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Summary

Resistance to tamoxifen, Faslodex and oestrogen-deprivation represents a major hurdle in 

breast cancer management, and determining the underlying factors driving resistant growth 

may improve treatment and prognosis. Expression microarrays (Atlas Plastic Human 12K 

Microarrays; GeneSifter software) were used to identify genes altered in breast cancer models 

with acquired resistance to tamoxifen (TamR) or Faslodex (FasR) versus their parental 

MCF-7 cell line through cluster analysis, t-testing and ontological examination. Selected genes 

were verified by PCR, Western blotting and immunocytochemistry. Alongside known breast 

cancer-related genes (PEA3, vitronectin), two novel genes increased in resistance were the 

securin/cell-cycle regulator Pituitary Tumour-Transforming Gene-1 (PTTG1) (p=0.013 and 

p=0.013 in TamR and FasR cells respectively), and GDNF receptor-a3 (GFRa3) (p=0.014 in 

TamR cells) that promotes cell survival signalling via its coreceptor RET. Increased levels of 

PTTG1, GFRa3, or their family members were observed in further endocrine resistant states, 

including an additional faslodex-resistant model that has progressed to a highly-aggressive 

state (FasR-Lt) and cells resistant to oestrogen-deprivation (X-MCF-7). PTTG1 and GFRa3 

induction in response to an anti-EGFR agent in the resistant models implicated these genes in 

limiting its growth inhibitory effect, and GFRa3 ligand (artemin) was shown to overcome anti- 

EGFR response (78% growth recovery). mRNA studies in clinical disease revealed a 

significant association o f PTTG1 with lymph node spread (p=0.001), high tumour grade 

(p=0.001) and proliferation (p<0.001), while GFRa3 was enriched in ER-negative tumours 

(p=0.01), showing loss of tubular differentiation (p=0.04) and expressing EGFR (p=0.013), 

profiles implying roles in clinical resistance and aggressive tumour behaviour. Promisingly, 

PTTG1 or GFRa3 siRNA significantly reduced cell growth (by 72%;p=0.003 and 

81%;p=0.004 respectively), proliferative capacity (by 23%;p<0.001 and 32%;p<0.001 

respectively) and induced apoptosis (by 43%;p=0.05 and 103%;p=0.05 respectively) in 

resistant models. Cumulatively, these data indicate PTTG1 and GFRa3 may provide useful 

biomarkers and perhaps new therapeutic targets for multiple resistant states.
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Chapter 1

INTRODUCTION



INTRODUCTION

1.1 Breast Cancer

Breast cancer constitutes 15% of all reported cancer cases within the UK and is the 

most common tumour type in women, accounting for about one in three of female cancers 

(Cancer.Research.UK, 2004). It is estimated that 1 in 9 women will be affected by breast cancer 

and each year in the UK over 40,000 women are diagnosed with the disease 

(Cancer.Research.UK, 2004; Kelsey and Berkowitz, 1988) . While mortality rates for breast 

cancer showed a peak in the late 1980s, since 1990 there has been a steady fall, most likely 

attributable to a combination o f factors, such as earlier diagnosis and more effective endocrine 

and cytotoxic treatments. For example, 14,620 women died from breast cancer in 

1993,compared to 12,840 in 2002 (Cancer.Research.UK, 2004). However, despite this 

important decrease in mortality, it is clear that many people still die of this disease and 

moreover the incidence rate, particularly in the developed countries is increasing with a 46% 

increase reported over a 20 year period (Cancer.Research.UK, 2004). Thus, there is a need to 

understand the development of breast cancer and to develop more effective treatments to 

continue to improve patient survival.

The incidence of breast cancer increases with age, doubling about every 10 years until 

the menopause, after which the rate of increase is lower, but nevertheless still increasing 

(McPherson et al., 2000). The incidence in European and North American women, for example, 

is about 2.7% by the age of 55, around 5% by 65 and 7.7% by the age of 75 (Key et al., 2001). 

Rates o f mortality and incidence are also higher in developed countries, exemplified by the 

four-fold increased incidence rate of North America over India, Africa and China (McPherson et 

al., 2000). Moreover, studies have also shown an elevation in the rate of breast cancer within a 

migrant population to the adoptive high-risk country within two generations (Key et al., 2001).

Factors which influence the risk of breast cancer include obesity and lifestyle factors 

such as diet. For example, there may be a protective effect provided by the consumption of 

vegetables, and phytooestrogens, which are found in high concentrations in foods such as soya 

(Key et al., 2001). The consumption o f alcohol has also been associated with a moderate 

increased risk of breast cancer (Cancer.Research.UK, 2004; Key et al., 2001).

Another risk factor which can influence breast cancer is mutations in certain genes. 

These identified germline mutations include mutations in BRCA1, BRCA2, p53, PTEN, and 

ATM, where BRCA1 and BRCA2 gene mutations account for 5-10% of breast cancer (Casey, 

1997; Easton, 1999). A predominant factor for increased breast cancer risk is lifetime exposure
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to steroid hormones and risk factors linked to hormones. For example early age at menarche and 

late age at menopause increases the risk o f developing breast cancer (Key et al., 2001).

Similarly, nulliparity and late-age at full term pregnancy are associated with increased risk of 

breast cancer. Women giving birth after the age o f 30 have twice the risk of developing the 

disease compared to women who have their first child before the age o f 20. (Kelsey et al., 1993; 

Key et al., 2001; McPherson et al., 2000). The use o f oestrogen/ progesterone hormone- 

replacement therapy has also been linked to breast cancer (Beral, 2003).

Cancers which occur in the breast are generally described by their localisation within 

the breast and their ability to invade surrounding tissues. For example, ductal or lobular 

carcinoma describes the origin o f the tumour as occurring within the milk ducts or the lobule 

respectively. These tumours can either be confined inside a basement membrane (in-situ) or 

exhibit spread (invasive) into the surrounding tissues (van de Vijver, 2005). They are also 

described as early disease (primary), where the tumour is confined to die breast/ lymph nodes 

and may be excised, or more advanced disease, where the tumour has spread to other life- 

threatening regions o f die body and is inoperable. Breast cancer, like other types of 

malignancies, demonstrates a number o f key features that confer a distinct advantage for growth 

expansion. Several critical factors have been identified including uncontrolled cellular 

proliferation, insensitivity to negative growth regulation, evasion o f apoptosis, invasion and 

metastasis, angiogenesis and genomic instability (Hanahan and Weinberg, 2000; Sledge and 

Miller, 2003).

As stated above, numerous reproductive characteristics have been described that are 

associated with an increased risk of developing breast cancer. These data, together with in-vitro 

and in-vivo findings strongly suggest die etiological involvement o f endogenous steroid 

hormones (Key and Pike, 1988). Of most interest in this regard is the female hormone 

oestrogen.

L2 Oestrogen* amI Caocctr

The link between oestrogen and breast cancer was first suggested when Beat son in 1896 

demonstrated a dramatic regression in locally advanced disease with improved prognosis as a 

consequence o f oophorectomy (Beatson, 18%). His studies were based on earlier observations 

which suggested that tumour size altered with the phase o f the menstrual cycle.

In 1958, Lemer and colleagues published die pharmacological properties o f the first 

compound developed to inhibit die oestrogen mitogenic pathway, a non-steroidal antioestrogen, 

MER-25 (Lemer et al., 1958). This was followed in 1960 by Jensen and Jacobson who 

identified the oestrogen receptor (ER) as the mediator o f the cellular actions o f oestrogens 

(Jensen and Jacobson, 1%2). The subsequent isolation (Toft and Gorski, 1%6) and cloning of
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the oestrogen receptor (Green et al., 1986) has led to the advancement in understanding of the 

classical mechanism of oestrogen signalling and its activity as a transcription factor in breast 

cancer cells. These findings were translated directly to the clinic when in 1971 a test for the ER 

was shown to predict the likelihood of patient response to surgical endocrine ablation 

(oophorectomy in premenopausal patients and adrenalectomy in postmenopausal patients) 

(Jensen et al., 1971), where patients with tumours exhibiting ER positivity showed a 

considerably higher response to endocrine strategies than those with ER negative disease 

(McGuire, 1975). Endocrine strategies have subsequently been developed to encompass several 

classes of agents which act as (i) selective oestrogen receptor modulators (SERMS) exemplified 

by the antihormone tamoxifen, (ii) selective oestrogen receptor downregulators (SERDS) such 

as Faslodex, and (iii) agents which target oestrogen biosynthesis, such as aromatase inhibitors 

(AIs) and luteinising hormone releasing hormone (LHRH) agonists. The ER and its signalling 

today still remains a major target for continued drug discovery for the treatment and prevention 

of breast cancer, and its cellular actions remain an intensely researched area of increasing 

complexity.

1.2.1 The Oestrogen Receptor

The ER is a member of the nuclear hormone superfamily whose members are capable of 

enhancing transcription of genes which contain the appropriate target hormone responsive 

element. The first and most predominant ER in breast cancer (and so more highly characterised) 

is ER alpha (ERa) (MacGregor and Jordan, 1998). The human ERa is located on chromosome 

6q25.1 which encodes a protein of 595 amino acids with an approximate mass of 66kDa (Green 

et al., 1986). It is expressed in the female reproductive organs, the skeletal and cardiovascular 

system, and some regions of the brain (MacGregor and Jordan, 1998). It is also estimated that 

15-20% of epithelial cells are ER-positive in the normal resting breast, with this figure 

fluctuating with the menstrual cycle. In addition to this, the receptor is overexpressed in breast 

cancer (Ali and Coombes, 2002)

More recently, the ER beta (ER-P) subtype has been isolated (Kuiper et al., 1996). The 

gene for the ERp is found on chromosome 14q23-24 and encodes a 530 amino acid protein with 

a mass of 60 kDa (Enmark et al., 1997). The ERP shows differences in tissue distribution 

compared to ERa. Although it is expressed in the ovaries, its expression is lower in other 

female reproductive tissues. It is however, highly expressed in several male organs and also in 

parts of the central nervous system (MacGregor and Jordan, 1998). ERp, together with its 

subtypes are also found in breast cancer cells, and, the receptor has been suggested to have some
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significance in the clinical response to anti-oestrogens (Murphy and Watson, 2006; Speirs et al.,

2004)

The transcriptional regulation o f the ERa gene can be initiated from two promoters, P0 

and PI. PI is the principal site, although this is tissue and cell-dependant. Its regulation is 

complex with a number of trans-acting factors shown to be involved in the transcriptional 

regulation o f the ERa gene (Nicholson et al., 2002). For example, ERF-1 (oestrogen receptor 

factor-1) is a member of the AP-2 transcription factor family which has been shown to bind 

elements in the 5’ non-coding region o f the ERa gene (McPherson et al., 2000). The regulation 

of the ER protein is also complex and is again both tissue- and species-specific. Hormones are 

significantly involved in the regulation o f ERa, and in-vitro models have shown variable ERa 

responses to oestrogens and progesterone (MacGregor and Jordan, 1998). A further factor 

involved in the regulation of ERa is phosphorylation of the ER protein which can impact on 

protein stability (Lannigan, 2003).

The ERa protein is a modular protein consisting of six functional domains, A to F 

which cumulatively enable nuclear localisation o f die receptor, oestrogen binding, receptor 

dimerisation, association with DNA response elements, and subsequent transcriptional 

activation (Fig. 1) (Kumar et al., 1987).

The N terminal A/B region contains a hormone independent transactivation function, 

Activation Function (AF)-1, whereas a further transactivation function, AF-2 is located in the E 

region but is ligand dependant (Nicholson et al., 2002) (Fig. 1). In most cases these elements 

function synergistically to allow optimal ER activity, although their activity varies in different 

cellular contexts. In addition, optimal activation o f AF-1 is thought to require phosphorylation 

of its key serine residues, including the Serine (ser-) residue at the 118 position o f the ERa 

through the mitogen activated protein kinase (MAPK) signalling pathway (Joel et al., 1998; 

Kato et al., 1995) and also CDK9/TFIIH. Ser-104 and Ser-106 are targets for cyclin A2-CDK2 

(Rogatsky et al., 1999), and AKT, rsk and casein kinase (CK) -2 respectively (Lannigan, 2003).

The C region of ERa houses the DNA-binding domain (DBD) (Fig. 1). It is configured 

as two zinc-stabilised DNA-binding fingers which are involved in DNA sequence recognition of 

the oestrogen response element (ERE) localised upstream of the oestrogen-responsive genes 

(MacGregor and Jordan, 1998). Additional amino acid residues in this region are thought to be 

also involved in nuclear localisation, receptor dimerisation, and heat shock protein (HSP) 

binding (Umesono and Evans, 1989), and where ser-167 and ser-236 may be subject to 

activation by protein kinase A (PKA) (Lannigan, 2003). The D domain appears to function as a 

hinge region between the DNA-binding domain and the Ligand-binding domain (LBD) and is 

thought to also be involved in nuclear localisation (Picard et al., 1990) although nuclear
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localisation signals (NLS) have also been reported in the LBD (MacGregor and Jordan, 1998) 

(Fig. 1).
The hydrophobic E region contains the LBD necessary for the binding of oestrogen to 

the receptor (Ponglikitmongkol et al., 1988) (Fig. 1). Crystallographic resolution of oestrogen 

and antagonist binding to the LBD reveals a pocket that sequesters ligand, comprising of 12 a- 

helices, a common motif in steroid receptors. The E region also houses the ligand-dependant 

transactivation function, AF-2 (Auchus and Fuqua, 1994). The ER dimerisation domain also 

resides in the C terminus of the E domain (Fawell et al., 1990) where phosphorylation of 

tyrosine 537 (possibly by c-src (Arnold et al., 1995a)) is thought to be an important factor in 

ERa dimer formation. Upon oestrogen binding, a number of important elements, such as 

coregulatory proteins are recruited to the LBD to modulate AF-2 activity (Berry et al., 1990). 

The E region is also important in binding chaperone proteins such as HSP90 and HSP70. These 

proteins exist as a complex with the receptor in the absence of the ligand and prevent receptor 

dimerisation, thus inhibiting DNA binding and ER-mediated gene transcription (Bohen et al., 

1995). Also finally, the F region lies at the C terminal and may be involved in the transcriptional 

activity of oestrogen-antagonist regulated genes, and also responsible for the cell-specific 

behaviour of the receptor (Montano et al., 1995).

A number of functional domains o f the ERa and ERP show a high degree of homology, 

such as the DBD and LBD at 97% and 60% respectively. However, more divergence is 

observed at the N terminus of the proteins which share only 18% homology. The homologous 

characteristics of these proteins at the DBD and LBD suggest an interaction with identical DNA 

response elements with similar binding affinities for ligands (Hall, 2001).

1.2.2 Oestrogen Receptor Signalling

Oestrogens are steroid hormones which function via the ER to regulate cell growth. 

These hormones function in a wide range of target tissues including reproductive tract, 

mammary gland, and the skeletal, as well as the cardiovascular system (MacGregor and Jordan, 

1998). Although other oestrogens are present, the most potent and dominant oestrogen in 

humans is 17 P-oestradiol (E2) (MacGregor and Jordan, 1998). With oestrogens demonstrating 

a wide range of physiological effects on target tissues, a complex mechanism of action is 

implied. Since identification of the ER in the 1960s, many laboratories have attempted to dissect 

E2/ER signalling. Cumulatively, a number o f fundamental mechanisms of ER signalling have 

been recognised alongside the classical ligand-dependant nuclear ER signalling, notably ligand- 

independent nuclear ER signalling (ER-transcription factor cross-talk), and the non-genomic/ 

membrane ER signalling mechanisms (Hall et al., 2001) (see Fig.2).
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1.2.2.1 Classical Mechanism o f Nuclear ER Signalling

The classical mechanism of oestrogen signalling assumes the unstimulated receptor is in 

a state o f inhibition localised within the nucleus as a multiprotein complex, bound to elements 

such as the HSP90/ HSP70 chaperonin, which are thought to stabilise the protein. The receptor 

may also be bound by co-repressors such as SMRT or NCoR in this state (Pratt and Toft, 1997).

Oestrogens are thought to freely diffuse through the cell membrane and bind to die ER 

(Guiochon-Mantel et al., 1996). All steroid receptors, including ERa have been shown to have 

enhanced phosphorylation after ligand binding (Weigel and Zhang, 1998), and ERa is 

phosphorylaled at multiple sites (Lannigan, 2003), with a 3-4-fold increase in ERa 

phosphorylation following oestradiol exposure (Le Goff et al., 1994). This may be an important 

factor in dimer formation, enhancing nuclear translocation or increasing affinity for the target 

ERE and subsequent transcriptional activity. Although the ERa is thought to be phosphorylated 

at multiple seine residues, reports have also shown the activation o f a tyrosine residue in the 

presence of E2 (Lannigan, 2003; Nicholson et al., 2002) (Fig. 1).

E2 binds into a hydrophobic pocket in the LBD, and structural analysis o f this domain 

reveals a compact configuration consisting o f 12 a-helices (Shiau et al., 1998). On ligand 

binding, the conformation o f die structure is altered such that helix-12 seals in the ligand. A 

subsequent conformational change in the receptor permits the dissociation o f the receptor- 

associated proteins such as HSP90 and HSP70, and provides a surface onto which coregulatory 

proteins may interact (Shiau et al., 1998). The positioning o f diverse ligands within this pocket 

is thought to result in different contact sites such that there is altered positioning o f helix-12, 

and thereby altered coregulator recruitment. Thus, the binding of the natural ligand E2 to the ER 

allows recruitment of co-activator proteins and thus AF-2 activity, whereas the SERM 

tamoxifen or Raloxifene binding results in altered positioning of the 12-helix which inhibits 

this process (Brzozowski et al., 1997).

The dissociation of the HSP permits the receptor dimerisation. It is worth noting that 

where both ERa and ERp are expressed, in-vitro studies have suggested a preferential 

heterodimerisation takes place, indicating the ratio o f the two receptor types may be of some 

importance to oestrogen responsiveness (Hall and McDonnell, 1999). Following dimerisation, 

and subsequently localisation to the nucleus (Webb et al., 1998) interaction with the DNA 

double helix o f the DBD occurs with the ER, subsequently mediated through the presence of 

two zinc finger motifs in the ER structure. The ER dimer binds with high affinity to a target 

region within the promoter o f responsive genes, the oestrogen response element, which consists 

of a three nucleotide sequence flanked by a four sequenced palindromic inverted repeat that can 

vary from gene to gene. The extreme flanking sequences o f this palindrome in E2-regulated 

genes are thought to be important in determining the ERa affinity for the ERE (Anolik et al.,
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1995). Genes whose promoters contain functional EREs include those encoding for the human 

pS2 and progesterone receptor (PgR) (Jeltsch et al., 1987; Kraus et al., 1994).

Interaction with the ER results in a conformational change in the DNA, which is 

thought important for allowing interactions with multiprotein complexes. Interaction with these 

co-activator proteins serves to enhance ER-mediated transcription. Many co-activators, such as 

SRC-1, SRC-2, SRC-3, p300, cAMP-response-element-binding (CREB)-binding protein (CBP) 

exhibit histone acetyl transferase (HAT) activity to facilitate chromatin remodelling and thus 

gene transcription (Lonard and O'Malley, 2005). Gene transcription following the activation of 

the ER by E2 is initiated through a process involving numerous factors being assembled at the 

gene promoter, including the interaction with basal transcription factors and the involvement of 

the co-activators to form the transcription initiation complex, for the eventual recruitment of 

RNA polymerase II for initiation of transcription. Gene targets of oestrogen action (some via 

classical ERE) include a number of genes involved in proliferative signalling and cell cycle 

progression, such as cyclin D l, c-fos, c-jun, c-myc, c-myb, and transforming growth factor 

(TGF)-a (Foster et al., 2001; Loose-Mitchell et al., 1988; May and Westley, 1995; Weisz and 

Bresciani, 1993).

1.2.2.2 Ligand-Independent Activation of Nuclear ER

The ER can be phosphorylated at a number of key sites, either as a consequence of 

ligand, or in a ligand-independent manner. Ser-118 and ser-167 were demonstrated to be major 

sites of phosphorylation in the presence of E2 (Joel et al., 1995). However, these are also the 

predominant sites of ligand-independent activation following stimulation of MAPK or 

phosphoinositide-3 kinase (PI3K/AKT) signalling respectively (Campbell et al., 2001; Joel et 

al., 1995) (see also section 1.5.1). In turn, cyclin A/ cdk2 can activate ser-104 and ser-106 in a 

ligand independent manner (Rogatsky et al., 1999). Ser-167 has also been shown to be 

phosphorylated in-vitro by CK2 (Arnold et al., 1995a), and ser-236 may be phosphorylated by 

PKA (Chen et al., 1999). In contrast to the above serine phosphorylation sites clustered around 

AF-1, the ERa is also reported to be phosphorylated at tyrosine (tyr)- 537 (Arnold et al., 1997). 

This site has been reported to be phosphorylated by c-src tyrosine kinase (Arnold et al., 1995b).

Ligand independent ER phosphorylation can occur where there are elevated levels of 

growth factor kinase signalling within the cells. For example, MCF-7 cells which have acquired 

resistance to antioestrogens exhibit increased levels of Epidermal Growth Factor Receptor 

(EGFR)/ HER2 and MAPK (Knowiden et al., 1997; McClelland et al., 2001). Studies have 

shown that the co-activators such as p68 RNA helicase and SRC-1 can be recruited in a ligand 

independent manner to enhance the activity of AF-1 in response to phosphorylation of ERa at 

ser-118 (Endoh et al., 1999), notably driven by MAPK (Britton et al., 2006). The impact o f
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ligand-independent growth factor-mediated activation o f the ER will be fully discussed in the 

context o f the development o f resistance to antioestrogens (see section 1.5)

1.2.2.3 ER7 Nuclear Transcription Factor Cross Talk

There is a growing body of evidence demonstrating the ability of oestrogen-ER to 

affect gene expression through non-classical mechanisms by protein/protein interaction of 

nuclear ER with other transcription factors, including AP-1, SP-1 or nuclear factor kappa beta 

(NFkB). In this mechanism, the activities of the various transcription factors are modulated by 

the ER through the stabilisation o f their DNA binding or through the enhanced recruitment o f 

co-activators to the complex. ER/AP-1 for example is capable o f transducing multiple mitogenic 

growth signals triggered from growth factors like the insulin-like growth factor (IGF), HER2 

and epidermal growth factor (EGF) (DeNardo et al., 2005; Johnson et al., 2000; Kushner et al., 

2000; Webb et al., 1995). Recent studies have also shown triggering of c-myc and cyclin D1 

expression via ER-transcription factor interaction to promote cell cycle progression (Butt et al.,

2005).

1.2.2.4 Non-genomic (membrane) ER Signalling

The observed rapid biological effects instigated via signalling by oestrogen occurring in 

the bone, breast, vasculature, and nervous system suggest that non-genomic signalling may be 

occurring at the plasma membrane. Indeed, although, the classical genomic mechanism o f 

oestrogen action seems to be the dominant mechanism o f ER action, several tyrosine kinase 

signal transduction proteins have been demonstrated to be rapidly triggered by E2, and have 

been identified in a number o f cell lines, including MCF-7 breast cancer cells (Pedram et al.,

2006). For example E2 causes the rapid induction (in minutes) of MAPK activity in breast 

cancer cells (Li et al., 2006) which is blocked by the MAPK inhibitor PD98059, and also 

inhibited by the antioestrogen Faslodex, confirming the role of the ER. The proliferative/ anti- 

apoptotic effects of E2 action through rapid triggering of MAPK have also been observed in 

osteoblasts (Kousteni et al., 2001), and E2 has been also shown to initiate rapid signalling 

through PI3-K and calcium calmodulin-dependent kinase IV in breast cancer cells (Duan et al., 

2002; Qin et al., 2002).

Importantly, several transcription factors have been shown to be activated by oestrogens 

through non-genomic pathways resulting in the induction of a number of genes in ZR-75 and 

MCF-7 breast cancer cells. For example, when rapidly E2 activated the PI3K/AKT pathway 

(Castoria et al., 2001), leads to downstream modulation o f the activity o f transcription factors, 

such as Elk-1, CC A AT /enhancer-binding protein-beta (C/EBPp), nuclear factor for interleukin- 

6 (NF-IL6), CREB and c-Fos/c-Jun (Kousteni et al., 2003), where such actions can promote 

cell entry into S-phase (Castoria et al., 2001).
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1.3 Antihormone Therapies for Breast Cancer

On disease presentation, treatment for the breast cancer patient with early disease is 

principally surgical removal of the tumour, coupled to the use of a systemic adjuvant therapy for 

the prevention/ treatment of micrometastatic deposits. Such treatments have a curative aim. In 

patients with metastatic disease, systemic therapy is often the principal treatment, and is largely 

palliative (Cristofanilli, 2006). The choice of adjuvant treatment, i.e. endocrine or 

chemotherapeutic, is substantially dictated by the steroid hormone receptor status of the patient, 

where receptor-positive patients principally benefit from endocrine therapy. Such endocrine 

therapy is believed to be effective in more than 50% of ER (and/or PgR) positive patients, a 

contrast to only 11% of patients responding who are negative for both receptors (Buzdar, 2001; 

Osbome et al., 1980). Various endocrine therapies have been developed which aim to inhibit the 

production o f oestrogens or prevent the action o f oestrogens through blockade o f the ER

In premenopausal women, the synthesis of oestrogens (circulating mainly as 17(3- 

oestradiol) from androgen precursors using the aromatase enzyme, usually occurs in the ovaries 

and is regulated by the pituitary gonadotrophins, follicle-stimulating hormone (FSH) and 

luteinising hormone (LH). Lower levels of oestrogens are also synthesised by aromatase in the 

adipose tissue, skin, bone, a number of vascular regions, and the brain (Simpson and Davis, 

2001). However, with the onset of menopause, such non-ovarian sources of oestrogen 

production become dominant sites of production of oestrogens. In addition, breast cancer cells 

are also capable of synthesising oestrogens from androgen precursors, and the intratumoural 

content of oestrogen has been suggested to be many fold higher than that detected in the plasma 

of postmenopausal women, (Castagnetta et al., 1996). Ablative treatment through the surgical 

removal of the ovaries in premenopausal women or, more recently, medical ablation by use of 

LHRH agonists, such as Zoladex, can be used to reduce oestrogen levels predominantly made 

by the ovaries (Cheer et al., 2005), and are used in combination with tamoxifen (see below). In 

postmenopausal women, however, when ovarian function ceases, aromatase inhibitors must be 

used to selectively target aromatase enzyme in peripheral tissues and tumour, thereby depleting 

E2 levels.

Modem AIs largely evolved from aminoglutethimide, a cytochrome P450 (CYP) 

inhibitor that demonstrated benefits in advanced breast cancer by the inhibition o f the aromatase 

enzyme. AIs are classified according to their structure, being either steroidal, as derivatives of 

androstenedione that bind irreversibly to aromatase, or non-steroidal AIs that are competitive 

inhibitors which also block the heme moiety of aromatase (Berry, 2005). While agents such as 

aminoglutethimide show non-selectivity, and the second generation AIs, such as formestane,
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exhibit relatively low effectiveness, the third-generation AIs, such as anastrozole, exemestane, 

and letrozole are now demonstrating highly efficient inhibition o f aromatase (Dixon, 2004).

The improved third-generation AIs have relatively recently been the subject o f a 

number o f phase III trials showing favourable outcomes in the management o f breast cancer, 

and the agents are currently being used as first-line therapy in patients with hormone receptor 

positive disease and are o f increasing importance in the adjuvant (early) setting in 

postmenopausal women (Goss, 1999; Sainsbury, 2004).

Since the first reported assessment o f the antioestrogen tamoxifen (Nolvadex; Astra 

Zeneca) in 1971 (Cole et al., 1971) in breast cancer many antioestrogens have been evaluated 

that all competitively inhibit oestrogen binding to the ER to bring about ER blockade (Howell et 

al., 2004). However, tamoxifen still represents the gold standard antioestrogen, and lies in a 

class o f non-steroidal antioestrogens termed SERMs which exhibit mixed oestrogenic/ 

antioestrogenic activities (Osborne, 1998). More recently, steroidal antioestrogens have been 

developed that are devoid o f any agonist activity. These are exemplified by the pure ER 

antagonist, (Selective Oestrogen Receptor-Downregulator; [SERD]) fulvestrant (Faslodex; ICI 

182,780), which was licensed in the UK in 2004 for the treatment for advanced breast cancer as 

second-line therapy after antioestrogen (tamoxifen) failure (Howell et al., 2000). Both 

tamoxifen and Faslodex, and their mechanisms o f action will be discussed in detail below.

1.3.1 Tamoxifen (a Selective Oestrogen Receptor Modulator; SERM)

Tamoxifen, first synthesised in the 1960s, was approved by the US Food and Drug 

Administration in 1977, and is currently the standard adjuvant treatment for ER positive breast 

cancer. It has been demonstrated to improve survival as an adjuvant therapy in early breast 

cancer, and is beneficial in the advanced setting. Tamoxifen has also been shown to reduce the 

incidence o f breast cancer in healthy women at risk o f developing the disease (1998; Cole et al., 

1971; Fisher et al., 1998). Large-scale randomised trials have shown that tamoxifen 

administration after surgery for early-stage ER-positive breast cancer reduces mortality by 28% 

(Johnston and Dowsett, 2003), and it is estimated that many breast cancer patients in the 

developed countries have received, or are receiving tamoxifen. The reduction in mortality rates 

from breast cancer in the UK over the last 12 years is thought to be due, in part, to the use of 

tamoxifen in early-stage disease (Johnston and Dowsett, 2003).

Tamoxifen, a non-steroidal triphenylethylene based antioestrogen (Fig. 3), belongs to a 

group o f anti hormonal therapies termed SERMs. The structure o f its metabolite 4- 

hydroxytamoxifen (4-OHT), has formed the basis for chemical modification o f the drug, leading 

to further compound development, including alteration o f the side chain to produce torimifene 

(Howell et al., 2004). However the majority o f these compounds are inferior or, at best
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equivalent to tamoxifen in terms of response and toxicity (Howell et al., 2004). As the name 

suggests, SERMs exhibit mixed oestrogenic/ antioestrogenic activity in a tissue-selective 

manner. Thus, tamoxifen gives rise to favourable oestrogen-like effects on bone and serum lipid 

concentrations, while in breast tissue acts antioestrogenically to inhibit tumour growth (Osborne 

et al., 2000). Some of the undesirable effects of tamoxifen include antioestrogen responses in 

the central nervous system (manifest as ‘hot flushes’), thromboembolytic events, and 

oestrogenic actions on the endometrium leading to an increase in the risk of endometrial cancer 

(Osbome et al., 1995). However, the undesirable properties are outweighed by the considerable 

benefits tamoxifen has provided in breast cancer.

The mode of action of tamoxifen is, in some aspects similar to oestradiol, with diffusion 

through the plasma and nuclear membrane where interaction with the ER results in the binding 

of the antioestrogen to the LBD, promoting dissociation of receptor associated proteins. 

However, the conformation of the tamoxifen-ER complex is different to the E2 bound receptor 

and results in an altered helix-12 configuration due to the bulky side chain of tamoxifen 

(Levenson and Jordan, 1999; Shiau et al., 1998). Thus, although dimerisation of the receptor 

still occurs, tamoxifen binding alters the AF-2 conformation, preventing co-activator 

recruitment and maintaining corepressor binding (eg. NCOR/SMRT) (Clarke et al., 2001a; 

Klinge, 2000). In contrast, although the activity of AF-2 is attenuated, AF-1 activity remains, 

which is thought to provide the partial agonistic activities exhibited by tamoxifen. The latter 

activity, however, is dependent on cellular context and associated co-activator/ AF-1 kinase 

availability (Berry et al., 1990; Mclnemey and Katzenellenbogen, 1996).

1.3.2 Faslodex (a Selective Oestrogen Receptor Downregulator; SERD)

Although the standard endocrine agent of choice for the past 30 years has been 

tamoxifen in ER-positive breast cancer, considerable effort has been made to reduce its 

oestrogen-like properties, and thus, eliminate some of the unwanted side effects of 

antioestrogens. This, coupled with the phenomenon of resistance to tamoxifen treatment (see 

section 1.5) which may also be linked to its oestrogen-like properties, prompted the 

development of several steroidal agents devoid of oestrogenicity. One such compound is 

fulvestrant (Faslodex, ICI 182,780, Astra Zeneca) which, unlike tamoxifen exhibits no agonist 

activity and is currently being used clinically in advanced breast cancer disease when patients 

relapse on tamoxifen (Dukes et al., 1993; Wakeling and Bowler, 1992). Recent reports from two 

phase III trials have shown that Faslodex is at least as effective as the third generation aromatase 

inhibitor anastrazole in postmenopausal women with advanced breast cancer following 

tamoxifen, thus demonstrating its potential for use in second-line therapeutic regimes. 

Additionally, Faslodex has shown some potential following Al failure (Howell, 2006).
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Faslodex is a steroidal 7a-alkylsulfinyl analogue o f oestradiol which exhibits a 

markedly higher affinity for the ER compared with tamoxifen (Wakeling et al., 1991). However, 

owing to the bulky side chain (Fig. 3) steric hindrance prevents dimerisation o f the receptor 

(Howell et al., 2004). Reports from in-vitro and in-vivo studies have also shown increased ER 

turnover, with a disruption in nuclear localisation and a concomitant reduction in the ER protein 

within the cell. As a consequence, decreased DNA binding occurs, and also, coupled with an 

inactivation o f both AF-1 and AF-2, a substantial blockade o f E2-regulated genes ensues 

(Howell et al., 2004).

Importantly, Faslodex treatment does not promote oestrogenic effects on the uterus, and has a 

superior inhibitory effect on breast cancer models, both in-vitro, and in-vivo (Howell et al.,

2000). It is also able to block any stimulatory effects o f oestrogen or tamoxifen (Dukes et al., 

1993; Wakeling and Bowler, 1992). This pure antioestrogenic action o f Faslodex is particularly 

important with regards to treating tamoxifen resistance (discussed later). In-vitro studies report 

tamoxifen-resistant cell lines remain ER-positive and responsive to Faslodex (Brunner et al., 

1993; Coopman et al., 1994; Hu et al., 1993). In addition, studies in nude mice demonstrate the 

growth suppression o f MCF-7 xenografts by Faslodex is twice the duration o f that o f tamoxifen 

(Osborne et al., 1995). A number o f clinical studies have also demonstrated a therapeutic 

potential o f Faslodex, where its potent ER downregulating capability is seen alongside its ability 

to profoundly decrease the levels o f the E2-reguIated gene, PgR and deplete proliferation 

markers (McClelland et al., 1996).

1.4 Antihonnone Resistance In Breast Cancer

Antihormone therapies, as well as being relatively well tolerated, have proved to be 

invaluable approaches in the improvement o f breast cancer patient survival. SERMS such as 

tamoxifen have remained the primary choice for therapy in ER-positive disease for several 

decades, although newer antihormone treatments are now emerging, notably, the pure 

antioestrogen Faslodex, and a number o f third generation aromatase inhibitors exemplified by 

Anastrazole that may supersede tamoxifen in the clinic (Berry, 2005; Howell, 2006). However, 

for both tamoxifen and these newer therapies, the development of resistance remains a 

pervading problem.

1.4.1 Development of Endocrine Resistance

Clinical observations, together with cell tumour models are uncovering some o f the 

elements that may be responsible for the development o f resistance to tamoxifen, Faslodex, and 

oestrogen deprivation. A vast knowledge acquired in breast cancer research is in part due to the
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in-vitro and in-vivo studies performed with breast cancer cell lines. As an unlimited source of 

relatively homogenous cells, they can be grown easily in most laboratories. Following the first 

cancer cell line in 1958 (Lasfargues and Ozzello, 1958) continued work has now established 

around 100 breast cancer cell lines. A number of attempts have been made to culture cells from 

primary breast cancers (Amadori et al., 1993; Gazdar et al., 1998), however, relatively low 

success rates are generally achieved due to technical difficulties. Thus, cell line models still 

remain a well established source of material for study. Although the usefulness of cell lines has 

been debated (Burdall et al., 2003) their careful application within a well structured study 

design, including the monitoring of phenotypic and genotypic characteristics, can be invaluable.

Many of the well known and exclusively used breast cancer cell line models, including 

ER-positive MCF-7 and T47D, and ER-negative MDA-MB-231 cells, were established in the 

late 1970s. One of the most popular ER-positive models, MCF-7 was derived from a metastatic, 

invasive ductal carcinoma, from the pleural effusion (Engel and Young, 1978; Soule et al., 

1973). A recent study extensively comparing a large number of breast cancer cell lines 

concluded that although a wide range of genetic and phenotypic characteristics existed from one 

model to another, the MCF-7 breast cancer cell line was reflective of the ER-positive tumours 

in-vivo (Lacroix and Leclercq, 2004). A further property of MCF-7 cells which makes them 

attractive for study is that they demonstrate endocrine responsiveness. The MCF-7 cells, being 

ER-positive, are subject to the mitogenic effects of oestradiol, and are thus affected by the 

inhibitory actions of antihormones. This cell line has also been used to develop de novo 

resistance to tamoxifen by transfection of growth factor receptors (eg. HER2) and can acquire 

resistance by continuous culture in-vitro in the presence of inhibitory doses of antihormones 

(Knowlden et al., 2003; Shou et al., 2004). The characteristics of some of these models will be 

discussed in the proceeding sections in parallel with clinical observations.

1.4.1.1 Tamoxifen Resistance

While 70-80% of breast cancers are positive for ER, only around 40% of tumours 

respond to endocrine therapy, i.e. -50%  of ER positive breast cancers are innately resistant to 

tamoxifen treatment {de novo resistance). Inherent tamoxifen resistance is also observed in all 

ER-negative tumours. Also, those tumours that are initially responsive to tamoxifen acquire 

resistance and ultimately regrow resulting in disease relapse. Resistance associated cellular 

features include increased aggressive tumour behaviour, metastatic spread, and thereby poorer 

patient outlook (Cheung et al., 1997; Osbome and Fuqua, 1994). It is therefore of fundamental 

importance to uncover the mechanisms that allow tumour cells to circumvent tamoxifen 

response and a number of mechanisms have been proposed.
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1.4.1.1.1 Loss o f ERa Expression/ Function. ERB and Variant Forms

While the level o f expression o f the ER is an important predictor for the initial 

responsiveness to tamoxifen therapy, de novo resistant disease is frequently ER-negative/ PgR- 

negative (Nicholson et al., 2002). This may occur through CpG island hypermethylation 

(Ottaviano et al., 1994), although ER expression can be lost on acquisition o f resistance to 

tamoxifen, the majority o f patients continue to express the receptor, and can, in some instances, 

respond to aromatase inhibitors or Faslodex, indicating that the ER is still functional in these 

patients (Howell et al., 2002; Osborne et al., 2002). In other patients however, dysfunctional 

forms o f the ER have also been proposed to explain tamoxifen resistance, although mutational 

studies have rarely found mutant ER in the clinic (Kamik et al., 1994), and data linking ERa 

splice variants to endocrine resistance is, at best, inconclusive (Nicholson et al., 2002).

As described previously, the ERj3 is highly homologous to the ERa in the DBD and 

LBD and has a similar affinity for oestrogen (MacGregor and Jordan, 1998). Although the 

predominant receptor type in breast cancer is ERa, heterodimers with ERJ3 are also found, and 

the ratio o f ERa/ERp may have some significance on the development o f resistance. Indeed, 

increased expression o f ERp in more aggressive disease has been found (Clarke et al., 2001b). 

Significantly, an ERP variant, ERJ3cx has also been described, and was found expressed in half 

o f  the breast cancer samples (Palmieri et al., 2004). This variant receptor can also 

heterodimerise with wild type ERa and may affect endocrine sensitivity (Speirs et al., 2004).

1.4.1.1.2 Growth Factor Pathways

In comparison to ER-positive states, the expression o f EGFR, HER2 and TGFa are 

observed to be markedly elevated in ER-negative disease (Nicholson et al., 2004a), and may 

even promote ER loss through the hyperactivation o f growth factor signalling pathways. Thus, 

in MCF-7 cells, EGF, IGF-1, TGFJ3 reduced ER levels in-vitro, with elevated signalling through 

PI3K/AKT, PKA and NFkB, believed to be integral to such responses (Normanno et al., 1994). 

Additionally however, at lower levels, activation o f growth factor signalling is also thought to 

be an important mechanism for the de novo and acquired failure o f endocrine therapies in ER- 

positive cells, with a number o f growth factors reported to be overexpressed in such breast 

cancer cells, notably the EGF and IGF family receptors and ligands, and downstream signalling 

elements (Nicholson et al., 2005).
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1.4.1.1.2.1 EGF Family

One of the dominant pathways which has been implicated in the development of 

tamoxifen resistance involves the EGF family of ligands and receptors. These comprise the 

receptors erbBl (EGFR), erbB2 (HER2), erbB3 (HER3) and erbB4 (HER4), and ligands EGF, 

TGFa, and heregulins, and these receptors have been shown to share a high sequence homology, 

notably within the tyrosine kinase domain (Mosesson and Yarden, 2004). The HER2 receptor, 

described as an orphan receptor, is distinct from the other family members as it has no natural 

ligand although it is recognised as an effective heterodimerisation partner for other family 

members (Earp et al., 1995; Menard et al., 2000).

The successful clinical introduction of the humanised antibody to HER2, trastuzumab 

(Herceptin) in 1998 has highlighted the importance of this signalling network in breast cancer 

(Brand et al., 2006). Indeed, clinical reports have shown an association between poor prognosis 

for breast cancer and overexpression of HER2 and EGFR (Nicholson et al., 1994a). These 

receptors have been related to resistance de novo to tamoxifen, in both ER-positive and ER- 

negative states (Nicholson et al., 2004a). EGF-related ligands such as TGF-a have also been 

shown to be associated with endocrine non-responsiveness in ER-positive breast cancer 

specimens (Nicholson et al., 1994b), and the coexpression of ligands with EGFR (eg. 

amphiregulin, TGFa) has been reported in in-vitro models of acquired tamoxifen-resistance 

(Nicholson et al., 1999). Furthermore, in clinical disease, there can be increases in HER2 and 

EGFR in some patients on tamoxifen relapse (Gee et al., 2005).

A number of laboratories have developed models of ER-positive resistance to 

tamoxifen, either de novo or acquired. In our own laboratory, an ER-positive acquired 

tamoxifen-resistant cell line (TamR) was developed by the continual exposure o f parental wild- 

type MCF-7 cells to 10'7 M 4-hydroxytamoxifen. After regular medium replacement and 

passaging for 3 months, growth rates increased subsequent to the initial responsive phase. The 

emergent cells had thus acquired resistance to tamoxifen (Knowlden et al., 2003). Studies in our 

laboratory have shown that EGFR and HER2 protein and mRNA are upregulated in the resistant 

cell line ,with increased levels of active EGFR/HER2 hererodimers versus the parental MCF-7 

cells.

The dependency on such growth factor signalling is reiterated in the model of Osborne 

which is based on the MCF-7 cell line which has been engineered to overexpress HER2 through 

a HER2 expression vector (MCF-7/HER2-18) (Shou et al., 2004). MAPK activation is also 

demonstrated in MCF-7/HER2-18 cells. This downstream phosphorylation event observed in 

MCF-7 /HER2-18 cells is also in accordance with observations using the ER-positive and 

tamoxifen-resistant BT434 cell line, which exhibits HER2 gene amplification (Anzick et al., 

1997; Lin et al., 1990). In our own ER-positive tamoxifen resistant cell models, alongside
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EGFR upregulation, EGFR signalling through MAPK and AKT signalling is also observed, 

(Knowlden et al., 2003).

The importance o f the erbB family o f receptors/ligands in these various resistant cells is 

highlighted by the actions o f the EGFR-specific tyrosine kinase inhibitor (TK1), Gefitinib, or the 

HER2 inhibitor Herceptin which promotes efficient growth inhibition o f both acquired or de 

novo ER-positive models o f tamoxifen resistant breast cancer (Knowlden et al., 2003; Shou et 

al., 2004).

Other models o f resistance, such as those from Meijer and coworkers derived by genetic 

manipulation o f ZR-75-1 cell lines to select for cell line colonies with acquired resistance to 

tamoxifen, again suggested that EGFR may be a mechanism for antioestrogen-resistant growth, 

as determined through gene expression microarray studies. However, further genes were 

revealed as involved in resistance, such as platelet-derived growth factor (PDGF) -a and -p, 

colony stimulating factor (csf) 1-R, neuregulin, and fibroblast growth factor (FGF) 17 (Meijer et 

al., 2006). This laboratory also identified a number o f breast cancer antioestrogen resistance 

(BCAR) genes such as BCAR4 (Meijer et al., 2006) and BCAR1 (Dorssers et al., 2005). Indeed, 

BCAR1 or 4 has been strongly linked to the endocrine resistant phenotype (Dorssers et al., 

2005).

14.1.1.2.2 IGF family

Components of the IGF signalling pathway have also been shown to be involved in 

driving antioestrogen resistant breast cancer cells, and may positively cross-talk with EGFR 

signalling (Gee et al., 2005; Knowlden et al., 2003). Indeed, overexpression and activation o f 

IGF-1R and associated downstream proteins have been reported in breast cancer, and linked to 

disease progression and increased resistance to radiotherapy (Rocha et al., 1997).

The IGF growth factor system comprises three ligands, IGF-I, IGF-II and insulin, 

capable o f interacting with the IGF-1R receptor, and a number o f IGF- binding proteins exist to 

regulate IGF action, in part, through sequestering the IGF-1R ligands (Clemmons, 1998). The 

IGF-IR receptor is a transmembrane tyrosine kinase that is highly related to insulin receptor 

(1R). The type II IGF receptor (1GF-11R) has high affinity for 1GF-11, but unlike the other 

family members is thought to transmit no intracellular signal and has been characterized as a 

regulatory ‘sink’ for IGF-II (Clemmons, 1998). IGF signalling is initiated through the coupling 

o f the receptor to adaptor proteins, Insulin Receptor Substrates (IRS) (Whitehead et al., 2000), 

which activate downstream signalling molecules such as MAPK and PI3K/AKT signalling 

(Sachdev and Yee, 2001; Whitehead et al., 2000). IGF-1 R signalling is contributory to the 

growth o f hormone responsive cells with MCF-7 cells demonstrating high levels o f IGF-IR 

which can be readily blocked by IGFR-specific inhibitors (such as AG 1024) to promote growth 

inhibition (Nicholson et al., 2004a). Importantly, the IGF-IR pathway impinges on ER
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signalling, which in turn can induce aspects of IGF-IR signalling, to facilitate the mitogenic 

effects of oestrogens (Hamelers and Steenbergh, 2003). This is also consistent with the 

observations that IGF-IR levels are high in ER-positive clinical disease (Happerfield et al., 

1997) and increased IGF-IR is generally found in hormone responsive tumours (Gee et al., 

2005).

Significantly however, the IGF-IR pathway has recently been shown to interact with 

EGFR signalling in tamoxifen-resistant breast cancer cells in-vitro (Knowlden et al., 2005), and 

the pathway is active in tamoxifen-resistant clinical disease (Gee et al., 2005). Indeed, in the 

tamoxifen resistant cells developed in our own laboratories, both IGF-IR and EGFR activity 

could be induced by exposure to IGF-II (Knowlden et al., 2005), where IGF-IR enhanced 

EGFR pathway by a src-dependant phosphorylation of EGFR on tyr845. Such altered growth 

factor signalling has also been demonstrated in-vitro to contribute to changes in cellular 

morphology which resemble epithelial mesenchymal transition (EMT), with an observed higher 

growth rate, motile behaviour, and increased invasiveness in the acquired TamR cells. This is 

reflective of the clinical scenario on progression (Hiscox et al., 2004; Nicholson et al., 2005), 

where resistance can be associated with metastasis to unfavourable sites and poorer prognosis..

It is noteworthy that although erbB pathways appear dominant mechanisms in models 

derived from our laboratories, studies from other centres have shown tamoxifen or Faslodex 

resistance can develop in cells which maintain extremely low levels of EGFR expression, and 

which show no change in HER2 and no response to Herceptin (Briand and Lykkesfeldt, 1984); 

(Frogne et al., 2005). Although, these cells demonstrate minimal involvement of IGF-IR 

signalling, both tamoxifen and Faslodex resistant growth appears to involve the phosphorylation 

of AKT (Frogne et al., 2005).

1.4.1.1.3 ER Signalling as a Target for Growth Factor Pathway Cross-Talk

There is compelling evidence suggesting the existence of multiple regulatory 

interactions between the ER, growth factor, and kinase signalling networks that may contribute 

to tamoxifen failure. As eluded to earlier, peptide growth factors, including EGF, TGFa, IGF 

and heregulin, or their receptors can trigger ligand independent phosphorylation of the ER at 

multiple sites (see Fig. 1), which are capable of increasing transcriptional activity of ER and 

ER-mediated gene expression in the presence of tamoxifen (Le Goff et al., 1994). These 

phosphorylation events are mediated via growth factor-driven kinase signalling, such as MAPK 

pathways, which can, for example phosphorylate the ER at Seri 18 position within the AF-1 

region of the receptor (Nicholson et al., 1999), as frequently observed in in-vitro models of 

acquired tamoxifen resistance (Britton et al., 2006; Knowlden et al., 2003; McClelland et al.,

2001). Interestingly, hyperexpression o f MAPK signalling components have been reported in 

breast cancer tumours (Sivaraman et al., 1997), and this is also seen in the clinic where
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increased ERK1/2 MAPK activity has been associated with poorer quality, shorter duration, and 

decreased survival in response to endocrine therapies (Gee et al., 2001). Our laboratory has also 

observed increases in ERK1/2/MAPK activity on clinical relapse with tamoxifen in the clinic, 

and hyperactivated growth factor signalling components are also present in acquired tamoxifen 

resistance models (Gee et al., 2001; Knowlden et al., 2003).

Additionally, studies have reported that the ER can be phosphorylated by other 

signalling components, such as Casein Kinase II, AKT, pp90rskl, PKC5, cycIinA/CDK2, and c- 

src (Lannigan, 2003). Links have also been suggested for the p38 MAPK pathway, which, 

interestingly also is elevated in tamoxifen resistance samples (Gutierrez et al., 2005). The 

PI3K/AKT pathway is o f particular interest and has also been equated with tamoxifen resistance 

(Jordan et al., 2004; Kirkegaard et al., 2005). Indeed, increased phosphorylation o f AKT, as 

well as MAPK signalling was observed downstream in our TamR model, with EGFR/ kinase 

signalling driving ser-118 and ser-167 phosphorylation o f the ERa gene in the presence o f 

tamoxifen (Britton et al., 2006). The phosphorylation o f ERa and ERa-induced transcription 

was elevated in response to EGF-type ligands and was blocked by gefitinib showing the 

importance o f upstream EGFR regulation o f the kinases in this cross-talk. Moreover, increased 

phosphorylation o f the ERa resulted in the synthesis o f increased TGFa and amphiregulin, 

which was shown to sustain an EGFR/HER2 autocrine mitogenesis loop (Hutcheson et al., 

2003).

In addition to impacting on ER phosphorylation, such kinases may crosstalk with ER 

signalling via increased promotion o f expression or activation o f co-activators in the presence o f 

tamoxifen. HER2-positive tamoxifen resistant MCF-7 cells have been shown to have increased 

co-activator complex formation, involving ER, AIB1, CBP and p300. Studies have also reported 

that elevated levels o f AIB1 may reduce the antagonist effect o f tamoxifen, and recent clinical 

data suggest that the coexpression o f AIB1 with HER2 predicted for a worse outcome in 

patients receiving tamoxifen after surgery (Johnston, 2006).

1.4.1.2 Faslodex Resistance

The introduction o f the pure antioestrogen Faslodex into the clinic for the treatment o f 

ER-positive breast cancer demonstrates a number o f advantages over other antioestrogens such 

as tamoxifen, notably its ability to fully antagonise the ER and the reduction in unwanted 

oestrogen-like side-effects Clinical data are accumulating which suggest that Faslodex may be 

effective as second or third-line therapy after relapse on tamoxifen or AIs (Howell, 2006).

Unfortunately, resistance to therapy is again an inevitable consequence o f the use o f this 

drug. This is demonstrated in-vitro by our own model o f Faslodex resistance. These cells were 

established as having acquired resistance to the pure antioestrogen Faslodex (McClelland et al.,

2001), where this was achieved by the continuous exposure o f parental wild-type MCF-7 cells
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to 10'7M Faslodex. Addition of the antioestrogen initially caused the growth rate to substantially 

decrease, but after 3 months of exposure, an increased growth rate again indicated the 

establishment of resistance (FasR). As with TamR cells, characterisation of these early FasR 

cells revealed upregulated EGFR protein and mRNA, and activation of MAPK signalling, with 

low levels of ER and its phosphorylation also potentially contributing to resistance. The 

importance of EGFR was demonstrated by gefitinib responses in such cells and ER signalling 

was fully recovered upon removal of Faslodex. Although the clinical phenotype of Faslodex 

resistant disease remains to be explored, second-line responses to further antihormone remain 

apparent in some FasR tumours, suggesting ER may indeed remain functional, as in tamoxifen- 

resistant disease (Howell, 2005).

Interestingly, FasR cells at a much later passage number (FasR-Lt) demonstrated a more 

severe phenotype with a less rounded de-differentiated morphology and substantially increased 

invasive behaviour. Additionally, these cells demonstrate a higher growth rate compared to 

early passage FasR cells (Nicholson et al., 2005). The transition from the early to a late/ 

advanced Faslodex-resistant model is also accompanied by the complete loss of ER protein and 

mRNA expression, phosphorylation, and transcriptional activity. Although studied with 

gefitinib suggest that there may be some role for EGFR signalling in FasR-Lt cells, growth 

inhibition is incomplete, and thus, other elements must be involved. The observation of ER loss 

is noteworthy since ER-negative patients often display a more aggressive and proliferative 

disease type (Nicholson et al., 1993).

In this regard, it is worth noting that other cell models of resistance to Faslodex, such as 

those developed by Sommer/ Lichtner derived from MCF-7, ZR-75-1, and T47D cells, similarly 

demonstrate a significant increase in EGFR protein expression (Sommer et al., 2003). The 

MCF-7 derived Faslodex-resistant LCC9 model from the laboratory of Clarke suggest that 

factors other than EGFR signalling may be of importance. For example, microarray analysis 

showed that the loss of expression of the putative tumour suppressor interferon regulatory 

factor-1 (IRF1) may be of significance (Bouker et al., 2004). More recently, the authors 

implicated NFkB in Faslodex resistance, whereby they demonstrated a synergistic role for both 

Faslodex and the NFkB- small molecule inhibitor, parthenolide, in reducing cell growth 

(Riggins et al., 2005).

1.4.1.3 Resistance to Oestrogen-Deprivation/ Aromatase Inhibitors

The observed benefits of AIs in the clinic have led to their increased use as a first line 

therapy for ER-positive advanced breast cancer, with emerging importance in the adjuvant 

setting (Goss, 1999; Sainsbury, 2004), however, resistance to oestrogen-deprivation strategies 

remains a pervading problem dining treatment (Dowsett et al., 2005).
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A number o f  cell models resistant to oestrogen deprivation have been developed which 

generally exhibit hypersensitivity to low E2 levels, elevated growth factor/ kinase signalling, as 

well as the retention o f  a functional ER (which may be inhibited by Faslodex). Additionally, 

some models also show evidence o f growth factor- ER cross-talk, either in a non-genomic 

(membrane ER) or genomic (via increased ER phosphorylation) manner.

Reports have suggested that acquisition o f resistance to oestrogen-deprivation may be 

as a consequence o f breast cancer cells gaining hypersensitivity to low levels o f E2, where such 

cells retain sensitivity to further E2/ER blockade (Santen et al., 2005). For example, the log- 

term oestrogen-deprived (LTED) model o f Santen shows growth stimulation o f tumour cells at 

10'13M E2 (Masamura et al., 1995). These cells also show markedly increased levels o f growth 

factor signalling with an increased association o f membrane ERa with IGF-IR (Song et al., 

2005) and enhanced downstream activation o f MAPK (Song et al., 2005), and AKT/PI3K 

signalling (Yue et al., 2003). Another model o f LTED from Dowsett’s group similarly exhibits 

oestrogen hypersensitivity where the cells show elevated levels o f ERa expression and 

increased IGF-IR /HER2 with growth factor interplaying primarily within the nucleus (Chan et 

al., 2002; Martin et al., 2003; Martin et al., 2005).

Acquired resistance to oestrogen deprivation has also been investigated by Brodie and 

colleagues by stably transfecting the aromatase gene into MCF-7 cells, the resultant cells being 

termed MCF-7Ca. Subsequently culturing these cells in oestrogen deprived conditions 

eventually resulted in cells capable o f overcoming the growth inhibitory effects o f  E2 

withdrawal (Sabnis et al., 2005). These cells, UMB-ICa, resistant to oestrogen deprivation, 

were demonstrated to have elevated ERa, increased expression o f HER2 and increased 

activation o f AKT phosphorylation.

