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Abstract of the thesis entitled

“Simulating the early detection and intervention of vascular disease in
the Caerphilly cohort” '
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Venkat Krishna Chaitanya Timmaraju

For the degree of doctor of philosophy
At the Cardiff University

in September 2007
Introduction: The purpose of the project is to simulate the effect of hypothetical
intervention on risk of vascular disease in the Caerphilly cohort. The cohort comprises a
total population sample of 2959 men aged 45-59 years at the recruitment who has been
followed up for 20 years. During that time there has been particular emphasis on
assessing exposure to vascular risk factors and assessing vascular related outcomes.

Aim: The aim of the thesis is to estimate the effects at population level of public health
interventions to change the levels of modifiable risk factors for the vascular disease.

Methods: Various statistical techniques such as logistic, fractional polynomial and Cox’s
proportional hazards models along with various parametric models were used to analyse
the data. New risk prediction models were estimated and compared with the existing
models in the literature. Various standard simulation techniques were used to simulate
hypothetical data using Caerphilly data parameters. Hypothetical interventions were
carried out on these generated samples to assess the public health impact.

Results: Multivariate analysis suggested that the combined effect of psychological
variables measured in the study were significantly associated with the increased risk of
MI. New risk prediction models constructed using the Caerphilly study data showed that
they were significantly different from the standard available models from the literature.
Simulation results suggested that there could be a reduction MI events by 25-30% and
stroke events by 50-55% using plausible intervention scenarios available from the
literature review.

Conclusion: A hypothetical intervention to modify psychological factors showed a
higher reduction in MI events. Therefore, plausible interventions to modify psychological
factors should be commissioned along with the standard biological and behavioural
interventions.
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CHAPTER 1

1.1 Introduction to the Problem

Vascular Disease (VAD) is the single most common cause of death of both men and
women in the UK, with over 235,000 deaths a year, and the national death rate from
VAD is amongst the highest in the western world [1]. According to the World Health
Organization, VAD causes 12 million deaths in the world each year [2] and yet it is
claimed that the disease is largely preventable by healthy lifestyles and effective
management of high blood pressure and cholesterol [2]. Vascular disease is not a
single disease, with about half of the UK deaths being from coronary heart disease
and a quarter from stroke, and the aetiologies of these disease are different and the
effects of preventive strategies therefore need to be evaluated separately for these

diseases.

The Framingham study was one of the first to study risk factors for VAD [3]. The
term “risk factor” is used to denote a factor, whether biological, behavioural or
psychosocial, which modifies the risk of developing VAD [3]. Initially raised total
cholesterol, smoking and raised blood pressure were linked to the increasing
incidence of VAD. Nearly 45 years later, more than 300 other associations have been
found between biochemical, clinical, social and demographic variables and the
development of VAD. The major risk factors that have been shown consistently to be
associated with increased heart disease include gender, age, heredity, smoking, high
blood pressure, high cholesterol, obesity and physical inactivity. Psychosocial factors

such as emotions, stress and social context have also been implicated in VAD.

Some risk factors such as gender, age and genetic status are not modifiable while
others, such as psychosocial factors, smoking, blood pressure, cholesterol, obesity,
lack of exercise and diet can, in principle at least, be modified. Therefore preventive
strategies need to be targeted at these. The question of which would be the best to
target remains an open one. Two issues arise. The first is whether there are simple
interventions which can be directed at modifying a risk factor. For example high
blood pressure can be lowered in most people by the use of anti-hypertensive drugs,

while strategies to persuade people to give up, or not take up, smoking are somewhat



less effective. Secondly the effect of an intervention on the level of the risk factor,

and ultimately on the risk of vascular disease, needs to be evaluated.

1.2 Introduction to the major risk factors

The major modifiable risk factors which have been identified to date can be divided
into three broad categories, biological, behavioural and psychosocial. An overview of
each group will be given; particular ones will be discussed in more detail later in the

thesis.

1.2.1. Biological Risk Factors

The earliest work on risk factors concentrated on biological ones. For example it has
been shown that that the risk of VAD increases as blood pressure (systolic or
diastolic) increases [4].

Early work implicated total cholesterol as a risk factor but later work suggests that the
relationships between lipids and vascular disease is more complex. There is
substantial evidence showing the independent associations of both low-density
lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)
with the risk of IHD. Results from several epidemiological studies have shown the
incidence of coronary artery disease to be positively correlated with LDL-C levels and
negatively correlated with HDL-C levels [5, 6]. The Framingham study has reported
that there was no connection found between the levels of cholesterol and incidence of

stroke [7] but some studies have shown different results [8, 9].

1.2.2. Behavioural Risk Factors

Research has shown that several behavioural risk factors such as smoking, alcohol
consumption, exercise and diet are related to VAD. These may have direct effects
but may also have indirect ones in that they have an effect on the levels of the

biological factors discussed above.

There is a lot of evidence indicating that cigarette smoking is a risk factor for VAD
[10]. People who smoke at least two packs of cigarettes per day have a two- to three
fold greater risk of VAD [11]. The risk for VAD also increases with greater depth of

inhalation and with increasing years of smoking, although people who stop smoking



early enough eventually reduce their risk of VAD to a level approaching that of non-
smokers [12]. Several studies suggest that exposure to environmental tobacco smoke

("passive smoking") also increases the risk of developing heart disease [13, 14].

There is evidence that moderate alcohol consumption protects against the risk of CHD
[15]. On the other hand, it has been suggested that a heavy drinking problem is
associated with an increased risk of CHD and other cardiovascular disease [16, 17].
These facts suggest that the association between the risk of CHD and alcohol

consumption is a U- or, more precisely a J-shaped function [18].

Obesity is associated with high rates of VAD deaths, especially sudden death among
men [19]. The high death rate might occur largely as a consequence of the influence
of being overweight on blood pressure, blood lipid levels, and the onset of diabetes
[19]. A report from the Framingham Study indicates that obesity is also an
independent risk factor for VAD [20].

1.2.3. Psychosocial Risk Factors

In this thesis there will be a strong focus on the influence of psychosocial factors on
VAD. The idea that emotions, feeling and social contexts may contribute to the cause
of heart disease is not new [21]. For centuries, it has been thought that there exists an
association between CHD and the emotions [22]. Emotionally-related reactions that
have been linked to heart disease include anxiety, depression, anger and stress [23]. It
is beyond the scope of this thesis to describe the complex cognitive, emotional and
biological relationships that occur during various affective states but a brief

description of each is given below.

Anxiety is part of the emotional response to threat. Anxiety is characterised by
feelings of fear, worry, nervousness and panic. The idea that a link may exist between
anxiety and the heart has been around for as long as the history of medicine has been
documented [24]. However, despite a widespread public perception that anxiety is a
significant risk factor for VAD, there are numerous conceptual and methodological
difficulties in studying whether a relationship between anxiety and CHD exists. These
include the development of theoretically rigorous definitions of anxiety, the

development of valid instruments to assess anxiety and the availability of longitudinal



data. It is only very recently, with advances in methodology, that possible associations

between certain types of anxiety and CHD have been demonstrated [24].

Depression is an extreme form of sadness. Sadness is an emotional response to loss. It
is concerned with how we emotionally detach from aspirations and relationships that
are either surrendered or taken. When the detachment does not occur and the duration
and intensity of the sadness becomes chronic and extreme, depression is the likely
result. Depression is characterised by loss of motivation, inactivity and disrupted

sleep and eating patterns [24].

Anger is a complex psychological construct. A close scrutiny shows that major
components of anger include hostility and an emphasis on cynical, suspicious, and
damaging beliefs held toward others [25]. In other terms, hostility is considered to
cause increased exposure to anger-related processes by increasing the frequency,

intensity, or duration of anger episodes [25].

Stress has been defined in many ways. From a psychological perspective a widely
accepted definition is that of Lazarus who suggests stress is the result of two cognitive
appraisal processes [26]. Primary appraisal is where the demands of a situation are
assessed and secondary appraisal is where the availability of resources to meet the
demands is assessed. If the resources are insufficient to meet the demands the person
feels stressed. From an epidemiological perspective, however, these definitions are
unhelpful as they are difficult to operationalise. Consequently less precise definitions
have been used. A convenient operationalisation of stress that is widely used in
epidemiology is Type A behaviour. [10]. This refers to a cluster of personality
characteristics such as impatience, competitiveness, and hostility. A person with
Type A behaviour tends to engage in a perpetual attempt to achieve as much as
possible in the least time even though their goals were often unrealistic. Rosenman
and Friedman [27] provided the first prospective evidence that this behavioural

pattern was a risk factor for coronary heart disease.



1.2.4 Multiple risk factors

As has been hinted at above, listing the risk factors as three separate groups is an
over-simplification of the problem as the factors are inter-related. It could be that a
psychological factor has a direct effect on the risk of vascular disease or that it affects
a biological variable which then affects the risk. Alternatively it could change
behaviour which might act directly on risk or again may change a biological risk
factor. Causal pathways are likely to be extremely complex and this thesis will not
explore them. The data needed to do this will be very detailed and complex and are
not available for these purposes. While the joint effects of multiple risk factors will

be considered, there will be no attempt to build a causal model.
1.3 The aim of the project

The aim of this project is to assess the effects on the risk of vascular disease of
interventions to change the levels of modifiable risk factors. The gold standard for this
would be to conduct randomised controlled trials but these will be lengthy and
expensive, Instead the method used here is that of simulation. This requires a risk
model, linking the levels of risk factors to the risk of different types of vascular
disease. Using this model it is possible to simulate the effects of interventions on the
risk factors, not just on the risk factors themselves but also on the risk of disease, and
to estimate the benefits of such interventions. There will be particular emphasis on

psychosocial factors but biological and behavioural ones will be considered too.

In order to do this risk models are needed. There are many in existence [28] but there
is evidence that they do not transfer automatically from one population to another and
so the approach adopted here is to build one for a specific population, based on a
detailed cohort study, and to direct the simulation at the population from which this
was drawn. For these purposes the cohort used was that of the Caerphilly Prospective
Study (CaPS) [29], a well-regarded study which has run for nearly 30 years. This
cohort consists of a total population sample of 2959 men aged 45-59 at recruitment. In
addition to data on standard vascular risk factors such as lipids, hormones and

lifestyle (diet, smoking exercise), a broad range of psycho-social risk factor data



(anxiety, anger and depression) are also available. Vascular related outcome variables

analysed are myocardial infarction (MI) and stroke.

Although the Caerphilly cohort is well suited for this purpose, as the data come from a
single, narrowly defined cohort, the estimates of heath impact will be limited to the
male population of Caerphilly in the first instance and South Wales more generally.
Nevertheless, the principle of demonstrating a health impact of psychosocial factors

over and above that of standard risk factors is of wider significance.

To achieve this aim, a detailed analysis of the Caerphilly data is required to provide
an explanatory model. This analysis will examine the effects of the risk factors on the
vascular related outcomes, using a variety of techniques including survival analysis,
allowing for measurement error where ever possible. These effects can then be
incorporated into a simulation model, which simulates the distributions of these risk
factors in the population. Interventions to modify the values of these risk factors can
be simulated by generating changes in the levels of the risk factors consistent with the
effect of the intervention. This in turn generates new risks of VAD and by comparing
those with the risk in the absence of the intervention, the effect on the incidence of
VAD can be estimated; this is the estimated effect of the intervention. By comparing

the results of different interventions it is possible to see which are the most effective.

1.4 Thesis structure
The aim of the thesis is to estimate the effects at population level of public health
interventions to change the levels of modifiable risk factors for vascular disease.

Within that aim there are several specific objectives:

e To construct risk models linking individual risk factors with the risk of MI and
stroke and to compare these with those found from literature reviews

e To construct multivariate models linking the risk of vascular disease with
multiple risk factors.

e To compare risk models constructed from the CaPS data with others in the
literature.

e To review the literature on interventions aimed at modifying risk factors



e To simulate interventions to assess their public health impact on vascular

disease.

The Caerphilly study is described in more detail in Chapter 2, with summaries of the
variables which were measured. Statistical methods are described and illustrated in
the Chapter 3, giving more emphasis to less familiar models such as fractional
polynomial regression. Methods for estimating regression dilution bias are discussed,

along with techniques required for the simulations later in the thesis.

Chapters 4, S and 6 deal in turn with the three groups of risk factors. For each factor
the literature on the evidence of associations with vascular disease is reviewed briefly,
a detailed analysis of the CaPS data is presented, and the results are discussed in the
light of the literature review.

Chapter 7 deals with an analysis of multiple risk factors, to assess which ones
contribute independently, and the role of the various psychological factors is explored
in depth. The survival analysis used to this point is based on the semi-parametric
Cox’s proportional hazards model. This is ideal for assessing the role of the risk
factor but less useful for estimating an actual risk for an individual. In Chapter 8
parametric survival analysis is discussed and a risk model is produced, which is then

compared with others in the literature.

Chapter 9 deals with the simulation of the effects of interventions on the risk factors,
following reviews of the literature for each relevant risk factor. The impact of
plausible interventions is assessed by comparing the number of events likely to be

saved in a population such that in Caerphilly.

Finally Chapter 10 gives an overview of the results and addresses areas for future

work, as well as highlighting limitations of this work.



CHAPTER 2

2.1 The Caerphilly Cohort

The Caerphilly Prospective Study comprises an integrated research programme based
on Caerphilly, a small town in South Wales (Population 45,000). All the classic
epidemiological research techniques have been used including cross sectional surveys,
case-control comparisons, prospective studies and, in separate population samples,
intervention studies including randomised controlled dietary trials into the effects of
diet on vascular events and of aspirin on cognitive decline. The study began in 1979
and was designed to provide comparable data with a sister study [30] begun one year

earlier in Speedwell, Bristol.

There were 187 research papers published on the Caerphilly study up to June 2005.
Around 90 of them were related to heart disease, six on cognitive function, four on
Type A behaviour, 25 on diet, eight on psycho-social factors, fourteen on blood

samples collected. The remaining publications were on clinical data.

The core of the Caerphilly project is a community-based prospective study into the
determinants of cardiovascular disease and cognitive function [31]. The population
for the Caerphilly Study was all men who were resident in the town of Caerphilly and
five outlying villages. The original cohort of 2512 men aged 45 to 59, drawn from the
electoral register, was recruited between 1979 and 1983. Since then, the participants
have been re-examined at roughly 5-year intervals. The men who are the subject of
this report are those seen at the first re-examination between 1984 and 1988, when
they were aged 49 to 65 years. Men of the same age who had moved into the
geographically defined area since the original recruitment were also considered
eligible. In effect, the cohort was redefined at the first re-examination (phase 2). A
total sample, therefore, of 2959 men were identified. Of these, 2398 men were seen at

phase 2. The second phase of the cohort is considered as the baseline for the thesis.

In common with other similar studies the main aims of the study included

examination of known risk factors for CVD, identification of new risk factors, and



estimating the association of risk of CVD with the risk factors found. Some of the

original aims of the work were.

1) The examination of High Density Lipoprotein (HDL) cholesterol as a risk
factor for CVD.

2) The examination of certain thrombosis-related tests and CVD.

3) A detailed explanation of dietary factors of possible relevance to CVD.

4) The examination of several hormones (oestradiol, testosterone, and cortisol) in

relation to CVD.

Other aims introduced at later stages included the examination of associations
between psychosocial factors and the risk of CVD (phase 2) along with the effect of

vascular risk factors on cognitive performance and cerebrovascular disease (phase 3).

A small random sample of women was studied in the Caerphilly study to obtain
evidence on male-female differences in the various risk factors and determinants. This
has the same upper age range to the main male cohort, though because of interest in
the possible effects of the menopause the lower age limit was 40 years. A preliminary
cross-sectional analysis of these women into dietary and other determinants of

lipoproteins has been reported [32, 33].

2.2 Data collected

The first phase of the cohort started in 1979 and ended in 1983. Subsequent phases
followed in 1984, 1989, 1993. The 5™ phase started in 2002 and was completed in
2004, but is not included in this thesis. A variety of data was collected to estimate the

risk of cardiovascular disease and cognitive function.

2.2.1 CVD data

Data regarding CVD was collected in all phases of the study. The data collected were
London School of Hygiene and Tropical Medicine (LSHTM) chest pain
questionnaire, 12 lead ECG, family history of IHD, all CVD events between Phases I

and IV such as death due to vascular event, myocardial infarction (MI), ECG



myocardial infarction, and history of stroke, stroke events and Transient Ischemic
Attack (TIA).

MI can be defined as the death of the heart muscle due to insufficient blood supply,
usually due to a clot obstructing blood flow and characterised especially by chest
pain. The narrowing of the coronary arteries may be sufficient to prevent adequate
blood supply to the heart muscle; this is usually caused by atherosclerosis, and may
progress to the point where the heart muscle is damaged due to lack of blood supply.
This means that the myocardial infarction is the cause of coronary heart disease. MI

and stroke are used in the analyses as the outcome variables.

There were 537 men with prevalent IHD at the start of the 2™ phase of whom 180
were asymptomatic. If these 537 men are included in the analysis, there is a
possibility that effects of the disease in terms of behavioural changes and therapy will
affect the risk factors and so there might be a case of reverse causality. It was decided
to exclude men with prevalent IHD despite the adverse effect of this strategy on

sample size.

As in all large studies the dataset is not complete for all variables. For the purpose of
the univariate analysis, all subjects with appropriate data were used to maximise the
efficiency of the results. Therefore, univariate models may different in the number of
subjects between outcomes. For the purpose of multivariate analysis, only men with

complete data were included.

As the aim of the project is to model the risk of MI or stroke for men without previous
heart disease, the first MI or stroke was considered as the most appropriate outcome

variable.
Since most of the coronary-related behavioural variables are also risk factors for

stroke, men with symptomatic or asymptomatic IHD are excluded for the analysis of

stroke.
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2.2.2 Cognitive function data

The data regarding cognitive function were collected in phase three, four and five.
The information collected concerned novel problem solving (AH4), four-choice serial
reaction time (SRT), the Cambridge Cognitive Examination (CAMCOG), which
includes the Mini Mental State Examination (MMSE), The Rivermead Behavioural
Memory Test and the National Adult Reading Test (NART). The General Health
Questionnaire (GHQ30) was also collected to allow adjustment for mood at time of

cognitive testing.

The second group of data is the set of possible risk factors. They may be divided into
four different categories, namely ‘life style and demographic’, clinical, psychosocial

and blood related factors. The data collected on these factors are listed below.

2.2.3 Life Style and demographic factors

There is a large amount of data regarding participants’ life style. The data collected
were marital status, social class and father’s social class, employment status, smoking
habit, diet, alcohol consumption, leisure and work activity, sleep pattern and sleep

apnoea, and education.

2.2.4 Clinical data

Clinical data included medical history, prescribed and over-the-counter (OTC)
medications, height and weight, birth weight, skin folds, lung function: Forced
expiratory volume (FEV) and Forced Vital Capacity (FVC), resting blood pressure
(random zero sphygmomanometer), London School of Hygiene and Tropical
Medicine (LSHTM) chest pain and intermittent claudication questionnaire, hearing:
audiometry at four frequencies (phase 2), self report noise exposure and noise
sensitivity, strokes and TIA questionnaires, audiometry at eight frequencies (phase 4),

Doppler ultrasound carotid flow recording.
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2.2.5 Psychosocial factors

The psychosocial factors measured in Phase 2 were social support, job satisfaction,
Type A Behaviour (Jenkins, Bortner and Framingham questionnaires), Health
Attitude Inventory (HAI), Neuroticism and Trait Anxiety scales, GHQ30.

