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Abstract

This thesis addresses three problems associated with the risk in stock markets from a global
perspective. First, we investigate the empirical hedging effectiveness using index futures in
six world major stock markets. A variety of econometric models including STVECM with
bivariate GARCH error structure are employed. The within-sample and out-of-sample results
suggest sophisticated models do not produce the best hedging strategies consistently and their
usefulness has to be judged on a case-by-case basis. Second, we examine the cross hedging
effectiveness of seventeen MSCI indices through a global approach of using a combination of
the related index futures. A thorough comparison among strategies corresponding to different
combinations of hedging instruments and econometric models is conducted for each MSCI
index. The optimal hedge ratio vector is derived for each country on the basis of both within-
sample and out-of-sample results. Third, we develop a global asset pricing model on the basis
of Barro’s rare disaster model to explain the equity risk premium puzzle. Despite the
plausible analytical predictions on the expected return of the bill and equity and the equity
risk premium, the global model fails to explain the scale of the equity premium observed in
the data since the diversification in a global market brings down both the aggregate risk and
the reward for holding risk equity. The former results in a rise in the expected return of

government bills and the latter leads to a fall in the expected return of equities.
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Chapter 1

Introduction

Financial risk is the most important fundamental factor in asset pricing. It is therefore crucial
for investors to have a thorough understanding of its determinants and a firm grasp of the
strategies in managing the financial risk. Its importance to practitioners has motivated
numerous research efforts into both the theoretical and empirical aspect of financial risk. This
thesis contributes to the existing literature by adding the empirical results of two specific
strategies in managing financial risk — direct hedging and cross hedging and exploring a

theoretical model on the equity risk premium determination.

Hedging using futures is a common risk management strategy adopted by market participants
who want to reduce the exposure to the price movement of the financial asset in the spot
market. Hedgers trade in the futures markets in order to transfer the ‘unwanted’ risk to
speculators who are willing to bear it for the positive expected return. When investors reach
the hedging decision, they would have to answer two specific questions of which hedging
instrument or instruments to use and what the ratio between the position in each instrument

and the asset to be hedged should be.

Direct hedging refers to the situation where the underlying of the futures contract is also the
asset to be hedged. In this case, the answer to the first question is straightforward. The only
hedging instrument is simply the futures contract written on the spot asset because the price
of the asset only differs from the price of futures by the tiny cost of carry. No other futures
contract can possibly be more closely related to the asset than the futures written on it. For
example, an index fund manager should use the futures contract written on the stock index
tracked by the fund for hedging. The answer to the second question is more complicated. If
the goal of hedgers is to eliminate the risk completely, then the optimal hedge ratio is
equivalent to the minimum variance hedge ratio, whose analytical solution is simply the
covariance between the spot and futures divided by the variance of the futures. It is evident
that the key to deriving an effective hedging strategy relies on the quality of the model for the
covariance matrix. If a theoretically sound and empirically proven model can be fitted to the
conditional second moments of the spot and futures, then the chance of obtaining an effective

hedging strategy is very big.



The first part of this thesis investigates the hedging effectiveness using index futures in six of
the world’s major stock markets. In particular, we examine a number of direct hedging
strategies suggested by different econometric models for each country. These models range
from the simple single OLS regression to the sophisticated Smooth-Transition Vector Error
Correction Model combined with bivariate GARCH (1, 1) error structure. Each model is first
estimated using within-sample data and updated on a daily basis to generate a one-day-ahead
forecast on the covariance matrix in a one-year hold-out period. Both the within- and out-of-

sample results are analyzed in detail.

Cross hedging applies in the situation where the futures contract of the spot asset is either
non-existent or thinly-traded. In this case, there is no evident hedging instrument but a
number of possible combinations of hedging instruments. The analytical solution for the
minimum variance hedge ratio vector is the generalization of the minimum variance hedge
ratio where the covariance is replaced with the vector of the covariance between the spot
asset and each futures and the variance is replaced with the covariance matrix of the multiple
futures. The demand for cross hedging strategies is common among global fund managers. A
considerable amount of global funds are benchmarked to MSCI indices whose corresponding
index futures contract is either non-existent or thinly traded. In order to hedge their portfolio,

these managers would have to employ the cross hedging strategies.

The second part of the thesis answers the question of how to cross hedge the portfolio
measured by MSCI indices of seventeen countries. We assume a global approach to solve this
problem. In particular, we select a block of global markets closely related to the country
whose MSCI index is to be hedged. And then we apply several econometric models to the
system of the spot asset and the multiple futures of the block. Both the within- and out-of-
sample results are generated for each combination of hedging instruments estimated from a

particular econometric model.

After investigating the empirical performance of the hedging strategies, we explore the key
determinant of asset pricing — equity risk premium from a global perspective. It is well-
known that the standard general equilibrium asset pricing model can explain only a fraction
of the equity risk premium observed in the data. This phenomenon is discovered in Mehra
and Prescott (1985) and referred to as the equity premium puzzle. Because of the importance
of equity risk premium in asset pricing, a large amount of papers since Mehra and Prescott

(1985) have dedicated to resolving the puzzle. A recent paper by Barro claims the puzzle can



be resolved when the rare disaster scenario is taken into consideration. He modelled the
disaster scenario where the output contracts in a large scale explicitly and calibrated the
model using the empirical data of the twentieth century disasters in the world. The results
suggest the model can produce the equity premium in line with the observed empirical
counterpart. We extend Barro’s model to a global setting where each of the two countries is
subject to a disaster shock but the two shocks are not perfectly correlated. In other words, the
global model allows the disaster risk of the equities to be partly diversifiable. In particular,
we introduce a parameter to measure the correlation between the disaster shocks and a
parameter to account for the output weight of each country in the world. We solve the model
and analyze the implication of each disaster-related parameter in detail. We also calibrate the

model using the same set of parameter values as Barro.

Chapter 2 contains a complete analysis on the direct hedging using index futures. Chapter 3
examines the cross hedging strategies using the index futures of global markets. Chapter 4
investigates the implication of disasters in the global model developed on the basis of Barro’s

single-country model. Chapter S presents the conclusion.



Chapter 2

Direct Hedging Effectiveness Using Index Futures

1. Introduction

While futures contracts are popularly viewed as instruments for speculation, the classic
economic rationale for futures markets is that they facilitate hedging. Hedgers dealing in spot
markets transfer the unwanted risk in price changes to speculators using futures contracts.
Hedging is important to market practitioners; therefore a vast amount of research effort has

been dedicated to the formulation and implementation of an optimal hedging strategy.

In a volatile and unpredictable stock market, investors can reduce the risk associated with
investment by holding a well-diversified portfolio. However, the systematic risk cannot be
diversified away. When the market risk is to be avoided, they would have to unwind the
positions of the entire portfolio, which is very costly. Index futures contract measuring the
systematic risk might seem to be an ideal tool for hedging. Since the first stock index futures
contract was introduced in USA in 1982, major stock exchanges in the world have created
stock index futures contracts based on different stock indices. These stock index futures
contracts have become popular among institutional investors as they offer them a major

trading tool in controlling market risk without changing the portfolio composition.

However, the hedging effectiveness of stock index futures cannot be taken for granted
because of basis risk. The traditional one-for-one hedge replaces the risk in the spot market
with the basis risk, which is greater than its minimum level in most cases. The conventional
hedge is derived as the slope coefficient of the regression of spot on futures. There are two
potential problems with the conventional hedge. First, if the spot and futures are cointegrated,
then the simple regression is misspecified for not taking the long-term cointegration
relationship into consideration. Second, the instability of the second moments of the returns

implies the conventional hedge computed from the constant covariance matrix is not optimal.

We investigate the question of how effective index futures are for hedging risk in six major
stock markets. We model the conditional mean of the return on spot and futures by a linear or

nonlinear vector-error-correction model with the bivariate GARCH or threshold GARCH



error structure. The constraint is imposed on the cointegrating vector to account for the cost
of carry explicitly. In this framework, we compute the dynamic hedge ratios on a daily basis
for the entire one-year hold-out period and compare hedging performance on the basis of
Ederington measurement of hedging effectiveness. Section 2 contains a literature review on
hedging using futures. Section 3 summarizes the hedging theories. Section 4 describes data.
Section 5 explains the methodology for modelling both conditional mean and conditional
variance. Section 6 presents the estimation and hedging performance results. Section 7

concludes.

2. Literature Review on direct hedging

The derivation of optimal hedge ratio falls into two main frameworks. One is the mean-
variance framework and the other is the expected-utility framework. Under the mean-
variance framework, return and risk are fully represented by the expected value and variance.
The traditional theory emphasizing risk avoidance function of hedging suggests the
minimum-variance hedge ratio. The portfolio theory proposed by Johnson (1960) and Stein
(1961) views hedging as a strategy to enable hedgers to achieve the best trade off between
expected return and risk. One way is to assume hedgers are mean-variance utility maximizers.
See Ederington (1979). Given the degree of risk aversion, the optimal hedge ratio can be
obtained by setting the derivative of the mean-variance utility to the hedge ratio to zero. The
other way is to use the risk-return trade off (Sharpe measure) criteria. The hedge ratio which
maximizes the trade off ratio is optimal. See Howard and D'Antonio (1984).

Under the more general expected-utility framework, the problem with hedging is represented
by maximizing the expected utility of the end-period wealth with respect to the hedge ratio.
In order to analyze within the expected-utility framework, the form of the utility function
needs to be specified. The analysis under the expected utility framework using quadratic
utility function is consistent with the mean-variance utility analysis. The main drawback of
quadratic utility function is its implausible assumption of increasing risk aversion. To avoid
this disadvantage, Cecchetti et al (1988) employed the log utility function to investigate
optimal hedging strategy in the bond market. Hsin et al. (1994) assumed an exponential

utility function to compare the effectiveness of hedging using futures with options in the



currency market. Under normality assumption on the return, the expected utility framework is

also consistent with the mean-variance framework.

Some researchers derived the necessary and sufficient conditions on the return of spot and
futures markets under which the optimal hedge ratio is preference-free. These conditions are
important because numerous researchers estimating minimum-variance hedge ratio through
complicated techniques implicitly rely upon them for their result to be consistent with the
widely accepted expected-utility maximization paradigm. Benninga et al. (1983) derived the
sufficient conditions for the optimal hedge to be a fixed proportion of the cash position,
regardless of the agent's utility function. Lence (1995) derived both the sufficient and
necessary conditions. Rao (2000) presented the sufficient and necessary conditions in an
alternative form and provided an alternative proof based on the concept of stochastic

dominance.

Under a more general setting of an increasing concave utility function, the analysis under
stochastic dominance theory facilitates the derivation of optimal hedge ratio which minimizes
the mean extended-Gini coefficient. See Cheung et al. (1990), Kolb and Okunev (1992) and
Lien and Luo (1993).

A number of econometric models have been proposed to estimate the optimal hedge ratio in
practice. Conventional hedge ratio is estimated as the slope (beta) coefficient of an OLS
regression with the return of spot as regressand and the return of futures and constant as
regressor. See Ederington (1979). Despite its robustness, OLS regression method has a major
problem. It approximates the conditional second moments by their unconditional counterparts,

not making use of the available information.

In order to add information variables to this model, several more general models have been
proposed. Bell and Drasker (1986) suggested a regression model to include the information
variables in the alpha and beta estimates. Cita and Lien (1992) applied it and set both alpha
and beta to be linear functions of the historical spot and futures returns. Myers and Thompson
(1989) developed a generalized approach that allows alpha to be a linear function of
explanation variables while retains beta as constant. Fama and French (1987) suggested
including the current basis as an information variable. Viswanath (1993) incorporated it in

estimating the MV hedge ratio.



Since the introduction of cointegration analysis by Engle and Granger (1987), the
conventional model is criticized for misspecification by several researchers who suggested
the correct model to use is the Error-Correction-Model (ECM). See Ghosh (1993), Chou et al.
(1996) and Moosa (2003). The former two claimed the success of ECM. The latter stated the
difference between ECM and conventional hedge is negligible.

Some researchers proposed to use one variant of the ECM - threshold cointegration model to
investigate the relationship between the spot and futures, since the concept of threshold
cointegration captures the essence of the nonlinear adjustment process possessed in economic

systems.

Dwyer, Locke and Yu (1994) used minute-by-minute data on the S&P 500 futures and cash
indexes to characterize the nonlinear dynamic relationship between them. Their empirical
results supported the hypothesis that arbitrage activity affects the size of the responses of the
futures and cash indexes to lagged variables and the values of the parameters in the error
correction mechanism should depend on the regime. The threshold ECM fits significantly
better than an ECM.

Martens, Kofman and Vorst (1998) proposed a Threshold Autoregressive (TAR) model for
the mispricing error defined as the difference between the logarithm of actual futures price
and the appropriate futures price suggested by cost-of-carry relationship. Their empirical
results suggested that the impact of the mispricing error is increasing with the magnitude of
that error and the information effect of lagged futures returns on index returns is significantly

larger when the mispricing error is negative.

Using both minute-by-minute and daily data on the FTSE 100 stock index and index futures,
Garrett and Taylor (2001) examined whether threshold models are capable of generating
levels of unconditional first-order autocorrelation observed in both intraday mispricing
changes and daily basis changes. Their empirical results suggest that for intraday data,
microstructure effects cannot explain the observed first-order negative autocorrelation in
minute-by-minute mispricing changes. However, TAR model used for the arbitrage
explanation is capable of generating unconditional negative first-order autocorrelation in
mispricing changes. For daily data, neither arbitrage activity nor microstructure effects could

predict the basis changes.



While there are quite a few papers on the threshold cointegration that examine the
relationship between stock and futures price, the implications of threshold cointegration on
the minimum-variance hedge ratio and on the hedging performance have not yet been

investigated.

Since the invention of the Generalized Autoregressive Conditional Heteroskedastic (GARCH)
model in the late 80s, there have been a number of studies estimating the optimal hedge ratio
in the GARCH framework. These studies vary in the specification of GARCH in conditional
variance modelling, consideration of the cointegration relationship for conditional mean

modelling and evaluation criterion for hedging performance in out-of-sample comparison.

Baillie and Myers (1991) is the first paper to employ the GARCH model in optimal hedge
ratio estimation. They examined the optimal hedge ratio problem in six different commodities
spot and futures markets using daily data over two futures contract periods. Starting from the
univariate GARCH estimation with Student-t density on the spot and futures return series,
they showed that univariate GARCH model fit the data well. Since estimating the covariance
between the two returns is necessary in calculating the optimal hedge ratio, they then turned
to modelling the two return series jointly. The results showed that both price levels are
nonstationary, but they are not cointegrated. Consequently, the modelling of conditional
mean became trivial. The vector of disturbances was assumed to have a conditional normal
distribution with time-dependent covariance matrix that follows a bivariate GARCH process.
Both the diagonal VECH GARCH and the full BEKK GARCH were estimated. The results
showed significant gains in efficiency in modelling the cash and futures process jointly
compared with a univariate analysis and the assumption on constant covariance matrix was
easily rejected against both versions of GARCH. Their in-sample results indicated that
GARCH hedge ratios performed best in terms of reducing portfolio variance in all six pairs
of commodity markets. However, the superiority of GARCH over OLS is only marginal in
some cases and the generalization is impossible. Hence it has to be judged on a case-by-case
basis. Their out-of-sample comparison was carried out in a peculiar way. They estimated the
model using the data of 1986 contract and then applied the estimated parameters to the data
of 1982 contract. The out-of-sample results showed the superiority of GARCH to OLS in all

cases.

Kroner and Sultan (1993) investigated the optimal hedge ratio problem using weekly data in
five foreign currency markets. Unlike Baillie and Myers (1991), they found the price level of



spot and futures were cointegrated and the cointegration parameter was approximately one.
Then they cited the theoretical result in Brenner and Kroner (1995) on cointegration and
imposed that the cointegration parameter is equal to one. Incorporating the error correction
terms, they set up a bivariate error-correction model with a GARCH error structure. The
parameterization was constant-correlation GARCH with standardized residuals normally
distributed. They used both the variance and expected utility value of the hedged portfolio as
criteria to compare the four hedging strategies including naive, OLS, cointegration and
bivariate error-correction with GARCH error structure. To compute the expected utility value,
they imposed a specific value for the agent's risk-averse parameter. To decide when to
rebalance the portfolio, they imposed a value for the transaction cost. Both within and out-of-
sample results suggested that the hedge ratio developed from a bivariate-GARCH model was
superior to any other one, as it produced the portfolio with the smallest variance and the
largest expected utility. Even when the rebalancing and transaction cost were considered, the

conclusion was not changed.

Park and Switzer (1995) was the first paper to estimate the hedge ratio from a bivariate-
GARCH model using the stock index spot and futures market. They used weekly data on two
stock indices. Similar to Kroner and Sultan (1993), they estimated the optimal hedge ratio
from a bivariate error-correction model with GARCH error structure. The parameterization of
GARCH is constant-correlation version and they also imposed the constraint on the value of
the cointegration parameter to be one. Unlike the spot return on commodities and currencies,
return on stock indices consists of appreciation of stock indices and the dividend yield. As a
result, they adjusted the error-correction term for the net difference between spot and futures
price level suggested by the cost of carry relationship. However, they argued that the spot
return should include the dividend because dividend-inclusive return represented the actual
return on the stock index portfolios. Both their within- and out-of-sample results showed the
hedge ratios estimated from bivariate GARCH models led to the smaller variance and larger

expected utility of the hedged portfolio either taking transaction cost into account or not.

Choudhry (2004) is another piece of work on the optimal hedge ratio estimation using weekly
stock index data. Unlike most papers in the field, it used the data on three Pacific Basin
countries, including Hong Kong, Japan and Australia. Similar to Park and Switzer (1995), it
took the dividend yield into consideration, however, in a different way. Firstly he computed
the cost of carry as the difference between money market rate and dividend yield. Then the

cost of carry was added to the spot return to form the adjusted spot return. Finally the

9



adjusted spot return data was used in estimation. He did not check for the existence of
cointegration between the spot and futures price levels and simply modelled the conditional
mean as constant. The parameterization of GARCH was a bivariate diagonal VECH
GARCH(1,1) with normally distributed standardized errors. In the out-of-sample forecast, he
kept the values of parameters the same as those estimated from within-sample dataset, but did
not update them on a weekly basis. Both of his within- and out-of-sample results suggested
that the superiority of GARCH hedge ratios over OLS hedge ratios has to be judged on a

case-by-case basis.

Gagnon and Lypny (1995) examined the optimal hedge ratio problem using the weekly data
on Canadian interest rate markets. They showed that the interest rate and its futures were
cointegrated, but both of the returns are serially autocorrelated. Thus a bivariate error
correction model with MA(1) error was set up to model the conditional mean. Before setting
up the model for the conditional variances, they performed the Engle and Ng (1993) sign bias
test on the return series and the results showed a significant negative size bias in both series.
To capture the asymmetric effect of shocks on the conditional variances, they employed the
asymmetric ARCH suggested by Glosten, Jagannathan and Runkle (1993). To allow for the
time-varying correlation, they used the BEKK specification of GARCH(1,1). The conditional
Student-t distribution was used to represent the distribution of return errors to account for the
fat tails that characterize their conditional distribution. The error-correction model with
asymmetric GJR-GARCH(1,1) error structure and MA(1) term produced the best description
of the data. However, both the within- and out-of-sample results suggested the hedge ratios
estimated from a model with constant conditional mean and asymmetric GJR-GARCH(1,1)
error structure outperformed those estimated from a more general model with MA(1) error

and error correction term as the conditional mean.

Harris and Shen (2002) examined the optimal hedge ratio problem using daily FTSE 100
stock index data. They applied the rolling window method and Exponential Weighted
Moving Average (EWMA) model ( also called IGARCH model ) to estimate the optimal
hedge ratio and update the estimation dataset on a daily basis. Different lengths of rolling
window and values of the parameters of EWMA model were used. Then they argued that
although consistent the sample variance estimators would only be efficient when the errors
were normally distributed. But there had been evidence that short-horizon financial asset
returns were not normally distributed even conditionally. To accommodate the leptokurtosis

of the distributions of returns, they assumed a Power Exponential (PE) distribution and

10



derived the expression of variances for both rolling window and EWMA approach. They
derived the conditional covariance by a simple identity involving two variance terms to avoid
the problematic covariance derivation associated with PE distribution. The optimal hedge
ratio estimated from models with PE distribution errors were called robust optimal hedge
ratio. Their results showed that the robust estimator yielded a hedged portfolio variance
marginally lower than that derived from a standard estimator and the variance of the robust
hedge ratios were substantially lower than the variance of the standard optimal hedge ratio,

reducing the transaction costs associated with the optimal hedge strategy.

Brook and Chong (2001) examined the cross-currency hedging performance of the implied
and statistical forecasting models. They used four pairs of on-spot currencies and over-the-
counter (OTC) currency options data to examine the hedging performance on one-month and
three-month hedging horizons. To estimate the optimal hedge ratio, eleven models were used
of which the implied model and the family of univariate GARCH were rarely used in this
field. In the implied model, the variances of the two currencies were the implied volatilities
derived from currency options and the covariance between the two currencies was derived via
an identity that involves the implied volatility of the two currencies and their cross currency.
In the univariate GARCH family models, the individual variances of currency returns were
estimated from GARCH model and the covariance between the two currency returns were
derived from the identity mentioned above. This identity in the cross-currency relationship
enables them to apply those univariate GARCH models which normally are not adequate in
deriving the optimal hedge ratio in the spot and futures hedging. Another point to notice was
that they used multi-step-ahead forecast rather than one-period-ahead forecast in the out-of-
sample examination. Since the variances are additive over time, the multi-step-ahead
forecasts of the variance and covariance can be derived from the sum of the one-period
forecasts with the parameters estimated from the daily updated within-sample dataset. Both
the one-month and three-month out-of-sample results indicated that GARCH with Student-t
distributed conditional error and EWMA models appeared better and the implied model and

naive model appeared worse than others.

Lien et. al (2002) provided a systematic comparison of the performances of the hedge ratios
estimated from OLS and Constant-Correlation GARCH model. Their dataset covered ten
pairs of markets including commodities, currencies and stock indices. The data frequency
was daily and the data period was ten years. The out-of-sample period had 1,000 observations

and model estimation was updated on a daily basis. The estimation consisted of two stages. In

11



the first stage the conditional mean of each series was estimated using univariate
autoregressive filters by OLS method. In the second stage the conditional variances were
estimated using constant-correlation GARCH(1,1). Their results indicated that hedge ratios
estimated from GARCH did not outperform those estimated from OLS. Given the transaction
cost associated with the volatile hedge ratios estimated from GARCH, they concluded
GARCH should not be considered for hedging purposes although they are useful for data

description.

3. Hedging Theory

Hedging refers to the investment strategy of taking opposite positions in some investment
instruments related to the existing positions. Depending on the type of hedging instrument,
we can categorize it as hedging using futures and hedging using options. When the
underlying of the futures is the same as the asset to be hedged, investors face the problem of
finding the optimal direct hedging strategy using futures contracts. In this chapter, we

examine the performance of a number of hedging strategies using futures empirically.

Despite its popularity in different types of market, the motivation for hedging is controversial.
In the last fifty years, at least three theories have been advocated, each of which suggests a
particular optimal hedging strategy. Traditional theory argues that investors hedge purely for
risk minimization purpose and the optimal hedge ratio should always be one. Working’s
theory asserts that hedgers speculate on the basis rather than the price and the optimal hedge
ratio depends on the expected change in basis. Portfolio theory views hedging as managing a
portfolio consisting of the spot and the futures and the optimal hedge ratio corresponds to the
weight of the portfolio with the best trade-off between return and risk. In this section, each of

the three theories is explained in detail.

Consider the following example of a long hedge. Suppose an investor facing a one-period

decision making problem has a unit of long position in an asset. Its current price is S, and the
price of its corresponding futures is F,. The end-period price of the spot and futures are S,
and F, respectively. He or she hedges the long position in spot by taking 4 unit of short

position in the futures at time 1 and clearing it at time 2. The change in wealth is:
AW =8, =S8, +(F{-F,))-h 1
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Define basis as spot subtracted from futures. (B = F —S) The change in wealth can also be

written in terms of the change in basis and the futures or the change in basis and the spot.

AW =B, - B, +(1-h)-(F, - F) @)
AW =h-(B, - B,)+(1-h)(S, - 5,) 3)
3.1 Traditional Theory

Traditional theory argues that the only objective of hedgers is to minimize the risk associated
with their spot position and they are not concerned with making profit from hedging at all.
Under the assumption that the price movement in the spot parallels that in the futures market,
i.e. the change in basis is zero, hedgers should always take an opposite position in the futures
market of the same magnitude as the position in the spot market. In other words, the optimal

hedge ratio should be one.

Under the assumption of zero change in basis, the change in wealth expressed in equation (2)

reduces to:
AW =(1-h)-(F, - F) “4)

which is random because the end-period price of the futures is unknown. Its variance is:

Var(AW)=(1-F)’ -Var(F,) (5)

The hedging problem can be solved by minimizing the portfolio variance in (5) with respect
to the hedge ratio. As the product of two non-negative terms, the portfolio variance reaches

the minimum at zero when the hedge ratio is one.

The obvious caveat of the traditional theory is that the change in basis is unlikely to be zero.
First, the cost of carry theory implies that basis tends to be smaller as futures contract
approaches expiry. Second, the futures price is not only affected by the spot price but also by
the expectation of the spot price at expiry which is clearly variable. Therefore, although the
change in basis is small, it is very unlikely to be zero, unless the hedging period coincides
with the remaining period of the futures contract. Without the assumption on zero change in
basis, the optimal hedge ratio would not be one but the minimum-variance hedge ratio

introduced later. Nevertheless, the change in basis is almost surely smaller than the change in
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the spot price. For the investors who want to reduce risk, traditional hedge is better than no

hedge at all.

3.2 Working’s Theory

Working (1953) proposed an opposite theory to the traditional theory. He argued that hedgers
speculate on the basis instead of the price in one market and they are not concerned with risk
at all. Working’s theory is based on the implicit assumption that the spot price is
unpredictable and the hedge ratio is constrained between zero and one. He concluded that
long hedgers should only hedge one-for-one when the basis is expected to shrink and not

hedge at all when the basis is expected to widen.
Recall the change in wealth expressed in equation (3).
AW =h-(B, - B,)+(1-h)-(S, - 5,)

Because the end-period basis and spot price are unknown, the change in wealth is random

with the mean as follows.
El(AW):_h'(Ele—Bl)+(1'h)'(E1S2 _Sl) (6)

Working implicitly assumed the spot price follows a martingale process, therefore the second
term in (6) vanishes and the change in wealth reduces to the change in basis times minus the

hedge ratio. That is,
E (AW)=-h-(E,B, - B)) @)

When the basis is expected to broaden, i.e. the expected change in basis is positive, long
hedgers should avoid the expected loss by not hedging at all. When the basis is expected to
shrink, i.e. the expected change in basis is negative, long hedgers should maximize the

expected gain by hedging to the maximum, i.e. hedge one-for-one in his framework.

The main difference between Working’s theory and the traditional theory is that the former
assumes hedgers are only concerned with expected return and the later assumes they are only
concerned with risk. The portfolio theory shown next advocates that hedgers are similar to
most market participants who make decision to strike the best trade-off between expected

return and risk.
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3.3 Portfolio Theory

Johnson (1960) and Stein (1961) proposed to analyze hedging in the basic portfolio mean-
variance framework. Hedgers are treated as mean-variance utility maximizer, who forms the
portfolio by combining the risky asset in the spot market with its futures. The efficient
frontier representing the trade-off between the expected return and risk can be derived for this
portfolio by varying the hedge ratio. Given the degree of risk aversion, the schedule of
indifference curves can be drawn. The point at which the highest indifference curve is
tangential to the efficient frontier corresponds to the optimal hedge ratio. In theory, the
optimal hedge ratio can be any value. The hedge ratio greater than one is referred to as over

hedge. The hedge ratio lower than one is referred to as under hedge.
Recall the expression of the change in wealth in equation (1).
AW =8,-S,+(F,-F,))-h
Its mean and variance are as follows.
E(AW)=ES, -8, +h-(F, - E,F)) 8)
Var,(AW) = Var,(S,) + h* -Var,(F,)-2-h-Cov,(S,,F,) ©)]
Hedgers’ objective is to maximize the following mean-variance utility function.
U, =E(AW)=0.5-y -Var, (AW) (10)
where y is the degree of risk aversion.

The optimal hedge ratio can be derived by setting the F.O.C. of the utility with respect to the
hedge ratio to zero.
oU,

—67=—E1F2 +F -h-Var(F,)+h-y-Cov,(S,,F,)=0

he Cov,(S,,F;) EF,-F

(11)
Var,(Fy) 7y -Van(F)

Equation (11) shows the optimal hedge ratio of a mean-variance utility maximizer. If hedgers

are only concerned with risk minimization as suggested by the traditional theory, the optimal
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hedge ratio would reduce to the minimum-variance hedge ratio, which can be derived by

setting the F.O.C. of the portfolio variance with respect to the hedge ratio to zero.

oVar,(AW)

v =2-h-Var,(F,)-2-Cov,(S,,F,)=0

W= Cov,(S,,F,)

Var,(F,) (12

From (11) and (12) we can see that the minimum-variance hedge ratio is optimal when either
the futures price is unpredictable or hedgers are infinitely risk averse. Under the first
condition, the expected return of the futures is zero and the change in hedge ratio has no
effect on the expected return, in which case, the only benefit of hedging is to reduce risk.
Under the second condition, the marginal rate of substitution of return for risk is infinite, i.e.
hedgers are willing to give up all the possible return for a marginal amount of risk reduction.

In either case, the optimum is achieved when the portfolio variance is minimized.

In this chapter, we take the traditional view on the motivation for hedging. Hedgers
participate in the market to reduce the unwanted risk. Their goal is not to maximize possible
return as speculators or to achieve the best combination between return and risk as most
investors. They hedge purely to minimize the risk associated with the existing positions in the

spot market. Therefore the optimal hedge ratio is the minimum-variance hedge ratio.

Equation (12) presents one version of the optimal hedge ratio, which suffers from the
drawback that it is difficult to estimate empirically. An alternative version of the optimal

hedge ratio is presented in the next section.

3.4 Alternative version of the optimal hedge ratio

Hedgers’ motivation is to minimize risk. If risk is measured by the variance of the change in
wealth, we have the formula for the optimal hedge ratio in equation (11). If we use the
variance of the percentage change in wealth as the indicator of risk, we reach another version

of the optimal hedge ratio.

The percentage change in wealth is:
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AW _S,=S, +h-(F,~F) AS , AF _AS , AF
7 S, s, S S R

where the approximation follows because the price in spot and futures are very close.
For very small X' we have the following approximation.

AX

dX
—=dlnX) = ~A(ln X
5 - ¢ X) 5 (In X)

Apply the above to the price of the spot and futures, the proportional change in wealth can be
approximated by the difference between the first-order difference of the two logarithmic price

levels.

AW AmS-h-AlnF
W

The above percentage change in wealth is random with the following variance.
AW 5
Var;(—y?) =Var(AlInS)+h" -Var,(AInF)—-2-h-Cov,(AInS,AInF)

The optimal hedge ratio can be solved from setting the F.O.C. of the variance of the

percentage change in wealth with respect to the hedge ratio to zero.

ovar, (20
TW—=2-h-Var,(AlnF)—2-Cov1(AlnS,AlnF)=O

_Cov,(AlnS,AIn F)
Var,(Aln F)

h"

Since the first-order difference in logarithmic price level approximates the rate of return, the
alternative version of the optimal hedge ratio is the quotient of the covariance to the variance

of the return.

el (AlnS,AlnF) _ Cov,(r,,7,)

(13)
Var,(Aln F) Var,(r;)

In the early period of the research on hedging, both versions of the optimal hedge ratio are
studied and estimated. Since Engle and Granger’s work on cointegration was popularized,

most researchers have realized the disadvantage of the former version and only used the latter
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version in estimation. Specifically, the price level of spot and futures in various markets or
sample periods are nonstationary but econometric estimation is only valid for stationary

variables.

Following the researchers in the field, we use the second version of the optimal hedge ratio in
this chapter. That is, we apply a number of econometric models with theoretical support to
the data, compute the optimal hedge ratio from the corresponding covariance matrix

estimates and compare the different models on the basis of hedging performance.

3.5 Hedging Effectiveness Measurement

Two kinds of hedging effectiveness measurement are widely used in the literature. One is the
standard deviation or variance of the hedged portfolio. The other is the percentage reduction
of the hedged portfolio variance compared with the spot variance. The latter was proposed by
Ederington (1979) and is named as Ederington Hedging Effectiveness ( HE ) measurement.
In fact, these two measurements amount to the same thing since the variance of spot is
constant whichever hedging strategy is used. The ranking of the hedge ratio implied by

different models is the same whether the portfolio variance or Ederington HE is used.

Hsin et al. (1994) proposed to use the change of the certainty equivalent returns relative to the
spot position to measure the hedging effectiveness. Under the mean-variance utility
framework, the certainty equivalent returns of the hedged position and the spot position can
be computed, given an absolute risk aversion coefficient. A positive value means the hedging
is effective, while a negative value indicates the hedging is ineffective. This measurement is
rarely used in the literature probably because the expected return of the hedged portfolio is

always insignificantly different from zero.

Some researchers took the transaction cost into consideration when comparing the hedging
performances. In particular, they subtract the transaction cost from the mean-variance
expected utility value and choose the strategy corresponding to the highest utility. See Kroner
and Sultan (1993) and Park and Switzer (1995).

Another relevant indicator of the hedging effectiveness is the minimal return of the hedged
portfolio. Since the main purpose of hedging is to reduce risk, it is beneficial to examine the

hedging performance in the worst scenario when it is needed the most.
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In this chapter, we follow the common practice in the literature and only look at the portfolio
variance and Ederington HE measurements in evaluating the hedging strategies implied by

different models.

4. Data
We investigate the hedging effectiveness using stock index futures in six countries. They are
Australia, Germany, Japan, South Korea, UK and USA. The sample period bf Germany,
Japan, UK and USA covers a ten-year period between March 1995 and March 2005. The
sample period of Australia starts from May 2000 and the sample period of South Korea starts
from May 1996. Both of them end in March 2005. The data frequency is daily.

In order to estimate the model and perform forecasts, the whole sample period is divided into
the within-sample and out-of-sample part. The former is used to estimate the model and
derive the first set of parameters. For all the indices, the within-sample period starts from the
first day of its full-sample period and ends on March 5™, 2004. For Germany, Japan, UK and
USA, the within-sample period lasts for 9 years. For Australia and South Korea, the time
length is 3 years and 10 months and 7 years and 10 months respectively. The latter is the last
year of the whole sample period. Specifically, it starts from March 7", 2004 and ends on
March 7%, 2005.

The data can be divided into two groups. The first group includes the two price series — the
daily closing stock index and the settlement price of the corresponding index futures. The
most influential index of each country is chosen. Among the corresponding index futures
contracts with different maturity date, the one closest to expiry is chosen. On the first day of
its expiry month, it is replaced with the nearby contract, in order to create a long series of the
futures plrice.1 Specifically, the stock indices used in this chapter are Australian SPI 200,
German DAX 30, Japanese NIKKEI 225, South Korean KOSPI 200, UK FTSE 100 and USA
S&P 500 index.

The second group includes the dividend yield corresponding to each stock index and the

three-month interest rate of each country. There are two special cases. As a performance

' Another reason for rolling over the futures contract is to avoid the expiry effect. In the last two to three weeks
of each contract, trading volume and open interest increase dramatically. These signs indicate the price process
in the expiry month is probably different from that in most periods.
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index DAX 30 is computed with dividend reinvestigated, therefore there is no separate DAX

30 dividend yield series. All the data is downloaded from DataStream.

In order to compute the cost of carry, we need to derive the days-to-maturity series. In the
ten-year sample period, forty three-month contracts of each index futures are used. The days
to maturity series are derived from counting the number of days between each day and the

last trading day of the expiring or the nearby contract.

The daily return series of the spot and futures are computed by taking the difference of the
logarithmic price level. Table 1 contains the descriptive statistics of the daily returns.

Table 1: Descriptive Statistics of the daily returns on spot index and index futures

AU GM JP KR UK US

mean 0.01% 0.01% | 0.03% 0.03% | -0.02% -0.02% | 0.00% 0.00% | 0.02% 0.02% | 0.04% 0.04%
s.d. 0.70% 0.76% | 1.64% 1.65% | 1.47% 1.52% | 2.44% 2.87% | 1.16% 1.22% | 1.17% 1.23%
max 3.44% 3.86% | 7.55% 7.29% | 7.66% B.00% | 14.60% 18.32% | 5.90% 5.95% | 5.57% 5.75%
min -4.81% -4.08% | -8.87% -14.82%| -7.23% -7.60% {-12.74% -11.37%| -5.89% -6.06% | -7.11% -7.76%
skewness -0.446 -0.061 | -0.228 -0.346 | 0.041 0.041 0.122 0.585 -0.168 -0.098 | -0.111 -0.126
kurtosis 6.879 5.079 5.682 7.490 4.941 4,878 5.995 6.898 5.573 5.252 6.060 6.410
Jaque-Bera 662 181 724 2019 369 346 770 1411 659 500 921 1144
numberof | .03 1003 | 2348 2348 | 2348 2348 | 2045 2045 | 2348 2348 | 2348 2348
observation
Note 1: AU, GM, JP, KR, UK and US are for Australia, Germany, Japan, South Korea, UK and USA respectively.

2: &5, Af denote the return on spot index and index futures.

From the descriptive statistics in Table 1, we can see that the return series in the spot and
futures market are very similar. The mean of each return is insignificantly different from zero.
The standard deviation of the futures return is slightly greater than that of the spot return,
indicating the futures are more volatile than the spot. None of the returns are normally
distributed. Their distributions share the fat-tail feature. Among all the indices, only NIKKEI
225 has a negative average return, reflecting the prolonged recession that Japanese economy
experienced in the sample period between 1995 and 2005. KOSPI 200 has the greatest
standard deviation, biggest daily gain and loss even though its sample size is one-tenth less
than others, indicating South Korean market is the most volatile in our data set. This is not

surprising. In all six countries studied, only South Korean market can be categorized as an

emerging market.
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5. Methodology

As shown in equation (13), the optimal hedge ratio is the quotient of the covariance between
spot and futures to the variance of futures. The key to derive the hedge ratio with outstanding
performance is to employ the theoretically sound and empirically proven model for the
covariance matrix so as to make accurate forecast on the covariance matrix. The process of
finding the right model involves modelling the first and second moment of the spot and
futures return in a bivariate system and simulating the hedged portfolio from the covariance
matrix estimates and the actual return series. In particular, four models will be proposed and
estimated. Some of them will fit the data better than others. But all of them will be evaluated

according to hedging effectiveness measurement using within- and out-of-sample data.

5.1 Modelling the Conditional Mean

Stock index and the index futures written on it are closely related. The level of spot index
represents the price investors are willing to pay for the portfolio measured by the stock index
now. The price of the index futures represents what investors are willing to pay for the same
portfolio at the futures’ expiry date. The economic theory describing the relationship between
the two is the cost of carry theory.

5.1.1 Cost of Carry Theory

Cost of carry theory is the futures pricing theory based on a no-arbitrage condition. For
investors willing to own an asset at the expiry date of its futures contract, there are two
alternative strategies. One is to buy in the spot market with immediate delivery and ‘carrying’
it in inventory. The other is to buy in the futures market with deferred delivery at expiry date.
In the case of stock index futures, the cost of the former strategy involves the spot price and
the time value of the funds and its proceeds are the dividend. The cost of the latter strategy is
the futures price. Under the no arbitrage condition, the two strategies should incur the same

net cost. Denote the interest rate, dividend yield and time to maturity as » d and T —¢

respectively. The cost of carry theory implies the fair price of futures (Ff ) as follows:

F' =S8, et a-n (14)
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Taking logarithm on both sides we have a linear relationship among the stock index, the fair

value of the index futures and the cost of carry.
InE =InS, +(r, —d,) (T 1) 15)

The cost of carry theory implies a no-arbitrage relationship among the spot, futures and cost
of carry. But it does not necessarily hold at any moment in time. When the actual futures
price is different from its fair value, arbitragers will enter both markets to make risk-free
profit, which will result in the price movement in both markets to restore the no-arbitrage
relationship. Therefore, the deviation from the no-arbitrage relationship should be short-lived

and random.

If we replace the fair value of futures with its actual price on the left hand side of equation
(15), then we would have to add a term to accommodate the temporary deviation. This term
should be random with zero mean and no autocorrelation. That is, the cost of carry theory

suggests the following relationship among the actual value of spot, futures and cost of carry.

InF, =InS, +(r,-d,)- (T -t +e, (16)
where €, is a white noise.

The deviation from the cost of carry relationship has predictive content on the price
movement in both spot and futures markets. Suppose at time #, the futures price is lower than
its fair value i.e. the deviation ( actual price minus fair value ) is negative. At time ¢+1, the
undervalued futures price tends to increase. Therefore, there is a negative relationship
between the deviation and the return of the futures. An undervalued futures also implies the
spot index is overvalued compared with futures. The next movement in the spot tends to be a

fall. Therefore, the relationship between the deviation and spot return should be positive.

The cost of carry theory implies the following model for the return in spot and futures and the
deviation of the actual futures from the fair value.

{ASIH = H, +5s (f; -, _coct)+£s,t+l (17)

Af,., =u, +5f -(f, — s, —c:oc,)+6‘f,,+1

where ASt+1.8%+1 are the difference in the logarithmic price level, i.e. the returns in the spot

and futures market and coc, is the cost of carry. 8. 8¢ is positive and negative respectively.
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The above relationship is the skeleton model of the conditional mean estimated in this chapter.

It is supported not only by the cost of carry theory, but also the cointegration theory.
5.1.2 Cointegration relationship and VECM

Engle and Granger (1987) developed the cointegration theory with profound implications on
multivariate modelling in economics and finance. Suppose there are several nonstationary
variables and a linear combination of them is stationary. These variables are said to be
cointegrated and the cointegration error has predictive power over the first-order difference of

all the variables. More specifically, suppose X,Y,Z are all (1) variables and a linear
combination of them, a- X +-Y +y-ZisI(0). Then X,Y, Z are cointegrated of order one.

And their first-order differences can be modelled by a vector-error-correction model (VECM).

Numerous researchers have tried to find a cointegration relationship between the price of the
spot and futures in different markets. The empirical test results summarized in Brenner and
Kroner (1995) suggest commodity price and its futures are not cointegrated, foreign exchange
rate and its futures are cointegrated, but it is unclear whether stock index and the index

futures are cointegrated.

Brenner and Kroner (1995) gave some explanation for these findings. Their argument is that
the spot and futures price level are cointegrated if the differential (cost of carry) is stationary,
otherwise they are not cointegrated. They assumed the time to maturity of the futures contract
is fixed. Therefore the differential is proportional to the difference between the two variables.
In the case of commodity, it is the difference between the interest rate and the convenience
cost. Since the convenience cost per period is reasonably stable and the interest rate is
generally believed to be nonstationary, the spot and futures in the commodity market are
unlikely to be cointegrated. In the case of foreign exchange, the differential is the difference
between the interest rates of the two countries. While there is strong evidence on the
nonstationarity of interest rate in the literature, the evidence on the stationarity of interest rate
differential is mixed. It is very likely that the two interest rates share a common stochastic
trend, in which case the difference between them is stationary. It explains why the foreign
exchange rate and its futures are often proven cointegrated. In the case of stock index, the
spread is between dividend yield and interest rate. There is not much evidence or theory on

the stationarity of the difference between these two variables.
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However, most empirical work including this chapter investigates the relationship between
the contemporaneous spot and futures, i.e. the number of days to maturity of the futures
contract is not fixed. The common practice is to roll over the nearest futures contract to the
nearby one several days before expiry to create a long series of the futures price. Therefore
the variable of days to maturity is not constant but cyclical. The differential is a product of
the difference between two random variables and a cyclical deterministic variable. We will
answer the question on whether the cost of carry is stationary empirically by performing a
stationarity test on it. If the test results indicate stationarity, then we will have to test a
cointegration relationship among variables of different order. In this circumstance, standard
OLS method is invalid; therefore we have to apply the dynamic OLS method advocated by
Stock and Watson (1993).