The establishment o f  cells resistant to oestrogen deprivation has been similarly 

conducted in our laboratories by the continuous exposure o f MCF-7 cells to extreme oestrogen- 

deprived condition achieved by growing in charcoal-stripped, heat-inactivated serum (Nicholson 

et al., 2004b; Staka et al., 2005). Continuous culture in this severely depleted medium initially 

caused the growth rate to decrease. However, after 6 months o f exposure, an increased growth 

rate indicated establishment o f  an acquired resistant cell line (X-MCF-7). These X-MCF-7 cells 

demonstrate a functional nuclear ERa, the expression o f  which was elevated relative to the 

parental MCF-7 cell line. The ERa also demonstrated some increase in ser-118 phosphorylation 

compared to MCF-7 cells. However, unlike other models o f LTED, the X-MCF-7 cell does not 

display hypersensitivity to oestrogen. The continued importance o f ERa in X-MCF-7 cells was 

demonstrated by the reduction o f cell growth by the use o f Faslodex. There was no evidence of 

classical growth factor receptor signalling, such as EGFR, HER2 or IGF-IR. However, AKT 

was again deemed an important contributing pathway, cross-talking with ser-167 ER to promote 

cell growth (Staka et al., 2005).
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1.5 Response and Resistance to Anti-Growth Factor Inhibitors

Given that resistance to anithormonal treatments is, in part, thought to be mediated by 

growth factor/ intracellular signalling, there is interest in targeting these proteins. As described 

earlier, EGFR and IGF-IR, as well as associated signalling networks, have been shown to 

contribute to endocrine failure, and small molecule signal transduction inhibitors (STIs) 

designed against these pathways are currently being evaluated clinically/ preclinically. Based on 

model system observations of significant growth inhibition of cells such as TamR, there is much 

promise for such agents.

The erbB signalling pathway has been a focus in this respect, exemplified by the 

introduction of the humanised monoclonal antibody trastuzumab (Herceptin) which aims to 

target the extracellular domain of HER2 (Brand et al., 2006). A number of other erbB STIs have 

entered clinical trials and are at various stages of development and evaluation, including EGFR 

inhibitors Gefitinib (Iressa), Erlotnib (Tarceva) and EKB-569, all o f which have been evaluated 

at least at phase III, II and II respectively; the EGFR/HER2 agents Lapatinib (GW572016) and 

AEE-788 which are in phase I/III studies; and the pan erbB inhibitor canertinib (Cl-1033) which 

is in phase II development (Johnston, 2005).

Gefitinib (Iressa; Astra Zeneca) is an orally active synthetic anilinoquinazoline (4-(3- 

chloro-4-fluroanilino)-7-methoxy-6-(3-morpholinopropoxy) quinazoline) that, as a competitive 

inhibitor of ATP binding, selectively inhibits the tyrosine kinase activity of EGFR but is also 

effects HER2 with a higher activity (Camirand et al., 2005). In-vitro studies demonstrate some 

effectiveness as an inhibitor in human breast cancer cells, including tamoxifen resistant cells, 

either alone or in combination with other therapeutic agents. While phase II trials in advanced 

breast cancer patients showed partial response in fewer than 10% of patients (Camirand et al.,

2005), interestingly, a much higher response rate was observed in ER-positive acquired 

tamoxifen resistant patients (>60%), thus mimicking the TamR model (Agrawal et al., 2005).

Previous in-vitro studies performed on MCF-7 cells with acquired resistance to 

tamoxifen showed that both gefitinib and trastuzumab as single agents significantly reduced 

several downstream signal transduction cascades and cell growth (Knowlden et al., 2003). 

Similar results have been demonstrated with de novo tamoxifen resistant HER2-transfected 

MCF-7 cells treated with trastuzumab and the HER2 tyrosine kinase inhibitor AG1478, and by 

inhibiting downstream MAPK signalling with the MEK inhibitor U0126 (Kurokawa et al., 

2000). Gefitinib also inhibited the resistant phenotype of the HER2 overexpressing MCF-7 

model subverting ER/HER2/AIB1 interactions (Shou et al., 2004). However, despite initial 

response, resistance to such agents develops in models and in the clinic.
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Importantly however, clinical evaluation o f TKIs has in general showed relatively 

disappointing results with, for example, the evaluation o f gefitinib through three phase II trials 

(Johnston, 2005) showing low clinical response rates and short times to disease progression. 

Indeed, in many instances, disease stabilisation was noted rather than objective responses 

(Agrawal et al., 2005).

In model system studies, the establishment o f TamR cells that have gained further 

resistance to the EGFR TKI gefitinib (TamR/TKI-R) have been developed in our laboratories 

(Jones et al., 2004). This was achieved by the continuous exposure o f TamR cells to lpM  

gefitinib. Addition o f the agent caused the growth rate to initially significantly decrease. 

However, after 6 months o f treatment, gefitinib-resistant cells emerged (TamR/TKI-R) 

demonstrated by an increased growth rate in the presence o f the EGFR inhibitor. In parallel with 

increased growth there was also an increase in invasive capacity o f  the cells versus the TamR 

cells. Characterisation o f TamR/TKI-R cells revealed elevated levels o f  activated IGF-IR, 

HER2, AKT and PKC8 signalling. As such, these cells were growth sensitive to the IGR-1R 

inhibitor AG 1024, which also reduced their migratory capacity. Taken together, these results 

suggest that on blockade o f the EGFR pathway other growth factor-driven networks become 

recruited to reinitiate tumour cell growth.

Recent preclinical work has also shown that the IGF-IR is an appropriate cotarget with 

the EGFR in primary human glioblastoma cells, and furthermore with HER2 in breast cancer 

cells, since IGF-IR signalling is increased in Herceptin resistance (Camirand et al., 2005).

Although development o f newer targeted therapies, such as for the IGF hold some 

promise, other factors may hinder this progress. These include, for example, the ubiquitous 

expression o f  growth factor receptors throughout the body, the non-selectivity o f growth factor 

receptor inhibitors (Ibrahim and Yee, 2005; Yee, 2006), and the acquisition o f resistance to the 

inhibitory agents targeting the receptors (Vasilcanu et al., 2006). Clearly much remains to be 

learnt about the development o f both antihormones and anti growth factor resistance, and it is 

hoped that the introduction o f newer technologies, such as microarray gene discovery will 

provide valuable additional information.
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1.6 Microarray Analysis

The sequencing of the entire human genome expanded genetic information and added 

impetus to further research into the expression of every gene in the human body. The 

simultaneous analysis of more than 30,000 genes can now be achieved by microarray 

technology, which evolved in the 90’s, and is now in 2006 a standard tool in genomics 

laboratories. The microarray technique allows the broad profiling and comparative analysis of 

genes in one experiment, generating a plethora of expression data. (Eisen and Brown, 1999; 

King and Sinha, 2001)

Microarray technology provides a global analysis of gene expression at the 

transcriptional level. This is highly significant as genetic and epigenetic alterations are 

fundamental to neoplastic transformation, cardiovascular disease, and other pathogeneses and 

therapeutic responses. Previous to the advent o f microarray technology, molecular biology was 

performed sequentially and linearly with research being conducted on a single candidate gene 

with techniques such as Northern Blotting. Thus, the translation of discoveries regarding gene 

profiling into clinical medicine remained relatively slow. Microarrays however, by permitting 

the analysis of tens of thousands o f genes simultaneously, are now quickening the identification 

of clinical biomarkers and potential (Leung and Cavalieri, 2003).

The application of microarrays to clinical samples was initially directed towards the 

transcriptional profiling of tumours, with studies being conducted in a number of cancer types. 

Array technology is particularly significant in cancer research since malignancy may be derived 

from the altered expression of cancer-causing genes. These abnormalities can promote the basic 

traits of cancer, namely: proliferation and self-sufficiency; insensitivity to growth inhibitory 

signals; apoptosis evasion; potential o f unlimited replication; angiogenic induction and 

metastasis (Hanahan and Weinberg, 2000).

1.6.1 Microarray Principle

Microarrays can be defined as miniaturised ordered arrangements of nucleic acid 

fragments from specific genes localised on a solid support, the application of which permits an 

assessment of the expression level from particular cells, tissues or organs. The principal concept 

and methodology of the microarray is that RNA extracted from cells or tissue is reverse 

transcribed, and is labelled, either fluorescently or radioactively (Fig. 7). After denaturing, the 

labelled probe is then hybridised to the array, which comprises single stranded DNA sequences 

corresponding to individual genes. The base pairing between the target and probe provides a 

quantitative measure of the abundance of a particular gene sequence, by the signal detected after
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capturing the image o f the array (Leung and Cavalieri, 2003). Hybridisation signal patterns are 

then compared from one sample to another to reveal genes which may be upregulated or

downregulated, and thus perhaps posses some significance in physiological processes and

warrant further study.

Much research is focussing on the data associated for microarray experiment, with an

ever expanding range o f analysis tools. Indeed, the quality o f the results will ultimately be

reflective, not only o f the microarray platform performance, but also the dada processing, where 

procedures such as array image scanning and normalising can affect the final gene outcome. 

Diverse analysis procedures such as hierarchical clustering, which groups genes according to 

their similarities o f gene expression, alongside other statistical analysis are available (Eisen et 

al., 1998).

1.6.1.1 cDNA Microarravs

The cDNA microarray utilises cloned probe molecules. These gene sequences, usually 

from a PCR product derived from cDNA and expressed sequence tag (EST) clones, range from 

100 to 2000 bases in size. These are assembled on a matrix o f glass or nylon to form the 

microarray. The first arrays comprised cDNA clones spotted onto nylon membranes and 

radioactively labelled cDNAs were used for comparative hybridisation (Desai et al., 2002). 

cDNA arrays are manufactured by the application o f double stranded cDNA onto the membrane 

through robotic means. The sample total RNA is radioactively labelled (33P-cATP or 32P-cATP) 

by reverse transcription prior to hybridisation. However, although the array is relatively 

inexpensive and no specialist equipment is required for label detection cDNA arrays have 

demonstrated issues with regards to sensitivity o f gene detection (Draghici et al., 2006). The 

first glass slides for printing cDNA clones were introduced by Schena in 1995 (Desai et al.,

2002). These types o f arrays are produced by the robotic application o f usually cDNA or 

genomic clones onto the glass surface (Cooper, 2001). The advantage o f this technology is that 

the probes are covalently attached to the appropriately coated slide, which itself is extremely 

durable and non-permeable. These properties mean that efficient access for the labelled RNA to 

the cDNA probes, and washing steps can be performed. Additionally, the glass confers a non- 

flexible medium which improves spot quality. For these glass slides, total RNA from test and 

reference sample is extracted which are then differentially labelled with fluorescent cyanine 

dyes (Cy3-dUTPor Cy5-dUTP) by reverse transcription. The fluorescently labelled samples are 

then hybridised to a single array. After image acquisition, the ratio o f the two dyes is calculated 

to compare expression o f each gene from one sample to the next. However, large sample 

preparations may be required for hybridisations using glass arrays (Cooper, 2001) and dye- 

swapping experiments may be essential.
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1.6.1.2 Oligonucleotide Microarravs

The oligonucleotide array comprises synthetic probe sequences, which are based on 

gene database information (Gershon, 2002). These can be assembled in a number of formats 

including glass, nylon, and, as used in this study, a plastic format, which was new at the time of 

instigation of this project. Oligonucleotide arrays have been designed to perform well in terms 

of specificity to the target gene as the sequences can be designed with precision. Specific 

sequences are produced by several methods including chemical synthesis directly onto the glass 

slide using photolithographic technology (as the Affymetrix microarrays) (Fodor et al., 1993), 

or by inkjet printing technologies through the direct building of the oligonucleotide on to the 

platform (eg. Agilent technology) (Hughes et al., 2001). The direct spotting of the 

oligonucleotides (up to 70 bases long) can also be performed, and the deposition of the 

oligonucleotide onto a gel matrix applied onto the slide has also been used (Amersham- 

Codelink microarrays) (Ramakrishnan et al., 2002). As in other array formats, these arrays 

utilise RNA from a sample which is reverse transcribed, whereby ultimately a fluorescent label 

is incorporated into the sample RNA. Alternatively, the RNA may be labelled radioactively, as 

in the Atlas Plastic arrays

1.6.1.2.1 Atlas Plastic 12k Microarray

The Atlas Plastic Human 12K Microarray, as utilised in this project, comprises 

approximately 12,000 oligonucleotides immobilised onto a rigid, translucent, plastic support by 

UV radiation. It is non-porous, as with glass microarrays, a feature which is thought to enhance 

hybridisation kinetics, minimise washing, and reduce background. As for Nylon arrays, the 

plastic format is used with radioactively labelled cDNA from the test sample and the image 

subsequently detected by phosphorimaging. However (unlike Nylon arrays) due to the high spot 

density of genes the plastic format uses a radioactive 33P-labelled probe, which improves 

resolution compared to Nylon arrays. In addition, this format this format is reported to be able 

to be stripped and reused, unlike glass array platforms (Clontech_BD-Biosciences:Atlas_pdf,

2006).

The genes present on these plastic arrays are represented by single-stranded long 

oligonucleotides which are on average 80 bases in length. The property of the long 

oligonucleotide is believed to provide a compromise between the hybridisation efficiency of 

cDNA arrays, and discriminatory ability due to its relatively shorter length (compared to 

cDNAs). Due to their novelty, there are as yet few publications employing smaller 5k or 8k 

arrays in this plastic array area (Franscini et al., 2004; Sarkijarvi et al., 2006; Tasheva et al., 

2004; Tsuchiya et al., 2005). Long oligonucleotides are deemed superior to very long cDNA or 

arrays with extremely short oligonucleotide arrays (Barrett and Kawasaki, 2003; Zhu et al., 

2005). However at the start o f this project, the Atlas Plastic arrays were selected for gene
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analysis tools as they provided a ten-fold increase over gene numbers analysed compared to the 

previously used Nylon format. The Plastic oligonucleotide format also provided a high 

proportion o f  genes which were relatively well characterised, compared to other technologies 

such as Affymetrix, which also contain many uncharacterised probe sequences. In addition, 

there were no other array technologies available to the TCCR, and with being relatively 

inexpensive, the Plastic array format showed ease o f handling with no requirement for specialist 

equipment.

1.6.2 Microarray Applications to Breast Cancer Research

Gene expression profiling by microarrays has considerable potential in cancer research, 

and a number o f array-based studies have been performed both in model systems and clinical 

disease which demonstrate the prognostic and predictive potential o f array analysis, as well as 

providing a means to explore transcriptional events underlying cancer biology, including E2 

action. In the pioneering study by Perou in 2000, array analysis was successfully used to 

classify breast cancers according to their expression profiles (Perou et al., 2000). In this study 

456 cDNA clones were employed to phenotypically classify tumours into four major sub-groups 

before and after treatment with doxorubicin chemotherapy , (i) basal-like, expressing keratin 5/6 

and 7, B4 and Iaminin, with low ER; (ii) HER2-positive cluster, expressing elevated levels o f 

HER2 with no ER; (iii) characteristically normal breast-like; and (iv) luminal cell-like, with 

high ER, expressing ER regulated genes, such as LIV-1, GATA-binding protein 3, and prolactin 

receptor. Gene patterns pre- and post-treatment with chemotherapy demonstrated similar trends. 

Interestingly, a proportion o f the samples showed a ‘normal’ gene profile post-treatment 

suggesting therapy had been effective. In an extension to this study, Sorlie performed array 

analysis to determine the correlation between array-based tumour classification and clinical 

outcome (Perou et al., 2000). Initial classifications derived by Perou were further dissected to 

reveal a sub-set o f tumours predicted to relapse after treatment. This subset o f tumours was 

derived from the luminal sub-type and was further divided into two major groups, A (with high 

GATA3 binding protein and ERa expression) and B/C (with genes o f  no coordinated function). 

Using an alternative expression array platform, van’t Veer identified a 70-gene prognostic 

signature in a cohort o f 78 breast cancer patients with axillary lymph node negative disease, 

which was found to comprise a number o f genes involved in cell-cycle regulation, angiogenesis, 

invasion and metastatic development, and was indicative o f poor prognosis (v a n ’t Veer et al.,

2002). This disease signature predicted adverse and good outcome with a sensitivity o f 85% and 

81 % respectively.

Gene expression profiling has more recently identified markers that may be used to 

predict response to hormonal and neoadjuvant therapy (Jansen et al., 2005). This study used
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gene expression profiling on a cohort of ER-positive primary breast carcinomas from patients 

with advanced disease. Response to tamoxifen was measured by tumour size and time to 

progression (progression-free survival), with the predictive signature permitting discrimination 

of responders versus patients with progressive disease. Eighty-one genes were identified as 

being involved in oestrogen action, immune response, apoptosis, and extracellular matrix 

formation

Array technology has also been used to identify genes responsive to oestrogen challenge 

and altered in response to antioestrogens using antihormone responsive breast cancer models. 

For example a study identified genes regulated by oestrogen, tamoxifen , and Faslodex which 

may provide makers for prediction for response to treatments (Inoue et al., 2002). Tamoxifen 

was shown using arrays, to function as a molecular agonist, inducing a number of cell cycle- 

associated genes, including fos, myc, myb, cyclins E and A2, with a kinetics similar to E2 

treatment in MCF-7 cells (Hodges et al., 2003). . In another study, a number of genes including 

14-3-3z were found to correlate with disease recurrence following tamoxifen treatment in 

patients with ER-positive cancers, thus possibly providing markers for poor prognosis (Frasor et 

al., 2006). Gene expression signatures were also analysed in MCF-7 cells in response to 

oestrogen, tamoxifen, raloxifene, and Faslodex with robust differential gene expression profiles 

that showed fundamental differences among of SERMs and SERDs and may provide insights 

into their distinct biological effects in breast cancer (Frasor et al., 2004).

Antihormones were again evaluated in a recent gene expression microarray study which 

explored the aromatase inhibitors, Letrozole and Anastrazole, and the antioestrogen tamoxifen, 

together with the hormones E2 and testosterone in aromatase-transfected MCF-7 cells (Itoh et 

al., 2005). Using Affymetrix genechips 104 and 109 genes were up- and down-regulated by 

hormones respectively, which were effectively reversed by the antihormones. Both aromatase 

inhibitors showed similar profiling to each other that was differential compared to tamoxifen, 

demonstrating the unique capabilities and gene signatures associated with different classes of 

antihormonal agents diverse agents. Additionally, although there are still few gene expression 

microarray studies with cells resistant to oestrogen-deprivation, in Santens model of LTED a 

number of genes, which were altered in response to oestradiol, were found to be those not 

linked to the growth factor signalling, demonstrating that alternative elements may be 

responsible for E2 response within this model (Santen et al., 2005). Recently, Kristensen 

investigated the effects of Al (anastrazole) administration on a tumour samples, albeit from 12 

patients with locally advanced tumours, before and after 15 weeks of treatment (Kristensen et 

al., 2005). Tumours with no or low ER expression clustered together and were characterized by 

a strong basal-like signature including the overexpression of keratins 5/17, cadherin 3, frizzled 

and apolipoprotein D. The luminal epithelial tumour cluster, highly expressed genes such as ER, 

GATA binding protein 3 and N-acetyl transferase. In addition to this, a HER2 cluster was found
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due to the marked over-expression o f the HER2 gene, with GRB7 and PPAR binding protein in 

this patient material.

In cell lines developed with resistance to antihormones, the application o f microarray 

technology can be revealing. In an E2-independant, Faslodex-resistant model (LCC9 cells), 

array analysis revealed a role for NFkB signalling (Shibata et al., 2002).

It is anticipated that following further research, the application o f microarray analysis as 

prognosticators will be useful, as well as in revealing new targets for novel therapies which will 

have major impact in the field o f breast cancer. However, resistance to antihormones is still a 

pervading problem, and there is much to be learned in this area if  new elements are to be studied 

that can be targeted to subvert resistance.
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AIMS AND OBJECTIVES

Antihormone treatments, notably tamoxifen, and more recently, Faslodex and aromatase 

inhibitors are valuable approaches in combating breast cancer in ER-positive patients. However, 

despite the relative success of these treatments, clinical resistance to such antihormones has been 

observed, commonly resulting in a more aggressive disease, thus demonstrating the need to 

uncover mechanisms which may be contributing to this phenomenon. Through applying gene 

expression microarray analysis to human breast cancer models previously developed at the TCCR, 

which have acquired resistance to tamoxifen or Faslodex in-vitro, the project aims to reveal 

previously unrecognised genes in the context of antihormone resistance that may provide new 

potential therapeutic targets or biomarkers in this state.

The project aims in detail are to:

• Optimise methodologies for use with the Atlas Plastic Human 12k microarray, specifically RNA

extraction and purification, as well as hybridisation protocols.

• Reveal differentially expressed genes in TamR and FasR resistant cells relative to the parental

MCF-7 cell line using Atlas/ GeneSifter softwares, and prioritise genes through ontological 

examination of significantly altered genes.

• Verify up to 30 genes for expression in resistant cells through RT-PCR analysis, with the

subsequent selection of two high priority genes induced in both forms of resistance for study in 

detail.

• Explore the high priority genes (PTTG1 and GFRcx3) and their associated family receptors and

ligands in antioestrogen resistant cells and also in cells resistant to oestrogen deprivation using 

RT-PCR analysis.

• Examine PTTG1 and GFRa3 protein expression in resistant cells using Western immunoblotting

and also immunocytochemistry.

• Study the impact of therapies known to target candidate pathway signalling, notably the EGFR

inhibitor gefitinib and also ER blockade with Faslodex, on PTTG1 and GFRa3 gene and protein 

expression in the resistant cells.

• Study the prevalence of PTTG1 and GFRa3 in clinical breast cancer by examining mRNA

expression by RT-PCR, and determine any associations with key clinicopathological and 

biological markers. In addition, to see if  the proteins are also expressed in archival clinical 

samples using immunocytochemistry.

• Using siRNA gene knockdown, study the impact of PTTG1 and GFRa3 in antioestrogen resistant

cells on endpoints such as cell growth, proliferation and apoptosis and thus establish any 

targeting potential.
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MATERIALS AND METHODS

2.1 Materials, Reagents and Equipment

2.1.1 Cell culture

Materials and Reagents: The human breast cancer cell line MCF-7 was obtained from 

the American Tissue Culture Collection (ATCC) (Virginia, USA). Roswell Park Memorial 

Institute (RPMI) 1640 medium and phenol red-free RPMI medium, foetal calf serum (FCS), 

penicillin/streptomycin, fungizone, L-glutamine and Dulbecco’s phosphate buffered saline 

(PBS; as supplied containing calcium chloride and magnesium chloride (CaCl2 and MgCl2)) 

were purchased from Invitrogen Life Technologies (Paisley UK). Bovine trypsin was from 

Lome Laboratories (Reading, UK). 17-p-oestradiol and 4-hydroxytamoxifen (4-OHT; 

experimentally referred to as tamoxifen) were purchased from Sigma (Dorset, UK). Faslodex 

(fulvestrant, ICI 182,780) and Gefitinib (Iressa, ZD 1839) were obtained as gifts from Astra 

Zeneca Pharmaceuticals (Cheshire, UK).

Equipment and Plasticware: All tissue culture was performed in a MDH intermed 

vertical circulating class II biological safety cabinet (Bioquell, Hampshire, UK), and cells 

maintained in a BB16 Function Line cell incubator (Heraeus Instruments, Cheshire, UK). Cells 

in culture were observed using a Nikon eclipse TE200 phase-contrast microscope and 

photographed using a Nikon 35mm F70 SLR camera (Nikon, UK). Cells were counted using a 

Beckman Coulter Counter Multisizer II (High Wycombe, UK) and centrifuged in a Jouan-c312 

centrifuge supplied by Thermo Electron Corporation (Berkshire, UK). Plasticware, disposable 

pipettes, 50ml falcon tubes, and Coulter Counter receptacles were all supplied by Sarstedt 

(Germany). All other tissue culture plasticware was from Nalgene Nunc International (Roskilde, 

Denmark).

2.1.2 Optimisation of RNA Extraction for Plastic Microarray Hybridisation

Materials and Reagents: Chloroform, isopropanol, sodium chloride (NaCl) and ethanol 

were purchased from Fisher Scientific (Loughborough, UK). MMLV Reverse Transcriptase 

enzyme (all RT-PCR reagents were molecular biology grade), PBS (as supplied with calcium 

CaCI2/MgCl2 ) and dithiothreitol (DTT) were obtained from Invitrogen Life Technologies 

(Paisley UK). Tri Reagent, DNase/RNase free water, sodium dodecyl sulphate (SDS), ethylene 

diamine tetraacetate (EDTA), Tris-HCl, glass wool, dimethylchlorosaline, sodium acetate 

(NaOAc), sodium hydroxide (NaOH), saturated phenol, ethidium bromide, j3-mercaptoethanol
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and other PCR reagents not listed (molecular biology grade) were from Sigma (Dorset, UK). 

RNEasy mini Kit [contents include: RNEasy mini spin columns, Buffer RLT, Buffer RPE, and 

2ml collection tubes] was from Qiagen (Crawley, UK). 01igo(dT)cellulose was purchased from 

New England Biolabs (Hertfordshire, UK). Clontech Nucleotrap mRNA purification kit [kit 

components: NucleoTrap mRNA suspension, buffer RM1 (binding buffer), buffer 2xRMl 

(binding buffer), buffer RM2 (wash buffer I), buffer RM3 (wash buffer II), NucleoSpin 

microfllters] was from Clontech/ BD Biosciences, (Hampshire, UK). Atlas Pure Total RNA 

Labelling System Kit [Kit components: denaturing solution, saturation buffer for phenol, 2M 

NaOAc; pH4.5, lOx Termination mix, Streptavidin magnetic beads, Ix Binding buffer, 2x 

Binding buffer, lx  Reaction buffer, lx  Wash buffer, DNase (lunit/pl), lOx DNasel buffer, 

Biotinylated oligoDT, MMLV Reverse transcriptase] was also from BD Biosciences/ Clontech. 

Polyallomer centrifuge tubes were from Beckman (CA, USA). Polypropylene copolymer tubes, 

2ml syringes, cell scrapers and other plasticware were provided by Nalgene Nunc International 

(Roskilde, Denmark). Agarose for gel preparation (multipurpose) and lkb ladder (Hyperladder 

I) were from Bioline (London, UK).

Equipment: RNA extractions/ purifications were performed in an APMG vertical 

biological safety cabinet/ fume hood (Manchester, UK). Centrifugations for large volume RNA 

extraction (>15ml) using polypropylene tubes were performed in a Sorvall IC5B Plus 

centrifuge, whereas smaller volumes using 1.5ml tubes (<1.5ml) were using an IEC Micromax 

RF microcentrifuge (Thermo Electron Corporation, Berkshire, UK) or a Haraeus Labofuge 

Functionline 400R centrifuge (Cheshire, UK). Ultracentrifugation was performed in 

polyallomer tubes within a Beckman L-80 ultracentrifuge, both supplied by Beckman 

(Buckinghamshire, UK). Vortexing was performed using a Fisons Whirlmaster vortex (Fisons 

Scientific Equipment, Leicestershire, UK). Sample preparations in 1.5ml tubes were heated 

using a Techne-DB2A Dri-block heater (Cambridge, UK), and larger volumes (>1.5ml) were 

heated in a Grant W14 waterbath (Grant Instruments Ltd, Cambridge, UK). Magnetic particle 

separator was provided by Promega (Southampton, UK). The UV Spectrophotometer (Cecil 

CE2041) and quartz cuvettes employed were from Cecil Instruments (Cambridge, UK). BioRad 

supplied the horizontal gel apparatus and associated powerpacks, and densitometric analysis 

was performed using a BioRad GS690 densitometer. Agarose gels were visualised using a UV 

illuminator supplied by Fotodyne Inc (Wisconsin, USA) and photographed using a GelCam 

camera, supplied by Polariod (Bedfordshire, UK).
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2.1 J  PCR Assessment of Genomic Contamination/ Cell Line Verification and PCR

Gene Verification

Materials and Reagents: Taq DNA polymerase (5u/|j.l), agarose for gel preparation 

(multipurpose), and lOObp ladder (Hyperladder IV) were from Bioline (London, UK). MgCl2 , 

dNTP of each nucleotide and Random Hexamers were purchased from Pharmacia (Milton 

Keynes, UK). DTT and RNase-inhibitor was from Promega (Southampton, UK). DNase/ 

RNase-free water and all other PCR reagents not listed were molecular biology grade, and 

purchased from Sigma (Dorset, UK). All purchased primers were stored at -20°C at a stock 

concentration of lOOpmol/pl made in DNase/ RNase-free water, with a 1:5 dilution for a 

working concentration. For assessment o f genomic contamination, and cell line verification 

primers were from MWG Biotech (Ebersberg, Germany). For genomic contamination 

determination IGF1 forward primer sequence was 5’TGC TCT TCA GTT CGT GTG TG 3’ 

and IGF1 reverse primer was 5’TGG CAT GTC ACT CTT CAC TC 3’. Genomic standards 

were Human Genomic DNA (G304A) from Promega (Southampton, UK). For cell line 

confirmation, the following primers were used: {3-Actin (204bp) forward sequence was: 5’-GGA 

GCA ATG ATC TTG ATC TT-3’ and reverse sequence was: 5’-CCT TCC TGG GCA TGG 

AGT CCT-3’; for pS2 (Trefoil factorl; 336bp) forward sequence was: 5’-CAT GGA GAA 

CAA GGT GAT CTG-3’ and reverse was: 5’-CAG AAG CGT GTC TGA GGT GTC-3’; for 

EGFR (636bp) the forward sequence was: 5’-CAA CAT CTC CGA AAG CCA-3’ and reverse 

was: 5’-CGG AAC ITT GGG CGA CTA T-3\ Where coamplification with (3-actin (204bp) 

was not possible due to similar size o f the gene to be coamplified, |3-actin (385bp) was used, 

and vice-versa, where the forward sequence was: 5’-CTA CGT CGC CCT GGA CCT CGA 

GC-3’ and reverse sequence was: 5’-GAT GGA GCC GCC GAT CCA CAC GG-3’. All other 

primer sequences used in this project for gene verification are listed in table 1 and were 

purchased from Invitrogen Life Technologies (Paisley UK).

Equipment: RT-PCR for assessment o f contamination and cell line verification were 

performed in a BioRad i-cycler supplied by BioRad (Hertfordshire, UK). All other subsequent 

RT-PCR for gene verification studies were using a PTC-100 Thermal cycler supplied by MJ 

Research/ BioRad (Hertfordshire, UK).
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2.1.4 Microarray Hybridisation, Detection and Data Analysis

Materials and Reagents: The following reagents, provided by Clontech/ BD Biosciences 

(Hampshire, UK) comprised the Atlas Plastic Trial/ 12k Microarray kit: Clontech Atlas Plastic 

Human Trial or 12k Microarrays, lOx dNTP mix (5mM each dCTP, dGTP, dTTP), BD 

Powerscript Reverse Transcriptase, 5x BD Powerscript Reaction Buffer, Random Primer mix 

(with or without synthesis control), synthesis control cDNA, and for array hybridisation, BD 

PlasticHyb Hybridisation solution. Also provided in the kit for column chromatography/ probe 

purification were BD Atlas NucleoSpin Extraction kit [consists of: NucleoSpin Extraction spin 

columns, 2ml collection tubes, Buffer NT2, Buffer NT3, Buffer NE], Radioactivity: [ct- 

33P]dATP at 10pCi/pl; >2500 Ci/mmol was provided by Amersham (Buckinghamshire, UK). 

DTT was from Invitrogen Life Technologies (Paisley, UK). For microarray stripping, NaOH, 

SDS, sodium carbonate (Na2CC>3 ) were all from Sigma (Dorset, UK)

Equipment: All microarray experiments, including hybridisations, washes, probe 

preparation, were performed in an authorised designated area for radioactive study, and all 

radioactivity was handled behind a safety (3-cabinet enclosure from Scotlab (Coatbridge, UK). A 

Biometra UNO Thermal cycler was used for radioactive probes preparation (Gottingen, 

Germany), and probes were centrifuged in a MSE Microcentaur centrifuge supplied by MSE 

(UK). Probe radioactivity was determined using a Tri-Carb 2900 TR Scintillation counter from 

Packard Bioscience (UK). Array hybridisations were performed initially in rollerbottle system 

(hybridiser HB-1D) supplied by Techne (UK) but subsequently and preferentially in plastic 

hybridisation boxes supplied by BD Biosciences/ Clontech (Hampshire, UK), in a hybridisation 

oven/ rocker (si20h) supplied by Stuart Scientific (UK). Array signal radioactivity was detected 

using a phosphorscreen, supplied by Amersham (Buckinghamshire, UK), or by means o f a 

Kodak autoradiograph film from GRI (Rayne, UK) placed within the phosphorscreen cassette. 

Array signal on phosphorscreen was captured using a Typhoon Model 8600 Phosphorimager 

from Molecular Dynamics (UK).

For Microarray Data Analysis, minimum computer requirements were: For Atlaslmaue. 

Windows 95, Pentium II processor, 64+MB o f RAM, 17-inch colour monitor, video card with 

support for 16-bit colour at 800x600 resolution, CD-ROM or DVD-ROM drive; AtlasNaviuator. 

Windows 95, Pentium II processor, 128+MB of RAM, 17-inch colour monitor, video card with 

support for 16-bit colour at 1024x786 resolution, Approximately 50MB hard disk space for 

expression data. CD-ROM or DVD-ROM drive; GeneSifter. Windows, Mac OS, Linux or Unix 

environments, which is connected to the internet and is capable o f running a modem browser, 

such as Firefox, Internet Explorer 5.5 or, or Netscape: 6.1. For softwares, Array signal intensity
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Table 1. Primers used for PCR analysis for selected genes and associated genes used in this study.

Gene Ref

Gene
Name Gene Name (full)

Forward
Primer
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Primer
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NM 000713
Biliverdin
Reductase
B

Biliverdin reductase B TGC ACA AGG TGC TGC 
GGG AAT CAG

CTG TGT CCG TCG TAC 
TCA TCG GTG 24 24 190 cd

M59040 CD44 CD44 (hyaluronan 
receptor)

AGA TAA AGA CCA TCC 
AAC AAC TTC TAC TC

CTC CTG ATA AGG AAC 
GAT TGA CAT TAG A 29 28 206 cd

NM 006869 Centa-1 Alpha Centaurin TAC ACT CTG GGC GTC 
TTC ATC

GTC AGC ACA AAC TTC 
CGG CTC 21 21 361 d

X51688 CyclinA2 Cyclin A2 GGC ACT GCT GCT ATG 
CTG TTA GCC TC

TTG TCC CGT GAC TGT 
GTA GAG TGC TAA A 26 28 342 cd

NM_016594 FKBP-11 FK506 binding protein 
precursor

GAA CGA GGG TCC TAG 
CTG CC

ATG TCG AGA AGA CTC 
TGC TC 20 20 379 d

NM 001496 GFRo3 GDNF family receptor 
alpha 3

CAT CTA TTG GAC CGT 
TCA CC

CCT TCT CGA AGA AAG 
TGA GC 20 20 275 d

D55696 LGMN Legumain CAG TGA TCG TGG CAG 
GTT CAA ATG G

TCG GGA CTC CCT GAT 
AGA CAT CTG 25 24 210 cd

NM 000900 Matrix
GLA Matrix Gla protein CCG CCT TAG CGG TAG 

TAA CTT TGT G
CCA TAA ACC ATG GCG 
TAG CGT TCG 25 24 229 cd

NM 002539 ODC Ornithine 
decarboxylase 1

AGA TCA CCG GCG TAA 
TCA ACC CAG

TAC ATA AAG GTC TGC 
TCA CTC GAC TC 24 26 199 cd

L48513 PON2 Paraoxonase 2 ACT TGA GCT GGA TAC 
ACT GG

CAC AAT ACA AGG CTC 
TGT GG 20 20 274 d



Table 1 continued

Gene Ref
Gene
Name Gene Name (full)

Forward
Primer
5’ to 3’

Reverse
Primer
5’ to 3’ Fw
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NM 006238 PPAR-8
Peroxisome 
proliferative activated 
receptor, delta

CAG GAG CGG GAG AAT 
TCTGC

GAA GTG CAT GCT GTG 
GTC CC 20 20 458 d

NM 005037 PPAR-y
Peroxisome 
proliferative activated 
receptor, gamma

CAA GAC AAC CTG CTA 
CAA GC

CCT CAG AAT AGT GCA 
ACT GG 20 20 264 d

NM 004219 PTTG1 Pituitary tumor- 
transforming 1

ATG CGG CTG TTA AGA 
CCT GC

CTG GAT AGG CAT CAT 
CTG AGG 20 21 348 d

NM 006627 POP4
POP4 (processing of 
precursor, S. 
cerevisiae) homolog

GCA GAG ATA CAG CCT 
TTT CC

GAA CAC GCA GTT TAG 
CTT GG 20 20 274 d

NM 006423 RabAcl Rab acceptor 1 
(prenylated)

AGA AGG ACC AGC AGA 
AAG ATG C

CAG GAA CAC GAA CAC 
ATA GTT G 22 23 239 d

AB004903 STAT-i2 ST AT induced ST AT 
inhibitor-2

AGC TGG ACC AAC TAA 
TCT TCG AAT CG

GGT GAG CCT ACA GAG 
ATG CTG CAG 26 24 244 cd

NM 013351 T-Box21 T-Box21 AGC TAT GAG GCT GAG 
TTT CG

AAT CTC AGT CCA CAC 
CAAGG 20 20 261 d

NM 004804
WD40
protein
Ciaol

WD40 protein Ciaol TGC CAG CTT TGA TGC 
TAC CAC TTG C

AAC ACT GAC ACA TTC 
ATA CTC ATC CTC 25 27 202 cd

NM001145 Angiogenin Angiogenin TGG CCT AAT TTG GTG 
ATG CTG TTC TTG

TGC CAG CTT TGA TGC 
TAC CAC TTG C 27 24 310 cd

J02853 CK2 Casein Kinase II, 
alpha 1 polypeptide

GGC CTT GGA TTT CCT 
GGA CAA ACT G

AAT CAC TGG TGA GCC 
TGC CAG AGG 25 24 232 cd



Table 1 continued

Gene Ref
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Name Gene Name (full)
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Primer
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NM 005451 Enigma Enigma (LIM domain 
protein)

TGT CAG ATC AAC CTG 
GAA GG

CAG GTT TAT TGT GGC 
ACT GG 20 20 322 cd

NM 004839 Homer2 Homer, neuronal 
immediate early gene, 2

TCG GAT CAT CAG TGT 
GGA CG

TGG TCA GCC GTG CAT 
TGC TC 20 20 428 d

NM 006855 KDEL-3 KDEL3 GAC AGT GAG AAT GAC 
ACA TTC C

CTG AAG GTC CTC AGA 
TTG GC 22 20 397 cd

U18018 PEA3 Ets variant 4 (PEA3) TGA GCT GCT CAC CGG 
AGT CAT TGG

CCT GCC AGT ATG AAG 
TTG GGA AGC 24 24 217 cd

NM 000638 Vitronectin Vitronectin CAT GGC TGG CCG CAT 
CTA CAT CTC AG

GAG CGA TGG AGC GTG 
GGT AGG GAG 26 24 353 cd

NM_005264 GFRal GDNF family receptor 
alpha 1

AAC ATC CCT AAC GAG 
CAT CCG

AGC TCA GCA TGC AGC 
GAT 21 18 420 d

NM 003881 WISP2 WNT1 inducible 
signaling pathway 
protein 2

GGT CTG TCT GGA CGA 
GTATGG

GGA CTG CTT GTC CCA 
TCT CTT GCC 21 24 191 cd

NM_003976 Artemin Artemin TTC ATG GAC GTC AAC 
AGC

AGG CAC TTT CAA CCA 
AGC 18 18 478 d

NM 001495 GFRa2 GDNF family receptor 
alpha 2

AAG CTA CGC AGA CAA 
GAA CAG C

AGG GTC CAG AGA GAA 
AAA CAC C 22 22 279 d

NM 022139 GFRa4 GDNF family receptor 
alpha 4

GGC ATC TTG GTT GTA 
AGT CC

GCT ACA ATG GTG GGT 
AAT GC 20 20 264 d

NM 006607 PTTG2 Pituitary tumor- 
transforming 2

TGT GAA AAT GCC CTC 
TCC

GAC ATA TCC CCA AAG 
AGT ACG G 18 22 291 d



Table 1 continued
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NM 021000 PTTG3 Pituitary tumor- 
transforming 3

AAA CGA AGA ACC AGG 
CAT CC

CAG GTC AAA ACT CTC 
GAA GC 20 20 361 d

NM 004339 PBF

Pituitary tumor- 
transforming 1- 
binding/ interacting 
factor

CTC TTC TCA GTT TGT 
GAA ACG CTA A

CTG CCC TGG GAG AAT 
GAC A 25 19 108 d

BC004257 RET RET proto-oncogene AGA GGG CTC ACA AGA 
CAC ATT TGT GCC

AGG TGT AGC AGT CCT 
TGG TCA TTG TCA T 27 28 346 cd



Table 2. Optimised PCR conditions for selected genes and associated genes used in study.

Gene Accession
number

Annealing
temperature

/°C

Cycle
number

B-Actin 
co Amplification 

in PCR
Biliverdin reductase B NM 000713 55 23 Y

CD44 M59040 55 35 N

centaurin, alpha 1 NM 006869 55 26 Y

Cyclin A2 X51688 55 27 Y

FK506 binding protein precursor NM_016594 55 27 Y

GDNF family receptor alpha 3 NM_001496 62 27 Y

Legumain D55696 55 27 Y

Matrix Gla protein NM 000900 55 29 N

Ornithine decarboxylase 1 NM 002539 55 27 Y

Paraoxonase 2 L48513 55 30 N
Peroxisome proliferative 
activated receptor, delta NM 006238 65 29 N

Peroxisome proliferative 
activated receptor, gamma NM_005037 55 29 Y

Pituitary tumor-transforming 1 NM_004219 55 26 Y

POP4 NM 006627 55 33 N

Rab acceptor 1 NM 006423 60 26 N

ST AT induced ST AT inhibitor-2 AB004903 63 30 N

T-box21 NM 013351 55 35 N

WD40 protein Ciaol NM 004804 62 26 N

Angiogenin NM001145 63 36 N

Casein kinase 2 J02853 55 27 Y

Enigma NM 005451 55 25 Y

Homer2 NM 004839 55 26 Y

KDEL NM 006855 55 26 Y

PEA3 U18018 58 35 N

GDNF family receptor alpha 1 NM 005264 55 28 Y

WISP2 NM 003881 60 28 N

Artemin NM 003976 57 34 Y

GDNF family receptor alpha 2 NM 001495 64 32* N

GDNF family receptor alpha 4 NM 022139 55 35* N

Pituitary tumor-transforming 2 NM 006607 59 40 N

Pituitaiy tumor-transforming 3 NM 021000 
(AF095289) 63 34* N

Pituitary tumor-transforming 1 -  
binding factor/ interacting factor NM 004339 55 26 Y
RET proto-oncogene BC004257 55 30 N

PCR reaction performed in 15% glycerol to enhance specific gene product.



reports were generated using Atlaslmage software, version 2.7, and reports were normalised 

using AtlasNavigator version 2.0, from BD Biosciences/ Clontech (Hampshire, UK), and Gene 

analysis was performed using online software GeneSifter (GeneSifter.url, 2006) from VizX 

Labs (Washington, USA).

2.1.5 SDS PAGE/ Immunoblotting

Materials and Reagents: Rainbow marker (range 10-250kDa) was purchased from 

Amersham (Buckinghamshire, UK). Bromophenol blue was supplied by BDH Chemicals Ltd 

(Poole, UK). NaCl, Methanol and acetic acid were from Fisher Scientific (Loughborough, UK). 

Kodak Autoradiography film was supplied by GR1 (Rayne, UK). PBS and DTT were from 

Invitrogen (Paisley, UK). Signal detection using Perbio Chemiluminescent Super Signal West 

Pico/ Dura/ Femto was supplied from Pierce and Warner (Cheshire, UK). Primary antibodies 

were diluted in a solution of Western Blocking reagent as supplied by Roche Diagnostics 

(Mannheim, Germany). Aprotinin, leupeptin, phenylmethylsulphonylfluoride (PMSF), 

phenylarsine oxide (PAO) , sodium orthovanadate (NaaVO,*), sodium fluoride (NaF), sodium 

molybdate (Na2Mo0 4 ), acrylamide/ bisacrylamide 30%v/v, ammonium persulphate (APS), 

tetramethylethylenediamine (TEMED), Tris-HCL, EDTA, NaCl, SDS, glycerol, glycine, 

Trizma base, Trizma-HCL, Tween-20, bovine serum albumin (BSA) and Ponceau S were from 

Sigma (Dorset, UK). BioRad protein assay kit (DC) [kit contents: reagent A, reagent B, 

substrate S] was supplied by BioRad Laboratories (Hertfordshire, UK). Skimmed milk powder 

was obtained as commercially available Marvel. The mouse anti-human monoclonal antibody 

to pituitary tumour-transforming gene 1 (PTTG1) (ncl-securin) was from Novo Castra 

(Newcastle upon Tyne, UK) (stock concentration 1 mg/ml stored at -20°C). The mouse anti

human monoclonal antibody to Glial cell-derived neurotrophic factor (GDNF) receptor alpha 3 

(GFRa3) (mab6701) was from R&D Systems (Abingdon, UK) (stock concentration I mg/ml 

stored at -20°C). The mouse anti-human monoclonal antibody for RET proto-oncogene (ref: 

abl840) (supplied as tissue culture supernatant and stored at -20°C). The mouse anti-human 

monoclonal antibody to PEA3 (sc-113) was from Santa Cruz (CA, USA) (supplied as 0.2mg/ml 

concentration and stored at 4°C).

Equipment: Stuart Scientific STR6 platform rocker used was from Bibby Sterilin (UK). 

Centrifugation was performed using an IEC Micromax RF microcentrifuge supplied by Thermo 

Electron Corporation (Berkshire, UK). The Spectrophotometer (CE2041) was from Cecil 

(Cambridge, UK). The autoradiograph developer/ fixer was from XO-Graph Imaging System 

(Tetbury, UK). Autoradiography cassettes (Hypercassette) were obtained from Amersham 

Biosciences (Buckinghamshire, UK). Nitrocellulose transfer membrane (Protran 0.2pM) and 

filter paper (grade 3) were supplied by Whatman (Maidstone, UK). All tissue culture and cell
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lysis was performed in a MDH intermed vertical circulating class 11 biological safety cabinet 

(Bioquell, Hampshire, UK). Electrophoresis and Western blotting equipment, and the BioRad 

GS-700 scanner system were supplied by BioRad (Hertfordshire, UK). Tissue culture 

plasticware was as listed in 2.1 otherwise supplied by Nalgene Nunc International (Roskilde, 

Denmark).

2.1.6 Immunocytochemistry

Materials and Reagents: Diaminobenzidine (DAB) substrate chromagen system 

(K3468; DAB+ chromagen system (containing 3,3’-diaminobenzidine chromagen solution)) 

and its substrate buffer solution hydrogen peroxide (H2 O2 ) (pH7.5], mouse/ rabbit Envision 

horse radish peroxidase (HRP) DAB secondary system, were supplied by DAKO Cytomation 

(Cambridgeshire, UK). Xylene, Ethanol, H20 2 (30%), NaCl, di-potassium hydrogen 

orthophosphate (K2H P04; anhydrous), and potassium di-hydrogen orthophosphate (KH2P 0 4) 

were purchased from Fisher Scientific (Loughborough, UK). Sodium citrate, methyl green, 

Tween-20, Protease (from Streptomyces griseus, P6911), and DPX mountant medium (Fluka) 

were from Sigma (Dorset, UK). The rabbit anti-human polyclonal antibody for PTTG1 (34- 

1500) was from Zymed Laboratories (San Francisco, USA) (stock concentration 0.25mg/ml 

stored at 4°C). The rabbit anti-human polyclonal antibody for GFRa3 (ab8028) (stock solution 

0.5mg/ml stored at 4°C) and the mouse anti-human monoclonal antibody to Vitronectin 

(abl3413; VN58-1) (stock at lmg/ml stored at -20°C) was from Abeam (Cambridge, UK). The 

mouse anti-human monoclonal antibody to PEA3 (sc-113) was from Santa Cruz (CA, USA). All 

other antibodies used are listed in 2.1.5.

Equipment: The BH2 Research Microscope and DP 12 digital camera were from 

Olympus (London, UK). Incubation ovens were from Heraeus (Cheshire, UK). Commercially 

available Microwave (950W) was from Proline and pressure cooker from Prestige (UK). Coated 

and plain glass slides, and also coverslips were from Fisher Scientific (Loughborough, UK). 

Snowcoat extra adhesive slides were from Surgipath (Peterborough, UK). The Hallandal jars & 

other immunocytochemical glassware were supplied by RA Lamb (Eastbourne, UK). Vertical 

biological safety cabinet/ fume hood was from APMG (Manchester, UK). The PAP pen was 

supplied by DAKO Cytomation (Cambridgeshire, UK).
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2.1.7 Gene Knockdown Studies Using siRNA

Materials and Reagents: Phenol red-free DCCM media (without glutamine) was 

supplied by Biological Industries (Staffordshire, UK). DharmaFectl transfection reagent (T- 

2001-01), siGlo RISC-Free siRNA (D-001600-01-05), siControl Lamin A/C siRNA (human/ 

mouse/ rat; D-001050-01-05), Missense siRNA siControl Non-targeting siRNA# 1, PTTG1 

(siGENOME SMARTpool) siRNA (M-004308-01), GFRo3 (siGENOME SMARTpool) siRNA 

(M-007915-01), and 5x siRNA buffer were supplied by Dharmacon (Denver, USA). 

RNase/DNase-free water, sucrose and glycerol were from Sigma (Dorset, UK). Vectashield 

mountant medium for fluorescence (HI300) containing 4,-6-Diamidino-2-phenylindole (DAPI) 

was from Vector Laboratories Inc. (CA, USA). Clear nail-vamish (containing lycra) 

manufactured by Rimmel was commercially available. Ki67 (Mibl clone; M7240) antibody was 

supplied by DAKO Cytomation (Cambridgeshire, UK). Xylene, Ethanol, NaCl and 

Formaldehyde (37%) were from Fisher Scientific (Loughborough, UK). Apoalert Mitochondrial 

Membrane Sensor Kit was supplied by Clontech/ BD Biosciences (UK). All antibodies used for 

PTTG1 and GFRa3 are as listed in section 2.1.6 and other reagents not listed are as 2.1.1-2.1.6.

Equipment: All tissue culture/ siRNA transfections were performed in a MDH intermed 

vertical circulating class II biological safety cabinet (Bioquell, Hampshire, UK), and cells 

maintained in a BB16 Function Line cell incubator (Haraeus, Cheshire, UK). Cells in culture 

were observed using a Nikon eclipse TE200 phase-contrast microscope and photographed using 

a Nikon 35mm F70 SLR camera (Nikon, London, UK). Apoptosis assay fluorescence was 

observed using an Olympus BX51 research fluorescence microscope (London, UK). Cells 

stained with siGlo/ DAPI for evaluation o f the siGlo assay were observed/ photographed using a 

Leica DMIRE2 Inverted Research fluorescent microscope with Improvision digital image 

capture software. All other equipment not listed are as in 2.1.1-2.1.6.
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2.2 Methods

2.2.1 Cell Culture

2.2.1.1 Routine Maintenance o f MCF-7 cells

The MCF-7 cell line was routinely passaged (as with all cell culture procedures) within 

a class II biological safety cabinet, and maintained in T75 flasks in RPMI 1640 medium 

supplemented with 5 % FCS, (10 iU/ml-100 pg/ml penicillin-streptomycin, and 2.5 pg/ml 

fungizone. Cells were grown as monolayers in T75 cell culture flasks at 37°C in a humidified 

atmosphere with 5 % C 0 2 Cell culture medium was changed at approximately 3 days, and cells 

were routinely passaged by trypsinisation after reaching approximately 70 % confluency with 

trypsin/EDTA (0.05 % (v/v)/ 0.02 % (v/v)). Trypsinisation was performed by the replacement 

o f  cell culture media with 10ml trypsin solution (0.2g/l EDTA, 0.5g/l bovine trypsin in PBS) 

followed by 5 minutes incubation at 37°C to allow cell detachment. An equal volume o f media 

was then added to the trypsinised cells and the cell suspension was centrifuged at 1350g for 5 

minutes at room temperature. The pellet was then resuspended in 10ml medium ensuring 

homogenous suspension, and the cells were seeded into new T75 flasks at 1:10 dilution for a 

total volume o f 15ml.

2.2.1.2 MCF-7 cells: experimental studies

For experimental studies, MCF-7 cell monolayers were harvested by trypsinising as 

2.2.1.1. The cell suspension washed with PBS, and resuspended into media as above, with the 

exception o f using phenol red-free RPMI and 5% charcoal-stripped steroid-depleted FCS 

[csFCS]; see Appendix I). Prior to seeding, cells were counted using a Coulter Counter (see 

2.2.1.8). Cells were seeded at a density o f  approximately lxlO6 cells/ dish into 150mm plastic 

dishes in such medium. Cell culture medium was changed at day 4 o f seeding, and the cells 

harvested at approximately 70% confluency at day 7. Where MCF-7 cells were treated with 17- 

(3-oestradiol, cells were seeded and grown as above, but with the inclusion o f 10';M 17-(3- 

oestradiol (see Appendix for preparation o f tissue culture solutions) at day 4 o f seeding, for a 

total o f  3 days o f treatment. Where MCF-7 cells were treated with Gefitinib, cells were seeded 

and grown as above with the inclusion o f lO^M of the inhibitor at day 1 o f seeding, for a total 

o f  4 or 7 days o f treatment.
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2.2.1.3 TamR Cells

Cells with acquired resistance to tamoxifen were generated for study at the TCCR as 

described previously by Knowlden et al., (2003). Briefly, parental MCF-7 cells were cultured in 

phenol red-free RPMI supplemented with 5% csFCS, in the presence of (10'7M) 4-OHT until 

around 3 months. At this point, following a growth inhibitory phase, the growth rate increased 

in the presence of the antioestrogen, where upon the cells were deemed to be resistant to the 

inhibitor. Cells were stored at -80°C until required. The cells were then seeded and grown under 

experimental conditions as parental MCF-7 cells, but in the continual presence of 10'7M 4-OHT 

(see Appendix I for preparation of tissue culture solutions). Cells were again grown to -70% 

confluency, cell culture medium changed at day 4, again including 4-OHT.

TamR cells were verified as resistant to inhibition by tamoxifen through cell growth 

assays, and shown to be comparable to cells at the time of derivation (Knowlden etal., 2003). 

TamR cells at equivalent passage number to those used within this study were cultured in T75 

flasks as described in 2.2.1.3 to approximately 70% confluency before being harvested, 

trypsinised (see 2.2.1.1) and counted (see 2.2.1.8). Cells were then seeded into 24 well plates 

at a density of 20,000 cells/well in phenol red-free RPMI, supplemented as described in section

2.2.1.3, either in the absence or presence of the antioestrogen for up to 16 days (performed by 

Tissue Culture Unit at TCCR).

Where TamR cells were treated with Gefitinib, cells were seeded and grown as above 

with the inclusion of lO^M of the inhibitor at day 1 of seeding, for a total of 4 or 7 days of 

treatment.

2.2.1.4 FasR Cells

Cells with acquired resistance to Faslodex were generated for study at the TCCR as 

described previously by McClelland et al. (2001). Briefly, parental MCF-7 cells were cultured 

in phenol red-free RPMI supplemented with %5csFCS, in the presence of 10‘7M Faslodex until 

around 3 months when the initial growth inhibitory effect of the agent was overcome, where 

upon the cells were considered resistant to the inhibitor. These were stored at -80°C until 

required. Cells were seeded and grown for experiments as MCF-7 cells, but in the presence of 

10'7M Faslodex (see Appendix I for preparation of stock solutions). Cells were again grown to 

-70% confluency, cell culture medium changed at day 4, again including Faslodex.

FasR cells were verified as resistant to inhibition to Faslodex through cell growth 

assays, and shown to be comparable to cells at the time of derivation (McClelland etal., 2001). 

FasR cells at equivalent passage number to those used within this study were cultured in T75 

flasks as described in 2.2.1.4 to approximately 70% confluency before being harvested, 

trypsinised (see 2.2.1.1) and counted (see 2.2.1.8). Cells were then seeded into 24 well plates

38



at a density o f 20,000 cells/well in phenol red-free RPMI, supplemented as described in section 

2.2.1.4, either in the absence or presence o f the antioestrogen for up to 12 days (performed by 

Tissue Culture Unit at TCCR).

Where FasR cells were treated with Gefitinib, cells were seeded and grown as above 

with the inclusion o f  lO^M o f the inhibitor at day 1 o f  seeding, for a total o f 4 or 7 days o f 

treatment.