2.2.6 Blood Tests

The final group of data are derived from a participant’s blood: including total White
Cell Count, fibrinogen, plasma viscosity, anti-thrombin III, Lipids, cholesterol,
VLDL, LDL, HDL, HDL,, HDL;, triglycerides, testosterone, oestradiol, cortisol,
insulin, blood glucose, routine thyroid, liver and kidney function tests. There were

other tests in the subsequent phases and many were repeated in all phases.

2.3 Methods used in data collection

At each examination, men were invited to attend an afternoon or evening clinic,
where a detailed medical and lifestyle history was obtained. At the first re-
examination, this included smoking habit and alcohol consumption, social class and
employment status, the GHQ30 [34], three questions on social support taken from the
Whitehall study [35], the Minnesota leisure exercise questionnaire [36], and a dietary
questionnaire [37]. The LSHTM chest pain questionnaire [38] was also used. Along
with a full 12-lead ECG, body weight and blood pressure were measured. The men
were then invited to come back, fasting, to an early morning clinic, where a blood
sample was taken. Cardiovascular risk factors measured included baseline blood

pressure, fibrinogen, and white cell count.
2.3.1 CVD events
This information is taken from the general questionnaire that has questions regarding

medical history, smoking habits etc. For those who died before the follow-up, the

information about the date and reason of death was updated from the Office of
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National Statistics (ONS).

2.3.2 Lifestyle and demographic data

The data collected were marital status, social class and father’s social class,
employment status, smoking habit, diet questionnaire on food frequency and alcohol

consumption.

The question regarding marital status had five options i.e., married, single, widower,
divorced, or separated. There were two smoking questions of which one was intended
to discover whether the men smoked or not and, if they did, how many cigars and
cigarettes every day. Another question was for those who quit smoking, asking them
the length of the time since they quit smoking with four options i.e., less than a year,

1-4 years, 5-9 years or more than 10 years.

Diet questions asked about consumption of bread, type of breakfast cereals, fresh
fruits, vegetables, fat, milk products, eggs, meat, sugars, and drinks. Information
about alcohol consumption was also part of the diet questionnaire. Information was
collected regarding the number of drinks and the type of drink the men had per week.
It was then recoded into the amount of alcohol consumed in ml/week. Questions were
asked about the consumption levels of different types of alcohols such as beers, wine,
and spirits etc. For example they asked how many pints (568ml) of beer they had
consumed. This consumption was converted into ml of alcohol and summed over
different types of consumption. For example, beer contains an average of 5% alcohol.
Those who quote that they have consumed 2 pints of beer have consumed
2x5%x 570ml = 5S7mlof pure alcohol. The final alcohol consumption score was

recoded into ml of alcohol per week.

Physical activity information was collected using three questions. The first question
asked men whether they were physically active, occasionally active or physically
inactive when they were at work. The next question was about the transport they had
to go to work. If they travelled to work by cycle or by walking, the distance travelled
was recorded. The final question enquired whether the men had any exercise in their

leisure hours and if so, the number of minutes they spent doing the exercise.
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2.3.3 Psychological data

2.3.3.1 Trait anxiety

Psychological measurements were taken in the 2" phase of the cohort. Only the
General Health Questionnaire (GHQ) measurement was repeated in the subsequent
phases of the cohort. Trait Anxiety was measured using the trait scale of the
Spielberger State-Trait Anxiety Inventory (STAI) [39]. It consists of 20 statements
that ask people to describe how they generally feel. An example of a statement is

given below.
Column 1 Column 2 Column 3 Column 4
I lack self- Almost never Sometimes Often Almost always
confidence.
STAI score 1 2 3 4

The range of possible scores for STAI varies from a minimum score of 20 to a
maximum score of 80. Subjects respond to each A-Trait item by rating themselves on

a four-point scale. The validity of this questionnaire is discussed elsewhere [39].
2.3.3.2 Anger

Eleven items from the 12 item Framingham study were used to assess anger. These
items assess the expression of anger “when really angry or annoyed” [40]. The 12
item was omitted in error. Answers for each item were recorded using a three-point

99 &6

Likert response format of “very likely,” “somewhat likely,” and “not too likely. The
anger scales assessed ways of expressing anger such as keeping it to oneself (anger-
in), taking it out on others (anger-out) or talking with a friend or relative (anger-
discuss) or expressing anger symptoms such as worry or headache (Anger symptoms).
The responses were scored as 2, 1, or 0, respectively, and the scales were calculated
by summing these response scores. The reliability of this questionnaire was also

discussed in the Framingham study [40]. A sample question is as follows
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When really Column 1 Column 2 Column 3
angry or

annoyed..do
you...?

Feel weak Very likely Somewhat No too likely
likely
Anger score 2 1 0
2.3.3.3 GHQ

The 30-item GHQ measures psychological distress. The long form of the GHQ has
140 questions. This questionnaire was shortened to 60 questions using factor analysis.
It was further reduced to 30 questions [34]. Despite its title, GHQ was designed to
assess mental health, not “general health” and is a measure of psychological distress
including depression. The GHQ was based on features that identify psychiatric cases
from general population samples. It is not concerned with differences between
psychiatric patients. Each item consists of a question asking whether the respondent
has recently experienced a particular symptom or item of behaviour on a scale ranging

from ‘less than usual’ to ‘much more than usual’. A sample question is shown below.

Column 1 Column 2 Column 3 Column 4
Have you Lesssothan | Nomorethan | Rather more Much more
recently been usual usual than usual than usual
feeling sad and
gloomy?
GHQ SCORE 0 1 2 3

The validation of this questionnaire was carried out by several studies such as Split
Half Reliability Study [41] amd Validity Study in General Practice Setting [42]. A
depression score using this questionnaire was calculated by recoding the responses to
first two options of each question to zero and the remaining two responses to one and
then adding up all those scores. Respondents scoring O to 4 on this new scale were
considered non-cases, and those scoring >5 were considered possible cases of
psychological distress. The GHQ has been validated for depression in the Caerphilly
cohort [43].
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2.3.3.4 Type A behaviour
2.3.3.4.1 Jenkins Activity Survey

Type A behaviour was assessed using the Jenkins Activity survey (JAS), Bortner and
Framingham Type A scales. The full JAS has four different scales measuring Type A,
Speed and Impatience, Job involvement, and Hard Driving and Competitive scales.
The Type A scale of JAS has 21 questions [44] and reflects items from the full scale
that are most strongly associated with heart disease. The JAS Type A is a self-
administered questionnaire and asks about speed and impulsivity, job involvement,
and aggressive behaviour. Ten out of twenty one questions have four response
options whereas another 10 have three response options. There is only one question
that has two response options. The JAS uses a weighted scoring system with item

weights being derived from the Western Collaborative Group Study [44].

2.3.3.4.2 Bortner type A

The Bortner Type A scale has 14 questions and uses bi-polar analogue response scales
[45]. Each question has a response scale that is 2.5 cm in length. Subjects were asked
to draw a vertical line at the point where they feel they stand. Each of the statements
reflects the way a person behaves in his everyday life. For example, if the subject
were generally on time for appointments, he would draw a line toward the right hand
side of the line. If he were usually casual about appointments, he would draw a line

that will be toward the left hand side of the line. An example question is given below:

Casual about appointments Never late

Each point was converted in to a value between 0 and 25 which is the score for that
item. Item scores are summed to give the Type A score. The score ranges from 0 to

350.
2.3.3.4.3 Framingham type A

The Framingham Type A scale is based on an interviewer-administered questionnaire

and has ten questions [40]. This questionnaire measures emotional liability,
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ambitiousness, and not-easygoing scales. Because of the variety of the item responses
throughout the questionnaire, i.e., yes-no or multiple choice responses, scales were
scored by summing the responses to each question. The number of questions divided
these scores. Thus, equal weight was given to each question in the scale. This Type A
score ranges from O to 1, 1 meaning complete presence of the trait. An example

question is as follows

Question

Insert the stem here?

Usually pressed for time | Very well | Fairly well | Somewhat | Not at all

2.3.3.5 Health attitudes

Heart disease is a condition with a multi-factorial aetiology of both behavioural and
biological risk factors. Psychological theory proposes that the determinants of
behaviour include attitudes towards cardiovascular risk factors[46]. This theory
proposes that attitudes might predict coronary-related behaviour and hence coronary
heart disease. In the Caerphilly heart disease, attitudes towards coronary-related
behaviours were measured using the Health Attitude Inventory (HAI) The description,

development and application of HAI are discussed in detail elsewhere [47].

Development of the HAI was based on Fishbein and Ajzen’s theory of reasoned

action (TRA). There are three components of the TRA.

1) Behavioral intention
2) Attitude

3) Subjective norm

TRA suggests that a person’s behavioral intentions depend on their attitudes about the
behaviour and subjective norms. If a person intends to do a behaviour then it is likely
that the person will do it. Furthermore a person's intentions are themselves guided by

two things: the person's attitude towards the behaviour and the subjective norm. In
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other words, "the person's perception that most people who are important to him or
her think he should or should not perform the behaviour in question" (Azjen and
Fishbein, 1975 [48]).

Seven aspects of coronary related behaviour were measured in the Caerphilly cohort.
Attitudes towards exercise, dairy produce, fried food and smoking had five beliefs and
values questions each, attitudes towards vegetables, wholemeal bread had four value
and belief questions, and finally attitude towards stress had six beliefs and value
questions. There were seven normative belief questions for each attitude and a single
question to measure the motivation to comply for each corresponding normative
belief. There were all together 76 questions measuring seven different attitudes

towards coronary related behaviours.

Scoring of the HAI has been designed to reflect the meaning behind the judgement
made by the subjects and to be relatively simple for the researcher to calculate the

score. Scoring is explained briefly here since it is detailed elsewhere [47].

Response to each value question is multiplied to the corresponding belief question and
similarly the response to the corresponding normative question of the attitude is
multiplied to the response of motivation to comply. All these scores are adding up to
the total score of each attitude. Hence, there are seven totals corresponding to each
attitude and these scores are used to measure the risk of MI and stroke. A brief

description of how the attitudes are measured is discussed in the chapter 6.

2.3.4 Clinical data

Clinical information such as weight was noted in at every phase of the cohort. Height
was measured for each man when he joined the study. Blood pressure was measured

with a random zero sphygmomanometer to get accurate measurements. Blood

samples were collected at every phase.
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2.4 Data used in the Caerphilly analysis

Outcomes used in this analysis are first MI and first stroke (fatal or non-fatal).
Survival times were calculated as the time from January 1% 1983 until an event
occurred. Follow-up ceased on December 31* 2000. Those who dropped out during
the study, or reached the end of 2000 without an event, had survival times censored at
the end of the follow-up. Due to exclusions and omissions the maximum period time
of follow-up used in the analysis was 16.1 years. Stroke and MI survival times were

calculated separately.

Of the 2,398 who were eligible for inclusion and were seen at baseline, all were
successfully followed for CHD/ MI status either by examination or through medical
records. Of the 2398 men, 537 were excluded from the analysis due to prevalent IHD
at baseline and 3 were excluded due to refusal for follow-up. There were 61 subjects
with their follow-up updated after December 2000. However, these subjects were
included in the analysis after their follow-up date was recoded back to the end of
2000. Events which occurred after the follow-up dates (i.e., 31* December 2000) were
not recognised. Details of individual missing values of each variable are presented at
the time of the analysis. The table showing the measurements that were made during

the four phases of the Caerphilly cohort is given in the appendix 1.
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Chapter 3
3.1 Statistical methods

This chapter aims to provide the background to the models that are used in subsequent
chapters. A brief description is given of standard, widely-used models, followed by a
more detailed explanation of more complex models. Linear regression, logistic
regression and Cox’s proportional hazard model are explained briefly while fractional
polynomial regression and methods for estimating regression dilution bias are

explained in more detail.

3.2 The Linear Regression model

Linear regression is a technique used for modelling the relationship between a
response variable and one or more predictor variables. It provides a way of predicting
the value of the response variable from the predictor variables. It is assumed that the
relationship between a continuous response variable Y and a single explanatory

variable x is given by the following model

Yi=a+fx;+¢ i=1,.,n 3.1
where n is the sample size, i denotes the i subject and ¢; is the measurement error or
the random variation in Y;, assumed to follow a normal distribution with zero mean
and constant variance. This method can be extended to multiple explanatory variables
of the response variable Y. The equation is as follows

Yi=a+ Bixi+ Boxai + ... + Bpxpi + & i=1,.,n 3.2)

for every subject i, xy;,..., Xp; are the explanatory variables of the outcome variable Y.
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3.3 The Logistic Regression model

Linear distribution assumes the outcome variable Y is normally distributed. But more
often in the medical research, the outcome variable is binary; O representing no
disease and 1 for disease. When using linear regression to predict a binary variable of
0 or 1, the predicted values may be out of the range of O to 1. Linear regression does
not restrict the range of the predicted values and by having a binary variable as a
dependant variable in the linear regression analysis, the normality assumption is
violated. As the probability of the disease varies between subjects due to a variety of
different factors, p; is used to denote the probability that person i has the disease.
Representing these probability values on the real line would avoid the problem of the
predicted values to lie outside (0, 1) as the probability can only be between 0 and 1.
Various transformations can be used to show these probabilities on a real line.
However, ‘logit’ transformation is most commonly used. A ‘logit’ transformation for

relating the probability p to an explanatory variable x is therefore given by

logit(p) = m(lL) =a+fr (3.3)
-p
Or equivalently
ea+ﬂx
= 3.4
1+e** 34

This method can be extended to multiple explanatory variables x;,..., x,

logit(p) = h{l—!;] =+ Bx, + Box, +.t Bx, (3.5)

Bi can be interpreted as the log odds ratio corresponding to the change of one unit in
x;. In some cases, reporting a one unit change is not very informative. For example,
suppose an independent variable x; ranges from 1 to 200. The change in odds for a
unit increase in x; is likely to be very small. Therefore, reporting, say, the effect of a

10 unit increase makes it easier to interpret the importance of the explanatory
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variable. To assess the effect of al0 unit increase, the corresponding £; is multiplied

by 10 and then the exponential of that value is taken as the 10 unit change in the odds.

3.4 Fractional polynomial regression

The relationship between a response variable and one or more continuous covariates
is often nonlinear. Representing the trend of the data in single or multiple regression
models is often done by using polynomial functions of the covariates. Lower order
polynomials offer a limited family of shapes and higher order polynomials may fit

poorly at extremes of the covariates and are also often unstable.

Fractional polynomial regression uses an extended family of curves whose power
terms are restricted to a small pre-defined set of integer and non-integer values. The
powers of the conventional polynomials form the subset of the family of fractional

powers [49].

A polynomial of degree m may be written as

Y=8,+px+B,x* +.+ B x" (3.6)
whereas a fractional polynomial (FP) of degree m has m integer and/or fractional

powers p, <..<p,

Y=, +Bx" + B,x% +..+ B, xP 3.7
where for a power p
logx if p=0

x is assumed positive here; if x can take negative values then we can transform it with
a additive constant to ensure positivity. An FP of first degree (m = 1) involves a single

power or log transformation of x. It can be easily written as

Y=p,+px" +B,x" logx (3.9)
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Formz2and p, = p, =...= p,,, expression (3.9) may be generalized to
m
r 7 72 {5} Fs. (5]« = .
Y =B, + Bx 43 8,5 (logx)’ (3.10)
j=2
For arbitrary powers p, <p,<..<p_, let H,(X)=1, p,=0 and combining
definition (3.6) with (3.10) we obtain an extended definition
m
Y=Y B,H,(X) (3.11)
j=0
) .
where Hy(x) =x®’ and forj=2,..., m,
5l Jx“p’ ifpj'-";pi-i
H .(x)= d
7 £ < —~ an S o
|:? i1 (x) lugi it Pj =P,

Suppose that the interest is tc find the best relationship between X and Y. the

following p
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model. One of the reasons for using fractional polynomials is that it is often argued
that polynomials may fit the data well but give odd behaviour towards the extremes of
the X range. Fitting a linear model for that kind of data sets may not yield good
results. There is a need for a better regression models like fractional polynomial

models that can fit these non-linear functions with more accuracy.

A Linear model is a special case of a fractional polynomial model (when degree = 1).
Therefore, a fractional polynomial cannot be worse than a linear model and will be
better unless the data are perfectly linear. The improvement of the fractional
polynomial model over a linear model can be tiny and may not be worth the extra
complexity. There needs to be some criteria specified for choosing the best model.

The following section explains one way of choosing a best model.
3.4.1 Choosing the best model.

The deviance of a model is defined as -2 times its maximised log likelihood. Models
are fitted for every combination of fractional powers in the predefined set (STATA
uses these powers as pre-defined (-2, -1, -.5, 0, .5, 1, 2, 3)) for a given model and the
deviance of each model is calculated. The gain for the fractional polynomial model is

defined as the deviance for a straight line (i.e., for the model 8, + fx) minus the

deviance for the fractional polynomial model; thus it is a measure of the improvement
in fit from using the more complex model. The larger the gain, the greater the
nonlinearity in the relationship between the outcome variable and x. Significance is
assessed by comparing the gain with a y test with a degrees of freedom equal to the

number of powers used in the fractional polynomial at 10% significance level.
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3.5 Non Parametric smoothing (Lowess smoothing)

Regression models assume a particular type of relationship between the outcome
variable and the covariates. It would be useful to explore the data first to assess what
sort of model would be useful. So a non-parametric approach might be better as an

exploratory tool.

The name "Lowess" is derived from the term "locally weighted scatter plot smooth,"

using locally weighted linear regression to smooth data.

It is of interest to look at the relationship between X and Y. suppose we have the data

{(xi, y), i=1,....n} withx; <xi+1,i=1,....., n-1.

To estimate a smoothed value of y;, we take a window central of x;, that is a collection
of {x;} close to x;. A weighted regression is applied to the {(xi, yi)} in the window
with weights decreasing with the distance from x;. The regression model is used to
predict the value of y; corresponding to x;; this is the smoothed values of y;°. The
smoothing process is considered local because each smoothed value is determined by

neighboring data points defined within the window.

The subset of X used in calculating y;® is indices i. = max(1, i — k) through i = min(i +
k, N) where k= [(N * bandwidth — 0.5)/2].

where the weights for each of the observations betweenj =1i,....... , i+ 1s given by

{‘xj_xi’j3 3
w, =41-| L1 (3.11)

A

where A=1.0001xmax (x; —x,,x; —x, ).

Bandwidth determines the percentage of the data used within the subset of X. If the
bandwidth is 0.4, then the model uses only 40% of the data with in the subset of X.
therefore, the bandwidth of 1 implies using all the data within the subset of X to
estimate the corresponding value y;. The optimal bandwidth is dependent on the
variable and dataset, and is determined through examination of smoothed profiles

plotted against unsmoothed ones.
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Using this model gives a good idea about the relationship between two variables. The

dwidth increases, the smoothness of the relationship increases. The

~

following plot shows the Lowess smoothing plot for the relationship between the SB

and total cholesterol with different bandwidths.

