. This thesis has reported the first known successful protoplast fusions between Z. bailii and Z. kombuchaensis with S. cerevisiae. The hybrids formed were shown to be stable and to be sensitive to organic acids but resistance to oxidative stress in the form of hydrogen peroxide. The ability of hybrids to grow on YPG post-ethidium bromide treatment could mean that they are insensitive to the effects of ethidium bromide on their mitochondria or that they can use glycerol via some unknown metabolic pathway. The possible alternative pathway could be the Salicylhydroxamic acid (SHAM) sensitive pathway, which uses an alternative oxidase to accept electrons and reduce oxygen. The SHAM sensitive pathway could allow for growth on glycerol and other non-fermentable carbon sources and such a pathway is evident for the petite-negative yeast *Debaromyces (Schwanniomyces) occidentalis* (Fernet *et al.*, 2002). The hybrids were also shown to contain a high number of peroxisomes. In humans, Zellweger syndrome is a congenital cerebro-hepato-renal disorder characterised by an absence or deficiency in peroxisomes (Waterham and Cregg, 1997). The use of the hybrids created by this research with molecular biology techniques could aid studying such a disorder. Hybrids between *Z. bailii* and *Z. kombuchaensis* could be produced by employing a method based on that of Lucca *et al.* (1999). *Z. bailii* is unable to grow on maltose where as *Z. kombuchaensis* is capable of growth on maltose. Therefore, *Z. kombuchaensis* would be heat killed and protoplasts mixed with those of *Z. bailii* and the hybrids selected as those viable and capable of growth on maltose containing media. The creation of such hybrids may add to our understanding of the unusual attributes of these yeasts. Evidence has been presented in this thesis for the existence of a subgroup in Z. bailii (consisting of NCYC 1416 and NCYC 385) based upon differences in organic acid resistance, morphology and physiology. Molecular examination in the form of 26S rDNA D1/D2 sequences showed the two Z. bailii strains in the subgroup (NCYC 1416 and NCYC 385) to be 100% identical. Further examination of the 26S rDNA D1/D2 sequences for the remaining Z. bailii strains used in this study revealed the existence of three subgroups for Z. bailii. Z. bailii NCYC 1416 and NCYC 385 comprised of one subgroup, NCYC 1520 and 11 another with the final subgroup comprising NCYC 1766 and 80. An extension to the 26S rDNA study would be to examine the divergence of ITS1 and ITS2 sequences. Z. bailii has been previously shown to comprise three ITS subgroups with strains NCYC 1416 and NCYC 1766 being in different groups (James et al, 1994). Differences in ITS sequences would be further supportive of the existence of subgroups in Z. bailii. An interesting series of observations can be made relating to Z. bailii 11. This strain produced a few results characteristic of the NCYC 1416 and NCYC 385 subgroup. These results included slightly increased sensitivity to sorbic acid, hydrogen peroxide and sodium chloride, the ability to use sorbose and no growth at 37°C. Interestingly, the 26S rDNA D1/D2 sequences showed this strain to be in a group, which does not contain the most organic acid sensitive strain (NCYC 385) or the most resistant strain (NCYC 1766). Z. bailii 11 therefore indicates further divisions within the species of Z. bailii. On analysis of the NCYC database there are a number of Z. bailii strains, which may prove of interest in terms of the subgroups proposed in this thesis. These include NCYC 417 and NCYC 1427 both of which share a number of similar properties to the NCYC 1416 and NCYC 385 subgroup. Comparing the subgroups within Z. bailii could make further insights into the mechanisms of yeast organic acid resistance. Modern molecular tools are increasingly being applied to Z. bailii including: targeted gene deletion (Mollapour and Piper, 2001a), the construction of genomic libraries (Rodrigues et al., 2001 b) and the isolation, cloning and sequencing of genes (Merico et al., 2001; Rodrigues et al., 2001b; Branduardi, 2002). Indeed, Z. bailii has recently been developed as a host for heterologous protein production, secretion and metabolic engineering applications (Branduardi et al., 2004). These molecular tools are collectively allowing us to exploit the unusual attributes of this yeast while at the same time elucidating more about these attributes. Generally, it is hoped that the work presented in this thesis will not only be of interest to the food industry, but that it will also be of interest to researchers working within the fields of biotechnology, brewing, systematics and applied biology. #### 9.1 Future Work Future work that would be a continuation of the work presented in this thesis is as follows: - The application of flow cytometry to investigate the existence of highly resistant "super" cells as reported for Z. bailii to sorbic acid by Steels et al. (2000) would be of particular interest. The results in this thesis show that for the spoilage yeasts Z. bailii and Z. kombuchaensis at very high concentrations of organic acids only a few cells are capable of growth. The cells capable of growth at extreme organic acid concentrations could be representative of phenotypic heterogeneity and may be a key factor in the ability of these yeasts to cause food spoilage. - Investigations into the effects of growth conditions on yeast organic acid resistance should be extended. The inclusion of more strains coupled with a larger range of inhibitors and an examination of extrinsic in addition to the intrinsic factors examined in section 4, would provide a more complete overview of the abilities of spoilage yeast to spoil foodstuffs and aid spoilage risk assessments. - Biochemical investigations into the composition of the cell wall of the spoilage yeasts Z. bailii and Z. kombuchaensis represents an area of more immediate work. The analyses from this thesis have shown that differences in the cell wall can affect yeast organic acid resistance in S. cerevisiae. The possibility of the cell wall contributing to the organic acid resistance of spoilage yeasts, while also presenting a possible target for preservation strategies, should be of considerable interest to the food industry. - Identification of the role of the HOG pathway in isomayl alcohol induced pseudohyphal formation. The results in this thesis show some role for the HOG pathway in
yeast pseudohyphal formation but the identity of that role remains unknown. There are a number of possibilities to how the HOG pathway may respond to isoamyl alcohol, which now need pursuing in order to identify the stress response triggered by isomayl alcohol. The result of such studies may provide new insights into the mechanisms of yeast morphological change, which are of particular importance for the human pathogen *C. albicans*. - An investigation into the classification of all currently known Z. bailii strains would prove of interest to researchers in the food industry and to those involved in yeast systematics. This thesis has shown for the first time the existence of at least one subgroup in Z. bailii with an increased sensitivity to organic acids, while the possibility of other subgroups has been shown by 26S rDNA comparisons. The application of multigene sequence analyses (Kurtzman and Robnett, 2003; Kurtzman, 2003), would aid the elucidation of the classification of Z. bailii. Molecular investigations into the classification of Z. bailii may aid the development of molecular techniques to distinguish particular strains, while comparisons of organic acid resistant and sensitive strains may prove invaluable in identifying the mechanisms of organic acid resistance in Z. bailii, which have been speculated to differ from those of S. cerevisiae (Piper et al., 2001). 