2.2.1.5 FasR-Lt Cells

A further Faslodex-resistant model, FasR long-term (FasR-Lt) was generated for study 

at the TCCR as described previously by Nicholson etal., (2005) from the continuous culture o f 

FasR cells (section 2.2.1.4) for a further 30 passages when stable phenotypic/ morphological 

changes were noted (eg. gain o f fibroblastic morphology, loss o f ER) (Nicholson eta!., 2005). 

These were stored at -80°C until required. Cells were seeded and grown for experiments as 

FasR cells (2.2.1.4). Cells were again grown to -70%  confluency, cell culture medium changed 

at day 4, again including Faslodex.

2.2.1.6 X-MCF-7 cells

Cells with acquired resistance to stringent oestrogen deprivation conditions were 

generated at the TCCR as described previously (Nicholson et al., 2004; Staka et al., 2005). 

Briefly, for the generation o f  X-MCF-7 cells, parental MCF-7 cells were cultured in phenol red- 

free RPMI medium containing 5% charcoal-stripped, heat-inactivated FCS (termed ‘X-medium’ 

medium; see Appendix I for X-medium preparation), which is believed to severely deplete 

oestrogens and also exogenous growth factors. X-MCF-7 cells were generated by continual 

culture o f MCF-7 cells in x-medium when around 4 months, the initial marked growth 

inhibitory effects o f deprivation were overcome, and growth rate returned to that o f parental 

cells prior to treatment. Cells were stored at -80°C until required. Cells were grown to -70%  

confluency for experimental work, with cell culture X-medium changed at day 4.

2.2.1.7 TamR/TKl-R cells

The cell line with acquired resistance to tamoxifen and the EGFR-TK1 gefitinib was 

developed at the TCCR as described previously by Jones et al. (2004). Briefly, this was 

achieved by the continual exposure o f TamR cells (section 2.2.1.3) to the presence o f 10 7M 4- 

OHT and lO^M gefitinib for 6 months, in phenol red-free RPMI supplemented with 5% csFCS. 

Following the inhibitory phase, cell growth returned to that before treatment. Cells were stored 

at -80°C until required. For experiments, cells were seeded and maintained in culture
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conditions as listed for MCF-7 cells but in the presence of 10‘7M tamoxifen and lO^M 

Gefitinib. Cells grown to -70% confluency (for 7 days), with media changing at day 4.

2.2.1.8 Cell Counting

Subsequent experimental work on all cell lines using 6, 12 or 24 well plates involved 

cell counting prior to seeding. After trypsinisation (see 2.2.1.1) a volume of cell suspension was 

drawn into a 5ml syringe with a 25gauge needle. A homogeneous suspension was achieved by 

the expelling and drawing in of the suspension through the needle. A volume of 4ml was added 

to the Coulter Counter receptacle containing 6ml of isoton solution (see Appendix I for 

constituents of solution), with subsequent counting until a constant cell number value was 

achieved, using a Beckman Coulter Counter. An average cell count from 2 counts per sample 

was determined.

Note: all experiments were performed on cells within a window o f approximately 20 passages 

to ensure the characteristics o f  the cell lines remained consistent.

2.2.2 Optimisation of RNA Extraction for Plastic Microarray Hybridisation

In order to maximise yield of RNA and to obtain microarrays with low background and 

high signal strength, a number of RNA extraction procedures were evaluated. In methods where 

RNA yield and quality was deemed to be sufficient for subsequent DNase treatment and array 

hybridisation, the resultant RNA was used to hybridise to Atlas Plastic Human Trial 

Microarrays in the first instance (see 2.2.9 and Fig.4). Initial hybridisations studies were 

performed on these arrays until an optimised extraction method (a combination o f Tri Reagent 

extraction, DNase treatment, Qiagen column clean-up, poly A+ RNA selection) that showed 

suitable signal/ background intensity on the arrays was obtained, after which the larger Atlas 

Plastic Human 12K test microarrays were utilised routinely (see Fig.5).

2.2.2.1 Tri Reagent Extraction

Tri Reagent is based on the single-step total RNA isolation reagent developed by 

(Chomczynski and Sacchi, 1987), which in turn is a modification of the Guanidinium 

Thiocyanate method for isolating intact RNA from Chirgwan et al. (Chirgwin et al., 1979). The 

Tri Reagent RNA isolation method is reported to allow quick, economical, and efficient 

isolation of total RNA.

Cell lines were grown in 150mm dishes under experimental conditions as described in

2.2.1.1 to 70% confluency. For harvesting, cells were processed in batches of 4 dishes in a fume 

hood. The medium was aspirated and cells washed twice with 10ml of prewarmed (37°C) PBS.
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This was then removed and immediately replaced with 1.5ml of Tri Reagent per dish. After 

ensuring complete coverage o f the dish with the reagent, cells were scraped into a 50ml Falcon 

tube and placed on ice. This was repeated until cells from a total o f 6 to 8 dishes were collected 

in a tube. The Tri Reagent/cell suspension were either stored at -80°C or processed immediately 

for RNA extraction.

The cell suspension was vortexed, transferred to a 35ml polypropylene tube, followed 

by the addition o f 0.2ml o f chloroform per ml Tri Reagent. This was briefly vortexed and placed 

on ice for 10 minutes. The resulting mixture was centrifuged at 1 lOOOg for 15 minutes at 4°C in 

a Sorvall IC5B centrifuge. The subsequent aqueous layer was transferred into a clean 

polypropylene tube and 0.5ml o f  isopropanol added per ml o f Tri Reagent. This was mixed by 

gentle inversion and stored at -20°C for at least 20 minutes. After centrifuging as above, the 

supernatant was carefully removed and discarded. The pellet was washed by the addition of 

about 4ml o f  75% ethanol and centrifuged as above. The pellet was then air dried after removal 

o f  supernatant. The pellet was subsequently solubilised in 30 to 50pl o f  DNase/RNase-free 

water and the RNA concentration determined (see 2.2.3), followed by visual evaluation o f the 

RNA quality by agarose gel electrophoresis (see 2.2.4). The RNA was then subject to DNase 

treatment (see 2.2.5) and Qiagen RNA clean-up (see 2.2.6) (see also Fig.6)

2.2.2.2 Clontech Nucleotrap mRNA Purification

This method is reported to allow the improved purification o f nucleic acid through 

binding to silica beads in a chaotrophic salt solution (Clontech Nucleotrap, 2006). Following 

binding o f  the RNA to the beads (in this instance previously extracted by Tri Reagent, see 

2.2.2.1), the beads are washed in the spin column, and the RNA subsequently eluted (see also 

Fig.6).

The procedure was performed according to the Clontech Nucleotrap mRNA purification 

kit protocol. An equal volume o f 2xRMl buffer was added to 150 to 200pg o f  total RNA from 

Tri Reagent extraction, at lpg/ul dilution. NucleoTrap mRNA suspension beads were 

resuspended by vortexing and added to the RNA at 15 pi per 100 pg o f RNA. After mixing, the 

suspension was heated at 68°C and incubated at room temperature for 10 minutes with tube 

inversion every 2 minutes. The tubes were centrifuged at 5000 rpm for 15 seconds, and then 

centrifuged at MOOOrpm for 5 minutes. The supernatant was discarded and the resultant pellet 

dissolved in 0.6ml o f buffer RM2. The suspension was transferred to a NucleoSpin microfilter 

column and centrifuged at 5000rpm for 15 seconds, then MOOOrpm for 2 minutes. After 

discarding the flow through, 0.5ml o f buffer RM3 was added to the filter within the column and 

beads were resuspended by pipetting. The NucleoSpin column was centrifuged at MOOOrpm for 

2 minutes and the flow through discarded. The above wash step was repeated by the addition o f
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Figure 4. Atlas Plastic 12K Trial Microarray Layout. The layout of the Atlas Plastic Trial Microarray 
is a repeating block of 9 spots as shown in the enlarged inset. Each of the 9 spots in a block contain the 
same oligonucleotide. This block pattern is repeated 96 times (labelled A -0  by 1-23). Blocks labelled 
“C” contain spots corresponding to the cDNA Synthesis Control Blocks labelled “H” contain 
housekeeping genes. Each block labelled “L” contains a different phage >DNA sequence and serves as a 
negative control. From (from www.clontech.com).
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Figure 5. Atlas Plastic 12K Trial Microarray Layout. The layout of the Atlas Plastic 12K Microarray 
is a repeating block of 64 spots (labelled a-h by 1-8). This block pattern is repeated 384 times (labelled 
A-P by 1-24). Blocks labelled “C” consist of identical sets of control spots (enclosed in a dotted box) 
plus experimental genes (columns g & h). The enlarged inset diagrams show a sample experimental block 
(A2) and a sample control block (HI2). Each long oligonucleotide is printed in duplicate side-by-side 
spots. Black spots at positions al & bl of each experimental block (and at positions 
al/bl/a5/b5/e7/f7/e8/f8 of the control blocks) correspond to the cDNA Synthesis Control. The white 
circles in the control block correspond to negative controls (various phage ^sequences). The 
housekeeping genes are outlined with a solid line in the control block, (from www.clontech.com)
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0.5ml buffer RM3, bead resuspension and centrifugation. After discarding the flow through, the 

column was centrifuged at MOOOrpm for 1 minute to remove the wash buffer. To elute RNA, 

60|il of prewarmed (68°C) RNase-free water was added to the column, and the beads 

resuspended. The column was incubated at 68°C for 7 minutes, and then centrifuged at 

MOOOrpm for lminute. RNA concentration was determined from the eluate (see 2.2.3).

2.2.2.3. Poly A+ mRNA Selection

Two methods were also used to extract poly A+/ mRNA from total, Tri Reagent 

extracted RNA in an attempt to obtain high hybridisation signal intensity with low background 

(Fig.6).

2.2.2.3.1 Poly A+ RNA Selection using oligo(dT) Cellulose Beads

This method of polyadenylated (PolyA+) RNA extraction was based on that described 

by Aviv and Leder (1972).01igo (dT)-cellulose is an affinity matrix used for the isolation of 

polyadenylated mRNA. The matrix consists of oligo (dT)25 covalently coupled to a cross- 

linked cellulose bead. The large porous surface area of the beads permits a high density of RNA 

binding (Gilham and Rosenberg, 1971). The protocol uses a lysis buffer, a high salt wash buffer, 

and a low salt elution buffer. Two variations, method A or method B, of this protocol were 

attempted using the solutions as listed in table 3.

Table 3. buffers for poly A+ RNA selection using oligonucleotide(dT) beads.

Lysis buffer High salt wash buffer Low salt elution buffer

Method A 0.5M NaCl, 0.2% SDS, 

0.1MEDTA, lOmM 

TrisHCL pH7.6

0.5M NaCl, 0.1MSDS, 

0.1MEDTA

lOmM TrisHCL; pH7.6

Method B 0.02%SDS, 0.1M 

EDTA, lOmM TrisHCl

0.5M NaCl, 0.02%SDS, 

5mM EDTA, lOmM 

TrisHCl

5mM EDTA, lOmM 

TrisHCl

In a 15ml tube, 10ml of lysis buffer A or B was added to 200pg of RNA, previously 

extracted using Tri Reagent (see 2.2.2.1). This was incubated at 65°C for 12minutes followed 

by the addition of 50mg of oligo(dT)cellulose which was mixed by inversion, and further 

incubated at 65°C for 15 minutes. The tube was centrifuged at 2500rpm for lOminutes at room 

temperature. After removing the supernatant, 10ml of high salt wash buffer A or B was added to 

the resultant pellet and mixed by inversion. The tube was centrifuged and this wash step 

repeated. After discarding the supernatant, 1.4ml of low salt (elution) buffer was added to the
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pellet and the mixture transferred to a sterile 1.5ml tube. The tube was centrifuged at lOOOrpm 

for 3minutes, the supernatant discarded, and 140pl (1/1 Oth volume) sodium acetate, pH5.2, and 

3.5ml (2.5x volume) 100% ethanol was added to the pellet, which was subsequently stored 

overnight at -20°C. After transferring to a polyallomer centrifuge tube, the mixture was 

centrifuged at 40,000ipm for 40 minutes at 4°C. After removing the supernatant, 1ml o f 75 % 

ethanol was added, and the pellet washed and transferred to a 1.5 ml tube. This was centrifuged 

at 14000 rpm for 10 minutes at 4°C followed by the addition o f 200pl o f TE buffer (lOmM 

TrisHCL pH7.4, ImM EDTA pH8) to the resultant pellet, and stored overnight at -20°C.

Ethanol precipitation was then performed to further concentrate the RNA. A volume o f 

20pl (1/1 Oth volume) sodium acetate and 500pl (2.5x volume) 100% ethanol was added to the 

tube, and centrifuged at 14,000rpm for lOminutes at 4°C. After removing the supernatant, 60jil 

o f  100% ethanol was added and the tube centrifuged as above. The supernatant was removed 

and the resultant pellet briefly air-dried and solubilised in lOpl DNase/RNase-ffee water.

2.2.2.3.2 Polv A+ RNA Selection using olieofdT) Cellulose Matrix

This method is based on the protocol as described in Sambrook et al., (1989) which 

utilises 01igo(dT)cellulose matrix packed effectively as a column for the purification o f mRNA 

from total RNA. Glass wool and all glassware and plasticware were silanised by treatment with 

dimethyldichlorosaline in the fume hood, which involved brief soaking in the reagent, draining 

and air drying, followed by rinsing with deionised water before use.

An oligo(dT)cellulose column was prepared by packing a sterile 2ml syringe with a 

lcm  bed volume o f glass wool, followed by the addition o f  oligo(dT)cellulose, which had been 

prepared by adding lOOmg o f oligo(dT)cellulose to 5ml o f 0.1M NaOH. The column was 

prepared by the addition o f 5 column volumes o f buffer 1 (0.1M NaOH, 5mM EDTA), followed 

by 10 column volumes buffer2 (lOmM TrisHCl, ImM EDTA). The column was washed with 

lx  column loading buffer (20mM TrisHCl (pH7.6), 0.5M NaCl, ImM EDTA (pH8), 0 .1%SDS) 

until the pH o f the effluent was less than 8.0.

lmg o f total RNA was heated to 65°C for 5 minutes, then rapidly cooled in ice. An 

equal volume o f 2x column loading buffer (40mM TrisHCl (pH7.6), 1M NaCl, 2mM EDTA 

(pH8), 0.2%SDS) was added and the RNA solution applied to the prepared column. The flow

through was collected in 0.5ml fractions in 1.5ml tubes. When all the RNA had entered the 

column, 1 column volume o f lx column-loading buffer was added to the column and the flow

through was collected.

When all the solution had eluted, the eluate was heated to 65°C for 5min, reapplied to 

the top o f the column, and the eluate collected. The column was washed with 5 column volumes 

o f  lx  column-loading buffer, followed by collection o f 1ml eluate fractions. Poly A+RNA was
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eluted from the oligoDT-cellulose column by the addition of 3ml of elution buffer (lOmM 

TrisHCl pH7.6, ImM EDTA pH8, 0.05% SDS). The eluate was collected in 1ml fractions and a 

preliminary concentration of RNA determined (2.2.3).

The eluted Poly A+RNA was mixed with 3M sodium acetate (pH 5.2) to a final 

concentration of 0.3M followed by 2.5 volumes of 100% ethanol and mixed well. This was 

stored on ice for 30 min and the poly A+RNA recovered by centrifugation at 10,000rpm for 

15min at 4°C. After carefully discarding the supernatant, the pellet was washed with 0.2ml of 

70% ethanol and centrifuged as above. The supernatant was removed and the pellet was air 

dried, dissolved in 20pl of DNase/RNase-free water, and the final RNA concentration 

determined.

2.2.2.4 Atlas Pure Total RNA Labelling System:

This method permits the purification of total RNA, Poly A+RNA enrichment. The RNA, 

after isolation, is incubated with biotinylated OHgo(dT), which binds the poly A+ RNA 

fraction. Then, once the Streptavidin Magnetic Beads (with affinity for biotin) are added, the 

polyA+ fraction can be collected by magnetic separation. The resultant complex can be used 

directly in any Atlas Microarray probe labelling protocols (see also Fig.6).

2.2.2.4.1 Cell Lvsis and Total RNA Extraction:

Cell lines were grown in 150mm dishes as described in 2.2.1. For harvesting, cells were 

processed in batches of 4 dishes in a fume hood The medium was removed and cells washed 

with about 10ml of PBS. After removing the PBS, 6ml of denaturing solution (as supplied by 

Clontech/ BD Biosciences) was added uniformly across one dish and cells scraped into the next 

dish until the batch was processed. The cell lysates were stored on ice in a 50ml Falcon tube.

The cell suspension was vortexed and stored on ice for 10 minutes. Tubes were 

centrifuged at 1 l,000rpm for 5 minutes to remove cell debris, after which the supernatant was 

transferred to polypropylene tubes. A volume of 12ml of saturated phenol was added to the 

lysate with subsequent vortexing for 1 minute and incubation on ice for 5 minutes. After the 

addition of 3.6ml chloroform the sample was vortexed for 2 minutes and incubated on ice for 5 

minutes. The homogenate was centrifuged at 1 l,000rpm for lOminutes at 4°C, after which the 

upper layer was transferred to a new polypropylene tube. A second round o f phenol/chloroform 

extraction was performed as above using 9.6ml phenol and 3.6ml chloroform. After 

centrifugation the upper layer was transferred to a new polypropylene tube and 12ml 

isopropanol added slowly. This was mixed, incubated on ice for lOminutes, and then 

centrifuged at ll,000rpm for 15minutes at 4°C. After discarding the supernatant, 6ml o f 80% 

ethanol was added to the pellet and the tube centrifuged at 1 l,000ipm for 5minutes at 4°C. The
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supernatant was removed, and the pellet air dried and resuspended in 0.5ml DNase/ RNase-free 

water. The RNA concentration was determined (see 2.2.3), followed by visual inspection o f the 

RNA by agarose gel electrophoresis (see 2.2.4). The RNA was then subject to DNase treatment 

(see 2.2.5) and Qiagen RNA clean-up (see 2.2.6).

2.2.2 4.2 PolvA+RNA Enrichment Prior to Array Hybridisation

Streptavidin Magnetic Bead Preparation was performed according to the manufacturers 

instructions. Briefly the magnetic beads were resuspended and 15pl aliquotted into a 0.2ml tube 

per reaction. The beads were separated on a magnetic particle separator and the supernatant 

removed. The beads were washed with 150pl o f  lx binding buffer and mixed by pipetting. The 

beads were separated as before and the supernatant discarded. This procedure was repeated 

three times as above. The beads were finally resuspended in 15pl o f lx binding buffer per 

reaction.

Poly A+RNA Enrichment was achieved by firstly diluting 50pg o f total RNA to a 

volume o f  45pi in a 0.2ml tube. After adding lp l o f Biotinylated 01igo(dT), the contents o f the 

tube were mixed and incubated at 70°C for 2 minutes in a preheated thermal cycler. The tube 

was removed and cooled at room temperature for 10 minutes, followed by the addition o f 45pl 

o f  2x binding buffer, and the tube mixed. The resuspended, washed beads ffom the first step 

were added to the above RNA mixture. The tube was thoroughly mixed by vortexing for 25 

minutes at room temperature. The beads were separated on the magnetic separator and the 

supernatant discarded. The beads were then resuspended in 50pl o f 1 x wash buffer, separated as 

above, and the supernatant discarded. This was repeated followed by a final resuspension in 

50pl o f  lx  reaction buffer. The beads were then separated, supernatant discarded, and the beads 

resuspended in 3pl o f DNase/RNase-free water (where the random primer mix was supplied 

without cDNA synthesis control, subsequently in the probe synthesis step, the beads were 

resuspended in 2 pi o f water).

2.23 Determination of RNA Concentration

Extracted RNA concentration was determined by UV spectrophotometry. An aliquot of 

4jil o f  RNA was diluted in 996pl o f buffer lx  TNE buffer and the optical density measured at 

260nm and 280nm (see Appendix II for TNE recipe). The RNA concentration (in pg/ml) can be 

ascertained by multiplying the optical density at 260nm, the dilution factor, and the extinction 

coefficient (which in the case o f RNA is 40). In addition the ratio o f the readings at 260nm and 

280nm provides an indication o f the purity o f the sample (where a ratio o f 1.7 to 2.0 is deemed 

suitable).

45



2.2.4 Agarose Gel Electrophoresis

The integrity o f the extracted RNA was assessed by resolving a quantity o f it through an 

agarose gel with ethidium bromide staining. Agarose gel was prepared by the heating of 2% w/v 

agarose in TAE buffer in a 950W microwave at full power for about 1 minute with periodic 

agitation (see Appendix II for TAE recipe). Upon cooling, lOng/ml ethidium bromide was 

added and mixed. The gel was set in a horizontal tray with the comb in place. The gel was 

assembled in the electrophoresis apparatus with lxTAE running buffer, and 1 pg of total RNA in 

a total loading buffer volume of 5-10pl was loaded into the gel and a constant current of 

approximately 80-100mA was applied to separate the RNA (see Appendix II for 6x gel loading 

buffer recipe). This was visualised by UV illumination after ethidium bromide staining, and 

photographed. RNA quality was assessed by observation o f ribosomal 18S and 28S bands, 

where adequate quality RNA was indicated by no observable degradation seen as low molecular 

weight products, and with the 28S band at approximately 1.5-2x the intensity of the 18S band 

(Sambrook et al., 1989).

2.2.5 DNase Treatment of RNA

A protocol using Sigma DNase kit ensured no genomic DNA contamination was 

present in the extracted RNA which may interfere with subsequent studies. For each 0.5ml of 

total RNA at a concentration o f 1 mg/ml, the following reagents were added to give a total 

volume of 1ml: lOOpl lOx DNase buffer, 50pl DNase I, 350pl deionised water. The solution 

was mixed well by pipetting, incubated at 37°C for 30min in a heating block, and the reaction 

then terminated with 100|il of termination mix. The solution was stored on ice.

2.2.6 Qiagen RNA Clean-up

The Qiagen RNeasy kit allows RNA isolation based on the selective binding o f the 

membrane. High quality RNA of >200 nucleotides are then eluted from the spin columns. This 

is particularly relevant in this project, where low molecular weight nucleic acids are required to 

be excluded, as well as the clean-up and removal o f all reagents from previous procedures, 

notably DNase-treatment. Total RNA clean-up was performed according to the Qiagen RNeasy 

mini kit protocol. Assuming that the binding capacity of the column is lOOpg of RNA, and that 

losses will have occurred through DNase treatment, approximately 150pg of RNA was initially 

processed from DNase treatment to Qiagen clean-up. After transferring the appropriate volume
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o f  total RNA to a sterile 5 ml tube ,, 350ul o f buffer RLT was added to each lOOpl o f total RNA 

(in a fume hood ) and mixed thoroughly (J3-Mercaptoethanol was added to buffer RLT before 

use at lOpl/ml o f buffer RLT). To each lOOpl o f initial RNA volume, 250jil 100% ethanol was 

then added. This was mixed thoroughly by pipetting and added in 0.7ml volumes to an RNeasy 

mini column placed in a 2ml collection tube. The tube was centrifuged at 10,000rpm for 15 

seconds and the flow through discarded. After transferring the column to a new 2ml collection 

tube, 0.5ml buffer RPE was pipetted onto the column and centrifuged as above. The flow 

through was discarded and another 0.5ml o f Buffer RPE was added to the column and 

centrifuged at 10,000rpm for 2 minutes. To dry the silica gel and to ensure no ethanol was 

earned over during elution, the columns were transferred to new collection tubes and 

centrifuged at 14,000rpm for 1 minute. To elute the RNA, the RNeasy column was transferred 

to a new sterile 1.5ml collection tube and 30 to 50ul o f RNase-ffee water was directly added to 

the silica membrane. The tubes were allowed to stand for 2 to 3min after which they were 

centrifuged at 10,000rpm for 1 minute. RNA concentration was determined (see 2.2.3), 

followed by visual inspection o f the RNA by agarose gel electrophoresis (see 2.2.4). To ensure 

no genomic DNA was carried over from RNA processing, PCR was performed using the RNA 

directly in the reaction (see 2.2.7).

2*2.7 PCR Assessment of DNA Contamination of RNA

Further estimation o f the purity o f RNA was provided by the polymerase chain reaction 

(PCR) where the purified RNA was used directly as a template using primers for well 

characterised genes, in this instance, insulin-like growth factor 1 (IGF 1). Using a primer for the 

gene sequence, containing a long intron region, it will amplify any genomic DNA fragment 

present corresponding to the IGF 1 gene.

For the detection o f genomic DNA contamination 2pl o f lOx Buffer (containing a final 

MgCl2  concentration of 1.6mM) 10.9mM dNTP. 2.5u Taq polymerase. 0.2pl o f both forward 

and reverse IGF1 primers were added to a PCR tube to a total volume o f 4.5pi per reaction 

(sequences in materials and reagents). This was added to total reaction volume o f 18 4pl, to 

amplify either 0.5pg of total RNA sample or o f up to Ipg genomic standard. The following 

protocol was run in a BioRad thermal cycler: denaturation at 94°C for 2min, followed by 35 

cycles o f  (92°C for 30s, 50°C for 30s, 75°C for 90s), with a final extension at 75°C for 5min. 

The products were visualised on a 1.5% agarose gel with ethidium bromide staining as 

described in 2.2.4. The PCR reaction should produce no product at 35 cycles as visualised on an 

ethidium bromide gel.
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2.2.8 Validation of Cell Lines by PCR

To ensure RNA preparations obtained for microarray studies were representative of 

each cell line, prior to array studies they were monitored for known gene expression changes 

across the various model systems (Knowlden et al., 1997; Knowlden et al., 2003; McClelland et 

al., 1996). Total RNA extracted from cells was subject to DNase treatment and Qiagen clean-up 

as described previously. cDNA generated from RT-PCR was then subject to PCR using the 

primers as described below.

2.2.8.1 RT-PCR

For initial reverse transcription where complimentary DNA (cDNA) was generated 

from RNA, lpg of extracted total RNA is added to a mastermix, comprising: 2pi of lOx Buffer 

(containing a final MgCl2 concentration o f 1.6mM), 2.5mM dNTP, 0.1M DTT and lOOpM of 

random hexamers, to give a volume o f 18.5pl. The solution was mixed, denatured at 95°C for 5 

min in a BioRad thermal cycler, and rapidly cooled on ice. After adding lpl of MMLV reverse 

transcriptase and 0.5 pi of RNase inhibitor, the tube was mixed and briefly spun. The tube was 

returned to the thermal cycler for the RNA to be reverse transcribed according to the following 

protocol: annealing at 22°C for lOmin, extension at 42°C for 42 min, and denaturation at 95°C 

for 5min.

2.2.8.2 PCR Reaction

2.5 pi of lOx Buffer (containing a final MgC^ concentration of 1.5mM), 2.5 mM dNTP, 

0.63ul (0.5mM) of both forward and reverse primers and lunit Taq polymerase were added to a 

PCR tube, together with 0.5pi of cDNA (as generated from the RT-PCR protocol) to a total 

volume of 25pl per reaction with DNase/RNase-free water. The following protocol was run in a 

BioRad thermal cycler: for (3-Actin (204bp) and pS2: denaturation at 95°C for 2 minutes, then 

55°C for 1 minute and 72°C for 2 minutes, followed by 26 cycles of (94°C for 30s, 55°C for 

30s, 72°C for 60s), with a final step at 94°C for 1 minute and 60°C for 5 minutes; for EGFR: 

denaturation at 95°C for 2 minutes, then 55°C for 1 minutes and 75°C for 2 minutes, followed 

by 30 cycles of (94°C for 30s, 55°C for 30s, 72°C for 60s), with a final step at 94°C for 1 

minute and 60°C for 5 minutes. (Sequences listed in materials and reagents). The products were 

visualised on a 1.5%-2% agarose gel with ethidium bromide staining, and photographed as 

described in 2.2.4.
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2.2.8.3 Densitometric Analysis

Following scanning o f the photograph o f the fluorescent gel image using a BioRad GS- 

700 scanner system, densitometric analysis was performed using the Molecular Analyst 

software, and values were recorded for each band present from the photographed gel (with 

background subtraction for each band from an average o f 6 background readings across the 

image). Band intensities were normalised against those o f [3-actin which served as a 

housekeeping gene prior to graphical display o f  data.

2.2.9 Microarray Methodology

The BD Atlas Plastic Human 12K. Microarrays employed, consist o f -12,000 of long 

oligonucleotides , o f approximately 28 bases, which are immobilised onto a plastic support 

(Fig.5). However, initial optimisation studies involved using TRIAL Atlas Plastic Human 

Microarrays (Fig.4), bearing 100 well-characterized human genes printed in nine replicates.

2.2.9.1 Probe Preparation

Optimisation o f array protocols initially involved comparing probes prepared from Tri 

Reagent extracted total RNA from responsive or resistant cells, which had been DNase-treated 

and subject to RNA clean-up using a Qiagen column, or probes prepared from RNA prepared as 

above, with polyA+RNA separation (the latter ultimately according to the Atlas Pure Total 

RNA Labelling System protocol).

2.2.9.1.1 cDNA Probe Synthesis from Total RNA

The Atlas Plastic Microarray handbook protocol was used for probe preparation from 

Tri Reagent extracted total RNA (2.2.2.1) which had been DNase-treated and had undergone 

Qiagen clean-up. The following components were mixed in a 0.2ml tube to form the mastermix 

at room temperature: 5pl of 5x BD PowerScript Reaction Buffer, 2.5pl o f 5pl o f lOx dNTP 

mix, 1.5pl DTT and 7pi o f [a-33P]dATP, for a total volume o f 16pl per reaction. The following 

were combined in a separate reaction tube: 5pg extracted total RNA (of lpg/pl), lpl diluted 

(1:200) cDNA synthesis control, lp l o f lOx random primer mix. The mixture was incubated at 

65°C in a preheated thermal cycler for 2 minutes, then 42°C for 2 minutes. During this 

incubation, 2pi o f BD PowerScript reverse transcriptase was added for each reaction to the 

master mix and mixed. After 2 minutes incubation at 42°C, 18pl o f the mastermix, was added to 

each reaction tube, and the tubes returned to the thermal cycler to incubate at 42°C for 30 

minutes. After the incubation, 2pi o f  I Ox termination mix was added to each reaction. Column 

chromatography was then performed to purify the probe (see 2.2.9.2).
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2.2.9.1.2 cDNA Probe Synthesis following PolvA+RNA Enrichment

The protocol was followed according to the Adas Pure Total RNA Labelling System 

handbook for probe preparation from RNA which had been extracted using the Adas Pure Total 

RNA Labelling System, with polyA+ RNA enrichment (section 2.2.2.4). The following 

components in a 0.2ml tube formed a reaction mastermix at room temperature: 4pi of 5x BD 

PowerScript Reaction Buffer, 2pi of 5x lOx dNTP mix, 0.5pl DTT and 5pl of [a-33P]dATP, for 

a total volume of 11.5pl per reaction. To the resuspended beads from the polyA+ enrichment 

step (2.2.2.4.2), 4pl of random primer mix were added and the tube mixed (for a no cDNA 

synthesis control, 1 pi o f the diluted control was added). The bead/primer mix was incubated at 

65°C in a preheated thermal cycler for 3 minutes, then 42°C for 2 minutes. During this 

incubation 2pl of BD PowerScript reverse transcriptase was added for each reaction to the 

master mix and mixed. After die 2 minute incubation at 42°C, 13.5pl from the mastermix was 

added to the bead/primer mix per reaction and the tubes returned to the thermal cycler to 

incubate at 42°C for 30 minutes. After the incubation 2pl of lOx termination mix was added to 

each reaction. Column chromatography was then performed to purify the probe (see 2.2.9.2).

2.2.9.2 Column Chromatography

Column chromatography was performed on all probes regardless of RNA extraction/ 

purification procedure, in order to remove unincorporated components from previous labelling 

procedures.

cDNA probe synthesis was conducted as above with probe purification subsequently 

performed according to the Adas Plastic Microarray method. This purification procedure aimed 

to separate labelled cDNA from unincorporated 33P-labelled nucleotides and small cDNA 

fragments. 180pl of Buffer NT2 was added to each probe generated and mixed. This was then 

pipetted into a NucleoSpin Extraction spin column, which was placed in a 2ml collection tube, 

and centrifuged at 13,000rpm for 1 minute. The collection tube and flow through were 

discarded. The column was inserted into a new collection tube and 400pl of buffer NT3 was 

added and centrifuged as above. This step was repeated twice. After transferring the spin 

column to a new 1.5ml collection tube, lOOpl of Buffer NE was added to the column and 

allowed to soak for 2 minute. This was then centrifuged as above to elute the purified probe. 

Probe specific activity was subsequently determined by retaining lpl volume for scintillation 

counting. The amount of radioactivity incorporated into the probe was determined as counts per 

minute using a Tri-Carb 2900 TR Scintillation counter in order to assess the approximate 

equivalence of radioactive labelling in samples. Counts were deemed to be satisfactory ranging 

from approximately 20,000- 30,000 counts per minute.
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2.2.9 3 Microarrav Hybridisation and Phosphorimage Detection

The microarrays were rinsed with 15ml o f prewarmed BD PlasticHyb Hybridisation 

Solution at 60°C for 30min. This was achieved with the microarrays facing-up in a rollerbottle 

hybridisation chamber (and later, BD Atlas Hybridisation Box, in a heated rocking oven). The 

synthesised probes were denatured by incubating in a boiling water bath for 10 minutes 

followed by cooling in ice for at least 10 minutes. The probe was combined with 15ml o f 

hybridisation solution used for microarray rinsing, added to the arrays, and left overnight to 

incubate at 60°C with continuous rocking.

The hybridisation solution was then discarded and replaced with 45ml o f prewarmed 

High Salt Wash Solution (2xSSC, 0 .1%SDS) with further rocking at 58°C for 5 minutes (see 

Appendix III for 20x SSC recipe). This wash was repeated, and then the wash solution was 

replaced with 45ml o f prewarmed Low Salt Wash Solution 1 (O.lxSSC, 0.1%SDS) and washed 

as above twice at 58°C. This solution was then replaced with 50ml o f room-temperature Low 

Salt Wash Solution 2 (0.1%SSC) and rocked at 30°C for 5 minutes. The microarray was then 

removed from the Hybridisation Box, transferred to a beaker containing room temperature Low 

Salt Wash Solution 2, rinsed and air dried. The printed surface o f the array was subsequently 

exposed to a phosphorimage screen for 7 to 10 days. Signals present on the phosphorscreen 

were then detected using a Typhoon 8600 phosphorimager and the image scanned at a 

resolution o f 50pM. This was stored either in a . / / /o r  .gel file format for subsequent gene 

analysis (see 2.2.10).

2.2.9 4 Stripping cDNA probes from the Microarravs:

In order to reuse the arrays, the cDNA was stripped from them using low salt buffer. 

However, the standard stripping procedure from BD Biosciences/Clontech proved inadequate 

for removing all signal from the microarrays, with 10-20% signal remaining (see Appendix III 

for standard Atlas array stripping protocols). Thus, as subsequently recommended by Clontech/ 

BD Bioscience {personal communication), microarrays were placed face up in a BD Atlas 

Hybridisation Box and incubated with 40ml o f prewarmed strip solution (0.2M NaOH, 

0 .1%SDS) on a rocking platform at 37°C for 10 minutes. The solution was then replaced with 

new prewarmed strip solution and the incubation repeated. The arrays were then rinsed twice in 

a beaker o f  room temperature water, air dried, then exposed to autoradiograph for at least 7 days 

to assess the degree o f stripping. Array was deemed adequately stripped when negligible/ no 

signal remained after this period.
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22.9.5 Optimised Protocol for RNA extraction and

Ongoing RNA extractions together with microarray optimisations allowed the following 

protocols to be generated. This has demonstrated to provide high yield of RNA, and adequate 

signal strength on the arrays with low background. The protocol is described in Results.

2.2.10 Microarray Data Analysis

A number of factors dictate the success of a microarray study, not only the RNA 

quality, and efficiency of array hybridisation, but also data acquisition, preprocessing, and 

analysis/ gene selection techniques (Leung and Cavalieri, 2003). With increasingly complex 

methods of data analysis available, we have approached this task with a clear biological 

question to reveal genes altered in resistance using integrated statistics, clustering, and 

ontological methodologies. With a multitude of softwares available on the market for all the 

various steps, the study used software supplied/ recommended for acquisition and preprocessing 

with the specific array, Atlaslmage and AtlasNavigator, as well as complex gene analysis and 

gene selection being performed using established web-based GeneSifter (GeneSifter.url, 2006), 

and ontological database resources such as GeneCard (Genecards.url, 2006) and Medline.

Figure 7 shows the schematic for the array data analysis approach here adopted for gene 

selection. Using Atlas Plastic 12k Human Microarrays, after hybridisation image acquisition 

was performed on quadruplicate arrays using phosphorimaging, which was subsequently 

aligned and intensity data generated for the reference sample (parental MCF-7 line) and 

resistant test sample (TamR, FasR) using Atlaslmage software. Following signal intensity report 

generation, data was normalised in AtlasNavigator software. In order to subsequently select 

genes for verification and further analysis, a number o f analytical tools available within 

GeneSifter software were then used, together with a biological intuitive approach for gene 

examination.

The analysis methods adopted within this project were statistical testing Hierarchical 

Cluster Analysis (HCA), Partitioning Around Medoids (PAM), and Ontolological Examination 

of the gene (Fig. 7 right panel). The aim was to end up with a manageable list o f new genes with 

interesting signalling ontology that may contribute to resistant growth/ associated features of 

progression for the eventual verification by PCR and selection for protein studies. Genes which 

were increased in both TamR and FasR were deemed high priority as these may provide generic 

targets which are fundamental to resistance. The proceeding sections will now describe the 

methods for grid alignment, normalisation, analysis and gene selection in detail.
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2.2.10.1 Atlaslmage

Atlaslmage software (BD Biosciences/Clontech) allows the phosphorimage o f the array 

to be processed for the generation o f gene signal intensity reports. In summary, firstly, the 

process o f  ‘gridding’ is performed, ie. coordinates are assigned to each o f the spots which 

correspond to a gene; then segmentation differentiates image pixels as foreground or 

background; and intensity extraction produces the final intensity value for each spot on the 

array, the foreground intensities, background intensities. As gridding is performed manually, it 

allows poor quality spots to be flagged for removal (see also BD Atlaslmage 2.7 User Manual)

2.2.10.1.1 Grid Alignment

Atlas arrays were analysed firstly by opening and aligning the saved array image to the 

Atlaslmage Grid Template (Fig.8a). This is achieved by the alignment o f orientation spots 

(located at each opposite comers o f  the array) and allows Atlaslmage to determine the location 

o f all the genes on the array. This was followed by aligning sub-areas within the array (Fig.8b)

Fine-timing re-alignment is normally required to compensate for errors from the 

previous alignment step resulting from signal spots which may be problematic (Fig.8c and 

Fig.8d). Such signals may cause incorrect spot alignment due to, interfering signal (signal 

bleed) from neighbouring spots, background interference, or spot printing errors. The template 

alignment window will show coloured circles superimposed at or near each spot, the colour 

representing the signal characterisation, black: signal at or near background; green: signal above 

background; red: error, where there is significant variation between left and right duplicate 

spots, or olive: where the user had excluded the spot from analysis). Atlaslmage allows settings 

for signal thresholds to be varied.

2.2.10.1.2 Error Correction

Errors may finally be compensated for by relocating one or both superimposed circles 

on the incorrectly spotted signal (Fig.8c and Fig.8d). Where signal bleeding may be causing 

errors in duplicate spots, the aberrant signal can be excluded from subsequent analysis. Where 

even signal bleeding is caused by two spots interfering onto two neighbouring spots, the spots 

may be excluded from the analysis if the spots are greatly affected. Alternatively, Atlaslmage 

allows local background correction to be used for calculations for any genes which may be 

affected by bleeding. In this case, the local background immediately surrounding the spot may 

be used for background calculations, as opposed to the default setting for background correction 

which is set at the median intensity o f the blank space between the different panels within the 

array.
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Figure 7. Schematic of microarray procedure and analysis. RNA optimally extracted from test resistant cells and reference 
endocrine responsive MCF-7 cells were radioactively labelled and hybridised to Atlas Plastic Human 12k Microarrays in 4 
replicates. Folowing phosphorimaging, signal intensity reports generated and normalised using Atlas associated software and 
imported into GeneSifter for selection of altered genes. Significant genes using ANOVA/ t-test were then processed for selection of 
target genes using a number of selection criteria. Hierarchical Cluster Analysis (HCA) and Partitioning Around Medoids (PAM) was 
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to identify genes altered in one or both forms of resistance versus control MCF-7 cells. Detailed ontolological examination of genes 
was subsequently performed through literature searches with the establishment of an Excel database for the t-test list. Data from all 
selection criteria were considered for the final gene iist for PCR validation.



Figure 8. Atlas Image Grid Alignment and Fine tuning for Array Signal Intensity Report File Generation
Plastic Plastic Human 12k Microarray phosphorimages were imported into Atlaslmage for gridding and fine tuning. Images were (a) aligned to the whole grid area, 
(b) aligned to individual sectors within, and (c) re-aligned for misaligned individual spots, and (d) corrected for local background when necessary. This is repeated 
for a total of 4x replicates for each test sample (MCF-7, MCF-7+E2, TamR, FasR).
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2.2.10.1.3 Signal Intensity Report File Generation

Once alignment of the arrays was complete, a report of signal intensities was generated 

by opening the pair of arrays (reference control MCF-7 versus resistant cell line) to be analysed 

through the “compare two arrays” menu of Atlaslmage. The array with overlaid grid may be 

observed with a close-up of the selected gene, together with its intensity (average from duplicate 

spots), the calculated background value, adjusted intensity (average minus background), ratio of 

one array to another, and the difference.

2.2.10.2 Atlas Navigator

AtlasNavigator software (BD Biosciences/Clontech) allows the analysis and 

visualisation of complex gene expression generated with Atlaslmage generated reports above. 

Although the software also permits only very basic data analysis, it will only be utilised for 

normalising Atlaslmage signal intensity report. The process of Normalisation aims to remove 

systemic errors inherent in the data (Knudsen, 2002). These scaling adjustments allow the 

standardisation of the ratio distribution across replicate experiments to prevent any experiment 

becoming incorrectly biased, confusing downstream analysis.

2.2.10.2.1 Loading Atlaslmage Files onto AtlasNavigator

Intensity data as Atlas Image reports were firstly saved into the relevant Atlas Navigator folder 

ready for loading. After opening the software main window, the files were imported using the 

‘Autoloader’ option, which permits Atlaslmage files to be directly imported. Upon recognition 

of the report files as Atlaslmage files, the appropriate array was selected from the menu and 

consecutive onscreen dialogue boxes were correctly chosen for: a ‘one colour experiment’, and 

then more files were added when prompted.

2.2.10.2.2 Normalisation

AtlasNavigator permits a number of normalisation options to control for differing signal 

intensities, many of which can be used in any combination. The first normalisation method, 

‘Each sample to itself, was used to compensate for any array which may be underperforming, 

for example, when overall signal intensity is low. In this case, normalisation will standardise 

one array to another by taking into account the overall median signal intensity of the array. 

Secondarily, ‘Each gene to itself normalisations are performed, which permits the 

standardisation of the median for each gene on each of the different arrays. It intends to remove 

differing intensity scales and binding rates from multiple experimental readings. Each gene is 

normalised to itself, so the median of the measurements taken for that gene is one. In this way, a 

similar set of genes across arrays may be graphically on the same scale, rather than 

demonstrating the same pattern of changes on widely differing scales. Once Normalisation is
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achieved, the resultant intensity report files are exported as Excel (.xls) or tab-delimited (txt)  

files prior to uploading and full Data Analysis using GeneSifter software.

2.2.10.3 GeneSifter

Following data pre-processing and normalisation, data analysis was performed using the online 

software program GeneSifter (GeneSifter.url, 2006). Through inputting data from replicate 

arrays a number o f analysis tools were available including statistical tools such as students t-test 

(see 2.2.10.3.2) and Analysis o f Variance (ANOVA; see 2.2.10.3.3), as well as hierarchical 

cluster analysis (HCA;) and partitioning tools such as Partitioning Around Medoids (PAM) (see 

2.2.10.4). Data can also subsequently be exported for further examination o f the genes (see 

Ontological Exanimation of genes; 2.2.10.3.5). However, prior to uploading data for this 

GeneSifter Gene Analysis, some further processing was necessary, as outlined below.

2.2.10.3.1 Formatting Data Files and Uploading into GeneSifter

The oligonucleotide composition o f the Atlas Plastic Human 12k Arrays renders them 

highly specific for the individual genes being studied. However, other properties o f the array 

format, which will be discussed later, may contribute to a lower proportion o f detectable signal 

present on this platform, resulting in a higher proportion o f ‘zero’ values. This was problematic 

as GeneSifter, at the commencement o f the project, converted these zero values to ‘ I ’, with the 

inability o f the software to compensate such magnitude o f zero values. Such a default for zero 

replacement may produce misleading results, particularly when low signals (<1) were detected. 

For example, an intensity value o f 0.4 from a zero baseline, is regarded as upregulation, 

however replacement o f zero with a value o f 1, will render this a downregulated gene.

One method for compensating for this, is for the replacement o f zero values with an 

arbitrarily very low value, ie., 0.0001, as recommended by GeneSifter and confirmed by P. 

Lewis (personal communication). This alternative zero substitution was thus undertaken for all 

replicate datasets in Excel before GeneSifter data import. Although this method o f data 

processing will not permit absolute fold change to be obtained, it will however allow those 

genes which are highly expressed in reference to control data to be acknowledged (many o f 

which were subsequently verified using PCR and a more recent array platform, Affymetrix 

genechip analysis (see section 2.2.12).

Tab-delimited text files (.txt) files were prepared in a format which could be accepted 

by GeneSifter. Data spreadsheets from AtlasNavigator were opened in MSExcel and edited to 

contain the following columns: (i) Gene Accession Number, (ii) Gene Identifier (eg. Full name 

o f gene), (iii) Signal Intensity Value: ARRAY 1 MCF-7, (iv) Signal Intensity Value: ARRAY 1 

MCF-7 +E2, (v) Signal Intensity Value: ARRAY 1 TamR, (vii) Signal Intensity Value:
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ARRAY 1 FasR. Similarly, the remainder columns contained MCF-7, MCF-7 +E2, TamR, and 

FasR data for ARRAY 2-4.

Once formatted, files were loaded into GeneSifter using the ‘Batch Upload’ menu as a 

‘bet.' file format. The loaded data could to create Projects (analysis of gene expression patterns 

across all cell lines) or be used to make comparisons between two samples/cell lines.

2.2.10.3.2 T-Test Analysis between Two Groups in GeneSifter (Pairwise Analysis)

Pairwise analysis allows two groups of data to be analysed for genes which may be 

differentially expressed between the two groups. A two-sample t-test was applied through 

GeneSifter software, using GeneSifter to generate genelists for significantly altered genes (p < 

0.05) in TamR or FasR cells relative to MCF-7.

To achieve this, in the main window, the ‘Pairwise’ option and the specific arrays were 

selected. Selecting the ‘Analyse’ icon results in a list of experimental arms (eg. MCF-7, TamR 

and FasR) displayed. Group 1 experiments (control set) were selected as MCF-7 1 to 4 

(corresponding to arrays 1-4), and Group 2 experiments were selected as, for example, TamR 

replicates 1-4. Further settings were adjusted for optimum analysis of the two groups of data. 

From the pull-down menu, Statistical analysis included was the t-test (two-tailed, Student), 

threshold (either upregulated or downregulated) was set to >1.5. In addition, the data was log- 

transformed. Finally selecting the ‘Analyse’ option produced a list of differentially expressed 

genes ranked in order of ratio, with the most differentially expressed at the top of the list. This 

list can also be ranked by p-value, and the data can be exported as an Excel file format if 

required.

The user friendly ‘One-click gene summary’ feature of GeneSifter allows the 

expression profile plot o f the individual gene to be displayed, together with a brief gene 

summary, including GeneSifter ontology, and various other useful internet links, such as to 

Genecards or Medline.

Although genes with positive Ontologies (such as associations with cancer, signalling), 

which were significantly altered in both TamR and FasR cells using t-test analysis were deemed 

as high priority for further study, also worthy of consideration for study were genes which were 

statistically altered in one resistant state only, but showed a profile which could be considered 

as “borderline” shared. The breadth of these could be revealed by HCA and PAM. Statistically 

significantly altered genes from t-test analysis together with those from ANOVA (across MCF- 

7, TamR, FasR arrays; 2.2.10.3.3) were compiled as a genelist to be studied for gene-grouping 

using HCA and PAM.
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2.2.10.3.3 ANOVA Selection in GeneSifter (Project Analysis)

ANOVA analysis allows data to be analysed for genes which may be differentially 

expressed across a number o f groups (Peck et al., 2000). Analysis was applied across the 

quadruplicate arrays for MCF-7, TamR, and FasR, using GeneSifter to generate genelists for 

significantly altered genes (p < 0.05). As GeneSifter software at the commencement o f this 

study did not permit complex analysis such as clustering on large datasets as obtained with 12k 

arrays across multiple replicates/ experimental arms, ANOVA also served to filter and reduce 

the data to amore manageable set for HCA/PAM analysis.

ANOVA testing and subsequent HCA/PAM required the creation o f  a “project” in 

GeneSifter. A project is a user-defined set o f  experimental arms grouped by condition or by 

user-defined categories. Setting up a project allowed gene expression analysis across all the 

groups, ie. MCF-7, TamR and FasR. A new project was set up by selecting ‘create a new 

project’ from the main menu. After giving a title and description to the new project, the 

appropriate array and set o f experimental arms were selected (MCF-7, TamR and FasR). 

Statistically significantly altered genes from ANOVA analysis, together with those from t-test 

analysis (2.2.10.3.2) were compiled as a genelist to be further studied for clustering using HCA 

and PAM.

All individual gene profiles generated through GeneSifter (through t-test, ANOVA) 

were displayed as log-intensity plots showing standard errors (SEM) alongside. Heatmaps were 

also displayed that showed gene expression relative to control (MCF-7) as downregulated 

(green) or upregulated (red).

2.2.10.3.4 Hierarchical Cluster Analysis (HCA) and Partitioning Around Medoids (PAM) 

using GeneSifter

Genes which have been selected as significantly altered using t-test (MCF-7 versus 

TamR or FasR) and ANOVA (across all models were defined as a separate sub-group within 

GeneSifter, and then this group was subject to HCA or PAM.

Cluster-analysis programs run on algorithms which group objects on the basis o f their 

similarities and within this project the genes were clustered according to their similarities in 

gene expression patterns across the responsive/ resistant cell lines. Data clustering algorithms 

may be classified as either hierarchical (eg. HCA) or partitional (eg. PAM).

Results o f such HCA can be represented by a dendrogram tree (see Fig. 19; in results), 

the branches o f the tree linking the genes together which are similar in profile. Then other 

branches (or gene clusters) can refine this group further down the tree. HCA produces a readily 

interpretable figure which can be used for prediction o f  patterns o f gene expression across 

multiple groups, particularly when new hypotheses are being formulated. Partitioning 

algorithms, on the other hand, begin by having a predefined number o f clusters, to which genes
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are added according to their similarity to that profile (Kaufman and Rousseeuw, 2005). This 

study utilised GeneSifter-based HCA , where the degree of gene similarity allows the creation 

of groups. For this we have selected the Euclidean distance within GeneSifter, a commonly used 

factor, which treats each gene as a point in multidimensional space, the axes representing levels 

of gene expression (Butte, 2002). The clustering method uses a distance measure o f average 

linkage, which is the average distance between two objects of different clusters. HCA was used 

in his study to identify genes which demonstrated gene expression profiles that were robustly 

increased in both TamR and FasR cells, as well as those genes which were elevated 

significantly in one resistant cell line, but showed a trend of increase in the other with a 

favourable cluster placement in the dendrograms.

PAM is a method of data analysis which partitions the dataset into pre-specified number 

of K groups (Kaufman and Rousseeuw, 2005). The programme operates on a distance 

(Euclidean) matrix which, for a predefined number of clusters, searches for the K representative 

objects (medoids) among the objects to be clustered. After medoids have been identified, each 

observation is assigned to the nearest medoid. PAM also permits the generation o f silhouette 

plots which graphically represent the average profile of the cluster. The average silhouette width 

(zero to one) also gives an indication of the overall strength of clustering within the group, a 

value of 1 being a perfect cluster. The number of clusters chosen for PAM analysis using 

GeneSifter software was determined empirically where a compromise was made between mean 

silhouette width and number o f manageable clusters. In addition, as HCA had been performed 

on the dataset, the dendrogram and heatmap profiling conditions MCF-7, TamR and FasR 

indicated the approximate number of clusters to be tested in PAM. PAM analysis was used in 

his study, like HCA, to find genes, not only which were significantly altered in both resistant 

cells lines, but also to help select for those genes that may suggest an increase in both owing to 

their favourable cluster placement.

2.2.10.3.5 Ontological Examination of Genes

Further gene selection for verification was performed manually by prioritising the entire 

t-test significant gene list (up- and down-regulated genes for both TamR and FasR relative to 

MCF-7) in particular, highlighting those which have previously been associated with cancer, 

specifically with links to therapeutic and clinical outcomes in breast tumours, signal 

transduction pathways, or in influencing key endpoints of cancer, such as proliferation, cell 

survival, invasion and angiogenesis. The extensive research of genes identified in this study 

using literature searching, according to Medline, GeneCard (Genecards.url, 2006) and 

GeneSifter (GeneSifter.url, 2006) information, was incorporated into an Excel database, listing 

all t-test significant genes by names/ ID according to such categories in sheets clearly (see 

examples in tables 6-9 and refer to attached CD-ROM).
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2.2.11 PCR Verification o f Selected Genes

In order to confirm gene changes in the cell preparations, PCR assessment was 

performed, initially on RNA which was used to hybridise to the array that had been extracted 

using the optimised protocol (section 2.2.9.5). RNA samples available for RT-PCR were those 

used for hybridisation to Arrays 2 to 4, for all samples MCF-7, MCF-7+E2, TamR and FasR.. 

Additional RNA preparations from cells subsequent to the original RNA set were also used to 

further confirm gene expression in some selected genes. This set also contained the X-MCF-7 

cell line RNA preparation, which was not available for array analysis at the start o f this project. 

PCR primers for the genes o f  interest were either selected from the primer oligonucleotide list 

available from Clontech CD-ROM or designed using the nucleotide sequence. In both instances, 

primer sequences were verified using NCB1 Blast software. Primer sequences and final 

optimised PCR conditions are listed in tables 1 and 2 respectively.

2.2.11.1 PCR Primer Design

2 .2 .11.1.1 Generation o f Primer Sequences using Primer3 Software

Primers were constructed from the sequence o f  the gene. The accession number or other 

gene identifier was used to generate the sequence from Pubmed nucleotide 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide). Gene sequence was then 

pasted into the Primer3 software program (Rozen and Skaletsky, 2000) 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 www.cgi) and the ‘left’ and ‘right’ primer 

criteria were selected. Product sizes were selected as 275 to 375 bp. This was in order to allow 

co-amplification with the 6-actin primers (where possible), which were used as internal 

standards and were either 204bp or 385 bp. Primer sizes were selected as ranging from 20 to 23 

bp. The melting temperature (Tm) ranged from 55°C to 60°C. The GC content o f the primers 

(Minimum and Maximum percentage o f Gs and Cs in any primer) was selected to range from 

48%  to 52%. The GC clamp (specified number o f consecutive Gs and Cs at the 3’ end o f both 

the left and right primer) was set to 2. The Primer Design software subsequently produced a list 

o f  possible primer sets which may be used in the PCR reaction to amplify the specific gene.

2.2.11.1.2 Determining the Fidelity o f the Primer Sequence using NCBI BLAST

It is imperative to determine the reliability o f the primer set in order to amplify the 

correct gene sequence, and avoid amplifying sequences which are wholly unrelated to the 

required gene, therefore falsifying PCR results.

NCBI BLAST (http://www.ncbi.nlm.nih.gov/blast/ ) permits the confirmation o f  the primer for 

its specificity for the gene. It is used for comparing the sequence o f a particular gene or protein
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with all other sequences from a variety of organisms. The primer sequence was pasted into the 

BLAST page and searched. This was repeated for both forward and reverse primer. Results 

were graphically displayed and also descriptions of statistically-significant alignments, the 

upper description being die most closely matched. For example 21 hits produced for a sequence, 

may produce a number of matches for non-human related genes (which may for our purposes be 

ignored). In addition, matches may be produced for other human genes, which may be 

problematic, but only if the equivalent match is found in the second primer of the pair. As 

alternative names and aliases of genes exist, it was important not to disregard the primer set if 

human gene sequence matches were produced in a primer pair. The GeneCard website was thus 

also accessed in order to clarify alternative names for the required gene. Primer forward and 

reverse oligonucleotide sequences were subsequentiy made from a commercial source as listed 

in materials and reagents.