Figure 3.2: Lowess Smoothing
o
@
w
=
2
o
=w
2w
o
=
=]
-
wy
o~
.d ] 1 [ ] T
100 150 200 250
systolic pressure (mmhg})
Bandwidth = 0.2 Bandwidth = 0.4
Bandwidth = 0.6

In the above plot, it can be seen that the smoothness of the relationship between SBP

and total cholesterol increases as the bandwidth increases.
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3.6 Survival analysis

In any realistic clinical trial it takes time to accrue the patients for the trial. Often it
takes several years. This is also true of retrospective studies which review results of
past patients, again because the patients will have been diagnosed or started treatment
at different times, often over several years. Either way, this means that patients are
followed for survival starting at different times. But the results are analyzed at one

time and so at that time, the patients have varying lengths of follow-up.

Mathematically removing a subject from the analysis before the event of interest has
occurred is called "censoring" the time until the event. The difficulty is that such
subjects have incomplete information. Suppose one subject has no event by the end
of the study, when the subject had been in the study for 5 years. So, we know that
survival time for that subject is >5 years. These subjects cannot be ignored with these
censored values and they must be taken into account to use all their data as efficiently

as possible and this requires the use of more complex methods.

3.6.1 Kaplan-Meier Survival Estimates

The survival rate is expressed as the survivor function (S):

number of individuals surviving longer than ¢

S =

total number of individuals studied

for any positive ¢.

The hazard function, say A(?), represents the “instantaneous” or immediate risk of
death or failure for an individual who has survived to time ¢. More specifically, it
may be defined as the limit of the probability that an individual who has survived to
time ¢ will die in the short interval from ¢ to ¢ + Az, as At goes to zero. This can be

expressed in the following equation as

h(?) = % (3.12)
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where f{t) is the survival function of time .

The cumulative hazard function (H) is the risk of event (e.g. death) at time ¢ and can

be estimated by the method of Peterson [50] as:

H(t) = -In(S(2))

The product limit method of Kaplan and Meier [51] is used to estimate S:

S@) =H(1—iii] (3.13)

<t i

where ¢; is an event time. The #; values are known survival times ordered so that #,>
Hh2...... , d; 1s the number of deaths up to point #; and »; is the number of individuals
at risk just prior to #;. The n; values take account of censoring in that the change from
n; to ny; adjusts for values censored between f; and #4;. S is based upon the
probability that an individual survives at the end of a time interval, on the condition
that the individual was present at the start of the time interval. S is the product of

these conditional probabilities.

If a subject is last followed up at time #; and then leaves the study for any reason (e.g.

lost to follow up) ¢; is counted as their censorship time.
3.6.2 Cox's Proportional Hazard Model

The proportional hazard model is the most general of the regression models because it
is not based on any assumptions concerning the nature or shape of the underlying
survival distribution. The model assumes that the underlying hazard rate is a function
of the independent variables (covariates); it is assumed that the hazard function
follows the same basic shape but that there is no need to formally model the shape
parametrically. Thus, in a sense, Cox's regression is usually called a semi-parametric

method as it is parametric with respect to the covariates. The model may be written as

Bt %y, % %) = o () x exp(Y. Bi%,) (3.14)
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where A(t,...) denotes the resultant hazard, given the values of the m covariates (x;, x>,
..., Xm) and the survival time (7). The term Ay(?) is called the baseline hazard; it is the
hazard for an individual for whom all independent variable values are equal to zero.

This model can be linearized by dividing both sides of the equation by A(?).

W), (35 %00 %0 )} | _ &
log( 0 J = ;ﬂixi (3:15)

The left hand side ratio in the equation (3.15) is called a relative hazard function.

According to the equation (3.15), fi can be interpreted as the log hazard ratio
corresponding to a change of one unit in x;; this is analogous to the interpretation in
the logistic model. In some cases, reporting a one unit change is not of great
importance and reporting, say, a 10 unit increase makes it easier to interpret the effect
of the explanatory variable. To obtain the effect for a 10 unit increase, the f; is

multiplied by 10 and then the exponential of that value is calculated.
3.6.3 Assumptions

While no assumptions are made about the shape of the underlying hazard function, the
model equations shown above have two assumptions. First, they specify a
multiplicative relationship between the underlying hazard function and the log-linear
function of the covariates. This assumption is also called the proportionality
assumption. In practical terms, it is assumed that, given two observations with
different values for the independent variables, the ratio of the hazard functions for
those two observations does not depend on time. The second assumption of course, is
that there is a log-linear relationship between the independent variables and the

underlying hazard function.
3.6.4 Parametric survival models

Due to the semi-parametric nature of the Cox’s proportional hazard model, it is not
straightforward to estimate the probability of having an event as it does not assume
any shape of the hazard function. With a parametric survival model, however, the
survival function has a distributional form and so probabilities can be calculated.

Therefore, using survival parametric models has advantages. Furthermore, survival
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parametric models can be used in simulations with ease as they will be seen in
Chapter 9. This section gives a brief description of the parametric models used in this

thesis.
3.6.4.1 Exponential survival model
The probability density function and cumulative distribution functions are,
f(t)=2e* fort>0,1>0 (3.16)
and
F@t)=1-¢e* (3.17)
respectively.

The survival function is therefore

Sit)y=e™* (3.18)
The hazard function
h(@t)=4 (3.19)

which is a constant.

3.6.4.2 Weibull survival model

The Weibull distribution is a generalisation of the exponential distribution. Unlike the
exponential distribution, it does not assume a constant hazard rate and therefore has

broader applications. The Weibull distribution is defined by two parameters y and A.

The probability density function and cumulative distribution functions are,

f@ = ap(a)y e ™ fort >0,7,4>0 (3.20)
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and
F(@t)=1-e ¥ (3.21)

respectively.

The survival function is therefore

S@t) =e (3.22)
The hazard function is
h(t) = Ay(Ae)™ (3.23)

The value of y determines the shape of the distribution and A determines its scaling.
Therefore, y and A are called the shape and scale parameters respectively. When y =1,
the hazard rate remains constant as time increases; this is the exponential case as the
Weibull distribution reduces to an exponential distribution in that case. The hazard
function increases when y > 1, and decreases when y < 1, as ¢ increases. Thus, the
Weibull distribution may be used to model the survival distribution of a population

with increasing, decreasing or constant risk.

Weibull regression models are used as a parametric alternative to the Cox model.
Since Weibull regression models are comparatively easier to simulate than the semi-

parametric Cox models, these will be used for simulations.
3.6.4.3 Non-standard parametric survival model

Anderson et al [52] in 1990 discussed a model that was used for estimation and
prediction of risk scores for individuals based on several cardiovascular risk factors.
Instead of using a traditional parametric survival model or a semi-parametric survival
model, they have used a non-standard parametric survival model. They argued that the
standard Weibull model assumes the logarithm of time until an event has a constant
dispersion and location parameter. They proposed a model which allows for a variable
dispersion and/or location parameter for the survival times and claimed that for their

data it was a better model then a Weibull one. This is a clever model because it does
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not require a proportionality assumption as in the case of Cox’s model and is more

efficient while dealing with survival times.

Let T denote the time until the outcome of interest (MI or stroke in this case). Assume
that x; represent the risk factors measured for an individual where i = 1 to k. For
example, x; might be systolic blood pressure, x, total cholesterol and so on. The
coefficients 8o, fo, fi,.....Bx and 8, are the parameters that are estimated using this
model. Assume that the natural logarithm of the survival time 7 has a location x and a

dispersion g.

For a known distribution function, F:
o

Anderson [53] further defined a varying location and dispersion accelerated failure
time (VLDAFT) model:

VLDAFT: pu=po+pixi+ ..... + Bixk (3.25)

and 10g oc=0y+ 91/1.

According to Anderson [53], the VLDAFT model allows dispersion to be modelled as
a linear function of the covariates, which includes a time-varying component on the
scale parameter and the location parameter. He shows

F(u) = 1 — exp(- exp(w)), (3.26)

the logarithm of the cumulative hazard function for a failure time is defined by

log[~log{Pr(T > 1)}] = 28O~
(o3
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which implies that 7~ Weibull and log(7) has an extreme value distribution.

When 6, = 0, then the dispersion parameter o is constant and the model is called linear

location accelerated failure time model (LLAFT).

In general, a negative B coefficient for a variable means that a high value of that

variable is associated with high risk.

The coefficients &y, So, B1,.....fr and ) are estimated using a SAS program explained
elsewhere [54]. This program uses the Proc Nlin procedure of SAS. The initial values
for this converging procedure are obtained from the Weibull accelerated failure time
models estimated in STATA. Two sets of coefficients were estimated using the

Framingham data for the risk of MI and stroke.

To find the best fit, assuming that 7 follows a Weibull distribution, # coefficients for
LLAFT and VLDAFT model are estimated along with the maximised log likelihoods
for each model. Then a difference between the log likelihoods for LLAFT and
VLDAFT is tested with the log likelihood ratio test, explained in section 3.4.1, at a

5% significance level to decide which one of them is the better model.
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3.7 Regression Dilution Bias

The classical regression model assumes that there is no error in the independent
variable. Suppose that the relationship between x and y is modelled using a regression
model where x is the independent variable. What happens if x is not a true value and is
subject to, say, measurement error? If there is measurement error in x, that is bound to
change the relationship between the x and y. The amount of change in the coefficient
of x due to the measurement error is called the coefficient of regression dilution bias
or the coefficient of measurement error. The following sections illustrate methods to

estimate the coefficient of measurement error.

3.7.1 Single Variable

The regression slope between a response and predictor variable is underestimated
when the predictor variable is measured imprecisely. Repeat measurements of the
predictor in individuals in a subset of the study or in a separate study can be used to

estimate a multiplicative factor to correct for this ‘regression dilution bias’.

Consider a relationship between a response variable y; (for subject i=1, ..., N)and a

predictor variable x; and the random error J;.
yi=a +B'x,+6, S~ N(0,4%) (3.27)
Suppose that x; is subject to measurement error, so the observed value may not be the

true value. Suppose that the relationship between the true measurement and the

observed measurement is as follows

w, =X, +U, x, ~Nu,ol), u, ~N(©0,02) (3.28)

where w; is the observed value of x; ,o and & are the variance of x; and J;.

If u;, J; and x; are independently distributed it is shown by Snedecor and Cochran [55]
that y; and w; follow a bivariate normal distribution and the regression of y; on w; is

linear as follows
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v =a+pw +y, ¥ ~ N(O,p?) (3.29)

where

5 - ﬂ(ai + o) (3.30)

From the above equation, £, the coefficient from the regression of y on the observed
value, underestimates the true value f* by an amount which depends on the relative

magnitudes of the measurement error variance and the variance of the true x values.

If there are repeated measurements available, it is possible to obtain an estimate of o,
as follows
Let ds independent of x, then
W, =x+0,
and w,=x+07,,
where w; and w; are the observed values of x at two different points of time.
Here the assumption is that the actual measurement variable x does not change, but

the error terms differ.
Sw —w, =96, -0,
= varlw, — w,| = 20;

B SD'w1 —wzi

3.31
7 (3.31)

20’5

Using the above equation the variance of the error can be estimated and hence the
revised estimate of S can be calculated. This method can also be extended to the

multivariate scenario.
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3.7.2 Multiple variables

If the above univariate scenario is converted into a multivariate scenario, the equation

(3.31) rewritten as

B*=pxT (3.33)
where r=( +5,." (3.34)
where £ _ is the observed variance matrix and £, is the error variance matrix.

where I' is a matrix of coefficient of regression dilution biases that are to be

estimated.

To simplify this, an example of a bivariate problem is given.
Suppose the true values are unchanged and repeated observations are obtained for
both variables, say
Therefore Z, =X+ h;, Z=X+h,
andY;=M+38;, Y,=M+3,

Suppose that there are two measurements on two variables. Let X, M denote the true
values and Z, Y denote the observed values.
For two variables, equation 3.34 becomes

var(X) cov(X,M) . var(h) cov(h,o) var(X)  cov(X,M) .
cov(X,M) var(M) cov(h,8) var(d) * cov(X,M) var(M)

cov(Z, Y) can be easily estimated from the data as follows.

c;'j =S8, the usual sample variance, and oA'zy =S,, =%Z(z -Z)(y-7)
Assuming that X and 4 are independent, and similarly for M and §, then
Var(Z) = Var(X) + Var(h), Var(Y)=var(M)+ Var(3) and

Cov(Z,Y) = cov(X,M) + cov(h, d)

Therefore cov(X, M) = cov(Z, Y) — cov(h, ). (3.35)
To get cov(h, d)

Z\—Z= m-h,, and Y- Y= 8;- &y,

So that cov(hi- k2, 81- 82) =cov(Z1—Z,, Y1 - Y2)
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The last term is easy to estimate. The left hand side is
Cov(h i, 81) + Cov(h,, 33) - Cov(h,, 81) - Cov(h, 83)
and if the errors at different time points are assumed independent, then the last two
terms will be 0.
Therefore 2Cov(h, 8) = cov(Z,—Z3, Y1-Y>3)

cov(Z, - Z,,}, - 1))

socov(h,0) = >

(3.36)

Substituting equation (3.36) in equation (3.35), cov(X, Z) can be calculated.
Substituting all the covariance matrices in the equation (3.34), the regression dilution

bias of X and M can be calculated.

The above example illustrates how the measurement error is estimated for a bivariate
model. In order to extend this to a multivariate scenario, it is the same method with

bigger matrices.

3.7.3 Misclassification in binary data

Case 1:

Suppose that we want to assess the effect of a dichotomised factor with some
misclassification. Chu et al [56] suggested a method for taking into account the
impact of imperfect sensitivity and specificity. Here the sensitivity refers to the
probability of a person who is really exposed being classified as such, while the
specificity is analogously defined for those not exposed. The outcome and the

exposure are tabulated as follows

Table 3.1 Observed counts at baseline

Misclassified exposure

Disease Status] | 1 =present | 0 = absent | Total
Case a b N,
Control c d No
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Assuming that the sensitivity (Se) and specificity (Sp) of the exposure and outcome at
baseline is same as the sensitivity and specificity of the exposure and outcome at the

time of repeated measurement,

the adjusted OAR is given by

A (a+N1 ><(Sp—1))(N0 xSe—c)

= L 0 3.37
OR (c+ N, x(Sp-DXN, x Se—a) (.37)
and the SE of the adjusted log( 6R ) is given by
A -1)2 d -1)?
SE[In(OR)] = ,|—nabGe+5p -1 Nocd(Se+ p-1) _.....(3.38)
(N,Se-a)*(N,Sp—b)" (N Se-c)"(N,Sp—d)

Chu et al used a Meta analysis results based on the 10 publications using the superior
cotinine validation methods to estimate the sensitivity and specificity [57]. This meta-
analysis showed that the sensitivity of the self reported smoking habit ranged from

0.82 to 1.00 and specificity ranged from 0.91 to 1.00.

Using these ranges of sensitivity and specificity from the meta-analysis and simple
tabulated values of smoking behaviour and the outcome, the adjusted odds ratios can
be estimated.

The sensitivity and specificity can be estimated from the repeated measurements of
the data. However, it has to be assumed that the status of the exposure is not changed

in the repeated measurement.

However, it is not possible to find an estimate of sensitivity and specificity for every

€xposure€.

Therefore, another method for misclassifications is discussed.
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Case 2:

Let U be the proportion of members of the stratum two, who are correctly classified in
the stratum 2 by the imperfect measures and V be the corresponding proportion of
stratum one. Using the information in the table below, the U and V are defined as U
= (ba+ d2)/ (a2t ¢2) and V = (b1 +d;)/(a; +c1).

Table 3.2 Exposure at 1* and 2"! measurement with outcome at baseline

Confounder level 1

Exposed Not exposed
Cases a b,
Controls C d;

Confounder level 2

Exposed Not exposed
Cases a b,
Controls C d,

Then using the method developed by the Walker and Lanes [58] the following
formula gives the new adjusted odds ratio.

et

axxU dle

e

b, xU cxU

OAR=ORx

(3.39)

where OR and OAR are the odds ratios before and after the adjustment with the second

measurement.
The feasible values for U and V are as follows:
1) U+V<1;0<U<0365;0<V<04
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2) U+V>1;06<U<1;0.635<V<1

Though this method does not estimate the standard error, it is more appropriate where

the sensitivity and specificity are not readily available.
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Chapter 4

4.0 Introduction to the behavioural Factors

In Chapter 2 possible risk factors for vascular disease were discussed under three
headings, namely behavioural, biological and psycho-social factors. In the next three
chapters, the risk factors will be examined individually, and their association with the
risk of either an MI or stroke will be assessed. In each case there will be a brief
literature review followed by a detailed analysis of the relevant CaPS data. This
chapter deals with the behavioural risk factors and will be followed by chapters on
biological and then psycho-social factors. The modelling strategy is set out in detail

for the first risk factor; for subsequent risk factors some of the details will be omitted.
4.1 Alcohol Consumption

4.1.1 Literature Review

High alcohol consumption is associated with an increased risk of heart disease [59].
This is thought to be due in part to an effect of ethanol on blood pressure. Moderate
alcohol intake, however, may be associated with a reduced risk of heart disease
relative to abstaining. This could be due to a beneficial effect of ethanol on blood

lipids.

There have been many population studies of alcohol and vascular disease. The
Whitehall II Cohort Study (UK) measured alcohol consumption in 10,308 civil
servants aged between 35 and 55 at baseline. (33% female). A ‘U’ shaped relationship
was found between the volume of alcohol consumption per week and the risk of
coronary heart disease [60]. They showed that the teetotallers and those who
consumed at least 248 grams of pure alcohol per week when compared to those who
consumed 1-80 grams per week had a twofold increase total mortality but the results
were not significant for coronary heart disease. A cohort study conducted in Finland
with a general population of 5,092 men aged between 24 and 65 showed that acute
alcohol consumption is associated with an increased risk of death due to heart attack
[61]. Men with six or more drinks at a time have a higher risk of 1.77 (95%CI: 1.01,

3.08) for having ischaemic heart disease compared to those who had no heavy
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occasional drinking. The Framingham Study, with 10,333 male and female subjects,
conducted in the U.S.A showed a ‘J° shaped relationship between alcohol
consumption and atrial fibrillation. The relative risks were, 0.97 (95% CI: 0.78, 1.22),
1.06 (95% CI: 0.80, 1.38), 1.12 (95% CI: 0.80, 1.55), and 1.34 (95% CI: 1.01, 1.78)
for alcohol categories of 0.1 to 12, 12.1 to 24, 24.1 to 36, and >36 g/day respectively
when compared to teetotallers [62]. Several epidemiological studies have shown an
inverse relationship between moderate alcohol consumption and the risk of cardiac
events [63, 64]. One of these studies estimated the risks of MI with RR=1, 1.02, 0.82,
0.61 in the groups of monthly, weekly, daily consumptions compared to rarely/never
[63]. Another review [65] looked at the relationship between alcohol consumption and
vascular events in elderly men. It suggested that the reduced risk of cardiovascular
disease observed among drinkers in different studies of alcohol consumption can be
partly explained by an increased risk among ex-drinkers who stopped drinking
because of their health conditions and who are included with the non drinkers, an

example of reverse causality [65].

This summary of some of the literature suggests that the effect of alcohol
consumption on CHD varies between studies, with some suggesting that higher
alcohol consumption leads to greater risks while others suggest alcohol has a
protective effect. The ‘J° shaped relationships shown by several studies might be
attributed to differences in population samples, methods of collecting data and
cultural differences between the study populations. It is important to note that a range
of outcomes have been used. Though these outcomes are closely related to either MI
or stroke, their subtle differences may account for some of the differences between

findings.