Granger representation theorem ( Granger (1983), Engle & Granger (1987) ) also suggests
that if a cointegration relationship can be established among several variables, then a VECM
should be used to model their first-order differences. In the current example, if the stock
index, index futures and cost of carry are cointegrated and the former two variables are I(1)
and the latter one is I(0), then we will estimate a two-variable VECM for the return of spot
index and index futures. From the model estimates, we can derive the optimal hedge ratio as

the quotient of the covariance between spot and futures to the variance of futures.

5.1.3 Empirical procedure

The estimation of VECM involves two steps. First, we test for and estimate the cointegration
relationship among the level of stock index, index futures and cost of carry. Then, we

estimate the VECM incorporating the estimated cointegrating vector.
5.1.3.1 Cointegration test and cointegrating vector estimation

The first step towards establishing the cointegration relationship is to test the stationarity of
all three variables in level and their first-order difference. Unit root test, specifically the
Augmented Dickey-Fuller Test (ADF) will be employed on the level and the first-order

difference of spot, futures and cost of carry®. The next step is to estimate the cointegrating

% The cost of carry of stock index futures is the product of the time to maturity and the difference between
interest rate and dividend yield. The time to maturity is measured by the number of days between each day and
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vector. We will use dynamic ordinary least squares (DOLS) method proposed by Stock and
Watson (1993) and Saikkonen (1991) in estimation. Since the cost-of-carry term has already
incorporated the time factor and different futures contracts are combined to form a long series,

an intercept rather than time trend will be included in the regression.

The dynamic OLS method rather than standard OLS will be applied because only it is valid
when cointegrated variables are of different order. As will be shown in the results section, the
cost of carry is stationary, but the level of spot index and index futures are I(1). Furthermore,
unlike the super consistent estimates of standard OLS, dynamic OLS estimates are
asymptotically normally distributed, which makes statistical inferences on coefficient

estimates possible. Therefore, cointegrating vector (1,—1,—1) suggested by cost of carry theory

can be tested using standard tests. The DOLS regression takes the following form.

k
fi=B+B s +pB,-coc+ Zy,. “As,_, +u,

i=—k#0

where f, and s, are the logarithm of index futures and spot index and coc;, is the cost of carry.

As, _, is the lead or lag of the first-order difference of spot. They are included to accommodate
the endogenous feedback and nuisance parameters. The number of lead and lag is set at 5

because our data frequency is daily. #, is a random error.

The final part in cointegration testing is to check whether the dynamic OLS regression
residual is stationary. If the nonstationary hypothesis is rejected, then the no cointegration
hypothesis is also rejected, i.e. the cointegration relationship is established. Specifically, ADF
test will be performed on the OLS residuals.

5.1.3.2 Estimation of the VECM

While the cost of carry theory suggests the cointegrating vector to be (1,—1,—1), the estimates

by dynamic OLS will be (1,—,8l ,—[32) . We test the null hypothesis that they are the same. If

there is no evidence overwhelmingly rejecting the null, we will impose the constraint of

the expiry day of the corresponding futures contract. The interest rate is measured by the three-month interest
rate of each country. And the dividend yield is measured by the dividend yield of the stocks index.
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(1,—1,—1) on the cointegrating vector and use the corresponding error terms in the VECM. The

specification of the VECM is as follows.

Ast = ﬂs +5s .zl—l +Z¢sli 'Ast—i +Z¢32i 'M—i +€st
i=1 I=1n (18)
A, =Hs +5f "2 +Z¢f1i -As, +Z¢f2i A, t+&,
i=l

i=]

and z, = f, —s, —coc,

where s, , f, are the logarithm of price level in the spot and futures market, As,,Af,are the

return in the spot and futures market respectively and Zz, is the error term.

Comparing (18) and (17), we can see that the VECM is basically what the cost of carry
theory suggests but with the extra terms of lagged returns on the right-hand side. The
inclusion of these lags is to accommodate the dynamics of the model. A large number of lags
in both spot and futures are included first. To achieve a parsimonious specification, we also
estimate it without insignificant lags. The best specification is determined with the aide of the
two frequently used information criteria — Akaike information criterion (AIC) and Schwartz

Bayesian criterion (BIC). The lag structures in the spot and futures equation are kept the same.

Since the right-hand-side variables of the two equations are the same, estimating the two
equations separately is equivalent to estimating the system jointly, if the two residuals are
contemporaneously uncorrelated. In this part of the thesis, we make this simple but
unrealistic assumption and estimate VECM using OLS method to follow the common
practice in the literature. In the next part, we will specify the structure of the two residuals

explicitly and estimate the conditional mean and variance jointly.

Given the cost of carry theory and Engle-Granger approach, we expect at least one of the
error-correction term coefficients to be significantly different from zero. It means that as the
two variables depart from the equilibrium at least one variable will adjust to restore the
equilibrium. If only one variable is significantly different from zero, the information flow in
the system is unidirectional, i.e. the information is reflected in the price movement of one
variable. This variable is endogenous to the system. The variable insignificantly different

from zero is weakly exogenous to the system, i.e. it does not react to the deviation from the
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stable relationship. If both of them are significant, then both variables are endogenous and the

information flow is bidirectional.
5.1.3.3 Conventional hedge ratio vs. VECM hedge ratio

In the early period of hedging research, there were a number of papers comparing the
performances of the conventional hedge with the VECM hedge. See Myers and Thompson
(1989) and Chou et al. (1996). The two hedge ratios are different because they are derived
from different regression equation. Conventional hedge ratio proposed in Ederington (1979)
can be estimated as the slope coefficient of the return of spot on that of futures. The
regression equation of VECM hedge is similar to that of conventional hedge with the lagged

error-correction term as additional regressors.

Implicitly, the conventional hedge assumes the return of spot and futures are unpredictable
and their second moments are independent of time. In contrast, VECM hedge supported by
Engle and Granger’s cointegration theory is derived in the framework explicitly modelling

the predictive power of the deviation on the returns.

Several early studies have documented that conventional hedge ratio is smaller than VECM
hedge ratio. Lien (1996), Moosa (2003) and Lien (2004) explained this phenomenon by
deriving the analytical conditions under which conventional hedge ratio is smaller than
VECM hedge ratio and showing that these conditions are usually satisfied. In fact, this is an
econometric problem. Suppose VECM is the appropriate model for the return of spot and
futures. The correct regression equation should have both the lagged error-correction term
and the return on futures on the right-hand side of the equation. But if we mistakenly estimate
the regression without the error-correction term, as implied by conventional method, then it
would lead to omitted variable bias. The conditions for positive and negative bias can be

derived.

5.1.4 Nonlinear VECM
5.1.4.1 Rational

In section 5.1.2, we proposed to model the return on spot and futures by a standard linear
VECM, because it not only captures the long-run arbitrage-free relationship between the level

of spot and futures but also accommodates the effect of short-term deviation on future price
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movement. However, linear VECM is subject to a drawback. Specifically, the coefficients of
error-correction term do not change with the size of deviation, which implies the strength of
the price adjustment is uniformly the same however far away from its fair level is the current
price. This is counter-intuitive, as the strength of adjustment should be positively related to
the size of deviation. In reality, markets are populated by heterogeneous investors with
different transaction costs. As the size of deviation increases, index arbitrage becomes a
profitable strategy for more investors. Therefore, the availability of index arbitrage
opportunity is increasing in the size of deviation. As more investors are involved in index

arbitrage, the strength of adjustment to deviation becomes stronger.

Several authors have used non-linear VECM to model the changing strength of adjustment in
the context of spot and futures relationship. Yadav et al. (1994), Martens, Kofman and Vorst
(1998) and Dwyer et al. (1992) used the threshold VECM. Taylor et al. (2000) employed the
smooth-transition VECM (STVECM). Between the two alternatives, the STVECM is
preferable. Unlike the threshold VECM that relies on the distinct classification of investors
and implies an abrupt transition from no-arbitrage to arbitrage zone, STVECM allows an
infinite number of investors facing different transaction cost and suggests a smooth transition
between the extreme regimes. Furthermore some specifications of STVECM accommodate
the threshold VECM as a limiting case. As STVECM is more general and plausible than
threshold VECM, we estimate the STVEM for the conditional mean of the spot and futures
return as an alternative to the standard linear VECM.

5.1.4.2 Specification

The standard form of a STVECM is given by the following:

P P
AYi=| 1.0+ a3z + Z ®1;8Yj |+ | ¥2,0 + @224 + z ®2jAV;- | ® G(siv,c) +
i=1 j=1 J

where AY; is the kK x1 yector containing the change of the endogenous variables, that is,
AY, = (AYy,. -'-!AYM); Ze-1 = B'Ye1 for some kx1 vector B denote the error-correction

term, that is, Zt-1 is the deviation from the arbitrage-free relationship which is given by

BYi—s =0 ;8¢ =Z4 denote the transition variable, that is, the size of the dth lag of the

deviation determines the strength of the error-correction adjustment; G(Sti¥.€) is the

2x 1 vector of the transition function corresponding to the individual set of parameter value
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of y and ¢ for spot and futures, while they share the same transition variable and function

form.

Equivalently, it can be written in the matrix form where all RHS variables are listed in a

{pk+ 2) x1 vector X and the corresponding parameter vectors, ®1 and ®z.

Thatis, %t = (L-Ze1.8¥5, 4. —.A¥3; p— AV, 4. —.8%, )

AYp = @43 + P22 R G(s;v.€) + 5 (19 )

The transition function takes the value between zero and one. The STVECM model can be

thought of as a regime-switching model that allows for two regimes, associated with the two

extreme values of the transition function, G(s;:y.€)=0 3pd Glspy.c)=1 , Where the
transition from one regime to the other is smooth. Depending on the type of asymmetry to be
captured, the transition function takes one of the two forms. One type of the transition
function is the first-order logistic function, which captures the asymmetric effects of positive

and negative deviation from equilibrium. The first-order logistic function is shown below.

G(s:y.©) = (1 + expf—y(s, — )7L, y>0 zo)

The parameter y determines the smoothness of the change in the value of the exponential
function and therefore the speed of transition from one regime to the other. As ybecomes

very big, the transition between regimes becomes instant. Therefore, the STVECM with

logistic transition function accommodates a two-regime threshold VECM as an extreme case.

The other type of the transition function is the exponential function, which captures the
different effect of big and small deviation from the arbitrage-free relationship. It is shown as

follows.

Gisiv.©) =1 —expf—y(s; — )%}, y>0 (21)

Again, the parameter y determines the smoothness of the change in the value of the

exponential function and therefore the speed of transition from the one regime to the other.
As 7 becomes very big, the transition between regimes becomes instant. However, the
STVECM with exponential transition function does not accommodate a two-regime threshold
VECM as a special case because the exponential function takes the value of one for all but

zero value of St. For the transition function to capture the different adjustment speed between
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small and big deviation and to accommodate the threshold model as a special case, another
type of transition function — the second-order logistic function is proposed by Jansen and

Terasvirta (1996). The second-order logistic function is of the following form.
G(s:y.©) = (1 + expf~y(s; — €, ){(s, — ) 7%, €15¢; ¥>0

The parameter v determines the speed of transition. When it is very big, the STVECM

approaches a three-regime threshold VECM with the restriction that the outer two regimes

are identical.

As our goal is to model the return on spot and futures, the exponential and the second-order
logistic function are more appropriate than the first-order logistic function as the transition
function is increasing in the size of the disequilibrium, but not its actual value of the
deviation. In the extreme case where the lagged deviation is zero, there is no arbitrage
opportunity for all investors, therefore the coefficient of adjustment is zero. In the other
extreme case where the lagged deviation is very big, the arbitrage opportunity is available for
a number of investors, therefore the strength of adjustment is strong and the size of
adjustment coefficient is big. Between the two extreme cases, the number of investors at the
position of taking the arbitrage opportunity is between those in the two extreme cases;

therefore the size of the adjustment coefficient is also between those two extreme values.
5.1.4.3 Linearity Test

The first step towards building a nonlinear VECM is to test for nonlinearity. Since the
rationale for nonlinear adjustment to disequilibrium implies the model specification of
STVECM with exponential or second-order logistic function rather than first-order logistic
function as transition function, we only test linearity against these two alternative

specifications.

It is well-known that linearity test is complicated by the presence of unidentified nuisance
parameters under the null. Specifically, under one of the two unrelated conditions on
coefficients, the model is linear. Rejecting either of them does not lead to the rejection of
linearity. Only if both are rejected simultaneously, the null of linearity can be rejected.
Specifically, both the null Ho:®zj =0amda; =0 .4 the alternative null Hoz ¥ =10

imply linearity. However, if we set up the joint of them as null, the conventional statistical
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theory is not available for obtaining the asymptotic null distribution of the test statistics and

the critical values have to be determined by simulation.

Luukkonen, Saikkonen and Terasvirta (1988) proposed to replace the transition function by a

Taylor series approximation at the point where ¥ =@ . In the re-parameterized equation, we
can set up a null corresponding to the joint null of the original equation avoiding the

identification problem and use a standard additional variable test for linearity testing.

Specifically, Sailkkonen and Terasvirta (1988) suggest approximating the exponential

function by its first-order Taylor approximation around ¥ = @ as follows.

aG
G(st;r,c)=GLst;v=o.c)+aL=° “Y+Ry=(s, — > Y +R, (23)

where Ry is the difference between the approximation and the actual transition function.

When ¥ =@ | Ry is zero. Substitute (23) into (19*). The STVECM can be re-written as

follows.
AY; = Box; + B1xest + Brxes? + & (24)
where Bo. By and B, are all (Pl +2) x1 vectors.
Ba=0, 4 0,(ye2 + Ry ) By = —2&3yc: B, = ®py

As noted in the unidentified nuisance parameter section, the linearity corresponds to either
®; =0 or¥ = both of which correspond to the null hypothesis that B:+ = B2 = © _ The
problem is solved and the linearity test in this scenario is a LM-type test because it is
performed on the re-parameterization of the original model. We compute the X* version of

the LM statistics as follows. First, estimate the model under the null of linearity and compute

T
. SSRo = ), &’ |
the residuals & and the sum of squared residuals t=1 . The regression under the

null hypothesis is as follows.

AY, = fox; + £,
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Second, estimate the auxiliary regression (24). Compute the residuals €& and the sum of

T
SSR, = ) &’
squared residuals t=1
T(ESRg — SSR,)
Last, the x*version of the LM statistics is 55R, . Alternatively, we could compute

the F version of the LM statistics which is preferable in the case of small sample. In a big

sample, the two statistics are close to each other. As our sample size is quite large ( at least

1000 observations in each data set ), only the X* version is computed. Note that if St = Z¢—1 ,

then the first element of S1 and B; have to be dropped to avoid multicollinearity.

If the alternative is that the transition function is a second-order logistic function, the same
linearity test applies. In this case, the first-order Taylor approximation of the transition

function is as follows.
G560 = Gl = 0, + 3o ly=s Y+ Ry =3 (s~ c)(s — )Y +Ry (23%)
The STVECM can be re-written as follows.
AYy = Boxy + B1xeSt + Baxese” + &0 24+9)

where Bo-B1 and B, are all {Pk +2) X1 yectors.
1 1 1
B =0, "";03(}":152 +R1:B1= -;4’2}'(61 +C3)B;: = Zq’z}f _

The linearity hypothesis corresponds to B+ = B2 =0 _ The conclusion is that the same set of
LM statistics can be used to test for nonlinearity specified by a second-order logistic

transition function as that with an exponential function.
5.1.4.4 Estimation

The estimation of STVECM is a straightforward application of the nonlinear least squares
( NLS ) method. Same as the linearity test, the estimation is performed on the return of spot
and futures respectively. Denote the vector of parameters of the return of spot and futures as

6; ,wherei=10r2 6= (4. ®2.Y¥i-o) can be estimated as

-

T
6; = argmingQr(8;) = argming ) (A, — F(x::6,)?
t=1
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where F is the skeleton of the model. That is, F = ®1X; + ®3X%;Gls,:y.¢)  The NLS

estimates are quasi maximum likelihood estimates. They are consistent and asymptotically

normal. While the theory of NLS is clear, the estimation in practice is problematic.

First, STVECM is a nonlinear model whose likelihood function potentially has multiple
maximum. The starting values are crucial in finding the correct estimates of the model.

Leybourne, Newbold and Vougas (1998) suggested to simplify the estimation problem by
concentrating the sum of squares function. Specifically, when ¥ @Dd ¢ are fixed, the model

is linear in the auto-regressive parameters ®s @and ®» . Given the value of Yandec

©; and ®; can be estimated by ordinary least squares (OLS). Denote the estimate of

® conditional on Yamde as ®(¥,€) Thus, the sum of squares function @r(®) can be

concentrated with respect to @ and ®5 a5

T
Qrir.c) = Z(Ayt - ¢(y, )x .l
t=1

This method reduces the dimensionality of the NLS estimation to two. Qrly. ) just needs to
be minimized with respect to the two parameters ¥ amd e only. We do a grid search on

yand ¢ and set the ones that minimize the sum of squared residuals as the starting values in

the actual NLS estimation.

Second, the number of parameters is very big. For example, in the case of UK, it reaches 12.
It therefore is beneficial to impose some constraints on parameter values. Recall the general
form of the STVECM in (19).

P P
AYr=| ®4,0 + a4z, 4 + Z ®,5AY;—j | +| ©2,0 +azz_4 + Z P2;AY:j | @ G(sy; v.¢€) -
=1 -1

When the transition variable — lagged disequilibrium is zero, the transition function —

G(s,:v.¢) reduces to zero and the model reduces to

P
AY = (4’1.0 + g Ze—q + Z q’leYt—j) + £,
=1
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In this extreme case, the strength of adjustment is the weakest because the lagged
disequilibrium is too small to trigger any arbitrage, i.e. the adjustment to disequilibrium is
zero. Since the adjustment strength of this state is measured by @z, we impose the constraint

=0

The parameter Y measures the smoothness of transition between regimes. In order to estimate
it accurately, we need to have a number of observations corresponding to the changing
regime. But usually, most observations of the data set are either in one regime or another, but

not in between. This makes the estimate of y tend to be inaccurate. Furthermore, as van Dijk,

Franses and Terasvirta (2000) suggested, the t-statistics of y does not have the usual

asymptotic t-distribution under the null that¥ =@ as a result of the unidentified nuisance

parameter problem. Therefore we should not take the insignificant y as the evidence against

nonlinearity.

Several authors including Terasvirta (1993) and Dijk, Franses and Terasvirta (2000) have
proposed to adjust the transition function form by dividing (St — €) by its standard deviation

to make y approximately scale-free in aid of estimation. We follow their suggestions and

make this change to the transition function form.

5.2 Modelling the Conditional Variance

In the previous section, we propose to analyze the return of spot and futures in the linear or
smooth transition vector-error-correction model framework with constant conditional
covariance matrix. In that setting, the OLS estimators are asymptotically efficient in the class
of consistent asymptotically normal linear estimators. However, the assumption of constant
covariance matrix is unrealistic for high-frequency financial returns. The history of high-
frequency return series is characterized by volatile period and tranquil period, which implies

the conditional second moments are autocorrelated rather than constant.

To accommodate this stylized fact, Engle (1982) and Bollerslev (1986) proposed the
Autocorrelated Conditional Heteroskedasticity Model (ARCH) and the generalized ARCH
(GARCH) model. In particular, under certain conditions, GARCH is a parsimonious

representation of ARCH and it requires less conditions on the parameters to guarantee
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stability and to enforce estimation. The simplest GARCH specification — GARCH (1,1) has

been proven useful and adequate by numerous researchers.

52.1 GARCH(1,1)
GARCH (1,1) models the conditional variance as the sum of the conditional variance and the
squared residual in the last period. Denote the residual as &, with the conditional variance

o} . The specification of GARCH (1,1) process is the following.
ol =w+p- 0}, +a-g, (25)

The nonnegativity of the variance requires that @ > 0, @ > 0, f > 0. The standardized residual,

v, (v, =€,/ 0,) is assumed to be white noise with zero mean and unity variance.
It can also be written in terms of the standardized residual and the conditional variance.
ol =o+(a+p)-ol +a-(v,-1)-o, (26)

where « measures the extent of the impact of the last-period shock on the current volatility

and ¢ + g measures the speed of this effect dampening down.

The condition of covariance stationarity is @+f<1. The condition of strict stationarity

discovered by Nelson (1990) is E[log(f +a-v?)]<0. A covariance stationary GARCH

process is necessarily strictly stationary, but a covariance nonstationary GARCH process

might be strictly stationary.’

The two commonly used estimation methods of GARCH process are feasible Generalized
Least Squares (GLS) and Maximum Likelihood (ML), between which the Maximum
Likelihood Estimators (MLEs) have better asymptotic properties. In particular, the MLEs are
consistent, asymptotically normal, asymptotically efficient and invariant to one-to-one

transformations of parameters.

The common practice is to assume the standardized residual is normally distributed, which

justifies a bigger unconditional variance than an unconditional normal distribution. However,

3 . . .
From Jensen’s inequality, Elog(f+a-v*)<logF(B+a-v*)=log(f+q). Therefore B +a < 1implies Elog(8+a-v*)<0.
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it is sometime still not enough to explain the leptokurtosis in real financial data. Some
researchers propose to replace the conditional normal distribution with fat-tailed distribution,
such as Student-t distribution, where the degree of freedom can be estimated along with

others parameters.

Or, one can maximize the loglikelihood function as if the standardized residual were
normally distributed. The estimators are termed as quasi-maximum likelihood estimators
(QMLEs) and they are still consistent and asymptotically normally distributed but not
asymptotically efficient provided the conditional mean and conditional variance are correctly

specified.

Generally, GARCH is combined with ARMA in modelling a particular time series. When the
conditional variance, O',2 is a symmetric function of the residual, &,, the Hessian matrix is

block-diagonal. Thus the consistent and asymptotically efficient estimates of ARMA and
GARCH parameters can be derived separately, i.e. the two-step estimation method is justified.
In the first step, the ARMA parameters can be estimated by least squares method. Then the
residuals in this stage can be used to estimate the GARCH parameters by maximum
likelihood method. When the conditional variance is asymmetric in residual, the Hessian
matrix is not block diagonal and therefore the full-information method has to be employed in
estimating the two groups of parameters jointly. In the case where both methods are valid, the
two-step method is preferable since it involves less parameters in the loglikelihood estimation

and makes the convergence easier.

5.2.2 Asymmetric GARCH (1,1)

Despite the apparent success of the standard GARCH, it can not capture the well-known
asymmetric effect of real financial time series. The asymmetric effect discovered by Black
(1976) refers to the phenomenon where negative shocks increase the predictable volatility
more than positive shocks of the same magnitude. While its rationale is still under debate*, a

number of empirical studies have proven its existence. See Kroner and Ng (1998) and Brooks

4 Black (1976) argued that negative shock leads to a decrease in the value of the firm and an increase in the debt-to-equity ratio, which leads
to a higher volatility. Campbell and Hentschel (1992) argued that the arrival of news leads to an increase in volatility, which is compensated
by a higher expected return and a decrease in the price. It amplifies the effect of negative shock and dampens the effect of positive shock,

resulting in the asymmetric effect.

36



et al. (2002). Several variants of GARCH models have been proposed to accommodate the
asymmetric effect, among which the most popular specification is the threshold GARCH
(TGARCH).

Threshold GARCH (TGARCH or GJR-GARCH) is developed by Glosten et al. (1989) and
Zakoian (1990). It accommodates the asymmetric effect simply by adding the product of a
sign dummy and the past squared residual to the standard GARCH. The specification of
TGARCH (1,1) is as follows:

2 2 2 gl
o’ = w+ﬂ'o-z—l +a-8,_1 +}"S¢_1 "€ (27)

where

S, =1if ¢,_, <0; S__, =0 otherwise

t
1 " . »
>0, >0and a+5y >0 are the conditions for the nonnegativity of the conditional
. . L. . 1
variance. The covariance stationarity requires @ + 3+ P y<l1.

To distinguish the effect of positive and negative shock, Engle and Ng (1993) proposed the
news impact curve (NIC) to examine the effect of shock at time #—1on the conditional
variance at time 7, holding constant the information at time ¢ —2 or before. The function

corresponding to NIC of TGARCH (1,1) is as follows:

2 _
o, =

{A+a-8,2_1, for g, >0

A+(a+y)-€,, fore <0
where A=w+f 0’

The NIC of TGARCH (1,1) is a quadratic function of &,_; centred at the origin with different

slope on each side. As bigger shocks have greater impact on conditional volatility, a

and o + y are both positive. As negative shock has a bigger effect than positive shock of the
same magnitude on the residuals, y is expected to be positive. Together the two conditions
require a is positive as well. Engle and Ng (1993) compared the performance of several

parameterizations of the asymmetric GARCH and they concluded that TGARCH is robust
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and provides the best fit to the data. As the conditional variance of TGARCH (1,1) is
asymmetric in residual, the Hessian matrix of the ARMA-TGARCH parameters is not block-
diagonal, invalidating the two-step estimation method. We will use the full-information

maximum likelihood method to estimate TGARCH models.

5.2.3 Bivariate (T)GARCH (1,1)

As the optimal hedge ratio is the quotient of the covariance between the return of spot and
futures to the variance of the futures, we need to model the covariance matrix of the two
returns. Therefore bivariate GARCH rather than univariate GARCH is needed for our

purpose. The general specification of a bivariate GARCH process is as follows:
g, =v, -H?

where V, is a two-dimensional white-noise vector with zero mean and covariance matrix
equal to identity matrix, and &,is a two-dimensional process with zero mean and covariance
matrix H,. Three popular specifications of multivariatt GARCH are VECH, BEKK and

Constant-Correlation GARCH.

Engle and Kroner (1995) proposed the following VECH-GARCH representation.
vech(H,)=Q+B-vech(H, )+ A-vech(e, _, €, )

where vech is an operation that stacks elements in the lower triangle of a matrix into a vector.

For a bivariate GARCH, Qis a 3x1 vector, B, Aare 3x3 symmetric matrices respectively.

The advantage of this parameterization is its flexibility as it allows each element of the

covariance matrix to be affected by all elements of the cross-product of £, ;and all elements

of the lagged covariance matrix H,_,. However, the large number of parameters makes it

difficult to estimate as the convergence is problematic and the stability condition is difficult
to satisfy. Diagonal VECH GARCH developed by Bollerslev, Engle and Wooldridge (1988)
simplifies the full VECH by restricting A and B from being symmetric to diagonal matrix.
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An alternative to VECH-GARCH is developed by Bera et al. (1987), which is known as
BEKK-GARCH (Bera-Engle-Kraft-Kroner). The parameterization of BEKK-GARCH (1,1)

is as follows:
Ht = Q'Q,"I‘B'Ht—] 'B'+A'g,_1 'gt’—l 'A'

where QQ is a 2x 2 lower triangular matrix and B, A are 2x2 symmetric matrix. BEKK-
GARCH is a special form of VECH-GARCH. As all the three terms on the right-hand-side of
the covariance matrix are in quadratic form, H, is guaranteed positive-definite. The

restriction of BEKK also brings the number of parameters down. Similar to the diagonal
VECH-GARCH, diagonal BEKK-GARCH was proposed by Engle and Kroner (1995) with
the constraint that each element of covariance matrix only depends on its own lagged squared

residual and its counterpart in the lagged conditional covariance matrix.

Another alternative specification is the constant-correlation GARCH proposed by Bollerslev
(1990). It assumes the correlation coefficient is constant. Since an accurate estimate of
conditional covariance is the key in computing dynamic hedge ratio, it would be undesirable

to impose strong restriction such as constant correlation in the model.

Among the three alternative specifications of bivariate GARCH (1,1) model, we will use the
diagonal BEKK-GARCH for two reasons. First, our large hold-out sample requires a robust
model to guarantee successful estimation. Second, the consensus is that while models with a
lot of parameters tend to fit the data well within sample but do poorly out-of-sample but
parsimonious models tend to produce better forecast. In this chapter, we will look at both the
within-sample and out-of-sample results with the emphasis on the latter. Therefore the most

parsimonious model among all — diagonal BEKK is preferable.

Similar to the standard GARCH, TGARCH also has several alternative specifications in the
multivariate context. For the same reason as the standard GARCH, only the diagonal BEKK-
TGARCH (1,1) is employed in this chapter.

The specification of diagonal BEKK-TGARCH (1,1) is as follows:

H=Q-Q+B-H,_-B'+A-¢_,-¢,,-A'+D-u,,-u, ,-D'
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where Q is a 2x 2 lower triangular matrix , B, Aand D are 2x 2 matrices and #,_;is a two-
dimensional vector with the element equal to the minimal one between the corresponding
residual and zero. That is, ¥, = (4,,,, u,, ) whereu,, , =min[g,, ,,0]. Like the univariate
TGARCH (1,1), bivariate TGARCH (1,1) accommodates the asymmetric effect of shocks on

the conditional covariance matrix.
Or equivalently, the model can be written in the form of equation, rather than matrix.

2 2 2 2 2 2
hll! = a’s +ﬂs 'hllt—l +as 'gst—l +ds 'ust—l
by, = 0,0, + ﬁsﬁf by + Ao, &y &5 T+ dsdf Uy U sy

2 2 2 2 2 2 2
h,,, =05 +o; +ﬂf~hn,_1 +a;- g5, +df Uy

hll h12 ws w3 ﬂs 0 as O ds
where H, = , Q, = B, = A, = D, =
h21 hzz @y wf 0 ﬂf 0 af df

In summary, two models will be estimated for the second moments of the residuals in this
chapter. They are bivariate diagonal BEKK-GARCH (1,1) and bivariate diagonal BEKK-
TGARCH (1,1). In the actual estimation, we have to assume a distribution for the vector of
standardized residuals. It is assumed to be either bivariate normal distribution or bivariate
Student-t distribution. We use the two-step method to estimate the standard GARCH
combined with the VECM and STVECM and the full-information maximum-likelihood
method to estimate the TGARCH with the VECM.

The loglikelihood function for the bivariate normally distributed vector of residuals is:

log L(6) = ——;—[2 -T -log(27) + zT: (log| Q, | +¢,'Q "¢ )] (28)

t=1

The loglikelihood function for the bivariate Student-t distributed vector of residuals is:

T
logL(0)=—12-T-log(7z~v)+T-[logf(i-z—)—logl"(lv)]—lZ(log|Q, D
2 2 2 23 29)

T
+-;—T-(V+2) -logv—%(v+2)Zlog(v+£t'g:]81)
t=1

where v is the degree of freedom parameter.

40



6. Results
6.1 Stationarity and Cointegration

The stationarity test results for all six countries are presented in Table 2. Unit root tests are
performed on the level of logarithm of stock index and index futures, the cost of carry and the
first-order difference of the logarithm of index and futures respectively. Specifically,
Augmented Dickey-Fuller test is used with the number of lags selected on the basis of

Schwartz Information Criterion.

Table 2: Stationarirty test results

AU GM JP KR UK US

f -0.098 -1.934 -1.224 -2.029 -2.280 -2.506

s 0.141 -1.934 -1.306 -1.821 -2.290 -2.545
coc -5.233  -9.815 -7.774  -6.257 -7.068  -6.032
Af -36.564 -51677 -55.3%4 -49.730 -33.356 -52.692
As -35.808 -52.127 -53.400 -45.299 -33.016 -51.780
cv. 5% -2.864 -2.862 -2.862 -2.863 -2.862 -2.862
Note: This table contains the ADF test statistics for the level of the
logarithm of index futures and spot index, the cost of carry and the return
of index futures and spot index. The corresponding 5% critical values are
shown in the bottom row.

The conclusion is uniformly consistent for all six countries. The unit root hypothesis can not
be rejected for the stock index and index futures in level at 10% significance level but it can
be rejected for their first-order difference at 1% significance level, indicating the price level

is I(1) and the return is 7(0) . The results also indicate that the cost of carry is /(0) .

Therefore, we will use dynamic OLS method to estimate cointegrating vector.

Table 3 contains the estimation results for cointegrating vector and the cointegration test
results. The ADF test statistics in the row above the last of Panel A together with its 5%
critical value suggest that the unit root hypothesis can be rejected at 5% significance level for
the residuals, indicating the level of spot index, index futures and cost of carry are indeed
cointegrated. The t statistics suggest that DOLS coefficient estimates of all countries are
significantly different from zero and most of them are significantly different from unity at
conventional level. However, considering transaction costs not accommodated in this model,
we find the evidence is not strong enough to reject the (1,-1,-1) cointegrating vector

suggested by the cost of carry theory. Panel B of Table 3 presents the ADF test results on the
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residuals derived from imposing the cointegrating vector (1,—1,—1). The test statistics for all
the countries are very close to those without the constraint, indicating the constraint hardly
affects the residuals. In the later VECM estimation, we will estimate the models using the

cointegrating residuals derived from imposing the constraint only.

Table 3: Cointegration test results
Panel A: DOLS estimation result of Cointegrating vector

Cointegration equation i
f; =ﬁg+ﬂ1'5, +ﬂ2'mcr + Z:/x 'mr—i +ux
ADF test equation =izt
X
Ai,=p -z}r—i—z 7, -Au, ; + &,
i=1
AU GM JP KR UK Us
B 0.0427 -0.0045 -0.0071 -0.0994 0.0045 -0.0082
sd. 0.0095 0.0022 0.0029 0.0063 0.0029  0.0010
J:3 0.9944 1.0006 1.0008 1.0220 0.9993 1.0012
sd. 0.0012 0.0003 0.0003 0.0014 0.0003 0.0001
J:3 1.5427 08734 1.0188 0.3442 1.1111  1.1152
sd. 0.0459 0.0328 0.1150 0.0388 0.0217 0.0106
t — adf -7.2561 -18.5705 -17.1007 -8.7956 -6.7535 -31.1695
5% c.v. -2.8636 -2.8625 -2.8625 -2.8626 -2.8625 -2.8625

Panel B: stationarity test results for the residual when cointegrating vector

of (1,-1,-1) is imposed

AU GM JP KR UK Uus
t — adf -5.8254 -17.1656 -14.5662 -7.2981 -5.7265 -13.1445
5% c.v. -2.8636 -2.8625 -2.8625 -2.8626 -2.8625 -2.8625

Note: 1. Panel A contains the DOLS estimates for the cointegrating vector.
The bottom two rows contain the ADF test statistics for the estimated
residual and 5% significance level.

2. Panel B contains the ADF test statistics for the difference between
the logarithmic index futures and the sum of cost of carry and the

logarithmic spot index.
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6.2 VECM estimation results
The estimation results of the linear VECM are contained in Table 4.

The estimates of error-correction coefficient, § all have signs suggested by the theory and
offer us some interesting insight of the market characteristics of these six countries. For
Australia, Japan and USA, the error-correction coefficients of spot and futures are both
significantly different from zero at 1% significance level and their signs are as expected, i.e.
the coefficient for the futures is negative and that for the spot is positive. In these three
countries, both spot index and index futures react to disequilibrium, i.e. the information flow
is bi-directional. The coefficients for USA are 0.37 and -0.47 respectively, indicating strong
symmetric response in both spot and futures market. The coefficients for Australia are 0.19
and -0.21 respectively, suggesting symmetric but weaker response in both markets. The
coefficients for Japan are 0.45 and -0.27 respectively, indicating strong and weak response in
spot and futures market when there is an arbitrage opportunity. The results for Germany are
very different from the above three countries. While the error-correction coefficient in the
futures market is insignificantly different from zero at 10% significance level indicating no
response from the futures market; the coefficient in the spot equation is -0.86 at 1% level,
suggesting a strong feedback in the spot market. When there is disequilibrium between the
German spot and futures markets, the former reacts strongly but the latter does not change at
all, i.e. the information flow is unidirectional. In contrast to the German results, UK results
suggest spot market does not react to disequilibrium but futures market responds reasonably
strongly with a coefficient of 0.24 at 1% level. For South Korea, both coefficients are small
and the coefficient in the futures equation is only significant at 10% level. The response to
disequilibrium in the South Korean futures market is negligible and that in the spot market is

also weak.

The null hypothesis of no autocorrelation of 5™ and 15™ order can not be rejected at even
10% level for any residual. It indicates all the residuals are white noise and the modelling of
conditional mean of the returns is probably adequate. The null of no autocorrelation of 5™ and
15™ order can be rejected at 1% for all the squared residuals, indicating GARCH effect in all
residuals. The Jaque-Bera statistics are all significantly different from zero, indicating the
residuals are not normally distributed. Together they suggest the need to use more

complicated model than VECM for the bivariate system. One way is to model the conditional
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second moments by GARCH. The other way is to replace linear VECM by nonlinear VECM

for the conditional mean. The estimation results of these two models are shown later.

Table 4: VECM estimation results

VECM specification » x
AS: =4 .+ 5: 2 +Z¢:J N Agt-i +z¢:z;' - ‘5];.5 +&,
= =t z:_'-ﬁ_s:_cocz
= 3
A, =p, +6,-2, +Z_?’fu -As; '*‘Zlg’fzf & i +Ep
i [
AU GM JP KR UK Us
A A A

) 0.188 -0.210| 0.860 -0.023 0449 -0.271 0.078 -0.067 0.111  -0.241 0.373 -0.465
14 —value 0.008 0.005 0.000 0.818 0.000 0.016 0.003 0.090 0.182 0.007 0.003 0.001
= 0.000 0.000| 0.001 0.000 0.000 0.000 0.001 -0.001 0.000 0.000 0.000 0.001
p —value 0.356¢ 0.783| 0.013 0.381 0.145 0.989 0.125 0.364 0.216 0.851 0.614 0.005
@, -0.057  -0.062
p—value 0.084  0.066
2. 0.090 -0.091
p—value 0.005 0.005
o, 0.062 -0.066
D —vaiue 0.027 0.024
P -0.059  -0.045
| P —value 0.012 0.069
24 0.053  0.062
p—value 0.105  0.057
. 0050 -0.066| 0.074 -0.028
P —value 0020 0002| 0002 0324
P, 0051 -0.072
p—vaiue 0.065 0.043
AlC -7.081 -6.924| -5.460 -5377| -5.608 -5.537| -4.602 -4.266| -6.086 -5.991| -6.067 -5.972
SIC 7071 -6915| -5450 -5.367| -5.600 -5530| -4.591 -4.255{ -6.074 -5.978| -6.062 -5967
o(5) 2.715 2.503 5.013 5.597 2.083 1.671 5.713 4,044 0.525 1.055 7.457 7.237
pr— value 0.744 0.776 0.414 0.347 0.838 0.893 0.335 0.543 0.991 0.958 0.189 0.204
Q(lﬂ 7.072 8.958 | 20.796 17.449| 10.847 7.768| 15.320 21.776| 21.211 15.243| 22.311 19,533
p—value 0956 0.880| 0.143 0.293 0.763 0.933 0.429 0.114 0.130 0.434 0.100 0.191
Q:’ 3) 141 66 759 351 111 102 177 496 740 639 282 259
p- value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G.000 0.000 0.000
Ql(l 5) 174 132 1854 750 266 255 358 1161 1694 1432 563 507
p—value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Jaque-Bera 792 173 981 1939 439 333 571 1124 684 477 945 1130
p—vaiue 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Note: 1. Table 4 contains the coefficient estimates of the VECM for the return on spot index and index futures and their P-values.

2. AlC and BIC are the value of Akaike information criterion (AIC) and Schwartz Bayesian criterion {BIC} of the VECM.

3. Qf5) and Q{15} are the 5th and 15th Ljung-Box Q-statistics of the VECM residuals.

4. 0*(5 and Ql(ls)are the 5th and 15th Ljung-Box Q-statistics of the squared VECM residuals.
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Table 5 summarizes the linearity test resulis of the six pairs of returns.
transition variables from the first to the fifth lag of the error correction term are used in
testing. The structure of lags is carried forward from that of the linear model. The linearity
hypothesis can be rejected when at least one of the five lagged disequilibrium variables is
used as the transition variable for all six pairs of returns. Apart from USA, more thar
transition variable suggest nonlinearity. In the case of USA, only if the third lag is chosen as
e transition variable, the LM statistics are significant. The choice of transition variable fo
e lagged

deviations sugges no*ﬂme’*rlty As the LM test is most powerful when the true transition

to be true. And as our model requires estimating the two returns simultaneously, intuitively,
the transition variable for both returns should be the same. Based on these reasons, we chose

and index futures
transition AU GM Jp KR UK us
variable (s(t)} S F S F S F ) F b) F 5 F
2(t-1) 480 0.45 (2856 26.18|16.70 18.42]33.84 64.25|27.13 25.08| 4.12 8.6%
T 0.0 080|000 000 | 00D o0.OC|o0O0OC 0Q.00)000 GGG | 013 0.01
s 23.00 4.66 |25.55 17.69 | 8.23 6.24 | 37.5¢ 5249|4734 33.46| 8.63 8.19
G i c.00 0632|000 002|022 040|000 0.00| 000 00C | 607 0.08
33 % 23.3¢ 14.41(51.83 4292 (1293 12.40|31.30 35.06(38.01 31.54| 14.15 12.05
i 000 001 |00C 000|004 005)000 000|000 000|001 002
2(t-4) 36.28 20.19| 8.18 5.21 | 882 8.17 |34.41 25233461 3i63| 684 7.75
j ¢c.00 0.00 {042 0.73 (018 0.23 | GC0C O0.00 | 0.00 0.00 { 0.14 0.10
2t 29.58 14.93|19.48 21.18|19.16 17.85(21.12 30.2831.78 234.04] 3.10 4.48
000 000|001 (001 | 00COC 001001 000|000 000|054 0.34
Note: This takle contains the statistics and p-values of LM variants of the LM-type tests for STVECM
nonlinearity of the daily return of spat index and index futures of six countries. The tests are applied in a
VECM model for the first differences. The transition variables that correspond to the lowest p-value for
each country are highlighted. The LM statistics are based on the auxiliary regression models given in
(24).




6.3.2 Grid Search Results

Figure 1 to 6 in the appendix show the grid search results of the sum of squared residuals
(SSR) corresponding to the exponential transition function. The parameter values
corresponding to the minimal SSR are set as the starting values in the estimation. In those 3-
D graphs, the horizontal axis pointing right is for the parameter ¢ and the horizontal axis

pointing inwards is for the parameter y. The vertical axis is for the sum of squared residuals

(SSR). For all but one country, the minimal SSR corresponds to the value of ¢ around zero.
The implication is that when the past deviation is close to zero, the returns behave according
to the inner-regime part of the model and the model is nearly symmetric around zero. Only in
the case of South Korea, the minimal SSR is reached when c is at its minimum, which is
difficult to explain. The grid search for the second-order logistic function is not performed as
it involves three parameters and no illustrative graph can be drawn. The same set of starting
values for the STVECM with the exponential function is used for that with the second-order
logistic function and the extra parameter of c is set to zero. These graphs also show that SSR

is not sensitive to the change in y. It is consistent with the big standard deviation of y in the

estimation part.

6.3.3 Estimation Results

Table 6 — 10 contain the STVECM estimation results for Australia, Germany, Japan, United
Kingdom and United States. The results for South Korea are not presented because the
estimation fails. This is not surprising as its SSR graphs show that the minimal SSR is
reached only when the transition variable is at extreme value. In other words, its
loglikelihood function is ill-defined. For the remaining five countries, the NLS estimation
succeeds.’ The results for both the STVECM with exponential and quadratic logistic

transition function are presented.

’ Four of five transition variables suggested by the linearity test results are used in the estimation as they result in successful estimation. In
the case of Australia, while the linearity test suggests the fourth lag as the transition variable, the model fails to converge when it is used.
When the third lag is set as the transition variable, the estimation is successful and the estimates are intuitive. Therefore the reported results
for Australia correspond to the third lag instead of the fourth lag as the transition variable.
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Table 6: STVECM Estimation results for Australia

Ay, = ¢gy t (¢o,z + 4’1.22:—1)6(2;;—3; v,c) +¢g
Exponential: G(z_5;v,¢) = 1 — exp[—y(z_; — ¢)*/var(z)]
Quadratic Logistic: G(z,_5; v, ¢, ¢*) = {1 + exp[—v(z,_; — c)(z,_; — c*) /var(z)]}?