2.2.11.1.3 Pre-designed Primer Sets bv Clontech

A number of reliable primer sets were also available where sequences were supplied in 

a CD-ROM format from BD Biosciences/ Clontech. However, these sequences were also 

checked for possible non-specific hybridisations to other known human sequences using NCBI- 

Blast as described previously, prior to use for primer synthesis as described above.

2.2.11.2 RT-PCR

Materials and Reagents, and Methods for RT-PCR can be found as listed in section 

2.1.3. All concentrations for reagents were similar, but with the reaction volume made to a total 

of 20pl and RT-PCR performed in a BioRad PTC-100 thermal cycler.

2.2.11.3 PCR Reaction

For gene detection, 2.5 pi of lOx Buffer (containing a final MgCk concentration of 

1.5mM), 2.5 mM dNTP, 0.63 pi (0.5mM) of both forward and reverse primers and lu  Taq 

polymerase were added to a PCR tube, together with 0.5 pi o f cDNA (as generated from the RT- 

PCR protocol using RNA preparations from endocrine resistant and responsive cells) to a final 

volume of 2 5 pi per reaction. In addition, primers for p-actin were included for coamplification 

(where possible, thus adjusting final volume accordingly), at a volume of 0.16pl each primer. 

Where coamplification of P-actin together with the selected gene primer could not be 

performed, P-actin was amplified separately (at 58°C/27 cycles). A negative control was also 

included in all PCR reactions containing no cDNA.

The following general protocol was run in a thermal cycler for each primer set, where 

the annealing temperature (T) and cycle numbers (N) may differ. Optimised protocols for each
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set o f gene primers are shown in Table 2. The table additionally also shows related genes that 

were subsequently explored (ie. P T T G 1 or GFRa3- related genes, by PCR). The PCR protocol 

commenced with denaturation at 95°C for 2 minutes, then 55°C for 1 minute and 72 C for 2 

minutes, followed by N cycles o f  (94°C for 30s, T°C for 30s, 72°C for 60s), with a final step at 

94°C for 1 minute and 60°C for 5 minutes. The products were visualised on a 2 % agarose gel 

with ethidium bromide staining, photographed, and subject to densitometric analysis (section

2.2.4 and 2.2.8 3).

2.2.12 TCCR Aflymetrix UG133A Genechip confirmation of Selected Genes

At a later stage in the project, in addition to Atlas Plastic Human 12k Microarrays, an 

Asym etrix HG-U133A (25k) genechip database for the various cell lines recently generated 

through the TCCR research program m e was accessed to further confirm profiles (alongside 

PCR) for genes selected through the Atlas Plastic arrays. Access to the Aflymetrix database also 

allowed closely-related genes/ gene family-members for the genes taken forward to be profiled, 

where not present on the Atlas Plastic arrays.

In brief, RNA extraction for the eventual analysis using Aflymetrix genechip 

had been performed as described in 2.2.2.1. The DNase-treated, ‘Qiagen column-cleaned’ RNA 

extracted was then sent to University o f  Wales College o f  Medicine (UWCM), Central 

Biotechnology Services (M. Musson, UWCM, Cardiff University, Heath Park, Cardiff) in 

triplicate, to be hybridised to A flym etrix genechip, and genechip expression data was provided 

as raw data through the use o f  Aflym etrix Microarray Suite software (MAS). The provided raw 

data was analysed at the TCCR using GeneSifter as described previously, for the genes of 

interest. These were analysed using t-test and displayed as log-intensity plots with SEM and 

Heatmaps as described previously.

2.2.13 PCR Examination in Clinical Material of Selected Genes

See section 2.1.3 for M aterials and Reagents. PTTG1 and GFRa3 PCR primers arc 

listed in Table 2. All clinical prim ary breast cancer RNA specimens (n=78; extracted as 

described by Knowlden et al., 2003) were stored at the TCCR and accessible for this study. 

These had clinical pathological and biological marker data available for association with test 

gene expression, such as ER-status, lymph node spread, tumour grade, tumour nuclear 

pleomorphism, mitotic activity, tubular differentiation, proliferative capacity (Ki67 staining), 

EGFR protein staining, and Fos staining. Specimens had been sourced from a larger historical 

frozen clinical breast cancer series obtained through external collaboration with Nottingham 

City Hospital (covered under an approved ethics application from Dr. Ian Ellis on behalf of
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Nottingham City Hospital to Nottingham Research Ethics committee 2: “Development of a 

molecular genetic classification of breast cancer” R&D ref: 03H101; Ethics Committee no. 

C l080301, April 2003-April 2008).

RT-PCR was performed as described in 2.2.8.1 on the RNA samples previous to the 

commencement of the project and was provided as cDNA format. PCR was performed on 

samples using the primers for PTTG1 or GFRa3.

For detection of PTTG1 and GFRa3 gene in clinical samples, the following were added 

into a PCR tube: 2.5 pi of 1 Ox Buffer (containing a final MgC^ concentration of 1.5mM), 2.5 

mM dNTP, 0.63 pi (0.5mM) of both forward and reverse PTTG1 or GFRa3 primers, and lu Taq 

polymerase were added, together with 0.5 pi o f cDNA (as generated from the RT-PCR protocol 

on clinical samples) to a final volume of 25pl per reaction. For PTTG1, P-actin was co

amplified, and 0.16pl (0.0125mM) of both forward and reverse p-actin (204bp) primers was 

added to the reaction mix, and the volume adjusted, again for a total 2 5 pi per reaction.

The PCR protocol commenced with denaturation at 95°C for 2 minutes, then 55°C for 1 

minute and 72°C for 2 minutes, followed by N cycles of (94°C for 30s, T°C for 30s, 72°C for 

60s), with a final step at 94°C for 1 minute and 60°C for 5 minutes. For PTTG1, N=27 and 

T=62°C; for GFRa3, N=27, T=58°C. In the case of GFRa3, P-actin was amplified separately, 

where N=27’ T=58°C. The products were visualised on a 2 % agarose gel with ethidium 

bromide staining, (as described in section 2.2.4), photographed, and subject to densitometric 

analysis (section 2.2.8.3).

2.2.14 SDS PAGE/ Western Blotting for Protein Expression of Selected Genes

Genes verified at the PCR level selected for further study, PTTG1 and GFRa3, were 

subsequently analysed at the protein level within cell lines using SDS polyacrylamide gel 

electrophoresis (PAGE) and Western blotting.

2.2.14.1 Cell Culture and Lvsis

MCF-7, TamR and FasR-Lt cells, either grown under basal conditions as for 

microarrays, or in the presence/ absence of lO^M Gefitinib were seeded into 100mm dishes as 

described in section 2.2. Untreated cell lines were grown to ~70% confluency/ log-phase of 

growth for 7 days before being harvested. For the experiment in the presence/ absence of 

gefitinib, treated cells were harvested at this time also. In this experiment, an additional set of 

cells were also harvested at day 4 of treatment.

Cell were subsequently harvested for Western blotting by firstly gently washing twice 

in warm (37°C) sterile PBS (2x5ml) After ensuring all PBS was removed, 150pl ice-cold lysis
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buffer (50nM Tris-HCL, 5mM EDTA, 150mMol NaCl, 1% Triton X-100 (v/v), pH 7.5 in 

distilled water, supplemented with protease/ phosphatase inhibitors: 2mM Na^V04, 20nMol 

NaF, ImM PMSF, 10|ig/ml leupeptin, 20mM phenylarsine oxide, lOpg/ml aprotinin, and 

lOmM sodium molybdate) was added to each dish and immediately placed on ice for 5min,. 

Cells were then removed from the dish surface using a cell scraper, after which the lysate was 

transferred to a 1.5ml tube and stored on ice for at least 5 minutes. The lysate was then cleared 

by centrifugation at 14,000g for 15 minutes at 4°C and the supernatant stored in aliquots at - 

20°C.

2.2.14.2 Protein Assay

The protein concentration o f  the cell lysate was initially determined using the BioRad 

(DC) protein assay, based on the method o f Lowry (Lowry et al., 1951) using BSA as the 

standard protein against which samples were measured. In order to construct a standard curve, a 

range o f  BSA standards (0-lpg/pl) were diluted in duplicate in 50pl o f  lysis buffer. 250pJ of 

premixed reagent S and reagent A (20jil reagent S/ml reagent A) followed by 2ml o f reagent B, 

was added to this volume o f  standard or cell lysate. Each sample was mixed briefly, ensuring no 

air bubbles were generated. After 5 minutes o f  colour-development, the absorbance was read at 

750nm in a Cecil-CE2041 spectrophotometer. The cell lysate protein concentration was 

determined from the BSA standard curve and corrected for dilutions.

2.2.14.3 SDS-PAGE

For the majority o f  proteins examined in this study a 7.5% resolving gel was used, 

which was overlaid with a 4% stacking gel. For the lower molecular weight protein, PTTG1 

(~28kDa) a 15% gel was employed for improved resolution. An aliquot o f each lysate, 

equivalent to 50pg o f protein, was added to an equal volume o f  2x Laemmli buffer (Laemmli, 

1970) (comprising o f 4%SDS (w/v), 20% glycerol (v/v), 120mM Tris-HCl (pH6.8), 0 1% 

bromophenol blue (w/v), and DTT -which was added just prior to sample preparation). Proteins 

were denatured by heating the mixture to 100°C for 10 minutes on a heating block, and then 

centrifuging briefly. Samples were loaded onto the gel and subject to electrophoresis using a 

BioRad mini protean II electrophoresis unit with Tris-glycine running buffer (250mM trizma 

base, 2M glycine, 40mM SDS; pH8.3). Gels were run on a constant voltage o f  150v for -lhour, 

or until the blue dye front was at the base o f the gel. A 5pi volume o f Rainbow prestained 

molecular weight marker was also loaded, which not only indicated apparent molecular mass of 

the protein o f  interest, but also demonstrated successful protein transfer onto the nitrocellulose 

membrane after subsequent Western blotting. Gel compositions for SDS-PAGE for proteins 

used in this study can be found in Appendix IV.
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2.2.14.4 Western Blotting

Proteins separated by SDS-PAGE were transferred onto a nitrocellulose membrane 

(pore size 0.2pM) by Western blotting using the BioRad mini transblot apparatus. All 

components for Western blotting were soaked in Transfer buffer (0.2M glycine, 25mM Trizma 

base, 20% methanol (v/v), in distilled water; pH8.3) for at least 20 minutes prior to protein 

transfer. The gel, along with a series of filter pads were prewetted with transfer buffer and 

assembled within the gel-holder cassette. Ensuring all components were submerged in transfer 

buffer, two Whatman 3MM filters were layered on top of the thin fibre pad, followed by the gel. 

Then ensuring no bubbles were introduced, the nitrocellulose membrane was carefully placed 

on the gel, followed by further 2x Whatman filters, and a fibre pad. The gel-holder cassette was 

closed and placed in the transfer tank with the membrane nearest to the anode. An ice block was 

placed in the tank of transfer buffer to prevent overheating during transfer and even 

temperatures were maintained by using a magnetic stirrer. Transfer of proteins was completed 

with a constant voltage of lOOv for 1 hour. Successful transfer was indicated by transfer o f the 

Rainbow marker onto the membrane.

After a brief rinse in lx  TBS-Tween (lOmM Tris, 0.1M NaCl, 0.05% (v/v) Tween20; 

pH 7.5), the membrane was stained with Ponceau S (0.1% in 5% acetic acid) in order to initially 

determine acceptable protein loading. Ponceau S was then removed by washes in TBS-Tween 

(2x 3minutes). Potential non-specific antibody binding sites on the membrane were then 

blocked on the membrane by incubation with 5% skimmed milk powder in TBS-Tween (w/v) 

for at least lhour on a slowly rocking platform. After three brief rinses in TBS-Tween, the 

membrane was incubated with the appropriate primary antibody. All primary antibodies were 

diluted in TBS-Tween containing 5% Western Blocking Reagent, and lOmM sodium azide (as a 

preservative). Sodium azide was omitted from the secondary antibody preparation as it inhibits 

the chemiluminescence reaction. The dilutions and incubation conditions for each antibody were 

optimised and are summarised in Table 4. All incubations were performed on a slowly-rocking 

platform.

Table 4. Antibodies and conditions used in Immunodetection.

Antibody Species Dilution Incubation

PTTG1 Mouse monoclonal 1:1000 Overnight/ 4°C

GFRo3 Mouse monoclonal 1:1000 2 hours/ room temp

RET Mouse monoclonal 1:500 Overnight/ 4°C

PEA3 Mouse monoclonal 1:1000 Overnight/ 4°C
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Following incubation with primary antibody, the membranes were washed vigorously 

with ~40ml TBS-Tween (2x5minutes) on a rocking platform, after which they were incubated 

for 1 hour on a slow rocking platform with 20ml sheep anti-mouse horse radish peroxidase 

(HRP)- (for monoclonals) or goat anti-rabbit HRP (for polyclonals)- conjugated secondary 

antibody prepared at 1:10,000 dilution. After incubation with the secondary antibody, the 

membranes were washed 5 times in ~40ml TBS-Tween for 5 minutes with vigorous agitation on 

a rocking platform. Proteins o f  interest were detected by even application o f  Super Signal Dura 

chemiluminescent substrate (detects high femtograms o f protein), to the membrane for 5 

minutes. After removing the excess substrate, the membrane was placed between two plastic 

sheets inside an autoradiograph cassette, and exposed in the dark to autoradiographic film for 2- 

3 minutes before developing using an XO-Graph developer. This process was repeated with 

varying exposure times if  necessary until a satisfactory level o f signal intensity was achieved. 

Alternatively, Super Signal Femto chemiluminescent substrate (detects low femtogram amounts 

o f  protein) was used if  no/weak signal was observed. Autoradiographs were subject to 

densitometric analysis using a BioRad GS-700 scanner system (Molecular Analyst software). 

Following satisfactory detection o f  the protein o f  interest, the membrane was washed (3x 5 

minutes) and reprobed for the housekeeping protein p-actin (1:10,000 dilution) for 2 hours in 

order to confirm equal protein loading. This was subsequent to the same detection protocol as 

above, and densitometric analysis then performed for normalisation purposes.

2.2.15 Immunocytochemistry for PTTG1 and GFRa3

2.2.15.1 Immunocvtochemical Assay Development for PTTG1 and GFRa3 Proteins

Immunocytochemical staining for a specific protein is highly dependant on a number of 

factors, including the antibody dilution/ titer. Other significant factors that may influence 

quality o f  staining in fixed paraffin embedded material is the choice o f antigen retrieval needed 

for optimal unmasking o f antigenic sites due to formalin-fixation (Boenisch, 2006; Key, 2006). 

Thus, a number o f methods for antigen retrieval were attempted in this project with various 

antibody concentrations for both poly- and monoclonal PTTG1 and GFRa3. PTrGl antibody 

concentrations tested ranged from 1:50 to 1:500 for the polyclonal, and 1:15 to 1:180 for the 

monoclonal. For GFRa3, the range o f antibody concentrations investigated were 1:150 to 

1.2000 for the polyclonal and 1:750 to 1:2000 for the monoclonal. These concentrations were 

used alongside various antigen retrieval methods, namely, (i) no retrieval, (ii) 0 .0 1M citric acid; 

pH6, heat (microwave) retrieval; (iii) 0.01 M EDTA; pH8, heat (microwave) retrieval; (iv) 

0.01 M sodium citrate; pH6, heat (pressure cooker) retrieval; 0 .01M EDTA; pH8, heat (pressure 

cooker) retrieval; (v) 0.02% enzymatic (protease) retrieval. Methods for these retrievals not 

detailed below are described in Appendix IV. Optimisation was performed on cell pellets
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(single or in composite array format, bearing the various endocrine responsive and resistant cell 

lines. These had been formalin-fixed, and paraffin embedded, and sectioned at 5 pm as described 

in Appendix IV, previously performed by M. James at the TCCR.

The optimised immunocytochemical method which were used with these cell 

preparations are subsequently described:

2.2.15.2 Optimised Immunocytochemical Assay for PTTG1 Protein

Paraffin embedded cell pellets for PTTG1 studies were in a composite pellet array 

format comprising of various ER-positive cell lines including: MCF-7, TamR, FasR, X-MCF-7, 

and also an ER-negative breast cancer cell line, MDA-231. Dewaxing and rehydration of 5 pm 

sections was performed in the fume hood by immersion of the slide in a metal slide-holder to 

xylene for 2x 7minutes, followed by immersion in graded ethanol for 2 minutes each through 2x 

100%, 2x 90%, and 2x 70%. Sections were finally immersed in distilled water for 5 minutes. As 

endogenous peroxidases may interfere with subsequent signal detection, these were 

subsequently eliminated by application of 3% aqueous solution of hydrogen peroxide (H20 2) to 

each section for 5 minutes, followed by rinsing with distilled water for 5 minutes in a 

Hellendahl jar. The optimised method for antigen retrieval PTTG1 was heat by pressure 

cooking sections housed in the metal slide-holder in 2L of 0.01M sodium citrate buffer (pH6) 

for 2 minutes at full pressure. After heat treatment, sections were cooled in running tap water 

within the open pressure cooker for 10 minutes and then immersed for 5 minutes in PBS 

(145.4mM NaCl, 8.2mM K2HP0 4 , 1.84 mM KH2P0 4 ). Sections were then outlined on the slide 

using a waterproof PAP pen to ensure subsequent applications of antibodies/ reagents were 

confined to the section area. After sections were washed in PBS-Tween (0.02%) for 5 minutes 

in a Hellendahl jar, 50pl of a 1:15 dilution (made in PBS) of the PTTG1 monoclonal mouse 

anti-human was applied to the section and incubated overnight at 23°C in an humidified 

chamber. Assay controls comprised o f the omission of the primary antibody from the slides and 

were also performed. Sections were then washed briefly in PBS for 3 minutes, followed by 2x 5 

minute washes with PBS-Tween. After removing excess buffer from each slide, 1 drop of 

Envision labelled polymer-HRP anti-mouse secondary antibody was applied to each sections, 

followed by incubation for 2 hours at 23°C in a humidified chamber. Sections were again briefly 

washed for 3 minutes in PBS, followed by 2x 5 minute washes in PBS-Tween. Envision DAB+ 

chromagen/ substrate buffer solution was made according to the DAKO manufacturers 

instructions (1 drop DAB/ml substrate solution) and ~60pl was applied to the drained section 

for 10 minutes. After draining excess DAB solution, the sections were thoroughly rinsed in 

distilled water Enhancement of the resultant signals was performed using 0.5% copper sulphate 

(aq) for 20 minutes. Following 3 washes in distilled water for 1 minute, an aqueous solution of
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0.5% methyl green was applied to counterstain the nuclei in each section for up to 5 minutes 

and the sections thoroughly rinsed with distilled water. The slides were then air dned before 

being mounted with glass coverslips in a fume hood. Coverslips were initially cleaned with 

100% ethanol and dried. Following the application o f 1 drop o f DPX mountant, the slide was 

carefully lowered onto the coverslip ensuring no air bubbles were generated. The coverslip was 

then positioned, and where necessary, air bubbles were pushed out. Slides were then dried 

overnight before assessment and photographing using an Olympus BH2 microscope with a 

DP 12 digital camera. The number o f PTTG1-positive cells (nuclear and cytoplasmic) were 

assessed for each slide by consensus agreement o f  two observers (RSB and P.Finlay) (n-6 ; two 

counts from each three replicates).

2.2.15.3 Optimised Immunocytochemical Assay for GFRa3 Protein

Staining was performed using MCF-7, TamR and FasR cells as formalin-fixed, as 

separate (3-6 replicates/slide) paraffin embedded pellets per cell line per section/ slide, rather 

than composite pellet arrays. Dewaxing and rehydration, and Elimination o f endogenous 

peroxidases was as described for PTTG1. In this instance, the optimised method for antigen 

retrieval for the monoclonal mouse anti-human GFRa3 antibody was enzymatic (protease) 

treatment o f  sections. Prior to performing antigen retrieval, all PBS were briefly warmed to 

37°C. The slides containing pellet sections were placed into 37°C PBS to warm for 10 minutes 

before commencement o f  protease antigen retrieval. During this time, 0.02g o f protease 

(supplied as 4.8u/mg solid) was weighed using a microbalance. The enzyme was then added to a 

Hellendahl jar, followed by addition o f 100ml o f  warm PBS, and the enzyme dissolved by 

mixing. Sections were incubated within this enzyme solution for 5 minutes at 37°C, after which 

the reaction was stopped with running tap water for 5 minutes. Sections were then immersed in 

PBS for 5 minutes and outlined on the slide using the waterproof PAP pen After sections were 

washed in PBS-Tween (0.02%) for 5 minutes in a Hellendahl jar, 50pl o f a 1:750 dilution 

(made in PBS) o f the GFRa3 monoclonal mouse anti-human antibody was applied to the section 

and incubated overnight at 23°C in a humidified chamber. Subsequent Envision secondary 

antibody and chromagen steps were as performed for P1TG1. C'ounterstaming with methyl 

green (0.5%, aq) was performed in this instance for 2 minutes, with no subsequent signal 

enhancement. Slides were mounted as in 2.2.15.2, and again viewed and photographed as 

described for PTTG1. The number o f  GFRa3-positive cells were assessed monitoring 

cytoplasmic and plasma membrane staining by consensus agreement o f two observers (RSB and 

P.Finlay) (n=6; two counts from each three replicates).
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2.2.16 Gene Knockdown Studies using siRNA

The project assessed mRNA and protein knockdown by optimising gene-specific 

siRNA for both PTTG1 and GFRa3. As PTTG1 and GFRa3 were elevated maximally in FasR- 

Lt and TamR cells respectively, these cell lines were used for inhibition studies with these 

specific siRNA. In parallel with mRNA and protein effects, the effects of gene knockdown were 

determined on the cellular endpoints, of growth (phase contrast microscopy), proliferation by 

Ki67 immunostaining and apoptosis, determined by the Apoalert apoptosis assay.

2.2.16.1 Preparation of siRNA

The siRNA sequences used were Smartpool as supplied by Dharmacon (actual 

sequences not supplied). These duplexes are believed to minimise any effect from altered target 

gene sequences (such as single nucleotide polymorphisms (SNP)) by being derived from four 

highly functional sequences designed to target different regions of the open reading frame o f the 

gene (Dharmacon.smartpool.url).

A 20pM stock solution of each (5nmol as supplied) siRNA was prepared by the 

addition of 250pl of lx siRNA buffer (50pl 5x siRNA buffer and 200pi RNase/ DNase-free 

sterile water). Stocks were aliquotted for storage at -20°C to minimise freeze-thaw cycles (as 

recommended by manufacturer).

2.2.16.2 Cell culture and Transfection using 6 and 12 well Plates

TamR or FasR cells were grown in T75 flasks as described in 2.2.1. Cells were 

trypsinised and seeded into 6 well or 12 well plates in the appropriate TamR or FasR RPMI 

medium. For initial experiments for the assessment of RNA and protein effects of gene 

knockdown at 24hours and 48hours transfection respectively, cells were seeded at a high 

density overnight prior to transfection. These were approximately 500,000 for 6 well plates and

250,000 cells for 12 well plates. For incubations with siRNA reagents for longer durations, ie. 4 

or 7 days, cells were seeded at approximately 250,000 or 125,000 cells per well for a 6 or 12 

well plate respectively.

Transfections were performed in either 6 well plates (for RNA and protein), or 12 well 

plates (for growth assessment by phase contrast microscopy, Ki67 staining and Apoptosis 

Assay). siRNA treatment was undertaken using phenol red-free DCCM media (supplemented 

with 4mM L-glutamine) since it was recognised that transfection medium should be devoid of 

serum, antibiotics/ fungizone to minimise interference in this process (where this medium used 

for transfections is subsequently referred to as “siRNA media”).
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The following protocol was used for 6 well plates with a total volume o f 2ml per well, 

while 12 well plates, volumes were calculated as half with a total 1ml volume per well. For each 

well, the following were prepared in separate 1.5ml or 5ml sterilin tubes, and the volumes 

adjusted according to the number o f replicates used within an experiment (generally 2-3): Tube 

A: lOpl o f  test siRNA [of 20pl stock] plus 190pl o f  siRNA media, and Tube B: 5pl DharmaFect 

-1 plus 195pl siRNA media. The contents o f  tubes A and B were mixed by gentle pipetting 

followed by incubation for 20 minutes at room temperature. Media was removed by aspiration 

from all 6 or 12 well plates containing cells (except well containing RPMI media) and cells 

were gently washed twice with warm (37°C) sterile PBS. Cells were then gently overlaid with 

1.6ml siRNA media per well, and 400pl o f  the appropriate siRNA/ control was gently added. 

Alongside “test” siRNA for PTTG1 and GFRa3, controls included in each plate were : (i) RPMI 

medium (phenol red-free, 5%csFCS RPMI: TamR- or FasR-specific medium); (ii) siRNA 

medium only; (iii) DharmaFect transfection reagent only; (iv) Missense (non-targeting) siRNA; 

(v) siControl Lamin A/C siRNA; (vi) siGlo RISC-Free siRNA. Wells (iii) -  (iv) were prepared 

in siRNA media for 6 or 12 well plates (and also contain DharmaFect with the appropriate 

targeting agent). The plate was gently agitated to mix the contents o f  the well, and incubated for 

24hours, 48hours, 4days, or 7days at 37°C/ 5%CC>2. For 4-7 days incubations, cells were 

regularly observed using a Nikon eclipse phase contrast microscope for cell growth as well as to 

check for absence o f  bacterial/ yeast contamination.

TamR or FasR cells were harvested from T75 flasks and seeded into 6 well plates day 4 

or 7 for harvesting as described above. Cells were visualised/photographed using a Nikon 

eclipse TE200 phase contrast microscope/ Nikon 35mm SLR camera at xlO magnification 1-3 

hours prior to harvesting. Cells were subsequently counted from four fields per photograph for 

each control/ siRNA treatment for an estimation o f  cell growth.

2.2.16.3 mRNA Knockdown Assessment

TamR or FasR cells were harvested from 6 well plates as described 2.2.2.1, at either 24 

or 48 hours, or 4 or 7 days, with controls as described, with subsequent processing performed in 

1.5ml tubes. Cells were then harvested for total RNA extraction according to the Tri Reagent 

method (Chomczynski and Sacchi, 1987) as described in 2 2 2 1 with a 200pl volume o f Tri 

Reagent, and subsequent steps performed with 40pl chloroform, lOOpl isopropanol, with the 

RNA pellet being resuspended in lOpl DNase/RNase-free water. RNA estimation was 

performed as described in 2.2.3 using a reduced volume quartz cuvette. The extracted RNA was 

subject to RT-PCR as described in 2.2.8.1, using lpg  total RNA. PCR was performed according 

to the method as in 2.2.8 2 using the primers for Lamin A/C, PTTG1 and GFRo3 as appropriate. 

Primer sequences for PTTGI and GFRa3 are as listed in table 1, while Lamin A/C was as
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follows : forward sequence 5’-CCT CTC ACT CAT CCC AGA CAC AGG-3’ and reverse 

sequence: ATG TGC CAA TTG CCC ATG GAC TGG-3’.

The general protocol as described in 2.2.8.2 with p-actin coamplification for all primers, 

was run in a thermal cycler for each primer set, commencing with denaturation at 95 °C for 2 

minutes, then 55°C for 1 minute and 72°C for 2 minutes, followed by N cycles of (94°C for 30s, 

T°C for 30s, 72°C for 60s), with a final step at 94°C for 1 minute and 60°C for 5 minutes. For 

Lamin A/C, N=27 and T=55; for PTTG1, N=26 and T=54; and for GFRa3, N=27 and T=55. 

The products were separated on a 2% agarose gel and visualised by UV illumination after 

ethidium bromide staining, (as described in section 2.2.4), photographed, and subject to 

densitometric analysis and normalisation to p-actin (section 2.2.8.3).

2.2.16.4 Protein Knockdown Assessment

Again, subsequent to section 2.2.16.2, TamR or FasR cells were harvested for protein 

following gene knockdown with appropriate controls, using the method as described in 2.2.14.1 

with a 150pl volume of lysis buffer. Protein assay, SDS-PAGE, and Western blotting using 

monoclonal antibodies to either PTTG1 or GFRa3 were performed as described in 2.2.14. 

Membranes were subsequently probed for P-actin for indication of equal loading and 

normalisation.

2.2.16.5 Transfection Efficiency Assessment using siGlo and coverslip preparation

TamR or FasR cells were harvested from T75 flasks and seeded into 2x 35mm dishes 

containing TESPA-coated coverslips (see Appendix IV), according to reagent volumes relevant 

to 12 well plates (volumes half of as described in 2.2.16.2), with the inclusion o f siGlo RISC- 

Free siRNA in one dish. All reagents containing siGlo, and transfections with siGlo were foil- 

covered, while all transfection with siGlo were incubated at 37°C/ 5%C02 overnight again 

covered with foil. Cells on coverslips were then immediately fixed by placing the coverslips in a 

3.7% formaldehyde solution (in PBS) for 15 minutes at room temperature in the dark. After 2x 

5 minute PBS washes, the excess was drained off and, again under foil, lx  drop of Vectashield 

(containing DAPI) was added to each coverslip. The coverslip was inverted on a clean slide, and 

after removing excess VectaShield, the coverslip was sealed onto the slide using clear nail- 

vamish. Slides were air-dried in the dark before viewing. Fluorescence was viewed and 

photographed using a Leica DMIRE2 Inverted Research fluorescent microscope at x20 or x40 

magnification, with Improvision software, where siGlo fluorescence was evaluated using the red 

imaging filter at 594nm wavelength, and DAPI stained nuclei were observed at 488-615nm 

wavelength. Images obtained for both wavelengths were superimposed in order to determine 

percentage efficiency of transfection in each cell sample (n=3).
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2.2.16.6 Knockdown Effects on Proliferation using coverslips (Ki67/M ibl staining)

Cells were seeded at the appropriate cell densities as described in 2.2.16.2 onto TESPA- 

coated coverslips (A ppendix IV) and transfected with the test siRNA and appropriate controls. 

Coverslips within 12 well plates containing the transfected cells were then removed and 

immediately fixed in 3.7%  formal saline solution (comprising 0.9% NaCl (w/v), 3.7% formal 

saline (v/v) in water) for 10 minutes. Coverslips were then immersed in 100% ethanol for 5 

minutes followed by a b rief wash in fresh 100% ethanol. Coverslips were then immersed in PBS 

for 5 minutes and briefly washed again in fresh PBS before storage in cold sucrose/glycerol 

storage medium at -20°C prior to assay. For Ki67 assay, sucrose storage medium was removed 

from the coverslips by rinsing with PBS, and the excess drained before application o f  the 

primary antibody. The DAKO Ki67 (M ibl clone; MT240) antibody was applied to the coverslip 

in a 35mm dish at a 1:125 dilution and left to incubate at 23°C in a humidified chamber for 1 

hour. Coverslips were then washed in PBS for 3 minutes, followed by 2x 5 minute washes in 

PBS-Tween. After rem oving excess buffer reagent from each slide, 1 drop o f Dako Envision 

labelled polym er-HRP anti-mouse secondary antibody was applied to each coverslip, followed 

by incubation for 75 m inutes at 23°C in a humidified chamber. Coverslips were briefly washed 

for 3 minutes in PBS, followed by 2x 5 minute washes in PBS-Tween. 60pl o f fresh Dako 

DAB+ chromagen/ substrate buffer solution was applied to the drained section for 10 minutes 

and counterstained as previously described (section 2.2.15.1) prior to mounting. Coverslips 

were viewed and photographed using an Olympus BH2 Research Microscope/ DP 12 digital 

camera at x40 and the percentage o f Ki67 positive cells were assessed by a consensus of 2 

viewers for 6 fields.

2.2.16.7 Knockdown Effects on Apoptosis using ApoAlert Assay

The Apoalert Mitochondrial Membrane Sensor Kit was used to detect apoptotic cells. It 

permits the detection o f  altered permeability in the mitochondrial membranes as an indication of 

early apoptosis (Green and Reed, 1998) and has been used in our laboratory previously (Gee et 

al., 2003). Red fluorescent mitochondrial aggregates are formed in live cells, but on early 

apoptotic cells, where membrane permeability is compromised, the MitoSensor dye is displayed 

as a fluorescent green.

Pnor to performing the assay on transfected cells, an assay positive control was 

prepared by irradiating MCF-7 cells with UV in the tissue culture cabinet for 20 minutes. These 

cells were then returned to the 37°C/ 5% CO 2 incubator for ~~-4 hours to allow apoptosis to 

commence. An equivalent set o f untreated MCF-7 cells were also included as a baseline control. 

M itoSensor solution was made immediately prior to use as 5ji/ml (1 jjJ MitoSensor added to 1ml
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incubation buffer, included in the kit), and vortexed to ensure complete mixing. Cells grown on 

round TESPA coated coverslips (Appendix IV) within 12 well plates with transfected siRNA 

and appropriate controls, and the MCF-7 assay controls were washed in 1ml of prewarmed 

(37°C) serum free media (DCCM1; phenol red-free). A volume of 1ml of MitoSensor solution 

was added to each coverslip and incubated at 37°C/ 5%C02 in a tissue culture incubator for 20 

minutes, protecting from light with foil. MitoSensor solution was removed and the coverslips 

were gently rinsed with 1ml of prewarmed (37°C) DCCM1, with ~lm l freshly added in order to 

keep the coverslip wet. Coverslips were immediately inverted onto a glass slide and viewed 

using an Olympus BX51 research fluorescence microscope. Red/ green cells were counted 

immediately and photographed within 5 minutes of fluorescence detection from a total of 6 

fields.

2.2.17 Statistical Analysis

For analysis of PCR gene expression results for PTTG1 or GFRa3 using clinical 

material, independent groups were compared using a Mann-Whitney U test, while the 

correlation of biological markers was carried out using a Spearman Rank Correlation. Both 

these analyses were performed with statistical package SPSS 12.0.

All other statistical analyses were performed using Microsoft Excel using a 2-tailed 

independent samples Students t-test. All tests were performed using a 5% significance level.
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Chapter 3

RESULTS



RESULTS

3.1 Microarray Studies: Sample Optimisation & Verification 

Confirmation of Antioestrogen-Resistant Cell Lines

3.1.1 Cell Growth Analysis of Antioestrogen-Resistant Cells

As an important factor in any microarray study is the initial starting material, TamR and 

FasR cells were verified as resistant to tamoxifen or Faslodex respectively. Resistant cells of 

equivalent passage number to those used within this study were cultured in the presence of their 

respective antioestrogen up to 16 days and compared to the growth kinetics of these cells when 

originally derived (Knowlden et al., 2003, McClelland et al., 1996). Both TamR and FasR cells 

were shown to grow at equivalent rates in the absence or presence of their antioestrogen 

confirming resistance (Fig. 9).

Optimisation of RNA Extraction and Hybridisation for Plastic Microarray Platform

The array approach was designed to be able to detect differences between responsive 

MCF-7 versus the acquired resistant TamR or FasR cells, and in turn to reveal genes altered in 

both forms of resistance as potential future markers or therapeutic targets. As a compromise 

between the preferred larger number o f arrays used against the cost of performing an array 

experiment, each cell line was analysed with quadruplicate replicate set of Atlas Plastic Human 

12k Arrays using independently extracted RNA preparations. An additional was provided by 

oestradiol-treated MCF-7 cells (MCF-7+E2), not only to check RNA quality/ array performance 

through the examination of known oestradiol-responsive marker genes, but also to ultimately 

monitor regulation in the presence of the hormone for selected genes.

A significant factor in array hybridisation and eventual successful gene selection 

procedure is the yield and quality of the RNA used to synthesise the probes used for array 

hybridisation. Initial experiments were thus performed to optimise RNA extraction for 

subsequent adequate array hybridisation to the plastic array platform. These studies employed 

Atlas Plastic Human TRIAL microarrays. These arrays differ from the Atlas Plastic 12k 

microarrays in that they are composed of 96 genes which are present in blocks of 9 on the array 

with known housekeeping genes, such as p-actin, at regular localisations (see also Fig.4). These 

optimised procedures were then applied to the Atlas Plastic Human 12k Microarrays which 

were used for selection of genes increased in antioestrogen resistant cell lines prior to PCR 

validation and ontological deciphering (see also Fig.5).

The methods for initial optimisation principally involved evaluating a succession of 

RNA extraction protocols that gave varying degrees of success regarding resultant RNA yield/
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quality or array hybridisation performance. These procedures and their outcomes are 

summarised in Table.5 and described in detail hereafter.

Table 5. Summary o f RNA extraction methods and resultant RNA yield, quality and array 
hybridisation performance during optimisation o f  RNA and array protocols.

Method for RNA Extraction Resultant RNA 
yield & quality

Resultant Array Performance

[1] Tri Reagent
total RNA extraction with
Qiagen clean-up.

High yield, 
Adequate quality.

High background, 
low signal strength

Insufficient RNA fo r  
h ybridisation

[2] Clontech Nucleotrap 
mRNA purification

Variable, Low yield. 
Low quality.

[3] mRNA / polyA+ RNA 
isolations

No detectable yield.
Insufficient RNA fo r  
hybridisation

Low background, 
but low signal strength.

[4] Atlas Pure Total RNA 
extraction kit with Qiagen 
clean-up and polyA+ 
separation).

High yield,
Inadequate quahty  (low 
molecular weight species)

[5] OPTIMISED 
METHOD
• Tri Reagent total RNA 

extraction (from [1])
•  with Qiagen clean-up.
•  Poly A+ RNA separation 

(from [4]).

High yield, 
Good quality

Low background, 
Good signal strength.

3.1.2 Tri Reagent Extraction and Trial Human Plastic Microarravs

The Tri Reagent method (see section 2.2.2.1) o f extraction can result in high yields of 

total RNA and can even detect rare gene events using RT-PCR from small quantities o f starting 

material compared to other commercially available RNA extraction procedures (Chadderton et 

al., 1997). In this project, from a typical extraction the expected yield was from 0 5mg to 1 2mg, 

depending on the cell preparation (where MCF-7+E2 > TamR > MCF-7 > FasR cells) from 8- 

lOx 150mm dishes (at 50-70% confluency). Typical yields after processing total RNA with 

DNase and Qiagen clean-up show intact 28S and 18S RNA bands (an approximate indication of 

total RNA integrity; (Sambrook et al., 1989) (Fig. 10a) with around 80% recovery There was 

importantly no genomic contamination (Fig. 10b) as determined by PCR using pnmers for IGF1 

(section 2.2.7).

Total RNA extracted using Tri Reagent was considered to be o f adequate quality for 

microarray studies. Thus, as well as the appearance o f clear and intact ribosomal 18S and 28S 

bands, a ratio o f 28S/I8S around 2 was also obtained indicating an RNA purity (Sambrook et 

al., 1989). RNA samples prepared using this method was subsequently used to produce probes 

for hybridisation to Atlas Plastic Trial Microarrays (section 2.2.9)
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Figure 9. TamR and FasR cell growth in the presence and absence of tamoxifen or Faslodex. TamR or 
FasR cells of equivalent passage status to those used in this study for microarray studies were seeded into 
24 well plates in the absence or presence of their respective antioestrogens and cells counted for up to 16 
days (standard deviations are shown for triplicate experiments).



Figure 10. RNA Extraction Using Tri Reagent and hybridisation to Atlas Plastic Trial Arrays, (a)
Total RNA was extracted using Tri Reagent was subsequently DNase-treated and subject to Qiagen clean
up A volume of 1 pi was separated on a 1.2 % agarose gel and visualised by ethidium bromide staining. 
Lane 2 shows total RNA extracted from MCF-7 cells (lane 1 is the lkb ladder), (b) Tri Reagent Extracted 
RNA was checked for genomic contamination. RNA extracted using Tri Reagent was DNase-treated and 
subject to Qiagen clean-up. PCR was performed using exon-spanning primers for IGF1 for the detection of 
genomic contamination. The absence of PCR product (lane 1) indicates no genomic contamination using 
0.5ug extracted RNA. Positive control was 50 ng of genomic DNA standards (lane 2) and PCR negative 
control (lane 3). (c) Tri Reagent extracted total RNA from MCF-7+E2 sample, which was DNase-treated 
and Qiagen cleaned, was used for hybridisation to Atlas Plastic Trial Microarrays. Arrays were exposed to 
phosphoscreen for 3 days before being processed. Circled gene A represents the housekeeping gene J3- 
Actin, and circled area B highlights non-specific background.



However, although RNA extraction procedures with Tri Reagent resulted in high yields 

and, apparently adequate quality, initial studies using Atlas Plastic TRIAL Microarrays showed 

die predominance of high background (non-gene specific signal on the array), also with 

unacceptably low signal strength (Fig. 10c; see example of MCF-7+E2 treated cells). Thus, the 

only genes which may be observed subsequent to hybridisation represent housekeeping genes 

such as (3-Actin, probably since these are found in high abundance.

Several attempts were made to address the issue of increased array background with this 

approach. As the plastic microarray platform is a relatively recent format, publications which 

can help in optimising this technology are limited and hence the array manufacturer (BD 

Biosciences; Clontech) was approached for suggestions to improve this protocol. Emphasis was 

placed on the use of Atlas Hybridisation Boxes. However, although a slight reduction of 

background on the arrays was observed and array handling was improved, the introduction of 

the hybridisation box failed to completely remove background problems or address low signal 

strength. It was therefore concluded from these results that the sole use of the Tri Reagent 

extraction procedure for RNA extraction was inadequate for microarray hybridisation.

3.1.3 Clontech Nucleotrap mRNA purification kit.

A subsequent protocol was followed according to the Clontech Nucleotrap mRNA 

method (2.22.2) as this was highly recommended by the manufacturer for use with the plastic 

arrays (personal communication from Clontech and see Ref: (Clontech-Nucleotrap-website, 

2006)) to purify mRNA in order to improve array hybridisation performance . The purification 

of mRNA was attempted using the Clontech Nucleotrap mRNA purification kit on total RNA 

initially extracted using Tri Reagent (Methods 2.2.2.1). However, considerable inconsistencies 

with the resultant extracted mRNA yield were repeatedly found. This is exemplified in Figure 

11, where two relatively similar RNA starting preparations ([lane2] 207pg and [lane3] 176jig) 

were purified using this protocol simultaneously, but resulted in substantially different yields 

(4.2pg and 0.01 pg respectively). A volume of 5pi from each sample was subsequently 

separated on a 1.2 % ethidium bromide stained agarose gel to check integrity and quality o f the 

mRNA (Fig. 11).

Although visual inspection of the RNA product separated on agarose gel indicated the 

presence of mRNA (seen as a smear, more clearly in lane 2 than 3 in Fig. 11), a proportion of 

contaminating 18S and 28S ribosomal RNA species can also be observed in the extracted 

product. This may account for a proportion of the RNA concentration value obtained, and also 

illustrates the inefficiency of the method for extracting pure mRNA species from total RNA. 

This method was thus deemed unsuitable for any array work as unacceptable yields, 

inconsistencies, and poor quality o f mRNA was revealed.
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3.1.4 Folv A+RNA Extraction Protocols

In light o f the array background problem s encountered with using Tri Reagent-based 

extractions alone, attempts were m ade to subsequently extract polyadcnylated (PolyA *■) RNA as 

this protocol may remove impurities from  the sample and improve array hybridisation results. 

Polyadenylated RNA was extracted (m ethod 2.22.3)  from Tri-Reagent-extracted, DNase- 

treated, Qiagen ‘cleaned’ RNA. This procedure, involving the use o f 01igo(d'I)cellulose, takes 

advantage o f the fact that mRNA m olecules, which posses a 3 poly A tail, can bind Oligo(dT) 

which is linked to cellulose beads, and following washing, the PolyA+RNA is eluted 

(Sambrook et al., 1989). However, these m ethodological variations o f  the principal o f  mRNA 

extraction produced no detectable yield o f  RN A, shown by the absence o f ethidium bromide 

staining on a 1.2% agarose gel (not illustrated).

3.1.5 Atlas Pure Total RNA Extraction

Relatively high yields o f  RNA, com parable to Tri Reagent RNA extractions were 

obtained with the Atlas Pure Total RNA L abelling System extraction procedure This allows the 

extraction o f total RNA using a denaturing solution with Poly A+RNA selection and probe 

labelling for array hybridisation. Typical y ie lds o f  an experiment using the Atlas Pure Total 

extraction method, from 6-10x 150mm dishes (at 50-70% confluency) were around l.Omg, 

depending on the cell preparation (w here M CF-7+E2 > TamR > MCF-7 > FasR cells) After 

processing total RNA with DNase and Q iagen clean-up show clear and intact 28S and 18S 

bands on an ethidium bromide stained gel across multiple samples (Fig. 12a) with around 60% 

recovery, and with no genomic contam ination, as determined by IGF1 PCR (Fig 12b)

RNA extracted using this m ethod appeared initially to be both the quality and yield 

which could be used for microarray studies. T he resultant sample RNA was used to produce 

probes for hybridisation to the Trial A rrays to m onitor signal strength and levels o f background.

RNA extracted using Atlas Pure lo ta l RNA Labelling System produced arravs which

demonstrated low background (Fig. 13a). However, although control spots (seen as a regular 

grid on the array, used for orientation during analysis) were strikingly apparent, there was the 

obvious absence o f a high proportion o f  gene-specific signals and thus low array signal strength 

(Fig. 13b).

Using the complete protocol, including RNA extraction with the denaturing solution as 

supplied with the kit may have contributed to  selection for low molecular weight RNA species 

(or the procedure may have contributed to the  degradation o f RNA), observed in Fig 12a as a 

low molecular weight, abundant band. This m ay in turn have contributed to incorrect estimation 

o f RNA content during quantitation, low probe synthesis, and hence arrays w ith weak signals.
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Figure 11. mRNA Extraction Using Clontech Nucleotrap. Total RNA from samples 2 and 3 were 
extracted using Tri Reagent, followed by DNase-treatment and Qiagen clean-up. Total RNA of 207pg 
(2) and 176pg (3) was then purified for mRNA using Clontech Nucleotrap mRNA Purification Kit. A 
volume of 5pl was then separated on a 1.2% agarose gel and visualised by ethidium bromide staining. 
Figure shows 28s and 18s RNA bands weakly visible (lane 1 shows the 1 kb ladder).



Figure 12. Total RNA Extraction Using Atlas Pure Total System, (a) RNA extracted using Atlas Pure 
Total RNA Labelling System was subsequently DNase-treated and subject to Qiagen clean-up. RNA of 
lpg was separated on a 1.2% agarose gel and visualised by ethidium bromide staining. (Shown are RNA 
from (2) MCF-7, (3) MCF-7+E2 and (4) TamR cells. Lane 1 shows lkb ladder and asterisk marks 
localisation of unwanted low molecular weight constituents, (b) RNA extracted using Atlas Pure Total 
System was DNase-treated and subject to Qiagen clean-up. The absence of PCR product for IGF1 
indicates no genomic contamination. The following RNA were present in the PCR reaction: Lanes 1-3: 
MCF-7, MCF-7+E2 and TamR respectively, all at 0.5ug RNA; Lane 4: 50ng DNA standard. Lane 5 
shows negative control.
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Figure 13. Atlas Pure Total System Extracted RNA Hybridisation to Atlas Plastic Trial Arrays.
(a) RNA extracted using Atlas Pure Total RNA Labelling System was DNase-treated and subject to 
Qiagen clean-up. Resultant PolyA+ RNA was hybridised to Atlas Plastic Trial Microarrays. Arrays 
were then exposed to phosphoscreen for 7 days before detection, (b) Magnified area of array from Fig A 
shows the predominance of control specific signals with low gene-specific signals.



3.1.6 RNA Extraction: Optimised Protocol

It was on the basis of the results obtained using the Tri Reagent and the Atlas Pure Total 

System that the final optimised method of RNA extraction, probe labelling and array 

hybridisation was derived.

It was deemed necessary to retain the initial Tri Reagent extraction protocol (method 

2.2.2.1) due to the relatively high yields of RNA obtained. Also, all DNase treatments and 

Qiagen clean-up steps (methods 2.2.5 and 2.2.6) were retained to ensure adequate quality of 

RNA devoid of contamination. The resultant low background on the arrays from the Atlas 

Total RNA Labelling System protocol (Fig. 13) (method 2.2.2.4) may have been attributed to the 

PolyA+ Enrichment step, and was believed to be a desirable methodological step. So, the final 

method consisted of Tri Reagent Extraction of total RNA from cells, DNase-treatment and 

Qiagen clean-up (Fig. 14; see also Fig.6) where the procedure performed adequately across all 

cell lines. The resultant total RNA was then processed according to the Atlas Total RNA 

Labelling System, importantly without the denaturing/lysis buffer step, thus enriching for 

PolyA+RNA. This protocol was utilised to produce arrays with adequate signal strength and 

low background on the test arrays (Fig. 15) and ultimately on the 12K arrays (Fig. 16).

3.1.7 Validation of Cell Line Preparations bv RT-PCR

Using the optimised protocols, triplicate RNA preparations used for microarray studies 

were subsequently taken from the responsive and resistant cell lines in log phase of growth (as 

previously determined for each cell line by the TCCR Cell Culture Unit as being cultured for up 

to 70 percent confluency). To ensure RNA preparations from the cell model systems obtained 

for the initial microarray studies were representative and appropriate for each resistant cell line, 

PCR monitoring of expression changes was performed on the RNA extracted using the 

optimised protocol for genes of known profile in each type of resistance. In addition, parental 

MCF-7 cells subject to oestradiol treatment were included to provide further controls with 

regards to identification and confirmation of oestradiol regulated gene changes. This semi- 

quantitative PCR gene profiling revealed both TamR and FasR cells showed increases in mRNA 

levels for EGFR compared to the parental MCF-7 cells (Fig. 17a), consistent with previous 

observations (Knowlden et al., 2003, McClelland et al., 2001). In addition, mRNA levels for the 

ER regulated gene pS2 were also shown appropriately regulated (Gee et al., 1995, Knowlden et 

al., 1997), with decreases in this gene in the resistant cells and obvious E2 induction in the 

parental cell line (Fig. 17b). The gene for P-actin was also amplified for each cell line for 

normalisation of pS2 and EGFR, and shows equivalent PCR reaction conditions.
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Figure 14. RNA Extraction Using Tri Reagent prior to using the Optimised Protocol, (a) Total RNA 
was extracted from cell lines using Tri Reagent followed by DNase-treatment and Qiagen clean-up (lanes 
2-5 from MCF-7, MCF-7+E2, TamR and FasR respectively). A total volume of lpg was separated on a 
1.5% agarose gel and visualised by ethidium bromide staining. Lane 1 shows Ikb ladder, (b) Tri Reagent 
Extracted RNA- Check for Genomic Contamination. RNA extracted using Tri Reagent was DNase-treated 
and subject to Qiagen clean-up. The absence of PCR product for IGF1 indicates no genomic 
contamination. The following were present in the PCR reaction: Lanes 1-4: MCF-7, MCF-7+E2, Tam-R 
and FasR respectively; all at 0.5ug RNA; Lane 5: 50ng DNA standard. Lane 6 shows negative control.



Figure 15. Optimised Atlas Plastic Human Trial Microarray signal quality. RNA extracted from 
endocrine responsive/ resistant cells were processed according to the final ‘Optimised’ protocol, 
labelled and hybridised to Atlas Plastic Human 12k Microarrays. Example is shown with image 
generated using phosphorimaging exposed for 7 days, from array hybridised with radiolabelled TamR 
RNA
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Figure 16. Optimised Atlas Plastic Human 12k Microarray Performance for cell preparations. RNA extracted from MCF-7, MCF-7+E2, TamR 
and FasR cells were processed according to the final' Optimised’ protocol, labelled and hybridised to Atlas Plastic Human 12k Microarrays. Figure 
shows image generated by phosphorimaging using radiolabelled array exposed for 7 days.
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Figure 17. Key landmark genes are confirmed in cell line preparations using PCR analysis. Total 
RNA was extracted from cell lines using Tri Reagent followed by DNase-treatment and Qiagen clean-up. 
RNA shown was extracted using the final ‘optim ised ’ protocol and was subsequently used with Atlas 
Plastic Human 12K Microarray. RNA from MCF-7, MCF-7+E2, TamR and FasR cells was reverse 
transcribed then subject to PCR using primers for (a) EGFR and (b) pS2. P-Actin was used for PCR 
normalisation. The intensity of each band was normalised against that of P-actin. PCR products were 
visualised on a 1.5% agarose gel with ethidium bromide staining, as described in methods. Representative 
PCR profiles are shown together with normalised graphical r e p r e se n ta tio n  of fold increase across 
replicate samples (n=3) with standard error.
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Figure 18. Atlas Plastic Human 12k Microarrays demonstrate landmark gene pS2. RNA extracted 
and processed according to the ‘Optimised’ protocol was labelled and hybridised to Atlas Plastic Human 
12k Microarrays. Boxed area in red shows mRNA for the oestradiol-regulated gene, pS2 is elevated in 
(b) MCF-7 cells with oestradiol treatment, compared to the equivalent gene in control MCF-7 cells (a). 
pS2 gene expression is also reduced in TamR (c) and further still in FasR cells (d) relative to MCF-7 
cells.



FasR cells using t-test analysis (n=28 upregulated; n=4 downregulated) were deemed as high 

priority for further study, also worthy of consideration are genes which were statistically altered 

in one condition only, but show a profile which could be considered as borderline altered in 

both forms of resistance. This can be verified by HCA and PAM.

3.2.2 Hierarchical Cluster Analysis o f Differentially Expressed Genes in TamR and FasR cells

Cluster-analysis programs run on algorithms which group objects on the basis of their 

similarities, and in our case, the genes will be clustered according to their similarities in gene 

expression profiles across the responsive/ resistant cell lines. Results o f such GeneSifter-based 

(Euclidian distance) clustering are represented by a dendrogram tree (Fig. 19). The branches of 

the tree link the genes together according to similarities in expression. Then other branches (or 

gene clusters) can be refined further down the tree. Hierarchical clustering produces a readily 

interpretable figure which can be used for prediction of patterns of gene expression across 

multiple groups, particularly when new hypotheses are being formulated.

Cluster analysis of the microarray data derived from the quadruplicate set of arrays for 

MCF-7, TamR and FasR, demonstrates the predominance of clear and distinct clusters (Fig 19). 

Visually cutting through the dendrogram approximately halfway (shown by the blue line in 

Fig. 19) and estimating cluster number from the heatmap reveals approximately 15 clusters can 

be formed. This value is particularly useful with partitioning methods such as PAM (which will 

be used later) where estimated cluster number from HCA will be a prerequisite before 

partitioning the data.

Detailed pattern analysis of a number of critical clusters generated by HCA have clearly 

demonstrated the breadth genes which are, for example, downregulated in one (cluster 1 and 6) 

or both forms of resistance (cluster 2; Fig.20 [eg, GFRa3, W1SP2]). Clusters are also resolved 

where genes are upregulated in TamR (cluster 3; Fig.21 [eg. Homer2, PEA3 (ets variant 4), 

casein kinase 2, KDEL], and also cluster 5 [eg. Enigma], cluster 7, cluster 11 [eg. Angiogenin]), 

or FasR (cluster 13; Fig.22 [eg. Vitronectin] and also cluster 15). Genes upregulated in both 

forms of resistance may be exemplified by cluster 14 (eg. paroxonase2, CD44, PTTG1, cyclin 

A2, PPAR-5, alpha centaurin; Fig.23), but also found in cluster 4 (see below), cluster 8 (eg, Rab 

acceptor 1, Legumain, Matrix Gla protein), and other weaker clusters such as cluster 12 (eg, 

POP4, WD40 ciao) and occasionally within cluster 10 (biliverdin reductase, ODC). Although 

some TamR and FasR induced clusters contain genes which are also significantly induced in 

both TamR and FasR cells by t-test analysis, for example T-Box21 (cluster 4; Fig.24), a number 

of genes which are significantly altered in only one resistant cell line, but with a trend in the 

other resistant cell line, are also included in the cluster, such as GFRa3 and FK506bp, PPAR-y 

and STAT-i2. Such co-clustering supports the choice o f such singly t-test induced genes as 

borderline shared in both resistant cell lines.
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Figure 19. Hierarchical Cluster Analysis. Significantly altered genes in TamR and FasR relative to MCF-7 determined 
by project analysis through GeneSifter software in quadruplicate samples of MCF7, TamR and FasR cells were subject to 
hierarchical cluster analysis (Euclidian distance, average linkage) using GeneSifter. Dendrogram is shown left of the 
heatmap. Estimated clusters are also identified to the right of the heatmap. Position of blue line bisecting dendrogram was 
used to estimate number of partitions for PAM analysis.
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Figure 20. Hierarchical Cluster Analysis: Detail of Cluster 2 showing genes at lower levels in both 
resistance cell lines relative to MCF-7. Dendrogram together with gene name and accession numbers 
are shown alongside the heatmap. Genes of interest are highlighted with arrow.
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Figure 21. Hierarchical Cluster Analysis: Detail of Cluster 3 showing genes at higher level in 
TamR cell line only. Dendrogram together with gene name and accession numbers are shown alongside 
the heatmap. Genes of interest are highlighted with arrow.