A Meta analysis study with 116,702 subjects from 61 different studies showed a ‘J’
shaped relationship between alcohol consumption and MI events for a general
population [66]. The inclusion criterion for this meta-analysis was to search for all
possible outcomes related to cardiovascular disease such as coronary heart disease,
coronary artery disease, coronary event, coronary death, myocardial infarction,
ischaemic heart disease and angina pectoris for their risk with alcohol or ethanol
consumption. The same authors considered a number of other disease outcomes and

found no evidence for J-shaped relationships with alcohol consumption. [67]. They
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showed that alcohol consumption appears to give a protective effect for the risk of MI
in those who consume 20 - 72gms/day (approximately 2/3™ of a pint of beer to 2.5
pints of beer).

Alcohol consumption has been identified as a possible risk factor for stroke for over
three centuries [68]. Several studies have shown that the relationship between alcohol
consumption and stroke is not straightforward. A systematic review has shown that
individual studies reported inconsistent relationships between alcohol consumption
and stroke which is not surprising because of the potential biases mentioned
previously [69]. However, the majority of the evidence suggests that light and
moderate consumption is associated with a protective effect whereas heavy alcohol

b

consumption is associated with an increased risk of stroke (i.e., a ‘J’ or ‘U’ shape
relationship) [70-73]. A Meta analysis of 35 studies found that, taking teetotallers as a
reference group, those who consume between 1 and 12 grams of alcohol per day have
a RR of 0.83 (95% CIL: 0.75 - 0.91), 12-24 grams have RR of 0.92 (0.78 — 1.06), 24-
60 grams have 1.10(0.97 — 1.24) and >60 grams per day have RR=1.64 (95% CI:

1.39-1.93) for having a stroke [74].

Several papers have been published on the Caerphilly Cohort data discussing the
effect of alcohol on the risk of vascular events: none of them showed any significant
association with risk for any vascular event [75-77]. Previous analyses merely
considered the relationship between alcohol consumption and both MI and stroke as a
linear relationship whereas this thesis will explore more appropriate methods to
identify the actual relationships. It is also important to note that the previous analysis

included men with incident heart disease.

4.1.2 Alcohol consumption in the Caerphilly study

Alcohol consumption was measured in the Caerphilly cohort in the 2", 3™ and 4™
phases. Information about alcohol consumption was collected in the diet
questionnaire. Data regarding the number of drinks and the types of drinks these men
had per week was collected. It was then recoded into the amount of alcohol consumed
in cc/week. Questions were asked about the consumption levels of different types of
alcoholic drinks such as beers, wine, spirits etc to find the volume consumed. This

was converted into an intake of alcohol. For example, beer has an average of 5%
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alcchol in it. Those who quote that they had consumed 2 pints of beer had consumed
2x5%x 568cc = 56.8ccof pure alcohol, as there are 568cc in 1 pint. The

consumptions of different types were summed to get the final alcohol consumption

score, in cc/week. Figure 4.1 shows the distribution of alcohol consumption in each
phase
Figure 4.1 — Histogram of Alcohol consumption in 3 phases of the
Caerphilly study
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In the above figure, it is obvious that alcohol consumption is not normally distributed.

There were 115 teetotallers in the first phase data i.e., 6.2%. This proportion is similar
to that found in several other studies (8.6%{2], 5.5% [3], and 5.7% [19]).

After excluding the missing values in the alcohol data, the total number of
observations in the 2™ phase considered for the analysis is 1856. The mean and

standard deviation of alcohol consumption for each of the three phases
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Table 4.1 — Summary statistics of alcohol consumption in 2", 3" and 4™ phases

l‘«

Varizables Obs Mean Std. Dev Min Max
Alcohol Ph 2 1856 159.48 200.78 0 i756
Alicohol Ph 3 1578 146.88 184.34 0 1596
Alcohol Ph 4 1514 136.80 187.23 0 1487
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Lowess smoothing with a bandwidth of 0.8 and is shown in Figure 4.2. Experimenting
with various other bandwidths between 0.7 and 0.99 was carried out but the resulis

were similar. Future plots always use the value 0.8.

Figure 4.2: Lowess smoothed plot for relationship between alcohol consumption
and MI & Stroke
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The first plot in the above figure shows the relationship between alcohol consumption

and MI in the Caerphilly data. It suggests a non-linear relationship (‘J° shape) as
mentioned in some of the literature referred to earlier [66]. The relationship between
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alcohol consumption and stroke appears to be non-linear, possibly due to the few
extreme values of alcohol consumption. If these are excluded, the relationship
between alcohol consumption and stroke appears linear, similar to that found in the

meta-analysis [67].

Many studies in the literature review analysed their data by either using a linear
logistic regression or by quoting the odds ratios comparing teetotallers with different
categorical levels of alcohol consumption, such as ‘low’, ‘medium’ or ‘high’. These
are crude methods of assessing the status of alcohol consumption status as a risk
factor. On the one hand using categorical data loses valuable information but makes
fewer assumptions about the nature of the model while the linear logistic model

makes stronger assumptions than a fractional polynomial model.

We decided to use the reported consumption as a continuous variable to preserve the
detail but to examine carefully the model to be fitted. The range of consumption was
very large; in particular there were some extreme values in excess of 1000cc per
week. It is somewhat implausible that a linear relationship would be appropriate for
this full range of values and so it was decided to transform the alcohol consumption to
a less skew distribution. An important consideration is the large number who reported
no consumption. Any transformation should be able to handle those and to transform
those to a value not too far removed from the rest of the distribution. A logarithmic
transformation is a natural one to take but a constant has to be added to the
consumption to cope with zero values. As a result the chosen transformation was

logalc = log(alc + 4)

The distribution of logalc is shown in Figure 4.3. ‘logalc’ is used instead of actual

alcohol consumption data for all the future analyses of MI.
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Figure 4.3: Histogram of logalc

4.1.3.1 MI and alcohol consumption

The relationship between MI and alcohol consumption (i.e, logalc) is shown in Figure

4.4. The bandwidth for smoothing the data was 0.8. as described earlier

Figure 4.4: Relationship between logalc and MI
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The relationship appears to be non-linear and hence a fractional polynomial

regression was used to estimate the relationship between ‘logalc’ and MI.

47



4.1.3.1.1 Logistic regression

There are 1797 men with 243 first MI events between them. The logistic regression
model for this relationship is given below.
logit(p) = m(Ii’—] =-1.59 - 0.63logalc ......... (4.1)

4
where p is the probability of an MI.
The standard errors and p values for the constant and coefficient of logalc and the
constant in the model are SE = 0.20, 0.05 and p = 0.0001, 0.17

The slope of the above equation is negative suggesting that the increase in alcohol
consumption decreases the risk of MI. Figure 4.4 suggests that this may be true for
values of logalc below 6 (consumption less than 400 cc per week) but not for larger
consumptions and so it is plausible that a non-linear relationship holds. Therefore, a
fractional polynomial logistic model was fitted and the improvement in fit assessed.

Table 4.2 gives the coefficients of the fractional polynomial model.

Table 4.2 — Fractional polynomial regression of logalc

MI Coef Std Err P>|z] 95 % CI
Logalcl -0.019 0.010 0.083 -0.039 0.002
Logalc2 0.009 0.005 0.095 -0.002 0.021
Constant -1.932 0.095 0.000 -2.118 -1.746

where logalcl = logalc® —77.84, logalc2 = logalc’ x log(logalc) —112.98

This model has been chosen as the best fit to the data using the method explained in
section 3.4. Substituting these values in the equation, the fractional polynomial

regression equation is as follows.

logit(p) = ln(l—p—) = —(0.02)logalc® + (0.01)logalc® x log(logalc) —1.47 ......... 4.2)
4

where p is the probability of an MI.
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The relationship estimated by the fractional polynomial regression from the above
equation can be visualised by the following plot in Figure 4.5 along with the Lowess
fit.

Figure 4.5: Predicting MI using logalc by Fractional
peiynomial regression
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The logistic fractional polynomial regression fits logalc very closely in the first part of
the above figure. The deviance gain of this model over the linear model 1s 1.71,
showing that there is no statistically significant difference between linear logistic and

fractional polynomial logistic in modelling the MI risk as a function of aicohol

onsumption, as the minimum needed for statistical significance, for 2 extra

um m n 1€€G 1gniiican
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arameters, is 5.99

3

Although the fractional polynomial model did not give a significant improvement the
fact that it gave a fitted shape similar to that of the Lowess plot, and that the meta-
analysis described earlier suggested a J-shaped model was appropriate, led that to be
the one chosen for further analysis

4.1.3.1.2 Cox’s Proportional Hazard Model

A Cox’s proportional hazards model (section 3.6.2) gave an estimated hazard ratio of
0.94 (95% CI: 0.87 — 1.03). While not significant, the fact that the estimate is less

than 1 suggests that the risk of an MI decreases as alcohol consumption increases.
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When Fractional polynomials were used for Cox’s proportional hazard model, the

resulting model coefficients are shown in . Table 4.3.

Table 4.3 — Cox’s Proporticnal hazard model of logalc and MI

MI Coef Std Err P>iz] 95 % CI
Logalc] 0.984 0.009 0.094 0.965 1.003
Logalc2 1.008 0.005 0.107 0.998 1.019

'/ e = . 3
log| Ai(®), (ogalo)} ) _ ~0.01x logalel + 0.01x logaic2 ................. (4.3)
h, (2)

3
\

The hazard ratios fitted by the above model are plotted below.

Figure 4.6: Hazard ratios for having an MI
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The improvement of the deviance for the fractional polynomial model is 1.5. This
shows that the fractional polynomial model is not statistically significantly better then

the linear model but for the reasons stated above it was decided to use this model.
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For further analyses of the other risk factors, if the fractional polynomial regression
were not found to be significantly different from the linear logistic model and the

literature review suggests that there is no non-linearity in the rela

A simple way to understand the relationship between the risk of MI and alcohol
consumption over time is to plot Kaplan-Meier survival curves. For these purposes
only, alcohol consumption was divided into four different categories, defined by

teetotallers, occasional consumers (consume less than 135 cc/week), moderaie
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(consume more than 435 cc/week). These groups were based on groups used by
studies in the literature review.
Figure 4.7: Predicting MI for three different groups of alcehol
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In the above figure, the teetotallers appear to have a higher risk of having an MI,
though it is not significant (Peto-Peto test for equality of survivor functions showed a

p value of 0.71).
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4.1.3.2 Stroke and alcohol consumption

The relationship between alcohol consumption and stroke is shown in the second plot
of Figure 4.2. It appears to be linear for all but the highest levels of consumption. If
these extreme values are excluded from the analysis, linear regression can be used to
model the relationship between alcohol consumption and stroke. Since the literature
review suggests a linear relationship [67], it was thought to be appropriate to go with

the exclusion of these extreme values.
4.1.3.2.1 Logistic Linear regression
Coefficients of the linear model for the relationship between alcohol consumption and

stroke are given in the table 4.4.

Table 4.4 — Logistic linear regression of alc and stroke

MI Coef Std Err P>|z| 95 % CI
ALCOHOL 0.001 0.000 0.012 0.000 0.002
CONST -2.722 0.120 0.000 -2.957 -2.486

Substituting these values in the equation, the linear logistic regression model is as

follows.

where p is the probability of stroke for all men.
The relationship estimated by the linear logistic regression for the equation (4.4) can

be visualised by the following plot in Figure 4.8 along with the Lowess fit.
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Figure 4.8: Predicting stroke for all logistic linear regression
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From the above figure, it appears that the linear logistic model fits the relationship
between alcohol consumption and stroke reasonably well. The above equation
expresses the log odds of stroke for a 1cc/wk increase in alcohol consumption, a tiny

one. For every 100cc/wk increase in alcohol consumption, the odds of stroke increase

4.1.3.2.2 Cox’s Proportional Hazard Medel

Q
=

Cox’s proportional hazard model was used to estimate the hazard ratios for the risk
stroke with alcoho! consumption. The hazard ratio for an increase of one unit of
alcohol consumption is 1.001 [95% CI: 1.0003 — 1.0020]. The p value and standard
error are 0.01 & 0.0004, showing that the relationship between alcohol consumption
and the risk of stroke is significant. For an increase of 100cc/wk which is
approximately equal to 3.5 pints of beer per week, the hazard ratio for having a stroke
increases by 11%.

Similar to the relationship between alcohol consumption and MI, the Kaplan-Meier

shown in Figure 4.9.



Figure 4.9 Predicting stroke for three different groups of alcohol

consumption

(=]
0
c r
c 2000 4000 8000
analysis time
— alc4 =0 alcd =
aicd = 2 alc4 =3

where alc4=0 Teetotallers
alc4=1 Men who consume less than 135cc/week
alc4=2 Men who consume between 135 & 435 ce/w
alc4=3 Men who consume more than 43Scc/week

When the three different groups of alcohol consumption

were compared fi
stroke, it appears that the heavy consumption group has more risk (Peto-Peto test for
equality of survivor functions showed a p value of 0.04). Both these plots, along with
the models fitted, suggest that the risk of stroke increases significantly as the

consumption levels increase.

4.1.4 Conclusions
A Meta analysis study discussed in the literature review has shown a similar ‘J° shape
relationship between MI and alcohol consumption similar to the one shown in the first
plot of Figure 4.2 [67]. It showed that alcohol consumption over 83cc, or 2.76 on the
log scale per day increases the risk of MI. The model fitted to the Caerphilly data has
a minimum risk of MI at 6 units on the log scale (Figure 4.5) which is very different

to what the meta-analysis has shown. Because of the very few subjects with very high

alcohol consumption levels in the Caerphilly data, the relationship between logalc and

Several population studies that were considered for the meta-analysis paper, with

different sample sizes and different follow-up times, showed a ‘I’ shape relationship

54



between alcohol consumption and MI. Some of the studies included in the Meta
analysis had different relationships with the outcomes. Five of them are plotted in
Figure 4.10 using the information available from their published results (studies 1-5
[62, 78-81]). These studies were selected because the data required for this
comparison was available in the published papers. These plots below show the

relative risks of different alcohol consumption groups compared with teetotallers.

It was thought that a better idea is to use logarithms of the alcohol consumption scores
instead of the true values to bring the extreme values closer which resulted in showing
‘U’ shape relationship as some of the studies in the literature review. Studies from
different cohorts showed predominantly a ‘U’ shape relationship between alcohol
consumption and MI. This appears to suggest that the logarithmic values of alcohol

consumption show a ‘U’ shaped relationship.

The first study shown in the figure below had its alcohol consumption data measured
in grams of alcohol consumed/day [82]. There were divided into 5 groups as
teetotallers, <12gms/day, 12-24gms/day, 24-36 gms/day and >36gms/day. Other

studies’ alcohol consumption levels can be observed from the plots given below.
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For example, study 3 in Figure 4.10 has a sample of men and women included,
whereas age groups of subjects in each study differ. One of the major differences in
all these studies was the follow-up time that varied from 4 years to 21 years. The
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llow-up time of each study are not addressed in the Meta analysis.
Therefore, some other sophisticated models are needed for estimating these inter-

study biases.

The overail conclusion from these analyses is that the risk of MI is lower in the
moderate alcohol consumption group whereas the risk of stroke increases as the

alcohol consumption increases.
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Increase in alcohol consumption appears to show an increased risk of stroke in the
Caerphilly analysis with a linear relationship. A meta analysis study in the literature
review showed that that the relationship between alcohol consumption and stroke is
not linear. A Meta analysis of 35 studies found that, taking teetotallers as a reference
group, those who consume between 1 and 12 grams of alcohol per day have a RR of
0.83 (95% CI: 0.75 — 0.91), 12-24 grams have RR of 0.92 (0.78 — 1.06), 24-60 grams
have 1.10(0.97 — 1.24) and >60 grams per day have RR=1.64 (95% CI: 1.39-1.93) for
having a stroke [74]. This shows that there might be a J shape or a U shape
relationship for stroke as well. However this is not evident from the analysis of the

Caerphilly study data but it is not clear why this different relationship has been found.
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4.2 Smoking

4.2.1 Literature Review

There are approximately 4000 chemicals in cigarette smoke, many of them toxic. The
ingredients in cigarettes affect everything from the internal functioning of organs to
the efficiency of the body's immune system. The effects of cigarette smoking are
destructive and widespread. Toxic ingredients in cigarette smoke travel throughout
the body, causing damage in several different ways. Nicotine reaches the brain within
10 seconds after smoke inhalation and can be found in every part of the body of a
smoker [83]. Carbon monoxide binds to haemoglobin in red blood cells, preventing
affected cells from carrying a full load of oxygen. Smoking affects the function of the
immune system and may increase the risk for respiratory and other infections. There
are several likely ways that cigarette smoke does its damage. One is oxidative stress

that mutates DNA, promotes atherosclerosis, and leads to chronic lung injury [83].

There is much evidence that smoking increases a person’s risk of cardiovascular
disease, cerebrovascular disease (ischaemic and haemorrhagic stroke), aortic
aneurysm and peripheral arterial disease. In Sir Richard Doll’s study [84] the risk of
mortality from any cardiovascular disease in all cigarette smokers was 1.6 times that
of those who never smoked, with the figure rising to 1.9 times in heavy smokers when
compared to non smokers [84]. Over the age of 60 years, the risk of heart attack
doubles in smokers compared to non-smokers, but under the age of 50 years smoking

is associated with a more than five fold increase in risk [85].

A 12 year follow-up study conducted in the US with a one million sample size in
1976 showed that heavy smokers have 1.82 times more risk of dying with CVD
compared to non-smokers [86]. The Whitehall study in 1983, with a 3 year follow-up,
showed that those who smoke more than 2 cigarettes per day (more than 20mg of
carbon monoxide) have 1.47 times higher risk of CHD mortality compared to smokers
who smoke less than 2 cigarettes per day [87]. A cohort study conducted on 17,475
male British civil servants aged between 40-64 and 8,089 male British residents aged
between 35-69 showed that the risk of CHD in men with smoking 1-9 cigs/day, 10-19
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cigs/day and >20 cigs/day is 1.23, 1.72, and 1.89 respectively compared to non-

smokers for a follow-up of 12 years [88].

There are several studies which have shown that smoking is a major risk factor for
stroke [89-91]. The RR for stroke for those who smoked more than 20 cigarettes per
day when compared with non-smokers was 1.47 [95% CI: 1.08 — 2.00] in the
Renfrew/Paisley Study in Scotland [89]. Kurth et al showed that the relative risk of
stroke in subjects who smoke less than 20 and more than 20 cigarettes per day was
1.64 [95% CI: 0.60 — 4.45] and 2.34 [95% CI: 1.38 — 3.96] respectively compared to
non-smokers[90]. In the Caerphilly study the results showed that those who smoke
more than 15 cigarettes a day have an increased risk of 82% for having ischaemic

stroke [91] compared to non-smokers.

An important issue concerns the way in which the ‘levels of smoking’ are measured.
Most of the studies’ measurements were based on the questionnaire answers provided
by the subjects. However, it should be noted that smokers tend to claim that they
don’t smoke whereas non-smokers are unlikely to pretend otherwise. There is little
one could do to avoid misclassification of their smoking habits by the subjects. The
effect will generally to be to under-estimate the effect of smoking and so results are
likely to be conservative, in that the misclassification tends to blur the distinction
between smokers and non-smokers. Even with this uncertainty in the reliability of
measurement of smoking behaviour, smoking is graded as a very important predictor

and cause of CVD.
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4.2.2 The Caerphilly analysis

Smoking is not a continuous measure. It was measured usin

divided the whole sample into nine different categories. These nine categories appear

to be ordinal due to the prior beliefs for predicting the outcome. At the time of the

data collection, men answered their smoking habit from the choices of, never smoked,

given up smoking before 10 years, between 5-9 years, between 1-4, given up in the

last year, cigar/pipe smokers, 1-14 cigarettes/day, 15-24 cigarettes/day and > 24

(o]

cigarettes/day. The bar chart in Figure 4.11 shows the frequencies of the nine different

categories of smoking in the phase two of the Caerphilly cohort.