10. References Adams, M. R. & Moss, M. O. (2000). Food microbiology 2nd Edition. The Royal Society of Chemistry, Cambridge. Aguilar-Uscanga, B. & Francois, J. M. (2003). A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology 37, 268-274. Alexandre, H., Mathieu, B. & Charpentier, C. (1996). Alteration in membrane fluidity and lipid composition, and modulation of H⁺-ATPase activity in Saccharomyces cerevisiae caused by decanoic acid. Microbiology 142, 469-475. Alonso-Monge, R., Navarro-García, F., Molero, G., Diez-Orejas, R., Gustin, M. C., Pla, J., Sánchez, M. & Nombela, C. (1999). Role of the Mitogen Activated Protein kinase Hog1p in morphogenesis and virulence of *Candida albicans*. *Journal of Bacteriology* 181, 3058-3068. Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nomblea, U. & Pla, J. (2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in *Candida albicans*. *Eukaryotic Cell* 2, 351-361. Andrighetto, C., Psomas, E., Tzanetakis, N., Suzzi, G. & Lompard, A. (2000). Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeasts isolated from dairy products. Letters in Applied Microbiology 30, 5-9. Anon (2001). Final report on the safety assessment of benzyl alcohol, benzoic acid and sodium benzoate. *International Journal of Toxicology* 20, 23-50. Arneborg, N., Jespersen, L. & Jakobsen, M. (2000). Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Archives Microbiology 174, 125-128. Ashe, M. P., Slaven, J. W., De Long, S. K., Ibrahimo, S. & Sachs, A. B. (2001). A novel elF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. *EMBO Journal* 20, 6464-6474. Attfield, P. V., Choi, H. Y., Veal, D. A. & Bell, P. J. L. (2001). Heterogeneity of stress gene expression and stress resistance among individual cells of *Saccharomyces cerevisiae*. Molecular Microbiology 40, 1000-1008. Augstein, A., Gentsch, M., Kohlwein, S. D. & Barth, G. (2003). Characterisation, localisation and function of Gprlp, a protein effecting resistance to acetic acid in the yeast *Yarrowia lipolytica*. *Microbiology* 149, 589-600. Baleiras-Couto, M. & In't Veld, J. H. J. (1995). Influence of ethanol and temperature on the cellular fatty acid composition of *Zygosaccharomyces bailii* spoilage yeasts. *Journal of Applied Bacteriology* 78, 327-334. Barnett, J. A., Payne, R. W. & Yarrow, D. (2000). Yeasts: characteristics and taxonomy 3rd Edition. University of Cambridge, Cambridge. Battey, A. S., Duffy, S. & Schaffner, D. W. (2002). Modeling yeast spoilage in cold-filled ready-to-drink-beverages with Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida lipolytica. Applied and Environmental Microbiology 68, 1901-1906. Bauer, B. E., Rossington, D., Mollapour, M., Mammun, Y., Kuchler, K. & Piper, P. W. (2003). Weak organic acid stress inhibits aromatic acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. *European Journal of Biochemistry* 270, 3189-3195. Berry, D. R. & Watson, D. C. (1987). Production of organoleptic compounds. In Berr, D. R., Russell, I. and Stewart, G. G (eds) *The Yeasts*. Allen & Unwin, London. Black, S., Andrews, P. D., Sneddon, A. A. & Stark, M. J. R. (1995). A regulated *MET3-GLC7* gene fusion provides evidence of a mitotic role for *Saccharomyces* cerevisiae protein phosphatase 1. *Yeast* 11, 747-759. Blacketer, M. J., Maduale, P. & Myers, A. M. (1995). Mutational analysis of morphological differentiation in *Saccharomyces cerevisiae*. Genetics 140, 1259-1275. Blomberg, A. (1997). Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae. Electrophoresis 18, 1429-1440. Bom, I. J., Klis, F. M., de Nobel, H. & Brul, S. (2001). A new strategy for inhibition of the spoilage yeasts *Saccharomyces cerevisiae* and *Zygosaccharomyces bailii* based on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidylinositol (GPI)-dependent yeast wall protein layer. *FEMS Yeast Research* 1, 187-194. Bosund, L. (1962). The action of benzoic and salicyclic acids on the metabolism of microorganisms. Advances in Food Research 11, 331-353. Bracey, D., Holyoak, C. D. & Coote, P. J. (1998). Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH. Journal of Applied Microbiology 85, 1056-1066. Branduardi, B. (2002). Molecular cloning and sequence analysis of the Zygosaccharomyces bailii HIS3 gene encoding the imidazole glycerolphosphate dehydratase. Yeast 19, 1165-1170. Branduardi, B., Valli, M. Brambilla, L., Sauer, M., Alberghina, L. & Porro, D. (2004). The yeast *Zygosaccharomyces bailii*: a new host for heterologous protein production, secretion and for metabolic engineering applications. *FEMS Yeast Research* 4, 493-504. Brul, S. & Coote, P. J. (1999). Preservative agents in foods mode of action and microbial resistance mechanisms. *International Journal of food Microbiology* 50, 1-17. Brul, S., Klis, F. M., Oomes, S. J. C. M., Montijn, R. C., Schuren, F. H. J., Coote, P. J. & Hellingwerf, K. J. (2002). Detailed process design based on genomics of survivors of food preservation processes. *Trends in Food Science and Technology* 13, 325-333. Bulawa, C. E. (1992). CSD2, CSD3 and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Molecular and Cellular Microbiology 12, 1764-1776. Bulder, C. J. E. A. (1964). Lethality of the petite mutation in petite negative yeasts. Antonie van Leeuwenhoek 30, 442-454. Bullerwell, C. E., Leigh, J., Forget, L. & Lang, B. F. (2003). A comparison of three fission yeast mitochondrial genomes. *Nucleic Acids Research* 31, 759-768. Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B. & Varma, A. (2001). The yeast cell wall and septum as paradigms of cell growth and morphogenesis. *Journal of Biological Chemistry* 276, 19679-19682. Cabral, M. G., Viegas, C. A. & Sá-Correia, I. (2001). Mechanisms underlying the acquisition of resistance to octanoic-acid-induced-death following exposure of Saccharomyces cerevisiae to mild stress imposed by octanoic acid or ethanol. Archives Microbiology 175, 301-307. Cappellaro, E., Baldermann, C., Rachel, R. & Tanner, W. (1994). Mating type-specific cell-cell recognition of *Saccharomyces cerevisiae*: cell wall attachment and active sites of a- and α-agglutinin. *EMBO Journal* 13, 4737-4744. 1 Casal, M. & Leáo, C. (1995). Utilization of short chain monocarboxylic acids by the yeast *Torulaspora delbruecki*: specificity of the transport systems and their regulation. *Biochimica Biophysica Acta* 1267, 122-130. Casal, M., Cardoso, H. & Leáo, C. (1996). Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142, 1385-1390. Cassio, F., Leáo, C. & van Uden, N. (1987). Transport of lactate and other short chain monocarboxylates in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology 53, 509-513. Cassio, F., Côrte-Real, M. & Leáo, C. (1993). Quantitative analysis of proton movements associated with the uptake of weak carboxylic acids: the yeast *Candida utilis* as a model. *Biochimica Biophysica Acta* 1153, 59-66. Cheng, L., Moghraby, J. & Piper P. W. (1999). Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiology Letters 170, 89-95. Christianson, T. W., Sikorshi, R. S., Dante, M., Shero, J. H. & Hieter, P. (1992). Multifunctional yeast high-copy number shuttle vectors. *Gene* 110, 119-122. Chrispeels, M. J., Morrillon, R., Maurel, C., Gerbeau, P., Kjellbom, P. & Johansson, I. (2001). Aquaporins in plants: structure, function, regulation, and role in plant water relations. In Hohmann, S., Nielsen, S., & Agre, P. (eds) Aquaporins. Academic Press, San Diegio. Church, S. L., Grant, J. W., Ridnour, L. A., Oberley, L. W., Swanson, P. E., Meltzer, P. S. & Trent, J. M. (1993). Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma
cells. *Proceedings of the National Academy for Science*, USA 90, 3113-3117. Cid, V. J., Cenamor, R., Sánchez, M. & Nombela, C. (1998). A mutation on the Rho1-GAP-encoding gene *BEM2* of *Saccharomyces cerevisiae* affects morphogenesis and cell wall functionality. *Microbiology* 144, 25-36. Cole, M. B. & Keenan, M. H. J. (1987a). Effects of weak acids and external pH on the intracellular pH of *Zygosaccharomyces bailii* and its implications in weak acid resistance. *Yeast* 3, 23-32. Cole, M. B., Franklin, J. G. & Keenan, M. H. J. (1987b). Probability of growth of the spoilage yeast *Zygosaccharomyces bailii* in a model fruit drink system. *Food Microbiology* 4, 115-119. Cole, M. B. (1987c). The effect of weak acids and pH on Zygosaccharomyces bailii. PhD thesis, University of East Angalia. Costigan, C., Gehrung, S. & Snyder, M. (1992). A synthetic lethal screen identifies *SLK1*, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. *Molecular Cellular Biology* 12, 1162-1178. Cruz, J. M., Dominguez, J. M., Dominguez, H. & Parajo, J. C. (2000). Dimorphic behaviour of *Debaromyces hansenii* grown on barley bran acid hydrolyates. *Biotechnology Letters* 22, 605-610. Cutler, J. E. (2001). N-glycosylation of yeast, with emphasis on Candida albicans. Medical Mycology S39, 75-86. Dallies, N., Francois, J. & Paquet, V. (1998). A new method for quantitative determination of polysaccharides in the yeast cell wall: Application of the cell wall defective mutants of *Saccharomyces cerevisiae*. Yeast 14, 1297-1306. Daum, G. (2000). The yeast Saccharomyces cerevisiae, a eukaryotic model for cell biology. Microscopy Research and Technique 51, 493-495. \$ Davenport, R. R. (1976). Distribution of yeasts and yeast like organisms from aerial surfaces of developing apples and grapes. In Dickerson, C. H. and Preece, T. F (eds). *Microbiology of Aerial Plant Surfaces* Academic Press London. Davenport, R. R. (1996). Forensic microbiology for soft drinks business. Soft Drinks Management International April: 34-45. Davenport, R. R. (1997). Forensic microbiology II. Case book investigations. Soft Drinks Management International April: 26-30. Dawes, I. W. (1976). Inactivation of yeasts. In Skinner, J. A. and Hugo, W. B. (eds) Inactivation and Inhibition of Vegetative Organisms Academic Press London. Dawes, I. W. (1999). Stress Responses. In Dickinson J. R. and Schweizer, M. (eds) *The metabolism and molecular physiology of Saccharomyces cerevisiae*. Taylor and Francis, London and Philadelphia. Deak, T. (1991). Food borne yeasts. Advances in Microbiology 36, 179-278. Deak, T. & Beuchat, L. R. (1994). Use of indirect condicumentry to predict the growth of spoilage yeasts, with special consideration of *Zygosaccharomyces bailii*. International Journal of Food Microbiology 23, 405-417. Dean, N. (1999). Asparagine-linked glycosylation in the yeast golgi. *Biochimica Biophysica Acta* 1426, 309-322. de Nobel, H., Lawrie, L., Brul, S., Klis, F., Davis, M., Alloush, H. & Coote, P. (2001). Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed *Saccharomyces cerevisiae*. Yeast 18, 1413-1428. **Dickinson, J. R.** (1994). Irreversible formation of pseudohyphae by haploid Saccharomyces cerevisiae. FEMS Microbiology Letters 119, 99-104. . Dickinson, J. R. (1996). Fusel alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. *Microbiology* 142, 1391-1397. Dickinson, J. R., Lanterman, M. M., Danner, D. J., Pearson, B. M., Sanz, P., Harrsion, S. J. & Hewlins, M. J. E. (1997). A ¹³C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in *Saccharomyces cerevisiae*. *Journal of Biological Chemistry* 272, 26871-26878. Dickinson, J. R., Harrison, S. J. & Hewlins, M. J. E. (1998). An investigation of the metabolism of valine to isobutyl alcohol in *Saccharomyces cerevisiae*. *Journal of Biological Chemistry* 273, 25751-25756. Dickinson, J. R. (1999). Life Cycle and Morphogenesis. In Dickinson J. R. and Schweizer, M. (eds) *The metabolism and molecular physiology of Saccharomyces cerevisiae*. Taylor and Francis, London and Philadelphia. **Dickinson, J. R. (2000).** Yeasts: providing questions and answers for modern biology. *Science Progress* 83, 173-192. Dickinson, J. R., Salgado, L. E. J. & Hewlins, M. J. E. (2003). The catabolism of amino acids to long chain and complex alcohols in *Saccharomyces cerevisiae*. *Journal of Biological Chemistry* 276, 8028-8034. Dreher, D. & Junod, A. F. (1996). Role for oxygen free radicals in cancer development. European Journal of Cancer 32, 30-36. Edwards, L. C., Gent, M. E., Hoyle, D. C., Hayes, A., Stateva, L. I. & Oliver, S. G. (2003). A complete phylogenetic tree of *Saccharomyces sensu stricto* species based on genotypic microarray analysis. *Yeast* 20, S332-S332 1 Eglinton, J. M., Heinrich, A. J., Pollintz, A. P., Langridge, P., Henschke, P. A. & de Lopes, M. D-B. (2002). Decreasing acetic acid accumulation by a glycerol overproducing strain of *Saccharomyces cerevisiae* by deleting the *ALD6* aldehyde dehydrogenase gene. *Yeast* 19, 295-301. Eklund, T. (1983). The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. *Journal of Applied Bacteriology* 54, 383-389. Esteve-Zarzoso, B., Zorman, T., Belloch, C. & Querol, A. (2003). Molecular characterization of the species of the genus Zygosaccharomyces. Systematic and Applied Microbiology 26, 404-411. Evans, C. T. & Conrad, D. (1987). An improved method for protoplast formation and its application in the fusion of *Rhodotorula rubra* with *Saccharomyces cerevisiae*. *Archives Microbiology* 148, 77-82. Ferenczy, L. & Maráz, A. (1977). Transfer of mitochondria by protoplast fusion in Saccharomyces cerevisiae. Nature 268, 524-525. Fernandes, A. R., Prieto, M. & Sá Corriea I. (2000). Modification of plasma membrane lipid order and H⁺-ATPase activity as part of the response of *Saccharomyces cerevisiae* to cultivation under mild and high copper stress. *Archives Microbiology* 173, 262-268. Fernandez-Espinar, M. T., Barrio, E. & Querol, A. (2003). Analysis of the genetic variability in the species of the *Saccharomyces* sensu stricto complex. *Yeast* 20, 1213-1226. Fernet, C. S., Clark-Walker, G. D. & Claisse, M. I. (2002). The mitochondrial genome can be altered or lost without lethal effect in the petite-negative yeast *Debaryomyces* (Schwanniomyces) occidentalis. Current Genetics 42, 94-102. Fitzgerald, D. J., Stratford, M. & Narbad, A. (2003). Analysis of the inhibition of food spoilage yeasts by vanillin. *International Journal of Food Microbiology* 86, 113-122. Fleet, G. (1992). Spoilage Yeasts. Critical Reviews in Biotechnology 12, 1-44. Foury, F., Roganti, T., Lecrenier, N. & Purnelle, B. (1998). The complete sequence of the mitochondrial genome of *Saccharomyces cerevisiae*. *FEBS Letters* 440, 325-331. Freese, E., Sheu, C. W. & Galliers, E. (1973). Function of lipophilic acids as antimicrobial food additives. *Nature* 241, 321-325. Gancedo, J. M. (2001). Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiology Reviews 25, 107-123. Garbutt, J. (1997). Essentials of Food Microbiology. Arnold, London. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. (1992). Unipolar cell divisions in the yeast *Saccharomyces cerevisiae* lead to filamentous growth: regulation by starvation and RAS. *Cell* 68, 1077-1090. Godon, C., Lagniel, G., Lee, J., Buhler, J. M., Kieffer, S., Perrot, R., Boucherie, H., Toledano, M. B. & Labarre, J. (1998). The H₂O₂ stimulon in Saccharomyces cerevisiae. Journal of Biological Chemistry 273, 22480-22489. Goodey, A. R. & Bevan, E. A. (1983). Production and genetic analysis of yeast cybrids. Current Genetics 7, 69-72. Gomez, R. F. & Herreo, A. A. (1983). Food Microbiology. In Rose, A. H. (ed). Economic Microbiology. Academic Press, London. \$ Gow, N., Hubes, B., Bailey, D. A., Schofield, D. A., Munro, C., Swoboda, R. K., Bertam, G., West-Walker, L., Broadbent, I., Smith, R. J., Gooday, G. W. & Brown, A. J. P. (1995). Genes associated with dimorphism and virulence of *Candida albicans*. Canadian Journal of Botany 73, S335-S5342. Granot, D., Levine, A. & Dor-Hefetz, E. (2003). Sugar-induced apoptosis in yeast cells. FEMS Yeast Research 4, 7-13. Grant, C. M., Maclver, F. H. & Dawes, I. W. (1997). Glutathione synthetase is dispensible for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide γ -glutamylcylcysteine. Molecular Biology of the Cell 8, 1699-1707. Grinbaum, A., Ashkenazi, I., Treister, G., Goldschmied-Requven, A. & Block, C. S. (1994). Exploding bottles: eye injury due to yeast fermentation of an in carbonated soft drink. *British Journal of Ophthalmology* 78, 883-883. Groves, D. P. & Oliver, S. G. (1984). Formation of intergeneric hybrids of yeast by protoplast fusion of *Yarrowia* and *Kluyeromyces* species. *Current Genetics* 8, 49-55. Guerzoni, M. E., Singaglia, M. & Gardini, F. (1993). Interaction between isolation source, cellular fatty acid composition and stress tolerance in *Saccharomyces cerevisiae* and its subspecies. *Journal of Applied Microbiology* 75, 588-594. Guilliermond, A. (1920). The Yeasts. John Wiley & Sons. New York. Gumpert, J. (1980). Electron microscopic analysis of protoplast fusion in *Streptomyces hygroscopicus* and consideration on structural alterations in fusing membranes. *Archives Microbiology* 126, 263-269. Hatzixanthis, K., Mollapour, M., Seymour, I, Bauer, B. E., Krapf, G., Schüller, Kurcher, K. & Piper, P. W. (2003). Moderately lipophilic carboxylate compounds are the selective inducers of the *Saccharomyces cerevisiae* Pdr12p ATP-binding cassette transporter. *Yeast* 20, 575-585. Hayat, M. A. (1981). Principles and techniques of electron microscopy: biological applications. University Park Press, Baltimore. Heluane, H.,
Spencer, J. F. T., Spencer, D., de Figueroa, L. & Callieri, D. A. S. (1993). Characterization of hybrids obtained by protoplast fusion, between *Pachysolen tannophilus* and *Saccharomyces cerevisiae*. Applied Microbiology and Biotechnology 40, 98-100. Henriques, M. Quintas, C. & Loureiro-Dias, M. C. (1997). Extrusion of benzoic acid in *Saccharomyces cerevisiae* by an energy dependent mechanism. *Microbiology* 143, 1877-1883. Hocking, A. D. (1996). Media for preservative resistant yeasts: a collaborative study. *International Journal of Food Microbiology* 29, 167-175. Hohmann, S. (1997). Shaping up: The response of yeast to osmotic stress. In Hohmann, S. & Mager, W. H. (eds) Yeast Stress Responses. Springer-Verlag Berlin, Heidelberg, NewYork. Holyoak, C. D., Stratford, M., McMuliin, Z., Cole, M. B., Crimmins, K., Brown, A. J. P. & Coote, P. J. (1996). Activity of the plasma membrane H⁺-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Applied and Environmental Microbiology 62, 3158-3164. Hong, Z., Mann, P., Shaw, K. J. & Didomencio, B. (1994). Analysis of β-glucans and chitin in a Saccharomyces cerevisiae cell wall mutant using high-performance liquid chromatography. Yeast 10, 1083-1092. Hosno, K. (1992). Effect of salt stress on lipid composition and membrane fluidity of the salt tolerant yeast Zygosaccharomyces rouxii. Journal of General Microbiology 138, 91-96. Hurley, R., de Louvais, J. & Mulhall, A. (1987). Yeasts as human and animal pathogens. In Rose, A. H. and Harrison, J. S (eds). *The Yeasts* 2nd edition. Academic Press, London. In't Veld, J. H. J. (1996). Microbial and biochemical spoilage of foods: an overview. International Journal of Food Microbiology 33, 1-18. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. (1983). Transformation of intact cells treated with alkali cations. *Journal of Bacteriology* 152, 163-168. Jaafar, L., León, M. & Zueco, J. (2003). Isolation of the MNN9 gene of Yarrowia lipolytica (YIMNN9) and phenotype analysis of a mutant ylmnn9∆ strain. Yeast 20, 633-644. James, S. A., Collins, M. D. & Roberts, I. N. (1994). Genetic interrelationships among species of the genus *Zygosaccharomyces* as revealed by small subunit rRNA gene sequences. *Yeast* 10, 871 - 881. Jamieson, D. J. (1998). Oxidative stess responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527. Jay, J. M. (1992). Modern Food Microbiology 4th Edition. Van Nostrand Reinhold, New York. Jones, D., Riba-Garcia, I., Francis, S., Gaskell, S. & Stateva, L. I. (2001). Studies of cAMP-mediated changes of the cell wall proteome of *Saccharomyces cerevisiae*. Yeast 18, S101-S101. Jones, D., Petty, J., Hoyle, D. C., Hayes, A., Ragni, E., Popolo, L., Oliver, S. G. & Stateva, L. I. (2003). Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. *Physiological Genomics* 16, 107-118. Jones, R. P. & Greenfield, P. F. (1982). Effect of carbon dioxide on yeast growth and fermentation. *Enzyme and Microbial Technology* 4, 210-223. Jung, W. H. & Stateva, L. I. (2003). The cAMP phosphodiesterase encoded by *CaPDE2* is required for hyphal development in *Candida albicans*. *Microbiology* 149, 2961-2976. Kapteyn, J. C., van Egmond, P., Sievi, E., van den Ende, H., Makarow, M. & Klis, F. M. (1999). The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and β 1, 6-glucan-deficient mutants. *Molecular Microbiology* 35, 601-611. Kapteyn, J. C., ter Riet, B., Vink, E., Blad, S., de Nobel H., van den Ende H. & Klis, F. M. (2001). Low external pH induces *HOG1*-dependent changes in the organization of the *Saccharomyces cerevisiae* cell wall. *Molecular Microbiology* 39, 469-479. Kerscher, S., Durstewitz, G., Casaregola, S., Gaillardin, C. & Brandt, U. (2001). The complete mitochondrial genome of *Yarrowia lipolytica*. Comparative Functional Genomics 2, 80-90. Kim, M-K., Park, H-S., Kim, C-H., Park, H-M. & Choi, W. (2002). Inhibitory effect of Nikkomycin Z on chitin synthases in *Candida albicans*. Yeast 19, 341-349. Klis, F. M. (1994). Review: cell wall assembly in yeast. Yeast 10, 851-869. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews 26, 239-256. Klis, F. M., de Groot, P., Brul, S. & Hellingwerf, K. Molecular organization and biogenesis of the cell wall. In Dickinson J. R. and Schweizer, M. (eds) *The metabolism and molecular physiology of Saccharomyces cerevisiae*, 2nd edition. Taylor and Francis, London and Philadelphia, in press. Koszul, R., Malpertuy, A., Frangeul, L., Bouchier, C., Wincker, P., Thierry, A., Duthoy, S., Ferris, S., Hennequin, C. & Dujon, B. (2003). The complete mitochondrial genome sequence of the pathogenic yeast *Candida (Torulopsis) glabrata*. *FEBS Letters* 534, 39-48. Kowaltowski, A. J. & Vercesi, A. E. (1999). Mitochondrial damage induced by conditions of oxidative stress. Free Radical Biology and Medicine 26, 463-471. Krebs, H. A., Wiggins, D., Stubbs, M., Sols A. & Bedoya, F. (1983). Studies on the mechanism of the antifungal action of benzoate. *Biochemical Journal* 214, 657-662. Kren, A., Mammun, M., Bauer, B. E., Schüller, C., Wolfger, H., Hatzixanthis, K., Mollapour, M., Gregori, C., Piper, P. W. & Kuchler, K. (2003). War1p, a novel transcription factor controlling weak acid stress response in yeast. *Molecular and Cellular Biology* 23, 1775-1785. Kron, S. J., Styles, C. A. & Fink, G. R. (1994). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell 5, 1003-1022. Kron, S. J. (1997). Filamentous growth in budding yeast. *Trends in Microbiology* 5, 450-454. Kübler, E., Mosch, H., Rupps, S. & Lisanti, P. (1997). Gpa2p, a protein alpha-subunit regulates growth and pseudohyphal development in *Saccharomyces cerevisiae* via a cAMP dependent mechanism. *Journal of Biological Chemistry* 272, 20321-20323. Kuriyama, H. & Slaughter, J. C. (1995). Control of cell morphology of the yeast Saccharomyces cerevisiae by nutrient limitation in continuous culture. Letters in Applied Microbiology 20, 37-40. Kurtzman, C. P. (1990). DNA relatedness among species of the genus Zygosaccharomyces. Yeast 6, 213-219. Kurtzman, C. P. & Blanz, P. A. (1998). Ribosomal RNA/DNA sequence comparisons for assessing phylogenetic relationships. In Kurtzman, C. P. & Fell, J. W. (eds) *The Yeasts, a Taxonomic study* 4th edition. Amsterdam, Elsevier. Kurtzman, C. P. & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis on nuclear large-subunit (26S) ribosomal DNA partial sequences. *Antonie van Leeuwenhoek* 73, 331-371. Kurtzman, C. P., Robnett, C. J. Basehoar-Powers, E. (2001). Zygosaccharomyces kombuchaensis, a new ascosporogeneous yeast from 'Kombucha tea'. FEMS Yeast Research 1, 133-138. Kurtzman, C. P. & Robnett, C. J. (2003). Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Research 3, 417-432. Kurtzman, C. P. (2003). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Research 4, 233-245. Lachance, M. A., Daniel, H. M., Meyer, W., Prasad, G. S., Gautman, S. P. & Boundy-Willis, K. (2003). The D1/D2 domain of the large-subunit rDNA of the yeast species *Clavispora luistaniae* is unusually polymorphic. *FEMS Yeast Research* 4, 253-258. Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel J. D. & Francois J. (2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry 278, 20345-20357. Leistner, L. & Rodel, W. (1976). The stability of intermediate moisture foods with respect to microorganisms. In Davies, R., Birch, G. G. & Parker, K. J. (eds) Intermediate Moisture Foods. Applied Science Publishers, London. Levin, D. E. & Errede, B. (1995). The proliferation of MAP kinase signalling pathways in yeast. Current Opinion in Cell Biology 7, 197-202. Li, R. K. & Rinaldi, M. G. (1999). In vitro antifungal activity of Nikkomycin Z in combination with Fluconazole or Itraconazole. *Antimicrobial Agents and Chemotherapy* 43, 1401-1405. Lo, W. & Dranginis, A. M. (1998). The cell surface flocculin *Flo11* is required for pseudohyphal formation and invasion by *Saccharomyces cerevisiae*. *Molecular Biology of the Cell* 9, 161-171. Lorenz, M. C. & Heitman, J. (1998). The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO Journal 17, 1236-1247. Lorenz, M. C., Cutler, N. S. & Heitman, J. (2000). Characterization of alcohol-induced filamentous growth in *Saccharomyces cerevisiae*. *Molecular Biology of the Cell* 11, 183-199. Loureiro, V. (2000). Spoilage yeasts in foods and beverages: Characterisation and ecology for improved diagnosis and control. *Food Research International* 33, 247-256. Loureiro, V. & Querol, A. (1999). The prevalence and control of spoilage yeasts in foods and beverages. *Trends in Science and Technology* 10, 356-365. Lucca, M. E., Loray, M. A., de Figueroa, L. I. C. & Callieri, D. A. (1999). Characterisation of osmotolerant hybrids obtained by fusion between protoplasts of *Saccharomyces cerevisiae* and heat treated protoplasts of *Torulaspora delbrueckii*. *Biotechnology Letters* 21, 343-348. Lucca, M. E., Spencer, J. F. T. & Figueroa, L. I. C. (2002). Glycerol and arabitol production by an intergeneric hybrid, PB2, obtained by protoplast fusion between Saccharomyces cerevisiae and Torulaspsora delbrueckii. Applied Microbiology and Biotechnology 59, 472-476. Ludovico, P., Sousa, M. J., Silva, M. T.,
Leáo, C. & Côrte-Real, M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. *Microbiology* 147, 2409-2415. Ludovico, P., Sansonetty, F., Silva, M. T. & Côrte-Real, M. (2003). Acetic acid induces a programmed cell death process in the food spoilage yeast *Zygosaccharmoyces bailii*. FEMS Yeast Research 3, 91-96. Lussier, M., White, A. M., di Paolo, J., Treadwell, J., Southard, S. B., Horenstein, C. I., Chen-Weiner, J., Ram, A. F., Kapteyn, J. C., Roemer, T. W., Vo, D. H., Bondoc, D. C., Hall, J., Zhomg, W. W., Sdicu, A. M., Davies, J., Klis, F. M., Robbins, P. W. & Bussey, H. (1997). Large scale identification of genes involved in cell surface biosynthesis and architecture in *Saccharomyces cerevisiae*. *Genetics* 147, 435-450. Mager, W. H. & Hohmann, S. (1997). Stress response mechanisms in the yeast Saccharomyces cerevisiae. In Hohmann, S. & Mager, W. H. (eds) Yeast Stress Responses. Springer-Verlag Berlin, Heidelberg, NewYork. Mager, W. H. & Siderius, M. (2002). Novel insights into the osmotic stress response of yeast. FEMS Yeast Research 2, 251-257. Magnelli, P., Cipollo, J. F. & Abeijon, C. (2002). A refined method for the determination of *Saccharomyces cerevisiae* cell wall composition and β 1, 6-glucan fine structure. *Analytical Biochemistry* 301, 136-150. Makdesi, A. K. & Beuchat, L. R. (1996). Evaluation of media for enumerating heatstresses benzoate resistant Zygosaccharomyces bailii. International Journal of Food Microbiology 33, 169-181. Malfeito-Ferreira, M., Loureiro-Dias, M. C. & Loureiro, V. (1997). Weak acid inhibition of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae. International Journal of Food Microbiology 36, 145-153. Martin-Yken, H., Dagkessamanskaia, A., de Groot, P., Ram, A. F., Klis, F. M. & Francois, J. M. (2001). Saccharomyces cerevisiae YCRO17c/CWH43 encodes a putative sensor/transporter protein upstream of the BCK2 branch of the PKC1-dependent cell wall integrity pathway. Yeast 18, 827-840. Martínez-Anaya, C., Dickinson, J. R. & Sudbery, P. E. (2003). In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results in the operation of the morphogenesis checkpoint. *Journal of Cell Science* 116, 3423-3431. Martoadiprawito, W, & Whitaker, P. A. (1963). Potassium sorbate inhibition of yeast alcohol dehydrogenase. *Biochimica Biophysica acta* 77, 536-544. Merico, A., Rodrigues, F., Côrte-Real, M., Porro, D. & Ranzi, B. M. (2001). Isolation and sequence analysis of the gene encoding triose phosphate isomerase from *Zygosaccharomyces bailii. Yeast* 18, 775-780. Merico, A., Capitanio, D., Vigentini, I., Ranzi, B. M. & Compagno, C. (2003). Aerobic sugar metabolism in the spoilage yeast *Zygosaccharomyces bailii*. FEMS Yeast Research 4, 277-283. Mislovičová, D., Masárová, J., Bendžálová, K., Šoltěs, L. & Machová, E. (2000). Sonication of chitin-glucan, preparation of water-soluble fractions and characterization by HPLC. *Ultrasonics Sonochemistry* 7, 63-68. Mollapour, M. & Piper, P. W. (2001a). Targeted gene deletion in Zygosaccharomyces bailii. Yeast 18, 173-186. Mollapour, M. & Piper, P. W. (2001b). The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Molecular Microbiology 42, 919-930. Møller, K., Olsson, L. & Piškur, J. (2001). Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri. Journal of Bacteriology 183, 2485-2489. Moon, N. J. (1983). Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. *Journal of Applied Bacteriology* 55, 453-460. Navarro-Garcia, F., Alonso-Monge, R., Nombela, C. & Pla, J. (2003). The Hogl MAP kinase is activated by oxidative stress in the pathogenic fungus *Candida albicans*. *Yeast* 20, S194-S194. Neal, A. L., Weinstock, J. O. & Lampen, J. O. (1965) Mechanisms of fatty acid toxicity for yeast. *Journal of Bacteriology* 90, 126-131. Nestelbacher, R., Laun, P. & Breitenbach, M. (1999). A senescent yeast mother cell. Experimental Geronotology 34, 895-896. Neves, L., Pampulha, M. E. & Loureiro-Dias, M. C. (1994). Resistance of food spoilage yeasts to sorbic acid. Letters in Applied Microbiology 19, 8-11. Nevoigt, E. & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews 21, 231-241. Nguyen, T. H., Fleet, G. H. & Rogers, P. L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology 50, 206-212. Odds, F. C., Brown, A. J. P. & Gow, N. A. R. (2003). Antifungal agents: mechanisms of action. *Trends in Microbiology* 11, 272-279. O'Donnell, K. (1993). Fusarium and its near relatives. In Reynolds, D. R. & Taylor, J. W. (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics, Wallingford: CAB