NM 004624
NM 020169
NM 002225
NM 013393
NM 014624
NM 020246
NM 000638
NM 012198
NM 032027
NM 007057
NM 020991
NM 006555
NM 006549
NM 017443
L25876
NM 015958
NM 032112
NM 001815
NM 013314
NM 014251
1452969
NM 016178
NM 003657
NM 000405
NM 018468
NM 021167
NM 019601
NM 019040
NM 000403
NM 014131
NM 018466
NM 014942
NM 014404
NM 032020
NM 004629
NM 014945
NM 014051
NM 018243
NM 005458
NM 032571
NM 016283
NM 006014
NM 018455

vasoactive intestinal peptide receptor 1 
latexin protein
isovaleryl Coenzyme A dehydrogenase 
FtsJ homolog 2 (E. coli)
S I00 calcium binding protein A6 (calcyclin) 
cation-chloride cotransporter-interacting protein 

y  vitronectin 
grancalcm, EF-hand calcium binding protein 
beta-amyloid binding protein precursor 
ZW10 interactor
chorionic somatomammotropin hormone 2 
SNARE protein Ykt6
calcium/calmodulin-dependent protein kinase kinase 2, beta 
polymerase (DNA directed), epsilon 3 (p i7 subunit) 
cyclin-dependent kinase inhibitor 3 
CGI-30 protein
mitochondrial ribosomal protein L43 
carcinoembryonic antigen-related cell adhesion molecule 3 
B-cell linker
solute carrier family 25, member 13 (citrin)
Purkinje cell protein 4 
ornithine decarboxylase antizyme 3 
breast carcinoma amplified sequence 1 
GM2 ganglioside activator protein
uncharacterized hematopoietic stem/progenitor cells protein MDS033 
hypothetical protein RG083M05.2
Sushi domain (SCR repeat) containing 
hypothetical protein FU20498
galactose-4 -epimerase, UDP- 
PRO0514 protein
uncharactenzed hematopoietic stem/progenitor cells protein M DS031 
ankyrin repeat domain 6
calcium channel, voltage-dependent, gamma subunit 5
hypothetical protein MGC1314 similar to fueosidase, alpha-L- 1, tissue
Fanconi anemia, complementation group G
KIAA0843 protein
PTD011 protein
hypothetical protein FLJ10849
G protein-coupled receptor 51
EGF-like module-containing mucin-like receptor EMR3 
Adrenal gland protein AD-004
DNA segment on chromosome X (unique) 9879 expressed sequence 
uncharacterized bone marrow protein BM039

Figure 22. Hierarchical Cluster Analysis: Detail of cluster 13 showing genes at high levels in FasR 
cell line. Dendrogram together with gene name and accession numbers are shown alongside the 
heatmap Genes of interest are highlighted with arrow.
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Figure 23. Hierarchical Cluster Analysis: Detail of Cluster 14 showing genes increased in both 
TamR and FasR relative to MCF-7. Dendrogram together with gene name and accession numbers are 
shown alongside the heatmap. Genes of interest are highlighted with arrow. (*subcluster is also marked).
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Figure 24. Hierarchical Cluster Analysis : Detail of Cluster 4 showing shared genes increased in 
both TamR and FasR relative to MCF-7. Dendrogram together with gene name and accession 
numbers are shown alongside the heatmap. Genes of interest are highlighted with arrow.
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Figure 25. Partitioning (PAM) Cluster Analysis of Genes. Significantly altered genes in TamR and FasR relative 
to MCF7 were subject to PAM cluster analysis (Euclidian distance, row mean centred, for 16 clusters) using 
GeneSifter. Silhouette plots are shown for the cluster (MCF-7, TamR and FasR are represented by 1, 2 and 3 on the 
x-axis respectively). *(note: cluster 5 was manually bisected into clusters 5 and 14).
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Figure 26. Partitioning (PAM) Cluster Analysis of Genes: Detail of Cluster 1 showing genes 
increased in TamR and FasR versus MCF-7. The silhouette plot is shown together with a value for 
the average silhouette for the cluster. Gene names and accession numbers are shown alongside the 
heatmap. Genes of interest are highlighted with arrow.
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Figure 27. Partitioning (PAM) Cluster Analysis of Genes: Detail of Cluster 2 showing genes 
increased in TamR and FasR versus MCF-7. The silhouette plot is shown together with a value for the 
average silhouette for the cluster. Gene names and accession numbers are shown alongside the neatmap. 
Genes of interest are highlighted with arrow.
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Figure 28. Partitioning (PAM) Cluster Analysis of Genes: Detail of Cluster 3 showing genes 
increased in TamR and FasR versus MCF-7. The silhouette plot is shown together with a value for 
the average silhouette for the cluster. Gene names and accession numbers are shown alongside the 
heatmap. Genes of interest are highlighted with arrow.
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Figure 29. Partitioning (PAM) Cluster Analysis of Genes: Detail of Cluster 4 showing genes 
increased in TamR and FasR versus MCF-7. The silhouette plot is shown together with a value for 
the average silhouette for the cluster. Gene names and accession numbers are shown alongside the 
heatmap. Genes of interest are highlighted with arrow.
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Figure 30. Partitioning (PAM) Cluster Analysis of Genes: Detail of Cluster 7 showing genes largely 
increased in TamR only. The silhouette plot is shown together with a value for the average silhouette for 
the cluster. Gene names and accession numbers are shown alongside the heatmap. Genes of interest are 
highlighted with arrow
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Figure 31. Partitioning (PAM) Cluster Analysis of Genes: Detail of Cluster 10 showing genes 
increased in FasR only. The silhouette plot is shown together with a value for the average silhouette for 
the cluster. Gene names and accession numbers are shown alongside the heatmap. Genes of interest are 
highlighted with arrow.
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Figure 32. Partitioning (PAM) Ouster Analysis of Genes: Detail of Cluster 13 showing genes at 
lower expression in TamR and FasR versus MCF-7 cells. The silhouette plot is shown together with 
a value for the average silhouette for the cluster. Gene names and accession numbers are shown 
alongside the heatmap. Genes of interest are highlighted with arrow.
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Fig 33. Selected Cancer Ontologies for altered genes in TamR and FasR cells. Genes significantly
upregulated (■) or downregulated (□ ) using t-test analysis in either TamR or FasR cells were classified 
according to their associations to key endpoints of cancer (proliferation, anti-proliferation, cell survival, 
apoptosis, angiogenesis, invasion) as recorded in ExceJ-based database. The number of altered genes are 
shown within the selected ontology group, with its representation as a percentage of the set.
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Figure 34. Selected Key Cancer Ontologies for altered genes in TamR and FasR cells. Genes

significantly upregulated (■ ) or downregulated (□ ) using t-test analysis in either TamR or FasR cells 
were classified according to their associations to key endpoints of cancer (proliferation, anti
proliferation, cell survival, apoptosis, angiogenesis, invasion) as recorded in Excel-based database. The 
number of altered genes are shown within the selected ontology group, with its representation as a 
percentage of the set.



Table 6. Ontology database: Selected ontologies for genes upregulated in TamR cells. Excel based database was set up as an aid to select genes for further analysis, and 
to manage genelists for reference. Gene table included information on cellular localisation, summary of profile across all cell lines used for gene selection. Detailed 
examination of literature was performed to expand the gene database for gene associations with its known key cellular processes such as involvement with cancer, breast 
cancer or resistance, clinical associations, correlation with survival or apoptosis, proliferation, angiogenesis, invasion, and involvement with EGFR/erbB2/MAPK/Ras. 
(Numbers under columns headed: MCF-7, MCF-7+E2, TamR and FasR show the approximate gene profile across these cell lines/ conditions; Y and N refer to yes and no; G 
and B refer to good and bad; S and A refer to survival and apoptosis respectively).
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centaurin, alpha 1 NM 006869 CENT A1 Plasma membrane TamR/
FasR 0 1 2 3

cyclin A2 X51688 CCNA2 nucleus TamR/
FasR 0 2 3 3 Y Y Y

enigma (LIM domain protein) NM 005451 PDLIM7 TamR 0 1 3 1 Y
ets variant gene 4 (El A 
enhancer binding protein, El AF) 
(PE A3)
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FK506 binding protein precursor NM 016594 FKBP11 TamR 1 2 3 2 Y
GDNF family receptor alpha 3 NM 001496 GFRA3 Membrane TamR 1 1 3 2 Y Y B S Y Y
KDEL (Lys-Asp-Glu-Leu) 
endoplasmic reticulum protein 
retention receptor 3

NM 006855 KDELR3 Membrane TamR 0 0 3 0 Y Y

legumain D55696 LGMN Lysosomal TamR/
FasR 1 1 3 3 Y Y

matrix Gla protein NM 000900 MGP Secreted. TamR 1 3 3 3 Y
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Neurexin 2 NM_015080 NRXN2 Type I membrane 
protein

TamR/
FasR 0 1 2 3

paraoxonase 2 L48513 PON2 Membrane TamR/
FasR 0 1 3 3 S

peroxisome proliferative 
activated receptor, delta NM 006238 PPARD Nuclear TamR/

FasR 0 0 3 3 Y Y Y Y

peroxisome proliferative 
activated receptor, gamma NM 005037 PPARG Nuclear TamR 0 2 3 2 Y G A Y Y

pituitary tumor-transforming 1 NM 004219 PTTG1 Cytoplasmic 
(some Nuclear)

TamR/
FasR 1 2 3 3 Y Y Y B S Y Y Y Y

POP4 (processing of precursor, 
S. cerevisiae) homolog NM 006627 POP4 Nuclear TamR/

FasR 0 0 3 3 Y

Rab acceptor 1 (prenylated) NM 006423 RAB AC 1 TamR 1 1 3 2 A
STAT induced STAT inhibitor-2 AB004903 SOCS2 Cytoplasm TamR 1 1 3 3 Y S N

T-box 21 NM_013351 TBX21 Nuclear TamR/
FasR 0 2 3 2 s N

WD40 protein Ciaol NM 004804 CIAOl Nuclear TamR/
FasR 1 2 3 2 Y



Table 7. Ontology database: Selected ontologies for genes upregulated in FasR cells. Excel based database was set up as an aid to select genes for further analysis, and to 
manage genelists for reference. Gene table included information on cellular localisation, summary of profile across all cell lines used for gene selection. Detailed examination 
of literature was performed to expand the gene database for gene associations with its known key cellular processes such as involvement with cancer, breast cancer or 
resistance, clinical associations, correlation with survival or apoptosis, proliferation, angiogenesis, invasion, and involvement with EGFR/erbB2/MAPK/Ras. (Numbers under 
columns headed: MCF-7, MCF-7+E2, TamR and FasR show the approximate gene profile across these cell lines/ conditions; Y and N refer to yes and no; G and B refer to 
good and bad; S and A refer to survival and apoptosis respectively).
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biliverdin reductase B NM 000713 BLVRB Cytoplasmic FasR 1 1 2 3 S

CD44 M59040 CD44 Type I membrane 
protein. FasR 1 2 2 3 Y G Y

centaurin, alpha 1 NM 006869 CENT A1 Membrane FasR/
TamR 0 1 2 3

cyclin A2 X51688 CCNA2 nucleus FasR/
TamR 0 2 3 3 y Y

ornithine decarboxylase 1 NM 002539 ODC1 FasR 1 1 2 3 Y Y B Y Y Y

paraoxonase 2 L48513/ 
NM 000305 PON2 Membrane FasR/

TamR 0 1 3 3 S

peroxisome proliferative 
activated receptor, delta NM_006238 PPARD Nuclear FasR/

TamR 0 0 3 3 Y Y Y Y

pituitary tumor-transforming 1 NM 004219 PTTG1 Cytoplasmic 
(some Nuclear)

FasR/
TamR 1 2 3 3 Y Y Y B S Y Y Y Y

pituitary tumor-transforming 3 NM 021000 PTTG3 cytoplasm, nucleus FasR 1 3 2 3 Y S Y Y
POP4 (processing of precursor, 
S. cerevisiae) homolog NM_006627 POP4 Nuclear FasR/ 

TamR 0 0 3 3 Y

T-box 21 NM 013351 TBX21 Nuclear FasR/
TamR 0 2 3 2 s N
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Table 8. Ontology database: Selected ontologies for genes downregulated in TamR cells. Excel based database was set up to select genes for further analysis, and manage 
genelists for reference. Gene table included information on cellular localisation, summary of profile across all cell lines used for gene selection. Detailed examination of literature 
was performed to expand the gene database for gene associations with its known key cellular processes such as involvement with cancer, breast cancer or resistance, clinical 
associations, correlation with survival or apoptosis, proliferation, angiogenesis, invasion, and involvement with EGFR/erbB2/MAPK/Ras. (Numbers under columns headed: MCF- 
7, MCF-7+E2, TamR and FasR show the approximate gene profile across these cell lines/ conditions, Y and N refer to yes and no; G and B refer to good and bad; S and A refer to 
survival and apoptosis respectively).
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anchor

WNT1 inducible signaling 
pathway protein 2 NM_003881 WISP2 Secreted TamR/

FasR 1 1 3 3 Y Y

Table 9. Ontology database: Selected ontologies for genes downregulated in FasR cells. Excel based database was set up to aid to select genes for further analysis, and manage 
genelists for reference. Gene table included information on cellular localisation, summary of profile across all cell lines used for gene selection. Detailed examination of literature 
was performed to expand the gene database for gene associations with its known key cellular processes such as involvement with cancer, breast cancer or resistance, clinical 
associations, correlation with survival or apoptosis, proliferation, angiogenesis, invasion, and involvement with EGFR/erbB2/MAPK/Ras. (Numbers under columns headed: MCF- 
7, MCF-7+E2, TamR and FasR show the approximate gene profile across these cell lines/ conditions; Y and N refer to yes and no; G and B refer to good and bad; S and A refer to 
survival and apoptosis respectively).
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3.2.3 Partitioning (PAM) Analysis o f  Differentially Expressed Genes

in TamR and FasR cells

The number o f  clusters chosen for PAM analysis in GencSifter software was 

determined empirically w here a compromise was made between mean silhouette width and 

number o f manageable clusters. In addition, as hierarchical cluster analysis had been performed 

on the dataset, the dendrogram and heatmap profiling conditions MC F-7, lamR and FasR 

indicates 12-16 clusters were ultimately tested in PAM.

Following testing this cluster range, PAM analysis selecting for 16 clusters produced a 

range o f  silhouette plots (Fig.25). For ease o f interpretation, these have been ranked manually in 

order o f similarities. One cluster (5) was subsequently poorly resolved so was manually divided 

into two clusters 5 and 14, giving a total o f  17 clusters. Akin to HCA, in general, PAM analysis 

produced clear and distinct clusters, although there appeared to exist some degree o f profile 

similarities. These dominant clusters include genes which are upregulated in both TamR and 

FasR (clusters 1-4; Figs.26-29 [containing T-box21, PPAR-y, GFRa3, STAT-i2, FK506-bp, 

PTTG1, Legumain, Rab acceptor, Matrix Gla protein, CD44, POP4, paroxonase2, cyclin A2, 

alpha centaurin, PPAR-5]), in only TamR (clusters 5-9 [containing Angiogenm, Homer2, 

Enigma, PEA3, casein kinase 2, K.DEL] eg. Fig.30) or only FasR (clusters 10-12 [containing 

Vitronectin]; eg. F ig.31), or decreased in both forms o f resistance (clusters 13-15 [containing 

G FR al, WISP2]; eg. Fig.32) or individual forms o f resistance (clusters 16-17) Again PAM 

revealed alongside the significant genes induced in both forms o f resistance a considerable 

breadth o f  further genes with similar expression profiles (clusters 1-4).

3.2.4 Gene Ontological Examination

Further gene selection was performed manually to prioritise the entire t-test significant 

gene list for those which have previously been associated with cancer, in particular any 

relationship in breast tum our progression or therapeutic response, if available, role in signal 

transduction pathways (eg. EGFR, MAPK), or in influencing key endpoints o f cancer, such as 

proliferation, cell survival, invasion and angiogenesis (see also Fig 33- Fig 34) The extensive 

research o f  genes identified in this study using online literature database searching, according to 

sources including Medline, GeneCard and GeneSifter information, has resulted in the 

establishment o f  an Excel database listing genes by names and ID according to such categories. 

An example o f  the database with selected columns has been reproduced in tables 6-9 and is also 

currently located as a shared resource at the TCCR. Additional information indicates whether 

genes were significantly induced using t-test and cellular localisation.

Broad analysis o f  the t-test significant (n=348) genes within the database, according to 

known ontology, revealed that 33 and 40 proliferation-related genes were altered in TamR and
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FasR cells respectively versus MCF-7 cells. Interestingly, in both resistant states, the majority 

of genes were upregulated, with a possible higher proportion of these induced genes in FasR 

cells. In contrast, a lower number of antiproliferative genes were altered in the resistant states. 

Examination of genes related positively to cell survival showed 26 altered in TamR and 21 in 

FasR. Again the majority were upregulated with possibly a greater proportion of these induced 

in FasR cells. Examination of genes associated to tumour cell invasion revealed 28 altered in 

TamR and 25 in FasR cells, again with the majority upregulated in FasR, and again, a higher 

proportion of these in FasR cells. However, lower number of gene changes were observed from 

the examination of apoptotic and angiogenesis-related genes, although the majority o f these 

genes were upregulated in the resistant models.

3.2.5 t-test HCA and PAM are Complimentary Methods of Data Analysis

By die use of T-test, HCA and PAM Data analysis, together with detailed ontological 

examination, genes were subsequently selected for PCR analysis (highlighted in Tables 6-9 and 

listed in the database [see CD-ROM]).

Gates which were shared by t-test significance as both forms of resistance, were 

highlighted as priority, provided a favourable ontology with regards to adverse cancer cell 

endpoints was found. However, genes which demonstrated reasonable ontologies in terms of 

relevance to cancer endpoints (or favourable targeting localisation) were also taken into 

account, if  a favourable expression profile was demonstrated within a suitable cluster using 

HCA and/or PAM analysis. Both HCA and PAM demonstrate distinct clusters o f genes (Fig. 19 

and Fig.25). On closer inspection, many of the strong clusters, such as those exhibiting 

upregulation in both TamR and FasR cells using HCA (Fig.22 and Fig.23) and PAM (Fig.26- 

29) house potential candidates for further exploration, alongside genes significant by t-test with 

interesting ontology. HCA and PAM analysis revealed the true breadth of “shared” induced 

genes in TamR and FasR cells. Within HCA there were two substantial clusters of genes which 

demonstrated increased expression in both TamR and FasR cells relative to MCF-7. Although 

generally, upregulated in both resistant states, the first noticeable difference between HCA 

clusters 4 and 14 (Fig.24 and Fig.23) is that visually there exists a subtle predominance of high 

expression in one cell line over the other for many genes. Where cluster 4 demonstrates higher 

expression in TamR cells, there is a tendency for genes in cluster 14 to be more highly 

expressed in FasR over TamR according to HCA. This profile across MCF-7, TamR and FasR 

is mirrored using PAM analysis (Fig.26-29), where, for example, PAM cluster 1 (Fig.26) has a 

predominance o f TamR expression over FasR in the silhouette plot. Exploration of HCA cluster 

4 and PAM cluster 1 revealed (Fig.24 and Fig.26) a number of signalling genes with interesting 

ontologies common to both these clusters, such as GFRa3, PPAR-y, STAT-i2 and FK506bp, all
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significantly induced in TamR with a trend for increase in FasR, alongside the t-test significant 

shared gene, T-Box21.

In contrast to PAM cluster 1, PAM cluster 2 silhouette plot shows a slight increase in FasR 

relative to TamR expression compared to PAM cluster 1, and PAM clusters 3 and 4 a higher 

still expression in FasR cells, such that this exceeds the TamR level (Fig.27-29). These clusters 

house a number o f t-tested significant genes which have been taken into consideration for 

further analysis, based on ontology and cancer endpoints, such as PTTG1, PPAR-5, cyclin A2, 

paraoxonase 2, alpha centaurin, legumain. Some o f these genes are also present in HCA cluster 

14 (Fig.23). It is also worth noting that within HCA cluster 14, a sub-cluster o f genes which, 

although it exhibits higher expression in both resistant cells versus MCF-7, has an unusually 

higher expression in FasR cells, exemplified by the gene for CD44. This sub-cluster has been 

resolved into the silhouette plot using PAM analysis into cluster 3 (Fig.28).

Genes which have an increased expression in TamR cells only have been identified in 

groups including cluster 3 using HCA (Fig.21). Among these, particularly ontologically 

appealing genes that are robustly increased using t-testing (table 6-7) fall into a distinct, cluster 

7 using PAM analysis (Fig.30) which is markedly TamR induced from very low expression. 

These are exemplified by PEA3, KDEL and casein kinase 2. Similarly, genes which are 

increased in FasR cells only (eg. Vitronectin) can be identified, not only using t-test analysis 

(table 7), but as those genes which are grouped using HCA (cluster 13; Fig.23) and sharing a 

similar profile using PAM analysis (cluster 10; Fig.31). Genes which are downregulated in 

TamR and FasR genes distinctly fall into HCA cluster 2 (Fig.20) and a small amount in cluster 

9. It is worth noting that as well as robust selection through t-test analysis (table 8-9) a number 

o f these are also represented within PAM cluster 13 (Fig.32), such as WISP2 and G FR al.

3 J  Ontological Examination & RT-PCR for Selected Genes

As described above, genes for verification were initially selected according to their 

array expression profile across TamR and FasR cells according to t-test and HCA/PAM relative 

to MCF-7 cells, and basic ontology (exemplified in tables 6-9), focussing predominantly on 

genes with increased expression. However, a full ontological examination o f these selected 

genes was subsequently also a major contributing factor in the final choice o f gene selection 

(see also CD-ROM included in thesis). These genes o f interest were then subject to PCR 

verification o f the induced profile.

RT-PCR assessment was performed initially on the RNA samples from the various cell lines 

which were used to hybridise to the array, previously extracted using the optimised protocol 

(section 3.1.6). Specific primers for each gene were either designed using Primer3 software or 

predesigned by Clontech (BD Biosciences) coamplifying with J3-actin for normalisation, where
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possible. The genes analysed and primer sequences are displayed in Tables 1 and 2 in the 

methods section, alongside their optimised PCR conditions (cycle number, annealing 

temperature, etc). There were 25 induced genes and 2 suppressed genes evaluated, as in table 1.

The very recent introduction o f the Affymetrix HGUA-133 genechip microarray 

system in TCCR allowed further profile verification in equivalent MCF-7, MCF-7+E2, TamR 

and FasR samples, and has been included alongside Atlas Plastic 12K Microarray and/or RT- 

PCR profiles for the purposes o f further confirming the final genelist.

3.3.1 Genes Upregulated in TamR and FasR Cells

3.3.1.1 Pituitary Tumour Transforming 1 (PTTGD 

Detailed Ontological Results

Pituitary tumour transforming gene (PTTG1, or securin) is reported to encode a protein 

which is localised within the cytoplasm as well as partially in the nucleus (Chien and Pei,

2000), and was originally identified from rat pituitary tumour cells (Pei and Melmed, 1997); 

(Chen et al., 2000) have also reported two PTTG1 homologues, PTTG2 and PTTG3 with 

around a 90% sequence homology at the protein level.

In normal human tissues, the expression o f PTTG is restricted in a tissue-specific 

manner, with high levels in the testis, but low levels detectable in other tissues, such as the 

thymus, colon, and small intestine. In contrast, PTTG is expressed at high levels in a variety o f 

human primary tumours, as well as tumour cell lines, including carcinomas of the ovary, lung, 

testis, kidney, colon, thyroid, pituitary, liver, adrenal, breast, prostate, melanoma, leukaemia, 

and lymphoma (Kakar, 1998, Zhang et al., 1999, Dominguez et al., 1998, Wang et al., 2001, 

Puri et al., 2001, Yu et al., 2000b, Heaney et al., 2001, Heaney et al., 2000). In a recent study 

investigating the expression o f PTTG 1 in breast cancers, a direct correlation was found between 

expression levels and lymph node infiltration and higher degree o f tumour recurrence (Solbach 

et al., 2004), but no reports have mentioned this gene in relation to endocrine response or 

acquisition o f resistance.

The level o f  PTTG expression is reported to be increased in rapidly proliferating cells 

and is regulated in a cell cycle-dependent manner, peaking at G2/M phase (Ramos-Morales et 

al., 2000). PTTG1, by virtue o f its function as a securin, ensures that there is no premature 

separation o f sister chromatids in normal cells through the inhibition o f separin (Nasmyth, 

2005).

Consistent with its role as a cell cycle regulatory protein, PTTG1 overexpression was 

observed to disrupt sister chromatid separation leading to aneuploidy, (Christopoulou et al., 

2003, Yu et al., 2003). Aneuploidy (an abnormal number o f chromosomes) is characterised by 

the emergence o f macro/micro/multiple nuclei in tumour cells and is common in tumours
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including breast cancer (Kops et al., 2005). Overexpression o f PTTG1 increases cell 

proliferation, induces cellular transformation in vitro, and promotes tumour formation in-vivo 

(Kakar and Jennes, 1999), suggesting an oncogenic role for the PTTG1 gene (Schwab et al., 

1985, Land et al., 1983). In addition to its tumour forming capabilities, PTTG1 has also been 

demonstrated to prime gene expression. It was shown to stimulate fibroblast growth factor 

(FGF-2)- mediated angiogenesis and in pituitary tumours upregulated VEGF expression 

(McCabe et al., 2002). In thyroid cancer, this angiogenic capabilities o f PTTG1 were 

demonstrated when it was reported to have regulated angiogenic and apoptotic-associated genes 

(Kim et al., 2006). Additionally, the expression o f c-myc can also be regulated by PTTG1 (Pei,

2001).

With regards to the regulation o f PTTG1, at a protein and mRNA level, in a glioma cell 

line, EGF, TGF-alpha, and MAPK signalling were demonstrated to upregulate PTTG1 (Tfelt- 

Hansen et al., 2004), and also insulin/IGF-1 via PI3K/AKT (Chamaon et al., 2005, Thompson 

and Kakar, 2005). PTTG also houses a SP1 and NF-Y binding promoter (Clem et al., 2003), as 

well as an insulin response element (IRE), and A PI/ AP2 binding sequences , suggesting 

growth factor regulation (Kakar and Jennes, 1999). It is also MAPK activation, as well as 

interaction with a PTTG binding factor (PBF) which may facilitate the nuclear translocation of 

PTTG1 (Pei, 2000) and hence its function. More recently, the p53 tumour suppressor gene has 

been demonstrated to directly bind to the promoter o f PTTG1, thus suppressing its tumour- 

forming capabilities (Kho et al., 2004). However, p53-dependant apoptosis can involve PTTG1, 

but where there is an absence/failure o f functional p53, PTTG1 can promote aneuploidy (Yu et 

al., 2000a).

RT-PCR Verification Results

This study demonstrates the significant upregulation o f PTTG 1 in both TamR and FasR 

cell lines, in both array (p=0.013 and 0.014 respectively) and by subsequent PCR studies 

(p=0.0888 and p=0.0057 respectively in Fig.35) versus MCF-7. These results also show a small 

induction by oestradiol in MCF-7 (which is in accordance with other reports; (Tfelt-Hansen et 

al., 2004). The profile is also verified using Affymetrix analysis where the gene is readily 

detectable. The “shared” induced gene was considered as high priority for further studies 

involving protein analysis based both on ontology, profile and verification. .
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Figure 35. PTTG1 gene is expression profile in MCF-7, TamR, FasR cell lines. PTTG1 mRNA was 
monitored as (a) using Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are 
shown, (b) by PCR analysis using primers for PTTG1 co-amplified with (3-actin (normalisation purposes). PCR 
products separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile 
is shown from triplicate experiments. PCR signals were then subject to densitometric analysis and normalised 
data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA 
preparations were used for all studies of mRNA expression). Additional controls were provided by MCF-7 
cells subject to oestradiol treatment. (Ap=0.013 and AAp=0.014 respectively for TamR and FasR relative to 
MCF-7; *p=0.0888 and **p=0.0057 respectively for TamR and FasR relative to MCF-7; +p=0.0166 and 
+"p^0.002 respectively for TamR and FasR relative to MCF-7 [Students t-test]).

MCF-7 MCF-7+E2 TamR FasR



3.3.1.2 GDNF receptor alpha 3 (GFRa3)

Detailed Ontological Results

The glial cell line-derived neurotrophic factor (GDNF) family of 4 receptors and 

associated ligands are reported to promote the survival and maintenance of different neuronal 

cell types. GDNF family receptors signal through a complex composed of a GDNF family co

receptor and the membrane-bound RET tyrosine-kinase receptor (Sariola and Saarma, 2003, 

Baloh et al., 1998a). GDNF-like ligands have several roles outside the nervous system, such as a 

morphogenesis in kidney development and regulating spermatogonial differentiation. Although 

the four receptors preferentially bind to specific ligands, some o f these ligands can weakly 

cross activate other receptors within the family (Airaksinen and Saarma, 2002). Thus, GFRal 

may be activated by its ligand GDNF, but also by Neurturin, and Artemin; GFRa2 by its ligand 

Neurturin, but also by GDNF; and GFRa3 by its ligand Artemin, but also by GDNF whereas 

GFRa4 is only activated by Persephin (Airaksinen and Saarma, 2002).

As well as neuronal cell types, GFRa3 has been found to be expressed in peripheral 

tissues, and high expression was detected in colon, small intestine, pancreas, heart, testis, and 

prostate, testis and pancreas, stomach, appendix, and the urogenital system (Baloh et al., 1998b, 

Masure et al., 1998). While a link has been made to GFRa signalling and pancreatic cancer 

invasion (Ito et al., 2005) there is no literature relating GFRa3 in breast cancers to date, it may 

be in undetectable levels, or indeed induced under altered cellular states (such as resistance, as 

suggested by our data). Although there exists the link between RET and medullary thyroid 

carcinoma (Asai et al., 2006), and more recently pancreatic cancer (Ito et al., 2005), there is to 

our knowledge, no reported association with breast cancer.

The GFRa3 receptor upon binding with its ligand Artemin is autophosphorylated, 

resulting in the activation of RET (Baloh et al., 1998a), which may in turn activate a number of 

other signalling pathways including MAPK and c-src (Airaksinen and Saarma, 2002). The RET 

protooncogene is a receptor tyrosine kinase, which is at the cell-surface and can transduce 

signals for cell proliferation and cell survival. It can undergo oncogenic activation in-vivo and 

in-vitro by cytogenetic rearrangement (Grieco et al., 1990). Mutations in the RET gene are 

associated with the disorders multiple endocrine neoplasia, Hirschsprung disease, and medullary 

thyroid carcinoma (Asai et al., 2006), and more recently, as mentioned, linked to pancreatic 

cancer (Ito et al., 2005). However, there is, to our knowledge, no reports between RET and 

breast cancer, other than a study which induced overexpression o f RET/PTC fusion protein (a 

frequently observed chimeric gene in papillary thyroid cancer) was able to induce mammary 

tumours in mice (Portella et al., 1996).
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Figure 36. GFRa3 gene is expression profile in MCF-7 TamR and FasR cell lines. GFRa3 (glial cell- 
derived neurotrophic factor [GDNF] receptor alpha 3) mRNA was monitored as (a) using Atlas Plastic Human 
12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis using primers for 
GFRa3 co-amplified with (3-actin (normalisation purposes). PCR products separated on an agarose gel were 
visualised by ethidium bromide staining. Representative PCR profile is shown from triplicate experiments. 
PCR signals were then subject to densitometric analysis and normalised data plotted (plot shows standard 
error), (c) using Asymetrix HG-U133A gene chips. (Identical RNA preparations were used for all studies of 
mRNA expression). Additional controls were provided by MCF-7 cells subject to oestradiol treatment. 
(Ap=0 0136 for TamR relative to MCF-7; *p=0.0035 and **0.0131 respectively for TamR and FasR relative to 
MCF-7; +p<0.001 and ++p=*0.001 respectively for TamR and FasR relative to MCF-7 [statistical analysis 
performed using students t-test]).
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Figure 37. CD44 gene in resistant cells. CD44 antigen mRNA was monitored as (A) using Atlas Plastic 
Human 12k Microarrays. Log intensity graphical output and heatmap are shown. (B) by PCR analysis 
using primers for CD44. (3-actin was also amplified (normalisation purposes). PCR products separated on 
an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown from 
triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data plotted 
(plot shows standard error). (C) using Affymetrix HG-U133A gene chips. (Identical RNA preparations 
were used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject 
to oestradiol treatment. (Ap=0.038 for FasR relative to MCF-7; +p=0.0016, ++p=*0.0306 and p=0.0235 
respectively for MCF-7+E2, TamR and FasR relative to MCF-7 [students t-test];



RT-PCR Verification Results

Microarray profiles obtained in this study indicate that in both TamR and FasR cells 

there is an increased level o f GFRa3 gene from a state o f  no detectable gene expression in 

parental cells, this being significant in TamR cells (p=0.0136), by t-test (Fig.36). There was no 

gene induction with oestradiol treatment o f MCF-7 cells. The profile o f induction in both 

resistant cell lines was confirmed by PCR studies, where both TamR and FasR cells showed 

significant induction over control cells (p<0.0035 and 0.0131 respectively), and the induction 

was further confirmed by Affymetrix analysis. This gene was considered as high priority for 

future studies based on its ontology, microarray profile and RT-PCR verification.

3.3.1.3 CD44

Detailed Ontological Results

Cell surface adhesion receptors, such as CD44, act as cell anchors, regulate cell 

mobility, and allows cooperation between cells and the surrounding environment. CD44 is a 

broadly distributed transmembrane glycoprotein that plays a critical role in a variety o f cellular 

behaviours, including adhesion, migration, invasion, and survival (Marhaba and Zoller, 2004). 

CD44 mediates cell-cell and cell-matrix interactions in a large part through its affinity for 

hyaluronan (HA), a glycosaminoglycan constituent o f extracellular matrices, but also potentially 

through its affinity for other ligands such as osteopontin, collagens, and matrix 

metalloproteinases (MMPs). The CD44 family o f transmembrane glycoproteins, and CD44 

variants, that also have been implicated in mammary tumour progression (Cichy and Pure, 

2003). Indeed, in our own tamoxifen resistant TamR cells, which display a more aggressive 

phenotype, and have demonstrated increased EGFR signalling (Knowlden et al., 2003), an 

association o f this pathway and CD44 via (3-catenin activity was suggested, where (3-catenin is 

implicated with invasive capacity in these cells (Hiscox et al., 2006).

RT-PCR Verification Results

Microarray study revealed CD44 as significantly upregulated in FasR cells (p=0.038) 

by t-test with a trend in TamR cells, as further indicated by HCA/PAM relative to MCF-7 cells, 

a pattern also suggested by the PCR profile (Fig.37) and Affymetrix arrays, although in both 

instances FasR induction predominated. An upregulation o f CD44 protein in TamR and Tam-R 

cells has previously been shown within our laboratory, and there is an ongoing interest for study 

o f  its role in resistance using siRNA with examination o f key CD44 variants (Af. Harper, 

unpublished data).
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3.3.1.4 Peroxisome Proliferator-activated Receptor-Delta: (PPAR-6) and

Peroxisome Proliferator-activated Receotor-Gamma: (PPAR-v)

Detailed Ontological Results

The PPARs are nuclear receptors that mediate the effects of diverse group of chemicals 

o f both biologic and nonbiologic origin. PPARs heterodimerise with 9-cis retinoic acid receptor 

(RXR), and bind to one of die peroxisome proliferator (PP) response elements (PPRE) residing 

within the target gene to stimulate transcription. (Desvergne and Wahli, 1999). Three separate 

genes encode the isoforms: PPAR alpha (PPAR-a), PPAR beta (PPAR-$) (also named delta -6), 

and PPAR gamma (PPAR-y).

PPARa is found mosdy in brown adipose tissue and liver, then kidney, heart and 

skeletal muscle. PPAR-y is mainly expressed in adipose tissue and, to a lesser extent, the colon, 

immune system, and retina. PPAR-5 is found in numerous tissues, but to a greater degree in the 

gut, kidney and heart (Desvergne and Wahli, 1999). PPARs generally function to effect 

pathways of lipid transport and metabolism, but have shown both a positive and negative role in 

cancer. For example, PPAR-y has been demonstrated to have an antiproliferative effect in a 

number of malignancies, its ligands capable o f inducing terminal differentiation and apoptosis 

of tumour cells in-vitro (Demetri et al., 1999). However PPAR-y ligands in cells may show 

anti-proliferative and pro-apoptotic properties, the only published clinical trial in breast cancer 

using PPAR-y ligands failed to show benefits in metastatic disease (Fenner and Elstner, 2005). 

Moreover, PPAR-y has also been suggested to have a positive role in colon cancer (He et al., 

1999).

More recently, PPAR-6 selective agonists have been shown to increase growth in breast 

and prostate cancer cell lines and primary endothelial cells. PPAR-6 has also been shown to 

modulate AKT signalling in colon cancer cells (Park et al., 2001). The resulting higher AKT 

activity led to increased cell survival following growth factor deprivation. PPAR-6 also 

potentiated NFkB activity and MMP9 production, which cumulatively can regulate cell growth 

and migration.

RT-PCR Verification Results

The microarray results demonstrate the induction o f both PPAR-6 and PPAR-y (Fig. 3 8 

and Fig.39) in TamR cells (p=0.025 for both). FasR cells also showed an induction in both 

PPAR types, apparent from HCA/PAM analysis, although this was significant only for PPAR-6 

by t-test (p=0.026). However, following PCR, PPAR-6 showed a modest increase in FasR cells, 

a profile mirrored by Affymetrix profiling. PPAR-y was significantly increased in TamR cells 

by PCR (p=0.0016), with some induction also in FasR, confirmed by Affymetrix analysis. In 

total, there was some indication of a shared profile for PPARy, although ontology was
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controversial, and there was a less convincing profile for PPAR5, despite an interesting 

ontology. In total, these genes were not deemed high priority.

3.3.1.5 q-Centaurin (p42IP4)

Detailed Ontological Results

The centaurin family o f proteins contain a pleckstrin homology domain, a module 

which mediates phosphoinositide binding in numerous proteins, hence a signalling role (Leevers 

et al., 1999). In addition they are regulatory proteins for ARFS, GTP binding proteins 

functioning in vesicular trafficking and cytoskeletal regulation (Chavrier and Goud, 1999). A 

nuclear and cytoplasmic protein, alpha centaurin is recruited to the plasma membrane upon 

EGF-dependent activation o f phosphatidylinositol 4,5-diphosphate (PtdInsP2) 3-kinase 

(Sedehizade et al., 2005). It has also been reported to associate with phosphorylated PKC 

(Zemlickova et al., 2003) and casein kinase 1 (Zemlickova et al., 2003).

RT-PCR Verification Results

Our microarray data revealed that there is a significant induction in a-centaurin in both 

resistant TamR and FasR cells (p=0.031 and 0.024) (Fig.40), also indicated with HCA/PAM. 

However, PCR data demonstrated only a modest induction in FasR cells alone. This more 

obvious FasR effect was also suggested by Affymetrix analysis. While there was an increase 

with oestradiol on the arrays, this did not persist at the PCR level. In total, this was not a high 

priority gene since PCR profile does not confirm a-centaurin as a shared gene.

3.3.1.6 POP4 (rpp29)

Detailed Ontological Results

POP4 is a constituent o f ribonuclease P, a protein complex that generates mature tRNA 

molecules by cleaving their 5'ends. It may function with RPP38 to coordinate the nuclear 

targeting and/or assembly of RNase P (Jarrous et al., 1999). Although a direct link between 

POP4 and malignancy has not directly been confirmed, the increased processivity of RNA due 

to RNase P action may be of some significance in resistant growth.

RT-PCR Verification Results

Microarray analysis in our study reveals a significant induction of POP4 in both 

resistant cell lines (p<0.001 for both). Although this is suggested with HCA/PAM, this effect is 

only weakly suggested in FasR cells using PCR confirmation (Fig.41), with a predominant 

effect only in these cells by Affymetrix analysis. There was also no obvious oestradiol 

regulation observed. In total, due to lack o f confirmation as a shared gene, the gene was 

considered low priority.
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Figure 38. PPAR-6 gene in resistant cells. PPAR-6 mRNA was monitored as (a) using Atlas Plastic 
Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis 
using primers for PPAR-5. (3-actin was also amplified (normalisation purposes). PCR products separated 
on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown 
from triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data 
plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA 
preparations were used for all studies of mRNA expression). Additional controls were provided by MCF- 
7 cells subject to oestradiol treatment. (Ap=0.025 and AAp=*0.026 respectively for TamR and FasR 
relative to MCF-7 [students t-test].
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Figure 39. PPAR-y gene in resistant cells. PPAR-y mRNA was monitored as (a) using Atlas Plastic 
Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis using 
primers for PPAR-y co-amplified with {3-actin (normalisation purposes). PCR products separated on an 
agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown from 
triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data plotted 
(plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA preparations 
were used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject 
to oestradiol treatment. (Ap=0.025 for TamR relative to MCF-7.*p=0.0016 for TamR relative to MCF-7 
cells; +p=0.004, and -H-p=0.0151 respectively for TamR and FasR relative to MCF-7 [students t-test]).
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Figure 40. Alpha Centaurin gene in resistant cells. CENTA 1 mRNA was monitored as (A) using 
Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown. (B) by 
PCR analysis using primers for alpha centaurin co-amplified with P-actin (normalisation purposes). 
PCR products separated on an agarose gel were visualised by ethidium bromide staining. 
Representative PCR profile is shown from triplicate experiments. PCR signals were then subject to 
densitometric analysis and normalised data plotted (plot shows standard error). (C) using Affymetrix 
HG-U133A gene chips. (Identical RNA preparations were used for all studies of mRNA expression). 
Additional controls were provided by MCF-7 cells subject to oestradiol treatment. (Ap=0.031 and 
AAp=*0.024 respectively for TamR and FasR relative to MCF-7 [students t-test].
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Figure 41. POP4 gene in resistant cells. POP4 mRNA was monitored as (a) using Atlas Plastic Human 
12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis using 
primers for POP4. (3-actin was also amplified (normalisation purposes). PCR products separated on an 
agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown from 
triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data plotted 
(plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA preparations 
were used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject 
to oestradiol treatment. (Aand AAp<0.001 for both TamR and FasR relative to MCF-7; +p=0.005 for FasR 
relative to MCF-7 [students [students t-test].



3.3.1.7 Matrix Glaprotein 

Detailed Ontological Results

Matrix Gla protein (MGP) is secreted vitamin K-dependent protein initially isolated 

from bovine bone. It is expressed at high levels in heart, kidney, and lung and is upregulated by 

vitamin D in bone cells (Cancela et al., 1990).

Each of the four exons of MGP corresponded to the domains found in all known 

vitamin K-dependent vertebrate proteins: a transmembrane signal peptide, followed by putative 

gamma-carboxylation recognition site, and a Gla-containing domain. MGP also contains a 

fourth exon of unknown function that codes for 11 residues and lies between the transmembrane 

signal peptide and the putative recognition site for the gamma-carboxylase. There are 2 regions 

o f the MGP promoter containing possible binding sites for retinoic acid and vitamin D receptors 

(Cancela et al., 1990). Mutations in the gene for MGP results in Keutel syndrome, an autosomal 

recessive disorder characterized by abnormal cartilage calcification, peripheral pulmonary 

stenosis, and midfacial hypoplasia (Munroe et al., 1999).

MGP expression was reported to be increased in breast cancer cells, and MGP may be 

among those factors inhibited by vitamin K antagonists that reduce metastases in experimental 

models (Chen et al., 1990), implying a positive role for MGP in progression. It has also been 

implicated in die production o f calcifying foci in breast cancers (the deposition o f calcium 

phosphate) (Hirota et al., 1995).

RT-PCR Verification Results

Data from the microarray studies suggest induction o f MGP in both TamR and FasR 

cells (significant in TamR, p=0.027) (Fig.42), and also suggested in HCA and PAM analysis. 

The induction by oestradiol in MCF-7 cells is in agreement with literature that MGP is tightly 

controlled through an oestrogen receptor mechanism in some ER-positive breast cancer cell 

lines. PCR analysis confirmed induction, but only in TamR cells, a profile also predominandy 

shown by Affymetrix data. Despite an interesting ontology, in total, PCR evidence was not 

convincing for a shared gene profile, but rather it is largely a TamR induced gene.

3.3.1.8 Rab acceptor 1 (prenylated)

Detailed Ontological Results

Prenylated Rab acceptor-1 (or YIP1, PRA1, Prenylin) was isolated in 1999 (Bucci et al., 

1999) encoding a 185-amino acid protein that interacted with all the active (GTP-bound) 

prenylated Rab proteins tested. Strongest expression was found in placenta, pituitary gland, 

kidney, and stomach. The protein was found equally distributed between cytosol and 

membranes. This integral membrane protein acts catalytically to dissociate complexes of
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Figure 42. Matrix-GLA gene in resistant cells. Matrix Gla protein mRNA was identified as 
significantly upregulated in TamR and FasR cells using GeneSifter software in (a) Atlas Plastic Human 
12k Microarrays, and (b) profile was determined by PCR analysis, (c) Profiles using Affymetrix HG- 
U133A gene chips. (P33-labelled RNA used for hybridisation to Affymetrix genechips were also 
previously used with Atlas Plastic 12k Microarrays) are also shown Graphical output and heatmap are 
shown for all outputs. Array plots show log mean intensity and standard errors. Additional controls were 
provided by parental MCF-7 cells subject to oestradiol treatment. (Ap=0.027 for TamR relative to MCF- 
7; +p=0.0205 and ++p=0.0332 respectively for TamR and FasR relative to MCF-7 [students t-test]).



endosomal Rabs bound to guanine nucleotide dissociation inhibitor (GDI), and to deliver them 

onto membranes (Sivars et al., 2003). The authors proposed that the conserved Yip proteins 

serve as GDI displacement factors for the targeting o f Rab GTPases in eukaryotic cells. The Rab 

proteins with which Prenylated Rab acceptor-1 may interact are small GTPases of the Ras 

superfamily involved in the regulation o f intracellular membrane trafficking in endosomal 

systems. RAB proteins have been postulated to regulate the targeting and fusion o f membranous 

vesicles during organelle assembly and transport. RAB proteins undergo regulated exchange of 

GTP for GDP, and they slowly hydrolyze the bound GTP in a reaction that is thought to 

regulate the timing and unidirectional nature o f these assembly events (Zahraoui et al., 1989). 

Although there is no direct link between Rab acceptor 1 and cancer, endosomal vesicles 

transport is fundamental in delivery o f  drugs and also contributes to growth factor signalling 

pathways (Ceresa, 2006).

RT-PCR Verification Results

Our data from microarray analysis suggested that there is gene induction o f Rab 

acceptor 1 in both resistant cell lines, significantly in TamR cells (p=0.047) (Fig.43) and as 

indicated by HCA/PAM. The PCR profile correlated with this array profile, with an Affymetrix 

profile again indicating induction in both resistant states. Although there was a suitable profile, 

together with an interesting ontology, due to a lack o f direct association with cancer, the gene 

was considered lower priority. However, it may be considered for future study.

3.3.1.9 WD40 protein (Ciao!)

Detailed Ontological Results

This WD40 protein Ciao 1, which is a member o f a family of proteins that contain 

WD40 or -transducin repeats (Neer et al., 1994) has been shown specifically to interact with the 

Wilms Tumour (WT) tumour suppressor protein WT1 (Johnstone et al., 1998). WT1 is a zinc 

finger-containing transcription factor that is capable o f activating or repressing transcription 

depending on cell type and promoter context (Johnstone et al., 1998). Consistent with a 

suppressor function, mutations within the gene for WT1 have been detected in -10%  of 

sporadic Wilms' tumours and reintroduction o f wild type WT1 into Wilms tumour cell lines 

expressing aberrant WT1 results in growth suppression (Madden et al., 1991). Ciao 1 may affect 

the transcriptional activity o f WTI by either causing a conformation change o f the WT1 protein 

that masks its activation function, or by negatively interfering with the communication between 

the activation domain o f WTI and the basal transcriptional machinery (Johnstone et al., 1998), 

and as such may contribute positively to proliferation.
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Figure 43. Rab acceptor 1 gene in resistant cells. mRNA was monitored as (a) using Atlas Plastic 
Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis using 
primers for Rab acceptor 1. (3-actin was also amplified (normalisation purposes). PCR products separated 
on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown from 
triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data plotted 
(plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA preparations 
were used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject 
to oestradiol treatment. (Ap=0.047 for TamR relative to MCF-7, +p=0.0302 for TamR and FasR relative to 
MCF-7 [students t-test]).



RT-PCR Verification Results

Microarray analysis demonstrated that Ciaol is induced in TamR cells (p=0.022), and 

to a lesser extent, FasR cells (Fig.44). In addition, it is also induced to some degree in response 

to oestradiol. This profile was mirrored with PCR studies, again revealing predominant 

induction in TamR cells, a profile, confirmed using Affymetrix analysis. As this gene showed 

lack of a shared profile in both resistant cells, it was deemed a low priority.

3.3.1.10 Legumain 

Detailed Ontological Results

Legumain, an asparaginyl endopeptidase, was described in 1996 as a novel human 

cysteine protease with 40% amino acid identity to hemoglobinase o f the schistosome parasite 

and 36% identity to a vacuolar processing enzyme o f the soybean (Tanaka et al., 1996). 

Northern blotting showed expression in most human tissues, with highest levels in kidney, 

heart, and placenta. The enzyme is glycosylated and functions as a cysteine peptidase with 

specificity for asparaginyl bonds (Chen et al., 1997).

More recently, legumain was demonstrated in membrane-associated vesicles 

concentrated at the invadopodia of tumour cells and on cell surfaces where it colocalised with 

integrins and demonstrated to activate progelatinase A. The significance o f legumain in tumour 

invasion and metastasis was revealed when cells overexpressing legumain showed increased 

migratory and invasive activity in-vitro and adopted an invasive and metastatic phenotype in- 

vivo. Interestingly, developing a prodrug strategy incorporating a legumain-cleavable peptide 

substrate onto doxorubicin, exhibited reduced toxicity and was effectively tumoricidal in-vivo in 

a murine colon carcinoma model (Liu et al., 2003) suggesting substantial legumain activity in 

such tumours. Its potential as a prognostic maker in colorectal cancer has also been evaluated 

(Murthy et al., 2005).

RT-PCR Verification Results

Microarray study indicated that Legumain gene expression was increased in TamR 

(p=0.047) and also in, FasR cells by cluster analysis relative to control cells (Fig.45). Although 

this profile was confirmed by the Affymetrix profile, this observation was not duplicated in 

PCR studies, where expression was generally comparable across the models. This was not 

considered high priority for study, despite interesting ontology.
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3.3.1.11 FK506 binding protein precursor 

Detailed Ontological Results

FK506-binding proteins (FKBPs) are peptidyl-prolyl cis/trans isomerases (PPIases), 

cyclophilin-like molecules that bind the immunosuppressive drug FK506. Generally, PPIases 

occur in every compartment, both as free species and anchored to membranes. Diverse 

posttranslational modifications such as glycosylation, N-terminal m odifications and 

phosphorylation constitute the additional functional features o f PPIases. Folding, assem bly  and 

trafficking o f proteins are regulated by PPIases. These enzymes accelerate the ra te  o f  in-vitro 

protein folding during protein synthesis and they have the ability to bind proteins and act as 

chaperones. Some PPIases are coregulatory subunits o f molecular complexes inc lud ing  heat- 

shock proteins, glucocorticoid receptors and ion channels, and stabilise certain proteins 

including the oestrogen receptor to influence its signalling. Secreted forms o f  PPIases are 

inflammatory and chemotactic agents for monocytes, eosinophils and basophils (G alat, 1993).

RT-PCR Verification Results

The microarray studies revealed FK506 binding protein precursor (F K B P 11) gene 

expression was induced in TamR (p=0.013) and FasR cells by cluster analysis (F ig .46). This 

profile was verified using Affymetrix analysis where 2 probed were available. H ow ever, PCR 

methods failed to confirm this gene profile, and so this gene was not deemed high priority  for 

further study.

3.3.1.12 Paraoxonase 2 

Detailed Ontological Results

Paraoxonase 2 (PON2) is a membrane associated protein which hydrolyses the  toxic 

metabolites of a variety o f organophosphorus insecticides and is capable o f hydrolyzing a broad 

spectrum of organophosphate substrates and a number o f aromatic carboxylic acid esters. PON2 

has antioxidant activity and so may facilitate cell survival. More recently it has b een  shown to 

have antioxidant properties (Aviram et al., 2005).

RT-PCR Verification Results

The microarray studies revealed significant increase in PON2 gene expression in both 

TamR and FasR cells (p=0.026 and 0.025 respectively) (Fig.47), with the profile confirm ed 

twice, since the gene was represented by two probe sets on the arrays, as well a s  by  cluster 

analysis. The profile was also confirmed by Affymetrix analysis. However P C R  failed to
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Figure 44. Ciao 1 gene in resistant cells. WD40 protein Ciaol mRNA was monitored as (a) using Atlas 
Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
analysis using primers for Ciaol. (3-actin was also amplified (normalisation purposes). PCR products 
separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is 
shown from triplicate experiments. PCR signals were then subject to densitometric analysis and normalised 
data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA 
preparations were used for all studies of mRNA expression). Additional controls were provided by MCF-7 
cells subject to oestradiol treatment. (Ap=0.022 for TamR relative to MCF-7, +p=0.0079 and ++p=0.0325 
respectively for TamR and FasR relative to MCF-7 [students t-test]).
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Figure 45. Legumain gene in resistant cells, legumain mRNA was monitored as (a) using Atlas Plastic 
Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis using 
primers for Legumain co-amplificd with (3-actin (normalisation purposes). PCR products separated on an 
agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown from 
triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data plotted 
(plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA preparations 
were used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject 
to oestradiol treatment. (Ap=0.047 for TamR relative to MCF-7, +p=0.0174 and -H-p=0.0222 respectively 
for TamR and FasR relative to MCF-7 [students t-test]).
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Figure 46. FK506 binding protein precursor gene in resistant cells. FK506 binding protein precursor 
mRNA was monitored as (a) using Atlas Plastic Human 12k Microarrays. Log intensity graphical output 
and heatmap are shown, (b) by PCR analysis using primers for FK506 binding protein precursor co- 
amplified with (3-actin (normalisation purposes). PCR products separated on an agarose gel were visualised 
by ethidium bromide staining. Representative PCR profile is shown from triplicate experiments. PCR 
signals were then subject to densitometric analysis and normalised data plotted (plot shows standard error), 
(c) using Affymetrix HG-U133A gene chips, where FKBP gene was represented twice on the array. 
(Identical RNA preparations were used for all studies of mRNA expression). Additional controls were 
provided by MCF-7 cells subject to oestradiol treatment. (Ap=0.013 for TamR relative to MCF-7; 
+ap=0.0.0199, -H-ap=0.0013 and +-H-ap=0.0159 respectively for MCF-7+E2, TamR and FasR relative to 
MCF-7, +pb̂ 0.0124, ++pb=0.0007 and TT+p^O.OOSb respectively for MCF-7+E2, TamR and FasR 
relative to MCF-7 [students t-test]).
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Figure 47. Paraoxonase2 gene in resistant cells. PON2 mRNA was monitored as (a) using Atlas Plastic 
Human 12k Microarrays. Log intensity graphical output and heatmap are shown for the gene which was 
represented twice on the array, (b) by PCR analysis using primers for PON2. (3-actin was aiso amplified 
(normalisation purposes). PCR products separated on an agarose gel were visualised by ethidium bromide 
staining Representative PCR profile is shown from triplicate experiments PCR signals were then subject 
to densitometric analysis and normalised data plotted (plot shows standard error), (c) using Affymetrix 
HG-U133A gene chips. Gene was represented twice on the array (identical RNA preparations were used 
for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject to 
oestradiol treatment. (Ap=0.026 and A4p=0.025 for respectively for TamR and FasR relative to MCF-7; 
AAAp-o o25 for FasR relative to MCF-7; +p-0.0411 and ++p=0.0180 respectively for TamR and FasR 
relative to MCF-7 [students t-test]



confirm the profiles. There was no evidence o f obvious oestradiol regulation. Owing to the lack 

of PCR verification, this gene was not considered high priority for further study.

3 .3 .1.13 Ornithine Decarboxylase 

Detailed Ontological Results

Ornithine decarboxylase (ODC1) is the first enzyme in polyamine synthesis, a 

transcriptional target of MYC (Guo et al., 2000) and a modifier of APC -dependent 

tumourigenesis (Fultz and Gemer, 2002). Translation of ODC, a rate-limiting enzyme in the 

biosynthesis o f polyamines, peaks twice during the cell cycle, at the Gl/S transition and at 

G2/M. A cap-independent internal ribosome entry site (IRES) was identified in the ODC 

mRNA that functions exclusively at G2/M (Pyronnet, 2000), ensuring elevated levels of 

polyamines, which are implicated as having an important role in mitotic spindle formation and 

chromatin condensation.