0,1
s.d

0,2

(1.2

Log-
likelihood

AIC

LBIC

Q(10)
Q*(10)

Exponential Quadratic Logistic
Spot Futures Spot Futures
-0.0047 0.0029 -0.0031 0.0067
0.0038 0.0012 0.0015 0.0118
0.0052 -0.0034 0.0036 -0.0072
0.0037 0.0013 0.0015 0.0118
0.2772 -0.2915 0.2996 -0.2974
0.0766 0.0989 0.0706 0.0961
2.3755 8.6086 1.3586 11.6105
1.4598 6.6247 9134 12.6146
0.0089 0.0043 0.0054 0.0043
0.0012 0.0003 0.0001 16.3175
- -~ 0.2358 0.0043
- - 1542.0000 16.3177
0.0482 0.0566 0.0478 0.0565
[0.0492] [0.0575]
3560 3479 3563 3480
[3553] [3475]
-7.0950 -6.9334 -7.1001 -6.9332
[-7.0807] [-6.9243]
-7.0705 -6.9089 -7.0707 -6.9038
[-7.0709] [-6.9145]
6.6252 3.5602 6.7627 3.3523
155.2800 86.9680 140.6800 86.3670

Note: This table contains the estimates of STVECM model with exponential and quadratic logistic
transition function for Australia using nonlinear least squares method. The coefficient estimates
and the Newey-West HAC standard errors are presented, followed by the sum of squared residuals
(SSR) of each equation, log-likelihood value and Akaike information criterion and Schwarz
information criterion. The Q-statistics and Q-squared-statistics of order 10 are in the last two rows.
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From the results in the left two columns of Table 6, we can see that the STVECM with
exponential transition function fits the Australian data well. The sum of squared residuals of
both spot and futures are around 2% lower than their counterparts of linear VECM. This is
enough to compensate for the increase in the number of parameters for the STVECM, which

is preferred to linear VECM on the basis of AIC. But the former is marginally worse than the

latter by BIC that penalizes parameter number more severely. P12 of both spot and futures
are significantly different from zero at 1% level with anticipated positive sign for the spot and
negative sign for the futures and slightly larger size than the linear counterpart. This is
reasonable as no-arbitrage inner regime implies a zero error-correction coefficient and the
coefficient of the linear model is in effect the weighted average of the coefficient in outer and

inner regime.

The threshold coefficient, ¢ is positive and significantly different from zero for both spot and
futures. It implies there would be no arbitrage for every investor when the lagged level of

futures is greater than the spot by the sum of cost of carry and c. The coefficient measuring

the speed of transition ¥ is 2.37 and 8.60 for spot and futures respectively, suggesting the
change in the adjustment of futures to disequilibrium is more abrupt as arbitrage opportunity
becomes available to more people. This is probably because the transaction cost of futures is
smaller than the spot. The diagnostic test results suggest the STVECM residuals are white
noise but conditional heteroskedastic, therefore the need for GARCH model for the residuals.
The results of STVECM with quadratic logistic transition function are worse than those with
exponential function. One of the two estimates of threshold coefficients in the spot equation
is insignificantly from zero, suggesting poor fit of the model. And the two in the futures

equation are almost the same, implying possible multicollinearity.
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Table 7: STVECM Estimation results for Germany

By, = &gy + D187 6+ P318V g + (D02 + P12z s + $228Ve 6 + 328V, 5)G (235 7.C)
+5
Exponential: G(z,_5;v,¢) = 1 — exp[—y(z,_3 — ¢)*/var(z)]
Quadratic Logistic: G(z3: v.¢,c*) = {1 + exp[—y(z3 — €)(z-3 — c")/var(z)]}*
Exponential Quadratic Logistic
Spot Futures Spot Futures
Bo.1 0.001 -0.001 0.0021 0.0001
s.d. 0.003 0.0014 0.0028 0.0004
k21 0.2372 -0.2832 0.2011 -0.0609
s.d. 0.2883 0.1543 0.3031 0.028
rba.x 0.5907 0.1858 0.6752 0.0669
s.d. 0.2428 0.1245 0.367 0.0332
7%,2 -0.0002 0.0014 -0.0013 0.0248
s.d. 0.003 0.0015 0.0028 0.0077
b1 0.8675 -0.069 0.8679 1.1148
s.d. 0.093 0.1037 0.0931 0.4547
sz,z -0.2999 0.2601 -0.2633 2.4501
s.d. 0.2919 0.1562 0.3068 0.2455
P22 -0.5454 -0.1378 -0.6305 0.2924
s.d. 0.2462 0.1331 0.3728 0.2841
h 12.1908 32.9423 23.2529 0.2769
s.d. 10.5974 41.7971 28.4365 0.168
C 0.011 0.0032 0.0096 -0.0205
s.d. 0.0006 0.0004 0.0006 0.0014
c* - - 0.0123 0.0299
s.d. - 0.001 0.0081
SSR 0.5781 0.6276 0.578 0.6178
[0.5807] [0.6311]
Log-
fikelihood 6401 6305 6401 6323
[6392) [6295]
AIC -5.4608 -5.3786 -5.4602 -5.3935
[-5.4601]) [-5.3769]
BIC -5.4387 -5.3564 -5.4356 -5.3689
[-5.4503] [-5.3671]
Q(10) 7.318 6.3459 7.3556 6.8201
Q%(10) 13715 619.7 1368.4 539.98
See the note of Table 6.
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STVECM with quadratic logistic transition function provides a better fit and more insights to
the German data than exponential transition function. The former corresponds to lower sum
of squared residuals and higher log-likelihood for the futures than both the latter and linear
model and is preferred by both AIC and BIC. The two threshold coefficients of the futures
are -0.02 and 0.02 respectively, meaning the no-arbitrage inner regime is large and
symmeitrical around zero for the futures. As shown in Figure 7, most deviations fall into the

inner regime. That is, the opportunity for arbitrage using futures 1s very rare.
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Figure 7 plo;- the estimated rransition functions ag ns the transition varable for Germany.

coefficient suggest a small no-arbitrage range for the spot, meaning most deviations fall into
the outer-regime. Therefore, when spot and futures are so far apart that there are arbitrage

opportunities, spot is more likely to move to restore equilibrium. The estimate of ¥ for spot 18
very big at 23.25. As the deviation increases, the adjustment to disequilibrium in the spot

increases abruptly. The diagnostic test results indicate the same conclusion for German data

as Australia. That is, we need to model the second moments to deal with the conditional
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Table 8: STVECM Estimation results for Japan

Ay, = dp1 + 021801 + (o2 + P12z 1 + 228y, 1 )G(Z 1Y, 0) 5
Exponential: G(z,_; v, €) = 1 — exp[—vy(z, — ©)*/var(z)]
Quadratic Logistic: G(z,.4; v, 6. ¢*) = {1 + exp[~¥(%-, — ) (7, — c)/var(z)]}*
Exponential Quadratic Logistic
Spot Futures Spot Futures
0,1 0.0359 0.0185 0.0324 0.038
0.0127 0.0074 0.717 0.0975
P21 -0.8493 0.9748 0.0553 1.8479
0.4393 0.2488 0.9648 41102
0,2 -0.0363 -0.0186 -0.2041 -0.0381
0.0127 0.0074 4.2429 0.0976
1,2 0.4057 -0.3569 -8.9109 -0.3475
0.1128 0.1356 ’ 143.6709 0.1413
P22 0.7999 -1.0502 -0.622 -1.9219
0.4385 0.243 6.0947 41145
I 145.8734 0.1938 0.0067 0.2432
109.0049 0.0548 0.1083 0.1983
= 0.0088 0.0224 0.1659 0.0225
0.0001 0.0005 3.6342 69.332
c* -~ - -0.0198 0.0225
-- - 0.1337 69.3325
SSR 0.5003 0.5361 0.4998 0.5361
[0.5029] {0.5396]
Log-
ikelibood 6593 6512 6594 6512
[6584] [6501]
AIC -5.61 -5.541 -5.6102 -5.54
[-5.6077] [-5.5374]
BIC -5.5928 -5.5238 -5.5906 -5.5203
[-5.6004] [-5.5301]
Q(10) 7.3065 4.6028 6.6187 4.6388
Q*(10) 208.57 207.45 194.23 208.3
See the note of Table 6.

51




The estimation results for Japan indicate that STVECM with both exponential and quadratic
logistic transition function fits the data better than linear VECM by SSR, Log-likelihood and
AIC, but they are marginally worse by BIC. Between the two specifications of STVECM, the

exponential is better for having more significant coefficient estimates. The adjustment
coefficients P12 for both spot and futures are significant at 1% level and have the anticipated

sign and similar size. The speed of transition coefficient ¥ is very high for the spot and low
for the futures. It implies the speed of transition is faster in the spot. Since the coefficient
measuring the strength of adjustment is similar between spot and futures, the strength of
adjustment is greater in the spot than the futures when the deviation from equilibrium is small

in Japan. This is in contrast to Australia.

The estimation results of United Kingdom indicate that STVECM with exponential transition
function is preferred to linear VECM and STVECM with quadratic logistic transition
function. Its SSR is nearly 2% lower than the counterpart of the linear model. Despite having
six extra explanatory variables, it is preferred by AIC for both spot and futures and also by
BIC for the futures. STVECM with quadratic logistic transition function does not provide a
good fit to the futures with four key coefficients insignificantly different from zero. The

estimates of P12 suggest the strength of adjustment in spot is close to that in futures. The
estimates of ¢ suggest no-arbitrage inner range centres near zero, meaning the actual

difference between the level of spot and futures is very close to the measured cost of carry.

The estimate of ¥ is very big for the futures, indicating fast speed of transition in the futures, which

is similar to Australia and opposite to Japan.
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Table 9: STVECM Estimation results for United Kingdom

Ay, = g1 + $2 1AV 3 + $3,8¥ 3 + gAY, ¢
+ (4’0,2 + &y 27y + Py AV, 2 + Py Ay, 3 + ¢4,2A}’:—5)G(z:—zi v.c}+ &
Exponential: G(z,_,; v, ¢} = 1 — exp[—v(z,_, — c)*/var(z)]
Quadratic Logistic: G(z,_,; v, ¢, ¢*) = {1 + exp[—v(z,_, — )} (z—; — c*)/var(z)]} !
Exponential Quadratic Logistic
Spot Futures Spot Futures
[Po.1 -0.0021 -0.0067 -0.0015 0.0025
s.d 0.0016 0.0041 0.0026 0.0037
24 -0.0731 0.7872 -0.1301 0.041
s.d 0.1412 0.2505 0.1238 0.2111
[ 2P 0.1982 1.7495 0.1399 0.4657
s.d 0.1645 0.2145 0.2658 0.9854
b«m 0.2093 0.3184 0.1882 0.0003
s.d 0.0707 0.2012 0.2148 0.2477
bo.2 0.0028 0.0067 0.0022 -0.0071
E.d 0.0017 0.0041 0.0027 0.0116
1.2 0.2285 -0.2267 0.2346 -0.7167
s.d 0.0961 0.0892 0.0946 0.9786
(P22 0.0185 -0.8583 0.0823 -0.2695
s.d 0.1512 0.2539 0.1355 0.4182
3.2 -0.3212 -1.8538 -0.2637 -1.4187
s.d 0.1717 0.2163 0.2756 1.8596
ﬁ%z -0.3067 -0.3875 -0.2878 -0.1495
s.d 0.0766 0.2049 0.2224 0.5619
i 3.3009 801.8717 5.9495 0.0791
s.d 2.7159 339.458 8.6511 0.1354
c 0.0044 0.0039 0.0061 -0.0064
s.d 0.0006 0 0.0022 0.0159
c* - - 0.0024 0.0122
Ls.d - - 0.001 0.0173
SR 0.3059 0.3346 0.3062 0.3385
[0.3106] {0.3418]
Log- 7157 7051 7155 7038
[7135] [7023]
jaic -6.0968 -6.0071 -6.095 -5.9946
é [-6.0862] [-5.9906]
Ic -6.0698 -5.98 -6.0656 -5.9652
[-6.0739] [-5.9783]
Q(10) 15.02 10.494 14.22 11.339
Q%(10) 1150.5 1116.1 1150.2 976.99
See the note of Table 6.
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Table 10: STVECM Estimation results for Unite States

Ay, = &y, + (¢oz + ¢y 7 1)G(zt-3?Y: c)+g
Exponential: G(z,_3; v,¢) = 1 — exp[—y(z_; — ©)*/var(z)]
Quadratic Logistic: G(z,_3; v, ¢, €*) = {1 + exp[—y{(z-3 — c)(z.5 — c*}/var(2)]}?
Exponential Quadratic Logistic
Spot Futures Spot Futures
0.4 0.0041 0.0042 0.0073 0.0038
0.0033 0.0016 0.0152 0.0024
Ko.2 -0.0052 -0.0039 -0.0082 -0.0034
0.0036 0.0016 0.0153 0.0026
P12 0.5069 -0.4848 0.4682 -0.4937
0.2255 0.1492 0.18 0.1474
4 0.1135 0.7402 0.2046 2.1695
0.1912 0.7619 0.3113 2.8301
c -0.0081 -0.0046 -0.0069 -0.0021
0.0063 0.0013 440.4154 0.001
c* - - -0.0069 -0.0073
- - 440.4086 0.0027
fSR 0.3169 0.3484 0.3168 0.3483
[0.3182] [0.3498]
Log-
ikelifood 7126 7014 7126 7015
[7124] [7013]
jaic -6.068 -5.9731 ‘ -6.0674 -5.9725
[-6.0667] [-5.9720]
BIC -6.0557 -5.9608 -6.0527 -5.9578
[-6.0618] [-5.9671]
Q(10) 12.123 8.6211 12.512 8.5497
Q?(10) 478.02 441.38 476.87 439.53
See the note of Table 6.

The results of United States show that STVECM fits the data slightly better than linear
VECM with marginally improved SSR and Log-likelihood. On the basis of AIC, it is slightly
better than linear VECM. On the basis of BIC, it is slightly worse. Since the two threshold

coefficient estimates take the same value in STVECM with quadratic logistic transition
function, it is clearly inferior. The estimate of b1z is around 0.5 for both spot and futures,

indicating their strength of adjustment are both pretty strong. The estimate of ¥ is small for
both spot and futures, which implies the strength of adjustment does not change abruptly with
the size of deviation. Same as the other four countries, the diagnostic test results of United

States also suggest heteroskedastic residuals.
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6.4 Bivariate GARCH(1,1) results

Table 11 and 12 contain the results of linear VECM combined with bivariate Garch (1,1) with
normally and Student-t distributed residuals respectively.

Comparing the diagnostic test results in Table 11 and12 with Table 4, we can see that there is
much less remaining GARCH effect in the standardized residuals of the GARCH models.
Furthermore, all the GARCH coefficients are highly significantly different from zero. In

particular, the estimates of a,.f + ﬁ,f are all very close to unity, implying strong persistence in

conditional second moments. It is evident that GARCH models are highly effective in

accounting for the conditional heteroskedasticity of the data.

However, the stationarity statistics reveal that GARCH process with normally distributed

residuals is probably nonstationary. As shown in the bottom two rows of Table 5, the

covariance stationarity condition @, + . <1 and the strict stationarity condition

Hlog, -v,2 + ﬂ,f. )]1<0 are barely satisfied in the case of Germany, South Korea, UK and
USA. In contrast, the results in Table 12 suggest that GARCH with Student-t distributed

residuals is stationary. The conditions of both covariance stationarity and strict stationarity
are comfortably satisfied. The log likelihood and the information criteria in Table 11 and 12
suggest that GARCH with Student-t distributed residuals is slightly better than GARCH with
normally distributed residuals. Furthermore the degree of freedom parameter of the former is
highly significant for all six countries. All these results imply that the GARCH with Student-t
distributed residuals is better than the GARCH with normally distributed residuals.

Closely examining the diagnostic test statistics of GARCH with Student-t residuals, we can
see that there is evidence of remaining GARCH effect in all countries, particularly in UK and
USA. It suggests that both variants of GARCH (1, 1) model are probably not adequate to
model our data, which indicates the need of searching for better models. In the next section

we report the results of the bivariate TGARCH models.

55



Table 11: Estimation Results for VECM combined with Bivariate Garch (1,1) with normally

_distributed standardized residuals
Bivariate Garch({1,1) specification:
: hy,=ol+ Bl -hy,, “’axz £3
("’}Qﬂ ~N(0,H,) hp, =o,0,+B.B; hy, +a.a, 5,,6,,
Ep hn,=o),2-+a),z+,8}-hm_x+af--s;_1
AU oM JP KR UK US
& [ 5 f 3 J 5 f 5 f S I
o 0.002 0.001 | 0.002 0.002 |-0.003 -0.003 | 0.003 0.003 | 0.001 0.001 | 0.001 0.001
z —Stats 7.83 7.37 | 1393 1250 |-16.11 -15.89 | 13.00 13.14 | 1167 11.19 | 797 7.93
r& 0.000 0.001 0.001 0.001 0.000 0.000
z —stats 3.80 20.39 12.15 6.21 17.53 -14.01
B 0944 0960 { 0947 0945 | 0952 0.946 | 0.956 0964 | 0.974 0.973 | 0.980 0.981
Z —Stats 97 130 288 305 259 226 377 556 715 616 895 982
d 0.229 0.197 | 0.307 0.312 | 0.246 0.254 | 0.277 0.252 | 0.209 0.210 | 0.189 0.185
z —stats 14.75 1159 | 31.76 3652 | 28.77 2855 | 35.27 38.78 | 32.83 31.32 | 37.54 38.08
logl 8042 16106 16697 11538 18191 18283
AIC -16.04 -13.77 -14.23 -11.31 -15.53 -15.57
SIC -16.00 -13.75 -14.21 -11.29 -15.51 -15.56
2% 203 240 (380 097 |08 107 | 094 610 | 573 601 | 702 935
p- value 0.85 0.79 0.58 0.97 0.97 0.96 0.97 0.30 0.33 0.31 0.22 0.10
rﬂlﬂ 391 6.02 | 1666 8.79 6.46 4.61 764 1841 | 16.15 15.26 | 1875 18.81
pP- value 1.00 0.98 0.34 0.89 0.97 1.00 0.94 0.24 0.37 0.43 0.23 0.22
JQ’ ®) 2959 806 | 833 562 [ 798 372 | 023 692 |3569 24.48 |19.44 30.00
P- value 0.00 0.15 0.14 0.35 0.16 0.59 1.00 0.23 0.00 0.00 0.00 0.00
*Qz(l L)) 33.85 1854 | 22.18 1351 | 2197 1420 | 3.81 9.20 | 52.37 3697 | 23.83 37.56
P- value 0.00 0.24 0.10 0.56 0.11 0.51 1.00 0.87 0.00 0.00 0.07 0.00
Jaque-Bera 277 45 121 218 | 223 199 506 256 106 130 [ 523 549
&+ 0943 0.961 | 0.990 0.990 | 0966 0.960 | 0.991 0993 | 0.993 0.992 | 0.996 0.996
Hlogtr, v/ + )] -0.062 -0.041 |-0.020 -0.021 |-0.040 -0.048 |-0.020 -0.014 |-0.009 -0.010 |-0.005 -0.005
Note: 1. This table contains the estimation results of bivariate GARCH (1,1} model. The dependent variables are the|
residuals of the spot and futures equation of estimated VECM shown in Table 4.
2. The coefficient estimates and their z-statistics are followed by the loglikehood value, Akaike information
criteron and Schwartz Bayesian information criteron.
3. The diagnostic test statistics include Q-statistics and Q-squared-statistics of order 5 and 15 and Jaque-Bera|
statistics. The significant ones are highlighted.
4. The last two rows contain the statistics for covariance and strict stationarity condition. The statistics|
|suggesting possible failure of stationarity condition are highlighted. J
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Table 12: Estimation Results for VECM combined with Bivariate Garch (1,1) with student-t

distributed standardized residuals
Bivariate Garch(1,1 ification:
)spec hy=a@l+B} hy +al -85,
(“’){)H ~ (0, H,,v) hiue=@,0;+ BB, By +@,0, 8,680,
Ea hm=“;+0:+ﬂ}'hnm+a;'g;-l
AU GM JP KR UK US
o S s S o S P A s S s S
o 0.001 0.001| 0.001 0001 0.002 0002| 0002 0.002| 0.001 0.001| 0.001 0.001
z - stats 634 593| 731 705| 938 9.02| 707 723 924 892 678 7.09
jo 0.000 0.000 0.001 0.000 0.000 0.000
Z —stats 249 5.81 9.20 -4.62 8.36 -5.19
B 0951 0967| 0964 0.965| 0959 0.957| 0971 0973| 0963 0.963| 0.976 0.977
z —stats 894 1276| 2973 3094| 1698 1544 2884 347.3| 260.8 254.5| 3824 399.6
a 0192 0.163| 0.222 0.214| 0.190 0.193| 0175 0.171| 0.203 0.203| 0.165 0.160
z —stats 939 840| 2033 1992| 14.70 1451 1614 17.12| 18.65 1851} 17.52 17.68
df. 9.305 6.602 7.658 4751 6.244 5.447
2 —stats 7.33 13.30 10.99 11.83 13.69 14.08
[og? 8082 16320 16807 11715 18394 18523
AIC -16.116 -13.948 -14.321 -11.483 -15.701 -15.778
SIC -16.077 -13.928 -14.301 -11.461 -15.681 -15.758
o) 220 256, 362 0.65| 073 092 122 452 550 580/ 696 9.08
p—value 082 077| 061 099 098 097| 094 048 036 033 022 011
19 412 623| 1662 889| 655 454, 780 1713 1569 14.87| 19.07 18.95
p-value 100 098 034 088 097 100/ 093 031 040 046 021 022
®) 3239 9.64| 1434 587| 827 297| 199 1409 21.00 13.07| 16.74 26.47
p-value 000 009 001 032 014 071 o8 002| 000 002| 001 0.00
0’19 3651 21.07| 2958 12.86| 2501 1551( 3.90 16.02| 33.41 2184 2042 33.15
p—value 000 014! 001 061| 005 042{ 100 038 000 011 016 0.0
Jaque-Bera 285 49| 174 350 235 207| 521 278 99 119 513 547
l?+ £ 0942 0962 0978 0978| 0956 0.952| 0972 0.975| 0.969 0.969| 0.981 0.980
Hiogt? v +4)] | -0.052 -0.032| -0.010 -0.010| -0.036 -0.039| -0.014 -0.011|-0.019 -0.019| -0.009 -0.009|
See the note of Table 11.

6.5 Bivariate TGARCH (1,1) results

As TGARCH is asymmetric in residuals, the information matrix of VECM combined with
TGARCH is not block diagonal. The two-step method is not applicable in this case.

Therefore we use the full-information maximum likelihood method in estimation. The results
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for TGARCH with the assumption of normally and Student-t distributed standardized

residuals are shown in Table 13 and Table 14 respectively.

First, the second row from the bottom of Table 13 and Table 14 contains the number of
iterations to achieve convergence. In the normal case, five of six countries do not have the
convergence problem. Despite several starting values having been tried, convergence can not

be achieved for USA. In the Student-t case, convergence is achieved for all countries.

Second, the last row shows the stationarity statistics. Similar to the results for standard
GARCH, the results indicate that TGARCH with normal residuals is probably nonstationary,
but TGARCH with Student-t residuals is stationary.

Third, most coefficient estimates are significantly different from zero in both cases. In
particular, the TGARCH coefficients measuring the asymmetric effect are highly significant,
indicating negative shocks have a bigger effect on the conditional volatility than positive
shocks in all six countries. Therefore standard GARCH is misspecified as it fails to capture
this effect. This may explain the failure of the standard GARCH. However, to achieve
convergence, we have to impose the constraint that both the intercept and alpha are zero for

Australia and alpha is zero for USA.

Fourth, the loglikelihood of each country with Student-t distribution is higher than the
counterpart with normal distribution, and the information criteria, AIC and BIC also suggest

models with Student-t distribution fit the data better.

Last, the diagnostic test results suggest there is no remaining GARCH effect when normal is
assumed. Compared with the results in Table 12, the remaining GARCH effect is trivial when

Student-t is assumed.

On the whole, the results of TGARCH with Student-t distributed residuals are satisfactory.
And it is by far the best model among the five models we have examined for the data. In the
out-of-sample period, we will estimate it 261 times to simulate the dynamic optimal hedge

ratio for all six countries.

58



Table 13: Estimation Results for VECM combined with BEKK-Tgarch (1,1) and normally
distributed standardized residuals

Conditional Mean

- n
A’r=Fx+6x'ZPI+Z¢;H'ASH+§¢:2|"A.{H+3£ where 2,= f,- 5, -¢oc |
L A

Af,=;4!+5,-zH+Z¢m-A:H+ZI:¢ﬂE~AjH+s,
= -

Conditionsl Variance

ho =0} + Ry 40 Gyt 1,

£ u, =min(s, 0
(“’]Iﬁ,., ~NOH) h=qq+ff hy +a, 88 +dd Uty u: :.:((,: ,o;
’ = 408+ i+ Gy
AU GM JP KR UK iUs
As A |As Af As Af As Af As Af As Af
S 0.142 -0.227| 0901 0.059 0.426 -0.296| 0.026 -0.137 | 0.080 -0.173 | 0.532 -0.229
z —stats 2948 415022080 1.222) 5.878 -3.897| 1.262 -5.982 | 1.518 -3.023( 7.364 -2.988
M na na 0.001 0.001| 0.000 0.000| 0.000 0.000( 0.000 0.000( 0.000 0.001
z —stats na na 5164 3.202|-0.585 1.585|-0041 -0.803( 1.735 0374 1.920 4.063
As -0.024 -0.030
Z —stats -1.246 -1.496
-0.051 -0.047
Z = stats -2.688 -2.328
Rs -0.070 -0.073
z —stats -3.769 -3.720
R -0.052 -0.044
Z ~stats -2.772 -2.239
Ay 0.022 0.027
Z —stats 1.201 1.414
e -0.026 -0.046| 0.093 0.032
z —stats -1.181 -2.050| 4.884 1478
Pas -0.047 -0.044
f —stats -2.692 -2.237
o 0.001 0.001| 0.002 0.002| 0.003 0.003| 0.003 0.003| 0.001 0.001] 0.001 0.001
Z —atats 8593 7.229 (14.291 13.654 [17.766 16.589 [12.700 12.873 (12.294 11.249 [12.035 11.300
o, 0.001 0.001 0.001 0.000 0.000 0.000
Z —stats 6.480 9.245 8.958 4.362 13.085 17.901
P 0953 0.962| 0945 0.944| 0.941 0.936] 0.961 0.963| 0.973 0973 0.968 0.970
Z —stats 119 128| 280 282 203 176| 427 499 623 546| 501 566
a na na 0.283 0.271| 0.249 0.242| 0.184 0.208| 0.144 0.158 | na na
z —stats na na 2281 1907| 2540 24.28| 1438 20.00( 11.71 1296 (na na
d 0.297 0.242| 0.167 0.219| 0073 0.131| 0.266 0.214| 0.209 0.195| 0.327 0.321
Z —stats 1243 11.21| 651 923 271 504| 1866 1351| 1451 1293 3490 36.54
logl 8049 16158 16733 11611 18233 18348
AIC -16.048 -13.802 -14.252 -11.372 -15.554 -15.626
c -16.004 -13.760 -14.216 -11.325 -15.507 -15.599
#33 1031 1877] 3931 1502[ 0553 0.602| 2.238 2.718] 2920 2.928| 6.060 8.444
p—value 0960 0.866] 0.559 0.913| 0990 0.988)| 0.815 0743| 0.712 0.711| 0.300 0.133
o9 3373 568916495 9.282| 6.225 4.219| 9.054 18.84413.065 11.132 (18.719 20.022
p—value 0999 0.985] 0350 0.862| 0976 0997| 0.875 0.221| 0597 0.743| 0.227 0.171
0’9 9.311 3.632) 8657 9.192| 7.709 4.058| 0.619 4.819(13.285 9.800| 5.393 B8.966
p-value 0.097 0.603) 0.124 0.102| 0.173 0.541| 0987 0.438| 0.021 0.081| 0370 0.110
0*(1% 14.863 15.052 |25.704 20.496 |22.479 14.687 | 5.236 9.089|24.211 18559 | 9.996 15.214
p—value 0.461 0.448] 0.041 0.154| 0.096 0.474| 0.990 0873 0.062 0.234| 0820 0.436
Jaque-Bera 121 26] 111 1a8| 210 181| 435 184 84 102| 279 350
Number of Convergence | Convergence | Convergence | Convergence | Convergence Fallure to
achieved after | achlieved after | achieved after | achleved after | achieved after lee:mfter
iterstion 15 iterstions 85 iterations 33 iterations 22 iterations 40 iterations 20 iterations
Stationarity | 0.952 0.956| 0.988 0.996| 0.950 0948 | 0.993 0984 | 0990 0.986 | 0.991 0.992
See the note of Table 11.
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Table 14: Estimation Results for VECM combined with BEKK-Tgarch (1,1) and Student-t
distributed standardized residuals

Conditional Mean
AS,-I‘,""S.'Z,.V";’,"'A‘M +§¢.:;'Ma'+‘u where 7, = f' -s,-c¢oc,

N =p,+5 -2, "'ani -4, +lejii'm-l+‘j
) o]

Conditional Variance

‘ﬂ
o no

=+ -
ha =B+ A Ry 0ty Easbpa At Uty Ve = TIE,,0)

=G @Bt Gurd gy e RO
AU GM JP KR UK US
As A |As Af As Af As A As Af As Af
] 0.110 -0.247} 0.901 0.043| 0.454 -0.261| 0.061 -0.059| 0.102 -0.147| 0.514 -0.232
1z —Stats 220 -443| 2230 095| 619 -3.42( 281 -235! 18 -253| 627 -2.71
H na na 0.001 0.001| 0.000 0.000| 0.000 0.000| 0.000 0.000| 0.001 0.001
z —stats na na 6.550 4.382|-0.881 1.373| 0.864 -0.030| 2.522 0.756| 2.791 4.697
s -0.047 -0.052
z — stats -2464 -2.623
. -0.058 -0.055
z —stats -3.109 -2.828
ry -0.069 -0.069
z —stats -3.728 -3.545
?, -0.055 -0.044
z —stats -3.102 -2.400
P 0.019 0.023
2z — stats 1.066 1.269
@ 0.045 -0.068| 0.079 0.016
z —stats -2.177 -3.189| 4.090 0.749
0.028 -0.027
Z —stats -1.678 -1.426
o 0.001 0.001| 0.001 0.001( 0.003 0.003| 0.002 0.002| 0.001 0.001| 0.001 0.001
z — stats 6.700 5.670| 7.238 6.996 [10.790 10.567| 7.815 8.051| 9.558 9.316| 7.756 7.182
, 0.001 0.000 -0.001 0.000 0.000 0.000
Z - stats 5.645 4.279 -8.206 0.584 7.870 9.153
B 0958 0964 0962 0.963| 0948 0944 0.969 0969 0962 0.963| 0.975 0.976
Z —stats 109 105 286 301| 139 126| 283 311| 258 268! 397 419
a na na 0.209 0.199| 0.174 0.162| 0.130 0.150| 0.152 0.141|na na
z —stats na na 14972 13.971(10.236 8.837| 8.653 11.548( 9.743 8.980 | na na
d 0.248 0.215| 0121 0.135| 0.149 0.179| 0.171 0.135| 0.192 0.203| 0.239 0.234
z —stats 9.526 8.431| 4230 5061 5351 6.783| 8511 6.144| 9.814 10.955 |18.619 19.077
v * 9.869 6.641 8.144 4.584 6.267 5.802
z —stats 6.716 12.781 10.381 11.538 13.553 13.489
log! 8082 16333 16826 11776 18434 18556
AIC -16.112 -13.951 -14.330 -11.533 -15.725 -15.802
SIC -16.063 -13.906 -14.291 -11.484 -15.676 -15.773
o) 113 203] 3.69 102 060 130 103 140 311 199 670 892
p -~ value 095 085 060 096 099 094| 096 092 068 085 024 011
fe L] 346 590| 1608 882 649 504 759 13.26| 13.06 9.76| 1857 19.74
p— value 100 098 038 089 097 099 094 058| 060 084 023 0.18
0’ (5) 1153 3.74| 1020 496| 783 347| 155 93| 677 405| 748 1230
p - value 004 059 007 042 017 063 091 0.10| 024 054/ 019 003
0°(1% 1741 1552 27.32 1355| 24.13 15.10| 4.12 1141 1637 1149| 10.70 17.24
p—value 031 042 003 056| 006 044| 100 072! 036 072| 077 031
Jaque-bera 128 26| 165 233| 214 188| 459 225 87 110| 326 388
Convergence | Convergence | Convergence | Convergence | Convergence | Convergence
Now (radion ) | achioved after | achieved after | achleved after | achieved after | achieved after | achieved after
17 iterations | 19 iterations | 21 iterations | 18 iterations | 21 iterstions | 25 iterations
Stationsrity | 0950 0.952| 0977 0.980| 0940 0.938| 0970 0.966| 0.967 0.971| 0.979 0.979

* vis the degree of freedom parameter of student-t distribution
See the note of Table 11.
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Table 15: Results of STVECM combined with Bivariate Garch(1,1) and
Student-t distribution

Bivariate Garch(1,1) specification:

2 2 2
hy, =o; +B; by, +a; -8,

2

(5'“ )Int—l ~t(0,H,,v) by =@,05+B,B; by ta,a, 8, ,6,,
€p hm=m}+m,’+,3}-hm_,+a}-s},_,

AU GM JP UK Us

S f R f S f S f S f
@ 0.001 0.001 [ 0.001 0.001 | 0.002 0.002 |0.001 0.001 [ 0.001 0.001
z —stats 6.241 6.031 |8.384 8.004 (9.664 9.134 |11.185 10.845 | 6.997 7.388
a 0.000 0.000 0.001 0.000 0.000
z —stats 2.049 6.730 9.303 9.875 5.111

0952 0.969 |0.958 0.960 | 0.956 0.955 |0.953 0.953 | 0.975 0.976
z —stats 86.7 1295 (2680 281.0 |160.1 149.3 | 2209 219.0 | 3644 386.8
a 0.192 0.157 | 0.230 0.222 | 0.193 0.193 | 0.216 0.215 | 0.166 0.160
z —stats 8.695 8.046 |20.429 20.145 |14.785 14.485 |18.763 18.681 [17.456 17.564
v 9.724 5.845 7.117 5.234 5.264
z —stats 7.322 14.042 11.773 16.087 14.170
log! 8090 16214 16753 18145 18455
AIC -16.163 -13.857 -14.275 -15.489 -15.733
SIC -16.124 -13.837 -14.256 -15.469 -15.713
o5) 215 123 | 420 160 | 090 111 | 663 493 | 511 344
p—value 083 094 (052 09 | 097 095 | 025 042 | 040 0.63
o9 401 388 |1710 1056 | 7.10 506 |1561 14.27 |16.07 13.07
p—value 100 100 [ 031 078 | 096 099 | 041 051 | 038 0.60
ledC)) 2222 1011 {1186 3.4 | 766 3.59 |1055 594 |1592 23.62
p—-value 000 007 | 004 068 | 018 061 | 006 031 | 001 0.00
0°(15) 26.64 21.89 |26.37 10.70 | 24.19 15.61 | 21.35 14.90 | 20.11 30.98
p-value 003 011 | 003 077 [ 006 041 | 013 046 | 017 0.01
J-B 268 47 | 146 308 | 227 205 | 90 63 | 514 565
al+p;: 0942 0.963 (0971 0.971 |0.952 0.950 | 0.955 0.955 |0.979 0.979
Hog(ar; v} +6D)]| -0.052 -0.032|-0.014 -0.013 | -0.040 -0.041|-0.029 -0.029 | -0.010 -0.010

Note: The dependent variables are the STVECM residuals of spot and futuress of each country.
See the note of Table 11.

6.6 Results of Bivariate GARCH combined with Nonlinear VECM

As the diagnostic test results in Table 6 — 10 suggest, there is strong volatility clustering

effect in the residuals of STVECM. Therefore, we combine the STVECM for the conditional
mean of the returns with a bivariate GARCH (1, 1) modelling the residuals. The results for

conditional covariance matrix are presented in Table 15, where the distribution of the

standardized residuals is assumed to be Student-t. The results corresponding to normality

assumption are not reported because the estimation failed in three of five cases and there is
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evidence of nonstationarity in the rest two cases. From Table 15, we can see that the
estimation is successful in all five cases and none of them risks being nonstationary.
Furthermore, the Q squared stats indicate that there is no remaining ARCH effect, in contrast
to the results of linear VECM. As STVECM combined with bivariate GARCH (1, 1) with
Student-t distributed errors provides a good fit to the data, we derive its corresponding

within-sample hedge ratio and compare the performance with the other strategies.

6.7 Results on the hedging effectiveness
6.7.1 Within-sample results

As shown in the part on hedging theory, the optimal hedge ratio is simply the quotient of the
covariance between the return of spot index and index futures to the variance of the futures.
In order to implement a hedging strategy, we need to have a model for the covariance matrix
of the spot and futures, from which the covariance and variance estimates can be extracted
and the hedge ratios can be computed. In this chapter, we adopted the framework of Vector-
Error-Correction Model for the mean of these returns and bivariate GARCH model for the
second moments. In particular, the models we estimate include VECM, VECM with
TGARCH (1, 1) and STVECM with GARCH (1, 1). From the estimates of each model, we
derive a series of hedge ratios and simulate the corresponding hedged portfolio in the within-
sample period. The hedging strategies corresponding to VECM, VECM with TGARCH (1, 1)
and STVECM with GARCH (1, 1) are termed as ECM, dynamic and nonlinear respectively.
The conventional OLS hedge is also computed as the slope coefficient of the return of spot on
the return of futures for comparison. The descriptive statistics of these portfolio’s daily
returns are presented in Table 16. For comparison purpose, the corresponding statistics for
the return of unhedged spot position and that of the naive one-for-one hedged portfolio are

also shown.

The fifth column of Table 16 shows the hedging effectiveness of each strategy. The hedging
effectiveness (HE) measures the proportional reduction of variance of the hedged portfolio
from the unhedged. The bigger is it, the more effective is the strategy. The results in Table 16
demonstrate that all strategies can reduce the risk of spot position dramatically, with more
than 90% improvement of all strategies in 3 out of 6 countries and 69.30% as the smallest

improvement suggested by naive hedge for South Korea.
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Since the HE is too high in all cases, it is difficult to see the difference among different
strategies. Following Baillie and Myers (1991), we compute the percentage reduction in the
variance of the hedged portfolio suggested by the nonlinear strategy to naive, OLS, ECM and
dynamic strategy. These statistics tell us precisely how much better or worse the nonlinear
hedging strategy is relative to the other strategies in reducing portfolio variances. And we can

easily see the order of preference of different strategies for the same country.

The within-sample results show that naive hedge is the worst by a long way in all countries.
All the other three strategies can reduce the variance of naive hedged portfolio by around

10%. In the extreme case of South Korea, dynamic hedge reduces it by more than one third.

For all countries, OLS outperforms ECM marginally. It supports the theoretical results in
Lien (2005), where he argued that the OLS should always outperform the other constant
hedge ratios by HE measurement using within-sample data, because OLS hedge corresponds
to the minimal unconditional variance of the hedged portfolio that inversely related to HE

measurement.

From the comparison statistics for dynamic and nonlinear hedge we can see that the
performances of these two strategies are very similar. In the five countries where the
estimation of nonlinear models is successful, the nonlinear hedge outperforms dynamic hedge
in three and underperforms in two. The reduction or increment of the portfolio variance is

less than 2% in all cases. Therefore, the difference between these two strategies is tiny.

Since the difference between OLS and ECM hedge and that between dynamic and nonlinear
hedge are tiny, we can categorize them into two groups — the simple and complicated. The
comparison results are mixed. In Germany, South Korea and United Kingdom, the
complicated strategies perform much better than the simple ones. The reduction in variance
ranges between 5% and 9%. However, in Australia, Japan and United States, the complicated
ones either perform marginally better or marginally worse than the simple ones with the

change in variance between -1% and 2%.

On the whole, these results are in line with the common results in this field. Complicated
hedging strategies outperform the simple ones in most cases, with tiny improvement in some
countries and big improvement in others. But they are also likely to be worse than the simple
ones. It is very difficult to reach a clear-cut conclusion on the performance of any hedging

strategy. The hedging effectiveness has to be investigated on a case-by-case basis.
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Table 16: Within-Sample hedge ratio and portfolio return

E{rt) s.d.(rt) Max{rt} Min{rt} HE E(hr} s.d.{hr} Max{hr} Min{hr) comparison

AU spot 0.01% 0.70% 3.44% -4.81%
naive 0.00% 0.32% 1.70% -1.37% 78.83% 14.16%
ols 0.00% 0.30% 1.73% -1.39% 8195% 084 000 084 (0384 -0.67%
ecm 0.00% 0.30% 1.72% -1.32% 81.91% 085 000 085 085 -0.47%

dynamic 0.00% 0.30% 1.67% -1.21% 81.51% 083 007 124 0.70 1.71%
nonlinear 0.00% 0.30% 1.68% -1.33% 81.83% 0.84 0.05 116 0.72

GM spot 0.03% 1.64% 7.55% -8.87% _
naive 0.00% 0.69% 5.94% -5.62% 82.30% 11.14%
ols 0.00% 0.67% 4.57% -497% 83.17% 091 000 091 091 6.56%
ecm 0.00% 0.67% 4.62% -4.99% 83.17% 051 (000 091 091 6.58%

dynamic 0.02% 0.65% 6.01% -4.27% 84.20% 087 (014 115 040 0.46%
nonlinear 0.02% 0.65% 6.23% -4.24% 84.27% 086 014 114 0.37

314 spot -0.02% 1.47% 7.66% -7.23%
naive 0.00% 0.45% 3.31% -2.07% 90.87% 7.53%
ols 0.00% 0.43% 3.31% -2.16% 91.48% 092 000 092 092 0.88%
ecm 0.00% 0.43% 3.31% -2.08% 91.46% 094 000 094 094 1.11%

dynamic 0.00% 043% 3.31% -2.18% 9159% 094 004 108 0.75 -0.37%
nonlinear 0.00% 0.43% 3.31% -2.11% 91.56% 094 0.04 1.07 0.78

KR spot 0.00% 2.44% 14.60% -12.74%
naive 0.00% 1.35% 9.87% -13.24% 65.30% 34.14%
ols 0.00% 1.15% 8.60% -8.93% 77.97% 0.75 0.00 0.75 0.75 8.19%
ecm 0.00% 1.15% 8.65% -10.07% 77.96% 0.76 0.00 0.76 0.76 8.25%
dynamic 0.00% 1.10% 8.08% -8.29% 79.78% 0.83 0.12 1.16 0.46
nonlinear - - - - - - - - - -
1] 4 spot 0.02% 1.16% 590% -5.89%
naive 0.00% 0.29% 2.38% -2.25% 953.82% 15.00%
ols 0.00% 0.27% 2.40% -2.30% 94.45% 0.92 0.00 0.92 0.92 5.27%
ecm 0.00% 0.27% 2.40% -2.29% 94.45% 0.93 0.00 0.93 0.93 5.34%

dynamic 0.00% 0.26% 2.33% -2.22% 94.80% 0.92 0.06 119 0.75 -1.06%
nonlinear 0.00% 0.27% 2.35% -2.25% 94.75% 091 0.06 .18 071

us spot 0.04% 1.17% 5.57% -7.11%
naive 0.00% 0.31% 1.87% -2.55% 93.01% 11.08%
ols 0.00% 0.29% 1.87% -2.29% 93.68% 092 000 092 0.92 1.70%
ecm 0.00% 0.29% 1.87% -2.33% 93.66% 0593 000 093 093 1.96%

dynamic 0.01% 0.29% 1.87% -2.39% 93.71% 094 006 107 080 1.16%
nonlinear 0.00% 0.29% 1.87% -2.27% 953.78% 094 005 104 0.79

Note: 1. This table contains the within-sample hedging performances of each strategy. Naive strategy is always

to hedge one for one. OLS strategy derives its hedge ratio from a simple OLS regression of spot return on futures
return. ECM strategy is computed from the estimated VECM. Dynamic strategy corresponds to the estimated
VECM combined with threshold GARCH ({1,1). Nonlinear strategy derives its hedge ratio from the estimated
STVECM combined with GARCH (1,1).