Figure 4.11
Bar Chart ef Smoking variable in Phase 2

Never Ex:5-G Ex:<1 1-14/d >24/day

Ex:10+ Ex:1-4 cig/pip 15-24/d
smoking habit

Figure 4.12, with 2 plots, shows the probability of having an MI or stroke for the

different groups.
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The risk of MI for ex-smokers less then one year is less than the ris
who were ex-smokers and have not smoked for between 5-9 years. One would expec

these to be reveresd. At phase 2 of the study, very few subjects (1.94%) were ex-

smokers for less than a year. Due to the small numbers in some categories the data
was re-grouped into a smaller number of coherent categories.
Figure 4.13

Probability of MI and stroke respectively for three smoking categories
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The risk of MI for current smokers is higher than for either of the other categories.
The risk of stroke appears to be very similar for ex and current smokers compared to

the risk of stroke for non-smokers.
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4.2.2.1 Smoking and MI
The odds of current and ex-smokers compared to non smokers estimated from the
logistic regression model considering events occurring at any time in the follow-up

pericd are given in the following Table 4.5.

MI QOdds Rat Std Err P>|z| 95 % CI
Ex-smokers 0.966 0.208 0.873 0.634 1.473
Cur. Smokers 1.773 0.347 0.003 1.210 2.604
The results show that there is no significant difference between ex-smokers and non-

smokers for having an ML The effect of smoking on MI is significant when current
smokers and non smokers are compared. The hazard ratios are given in Table 4.6 for a

corresponding survival analysis.

To show how the risk changes in each category of redefined smoking data, Kaplan-

Meier survival plots are shown in Figure 4.14.

Figure 4.14

Kaplan Meier survival estimates for MI with smoking
behaviour
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Table 4.6 - CPHM of Smoking and MI

MI Haz Rat Std Err P>|z| 95 % CI
Ex-smokers 1.013 0.206 0.948 0.680 1.511
Cur. Smokers 1.844 0.338 0.001 1.287 2.642

Figure 4.14 suggests that there is no difference between non-smokers and ex-smokers

for having an MI. However, it appears that the smokers have a significantly greater

risk of an MI then both the other categories, with the survival curves steadily

diverging.
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The odds ratios of the ex-smokers and current smokers compared to the non-smokers

are given in the following Table 4.7.

Table 4.7 — Logistic regression of Smoking and stroke

MI Odds Rat Sid Err P>z| 95 % CI
Ex-smokers 2.687 0.871 0.002 1.418 5.077
Cur. Smokers 2.652 0.849 0.002 1.409 4.947

These results show that the risk of siroke is almost the same for ex-smokers and

current smokers compared to non-smokers. The hazard ratic obtained by Cox’s
proportional hazard model comparing non-smokers and ex-smokers is 2.70 [95% CIL
1.45

45 — 5.06, p = 0.002 ] whereas, comparing the non-smokers with smokers, the

-
h
=i

00

azardss ratio was 2.85 [95% C

estimates are given in the Figure 4.15.

: 1.54 — 5.84, p = 0.002]. Kaplan-Meier survival
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The Kaplan-Meier survival plots show that the risk of stroke is about the same in ex

and current smokers. Nevertheless, there appears to be a significant difference
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4.2.3 Conclusions

When the odds of having an MI with smoking in the Caerphilly men is compared with
the odds ratios quoted in the Sir Richard Doll’s study [92], they appear to be similar.
The OR of MI for the smoking Caerphilly men when compared with non-smokers is
1.844. The OR quoted in the Doll’s study was 1.9, very close to the Caerphilly results.
It is also important to note that Doll’s study compares different groups of smoking
categories as it has a bigger dataset. In the Caerphilly analysis, due to the small
sample size, there were only three categories considered. A study in the US gave an
odds ratio of 1.82 when smokers and non smokers were compared for having an MI
[86], which is similar to the Caerphilly results. The slight variations in the risks may
be attributed to the difference in the location, sample size, outcome and follow-up

period of the study and several other factors.

When the literature from other studies was compared with the Caerphilly analysis, the
risk of stroke again appeared to show similar results to those of the literature. It
appears from the results that the risk of MI for non-smokers and ex-smokers is similar
whereas the risk of stroke for ex-smokers and smokers is similar. This suggests that
the risk of cardiovascular disease for those who quit smoking falls fairly rapidly to
that of non-smokers whereas the risk of a stroke is maintained at the level of current
smokers. Information regarding the partners’ smoking habits was not collected in the
Caerphilly study and therefore the effect of passive smoking on non-smoking
Caerphilly men cannot be estimated.
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4.3 Leisure activity
4.3.1 Literature review

A low level of leisure activity is a major risk factor for ill health and mortality from
all causes. People who do not do sufficient leisure activity have a greater risk of
cardiovascular disease [93]. Being physically active is also thought to improve mental
health and reduces other risk factors such as obesity, high blood pressure and high

blood cholesterol.

For middle-aged men, regular leisure-time physical activity is associated with lower
all-cause mortality and with lower morbidity and mortality from cardiovascular
disease [94-100]. There is also evidence that older people benefit from physical
activity [101, 102]. Some researchers have raised concerns about possible hazards
associated with vigorous activity. The BRHS reported increased CHD events in those
who reported vigorous compared with moderate levels of physical activity [98]. This
increased risk was seen for CHD but not for stroke [100]. The excess risk was
confined to men with hypertension who were vigorously active [103]. The British
regional heart study in 1998 reported that the risk of age adjusted CVD mortality for
light activity=0.54(0.32-0.90), moderate activity=0.26(0.12-0.58) and
heavy=0.43(0.25-0.73) compared with very little activity [104]. Physical inactivity
showed a RR = 1.9 compared with moderate physical activity for having an MI in a
study by James C et.al in 60-70 years old Harvard alumni [105]. A study by Fang et.al
[106] showed hazard ratios of low physical activity of 1.24 (CI=1.06-1.44) compared
with moderately active in 9790 subjects aged 25 to 74 years and followed-up for 17

years.

A Finnish study on 25-74 year old 18,892 men and women showed that moderate and
high physical activity have RRs of 0.57, 0.52 respectively for having a first stroke
compared to low activity [107]. A meta analysis of 31 studies for the risk of stroke by
physical inactivity showed that moderately intense physical activity had a RR of
0.64(95% CI: 0.48-0.87) and moderate physical activity RR of 0.85(95% CI. 0.78-
0.93) compared with inactivity for the risk of first stroke [108].
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4.3.2 The Caerphilly analysis

Data were collected using questions derived from the Minnesota Leisure Time
Physical Activity (MLTPA) questionnaire. It is used to estimate the energy
expenditure expressed as an activity index (AI) in kcal/day from a record of leisure
activity in the Caerphilly cohort [109]. Participants were asked whether they had
undertaken a variety of activities (including walking, sports, house maintenance and
gardening) during the last 12 months and, if so, the frequency and average duration of
this activity. Each activity was assigned an intensity code and energy expenditure was
calculated (as an activity index), in total, and for each level of intensity (light,
moderate, and heavy) [110]. For example, light AT was defined by summing those
activities having intensity codes 2.0, 2.5, 3.0, 3.5, and 4.0 (walking, bowling, sailing).
Moderate AI was obtained by summing activities with intensity codes of 4.5, 5.0, and
5.5 (golfing, digging, dancing) and heavy Al was defined by summing all activities
having intensity codes > 6.0 (climbing stairs, swimming, jogging). Using all these
codes and considering their intensities, energy expenditure of individuals was
calculated. To make Caerphilly results comparable with other studies round the world,
energy expenditure data was divided into three equal thirds i.e., light, moderate and
heavy activity, as was done for the Caerphilly results published elsewhere [110].

4.3.2.1 Leisure activity and MI
The odds ratios of moderate and heavy activity compared to light activity for having

an MI are given in Table 4.8.
Table 4.8 — Logistic regression of leisure activity and MI
MI Odds Rat Std Err P>[z| 95 % CI
Leisure 1 0.662 0.111 0.014 0.477 0.919
Leisure 2 0.645 0.108 0.009 0.465 0.895

where leisure 1 and leisure 2 are moderate and heavy leisure activity compared with

light leisure activity

As in the various studies in the literature review, the Caerphilly data shows that the
odds ratios of moderate and heavy activities show a significant reduction in risk of an
MI when compared with men with light leisure activity. Cox’s proportional hazard
model showed very similar results with the hazard ratios of 0.66 [95% CI. 0.49 —
0.89] and 0.66 [95% CI: 0.49 — 0.90] (p values and standard error for both groups
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were 0.007, 0.008 and 0.102, 0.103) for comparing men with no leisure activity and

moderate and high leisure activities respectively. Kaplan-Maier survival curves of

a

1ese three groups are given in Figure 4.16 illustrate this relationship between the tim

“D

and the risk of leisure activity in the three different groups.

Figure 4.16
Kaplan Meier survival estimates for MI wiih leisure
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The odds ratios of moderate and heavy activity compared to light activity for having

a stroke 1s given in Table 4.9.

Table 4.9 — Logistic regression of Leisure activity and stroke

MI Odds Rat Std Err P>|z| 95 % CI
Leisure 1 0.707 0.149 0.126 0.453 1.103
Leisure 2 0.924 0.196 0.707 0.610 1399
where leisure 1 and leisure 2 are moderate and heavy leisure activity compared with

light leisure activity

From the above table, it is clear that different levels of leisure activity do not show
any significant difference from no leisure activity for having a stroke. When Cox’s

proportional hazard model was used to estimate the hazard ratio of men with

(4]

heavy activity compared to light activity men for having a stroke, the
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hazard ratios were 0.68 [95% CI: 0.44 — 1.05] and 0.90 [95% CI: 0.61 — 1.34] (p
values and standard error for both groups were 0.081, 0.610 and 0.149, 0.183). There
appears to be statistically no significant difference between any activity levels of men

for the risk of stroke.

4.3.3 Discussion

Heavy and moderate leisure activity have been shown to be associated with
significantly reduced risks, when compared to low leisure activity, of having an MI
These Caerphilly results suggest that there is at most a small difference between the
effects of heavy and moderate leisure activity. These results are consistent with those
reported in the literature review Though some studies reported that the risk of MI is
increased in men who undertake vigorous leisure activity compared to moderate
activity [111], the Caerphilly study showed no significant difference between those
two groups. The British regional heart study reported the risk of age adjusted CVD
mortality for light activity=0.54(0.32-0.90), moderate activity=0.26(0.12-0.58) and
heavy=0.43(0.25-0.73) compared with very little activity [104]. Though the
Caerphilly results are not as highly significant as these results, there appear to be
some similarities. This might be due to several reasons such as difference in
populations, relatively low power for identifying such a difference due to the sample
size, measuring procedures and all other potential factors. An important point that
should be considered is that the overall message is one of health benefits of increased

leisure activity, whether moderate or vigorous.

The risk of stroke in men who undertake moderate or high leisure activity compared
with low leisure activity appears to show no statistical significance, in contrast to the
results of a meta analysis [108]. The fact there were few events of stroke in the
Caerphilly men could be a possible explanation, or it could be that there really is no
difference between the different activity groups in respect of having a stroke. Though
the literature review appears to show significantly decreased risks of stroke with
leisure activity, the data analysis carried out in the previous section did not show a

statistically significant difference. This might be due to low numbers of subjects.
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4.4 Regression dilution bias (RDB)

There is a need for two measurements of variables that are taken at two different
points of time to quantify the measurement error of the variable. Alcohol consumption
was measured in exactly the same way in subsequent phases (3™ and 4™ of the
Caerphilly cohort study. The same questionnaire was used on each occasion, which
made it easy to calculate the final alcohol consumption score for each individual.
However, leisure activity was measured using different questionnaires in the
subsequent phases, which makes it difficult to compare these with the 2™ phase
measurements. The one used in the 2™ phase was the thorough one (MLTPA)
whereas the rest of the phases had just one question asking the subjects whether they

were doing any leisure activity or not.

4.4.1 Regression Dilution Bias of alcohol consumption
Measurement error in alcohol consumption can be estimated with the methods
explained in chapter 3. The information required for calculating error factor [112] is

given in Table 4.10.

Table 4.10: Summary statistics for regression dilution bias for MI and alcohol

consumption
Obs Mean Std.Dev Min Max
al 1418 106.30 82.13 2.66 417.35
a2 1418 99.30 81.04 2.66 401.58
a3 1418 94.60 79.34 2.66 390.17
b1 1418 176.68 156.19 0.87 839.41
b2 1418 163.75 153.39 0.87 802.55
b3 1418 154.99 149.45 0.87 775.99
a2-at 1418 -7.00 58.57 -308.87 288.03
a3-a1 1418 -11.70 66.73 -321.44 262.86
b2-b1 1418 -12.93 114.10 -644.76 608.74
b3-b1 1418 -21.69 129.37 -669.76 520.08

where a; = logalc™(i), b; = logalc’(i)*log(logalc(i))
logalc(i)=log(4+alc in phase (i+1)) where i=1,2 & 3

There were 1418 men with all the information available for estimating the error
coefficients. Estimation of coefficient of measurement error was carried out using the
model fitted for all men who were present in all phases of the cohort. The relationship
between alcohol consumption (logalc) and MI was considered to illustrate this

example. The fractional polynomial regression equation estimating the relationship
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between MI and logalc can be represented in the form of an equation as follows

logit(p) = ln(1 £ ): B, + B, xlogalc® + B, x logalc® log(logalc) ...... 4.5)
\1=P)
where fs are estimated when the log likelihood funciion is maximised. The adjusted

coefficients takes the variations with in subjects into account are denoted by [5‘; their

values are given in Table 4.11.

Bo Bi B2
Base Line fs -2.2224 =02 0122 0.0087
(phase 2)
ps adjusted for -1.90634 ~-0.01823 0.0101
Phase 3
fs adjusted for -1.8748 -0.01961 0.0109%
Phase 4

The Figure 4.17 shows the relationship between the risk of MI and aicohol
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This shows that the model adjusted for variations shows a stronger association
between the risk of MI and alcohol consumption but the interpretation must be

cautious because of the long time intervals between the measurements.
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4.4.2 Regression Dilution Bias for Smoking

Repeated measurements were made in the subsequent phases of the cohort on the
smoking behaviour of the Caerphilly men. Assuming that the smoking status has not
changed from phase 2 to phase 3 of the Caerphilly study, the sensitivity and
specificity for the smoking status in phase 2 and 3 was 0.76 and 0.97 respectively.
Using these sensitivity and specificity values along with the tabulated values of
smoking status and MI in the phase 2 of the Caerphilly study in Table 4.12,

Table 4.12: Smoking behaviour in Phase 2

MI
Smoking Status| | 1 =event | 0 =no event
Smoker 67 488
Non-smokers 70 727
Total 137 1215

the adjusted odds ratio is given by the formula

rn (a+ N, x(Sp—D)N, xSe-c)

= =3.76
OR (c+ N, x(Sp-1)XN, x Se—a)

Using the formula for standard error of the adjusted OR in equation 3.38, the 95% CI
is (1.50, 9.40). This adjusted odds ratio is calculated on an assumption that that there
is no change in the smoking habit from phase 2 to phase 3. However, this is far from
true. There is will some changes in smoking habit as some of them would quit
smoking. Therefore, assuming that smoking habit does not change from phase 2 to

phase 3 is not going to be right.
According to a meta-analysis based on 10 studies, the sensitivity and specificity of
smoking behaviour measured by superior cotinine validation methods showed the

sensitivity ranged from 0.82 to 1 and specificity ranged from 0.91 to 1 [57].

If it is assumed that the sensitivity and specificity is 0.90 in the Caerphilly analysis
instead the one obtained from the Caerphilly data, the adjusted odds ratio was 1.56
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(95% CI: 1.003, 2.438). If the sensitivity and specificity were assumed to be 0.80, the
adjusted odds ratio was 1.84 (95% CI 1.01, 3.33).

Since the method is depended on the sensitivity and specificity of smoking habit in 2™
and 3" phase and assumed that there is no change in the smoking habit between the
phases, these results should not be taken seriously. By using the sensitivity and
specificity from the meta-analysis study showed that the adjusted odds ratio is not that
high compared to the adjusted odds ratio calculated using the sensitivity and
specificity of the Caerphilly data. Therefore, more caution is needed in using these

results.
The other method mentioned in the statistical methods chapter (section 3.7.3 Case 2)

is was not used to this data because the U and V values were not in the feasible

regions of the model.
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4.5 Conclusions

This chapter performs an analysis of biological risk factor and concludes that there is
no significant association between alcohol consumption and the risk of MI. The risk
of stroke with an increase in alcohol consumption increases as alcohol consumption

increases.

There are several methods to measure the regression dilution bias for the data
assumed to be normally distributed. To make things easier, alcohol consumption was
taken on the log scale after adding 4 to the actual consumption scores to avoid taking
the logarithm of teetotallers (i.e., alcohol consumption = 0). This transformation
converts alcohol consumption score into a distribution that was approximately
normal. Regression dilution bias was estimated with ‘logalc’. The other major
assumption is about the direction of the measurement error that was assumed to be on
both directions of the scale. However, this may not be true in the case of alcohol
consumption. For those who quote themselves as teetotallers, the measurement error

cannot be less then zero.

Smoking analysis showed that the risk of MI is similar for ex-smokers and non-
smokers. Smokers showed a very high risk of MI compared to the non-smokers.
Current and ex-smoking showed an increased risk when compared with non-smokers
for having stroke. These stroke results did not show similar results as in the studies

from the literature review may be because of low sample sizes.

Leisure activity showed an increased risk of MI when moderate and high activity
groups were compared with the low activity group. However, it was not evident that
high leisure activity had any negative effects i.e., the risk of MI was significantly
lower for high activity men compared to the low activity men. The literature review
suggested that the high leisure activity has an increased risk of MI but the Caerphilly

analysis did not confirm this.
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Chapter 5

S Biological factors

Previous chapter has dealt with the behavioural factors that may affect the risk of MI
or stroke. This chapter analyses with the biological risk factors such as blood

pressure, cholesterol levels and body mass index.

5.1 Literature review to blood pressure

In older men with systolic hypertension, the pressure on the arterial wall is
significantly greater than in younger men. This is thought to be due to an increased
rigidity of the arterial wall. Mechanical changes in the arterial wall, such as
atherosclerosis, increase overall arterial rigidity. This decrease in compliance results
in higher blood pressures as the large vessels become less able to reduce the pressure

generated by the left ventricle.

The importance of high blood pressure as a risk factor of VAD has been demonstrated
by several studies. It is also been shown that, compared to individuals with normal
blood pressure, those with high blood pressure more commonly possess other VAD
risk factors. The aim here is to show the importance of blood pressure as a risk factor

for VAD.

The Framingham study [113] showed a 41% and 34% greater risk of cardiovascular
disease for an increase of 1 standard deviation of SBP and DBP respectively, for men
aged between 35-64. Wilhelmsen et al [114] showed those who have SBP>176 units
have a RR of 1.92 for an MI event compared to those who had SBP<145, when
adjusted for various standard risk factors. These two studies together with many

others, have demonstrated the importance of SBP as a risk factor to CVD.