Ornithine decarboxylase (ODC) expression was shown to be increased by growth 

factors and is obligatory for progression through the cell cycle in a wide variety of cell types. A 

recent study showed mRNA levels in human breast tumour cell lines and xenografts elevated 

about 3-fold in ER-negative tumours (MDA-MB-231) when compared with ER-positive (ER+) 

tumours (MCF-7) (Wright et al., 1995). With regards to breast cancer prognosis, ODC activity 

measured biochemically in breast cancers has been associated with increased risk for recurrence 

of disease and death, and shown as an in-vitro and in-vivo parameter in aggressive and 

metastatic behaviour by human breast cancer cells (Love et al., 2003, Manni et al., 2002). ODC 

has also been reported to be regulated by NFkB (Tacchini et al., 2004) as well as having 

transforming capabilities enhanced by EGFR signalling (Moshier et al., 1995).

RT-PCR Verification Results

Our data suggest that ODC gene expression was upregulated in FasR cells (p=0.005), 

and to a very much lesser degree in TamR cells by cluster analysis. There was no obvious 

impact on expression of oestradiol treatment in MCF-7 cells (Fig.48). The array profile shows a 

correlation with PCR data and also in the Affymetrix data. The most obvious increases were 

observed with FasR (p<0.001) and to a lesser extent in the TamR (p=0.0259). The gene 

ontology was interesting and there is some indication o f a shared expression, and the gene could 

be considered for future studies, however, it was not selected for further work as it appeared to 

be a predominantly FasR induced gene.
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3.3.1.14 Biliverdin Reductase B 

Detailed Ontological Results

The enzyme heme oxygenase-1 (HO-1) catalyses the oxidative degradation o f heme to 

form biliverdin, carbon monoxide (CO), and free iron. Biliverdin is subsequently reduced to 

bilirubin by biliverdin reductase. This mechanism is thought to be important in cytoprotection, 

also because the downstream products o f biliverdin reductase are reported to have beneficial 

antioxidant properties (Kirkby and Adin, 2006). Biliverdin reductase has also been shown to 

function in a cell signalling capacity via insulin receptor/ MAPK. signalling (Maines, 2005), and 

its overexpression has been found in renal cell carcinoma (Maines et al., 1999).

RT-PCR Verification Results

The gene for biliverdin reductase was found to be overexpressed in FasR cells using 

Atlas Plastic arrays (p=0.005) although a small increase was also observed in TamR cells by 

cluster analysis (Fig.49). This induction was also seen using Affymetrix analysis, and a 

significant increase was similarly confirmed in FasR cells using PCR analysis (p=0.0031) with a 

very small TamR increase. Although the gene had an interesting ontology, it was considered 

lower priority due to its predominantly FasR induction.

3.3.1.15 Cvclin A2 

Detailed Ontological Results

Cyclins are elements which interact with cy cl in-dependant kinase (CDK) and have an 

essential role in cell cycle regulation. The dysregulation o f cyclins, including Al and A2 can 

have a profound effect on the cell, and may lead to the genesis o f cancers. It is because o f this 

role that, not surprisingly, cyclins such as A2 associate closely with cellular proliferation and 

may be regarded as reliable prognosticators for a number o f cancer types (Yasmeen et al., 

2003).

RT-PCR Verification Results

Cyclin A2 gene was found to be significantly elevated in both TamR and FasR cells using Atlas 

Plastic arrays (p=0.024 and p=0.025 respectively), and by cluster analysis, and less profoundly 

in Affymetrix arrays (Fig.50). However, the PCR profile only confirmed the obvious elevation 

in FasR cells with a minor TamR effect. This gene was deemed low priority as its expression 

was mainly elevated in FasR cells.
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Figure 48. Ornithine Decarboxylase gene in resistant cells. ODC mRNA was monitored as (a) using 
Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
analysis using primers for ODC co-amplified with (3-actin (normalisation purposes). PCR products 
separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is 
shown from triplicate experiments. PCR signals were then subject to densitometric analysis and normalised 
data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA 
preparations were used for all studies of mRNA expression). Additional controls were provided by MCF-7 
cells subject to oestradiol treatment, (plot shows standard errors). (Ap=0.005 for FasR relative to MCF-7; 
*p=0.0259 and **p<0.001 for TamR and FasR relative to MCF-7 cells; +p=0.0208 and -H-p=0.005 
respectively for TamR and FasR relative to MCF-7 [students t-test]).
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Figure 49. Biliverdin reductase B. Biliverdin reductase B mRNA was monitored as (a) using Atlas 
Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
analysis using primers for Biliverdin reductase B co-amplified with (3-actin (normalisation purposes). PCR 
products separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR 
profile is shown from triplicate experiments. PCR signals were then subject to densitometric analysis and 
normalised data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. 
(Identical RNA preparations were used for all studies of mRNA expression). Additional controls were 
provided by MCF-7 cells subject to oestradiol treatment, (plot shows standard errors) (Ap=0.005 for FasR 
relative to MCF-7; *p=0.0031 for FasR compared to MCF-7 cells; +p=0.0152 and ++p=0.0031 
respectively for TamR and FasR relative to MCF-7 [student t-test]).
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Figure 50. Cyclin A2. Cyclin A2 mRNA was monitored as (a) using Atlas Plastic Human 12k 
Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR analysis using primers for 
cyclin A2 co-amplified with (3-actin (normalisation purposes). PCR products separated on an agarose gel 
were visualised by ethidium bromide staining. Representative PCR profile is shown from triplicate 
experiments. PCR signals were then subject to densitometric analysis and normalised data plotted (plot 
shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA preparations were 
used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject to 
oestradiol treatment, (plot shows standard errors). (Ap=0.024 and AAp=0.025 respectively for TamR and 
FasR relative to MCF-7, +p=0.0453 respectively for FasR relative to MCF-7 [students t-testj).



3.3.1.16 Stat-Induced Stat Inhibitor 2 (Suppressor o f cytokine signalling2)

Detailed Ontological Results

Suppressor of cytokine signalling (SOCS) proteins have been shown to be negative 

regulators of cytokine receptor signalling through the Jak/Stat pathway, SOCS was also 

suggested to have a regulatory role in IGF1 signalling (Dey et al., 1998), where it preferentially 

interacted with activated IGF-1R in yeast 2-hybrid screen. However, it has also been correlated 

negatively to proliferation (Farabegoli et al., 2005), suggesting it has a tumour suppressive role, 

including in breast cancer (Marini et al., 2006).

RT-PCR Verification Results

Although the profile was interesting, showing an increase predominantly in TamR cells 

(Fig. 51), owing to the controversial, tumour suppressive ontology of the gene, it was considered 

low priority.

3.3.2 TamR Induced Genes

While this study has focussed primarily on identifying and verifying genes induced in both 

forms of resistance, a small number of genes induced in individual resistant states were also 

explored.

3.3.2.1 PE A3 (ets variant gene 4; E1AF)

Detailed Ontological Results

The ETS family of genes encode a number of transcription factors and have been shown 

to be involved in tumourigenesis. Members o f the PEA3 family can be activated by signalling 

components including MAPK (O'Hagan et al., 1996). PEA3 overexpression has been strongly 

associated with a number of malignancies including breast cancer, and increased transcription of 

PEA3 has been liked with HER2 positive tumours, as well as with individual pro-invasive 

factors such as MMPs, including MMP7 (Davidson et al., 2004, Lynch et al., 2004, Matsui et 

al., 2006). Tumours with high metastatic potential show increased PE A3 expression, and non- 

metastasising tumours with high PEA3 expression have also been shown to subsequently 

metastasise with the activation of factors such as MMPs and adhesion molecules such as I-CAM 

(de Launoit et al., 2000). PE A3 was also reported to interact with (3-catenin-Lef-l and c-Jun in 

regulation of osteopontin transcription, where osteopontin has been implicated in mammary 

development, neoplastic change, and metastasis (El-Tanani et al., 2004). In colorectal cancer 

cells nitric oxide, via P-catenin signalling, stimulated PE A3 to increase COX-2 activity 

(implicated in colorectal cancer).
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Verification Results

PEA3 mRNA was found to be significantly elevated in TamR cells using GeneSifter 

analysis on Plastic 12k arrays, with no change in FasR cells and E2 treated MCF-7 cells (Fig 

52). This profile was mirrored with PCR confirmation with induction in TamR cells (p—0.0116) 

but with a smallincrease in E2 treated MCF-7 cells versus control MCF-7 cells.

In addition to mRNA increases in TamR cells, PE A3 protein was also elevated in TamR 

cells using Western blotting (Fig.53a), and immunocytochemical staining for the protein also 

showed that TamR cells were highly stained in the nucleus compared to MCF-7 cells (Fig.53b).

3.3.2.2 KDEL3 

Detailed Ontological Results

KDEL3 ((Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3) is a 

seven transmembrane protein required for the retention o f luminal endoplasmic reticulum 

proteins. It determines the specificity o f  the luminal ER protein retention system and is also 

required for normal vesicular traffic through the Golgi.

RT-PCR Verification Results

KDEL3 mRNA was found to be significantly elevated in TamR cells (p=0.027) only 

using GeneSifter analysis on Plastic 12k arrays, with no change in FasR cells or oestradiol- 

treated MCF-7 cells (Fig.54). This profile was again confirmed at the PCR and Affymetrix 

level.

3.3.2.3 Angiogenin 

Detailed Ontological Results

Angiogenin is a 14.1-kDa protein with a high amino acid sequence identity with human 

pancreatic ribonuclease and displays ribonucleolytic activity. Capable o f inducing angiogenesis, 

it is a potent inducer o f neovascularisation within in-vivo models. Although normally present in 

the plasma, Angiogenin is overexpressed in cancer patients and it is also linked with hypoxia in 

breast cancer, with increased grade, and ER-positive disease, suggesting a role in progression 

(Campo et al., 2005), although relationship to prognosis is controversial.

RT-PCR Verification Results

Angiogenin expression was found to be significantly increased in TamR relative to MCF-7 cells 

using Atlas Plastic 12k arrays (p=0.0032), and was also apparent by Aftymetrix. However, PCR 

analysis failed to confirm this elevation (Fig.55).
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Figure 51. Stat-lnduced Stat Inhibitor 2 gene expression profile in resistant cells. Stat-12 mRNA was 
monitored as (a) using Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap 
are shown, (b) by PCR analysis using primers for Stat-12. (3-actin was also amplified (normalisation 
purposes). PCR products separated on an agarose gel were visualised by ethidium bromide staining. 
Representative PCR profile is shown from triplicate experiments. PCR signals were then subject to 
densitometric analysis and normalised data plotted (plot shows standard error), (c) using Affymetrix HG- 
U133A gene chips. Gene was represented twice on the array. (Identical RNA preparations were used for 
all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject to oestradiol 
treatment. (Ap=0.0013 for FasR relative to MCF-7; +p=0.0113 respectively for TamR relative to MCF-7 
[student t-test]).
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Figure 52. PEA3 gene expression profile in resistant cells. PEA3 mRNA was monitored as (a) using 
Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
analysis using primers for PEAS. (3-aclin was also amplified (normalisation purposes). PCR products 
separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is 
shown from triplicate experiments. PCR signals were then subject to densitometric analysis and 
normalised data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. 
(Identical RNA preparations were used for all studies of mRNA expression). Additional controls were 
provided by MCF-7 cells subject to oestradiol treatment. (Ap=0024 for TamR relative to MCF-7; 
*p=0.0116 for TamR compared to MCF-7 cells; +p=0.003 for TamR relative to MCF-7 [student t-test]).
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Figure 53. PEA3 protein in resistant cells, (a) Cells grown in 100m dishes were harvested and 50 pg 
subject SDS-PAGE/ Western blotting and probed using the monoclonal PEA3 antibody, (b) MCF-7 and 
TamR ceils grown on coverslips were fixed and stained using the monoclonal antibody to PE A3, images 
show x40 original magnification.
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Figure 54. KDEL3 gene expression profile in resistant cells. KDEL3. mRNA was monitored as (a) using 
Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
a n a ly s is  using primers for KDEL co-amplified with (3-actin (normalisation purposes). PCR products 
separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is 
shown from triplicate experiments. PCR signals were then subject to densitometric analysis and normalised 
data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA 
preparations were used for all studies of mRNA expression). Additional controls were provided by MCF-7 
c e l ls  subject to oestradiol treatment. (Ap=0.027 for TamR relative to MCF-7; *p=0.0240 for TamR relative 
to MCF-7; +p=0.0185 for TamR relative to MCF-7 [student t-test]).
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Figure 55. Angiogenin gene expression prome in resistant tens, /uigiogeiun mivNA was monitored as
(A) using Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown.
(B) by PCR analysis using primers for Angiogenin. (3-actin was also amplified (normalisation purposes). 
PCR products separated on an agarose gel were visualised by ethidium bromide staining. Representative 
PCR profile is shown from triplicate experiments. PCR signals were then subject to densitometric analysis 
and normalised data plotted (plot shows standard error). (C) using Affymetrix HG-U133A gene chips. 
(Identical RNA preparations were used for all studies of mRNA expression). Additional controls were 
provided by MCF-7 cells subject to oestradiol treatment. (Ap=0.0032 for TamR relative to MCF-7; 
+p=0.0009 for TamR relative to MCF-7 [student t-test]).



3.3.2.4 Homer, neuronal immediate early gene. 2 

Detailed Ontological Results

‘Homer 2’ is a postsynaptic density scaffolding protein. It binds and cross-links cytoplasmic 

regions of a number of proteins with endoplasmic reticulum-associated receptors and aids the 

coupling of surface receptors to intracellular calcium release. Homer isoforms can be differently 

regulated and may play an important role in maintaining the plasticity at glutamatergic 

synapses, and during neuronal development has been shown to interact with brain derived 

neurotrophic factor (BDNF) and AKT signalling for neuronal growth (Schratt et al., 2004)

RT-PCR Verification Results

Homer2 was found to be increased in TamR relative to MCF-7 cells using Plastic 12k arrays 

(p<0.001), although some small increase in expression was also detected in oestradiol-treated 

MCF-7 as well as FasR (Fig 56). Asymetrix indicated a predominantly TamR induced gene. 

PCR analysis for angiogenin confirms a small increase in TamR across triplicate RNA 

preparations, although the profile is weak.

3.3.2.5 Enigma (TIM domain protein. PDLIM7)

Detailed Ontological Results

LIM domain proteins such as Enigma can function as scaffolds for the formation of 

multiprotein complexes, thus they can be involved in cytoskeletal organisation and oncogenesis 

(Bach, 2000). LIM proteins have been known to associate with components such as the insulin 

receptor and PKC (Kuroda et al., 19%, Wu and Gill, 1994). Enigma was also found to 

colocalise with RET/PTC2, and this interaction is in such a manner as to enhance the mitogenic 

activity of RET/PTC2 (Borrello et al., 2002, Kurokawa et al., 2003).

RT-PCR Verification Results

We found Enigma to be significantly induced in TamR cells (p=0.025) with a small induction in 

FasR cells by cluster analysis. This profile was confirmed twice using probes on Affymetrix 

arrays, but was mainly TamR induced (Fig.57). A small induction in oestradiol-treated MCF-7 

cells was also observed. Interestingly, Enigma is also upregulated in TamR cells where GFRa3, 

a RET coreceptor, is also substantial.

3.3.2.6 Casein Kinase 2 

Detailed Ontological Results

Casein Kinase 2 (CK2) is a protein serine/threonine signalling kinase which plays a role in cells 

growth and proliferation, but is also a potent suppressor o f apoptosis, and has also been found to 

be dysregulated in a number of cancers. CK2 was found to be capable of inducing NFkB in
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breast cancer cells (Eddy et al., 2005), is a positive regulator o f WNT signalling (Seldin et al., 

2005, Song et al., 2003), interacts with BRCA1 (O'Brien et al., 1999) and may phosphorylate 

the ER on serl67 (Arnold et al., 1995).

RT-PCR Verification Results

Although CK2 was found to be significantly elevated in TamR cells (p=0.03) using 

Atlas Plastic arrays, Affymetrix and PCR were not able to confirm any upregulation, and only a 

very small increase by PCR in FasR (Fig. 5 8).

3.3J FasR Induced Genes

3.3.3.1 Vitronectin 

Detailed Ontological Results

Vitronectin belongs to a group o f structurally and functionally homologous adhesive 

proteins (fibrinogen, fibronectin, von Willebrand factor) essential in the procoagulant phase of 

the hemostatic system, interacting with platelets and the vessel wall. Vitronectin has also been 

reported to enhance the migration o f breast cancer cells in-vitro (Bartsch et al., 2003, Campo 

McKnight et al., 2006).

Verification Results

On both Atlas Plastic and Affymetrix arrays, Vitronectin was significantly increased in 

FasR cells (p=0.026), and there was no consistent oestradiol regulation observed (Fig.59) Due 

to time constraints, PCR profiling o f Vitronectin could not be performed. However, the protein 

is o f interest in our laboratory, where studies have confirmed an obvious increase in Vitronectin 

staining in FasR models, as shown by immunocytochemistry (Fig.60; M. Harper personal 

communication).

3.3.4 Genes Downregulated in TamR and FasR Cells

3.3.4.1 GFRal

Detailed Ontological Results

GFRal belongs to a family o f receptors which include GFRa3 (see 3.3.2 for 

full description of the family receptor/ligands). GFRal is activated preferentially by its ligand 

GDNF, although it may also be activated also by Neurturin, and Artemin (Airaksinen and 

Saarma, 2002). The family receptors function to further activate their corrector, the RET 

protooncogene (Sariola and Saarma, 2003, Baloh et al., 1998a). Although RET has been 

implicated in a number o f conditions such as medullary thyroid carcinoma (Asai et al., 2006),
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Figure 56. Homer2 gene expression profile in resistant cells. Homer2 mRNA was monitored as (a) using 
Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
analysis using primers for Homer2 co-amplified with P-actin (normalisation purposes). PCR products separated 
on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is shown from 
triplicate experiments. PCR signals were then subject to densitometric analysis and normalised data plotted 
(plot shows standard error), (c) using Affymetrix HG-U133A gene chips. (Identical RNA preparations were 
used for all studies of mRNA expression). Additional controls were provided by MCF-7 cells subject to 
oestradiol treatment. (Ap<0.001 for TamR relative to MCF-7; +p=0.0436 for TamR relative to MCF-7 [student 
t-test]).



(a)

-5 -I
- 1 0 -

-15-

MCF-7 MCF-7+E2 TamR

( b )
Enigma 
322 bp“

B-actm
204bp"

06

FasR

(C)

& ° 
I .
S *

-3

§ 0.25 

|  0.2 0 -

l> 0 ,5
I
1  0.10

i  0.05 
§

0.00 n
MCF-7 MCF-7+E2 TamR FasR

I I

MCF-7 MCF-7+E2 TamR FasR FasRTamRMCF-7 MCF-7+E2

Figure 57. Enigma gene expression profile in resistant cells. Enigma mRNA was monitored as (a) using 
Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) by PCR 
analysis using primers for Enigma co-amplified with P-actin (normalisation purposes). PCR products 
separated on an agarose gel were visualised by ethidium bromide staining. Representative PCR profile is 
sh o w n  from triplicate experiments. PCR signals were then subject to densitometric analysis and normalised 
data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. Gene was 
represented twice on the array. (Identical RNA preparations were used for all studies of mRNA 
expression). Additional controls were provided by MCF-7 cells subject to oestradiol treatment. . (Ap=0.025 
for TamR relative to MCF-7; *p=0.0144 for FasR compared to MCF-7 cells; +p=0.0192 and -H-p=0.0030 
respectively for MCF-7+E2 and TamR relative to MCF-7 [student t-test]).
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Figure 58. Casein Kinase II gene expression profile in resistant cells. Casein Kinase II alpha polypeptide 
mRNA was monitored as (a) using Atlas Plastic Human 12k Microarrays. Log intensity graphical output and 
heatmap are shown, (b) by PCR analysis using primers for CK2 co-amplified with /3-actin (normalisation 
purposes). PCR products separated on an agarose gel were visualised by ethidium bromide staining. 
Representative PCR profile is shown from triplicate experiments. PCR signals were then subject to densitometric 
analysis and normalised data plotted (plot shows standard error), (c) using Affymetrix HG-U133A gene chips. 
(Identical RNA preparations were used for all studies of mRNA expression). Additional controls were provided 
by MCF-7 cells subject to oestradiol treatment. (Ap=0.03 for TamR relative to MCF-7 [student t-test]).
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Figure 59. Vitronectin gene expression profile in resistant cells. Vitronectin mRNA was monitored as
(a) using Atlas Plastic Human 12k Microarrays. Log intensity graphical output and heatmap are shown, (b) 
using Affymetrix HG-U133A gene chips. (Identical RNA preparations were used for all studies of mRNA 
expression). Additional controls were provided by MCF-7 cells subject to oestradiol treatment. (Ap=O.026 
for FasR relative to MCF-7; +p=0.0005 for FasR relative to MCF-7 [student t-test]).
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Figure 60. Vitronectin protein increase in resistant cells.MCF-7, TamR and FasR cells grown on 
coverslips were fixed and stained using the monoclonal antibody to Vitronectin. Images show x20 
original magnification. Courtesy o f M. Harper & C. Smith.
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Figure 61. GFRal gene Downregulation in TamR and FasR cells. GFRal mRNA was identified as (a) 
downregulated in TamR and FasR cells using Atlas Plastic Human 12k Microarrays. Graphical output and 
heatmap are shown, (b) Verification of gene profile was performed by PCR analysis using primers for GFRal 
co-amplified with P-actin (normalisation control). PCR products separated on agarose gel was visualised by 
ethidium bromide staining. Representative PCR profile is shown from triplicate experiments. PCR profiles 
were then subject to densitometric analysis, (plot shows standard errors) (c) Profiles using Affymetrix HG- 
U133A gene chips are also shown. (RNA preparations used for Affymetrix genechips were identical to those 
used for Atlas Plastic arrays). Graphical output and heatmap are shown . Additional controls were provided 
by parental MCF-7 cells subject to oestradiol treatment. (Ap=0.0245 for both TamR and FasR relative to 
MCF-7; (*p<0.001 and **p=0.0024 respectively for TamR and FasR relative to MCF-7; (+p<0.001 for both 
TamR and FasR relative to MCF-7 [all statistical analysis performed using students t-test]).



and more recently pancreatic cancer (Ito et al., 2005), there is our knowledge, no direct 

association with breast cancer. However more recently GFRal been noted to be oestrogen 

regulated in hormone responsive ZR-75-1 cells and associated with also ER-positivity in 

clinical array studies (Dorssers et al., 2005).

Verification Results

GFRal mRNA was found significantly reduced in both TamR and FasR cells versus 

MCF-7 cells using Atlas Plastic arrays, which was confirmed by both PCR and Affymetrix 

analysis (Fig.61). A slight induction o f GFRa3 is suggested in oestradiol-treated MCF-7 cells 

by PCR, although this is not significant, and is not confirmed by Atlas or Affymetrix arrays.

3.3.4.2 WISP2

Detailed Ontological Results

The wntl-inducible signalling pathway protein (WISP) family have 3 members 

(Pennica et al., 1998) and have been linked to a number of cancer types. These proteins are 

thought to stimulate mitosis, apoptosis, extracellular matrix production and cell invasion 

(Brigstock, 2003). WISP 1-3 expression was demonstrated to be differential when W1SP1 and 

WISP3 were found overexpressed in colon cancers, whereas WISP2 was reduced (Pennica et 

al., 1998). WISP2 has also been shown to be regulated by oestrogen, which could be blocked by 

Faslodex, suggesting interaction with the ER (Banerjee et al., 2003).

Verification Results

WISP2 was found significantly decreased in TamR and FasR cells using Atlas Plastic 

arrays (Fig.62). This significant reduced mRNA expression was further confirmed using PCR 

and Affymetrix analysis. Furthermore, W1SP2 showed a significant mRNA induction in 

oestradiol-treated MCF-7 cells, which was also suggested by Affymetrix analysis.
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Figure 62. WISP2 downregulation in resistant cells. W1SP2 mRNA was identified as significantly 
downregulated in TamR and FasR cells using GeneSifter software in (A) Atlas Plastic Human 12k 
Microarrays, and (B) profile was determined by PCR analysis. (C) Profiles using Affymetrix HG-U133A 
gene chips. (P33-labelled RNA used for hybridisation to Affymetrix genechips were also previously used 
with Atlas Plastic 12k Microarrays) are also shown Graphical output and heatmap are shown for all 
outputs. Additional controls were provided by parental MCF-7 cells subject to oestradiol treatment. 
(Ap<0.001 and AAp=0.006 respectively for TamR and FasR relative to MCF-7 [students t-test]; *p<0.05 
relative to MCF7; +p=0.0143 and -H-p=0.0353 respectively for TamR and FasR relative to MCF-7 
[students t-test]).



Chapter 4

Detailed Study of Genes: 

PTTG1



4.1 PTTG1

Gene selection using Plastic 12k Human Microarrays revealed the gene for PTTG1 as 

significantly induced in both TamR and FasR cells, with some induction in oestradiol-treated 

MCF-7 cells, and this profile was confirmed using PCR analysis and Affymetrix analysis (see 

section 3.3.1 and Fig.35).

4.1.1 PTTG1 Gene Induction in Resistant Cells

In addition to the above PCR verification on the array sample set, PCR confirmation 

was also performed on additional sets o f RNA samples extracted subsequent to the arrayed 

RNA set. Profiles for these endocrine responsive and resistant cell lines confirmed the above 

gene induction in FasR (p=0.05) as well as, to a lesser degree in TamR and oestradiol-treated 

MCF-7 cells (Fig.63).

Subsequent PCR analysis also demonstrated over a hundred-fold increase in PTTG1 

mRNA in the further FasR model, FasR-Lt relative to parental MCF-7 cells (Fig.64a). FasR-Lt 

cell expression was also observed not only to be elevated relative to parental MCF-7 cells, but 

also approximately 7-fold increased compared to FasR cells. Although parallel Affymetrix 

analysis confirmed PTTG1 gene elevation in FasR and FasR-Lt compared to MCF-7 cells 

(p=0.002 and p=0.0025 respectively), the increase in FasR-Lt versus FasR was less pronounced 

(Fig. 64b).

A cell model developed within the TCCR with acquired resistance to severe oestrogen 

deprivation was also studied to determine the levels o f PTTG1 gene. These X-MCF-7 cells 

showed significantly increased levels o f PTTG1 mRNA as determined by PCR analysis versus 

control MCF-7 (Fig.65a; p=0.008). This was further verified using Affymetrix data which 

similarly demonstrated a significant induction (Fig.65b; p=0.0044). The highest PTTG1 gene 

induction was observed in FasR-Lt cells, followed by X-MCF-7, FasR, TamR and MCF-7+E2 

versus MCF-7 cells.

4.1.2 PTTG1 Protein Induction in Resistant Cells

4.1.2.1 Western Blotting Analysis o f PTTG1 Protein

Use o f a monoclonal antibody to the PTTG1 protein permitted the demonstration o f the 

induction of PTTG1 in both TamR and FasR-Lt cell lines relative to control MCF-7 cells by 

Western blotting, thus confirming mRNA studies performed previously. This protein increase 

was more pronounced within the FasR-Lt cells (Fig.66) as noted in PCR studies.
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4.1.2.2 Immunocvtochemical Analysis o f PTTG1 Protein

Immunocytochemical assay development allowed the localisation o f PTTG1 protein 

within paraffin-embedded cell pellet blocks containing a replicate number o f endocrine resistant 

and responsive cell lines including TamR, FasR-Lt, X-MCF-7 and MCF-7, as well as an ER- 

negative de novo tamoxifen-resistant mode; MDA-MB-231.

4.1.2.2.1 Development o f Immunocvtochemical Assay for PTTG1

The immunocytochemical method developed for the analysis o f PTTG1 protein 

involved heat mediated (citrate buffer, pH 6) antigen retrieval and used a monoclonal PTTG1 

antibody with DAKO Envision detection. However, owing to the relatively weak staining signal 

in paraffin embedded material, copper sulphate enhancement was also used to improve 

visualisation across the cell lines in the fully developed assay (see example staining in Fig.67).

4.1.2.2.2 Immunocvtochemical Analysis Using Optimised ICC Assay for PTTG1

Paraffin cell pellet arrays bearing endocrine responsive and resistant cell lines in 

replicates o f 6 pellets per cell line (2 from each 3 experimental replicates) were scored for 

positively staining cells as described previously. PTTG1 staining where present was localised as 

both cytoplasmic and nuclear, and was notably increased across all o f the resistant cell lines 

compared to MCF-7 cells (Fig.67 and Fig.68). Following assessment o f total PTTG1 

expression , relative to parental cells, there was a significant 3.8 fold increase in total PTTG1 

staining in TamR (p<0.001), and a 3.7 fold increase in FasR-Lt and X-MCF-7 cells (p<0.001 

and p=0.003 respectively). However, the most apparent increase, o f 5.2 fold, was observed in 

the oestrogen receptor-negative MDA-MB-231 cell line (p<0.001), which was also significantly 

increased over FasR-Lt (p<0.05) and other cell lines present on the cell array.

4 .13  Further PTTG Family Members Induced in Resistant Cells

Recent reports have identified further PTTG genes which share a high sequence 

homology to PTTG1, notably PTTG2 and PTTG3 (Chen et al., 2000). In parallel with PTTG1 

studies, PCR analysis using primers for these genes, and Affymetrix analysis, also revealed 

differential expression across the resistant cell lines used in this study. The PTTG2 gene was 

however, not present on the Atlas Plastic Human 12k Array platform for comparison.

PTTG2 mRNA was significantly increased in FasR cells (p=0.0133) compared to 

parental MCF-7 cells using PCR analysis (Fig.69a), which was further confirmed using 

Affymetrix arrays (p=0.0478; Fig.69b). While PCR data also suggested a small degree of 

repression in oestradiol-treated MCF-7 cells (Fig.69a), this was not verified using Affymetrix
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Figure 63. PTTG1 gene upregulation in resistant cells is further confirmed. PTTG1 mRNA was 
further confirmed as increased in resistant cells using RNA preparations extracted from an additional 
replicate experiment. This was achieved by PCR analysis using primers for PTTG1 co-amplified with 0- 
actin (normalisation control). PCR products separated on agarose gel were visualised by ethidium 
bromide staining. A representative PCR profile is shown. PCR profiles were then subject to 
densitometric analysis and normalised before plotting. (Plot shows standard errors). (*p=0.05 FasR cells 
relative to MCF-7 cells [Students t-test]).
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Figure 64. PTTG1 gene upregulation in FasR and FasR-Lt cells, (a) PTTG1 gene was shown to be 
elevated further to FasR cells, in the FasR-Lt cell line. PCR analysis was achieved using primers for 
PTTG1 co-amplified with (3-actin (normalisation control). PCR products separated on agarose gel were 
visualised by ethidium bromide staining. Representative PCR profile is shown, (b) PTTG1 RNA was 
identified as significantly altered in FasR and FasR-Lt cells using GeneSifter software in Affymetrix HG- 
UI33A gene chips. Graphical output and heatmap are shown. Plot shows log mean intensity and standard 
errors. (*p=0.002 and **p=0.0025 for FasR and FasR-Lt relative to MCF-7 [Students t-test]).
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Figure 65. PTTG1 gene regulation in model resistant to oestrogen-depravation, X-MCF-7 cells.
RNA was subject to RT-PCR using primers for PTTG1 and visualised by ethidium bromide staining. 
B-actin was coamplified and used as an internal control. Representative signal is shown for triplicate 
experiment. PCR profiles were then subject to densitometric analysis and normalisation before plotting. 
(*p=0.008 relative to MCF-7 [students t-test]). (b) PTTG1 mRNA was identified as in X-MCF-7 cells 
using GeneSifter software in Affymetrix HG-U133A gene chips. Graphical output and heatmap are 
shown for the gene. Plot shows log mean intensity and standard errors. (*p=0.0044 for X-MCF-7 
relative to MCF-7 [student t-test]).
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Figure 66. Western Blot analysis of PTTG1 protein in MCF-7, TamR & FasR-Lt cells. Fifty 
micrograms of protein from each cell line were subject to 15% denaturing SDS PAGE, Western 
blotting and probed using monoclonal anti-human PTTG1 antibody with chemiluminescence detection. 
(Plot shows fold increase in normalised expression relative to control MCF-7 cells with standard 
errors). Representative blot is shown from triplicate experiments.
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Figure 67. Immunocytochemical detection of PTTG1 protein in MCF-7, TamR & FasR-Lt. MCF-7, 
TamR & FasR-Lt, X-MCF-7 and MDA-MB-231 cells were harvested, formalin fixed, and pellets embedded 
in paraffin blocks. 5 pm sections prepared from blocks were probed using monoclonal anti-human PTTG1 
antibody (67pl/ml) after (heat mediated) antigen retrieval, with copper sulphate enhancement and detected 
using DAKO Envision detection system with DAB staining. Figures show x20 magnification.
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Figure 68. Immunocytochemical analysis for PTTG1 protein in MCF-7, TamR, FasR-Lt, X-MCF- 
7 & MDA-MB-231 cells. Cell lines were harvested, formalin fixed, and pellets embedded in paraffin 
blocks. 5 pm sections prepared from blocks were probed using monoclonal anti-human PTTG1 antibody 
after (heat mediated) antigen retrieval and detected using DAKO Envision detection system with DAB 
staining. Staining for PTTG1 positive cells was recorded from six fields (2 fields from each triplicate 
experiments). Assessment of PTTG1 positive cells performed at x20 magnification. Plots show standard 
errors. (*p<0.001 for TamR and FasR-Lt cells, **p=0.003 for X-MCF-7 cells and ***p<0.001 for 
MDA-MB-231 relative to MCF-7 respectively; +p<0.05 for MDA-MB-231 relative to FasR-Lt cells [all 
statistical analyses performed using Students t-test]).
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Figure 69. PTTG2 gene confirmation in resistant cells, (a) Verification of gene profile was performed 
by PCR analysis using primers for PTTG2 co-amplified with (3-actin (normalisation control). PCR 
products separated on agarose gel were visualised by ethidium bromide staining. Representative PCR 
profile is shown. PCR profiles were then subject to densitometric analysis for normalised intensity plots 
(profile shows standard errors), (b) PTTG2 mRNA was identified as differentially expressed in TamR and 
FasR cells using GeneSifter software in Affymetrix HG-U133A gene chips. Graphical output and heatmap 
are shown for the gene. Plot shows log mean intensity and standard errors. Additional controls were 
provided by parental MCF-7 cells subject to oestradiol treatment. (*p=0.0478 for FasR relative to MCF-7 
[students t-test]).



data (Fig.69b). Affymetrix analysis also suggested PTTG2 mRNA was induced in FasR-Lt 

compared to MCF-7 cells; however this increase was no more than the induction observed in 

FasR cells relative to MCF-7 cells (Fig.70). There was also some increase in PTTG2 gene level 

suggested in X-MCF-7 cells compared to MCF-7 cells using PCR (Fig.71a) and also by 

Affymetrix analysis (Fig.7 lb).

Using PCR analysis, significant gene induction for PTTG3 gene was observed in FasR 

cells relative to parental MCF-7 cells (p=0.05; Fig.72a), with no significant change in other 

cells. An increase in FasR was confirmed in both Atlas Plastic (p=0.083) and Affymetrix 

microarray analysis (Fig.72b and 72c respectively). As well as being induced in FasR cells, 

PTTG3 gene was increased in FasR-Lt cells (p=0.0464; Fig.73). A significant increase in 

PTTG3 mRNA was also observed in X-MCF- 7 cells using PCR analysis (p=0.0269; Fig.74) 

with an increase also using Affymetrix data (Fig. 74b).

The PBF (PTTG-binding protein/ factor), which has been demonstrated to facilitate 

translocation of PTTG 1 into the nucleus, was also studied in endocrine responsive/ resistant cell 

lines at the mRNA level. The gene profile for PTTG 1-BP using Atlas Plastic arrays suggested a 

slight induction in resistant cells with some repression in MCF-7 cells treated with oestradiol 

(Fig. 75 a). This profile was also suggested by PCR analysis, however, overall gene changes 

using both methods of analysis were at best weak (Fig.75b). Affymetrix analysis on the other 

hand suggested a decrease in gene levels for PTTG 1-BP in all resistant cells relative to MCF-7 

cells (Fig.75c), suggesting there was little consistency in changes, although as in the Atlas 

Plastic microarray data, oestradiol-treated MCF-7 cells showed a significant reduction in 

PTTG1-BP levels (p=0.0136). In contrast to the reduced levels of PTTG1-BP suggested in FasR 

cells compared to MCF-7 cells, by Affymetrix, FasR-Lt cells indicated a small induction o f the 

gene, but this was again only non-significant (Fig. 76). Further PCR analysis suggested X-MCF- 

7 cells had a marked decrease in PTTG 1-BP expression (Fig. 77a) which was more substantial 

by Affymetrix data analysis (Fig.77b; p=0.0127).

4.1.4 PTTG1 Detection in Clinical Disease

4.1.4.1 PTTG1 Gene Expression Correlates to Kev Endpoints in Clinical Disease

Differential expression was observed across primary clinical breast cancer series (see 

examples in Fig.78) for the PTTG1 gene using PCR analysis (n=78; median PTTG1 mRNA 

level by densitometry=0.167; range = 0-1.18; Fig.78b), with only 2 patients completely negative 

for expression of this gene. There proved to be a high degree of association of PTTG1 

expression with a number of key clinicopathological features, including those reflective of 

tumour growth and increased metastatic potential: both before and after for subdivision by ER 

status.
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To summarise table 10, Mann-Whitney analysis revealed that increased PTTG1 was 

associated with increased spread to the lymph nodes (Fig.79), increased tumour grade, with 

poorly-differentiated Grade 3 tumours (see also Fig.80), with increased nuclear pleomorphism 

(see also Fig.81), with elevated mitotic activity (see also Fig.82), and with proliferative capacity 

as measured by Ki67 immunostaining (see also Fig.83). These associations were retained after 

subdivision with ER-positive and ER-negative disease. There was a further linear association by 

Spearmann’s analysis between PTTG1 and Ki67 level (Fig.84; p<0.001), and also in ER+ 

disease (p<0.001). In ER+ disease, PTTG1 also tended to be at increased levels in 

premenopausal patients (p=0.04).

Among the biomarkers we examined versus PTTG1, there was no obvious association with 

status o f  the HER2 or EGFR growth factor receptors. Similarly, there was no association with 

ER or PgR status in all patient groups, although there was a direct linear association between 

PTTG1 and these steroid hormone receptors within the ER+ patient cohort (Fig.85 and Fig.86; 

p=0.008 and p=0.027 for ER and PgR respectively). There was also a PTTG1 association in 

tumours showing high staining for Fos transcription factor (Fig.87; p=0.004).

Table 10. PTTG1 mRNA expression correlation with clinicopathalogical endpoints in clinical 
breast cancer.

Clinical Association
p-value (Mann-Whitney U test)

All patients ER-positive
only

ER-negative
only

Increased lymph node 
spread (>4nodes)

0.001 0.006 0.065

Increased tumour 
grade (grade3)

0.001 0.019 0.006

Increased nuclear 
pleomorphism

0.002 0.05 0.023

Increased mitotic 
activity

<0.001 0.004 0.009

Elevated proliferative 
capacity (Ki67 
staining; >30%)

<0.001 0.018 0.022

4.1.4.2 PTTG1 Protein Differentially Expressed in Clinical Breast Cancer Samples

In order to confirm the presence, and thus possibly a role for PTTG1 protein within 

clinical breast cancer, optimised PTTG1 immunostaining was applied to a pre-prepared 

formalin-fixed, paraffin embedded clinical breast cancer sections. After heat-mediated antigen 

retrieval, a primary antibody concentration o f 67pg/ml (1:15 dilution) was used with copper 

sulphate enhancement, as described previously. Similar to cell pellet arrays, PTTG1 

immunostaining within the clinical samples was observed as both nuclear and cytoplasmic, in 

the tumour epithelial cells (Fig.88a). Although the assay was only subsequently applied to a
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Figure 70. PTTG2 gene in FasR & FasR-Lt cells from a database constructed from Affymetrix data.
PTTG2 mRNA was identified as increased in FasR and FasR-Lt cells using GeneSifter software in 
Affymetrix HG-U133A gene chips. Graphical output and heatmap are shown for the gene. Plot shows log 
mean intensity and standard errors (*p=0.0478 FasR relative to MCF-7 [students t-test]).
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Figure 71. PTTG2 gene confirmation in X-MCF7 cells, (a) RNA was subject to RT-PCR using 
primers for PTTG2 co-amplified with P-actin. PCR products separated on agarose gel was visualised by 
ethidium bromide staining, densitometric analysis and subsequently normalised prior to plotting. 
Representative PCR profiles are shown. Plot shows standard errors, (b) PTTG2 mRNA was identified as 
increased in X-MCF-7 cells using GeneSifler software in Affymetrix HG-U133A gene chips. Graphical 
output with log mean intensity and standard errors, and heatmap are shown for the gene.
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Figure 72. PTTG3 gene confirmation in resistant cells, (a) Verification of gene profile was performed 
by PCR analysis using primers for PTTG3. PCR for p-actin was also performed (normalisation control). 
PCR products separated on agarose gel were visualised by ethidium bromide staining. Representative PCR 
profile is shown for triplicate experiments. PCR profiles were then subject to densitometric analysis prior 
to normalised intensity plotting. Plot shows standard errors (*p=0.05 in FasR relative to MCF-7 [Students 
t-test]). (b) PTTG3 mRNA was identified as upregulated in FasR cells using Atlas Plastic Human 12k 
Microarrays and (c) Affymetrix HG-U133A gene chips. Identical RNA preparations were used for Atlas 
Plastic array and Affymetrix genechip. Graphical output and heatmap are shown for the gene. Plot shows 
log mean intensity and standard errors. Additional controls were provided by parental MCF-7 cells subject 
to oestradiol treatment. (*p=0.083 FasR relative to MCF-7 [Students t-test].
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Figure 73. PTTG3 gene in FasR & FasR-Lt cells from a database constructed from Affymetrix data.
PTTG3 was identified as increased in FasR and FasR-Lt cells using GeneSifter software in Affymetrix 
HG-U133A gene chips. Graphical output and heatmap are shown for the gene. Plot shows log mean 
intensity and standard errors. (*p=0.0464 for FasR-Lt relative to MCF-7 [Students t-test])
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Figure 74. PTTG3 gene confirmation in X-MCF7 cells, (a) RNA was subject to RT-PCR using 
primers for PTTG2. (3-actin was also amplified for normalisation. PCR products separated on 
agarose gel was visualised by ethidium bromide staining, densitometric analysis and subsequently 
normalised prior to plotting. Representative PCR profiles are shown. Plot shows standard 
errors.(p=0.0265 for PTTG3 relative to MCF-7 [Students t-test]). (b) PTTG3 mRNA was identified 
as increased in X-MCF-7 cells using GeneSifter software in Affymetrix HG-U133A gene chips. 
Graphical output with log mean intensity and standard errors, and heatmap are shown for the gene.
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Figure 75. PBF gene regulation in resistant cells. PBF mRNA was identified as differentially expressed 
using (a) Atlas Plastic Human 12k Microarrays; Graphical output with log mean intensity and standard errors, 
and heatmap are shown for the gene, (b) Verification of gene profile was performed by PCR analysis using 
primers for PBF co-amplified with (?-actin (normalisation control). PCR products separated on agarose gel 
were visualised by ethidium bromide staining and subject to densitometric analysis, prior to normalised 
intensity plotting. Representative PCR profile is shown from triplicate experiments. Plot shows standard errors, 
(c) Profiles using Affymetrix HG-U133A gene chips are also shown as graphical output with log mean 
intensity and standard errors, and heatmap is shown for the gene. Identical RNA preparations were used for 
Atlas Plastic array and Affymetrix genechip. Additional controls were provided by parental MCF-7 cells 
subject to oestradiol treatment. (*p=0.0134 for MCF-7+E2 relative to MCF-7 [students t-test]).



Figure 76. PBF gene in FasR & FasR-Lt cells from a database constructed from Affymetrix data.
PBF mRNA was identified as differentially expressed in FasR and FasR-Lt cells using GeneSifter software 
in Affymetrix H G -U133A gene chips. Graphical output with log mean intensity and standard errors, and 
heatmap is shown for the gene.
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Figure 77. PBF gene regulation in the oestrogen-depravation model, X-MCF-7 cells, (a) RNA was
subject to RT-PCR using primers for PBF and visualised by ethidium bromide staining. P-actin was 
coamplified and used as an internal control. Representative signal is shown for triplicate experiment. PCR 
products separated on agarose gel were visualised by ethidium bromide staining and subject to 
densitometric analysis, prior to normalised intensity plotting, (plot shows standard errors), (b) PTTG3 
mRNA was identified as in X-MCF-7 cells using GeneSifter software in Affymetrix HG-U133A gene 
chips. Graphical output with log mean intensity and standard errors, and heatmap are shown for the gene. 
(*p=0.0127 for X-MCF- relative to MCF-7 [students t-test]).
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Figure 78. PCR analysis of PTTG1 gene in clinical breast cancer series, (a) Clinical breast cancer sample 
(n=78) RNA was subject to PCR using primers for PTTG1 co-amplified with P-actin for 28 cycles. PCR 
products separated  on agarose gel were visualised by ethidium bromide staining, (b) Frequency distribution 
chart shows PCR densitometry signal intensity for n=78 samples encompassing a range 0 to 1.18, and median 
0.167 (marked as dashed line).
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Figure 79. PTTGl mRNA expression correlates with lymph node spread in clinical breast cancer
series (n=78) U sing M ann-W hitney analysis, P T T G l w as significantly increased in patients show ing
m ore than 4 nodal involvem ent.
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Figure 80. PTTGl mRNA expression correlates with poorly differentiated tumours in clinical 
breast cancer series (n=78) Using Mann-Whitney analysis PTTGl gene was significantly increased in 
tumours exhibiting grade 3 versus grade 1 or 2 tumours. This relationship was maintained after 
subdivision for ER positivity/ negativity.
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Figure 81. PTTGl mRNA expression correlates with nuclear pleomorphism in clinical breast
cancer series (n=78). U sing M ann-W hitney analysis P T T G l gene w as significantly increased in
tum ours show ing increased nuclear pleom orphism  (3) versus low  levels (1 o r 2).
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Figure 82. PTTGl mRNA expression correlates with mitotic activity in clinical breast cancer
series (n=78). U sing M ann-W hitney analysis P T T G l gene w as significantly increased in tum ours
exhibiting high mitotic activity (3) compared to low  mitosis (1 o r 2).
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Figure 83. PTTGl mRNA expression correlates with elevated proliferative capacity (ki67 staining)
in clinical breast cancer series (n=78). U sing M ann-W hitney analysis P T T G l gene w as significantly
increased in tumours show ing increased proliferation  by k i67 immunostaining.
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Figure 84. PTTGl mRNA correlates with elevated proliferative capacity (ki67 staining) in clinical
breast cancer series (n=78). Using Spearmann's analysis PTTGl gene was directly associated with
ki67immunostaining in all patients.



ER 
H

-s
co

re

o
o o

o o
o

o
0

o o
oo o
O CD

0 0

O o o

0O O 0

o

o
°o° o

°  o o p = 0.008
© 0& O correlation coefficient = 0.402

n ------------ 1------------ 1------------ 1------------ 1------------ 1------------r
0.0 0.2 0 4  0.6 0.8 1.0 1.2

normalised PTTGl intensity

Figure 85. PTTGl mRNA expression correlates with ER in ER-positive clinical breast cancers 
(n=43) Using Spearmann’s analysis PTTGl was directly associated in ER-positive tumours with ER..
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Figure 87. PTTGl mRNA expression associates with Fos positivity (H-score status) (n=78).
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Figure 88. Immunocytochemical analysis for PTTGl in primary clinical breast cancer samples
Breast cancer samples were formalin fixed, and embedded in paraffin blocks. 5pm sections prepared 
from blocks were probed using monoclonal anti-human PTTGl antibody after (heat mediated) antigen 
retrieval with copper sulphate enhancement and detected using DAKO Envision detection system with 
DAB staining. Fig. a and b show samples 1 and 2 demonstrating significant staining, whereas Fig c 
shows almost negative PTTGl immunostaining. Red arrow shows high PTTGl immunostaining was 
frequently observed within highly mitotic cells.



small number of clinical samples (n=3) PTTGl staining was nevertheless differential, varying 

from intensely staining (86b) to the very weakly staining (Fig.88c). In addition, intense PTTGl 

staining was frequently observed within highly mitotic cells.

4.1.5 PTTGl Gene Knockdown Studies using siRNA

Although the gene for PTTGl was induced in all resistant cell lines using Atlas Plastic 

12k Human Microarray and Affymetrix HG-U133A Genechip analysis, this elevation was 

observed as most highly significant in FasR-Lt cells, not only at the gene level, but also as 

protein expression through Western blotting and ICC. FasR-Lt cells were therefore used in 

PTTGl gene knockdown studies to begin to address whether PTTGl was contributory to 

growth of the acquired resistant phenotype.

4 .1.5 .1 Estimation of Transfection Efficiency using siGlo

A siGlo RISC-Free siRNA transfection control was included in the siRNA gene 

knockdown study to provide an estimation o f transfection efficiency in the model. Additionally, 

as these stable, fluorescent compounds are chemically modified to impair any RISC- siRNA 

interactions, as well as uptake efficiency monitors, they form, negative assay controls. 

Successful overnight transfection with siGlo was determined by positively fluorescent siGlo 

signal nuclei. Within these cells a transfection rate o f 74% was achieved (±18 standard 

deviation; Fig.89).

4.1.5.2 Estimation of Knockdown Efficiency Using Lamin siRNA

Positive silencing control siRNA directed against the reported housekeeping gene 

Lamin A/C in FasR-Lt cells provided some initial indication of gene knockdown that can 

generally be achieved using the Dharmacon siRNA system in these cells. RNA extracted one 

day post transfection showed a substantial 73% reduction in Lamin mRNA with Lamin-specific 

gene knockdown compared to missense/ scrambled control (or PTTGl siRNA) as determined 

by PCR analysis (Fig.90). This considerable Lamin mRNA reduction provides evidence o f the 

success of the siRNA protocol in the model system used.

4.1.5.3 PTTGl Gene and Protein Expression Are Successfully Reduced bv PTTGl siRNA 

Following the successful knockdown of Lamin A/C, siRNA directed towards the

PTTGl gene was applied according to the protocol used previously (seeding at 70-80% 

confluency). The gene for PTTGl was reduced by 97% at 24 hours post transfection as shown 

by PCR studies (Fig.91a). Although minor variation was observed within the control set of
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samples, the PTTGl knockdown was substantial compared to all controls used in the 

experiment.

Owing to the 4-7 day timescale considered for subsequent proliferation, apoptosis, and 
growth experiments, cells were seeded at an initial density o f 250,000 cells/ well instead of die 

70-80% appropriate used for 24 hour timepoint analysis. Also included within subsequent 

knockdown experiments is a DharmaFect (DF; transfection reagent) only control PC R analysis 

shows a reduction o f PTTGl gene with the specific siRNA at approximately 62% at day 4 post

transfection compared to missense control in FasR-Lt cells, and 74% versus DCCM control 

(Fig.91b). Following the re-application o f  PTTGl siRNA at day 4, cells harvested subsequently 

at day 7 again showed a gene knockdown o f  around 79% compared to missense control, and 
80% relative to DCCM control (Fig.91c). It is worth noting that the addition o f DF either alone, 

or with Lamin/ missense siRNA to the culture medium (comparing media only controls to these 
controls) caused a partial and variable inhibitory effect on the cells in culture following 

extended time points.

FasR-Lt cells seeded at a high initial density were subject to PTTGl knockdown and 

protein analysed using Western blotting analysis at 48 hours post-transfection (Fig.92a). PTTGl 

protein (28kDa) was shown to be reduced to an undetectable level. Although a small reduction 

was observed in the Lamin control over other control samples, an unusual variation was 

demonstrated by the low PTTGl protein level in cells grown in basal (home) medium (media 

control). This however was inconsistent and not noted in later timepoints and their replicates.

As with mRNA studies 4-7 day timescale o f subsequent experiments, FasR-Lt cells 

were seeded at an initial density o f 250,000 cells/ well. Again, a DF (transfection reagent) only 

control was included within this set o f experiments. Western blotting showed a reduction of 

PTTGl protein o f 95% at day 4 post-transfection compared to missense control and 98% 

compared to DCCM control (Fig.92b). Following the re-application o f PTTGl siRNA at day 4, 

cells harvested at day 7 again showed a protein knockdown compared to missense control of 

around 97%, and 99% versus DCCM control (Fig.92c). However, PTTGl protein was observed 

to be significantly affected by the inclusion o f  DF within the cell culture (although less maiked 

at day 4), evidenced by the differences between media controls (media control and DCCM 

control) and DF control test samples (DF, Lamin siRNA, missense control).

4.1.5.4 PTTGl Knockdown Effects on Cell Growth

The proliferative effects o f using siRNA directed to the P T IG 1 gene is evident from 

observation o f  cells in culture (Fig.93). Microscopic evaluation at day 4 o f PTTGl siRNA 

treatment viewed from four replicate fields revealed a 72% decrease in cell number compared to 

missense control (Fig.94; p=0.0031). Although a degree o f reduction was also observed in die 

DF control and Lamin siRNA control, cell numbers within the PTTGl siRNA-treated sample

105



DAPI-stained
nuclei

Figure 89. Estimation of siRNA transfection efficiency using siGlo in FasR-Lt cells. FasR-Lt cells 
transfected with lOOnmol siGlo overnight (~12 hours) were fixed, mounted using Vectashield agent, and 
fluorescence detected. Photograph shows area of x40 magnification with DAPI-stained nuclei with siGlo 
transfection fluorescent (red) marker.
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Figure 90. siRNA specific Lamin gene knockdown in FasR-Lt cells to confirm Dharmacon siRNA 
performance. Lamin gene knockdown was achieved in TamR cells using lOOnmol Smartpool reagents 
according to the Dharmacon protocol. One microgram of RNA extracted from cells 24 hours post siRNA 
transfection was reverse transcribed and gene expression was determined using primers for Lamin (with 
p-actin co-amplification for normalisation). Controls included were irrelevant (PTTGl) siRNA, siGlo, 
missense, DCCM media, and media (phenol red-free RPMI/ 5% serum) control alongside the Lamin 
siRNA.
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Figure 91. PTTGl siRNA mediated gene knockdown in FasR cells. PTTGl gene knockdown was 
achieved in FasR-Lt cells using lOOnmol smartpool reagents according to the Dharmacon protocol. One 
microgram of RNA extracted from cells (a) 24 hours, (b) 4 days, and (c) 7 days siRNA transfection was 
reverse transcribed and gene expression was determined using primers for PTTGl (with P-actin co
amplification for normalisation). Controls included were siGlo, missense, Lamin siRNA, DharmaFECT (DF) 
transfection reagent, DCCM media, and media (phenol red-free RPMI/ 5% serum) control versus PTTGl 
test siRNA.
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Figure 92. PTTGl siRNA mediated protein knockdown in FasR-Lt cells. PTTGl gene knockdown was achieved 
in FasR-Lt cells using lOOnmol Smartpool reagents according to the Dharmacon protocol. PTTGl protein 
knockdown was determined by subjecting 50ug protein from cells (a) 48 hours, (b) 4 days, and (c) 7 days siRNA 
transfection to 15% SDS PAGE and Western blotting. Proteins were probed with monoclonal anti-PTTGl antibody 
with chemiluminescent detection. Equivalence of protein loading in Western blots was subsequently demonstrated 
by detection of P-actin on the same blot using monoclonal antibody to the protein. Controls included were siGlo, 
missense, Lamin siRNA, DharmaFECT (DF) transfection reagent, DCCM media, and media (phenol red-free RPMI/ 
5% serum) control versus PTTGl test siRNA.
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Figure 93. Phase contrast microscopy of FasR-Lt cells subject to PTTG1 siRNA knockdown at day
4. PTTG1 gene knockdown was achieved in FasR-Lt cells using lOOnmol Smartpool reagents according 
to the Dharmacon protocol and as described in Methods. Control or test cells were counted from four 
fields photographed at lOx magnification. Controls included were missense, DharmaFECT (DF) 
transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 5% serum) control, 
alongside PTTG1 test siRNA.
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Figure 94. Phase contrast of FasR-Lt mean cel) counts following PTTGl siRNA knockdown at day
4. PTTGl gene knockdown was achieved in FasR-Lt cells using lOOnmol Smartpool reagents according 
to the Dharmacon protocol. Control or test cells were photographed at lOx magnification and evaluation 
of cells was performed counting for a total of 4 fields. Controls included were missense, DharmaFECT 
(DF) transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 5% serum) 
control, versus PTTGl test siRNA. Plot shows standard errors (*p=0.0031 for PTTGl siRNA relative to 
missense control; p<0.02 for PTTGl siRNA relative to Med con, DCCM con and Lamin siRNA controls 
[Students t-test performed]).



also remained obviously lower than the DF control, Media control, DCCM control, and Lamin 

siRNA control (p<0.02 in the latter 3 controls relative to PTTGl siRNA cell number count).