International. Osumi, M., Yamada, N., Yaguchi, H., Kobori, H., Takashi, N. & Sato, M. (1995). Ultrahigh-resolution low-voltage SEM reveals ultrastructure of the glucan network formation from fission yeast protoplasts. *Journal of Electron Microscopy* 44, 198-206. Palecek, S. P., Parikh, A. H. & Kron, S. J. (2002). Sensing, signaling and integrating physical process during *Saccharomyces cerevisiae* invasive and filamentous growth. *Microbiology* 148, 893-907. Pan, X. & Heitman, J. (1999). Cyclic AMP dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Molecular and Cellular Biology 19, 4874-4887. Pan, X., Harashima, T. & Heitman, J. (2000). Signal transduction cascades regulating pseudohyphal differentiation of *Saccharomyces cerevisiae*. Current Opinion in Microbiology 3, 567-572. Panaretou, B. & Piper, P. W. (1990). Plasma membrane ATPase action affects several stress tolerances of *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe* as well as the extent and duration of the heat shock response. *Journal of General Microbiology* 136, 1763-1770. Parke, D. V. & Lewis, D. F. U. (1992). Safety aspects of food preservatives. Food Additives and Contaminants 9, 561-577. Pearce, A. K., Booth, I. R. & Brown, A. J. P. (2001a). Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2, 6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of *Saccharomyces cerevisiae*. *Microbiology* 147, 403-410. Pearce, A. K., Crimmins, K., Groussac, E., Hewlins, M. J. E., Dickinson, J. R., Francois, J., Booth, I. R. & Brown, A. J. P. (2001b). Pyruvate kinase (pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. *Microbiology* 147, 391-401. Philipova, D. H. & Venkov, P. V. (1990). Cell fusion of Saccharomyces cerevisiae fragile mutants. Yeast 6, 205-212. Pilkington, B. J. & Rose, A. H. (1988). Reactions of Saccharomyces cerevisiae and Zaccharomyces bailii to sulphite. Journal of General Microbiology 134, 2823-2830. Pina, A., Calderón, I. L. & Benítez, T. (1986). Intergeneric hybrids of Saccharomyces cerevisiae and Zygosaccharomyces fermentati obtained by protoplast fusion. Applied and Environmental Microbiology 51, 995-1003. Piper, P. W. (1997). The yeast heat shock response. In Yeast Stress Responses (eds) Hohmann, S. and Mager, W. H. R. G. Landes Company, Austin. Piper, P. W., Ortiz-Calderon, C., Holyoak, C., Coote, P. & Cole, M. B. (1997). Hsp30, the integral plasma membrane heat shock protein of *Saccharomyces cerevisiae*, is a stress-inducible regulator of plasma memebrane ATPase. *Cell Stress Chaperones* 2, 12-24. Piper, P. W., Mahe, Y., Thompson, S., Pandjaitan, R. Holyoak, C., Egner, R., Muhlbauer, M., Coote, P. & Kuchler, K. (1998). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. *EMBO Journal* 17, 4257-4265. Piper, P. W. (1999). Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. *Free Radical Biology and Medicine* 27, 1219-1227. Piper, P. W., Calderon, C. O., Hatzixanthis, K. & Mollapour, M. (2001). Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. *Microbiology* 147, 2635-2642. Piškur, J., Smole, S., Groth, C., Petersen, R. F. & Petersen, M. B. (1998). Structure and genetic stability of mitochondrial genomes vary among yeasts of the genus Saccharomyces. International Journal of Systematic Bacteriology 48, 1015-1024. Pitt, J. L. & Hocking, A. D. (1997). Fungi and Food spoilage 2nd edition. Blackie Academic and Professional. London. Pollard, J. A. (1991). Legislative aspects. In Russell, N. J. & Gould, G. W. (eds). Food Preservatives. Blackie Glasgow & London. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M. (1997). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the $ggpl\Delta$ mutant of Saccharomyces cerevisiae. Journal of Bacteriology 179, 463-469. Pringle, J. R. (1991). Staining of bud scars and other cell wall chitin with Calcofluor. Methods of Enzymology 194, 732-735. Prudêncio, C., Sansonetty, F. & Côrte-Real, M. (1998). Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry 31, 307-313. Rains, D. W. & Valentine, R. C. (1980). Genetic engineering of osmoregulation: impact on plant productivity for food, chemicals and energy. Plenum Press, New York. Ram, A. F., Wolters, A., ten Hoopen, R. & Klis, F. M. (1994). A new approach for isolating cell wall mutants in *Saccharomyces cerevisiae* by screening for hypersensitivity to Calcofluor white. *Yeast* 10, 1019-1030. Rambourg, A., Clermont, Y. & Kepes, F. (1993). Modulation of the golgi apparatus in *Saccharomyces cerevisiae* sec7 mutants as seen by
three-dimensional electron microscopy. *Anatomical Record* 237, 441-452. Rhoades, J. & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. *Applied and Environmental Microbiology* 66, 80-86. Ride, J. P. & Drysdale, R. B. (1972). A rapid method for the chemical estimation of filamentous fungi in plant tissue. *Physiological Plant Pathology* 2, 7-15. Rodrigues, F., Côrte-Real, M., Leáo, C., van Dijken, J. P. & Pronk, J. T. (2001a). Oxygen requirements of the food spoilage yeast *Zygosaccharomyces bailii* in synthetic and complex media. *Applied and Environmental Microbiology* 67, 2123-2128. Rodrigues, F., Zeeman, A-M., Alves, C., Sousa, M. J., Steensma, H. Y., Côrte-Real, M. & Leáo, C. (2001b). Construction of a genomic library of the food spoilage yeast Zygosaccharomyces bailii and isolation of the β-isopropylmalate dehydrogenase gene (ZbLEU2). FEMS Yeast Research 1, 67-71. Rodrigues, F., Ludovico, P., Sousa, M. J., Steensma, H. Y., Côrte-Real, M. & Leáo, C. (2003). The spoilage yeast *Zygosaccharomyces bailii* forms mitotic spores: a screening method for haploidization. *Applied and Environmental Microbiology* 69, 649-653. Roe, A. J., O'Byrne, C., McLaggan, D. & Booth, I. R. (2002). Inhibition of *Escherichia coli* growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. *Microbiology* 148, 2215-2222. Roller, S. (1999). Physiology of food spoilage organism. *International Journal of Food Microbiology* 50, 151-153. Rosa, M. F. & Sá Correira, I. (1991). In vivo activation by ethanol of plasma membrnae ATPase of Saccharomyces cerevisiae. Applied and Environmental Microbiology 57, 830-835. Ruiz, C., Cid, V. J., Luisser, L., Molina, M. & Nombela, C. (1999). A large-scale sonication assay for cell wall mutant analysis in yeast. *Yeast* 15, 1001-1008. Russell, N. J. & Gould, G. W. (1991). Food preservatives. Blackie Glasgow & London. Sagoo, S. K., Board, R. & Roller, S. (2002). Chitosan potentiates the antimicrobial action of sodium benzoate on spoilage yeasts. *Letters in Applied Microbiology* 34, 168-172. Sajbidor, J. & Grego, J. (1992). Fatty acid alterations in Saccharomyces cerevisiae exposed to ethanol stress. FEMS Microbiology Letters 93, 13-16. Salgado, L. E. J. (2001). The metabolism of fusel alcohols and their effects on the morphology and physiology of *Saccharomyces cerevisiae*. Ph.D. thesis, Cardiff University, UK. Scarr, M. C. & Rose, D. (1966). Study of osmophilic yeasts producing invertase. Journal of General Microbiology 45, 9-16. Schafer, B. (2003). Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe. Current Genetics 43, 311-326. Scorzetti, G., Fell, J. W., Fonseca, A. & Statzell-Tallman, A. (2002). Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Research 2, 495-517. Seward, R. A., Dielbel, R. H. & Lindsay, R. C. (1982). Effects of potassium sorbate and other antibotulinal agents on germination and outgrowth of *Clostridium botulinum* type E spores in microculture. *Applied and Environmental Microbiology* 44, 1212-744. Shahinian, S. & Bussey, H. (2000). 