A study followed 11,150 male physicians aged 45-60, with no history of CVD or
antihypertensive treatment, for 2 years. It showed that for every 10mmHG increase in
SBP and DBP, the risk of CHD is increased by 31% and 46% respectively [115]. At
first sight, the results of this study may suggest that the effect of DBP on the risk of
VAD is greater then the effect of SBP. Since SBP has a greater range than DBP, these
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results are a little misleading. A better comparison is to consider the increased risk
associated with an increase of 1 SD. Following a similar argument, several other
studies showed that SBP is a better predictor of CVD than DBP [116, 117]. A meta
analysis by the Prospective Studies collaboration with one million adults showed that
a 20mmHg increase in SBP is approximately equivalent to a 10mmHg increase in
DBP in showing a two fold increase in risk for CVD [118]. The standard deviation of
SBP is almost twice the standard deviation of DBP [118]. Though DBP appears to
show a larger odds ratio, the actual risks of MI due to SBP and DBP are very similar.

Using data from the Framingham and Whitehall Studies, Clarke et al measured the
regression dilution bias of blood pressure over 16 years and 26 years respectively
[119]. They show that uncorrected associations of disease risk with baseline
measurements underestimate the strength of the real associations with the usual levels
of these risk factors during the first decade of exposure by about one-third, the second
decade by about one-half, and the third decade by about two-thirds. Since there are
three measurements of blood pressure in the CaPS, it would be interesting to
investigate the effect of regression dilution on the CaPS data and compare the results
with the Framingham study.

Interestingly, some researchers have suggested that the same path of physiological
mechanisms for SBP and DBP results in an increase of pulse pressure, which is
defined as the difference between systolic and diastolic blood pressures. Pulse
pressure is thought to reflect arterial compliance, which in turn reflects the elasticity
of the arterial wall. It is argued that a smaller difference between diastolic and systolic
pressure indicates greater arterial elasticity as the arterial walls have absorbed more of
the peak pressure due to systole. There is evidence that elevation in pulse pressure
itself may be an important independent risk factor for all-cause and cardiovascular
mortality, and analysis of an American study with 4736 men showed that every
10mmHg increase in pulse pressure increases the risk of heart failure by 32% [120].
Data for the Framingham Heart Study has suggested that neither SBP nor DBP is
superior to PP in predicting coronary heart disease risk [121]. Other studies also
showed that pulse pressure is superior in predicting heart disease than SBP or DBP

[122-124]. This suggests that the pulse pressure is a better predictor of VAD.
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Most of the studies had a general population as their study subjects. Some studies,
however, used population samples with no previous heart disease [122]. For men
with prevalent IHD, the risk may not be the same as men without prevalent [HD
because antihypertensive drugs may already been prescribed for them, leading to a
reduction in blood pressure. This will have the effect of reducing the estimated effect
of blood pressure on the risk of heart disease. Several studies discussed the effects of
antihypertensive drugs but those studies will be discussed in a literature review of

intervention studies in chapter 9.

Statistical procedures used to identify and model plausible relationships between SBP,
DBP, pulse pressure, total cholesterol, HDL cholesterol and BMI with MI and stroke
are very similar. Since these variables are continuous, the procedure used to identify a
suitable model is similar to that for alcohol consumption and MI, because alcohol

consumption was considered as a continuous variable in the previous chapter.
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For the sake of clarity, the analyses for SBP, DBP and PP are presented separately.
5.2.1 Systolic Blood pressure (SBP)

Systolic blood pressure was measured in all four phases of the Caerphilly cohort. As
this thesis is based on data from the cohort after it had been augmented in phase 2, the

- . d h
includes measurements from the 2% 3™ and 4" phases only. The

n
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distributions of SBP in the three phases are given in the Figure 5.1. The purpose of
these histograms is primarily to visualise the distribution of the data in order to use
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if there are any changes in SBP distributions over the period of three phases of

follow-up.
Figure 5.1 — Histograms of SBP in 2", 3%, and 4" phases
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In the above Figure 5.1, all the three plots show fairly normal distributions. The

summary statistics of these three measurements are given in the Table 5.1.



Variables Obs Mean Std. Dev Min Max
SBP in Ph 2 1839 146.58 271 90 236
SBP in Ph 3 1610 144.85 22.44 74 226
SBP in Ph 4 1416 145.84 22.15 80 240

After excluding the missing values in the SBP, the total number of observations
available in the end phase is given for each phase in Table 5.1. From the above table,

it can be observec

5.2.1.1.1. Linear logistic regression
Lowess smoothing is used to give a graphical approximation of the relationship

between SBP and MI. Figure 5.2 shows the relationship between MI and SBP.

Figure 5.2: Predicting MI using baseline SBP by logistic
regression
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The regression coefficient table of the linear logistic regression is given in Table 5.2.

Table 5.2 - Logistic regression of baseline SBP and MI

MI Coef Std Err P>[z] 95 % CI
SBP 0.018 0.003 0.000 0.012 0.024
Const -4.523 0.453 0.000 -5.419 -3.638

Substituting these values in the equation, the regression equation is as follows.

logit(p) = m(l—”—) = 0.0185BP — 4.523 ceeeerei(5.1)
-p

where p is the probability of MI.

The above equation means that the log odds of MI increases by 0.018(1.8%) for every
1 mmHg increase in SBP. However, this is not helpful to understand how much the
risk of MI increases by SBP because the one unit increase in SBP is very small. For a
10 mmHg increase in SBP, there is an increased odds of 19.4% for having an ML
Fractional polynomial regression model was also used, but showed no significant

improvement over the linear logistic model (gain in deviance 0.19).

5.2.1.1.2 Cox’s proportional hazard model (CPHM)
The hazard ratios estimated by the CPHM are given in Table 5.3 and the hazard

function is shown in the equation 5.2.

Table 5.3 - CPHM of baseline SBP and MI

MI Haz.r Std Err P>|z| 95 % CI

SBP 1.017 0.003 0.000 1.012 1.022

The information in the above table can be interpreted to the equation as follows

1og[h—{M)—}J =0.017xSBP  ..ccoevvniiiniieeiiieei, (5.2)
hy (2)

CPHM showed a significantly increased risk of MI for every unit increase in SBP.
The gain with a fractional polynomial model was not significant (deviance gain 0.17)

suggesting that a linear model is adequate.
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.1.2 SBP and Stroke

5.2.1.2.1 Logistic regression

To have a basic idea of how the relationship between SBP and stroke looks, a Lowess
smoothed plot is shown in Figure 5.4 below along with the appropriate model fitted to

it.

Figure 5.4: Relationship between SBP in phase two
and stroke for all men
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The regression coefficient table for baseline SBP and stroke is given in Table 5.4. The

odds ratio is 1.013 with 95% confidence interval as [1.006, 1.021]. For an increase of

10 mmHg in SBP, the odds of a stroke increases by 14%.

Table 5.4 — Logistic regression of baseline SBP and stroke
Stroke Coef Std Err P>z 95 % CI
SBP 0.013 0.004 0.000 0.006 0.021
Const -4.535 0.579 0.000 -5.671 -3.400

) p e o 'y £ L
10g1t(p)=l“{1 - W=-4 535+ 0.013x SBP..vvrccreccanes i (9.3)
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From the above table and equation, SBP appears to be a highly significant risk factor
for stroke. The deviance gain using fractional polynomial regression was not
significant (Gain=0.14).

5.2.1.2.2 Cox’s proportional hazard model

Cox’s proportional hazard model also gave hazard ratios very similar to the odds
ratios (1.013, 95% CI [1.01, 1.02]) given by the linear model. The hazard ratio can be

rewritten in the form of an equation follows

103{M) =0.013xSBP  ..cooviiiiiiii, (5.4)
ho(2)

A fractional polynomial model showed no significant improvement in the deviance

(gain=0.12). This shows that the linear model is adequate for these data.
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5.2.2 Diastolic Bleod pressure
Diastolic blood pressure was measured along with SBP in all four phases of the
Caerphilly cohort and data from phases 2, 3 and 4 are used here. Figure below shows

the distributions of the three measurements taken.

Figure 5.5 — Histograms of DBP in 2", 3, and 4" phases
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The means and standard deviations of DBP measured in three phases are given in

Table 5.5.

at g . th
Table 5.5 — Summary statistics of DBP in 2", 3™ and 4" phases

Variables Obs Mean Std. Dev Min Max
DBP in Ph 2 1836 84.83 11.84 52 144
DBP in Ph 3 1598 81.88 11.65 52 132
DBP in Ph 4 1397 78.63 11.43 52 121

From the above histograms, it is evident that DBP too follows nearly a normal

e 1=

distribution but the means fa

1 slightly from 2™ phase to the 4™ ph

There wer
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men with DBP lower than 50 and 8 men with DBP more than 120 in phase 2. These
three very low values, in particular, had a considerable effect on the modelling. When
5 were excluded from the analysis, the mean of the DBP
measured in the 2" phase of the cohort dropped slightly. However, the reduction over

time was also shown when means and standard deviations of men with all three
QO

oy

A Lowess smoothed plot for the relationship between MI and DBP is shown aleng

with a linear logistic fit in Figure 5.6 below.

Figure 5.6: Relationship between DBP in phase two and MI
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The relationship appears to be non-lincar. However, the gain of a fractional
polynomial model over the linear fit is only 0.88 with 4 degrees of freedom and that is
statistically not significant. Furthermore, none of the literature review showed a non-

linear relationship between DBP and MI. Therefore, a linear model is appropriate.
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The regression coefficient table for baseline DBP and Ml is given in Table
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Table 5.6 — Logistic regression of baseline DBP and MI

MI Coef Std Err P>|z| 95 % CI
DBP 0.029 0.006 0.000 0.017 0.041
Const -4.361 0.542 0.000 -5.423 -3.299

The results are statistically significant and show that DBP is a very significant

predictor of MI.
Table 5.6 can be represented in an equation as follows
logit(p) = ln(IL) = -4.361+ 0.029 X DBP. ...ccuvereueeesesese (5.5)
-p

where p is the probability of having MI.

To an increase of 10 mmHg in DBP results in an increase in odds of MI of 34%.

5.2.2.1.2 Cox’s Proportional hazard model

The hazard ratios for every ImmHg increase in DBP are given the Table 5.7.

Table 5.7 — CPHM of baseline DBP and MI

MI Haz ratio Std Err P>[z| 95 % CI

DBP 1.028 0.006 0.000 1.016 1.039

This can be rewritten in the form of an equation with time covariate as follows

log(w] = 0.028DBP ..., (5.6)
hy (2)

The gain in deviance by the fractional polynomial Cox’s model over the above model

is 1.61 and that is statistically not significant.
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5.2.2.2 DBP and Stroke

A Lowess smoothed plot for the relationship between stroke and DBP for all men is

given in the figure below. A linear model is also fitted.

Figure 5.7: Relationship between DBP in phase II and stroke
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The relationship appears to be linear. The gain of a fractional pol‘v“ omial model over

cally not significant.
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the linear fit is 0.48 with 4 degrees of freedom, which is
d

Therefore, a linear model can be concluded as being adequate.

The log odds regression coefficient table for baseline DBP and stroke for all men is

Table 5.8 — Logistic regression of baseline DBP and siroke foi all men

Stroke Coef Std Err P>|z| 95 % CI
DBP 0.018 0.008 0.024 0.002 0.034
Const -4.138 0.687 0.000 -5.550 -2.857

The resulis are statisticaily significant.

Table 5.8 can be represented in an equation as follows

logit(p) = InL P ] = 4,138+ 0.018X DBP cvssssssssssnns (5.7)

o0
(=)




where p is the probability of having stroke. For an increase of 10 mmHg of DBP, the
odds of stroke increases by 20%.

5.2.2.2.2 Cox’s Proportional Hazard Model and Weibull regression model
Cox’ proportional hazard model also showed similar results. Table 5.9 gives the
hazard ratios for an increase of ImmHg in DBP.

Table 5.9 — CPHM of baseline DBP and stroke

MI Haz ratio Std Err P>z 95 % CI

DBP 1.018 0.008 0.017 1.003 1.033

The Table 5.7 can be rewritten in the form of an equation as follows

IO{MJ =0.018DBP.....coeoiiiiiiiiiiiiiiiie (5.8)
ho(2)

A fractional polynomial model for the Cox’s proportional hazard model showed no

significant gain (deviance gain 0.44) suggesting that the linear model is adequate.
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5.2.3 Pulse Pressure
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The summary statistics of PP are given in Table 5.10.

Table 5.10 — Summary statistics of PP in 2", 3" and 4" phases

Variables Obs Mean Std. Dev Min Max
PP in Ph 2 1836 61.72 17.63 20 136
PPin Ph3 1598 63.27 17.87 20 130
PP in Ph 4 1397 67.59 17.69 15 150




measurements were considered, the mean increased over the period of the study
(phase 2= 61.1 (SD=17.4), phase 3= 62.8 (SD=17.1), phase 4=67.6 (SD=17.7)). Mean
SBP stayed fairly constant at the end of phase 4 but the mean of DBP fell. So the
increase in the average pulse pressure is not surprising
5.2.3.1 PP and MI
A Lowess smoothed plot for the relationship between MI and PP, along with logistic
and fractional polynomial models is given in Figure 5.9 below.
Figure 5.9: Relationship b n PP in ph wo and MI
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The gain in deviance of the fractional polynomial model over the linear model is 1.19;

that is statistically not significant and again suggests the linear model is adequate.
Furthermore, none of the studies in the brief literature review showed a non-linear

relationship between pulse pressure and MI therefore, a linear model was used
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5.2.3.1.1 Logistic regression
The regression coefficient table for baseline PP and MI for men without prevalent
IHD is given in Table 5.11.

Table 5.11 — Linear logistic regression of baseline PP and MI

MI Coef Std Err P>z 95 % CI
PP 0.016 0.004 0.000 0.009 0.023
Const -2.885 0.257 0.000 -3.431 -2.433

Substituting these values in the equation, the regression equation is as follows.
logit(p) = m(l—l’—) = 0.016PP — 2.885 evreeororn. (5.9)

-p
where p is the probability of having MI.

For an increase in PP by 10 mmHg, the odds of MI increase by 18%.

5.2.3.1.2 Cox’ proportional hazard model

CPHM showed similar results when compared to linear logistic regression in the
above section. The gain obtained by the fractional polynomial model over the linear
model was 1.36 which is not significant. The hazard ratio for an increase of 1 mmHg

in PP is given in the Table 5.12.

Table 5.12 — CPHM of baseline PP and MI for men without prevalent IHD

MI Hazr Std Err P>z] 95 % CI

PP 1.016 0.003 0.000 1.011 1.024

This can be rewritten in the form of an equation as follows

log[—}-l-{—(w)—}) Z0.016PP oo, (5.9)
hy (2

For an increase in PP by 10 mmHg, the odds of MI increase by 18%.
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A Lowess smoothed plot for the relationship between stroke and PP for all men along

with the different modelling strategies fitted is shown in the Figure 5.10.

Figure 5.10: Predicting Stroke using baseline PP
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The relationship appears non-linear. The model can be improved if fractional
polynomial regression is used. The gain in the deviance of a fractional polynomial
model over the linear logistic model is 5.17 with 4 degrees of freedom. It shows that

the fractional polynomial relationship between pulse pressure and stroke is

5.2.3.2.1 Linear logistic regression
The regression coefficient table for baseline PP and stroke for all men is given in

Tabie 5.13.

Stroke Coef Std Err P>z 95%ClI
PP 0.013 0.005 0.006 0.004 0.023
Const -3.431 0.334 0.000 -4.086 -2.775




where p is the probability of having an MI.
Substituting these values in the equation, the linear logistic regression equation is as

follows.

logit(p) = 1n(1LJ = 0.013PP = 3.43 creerrrerene (5.16)

where p is the probability of having a stroke.
For an increase of 10 mmHg in PP, the odds of stroke is increased by 13%

5.2.3.2.2 Cox’s Proportional hazard model

Cox’ proportional hazard model also showed similar results with a hazard ratio of
1.17 [95% CI: 1.09 — 1.28] for every 10 mmHg increase in PP. The hazard ratios for
an increase of lmmHg of PP are shown in Table 5.14. If fractional polynomial
regression were to be used in CPHM, the gain in the deviance as 3.03 which is

statistically not significant.

Table 5.14 — CPHM of baseline PP and stroke

MI Hazard ratio Std Err P>z 95 % CI

PP 1.015 0.005 0.001 1.006 1.025

The hazard ratio in the above table can be written in the form of an equation as

follows

104@@) = 0.015PP oo, (5.10)
hy (9
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5.3 Regression Dilution Bias of blood pressure

SBP and DBP were measured in both subsequent phases of the Caerphilly study.
There were 1352 men with measurements in phases 2, 3 and 4. The summary statistics

of the systolic, diastolic and pulse pressures for all the men is given in the Table 5.15.

Table 5.15: Summary statistics for regression dilution bias for MI and SBP, DBP

and PP
Variable observations | Mean | Standard deviation
SBP in P2 1352 146.07 22.37
SBP in P3 1352 144.89 21.95
SBP in P4 1352 146.21 21.86
SBP2-SBP3 1352 1.18 20.24
SBP2-SBP4 1352 -0.13 22.66
| |
DBP in P2 1352 84.98 11.42
DBP in P3 1352 82.10 11.44
DBP in P4 1352 78.58 11.36
DBP2-DBP3 1352 2.88 11.89
DBP2-DBP4 1352 6.40 12.28
1 |
PP in P2 1352 61.09 17.37
PP in P3 1352 62.79 17.71
PP in P4 1352 67.63 17.74
PP2-PP3 1352 -1.70 16.69
PP2-PP4 1352 -6.53 18.31

5.3.1 SBP

The regression dilution bias due to variation in SBP is estimated using the information
given in the Table 5.16. After adjusting the regression coefficient by the coefficient of
regression dilution using the method explained in section 3.7.1, the baseline and
adjusted B’s are given in the following table.

Table 5.16: fs adjusted with coefficient of measurement error

Bo Bi
Baseline  fs -4.409 0.0133
(phase 2)
Bs adjusted for -5.751 0.0225
Phase 3
Bs adjusted for -6.449 0.0272
Phase 4
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1.., the regression coefficients to
model was fitted using the 1352 subjects who had all the three measurements. The
second row represents the coefficients adjusted to the regression dilution bias due to

the variation in SBP using the 3™ phase SBP values whereas the 3™ row represents the

<t

probability of MI when fitted with the baseline fs and the adjusted fs in the

I

subsequent phases.

Figure 5.11: Predicting MI with SBP for all men using baseline

and RDB adjusted models
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phases. There appears to be a twofold increase in the log odds ratio when adjusted

with the 4™ phase SBP values compared with the baseline risk.

The regression dilution bias due to variation in DBP is estimated using the
information given in the Table 5.17. After adjusting the regression coefficient by the
coefficient of regression dilution using the method explained in section 3.7.1, the

baseline and adjusted S s are given in the following table.
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Table 5.17: #s adjusted with measurement

| Bi
Baseline  fis -5.016 0.0298
(phase 2)
fs adjusted for = g D88 0.0651
Phase 3
s adjusted for -8.487 0.0707
Phase 4

In the above table the first row represents the regression coefficients at the baseline
i.e., the regression coefficients to the logistic model fitted to the DBP and MI. This
model was fitted using the 1352 subjects who had all the three measurements. The
second row represents the coefficients adjusted to the regression dilution bias due to
the variation in DBP using the 3™ phase DBP values whereas the 3™ row represents
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Figure 5.12: Predicting MI with DBP for ail men usiang baseline

and RDB adjusted models
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In the Figure 5.12, when the baseline coefficient was adjusted using the coefficient of

measurement error, the risk of MI due to DBP appears ic increase cver

U'l

phases. There appears to be a twofold increase in the log odds ratio when adjusted

with the 4™ phase DBP values compared with the baseline risk.
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adjusted f’s are given in the following table.