4.1.5.5 PTTGl Knockdown Effects on Cell Proliferation- Ki67 (M ibl) Staining

In parallel to the above studies, the effects on proliferation of PTTGl siRNA applied to 

FasR-Lt cells were determined by Ki67 (Mibl) immunostaining. After 4 days o f transfection, 

cells were fixed and immunostained for Ki67 as described previously. The staining across the 

samples indicated a decrease in staining in Ki67 with PTTGl siRNA compared to the missense 

control (Fig.95). Microscopic counting o f Ki67 immunoreactivity revealed a significant 

reduction o f 23% with PTTGl siRNA treatment compared to missense control (p<0.001; 

Fig.96) and 34% relative to DCCM control (p<0.001). An obvious loss of cell number was also 

observed on the coverslips with PTTGl siRNA-treatment with a smaller reduction in cell 

numbers in control preparations containing DF reagent (see also 4.1.5.4). Samples used within 

the Ki67 experiments showed less variability across the controls, although a non-significant 

reduction in Ki67 immunostaining was observed in the Lamin A/C sample (14% and 21% 

reduction compared to missense and DCCM control respectively; Fig.96).

4.1.5.6 PTTGl Knockdown Effects on Apoptosis (ApoAlert Assay)

The effect o f PTTGl siRNA on apoptosis was determined in FasR-Lt cells 4 days post

transfection using the ApoAlert Apoptosis Mitochondrial Membrane Sensor Kit (BD 

Biosciences) according to the manufacturers instructions. Microscopic evaluation of the samples 

again showed an obvious reduction in the number o f cells present on the slide following PTTGl 

siRNA treatment (see also 4.1.5.4). Moreover, in the remaining cells, an obvious induction of 

apoptosis was demonstrated by the increase in green MMS staining (Fig.97). Evaluation o f the 

dead cells (green) revealed a 43% further increase with PTTGl siRNA-treated cells compared 

to missense control and a 88% increase versus DCCM control (p=0.05 and p<0.001 

respectively; Fig.98). Generally, all samples showed slightly higher levels of dead cells relative 

to the media control, including some apoptotic effects observed within all samples containing 

siRNA for either Lamin or missense control (53% and 31% respectively versus DCCM control; 

Fig.98).
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4.1.6 Impact of EGFR Inhibitor Gefitinib and Faslodex on PTTGl Gene and Protein 

Expression in Resistant Cells

In order to determine if  PTTGl was EGFR regulated, PTTGl gene expression was 

determined using PCR analysis in resistant cell lines which were subject to a growth inhibitory 

dosage o f EGFR-TK inhibitor (TK1) Gefitinib (10^’M) treatment for seven days. Treatment with 

the inhibitor resulted in a further induction o f  PTTGl gene in both TamR and FasR-Lt cells at 

approximately a six-fold and two-fold increase respectively versus basal levels (Fig.99). 

Western blotting confirmed a substantial increase in PTTGl protein in response to Gefitinib in 

TamR cells (Fig. 100). This elevation in protein levels was observed at both 4 days and at 7 days 

o f Gefitinib treatment. There was only a marginal increase with the agent in FasR-Lt cells, 

although basal levels were higher than TamR cells, as observed previously. Using PCR analysis, 

PTTGl mRNA was also observed to be induced in TamR cells treated with (10 7M) Faslodex by 

approximately two-fold (Fig. 101), although Western blotting profile was not explored.
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Figure 95. Effect on proliferation of PTTGl siRNA knockout at day 4 as measured by Ki67 -Mibl) 
immunostaining in FasR-Lt cells. PTTGl gene knockdown was achieved in FasR-Lt cells using lOOnmol 
Smartpool reagents according to the Dharmacon protocol. Control or test cells were fixed in formaldehyde 
solution 4 days post transfection, probed using monoclonal anti-human antibody to mibl and detected using 
DAKO Envision detection system with DAB staining. Controls included were missense, DharmaFECT 
(DF) transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 5% serum) 
control, versus PTTGl test siRNA (Photographs show immunostaining at x40 magnification).
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Figure 97. Apoptotic effects of PTTGl siRNA knockout at day 4 as measured by Apoalert 
Apoptosis Mitochondrial Membrane Sensor kit in FasR-Lt cells. PTTGl gene knockdown was 
achieved in FasR-Lt cells using lOOnmol Smartpool reagents according to the Dharmacon protocol. Cells 
were processed for detection of apoptosis using the Apoalert Apoptosis Mitochondrial Membrane Sensor 
kit according to the manufacturers instructions. Controls included were missense, DharmaFECT (DF) 
transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 5% serum) control, 
versus PTTGl test siRNA. Live or apoptotic cells are represented by red or green fluorescence 
respectively (images show cells at x40 magnification).
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Figure 98. Microscopic Evaluation of the Apoptotic effects of PTTGl siRNA knockout at day 4 as 
measured by Apoalert Apoptosis Mitochondrial Membrane Sensor kit in FasR-Lt cells. PTTGl gene 
knockdown was achieved in FasR-Lt cells using 1 OOnmol smartpool reagents according to the Dharmacon 
protocol and as described in Methods. Control or test cells were processed for detection of apoptosis using 
the Apoalert Apoptosis Mitochondrial Membrane Sensor kit according to the manufacturers instructions. 
Microscopic evaluation for apoptosis was performed at 40x magnification using red and green 
fluorescence detection and graded as red or green cell numbers from six fields per test slide. Controls 
included were missense ‘scrambled’, DharmaFECT (DF) transfection reagent, Lamin siRNA, DCCM 
media, and media (phenol red-free RPMI/ 5% serum) control, (plot shows standard errors) (*p=0.05 and 
p<0.001 for PTTGl siRNA relative to missense and DCCM controls respectively, and p<0.001 compared 
to DF and Media controls).
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Figure 99. PTTGl gene induction in TamR &  FasR cells treated with Gefitinib. TamR and FasR cells 
were grown in 100mm dishes in the presence or absence of the EGFR-TKI Gefitinib (TKI; lO^M) for 7 
days before harvesting according to the optimised Tri Reagent protocol. One microgram of RNA 
extracted from cells was reverse transcribed and gene expression was determined using primers for 
PTTGl (with p-actin co-amplification for normalisation). Representative PCR profiles are shown which 
were subject to densitometric analysis and normalisation to P-actin before generation of plot.
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Figure 100. PTTGl protein in TamR &  FasR-Lt cells t r e a t e d  w i t h  EGFR-TK1 Inhibitor Gefitinib.
TamR and FasR-Lt cells grown in lOOnn dishes in the presence or absence of EGFR-TKI Gefitinib 
(TKI; lO ^M ) for (a) 4 and (b) 7 days before harvested for protein. PTTGl protein was determined by 
subjecting 50ug protein from cells to 15% SDS PAGE and Western blotting. Proteins were probed with 
monoclonal anti-PTTGl antibody with chemiluminescent detection. Equivalence of protein loading in 
Western blots was subsequently demonstrated by detection o f  P-actin on the same blot using monoclonal 
antibody to the protein.
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Figure 101. PTTGl gene induction in TamR cells treated with 10'7M Faslodex. TamR cells were 
grown in 100mm dishes in the presence or absence of Faslodex (10'7M) for 7 days before harvesting 
according to the optimised TriReagent protocol. One microgram of RNA extracted from cells was 
reverse transcribed and gene expression was determined using primers for PTTGl (with P-actin co- 
amplification for normalisation). Representative PCR profiles are shown which were subject to 
densitometric analysis and normalisation to P-actin prior to plotting.
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5.1 GFRa3

Atlas Plastic Microarrays and subsequent PCR analysis had revealed that the gene 

expression for GFRa3 was significantly induced in TamR cells and to a lesser extent in FasR 

cells compared to parental MCF-7 cells, a profile confirmed by Affymetrix genechip analysis 

(see also Fig.36).

5.1.1 GFRa3 Gene Induction in Resistant Cells

PCR verification was subsequently performed on further replicate experimental sets of 

RNA samples extracted after to the arrayed RNA set. Profiles for these resistant cell lines 

confirmed GFRa3 gene induction in FasR (p<0.001) as well as TamR (p=0.0163) with no 

change in oestradiol-treated MCF-7 cells (Fig. 102).

The highly invasive FasR-Lt cells demonstrated by PCR analysis at least as high levels 

of GFRa3 mRNA as in the FasR cells (Fig. 103a).Using Affymetrix gene analysis, GFRa3 

mRNA levels were also suggested as induced in FasR-Lt cells relative to parental MCF-7 cells 

(-0.83 versus -1.63), although levels were not significantly elevated as FasR cells in this 

instance (1.40 versus -1.63) (Fig. 103b).

Cell lines with acquired resistance to oestrogen deprivation developed at TCCR were 

also studied to determine the levels of GFRa3. Levels of the gene were low in both MCF-7 and 

X-MCF-7 cells, as measured by PCR (Fig. 104a), with similarly no significant change observed 

using Affymetrix data (Fig. 104b).

5.1.2 GFRa3 Protein Induction in Resistant Cells

5.1.2.1 Western Blotting Analysis o f GFRa3 Protein

Using a monoclonal antibody to GFRa3 protein Western blotting confirmed induction 

of GFRa3 at the protein level (band at ~43kDa) in TamR and again to a lesser extent in FasR- 

Lt cell lines (3.3- and 1.6-fold respectively) relative to control MCF-7 cells (Fig. 105).

5.1.2.2 Immunocvtochemical Analysis o f GFRa3 Protein

Immunocytochemical assay development allowed the detection of GFRa3 protein 

within formalin-fixed paraffin-embedded cell pellet blocks housing a replicate number of 

resistant and responsive cell lines including TamR, FasR-Lt and MCF-7.

A number o f antibody concentrations, as well as antigen retrieval methods were used in 

order to initially optimise assays using polyclonal or monoclonal antibodies to GFRa3. The 

final immunocytochemical method adopted for the analysis of GFRa3 protein used the
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monoclonal antibody at 1 jig/ml and involved enzyme-mediated (pronase) antigen retrieval step 

(Fig. 106).

Stained paraffin cell pellets bearing endocrine responsive and resistant cell lines in 

replicates o f 6 pellets per cell line (2 from each o f 3 experimental replicates) were subsequently 

scored for positively staining cells in cytoplasm and membrane as described previously. GFRa3 

staining was localised predominantly within the cytoplasm and membrane, with no detectable 

nuclear staining (Fig. 107). PCR profiles, as well as GFRa3 protein levels observed in Western 

blotting studies were paralleled using immunocytochemical analyses with increased staining in 

the resistant cells (Fig. 106 and Fig. 107). A marked elevation in staining for GFRa3 within the 

cytoplasm was observed in TamR cells (p<0.001) compared to MCF-7 cells, with a more 

modest but nevertheless obvious increase in FasR-Lt cells (p<0.001). GFRa3 membrane 

staining was also significantly increased in TamR cells and FasR cells.

5.1J  Further GFRa Family Members and Ligands in Resistant Cells

5.1.3.1 Receptors

Alongside detailed study o f GFRa3, PCR analysis using primers for the spectrum of 

G FRa receptors and their ligands, as well as genes associated with these proteins, have revealed 

differential expression across the resistant cell lines used in this study.

Affymetrix data for GFRa4 revealed a significant induction in TamR and FasR cells 

(Fig. 108a; p=0.0087 and p=0.0372 respectively) versus MCF-7 cells. However, GFRa4 mRNA 

profiling by PCR analysis confirmed significant elevation only in FasR cells (p=0.0102) 

compared to MCF-7 cells (Fig. 108b). Affymetrix analysis confirmed the increase in FasR cells, 

but this did not extend to FasR-Lt cells (Fig. 109). There was also some increase in GFRa4 gene 

levels in X-MCF-7 cells compared to MCF-7 cells using PCR (Fig. 110a) and also by 

Affymetrix analysis (Fig. 110b).

Using Atlas Plastic microarray analysis, this project had observed GFRal gene to be 

significantly repressed in both TamR and FasR cells versus MCF-7, falling to a level not 

detectable (with no change in oestradiol-treated MCF-7 cells), thus considered a ‘shared 

repressed gene' (see Fig.61a). This marked reduction in GFRal mRNA in resistant cells had 

also been confirmed at the PCR level and using Affymetrix analysis (see Fig.61b and Fig.61c 

respectively). Subsequent PCR verification was performed on additional sets o f RNA samples. 

Resistant cell lines were again confirmed as having reduced GFRal gene levels relative to 

parental MCF-7 cells, with no significant change in oestradiol-treated MCF-7 (Fig. 111). As well 

as being repressed in FasR cells, GFRal gene levels were also significantly reduced in the 

FasR-Lt cell line according to Affymetrix data analysis (Fig. 112; p<0.001 relative to MCF-7).
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Figure 102. GFRa3 gene upregulation in TamR and FasR cells is further confirmed in replicate 
RNA preparations. This was achieved by PCR analysis using primers for GFRa3 co-amplified with (3- 
actin for normalisation. PCR products separated on an agarose gel were visualised by ethidium bromide 
staining. A representative PCR profile is shown from triplicate experiments. PCR profiles were then 
subject to densitometric analysis (plot shows standard error). (*p=0.0163 and **<0.001 respectively for 
TamR and FasR relative to MCF-7 [Students t-test]).
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Figure 103. GFRa3 gene upregulation in FasR and FasR-Lt cells, (a) PCR analysis was performed 
using primers for GFRa3 co-amplified with P-actin for normalisation. PCR products were separated on an 
agarose gel and visualised by ethidium bromide staining, (b) GFRa3 mRNA was identified as differentially 
expressed using GeneSifter software applied to Affymetrix HG-U133A gene chip data. Log-intensity 
graphical output and heatmap are shown, (plot shows log-mean intensity with standard errors; *p=0.014 
for FasR relative to MCF-7 and **p=0.0175 for FasR-Lt relative to FasR [Students t-test]).
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Figure 104. GFRa3 gene regulation in the resistance to oestrogen-deprivation model, X-MCF-7 
cells, (a) PCR analysis was performed using primers for GFRa3 co-amplified with (3-actin for 
normalisation PCR products were separated on an agarose gel, visualised by ethidium bromide staining, 
and then subject to densitometric analysis. Representative signal is shown for triplicate experiment (plot 
shows standard errors), (b) GFRa3 mRNA was profiled using GeneSifter software applied to Affymetrix 
HG-U133A gene chip data Log-intensity graphical output and heatmap are shown (plot shows mean 
intensity with standard errors
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Figure 105. Western Blot analysis of GFRa3 protein in MCF-7, TamR & FasR-Lt cells Fifty 
micrograms of protein from each cell line were subject to 7.5% denaturing SDS PAGE, Western 
blotting and probed using monoclonal anti-human GFRa3 antibody with chemiluminescence detection. 
Blots were subject to densitometric analysis and actin normalisation (plot shows fold increase in 
normalised expression relative to control MCF-7 cells with standard errors). Representative blot is 
shown from triplicate experiment.
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Figure 106. Immunocytochemical detection of GFRa3 protein in MCF-7, TamR & FasR-Lt Pellet
arrays. MCF-7, TamR & FasR-Lt cells were harvested, formalin fixed, and pellets embedded in 
paraffin blocks. 5pm sections prepared from blocks were probed using monoclonal anti-human GFRa3 
antibody after enzymatic antigen retrieval and detected using the DAKO Envision detection system with 
DAB staining, (photographs shown at x20 original magnification; inserts at x40).
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Figure 107. Immunocytochemical analysis of GFRa3 protein in MCF-7, TamR & FasR-Lt. MCF-7, 
TamR & FasR-Lt cells were harvested, formalin fixed, and pellets embedded in paraffin blocks. 5pm 
sections prepared from blocks were probed using monoclonal anti-human GFRa3 antibody after 
enzymatic antigen retrieval and detected using DAKO Envision detection system with DAB staining. 
Microscopic evaluation o f  H-score GFRa3 immunoreactivity in cytoplasm (c) and membrane (m) was 
graded from six fields per test slide, and plotted showing standard errors. (*p<0.001 for cytoplasmic or 
membrane staining for TamR or FasR compared to MCF-7 cells [Students t-test]).
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Figure 108. GFRa4 gene expression in TamR and FasR cells, (a) GFRa4 mRNA was identified as 
differentially expressed in TamR and FasR cells using GeneSifter software applied to Affymetrix HG- 
U133A gene chip data. Log-intensity graphical output and heatmap are shown. Additional controls were 
provided be parental MCF-7 cells subject to oestradiol treatment, (plot shows mean intensity with 
standard errors; *p=0.0087 and **p=0.0372 for TamR and FasR respectively, relative to MCF-7 
[Students t-test]). (b) Verification o f  gene expression profile was performed by PCR analysis using 
primers for GFRa4 co-amplified with P-actin for normalisation. PCR products separated on agarose gel, 
visualised by ethidium bromide staining, and then subject to densitometric analysis, normalisation, and 
graphically displayed with standard errors. Representative PCR profile is shown from a triplicate 
experiment. (*p=0.0102 for FasR relative to MCF-7).



0

-1 -

£

I
- 3 -  

- 4 -

MCF-7 FasR FasR-Lt

Figure 109. GFRa4 gene in FasR & FasR-Lt cells from a database constructed from Affymetrix
data. GFRa4 mRNA was profiled in FasR and FasR-Lt cells using GeneSifter software applied to 
Affymetrix HG-U133A gene chip data. Log-intensity graphical output and heatmap are shown for the 
gene (plot shows mean intensity with standard errors; *p=0.0372 for FasR relative to MCF-7 control 
[Students t-test]).
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Figure 110. GFRa4 gene expression in the resistance to oestrogen-deprivation model, X-MCF-7 
cells, (a) PCR analysis was performed using primers for GFRa4 co-amplified with P-actin for 
normalisation PCR products were separated on an agarose gel, visualised by ethidium bromide 
staining, subject to densitometric analysis, and normalised prior to plotting. Representative signal is 
shown for triplicate experiment (plot shows standard errors), (b) GFRa4 mRNA was profiled in X- 
MCF-7 cells versus MCF-7 control using GeneSifter software applied to Affymetrix HG-U133A gene 
chip data. Log-intensity graphical output and heatmap are shown (plot shows mean intensity with 
standard errors
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Figure 111. GFRal gene downregulation in TamR and FasR cells. GFRal mRNA was confirmed as 
d e c re a s e d  in resistant cells using RNA extracted from experimental replicate preparations and PCR 
a n a ly s is  using primers for GFRal co-amplified with P-actin as a normalisation control. PCR products 
w e re  separated on agarose gel and visualised by ethidium bromide staining. Representative PCR profile is 
sh o w n . PCR profiles were then subject to densitometric analysis with normalisation before plotting (plot 
sh o w s  standard errors).
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Figure 112. GFRal gene expression in FasR & FasR-Lt cells from a database constructed from 
Affymetrix data. GFRal mRNA was identified as decreased in FasR and FasR-Lt cells using 
GeneSifter software applied to Affymetrix HG-U133A gene chip data. Log-intensity graphical output and 
heatmap are shown for the gene. (p<0.001 for both FasR and FasR-Lt relative to MCF-7 control [students 
t-test]).



GFRa3 mRNA were also reduced in X-MCF-7 cells compared to parental MCF-7 cells using 

PCR analysis (Fig. 113a), which significance using Affymetrix data (Fig. 113b; p=0.0151).

While GFRa2 gene levels were suggested as slightly increased in FasR cells relative to 

parental MCF-7 cells, this was non-significant also with no change in TamR cells as determined 

by PCR analysis (Fig. 114a). A slight, but again non-significant induction in GFRa2 was also 

suggested in MCF-7 cells upon oestradiol treatment. Similarly, no significant changes were 

noted across all endocrine responsive/ resistant cells using Affymetrix analysis (Fig. 114b). 

Levels of GFRa2 also remained unchanged across FasR-Lt cells compared to either MCF-7 or 

FasR cells (Fig. 115). PCR studies showed some induction o f GFRa2 in X-MCF-7 cells 

(Fig. 116a), although this was unparalleled by Affymetrix data (Fig. 116b).

The co-receptor for the GDNF family o f receptors, the RET proto-oncogene, was 

expressed in all cell lines and differential at the mRNA level as determined by PCR studies 

(Fig. 117a). A significant RET gene induction was observed in oestradiol-treated MCF-7 cells 

(p=0.0486) compared to parental MCF-7 cells, also with increased levels in TamR cells 

(p=0.0408). There was no change in (but still detectable levels) in FasR cells versus MCF-7. 

The significant increase in RET in MCF-7 cells with oestradiol treatment was confirmed by 

Affymetrix analysis (Fig. 117b; p=0.0052), and while other increases did not reach significance, 

the gene was again readily detectable in all models. Affymetrix data also showed no overall 

change in RET gene levels across FasR-Lt compared to FasR or MCF-7 control (Fig. 118). In 

contrast, the RET gene was significantly induced in X-MCF-7 cells compared to parental MCF- 

7 cells using PCR analysis (Fig. 119a; p=0.0328), which was paralleled by Affymetrix profiling 

(Fig. 119b; p=0.0037). Additionally, the RET receptor protein was detectable in all cell lines 

probed using Western blotting, with a slight increase suggested in TamR cells versus MCF-7 

(Fig. 120).

5.1.3.2 Ligands

The GFRa3 ligand Artemin was detectable in all endocrine responsive and resistant cell 

lines by PCR analysis (Fig. 12 la). However, an induction o f Artemin was observed in MCF-7 

cells treated with oestradiol compared to parental MCF-7 cells (p=0.004), while there was a 

significant decrease o f expression in both TamR and FasR cells (p=0.013 and p=0.0205 

respectively). Affymetrix profiling o f the Artemin gene again revealed oestradiol induction 

(p=0.0331), although there was no suppression in TamR and FasR cells detectable by this 

method (Fig. 12lb). No change in expression was seen in FasR-Lt (Fig. 122). As with PCR for 

TamR and FasR, a significant repression o f the gene was seen in X-MCF-7 cells using PCR 

analysis (p=0.0204; Fig. 123a). However, again this profile was not paralleled by an equivalent 

Affymetrix profile (Fig. 123b).
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The GFRa4 ligand Persephin explored only by Affymetrix showed some induction in 

TamR cells compared to parental MCF-7 cells, but there was no change suggested in FasR cells 

(Fig. 124a), FasR-Lt (Fig. 124b) or X-MCF-7 cells (Fig. 124c). The GFRal ligand GDNF wis 

suggested to be possibly induced to a small degree in FasR cells compared to control MCF-7 

cells, but this was not significant. There was also no change in TamR or oestradiol-treated 

MCF-7 cells (Fig. 125a), in FasR-Lt cells (Fig. 125b), or X-MCF-7 cells (Fig. 125c). Affymetrix 

analysis showed the GFRa2 ligand Neurturin gene to be significantly induced in MCF-7 ceUi 

upon oestradiol treatment compared to parental MCF-7 cells (Fig. 126a; p-0.0356), with a much 

smaller, non-significant induction in TamR and FasR cells. Affymetrix analysis also suggested 

Neurturin mRNA was possibly slightly increased in FasR-Lt as in FasR cells (Fig. 126b) and 

also in X-MCF-7 versus MCF-7 (Fig. 126c), but these changes did not reach significance.

5.1.4 GFRa3 Detection in Clinical Disease

5.1.4.1 GFRa3 mRNA Expression in Clinical Disease

Gene expression for GFRa3 was observed at the mRNA level using RT-PCR in a series 

o f  clinical primary breast cancer samples (Fig. 127, n=78). These clinical samples confirmed 

expression was markedly differential in breast cancer (median GFRa3 mRNA level by 

densitometry=0.227; range= 0-5.74), with 23 patients negative for GFRa3 expression. Mam- 

Whitney analysis subsequently revealed a significant inverse association between GFRa3 and 

ER receptor status, with this gene enriched in ER-negative disease (Fig. 128; p=0.01) and lower 

levels in ER-positive patients. This relationship was further confirmed with Spearmann’s 

analysis which showed a significant indirect correlation between levels o f ER and GFRa3 

(p=0.025). GFRa3 expression also directly associated with EGFR expression by Spearauum’s 

analysis (Fig. 129; p=0.013). GFRa3 expression also associated with decreased (category 3) 

tubular differentiation (Fig. 130; p=0.04). There was also a significant linear (Spearmann’s) 

association between GFRa3 and PTTG1 mRNA (Fig. 131; p<0.001) that was maintained in ER- 

positive (p=0.007) and as a trend in ER-negative disease (p=D.084). An association was also 

observed in GFRa3 mRNA expression with the protein expression o f the transcription factor 

Fos (Fig. 132; p=0.004), which was maintained in ER-negative (p^0.038) and as a trend in ER- 

positive disease (p=0.057).

5.1.4.2 GFRa3 Protein Expression in Clinical Samples

Optimised GFRa3 immunostaining was applied to a small number o f formalin-fixed, 

paraffin embedded clinical breast cancer sections to determine if  protein expression can be 

detected in-vivo. After enzyme-mediated (pronase) antigen retrieval, a monoclonal primaty 

antibody concentration o f  1 pg/ml was detected using the DAKO Envision detection system with
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Figure 113. GFRal gene expression in the resistance to oestrogen-deprivation model, X-MCF-7 
cells, (a) PCR analysis was performed using primers for GFRal co-amplified with (3-actin for 
normalisation. PCR products were separated on an agarose gel, visualised by ethidium bromide 
staining, subject to densitometric analysis, and normalised prior to plotting. Representative signal is 
shown for triplicate experiment (plot shows standard errors), (b) GFRal mRNA was profiled in X- 
MCF-7 cells versus MCF-7 control using GeneSifter software applied to Affymetrix HG-U133A gene 
chip data Log-intensity graphical output and heatmap are shown (plot shows mean intensity with 
standard errors; *p=0.0151 for X-MCF-7 relative to MCF-7 [student t-testj).
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Figure 114. GFRa2 gene expression in TamR and FasR cells, (a) GFRa2 mRNA was analysed in 
resistant cells using RNA extracted from experimental replicate preparations and PCR analysis using 
primers for GFRa2. P-actin was also amplified as a normalisation control. PCR products were separated 
on agarose gel and visualised by ethidium bromide staining. Representative PCR profile is shown. PCR 
profiles were then subject to densitometric analysis with normalisation before plotting (plot shows 
standard errors), (b) GFRa4 mRNA was profiled in TamR and FasR cells using GeneSifter software 
applied to Affymetrix HG-U133A gene chip data. Log-intensity graphical output and heatmap are shown. 
Additional controls were provided be parental MCF-7 cells subject to oestradiol treatment, (plot shows 
mean intensity with standard errors).



Figure 115. GFRa2 gene in FasR & FasR-Lt cells from a database constructed from Affymetrix 
data. GFRa2 mRNA was profiled in FasR and FasR-Lt cells using GeneSifter software applied to 
Affymetrix HG-U133A gene chip data. Log-intensity graphical output and heatmap are shown for the 
gene (plot shows mean intensity with standard errors).
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Figure 116. GFRa2 gene expression in the resistance to oestrogen-deprivation model, X-MCF-7 
cells, (a) PCR analysis was performed using primers for GFRa2. P-actin was also amplified for the 
purpose of normalisation. PCR products were separated on an agarose gel, visualised by ethidium 
bromide staining, subject to densitometric analysis, and normalised prior to plotting. Representative 
signal is shown for triplicate experiment (plot shows standard errors), (b) GFRa2 mRNA was profiled 
in X-MCF-7 cells versus MCF-7 control using GeneSifter software applied to Affymetrix HG-UI33A 
gene chip data. Log-intensity graphical output and heatmap are shown (plot shows mean intensity with 
standard errors
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Figure 117. RET gene expression in TamR and FasR cells. Analysis of gene profile was performed by 
PCR analysis using primers for RET. P-actin was also amplified for the purposes of normalisation. PCR 
products were separated on an agarose gel and visualised by ethidium bromide staining. A representative 
PCR profile is shown from triplicate experiments. PCR profiles were then subject to densitometric 
analysis and plotting after normalisation (Plot shows standard errors). (*p=0.0486 and **p= 0.0408 
respectively for MCF-7+E2 and TamR relative to MCF-7 [Students t-test]). (b) RET mRNA was profiled 
in TamR and FasR cells using GeneSifter software applied to Affymetrix HG-U133A gene chips. RNA 
preparations used for Affymetrix genechip data were identical to those used for Atlas Plastic arrays. Log- 
intensity output and heatmap are shown for the gene. Additional controls were provided be parental 
MCF-7 cells subject to oestradiol treatment (plot shows mean intensity with standard errors). (*p=0.0052 
for MCF-7+E2 relative to MCF-7 [Students t-test]);
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Figure 118. RET gene expression in FasR & FasR-Lt cells from a database constructed from 
Affymetrix data. RET mRNA was profiled in FasR and FasR-Lt cells using GeneSifter software applied 
to Affymetrix HG-U133A gene chip data. Log-intensity graphical output and heatmap are shown for the 
gene (plot shows mean intensity with standard errors).
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Figure 119. RET gene expression in the model of resistance to oestrogen-deprivation, X-MCF-7 
cells, (a) PCR analysis was performed using primers for RET. P-actin was also amplified for the 
purpose of normalisation. PCR products were separated on an agarose gel, visualised by ethidium 
bromide staining, subject to densitometric analysis, and normalised prior to plotting. Representative 
signal is shown for triplicate experiment (plot shows standard errors), (*p=0.0328 relative to MCF-7 
[students t-test]). (b) RET mRNA was increased in X-MCF-7 cells versus MCF-7 control using 
GeneSifter software applied to Affymetrix HG-U133A gene chip data. Log-intensity graphical output 
and heatmap are shown (plot shows mean intensity with standard errors) (*p=0.0037 relative to MCF-7 
[Students t-test]).
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Figure 120. Western Blot analysis of RET protein in MCF-7, TamR & FasR-Lt cells. Fifty 
micrograms of protein from each cell line were subject to SDS PAGEAVestem blotting and probed using 
monoclonal anti-human RET antibody with chemiluminescence detection.
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Figure 121. Artemin gene expression in TamR and FasR cells, (a) Gene profile was analysed by 
PCR using primers for Artemin. p-actin was also amplified for the purposes of normalisation. PCR 
products were separated on an agarose gel and was visualised by ethidium bromide staining. 
Representative PCR profile is shown from triplicate experiments. PCR profiles were then subject to 
densitometric analysis and plotted after normalisation (plot shows standard errors). (*p=0.004,
**p=0.013 and ***p=0.0205 respectively for MCF-7+E2, TamR and FasR relative to MCF-7 [students 
t-test]). (b) Artemin mRNA was differentially expressed in TamR and FasR cells using GeneSifter 
software applied to Affymetrix HG-U133A gene chip data. RNA preparations used for Affymetrix 
genechips were identical to those used for Atlas Plastic arrays. Log-intensity graphical output and
heatmap are shown (plot shows mean intensity with standard errors) (*p=0.0331 for MCF-7+E2 relative 
to MCF-7 [students t-test]).



Figure 122. Artemin gene expression in FasR & FasR-Lt cells from a database constructed from 
Affymetrix data. Artemin mRNA was profiled in FasR and FasR-Lt cells using GeneSifter software 
applied to Affymetrix HG-U133A gene chip data. Log-intensity graphical output and heatmap are shown 
(plot shows mean intensity with standard errors).
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Figure 123. Artemin gene expression in the model resistant to oestrogen-deprivation, X-MCF-7 cells.
PCR analysis was achieved using primers for Artemin. |3-actin was also amplified for the purpose of 
normalisation. PCR products were separated on an agarose gel and visualised by ethidium bromide 
staining. A representative PCR profile is shown for triplicate experiments. PCR profiles were then subject 
to densitometric analysis and plotted after normalisation (plot shows standard errors). (*p=0.0204 relative 
to MCF-7 [students t-test]). (b) Artemin software applied to Affymetrix HG-U133A gene chip data. Log- 
intensity graphical output and heatmap are shown (plot shows mean intensity with standard errors).
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Figure 124. Persephin gene expression in (a) TamR and FasR cells, (b) FasR and FasR-Lt 
cells, and (c) X-MCF-7 cells from a database constructed from Affymetrix data. Persephin 
mRNA was profiled in TamR and FasR cells using GeneSifter software applied to Affymetrix HG- 
U133A gene chip data. RNA preparations used for Affymetrix genechip were identical to those 
used for Atlas Plastic arrays. Log-intensity graphical output and heatmap are shown (plot shows 
mean intensity with standard errors).
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Figure 125. GDNF gene expression in (a) TamR and FasR cells, (b) FasR and FasR-Lt cells, and (c) 
X-MCF-7 cells from a database constructed from Affymetrix data. GDNF mRNA was profiled in 
TamR and FasR cells using GeneSifter software applied to Affymetrix HG-U133A gene chip data. RNA 
preparations used for Affymetrix genechip were identical to those used for Atlas Plastic arrays. Log- 
intensity graphical output and heatmap are shown (plot shows mean intensity with standard errors).
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Figure 126. Neurturin gene expression in (a) TamR and FasR cells, (b) FasR and FasR-Lt cells, and 
(c) X-MCF-7 cells from a database constructed from Affymetrix data. GDNF mRNA was profiled in 
TamR and FasR cells using GeneSifter software applied to Affymetrix HG-U133A gene chip data. RNA 
preparations used for Affymetrix genechip were identical to those used for Atlas Plastic arrays. Log- 
intensity graphical output and heatmap are shown (plot shows mean intensity with standard errors). 
(*p=0.0356 for MCF-7+E2 relative to MCF-7 [students t-test]).
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Figure 127. PCR analysis of GFRa3 gene expression in clinical breast cancer series. Clinical breast 
cancer (n=78) derived RNA was subject to PCR using primers for GFRa3. P-actin was also amplified for 
normalisation. PCR products separated on an agarose gel were visualised by ethidium bromide staining, 
(a) PCR profiles were subject to densitometric analysis and normalisation to P-actin. Representative PCR 
profiles for samples are shown, (b) Frequency distribution chart shows PCR densitometry signal intensity 
for n=78 samples encompassing a range 0 to 5.74, and median 0.227 (marked as dashed line).
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Figure 128. GFRa3 gene expression associates with ER negativity in clinical breast cancer series
(n=78). Using Mann-Whitney analysis GFRa3 gene was significantly increased in tumours exhibiting an 
ER negative status as determined by immunocytochemical staining for the receptor (ERICA).
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Figure 129. GFRa3 gene correlates with increased EGFR gene expression in clinical breast
cancer series (n=78). Using Spearmann's analysis PTTG1 gene was significantly increased in tumours
with increased EGFR gene expression.
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Figure 130. GFRa3 gene expression associates with tubular differentiation in clinical breast cancer
series (n=78). Using Mann-Whitney U test GFRa3 gene was significantly increased in tumours with 
grade 3 tumours.
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Figure 131. GFRa3 and PTTG1 gene expression correlation in clinical breast cancer series (n=78)
using Spearmann's analysis.
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Figure 132. GFRo3 mRNA expression associates with Fos positivity (H-score status) in clinical 
breast cancer series (n=78).



DAB staining, as described previously. As with cell pellets, GFRa3 immunostaining was 

predominantly tumour epithelial in cytoplasm and membrane and with no nuclear staining 

(Fig. 133a and 133b). GFRa3 staining was differential in the clinical samples, varying from 

intensely staining (Fig. 133a) through weakly staining/negative (Fig. 133b to Fig. 133c 

respectively).

5.1.5 GFRa3 Gene Knockdown Studies Using siRNA

The gene for GFRa3 was induced in both TamR and FasR cells using Atlas Plastic 12k 

Human Microarrays and Affymetrix HG-U133A Genechip. However, this elevation was 

observed as most highly significant in TamR cells, not only at the mRNA level, but also 

according to protein expression through Western blotting and ICC. In order to begin to explore 

the relevance of GFRa3 to resistant cell growth, it was therefore deemed appropriate, to target 

TamR cells using GFRa3-specific siRNA.

5 .1.5 .1 Estimation o f Transfection Efficiency Using siGlo

siGlo RISC-Free siRNA was employed to initially provide an estimation o f transfection 

efficiency within the TamR cell model (see also Methods: 2.2.16.5). The seeded TamR cells 

were transfected with lOOnmol siGlo with transfection reagent in DCCM media. Following 

overnight incubation, cells were fixed using formaldehyde solution, mounted using DAPI- 

containing Vectashield mountant and visualised as described previously. Transfection with 

siGlo reagent overnight yielded a transfection efficiency o f 97% (Fig. 134). Additionally, it was 

noted usually that overnight incubation with siGlo and DF transfection reagent showed only a 

slight reduction in cell number compared to non-transfected cells in this instance.

5 .1.5 .2 Estimation of Knockdown Efficiency Achievable in TamR Cells Using Lamin siRNA 

Use of a positive silencing control siRNA directed against the gene for gene Lamin A/C 

in TamR cells provided some indication o f gene knockdown achievable with this model. TamR 

cells were seeded at a confluency of 70-80% 24 hours prior to transfection. Using PCR analysis, 

RNA extracted 24 hours post transfection showed a 78% and 65% knockdown in Lamin mRNA 

with Lamin-specific gene knockdown compared to missense and DCCM control respectively 

(Fig. 135). It is also worth noting that other controls used, media, siGlo, and irrelevant GFRa3 

siRNA did not show any effect/ interference on Lamin A/C mRNA levels.

5.1.5.3 Effect o f GFRa3 siRNA on mRNA and Protein

Following the acceptable mRNA knockdown of Lamin A/C in TamR cells using the 

Dharmacon method, siRNA directed towards the GFRa3 gene was evaluated in highly confluent
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TamR cells. At 24 hours, GFRa3 mRNA was successfully reduced to undetectable levels as 

measured using PCR analysis compared to missense control or DCCM alone (Fig. 136a). 

However, some degree o f variability from one control (media, siGlo, Lamin) to the next was 

demonstrated in this, and subsequent (Fig. 136b) experiments, where DF alone was included, 

effects could be significant.

As described previously, due to the 4-7 day timcscale o f subsequent siRNA 

experiments, TamR cells were also required to be seeded at an initial density o f 250,000 ceils/ 

well). Since only low yields o f RNA can be extracted from 12 well plates, adequate recover 

can be extremely difficult either under conditions o f  further reduced cell number or as a 

consequence o f subsequent extraction procedures, and unfortunately, 4 day GFRa3 knockdown 

PCR analysis was thus unavailable. However, further PCR studies using GFRa3 siRNA in 

TamR cells were able to show a 78% and 86% reduction in mRNA at day 7 post-transfection 

versus missense and DCCM control respectively (Fig. 136b). DF control produced unreliable 

results for analysis due to no actin band.

TamR cells seeded at a high initial density were also subject to GFRa3 knockdown and 

protein analysed using Western blotting analysis in the first instance at 48 hours post- 

transfection (Fig. 137a). GFRa3 protein was only reduced by 14% and 25% relative to missense 

and DCCM control respectively. However, improved effects were observed over a 4-7 day 

timescale where TamR cells were seeded at an initial density o f 250,000 cells/ well. Western 

blotting showed a reduction o f GFRa3 protein o f  13.8% and 41.9% at day 4 post-transfection 

compared to missense and DCCM control (Fig. 137b). Following the re-application o f GFRa3 

siRNA at day 4, cells harvested at day 7 again showed a protein knockdown o f 35% and 82% 

versus missense and DCCM controls. Loss o f protein was also evident with the DF only control 

(Fig. 137c); although in this instance there was too low a yield o f protein from this sample for 

even actin protein detection.

5.1.5.4 GFRa3 siRNA Effects on Cell Growth

The growth viability effects o f using siRNA directed to the GFRa3 gene can be seea 

from cells in culture (Fig. 138). Microscopic evaluation at day 4 o f GFRa3 siRNA treatment 

reveals an 81% (p=0.0042) and 88% (p<0.01) decrease in cell number compared to missense 

DCCM control respectively (Fig. 139). While in this experiment DF treatment alone in 

TamR cells promoted substantial loss o f cell numbers this was not as severe when included with 

other controls (i.e. Lamin, missense controls), and o f note, cell numbers within the GFRd3 

siRNA-treated sample as remained significantly lower than both Lamin siRNA and missense 

control.
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(a) i -Sample 1 x20 (a) ii -Sample 1 x40

(b) i -Sample2 x20 (b) ii -Sample 2 x40

(c) -Sample3 x20

Figure 133. Immunocytochemical analysis of GFRa3 in paraffin embedded clinical breast cancer 
samples Tissue was formalin fixed, and embedded in paraffin blocks. 5pm sections prepared from the 
blocks were stained using monoclonal anti-human GFRa3 antibody after (enzymatic) antigen retrieval 
and detected using DAKO Envision detection system with DAB staining. Fig. A and b show samples 1 
and 2 demonstrating significant staining, whereas Fig. C shows sample 3 with low staining for GFRa3. 
Original magnification shown.
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Figure 134. Estimation of siRNA Transfection Efficiency using siGlo in TamR cells. TamR cells 
transfected with lOOnmol siGlo overnight (-12 hours) were fixed, mounted using Vectashield agent, and 
fluorescence microscopy performed. Magnification of x40 is shown with DAPI-stained nuclei with siGlo 
transfection fluorescent (red) marker.
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Figure 135. siRNA mediated Lamin gene knockdown in TamR cells to evaluate achievable gene 
knockdown. Lamin gene knockdown was achieved in TamR cells using lOOnmol smartpool reagents 
according to the Dharmacon protocol. One microgram of RNA extracted from cells 24 hours post 
siRNA transfection was reverse transcribed and gene expression was determined using primers for 
Lamin (with |3-actin co-amplification for normalisation). Controls included were irrelevant (GFRa3) 
siRNA, siGlo, Missense, DCCM media, and Media (phenol red-free RPMI/ 5% serum) control 
alongside the Lamin siRNA.
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Figure 136. GFRa3 siRNA mediated gene knockdown in TamR cells. GFRa3 gene knockdown was 
achieved in TamR cells using lOOnmol smartpool reagents according to the Dharmacon protocol. One 
microgram of RNA extracted from cells (a) 24 hours and (b) 7 days post siRNA transfection was reverse 
transcribed and gene expression was determined using primers for GFRa3 (with (3-actin co-amplification for 
normalisation). Controls included were siGlo, missense ‘scrambled’, Lamin siRNA, DharmaFECT (DF) 
transfection reagent, DCCM media, and media (phenol red-free RPMI/ 5% serum) control.
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Figure 137. GFRa3 siRNA mediated protein knockdown in TamR cells. GFRa3 gene knockdown was achieved in 
TamR cells using lOOnmol smartpool reagents according to the Dharmacon protocol. GFRa3 protein knockdown was 
determined by subjecting 50ug protein from cells (a) 48 hours, (b) 4 days, and (c) 7 days post siRNA transfection to 
7.5% SDS PAGE and Western blotting. Proteins were probed with monoclonal anti-GFRa3 antibody with 
chemiluminescent detection. Equivalence of protein loading in Western blots was subsequently demonstrated by 
detection of P-actin on the same blot using monoclonal antibody to the protein. Controls included were siGlo, 
missense, Lamin siRNA, DharmaFECT (DF) transfection reagent, and media (phenol red-free RPMI/ 5% serum) 
control, and DCCM media control.



Figure 138. Growth of TamR cells subject to GFRa3 siRNA knockdown at day 4. GFRa3 gene 
knockdown was achieved in cells using lOOnmol smartpool reagents according to the Dharmacon 
protocol. Control or test cells were counted from a total of four fields and photographed at lOx 
magnification using phase-contrast microscope. Controls included were missense, Lamin siRNA, 
DCCM media, and media (phenol red-free RPMI/ 5% serum) control, alongside GFRa3 test siRNA.
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Figure 139. Growth of TamR cells subject to GFRa3 siRNA knockdown at day 4. GFRa3 gene 
knockdown was achieved in cells using lOOnmol smartpool reagents according to the Dharmacon 
protocol and as described in Methods. Controls included were missense, Lamin siRNA, DCCM media, 
and Media (phenol red-free RPMI/ 5% serum) control versus GFRa3 siRNA. Microscopic evaluation 
of cells was performed using phase contrast microscopy at xlO magnification counting for a total and 4 
fields per photographed, (standard errors are shown; *p=0.0042 for GFRa3 siRNA relative to missense 
control; p<0.01 for GFRa3 relative to DCCM control [Students t-test performed]).



5.1.5.5 GFRa3 Knockdown Effects on Cell Proliferation

Immunostaining using an antibody to the proliferation marker Ki67 (Mibl) was used to 

determine any anti-proliferative effects of GFRa3 siRNA. TamR cells at 4 days post

transfection were fixed and processed as described previously. Following microscopic 

evaluation of Ki67 nuclear immunoreactivity a significant reduction of 32% and 33% was 

observed with GFRa3 siRNA treatment compared to missense control (p<0.001) and DCCM 

control (p=0.0051) (Fig.l40and Fig. 141). A loss o f overall cell number on these coverslips was 

also observed in GFRa3 siRNA-treated TamR cells with only occasional foci o f cells with low 

percentage positivity remaining. There was only a small reduction in preparations from cells 

containing DF reagent in this instance.

5.1.5.6 GFRa3 Knockdown Effects on Apoptosis

The apoptotic effect of GFRa3 siRNA was determined in TamR cells 4 days post

transfection using the Apoalert Apoptosis Mitochondrial Membrane Sensor Kit (BD 

Biosciences) as described in methods. Microscopic evaluation o f the slides again clearly 

demonstrated the substantial reduction in overall cell number following GFRa3 siRNA- 

treatment o f TamR cells, to the extent that there were only approximately 10% cells present on 

the slide for evaluation. Although a small number o f apoptotic cells were present in samples 

which contained DF reagent, an increased number was observed within the GFRa3 siRNA 

sample (Fig. 142). Another indication of cell-kill with GFRa3-mediated siRNA was the 

substantial number o f dead cells observed floating within this sample before performing the 

assay. The increase in dead cells was estimated at 103% (p=0.05) in cells subject to GFRa3 

siRNA compared to missense control, and 578% relative to DCCM control (PO.OOl) (Fig. 143). 

In general, all samples showed slightly higher levels o f live cells relative to media control, but 

again there was no substantial effect of DF alone.

5.1.6 Impact of EGFR Inhibitor Gefitinib and Faslodex on GFRa3 Gene and Protein 

Expression in Resistant Cells

In order to determine if  there was any regulation o f GFRa3 by EGFR or ER signalling, 

GFRa3 mRNA expression was determined using PCR and Western blotting analysis in TamR 

and FasR resistant cell lines which had been subjected to the inhibitory doses o f EGFR-TK 

inhibitor Gefitinib (lO^M) or Faslodex (10'7M in TamR) for seven days. Treatment with the 

EGFR-TKI inhibitor resulted in a marked further induction o f GFRa3 gene in both TamR and 

FasR cells (approximately 3.1-fold and 2.2-fold increase in TamR and FasR cells respectively; 

Fig. 144). Western blotting also showed an increase in GFRa3 protein levels in response to 

Gefitinib in TamR cells (Fig. 145). In contrast, GFRa3 protein levels remained relatively
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unchanged with Gefitinib treatment in either MCF-7 or FasR cells, although higher levels of 

protein were still demonstrated in untreated TamR and, to some degree, FasR cells compared to 

parental MCF-7 cell line. Using PCR analysis, GFRa3 mRNA was also observed to be induced 

in TamR cells treated with (10 7M) Faslodex by approximately 1.8-fold (Fig. 146), although this 

was not explored at the protein level.

5.1.7 GFRa3 Ligand Artemin Overcomes Gefitinib Inhibition in TamR Cells

TamR cells were grown in the presence o f the GFRa3 ligand Artemin at concentrations 

o f lng/ml- 50ng/ml for 7 days with or without EGFR-TKI (lO^M) treatment (Fig. 147). The 

addition o f  the EGFR-TKI alone substantially reduced TamR cell number by 80% versus 

untreated cells (p<0001). Interestingly, although Artemin has little stimulatory effect on die 

already high basal, growth in TamR cells, its administration in the presence o f the anti-EGFR 

agent was shown to significandy reduce the inhibition caused by the Gefitinib in a dose* 

dependent manner. Thus, the highest concentration o f Artemin at 50ng/ml was capable of 

restoring TamR cell number to a value o f 78% of the untreated cells (p=0.0025), thus 

substantially overcoming Gefitinib growth inhibition.

5.1.8 GFRa3 and Family Receptor/ Ligand Expression in the TamR/TKI-R Double 

Resistant Cell Line

Cells resistant to tamoxifen and gefitinib (TamR/TKI-R) were cultured for 7 days at 

around 70% confluency before being extracted for RNA, and PCR performed for GFRa3 

coamplifed with [3-actin. PCR results demonstrate these TamRyTKI-R cells have elevated levels 

o f GFRa3 compared to TamR cells (Fig. 148).
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Figure 140. Anti-proliferative effects of GFRa3 siRNA knockdown at day 4 as measured by Ki67 
mibl) immunostaining. GFRa3 gene knockdown was achieved in cells using lOOnmol smartpool 
reagents according to the Dharmacon protocol. Control or test cells were fixed in formal saline solution 
4 days post transfection, probed using monoclonal anti-human antibody to mibl and detected using 
DAKO Envision detection system with DAB staining. Controls included were missense, DharmaFECT 
(DF) transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 5% serum) 
control versus GFRa3 siRNA. Photographs shows immunostaining at x40 original magnification.
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Figure 141. Microscopic evaluation of the anti-proliferative effects of GFRa3 siRNA knockout at 
day 4 as measured by ki67 (MIB1) immunostaining in TamR cells. Controls included were missense 
scrambled’, DharmaFECT (DF) transfection reagent, Lamin siRNA, DCCM media, and media (phenol 

red-free RPMI/ 5% serum) control. Microscopic evaluation of mibl immunoreactivity was graded as 
percentage positivity from six fields per test slide, (plot shows mean cell percentage staining per field 
with standard errors) (*p<0.001 p=0.0051 for GFRa3 siRNA relative to missense control and DCCM 
control respectively [students t-test]).
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Figure 142. Apoptotic effects of GFRa3 siRNA knockout at day 4 as measured by the Apoalert 
\poptosis Mitochondrial Membrane Sensor kit in TamR cells. GFRa3 gene knockdown was achieved 
in TamR cells using lOOnmol smartpool reagents according to the Dharmacon protocol. Cells were 
processed for detection of apoptosis using the Apoalert Apoptosis Mitochondrial Membrane Sensor kit 
according to the manufacturers instructions. Controls included were missense, DharmaFECT (DF) 
transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 5% serum) control 
versus test GFRa3 siRNA. Live and apoptotic cells are represented by red or green fluorescence 
respectively. Images show cells at x40 magnification.
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Figure 143. Microscopic Evaluation of the Apoptotic effects of GFRa3 siRNA knockdown at day 4 
as measured by Apoalert Apoptosis Mitochondrial Membrane Sensor kit in TamR cells Microscopic 
evaluation of apoptosis was performed at 40x magnification using fluorescence detection, counting red 
(live) or green (dead) cell numbers from six fields per test slide. Controls included were Missense, 
DharmaFECT (DF) transfection reagent, Lamin siRNA, DCCM media, and media (phenol red-free RPMI/ 
5% serum) control versus test GFRa3 siRNA. (Plot shows mean percentage dead cells per field with 
standard errors). (*p=0.05 and *p<0.001 for GFRa3 siRNA relative to missense control and DCCM 
control respectively).
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Figure 144. GFRa3 gene induction in TamR & FasR cells treated with EGFR-TK inhibitor 
Gefitinib (1(HM). TamR and FasR cells were grown in 100mm dishes in the presence or absence of TKI 
(lO^M) for 7 days before harvesting according to the TriReagent protocol as described in methods. One 
microgram of RNA extracted from cells was reverse transcribed and gene expression was determined 
using primers for GFRa3 (with (3-actin co-amplification for normalisation) Representative PCR profiles 
are shown which were subject to densitometric analysis and normalisation to P-actin prior to graphical 
display.
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Figure 145. GFRa3 protein in TamR & FasR cells treated with EGFR-TK inhibitor Gefitinib.
MCF-7, TamR and FasR cells grown in 100mm dishes in the presence or absence of TKI (lO^M) for 7 
days before harvesting for protein as described in methods. GFRa3 protein was determined by subjecting 
50pg protein from cells to 7.5% SDS PAGE and Western blotting. Proteins were probed with 
monoclonal anti-GFRa3 antibody with chemiluminescent detection with resultant blots subsequently 
subject to densitometric analysis. Equivalence of protein loading in Western blots was subsequently 
demonstrated by detection of P-actin on the same blot using monoclonal antibody to the protein. 
Normalised intensity subsequently plotted.
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Figure 146. GFRa3 gene induction in TamR cells treated with 10'7M Faslodex. TamR cells were 
grown in lOOnn dishes in the presence or absence of Faslodex (10'7M) for 7 days before harvesting 
according to the TriReagent protocol. One microgram of RNA extracted from cells was reverse 
transcribed and gene expression was determined using primers for GFRa3 (with P-actin coamplification 
for normalisation). Representative PCR profiles are shown which were subject to densitometric analysis 
and normalisation to P-actin.
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Figure 147. Growth of TamR cells in the presence of GFRa3-specific ligand Artemin alone (green) 
or in combination with (lO^M) TKI (blue). TamR cells were grown in triplicate in 100mm dishes 
with l-50ng/ml artemin in the presence or absence of TKI (lO^M) for 7 days before harvesting using 
trypsin/EDTA and counting using a Coulter Counter.



Tam R  T am R /T K I-R

GFRa3
395bp

B-actin
204bp

Figure 148. GFRa3 gene induction in TamR/TKI resistant cells. TamR/TKI resistant cells were 
grown in 100mm dishes for 7 days before harvesting. One microgram of RNA extracted from cells 
was reverse transcribed and gene expression was determined using primers for GFRa3 (with P-actin 
co-amplification for normalisation). Representative PCR profiles are shown
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DISCUSSION

RNA extraction optimisation and Microarray Hybridisation

The Atlas Plastic Human 12k microarray platform represented a relatively new 

introduction to the array market during the early phase of the project. The novelty o f an 

innovative technology while potentially introducing advantages over older techniques also 

brought with it the necessity o f an optimisation phase, particularly with regards to RNA 

preparation. To date only a limited number of publications using the 5k and 8k Atlas Plastic 

Array platform exist (Franscini et al., 2004, Sarldjarvi et al., 2006, Tasheva et al., 2004, 

Tsuchiya et al., 2005), and the RNA extraction procedures and precise methods o f probe 

preparation used in these are furthermore often unclear. O f the limited reports, a number o f the 

more recent ones have used ‘Clontech Services’, a facility set up by the manufacturer to aid 

probe preparation and array hybridisation (not available during the early stage o f  the project). 

Thus, the limited experience/ publications using Atlas Plastic 12k Arrays presented a challenge 

on initiation of this project.

The Tri Reagent method o f RNA extraction proved to yield high levels o f good quality 

total RNA starting material. Yields were comparable to those obtained previously within our 

own, and by other laboratories (Lenchik et al., 2005), and with relatively pure RNA obtained as 

demonstrated by 260/280nm ratio of 1.8 to 2. Additionally, intact 18S and 28S RNA bands post 

DNase clean-up with no genomic contamination provided the confidence to proceed in array 

probe preparation procedures using the RNA for subsequent hybridisation. Unfortunately, 

however, hybridisations using RNA extraction by this method produced results with 

unacceptably high background. A potential cause o f this poor signal to noise ratio observed was 

considered to be excess non-specific adherence o f unincorporated dNTPs within the 

hybridisation solution to the arrays and die failure o f the post-hybridisation washing procedures 

to effectively remove these. Adas Hybridisation boxes were subsequentiy used in an attempt to 

increase efficiency o f array washing. The use o f Hybridisation boxes was had potential to 

evenly facilitate fluid distribution during probe hybridisation and washing procedures. A slight 

improvement in background reduction was observed using this procedure, although there was 

no increase in signal intensity.

The RNA extraction protocols which were recommended by Clontech/ BD Biosciences 

resulted in sub-optimal yields and inadequate purity of RNA. Similarly, using the Clontech 

Nucleotrap mRNA purification kit, grossly low yields were produced which were variable 

between samples. Thus, despite around 2% o f total RNA being reported to be extractable as 

poly A+RNA/mRNA (Sambrook et al., 1989) much lower, or no yield was obtained. 

Significantly, the Nucleotrap protocol utilises a suspension o f 01igo(dT) latex beads on a
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microfilter-contained spin column to bind polyA+RNA, and the procedure proved problematic 

in our laboratory. Resuspension o f  small volumes o f beads proved a particularly difficult 

procedure as this involved repeated contact o f beads and the Nucleotrap membrane, which was 
probably susceptible to damage, and may account for the retained and unwanted 28S and 18$ 

RNA species within the mRNA post Nucleotrap procedure According to the protocol, while 

200pg o f total RNA was regarded as sufficient for loading onto the column, the method may 

have proven more efficient using larger quantities o f  sample RNA to produce acceptable levels 
of mRNA yields. However, with the requirement for further processing o f the RNA, this was 
impractical due to the associated large quantity o f  cell culture dishes required, and so the 

Nucleotrap method was abandoned.