1, 6 β-Glucan synthesis in Saccharomyces cerevisiae. Molecular Microbiology 35, 477-489. Sherman, F. (1959). The effects of elevated temperatures on yeast II. Induction of respiratory deficient mutants. *Journal of Cellular and Comparative Physiology* 54, 37-52. Sheu, C. W., Konings, W. N. & Freese, E. (1972). Effects of acetate and other short chain fatty acids on sugar and amino acid uptake of *Bacillus subtilis*. *Journal of Bacteriology* 111, 525-534. Shimada, S., Andou, M., Naito, N., Yamada, N., Osumi, M. & Hayashi, R. (1993). Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 40, 123-131. Smart, K. A., Chambers, K. M., Lambert, I. & Jenkins, C. (1999). Use of methylene violet staining procedures to determine yeast viability and vitality. *Journal of American Society of Brewing Chemists* 57, 18-23. Smith, A. E., Zhang, Z., Thomas, C. R., Moxham, K. E. & Middelberg, A. P. (2000). The mechanical properties of Saccharomyces cerevisiae. Proceedings of the National Academy for Science, USA 97, 9871-9874. Sousa, M. J., Miranda, L. Côrte-Real, M. & Leáo, C. (1996). Transport of acetic acid in *Zygosaccharomyces bailii*-effects of ethanol and their implications on the resistance of the yeast to acidic environments. *Applied and Environmental Microbiology* 62, 3152-3157. Spencer, J. F. T. & Spencer, D. M. (1981). The use of mitochondrial mutants in hybridization of industrial yeasts. III. Restoration of mitochondrial function in petites of industrial yeast strains by fusion with respiratory-competent protoplasts of other yeast species. Current Genetics 4, 177-180. Steels, H., Bond, C. J., Collins, M. D., Roberts, I. N., Stratford, M. & James, S. A. (1999a). Zygosaccharomyces lentus sp. nov., a new member of the yeast genus Zygosaccharomyces Barker. International Journal of Systematic Bacteriology 49, 319-327. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. (1999b). Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. Journal of Applied Microbiology 87, 520-527. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. (2000). Sorbic acid resistance: the inoculum effect. *Yeast* 16, 1173-1183. Steels, H., James, S. A., Bond, C. J., Roberts, I. N. & Stratford, M. (2002). Zygosaccharomyces kombuchaensis: the physiology of a new species related to the spoilage yeasts Zygosaccharomyces lentus and Zygosaccharomyces bailii. FEMS Yeast Research 4, 1-9. Storz, G., Christman, M. F., Sies, H. & Ames, B. N. (1987). Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proceedings of the National Academy for Science, USA 84, 8917-8921. Stratford, M. (1994). Another brick in the wall? Recent developments concerning the yeast cell envelope. Yeast 10, 1741-1752. Stratford, M. (1996a). Induction of flocculation in brewing yeasts by change in pH value. FEMS Microbiology Letters 136, 13-18. Stratford, M. & Anslow, P. A. (1996b). Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. FEMS Microbiology Letters 142, 53-58. Stratford, M. & Anslow, P. A. (1998). Evidence that sorbic acid does not inhibit yeast as a classic 'weak-acid preservative'. Letters in Applied Microbiology 27, 203-206. Stratford, M., Bond, C. J., James, S. A., Roberts, I. N. & Steels H. (2002). Candida davenportii sp. nov., a potential soft-drinks spoilage yeast isolated from a wasp. International Journal of Systematic and Evolutionary Microbiology 52, 1369-1375. Stratford, M. & Ueckert J. Weak-acid preservative: inhibiton by sorbic and acetic acids is caused by distinct actions on the membrane and cytoplasmic pH. Yeast (submitted for publication). Sugita, T., Takashima, M., Ikeda, R., Nakase, T. & Shimoda, T. (2000). Intraspecies diversity of *Cryptococcus laurentii* as revealed by sequences of internal transcribed spacer regions and 28S rDNA gene and taxonomic position of *Cryptococcus laurentii* clinical isolates. *Journal of Clinical Microbiology* 38, 1468-1471. Sujaya, I. N., Tamura, Y., Tanaka, T., Yamaki, T., Ikeda, T., Kikushima, N., Yata, H., Yokota, A., Asono, K. & Tomita, F. (2003). Development of internal transcribed spacer regions amplification restriction fragment length polymorphism methods and its application in monitoring the population of *Zygosaccharomyces rouxii* M2 in miso fermentation. *Journal of Bioscience and Bioengineering* 96, 438-447. Sumner, E. R. & Avery, S. V. (2002). Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast *Saccharomyces cerevisiae*. *Microbiology* 148, 345-351. Swan, T. M. & Watson, K. (1997). Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. *Canadian Journal of Microbiology* 43, 70-77. Takashima, M., Suh, S.-O. & Nakase, T. (1995). Phylogenetic relationships among species of the genus *Bensingtonia* and related taxa based on the small subunit ribosomal DNA sequences. *Journal General and Applied Microbiology* 41, 131-141. Tamás, M. J., Rep, M., Thevelein, J. M. & Hohmann, S. (2000). Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. *FEBS Letters* 472, 159-165. Tamás, M. J. & Hohmann, S. (2003). The osmotic stress response of Saccharomyces cerevisiae. In Hohmann, S. & Mager, P. W. H (eds) Yeast Stress Responses. Springer-Verlag Berlin Heidelberg New York. Tenreiro, S., Rosa, P. C., Viegas, C. A. & Sá Correia, I. (2000). Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16, 1469-1481. Thomas, D. S. & Davenport, R. R. (1985). Zygosaccharomyces bailii-a profile of characteristics and spoilage activities. Food Microbiology 2, 157-169. Thomas, D. S., Hossack, J. A. & Rose, A. H. (1978). Plasma membrane lipid composition and ethanol tolerance in *Saccharomyces cerevisiae*. Archives Microbiology 117, 239-245. Tilbury, R. H. (1980). Xerotolerant yeasts at high sugar concentrations. In Gould, G. W. and Corry, J. E. L (eds). *Microbial Growth and Survival in Extremes of Environment* Society for Applied Bacteriology Techanical Series No. 15. Academic Press, London. Toh-e, A., Yasunaga, S., Nisogi, H., Tanaka, K., Oguchi, T. & Matsui, Y. (1993). Three yeast genes *PIR1*, *PIR2* and *PIR3*, containing internal tandem
repeats, are related to each other, and *PIR1* and *PIR2* are required for tolerance to heat shock. *Yeast* 9, 481-494. Tomita, M., Iwata, S. & Yamamato, S. (1996). Alteration in cell wall chitin of Zygosaccharomyces rouxii. Journal of Fermentation and Bioengineering 81, 171-173. Tomlin, G. C., Hamilton, G. E., Gardner, D. C. J., Walmsley, R. M., Stateva, L. I. & Oliver, S. G. (2000). Suppression of sorbitol dependence in a strain bearing a mutation in the SRB/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis. Microbiology 146, 2133-2146. Tzung, W., Williams, R. M., Scherer, S., Federspiel, N., Jones, T., Hansen, N., Bivolaraevic, V., Huizar, L., Komp, C., Surzycik, R., Tamse, R., Davis, R. W. & Agabian, N. (2001). Genomic evidence for a complete sexual cycle in *Candida albicans*. Proceedings of the National Academy for Science, USA 98, 3249-3253. van der Vaart, J. M., Caro, L. H., Chapman, J. W., Klis, F. M. & Verrips, C. T. (1995). Identification of three mannoproteins in the cell wall of *Saccharomyces cerevisiae*. *Journal of Bacteriology* 177, 3104-3110. van der Walt, J. P. & Johannsen, E. (1975). The genus Torulaspora Lindner. CSIR Research Report 325, 1-23. Viegas, C. A., Rosa, M. F., Sá-Correia, I. & Novais, J. M. (1989). Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. *Applied and Environmental Microbiology* 55, 21-28. Viegas, C. A. & Sá-Correia I. (1991). Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. Journal of General Microbiology 137, 645-651. Viegas, C. A. & Sá-Correia, I. (1995). Toxicity of octanoic acid in Saccharomyces cerevisiae at temperatures between 8.5 and 30°C. Enzyme and Microbial Technology 17, 826-831. Vivier, M. A., Lambrechts, M. G. & Pretorius, I. S. (1997). Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae. Critical reviews in Biochemistry and Molecular Biology 32, 405-435. Walker, G. M. (1998). Yeast Physiology and Biotechnology. John Wiley and Sons ltd, Chichester. Warth, A. D. (1989). Transport of benzoic and propionic acids by Zygosaccharomyces bailii. Journal of General Microbiology 135, 1383-1390. Warth, A. D. (1991). Mechanism of action of benzoic acid on *Zygosaccharomyces bailii*: Effects on glycolytic metabolite levels, energy production and intracellular pH. *Applied and Environmental Microbiology* 57, 3410-3414. Waterham, H. R. & Cregg, J. M. (1997). Peroxisome biogenesis. *BioEssays* 19, 57-66. Weiler, F., Rehfeldt, K., Bautz, F. & Schmit, M. J. (2002). The *Zygosaccharomyces bailii* antifungal virus toxin zygocin: cloning and expression in a heterologous fungal host. *Molecular Microbiology* 46, 1095-1105. Weiler, F. & Schmitt, M. J. (2003). Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Research 3, 69-76. Willetts, J. C., Steward, R., Dinsdale, M. G., Suller, M. T. E., Hill, B. & Lloyd, D. (1997). Vitality of cider yeast grown micro-aerobically with added ethanol, butan-1-ol or iso-butanol. *Journal Institute Brewing* 103, 79-84. Wright, R. M., Repine, T. & Repine, J. E. (1993). Reversible pseudohyphal growth in haploid *Saccharomyces cerevisiae* is an aerobic process. *Current Genetics* 23, 388-391. Wright, R. (2000). Transmission electron microscopy of yeast. *Microscopy Research* and *Technique* 51, 496-510. Yarrow, D. (1984). Zygosaccharomyces Barker. In Kreger-van Riji, N. J. W. (ed) The Yeasts, A Taxonomic Study. Elsevier Science Pub, Amsterdam. York, G. K. & Vaughn, R. H. (1964). Mechanisms in the inhibition of microorganisms by sorbic acid. *Journal of Bacteriology* 88, 411-417. Yoshikawa, S., Oguri, I., Kondo, K., Fukuzawa, M., Shimosaka, M. & Okazaki, M. (1995). Enhanced formation of isoamyl alcohol in *Zygosaccharomyces rouxii* due to elimination of feed back inhibition of α -Iso-propylmalate synthase. FEMS Microbiology Letters 127, 139-143. Zimmerman, M. & Sipicki, M. (1996). Protoplast fusion of yeasts. In Wolf, K. (ed) Nonconventional yeasts in Biotechnology. Springer-Verlag Berlin Heidelberg New York. Reference not attributed to a specific author U K food Regulations (1989). 11. Appendix ## **Yeast Extract** Typical analysis Source of information: Becton-Dickinson Microbiology, Oxford, UK | Ash | 11.2 | |------------------------------------|------| | Clarity, 1% solution (N10) | 1.6 | | Filterability (g/cm ²) | 2.7 | | Loss on Drying | 3.1 | | pH, 1% solution | 6.7 | ## Carbohydrate (%) | • | • | - | | | |-------|---|---|--|------| | Total | | | | 17.5 | ## Nitrogen content (%) | Total Nitrogen | 10.9 | |-------------------------------|------| | Amino Nitrogen | 6.0 | | Amino Nitrogen/Total Nitrogen | 20.7 | #### Amino Acids (%) | Alanine | 5.36 | |---------------|-------| | Arginine | 3.92 | | Aspartic Acid | 6.59 | | Cystine | 0.74 | | Glutamic Acid | 14.20 | | Glycine | 3.25 | | Histidine | 1.20 | | Isoleucine | 3.23 | | Leucine | 4.69 | | Lysine | 5.15 | | Methionine | 1.03 | | Phenylalanine | 2.63 | | Proline | 2.80 | | Serine | 2.84 | | Threonine | 2.95 | | Tryptophan | 1.36 | | Tyrosine | 1.20 | | Valine | 3.79 | # Inorganics (%) | Calcium | 0.012 | |-----------|---------| | Chloride | 0.380 | | Cobalt | < 0.001 | | Copper | < 0.001 | | Iron | < 0.001 | | Lead | < 0.001 | | Magnesium | 0.075 | | Manganese | < 0.001 | | Phosphate | 3.275 | | Potassium | 3.195 | | | | | Sodium | 1.490 | |-------------------------------|---------| | | | | Sulphate | 0.091 | | Sulphur | 0.634 | | Tin | < 0.001 | | Zinc | 0.011 | | /itamins (μg/g) | | | Biotin | 3.3 | | Choline (as Choline chloride) | 300.0 | | Cyanocobalamin | < 0.1 | | Folic Acid | 1.5 | | Inositol | 1400.0 | | Nicotinic Acid | 597.9 | | PABA | 763.0 | | Panthothenic Acid | 273.7 | | Pyridoxine | 43.2 | | Riboflavin | 116.5 | | Thiamine | 529.9 | | Thymidine | 217.5 | | | | # **Bacto Peptone** Typical analysis Source of information: Becton-Dickinson Microbiology, Oxford, UK | Physical Characteristics (%) | | |------------------------------------|---------| | Ash | 4.4 | | Clarity, 1% solution (N10) | 0.5 | | Filterability (g/cm ²) | 0.5 | | Loss on Drying | 3.0 | | pH, 1% solution | 7.0 | | p-1, 1/0 0010101 | ,,, | | Carbohydrate (%) | | | Total | 6.9 | | | | | Nitrogen content (%) | | | Total Nitrogen | 15.6 | | Amino Nitrogen | 3.1 | | Amino Nitrogen/Total Nitrogen | 20.0 | | <u> </u> | | | Amino Acids (%) | | | Alanine | 8.67 | | Arginine | 6.76 | | Aspartic Acid | 6.80 | | Cystine | 0.20 | | Glutamic Acid | 10.21 | | Glycine | 15.69 | | Histidine | 0.58 | | Isoleucine | 1.45 | | Leucine | 3.01 | | Lysine | 3.42 | | Methionine | 1.19 | | Phenylalanine | 1.81 | | Proline | 8.60 | | Serine | 2.67 | | Threonine | 1.81 | | Tryptophan | 0.36 | | Tyrosine | 0.64 | | Valine | 2.35 | | | | | Inorganics (%) | | | Calcium | 0.008 | | Chloride | 1.086 | | Cobalt | < 0.001 | | Copper | < 0.001 | | Iron | 0.004 | | Lead | < 0.001 | | Magnesium | 0.007 | | Manganese | < 0.001 | | Phosphate | 0.445 | | Dotogojum | 0.202 | 0.303 Potassium | Sodium | 1.759 | |------------|---------| | Sulphate | 0.244 | | Sulphur | 0.410 | | Tin | < 0.001 | | Zinc | 0.001 | | ins (μg/g) | | # Vitami | Biotin | 0.2 | |-------------------------------|--------| | Choline (as Choline chloride) | 2000.0 | | Cyanocobalamin | < 0.1 | | Folic Acid | 0.3 | | Inositol | 2400.0 | | Nicotinic Acid | 21.9 | | PABA | < 0.5 | | Panthothenic Acid | 5.9 | | Pyridoxine | 1.7 | | Riboflavin | 3.9 | | Thiamine | < 0.1 | | Thymidine | 413.0 | | | | #### Sequence alignment for S. cerevisiae YLR113W/HOG1 #### YLR113W/HOG1 on chromosome XII from coordinates 371621 to 372928 Chromosome XII Sequence. Johnston et al. (1997). The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387, 87-90 ATGACCACTAACGAGGAATTCATTAGGACACAGATATTCGGTACAGTTTT 51 CGAGATCACAAATAGATACAATGATTTAAACCCCGTTGGGATGGGGGCAT TTGGGTTGGTTTGCTCAGCCACGGACACTTTGACATCTCAGCCAGTTGCC ATTAAGAAATCATGAAACCTTTTTCCACTGCAGTGCTGGCCAAAAGGAC **ATATCGTGAACTAAAACTACTAAAACATCTAAGACACGAGAACTTGATTT** 201 251 GAATTACAAGGAACAGATTTACATAGACTCTTGCAAACAAGACCCTTGGA 301 351 AAAGCAATTTGTTCAGTATTTCCTATACCAAATTCTAAGGGGGTTTAAAAT **ACGTTCACTCCGCGGGCGTCATTCATAGAGATTTGAAACCGAGCAACATT** CTGATTAATGAAAACTGTGATTTGAAGATTTGCGATTTCGGTCTAGCAAG **AATTCAAGACCCTCAAATGACAGGCTATGTTTCCACTAGATACTACAGGG** 501 551 CACCTGAAATCATGCTAACGTGGCAAAAATATGACGTCGAGGTCGACATT 601 TGGTCCGCTGGTTGTATTTTTGCCGAAATGATTGAAGGTAAGCCTTTGTT CCCTGGGAAAGATCATGTTCACCAATTTTCGATCATCACTGACTTGTTGG 701 GATCTCCGCCAAAGGATGTGATAAATACTATTTGTTCCGAAAATACTCTA **AAATTTGTTACTTCGTTACCACACAGAGATCCAATT**CCATTTTCTGAAAG ATTTAAAACAGTCGAACCTGATGCCGTAGACCTTTTGGAAAAAATGCTGG TTTTTGATCCTAAGAAGAGAATCACTGCGGCGGATGCCTTGGCTCATCCT 851 TATTCGGCTCCTTACCACGATCCAACGGATGAACCAGTAGCCGATGCCAA GTTCGATTGGCACTTTAATGACGCTGATCTGCCTGTCGATACCTGGCGTG 1001 TTATGATGTACTCAGAAATCCTAGACTTCCATAAGATTGGTGGCAGTGAT 1051 GGACAGATTGATATATCTGCCACGTTTGATGACCAAGTTGCTGCAGCCAC 1101 CGCTGCCGCGCGCAGGCACAGGCTCAGGCTCAGGTTCAGTTAA ACATGCTGCGCATTCGCATAATGCCGCTGGCACTACTGGAAATGATCAC 1151 TCAGATATAGCTGGTGGAAACAAAGTCAGCGATCATGTAGCTGCAAATGA 1251 CACCATTACGGACTACGGTAACCAGGCCATACAGTACGCTAATGAGTTCC **AACAGTAA** 1301 Underlined and bold sequences were used in the design of primers P1 and P2 as detailed in 2.11.5. Sequences retrieved from the Saccharomyces genome database (SGD). #### pRS426 vector map and restriction sites pRS426 series of vectors are based on pBluescript II SK+ (Christianson *et al.*, 1992). The pRS426 vector was obtained from S. Oliver (Manchester University, UK). Only restriction sites used in plasmid digests are shown. #### pRS426-HOG1 vector map and restriction sites. The HOG1 gene with its own promoter was cloned into the pRS426 vector at the Cla1/BamH1restriction sites within the MCS. The pRS426-HOG1 vector and map was obtained from S. Hohmann (Göteborg
University, Sweden) and originally constructed by M. Gustin (Rice University, USA). Only restriction sites used in plasmid digests are shown.