2. In Column 1 to 4, the descriptive statistics of the hedged portfolio return implied by each strategy are
presented. Column 6 to S contain the descriptive statistics of the hedge ratios.

3. The hedging effectiveness {HE) measurement is presented in Column 5. It is the proportional reduction
of portfolio variances suggested by each hedging strategy compared with spot return,
4. The last column contains the proportion of reduction of the portfolio variance suggested by nonlinear
model to that of the ather four models. In the case of South Korea, it is the reduction of portfolic variance
suggested by dynamic model to that of the others.
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6.7.2 OQOut-of-sample results

The out-of-sample estimation is carried out on a daily basis for the entire one-year holdout
period. We estimate the simple regression, VECM and VECM combined with TGARCH (1,
1) every day using data up to that day. The STVECM combined with GARCH (1, 1) is not
used for the out-of-sample comparison, since its success can not be guaranteed in a large
number of estimations. From the estimated models, we make a one-day-ahead forecast on the
covariance matrix and compute the next-day hedge ratio. Combining the simulated hedge
ratio series with the return in the spot and futures, we compute the series of the return of the
hedged portfolio for each strategy. The descriptive statistics of these portfolio returns are

presented in Table 17.

The estimation is done by programming in Eviews4.0. The full-information method is used
for VECM combined with TGARCH (1, 1). In each estimation, the starting value is set to be
the estimates from the last estimation. The iterative method is the popularly used one in
GARCH estimation — BHHH®. The convergence criterion is that the change in the norm of
parameters is less than 1e-05. Convergence is achieved in most cases. However, because the
likelihood function is flat, the convergence is not achieved all the times and failure to
improve the likelihood happens sometimes. When it occurs, the log-likelihood value of that
day is compared with the one before. If it increases, the estimates are kept otherwise the

estimates when convergence is achieved last is used instead.

The out-of-sample results are presented in Table 17. Similar to the within-sample results, the
hedging strategies are very effective. The hedging effectiveness is higher than 90% in four of

six cases and the smallest improvement of 69.92% in Australia.

Different from the within-sample results which show dramatic improvement of other hedging
strategies over naive hedge, the out-of-sample results are mixed. While in Australia and
South Korea, naive hedge is inferior to others by a long way, it is only marginally better than
the naive in Germany and Japan. And the evidence shows that naive hedge is the best among
all strategies in UK and USA. Recall that naive hedge is supported by traditional theory
which assumes the change in basis is zero. The results of UK and USA may simply reflect the

change in their basis is very small. We show the descriptive statistics of the change in basis in

® BHHH stands for Berndt, Hall, Hall, and Hausman. BHHH algorithm substitutes the outer product of the
gradients for the observed negative Hessian matrix. See Berndt et al. (1974).
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the out-of-sample period in Table 18. The standard deviation of the change in basis of UK
and USA is indeed much smaller than that of others.

Table 17: Out-of-Sample hedge ratio and portfolio return

E{rt) s.d.rt) Max{rt)} Min{rt})] HE g(hr) s.d.(hr) Max(hr) Min{hr}| comparison
AU spot 0.09% 0.43% 1.22% -1.27%
naive 0.00% 0.23% 0.61% -0.81%|69.92% 272.77%
ols 0.01% 0.20% 0.49% -0.69%|77.66%| 0.83 0.00 0.84 0.83 2.76%
ecm 0.01% 0.20% 0.51% -0.69%|77.21%| 0.85 0.00 0.85 0.85 4.66%
dynamic 0.02% 0.20% 0.48% -0.69%|78.27%| 0.77 0.03 0.85 0.71
GM spot 0.03% 0.95% 2.59% -3.52%
naive 0.00% 0.45% 1.01% -1.43%|77.91% 4.42%
ols 0.00% 0.43% 1.01% -1.45%|79.20% 0.91 0.00 091 0.91 -1.53%
ecm 0.00% 0.43% 1.01% -1.44%|79.19%| 0.91 000 091 0.91 -1.48%
dynamic 0.01% 0.44% 1.02% -1.73%|78.89%| 0.88 0.04 0.97 0.74
jP spot 0.02% 1.04% 2.76% -4.57%
naive 0.00% 0.29% 0.96% -0.83%]92.32% 5.06%
ols 0.00% 0.28% 0.94% -0.92%|92.59%; 0.92 0.00 0.93 0.92 1.61%
ecm 0.00% 0.28% 0.94% -0.90%|92.64%| 0.94 0.00 094 094 0.92%
dynamic 0.00% 0.28% 0.94% -0.84%(92.71%| 0.95 0.02 1.03 0.87
KR spot 0.03% 1.51% 4.90% -6.07%
naive 0.00% 0.45% 1.69% -2.10%91.02% 16.18%
ols 0.01% 0.46% 1.21% -1.78%|90.48%| 0.75 0.00 0.76 0.75 20.95%
ecm 0.01% 0.46% 1.23% -1.74%|90.79%| 0.76 0.00 077 0.76 18.26%
dynamic 0.01% 0.41% 1.56% -1.70%(92.47%| 0.90 0.04 1.01 0.79
UK spot 0.04% 0.63% 1.93% -2.32%
naive 0.00% 0.14% 0.44% -0.51%(95.28% -4.00%
ols 0.00% 0.14% 0.43% -0.42%(94.73%| 0.93 0.00 0.93 0.92 6.82%
ecm 0.00% 0.14% 0.43% -0.43%[94.82%| 093 000 093 093 5.25%
dynamic 0.00% 0.14% 0.44% -0.50%95.09%| 0.97 0.02 1.03 0.92
us spot 0.02% 0.69% 1.62% -1.65%
naive 0.00% 0.16% 0.60% -0.50% |94.46% -0.99%
ols 0.00% 0.16% 0.45% -0.47%|94.34%| 0.92 0.00 0.92 0.92 1.10%
ecm 0.00% 0.16% 0.47% -0.46%|94.45%| 0.94 0.00 094 0.93 -0.74%
dynamic 0.00% 0.16% 0.47% -0.46%|94.41%| 0.96 0.02 1.04 0.90
Note: 1. This table contains the out-of-sample hedging performances of all apart from nonlinear strategy.
2. The last column shows the proportional reduction of the variance of dynamic portfolio to that of the
others.
3. See note 1, 2 and 3 of Table 16.

The out-of-sample comparison results between OLS and ECM is very different from the
within-sample counterpart. While the within-sample results suggest OLS is always better than
ECM, the out-of-sample results suggest this is true only in Australia and Germany. But in
Japan, South Korea, UK and USA, ECM is slightly better than OLS. The implication is that
ECM is not always dominated by OLS and it should be a candidate hedging strategy for

evaluation.
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Similar to the within-sample results, the out-of-sample results also show that the complicated
dynamic strategy does not outperform others consistently across countries. Only in South
Korea, it beats all the others by a long way. It reduces the portfolio variance suggested by
other strategies by around 20%. In Australia, although dynamic hedge outperforms naive
hedge by 27.77%, its improvement over OLS and ECM hedge is less than 5%. In Japan, the
superiority of dynamic hedge is only evident when compared with naive hedge, but marginal
when compared with the other two more complicated ones. In Germany, dynamic strategy is
marginally worse than OLS and ECM. In USA, it is only marginally different from all the
others. In UK, dynamic hedge is beaten by naive hedge by a long way. The variance of

dynamic hedge is 4% greater than that of naive hedge.

On the whole, the out-of-sample results support the view that dynamic hedge outperforms
other strategies in some countries, but the extent of improvement varies. The usefulness of

dynamic hedge has to be judged on a case-by-case basis.

Table 18: Descriptive Stats for the change in basis in

the out-of-sample period
AU GM P KR UK us
Mean 0.00% 0.00% 000% 0.00% 0.00% 0.00%
Median 0.01% 001% 0.01% 0.00% -0.01% 0.00%
Maximum 0.64% 1.44% 144% 209% 050% 0.50%
Minimum 0.60% -101% -1.01% -1.94% -0.44% -0.60%
Std. Dev. 023% 0.44% 0.44% 0.45% 0.13% 0.16%
Skewness 19.89% 23.55% 23.50% 29.50% 25.44% 6.55%
Kurtosis 3.01 3.38 3.38 5.96 3.99 3.77
Jarque-Bera 2 4 4 99 13 7
Note: The basis is the difference between the return of spot and futures.
The out-of-sample period starts from March 08, 2004 and ends at March
05, 2005. The data frequency is daily.

6.8 Transaction cost and alternative measurement of hedging success

Throughout this chapter, the transaction cost related to portfolio rebalance is ignored. In
reality, the transaction cost is an important factor in determining the investors’ behaviour. It
would affect the conclusion of this chapter in two ways. First, hedging strategies which imply

more volatile hedge ratio such as dynamic hedge would be penalized more because more
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transaction costs would be incurred when the hedge ratio is adjusted too much too frequently.
Second, when the transaction cost is taken into account, the objective function would be
different and result in less frequent rebalancing. It is possible that more risk reduction might

be achieved.

In this chapter, the hedging effectiveness is only based on the reduction in hedged portfolio
variance. However, in practice, it may be relevant to investigate what would happen in the
worse scenario particularly. The fourth column of Table 9 and 10 contains the minimal rate of
return of hedged portfolio of all six countries. There is no clear pattern in the results. The
dynamic hedge gives the highest minimal return in the case of South Korea and USA, but the

lowest minimal return in the case of Germany and something in the middle in the rest cases.

7. Conclusion

This chapter investigates the hedging effectiveness using index futures in six major stock
markets. Under the mean-variance framework, the minimum-variance hedge ratio is optimal
for hedgers aiming at risk reduction. The vector-error-correction model (VECM) implied by
the cost of carry theory and the empirical data is assumed to model the conditional mean of
the return on spot and futures where the error correction term is derived from imposing the
constraint on the cointegrating vector. The smooth transition VECM ( STVECM ) that
captures the changing strength of the response to deviation is also estimated within the
sample. The bivariate threshold GARCH (1,1) and standard GARCH (1,1) are fitted to the
residuals from the VECM and STVECM respectively with Student-t distribution assumed for
the standardized residuals. The estimation results suggest that these models provide adequate
and statistically satisfactory fit to the data. However, their implied hedging strategies do not
always correspond to the best hedging performance for each country in the within and out-of-
sample period. In some cases, sophisticated models are beaten by naive hedge or simple OLS
hedge. The superiority of the sophisticated strategy has to be judged on a case-by-case basis.
These results are in line with the general results in the literature. They seem to be related to
the typical results in forecasting — sophisticated models with a large number of parameters

tend to fit the data well within sample but do badly out-of-sample.
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One main drawback of this chapter is that the transaction cost is assumed zero throughout.
However, in reality transaction cost is an important factor in making investment decision.
The volatile hedge ratios implied by the sophisticated models should be penalized to make
the analysis realistic. When the transaction cost is taken into account, the objective function
would be different and result in less frequent rebalancing. It is possible that more risk

reduction might be achieved.

This chapter investigates the performance of the minimum-variance hedge ratio. However, it
is possible that hedgers are not only concerned with the average variation of portfolio return
measured by the portfolio variance but also the portfolio return in extremely bad scenarios.
We will have to model the return on spot and futures in extreme events explicitly and set up

the objective functions accordingly.
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Chapter 3

Cross Hedging Effectiveness Using Index Futures

1. Introduction

Cross hedging is the strategy to reduce risk when no futures contract corresponding to the
spot asset to be hedged is available. The demand for cross hedging strategies is widespread
among different market classes. In the commodity market, to hedge positions in commodities
that have no futures contract, investors have to use the futures of related commodities. In the
foreign exchange market, investors usually hedge positions in minor currencies with the
futures of major currencies. To hedge the risk in a stock portfolio, investors often make the

use of the futures of the related market indices.

Compared with direct hedging, cross hedging is more complicated on two counts. First, there
are a number of futures contracts potentially suitable as cross-hedging instruments, in
contrast to the unique futures contract for direct hedging. Investors must make a decision on
which hedging instrument to use. Second, it is possible that a combination of several futures
contracts is more effective than a single futures contract in reducing portfolio risk. It is
therefore necessary to generalize the analytical solution to the optimal hedge ratio for direct
hedging to the optimal hedge ratio vector for cross hedging and compare the hedging

performance across all the alternatives empirically.

This chapter answers the question of how to hedge a hypothetical stock portfolio measured by
Morgan Stanley Capital International (MSCI) index of seventeen countries. MSCI global
equity indices have been compiled since 1969 covering all the major stock markets in the
world. Assets benchmarked to MSCI have reached 3 trillion dollars in 2007. MSCI indices
are used by 22 of 25 largest firms managing assets globally. It is of practical interest to study
the hedging effectiveness of portfolio that tracks MSCI stock index. However, the futures
contracts based on MSCI indices are either non-existent or thinly-traded. In the case where

direct hedging is almost impossible it is natural to study the effectiveness of cross hedging.
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Section 2 contains a brief literature review on cross hedging. Section 3 describes the data.
Section 4 presents the derivation of the generalized solution to the optimal cross hedge ratio
vector. Section 5 explains the model and outlines the procedure. Section 6 presents the

estimation and hedging performance results. The last section concludes.

2. Literature Review

Anderson and Danthine (1981) investigated the theoretical aspect of cross hedging. Rooted in
their pioneering work, a number of researchers studied the hedging effectiveness of cross
hedging in different markets including commodities, currencies, bonds and equities

empirically.

Anderson and Danthine (1981) set up a model to characterize the principal features of
optimal decisions by a variety of market participants including long, short hedgers and
speculators. The agent makes simultaneous decision on the number of cash and futures
position to maximize the mean variance utility. Given the cash position, the optimal futures
position can be decomposed into a pure speculation part and a pure hedge part. The former
depends on the expected prices of multiple futures contracts, the covariance matrix of
multiple futures prices and the investors’ degree of risk aversion. The latter depends on the
covariance between spot asset to be hedged and multiple futures and the covariance matrix of

the multiple futures prices.

A number of researchers have investigated the effectiveness of cross hedging the holding in

various commodities using the futures of the related commodities.

Miller (1985) investigated the simple and multiple cross-hedging of mill feeds using the
futures for oats, corn, soybean meal and wheat. He set up a multivariate regression with the
cash price of mill feeds on the left-hand side and the futures price of related commodities on
the right-hand side. The monthly data set covering the period between January 1972 and
December 1982 consists of the four-year estimation and six-year forecasting period. The
cross-hedge ratios were first estimated by OLS method and re-estimated every month as time
moves on. The results for the portfolio risk measured by the average forecasts errors (AFE)
and the root-mean-square forecast errors (RMSFE) show that the corn futures are the best
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single cross-hedging instrument and the combination of corn and soybean meal futures is the
best combination of multiple cross-hedging futures contracts that outperforms the single corn

futures contract.

Vukina and Anderson (1993) designed a multi-period hedging model that allows the futures
position to be revised within the cash position holding period. Investors determine the time
path of the futures position to maximize the expected utility of their end-period wealth. The
analytical solution to the sequence of cross-hedge ratios in three-period and five-period
model is derived. To estimate the model, they used a state-space forecasting approach to
approximate the expectations on prices and the covariance matrix of forecasts errors. Routine,
static and dynamic hedge were applied to the cross-hedging of fish meal using the futures of
soybean meal for a weekly data set covering June 1986 to May 1991. The empirical results
suggest both static and dynamic hedged portfolio are more volatile for less risk-averse
investors as expected. For less risk-averse investors, the static hedge leads to lower mean
return, which is attributed to the static model’s inadequacy in modelling an intrinsically
dynamic decision process. The dynamic model on the other hand can improve the ability of a

weakly risk-averse investor, even if a fixed transaction cost is taken into consideration.

Hayenga, Jiang and Lence (1996) compared the hedging performance of the common
practice of the industry with the traditional hedge and the hedge derived from a regression
with lagged basis as explanatory variables. They showed that the common practice of taking
the historical price ratio between the commodity to be delivered and the futures price is a
special case of the traditional hedge with the restriction not necessarily satisfied. The
traditional OLS regression is a special case of the hedge with lagged basis as regressor.
Specifically, they investigated the simple cross-hedging of pork and beef product using live
hog and cattle futures contracts for the daily data sample covering 1986 to 1995. The results
showed that hedge ratios derived from regression with lagged basis performed the best and

the common practice of the industry the worst.

There is also a vast amount of literature addressing the problem of cross hedging the

exposure in minor currencies using the futures of major currencies or commodities.

Eaker and Grant (1987) presented extensive empirical evidence on the effectiveness of cross-
hedging for nine foreign currencies, among which four have no futures contracts. They
divided the monthly data set covering November 1976 to November 1983 into two parts. The

hedge ratios estimated using multivariate regressions from the first half were applied to the
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second half to generate the naive out-of-sample portfolio returns. The results showed that
cross hedging is less effective and more variable compared with direct hedging; the strong
economic relations between countries is loosely correlated to hedging effectiveness; multiple
futures hedging is more effective than single future hedging. They also tested the cross-

hedging using gold futures for currencies, but got negative results.

Braga, Martin and Meike (1989) studied the effectiveness of cross hedging the Italian
Lira/US Dollar exchange rate with Deutsch Mark futures and compared it with the hedging
using the Italian Lira/US Dollar forward contract. They gathered the weekly exchange rate
data of spot and futures in the period between January 1982 and September 1986 and
simulated the cross-hedging portfolio for one, two and four-week hedging horizon
respectively. In the out-of-sample period, they re-estimated the model and updated the hedge
ratio every eight weeks. The general results suggest hedging effectiveness increases when
hedging horizon lengthens; it increases when nearby instead of mid-distant contract is used; it
increases when optimal hedge instead of naive hedge strategy is adopted. Their results also
indicate the average cost of all cross hedge strategies for a short US Dollar position is
substantially lower than that of a traditional forward market hedge but the former is subject to
big variations. Investors therefore face a trade-off between lower average cost with higher

risk and higher average cost with zero risk.

Benet (1990) investigated the commodity futures cross hedging of foreign exchange
exposure. Based on the ‘flow’ theory of exchange rate determination that suggests a positive
correlation between exchange rate and export commodity price, the hypothesis of ‘primary
export commodity’ was proposed. Under the general form of this hypothesis, the export
commodity futures cross hedges should be successful in reducing foreign exchange risk.
Under its strict form, the intra-country ranking of exporting commodity should be positively
related to the hedging effectiveness using different commodity futures. The data set consists
of the monthly spot exchange rates of thirteen minor currencies, five major currencies and
fifteen ‘primary export commodity’ futures contracts in the period between August 1973 and
December 1985. The within sample results support the general but not the strict form of the
hypothesis. The out-of-sample results showed a big ‘drop’ of hedging performance. The
mean hedging effectiveness of commodity and currency strategies were both negative. He

attributed the negative out-of-sample results to the instability of hedge ratios.
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DeMaskey (1997) presented evidence on cross hedging of three minor European and three
minor Asian currencies using single and multiple major currency futures. The monthly data
set covering the period between 1983 and 1992 was divided into three reflecting the changes
in the international exchange rate regimes. The within-sample results support the cross-
hedging strategy using single contract in all minor currencies except Hong Kong Dollar.
Germany Mark futures and Japanese Yen futures are most effective for the cross-hedging of
European and Asian minor currency respectively. Multiple futures cross-hedging strategies
are generally more successful in reducing foreign exchange risk, but the number of futures in
the hedged portfolio does not have a significant effect on the hedging performance. The out-
of-sample approach was performed by implementing prior sub-period hedge ratios into the
subsequent hedge sub-period. The out-of-sample performance is worse for all cross-hedging
strategies, with the decrease more dramatic for Asian minor currencies. The stability test

results imply instability in the hedge ratios.

Some authors investigated the cross hedging issue in bond markets. In particular, the
relatively safe government bills or bonds were often chosen to hedge the exposure in the

risky private bonds.

Kuberek and Pefley (1983) outlined a procedure for evaluating the cross-hedging
effectiveness of interest-rate futures and applied it to hedge the price risk of corporate debt
using the Treasury bond futures. The monthly data set covering the period between 1977 and
1981 includes the realized return of two separate corporate bond portfolios with different
grade and the Treasury bond futures prices with six different delivery period. They derived
the unexpected spot returns by subtracting the one-month Treasury bill return from the
realized spot returns and used the realized futures return as unexpected return on the basis of
‘zero drift’ assumption. The complete sample was divided into two reflecting the change of
monetary policy of the Federal Reserve in 1979. To accommodate the different variances in
the two sub-samples, they used the generalized least squares (GLS) estimation method. The
results showed that cross hedging of corporate debt using Treasury bond futures is highly
effective; for each contract maturity, it is more effective for the higher-quality bond portfolio;

for both bond portfolios, hedging effectiveness declines as contract maturity lengthens.

There is a strong case for a non-constant hedge ratio based on conditional moments (see the
previous chapter section 5.2). This argument applies as much to cross- as direct-hedges, as is

clear from the work of Koutmos, Kroner and Pericli (1998).
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Koutmos, Kroner and Pericli (1998) investigated the dynamic cross hedging with mortgage-
backed securities (MBS) by 10-year Treasury bond futures. They used the daily data of MBS
with different coupon rates and 10-year Treasury bond futures in the period between July
1992 and August 1995. The error-correction model with bivariate GARCH residuals (EC-
GARCH) provides the best fit to the data. The usual hedged portfolio variance is used to
measure hedging effectiveness. Both within and out-of-sample results support the dynamic
hedge ratio suggested by EC-GARCH. When the expected utility is used to measure the
hedging performance with the transaction cost deducted, EC-GARCH also beats the other
models. Their stationarity test results suggest dynamic hedge ratios are nonstationary and are
cointegrated with the 30-year Treasury bond rate, indicating the dynamic hedging strategy
subsumes the prepayment risk linked to the market rate.

The application of cross hedging strategies in stock markets has been carried out by several

authors mainly on using the market index futures to hedge individual stocks.

Butterworth and Holmes (2001) provided the evidence of hedging effectiveness of
investment trust companies (ITCs) using FTSE-100 and FTSE-mid 250 index futures. They
collected the daily return on thirty-two ITCs and four indices for the period of February 1994
to December 1996 and used the FTSE-100 index futures and FTSE-mid 250 index futures to
hedge the cash positions. Both the OLS and Least Trimmed Squares (LTS) approach were
used in estimation. Four hedging strategies including unity hedge, beta hedge, Minimum-
Variance (MV) hedge and composite hedge were compared on the basis of within-sample
performance. The composite hedge is derived by forming synthetic index futures with fixed
weight on FTSE-100 and FTSE-mid 250. The results showed that unity and beta hedge
performed the worst. MV-hedge using FTSE-mid 250 performs better than MV-hedge using
FTSE-100 for hedging ITCs. But the superiority is far less when cash portfolios are broad
market indexes. The composite hedge showed minor improvement over FTSE-mid 250. The

hedge ratios estimated by LTS suggested similar results to OLS.

Brooks, Davies and Kim (2006) investigated the cross hedging with single stock futures
(SSF) in USA. They proposed to use SSF to hedge the risk of stocks on which no option or
exchange-traded futures contract are written and introduced three matching methods to select
the SSF on the basis of historical correlation, cross-sectional matching characteristics and
both. Multiple hedging with up to three contracts was also performed. Their daily data set
covering a period from September 2003 to March 2005 includes 86 stocks and 350 SSFs. The
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out-of-sample results showed that the best hedging performance is achieved through a
portfolio hedged with market index futures and a SSF matched both by historical return
correlation and cross-sectional matching characteristics, keeping the chosen SSF contract
unchanged for the whole out-of-sample period and updating the optimal hedge ratio for each

rolling window after estimating the model.

3. A general approach to deriving the optimal hedge ratios of multiple

futures contracts

The main purpose of hedging is to reduce risk. Therefore, it is important to select a hedging
instrument the return of which approximates the movement of the asset being hedged so that

the variation of the hedged portfolio return is kept to a minimum.

When the underlying of the futures contract is the same as the asset being hedged, the choice
of hedging instrument is straightforward. The complication lies in the choice of the
econometric models from which the hedging ratios can be generated. As shown in the
previous chapter, direct hedging in the context of a stock market index requires the use of the
index futures contract of the underlying market index and the comparison of several
econometric models on the ground of fitness and hedging performance. When the asset being
hedged does not have a corresponding futures contract, the hedging decision is more
complicated since hedgers not only face the choice of econometric models but also the choice
of hedging instruments. Unlike direct hedging, cross hedging theory does not suggest a
unique hedging instrument. Those assets closely related to the asset being hedged are all
potential hedging instruments. Moreover, it is also possible that a combination of several
futures is superior to any single futures contract in reducing the portfolio risk. To derive the
optimal hedging strategy in the cross hedging context, we need to compare the performances
of all possible strategies empirically. But at first, it is necessary to generalize the analytical
optimal hedge ratio in the direct hedging context to the vector of optimal hedge ratios in the

context of cross hedging with multiple futures contracts.

Suppose an investor holds a portfolio with M assets, where the return of asset iis s;. The
return of all assets can be summarized by the M -dimensional vector s, where

s = (54,53, ..., 5) ) The holding of asset iis %;. The portfolio composition can be represented
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by the M-dimensional vector X, where ¥ = (X,X3, «, X)) The total return of the investor on

the spot portfolio is 5.

Suppose the investor uses N futures contracts to hedge this portfolio. The underlying of the

futures are different from the spot assets and the number of futures is possibly different from
that of the assets in the portfolio. The return of the futures is summarized by the N-

dimensional vector £, where f = (f,f;, ..., fy}". The positions in futures are represented by the
N-dimensional vector y, where ¥ = (¥4,¥3, ..., ¥y )" The total return on the futures position is

f'y.

The return on the hedged portfolio is:

x=sx—fy €))
with expectation:
E(n) = E(s)x — E(f )y )
and variance:
V(n)=xZ x4y Zgy— 22Ty 3)

where X is the M X M covariance matrix of s, Zg is the N X N covariance matrix of f and X

is the M X N covariance matrix between s and f.

Like in Chapter 2, we assume investors are mean-variance utility maximizer. That is, they
want their portfolio to have a high return and low risk. In order to do that, they choose the
optimal cross hedge ratios to achieve the best trade-off between the expected return and risk,
i.e. to maximize the mean-variance utility. This problem can be expressed mathematically by
maximizing the mean-variance utility function of the portfolio return with respect to the

futures positions, given the positions of the spot portfolio.

Max U(x)} = E(n) — -:-'*{V(K) w.r.t.y 4)

where 7 is the parameter of degree of risk aversion.
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The F.0.Cs give the optimal solutions of the futures position':
£ — __1x—1 — 1
y© = — 2 E(f) + Ty Tyex (5)

where y* is a N-dimensional vector whose jth element y¥ is the optimal position on the §
h * N-d 1 vector wh th el t y; is the optimal posit the jth

futures contract.

Suppose the prices of futures are subject to a martingale process, i.e. the return on futures is
unpredictable. The first term in the above expression disappears. The vector of optimal

positions in futures reduces to:
Y' = Zg Zgx (6)
which is the general solution to the optimal cross hedging vector.

Direct hedging can be thought of as a special case of cross hedging where both M and N are

equal to one and the asset is the same as the underlying of the futures. In this case, optimal

hedge ratio {y*/x) is the quotient of the covariance between the return of asset and its futures

to the variance of futures.

In the special case where there is only one asset in the spot portfolio (M = 1), 2}12; is a N-
dimensional vector, x is a scalar and y* is the optimal vector of multiple hedge ratios. This

formula is the same as what Anderson and Danthine (1981) derived. Miller (1985), Eaker and
Grant (1987) and Butterworth and Holmes (2001) have applied it to commodity, currency and
stock futures hedging respectively. Specifically, they run a multivariate regression where the

LHS variable is the return of the asset being hedged and the RHS variables are the return of N

futures. The coefficient estimates are the optimal position in the futures.

In the general case where there are M assets in the spot portfolio, ', is a N X M matrix,

the column vector of which contains the optimal positions in the multiple futures required by

each spot asset if it were the only asset in the portfolio; x is a M-dimensional vector
containing the weight of each asset in the spot portfolio; y* is a N-dimensional vector

containing the optimal positions in the multiple futures corresponding to the complete

portfolio. The relationship between Anderson and Danthine (1981) and the generalized

! See the derivation in the appendix.
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approach is clear. When the spot portfolio consists of more than one asset, the optimal
position of the multiple futures is the weighted average of those required by each spot asset.
Given the weight of each asset and the optimal futures positions required by each asset, we
can derive the optimal futures positions for the complete portfolio by computing the weighted

average.

The multivariate regression approach used to derive the optimal positions in multiple futures
of Danthine and Anderson (1981) has to be modified. Instead of a multivariate OLS

regression, a system of M multivariate regression equations is needed. The regressand of the
ith equation is the return of the ith asset and the return of N futures are the common
regressors of all equations. The M equations should be estimated simultaneously. The optimal
position of the jth futures in the complete portfolio is the weighted average of the coefficient

estimates of the ith asset on the jth futures over M assets.

Despite the derivation of the general approach in hedging a portfolio of M assets using N

instruments, we do not attempt to apply it to the data and compute the optimal positions for

the portfolio made up of M assets.

The example we consider in this chapter is the problem of hedging the MSCI index for a
number of the world’s largest markets. This problem frequently confronts institutions whose
portfolios are benchmarked against MSCI indices. In order to reduce the portfolio risk, they
have the incentive to hedge. Ideally, they would like to use the futures contracts underlying
MSCI index to avoid mismatch. However, only a few such contracts exist and the majority of
them are thinly traded in the market. Since most funds benchmarked against MSCI indices
invest in global assets and are of considerable size, thinly traded instruments are not very
useful to them. Their participation in such markets would cause abrupt movement in price. A
more realistic approach is to use the most heavily traded futures underlying the related market

indices to cross hedge the spot portfolio measured by MSCI indices.

Our objective is to find the single or multiple index futures contracts best suited to hedge

each MSCI index. In other words, we are dealing with cross hedging in a situation where M is
one and N is to be determined. We use more sophisticated and theoretically sound models
than simple OLS for estimation and thoroughly compare the performances of a variety of

alternative strategies.
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4. Data

We investigate the hedging effectiveness of MSCI stock index of 17 countries using the most

heavily traded index futures contracts of the same country and other related countries.

The 17 MSCI indices cover both developed and emerging countries. The developed countries
are Australia, Canada, France, Germany, Hong Kong, Japan, Italy, Netherlands, Spain,
Sweden, Switzerland, UK and USA. The emerging countries are Brazil, South Korea, South
Africa and Taiwan. MSCI computes price index, total return index with dividend reinvested
at the minimum tax rate and net return index with dividend reinvested at the maximum tax

rate. The price index is used here and the issue of dividend is dealt with separately.

The most heavily traded futures contracts of these 17 countries are the index futures of SPI
200 of Australia, TSE 60 of Canada, CAC 40 of France, DAX 30 of Germany, Hang Seng
Index of Hong Kong, Nikkei 225 of Japan, MIB 40’ of Italy, AEX of Netherlands, OMXS 30
of Sweden, SMI of Switzerland, FTSE 100 of UK, S&P 500 of USA, Bovespa4 of Brazil,
KOSPI 200 of South Korea, JSE 40 of South Africa _and TAIEX of Taiwan. The month-end
MSCI indices and the month-end settlement price of the futures contracts are downloaded

from DataStream”

All the MSCI indices of developed markets start from December 1969, those of Brazil, South
Korea and Taiwan start from December 1987 and that for South Africa starts from December
1992. Each futures series start from its first trading month. The continuous futures series are
derived by joining the settlement price of the contract closest to expiration with the next on
the first day of the expiration month. The monthly return is computed by taking the log
difference of the month-end data.

2 TSE 60 replaced TSE 35 as the benchmark index of Canada in September 1999. Since the two indices are very close in the two
overlapping months, we joined the two futures settlement price series in September 1999 to create a complete series.

3 MIB 40 replaced MIB 30 as the benchmark index of Italy in September 2004. Since the two indices are very close in the six overlapping
months, the two series of futures settlement price are joined in September 2004 to create a complete series.

4 Because of the hyper-inflation of Brazil in the early 1990s, the data for Bovespa index futures before March 1994 is discarded.

5 The only special case is Taiwan, where TAIEX futures data is downloaded from Taiwan Futures Exchange’s website, because Taiwanese
futures data is unavailable in DataStream.
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In order to derive the cost of carry of futures, the 3-month interbank interest®rate of each
country and the dividend yield series of the corresponding spot index are also downloaded
from DataStream. The dividend yield data of Brazil, Germany, Italy and Sweden are
unavailable. The dividend yield of the stock index of ten out of the rest twelve countries starts
at the same time as the corresponding index futures. Canadian and South African dividend
yield series start in January 2002 and February 1999 respectively several years after the
induction of their index futures. The number of months to maturity of each futures contract is

computed from studying the lasting period of all the ever-existent futures contracts.

Since gold price has a significant effect on the performance of the stock market of South
Africa, gold futures is selected as an alternative hedging instrument for South Africa. The
end-month price for one-month gold futures contract traded in COMEX division of New
York Mercantile Exchange (NYMEX) is also downloaded from DataStream.

S. Methodology

5.1 Cointegration relationship

From the analytical solution to the optimal cross hedging vector we can see that the key to
find the best cross hedging strategy is to estimate the second moments of the return of MSCI
and various index futures accurately. To estimate the second moments, we must model the
first moments first. Similar to the cointegration relationship among spot and futures in direct
hedging, a cointegration relationship can be established among the level of MSCI and the
related index futures, which justifies the Vector-Error-Correction Model (VECM) for the

mean of returns.

The cost of carry theory in pricing stock index futures implies a long-term equilibrium
relationship represented by a cointegration equation among the level of stock index, the
corresponding index futures and the cost of carry. In the previous chapter on direct hedging,
its existence is proved in six major index futures markets empirically by the Augmented
Dickey-Fuller (ADF) test results of the Engle-Granger approach. In the context of cross
hedging, the implication of cost of carry theory is not straightforward. As will be shown

6 For South Korea, Brazil and Taiwan, the 91-Day deposit rate, CDB up to 30 days and 3 month Deposit rate are used as the short-term
interest rate.
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below, it suggests a long-term equilibrium relationship among the asset being hedged, its own

futures, cost of carry and the futures of other related markets.

Denote the MSCI price index of country one as MSCI,, the price of the most heavily traded

index futures contract of country one as F, and the price of its underlying as $,.

MSCI index and the underlying of the index futures of the same country are closely related
because they measure the performance of the same market. On the one hand, there is an
overlapping group of stocks that are components of both indices. On the other hand, the rest
of the stocks in the two indices are different due to the different criteria in stock selection
between MSCI and the body that compiles the underlying index of the futures. Furthermore,
the weighting methods are different between the two. For example, MSCI indices have
become free-float adjusted since June 2002. The free-float adjustment was made to most local
stock indices more recently and some indices are still not free-float-adjusted even now. In

order to relate the two indices, we introduce a difference factor -- DF; to measure the

difference between the two. That is,
MSCL, = S, - DF, @)
Taking logarithm on both sides gives the following linear relationship.
InMSCI, = InS, + InDF, (8)

Since the constituent lists of MSCI indices are unavailable, detailed comparison between the
components of the two stock indices can not be made. It is therefore impossible to model the
difference factor explicitly. Nevertheless, the difference factor can be approximated by some

observable variables shown later.

The standard cost of carry theory implies the following relationship among the level of index

futures of country one and its underlying index.

Fi = Sie(r—d}('!'—t} (9)

where r,d and (T — t) are the interest rate, dividend yield and time to maturity respectively.

This theory simply states that the contemporary price of index futures is equal to the price of

the underlying plus the cost of interest rate minus the dividend yield.
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Denote the cost of carry of the stock index futures of market one as cocy. That is,
coc; = (r — d)(T — t). The above equation can be written as the following linear relationship

among the logarithm of 8, and F, and coc;.

InF, = InS, + coc, (10

Combining equation (8) and (10), we get the following equation for MSCI,, F,,coc, and DF,.
InMSCI, = InF, — cocy + InDF, (11)

The above equation represents a long-term relationship among one country’s MSCI index,
index futures and its cost of carry. The last term represents the difference between the MSCI
index and the underlying of the index futures. Since it is well-known that the level of MSCI
index and index futures are I(1) variable, it is very likely that there is a cointegration

relationship among them, cost of carry and other variables measuring the difference factor.

In order to test for cointegration, we have to use some variables to approximate the difference
factor. Since the difference factor incorporates the information of either one country’s stocks
in the list of MSCI index or the underlying index, it is closely related to the stock market
performance of this country. Apart from its own market index, the performance of one market
is likely to be closely related to that of other related markets since less barrier of capital flow
and enhanced globalization of financial markets enable information to be reflected in stock
prices in different markets. A number of studies have documented the partial integration of
developed and emerging markets to the world market. See, for example, Bekaert, Harvey and
Ng (2004), Karolyi and Stulz (2003) and etc. Consequently, the difference factor may be well
approximated by the stock indices of the related countries’. For example, MSCI USA may be
cointegrated with S&P 500 index futures, cost of carry of S&P 500, FTSE 100 index futures
and DAX 30 index futures. MSCI Hong Kong may be cointegrated with Hang Seng Index
futures, Nikkei 225 futures and TAIEX futures.

7 In the case of South Africa, the gold price has a significant effect on the MSCI index. Therefore a gold future is chosen as an alternative
hedging instrument as well.
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For simplicity, suppose the index futures of market two (F;) and three (F3) can explain a lot

of the difference factor of market one. Algebraically, the difference factor can be

approximated by the following product.
That is,
DF,=a-F! -F§ (12)
where a, b and c are constant.
Substituting (12) into equation (11), we get a linear relationship among InMSCL,, InF,,
InF, ,InFzand coc,.
InMSCIL, = InF; — coc; +b-InF, + c¢-InF; 4 Ina (13)

The above equation represents the long-term relationship among the MSCI index and the
settlement price of several index futures contracts. It can be tested for cointegration. If the
cointegration relationship exists, the deviation from it should be temporary and have
predictive power on future movement of the variables in level. If the stock index and index
futures of the two countries as in this example are nonstationary and cointegrated, then we

should model their returns by VECM.

To implement the above analysis, we need to find the country or countries whose index
futures can approximate the difference factor. Intuitively, stock markets of the countries that
are trading partners or are geographically close to each other are very likely to be related and
stock market of big countries tends to affect that of small countries. For example, the stock
market of a European country is more likely to be affected by other European markets, but

less so by Asian markets. US market tends to be influential to all markets.

On the basis of economic intuition, a block of relevant markets is selected for each country.
Dynamic OLS cointegration test is performed on MSCI, the index futures of the same
country, the cost of carry of the underlying of the same country and the index futures of some
other countries in the block. Dynamic OLS method is selected for three reasons. First, as it
will be shown in the result section, the logarithm of the level of MSCI index and index
futures are I(1) but the cost of carry term is stationary for some countries, therefore

invalidating the standard Engle-Granger approach. Second, the estimates of dynamic OLS
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coefficients are asymptotically normally distributed, therefore making statistical inferences
possible. Third, dynamic OLS method has been employed in testing the cointegration
relationship in the context of direct hedging in chapter 2. It is consistent to use the same
method in related areas of this thesis. Given the theoretical relationship among MSCI index,
the index futures of related countries and cost of carry in equation (13), the dynamic OLS

equation takes the following form.

InMSCI, =, + B, InF, + B,InF,, + B, InF,, + S,coc,

k k k k
+ Z)’liAlnFl,r-i + Z YuAInE,,  + Z}’siAlnFs,r-i + ZﬂiAcoc:—i

i=—k=#0 i=—k#0 i=—k#0 i=—k#0
+u,
where InMSCI,,, InF,, and coc,, are the MSCI index, index futures and cost of carry of one
country and InF,, and InFj,are the index futures of two related countries. ADF test will be

used to test the stationarity of the estimated residual. If the hypothesis of non-stationarity is
rejected, then these variables are cointegrated; otherwise, the cointegration relationship can

not be established.

In the cases where cointegration relationship can be found for the MSCI index and a group of
index futures, we keep the residuals from the estimated cointegrating vector as the error-
correction term in VECM for the return of MSCI index and the futures. This two-step method
is valid as long as the information matrix is block-diagonal. In the next section, we model the

covariance matrix of the VECM residuals.

5. 2. Multivariate GARCH
Recall the analytical solution to the optimal hedge vector in equation (6)
h* = y*/x=55'Z,

which is the product of the inverse of the covariance matrix of the return of futures and the

transpose of the vector of the covariance between the return of the asset to be hedged and the
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futures. To estimate them, we have to model the second moments of the return of spot and

futures jointly.

Most empirical studies in the literature estimate the cross hedging ratios from a multivariate
OLS regression. Implicitly, they assume the second moments are constant over time.
However, it is well-known that the second moments of asset returns are subject to volatility
clustering effect, i.e. big shocks are more likely to be followed by big shocks and small
shocks are more likely to be followed by small shocks. In other words, the second moments
are very likely to be time-dependent and probably autocorrelated. If this effect does exist in a

particular data set, then it would invalidate the use of OLS estimation method.

In order to accommodate the feature of changing conditional volatility, several econometric
models have been proposed, among which the class of Generalized Autoregressive

Conditionally Heteroskedastic Model (GARCH) is the most frequently used in the literature.

Autoregressive Conditionally Heteroskedastic Model (ARCH) proposed in Engle (1982)
explicitly models conditional variance by a moving average process of past squared
innovations, so that past shocks have a direct effect on future conditional variance. Despite its
conceptual innovation, ARCH of high order turns out to be difficult to estimate due to the

non-negativity condition on all the coefficients.

Bollerslev (1986) developed the Generalized Autoregressive Conditionally Heteroskedastic
Model (GARCH) that specifies conditional variance as an ARMA process with past squared
innovations in the moving average part. It is proved that GARCH is equivalent to ARCH of
infinite order with a certain constraint on the coefficients. Researchers using data of different
frequency have demonstrated that the simplest form of GARCH -- GARCH (1,1) is
successful in measuring and forecasting volatility. For example, Bollerslev and Baillie
(1991), Baillie and Myers (1991), Jacobsen and Dannenburg (2003), Giovannini and Jorion
(1989) and Bollerslev, Engle and Wooldridge (1988) implemented ARCH or GARCH to
model the intraday foreign exchange rate, to derive the optimal hedge ratio in the commodity
market using a daily data set, to test International CAPM using a weekly data set, to model

monthly stock return and to model the quarterly equity risk premium respectively.

Another important development in this field is the invention of the class of asymmetric
GARCH model. The asymmetric effect of conditional variance states that not only the size of

shocks but also the sign of shocks have significant impact on future volatility. Intuitively, an
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increase in volatility leads to an increase in the required asset returns, therefore decreasing
the asset prices. This volatility feedback effect amplifies negative shocks and dampens
positive shocks, making conditional volatility asymmetric. Nelson (1993) and Glosten and et
al. (1993) developed Exponential GARCH ( EGARCH ) and threshold GARCH ( TGARCH )
respectively to accommodate the asymmetric effect. Engle and Ng (1993) compared the two
models empirically and concluded that the former is too sensitive to extreme values and the

latter is robust.

Similar to the rapid development in the field of univariate GARCH model, various
specifications of multivariate GARCH model such as VECH, BEKK and constant-correlation
GARCH have been developed by Bera and et al. (1987), Bollerslev, Engle and Wooldridge
(1988) and Engle and Kroner (1995) respectively.