Other polyadenylated RNA extraction methods were used as a possible alternative to 
those previously described or as an addition to the Tri Reagent method in an attempt to obtain 

satisfactory array signals with no background. Such protocols employ a high salt concentration 

in the binding buffer, permitting stabilisation of base-pair binding, followed by washing out all 
unwanted RNA species (Sambrook et al., 1989). Elution o f the mRNA subsequently occurs 

through washing with a low salt buffer. However, these methods yielded undetectable levels of 
RNA. Due to the large amounts o f washing steps required in such methods, a proportion of the 
product may have been lost. This would be particularly significant as stated above, mRNA 
species constitutes only around 2% o f total RNA (Sambrook et al., 1989)

A further extraction and labelling protocol, the Atlas Pure Total RNA Labelling System  
was subsequently investigated and resulted in good yields and arrays with low background 

However, there was still an absence o f strong gene-specific signals A number o f factors are 
important in determining array signal strength. These include reagent quality, probe labelling 

efficiency, and the initial amount (and quality) o f  starting RNA used for probe labelling (Forster 
et al., 2003). RNA extractions using the denaturing solution as supplied with the Total RNA 
Labelling kit, consistently produced RNA with a high proportion o f either low molecular weight 

RNA species, thought to consist o f  transfer RNA (tRNA), or of degraded RNA in addition to 
the strong 28S and 18S bands. As previously used RNA extraction protocols, namely Tri 
Reagent, had also undergone the same post extraction procedures, i.e. DNase-treatment and 
Qiagen clean-up, the only additional factor within the Atlas Total RN A l abelling Sy stem which 

may have contributed to selection for low molecular weight RNA, or degradation of RNA 
observed was the use o f  denaturing solution. ITie T ri Reagent method, as well as the Atlas Pure 
Total RNA Labelling System, are both based on guanidinium thiocyanate-phenol-chloroform 

extraction. The Atlas Pure Total system uses a denaturing solution (traditionally a guanidinium 

thiocyanate containing buffer also with components that allows the release o f RNA, and with 

ribonuclease inhibitors in which the cell preparations are rigorously mixed However, the Tri 
reagent protocol dispenses with these multiple steps in the protocol, including heavy vortexing,



with the use o f a single and efficient step (Chomczynski and Sacchi, 1987), that may have better 

preserved RNA integrity, compared to the Atlas Pure Total RNA kit. Such high quantities of 

unwanted material in the sample using the Atlas Pure Total System may have caused the 

overestimation of RNA concentration, thus resulting in a lower amount o f appropriate RNA 

employed for probe preparation or array hybridisation, and thus low array signal strength. 

However, a positive feature of this latter method remains the production o f arrays with low 

background to signal ratio.

Ultimately then, the optimised protocol for RNA extraction and array hybridisation 

retained initial Tri Reagent RNA extraction procedure with its high yields and adequate quality, 

and subsequent DNase treatment and Qiagen clean-up. This replaces the RNA extraction step 

using the denaturing solution using the Atlas Total RNA Labelling System. The resultant RNA, 

after poly A+ enrichment from the Atlas Total System, was used for probe preparation and array 

hybridisation, with subsequent adequate array signal intensities and low background. RNA 

derived from the optimised method for extraction was validated for subsequent array work 

through the successful confirmation o f profiling o f the EGFR gene, which was found to be 

elevated in resistant cells, and also the gene for pS2, which was increased upon oestradiol- 

treatment, consistent with previous observations (Gee et al., 1995, Knowlden et al., 1997). 

Additionally, and in retrospect, the validity of using this protocol for RNA extraction was 

demonstrated by the subsequent successful selection o f several genes relevant to antioestrogen 

resistant biology.

Gene Selection

With an ever-increasing size o f microarrays platforms and associated data analysis 

software available it can be a daunting task to investigate even relatively simple biological 

questions. The current study used a 12k microarray and therefore potentially 12,000 data values, 

in quadruplicate were available. Several means o f reducing the volume o f information were thus 

examined. A data reduction of approximately 12,000 genes to around 300 genes was achieved 

by the careful application of a number o f clustering/ statistical analysis methods, namely HCA 

and PAM, as well as t-test analysis. HCA and PAM analysis o f the data showed distinct clusters 

which revealed the breadth of potential genes for further study. Both of these methods allowed 

the easy identification of specific profiles, such as those which were upregulated in both forms 

of antihormone resistance. Genes which displayed this “shared” profile following t-test analysis 

with a significance level p<0.05 were given priority, although genes were also considered if  a 

significant change was observed in one cell line, along with a trend in the other. Although these 

methods have not been previously used in the identification o f determinants o f endocrine 

resistance, some have nevertheless been used to classify breast tumours into pathological 

subsets, and good/bad prognostic groups (eg. (Perou et al., 1999, v an 't Veer et al., 2002)).
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Selection using t-test analysis for genes altered in TamR and FasR cells were used for the 

construction o f  the Excel-based database (CD-ROM included within this thesis).

Although, encouragingly, 60% o f the genes selected were verified by Affymetnx and 

PCR analysis, other genes which have been classically associated with antihonnone resistant 

growth, such as EGFR (Nicholson et al., 1994), were not identified by the methods used. Of 

course for EGFR, the mRNA increase may only be marginal and may not fully reflect the 

dramatically increased content o f the protein and its activation status in the resistant cell lines 

(Knowlden et al., 2003). Importantly however, the Affymetrix system and PCR has permitted 

increased EGFR detection in TamR cells 2-fold (Knowlden et al., 2003). Another explanation 

which may account for loss o f signal detection for genes such as EGFR is that probe preparation 

for Atlas arrays from total RNA relies on the selection o f polyadenylated (poly A*-) RNA 

Reports have shown that a small proportion o f genes may have species o f RNA which are not 

polyadenylated (Caminci, 2006). However, it is apparent that the main contributory factor for 

such a loss o f  gene detection with the Atlas Plastic arrays that may have led to an 

underperformance was a reduced sensitivity o f these arrays, resulting in lowly expressed genes 

being undetected. As described previously, there was a high number o f zero values observed 

with this dataset requiring processing (as advised by a number o f independent sources) in order 

to upload into GeneSifter. Despite losing some genes owing to the low sensitivity o f the arrays, 

data processing has nevertheless successfully yielded data which could be filtered for analysis 

to identify meaningful gene changes. Although there are numerous methods to identify the false 

discovery rate (FDR) for microarray data, such as the Bonferrom post-hoc test (which is 

available in GeneSifter) or Sequence Alignment and Modelling (SA.Vl) (Qian and Huang, 2005, 

Tusher et al., 2001), such stringent data filtering procedures were deemed inappropriate as a 

markedly reduced number o f genes was already achieved with the application of t- 

testing/HCA/PAM. To ensure that potentially relevant gene selection was made with regards to 

the biological significance o f the gene, a thorough ontological examination o f each selected 

gene from the -3 0 0  genelist was performed to produce a final manageable set o f genes for PCR 

verification.

It is also worth noting that using PAM or HCA analysis generated a fuller breadth of 

genes which appeared to be altered in both resistant cell lines For example, our gene selection 

procedure including t-testing for both TamR and FasR cells resulted in 28 genes which were 

significantly altered. However, using PAM analysis, a four-fold increase in the number of 

elevated genes was achieved by placing genes within relevant clusters Although not all gates 

reached significance, there is clearly future potential for studying the additional genes in these 

strong clusters, especially when taken together with comparable HCA results However, for the 

purposes o f  data reduction and focussing in the remainder o f this project, t-test analysis was 

applied to reduce gene number. Such significantly altered genes as selected in this project, w ot



subject to further verification, not only using PCR analysis, but also using Asymetrix genechip 

analysis. As stated above, using this alternative array platform, around 60% of altered gene 

profiles were verified, thus validating our array platform to a considerable extent and adding 

further confidence in the final gene choices made.

Ontological Examination

Cancer progression is hallmarked by the alteration o f genes associated with the 

regulation of cell proliferation, survival, angiogenesis, invasion and immune surveillance 

(Hanahan and Weinberg, 2000) and some studies have used such ontological features as a 

means o f gene selection and categorisation in microarray studies in breast cancer (Frasor et al., 

2004). Moreover, a recent report investigated such gene expression using microarrays to 

decipher invasion mechanism o f migratory cells in-vivo (Wang et al., 2004). Ontological 

examination of the genes altered in antihormone resistant cells in our study highlighted many 

that had an ontology related to the established cancer cell phenotype within these cell models, 

and this aided gene selection. Genes which were thus prioritised included those with a profile 

showing upregulation in both resistant cells lines, including PTTG1 and GFRa3, implicated in 

cell growth and proliferation, and in the case o f PTTG1, also invasion and angiogenesis 

(Airaksinen and Saarma, 2002, Ramos-Morales et al., 2000, Solbach et al., 2004, Hamid and 

Kakar, 2003), and those genes induced in one resistant cell line only, such as PE A3 and 

Vitronectin., implicated in invasion (Bartsch et al., 2003, de Launoit et al., 2000).

Interestingly, although an ontological examination o f genes detected between TamR 

and FasR cells revealed many similarities, nevertheless subtle differences were also observed. A 

larger proportion o f proliferative genes, and fewer apoptotic genes were upregulated in FasR 

cells relative to TamR cells. This observation is further supported by die fewer numbers of 

cancer-associated genes being downregulated in FasR cells relative to TamR cells. Within this 

subset o f genes, there are also fewer proliferative genes downregulated, and additional apoptotic 

genes downregulated. These figures are consistent with observation within our laboratory that 

shows FasR cells have a higher growth rate compared to TamR cells, in keeping with their 

markedly reduced ER content and their aggressive phenotype (Nicholson et al., 2005); and 

unpublished observations). It is also worth noting that our ontological examination o f both 

TamR and FasR cell lines indicates increases in invasive and angiogenic genes, reflective o f the 

invasive capacity and may herald angiogenic capacity (Hiscox et al., 2004).

PCR verification

The technique of RT-PCR was used as a method of validating the gene array expression 

data. This technique, which is in common laboratory use, is deemed to provide a relatively 

accurate means o f quantifying gene expression. For the -30  genes examined by RT-PCR, gene
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primers used were either designed using primer3 software or were those already designed by 

Clontech. The analysis was performed initially on triplicate RNA samples originally used for 

array hybridisation, and then on further triplicate RNA preparations from an entirely different 

set o f experiments adding further confidence to the verification.

The majority o f genes analysed displayed profiles similar to those observ ed in the Atlas 

Plastic arrays. Thus for example, PTTG1 gene was robustly elevated in antihormone resistant 

cell lines by array and PCR. Following PCR validation a number o f interesting induced genes 

were selected for further study, namely PFA3, Vitronectin, and also the PT fG l and GFRa3 

“shared genes”. However, it is unclear why approximately 30% o f gene profiles were not 

confirmed by PCR/Affymetrix in our study. It is believed that genes which are expressed at low 

levels may have poor reproducibility not only across sample sets, but in addition may produce 

spuriously high gene increases that do not reflect the actual changes (Butte, 2002), and it is 

likely that this may subsequently result in some genes not being verified This may be 

exemplified by PCR results obtained for genes such as Legumain. An additional contributory 

factor may however be the primer design (although these were in general designed using 

Primer3 software (Rozen and Skaletsky, 2000) with a high level o f stringency, and sequences 

subsequently being checked against other non-related gene sequences using Blast software). 

Primers may feasibly amplify a number o f variants o f  the gene. Confounding issue o f both wild- 

type and variant expression for some genes makes gene expression profiles difficult to interpret 

Also an assumption is made that selected sequences will be highly homologous to the 

oligonucleotide sequences present on the Atlas Plastic arrays (or even Affymetrix arrays) but 

this may not always be the case. Reassuringly however, oligonucleotide arrays are likely to be 

highly specific due to the superior commercial sequence design for the gene, where the 

manufacturer o f the Atlas Plastic arrays claims the oligonucleotide sequences are thoroughly 

pre-tested for specificity and minimal cross hybridisation (Clontech BD-Biosciences: Atlasjxlf, 

2006).



PEA 3 and Vitronectin

PEA3 is a member o f the ets family o f genes which encode transcription factors shown 

to be involved in tumourigenesis (Davidson et al., 2004). PEA3 mRNA was found to be 

elevated in TamR cells only using GeneSifter analysis on Atlas Plastic 12k arrays, a profile 

which was confirmed with PCR and Affymetrix. In addition, immunocytochemical and Western 

blotting analysis also confirmed PE A3 elevation at the protein level in TamR cells. Importantly, 

ets family members can be activated by MAPK signalling (O'Hagan et al., 1996), which itself is 

raised in the TamR cells (Knowlden et al., 2003). They are also known to interact with the Wnt 

signalling component P-catenin, which has been shown to have a role in mammary 

tumourigenesis (Howe and Brown, 2004). Significantly, P-catenin was demonstrated to be 

increased in our TamR cells with an elevated activation, and increased P-catenin associated 

genes, which may explain the migratory abilities o f the cells (Hiscox et al., 2006a). PEA3, 

along with other invasive proteins such as MMPs were found elevated in breast cancer patients 

(Davidson et al., 2004), and it has also been shown to be able to directly activate MMPs 

(Higashino et al., 1995). Interestingly, PEA3 (and c-jun) were also demonstrated to upregulate 

HER2, a predominant feature o f TamR cells (Knowlden et al., 2003).

In contrast to PEA3, Vitronectin mRNA was induced only in FasR cells, using 

Atlas Plastic and Affymetrix arrays. Significantly, Vitronectin belongs to a group o f proteins 

which are chemotactic factors associated with cell adhesion and immune response and has been 

demonstrated to have a role in migration in breast cancer cells (Campo McKnight et al., 2006). 

Ovarian tumour cells stimulated by Vitronectin also were also demonstrated to have enhanced 

proliferation and motility (Hapke et al., 2003) (REF??). Moreover, these events, were associated 

with activation o f MAPK, and by microarray analysis, altered EGFR expression was shown 

(Hapke et al., 2003). Such a role for Vitronectin in FasR cells would correspond to the 

observed increased invasive nature and their increased EGFR levels (Nicholson et al., 2005).
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P 'lT G l

PTTG1 is a nuclear and cytoplasmic protein (Chien and Pei, 2000) found in a number of 

tissues including thymus colon and small intestine (Chen et al ., 2000). With lev els o f the protein 

reported to be elevated in proliferating cells, it is thought to be regulated in a cell-cycle 

dependant manner (Ramos-Morales et al., 2000). As a securin protein, it functions to prevent 

sister chromatid separation during cell division in normal cells (Nasmyth, 2005) Two other 

PTI'G l gene homologues have also been reported , termed PTIG2 and PTIG3 which are 91% 

and 89% homologous to the PTTG1 amino acid sequence, and subsequently have showed 

differential expression in tumour tissues, suggesting their involvement in tumourigenesis 

alongside PTTG1 (Chen et al., 2000). PTTG1 has been documented to be overexpressed in a 

number o f  cancers including pituitary (McCabe et al., 2002), lung (Rehfeld et al., 2006), gastric 

(Wen et al., 2004), thyroid (Saez et al., 2006), ovary (Puri et al., 2001), and breast (Ogbagabrid 

et al., 2005; Solbach et al., 2004). The oncogenic features attributed to PTTGI are thought to be 

a consequence o f  its overexpression, rather than its mutation (Hamid and Kakar, 2003). In 

addition to deregulating cell cycle and allowing increased proliferation, overexpression of 

PTTG1 also has the potential to impact on angiogenesis, invasion as it also functions as a 

nuclear transcription factor (Yu and Melmed, 2004Xrefs). PTTG1 has also been demonstrated 

to stimulate fibroblast growth factor (FGF-2)- mediated angiogenesis and in pituitary tumours 

upregulated VEGF expression (McCabe et al., 2002). In thyroid cancer, this angiogenic 

capabilities o f  PTTG1 were demonstrated when it was reported to hav e regulated angiogenic 

and apoptotic-associated genes (Kim et al., 2006). Although a link o f PTTGl to breast cancer 

has been made (Ogbagabriel et al., 2005, Solbach et al., 2004, Thompson and Kakar, 2005), to 

date there is no reported literature o f  its association with endocrine resistant disease.

In our own models o f resistance to antioestrogens, PTI'Gl mRNA and protein was 

significantly elevated in TamR, FasR and X-MCF-7 cells. In addition to these observations, 

PTrG2 and P'TTG3 also showed some increased mRNA levels in FasR and X-MCF-7 cells, but 

with no change in TamR cells. The preferential expression o f one homologous protein form 

over the other has also been noted prev iously, with variable expression o f P T IG 1 to 3 m normal 

and cancerous samples (Hamid and Kakar, 2003). Interestingly, our studies show that PTTGl 

mRNA is upregulated in MCF-7 cells in response to oestradiol-treatment This is consistent 

with several in-vitro studies that have demonstrated PTI'Gl gene to be oestrogen regulated 

(Heaney and Melmed, 1999) and in-vivo studies that have linked oestrogen-regulated PTTGl 

with the oestrous cycle (Heaney et al., 2002).

As described previously, TamR and FasR cells have been shown to have elevated levels 

o f growth factor signalling, notably EGFR, as well as enhanced signalling through MAPK (Gee 

et al., 2001, Hutcheson et al., 2003), and this pathway has also been reported to regulate PTTGl
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mRNA and protein expression in astocytes (Tfelt-Hansen et al., 2004) and pituitary cells 

(Vlotides et al., 2006). Interestingly, upregulation o f PTTG1 in pituitary cells was via the 

MAPK pathway, and resulted in the activation o f c-Fos, a transcription factor which we have 

also directly associated with PTTG1 (and GFRa3) mRNA in clinical samples. Additionally, 

other signalling mechanisms implicated in the development o f resistance to antioestrogens in 

breast cancer cells, including our own (Knowlden et al., 2003), such as the insulin, IGF-1, and 

PI3K/AKT pathways, have also been shown to regulate PTTG1 mRNA and protein, 

demonstrated in both non-tumour and malignant cells (Chamaon et al., 2005, Thompson and 

Kakar, 2005). It is noteworthy that PTTGI levels were elevated in our ER-negative FasR-Lt 

cells and that PTTGI was also highest in the ER-negative MDA-MB-231 cells. Such cells, 

which are rapidly growing and highly invasive, also show increased expression o f several 

growth factor receptors, notably including EGFR, as well as readily detectable IGF-1R 

(Nicholson et al., 2005).

Interestingly, although EGFR signalling has been linked to the regulation of PTTGI in 

astrocytes and pituitary cells (Tfelt-Hansen et al., 2004, Vlotides et al., 2006), treatment o f our 

FasR cells with gefitinib, an EGFR inhibitor, actually promoted a further increase in PTTGI 

mRNA and protein. This result, may reflect the capacity o f gefitinib to induce IGF-1R 

signalling in antihormone resistant breast cancer cells, that acts to limit the anti-tumour response 

(Jones et al., 2005, Knowlden et al., 2005), and the capacity o f insulin and IGF-1 to upregulate 

PTTGI in a PI3K and MAPK-dependant manner (Thompson and Kakar, 2005). The induction 

o f PTTGI mRNA in TamR cells with Faslodex treatment may equally be indicative o f a 

compensatory cell growth mechanism to overcome maximal inhibitory effects o f the agent. The 

cross-talk mechanisms as described above involving EGFR and IGF-1R may very well impinge 

on the PTTGI gene induction, which is reported to confer cell proliferative effects (Hamid and 

Kakar, 2003, Pei, 2001).

Interestingly, although these data strongly indicate that the increased levels o f PTTGI 

found in our TamR and FasR cells result from their increased levels o f EGFR and IGF-1R 

signalling, a consistently increased level o f PTTGI was also observed in X-MCF-7 cells, which 

do not depend on such classical growth factor signalling. These cells however, do show 

increased AKT-MAPK activity, elements equally capable o f promoting PTTGI expression 

(Chamaon et al., 2005, Tfelt-Hansen et al., 2004, Thompson and Kakar, 2005)

As stated above, PTTGI protein has been reported to be localised within the nucleus, as 

well as cytoplasm (Chien and Pei, 2000), and this was also observed while performing ICC 

assays in our resistant cell lines. Interestingly, although nuclear localisation o f PTTGI is 

thought to be facilitated by the PTTGI binding-factor (PBF) and that this enhances the activity 

o f PTTGI as a transactivation protein, targeting downstream elements such as c-myc (Pei, 

2001), generally, there was no difference in PBF mRNA expression across MCF-7, TamR, or

124



FasR cells. The constant levels o f PBF mRNA observed within TamR and FasR cells is 

consistent with recent findings which demonstrated PTTGI -driven cell growth promoted via 

MAPK/EGFR in pituitary cells also showed no alteration in PBF levels (Vlotides et al., 2006).

( 'hnical data

Any early assessment o f the potential importance o f a gene in breast cancer must 

involve evaluation o f its clinical prevalence. Therefore we examined PTIG1 expression in a 

series o f breast cancers of known clinico-pathological history. Levels o f PI IG1 mRNA 

expression were associated with poorly differentiated tumours showing increased nuclear 

pleomorphism and lymph node involvement. These observations are o f particular significance 

since such pathological and biological features often relate to poor patient survival (Elston and 

Ellis, 2002).

The results o f our study linking PTTGI with lymph node involvement are in agreement 

with a recent report by (Solbach et al., 2004) who proposed PTTGI as a marker for tumour 

aggressiveness. Similarly, (Ramaswamy et al., 2003) identified PTTGI as part o f a gene 

expression signature that was associated with metastatic spread in breast cancer. The association 

o f PTTGI protein with highly pleomorphic breast tumours has also recently been reported, 

where such tumours showed increased invasiveness as well as proliferative capacity 

(Ogbagabriel et al., 2005). Significantly, the association o f PTTGI mRNA in breast tumours 

showing increased nuclear pleomorphism is consistent with PTTGI acting as a secunn during 

the cell cycle, and PTTGI overexpression has been shown to induce aneuploidy within cells in- 

vitro (Yu et al., 2003, Yu et al., 2000a). Indeed, PTTGI expression disrupts sister chromatid 

separation, a key element leading to aneuploidy (Yu et al., 2003, Christopoulou et al., 2003). 

The potential importance o f these observations is emphasised by the knowledge that uneven 

sister chromatid separation can lead to chromosomal gain or loss (Kops et al., 2005) which in 

turn may be associated with a number o f oncogenic events such as activation o f proto

oncogenes or loss o f heterozygosity o f tumour-suppressor genes, ultimately leading to aberrant 

genetic mutations, conferring aggressive growth behaviour (Zou et al., 1999). Interestingly, the 

p53 tumour suppressor protein has been shown to directly bind to the promoter o f PTTGI to 

reduce its tumour-forming capabilities (Kho et al., 2004). However, where there is an absence of 

functional p53, PTTGI has been shown to promote aneuploidy (Yu et al., 2000a)

Consistent with the report o f Ogbagabriel et al., (2005), PTl'G l mRNA overexpression 

in our clinical series showed an association with increased mitotic activity' and, in our 

preliminary immunohistochemical study (n=3) PTTGI immunostaining was often seen strongly 

in mitotic cells. These data are reinforced in the current investigation by the direct correlation of 

PTTGI levels with increased Ki67 immunostaining, where Ki67 is a reliable marker for cell 

proliferation (van Diest et al., 2004). In this context, it is noteworthy that Ramos-Morales et al.,
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(2000) have shown PTTGI is at increased levels in rapidly proliferating cells, and where its 

expression was regulated in a cell-cycle dependant manner, peaking in the G2/M phase. PTTGI, 

in its function as a transacts vat mg protein, was also reported to function to target the c-myc 

promoter region, increasing c-myc expression to potentially activate cell cycle progression (Pei,

2 0 0 1 ).

Consistent with our microarray/ PCR observations o f PTTGI being induced by 

oestradiol treatment in MCF-7 cells, an association o f PTTGI mRNA expression and ERa 

staining was observed, in our clinical series, albeit only in the ER-positive patient cohort. 

Within this cohort PTTGI not only associated with ER-positivity but also with the oestrogen- 

regulated, PgR protein. These data are somewhat surprising since ER loss is frequently 

associated with poorly differentiated tumours displaying high grades o f nuclear pleomorphism 

and elevated proliferative capacity (Nicholson et al., 2005). However, it is also worth noting 

that despite this association, PTTGI expression could also be found at high levels in ER- 

negative patient samples, and more, recent immunocytochemical findings within our laboratory 

showed PTTGI protein within a clinical series from patients with de novo resistant disease with 

particularly elevated levels, in this instance, more closely associating with ER-negativity 

(JM.Gee and MY.Cheong, personal communication). It is also noteworthy that highest PTTGI 

protein expression was consistently found elevated in ER-negative MDA-MB-231 and FasR- 

Lt.

As stated above, elevated mRNA expression o f PTTGI was also associated, in clinical 

samples with staining for the transcription factor Fos. The Fos nuclear phosphoprotein can be 

found as a heterodimer with Jun, resulting in the formation o f the AP-1 transcription factor, 

which is also the target for cross-talk with the ER, as well as growth factor signalling (Klinge, 

2000). Previous studies from the TCCR have linked increased Fos expression with the loss o f 

endocrine response in clinical breast cancer specimens (Gee et al., 1995, Gee et al., 1999), and it 

is tempting to speculate a causative role for PTTGI in these events. With Fos and PTTGI lying 

downstream o f a common regulatory pathway. Indeed further exploration o f the structure o f the 

PTTGI gene reveals that it does house API/ AP2 (Kakar and Jennes, 1999), SP1 and NF-Y 

binding sequences (Clem et al., 2003) suggesting transcriptional regulation by growth factor 

signalling, perhaps involving the Fos/ AP-1 complex.

siRNA gene knockdown studies

siRNA studies have recently come to the forefront o f research since they allow effective 

and rapid gene knockdown, enabling detailed study o f gene function and its impact on cellular 

events. In the current study, Dharmacon’s siRNA reagents and protocols were used. A wide 

range o f genes are available for study and the manufacturer provides a number o f options when 

considering use o f siRNA. Rather than selecting one sequence that targets a specific area o f the

126



gene o f interest, we opted for the Dharmacon Smartpool which is a combination o f 4 sequences 

which guarantee at least a 70% gene knockdown. Focussing on FasR-Lt, that expressed highest 

levels o f  PTTGI, our study initially revealed, that effective transfection rates (-74%  in FasR-Lt 

cells) were achievable, as determined by siGlo transfection, and that successful gene 

knockdown was to be attained in such cells, as demonstrated by the successful reduction in 

mRNA levels o f  Lamin A/C.

Using the Dharmacon’s system to investigate the cellular importance o f PITG1 

revealed that PTTGI siRNA was able to reduce PTTGI mRNA levels by 62% and protein by 

95% at 4 days post-transfection, and that this was associated with a 72% reduction in cell 

numbers in FasR-Lt cells compared to the missense control. Encouragingly, the reduction in cell 

numbers was paralleled by a fall (23%) in Ki67 immunostaining, a marker o f cell proliferation, 

and there was an induction o f apoptosis (29%). In our study, DCCM media was used to 

minimise any interference o f serum with the transfection procedure. Although some unwanted 

gene-inhibition effects o f using this media were observed compared to RPM1 media, these 

effects were inconstant and did not prevent effective knockdown effects with PTTGI being 

detected. Our PTTGI siRNA data are consistent with the proposed role o f PTTGI in cell cycle 

regulation (Ogbagabriel et al., 2005), and PTTGI knockdown has also been shown to promote 

p53-dependant apoptosis in hepatoma and colorectal cell lines (Cho-Rok et al., 2006). 

Interestingly, although PTTGI gene knockdown in-vivo similarly inhibits growth o f hepatoma 

cell-derived xenografts (Cho-Rok et al., 2006), a much more complex interplay o f  PTTGI and 

apoptosis/p53 has also been recognised, where PTTGI not only regulates p53-dependant 

apoptosis (Flamid and Kakar, 2004), but where p53 in turn regulates PTTGI (Kho et al., 2004). 

Additionally, in the absence/ failure o f a functional p53, PTTGI has also been suggested to 

support the survival o f  aneuploid cells and promote tumourigenesis (Yu et al., 2000b).



GFRa3

The GDNF family o f four receptors (GFRas) and their ligands are believed to promote the 

survival and maintenance o f different neuronal cells. However, as well as in the nervous system, 

the ligands have several other roles including morphogenesis in kidney development and 

regulation o f spermatogonia! differentiation (Takahashi, 2001). GFRa receptors signal through 

a complex with a co-receptor, the tyrosine-kinase RET receptor (Sariola and Saarma, 2003, 

Baloh et al., 1998). It is thought that upon ligand binding, the dimeric or monomeric GFRa 

interacts with two RET molecules, inducing its autophosphorylation (Airaksinen and Saarma,

2002). GFRa3 generally complexes with its preferred ligand Artemin resulting in RET 

activation (Airaksinen and Saarma, 2002) and promotion o f downstream kinase signalling. 

However, although the four GFRa ligands have been assigned preferential receptors, an added 

complexity is introduced as a number o f these ligands can weakly cross activate other receptors 

within the family (Airaksinen and Saarma, 2002). Thus, GFRa3 can be triggered not only by 

Artemin, but also under certain conditions by GDNF. In turn, while GFRal is primarily 

activated by GDNF, it can also be activated by Artemin and Neurturin; GFRa2 is triggered by 

Neurturin but also GDNF; whereas GFRa4 is only activated by Persephin (Airaksinen and 

Saarma, 2002). Furthermore, GFRa signalling may also occur independently o f RET (for 

example, involving recruitment and signalling through c-src (Kodama et al., 2005).

Interestingly, our study revealed increased GFRa3 mRNA in TamR and FasR cells, also 

with a slight induction in FasR-Lt cells. Western blotting and immunocytochemical analysis 

also again revealed an overall elevated level o f GFRa3 staining particularly in TamR, followed 

by FasR-Lt cells where staining was still increased versus MCF-7 cells. Immunocytochemical 

studies again showed TamR cells with highest GFRa3 staining, but additionally revealed, there 

was slightly higher cytoplasmic than membrane staining, whereas in FasR-Lt cells higher 

membrane staining than cytoplasmic was observed. The principal GFRa3 ligand Artemin was 

detectable at the mRNA level in these resistant cells. Profiling further GFRa receptors and also 

their ligands by PCR revealed differential mRNA expression. For example, alongside GFRa3, 

some induction o f the RET receptor was observed in TamR cells, as were the GFRa2/GFRa4 

ligands Neurturin and Persephin respectively. In FasR cells (again alongside increased GFRa3 

and detectable RET), it was both the GFRa2/GFRa4 receptors and their ligands Neurturin and 

Persephin that were increased. However, while X-MCF-7 cells showed highly elevated levels o f 

mRNA for GFRa2, Neurturin and RET, there was only slight induction o f GFRa4 and no 

increase in GFRa3 expression versus MCF-7 cells. A level o f differential regulatory signalling
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across the various resistant models is thus suggested, whereby different GFRa receptors and/or 

ligands may be recruited depending on the type o f endocrine resistance. It is also worth noting 

that the GFRal mRNA was elevated in the hormone responsive MCF-7 parental cells only, and 

has more recently been noted to be oestrogen regulated in hormone responsive ZR-75-1 cells 

and associated with also ER-positivity in clinical array studies (Dorssers et al., 2005). 

Interestingly, GFRal is significantly downregulated in both TamR and FasR cells (whereas the 

other GFRa receptor family members show increases), suggesting a dichotomy o f function for 

these receptor members between the hormone responsive and resistant phases.

As described above, the RET receptor mRNA was expressed in the MCF-7, TamR and 

FasR models but highly elevated in the X-MCF-7 cell line, as well as in MCF-7 cells treated 

with oestradiol. Western blotting using the monoclonal antibody against RET confirmed the 

protein was detectable in MCF-7, TamR and FasR cells. However, among these three models, 

the greatest level o f expression was recorded in TamR cells. Alongside the prominent elevation 

o f GFRa3 noted, this observation is highly suggestive that GFRa3/RET signalling has 

increased importance to TamR cells. The RET protein isoforms at 150kDa and 170kDa were 

most often detected in our cells, and interestingly a published study showed the 150kDa form 

had the highest signalling activity while the 170kDa protein represented a mature glycosylated 

form (Miyazaki et al., 1993). However, we have also detected other RET bands in Western 

blotting, where a 120kDa RET protein has been suggested to be the single polypeptide pre

glycosylated version o f the protein in neuroblastoma cells, while a 190kDa band additionally 

marks a mature glycosylated form (Miyazaki et al., 1993).

Importantly, the RET receptor has been implicated in a number o f  pathological 

conditions. In papillary thyroid cancer (Asai et al., 2006), this cell surface receptor tyrosine 

kinase transduces signals for cell growth and differentiation via its oncogenic activation in-vivo 

and in-vitro by cytogenetic rearrangement (Grieco et al., 1990) Furthermore, mutations in the 

RET gene have been associated with several disorders including multiple endocrine neoplasia 

(MEN 2A and MEN2B), Hirschsprung disease (HSCR), and familial medullary thyroid 

carcinoma (FMTC) (Asai et al., 2006). Although we have established that RET protein is 

present in our endocrine responsive and resistant cells, an equivalent study remains to be 

performed in clinical material. Such a study should reveal whether the predominant form of 

RET in breast cancer cells is always the wild-type protein, or if a mutant form can be present 

PCR studies using various primers for the RET gene applied to the same clinical series as used 

with GFRa3 are ongoing in our group.

While there is limited association reported between GFRa3 (or other family members) 

and the candidate growth factor receptors (e.g. EGFR, IGF1R) which have been associated with 

development o f resistance to endocrine therapies in breast cancer, the subsequently activated 

RET receptor may feasibly contribute to the stimulation o f a number o f signalling events

^  ............



(Arighi et al., 2005, Kodama et al., 2005) which have been demonstrated to be significant 

mechanisms in driving resistance in our resistant cell lines. These include the activation o f  

AKT, MAPK and c-src signalling (Hiscox et al., 2006b, Jordan et al., 2004, Knowlden et al., 

2003, McClelland et al., 2001). Additionally, the RET receptor is also capable o f interacting 

with IRS1 and 2 which are key mediators in IGF-1R signalling again demonstrated to be an 

important mechanism in TamR cells, in particular as an alternative cell survival pathway during 

their response to gefitinib treatment (Jones et al., 2005, Knowlden et al., 2005). Significantly, in 

this study we have found further increases in GFRa3 mRNA and protein in both TamR and 

FasR cells in response to gefitinib. These data are complimented by our findings that G FRa3 is 

also elevated in cells that have acquired full resistance to tamoxifen and gefitinib (TamR/TKI- 

R) which have been shown to exhibit increased IGF-1R and AKT activation (Jones et al., 2004).

These observations indicate further increases in GFRa3/RET signalling could com prise 

a key mechanism recruited by TamR cells to limit their maximal response to gefitinib, perhaps 

interplaying with the gefitinib-induced IGF-1R signalling that is implicated in this event. In this 

regard, the GFRa3 ligand Artemin can indeed override the growth inhibitory effects o f  gefitinib, 

suggesting an active role for GFRa3 in resistance to this 

anti-EGFR agent. Interestingly, although this most likely occurs through Artemin/GFRa3/RET 

interactions, other GFRa3 ligands, such as GDNF have been reported to be able to signal 

independently o f RET (Arighi, 2005). For example, in RET deficient cell lines, GDNF can 

trigger src-family kinases, PLC-y, CREB, and induce Fos (Arighi et al., 2005). This latter 

relationship is perhaps significant as we have also noted increased GFRa3 mRNA associating 

with increased Fos staining in clinical breast cancer material, where increased Fos has in turn 

been demonstrated to be a feature o f highly proliferative cells and clinical tamoxifen resistance 

(Gee et al., 1999). The further induction o f GFRa3 mRNA in TamR cells with Faslodex 

treatment may similarly be indicative o f a compensatory mechanism recruited to overcom e 

maximal inhibition by this agent that depletes ER signalling.

The association in this study implied between GFRa/RET receptor signalling and breast 

cancer represents a largely unexplored research avenue in this disease (and is unique in the 

context o f therapeutic resistance). A relatively-recent report identified RET expression in a 

number o f breast cancer cell lines including MCF-7, BT474, and MDA-MB-453/468 cells 

(Meric et al., 2002). Significantly, the oncogenic potential o f RET in the mouse mammary gland 

in-vivo has also been demonstrated, where interestingly RET overexpression was associated 

with a parallel increased level o f the insulin receptor (IR). IR is a further member o f the type II 

family o f growth factor receptors which include the IGF-1R, and which is found increased in 

breast tumours (Frittitta et al., 1997, Papa et al., 1990), and alongside the observations that both 

IGF-1R signalling and GFRa3 equate with resistance to antioestrogens or gefitinib in our
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models (Jones et al., 2005, Knowlden et al., 2005) provides further evidence o f RET/type II 

receptor interplay.

A frequently observed chimeric gene RET/PTC (papillary thyroid cancer) is formed 

from the fusion o f the tyrosine kinase domain o f the RET and the gene H4, though other fusion 

proteins may be formed with other genes (Arighi et al., 2005). Although overexpression of 

RET/PTC is associated with human papillary thyroid carcinomas (Asai et al., 2006), a study 

which produced transgenic mice harbouring the RET/PTC gene also revealed that tumours were 

additionally formed in the mammary gland. The oestradiol induction o f RET observed in our 

study correlates with reports that suggest that other RET-fusion proteins have been shown to be 

elevated by oestradiol treatment (in prostate cells) (Tekur et al., 2001), suggesting some link 

between RET and oestrogen signalling. This may perhaps also explain that the most substantial 

induction o f RET was in X-MCF-7 cells, which retain a functional ER and exhibit markedly 

elevated oestrogen regulated gene expression (Nicholson et al., 2004, Staka et al., 2005). These 

various findings certainly suggest further investigation o f RET and RET fusion products in the 

context o f  both endocrine resistance and during endocrine response is warranted.

Clinical data

GFRa3 was heterogeneously detected in clinical disease, and interestingly correlated 

with EGFR positivity and also an ER- tumour status, as well as being increased in poorly 

differentiated tumours. These are prominent features o f de novo endocrine resistance or poor 

prognosis in the clinic (REFS), supportive o f the links we have made between this gene and 

endocrine resistance when this is acquired by the MCF-7 model system in-vitro. The link with 

ER negativity is particularly interesting, given the inherent gefitinib resistance commonly 

exhibited by many ER-/EGFR+ cancers in the clinic (Agrawal et al., 2005). The clinical finding 

o f  elevated GFRa3 in ER- tumours may thus reinforce the concept that increased GFRa3 

signalling may limit the anti-tumour effect o f this anti-EGFR agent as based on our 

experimental findings. Preliminary GFRa3 immunostaining was also achieved within a small 

series of clinical samples (n=3), further reinforcing that GFRa3 is relevant to clinical breast 

cancer.

Interestingly a close association was found between the levels o f GFRa3 and PTTG 

mRNA expression in the clinical material. A common feature relating to overexpression o f  both 

GFRa3 and PTTGI in these samples was increased Fos expression, which as described earlier, 

drives transcription o f genes via the AP-I transcription site which can be regulated by growth 

factor signalling as well as by cross-talk with ER (DeNardo et a l , 2005) Fos has also been 

associated resistance to antioestrogens in clinical breast cancer material (Gee et a l . 1995, Gee 

et al., 1999), and so their correlation with this element may suggest an equivalent clinical



relationship for PTTGI and GFRa3 and furthermore a mechanistic/transcriptional link between 

these genes/proteins; further studies are needed to clarify the nature o f this association.

siRNA gene knockdown studies

Our studies exploring the role for GFRa3 further in endocrine resistant cells focussed 

around TamR cells since these exhibited the most prominent GFRa3 increases in our models. 

Interestingly, the TamR cells were in general less amenable to siRNA treatment, possibly 

reflecting the higher toxicity o f the DharmaFect reagents in such cells. However, despite this, 

GFRa3 knockdown o f at least 78% and 35% was achieved with GFRot3 siRNA relative to all 

controls at both the mRNA and protein level respectively, and this action promoted reduced cell 

growth and proliferative capacity (decreased Ki67 immunostaining), together with an increased 

level o f  apoptosis. These data are consistent with GFRa3 playing an active role in promoting 

cellular growth (Airaksinen and Saarma, 2002) o f TamR cells, clearly acting as a cell growth 

and survival factor. Since EGFR or IGF1R blockade is also growth inhibitory in such cells 

(Knowlden et al., 2005, Knowlden et al., 2003), these observations suggest that GFRa3 

interplays with these candidate pathways to drive TamR growth, providing a previously- 

unrecognised dimension o f endocrine resistance.
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Potential therapeutic implications with PITCH and (}PRa3 RET

Our experimental studies demonstrate the importance for further exploration of both 

PTTGI and GFRa3 (and/or its family receptors/ligands) as a growth contributor in endocrine 

resistant breast cancer. Importantly, the genes are also clinically represented, where they 

cumulatively relate to diverse phenotypic features that have again been associated with 

endocrine resistance and poor prognosis. These Findings are further reinforced by the published 

ontology for these genes, by the potential links with growth factor receptor /kinase signalling 

(many aspects o f which are also elevated in endocrine resistant cells), and for the previous 

PTTGI observations made in clinical breast cancer (notably increased expression associated 

with breast cancer invasiveness (Solbach et al., 2004)). As such, these genes may both prove 

useful markers for adverse clinical behaviour, although this remains to be fully addressed at a 

protein level in clinical samples with parallel endocrine response/survival data. This will be 

possible since this project has shown that immunohistochemistry is viable for detecting the 

PTTGI or GFRa3 proteins in paraffin-embedded clinical breast cancer samples

We have shown that PTTGI is likely to be a key player in endocrine resistance, limiting 

anti-EGFR response, and promoting adverse clinical features. Its targeting may thus improve 

outlook, if  achievable, in multiple settings. With regards to future value as a therapeutic target 

our siRNA results, as well as other reports (Kakar and Malik, 2006, Solbach et al., 2005) have 

confirmed the considerable potential o f targeting PTTGI to reduce cell proliferation or induce 

apoptosis. Our experimental results are unique in this regard in the context o f treating endocrine 

resistance. Owing to the ubiquitous nature o f the protein, targeting specificity may be a hurdle. 

However, as for other cel 1-cycle regulatory elements (Swanton, 2004), small molecule 

inhibitors could perhaps be designed to facilitate the degradation o f PTI'Gl within the cancer 

cell. Alternatively, increased knowledge o f the signalling mechanism involving PTT'Gl may 

reveal ways to target the key regulators or effectors o f P T rG l. PITG1 inhibition may be 

relevant to improve response and subvert resistance either alone or alongside currently used 

therapies which fail to show complete inhibition o f breast cancer in the clinic, notably endocrine 

agents in ER + cells. In addition, gefitinib has given mixed responses (Agrawal et al., 2005), and 

since use o f  this in-vitro appears to induce PTTGI, may have an improved anti-tumour effect if 

used in conjunction with PTTGI inhibitors.

We have also shown that GFRa3 is a new contributor in tamoxifen resistance, is 

clinically-represented, and its role may extend to limiting anti-EGFR response, while other 

G FR as seem relevant to further endocrine responsive/resistant states in-vitro. As such, 

inhibitors for these family o f ligands and the GFRa receptors, notably GFRa3 in endocrine 

resistance and ER negative disease, or the coreceptor RET, may provide interesting new



therapeutic avenues for breast cancer. Membrane bound receptors are deemed an amenable 

target in terms o f accessibility and because their subsequent signalling activation may be 

targetable. However, GFRa ligands have neuronal generative properties, where the GFRal 

ligand, GDNF has already been established in the context o f Parkinsons disease (Hurelbrink and 

Barker, 2004) where the ligand was administered. This suggests an essential requirement for 

development o f any GFRa inhibitory strategy would be breast cancer selectivity (assuming such 

agents were able to cross the blood-brain barrier), if  we are to avoid a profound adverse impact 

on neuronal cells. There are currently a number o f RET inhibitors entering the cancer armoury 

including Zactima (ZD6474; Astra Zeneca) and AMG706 (Amgen). Since these also target 

other factors such as the EGFR or VEGF family o f receptors that contribute to breast cancer 

growth and progression, they may be o f particular benefit if a responsive cohort o f patients can 

be identified (potentially GFRa3/RET+, endocrine resistant disease).

In addition, the differential expression o f PTTGI iso forms, and especially the range o f 

GFRa receptor/ligands may have further potential clinical prognostic/therapeutic potential. 

GFRal was recently found to be increased in the hormone sensitive ZR-75-1 cell line (Dorssers 

et al., 2005), but was downregulated in our resistant models, with GFRa3 being upregulated in 

our resistant cells. Such variance o f expression across key phenotypes suggests potential 

usefulness o f these markers as differential indicators o f responsive/ resistant states, as well as 

potentially diverse targets.
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Future studies

For GFRa3, it will be worthwhile in the future to fully explore its signalling 

mechanism, including any interplay with RET and cross-talk with the candidate EGFR and 

IGF1R pathways considering the potential relevance revealed from this project for 

GFRa3/RET/Artemin in the context o f driving endocrine resistant disease. As interaction has 

also been implicated between PTTGI and GFRa3 expression, it may be advantageous to fully 

dissect the regulation o f  this interaction. Such studies could reveal whether P 'lTG l or GFRa3 

is upregulated by, or enters into further interaction with, classical growth factor signalling 

associated with endocrine resistance or indeed with other novel elements. Although this study 

has been able to draw some associations for additional GFRa family members/1 igands (as well 

as PTTG2 and 3), clearly the precise contribution for these now needs uncovering, especially 

bearing in mind that we have shown that many o f these are at differential levels o f expression 

across the various cell models o f resistance to tamoxifen, Faslodex and oestrogen-depnvation, 

as well as in the endocrine responsive parental cells in the case o f G FR al. These investigations 

would, in the first instance be performed at the mRNA and protein level, with further studies to 

knockdown the gene for each GFRa receptor or PTTG member to show relevance. Study of 

GFRa3 and the G FR a family, as well as PTTGs, in further breast cancer models of 

response/resistance (e.g. T47D derivatives) would also be valuable, as would extension o f the 

studies to de novo tamoxifen resistant cell lines (e.g. BT474). Also, contribution to other 

endpoints such as migration, which were not included in this Thesis, could be evaluated as a 

consequence o f  gene knockdown. This may be o f particular relevance for GFRa3 since it has 

previously been linked with invasive capacity in pancreatic tumour cells (Ceyhan et a l , 2006) 

and our antioestrogen resistant cells do exhibit aggressive behaviour. Furthermore, the role of 

PTTGI and GFRa3/RET/Artemin warrants further study in the context o f the signalling 

underlying anti-EGFR failure (notably interplay with 1GF1R), since these new elements may 

contribute to resistance to such additional therapies.

At a clinical level, increased access to archival primary breast cancer material with 

parallel response/resistance and prognostic data with various endocrine strategies (for example, 

the NCRl Adjuvant Breast Cancer (ABC) Trial in early breast cancer for tamoxifen response), 

as well as access to breast cancer samples (i) obtained from sequential biopsies before, during 

and on relapse with particular endocrine therapies or (ii) during anti-EGFR response/failure, 

will be essential to confirm that the PT'TGl and GFRa3 proteins are o f clinical relevance to 

multiple de no vo/acquired resistant states.

Finally, this project has revealed many potentially valuable avenues for future research 

in endocrine resistance through the generation o f an extensive gene database. It may be worth



re-evaluating the dataset (and indeed PTTGI and the GFRa family members) through open- 

access public cancer databases such as Oncomine (www.oncomine.org) to reveal potential 

correlations in large clinical datasets with key associated phenotypic/ prognostic data. Indeed, it 

may be possible to implement this procedure as a future prerequisite for gene verification by 

PCR, to ensure clinical relevance o f any selected gene and to evaluate early its potential as a 

viable target for therapy.
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APPENDICES

Appendix I: Preparation of Tissue Culture Reagents

Preparation o f charcoal-stripped FCS (csFCSV phenol red-free media: csFCS was prepared by 

adjusting the pH of 100ml of FCS to 4.2, after which the solution was equilibrated for 30 

minutes at 4°C. A solution o f charcoal/ dextran was prepared by the addition o f 11% activated 

charcoal (norit) and 0.06% dextran C to 18ml o f distilled water, which was subsequently 

mixed vigorously for 1 hour. A volume o f 5ml o f the charcoal solution was added to 100ml o f 

FCS and incubated at 4°C for 16 hours with gentle agitation. After removal o f the charcoal by 

centrifugation at 12,000g for 40 minutes, the solution was filtered several times through a 

Whatman No.4 (grade 3) filter paper. The pH o f the filtered solution was adjusted to 7.2, and 

sterilised filtering through a 0.2pM filter. Media was then prepared using a 5% csFCS in 

phenol red-free RPMI for tissue culture work.

Tissue culture stock solutions: Stock solutions were prepared at the following concentrations 

in ethanol: oestradiol (10‘5M), tamoxifen (10'3M), Faslodex (10’3M), and gefitinib (10'2M), 

which were all stored at -20°C. For experimental work, stock solution was further diluted to a 

final concentration o f oestradiol (lO^M), tamoxifen (10'7M), Faslodex (107M), and gefitinib 

(1 O^M) in above csFCS/ phenol red-free media.

X-medium preparation: X-medium for maintenance o f X-MCF-7 cells was prepared by 

subjecting FCS to charcoal-stripping as described above. The csFCS was subsequently heat- 

inactivated by heating at 65°C for 30 minutes. A volume o f 5% was then added to phenol red- 

free RPMI, also supplemented with 4mM L-glutamine.

Constituents o f Coulter Counter isoton solution for cell counting: Isoton II azide-free 

balanced electrolyte solution Coulter counter solution was purchased from Beckman Coulter 

Ltd (UK) and consisted o f 7.9g/l NaCl, 1.9g/l disodium hydrogen orthophosphate, 0.4g/l 

EDTA disodium salt, 0.2g/l dihydrogen orthophosphate, and 0.3g/l sodium fluoride.
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Appendix II: PCR Solutions

IQx TNE Buffer:

(lOOmM Tris; 2.0M NaCl; lOmM EDTA; pH 7.4).

12. Ig Trizma F*ase, 3.7g EDTA, 1 16.8g NaCl was added To 800ml distilled water and pH set 

to 7.4 with concentrated HC1. The volume was made up to 1 litre with distilled water, and 

autoclaved.

5Ox TAE buffer:

For a 50x TAE solution the following were prepared in distilled water: 242g Tns base, 57.1 

ml glacial acetic acid, 18.72g EDTA (or 100ml o f stock 0.5M). The pH was adjusted to 8.3 

and solution was made up to 1 litre.

Agarose Gel Loading Buffer

A 6x sucrose-based agarose gel loading buffer was prepared with: bromophenol blue (0 25%) 

and sucrose (w/v) 40%

Appendix III: Microarray Solutions/ Methods

20x SSC

(3M NaCl, 0.3M sodium citrate; pH7)

175.3g o f NaCl and 88.2g o f sodium citrate were dissolved in 800ml o f distilled water The 

pH was adjusted to 7.0 using 1M HC1, and the volume subsequently made up to a litre with 

distilled water. The solution was sterilised by autoclaving

Clontech/ BD Biosciences Stripping protocol for Atlas Plastic Arrays

The Plastic Microarray stripping protocol was as described in the Atlas Plastic Microanay 

handbook. Briefly, the hybridised microarray (face-up) was incubated with 45ml of 

prewarmed stripping solution (0 1M Na:CO< aq) at 80°C for 5 minutes in a rocking oven The 

array was removed, immediately rinsed in a bath o f room temperature deionised water, and 

air dried. The efficiency o f stripping was determined by exposing the array to an 

autoradiograph film at least 7 days prior to reapeating as appropriate (up to 3 times)



Appendix IV: Protein Detection

Gel composition for SDS-PAGE

Reagent Resolving Gel ( 10ml) Stacking Gel (5ml)
7.5% (ml) 15% (ml) 5% (ml)

distilled water 4.8 2.3 6.1

0.5M Tris-HCl; 
pH8.8

— — 2.5

1.5M Tris-HCl 2.5 2.5 —

Acrylamide/ 
bisacrylamide (30%)

2.5 5 1.25

10% APS 0.1 0.1 0.1

10% SDS 0.1 0.1 0.05

TEMED 0.006 0.006 0.01

Additional Retrieval Methods Used in the optimisation o f PTTG 1 and GRFa3 Antibodies 

0.01M citric acid: p H6. heat (microwave: 30min) retrieval

Sections housed within a plastic slide-holder within a Saran wrap-covered plastic beaker 

containing 1L o f 0.01M (2.lg /lL ) citric acid buffer (Sigma, Doeset, UK) (pH6) were heated 

in a Proline; 950 watt microwave at 560W (power level 6) for 30 minutes. The slides were 

subsequently cooled in running tap water for 10 minutes and then immersed in PBS for 5 

minutes. Sections were then outlined on the slide using a waterproof PAP pen. Subsequent 

steps were as 2.17.2.

0.01 M EDTA; dH8. heat (pressure cooker; 2mini retrieval

Sections housed within a metal slide-holder in 2L o f 0.01 M (7.44g/2L) EDTA (Sigma, 

Dorset, UK) (pH8) were pressure cooked for 2 minutes at full pressure. After heat treatment, 

sections were cooled in running tap water within the open pressure cooker for 10 minutes and 

then immersed in PBS for 5 minutes. Sections were then outlined on the slide using a 

waterproof PAP pen. Subsequent steps were as 2.17.2.
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0.01 M EDTA; pH8. heat (microwave) retrieval

Sections housed within a plastic slide-holder within a covered plastic beaker containing 1L of 

0.01 M (3.72g/lL) EDTA (pH8) were heated in a Proline; 950 watt microwave at full power 

for 1 minute, then at 560W (power level 6) for 9minutes The beaker containing the sections 

remained within the heated buffer for a further 20 minutes, after which the slides were 

immediately transferred into distilled water for 5 minutes, then immersed in PBS for 5 

minutes. Sections were then outlined on the slide using a waterproof PAP pen Subsequent 

steps were as 2.17.2.

Cell Pellet Paraffin Block Protocol

The following protocol were performed by M.James in TCCR with the pellets then made 

available for the project.

Materials and Equipmant

Formaldehyde (37%) was supplied by Fisher Scientific (Loughborough, UK). Noble Agar and 

Tissue embedding medium (Paraplast/ Paraffin wax) was from Sigma (Dorset, UK) All other 

materials were as listed in 2.1 and 2.17. The Rotary Shandon Finesse Microtome was supplied 

by Thermo Electron Corporation (Berkshire, UK). The cell pellet arrays were prepared using 

a Beecher Systems manual microarrayer (MTA-1) ( All other equipment were as listed in 

2.16.

Methods

Cell lines were grown in 150mm dishes up to 70% confluency/ log-phase o f growth in their 

appropriate experimental media as described in 2 1 After removing the m edia cells were 

collected using a cell scraper and resuspended in fresh phenol red-free medium supplemented 

with 5%csFCS. The cell suspension was then centrifuged at 950rpm for 5 minutes at room 

temperature and immediately fixed by immersion o f the cell aggregate in a 4% formaldehyde/ 

PBS solution for 70 minutes. Cells suspended within the formaldehyde solution were then 

allowed to settle for a further 50minutes within a 1 5ml tube After removing the supernatant, 

a mixture o f cell/ agar (equal volume 12% noble agar solution) was produced within a 

syringe, and the mixture left overnight to solidify A cell plug was then extruded from the 

syringe and sectioned using a scalpal into 5mm pellets which were subsequently re-fixed in 

4% formaldehyde solution for a further 2 hours. After dehydrating/' clearing , the pellets (3-6 

pellets per cell line block) were then embedded in Paraplast for the formation o f a paraffin 

block. Each block was then sectioned at 5pm onto slides for initial assessment o f cell integrity

and validity using haematoxylin and eosm (H&E) staining, as well as other biomarkers
_ _    .................



specific to each resistant cell line, notably, including ER and pS2, prior to cutting test slides 

onto Superfrost coated slides. For the production o f cell pellet arrays bearing multiple cell 

lines, Validated donor pellet blocks from the various cell lines are core-punched (0.6mm) and 

arrayed into a recipient block using a manual microarrayer.

TESPA coating o f coverslips

Slides were treated with aminopropyl-triethoxysilane (TESPA, Sigma, Dorset, UK) as 

follows. Slides were racked in a holder and soaked in Decon (10% aq. dilution) overnight. 

After 2 hours o f  rinsing under tap water slides were dried in the oven, and then left to cool at 

room temperature. Slaides were immersed in a bath o f 2% TESPA in acetone for 5 seconds, 

followed by placing in a bath o f acetone for 2x 1 minute and then finally in a bath o f distilled 

water for 2x I minute. Slides were then air dried.
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