Bo Bi
Baseline  fs -3.062 0.0101
phase 2)
?s adjusted for -3.589 0.0187
Phase 3
ps adjusted for -3.829 0.0226
Phase 4

In the above table the first row represents the regression coefficients at the baseline
i.e., the regression coefficients to the logistic model fitted to the PP and MI. The

econd row represents the coefficients adjusted to the regression dilution bias due to
the variation in PP using the 3" phase PP values whereas the 3™ row represents the
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coefficients adjusted using the 4" phase PP values. The Figure 5.13 shows the

probability MI when fitied with the baseline s and the adjusted Js in the
subsequent phases.
Figure 5.13: Predicting MI with PP for all men using baseline

and RDB adjusted models
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In the above figure, when the baseline coefficient was adjusted using the coefficient
of measurement error, the risk of MI due to PP appears to increase over the
subsequent phases. There appears to be almost twofold increase in the log odds ratio

when adjusted with the 4™ phase PP values compared with the baseline risk.

5.4 Discussion

5.4.1 SBP

The odds ratio of having an MI for every 10mmHg increase in SBP is about 1.19 in
Caerphilly. The Framingham study [113] from the literature review showed a 41%
greater risk of VAD for men with an increase of 1 standard deviation of SBP. In the
CaPS, the odds of MI increases by 50% with an increase of 1 standard deviation of
SBP. The range of age in the Caerphilly analysis is 45-59 whereas the range of age in
the Framingham analysis is 36-64 and the results shown by them were adjusted for
age. Furthermore, the outcome variable used in the Framingham analysis was VAD
whereas the outcome of this analysis is MI. These could be the possible reasons for
the effect of SBP on risk to be higher in Caerphilly men. A Swedish study showed
that the odds of heart failure for men with 145<SBP<176 and SBP>175 compared to
the SBP<146 are 1.31 (95% CIL. 1.13 — 1.53) and 1.92(95% CI: 1.57 — 2.35)
respectively [114]. For the same groups when compared in the CaPS, the odds were
1.27 (95% CI: 0.94 — 1.73) and 3.15 (95% CI: 2.15 — 4.6). It appears that the odds of
MI in CaPS are higher then the odds of heart failure in the Swedish study for the high
SBP group. However, the outcome variables in the CaPS and the Swedish study are
slightly different; this could possibility explain some of the difference in the results.
From the analysis of stroke and SBP in the CaPS, the odds of stroke increases by 14%
for every 10mmHg increase in SBP. The Framingham study from the literature review
has used the outcome variable as CVD, which combines the MI and stroke. Therefore,
a direct comparison cannot be made. However, the odds of stroke in the CaPS for an
increase of 1 SD are 35%. Other studies discussed in the literature review have also
used as their outcome variable either CHD or VAD, making it difficult to compare the
results with those of CaPS.

The odds of MI appear to show a twofold increased risk when adjusted with the 3™
and 4™ phase repeated measures. The Oxford study based on the Framingham data
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and Whitehall data showed that the baseline measurements underestimate the effect of
SBP on risk by one third in the first decade [119]. Whereas, in the CaPS analysis,
when the baseline is adjusted for the 3™ and 4™ phase repeated measurements, which
is technically a decade, there appears to be slightly more than twofold increase in the
odds of MI. There were several repeated measurements carried out in the Framingham
study to measure the regression dilution due to variation in SBP more accurately then
the Caerphilly analysis. The CaPS analysis is a bit crude as it is based on only three

measurements.

5.4.2 DBP

A Study of 11,150 male physicians aged 40-84 years who were free of heart disease at
recruitment showed an increased risk of VAD by 1.46 [95% CI: 1.26 — 1.69] for every
10mmHg increase in DBP [3]. The increased odds of MI with DBP in Caerphilly men
is 1.35 [95% CI: 1.19 — 1.51] per 10 mmHg increase in DBP. Benetos A, et al [116]
showed that the risk of CVD for men with DBP<90 compared with men having DBP
between 90-99 and DBP>99 an RR of 1.31 (95% CI: 0.94 — 1.83) and 1.60 (95% CI:
1.16 — 2.20). The CaPS results showed an increased odds of 1.67 (95% CI: 1.21 —
2.30) and 2.43 (95% CI. 1.66 — 2.47) for MI when same groups of DBP are
considered for the analysis. However, the results in Benetos A, et al [116] were
adjusted for various other cardiovascular risk factors. In addition, the outcome of the
study was CHD mortality, rather than MI and stroke events as in CaPs. Furthermore,
the study sample had a mean age of 52 with a standard deviation of 11, whereas, in
the CaPS, the mean age is 56.8 with an SD of 4.5. Finally, those results were adjusted
for hypertensive treatment. This could probably explain some of the differences in the
results. The odds of stroke with DBP appear to be 20% with an increase in DBP by
10mmHg. The studies discussed in the literature review used CVD as an outcome
which includes stroke. Therefore, a direct comparison cannot be made. Regression
dilution due to the variation in DBP in the CaPS analysis showed that a single
measurement of DBP underestimates the odds of MI by more than 100% when
adjusted for 3™ and 4™ phase measurements. However, in the analysis of Framingham
and Whitehall study data, Clarke et al suggest an underestimation by 50% [119]. As
explained in the case of SBP, the regression dilution due to the variation in DBP

effect is about 100% in the case of Caerphilly study whereas the Clake et al study
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estimated it to be around 50%. Their results are more trustworthy due to larger

numbers and more repeated measurements.

5.4.3 PP

Pulse pressure in the CaPS showed an increased odds of MI and stroke by 18% and
13% respectively for an increase of 10 mmHg. Sesso et al. showed a hazard ratio of
1.23 (95% CI: 1.09 — 1.40) for a 10 mmHg increase in PP [122]. However, their
outcome was CVD rather then MI or stroke and this may explain the smaller effect
found in the Caerphilly analysis. The odds ratio of a 10mmHg increase in PP in the
Caerphilly analysis is 1.18 [95% CI: 1.09 — 1.26] whereas the odds reported by an
American study [120] were 32%. Several factors, including difference in age groups
and lifestyle may explain the reason for higher odds in the American study. The
adjustment of measurement error and random fluctuations show that one measurement
of pulse pressure underestimates the risk of MI. when the repeated measurements
were used; there was a almost a twofold increase in odds. However, these results
should not be taken seriously as this twofold increase is due to the modelling
measurement error and random fluctuations in PP and also, there very few repeated

measurements available in the Caerphilly data.

Although PP is thought to reflect arterial elasticity, it does not appear to be a better
predictor of VAD in Caerphilly than either systolic or diastolic pressure. While high
PP almost certainly corresponds to high SBP and hence an increased risk, a low PP
could occur with normal SBP and high DBP, which might also be associated with a
higher risk. So the interpretation of association between PP and MI or stroke is not

entirely clear.
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5.5 Conclusions for Blood pressure

A brief literature review has shown that SBP, DBP and PP are all important risk
factors for cardiovascular disease. Most of the literature review showed that the risk
of MI and stroke is significantly increased for increased levels of blood pressure.
Some studies have shown that the pulse pressure is more strongly associated with the
risk of CVD than the SBP and DBP. But as discussed in the discussion of PP, but
there is not a strong empirical case for preferring PP to either systolic or diastolic

pressure as risk factors for MI or stroke.

According to the Italian meta analysis [118], for every 10mmHg increase in DBP, the
odds of MI are approximately equal to odds of MI for an increase of 20mmHg SBP.
In Caerphilly analysis, for every 20mmHg increase in SBP, the odds of MI increases
by 34%, whereas the odds of MI for every 10mmHg increase in DBP is 27%. If the
standard deviation increase is taken into consideration, for every 1 SD increase in
SBP, the increased odds of MI increase by 40% and for every 1 SD increase in DBP,
they increase by 34%. This shows that SBP is strongly associated with the risk of MI
then DBP as in the study of Benetos et al [116].
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5.6 Literature review for Cholesterol levels

Cholesterol is a fatty acid which is essential to the healthy functioning of cells as it
strengthens and regulates the function of cell membranes. Cholesterol is transported
around the body packaged in lipoproteins in the blood. When there are high levels of
cholesterol in the blood, it is not only used to repair and maintain cells, but it is also
deposited in comparatively large amounts in the arterial wall causing "hardening of
the arteries", also known as atherosclerosis. The deposited cholesterol impairs the
arterial wall’s elasticity. The cholesterol deposit, also called atheroma, can begin to
occupy the lumen of the artery and so narrow space available for blood flow.
Although the atheroma is an anomalous deposit, it is still living tissue, which requires
a blood supply. As the atheroma grows, its blood supply can become inadequate
leading to necrosis. The dead area of atheroma is vulnerable to the turbulence and
pressure within the artery and may be dislodged exposing damaged tissue. This in turn
causes a blood clot to form in the artery as a haemostatic response occurs to repair the

damaged tissue.

The narrowing of the arterial lumen can cause heart disease by gradually occluding a
coronary artery and so depriving the tissue it supplies of blood. This leads to the death
of heart muscle, which is a heart attack. A heart attack can also occur when the
atheroma in an already narrowed artery ruptures, causing a haemostatic response. The

blood clot formed by the haemostatic response occludes the already narrowed artery.

Not all types of cholesterol pose the same vascular risk. High density lipoprotein
(HDL) cholesterol is ‘good cholesterol’ as it protects against heart disease by helping
remove excess cholesterol deposited in the arteries. High levels seem to be associated
with low incidence of coronary heart disease whereas low density lipoprotein (LDL)
cholesterol is considered "bad cholesterol" because LDL cholesterol makes up most

of the cholesterol which is deposited in arteries.

Most epidemiological studies have used total cholesterol (TC) as an index of vascular
risk. One American study with 4066 old men and women with a follow-up of 4 years
has shown that men with elevated total cholesterol levels (= 6.20 mmol/L) increased
the risk for death from coronary heart disease by a RR of 1.57[95% CI:1.06 — 2.04]
compared to the men with the cholesterol levels between 4.16 — 5.19 mmol/L [125].
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The Seven Countries Study showed a RR of 1.3 for every 1 mmol/L increase in TC
for having a fatal MI in older men without pre-existing CHD [126]. Read et al.
showed an increased risk of 1.16[95% CI: 1.06-1.27] for CHD incidence for an
increase in total cholesterol by 0.5 mmol/L [127]. The Zutphen Elderly Study on
Dutch men has showed RR = 1.40 (95% (CI) 1.07-1.83) for every 1 mmol/L increase
in TC for fatal CHD [128]. The Finland, Italy and the Netherlands Elderly (FINE)
study in year 2000, showed a combined relative risk of heart disease mortality for the
total population of the FINE Study was 1.17 (95% confidence interval = 1.06-1.29)
for each 1.00 mmol/L increase in total cholesterol[129]. A meta analysis which
included all the above studies and several others showed that the overall RR for CHD
incidence associated with 1.0 mmol/L increase in TC is 1.28 (CI 1.17-1.39) [130].

Most of the studies which investigated associations between VAD and TC also
estimated associations with HDL. In the Finnish cohort of the seven countries study,
HDL showed a protective effect with an odds ratio 0.2 (95% CI 0.1-0.8) for fatal MI
for an increase of 1 mmol/L of HDL [131]. In the FINE study, HDL was protective
without any adjustment for Finnish subjects, whereas the Italian and Dutch subjects
showed HDL was protective for fatal MI after adjustment for SBP, BMI, smoking and
alcohol consumption [132]. HDL cholesterol was not associated with mortality from
coronary heart disease in the Zutphen Elderly study with a relative risk of 0.80 (95%
CI 0.60-1.08) for the incidence of heart disease, corresponding to a 0.26 mmol/L
increase in HDL [133].

Studies evaluating the relationship between cholesterol levels and the risk of stroke
have reported different results. The Framingham study found no connection between
the levels of cholesterol and incidence of stroke [7]. Two different studies have
reported an increased risk of stroke with high levels of TC [9, 134]. There are some
other studies which showed no association between stroke and increased levels of
cholesterol [135-137]. The combined analysis of cohort studies showed no significant
association between the increased level of serum cholesterol and stroke rate, except

for patients younger than 45 years [138].
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distributions of TC in 2™ 3“1 and 4"’ phases are given below in Figure 5.14.
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For the comparison purposes, all the three measuremenis of iotal cholesterol are
plotted on the same X axis scale. However, it appears that there are some outliers in

compared with the 2" phase TC measurements. After excluding missing values in the
TC data, the total number of observations considered used in all 3 phases are given

below Table 5.19 along with the standard deviations.
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Table 5.19 — Summary statistics of TC in 2", 3 and 4" phases
Variables Obs Mean Std. Dev Min
TCinPh2 1606 5.70 1.04 3.24 10.35
TCinPh3 1564 6.21 1.12 0.40 11.5¢
TCinPh4 1406 5.69 1.05 2.00 12.90

There were 1190 men with cholesterol measured on all three occasions. The means

and standard deviations of these men were very similar to those given in the above

table (values listed in table 5.24). To find the relationship between TC and MI or

stroke, as in the previous chapter, Lowess smoothing was used to visualise the

relationships and then decide the modelling strategy. The relationship between MI and

cholesterol levels will be explored separaiely for MI and stroke.

5.7.1 Total cholesterol and MI

5.7.1.1 Linear logistic regression

with the linear and fractional polynomial models fitted to the relationship.

Figure 5.15: Lowess smoothed plot of MI and TC

ing plot with a bandwidth of 0.8 is shown in Figure 5.15 along
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The fractional polynomial model appears to be a better model visually but lincar

logistic regression is statistically a more appropriate model since the fractional
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polynomial model’s gain over the linear model is 0.98, which is statistically not

significant. The regression coefficients are given in Table 5.20.

Table 5.20 - Logistic regression of baseline TC and MI

MI Coef Std Err P>z 95 % CI
TC 0.356 0.071 0.000 0.217 0.495
Const -3.989 0.432 0.000 -4.836 -3.143

Substituting these values in the equation, the regression equation is as follows.

Logit(p) = m(l—p-J = 0.356TC —3.989 evroeoeoe. (5.19)
-p

where p is the probability of MI.

The odds ratio for every Immol/L increase in TC is 1.43 [95% CI: 1.24 1.64] for
having an MI shows that TC is a very significant risk factor for MI.

5.7.1.2 Cox’s Proportional hazard model
CPHM also showed the hazard ratio of 1.39 [95% CI: 1.22 — 1.58] for every 1
mmoV/L increase in TC for MI. The model can be rewritten in the form of following

equation.

log(w) Z033TC oo (5.20)
hy (9

The gain in the fractional polynomial models was 1.338 with 4 degrees of freedom
which again shows no statistical difference between the linear and fractional

polynomial models.
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Stroke and TC

To visualise the relationship between, TC and stroke for all men, the Lowess

smoothing plot with a bandwidth of 0.8 is shown in Figure 5.16 along with the linear

model fitted to it.

Figure 5.16: Lowess smoothed plot
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of stroke and TC for all men
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The slope of the relationship between stroke and TC for all men appears to be very

[

showing that an increase in TC does not predict stroke. The regression coefficients ar

given in Table 5.21.

pears to be constant for all men irrespective of the

in TC for all men. This result follows some siudies from literature review

-

£
(1}

Table 5.21 — Logistic regression of baseline TC and stroke
Stroke Coef Std Err P>|z| 95 % CI
TC 0.031 0.094 0.740 -0.154 0.217
Const -2.760 0.550 0.000 -3.839 -1.681

Substituting these values in the
7

logit(p) = Inj —— | =0.03147C - 2.7602
\1 —-p

where p is the probability of stroke.

equation, the regression equation is as follows.
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These results show that there is no significant association between total cholesterol

and the risk of stroke. If fractional polynomial regression were to be used to model

0
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observations considered is 1426 with a mean 1.097 and standard deviation of 0.284.

To find the relationship between HDLC and MI or stroke, as in the case of TC,

Lowess smoothing was used to visualise the relationships and then decide the
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There were two observations with HDLC < 0.5 and ten observations with HDLC>2 a

these were causing the relationship to appear non-linear, they were excluded from the

bandwidth of 0.8 is shown in Figure 5.18. The same figure also shows the linear

model fitted to the reiationship.
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tionship between MI and HDLC appears to be linear except for low values of

—

HDLC. If the fractional polynomial regression is used to model this relationship, the
gain obtained is 1.31 which is statistically not significant to show that factional
polynomial model is better than the linear model. The logistic linear regression

coefficients are given in Table 5.22.

Table 5.22— Logistic regression of baseline HBLC and MI

MI Coef Std Err P>z 95 % CI
HDLC -0.538 0.328 0.101 -1.180 0.105
Const -1.432 0.358 0.000 -2.134 -0.729
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The association is not statistically significant but the results are consistent with an
odds ratio well below 1. It is worth noting, however, that a difference of 1 is very
large, as the range of HDLC values is from 0.5 to 2. The Cox’s proportional hazards
model also showed similar results which were not significant (Hz ratio = 0.57 p =

0.07, SE = 0.18, 55% CI = 0.31, 1.04).
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The linear model fitted to this relationship is also shown in the above figure. The
relationship between stroke and TC appears no association between the risk of stroke

increase in HDLC. The regression coefficients are given in Table 5.23.
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Table 5.23 — Logistic regression of baseline TC and stroke

MI Coef Std Err P>z 95 % CI
HDLC 0.016 0.409 0.969 -0.817 0.785
Const -2.662 0.458 0.000 -3.560 -1.764

Substituting these values in the equation, the regression equation is as follows.

Logit(p) = m(l—”—J =0.016 HDLC —2.662 coormremrrn.. (5.24)
-p

where p is the probability of stroke.

The odds ratio for every 1mmol/L increase in HDLC is 0.98 [95% CI: 0.44 — 2.19].
Results show that there is no association between the risk of stroke and the increase in
HDLC. Cox’s proportional hazard model also showed similar results which were not
significant (Hz ratio = 0.91 p = 0.84, SE = 0.36, 95% CI = 0.41, 1.98).

5.9 Regression dilution bias for cholesterol levels

Total cholesterol was the only cholesterol measurement that was measured in the
subsequent phases of the Caerphilly cohort. There were 1190 men who had all the
three measurements. The information required to measure the coefficient of

measurement error is given in the Table 5.24.

Table 5.24: Summary statistics for regression dilution bias for TCHOL

Variable observations | Mean | Standard deviation
TCHOL in P2 1190 5.69 1.02
TCHOL in P3 1190 6.20 1.10
TCHOL in P4 1190 5.69 1.05

TCHOL2-TCHOL3 1190 -0.51 0.83
TCHOL2-TCHOLA4 1190 0.01 0.93

The coefficient of measurement error and random fluctuations in TC is estimated
using the information given in the above table and the adjusted regression coefficients

are given below. These are estimated using the method explained in the section 3.7.1.
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Table 5.25: ps adjusted with measurement

Bo B
Base Line fSs -4.400 0.372
(phase 2)
ps adjusted for -5.469 0.560
Phase 3
fs adjusted for -5.884 0.710
Phase 4

Using the adjusted s, the probability of having an MI event as a function of TC is

estimated and shown in figure 5.20 below.