While the majority studies prove the success of GARCH model in describing high-frequency
data from intraday to weekly, GARCH is also suitable for the data at monthly frequency.
Drost and Nijman (1993) show that GARCH process is closed on temporal aggregation. In
other words, if a high-frequency series is a GARCH process, then its corresponding low-
frequency series is also a GARCH process. In the preliminary study® of this chapter, volatility
clustering effect is discovered in the daily returns, which indicates that the use of GARCH
model for the monthly return is appropriate. Besides, the usual empirical test results shown
later also suggest that there is indeed volatility clustering effect in the residuals of several
monthly returns. Furthermore, Drost and Nijman (1993) and Hafner and Rombouts (2006)
demonstrate that quasi maximum likelihood (QML) estimates of the aggregated GARCH
process are consistent in univariate and multivariate case respectively. Therefore the usual

maximum likelihood estimation method is valid.

Our goal in this chapter is to find the best strategy to cross hedge a spot portfolio measured
by MSCI index of country j (j=1, 2 ... 17). Since the theory on cross hedging does not suggest a
unique cross hedging instrument or combination of instruments, finding the best strategy
relies on the empirical comparison of the performances of different strategies. The model that
fits the data well and produces consistent outstanding hedging performance both within- and

out-of-sample has the strongest support from the data.

8 The results are not included due to the lack of space.
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To make the comparison as thorough as possible, the hedge ratios suggested by a variety of
possible strategies are estimated. For country j, the block made up of country m, ...,p is
decided on the basis of economic relevance® Their most frequently traded index futures are

the possible instruments to hedge MSCIL;. Since the index futures of country j -- £; is obviously
related to MSCL, it is added to the block. Hedging strategies involving one, two and three

instruments are formed, where the instruments are selected from fi, £,

Another way in explaining the model is as follows. For each MSCI index, we try to model a
eighteen-element vector consisting of the return of its MSCI index and the seventeen index

futures. For a particular country j, the block consisting of country m, ..., p is selected. Only

elements -- MSCL, £, f,, ...and f, of the vector are kept for estimation and the rest are set to

zero. In fact, only a particular subset of the eighteen returns is modelled and this subset varies

across countries.

When a cointegration relationship is identified for a country, the deviation from it is fitted to
the mean of returns because of its predictive power. The second moments of their residuals
are modelled by constant ( OLS ), multivariatt GARCH (1,1) or TGARCH (1,1). In
particular, for cross hedging with k instruments (k= 1,2,3} , the (k+ 1)} X (k+ 1)
covariance matrix of the return of the asset being hedged and the k futures are modelled by a

multivariate GARCH(1,1) or TGARCH(1,1) process.

Take UK as an example. Suppose the block of UK involves UK, France, Germany and USA
and MSCI UK is cointegrated with FTSE 100, S&P 500 and DAX 30 futures. The one
instrument strategy only involves FTSE 100 index futures. The two instrument strategy
involves FTSE 100 and either CAC 40 or DAX 30 or S&P 500 index futures. The three
instrument strategy involves FTSE 100, S&P 500 and either CAC 40 or DAX 30 index
futures. For each set of instruments, the optimal hedge ratio or ratios are estimated from
models such as OLS, multivariate GARCH (1,1) and TGARCH (1,1) with and without the

deviation from the cointegration relationship fitted to the mean.

Two technical questions concerning estimation are the specification of multivariate GARCH

and the assumption on the standardized residuals.

9 For South Africa, gold futures is also a possible hedging instrument.
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We select the diagonal VECH specification for three reasons.'® First, it is intuitive to model
the conditional second moments by their own lags and the squared residuals rather than those
of the return of others. Second, it is more important to save parameters in the case of
trivariate and quadrivariatt GARCH model than bivariate GARCH. Therefore the diagonal
VECH is preferable to the full VECH. Third, compared with diagonal BEKK, diagonal
VECH is less restrictive. In cases where estimation is successful for both, the latter is

preferable.

The standardized residuals are assumed to be multi-normally distributed. As shown in the
chapter on direct hedging, the assumption on the distribution of residuals has little effect on

the estimation results, therefore Student-t distribution is not used here.

The specification of the model is as follows. The residuals of VECM or the deviations of

returns from the mean are modelled by the following GARCH and TGARCH process.

When there are k hedging instruments, the (k + 1) X (k + 1) dimensional covariance matrix
H, has the following standard GARCH specification.

vech(H,)= Q+ B -vech(H,_,)} + A - vech(e,_, -5.,) (14)

€4 is a vector with k + 1 elements, i.c. g,_4 = (8‘1.2—1’ €20—1s ....skﬂ,_i);

(1+k)(2+k)

€ is a vector with elements;

(1+k)(2+K)

rices.
2 matrice

A and B are both "*“’2‘““’ X

The GARCH standardized residuals are subject to a (k + 1} X (k + 1) multi-variate normal

distribution.

Or H, has the following TGARCH specification.

19 See the specification of diagonal VECH in equation (14).
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vech(H,) = Q+ B-vech(H,_,) + A-vech(s,_, - £,_,) + D - vech(u,_, -u,_,) (15)

u_, is a vector with k+1 elements, ie. ;= (Upe 1) Uze 1s e Upyrey )  Where
Uy = min &, 0}

(1+kI(2+K) X (1+k)(2+k)

A, B and Dare all
2 2

matrices and the standardized residuals are assumed

to have a multi-normal distribution.

The entire sample is divided into within-sample and out-of-sample. The former ends in
December 2005 and the latter ends in May 2007. The models are first estimated using the
within-sample data. The within-sample hedge ratios are computed from the estimates of the
second moments. Then one-month forecast of the covariance matrices is generated from the
model estimates each month in the out-of-sample period. And the one-step-ahead hedge
ratios are computed accordingly. The usual measurement of hedging effectiveness is
computed as one minus the quotient of the variance of the hedged portfolio to that of the spot

portfolio.

6. Results

Table 1 contains the unit root test results for the logarithm and return of MSCI and most
heavily traded index futures and the cost of carry of seventeen countries. In particular, the
Augmented Dickey-Fuller (ADF) test is performed for each series, where the number of lag
is selected on the basis of AIC. The first line of each country contains ADF test statistics and
the second line contains the corresponding P-values. The unit root null hypothesis is not
rejected for all level variables but rejected for all returns. It is clear that the logarithm of all
indices are I(1), therefore justifying the search for cointegration relationship. In contrast to
the stationarity test result in chapter 2 on direct hedging, the ADF test results suggest the cost
of carry term is I(1) for ten of eleven countries, with the exception of Japan. This is probably
due to the difference in data frequency. Because we do not have the dividend yield data for

Germany, Italy, Sweden and Brazil and the dividend yield series of Canada and South Africa
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are shorter than that of index futures, ADF test can not be performed on the cost of carry of

these six countries.

TABLE 1: Stationarity test results for the level and return of MSCI index
and index futures and the cost of carry of the index futures

au’ br ca fr gm hk it ip kr
InMSCI -0.42 -1.17 0.22 094 098 -141 -2.42 -2.23 -1.08
p-value 0.90 0.69 0.97 0.77 0.76 0.58 0.14 0.20 0.72
InF -088 -052 -0.22 086 -095 -155 -145 -1.700 -1.15
p-value 0.79 0.88 0.93 0.80 0.77 0.50 0.55 0.43 0.65
R{MSCI) -18.36 -6.23 -17.27 -1636 -17.10 -1054 -17.05 -16.96 -14.19
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R{futures) -19.43 -697 -1290 -1435 -13.56 -15.21 -13.33 -14.86 -10.00
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
COC -2.27 NA NA -1.44 NA -2.58 NA -6.06 -2.54
p-value 0.18 NA NA 0.56 NA 0.10 NA 0.00 0.11
' ne so sp sw sz tw uk us
InMSCI -136 039 080 -184 -052 -3.62 -1593 -0.87
p-value 0.60 0.91 0.82 0.36 0.88 0.01 0.32 0.80
InF -1.10 0.39 084 -058 -136 -2.19 -1.97 -1.72
p-value 0.72 0.98 0.80 0.87 0.60 0.21 0.30 0.42
R{MSCI) -17.12 -13.26 -1630 -1568 -7.19 -13.84 -1393 -17.85
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R{futures) -14.29 -15.05 -13.15 -12.85 -532 597 -1281 -17.47
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
COoC -2.42 NA -1.64 NA -2.71  -1.69 -1.61 -2.50
p-value 0.14 NA 0.46 NA 0.07 0.43 0.47 0.12

Note: 1. This table contains the ADF test statistics and their p-values of the logarithm and
return of monthly MSCI index and index futures of 17 countries and the cost of carry term of 11
index futures. InMSCI is the logarithm of the level of MSCL. InF is the logarithm of the level of
futures. R(MSCI) and R{futures) are the returns of MSCI and index futures. COC is the cost of
carry.

2. au, br, ca, fr, gm, hk, it, jp, kr, ne, so, sp, sw, sz, tw, uk and us are short for Australia,
Brazil, Canada, France, Germany, Hong Kong, Italy, Japan, South Korea, Netherlands, South
Africa, Spain, Sweden, Switzerland, UK and USA repectively.

Table 2 contains the results for cointegration test using dynamic OLS method. The test
equation is shown in the first row where the dependent variable is the logarithm of MSCI
index of a particular country and the independent variables are the logarithm of index futures
of the same country and the other one or two related countries. The leads and lags of the first-
order difference of these variables are also included on the right-hand side. Note that the cost

of carry is not an independent variable in this equation. In the preliminary tests where it is
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included, the coefficient estimate of the cost of carry is implausibly big, though it should be
unity in theory. Given the results on cost of carry are incomprehensible; we exclude it in
testing for cointegration relationship. The number of leads and lags is chosen to be two

because others seem to be insignificantly different from zero in the preliminary test results.
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Table 2: Cointegration test results

Cointegration equation
InMSCIL, =8, +BInF,+Bn F,+8InF,
% % &
+ 2 AAm R+ Y An P+ Y pAnE,
JOR R ] | oR ] FE L ]
ADF test eguation £
Au, = p-u"x-i-z ¥, -Au,_, + €,
il
, BR CA PR GM HK T P KR
ﬁb 16.44 0.40 -1.4% -1.05 1.25 -2.73 -3.34 2.91
Sd. 0.19 0.03 0.04 0.04 0.19 0.08 0.16 0.15
ﬁ, 0.95 .58 0.85 1.11 0.57 0.89 0.77 1.11
sd. 0.02 0.02 0.01 0.02 0.04 0.03 0.01 0.01
| ;82 ~ -0.33 0.01 0.23 -0.27 0.40 0.07 0.05 -0.07
sd. ‘ 0.03 0.01 0.01 0.02 0.04 0.04 0.02 0.05
B, 0.18 0.04 0.29 -0.23
sd. 0.02 0.01 0.02 0.03
t-adf -7.06 -4.17 -2.99 -2.32 -4.53 -2.07 -3.93 -4.62
1% c.v. -3.47 -3.47 -3.46 -3.46 -3.50 -3.48 -3.48 -3.49
5%cv. | -2.88 -2.88 -2.88 -2.88 -2.89 -2.88 -2.88 -2.89
10%cv. -2.58 -2.58 -2.57 -2.57 -2.58 -2.58 -2.58 -2.58
NE SP  sO _ SW. ™ UK us
ﬁb 1.34 -1.45 -2.60 1.98 -2.71 -0.98 -0.59
sd. 0.22 0.14 0.12 0.09 0.20 0.06 0.04
ﬁl 0.89 1.09 0.85 1.20 0.96 0.97 0.98
sd. 0.03 0.03 0.02 0.02 0.03 0.01 0.01
ﬂz 0.02 0.35 0.00 -0.15 -0.01 0.04 0.12
sd. 0.04 0.03 0.02 0.03 0.03 0.01 0.01
5 -0.50 0.05 -0.04 -0.04
sd. 0.03 0.01 0.01 0.01
t—adf -2.30 -4.10 -5.05 -2.98 -2.65 -3.67 -3.74
1% cv. -3.46 -3.47 -3.47 -3.46 -3.50 -3.46 -3.47
5% c.v. -2.88 -2.88 -2.88 -2.88 -2.89 -2.88 -2.88
10% c.v. -2.57 -2.58 -2.58 -2.57 -2.58 -2.57 -2.57
Note: 1. This table contains the DOLS cointegration test results for 15 countries. For each country, the
dependent variable is the logarithm of MSCl index and the independent variables are the logarithm of the
index futures of the same country and one or two futures of the other countries. The cointegrating vector
estimates and their standard deviations are presented. The residuals are subject to ADF test. The ADF
test statistics and their critical values are shown below the coefficient estimates.

2. The extra index futures instruments apart from that of their own for Brazil (BR), Canada (CA),
France (FR), Germany {GM), Hong Kong {HK), ltaly {IT), Japan (JP}, South Korea (KR), Netherlands (NE),
Spain (SP}, South Africa {SO), Sweden (SW), Taiwan (TW), UK and US are the index futures of US and
South Africa, US and Brazil, US, US, Singapore, US, US and Australia, US and Japan, UK, US and UK, US and
Brazil, Germany, Hong Kong, US and France and UK and Germany.

The extra futures contracts for hedging each MSCI index are chosen on the basis of

plausibility. See note 2 of Table 2 for the list of countries whose index futures contract are
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chosen for the MSCI of each country. From the ADF test statistics for the estimated residuals
we can see that the null hypothesis of non-stationarity can be rejected at 1% level for nine
countries including Brazil, Canada, Hong Kong, Japan, South Korea, Spain, South Africa,
UK and USA, at 5% for two countries including France and Sweden and at 10% level for
Taiwan. In the case of Germany, Italy and Netherlands, the ADF test statistics are not
significant at conventional level, though they are close to 10% critical level. These results
support the view that there is a cointegration relationship among the MSCI index and related
index futures in these fifteen countries. This table does not report the test results for Australia
and Switzerland since there is hardly any evidence of cointegration for their MSCI index with
related index futures. Examining the coefficient estimates and their standard deviations, we
can see that most coefficient estimates are highly significantly different from zero. Together
with the ADF test statistics they support the view that there is a long-term relationship
represented by the estimated cointegrating vector for the logarithm of MSCI index and that of
the related index futures. The deviation from this relationship can help to predict the future
movement of these variables to a degree, i.e. a VECM can be established to model the return
of these indices with the lagged residual of the estimated equations above as error-correction

term.

In the next four tables, we present the hedging performance results of around forty strategies
for each country. As explained in the methodology part of this chapter, cross hedging theory
does not imply which hedging instruments should be used for hedging each MSCI index.
Instead, it suggests a range of combinations of index futures contracts of related countries as
candidate instruments for cross hedging. For example, when facing the problem of hedging
MSCI UK, we can use FTSE 100 index futures with either DAX 30 or S&P 500. The
question of which combination is the best can only be answered empirically. Furthermore, we
not only face the choice of hedging instruments, but also the econometric models of the
return of these instruments. As in Chapter 2, the candidate models vary from simple OLS
regression to complicated VECM combined with GARCH. For example, if we decide to use
FTSE 100 index futures with the index futures of DAX 30 to hedge MSCI UK, we can model
the three returns by simple OLS, VECM, VECM with trivariate GARCH or VECM with
trivariate TGARCH, each of which corresponds to an estimated covariance matrix. From the

covariance matrix estimates, we can not only compute the within-sample cross hedge ratios
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but also generate the one-step-ahead forecasts of covariance matrix and compute the out-of-
sample cross hedge ratios. The combination of hedging instruments and econometric model
of their return corresponds to a hedging strategy. All the strategies can be simulated and
evaluated on the basis of hedged portfolio variance and hedging effectiveness. The one
corresponding to low portfolio variance and high hedging effectiveness in both within and

out-of-sample period is considered the best.

Specifically, Table 3 - 6 contain the descriptive statistics of the return and hedging
effectiveness of a variety of strategies for each country. Each strategy is based on a model of
the return of several hedging instruments. If we were to present the estimation results of all
the models, we would end up with several hundreds of extra tables in this thesis. Since these
models are rather similar and the more important aim of this chapter is to find the best
strategy for each country, we decide not to include most of these tables but only present the
ones of GARCH class corresponding to the best strategy for a particular country in the
appendix. All of the estimated GARCH models shown in the appendix are stationary,

adequate and successfully estimated.

In Table 3 - 6, the statistics of both within- and out-of-sample hedged portfolio returns are
shown, where the former are in the row starting with ‘IN’ and the latter in the row starting
with ‘OUT’. Naive and OLS with the index futures of the same country are the benchmarks.
Their standard deviation and hedging effectiveness are highlighted in blue and grey
respectively. The hedging strategies with lower standard deviation and higher hedging
effectiveness are better than the benchmarks and highlighted in yellow. The best strategy
outperforms the benchmarks in both within and out-of-sample period and is highlighted in

red.

The seventeen countries are divided into four groups on the basis of portfolio volatility and
degree of hedging effectiveness. Brazil, Hong Kong and South Africa are in the first group

because of their volatile returns in both within- and out-of-sample period. As shown in Part
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A, B and C of Table 3, the standard deviation of their hedged monthly return suggested by
naive and simple OLS are around or above 2% and their hedging effectiveness are around or
below 90% in both periods. In particular, the out-of-sample hedging effectiveness of Hong
Kong and South Africa are less than 75%. The low hedging effectiveness leaves plenty of

scope for improvement by adopting sophisticated strategies.

The results in Table 3 demonstrate that the improvement of sophistication is indeed big and
universal. From the within-sample results we can see that thirty-two of thirty-five strategies
outperform the benchmarks in Brazil, thirty-seven of forty-seven strategies outperform in

Hong Kong and thirty-eight of forty-seven strategies outperform in South Africa.

The best strategy for Brazil involves BOVESPA and JSE 40 index futures modelled by
VECM and trivariate GARCH (1,1). It reduces the standard deviation from 3.73% of naive
and 3.32% of OLS to 2.89% and improves the hedging effectiveness from 86.94% of naive
and 89.68% of OLS to 92.17%. The out-of-sample result for this strategy is consistent with
its within-sample counterpart. The hedging effectiveness is improved to 85.79% from 85.63%
of naive and 84.62% of OLS in the out-of-sample period.
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In $ample (IN): 1994004 2005M12 Cut of Sample [CUT}: 2006MO1 2007M08

TABLE 3 ( Part A ): Hedging Performance results for MSCI Brazil

With One Hedging Instrumant With Three Hegginglnstruments
Heoging BCVESPA BOVESPA BOVESRPA
$&P 500 S&P 500
Instrument SP1 200 ISE 40
fethod |naive ols  ciols gaich tgarch  gi- ci- ols  ciels garch tgarch ols  ci-gls gareh tgarch  €i- €i-
garch tgarch garch  tparch
[T B R R Pl e e st U e g, SRS T o (o e Tl o 81 S Kefe L 0.14 Q.14 BT I L e
out 0.04 006 006 005 005 005 005|006 0.086 0.08 005 4 Q. 0.0 0.06 O. 0. 0058 J.08
iN | Min |-C12 -0.0B 008 0.0B <.0B 008 -0.08|-0.CB C.08 007 0.08 .08 0.07[-0.08 0.08 007 .07 D08 -0.08
out £.05 D04 £04 £O5 L£05 005 L£.05|-0.04 D.04 005 005 073 D.13|-0.04 004 £.04 -0.08 0.07 <8.11
IN | 5.0 [BEER332" 332 306 256 3.07 253|331 331 34 385 304 306329 3239 2.82 304 257
CUT| (86) [(ROSIRENDROON 2.22 219 26C 220 27412233 223 2. 238 1768 386|217 217 235 286 34]
IN | Skew-| C.26 034 034 205 Q200 Q005 004|027 0.26 £.11 212 L098|038 036 205 204 005 000
OUT) nesg | 014 0F€ 076 011 LDE 017 015 | 065 082 = e e T | O e O R R e O IE R 220 (=i
IN| Kur- | 358 471 471 358 3€2 355 347|439 &30 2085 2087, 3711} GueRl T - 29203088 (3102 301
OUT! tosiz | 200 480 4581 330 274 344 282} 3€] 3455 253 256 1460 €86 | 438 431 338 237 343 58S
IN [ HE |8€.94 85.58 £95.68 91.21 3178 51.1€ 3150]85.75 £9.74 81.12 13 158 B9.£7 E5.86 81.77 52.01 51.37 9173
OUT| (521 |B5.B3 B<.€] B2.6C 85.01 78.79 84.85 7€.44 18448 84.44 8237 B5.28 B5.27 8374 8277 74.40 E3¢E6
Hedging With Two Hedei )
BOVESPA BOVESPA BOVESPA
Instrument SPI 200 JSE 40 S&P 500
Method ols ci-ols garch tgarch ci- ci- ols ci-ols tgarch  ci- ci- ois ci-ols garch tgarch ¢i- ¢i-
gZafch tgaich o TEaich () igaich
N | Max 014 014 008 002 008 008018 015 £o02 008 O 8071012 012 0068 059 029 0131
<) oeE 006 O0.05 006 005 007|506 C.D6 O. 008 004 085|008 006 0.05 210 005 D.08
N | Mis L£08 £08 007 L£07 L£07 LO07|008 L08 008 L£LO07 L08 L07(L0.08 D08 £08 D08 LH08 L08
ouT 004 004 D04 DC5 L04 L£06]004 L04 002 L£.12 L£04 0801003 004 DOS L£04 L£05 L.04
iN| 8L 3.32 3.32 307 388 BIESE L INT (I3 3300 eS| 2.98 | 385, RSB | Be3t 13L31, 51l PRl 3 1E 368
OUT| (s 223 "2 00 NEN i3 223 2821218 2.13 NEMNGN 4.21 USRS 30.1112.28  2.23 2.30 3.25 - 225  1.96
IN | Skew- 03¢ 030 010 €03 008 003|045 C45 (CO3 005 004 L£06e|025 $.23 D05 005 £03 022
OUT| ress | 078 0.75 238 L8684 037 050|088 085 0EB5 -131 056 020|065 063 026 126 0.18 074
IN | Kur- 457 456 306 308 297 308|506 506 294 308 193 308|434 3722 3.14 344 324 384
ouT| zosis 483 484 351 394 346 381 (462 485 302 433 303 742[s68 485 400 515 3.87 3.5
IN | HE 89.68 89.68 51.1¢ 9140 51.C5 S1.17 |B9.74 285.74 92.17 51.97 B52.1€¢ §1.57(85.75 85.74 50.93 S1.6C 5064 5l.a2
OUT| (58i 84.50 B84.48 B4.19 €5.55 B4.5C 75.14 |B5.1€ £5.15 E€.12 43.45 BE.75 NE |84.48 B84.41 B3.52 €€.55 B4.17 72.E8
Note: 1. This table contains the perfermance results cf 37 sirategies for hedging MSCI Brazil. The strategies invelving ore hedginginstrumeant are

shown in the top |eft block of the table ang this instrument is BOVESPA indexfutures of Brazil. The strategies involving three instrumants are showr in
e, sERA 4ep

tha other two top blocks. They are BOVESPA with S&F 500 of US 3nd SP1 20C of Australiz and BOVESPA with S&F 500 of US snd J5E 40 of South Africs

retpectivaly. The strategias invoving two instruments are shown in the bottom three blocks. Thay are BOVESPA with 5PI 200, BOVESPA with JSE 40 and

2. Six aconomatiic models 57 Used to genarats hedge retios for esch set of hedging instrumants. ‘ols’ correésponds 1o the regression of the
raturn of MSCI Brazii on the left-hand side snd that of the redging instruments on tha right-hand side. 'ci-olt’ correzpends to the ‘ol regression with
the lagged error<orrection term a3 additioral variable. ‘Earch' correspords to multivarate GARCH (1,1) for the returns of MSCI Brazil snd its hadging
instrumentis). tgarch corresponds to multiveriste TEARCH (1,1} for the zame set cfvariables. ti-garch correzpondsz te VECM combined with

multivariate GARCH (1, 1). 'ciegarch’ correzponaz to VECM combired with multivarizte TGARCH (1,11

w

.The rows sisrticg with 'IN' contair the within-sample resulis angd thede starting with 'OUT cortain the out-of-sample resuits.

4. 'HE stands for hedging effectiveness.

5. Tha rzive and single-instrument CLS strategy are highlighted in blue 3nd grey respectively. The strategiez that outperform both cfthem sre
i AT highlighted in reg.

nied in y#llow. The bast ztretegy is
&P 500 futures and JSE 40 futures

E
€. MSCl Brazil, BCVESPA futuras,
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The improvement in Hong Kong is pronounced. The best strategy involves Hang Seng, MSCI

Fals) n 10

ffectiveness from around 85% to 87.88% within

the sample and from slightly less than 75% to 82.40% in the out-of-sample period.

strategy suggested by the data involves JSE 40 and BOVESPA modelled by trivariate
TGARCH (1,1) combined with error-correction model. The hedging effectiveness is
improved from less than 92% to 93.33% within-sample and from less than 72% to 74.79% in
the out-of-sample period. However, the coefficient estimaies of TGARCH are insignificant,
suggesting the model is unreliable. Therefore the strategy involving JSE and gold estimated

by OLS method is selected instead. Although its within-sample improvement is not big, it

hedging

effectiveness at 75.44%.

Ir Semple (IN): 199BM12 2005M12 COEMC] 2007MC5

With Ore nedging lastrument With Thres Hecgirg Instruments
Hedging Hong Seng Hang Seng Hang Seng. Heng Seng
MSC) Singepore MECi Singapore MSCI Sinspore
Irstrurment Mikkei 225 TAIEY SEP 600
Metrod |[neive oli  cioli gach gmch  ch ci- ol ci-ols garch wgarch  ci- i- ols garch tgwch  ci- ci- ols ci-ols garch
garzh _igerzh swch tzzich pch _tgacch
IN [ Max |2.06 3 COo5 005 008 C©O05 005|006 0C5 006 006 007 007 |0C5 005 OC5 Q05 005 OQO5 006 0.05 00§
SUT €02 002 0O2 Q002 0052 005 QD2 (001 001 O05 002 $0z 0C2| G021 CO1 €03 C.O2 .02 002 | 0C1 Q.01 COs
iN | Min |08 009 D09 £C2 002 <09 L£95 (006 005 026 V06 007 LO7|L06 L£05 L0 005 LT6 £06|-006 006 CT5
ouT £.02 003 003 003 003 D03 L£05(D02 003 L4 £6L 0| 003 £03 £.1C L07 005 005 (003 003 £.07
IN | 6.5 282 248 245 244 245 2 | 2asE 2 2.38 2.1 55 | 28T 226 -225 205, XIEh W1 |26, et iy
ouT| sl 187 1Ee 1586 13¢ 1 2.44 18C 215 | 131 132 2885 220 181 193 |13% 137 303
IN | txew-| .28 €53 L.56 Q.96 082 033 0.6 ©35 | 006 010 08z ©id 021 008 (097 GiE Q.21
OUT| seys [0-22 042 043 047 047 020 375 £.93 068|054 L0856 163 111 02D £.83 |48 L4 004
IN | Kur» | 3.83 281 a7 3131 3. 303 321 322 328|308 293 300 3 2. 7182 850 3Ey 3t sic
CuT| tezis | 136 218 2. 246 1596 290 253|209 213 €45 408 3.03 3.00 | 138 205 337 413
IN | HE .55 85 54 8B.E5 §B.ES B6.7D §B.70 B2 85 B2BB|E8.10 87 66 8565 £9.2¢ BE.S5 £5.25 |68.29 E8.08 866+ ED.DE
OUT| 2s. |73.57 7476 7488 i BC.SS 8114 3B23 NE 8208 52.08|82.18 8140 1E.1€ 4569 66.34 6150|7963 BUOES 521 N
HesEing itk Twg MESEirE IngtrumEnts
HaagSeng Hang Sengz Henz Senz Hang Senz
Ingtryment MSCI Singansre Nilekesi 225 TAIEX S&P 500
fAathog el ciols garch tgarch i - | o ci-ols ;Eh tgaich i (13 ol; ciols gerch tgrch i cie c¢ls  ciolt garch tgmc  ci- ci-
garch txsrch EMe gareh gerch  tesrch
005 C.05 805 L.05 g D08 05 O 005 | 086 008 0.08 0.0 co8 OCE
001 ©.01 9.02 o382 [ 082 003 & 003 | ¢02 O.02 0.82 ©.ig ¢g2 982
<06 008 ©08 008|058 Q0B €07 £07 D08 0.09|0¢8 OO £.08 L0F 035 £.18
£.c3 003 LIO8 D06|003 L03 L£03 403 D11 JC3| VL3 D03 < £.1€ 003 £.04 g 093
222 224 219 223 | 24& 264 236 1.3 233 24B| 242 241 2.44  2.3B 2.3 1.38 2.42  2.4s
138 138 185 15 | 1.51 151 183 187 310 180|143 lad 131 488 158 aag 213 153
005 0.08 008 013|062 {45 0.I0 034 £51 DEs| <51 L53 <7: 473 D82 D77 030 <Be
48 Da7 <12 108|037 0328 £24 0322 18T 006 |£.45 D2€ £26e 222 L.28 278 -1.22 010
308 2.53 280 187|440 378 383 425 458|475 482 .67 5E€2 484 EBO B34 €35
203 232 .8 <08 | 181 170 234 €62 36| 185 152 158 771 1.87 1C.84 445 J.2F
E5.C7 87.8¢ £8.3€ BEB.03|8S.63 86.8C 86.61 BE 54 ES.17|E6.07 £6.05 £5.€E B5.15 |B5.73 85.70 B€3¢e &S50 85.61
i fta 1) §C.38 gC.8? 7485 €558 71.13 V.45 7368|78.60 FE.5S MNE |7287 7402 NE 5180 7582
Kote: 1.Trit table containg the performarce results of 49 sirptegies for hedging WSCI Horg Korg. The siretegiet involvirg Cre REORIRE INITFLMENt 5ra Shown in The tor |&ft Block of the s
i nt iz rErg Seng indexfutures of Hong Korg. The 5 gi2 involving tRreEs instruments are showr in The oIher Two top blocks. Trey are Harg Seng Ingex with MECI Sirgsorre of
porg BraNikkei 225 of jepBn, Hang Serg index with Nikkei 225 ofJapae snd TAIEX of Tivar Brg Heng Serg Irdex with Nickei 225 ctJepen sno S&P 500 of US raspactivaly. The 2trategiss
iMeOVirg two instruments Brg shown in the bomiam four Slocks. They re #arg Serg Index with MSC| Sirgapore, Hang Seng Indaxwith Nikkgi 228, Hang feng Index with TAIEX sad Har g tang index
with S5P 500 respactively.
2. MSCI Horg korg, Ha & futures srd MECI Sirgepors utires sre CointeEatsed
3. Saethe rotg 2 - 57 ofTable 3 [parr AL




In SampleiIN): 1994Ni04 2008M 12 Out of Sample (OUT) Z006MO1 2007MQS

TABLE 3 { Part C ): Hedging Performance results for MSCI South Africa

Witk Thrae e,

With Ona Hadging Instrumget Ingtrurmsnty

Hedging JSE 40 iSE 40
BOVESPA
Instrument GOLD

chols wach stmsech ¢ (13 ols _ ci-ols (43 (13 ols _ ci-Gls Emch tmaec

004 004 D04 003|004 004 005 O 004 0040 004 0.04 005 0.04

004 Co: 002 002|003 £03 003 003 £03 po2 (00 2 O 93 D03 003 oQ2

£.08 LD5 005 D08 |004 0. £04 005|004 e DCE 005 D06 D06 | 004 005 DG4 D05

004 004 002 D04 004 0. 0.4 0540 £0é D07 LIL6 007 L£C5 |004 D04 D07 L07

181 178 179 175 | LeC i 178|182 183 i7¢ 184 184 | 182 1.82 175 18C

138 234 238 238|228 : 2368|2238 227 247 238 225 | 217 217 248 23

£13 010 015 L£10(001 D05 022 O £1¢|-0.13 D18 €04 02§ D41 020|010 L16 L£LO3 008

036 D07 047 014|007 007 036 C 000 | D06 COa L£63 L£5C U568 2.00 |[£02 0.00 £71 0.77

256 259 258 262|251 245 274 2 258 | 254 258 3200 317 324 332|264 282 285 280

1.81 174 182 173|159 185 192 2. 2. 205|188 2 = 1.85 3.00

52.35 92.41|51.28 3111 5289 53.15 51.55 5I.43|32.11 52.27

70.18 70.85|73.20 73.35 72.25 73.17 73.17 73.53|72.€¢ $8.18

With Twvc Madzing lnstrumar
ISE A0 ISE S0 JSE20 JSE 20
Instrument BOVESPA TSE 60 &P 500 GOLD

Mathed ok ciolz garch tgsich o ci- | ol clols gzech tgaich  <i- ci- ols _ciols gsrck ezmrch  ci- Z3ich i (13
IN | Max 0C4 004 004 004 C24 O 004 002 G.O7 CO04 Q203 004|002 CO04 004 D04 CO2 004 [0O04 Q03 004 CJ4 Q04 (04
003 003 003 007 0CO3 003|002 003 003 0.03 002 005|004 O0C4 003 CC3 003 004|003 0C3 Q03 0.02 003 003
Q.04 004 D04 002 004 DO4|L05 J0E 006 006 L06 006002 005 005 008 006 .05 |-0.04 0.0¢4 004 0.04 004 D085
204 £04 L0484 L0 L04 LO5|004 D04 006 005 L06 LO05/004 008 L£07 £08 004 018|005 004 L0 004 004 005
181 181 1748 178 171 1865|184 18% 185 181 179|184 i85 281 21€3 186 170 |18: 182 394 137 174 173
225 235 121 298 106 2109|130 227 131 234 138 190|235 233 281 3.4 536 | 216 215 250 134 226 134
£06 V06 006 008 €01 O04|L016 £20 €11 020 £.27 D31[-012 047 L35 002 D39 023 |Li1 DIl 008 S8 D13 D15
GO0T 006 L0 032 £z 026|007 CIF DEZ L34 L£41 L1011 Q10 £4T 067 006 213|001 002 L4l 023 Q05 DEB
246 245 245 24€ 260 250|255 257 406 310 310 337|258 256 2658 277 2186 2958|264 260 270 279 269 28D
196 1895 213 54 2.0 252|196 315% 301 225 273 2.16) 134 1.5 273 251 208 775 {184 1B 258 1381 172 22328
92.12 8219 S2.63 51.7% 3304 5322|9198 51.94 5176 9183 5124 9236|5195 91.8€ 52.21 5367 9182 5311|5213 9211 9178 9252 2277 9189
OUT| & 73.36 73.4C 7441 53.35 73.27 74.79 . g i .70 38.2 NE [7544 74.84 £7.16 71.27 7263 7133

Nota: 1. Thig rable cortains the parformance rasuis of 48 51r; rEiRJTrUm&FE Bra EROWR in tha top la® Bleck of the t3bia arg

thig instrumaent is JSE 30 index®Utures of Soutk Africa. The stratepas involving three instrumants are showr in tha other two top blocks. They are JSE 40 with BOVESPA of Brazil 3rd TSE 6C of Carada,
JSE 40 with BOVESPA prd S&P 500 of US ard JSE 40 v itk BCVESFA ard gold respactively. The stratagies icvoritg two instrumaerts are shown in the bottom four blocks. Thay ara JSE 40 with BOVESPA,
JSE &0 with TSE 60, JSE 40 with SRF &

2.M5CI South afri
2.Se< tha ~ote 2-

SE a0 with gol
JSEAD Nt res, BOVESPADRA SEPSOC
a7 ofTable2 o

ctivaly.

& COIRtegrated

Th 1 Korea, Swiizerland,
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Sweden, Netheriands and Australia. The volatility of their hedged returns is moderate in both

within and out-of-sample period, leaving small scope for improvement. Nevertheless,

consistent improvement over the benchmarks for all



In$smple (IN:: 19%2M07 2008M12 Cut efSample (OUTY: 2006M01 20G7MOS

TABLE 4 | Part A ): Hedging Performance results for MSCI Spain
With Cna Heogirg instrument With Three HeggirgInztrumants
Hadgirg IBEX 35 IBEX 35 IBEX 35
€2 500 SEPE00
Instrumenrt CAC 40 FTSE 100
Method |nawe als  ci-sls garch tgarch  ci- gi- ols cicls gerch tgsrch  ci- ci- ols tiols garch tgarch  cie ci-
gaich tgarch garch tgarch garch tgarch
IN| Max | 008 008 005 004 003 004 0041004 C03 003 0OH3 003 0.03)004 004 003 003 003 003
ouT 901 9001 001 001 001 €01 001|001 CO1 OC1 OO0 O01 001001 001 €01 C0F 001 ¢CO1
iN in |O04 £LO3 003 003 003 O03 L£03(.003 003 £L03 LO3 L3 DO03|L02 L£.03 L0484 003 D02 D03
ouT L£81 001 001 H01 £01 £01 001|001 £01 L0 001 001 HLO01|L01 L0l V01 L01 H01 <01
IN| 5.0 j 118 112 113 1.068 103 104 104|108 1.08 109 109 108 130+ ]108 108 109% 108 100 1.02
SUT| % @ES OBEN 056 061 06C 055 £55| 047 048 0551 ©5% 053 0683 | 08¢ 547 57 084 {.6C 058
IN | Skew-| 0.55 0.41 033 €47 047 Q4€ 0s5)024 026 010 0C1C 008 022|028 028 CO23a 004 025 O0.06
OUT| negss | ©.72 035 0.22 063 073 050 1.12|£.03 002 015 004 032 025 |-0.02 000 ©28 0.1€ 024 D05
IN| Kur- | 5.78 515 507 476 483 485 472|359 365 391 3581 350 347|347 353 382 288 335 233
OUT] tcsis | 261 227 22§ 260 289 2B7 352|177 1BO 1B4 165 187 1.83|1e€s 172 18% 1.81 1.Bi 1.88
56.56 56.72 56.72 37.12 97.28 57.21 57.24(57.02 57.01 36.37 S5€.57 97.00 97.25|97.03 57.02 5€.93 5€.53 57.44 57.32
S3€.75 5£.86 56.85 5820 5633 5652 5€.58|57.72 37.€5 57.38 57.48 57.12 57.10|57.81 57.71 S56.65 5705 5634 58.5¢
With Two Hedginz Instruments
IBEX 35 {BEX 35
Instrument CAC 4G FTSE 100
Methed olz ci-cls garch tgerch - ci- ol cicic garch tgarch  ci- ci- ols
garch tgarch zarch trarch
IN Max DO0S 005 003 204 004 005|005 005 004 D08 0.04 .02
out 001 C©O01 ©91 014 081 015|001 CG61 001 08 $.01 281
IN | Min £03 £03 £03 L03 D03 L03|0LC3 L0z L03 D04 L83 .03
out £01 £21 £01 L1090 HD1 LC5|ODCL HOI HC1 DOL DOt £.01
IN [ E48 iii 1.1 1312 112 3924 104 110 131 111 1ii 1.58 1.08
cuTl % 053 052 0585 482 058 4351 |65C 28X Q72 1328 G832 0.47 3 c
IN | Skew- S2E. TGSt NSRS 2 CRNG) SERIO 2PN DS ERNDERIEENG 29T SeTeS s I 0.28 <. g1 2
OUT| ness 014 014 027 106 071 1.17)0C.15 0.iB 032 232 0.88 L£.02 %51 Q26 1.02
IN | Kur- 490 452 407 407 4328 426|406 424 3582 382 417 35ERF 2. 364 323 335
ouT| et 150 19 294 BC2 238 585|165 176 28C 885+ 314 15, AS N 30 1388 185 5.84
N HE 5683 9682 SE7E 5676 3720 3725|9689 SE.E8 SE82 9882 987.02 = 27.00 § 9725 97.4E8 &7.4%
CUT| 3 97.17 97.11 5€.51 NE ©S658 NE |57.45 57.35 24.8C 20.84 55.84 7.73 9786 57,58 NE 9O7.80 28.87
ir, IBEX 35 futures, S&F SO0 futures and FTSE 100 futuras 2re cointegrated.
S.feethgnctg 2 -Spro7ofTpble3 [carr Aj

Part A of Table 4 contains the results for Spain. Despite of the high hedging effectiveness of

more than 96.5% in both within and out-of-sample period, nineteen of thirty-five
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sophisticated strategies outperform the benchmarks consistently. Th
0

further improvement. The best strategy for Taiwan involves TAIEX, Har

500 index futures and is estimated by OLS method. It reduces the within-sample standard
deviation by 0.12% to 1.55% and the out-of-sample standard deviation by 0.07% to 0.97%.
Or equivalently, the hedging effectiveness is improved by around 0.6% to 96.61% within

sample and around 1% to 93.12%.



In Szmgle [IN): 1998M10 2005M12 Dutct

TABLE 4 ( Part B ): Hedging Performance results for

WWith One Hedring Instrument Vith Thres Hedrirg Inztruments= .
Hedging TAIEX TAIEX TAIEX
Hang Seng HangSeng
Instrumant Hixkai 225 5&P 500
Mszthod |naive «©ls ci-ols gerch tgarch  ci- ci- ols ci-ois garch tgarch ci- ci- ci-als gerch tgereh  ci- ci-
gasch tgarch E=ich tEan g=ich d
IN| Msx | 0.084 004 004 0086 004 015 0.482| 0.C3 003 0083 0.1058 442 368|004 004 008 292 2272
ouT ggoi 061 001 £ 002 004 0.088B|0CI QL1 0115 0046 0.02 G54 | 0.01 2.01 S 088 0OOR 0DE€8¢
IN | Min |0.06 £505 004 £.08 L1 L5004 L0 £LOF 01 -358 301|004 004 0.1 008 -3.47 -3.53§
ouT £.02 £.02 £.02 £.25 LO0E HLo6)-LL3 3 £07 H05 436 -495(-002 -5.02 -1.57 D.02 -258 -lsl
IN EEEERNIETN 157 207 €38 2073|158 188 323 433 1153 104 | 155 15€ 286 273 97.82 10042
ouT 107 1204 104 155 247 292 [NEGSENIEEN 3.55 222 118 122 (REESEENESEN 37.22 16.68 §2.5
IN 004 LD04 003 038 035 22| £ £01 5219 00985 038 022|013 €13 £.132 0192 D1
ouT £.1 .15 015 C.88 L£.11 1433 L5 Q38 1. 8309 -3.7%5 3.€3|L.1% L.1& -3.74 371 -37 :
IN 253 271 265 4. 3.63 3.038| 2 2.55 3. 2 18BRINEHCE CNCRBEL N2 5L ae2°521 L 258 SEHE U565 SBIES
CUT| tesis | 243 2.41 2.41 4. 258 7027 |18 2.84 7. 3:388 12501" 'd.eu[F2.531 "2.:52) 15.01 " 14./9  15..4 4.3482
N ME [SE.02 9€.127 5511 £ 4285 NE .29 & 7377 NE NE |586.€1 g8, NE NE
ouT| ik | 3172 §2.11 £5.86 37.3% .27 92.28 287 €3.8% NE NE [53.12 : NE NE
Hadging Witk Two Hadzing Instruments
T&IEX TAIEX TAIEX
Instrument Hangz Seng Niikeai 225 S&PE00
Method ols ci-cis Barch tzarch ci- ci- ols  ci-ols garch tgarch ci- ci- ols ciols garch tgarch ci- ci-
garch tgarch ) garch tgarch| 1y ____perch tgarch
IN | Max 0.04 0.04 0.08]1 0.083 0.13 0.716| 0.C3 GC.G3 0078 D079 O.58 0.25 | 0.04 0D.04 C.OE2 £.07 009 0.189
cUT 001 O00L1 005 0022 C.15 002|501 001 0041 0062 €03 CO03|CO1 C&.01 0097 033 005 0036
IN LHos L04 HDO?7 L£06 L35 D7E|L04 L02 LC8 D1 108 227|L04 L£L04 LO7 L£08B D1E D3
ouT 003 003 D05 L1 004 015|403 £D3 L1 D05 047 HLO3|-002 £02 083 -238 002 -0.086
IN| 5D SIRNNINEIS 200 2.28 741 2618 ERMUEIN 3.26 3.7€ '30.38 11.71 | ISSERNISEN 210 2.58 416 632
OUT| (s} ASCERINETN 231 © 3.01 3.5 475 | 186 105 3.00 283 11.32 1.7 [MEEESNGEEN 2.86 58.53 256 2.23
IN | Skew- 0.08 007 £.17 0.131 -1.55 .18 |008 Q.07 008 02 071 €08 (012 012 C126 0.1 D07 1171
OUT! ness 0.32 -0.28 0.482 -1.48 254 -2.81|-0.32 -0.28 -1.7% Q.Bl2 -358 0.16 |0.12 D12 2518 -3.55 2€3 0004
IN | Kur- 2.81 2.78 3942 2.745 7.75 3.968| 2.43 2.46 3.365 2.801 4.21 2684|247 25 3715 3.4 4436 32048
OUT| iasis 254 25 4303 5346 116 1106|279 265 7.271 3422 143 223|248 1.5 5588 is2 U 2.94
IN HE S€.38 9€.36 54.38 52.74 23.04 NE [58.37 5€.36 85.11 80.22 NE NE |5€.6C 56.55 53.83 50.€€ 7
CuT| =) 92866 8257 €1.12 3418 KNE NE |51.87 51.86 3450 4143 NE 76.82)53.08 33.01 4054 NE L2
f g rng Ingexfutures Bre cointegratad
lg3igsria)

Part C of Table 4 contains the results for Canada. Six of twenty-five strategies bring
consistent improvement, among

'ECM combined

estimated by

Vv
deviation by 0.06% and 0.04% and increases the hedging effectiveness by 0.49% and 0.68%

InSampis (IN): 1955M04 2005M 12 Out ot Sample (OUTYL ZCOEMOL 2007MOS
TABLE 4 { Part C }: Hedging Performance resulis for MSCI Canada

Witk Ore Hedgirg instrumant With Two Heggingirgtrumants With Trras Haggicg insrromanrts
Hedging TSE&D TSE 60 T €0 TSEBQ
BOVESDA S&P DO BOVESPA
<! S&P500
Method |naiva ol march tzmrch i ti- | ols ci-oly gawch Gt ci-ols garch tgarch
garch_iggarch
.04 0.037 0036 .03 OO o.04 004 OO
221 .00 0042 001 D08 001 Q.01 O
£.95 003 LU £03 K03 <.05 Q.04 D 0.
.02 £02 D06 202 .02 £01 2081 031 .01
i & 100 101 083 059 2357 098 038 0357 037 .54
=B 4] OEE|C77 07E 070 214 J€E 231 0B84 (€5 783 07
2.5 Dee|015 Lie €275 025 L0202 £.32 0.155 0.1% 0.048
£.71 L81|071 £71 079 DB7 B3 2.25 £.77 3699 -343 £.23
B7L 4,57 B, 786 & - 4. &.%8 507 8LC4B 591 5.822
527 L g 3.0 3.a 3 3.8 1.307 Ea 888 | 3. 3.47 3071 135 2.287
8558 9557 95E3 5585 55ES §E §5.561 55.68 $6.77|55.71 557C 55.81 55.81 56.06
§3 14 §2.8C 54.60 54.63 5455 55, 5§2.95 5344 3555|5205 81.B2 55.07 NE 93.63
o 250 BOVESFAfUTLrss pra cointagratad.




The results for Switzerland and France are v

ery similar. Their hedged portfolio returns are the

least volatile and their naive and simple OLS hedge are the most effective among countries in

this group. Part D of Table 4

he best strategy involves CAC

—~]

a quadrivariate GARCH (1,1). It improves

the sample and by 0.33% to 97.69% out of the sam

In Samele lINY: 199CM12 2006012

results for Switzerland. Its benchmark hedging

#20
@

Cut of Sample (OUT: 2006MO1 2007MOS

TABLE 4 ( Part D ): Hedging Performance results for MSCI Switzerland

With Ore Hedging With Two Hedging Instruments With Three Hedzins Inztruments
Hedging sMI SMI SMI SMI Sl SNl
DAX 3¢ AEX S&F 500 5&P 560 S&P 500
lastrumenrt DAX 30 AEX
Method | naiv cls Earch tgarch| ols garch tgarch| ols  garch tearch| ols  garch tgarch| ols  garch tgarch| ols  Egarch
IN | Max | 0. 0. 0.03 203 004 0203|9090 .03 | 0.03 003|003 CC3 CC3 | 003 Q203 003
ouT 0.5 2. c.01 . 021 0f1 Q011|001 002 | 0.01 0.01 [ €01 €01 £01]|-001 .01 001
M| Min | 0. 0 3 L. £.03 D02 £.02|-003 £.03 | £.03 003003 Q02 £O02)-003 £.02
out -0 < L0l L0i| 081 © 4 £.21 .01 01 £ £.21|001 ©01 J901|L.01 0.01
IN| 5D {8378 C7C 071 067|070 070 071|070 0.85 Ce5 063 |69 C68 0.8 | 069 .67
CUT! 3 §0.42 043 (.98 0se | 082 C53 050 (042 c.es $.41 053 (0.4 058 085|043 =e
IN | Sxew-| .82 0.08 084 0.1 ) 004 078 (C.8% ] 0.0 0.56 o] c.21 | cce 0.28 0531010 2.00
OUT| res: | 0.2 £.22 £08 L1002z .1.55 L.C8|-C.21 C.48 L4 L0065 038 0598 Q236028 £.18
IN | Kur- | 578 €30 748 G575 | & g 831 8.7¢ 5 € EEIG S CIEE 718 €28
OUT| sceiz | 2.7 187 1.85 19i| 1. P4, 1.EE 3.40 2.05 254 |18+ 2.17 18511 2.51
IN | HE |57.5% 57.82 57.7¢ 57.57| 97. g§7.82 97.53 57.85|97.88 $7.8% 5785|537 £8 57.5% §7.53 (57, 88.01
CUT| (i [SFF1 5771 97.37 97.28| 97. 97.71 SE.8€ 94.55|97.72 57.85 36.42|57.71 §7.27 97.53|97. 28.28
o= pro7cfTaels 3

In Samele IN}: 1990M12 2005M12

TABLE 4 [ Part E ): Hedging P

Out of Sample [OUT: 2006MT1 2007/05

erformance results for MSCI France

With Cra “scgirg Insrrumant With Trres Hasginglrstrmants
Hadg: $AC4 Cacao
$&P 500
Ingrrumegnt AEX AX
Mathad |nsive  ols  ci-ols gaech tmaech  ci- i | ols  ciols garch tgarch ols ci-ols tearch i 6 | ais
Th_tggch <h tgsich
02 9.02 002 082 002 .02 002 00z © g .02 O02 | 002 0.02 z i
.03 0.01 o0l ool 201 .01 001 ool Y 00i | 001 G.01 Qi 001
02 D.02 .02 Q02 Jo2 o1 £.02 £02 002 202 S22 Loz|Lo2 £.02 e
.01 D.01 £.01 <91 5061 .C1 0061 001 Q01 01 001 Q01|00 £.01 01 081
1 071 054 972 072 .73 0Es 065 C&E 090 D2€E 074 | D€s Q72 .72 072
L& D 5 0.47 3 043 043 U.38 043 D42 T4 | D43 <38 .35 040
23 02 o7 £.27 027 022 L0 .20 D05 (534 £.22 19 D14
.33 -4 297 034 097 L£43[-118 Q.22 .51 £.03
.16 354 352 307 303 257 302|310 338 .38 318
52 432 1591 5. 3. 526 455 |57¢ 293 .87 138
5.2415€.33 58 52.4
97.15|57.21 57 Ehir E
oHeaginglrstry
[ 1 17] CAC &0
Insteumant FTSE 100 S$& P 500
#etnod €i- ols ci-ols gaech tgavch  ci- si- ols  siols geich tgarch  ci- ci-
earch  tgarch gwich  igprch
1% | Max o ooz 002 002 002 Q00 002|002 CO2 002 Q02 Qg2 !
. 001 0.1 0.01 001 €01 9.0z |C0i 00Ul 001 SO2 Q41 S0
Q. L.z 002 0.02 .02
<01 $01 401 £ L.02
273 879 978 0. .73
0.37 0.27 043 0a&d @ 082
.02 224 {33 432 L. .18
£.11 $5% <108 1311 <. £.35
326 285 306 205 2. 217
205 3.8 551 5.5 Z. 363
98.17 E.35 52,38 TR 98.19
57.68 3 S7.08 §7 87.25




Part F of Table 4 presents the results for South Korea. The difference in the standard

Hedgirg KC$21 200 KOePi 200 KOSPI 200
S&P500 S&P 500
Ingtrument Mikkei 225 TaleX
Meihod |[nalve ols ci-ols garch gsich tgarch  ci- ci- ols ci-ols garch tgsich ci- ti-
garch tgarch garch tgarch
2.1 011 211 ¢ 0 ¢.10| 010 010 010 012 0.L8 O0.0B([(DC8 DO5 011 012 £.08 007
! 001 001 002 0L 0.0 2.02 | 0€ 001 202 0.4 007 018|002 002 ©O02 009 006 0.07
A2 013 612 013 013 042 L1242 12 012 014 011 C12|0.12 012 €11 013 L£12 L2
01 £01 £01 D07 L0568 DO L01[001 H01 HC5 o£05 D05 L02{D01 LO1 L8O D10 L20 DG
51" 246 2.38 255 250 247 2411263 243 257 385 247 248|240 240 252 286 257 245
BSRS 071 100 182 1. 104 | 0.69 0EB 136 &83 279 458|076 076 2163 356 530 1.6
& D60 DB 038 D44 HTC LT1|-045 D42 D2& D32 H44 LAT|0BL CBE 017 005 037 DS
072 072 0.29 .140 -0.9€ 049 ) 062 054 -089 13€¢ 07 205|076 075 371 L.12 -2.65 111
13.06 12.76 13.32 1473 11.79 12.32|11.91 116C 9.13 449 B8€1 540 |12.49 12.43 10.53 8.36 9.81 10.22
250 252 261 501 481 218|271 266 337 764 462 653|287 2.87 1486 B44 1071 £.00
9395 93.94 §3.53 9375 93 RF 54.18|94.03 3408 53.3%5 B517 93.5C 53.58(94.22 94.21 9363 91.23 53.3¢ 93.97
1 9€.4]1 9€.47 9278 76.42 92.30 92.17|9€ 58 56.72 7240 NE 4403 NE [55.83 95588 NE 539 NE £6.48
With Tw ] strum
KODSP! 200 KOSP1 200
Instrumant Nikkei 225 $&P 500
Matreod els ciols garch tgarch  ci- zi- ols  tiels ek ci- ci- sls  ci-gls garch tgeich  ci- gi-
@ch_trarch garch tgsrch rarch tzarch
1 010 0Ci11 013 o098 00 0.10 i3 008 Q.08 0.10 ©.11 C08 0.C%
§1 201 &403 Q02 0404 Q0 3,01 02 0.i¢ 4.54 902 2408 $D02 002
13 012 €13 013 042 012|013 Q.13 .13 813 D13 .12 013 011 J.11
01 £01 £03 008 002 DO85|-0.01 £01 87 0321 0032 £0.02 L.06 L0 D04
€ 246 284 338 250 248|248 244 o8 248 247 247 2.55 EERSCEENSEAE
ol eeen 1.31 214 1. 202|074 074 37 Bie, 19185 128 2.74 1.0 158
epll e sl el ol ) SOLE, || Bl s R e Tal 08 -1 .18 £.3% .18 Des 0BE
% 055 0865 D52 $£58| 0.72 Q.72 080 L.80 -3.02 04B|075 048 128 £.13 032
.54 12.38 1092 €45 3.95 [13.41 13.10 11.34 BB& 1174 11.64)112.25 12.17 1132 7.55 568 10.48
4 4 411 228 2 284 287 425 335 1242 218 (276 273 185 6392 185
93.00 B38.65 g4, 94.04 9259 SC.5J 53.91 93.85|55.0€6 54.06 5388 51.27 5588
B87.64 €7.20 SE. 9€.03 77.68 5974 NE 75.39(5€.35 56.41 88.83 46.42 91.35
i 225 futures sre cointegrated.

Part G and H of Table 4 contain the results for Netherlands and Sweden. Both of th

trivariate GARCH (1,1). Surprisingly, the two seemingly loosely related European countries
— Switzerland and Netherlands supply an important hedging tool to each other.



In Sample {IN): 199CM12 2005M 12 Cut of Sample {OUT): 2006001 2007MDE

TABLE 4 { Part G ): Hedging Performance results for MSCI Netheriands
With Ong HeSEIrE Instrument With Three #edging Instruments
eaging AEX ARX AEX
FTSE 100 FTSE 100
Inzteumant DAX 30 S&P 500
Mathoo |nefve als  ci-ols gatch igeech - (13 oii TGl gach tgeich i i oli  ciels gsich (13
ek tgmich 9 = Ewth igeich
004 0038 0038 002 0038|004 0082 0033 0037 0.06 0.038 O e o
0.02 0021 0021 00 ©022|402 Q02 €02 CO23 0.02 ¢.0z4 C. D.024
€03 .03 003 003 £I3|003 I3 004 L£D3 6 .34 L.08 DLe 0.837
£02 D02 £02 001 £O01|D01 Lol 002 LI D93 D02 00 L02 V07
127 128 128 127 1.2€ p ¥ S 0 I 2 T 50 128 118 124 121 1248
118 187 103 113 iz T 42 324 322 113 l24 I LA
292 £ G038 007 207108 LB D01 0.041 053 05 €083 013 004 L.0B3
006 0013 001 008 0055|C.08 009 £15 0.082 023 01 ¢008 D15 021 D18
3.61 3.767 2783 372 3.721| 3.82 3.8 3.355 3608 335 3. 351 3821 38 354 3.665
205 2.074 2035 202 2.01i| 1.3 200 . 1E d 1.8% 2188 135 213 2.058
53.1C 548.05 34.0€ 54.1C 58.11|584.£5 54,74 B804 (9572 9570 BL.91 95.42 F2.€5 5441
£6.05 E&.51 B8B.1% B7.15 B7.04[B3.95 §3.5C B5.63[85.15 85.10 B5.70 ©4.57 85.15 83.90
Sl Bl © Het s o s
AEX AEX
lestrement Daxzo | @ FTSE100 S&P 300 smi
Mathod als  ci-ols garch igarch  cie i als ch  igarch i i ! i voteprch cie (13 ol ci-ol: parch tgarch
tech gmch tgach
IN | Max 0.04 38 4 0.038] 0.34 Q. °2  0.04 0.02B | 0.03 004 CO3 0L37
cut 2.02 33 . .02 R 0.043
IN | Min £.03 3 <. 04 .03
0.52 el 2. e .22
5.0 126 & 18 ils Sl
i i21 S e 534 %3
Skawe Q.07 15 0. .01 .| 4 -GS
83y .02 3 .11 .26 1 0.ii ©.452 G2l
Kur- SIS 2 347 3683 364 3.88 3.56 3.557 5¢
15303 132 12.86 203 121 2.18 2223 232
HE 0 9395 §a.l 54,65 54,88 54.84 5451 8442 5250 RopaN-|
1250 87.03 NE 86.70 81.20|BS5.37 85.33 NE 8830 NE 85.47 87.75 BL.Il §
MSCI Natharlards, AEX futures 2nd FTSE 100 are cointagratad.
! I 5gqshercra2-5gna7ctTabla3 mara:
In Sampis (IN): 1950M12 2005M1 5

Hedging
DAX 30
Inztrument FTSE 1G0
Method |[nalve ols  ci-ols garch tgarch  ci- <ie ols cicls garch tgarch  <i- gi- ols c¢i-0ois garch tgsrch <i-
garch tgarch EAreh
I | bfax | C.O5 008 008 008 0.04 £ s 0054 604 504 & a.0a
cuT 002 002 002 502 o002 0.0 .02 2.02 Q.02 5 C. 3 202 & 002 0902
ik | Min <005 004 £04 $05 005 -0.05 -0.05|0.05 L04 D04 L0232 D04 L0484 004 D05 O 008 L£.0F
£.02 B 002 L0z D02 L02 DO .82 £02 £02 HL02 LO3|0L02 L2 L2 D £. £.03
T3 125 121 12 1.22 26 Uy S zee ‘] 127 el bl g 1
EEEieee 1.15 1317 117 1. 10 = b ol U e i ASISIsies 115 1 124 1
£.2€ £31 030 018 D20 013 < .28 £.04 007 L0s £22|027 €30 <28 D {£.34 03B
.20 018 032 025 £33 0. 55 £.57 .55 D48 H63|-021 L1 D47 L L£.5¢ 082
4328 441 423 4139 425 4, pES ERER SR e i TR e 4l 4.18 403 424 431
298 298 306 303 307 3. 14 3.18 13.314 3724 =331 | “SaEE. 03 3.33 3.28 3850 3.49
9£.80 95.80 97.22 §7.22 57.18 3 4 57,25 97.24 87.3C 97, 97.13 §7.18 57.1¢6
5308 93.07 92.78 9277 22.7¢ 32, 3 9305 28277 52 22.35 51.84 51.89
Hedging Two Hedming Inst
ORrMXS 30 CMXS 30 $30
Instrumant AN 3 FTSE 100 &P s00
Method ols zarch ci- ei- ols  ciols garch tgar;ﬁ. ci- ols ci-ols zarch tgarch ei- ci-
zarch tgarch trarch zarch tgarch
IN | Max 0.05 c. 028 ©O05|005 0C% 0OCS £05 005 0051085 205 005 004 005 0.04
CUT 0.02 Q. 002 o002 (002 002 002 033 002 005|002 002 002 COE 0.02 O.0¢
IN | Mir 0.04 5 L. £L08 DOE (005 D05 D24 L£08 D204 D04|004 D04 LU LOD5 005 D06
ouT 0.02 00z 003 . <08 004|002 £02 £L02 L6 L0Z L10|002 L2 Loz L£.i4 Doz LEE
IN | L. 128 128 1.21 1. 128 121129 12% 121 122 122 1220129 130 121 120 1.23 1.29
OUT| =) IEEERRITIes 1.2C 1. 2.27 200|118 116 1.12 B.45 111 436|115 1.1% 1.18 428 1.19 1E3¢
IN | Skavi- D24 L28 £.12 . €09 015|031 030 023 022 521 022|030 €32 28 031 033 -D&Z
T £.23 021 031 < -2.17 £1€17 €14 £55 200 DeE3 L7F2[<€20 017 L3¢ -2.11 D28 38l
444 &4t 432 4. 432 448 431 428 417 428 415 407|438 440 448 435 443 E.iE
388 3.2 342 1 E.22 184 )32%6 292 3.27 11.8% 335 273|301 285 322 B30 3.1 14.40
S€.8¢ 9528 97.22 5727 97.07 57.22|%6.81 5€.80 57.21 57.1¢ 57.1€ 57.1£(596.8C 36.80 57.15 57.27 57.12 SE.EE
53.23 53.17 9242 B1€8 72.53 79.06|52.99 §2.82 §3.45 NE 653.55 NE |93.09 93.06 52,66 3.85 5253 NE
B futures are cointegrated




results for Australia. Compared with others in this group, the
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In Sample (IN): 1988M10 ZC05M12

TABLE 4 ( Part

22 L £
Redping 5P 200
ols  garch izaach garch tgarch!| ols gaich tzaich| ols  eari 1gsrch | oI5 garch g
203 0332 0.04 0 04 0.04 28 |felody B W @
¢o1 001 2.51 .01 21 C.01 co2 |2l oo
£0.02 2038 L& .£3 003 D02 |£.53 0353
£01 .C1 D01 B4 g 283 1001 001 O
1.03 .03 105 102|182 101 102 |103 106 1.
.56 B¢ C.63 1.12 0855 DeEi a
v.28 .27 027 Qs c.27 o.
77 0.C8 g
52 3.18 388 £
g a8 585 vy R X o
9351 | 538E 83.87 92.74 92.30 8265
53.25[54.33 72.31 5%.31 53.38 93.65
tlg3ioarral

TABLE 5 ( Part 4 J: Hedging Perfermance results for MsCi Germany

WithThrze = rE[n3trumants
Hgogirg DAX 30
irstrumant
Method |naive ols ci-o's garch igsrch  ci- ols ci-ols als  <i-ols garch tearch ci- ci-
Sach y th gech_tzurch
0.02 002 0.03 003 G002 003 003 0.0 i 903|092 002 004 003 002 003 |0 003 002 Q02
001 0.0 001 001 QU1 051 0901 GO1 ©L0 001 001|001 0J1 o041 961 200 001 | od G0l 001 $O1
£03 003 £L3 Q02 £.03 904 004 £D3 £02 HO3 003|003 £03 L0603 £O2 004 D04 |0 283 003 003
L.02 002 <002 £.02 L0 £02 002 £LZ2 £02 L02 Loz|el2 D92 £ L0z |¢ £02 £ o=
988 0.97 100 100 o087 0.5¢ 095 093 101 0299 0.97)|05€ 1 101 | Q. 112 ¢85 193
QFI 574 877 Q3% 978 J.73 D7F2 073 074 072 074|076 Q.7 0.78 | 0.75 Q7B 078 Q7B
£.51 £.52 £.32 032 £4s Q. 082 052 011 ©31 011 022|052 053 0. .40 | 0.53 .25 032 933
.87 -1.87 -1.C8 0.5y D98 U5E|-1.13 -1 411 283 ;053 [-1.12 .11 3 £.73 | -1.18 A78 L85 %
388 353 353 3353 331 348 |37¢ 3BC 325 332 321|326 247 488 382 361 372 | 35% 7 346 333
284 338 337 312 314 336 (358 321 343 1233 3.02 385 347 8% 274 242 2142 | 3€3 3.4 E 255 304 E
3 3760 57.60 §741 5741 9758 97.56|57 97 €2 57.47 3728 9758 (9764 9764 27.29 97.39 97.41 37.38 |97.€1 876> H7.50 SET7E 5H7.48 97.27
2 2451 9457 2406 9382 9428 5402 5573 9275 5453 47[55.22 5631 94.21 94.25 9228 $2.38 (9441 5345 5561 53.38 9435 93.56
irEl (T L0 ¥ 7 ~ "
DAX 30 DAX 30
i &P 500
Liathoa ol ciels oit ciols gasch tgarch  ci- ¢ cls cls ci-als g2rch tzaech ci- €i-
E3ich tgarch
.0z 002 003 003 D03 003|002 Gg2 S02 003 C©O2 Q02002 ©02 ol3 002 083 Q202 .0z
01 001 001 023 DOI 0O01]00% DeC1 001 cpl 001|001 001 COI OC5 002 001 008
04 004 003 003 003 003|003 Q03 D04 03 D.06|0C3 003 003 Q.02 5 L£03 003 003
02 002 D02 £03 £02 <003 (H02 D0z L.02 £ L0027 £03 .02 £04 L02 02 VL2 D02 V02 L&
.85 097 p&: 100 085 DSR2 | 035 CHE 104 2 056 056 107 106 .56 08¢ 105 105 053 055
.73 073 073 5Bz (72 105|076 076 076 0. 075 0.74 D77 1%9 974 074 0.77 108 078 19.71
.53 053 .18 041 025 £20|<Q51 DF2 D22 0. £82 053 027 £27 £62 052 D28 028 L339 L43
.08 -3.04 -1.32 3.8 -0.97 -i.1i)-3.42 -1.09 -390 <.9 5 -.16 -1.32 101 078 -1.1d -1.07 0.5 204 092 342
.89 3.89 321 354 321 331343 242 232 34 36E|353 354 355 355 5 358 3583 342 342 350 3237
.38 325 385 1427 324 414 }353 340 3.16 310 2.65 | 3.62 3.47 342 412 .82 3.45 336 3.02 254 306 1369
13780 a5 $7.55 9734|5762 576 57.08 97.88 £l 57.14 2 27.26
5471 54.17 33.26[94.40 34.4 €0.43 94.30 94.18 NE




In Sample [IN): 1220M12 200EM12 Out of Sample [CUT): 2006MD1 2007MOS
TABLE 5 ( Part B ): Hedging Performance resutts for MSTI UK

With Ore Medging Instrumant MWith Three Hsgging Instruments
Hedging FTSE 100 FTSE 100 FTSE 100
S&P 500 5&F 500
Ingtrument CAL 40 DAX 30
nzive ols  ci-ols saich igarch  ci- gi- ols  ciole zarch t=srch  <i- ci- ols _ ci-ois garch ¢h__ ¢i- Ci-
0192, ' 062, 8.2 C.02° IR D0z 062 | 982 BV€2 892 002 2L2 062 822 082 o2 £D2 ODL2 202
200 001 001 001 001 001 Q00| 000 COD C01 001 Q00 DCOD|O0C 000 201 OO0 001 D01
0.03 ©03 £.03 003 HC3 003 -003(L03 V03 002 003 L£I3 LO03|-003 D03 003 .04 D04 004
0.00 000 CO00 L01 CODC 000 Q00| 000 000 COC QGO0 OO0 000 0COC Q00 000 D00 000 O0C
BRERONT3N 0.72 ©0.74 073 074 073|070 070 0O€8 Ce9 063 062070 075 072 0.74 073 0.73
ERENN02EN 0.25 0.26 D26 0.26 026 | 0.26 0.2 027 027 027 026025 028 0.27 026 0.26 027
0.63 -0.42 L£.3% -Lee D65 -De3 D67 |-033 L31 L£.14 043 D21 £30|.026 -0.23 085 -1.07 87 -1.02
£0.27 -0.06 -0.07 030 -0.15 -0.21 -0.16|-0.23 025 0.10 -0.06 £33 -£.12]-015 -0.19 £.13 0.16 -0.17 -0.31
572 504 458 588 545 555 513 [ 468 467 4.45 551 £52 4388} 464 461 €05 B27 7.18 7.68
24800 U230 L AONZEER | 282 ME2a S 2TR2L200e) ) 2028 238 L2202 22401 2587 L 2350 2 .24 183 1217 233
96.61 56.80 56.80 56.63 9€.72 56.55 56.66|56.55 5€.55 57.11 G€.93 56.92 5E.75 JE.57 56.€8 S56.65
58.60 58.54 98.50 598.39 S58.3% 5838 98.43|58.41 3837 SE.33 98.65 28.6C 58.33 9543 9536 5824
Hedging With Tw SEi
FTSEICO FTSE 100
Instrument CAC 40 S&P 500
Method ols ci-ols garch tgarch ci- cl- ci-ols ols ciols_garch tEarch  ci- ci-
IN | Max C.02 9002 90.02 002 Q28I Q.02(002 o2 c. .02 002 p.0z 002 002 002
000 0021 ©01 001 001|000 000 0. G0l 001 001 001 Q.00 0.01
003 0202 L0823 £.02 203 L0083 023 2. £02 £03 L03 D03 D03 L3
0.00 €01 001 0011000 0.00 L. 00 000 O £.01 000 -0.01
0.71 065 08y D285 |0 271 2.5 0.7 S OIS .7 272 075 Q.74
0.28 0.48 Q.31 (52 23 024 C.33 030|026 026 3.26 9061 0.27 043
£.27 L. £.38 £33 041|027 L2326 L£.40 D445 D41 081 DsS2 D87 L7E
<$.1¢ C. .13 018 £13| 002 0200 .56 -0.31|-£.17 -0.2C -0.21 -0.84 L.32 058
4.47 4. 4.€3 4.12 452|457 4356 AlES . 4.58 [F5.28° 530 S 7.15 553 €79 639
2.4z 2 3.17 334 328|238 243 2.28 LB [h2-g% 220 . 213 2.858 24T 23]
IN [ HE 56.89 56.88 57.11 §7.03 97.05 957.03|%€.85 5€.8% 2701 356.90|36.82 B€.B2 S€.54 3576 5651 9855
OuT| (=i 58.56 S8.53 57.68 §4.35 97.71 9255|5873 9869 ©7.38 97.87|98.41 9235 98.35 31.12 9323 9573
{Note: 1. MSCI UK, FTSE 100 futures, S&P 500 futures and DAX 3C futures are co
l 2.5egtherora 2 -Earo 7 cfTacle3(parta

Part A and B of Table 5 show the results for Germany and UK respectively. Both of them

have very low volatility in the two periods. In particular, the out-of-sample standard deviation

of UK ( 0.24% ) is the lowest among eighteen couniries. Not surprisingly, the improvement

of sophisticated models is tin

y. For Germany, the best strategy involving DAX 30 and AEX

index futures modelled b

s

VECM and trivariate GARCH (1,1) improves the hedging

Part C of Table 5 contains the results for USA. Similar to Germany and UK, USA has stable
volatility in both periods. In particular, its within-sample standard deviation { 0.49% ) is the
lowest among all countries. The im

naive hedge in both periods. Therefore naive hedge is the best strategy for USA.



InSample {IN): 1951M04 2005M12 Out of Sample {DUTY: 2006M01 2007 M08

g Performance resuits for MSC USA
With Three Hegeing Instruments
$&P500 S&P 500
FTSE100 FTSE 100
T DAX 30 Mikkei 225
Mathod cls ci-ols garch tgarch  <i- ci- ols cicls zarch tgarch cie ols ci-ols garch tzarch ci- ci-
garch tgarch garch gefch tEarch
IN| Max | 001 001 001 002 002 002|501 £O1 Q. .02 081 281 082 9 001 001
CcuT 001 CO1 001 2.1 8 001 §O01]001 C§01 Q. 001 0.01 3.1 .01 0. 01 0.01
IN | Mim {001 001 001 £02 £ L£02 L02|D01 £01 002 L £.02 0.01 £.01 2 . 001 0.02
Cut £51 001 £01 L0 0 L£L1 €01 |081 HL1 K01 D01 L.01 £401 €01 D01 0. 501 001
IN| 8D. | 848 0.48 045 0.49 D 045 Q45| C4a8 C38 05C 080 050 Q.49 Q.49 $.4% D48 045 0.4B
OUT| (%) | €48 C.24 Q.44 D46 D.4€ 045 (45| 045 045 044 T3 048 C.45 045 043 0.53 244 045
N | skew-| .26 0.28 -0.26 .10 0.1 Q.1 L.17 (D18 D20 L.08 L2 L1 i5|L21 £.22 Q08 005 D08 L2
OUT| pass | 0.5¢ 051 052 043 043 L4l 036|L53 055 L8 D47 D36 L.36(0852 L£,52 L48 D85 L45 D53
IN | Kui- | 3821 3282 391 446 446 427 438|389 385 388 388 384 384|372 3.81 387 32.87 375 372
CUT!| i, 1881 * ARl SRR SN B R HER SN STIERT SR 110 20l SSIN 1S ORRpIVCIERE & O TSI LG St sl ipel® eein  Diuaaiy 2 ss s 1ies)
IN HE [|[SENES S215F S8 57 9855 SBEE 9855 SBET|S58.€1 S8 E0 cS851i 5851 5852 S8.52|93.58 8355 55.55 85854 Y858 9B EE
OUT| ¢) |345.38 2441 943D 2285 8387 9408 S209(32 27 8417 5452 5482 5234 B434|8415 5410 B4 E] 2471 9443 2432
Hadging WitﬁT o Hacgirng Instruments
SED 500 $&P 500 $&P S0
Instrument DAX 30 Wikkei 225 FTSE 100
Matheog ois ci-clz garch tgarch  ci- <i- els  rci-ciz zarch tgarch  ci- <i- ol: ti-els garch tgarch  ci- ci-
zarch tzarch fch tzarch garch  tEarch
IN | Max g.01 001 902 gC: | 001 CL1 002 002 002 oQcC2|O0. 901 002 002 0022 002
CuUT 061 001 001 cCc1 001 001 001 CO1 O01 0010 01 €01 001 001 001
IN | Min £0.01 £01 .02 £.22 |0.C1 Q.01 L8z DLz LB2|<L £.01 £.02 002 D01 Doz
ouT £.01 €81 001 £01 001 001 001 001 £01 L01|001 £.01 001 001 €01 001
IN | &D 0.8 02.28 050 C.80 | 0.9 Qa2 Q.89 0468 Q.89 (45| 045 0.49 Q.49 0435 0.49 0.38
OUT| 341 048 0J4&4 ©.47 0481044 Q45 D46 Q&6 (0496 C4a7 | 0485 045 T4 0854 043 055
IN | Skewi- {20 £22 Q.11 L£.151L.25 028 0.15 018 L£.18 L.18|D22 £22 H08 004 001 008
CUT| ress 0.5 052 042 ESRzae  SOEER. Je) B0 ROIS0R ST <006 6 RN RSFEMS RCORERS SaudEl FOISE 29 ED SR O
IN | Kur- 3.82 331 413 402 | 3.86 3.8C 420 420 425 419)385 382 401 401 400 392
OUT| tosis 151 1090 1.85 . 32 49158 | NEE |1 85, a8 1585 3 [TIARE AT 1.99 w182 12:02% B
N HE BRI ©8 .52 SRES SR.E 98152 '9855 &EI58) O8 SFOSE 7 vaR €, 88 ER | SR SRacRIceiaRE2-of Gl O EE SR.ED
OUT| (531 84,38 9435 93.72 94.35 §3.92 53.37[54.39 3438 53.94 9401 53.88 23.80|%84.17 94.11 94,58 91.57 8272 S1.59
Note: 1. MSCI USA, S&P 500 futures, FTSE 100 future: end DAX 30 are cointegrates.
. Segthgncigl-Sand7 ofTpbie 2 (cart A

and Japan respectively. Both of them show significant changes in

hedging effectiveness above 96% but much less effective in the out-of-sample period with the
standard deviation around 81%. The situation in Japan is the other way around. Hedging

sophisticated strategies improve within-sample results but none improve the out-of-sample

suggest the best strategy for them only involve the index futures of the same country. For

\
J

Italy, it is estimated by OLS method. For Japan, it is estimated by VECM and bivariate



In Semple (IN): 18948412 2005/M1

(8]

OutofSamgla 1OUT): 294

TABLE 6 { Part A |: Hedging Performance results for M5CI italy
With One Hedging Instrumant With Threa Medging Instruments
Hedgirg NMiB M2 Mg
S&P 500 S&D 500
Instrumant CAC 40 DAX 30
Method i ci-ols garch tgarch  «i- ci- ols ci-ols garch tgarch ci- ci- als ci-ols garch tgarch  ci- ci-
zarch tearch garch tearch garch tzarch
002 002 902 COQ2 003|003 03 D.03 0. 2032 003|002 O 0.04 . 0.
Q.02 @02 002 002 0.02(0.02 2 8,82,  BC 0.04 004|002 © c.ca 5 0.
003 $0z2 0062 £04 H03|-053 3 -0 4653 503 -D.03|-003 4 -0.03 3 O £
.G, . 002 001 LC2 D15 £H02|L01 L. £04 003 LoOZ 002|001 001 L.08 D03 O .
B ESy 104 102 106 105 105|103 1. 1.11 127 1.16 1.18 |EReSpNEEeSs 1.10 1.20 1. il
53 051 059i 033 083 497 114[082% O 1.i7 110 130 126|093 083 145 154 151 1.31
78 040 041 012 £.1% 050 027 (045 L.46 015 018 014 011|042 £.23 010 -£.18 £28 .24
.13 0.8 0.87 0. 089 -2.20 041|084 0585 0.9 089 1€1 181|084 0B85 -0.0B 1.38 1.74 13€
.55 3.40 3.42 2.78 2.67 3.83 3.26 | 357 386C 288 312 271 270|340 344 313 324 302 3.00
.79 338 335 333 330 622 305 |34% 350 865 558 582 685348 380 6C5 €99 €50 429
€8 57.22 57.21 §97.30 57.C7 97.17 57.15|57.25 57.25 3€.8C 55.80 56.45 $6.3€|97V.2€ 97.2€ 96.B7 56.30 96.55 56.4¢
BO.S2 Ble4 2163 8085 8088 NE 7097|8054 8055 6586 73.14 £2.35 £5.04)30.90 8C.89 B53.08 47.60 49.49 £2.02
With Two Hedging Instruments
MIB nilg
CAC 40 S&FP 500
alt  ciele pgarch tgerch  ci- ci- ols  ci-ls ols ci-els garch tgarch  ci- ci-
gorch tgarch gsrch tgsrch
003 Qo= 002 003 003 202|002 003 2.03 003 003 003 03 003
0.02 002 002 002 011 013|002 002 002 oL 002 001 002 003
003 003 003 002 D04 £03]|-0.03 £.03 £L03 D02 L£02 D03 L04 DT3B
001 001 003 003 003 0.08|-0081 001 £.21 001 008 -0.03 Jl.02 D04
103 4103 109 109 10€ 112 1.03 1.03 168 1.3 102 108 106 108
094 084 114 104 3.02 43C) 053 033 ©I52°950,92. 7 1.38% | CISE-TRILION & 154
IN | Skew- .85 Q.45 033 022 038 007|041 .82 £.53 045 011 .18 039 -0.23
CUT| nass 084 088 074 Q06 258 122|084 U85 g 2 c8% 0Bl -181 L8i 025 C.1B
IN | Kur- A7 SASER S ZUHE N 29550 B8 ZIEEA L 3 341 268 138¢ 3.48 352 306 320 399 9B
QUT| tosis 395, 1389 - Enll 13885 1 5.9€ oo | 3. 3.8¢ 352 BS . =% : 342 344 7.95 1 3.85 282 3.38
IN [ HE 97.28 5€.94 96.31 2 87:36) ©6€.25 S6.08 97.0%9 °7 CB|SENGNSE IS I9FAN 97 12 57.11 9€.98
OUT| (& £2.44 F3E 75190 .81 80.80 70.12 32.62 2630 13.23]181.33 81.30 6065 7537 7305 47.20
Note: 1. MSCI ltaly, MIB futur. &P 500 futures are cointegrated.
2 3icertal
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In Sampie (iN): 1596008 2005M12 Cut of Sample {OUT): 2006MS1 2007MOS
TABLE & { Part B }: Hedging Performance resulis for MiSCl Japan

With Cne Hegging Irstrument With Three =edging Instrumerts
Hadgirg Nikkei 225 Mikkei 225
S&P 500
Instrument SPi 200 b |
Mathog |[naive ols ciols garch tgaréh- < ols ci-ols garch tgarch  ci- ci- ols ci-ols ci-
rgarch tzarch
IN| Max [ 008 007 007 007 857 O 8.07 | 0.07 { 7 007 ] A 397 ¢ 007 007 007 007
OuT ©.02 0O2 002 OOZ ©CO2 002 002|001 001 1 1.21 0.02 ©.45 106 Q08 0.8
IN | Mies |-0.05 -0.058 -0.05 -0.05 -0.08 005 0.05|-0.08 £.05 -0.04 008 £08 D08 LO05 D05 HU5 005
ouUT 001 001 H.01 €06 L£14 $OL 001|082 £LO2 D07 £C3 £01 001 £03 003 D12 L&
IN{ 5D 220 185 185 186 185 184 Jgi|1i78 175 177 180 184 184 185 1.83 1.82 1.82
OuT] & | 95C 084 088 167 355 08 058|095 CB98 2500 2935 5486 162|058 1.02 10.95 2560 440 457
IN | Skew-| .63 051 047 060 (56 05 042[057 055 070 Cae 43 £ | 257 OE3 0C41 .47 54 0.43
(o A B | Gl o R el e s el S R e e Tt e el S e e (S |y 5| | (0 e S e R M e E s g s SR L)
IN | Kur- | 451 462 453 522 491 374 481|468 457 521 508 482 480|457 4580 483 457 465 a4cgE
OUT| tesis | 1.B2 198 181 851 1328 212 180|206 201 1478 148F 1501 321)157 185 13.3€ 1455 5684 110
N | HE |[7B2.BS B5.80 85.72 BE EZ BL.7B 8553 ZEB83186.78 BEET 8700 8651 B7.37 2€S5C|8E 22 BLEE BS 20 BE.1S 8521 £€31
OUT| 51 [S258 9177 9107 74,16 NE 9251 8115|9170 91.17 NE NE NE 70.21]81.10 20.31 NE NE NE NE
Hedging with Twe Hedging Instruments
Nikkei 225 Mikkei 225 Mikkei 225
Instrumant £P1 200 KOSP| 200 S2pP5S00
Matheod ols  ci-slz garch tgarch ¢i- ci- ol cicls garch tgarch  ¢i- €i- ot ci-als garech tgarch - i-
garch tgasch garch tzarch ssrch  tEarch
IN | Max 007 Q08 007 007 Q006 CO08| 007 007 006 Q07 007 006|087 007 €07 007 CG7 008
out .82 002 025 006 002 ©001|002 002 £13 004 004 004|002 CC2 032 022 002 002
IN | Mis 08 006 CO5 L05 005 004|005 D05 LOS L0858 D05 005|005 008 005 005 £08 0.08
ouT 002 ODC2 £03 D07 002 £03|-001 001 002 LO7 L01 L03|-001 001 £I9 005 £08 -0.03
N | 8D 179 180 177 176 17¢ 174|184 185 183 180 18+ 183|185 185 1.B2 180 17 1.82
OUT| (s ©98 101 €05 335 102 139|057 101 327 2.4 1.2 1720 €86 1.@2% ' B3RCLAST. - 2 35 NGy
iN | Skew- 061 059 072 083 Q087 071[05% O52 049 {58 C62 Q55| CE3 050 047 044 047 03
QUT| ress £.08 008 353 080 0.06 035|011 CC6 306 055 U85 033|010 005 305 -1.80 -2.25 -0.10
IN [ Kur- 457 447 482 549 483 451|460 453 455 487 485 486|457 453 507 501 477 4381
OUT/| gosis 2.02 196 1408 265 157 212|135 151 1178 47 362 26B| 1.95 1.8B7 1233 6.86 B.25 1.54
IN | HE BE.6€ 85.55 86.55 27.10 87.15 &7.35|85.53 85.85 86€.13 &€.51 85.57 86.0785.85 85.77 86.25 £6.53 8€.85 £€.58
OUT| %) 51.20 SC.5%2 NE NE 90.36 82.10[81.24 9050 1.24 43.18 8631 72.55|51.42 5064 NE 77.18 4728 78.32
Note: 1. MSCl Japer, Nikkei 225 futures, S&P 500 futures and SPI 200 future: are coirtegrated.
2 Se&ths noted-59n07 cfTabled cort Al . .
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the same country as MSCI is close to one. And the others are close to zero.

Figure 1: Hadpa Ratios for MSCI Australia Figure 2: Hedgze Ratlos for MSCI Braxil
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Figura 3: Hedge Ratios for MSCi Canada
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Figure 7: Hedga Ratios for MSCI italy
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Figure 9: Hedge Ratios for MSCI South Korea
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Figure 8: Hedge Ratilos for MSCl Japan
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Figure 11: Hedge Ratios for MSCI Scuth Africa Figure 12: Hedge Ratios for MSC! Spain
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7. Conclusion

______ or investors in situations where the spot asset to be
hedged has no actively traded futures contract. It is widely used in a variety of markets such
as commodity, currenc
particular cross hedging problem confronted by institutional investors whose portfolio is

benchmarked to

First, we derived the analytical solution to the optimal cross hedge ratio vector for a spot

portfolio with multiple assets. Second, we studied the empirical question of how to cross
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hedge a spot portfolio measured by one of the seventeen MSCI indices with the most heavily

traded index futures of the related markets. The main results are as follows.

Most MSCI indices are not cointegrated with the most frequently traded index futures of the
same country, but are cointegrated with the multiple index futures. In most cases,
sophisticated cross hedging strategies involving several index futures improve the hedging
effectiveness upon naive or simple OLS hedge consistently in both within- and out-of-sample
periods. In particular, for countries whose returns are volatile in both sample periods, the
improvement is pronounced; for countries with moderate volatility, there is small and
consistent improvement; for countries with stable return, the improvement is tiny; for
countries with completely different volatility across two sample periods, the strategies that
work well within the sample cannot beat simple strategies out-of-the-sample. For some
countries, the VECM combined with multivariate GARCH (1, 1) or TGARCH (1, 1) fits the
data well and produces the best hedging performance among all the alternatives. For the other

countries, the best strategies are implied by simpler models.

The cross hedging effectiveness is measured by the reduction in portfolio variance. However,
one problem of hedging, both direct and cross, is that it is unclear how far it can reduce the
risk associated with sharp movements in markets. In the case of international cross-hedging,
the answer seems in part to depend on the correlation between markets in extreme events,

which is the subject of the next chapter.
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Appendix
A1l: The derivation for the optimal cross hedge ratio vector in (5).