Figure 5.20: Predicting MI with TC for all men using baseline
and RDB adjusted models
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From the above figure, there appears to be an almost twofold increase in the odds
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5.10 Discussion for cholesterol levels

The literature review showed TC as a very significant risk factor for MI which the
Caerphilly results confirm (for an increase of Immol/L OR = 1.43(95% CI: 1.24-
1.64). The Caerphilly odds ratios appear to be fractionally higher then the other
studies. This might be because of the difference in the populations. For example, Corti
M et al [139] had a sample which included men and women whereas Tervahauta M et
al [131] had a sample of elder men without previous heart disease. In the Caerphilly
analysis, there are no women included and the age group in the Caerphilly analysis is
of middle-aged men whereas the age group in the other studies differ from that of

Caerphilly.

The odds ratio for men without prevalent IHD is 0.539 [95% CI: 0.280 — 1.038] which
is statistically not significant to show that the risk of MI decreases significantly for an
increase of 1mmol/L of HDLC. The Zutphen Elderly study [133] showed that there is
no significant association between IHD and HDLC. All the remaining studies in the
literature review showed a significant decrease in the risk of IHD for an increase of
Immol/L increase in HDLC. The difference in the different populations and their age
group may be the cause for the results to be non-significant. In addition, the

Caerphilly analysis may be underpowered.

Cholesterol levels seem to have little effect on stroke. This is in contrast to the
findings of several duties that were reviewed. It may be that there is a small effect of
cholesterol on stroke, that was not detected in the Caerphilly data, but there was no

evidence of this in the analysis.

The coefficient of measurement error and random fluctuations for the TC estimated
using the 3" and 4™ phases of repeated measurements seems increase the odds of MI
at baseline by 1.7. This gives an idea of the measurement errors and random
fluctuations that could be expected for total cholesterol. This could true to LDL and
HDL measurements because of the high correlations between all the three cholesterol

levels.
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5.11 Literature review for Body Mass Index (BMI)

Obesity is a condition of excess body fat. It is the most common form of malnutrition
in the Western world. Obesity is an independent risk factor in predicting IHD [106]. It
also increases the risk for high blood cholesterol, high blood pressure, and diabetes
and, hence, for diseases for which these conditions are risk factors (diabetes, coronary
heart disease, high blood pressure etc.). Obesity thus contributes to premature
mortality.

In the Framingham Heart Study [140] the relative risk of coronary heart disease in
obesity (Kg/m®) was greater than twofold for having CHD with one unit increase in
BMI after correction for other known risk factors. A study by Fang et al. [106]
showed a hazard ratio for obese(230kg/m2) of 1.32 (CI=1.13-1.53) compared with not
obese (<25kg/m2) in 9790 subjects aged 25 to 74 years and followed-up for
cardiovascular mortality (17 year follow-up data). A meta analysis [141] on BMI and
mortality of 6 observational studies showed that hazard ratios for CVD are 1.57 and
1.48 for 25<BMI<30 and 30>BMI respectively compared to the baseline group
18.5<BMI<25.

An American study with 21,414 male physicians participating with a follow-up of 12.5
years, compared participants with BMI less than 23, with those with BMI at least 30.
The obese had an adjusted relative risk of 2.00 (95% confidence interval [CI], 1.48-
2.71) for total stroke [142]. A prospective study of 7402 healthy middle aged men
with 28 years follow-up compared men with low normal weight (BMI, 20.0 to 22.49
kg/m2), and men with BMI >30.0 kg/m2. The later group had a multiple adjusted
hazard ratio of 1.93 (95% CI, 1.44 to 2.58) for total stroke [143]. This short literature
review suggests that BMI is a significant risk factor for MI and stroke.
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The Iliterature review has shown that BMI is a signiﬁcant risk factor for CHD. It was

measured in all four phases of the Caerphilly cohort. As the analysis starts from the
A,,d . b Ol D s i~ a - d 1‘7 r . - .
2" phase, the distributions of BMI in 2™, 3™ and 4‘" phases are given below in Figure
5.21
Figure 5.21 — Histograms of BMI in 2", 3", and 4™ phases
2 24
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The above histograms of BMI from 27,3 and 4™ phases of Caerphilly cohort appear

FoY

to be approximately normally distributed. After excluding the missing values in the
BMI data, the total number of observations used in all 3 phases is given below in
Table 5.26, along with the standard deviations

Table 5.26 — Summary statistics of BMI in 2", 3" and 4" phases

Variables Obs Mean Std. Dev Min Max
BMI in Ph 2 1833 26.37 3.64 15.33 46.95
BMl in Ph 3 546 26.70 3.77 15.88 46.23
BMIin P 1221 27.01 3.85 15.74 51.00




seen in Table 5.29. For these men there was a very slight rise in BMI between phases

To find the relationship between BMI and MI or stroke, as was done in the previous

chapters, Lowess smoothing was used to visualise the relationships and then decide

observations with BMI more than 40 and 3 with BMI less than 16.

These were omitted from the analysis, as they appeared to unduly affect the

underlying model. Figure 5.22 shows the relationship between MI and BMI along

with the linear model fitted to the data.

Figure 5.22: Relationship between BMI in phase two and
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This relationship appears to be linear. The gain in deviance of the fractional
polynomial model over the linear model is 0.032; that is not significant suggesting the
linear model te be adequate. The coefficients in the linear model are given in the

Table 5.27.
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Table 5.27- Logistic regression of baseline BMI and MI

MI Coef Std Err P>|z| 95 % CI
BMI 0.053 0.022 0.014 0.011 0.096
Const -3.338 0.591 0.000 -4.498 -2.178

Substituting these values in the equation, the regression equation is as follows.
logit(p) = ln[li] =0.053BMI -3.338 . .cccvvunnnnnnn. (5.25)
-p
where p is the probability of MI for men without prevalent IHD.
The odds ratio for an increase in one unit of BMI is 1.048[95% CI: 1.01 — 1.09] which

is statistically significant to show the risk of MI increases as BMI increases.

5.12.1.2 Cox’s proportional hazard model
CPHM showed results a better significance compared to the linear logistic model
(p=0.012). The Cox’s proportional hazard model is shown in the form of an equation

as follows.

log(wj =0.045BMI oo, (5.26)
hy (2)

When fractional polynomial model was used, the gain observed was 0.089 which is
statistically not significant to show that linear and fractional polynomial models were

different.
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smoothed piot is shown in Figure 5.23. A linear model along with the fractional

pelynomial medel is also fitted.

Figure 5.23: Relationship between BMI in phase two and stroke
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This relationship appears to be non-linear at the lower end of the BMI range. With an

Stroke Coef Std Err P>|z| 95 % CI
BMI 0.040 0.028 0.156 -0.015 0.095
Const -3.617 0.757 0.000 -5.102 -2.133

where p is the probability of having a stroke.
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The odds ratio is 1.04 with 95% confidence interval as [0.99, 1.10]. These results
show that the there is no increased risk of stroke with increase in BMI. The Cox’s

proportional hazard model also showed no significant results (Hz ratio = 1.03 p =
0.23, SE =0.03, 95% CI = 0.98, 1.08).

5.13 Regression dilution bias for BMI

BMI was also measured in subsequent phases of the Caerphilly cohort. There were
1459 men who had all the three measurements. Seven men with BMI more than 40
were excluded from the analysis. The information of 1452 men required to measure

the regression dilution bias is given in the Table 5.29.

Table 5.29: Summary statistics for regression dilution bias for MI and BMI

Variable observations | Mean | Standard deviation
BMI in P2 1177 26.52 3.64
BMI in P3 1177 26.78 3.75
BMI in P4 1177 27.02 3.81

BMI2-BMI3 1177 -0.37 1.46
BMI2-BMI4 1177 -0.50 1.76

The coefficient of measurement error in BMI is estimated using the information given
in the above table and the regression coefficients adjusted with the coefficient of

measurement error are given in the following table.

Table 5.30: fs adjusted with measurement

Bo Bi
Base Line fs -3.550 0.042
(phase 2)
ps adjusted for -3.655 0.046
Phase 3
ps adjusted for -3.709 0.048
Phase 4

In the above table the first row represents the regression coefficients at the baseline
i.e., the regression coefficients to the logistic model fitted to the BMI and MI. The

second row represents the coefficients adjusted to the regression dilution bias due to

118



the variation in BMI using the 3™ phase BMI values whereas the 3 row represents
the coefficients adjusted using the 4™ phase BMI values. The Figure 5.24 shows the
probability of MI when fitted with the baseline fs and the adjusted Ss in the

subsequent phases.

Figure 5.24: Predicting MI with BMI for all men using baseline
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These results and the above plot show that the lack of measurement eiror means the

adjusted values are similar to the unadjusted ones (Table 5.30).
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literature review, the risk seems to be comparable. When the men with 25<BMI<30,
and 30>BMI compared with men with 18.5<BMI<25 as a reference group, the odds
ratios were 1.40 and 1.67 [141]. The outcome variable in the Meta analysis was CVD
whereas the outcome variable here is MI. This may be the reason for the resulis being
slightly different. In spite of slight variations in the results and a huge variations in the
samples, both (the Caerphilly and the Meta analysis) showed significantly increased
risk when the later two groups were compared with the group with 18.5<BMI<25.
The association of BMI and stroke appears to be not significant in the Caerphilly
analysis whereas, one of the studies in the literature review suggested that BMI is

associated with an increased risk of stroke. After adjusting the coefficients of the



model based on baseline data using the repeated measures of BMI, as an indication of
within subject variability, it appears that BMI is a reliable measure and there is very

little change after adjustment.

5.15 Overall conclusions for the chapter

This chapter dealt with the biological factors measured in the Caerphilly study in
order to measure the risk of MI and stroke associated to these factors. Brief literature
reviews were carried out before the analysis of each risk factor to obtain some idea of
each risk factor. The objective of this chapter was to measure the association of risk of
MI and stroke with these factors and establish clear idea on each factor in order to use

that information in the hypothetical simulations.

Some of the studies from the literature review suggested that the risk of MI can be
measured more accurately using the pulse pressure [122-124]. However, the
Caerphilly data analysis suggests that pulse pressure, although an important risk factor
for VAD, is not preferable to SBP or DBP. Cholesterol and obesity were also

confirmed as risk factors in the analysis.

The value of this analysis is that each factor has been analysed thoroughly using a
variety of strategies. The Caerphilly data have not been analysed as thoroughly
previously. Of further importance was the demonstration and estimation of
measurement error and random fluctuations with the repeated measurements, which

has not been shown previously in the analyses of Caerphilly data.
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Chapter 6
6.0 Psychological variables

Most of the psychological measurements were carried out in the 2™ phase of the
Study. Since attitudes towards coronary related behaviours were thought to be related
to the psychological factors, Health Attitude Inventory (HAI) was analysed as one of
the psychological factors. Only GHQ30 & HAI were re-measured in later phases.
However, HAI was re-measured using a shortened questionnaire. In this chapter, four
psychological variables will be considered; namely depression (measured using
GHQ30), trait anxiety (using STAI), anger and Type A behaviour (using JAS) along
with HAL

6.1 Psychological distress
6.1.1 Literature review
Typically, the term ‘psychological distress’ covers a broad range of symptoms and

disorders that are largely related to depression and anxiety.

Although the nature of psychological distress as measured by the GHQ is unclear,
several studies have shown that GHQ scores are associated with an increased risk of
CHD [33, 144-146]. GHQ was associated with up to a threefold increased risk of
CHD in men, that was sustained even after adjustment for CHD risk factors and other
confounders [33]. The Whitehall II study has shown that baseline GHQ score among
men with no previous heart disease was associated with an increased risk of CHD

(OR = 1.83; 95% CI: 1.5 — 2.3) [33].

In CaPS, in a validation study of 97 men, of the 39 men who scored above the
standard threshold >4, 20 were found to have psychiatric symptoms by clinical
interview, of whom 17 showed symptoms of depression [33]. It may be concluded
that the psychiatric caseness, as assessed in CaPS, has a large depression component.

There is a larger literature relating depression to VAD [33].

Several studies showed no evidence of a clear association between MI and depression.

Vogt et al [147] in 1994, with a sample size of 2573 men and women, showed that
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depression has no association with CHD ( RR = 0.94 [95% CI: 0.70 — 1.28])
depression was measured with the Lagner mental health Index. A college alumni
health study in USA [148] with 5053 men showed no association between physician-
diagnosed depression and fatal CHD (RR = 1.20 (95% CI: 0.53 — 2.71]) when
adjusted for age, smoking BMI, exercise, alcohol, hypertension. The National Health
and Nutrition Examination Study [149] showed that association of the risk of fatal
CHD with depression (measured with the General Well-Being Schedule) was
statistically not significant for either black or white men when adjusted for age,
smoking, cholesterol, BMI, exercise, hypertension, diabetes, replacement hormones

and education.

The Epidemiologic Studies Depression Scale (CES-D) was used to measure
depression in the NHANES I study. This showed the RR of CHD incidence among
depressed men was 1.71 (95% CI, 1.14-2.56) compared with non depressed men when
adjusted for age [145]. In a multivariate analysis, with all standard risk factors
included for adjustment, the men who reported clinical depression were at
significantly greater risk for CHD (RR =2.12; 95% CI: 1.24-3.63 ) [150].

It is recognized that up to 30% of stroke victims suffer from depression [151]. Several
recent epidemiological studies reported positive associations between psychological
distress and CHD risk. However, fewer studies have examined the association with
stroke, and the results of these were inconsistent or those studies had their own
limitations. A prospective US study in an elderly population found no positive
association between depressive symptoms and stroke mortality after adjustment for
known risk factors [152]. However, in the Alameda County study, stroke mortality
was increased in individuals with depressive symptoms after controlling for possible
confounders [153]. A study comparing three studies in the United States showed that
the risk of stroke in elderly hypertensive men and women who reported high levels of
depressive symptoms was more than twice that of non-depressed hypertensive men
[154]. A paper published on the Caerphilly study showed that depression (GHQ
score) is a predictor of fatal ischemic stroke but not of nonfatal ischemic stroke or
Transient Ischemic Attack (TIA) [155].
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The GHQ30 was administered in the 2™, 3™ and 4™ phases of the Study. The scoring

of this questionnaire was discussed in chapter 2. The following Figure 6.1 shows the

Figure 6.1 Histograms of psychological distress scores in 2", 3", and 4" phases
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From the above histograms, it is clear that GHQ is very positively skew. After
excluding the missing values, the total number of subjects who were included in the

nd

analysis for the 2™ phase was 1724. When the data was recoded to a binary variable
to use as an indicator variabie for depression, 490 subjects were identified as
psychologically distressed (PD). This was done according to Stansfeld et 33]. The
summary statistics of the PD Indicator (PDI) of the three phases is given in the Table

6.1.



Table 6.1 — Summary statistics of Psychological Distress Indicator in 2", 3" and

4™ phases
Variables Obs Mean Std. Dev Min Max
PDinPh2 1724 0.196 0.397 0 1
PDinPh3 1375 0.215 0.411 0 1
PD in Ph 4 1204 0.221 0.415 0 1

From the above table, it could be observed that between 20-22% of subjects were
psychologically distressed. There were 947 subjects present in all three phases, 21-
23% of them with psychological distress.

6.1.2.1 Psychological Distress Indicator and MI
When men with PD (PDI = 1) are compared with men without PD (PDI = 0) for
having an MI the odds ratio for having an MI was 1.18 [95% CI: 0.84 — 1.67]. These

results are estimated using logistic regression.

Survival analysis also showed very similar results compared to the logistic regression.
The hazard ratio for having an MI for men with PDI=1 compared with PDI=0 is 1.21
[95% CI: 0.88 — 1.66].

6.1.2.2 Psychological Distress Indicator and Stroke
When men with PD are compared to men without PD for the risk of stroke, there was
no significant difference. The odds ratio and hazard ratio of stroke for men with PD

compared to men without PD are 0.83 [95% CI: 0.51 — 1.34] and 0.84 [95% CI: 0.53
— 1.35] respectively.

6.1.3 Regression dilution bias

Repeated GHQ30 scores are available. However, the nature of the measurement itself
makes it difficult to measure the regression dilution bias. Figure 6.1 showed the
histograms of the GHQ30 scale in different phases, and it is clear that the distribution
of GHQ30 is not normal. The basic assumption in measuring the error in
measurement and random variations is to assume that the independent factor follows a

normal distribution but this does not apply here.
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However, the association of risk of MI with the GHQ score was measured using a
psychological distress indicator (PDI) which is binary. This binary variable can be
derived for the subsequent measurements of GHQ30 and can be used for estimating
the regression dilution bias. Though, this method may produce a very crude estimate
of the measurement error and random variation, nevertheless it may show some light
on the these errors of the GHQ30 in particular and of psychological risk factors in

general.

There were 116 men who had PDI as zero in phase 2 and 1 in phase 3. Similarly there
were 103 men with PDI =1 in phase 2 and PDI = 0 in phase 2. This shows that there
were some men who changed from being depressed to not depressed and vice versa
from phase 2 to phase 3. All those men with no repeated measurements were excluded

from the analysis.

The required information for estimating the adjusted odds ratio is given in the Table
6.2. The method for estimating the adjusted odds ratio is straight forward and

explained in detail elsewhere [156]. The formula for estimating the new odds ratio is

given below.
Table 6.2: Tabulated values of MI indicator and PDI in phase 2 & 3
PDI in Phase 2
Ml in Phase 2 0 1 TOTAL
0 a1=744 b=168 912
1 c1=76 di=25 101
TOTAL 823 193 1013
PDI in Phase 3
MI in Phase 2 0 1 TOTAL
0 a;=734 b;=178 912
1 =72 d>=29 101
TOTAL 806 207 1013
U =207/806 V =193/823
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From the above table, the odds ratio for having an MI for men with PDI . 2=1 is OR
= 1.4568. The odds ratio is slightly different to the results from 6.1.2.1. This is
because of the subjects with missing data were excluded for the analysis. Using the
method described in the section 3.7.3 (Case 2), the adjusted OR is given by the

following formula.

e di_ op axU v )
OR bAlCA.l OR [l_bzx(l_U)J[l_czx(l_U)J

bxU cxU

Then the adjusted odds ratio is

OR = ORx1.215 =1.7699 ~ 1.77

The odds ratio for having an MI among depressed men compared with non-depressed
men was 1.46 [95% CI: 0.90 — 2.36]. That the odds ratio is not significant may be due
to the very small number of events (MIs were 101 out of 1013 subjects). Risk of MI

appears to increase by 21.5% when adjusted by the regression dilution bias.

The other method explained in the statistical methods (section 3.7.3 Case 1) is not
used here as there is no literature available on the sensitivity and specificity of the
repeated measurements on GHQ30. The only disadvantage with the above method is
that it does not give estimates for the standard error but gives an idea of the

measurement error and random variations in the psychological depress indicator.

126



6.1.4 Discussion

Several studies have shown that psychological distress or depression are associated
with MI, while others have not. The CaPS analysis found no significant association.
PD was measured using the GHQ30 questionnaire in the Caerphilly study. Other
studies have used different questionnaires to measure depression. It appears that this
depression indicator defined by using the GHQ30 questionnaire might not be as good

a measure of depression as a dedicated depression scale.

The other important issue that needs to be mentioned here is the regression dilution
bias and random variations. Applying a correction factor for these biases increased the
odds by 22