The problem is to maximize the expected utility of the portfolio return with respect to the

futures position. That is,

Max U(n) = E(x) — 21V(x) w.r.ty )

Substitute the expression for the expected return and variance of the portfolio return in (4).
U(m) = E(s)x— E(f)y — J7[x Tppx + ¥ Ty — 22 T,p9]

The derivative to the futures is as follows.!!

au 1
—=—-E(f')- ET’E(ZK+ Ty — 2x'T)

ay
Because the covariance matrix of futures is symmetric, the above can be reduced to the

following.

ou

i —E(f)—y[Eqy —x'Z4]

Setting it to zero gives the solution for the optimal hedge ratio vector in (5).

T E() + T5 e

yr=-—

| b

" Two rules of matrix derivatives are used here.

Bx'Ax

F o {4 +4")x where xis a vector and Ais amatrix
dax
-6—1:- =g where a and x ore both vector
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A2: This part of the appendix contains the estimation results for the countries whose best
strategy is modelled by GARCH or TGARCH. The VECM combined with a trivariate
GARCH (1,1) is chosen for Brazil, Spain, Canada, Sweden and Germany, whose results are
presented in Table Al. A quadrivariate GARCH (1,1) is selected for France, whose results
are shown in Table A2. The VECM combined with a bivariate GARCH (1,1) is chosen for
Japan, whose results are in Table A3. The quadrivariate TGARCH (1,1) is fitted to

Netherlands and Switzerland with results shown in Table A4.

All the GARCH and TGARCH processes are stationary. The insignificant Q-statistics and Q-
squared-statistics of the standardized residuals demonstrate that the residuals are free of
autocorrelation or conditional heteroskedasticity, therefore the models are adequate. The
insignificant Q-statistics of the VECM residuals indicate no autocorrelation. Although the Q-
statistics of the VECM residuals of Brazil, Spain, Canada, Sweden and Japan are insignificant
at 5% level, the theoretical results on temporal aggregation justifies the use of GARCH on the
monthly return data set. The Q-squared-statistics of the VECM residuals significant different
from zero at 5% level for Germany, France, Netherlands and Switzerland clearly indicate the

need of model the conditional second moments explicitly.
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TAB 1: Estimation Results for Brazil, Spain, Canada, Sweden and German
Brazil Spain Canada Sweden Germany
Mean specification: VECM
return {MSCi) = C(1) + C(4)*COINT
return (futures_1) =C(2} + C{5)*COINT
return{ futures_2} = C{3) + C(6)*COINT
Covariance specification: Diagonal VECH
GARCH =M + A1.*RESID(-1}*RESID(-1}' + B1.*GARCH(-1})
futures_1 BOVEPA IBEX 35 TSEGO OMXS 30 DAX 30
futures_2 ISE 40 S&P 500 S&P 500 FTSE 100 AEX
Coef S.E. Coef S.E. Coef S.E. Coef S.E. Coef S.E.
C(1) 1.89E-02 B.98E03| 1.18602 4.61E-03(9.38E03 2.68E03| 1.17E02 3.86E-03|5.90E-03 3.97E03
c{4) 1.13802 3.63E02|-2.056-01 1.07£-01(-3.20601 1.12E01|-6.22E-02 7.73E-02|3.04E01 8.29E02
c{2) 2.06E02 1.03602| 1.12E02 4.57E-03{9.35603 2.64E-03| 1.17602 3.72E-03|7.20E03 4.03t03
C(5} 5.76E-03 3.95602|-1.62E01 1.12E01(-2.80E01 1.13E01|-4.61E-G2 7.70E-02(3.35E01 5.34E02
c(3) 1.24E02 6.19E03| 6.65E03 3.06E-03 | 8.87E-03 3.68E03| 532803 2.52E-03|7.49E6-03 3.79E03
c(s) 1.55E03 2.39E-02|-1.69E01 7.59E-02|-1.30E-01 1.28E01|-8.26E-02 5.90FE-02)2.35E-01 9.6BEO2
M(1,1) 1.40E03 5.14E-04| 3.60E-04 1.56E04|3.036-04 1.53E-04| 5.53E-04 2.12E-04(4.14E-04 1.4CE04
M{1,2) 1.11E03 4.77E04] 3.9BE04 1.73604|3.25E04 1.62E-04| 5.07E-04 2.00E-04 | 4.06E04 1.346-04
M(1,3) 2.96E-04 1.84E04( 7.50E-05 4.31E-05(2.00E-04 5.41E05| 2.00E-03 9.38E-05(3.B5E-04 1.36504
M(2,2) 5.11E04 4.97E04| 4.41E04 1.95E04) 3.66E-04 1.76E04| 4.64E-04 1.94E-04 |4, 15504 1.39E-04
Mi2,3) 2.04E-04 1.69E04| 7.56E05 4.17E-05|2.39E-04 9.54E-05| 1.89E-04 B.65E-05(4.09E-04 1.45604
M(3,3) 7.706-04 B.31E-04| 6.78E05 5.42E-05|2.28604 1.29E04| 1.89E-04 1.076-04|5.23E-04 2.08E-04
Al(1,1) 7.63E-02 3.77E02| 6.066-G2 2.30E-02|3.55E-D1 9.80E02| 1.786-01 5.126-02|1.32E-01 3.72E02
AL{1,2} 6.91E02 3.47E02| 7.23602 2.38602|4.27601 9.98£-02| 1.85601 5.32E-02(1.28EC1 3.76E-02
A1(1,3) 1.33602 2.03E02| 4.56E02 2.27E02|1.69E01 7.11E02| 5.39£02 4.13E-02|1.07E01 3.75£02
AL(2,2) 7.04E-02 3.43E02| 8.84E02 2.49E-02|5.16E-01 1.05E01| 1.90E01 5.62E-02 |1.2BE-O1 3.51E-02
A1(2,3} 2.08E-02 2.05E02| 4.95E02 2.42602| 1.90E-01 7.87E-02| 1.06E01 4.46E-02|1.12E01 3.98E02
Al(3,3) 8.46E02 6.85E-02| 9.BOE-02 5.55E-02| 1.48E-01 B.36E-02| 1.58E01 6.63E-02(1.42E01 4.97E02
B1{1,1} 7.52801 7.31E02| B.286-01 3.83E02|5.58E-01 8.77E-02| 7.08EC1 5.95E-02 | 7.44E01 5.72E02
B1(1,2) 5.00E-01 6.64E-02| 8.056-01 4.15E-02|5.216-01 8.10E-02| 7.06E01 5.95E-02 | 7.50E-01 5.52E-02
B1(1,3) 9.09E01 6.37E02| 8.99E-01 4.68E02|6.81E-01 9.80E-02| 7.93EC1 6.70E-02|7.31E01 6.BBED2
B1(2,2) 8.38E01 6.13602| 7.80E-D1 4.55£02(4.77E-01 7.72E-02| 7.108-01 6.10E-02|7.52E01 5.58ED2
B1(2,3) 928601 5.56E-02| 8.976-01 4.56E-02| 6.48E-01 9.52602| 7.77E01 6.29E-02|7.22E01 7.37E02
B1(3,3) 7.43E01 2.28£-01| B.60E01 7.46E-02|7.22E-01 1.28E01| 7.32E01 9.55602|6.64E-01 B.84EQ2
Log likelihood 631 1053 1027 1163 1252
SIC -8.10 -12.75 -13.73 -12.22 -13.15
pv-Ql6) 0.49 0.40 0.75 0.32 0.66
0.58 0.17 0.81 a.35 0.69
£.27 0.36 671 0.52 0.88
pv-Qsq(6) 0.93 0.83 0.96 6.82 0.54
0.85 0.85 0.85 0.50 0.51
0.85 0.89 0.97 0.58 0.08
pv-Q[6} of VECM 0.07 032 0.61 0.19 0.43
0.16 014 052 0.44 8.50
residual £.07 0.08 0.44 0.49 0.71
pv-Qsal6) of VECM 053 0.25 0.73 0.36 0.00
0.5C 0.23 0.87 0.35 0.00
residual 0.47 0.16 0.22 0.05 0.00
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TABLE A2: Estimation Results for France

TABLE A3: Estimation Results for Japan

Mean specification: constant
return {MSCI}=C(1}
return ffutures_1j=C{2}
returnf futures_2}=CJ3)
return{ futures_3]=C{4}

Cavariance specification: Disgonal
VECH
GARCH =M + A1.*RESID(-1}"RESID{-1}
+B1.*GARCH|-1}

Mean specification: YECM
raturn {MSCH = C{1}+ C{3*COINT
return ffutures_1)=C{21+ C{81*COINT|

Covariance specification: Disgonal
VECH

GARCH =M +A1. "RESID(-1}"RESID{-1¥

+81 *GARCHI-1}

futures_1 CAC 40 futures 1 Nikkei 225
futures_2 S&P 500
futures_3 DAX 30
Coef SE. Coef S.E.
Cc{1) 1.03EG2 3.03603 ci1} 1.48E03 439603
{2} 83703 422803 i3 -3.72801 113801
C(3) 7.83E03 2.676:03 ci2} -5.40E-04 5.51E03
(4} 1.16E02 S.Q1E03 [+23] -2.56E-01 1.43E01
M(1,1) 3291504 2.22E08 M(1,1} 4.69E-028 2.46E04
M{1,2) 4.30E-04 2.31E04 M{1,2) 825604 2.54E04
M{1.3} 3.80E05 2.82805 M{2,2} 8.61E04 5.53E-04
M{1,4) 1.29604 5.46E-05 Al{1,1} 6.72E02 6.586-02
M{2,2) 4.61E-04 2.36804 A1{1,2) 6.91E02 6.04E02
M(2,3) 4.46E-05 3.06E05 Al{2,2) 6.16E-02 5.80E02
M(2,4) 1.466-04 5.83E05 81{1,1} 7.80E01 1.08E01
M(3,3) 7.19E04 413604 81{1,2) 6.80E01 &.68E02
M(3,4) 5.08E-05 2.09E-0% B142,2} 7.25E01 1.36E01
M{4,4) 2.06E04 1.05604
AL{1,1) 3.87e2 2.40E-02
Ai(1,2) 4,306-02 2.43602
Al(1,3) 7.97803 6.25£03
Al(1,4) 2.65602 1.36802
A1{2,2) 4.86EG2 2.48502
AL(2,3) 1.12E-02 7.04E-03
Ai{2.4) 2.99E02 1.45802
A1{3,3} 1.01501 5.45E-02
Al(3,4) 1.71E02 §.60E-03
Al(4,4) 4.01E-02 1.81802
B1{1,1) 8.10E-01 B.77602
B1(1,2) 7.986-01 8.54E02
B1({1,3) 5.65601 2.45E8-02
B1(1,4) 9.23E01 3.0%E02
B1(2,2}) 7.92E01 8.06E02
B1{2,3) 9.5TE01 2.51602
B1({2,4) 8.15E01 3.13802
B81(3,3} 4.43601 2.88e-01
B1{3,4} 9.54E-01 1.81E02
B1(4,4] 5.05601 4.13802
Log iikelihood 1697.34 Log likelihood 4B1.44
SiC -17.78 5iC -7.84
pv-Ci6) o83 pv-({6} 2.9G
.88 0.86
0.54 py-Osqib} 0.78
.74 0.62
pv-Qsql6} 0.07 pv-Ci6) of VECM .94
.11 residusl .81
.48 pv-Osqis) of VECM a.76
.48 residual 065
pv-Qi63 of VECM 6.79
c.82
0.46
residual &.53
pw-0sq{6) of ¢.00
0.00
0.02
VECM residual £.01
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TABLE A4: Estimation Results for Switzerland and Netherlands

Switzerland | Netherlands
Mean specification: constant
return (MSCli=C(1)
return ffutures 13=Cl2}
return futures 21=C{3}
return {futures 3)=C[4)
Covariance specification: Diagonal VECH
GARCH =M + A1 “RESID{-1)*RESID{-1}' + D1. *[RESID{-1}*{RESID|-
13ON*{RESID-11*{RESID{-1 <0} + B1. *GARCHI-1}
futures_1 SMI AEX
futures_2 S&P 500 FTSE 100
futures_3 AEX SMi
[¢§1] 9 35803 3.85E-02 §.88E-03 3.80ELC3
c(2} 8.40E03 4.02E03 B.99803 392803
i3} £.91803 2.62E03 5.48E03 317843
cfa) 8.69E03 4.1CE03 $.85E03 4 13803
M{1,1) 1.18E03 3.70E04 8.37ED4 1.67E03
(1,23 1.05803 3.52E-04 7.61E-04 1.46E-04
M{1,3) 1.79E034 1.06E04 4. 66804 1.54E-04
M(1,4) 667504 2.45E-08 5.858-04 1.93E048
Mi{2,2} 9.72E04 3.43E04 7.41E04 1.61E04
M{2,3) 1.46E04 3.21E-05 40704 1.40E-04
M{2,4) £.18602 2.42E-04 §.52E-04 1.87E04
M{3,3} 5.69E-05 5 20EL05 5.25E-04 2.10EC4
M{3,3) 1.346-04 8.40E-05 3.92E-04 1.78E0C4
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Chapter 4

Rare Disaster Model in the Two-Country World

1. Introduction

In this chapter, we explore another aspect of stock market risk — the theoretical prediction of the
equity risk premium. The equity premium puzzle is the contradiction between the prediction of
the general equilibrium model and its empirical counterpart. Specifically, the equity premium
implied by the theory is far smaller than the equity premium actually observed. The issue is
clearly important because the future equity premium is a key factor in deciding the long term

allocation of portfolios between shares and bonds.

In the most recent of many attempts to explain the equity premium paradox, Barro (2006) set
up a Lucas-tree type general equilibrium model and combined it with a process featuring rare
disasters where output contracts drastically. The model predicts a high equity premium and a
low expected return of government bill in line with the data. The rationale is that the potential
of rare disasters increases the aggregate risk in the economy, which leads to a strong demand

for safe assets and widens the gap between the expected returns of risky and safe assets.

It is realistic to take rare disasters into consideration. Despite the rare occurrences, disasters do
have a significant impact on financial decision making. However, disasters are not only rare but
also non-simultaneous in different countries. For example, when Europe was in World War 11,
Latin America was in peace. It is therefore interesting to investigate the implications of the

interaction between countries in disaster on the equity premium.

In our extension to Barro’s model, there are two equities and two government bills. The
endowment of both trees is modeled by the process that incorporates disasters as in Barro. We
then introduce a parameter to measure the interaction between the two outputs in disasters to

allow for joint disaster and single disasters. We solve the model for the expected return of

120



equity and bill and produce calibration results. The analytic solution is similar to that of Barro’s
— the potential disaster leads to high equity premium and low expected return of the bill.
However, the aggregate risk in a two-country world is much smaller than that in a one-country
world, which leads to an increase in the expected return of the government bill. And in a
two-country world, part of the equity risk becomes diversifiable, which leads to a decrease in
the expected return of equity. Together, these effects in the two-country world results in a much
lower equity premium. We calibrate the model using a wide range of the parameter values
based on Barro (2006) and fail to produce predictions in line with the data. We conclude that
the prospect of rare disasters is unlikely to be the true explanation of the equity risk premium

puzzle.

2. Literature Review

Lucas (1978) introduced the endowment economy approach in asset pricing. In his ‘tree’ model,
the economy is populated with agents each endowed with a ‘tree’ producing a stream of
perishable fruit. The endowment is stochastic, exogenous and differs among agents. There is a
complete market where agents buy and sell the shares of trees to mutually insure each other, the
idiosyncratic risk is diversified away and the aggregate risk is allocated efficiently. The
heterogeneous agents can be aggregated into a representative utility maximizer with
time-additive utility function.' The Euler equations of the representative agent link the asset
prices to the endowment processes. The equilibrium asset prices can be derived given the

aggregate and individual endowment processes.

Mehra and Prescott (1985) applied a variation of the Lucas tree model to derive the risk-free
rate and the equity risk premium for the U.S. securities in the period of 1889 to 1979. They
found the model suggested a much higher risk-free rate and it can explain only a fraction of the
observed risk premium. The average risk-free rate of the period is 0.8%, in contrast to the

theoretical value of 3.7%. The empirical risk premium averages around 6%, but the counterpart

! For example, if Rubinstein (1974) condition is satisfied, the aggregation is possible. That is, if all agents have utilities in the
HARA class with a common cautiousness, then the representatives’ utility does not depend on the distribution of income.
Furthermore, if all agents share the same time preference, then the representative shares this common time preference.
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suggested by the model is at most 0.39%. The failure of the general equilibrium asset pricing
theory in explaining the observed data is termed as the equity premium puzzle. In particular,
they assumed the representative agent maximizes a time-additive iso-elastic utility. The
endowment growth is modelled as a binominal Markov process. They calibrated the model so
that the mean, variance and the first-order serial correlation of their binominal model fits the
empirical counterpart. They assumed there is a risk-free bond and a Lucas-tree equity whose
payoff equals state-contingent per capital consumption. Since the endowment growth is quite
stable with a standard deviation of 3.6%, the variation of the stochastic discount factor is small,
which implies a big risk-free rate and a small risk premium. For the theoretical risk premium to
be in line with the empirical observations, investors have to be extremely risk-averse. If so, the

iso-elastic utility function would imply a huge risk-free rate.

Siegel (1992), (1998) and (1999) extended the data set of Mehra and Prescott (1985) to cover
the last two-hundred-year period for the U.S. He found the equity return is stable at around 7%
in the last two centuries, but the short-term bill rate has fallen from 5.1% between 1802 and
1870 to 3.2% between 1871 and 1925 and to 0.7% between 1926 and 1998. He mentioned the
possibility that the ex-post real short-term bill rate in the recent period is a biased estimate of
the expected real rate because of the unanticipated surge of inflation after World War II and in
the seventies. In other words, the ex-ante real rate should be higher than its ex-post counterpart.
But there is little uncertainty about the inflation over a short period such as three months. This
is precisely why government bill rather than bond is chosen to measure the risk-free rate.
Nevertheless, Siegel’s average risk premium for the U.S. in the last two hundred years is 4.1%,
which is still ten times higher than what the standard model in Mehra and Prescott (1985) can

explain.

The equity premium puzzle is a contradiction between the standard theory and the observed
data. One way in resolving it is to argue the data does not measure the variables we are
interested in. Brown, Goetzmann and Ross (1995) asserted that the long-term return series of
the U.S. are subject to survivorship bias. While the U.S. stock market has prospered for a long
time, a lot of stock markets in the other part of the world have experienced temporary or

permanent breakdown. The experience of the U.S. market is not representative, but only the
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result of good luck. The risk faced by an investor before the uncertainty was resolved is much
greater than that reflected in the ex-post U.S. data. This problem is similar to the ‘peso
problem’ in the foreign exchange market, where peso forward rates appeared to be biased
forecasts of future spot rates over short sample periods, essentially because they account for a
nonzero probability of devaluation that is not observed. They modelled the stock prices by a
diffusion process with an absorbing lower bound. They showed that survival could induce an
observed equity risk premium substantially greater than the true one. For instance, if the
probability of survival is 50%, then a 4% risk-free rate and a zero risk premium would suggest

an observed risk premium of 4%.

Jorion and Goetzmann (1999) collected the stock return data excluding dividend for 39 markets
in the period 1921 to 1996. The U.S. return is the highest at 4.3%, but the median is only 0.8%.
Since there is no particular pattern for dividend return among different countries, their data
showed the high stock market return of U.S. is not the norm but the exception. However, equity
risk premium is the difference between the return of stock and bill. Although the U.S. stock
market outperformed others, the U.S. equity premium is not necessarily greater than others for
almost all countries that experienced serious disruptions of stock markets also experienced
periods of high inflation. In some cases, such as Germany between 1922 and 1923 and Japan
after World War II, the hyper-inflation wiped out the value of government bill or bond
completely. In other words, not only the expected return of equity but also that of government
bill is subject to survivorship bias. The overall effect of survivorship on the risk premium is

unclear.

Similar to the survivorship explanation, Rietz (1988) argued the standard interpretation of data
is inappropriate. Unlike the standard model that assumes a symmetric process for the
endowment growth, Rietz modelled the endowment growth by a three-state Markov process. In
the first and second state, the endowment grows or falls slightly around the steady-state rate,
similar to Mehra and Prescott (1985). In the third state, it falls dramatically as in depression.
The occurrence of the third state is possible but unlikely and that is why it is rarely observed.
His model shows that the potential of a depression-like state implies a high risk and justifies a

small risk-free rate and a high risk premium. Unlike the survivorship explanation, which relies
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on the inconsistency between the ex-post and ex-ante data, the potential disaster explanation by
Rietz admits the observed return data as proper reflection of the true data generation process

and maintains the framework of the general equilibrium asset pricing model.

Mehra and Prescott (1988) raised strong criticisms of Rietz (1988). They pointed out in a
depression-like state government tends to partially default on its debts through unanticipated
inflation and therefore it is unrealistic to assume the government bill is risk-free in
depression-like state. They also challenged the parameter values Rietz used in the calibration.
For instance, Rietz showed if the coefficient of risk aversion is 8.85 and the time preference is
0.999, a 1.4% probability that the consumption falls by 25% per year would imply consistent
values for the risk-free rate and risk premium. But the usual value for the coefficient of risk
aversion is between 1 and 4. A coefficient of 8.85 is still too high. During the last 100 years, the

biggest annual consumption drop is 8.8% in the U.S. A 25% drop per annum is too extreme.

Barro (2006) built on the idea proposed by Rietz (1988) and improved it by modelling the
partial default of government bill in depression-like state and deriving the empirical
distribution for the size of output contraction in disaster from the 20™ century cross-country
data. In particular, he modelled the growth rate of endowment as a random walk with drift and
two i.i.d. shocks. One shock measures the slight fluctuation of endowment in non-disaster state.
Its function is similar to the binominal Markov process in Mehra and Prescott (1985). The other
shock measures the drastic contraction of output in disaster, similar to the third state in Rietz
(1988). With the probability close to one, the second shock takes the value of zero. With the
probability close to zero, it takes a negative value corresponding to the size of the output
contraction in disaster. His model also accommodated the partial default scenario. It was
assumed that with a constant probability the government partially defaults on its debt in
disaster state and the percentage loss is of the same size as the output contraction. The
calibration results showed that the model can produce theoretical values in line with the

observed data.

The other way in resolving the puzzle is to modify the theory of representative agent to

accommodate the historical facts. Several authors have proposed to use preferences different
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from the time-additive iso-elastic utility function.

Epstein and Zin (1989) and (1991) argued the restriction of the time-additive iso-elastic utility
function may result in its empirical failure. The function form of the standard utility is such that
the coefficient of relative risk aversion is also the reciprocal of the elasticity of intertemporal
substitution, i.e. one parameter measures two different aspects of the utility. The consensus is
that people are moderately risk averse, but very averse to intertemporal consumption variation.
The coefficient of relative risk aversion is between 1 and 4. The elasticity of intertemporal
substitution is very small’, i.e. its reciprocal is huge. Epstein and Zin proposed a generalized
expected utility preference to disentangle risk aversion and intertemporal substitution. It
implies the risk-free rate is only affected by the elasticity of intertemporal substitution, but not
the risk aversion. And the risk premium is only influenced by the risk aversion, but not the
elasticity of intertemporal substitution. However, it can not explain the equity premium puzzle
because of the moderate risk aversion. Furthermore, it creates a ‘risk-free rate puzzle’ (Weil
(1989)) because the low elasticity of intertemporal substitution suggests a much higher

risk-free rate than observed.

Standard preferences assume individuals derive utility from absolute consumption only.
Duesenberry (1949) suggested that relative consumption also affects utility. People compare
themselves with a benchmark measured by either their own consumption in the past ( internal
habit formation ), or the society’s consumption ( external habit formation ). If they are

relatively better off, then they get positive utility; otherwise, they get negative utility.

Abel (1990) used a combined multiplicative internal and external habit formation preference.
The internal benchmark is the individual consumption in the last period. The external
benchmark is the aggregated consumption in the last period. The model effectively increases
the patience and therefore lowers the risk-free rate without increasing the risk aversion.
Intuitively, people want to consume more tomorrow than today in a growing economy (time
preference could be negative), because they want to keep up with others. If their consumption

falls through time, they get negative utility not only from the falling consumption but also from

2 Hall(1988) showed that the estimated slope coefficient is very small in a regression of consumption growth on expected real
interest rates.
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the gap with others. To avoid it, they have a greater incentive to save, which keeps the risk-free

rate low.

Campbell and Cochrane (1999) used an additive external habit formation preference. It makes
the habit as a subsistence level. As consumption falls toward habit, people become less willing
to tolerate further falls in consumption. In other words, the model predicts a time-varying risk
aversion — people are more risk averse in recession and less risk averse in boom. They are
reluctant to hold stocks not because of the risk, but because stocks tend to pay less in recession

when people are most risk averse.

Dumas (1989) explored the possibility of heterogeneous preferences. He assumed there are two
agents with different CRRA utility. Similar to Campbell and Cochrane (1999), his model also
implies a time-varying risk premium. Intuitively, the relatively less risk-averse agent is
exposed to more aggregate risk, therefore owns a large share of wealth in boom and a small
share of wealth in recession. It makes the representative agent with average wealth less
risk-averse in boom and more risk-averse in recession. This counter-cyclical risk aversion

makes stocks less desirable and increases the equity premium.

Some authors tried to resolve the puzzle by assuming some kind of market failure. Mankiw
(1986) assumed the market is incomplete. In the financial market, only aggregate risk can be
traded, but not idiosyncratic risks. In such an economy, agents can partially insure each other
by self-insurance through borrowing and lending among each other, if the idiosyncratic risk is
not highly persistent. The desire for saving explains a low risk-free rate. But it can not explain
the high risk premium because self-insurance results in almost efficient allocations of risks and

the stock prices are similar to those in the complete market.

Constantinides, Donaldson and Mehra (2002) used an overlapping generation model with
credit constraints to explain the puzzle. Three generations exist simultaneous. The young
generation can not borrow against their future income because of the credit constraints and
therefore can not buy equity either. Effectively, the young generation is excluded from
financial market. The middle-aged generation buy bond and equity from the old generation to

smooth intertemporal consumption. The calibration results suggest a smaller risk-free rate and
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a higher equity risk premium, but not to the extent of the observed data.

In this chapter, we try to resolve the equity premium puzzle by potential economic disasters, as
Rietz (1988) and Barro (2006). We extended Barro’s model to a two-country world, where
there are two equities and two government bills. Each equity entitles its owner to a share of the
endowment of a country. The state-contingent endowments are different between the two
countries. In particular, when one country is in disaster, the other country is not necessarily in
disaster. The investors of one country can diversify both non-disaster and disaster risk by
holding the equity of the other country. Compared with Barro’s one-country world, the
two-country world is less risky, therefore implying a much higher risk-free rate. And, in a
two-country world diversification makes part of the risk in holding equity diversifiable,
therefore implying a lower equilibrium expected return of equity. Together they imply a low

equity premium in the two-country model.

3. Stochastic discount factor and risk-free interest rate

3.1 Stochastic discount factor in the presence of possible disaster

In this two-country one-good representative-agent fruit-tree model, the agents of two countries
allocate their consumptions between present and different states in the future by trading assets
in a complete market. The objective of the agents is to maximize the intertemporal utility with

respect to their budget constraints.

Suppose the agents of two countries share the same time-additive iso-elastic utility function.
All the agents of the two countries can be aggregated into a group of representative agents.
Furthermore, suppose there is no transaction cost. The aggregate consumption equals the

aggregate endowment, which is the same as aggregate output.

MaxEU =U(C)+ 3. E[U(C,,)] )
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MaxEU" =U(C)+3 e E,[U(C.)] (1

i=l

where U(C) = ﬁC -6 2)

st.C,+C, =4, +4 =A" 3
Ci@®)+C, (5)=A,,()+ 4, ()= 47,(s)

C,C",A,A" and A" are the consumption of country one and two, the endowment of country one and

two and the world respectively. The complete market enables agents in both countries to reach
Arrow-Debreu equilibrium where the marginal rates of substitution between consumption af
different time and in different state are equal between them. They face the same set of
Arrow-Debreu prices and there is a common stochastic discount factor for pricing any asset.

The one-period stochastic discount factor is:

.(AIH(S))—G (4)

p W Cu) _ p ¥ Cri &) _ -
A7

e
== rC) W(C)

Assume the growth rate of endowments follow a random walk with drift process, i.e. the

growth rate of endowment varies around its steady-state rate.

8 = In4,, -In Az =ytu, vy, (5)

t+1

*

- ln A: = }" + ut+1 + V:+l (5*)

*

g:+1 = lnA

t+1

y and y"are the steady-state endowment growth rate. u,,, and u,,, represent the endowment
shocks not associated with disaster. They are subject to a bi-variate normal distribution with

zero means, standard deviation o and o respectively and correlation coefficient « .

t+1

v,,, and v,,, model the output contraction in the disaster state. The idea of having two shocks,

u and v is that they accommodate both the relatively small fluctuations in normal periods and
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the drastic contraction in disaster periods. Same as in Barro (2006), # and v are assumed to be

independent for each country. In non-disaster states for country one, v, takes a value of zero;

t+1

in a disaster state, it takes the value of In(l - b) . Furthermore, we make similar assumptions for
the shocks of country two. In non-disaster states of country two, v,,, is zero; in disaster state of

country two, itis In(1-5").

b and b’ represent the size of endowment contraction of country one and two due to disasters

respectively. Since the disaster size is unknown at the starting time, they are assumed to be
random. Assume they have the same probability distribution denoted as b and they are
independent of each other in the state in which both countries are in disaster. In other words, the
size of contraction of country one is not related to that of country two in the joint disaster state,

even though they are drawn from the same probability distribution.

The joint probability distribution of v,,, and v,,, is assumed to be symmetric. In other words,

the conditional probability of the disaster shocks of two countries are the same, i.e. the
distribution of the disaster shock in country two, given country one being or not being in
disaster, is the same as the distribution of the disaster shock in country one, given country two

being or not being in disaster.

Same as Barro (2006), the probability of individual country in disaster per unit of time is

assumed to be p. As the length of period approaches zero, the individual disaster probability

approximates 1—e~? . Furthermore, we introduce a conditional probability to describe the
relationship between the two countries in disasters. The probability of one country in disaster

conditioned on the fact that the other country is also in disaster is 7. It ranges from zero to one.

The higher is it, the more correlated are the two countries in disaster.

The joint probability distribution of v,,, and v,,, is summarized in Table 1.
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Part. a: Probability matrix

Country 1
No disaster Disaster
No - - -
Coutry |_disair | €7 WU=mre” | Q-enom) | e
2| Disaster (1-eP)(1-1) (-eP)y I-e™
e’ l-e? 1
Part. b: Value of vand v"
Country 1
No disaster Disaster
N * .
Country | disaster v=0;v"=0 v=In(1-b);v' =0
2 | Disaster | v=0;v =In(1-4") | v=In(-b);v" =In(l—-5")

Given the above assumptions on the growth rates of output, we can express the stochastic
discount factor in terms of the growth rates and the proportions of each country’s output in the
current period. The output in the next period is the product of the growth rate and the current

output.

Ay~ A4,(0+8.,) (6)
At+1* ~ Att(l + g1+1') (6*)

The growth rate of world output is the average of the two individual growth rates weighted by

the proportion of each country’s output in the current period.

AZI _ A1+1 + A1+1* ~ At (1 + gt+l)+ At*(l + gt+l*)

A 4+ 4 A +4
A+4""" 444" 7

=1+ mg,. + (1 - m)ng'

~ exp[mg,,, + 1 -m)g,,,]
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Substitute the expression of world growth rate into the stochastic discount factor.

Mst+1 (S) =e ™’ (

A1 ()0 explp— Omgy(5)— 01~ m)gn (5)] @®)

4

The common stochastic discount factor shown in equation (8) is one of the key elements in
pricing the assets in the model. Before going to those assets, we use it to price the simple asset
— one-period completely risk-free government bill, which pays one unit of consumption good
in the next period even if there is a disaster. The rate of return of this asset is the risk-free
interest rate in this two-country world. This non-existent bill is equivalent to the government
bill in Rietz (1988). Although we do not assume such an asset exists in the model, it helps to

explain the feature of the model and the method used in pricing actual assets later.
3.2 Risk-free interest rate in the presence of possible disaster

The usual first-order condition of representative agents’ intertemporal utility maximization

implies
1=E(M,,  R.,) ®

where M, is the one-period stochastic discount factor and R,,, is the return of any one-period

asset. Equation (9) is the formula for pricing all one-period assets. The one-period risk-free

interest rate is simply the inverse of the expected stochastic discount factor.

e (10)
E t (M st+l )

Combining the stochastic discount factor shown in (8) and the endowment processes in (5) and

(5*), we can derive the solution for the risk-free interest rate shown below.’

InR 7 ~ @ -®, (11)

t+1

3 By assuming i.i.d. shocks for the two endowment processes, we effectively make the term structure flat. The real interest rate of any period is the same as that

implied by the above one-period risk-free bill.
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where

O, =p+Omy+6(1-m)y’ —%(Qma)2 —%[&'(l—m)o"]2 -6*m(1 -m)xoo’

(DZ = p{(l - TI)[E(I - b)_an -1+ E(1- b)_o(l_m) -1]+ n[E(] - b)‘a” -E(1- b)—ﬂ(l—m) _ 1]}
@, is the risk-free interest rate if the probability of disaster is zero.

@, represents the component of the risk-free interest rate attributable to the prospect of a
disaster.
In the extreme case where country one or two accounts for the whole world output, we reach

Barro’s one-country model. The risk-free interest rate of Barro’s model is:

In R/ (one) ~ &, —®, (11%)

t+1

where CD,’ = p+0}/-—%(6’0‘)2

@, = plE(1-b)" —1]

3.2.1 Effect of the non-disaster related factors

@, represents the standard components of risk-free interest rate, attributable to time

preference, output growth and ordinary shock.

The risk-free interest rate is increasing in the time preference ( p ), since the more impatient
people are, the higher the risk-free interest rate has to be to persuade them to save rather than
consume. It is also increasing in the world output growth (6my + 8(1—m)y"). The faster the

world economy grows, the lower the marginal rate of substitution for future consumption, the

less demand for risk-free asset, the greater the risk-free interest rate.
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The risk-free interest rate is decreasing in the volatility of the ordinary world output shock
((Bmo)® +[6(1-m)a' ) + 6*m(1 - m)xoo™). The more volatile the world output, the bigger

the aggregate risk in the economy, the bigger the demand for risk-free asset, the lower the
risk-free interest rate. It is also decreasing in the correlation coefficient between the ordinary
shocks in two countries (« ). The more correlated are the two outputs, the more difficult is to
diversify the day-to-day risk, the stronger is the demand for risk-free asset, the lower is the

risk-free interest rate.

When the endowment process of the two countries are the same, ®, reduces to @, .
CD; =p+06y —%(&Vna)2 - %[6’(1 —-m)o]’ -6*m( - m)xkoo

which is greater than its counterpart in the one-country model ((I)ll). Other things equal, the

risk-free interest rate in a two-country world is bigger than its one-country counterpart. The
reason is that investors can diversify the ordinary risk in a two-country world, therefore the

aggregate risk is smaller and the demand for risk-free asset is weaker.

3.2.2 Effect of disaster-related factors

®, represents the components of the risk-free interest rate attributable to a disaster, such as the

probability of disaster ( p ) and the conditional probability of joint disaster (7).

@, = p{(1 - MIEQA-b)™ —1+ EA=b)"""™ -1+ 7[EQA- )™ - EQ-b)""™ —1]}
= p{-M(EB 1) + (EB" - 1)+ n(EB - EB" - 1)}

where: f=(1 —b)'a” '3* =(1- b")—B(l—m)

are the value of the stochastic discount factor ( SDF ) in those states of the world when country

one and country two suffer a disaster respectively.
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®, is the risk return adjustment for disasters. It is the part of the expected SDF related to the
disaster. Specifically, it is the sum of the difference between SDF in each of the three types of

disaster states: single disaster in country one ( B), single disaster in country two (3" ) and joint
disaster (") and the SDF in non-disaster state (unity), weighted by their probability p(1-17),
p(1-n)and pn*.

Since output in disaster states is less than that in the states without it, the output in disaster
states is more valuable, therefore the SDFs of those states are bigger, i.e. B , § and S’ are
all greater than one. Hence, @, must be positive, reflecting the fact that disaster risks increase

the attraction of risk-free asset. @, represents the expected return investors are willing to give

up due to the potential disasters.

Moreover, the higher is p , the greater is the probability of the state in which either one or both

countries suffer disaster, so @, is increasing in p . Intuitively, the more likely is disaster, the

riskier is the world, and the more valuable is the risk-free asset.

The higher is7, the greater is the probability of the joint disaster state but the less is the
probability of the single disaster state. As a result, the effect of » on ®, is not as

straightforward as p . A simple mathematic deduction on the derivative of ®,to 7 reveals that
its effect on the joint disaster state dominates the sum of those on the two single disaster states.
Therefore, @, is also increasing in7 . Intuitively, the more likely is a joint disaster, the more

difficult is to diversify the disaster risk, the greater is the aggregate risk, and the more attractive

is the risk-free asset.

* In fact, the SDF of the joint disaster state is 33 . The part of the expected SDF related to it should be E( BB ) . Since we
assume the size of output contraction of one country is independent of that of the other, E( (3 ! )isthe sameas Ef - Ef3 ! ,

as shown in the last term of @, .
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3.2.3 Effect of output weight

In the one-country model, i.e. when m =1 orm =0, @, reaches its maximum level:

@, = p(Ef-1) or @, = p(Ef" ~1)

so that the risk-free interest rate is minimized, because the risk is totally non-diversifiable and
the aggregate risk is at the maximum level. In this case, the demand for the risk-free asset is the
strongest other things equal. It is interesting to note that the risk-free interest rate in the

one-country model is lower than its two-country counterpart even if the conditional probability
of joint disaster is one (77 = 1). The reason is the sizes of output contraction in the joint disaster
state are independent. Even if the two countries always enter disaster state simultaneously,
people still can diversify the idiosyncratic risk associated with the size of output contraction in

disasters, therefore the aggregate risk in a two-country world is smaller than its one-country

counterpart.

On the other hand, whenm = %, @, is at its minimum level:

D, = p2-n)EA-b) ? ~1]+7[EQ1-b) 2 1]’}

so that the risk-free interest rate is maximized, because the diversification opportunity is the
greatest when the countries are of equal size, minimizing the aggregate risk and thereby the

demand for risk-free asset. Market clearing requires the interest rate is at the maximum level.
3.2.4 Effect of the degree of risk aversion on the risk-free interest rate

The effect of @ on the risk-free interest rate is mixed. In the power utility function, &
describes two distinct aspects of the utility, which have opposite implication to the risk-free
interest rate. On the one hand, the lower is the intertemporal elasticity of substitution (higher 8),
the higher does the risk-free interest rate have to be to motivate people to save. This is reflected

in the positivé relationship between the component of the risk-free interest rate attributable to

non-disaster related factors (®,) and@. On the other hand, the more risk averse they are
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(higher @), the more return they are willing to give up due to the potential disaster, the lower

the risk-free interest rate. This is reflected in the positive relationship between the component

of the risk-free interest attributable to disasters (®,) and@. The overall effect of @ on the

risk-free rate is therefore ambiguous.

* Summary on the effects of various factors on the risk-free interest rate

In section 3.2, we derived the risk-free interest rate of the model, explored the implication of
various factors and compared it with its one-country counterpart. The main results can be
summarized as follows. In general, allowing for disasters increases the attraction of the
risk-free asset and decreases the risk-free interest rate. However, the effect of disaster on the
risk-free interest rate in a two-country model is smaller than its one-country counterpart,
because both the ordinary risk and disaster risk can be diversified and the aggregate risk is
smaller in the two-country world. Specifically, diversification opportunities are on both fronts.
As long as the ordinary shocks are less than perfectly correlated across the two countries, the
world ordinary shock can be reduced. As to the disaster shocks, even in the extreme case where
the two countries always enter disaster simultaneously, there is still gain to be made from
diversification because the size of output contractions in disaster state are not necessarily the

same in the two countries.
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4. Government bills in the presence of disaster and partial default

Equity risk premium is a measurement of the value of risk. The standard method to estimate it
is to compute the spread between the rate of return of risky equity and safe government bill.
However, government bill is only risk-free in real terms if there is no unanticipated inflation.
While in non-disaster state, inflation in a short period of time can be forecasted reasonably
accurately, in disaster state, inflation even in a short period of time can be highly unpredictable.
For instance, in German hyperinflation period, the value of government bill and bond were
wiped off completely. Therefore it would be unrealistic to assume government bill is risk-free

in all possible circumstances.

As in Barro (2006), we assume there is no risk-free asset but only government bill in country

one and two promising a unit of consumption in the next period. The face return of the bill

issued by the government of country one and two is R’ and R/ ’ respectively. In non-disaster

states, the actual return is the same as its face return. In the state where country one suffers a

disaster, its government may partially default through unanticipated inflation with the

probability of ¢ . Similarly, in the state where country two is in disaster state, its government
may default with probability of g* . In the event of a default, the shortfall is a percentage of the

face value equal to the scale of output contraction, b orb">. Default has no effect on output.
The government proceeds from default are returned to representative agents through lump-sum
transfer. Moreover, the defaults are assumed to be independent events, i.e. whether the
government of country one (two) defaults has no effect on whether government two (one)
defaults.

The assumptions made for the government one’s bill can be summarized as follows. With

probability e™ , no disaster occurs in country one and therefore no default either; with

probability (1 — e ”)(1 — q), a disaster occurs but no default; with probability (1 — e™”)q, default occurs

with the payoffl — b . The characteristics of government one’s bill are summarized in Table 2.

> This assumption is to avoid further complication of the model. Barro gave empirical evidence to support it.
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Part. a: Probability matrix

Country 1
Disaster
No disaster
Default No Default
No ~ ~ _ _
Country | . (e”-DaA-n+e” (1-eP)1-n)g (1-e*)A-md-q) e’
disaster
2
Disaster | (1—e?)(1-7) (1-eP)ng (-e?ml-q) | l-e
e’ (1-e")q (1-e")1-q) 1
Part. b: Value of vand v"
Country 1
No disaster Disaster
No 0;v =0 In(1-5);v" =0
C t X v=0v = v=In(l1-b6);v =
UMY 1 disaster
2 .
Disaster | v=0;v" =In(1-5") v=In(1-56);v =In(1-5")
Part c: payoff of government one's bill
Country 1
Disaster
No disaster
Default No default
No (1-b)R’ s
Count s - R
ounsry disaster R
2
Disaster R/ (1-b)R’ ): 4
4.1 Face return of the government one’s bill
The solution for the face rate of return of the government one’s bill is:
InR/,~® -~A-B
where (14)

A= p(l-q)1-nXEB-1)+ p(l-gnEBL" -1+ p(L-n)ES -1)

B = pg(1-m[E(-b)A~11+ pgnE[(1-b) " 1]

@, is the component of the government one’s face return attributable to non-disaster related
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factors, which is the same as the @, in equation (11). The implication is that the effect of

non-disaster related factors on the face return and the risk-free interest rate are the same. This is
not surprising as the default prospect of government one’s bill is dependent on the occurrence

of disasters.

Compared with non-disaster state, the payment in disaster state is more valuable, because there
is less output available in such state. Output contraction leads to higher marginal rate of
substitution for the output in disaster state, i.e. higher SDF. Therefore, the possibility of disaster
can potentially make government bill more attractive. This rationale also explains why the
risk-free interest rate in the presence of disaster possibility is lower than its counterpart in the
model without disaster possibility. However, unlike the risk-free asset, the government bill is
subject to default risk. In some disaster states, a percentage of the promised payment will not be
delivered to the bill holders. Compared with non-disaster state where the payment is
guaranteed, the payment prospect in disaster state is undesirable. Therefore, the possibility of

disaster can also potentially make the bill less attractive overall.

By writing the component attributable to disaster separately as A and B, we can see the above
two effects more clearly. A is the risk-adjusted return in the scenarios where country one is not
in default and either country one or two or both are in disaster, weighted by the corresponding
probability. In particular, the first term corresponds to the state where country one is in disaster

but not in default and country two is not in disaster. The SDF and the probability of such state is

one and p(1-g)(1-n7) respectively. The second term corresponds to the state where both are

in disaster and country one not in default. Its SDF and probability is one and p(l-g)n

respectively. The third term corresponds to the state where country one is not in disaster and
country two is in disaster. Its SDF is also one and the probability is p(1-7). A is positive,
meaning the prospect of disaster without default clearly adds value to the government one’s bill.
B is the risk-adjusted return in the scenarios where country one is in default and country two

may or may not be in disaster, weighted by the probability. The payment in such state is

desirable because of the high SDF, but the amount of the payment is less as a result of default.
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Therefore the sign of B is ambiguous, depending on the parameter values. The overall effect
of the payment in such state on the government bill is ambiguous. As A is positive and B is

unclear, the overall effect of the disaster on the face return is unclear.

4.2 Expected return of the government one’s bill
4.2.1 Effect of the probability of disaster

The expected return of the government bill is less than the face return by the expected loss in

default. The solution for the expected return of the government bill is:

InER,, ~® -A-X

t+1

where
A=p(-)A-n)EB-D+ p(l—qmE(BB" -1+ p(1-n)EB" 1)
X = pg(1-n)E[(1-b)B—(1-b)]+ pgnE[(1-b)BB" — (1-b)]

(15)

where @, and A are the same as those in (14), meaning the effect of non-default related

factors on the expected return and the face return of the bill are the same. The expected return is

less than the face return by the expected loss in default, pgEb , because it is the weighted

average of the face return and the return in default. Unlike B, X is always positive, meaning
the disaster prospect will always bring down the expected return of the bill, in the presence of

default probability.
4.2.2 Effect of the conditional probability of a joint disaster

The expected return of the bill can also be expressed as the sum of the risk-free interest rate and

the default-risk premium. That is,
InE R/, ~InR}, + pgl(1—m)Eb(B -1)+nEb(BB" ~1)] (16)

The expression in the bracket is the risk premium for the default in the two possible states

where it can occur. With probability pg(1 —7) , default occurs in country one but country two is
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not in disaster simultaneously, where the SDF is . With probability pgn, the default occurs in

country one and country two is also in disaster, where the SDF is 88" . The former SDF is less

than the latter, because the marginal rate of substitution for output in country-one-only disaster
state is less than that in joint disaster state. Nevertheless, both SDFs are greater than one,

therefore the default premium is positive. As the default premium is positively related to the

probability of default (g ), the expected return of the bill is also positively related to the

probability of default. The more likely is the government to default, the higher is the expected

return of its bill.

In the extreme case where the probability of joint disaster is zero (77 = 0), the government bill

needs to offer a risk premium for the default in country-one-only disaster state. The expected

return of the bill is shown in (17).

InE R/, IR}, + pgEb(B ~1) 17)

In the other extreme case where the two countries always enter disaster state simultaneously

(n =1), the default risk premium needs to compensate for the default in joint disaster state. The

expected return is as follows.

InE, R/, ~InR/, + pgEb(BB" 1) (18)

The expected return in the second extreme case is higher. Since the payment loss in a joint
disaster state is more valuable than that in a country-one-only disaster state, the government

bill has to offer a higher expected return to compensate for it.

As the probability of joint disaster () increases, the chance of a default in the joint disaster

state rises and that in the single disaster state falls. The payoff pattern becomes less desirable
and the default risk premium needs to increase to compensate. That is, the default risk premium
is increasing in the probability of joint disaster. This point can be seen in the second term in the

bracket of (16). However, as the output of the two countries become more correlated, it is also
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more difficult to diversify the disaster risk and the aggregate risk increases. The higher is the
aggregate risk, the more desirable is asset in general, which implies a tendency of a decrease in
the government bill’s expected return. That is, the risk-free interest rate is decreasing in the

probability of joint disaster. This point can be seen in the first term in (16). In summary, the

overall effect of 77 on the expected return of the bill is ambiguous, depending on the parameter

values.

4.2.3 Effect of the output weight

The output weight affects both components of the expected return of the government bill. As
the output weight of country one increases from zero to half, the world becomes more
diversified and the aggregate risk in the economy decreases, which brings up the risk-free
interest rate. As it increases further from half to one, the world output becomes more focused
on country one and the aggregate risk increases, therefore decreasing the risk-free interest rate.
The relationship between the risk-free interest rate and the output weight is symmetric around a

half.

One the other hand, as the output weight of country one increases from zero to one, country one
becomes more dominant and its idiosyncratic risk becomes more correlated to the aggregate
risk. The diversification of the risk of government one’s bill turns more difficult and the
non-diversifiable part of the risk turns bigger, the expected return has to increase to compensate

for the additional idiosyncratic risk, therefore pushing up the default risk premium.

As the output weight of country one increases from zero to half, both the risk-free interest rate
and the default risk premium increase. Together they result in an increase in the expected return
of the government one’s bill. As the output weight of country one increases further from half to
one, the risk-free interest rate goes down and the default risk premium continues going up, the
sum of the two — the expected return of government one’s bill may go up or down, depending

on which force dominates.
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Figure 1 illustrates the expected return of the government one’s bill and its two components.
The blue curve symmetrical around 50 percentage point represents the risk-free interest rate.
The red curve monstonically increasing represents the default risk premium. The green curve

1 simply by adding the other two up. It is

a
rL.

he expected return of the bill is deriv
definitely increasing from 0 to 50 percentage point. But we can not be sure whether it decreases

eventually and if so at which point it starts decreasin

of the government bill in Barro’s model simply by setting m to unity, i.e. when country one

accounts for the whole world output. The expected return of the bill of Barro’s model is

egate risk is greater and the default premium is higher
because it is completely non-diversifiable. Therefore it is unclear whether the one-country

expected return of the bill is higher than its counterpart in the two-country model.

Finally, consider two extreme cases. When country one is extremely small (m = 0), the scope
for diversification is very big, therefore the default risk premium is very small. When country
one is extremely big (m = 1), the scope for diversification is very small, therefore the default

risk premium is very big. Since the aggregate risks in these two cases are the same, the former

a world with an extremely big and an extremely small country, the government bill of the big
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one definitely has a higher expected return than the small one because it bears more aggregate

risk.

“ Summary on the effect of various factors on the government bill

We assume the government of country one and two each issues a one-period bill with the
prospect of partial default in disaster state. The face return of such bill might be increasing or
decreasing in the probability of disaster. On the one hand, as disaster becomes more likely, the
government bill becomes more attractive since it promises payment in disaster state where the
output is valuable. One the other hand, it becomes less attractive since it may default in such

state.

While the overall effect of disaster on the face return is ambiguous, its effect on the expected
return of the bill is definitely negative, because the expected return of the bill is the weighted
average of the face return and the return in default. The effect of the probability of joint disaster
on the expected return is ambiguous, because of its opposite effect on the two components of
the expected return. On the one hand, as the two disaster shocks become more correlated, the
aggregate risk becomes bigger and the risk-free interest rate falls. On the other hand, as the
probability of joint disaster increases, the payoff pattern shifts towards the worst scenario
where default coincides with joint disaster, the default risk premium has to increase to
compensate. As the sum of the risk-free interest rate and default risk premium, the expected

return of the bill might be increasing or decreasing in the probability of joint disaster.

Compared with the one-country model, the expected return of the government bill of the
two-country model might be higher or lower. One the one hand, the risk-free interest rate is
higher in the two-country model because of the smaller aggregate risk. On the other hand, the
default risk premium is lower since part of the default risk can be diversified away, therefore a
smaller amount of default risk is compensated by an increase in the expected return. The

overall effect is determined by the dominant force.
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S. Price and Expected Return of the Equity

As far as equities are concerned, we assume the agents trade two classes of shares, which
entitle them to a dividend stream equal to the output of either country one or two’s tree. We
derive the solution for the price and expected return of these equities and investigate the

implication of potential disasters.
5.1. Equity Price

In this model, the tree asset represents the claim on the dividend stream equal to the output of a

country. Since the output is assumed to follow a random walk with drift process and

independent shocks, the price of the tree asset (£ ) is closely related to that of a simple

one-period equity claim ( £,) on the dividend of the next period.

The price of the equity claim on the next-period dividend is:

})ll = Et (Msl+1 : At+1) (19)

where M, is the SDF of the next-period consumption and 4,,, is the dividend in the next

period. Combining the SDF shown in equation (8) and the output shown in equation (5), we can
derive the solution for the price of this one-period equity claim and the price to earning ( P-E

ratio ) of the equity as follows®:

P, =~ A -expl-p+(1—6Om)y —0(1-m)y’ +%(l —6m)’ o* +%02 (1-m)2c"” —(1-m)0(l - m)oo k]

{prlE(1-b)BB" 11+ p(l-mEA-b)S~1]+p(-n)ES -1 +1}
(20)

and
P /4, =(D, _'(134)_l 21)

where

6 See the derivation in the appendix.
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.1 1 . .
O, = p-(1-6m)y +6(1—-m)y —5(1—6»1)%2 ——2—92(1—m)20' * + (1= 0m)8(1 - m)oo "k

@, = pinlEA-b)BB" ~11+(1-m[EA-b)B -1+ EB" -1]}

5.1.1 Effect of non-disaster related factors on the equity price

®, represents the component of the P-E ratio attributable to non-disaster-related factors. The

equity price is decreasing in time preference. The more impatient are the people (higher p ), the

less demand is for asset in general, the lower is the equity price. It is also decreasing in the

growth rate of country two. The higher is the steady-state growth rate of country two
(higher y"), the lower is the marginal rate of substitution for future consumption. The lower is

the stochastic discount factor, the lower is the equity price.

The effect of the steady-state growth rate of country one (¥) on the equity one’s price is

two-fold. On the one hand, the higher is the growth rate of country one, the more dividend is
available from tree one, the stronger is the demand and the higher is the price. On the other
hand, the higher is the growth rate of country one, the more world output is available in the
future, the lower is the marginal rate of substitution for future consumption, the lower is the

demand for asset in general and the lower is the price.

The overall effect depends on which force dominates. If 6m <1, the first force dominates, i.e.
the price of equity one is increasing in the growth rate of country one. Intuitively, when country
one is small enough, its growth rate does not affect the stochastic discount factor much, but it
does affect its own dividend stream significantly. An increase in the growth rate leads to a
higher payoff and a not much lower stochastic discount factor, therefore higher price. If 6n > 1,
the second force dominates, i.e. the price of equity one is decreasing in its own growth rate.
Intuitively, when country one is big enough, the impact of its growth rate on the stochastic
discount factor overwhelms that on its own future payoff. An increase in the growth rate leads

to a higher payoff and a much lower stochastic discount factor, therefore a decrease in price.
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The effect of the correlation coefficient between the ordinary shocks () is also mixed. On the
one hand, the more correlated are the two ordinary shocks, the more correlated is equity one’s
payoff to the world output, the worse is equity one as a diversification tool, the lower is the
price. On the other hand, the more correlated are they, the bigger is the aggregate risk, the more
demand for asset in general, implying a higher price. If6m <1, the price is decreasing in « .
Intuitively, when country one is small enough, it can hardly influence the stochastic discount
factor and the correlation between the two shocks is close to the correlation between the
payment of equity one and the world output. The more correlated are they, the bigger is the beta,
the higher is the expected return, the lower is the price. If 6m > 1, the price is increasing in « .
Intuitively, when country one is big enough, there is hardly the scope for diversification. The
more correlated is it with a small country, the riskier is the world, the more demand for asset in

general, the higher is the price.

5.1.2 Effect of disaster related factors on the equity price

@, represents the component of the equity price attributable to disaster-related factors.

@, = pinEA~b)AB" -1+ (1-mIEQ-B)B -1+ -n)ES -1}

In particular, the three terms in @, are the difference between the dividend payoff of the equity

in the joint-disaster, country-one-only-disaster and country-two-only-disaster state each valued
by the SDF and the payoff in non-disaster state. They represent the difference made by these

three types of disaster to the equity price.

In the joint-disaster state, the dividend payoff of equity one is lower than its counterpart in
non-disaster state by b as the result of output contraction when country one is in disaster. The
actual payoff is 1—b valued by the SDF of this state, f3 . Compared with the payoff in

non-disaster state, the amount is less but the value of each unit is bigger, therefore the total

effect of the joint disaster on the price is ambiguous.
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Similarly, in the country-one-only disaster state, the actual payoff is 1—5 valued by the SDF,

[, which is also ambiguous relative to the value of the dividend received in non-disaster state.

Compared with the payoff in the joint-disaster state, the payoff in the country-one-only disaster
state is less valuable because per unit value of the payment is smaller and the size of payment is

the same.

In the country-two-only disaster state, the actual payoff is valued by the SDF, 8. In this state,

there is no loss in the dividend payment but per unit value of the payment is higher due to the
global output contraction caused by the disaster in country two. As this state becomes more

likely, the price of equity one should increase.

As the probability of disaster ( p) increases, the probability of the above three states all

increase. Since the effect of two of them on the equity price is unclear, the effect of p on

equity price is ambiguous.
The effect of the conditional probability of joint disaster (77) on the price of equity one can be

derived from examining the derivative of @, to 7.

a::; = p{[EQ-b)BB" - (1-b)B+1- "1} = pE{[1-B)B-11(B" - 1)}

When 6m <1, the above term is negative, implying the equity price is decreasing in 7.
When 6m > 1, the above term is positive, implying the equity price is increasing in 7.

Not surprisingly, these conditions are the same as those for «, since both ¥ and 77 measure

the correlation between the shocks of country one and two. When country one is small enough,
a higher probability of joint disaster leads to a worse payoff prospect ( joint disaster is worse
than single disaster because of the high SDF ) and not much different SDF, therefore decreasing
the equity price. When it is big enough, a higher probability of the joint disaster results in a

slightly worse payoff prospect and a much higher SDF, therefore increasing the equity price.
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5.2 Expected return of equity

Since the shocks of different time periods are independent, the expected return of the
one-period equity claim is the same as that of the equity itself. The expected return of the
one-period equity claim is simply the expected dividend of the next period divided by its

current price.

InE,R

t+]

=mE,(*4/, )=InE 4, -InP, 22)
3}

The solution for the expected return of the equity and the one-period equity claim is:’
In(E, ) = In(E,R;;,) ~ @5 — @,
O, = p+6my +60(1-m)y" +6mo* —-%Hzmzo'2 - % 0*(1-m)*c"" +(1-6m)O(1-m)oc’ Kk
O, = p(ﬂ[E(l -b)pp" -(1-b)1+1-mEA-b)S-(1-b)]+(1A-n)ES - 1))

(23)

5.2.1 Effect of factors unrelated to disasters on the expected equity return

@, summarizes the effect of factors unrelated to disasters on the expected return of equity.

Since the expected return of equity is determined by the expected dividend and the current
price, the factors that do not affect the dividend have the opposite effect on the expected return
to that on the equity price. Specifically, the expected return of the equity is increasing in the
time preference and the steady-state growth rate of country two. It is increasing in the

correlation between the two ordinary shocks when 6m <1 and decreasing in it otherwise.

As shown in the previous section, the price of equity might be increasing or decreasing in its

own steady-state growth rate () depending on 6m . However, the expected return of equity

one is always increasing in it. As y increases, the expected dividend growth of equity one

7 See the derivation and the proof of the equivalence to the expected return of the tree asset in the appendix
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increases. This positive effect of ¥ on the expected dividend growth overwhelms that on the

price. Therefore, the equity return is increasing in y , whether the equity price is increasing or

decreasing in it.

5.2.2 Effect of factors related to disasters on the expected equity return
© = plalEQ-5)BB" — 1~b)]+ (A~ mIEQA- )~ (- )] + (A~ )ES' -1)

@, represents the component of the expected equity return attributable to disaster-related

factors. The three terms of @, correspond to the risk-adjusted payoff of equity one in the joint

disaster state, country-one-only disaster state and country-two-only disaster state respectively,

weighted by the probability.

In the former two states, the output of country one decreases, damaging the dividend prospect,
which implies a potential decrease in the demand for equity, thereby decreasing the price. In the
meantime, the payoffs in these states are more valuable than that in non-disaster states,
implying a potential increase in the demand and the price. Together the equity price might be
increasing or decreasing in the prospect of these two types of disaster. However, the disaster
has a direct negative influence on the expected dividend growth and this effect overwhelms the
ambiguous effect on the price. Therefore the total effect of joint and country-one-only disaster

on the equity price is negative.

The last term corresponds to the country-two-only disaster state. Since the dividend of equity
one does not drop in this state, it has no effect on the expected dividend growth of equity one,
but only the positive effect on the price. Since the SDF in this state is higher, i.e. the dividend
payoff is valued more, the prospect of this state makes the equity more attractive, therefore
increasing the price and decreasing the expected return. As the weighted average of the
risk-adjusted payoff in these three states, the expected equity return is decreasing in the

probability of a disaster.
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The conditional probability of joint disaster has no effect on the expected dividend growth of
equity one, therefore its effect on the expected equity return is exactly opposite to that on the
equity price. That is, if m <1 the expected return is increasing in the conditional probability

of joint disaster and it is decreasing in it otherwise.

The expected return can also be written as the sum of risk-free interest rate and the ‘true’ risk

premium®.
In(E,R;,,) = In RS + Gno? +0(1—m)oo’ k + plnEKBE" —1)+(1-n)ENB~1))
(24)

Equation (24) tells us that, in addition to the standard component attributable to variance and
covariance between ordinary shocks to output growth, the excess return of equity over risk-free
interest rate is the risk-adjusted value of output loss in the two states where country one is in
disaster and country two either is or is not in disaster, weighted by the respective probabilities.
In other words, the expected equity return is the sum of the risk-free interest rate, the ordinary

risk premium and the disaster risk premium.

While the disaster prospect has a negative effect on the risk-free interest rate, it has a positive
effect on the disaster risk premium. The overall effect on the expected equity return is negative

since the former dominates the latter.

As the probability of joint disaster increases, the pattern of the dividend payment turns worse
because the loss in a joint-disaster state is more valuable than that in single-disaster state. This
is reflected in the positive relationship between the disaster risk premium and the probability of
joint disaster. However, the prospect of joint disaster state also increases the aggregate risk and
decreases the risk-free interest rate, therefore the overall effect on the expected equity return is
ambiguous. Examining the derivative that, if n <1, the increase in the excess return
overwhelms the decrease in the risk-free interest rate and the overall effect is positive.

Otherwise, the expected equity return is decreasing in the probability of joint disaster.

¥ The risk premium we can measure is the spread between equity return and the government bill return. Since the latter is
subject to default risk, the spread does not reflect the true risk premium of the equity.
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It is worth noting that the terms in the bracket of equation (24) are the same as those of equation

(16). It implies that the disaster risk premium and the default risk premium only differ by the

conditional probability of default, g . This results from the assumption on the equality between

percentage loss in default and the scale of output contraction in disaster.

5.2.3 Effect of output weight on the expected equity return

In(E,R5,) =In R + 6no” +0(1~m)oo’  + plnEK(BE" ~1)+(1~m)EB(S-1)
(24)

The expected return of equity is the sum of the risk-free interest rate, ordinary risk premium
and the disaster risk premium. The risk-free interest rate is increasing in the output weight of
country one when it is below 50 percent and decreasing in it otherwise, because the aggregate
risk is at the minimum level when the two countries are of equal size. The disaster risk
premium is increasing in the output weight of country one because it becomes increasingly
difficult to diversify the disaster risk as the share of country one’s output in the world turns
bigger. The relationship between the ordinary risk premium shown below and the output

weight is more complicated.
ordinary risk premium = 6mo* +6(1 - m)oo K (25)

The ordinary risk premium is the reward for the non-diversifiable idiosyncratic ordinary risk.
When country one is extremely small (m =~ 0), it reduces to foc k , which is equivalent to the

risk premium in a standard CAPM. In this case, country two accounts for the whole world
output and underlies the SDF. The risk premium of equity one is proportional to the correlation

between the output of country one and the output of the world (same as country two’s output).

When country one is extremely big (m ~1), it reduces to 8o’ , which is equivalent to the risk
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premium in a standard one-country Lucas tree model, such as Mehra and Prescott (1985). In
this case, country cne accounts for the whole world output and its idiosyncratic risk is also the
aggregate risk, whose reward is increasing in the size of volatility and the degree of risk

av

l"ﬂ
m

()

rsion. In the general case, m lies

the weighted average of the two extremes. The relationship between m and the ordinary risk

0.G6
0.c4

0.02

S — - a —

1 S5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

=i
w
X'
-v«
fD
0
S
[ad
o
<
n
w
-
=
]
P
n
e
n
[
w
~
0
=
=
x
T
=
o
3
c
3

The relationship between the cutput weight and the expected equity return is presented in

e
aQ
£
o
[\
—!
=
(¢"]
(@73
=
o
5
a
—
a
e
]
a
17
(]
=
n
~—t
=
a
—
i
m “
A
=0
()
(¢}
=
=
—+
(¢']
—
O
W
—+
v-e
—
-+
v
7}
73}
g
o
—
|
o
)
=5
=
2
"i
r_L
wn
&

represents the ordinary risk premium in the case where o x is smaller than It is
monotonically increasing as well. The green line represents the expected equity return derived

from adding the other three up. It is increasing in the weight of country one before 50 percent
point. Its shape after 50 percent point is unclear.” The expected equity return in Barro’s model
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® The non-decreasing curve representing the expected equity return in Figure 2 is drawn for illustration purpose. It only
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the comparison between its ordinary risk premium and the two-country counterpart is unclear,

we can not be sure how it compares with the expected return in the two-country model.

< Summary on the effect of various factors on the equity price and the expected

return of equity

We assume there are two equities each representing the claim on the dividend of the Lucas tree
asset with the output of country one or two. The disaster has mixed effect on the equity price.
On the one hand, it increases the aggregate risk and strengthens the demand for asset in general,
therefore potentially suggesting higher price. On the other hand, it damages the dividend

prospect of the equity and makes equity less desirable. The overall effect is unclear.

The effect of disaster on the expected equity return is negative. As disaster scenario becomes
more likely, the expected dividend growth falls, which overwhelms its ambiguous effect on the
equity price. The effect of the correlation between the two outputs in disaster states has an
ambiguous effect on the expected return of equity. On the one hand, as the disaster shocks
become more correlated, the aggregate risk increases, implying a decrease in the risk-free
interest rate. On the other hand, an increase in the conditional probability of joint disaster

makes the dividend payment less desirable, requiring a higher disaster risk premium.

The expected return of equity one is the sum of three components. The risk-free interest rate is
increasing in the output weight of country one when it lies between 0 and 50 percent point and
decreasing in it otherwise. The ordinary risk premium is a weighted average of two extreme
values. The relationship between it and the output weight depends on the size ordinary risk and
the correlation between the two ordinary risks. The disaster risk premium is increasing in the
weight of country one. As the sum of the three components, the expected return of equity might
be increasing or decreasing in the output weight. The expected return of equity in Barro’s one

country model might be higher or lower than its two-country counterpart.
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6. Equity Risk Premium

The equity risk premium is defined as the difference between the expected return on the risky
equity and that on the safe government bill. In practice, it has two possible definitions. One is
the observable gap between the return on government debt and the return on equity. The other
is the unobservable gap between the true risk-free interest rate and the equity return. Since our
goal is to explain the equity risk premium reflected in the data, the latter definition is adopted.
It is clearly driven by two sorts of factors: the ordinary shocks, which impinges solely on the
expected return of equity, and disaster shocks, which likewise affect equity and leave
government bill untouched, unless there is a default, in which case bills and equities are

affected equally.

Combining equation (16) and (24), we can derive the solution for the equity risk premium.

equityrisk premium = In(E,R;,)) —In(E, R,’:l)
= (mo? +6(1-myoo’x)+ pl-q)nEK BB ~1)+(1-mEKB-1))

(26)

The terms in the first bracket are the reward for bearing the ordinary risks. Since the
government bill only defaults when there is a disaster and the disaster shock is independent of
the ordinary shock, the government bill bears no ordinary risk. This part of the equity risk

premium is solely the result of carrying the ordinary risk of the equity.

When the weight of country one’s output is close to zero, the output of country two is almost
the world output. The ordinary risk of equity one is rewarded for the correlation to the ordinary
shock of country two. The more correlated are they, the worse is equity one as a diversification

tool, the higher is its expected return and the equity risk premium. The ordinary equity risk
premium in this case is 8o k. When country one accounts for the whole world output, it is
impossible to diversify any risk and its ordinary risk is fully compensated by the premium of

6o’ . In the general case, this part of the equity premium is the weighted average of the two
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extreme values.

The terms in the second bracket are the reward for carrying the disaster risks. It is the expected
value of the loss valued by SDF in the state where there is disaster but no default. Clearly the
loss in the state where there is a disaster and also a default is rewarded equally in the return on

bills and equities.

The disaster risk premium is increasing in the probability of disaster and the conditional
probability of joint disaster and decreasing in the probability of default. The more likely is a
disaster, the more loss is expected, the greater the risk premium. The more likely is the joint
disaster, the worse is the payoff prospect, the higher is the risk premium. The more likely is a
default, the higher is the expected return on the bills. But the default prospect has no effect on
the expected return of equity. Therefore, the risk premium is decreasing in the probability of

default.

The other factors including the steady-state growth rate of country one and two and time
preference have the same effect on the expected return on the bills and equities, therefore no

impact on the risk premium.

The part of the equity risk premium associated with disasters is the difference between the
disaster risk premium and the default premium of the equity. It is proportional to the other two
premiums, therefore increasing in the output weight of country one. As the weight of country
one’s output increases, it becomes more difficult to diversify the disaster risk of the equities
and the default risk of the bills, both expected returns increase. Since the disaster is more likely
to happen than default, the disaster risk is greater than the default risk and more difficult to
diversify. As a result, the expected return of equity increases more than the expected return of
the bill, i.e. the equity risk premium widens. Compared with Barro’s model, where the output
weight of country one is at the maximum level, the two-country model suggests a lower equity

risk premium.
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% The implications of two-country rare disaster models on the expected asset

return and equity risk premium

There are several interesting implications of the analysis of the two-country rare disaster model

for the potential disasters on asset returns and equity risk premium.

First, the probability of disaster is inversely related to the expected return of both equity and

government bill.

As a disaster scenario becomes more likely an inter-temporal utility maximizer would demand
more assets in general to transfer more wealth to future disaster states. This tendency would
increase the attraction of equity and government bill, i.e. the equity price would tend to rise and
the face return of government bill would tend to fall in response. But since the riskiness of both
equity and government bills are increasing in the probability of a disaster, their attraction to a
risk-averse individual also tends to decrease. The overall effect of the probability of a disaster
on the attraction of assets is ambiguous, i.e. we can not be sure about the effect of the
probability of a disaster on the price of equity and the face return of government bills. Since the
expected asset returns are positively related to their payoff prospect and negatively related to
their attraction and the former becomes worse as a result of an increased disaster probability,

the overall effect on expected asset return is negative.
Second, the probability of disaster is positively related to the equity risk premium.

As a disaster scenario becomes more likely, the amount of aggregate risk increases. A
risk-averse individual would demand higher expected return for bearing risk. Other things
being equal, relatively risky assets become less attractive and have to offer higher premium
over relatively safe assets. Although government bills are subject to default risk, they are still
safer than equity because their payoff would not contract in a disaster in which the government

does not default. As a result, the equity risk premium is increasing in the probability of disaster.
Third, the probability of a joint disaster is positively related to the equity risk premium.

As a joint disaster becomes more likely, the two-country world becomes more risky, i.e. the

aggregate risk gets bigger. Other things being equal, the relatively more risky equity has to
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offer a higher premium over relatively safe government bills.

Fourth, the probability of a default conditioned on a disaster is positively related to the

expected return of government bills.

As default becomes more likely, government bills become more risky and have to offer a higher
expected return. In the extreme case where the probability of default is zero, government bills

are risk-free and their expected return reaches the minimum.

Fifth, the bigger the difference in size between two countries the lower the risk free interest rate
is.
Other things being equal, the closer two countries are in size, the smaller is the aggregate risk

and risk free assets are less attractive. And in a more polarized world the aggregate risk is

bigger and the risk-free interest rate is lower.
Sixth, the size of a country is positively related to its equity risk premium.

The more dominant is a country, the more difficult it is to diversify the risk of its assets and the
higher is the expected asset return. Between equity and government bills, the riskiness of the
former increases faster than the latter as a country becomes increasingly dominant. As a result,
the gap between two expected returns (equity risk premium) is increasing in the size of the

country.
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» Implications of rare disasters on hedging

The potential of rare disasters has an important role to play in hedging because the aim of
hedging is to reduce or eliminate risk. Since stock prices fall dramatically in a disaster state,
hedgers are particularly interested in preserving their wealth. In Chapters 2 and 3, we employed
the standard VECM for conditional mean and GARCH for conditional covariance matrix to
model the returns in spot and futures. Since this type of model cannot accommodate extreme
values, we implicitly assumed the disaster state away. An improvement on empirical front
would be to model the returns in normal and disaster states separately and assign a probability
to each state. Specifically, a regime-switching model is probably more appropriate to
accommodate the disaster scenario. The hedge ratios generated from this model would do

particularly well in a disaster state.

On the theoretical front, potential disasters affect hedging in two ways. First, if disasters cannot
be regarded as trivial then we cannot claim the return of futures follows a martingale process.
Without the martingale assumption the minimum-variance hedge ratio would be different from
the optimal hedge ratio that corresponds to the highest mean-variance utility value. If the return
of futures is unpredictable in normal states, then the unconditional return of the futures would
be negative and the optimal hedge ratio would be greater than the minimum-variance hedge
ratio. Intuitively, if there is a considerable probability of disaster then hedgers would tend to
overhedge to achieve positive expected return. Second, the correlation coefficient between spot
and futures in disaster states is different from that in normal states. Since the
minimum-variance hedge ratio is positively related to the unconditional correlation coefficient
between spot and futures, it would be higher or lower than that computed from returns in
normal states only depending on whether the correlation coefficient is bigger in disaster states

than normal states.
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7. Leverage

So far, we have assumed there are only two types of assets. One is the default-possible
government bill and the other is the equity share representing the claim to the entire
endowment. In this case, equity payment and consumption are equal in all periods. We have
shown that risk premium is high when the probability of disaster and default are taken into
consideration. However, if the ratio of consumption to equity payment is pro-cyclical, i.e.
equity payment is particularly low in disasters, and then the risk premium will become even
higher. One way to generate the pro-cyclical equity payment to consumption is to introduce

leverage, i.e. to assume the ownership of the tree includes both fixed claims and equities.

As in Barro (2006), we assume there is a one-period equity claim that represents a claim on the
entire endowment of a country. Also assume there is a one-period private bond, whose
characteristics are the same as the government bill of the corresponding country. The private

bond promises the same rate of return as the govemxhent bill. In non-disaster state, the actual
payment is the same as promised. In disaster state, with probability of ¢, only part of the face
return is realized and with probability 1 — g , the face return is realized. Same as the government

bill, the default of private bond is carried out through unanticipated inflation. Therefore, the
issuers of the private bonds can avoid bankruptcy despite of defaulting on its bond. Same as the
government bill, the default size of the private bond is the same as the endowment contraction.

The proceeds from default are returned to representative agents through lump-sum transfer.
With the equity and the private bond, the ownership structure is as follows.

In the period ¢, the tree owner issues an equity claim on the entire output of country one in the

next period, 4,,,, at the price P,. Then the owner issues S, unit of one-period private bond

and gives the proceeds to the equity holder. The net price paid for the equity is P, — f,. The

debt-to-equity ratio is:

__B
l_R—ﬂ (27)
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In the period ¢ +1, the output is 4,,, and the promised payment to the private bondholders is
B, - R’ . In non-disaster state, the actual payment to the bond holders is equal to the promised.

In disaster state, the actual payment is reduced to(1-5)8, - R’. In any case, the remaining

proceeds go to the equity holders.

By the theory of Modigliani and Miller (M&M), the value of equity is not affected by the
capital structure of the firm. Therefore the price of equity one is still given by equation (21).
However, leverage does affect the expected return of equity. The rate of return of levered equity

is:

e_lev At+ _IBRIL
RS =ﬁ¢‘- (28)

The solution for the expected return of levered equity is:

InE R =(1+A)InER;,—AInER’, (29)

t+]

The expected return of equity with leverage is the weighted average of the expected return of

equity without leverage (24) and the expected return of the government bill (16) where the

former weights (1+ 1) and the latter weights (-A4).

Combining the levered expected return of equity with the expected return of government bill,

we can derive the solution for the levered risk premium.
InRP™ =(1+1)-InRP, (30)

The levered risk premium is just the unlevered risk premium multiplied by the leverage ratio

(the ratio of asset to equity ). Similar to the unlevered risk premium, the levered risk premium

is increasing in the probability of disaster ( p ) and the conditional probability of joint disaster

(77) and decreasing in the conditional probability of default (g).
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8. Calibration

By definition disaster is an event in which output contracts drastically in a short period of time.
It could reflect an economic event (Great Depression, financial crisis), wartime destruction,
natural disaster and epidemic disease. The data in these events are hard to find and to access,
therefore we rely as far as possible on the parameter values used in Barro (2006) based on the
20" century history of economic disasters covering the two world wars, the Great Depression

and various financial crises.

In the model, disaster corresponds to GDP contraction in a small unit of time. However, in
reality, it usually takes several years for a disaster to complete. In the process, annual change in
GDP is negative for several consecutive periods. This raises the question of what we should use
to measure the size of disaster — the annual decrease or the accumulative decrease of GDP. As it
is realistic to consider the size of disaster is more important than the duration, we use the
cumulative decrease of GDP to measure the size of diéaster, which is also what Barro (2006)
used. People are assumed to be aware of the probability distribution of the ultimate output

contraction in disaster, but not the duration or the actual outcome of the disaster.

In our two-country model, we make the same assumptions on the parameter values as Barro on
the output process, degree of risk aversion, time preference, disaster size and the probability of

default and disaster. We also introduce three critical additional parameters — the correlation

coefficient between ordinary shocks, x, the conditional probability of joint disaster, 77, and

the composition of current world output, m . Since x has little impact on the expected returns
and equity risk premium, it is fixed at 0.5. In the case of the other two parameters, we examine
a range of values. Before analyzing the calibration results, it is worth noting the theoretical

results on the importance of parameters.

As far as m is concerned, its impact on the aggregate risk is symmetrical around 50 percent
point. When it is at 50 percent, the benefit of diversification is fully achieved, the aggregate
risk is at the minimum level and the risk-free interest rate is at the maximum level. Between 0

and 50 percent, the higher is m , the greater is the benefit of diversification and the lower is the

162



aggregate risk, therefore the risk-free interest is increasing in m . Between 50 and 100 percent,
the higher is m, the less is the benefit of diversification and the higher is the aggregate risk,
therefore the risk-free interest rate is monotonically decreasing in m . This suggests the
expected return of bills should be hump-shaped. The default and disaster risk premiums are
increasing in m . The bigger is country one, the more difficult it is to diversify its risk,
including both the default risk and the disaster risk, the higher are the premiums. This suggests
the expected return of bills and equities should be higher when m is one than when m is zero.
The equity risk premium is also increasing in m . As m rises, the diversification of the
idiosyncratic risk becomes more difficult, especially for the disaster risk associated with
equities because it is more tied up with the market price of risk, therefore the expected return of
equities has to increase more than that of bills, resulting in an increase in the equity risk

premium. This suggests the equity risk premium is monotonically increasing in m .

The effect of 7 on the expected return of equities and bills are similar. On the one hand, the

higher is 77, the greater is the aggregate risk, implying a lower risk-free interest rate. It is worth

noting that this effect impinges equally on both the expected return of equities and bills,

therefore 7 has no effect on the equity risk premium. One the other hand, the higher is 7, the

more likely is the joint disaster scenario, the worse is the payoff pattern of equities and bills, the
higher is the disaster and default risk premium. Since the disaster probability is bigger than the

default probability, the equities are hit harder than the bills when the payoff pattern turns bad,

therefore the equity premium is increasing in 7. When m <67, the expected return on

equities is increasing in 7 but its implication on the bills is unclear.

The calibration results are summarized in Table 1 and 2 and shown in more detail in Figure 3 to
7. In these figures, we plot the expected return of equities and bills and the equity risk premium
against the weight of country one’s output ranging from 0 to 100 percent. The value of the
expected return of equities and bills and the equity risk premium of Barro’s model correspond
to the right-end point of each curve. The parameter values are taken from Barro’s baseline

model. That is, we set the steady-state growth rate of both countries () at 0.025, the standard
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deviation of ordinary shock (o) at 0.02, the time preference ( o) at 0.03, the degree of risk

aversion ( #) at 4 and the debt-to-equity ratio (4 ) at 0.5.

TABLE 1

Expected return of equity (ERe}; Expected return of government bill (ERb); Equity premium {(EPrem)

Assumptions: # =3 o=002: =003 y=0035 p=ud|T g=04

w w=01 w=05 w= (9 1.0
7! 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 (Barro
E{Re) 4.52% 5.49% 6.46% 8.72% 8.52% 9.32% 9. 64% 9.49% 9.33% 8 96%
E(RDBI 4.16% 4.09% 4.02% 8.36% 7.45% 6.54% 5.65% 5.23% 4.81% 3.59%
[E(Prem) 0.36% 1.40% 2.44% 1.36% 207% 2.78% 4.00% 4.26% 4.52% 5.38%

Figure 3 (ita = 0.1)

Do T

expected bift retum = eQuity premium (kv |

expected equity return (ev)
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particular, the expected return of bills has a hump shape and the correspondin

is lower when country one is extremely small than when it is extremely big. The expected
return of bills is far too high (more than 8 percent) when the two countries are of similar size.
The equity risk premium is monotonically increasing in the output weight of country one, but

the value (less than 2 percent) is too low compared with the empirical data when the two

risk premium to between 2 and 3



TABLE 2
Expected return of equity (ERs): Expected retum of governiment bill (ERb): Equity premium (EPram)
Assumptions: W =0 5. 7 =05 =003 p=003 »=0023
£ 4 5 4 4
P 9.017 ¢.0%7 8.03 0.017
gl 0.4 0.4 0.4 .05
E{Re} 9.52% 2.81% 6.82% 9.87%
E[RB) 7.45% 6.08% 3.39% 5.76%
EiPremi) 2.07% 3.73% 2.42% 3.10%
| Figure & (theta=5)

1 € 11 1¢ 3 28 i & di 456 T 61 & 71 7% 81 = 12 S
m
—— axnacted souty rensn (e = expecied BE rebum ———oulty Dremium Gev) |

Figure 6 shows raising the degree of risk aversion from 4 to 5 does increase the equity risk

premium to around 4 percent when the two countries are of similar size. But it also corresponds

=
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to far too high expected return of equities (around 10 percent) and bills (more than 5 percent).

Figure 7 shows decreasing the conditional probability of default from 0.4 to 0.05 does increase
the equity risk premium to around 3 percent when the two countries are of similar size. But
again the expected returns are far too high. The expected return of equities and bills are around

10 percent and 6 percent levels respectively.'®

9. Conclusion

Starting from Barro (2006) which claims to solve the equity premium puzzle, we have built a
model specifically modelling disaster scenarios in a two country setting. Although the model
leads to qualitatively plausible predictions of the expected return of equities and bills, it fails to
produce calibration results in line with the observed data, despite a wide range of combinations
of parameter values being examined. We conclude that the puzzle remains unsolved, at least by
the rare disaster explanation. Moreover, we conjecture that generalizing the model to the
N-country setting, it would explain even less equity premium because the diversification
opportunity would be more abundant. The implication of our model is that the high equity risk
premium observed in the last two hundred years remains unexplainable and therefore investors
should not form their expectations of future equity returns simply on the basis of historical

performances.

A number of directions can be followed in future research. In this model, we assumed the size
of default is equal to that of output contraction in disaster. This assumption is to make the
model tractable but lacks theoretical or empirical support. It would be interesting to see what
difference it would bring if it is relaxed. We also made the restrictive assumption on the
symmetry of the probability matrix. In particular, we assumed the probability of joint disaster is
the same either conditioned on the disaster in country one or country two. However, it is more
realistic for countries with different sizes to have asymmetric probability matrix. It would be

interesting to replace it in the future research.

19 More combinations of parameter values of p and q are tried, but none results in values in accordance to the data.
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Appendix

Al: Derivation of the risk-free interest rate in equation (11).

EtMst+l

~ E{exp[-p —Omg,,, —0(1-m)g,,,1}
= E{exp[_p - 9”’(7 + Un + Vin ) - 0(1 - m)(}/. + u:+l + v:+1 )]}

=exp[-p—Omy —0(1—m)y" ]-exp[%(oma)2 +%(9(1 -m)o ' )? +6*m(l- m)koo']
-E, {exp[-6mv,,, —6(1-m)v,,1}
=exp[-p—6bmy —0(1—m)y" + %(0/710‘)2 + %(9(1 —m)a’ ) +6*m(l— m)koo” ]

e -DA-n+e”?+(1-e?)A1-m[EQA-b)" + EQ-b")*"™]
+(1—ePE1-b)"* - E1-b")?""}

~ exp[-p—Omy —0(1—m)y” + %(6‘1}10‘)2 + %(0(1 —-m)a’ )’ +60*m(l - m)xoo ]

{1+ p(n=2)+ p(A—[EA=b)"" + EQ-b)*"" 1+ pnE(1-b)™* - EQ1-b)"""™}

InR™ % = _InEM,,
< p+ Oy +0(-m)y” == (Bmo)’ —— (61 -m)o")* ~6'm(l-m)xoo]

~In{l+ p(7—2)+ p(—MIEA-b)™ + EA—b") ™1+ prEQ—b)™ - E(1~b") """}
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A2: Derivation of the face rate of return of government one’s bill in equation (14).

1= EI (Msr+1 : Rr+1)
1~ E,{exp[-p —Omg,,, —6(1 - m)g,ll 'R}
= Er {exp[—p—Hmy - 0(1 - m)}" - U 9(1 m)ur+1 Vin 0(1 m)vt+l] Rr+l}
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A3: Derivation of the expected rate of return of government one’s bill in equation (15).
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A4: Derivation of the price of equity one in equation (20).
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A5: Derivation of the expected return of equity one in equation (22).
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Chapter 5

Conclusion

In this thesis, we look at three problems related to the financial risk of stock markets. In
particular, the effectiveness of direct and cross hedging using index futures is examined
empirically. A theoretical model explaining the equity premium puzzle by Barro (2006) is

extended to a two-country setting. The findings are as follows.

We examine a variety of hedging strategies supported by econometric models from simple
OLS to complicated VECM with TGARCH error and STVECM with GARCH error using both
the within-sample and out-of-sample data. We find the sophisticated models fit the data well
but do not produce consistently and significantly better performance over unity and simple
OLS hedge. The usefulness of the sophisticated models has to be judged on the case-by-case
basis. It demonstrates the typical difficulty in forecasting where complicated models fit the
within-sample data well but perform badly out-of-sample. In future research, we may explicitly
model the transaction cost to penalize the volatile hedge ratios or look at other indicator other

than Ederington measurement to assess the hedging effectiveness.

We investigated the effectiveness of cross hedging the portfolios each benchmarked to one of
the seventeen MSCI indices using the related index futures. We find that most MSCI indices
are not cointegrated with the most frequently traded index futures of the same country, but are
cointegrated with the multiple index futures. A variety of combinations of hedging instruments
and econometric models are tried for each country. For countries whose returns are volatile in
both within- and out-of-sample period, the sophisticated models can improve the hedging
effectiveness significantly; for countries with moderate volatility, the improvement is small
énd consistent; for countries with stable return, the improvement is tiny; for countries with
completely different volatility across two sample periods, no strategy performs better than

unity or simple OLS consistently.
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Our extension of Barro’s rare disaster model leads to intuitive predictions of the expected
return of equities and bills but fails to explain the scale of the observed equity risk premium,
despite the fact that a large range of parameter values has been examined. The conclusion is
that the rare disaster explanation cannot resolve the equity risk premium puzzle when extended
to a more realistic setting. In future research, we may relax several constraints on the model
such as the symmetric probability matrix and the assumption on the same size of the loss in

disaster and default.
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