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SUMMARY

Trace amines (TAs), including p-phenylethylamine (p-PEA), tyramine and 

octopamine are structurally and functionally related to biogenic amines such as 

catecholamines and serotonin and to amphetamines. They are present in trace levels 

in the nervous system and in chocolate, cheese and wine. TAs are usually regarded as 

indirectly-acting sympathomimetic amines (ISAs) exerting vasoconstriction via ai- 

adrenoceptors. However, they also stimulate trace amine-associated receptors 

(TAARs), of which only TAAR1 and TAAR4 are sensitive to TAs. The aim of the 

thesis was to examine whether vasoconstriction by TAs in blood vessels is via ISA or 

TA mechanisms.

TAs caused concentration-related and endothelium-independent contractions in rat 

isolated aortic rings in the presence of prazosin (ai-adrenoceptor antagonist), cocaine 

(catecholamine uptake inhibitor), ICI-118,551 (P2-adrenoceptor antagonist) and 

pargyline (MAO A and B inhibitor). The persistent and inhibitor-independent 

contractions suggest that mechanisms other than ISA and a- and p- adrenoceptor 

stimulation are involved, possibly TAARs. Differences in the profile of 

vasoconstrictor activities to a range of TAs were identified in rat and guinea-pig 

aorta, suggesting species variations in receptor distribution. Tyramine was identified 

as a partial agonist in isolated rat aorta and an antagonist of other TAs in this tissue. 

Finally, the presence of TAAR1 mRNA and protein was demonstrated for the first 

time in rat aorta by RT-PCR and Western blotting, respectively.

Most information about TAs relates to studies which have been done on the brain, or 

cloned receptors expressed in transfected cells. This study of different TAs and 

structurally related derivatives in aortic tissues has expanded the knowledge of the 

vasoconstrictor effects of TAs in isolated tissues. The molecular biological 

confirmation of the presence of TAAR1 and the pharmacological findings regarding 

the effects of TAs in rat aortic rings might explain their hypertensive effects and their 

role in coronary heart disease and migraine headache.
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Chapter I 

General Introduction

1.1 Catecholamines

The catecholamines, noradrenaline, dopamine and adrenaline are chemical 

compounds derived from the amino acid tyrosine. Most of the catecholamines are 

classical biogenic and endogenous amines and are 50% bound to plasma proteins.

OH

Dopamine Noradrenaline

OH

Adrenaline

H
N

Figure 1.1: The catecholamines dopamine, noradrenaline and adrenaline are derived 
from the amino acid tyrosine.

1.1.1 Synthesis, release and function of catecholamines

The catecholamines, dopamine, noradrenaline and adrenaline, are synthesized from 

tyrosine in selected central and peripheral neurons and in the adrenal medulla by the 

sequential action of enzymes in a synthetic pathway (Rios et al.t 1999). The synthetic 

pathway was first postulated in 1939 by Blaschko (1939) and further developed by 

Nagatsu (1964; 1991). Tyrosine hydroxylase catalyzes the conversion of tyrosine to
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L-dihydroxyphenylalanine (L-Dopa), a substrate for Dopa decarboxylase which 

converts L-Dopa to dopamine (Rios et a l, 1999) (Figure 1.2). In noradrenergic 

neurons in the sympathetic nervous system, in the brainstem, and in adrenal 

chromaffin cells, dopamine is converted to noradrenaline by dopamine P- 

hydroxylase (Joh and Hwang, 1987). Noradrenaline is converted to adrenaline by 

phenylethanolamine-N-methyl transferase present in adrenergic cells in the adrenal 

medulla and in a few neuronal groups in the lower brainstem (Rios et al., 1999) 

(Figure 1.2).

Catecholamines are hormones that are released by the adrenal glands in situations of 

physiological stress or low blood sugar levels. They are produced mainly by the 

chromaffin cells of the adrenal medulla and the postganglionic fibers of the 

sympathetic nervous system (Goodman et al., 1996). Dopamine is largely produced 

in neuronal cell bodies in two areas of the brainstem, the substantia nigra and the 

ventral tegmental area. Noradrenaline and dopamine act as neurotransmitters in the 

central nervous system and as hormones in the blood circulation. Noradrenaline is 

also a neurotransmitter of the peripheral sympathetic nervous system. 

Catecholamines cause general physiological changes that prepare the body for 

physical activity (fight-or-flight response). Some typical effects are increases in heart 

rate, blood pressure, blood glucose levels. The general activation of the sympathetic 

nervous system results in noradrenaline and adrenaline release which stimulate a  and 

p-adrenoceptors in the membrane of postsynaptic effects cells to cause these 

physiological responses. An important mechanism for the termination of action of 

noradrenaline in the junctional space is active re-uptake into the nerve (Uptake 1) and 

storage vesicles. Noradrenaline can also activate pre-synaptic ct2-adrenoceptors and 

enters postsynaptic effector cells via Uptake2 to modulate the release of 

neurotransmitter (Figure 1.3) (Goodman et al., 1996). Adrenaline is a hormone when 

carried in the blood and a neurotransmitter when it is released across a neuronal 

synapse. When adrenaline is secreted into the bloodstream, it rapidly prepares the 

body for action in emergency situations. The hormone boosts the supply of oxygen 

and glucose to the brain and muscles, while suppressing other non-emergency bodily 

processes. Adrenaline increases heart rate and stroke volume, dilates the pupils and 

constricts aterioles in the skin. Furthermore, adrenaline dilates aterioles in skeletal 

muscles.
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o h  L-Tyrosine

O2 Tetrahydro- \  
biopterin

H2O Dihydro- 
biopterin

Tyrosine Hydroxylase

OH L-Dihydroxyphenylaianine 
(L-Dopa)

N

co2
Dopa Decarboxylase

HO,

DopamineY Y l
^  n h 2

HO 2

O2 Ascorbic acid

Dopamine p-Hydroxyiase
H2O Dehydro- J 
ascorbic acid

Noradrenaline

S-adenosyl- \  
methionine ’

Homocysteine

Phenylethanolamine N-Methyltransferase

HO

HO
hn

Adrenaline

Figure 1.2:
The synthetic pathway of the catecholamines, including dopamine, noradrenaline and adrenaline 
from tyrosine with the sequentional action of different enzymes.
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TyrosinePre-synaptic-
Vessel NA Synthesis 

*
NAMAOM etabolite*

NA ptake 1

NA

Post-synaptic
Cell Uptake 2

NA
Vasodilatation Vasoconstriction

F ig u re  1.3: The synthesis, action and fate o f  noradrenaline at sym pathetic  

neuroeffector junctions. The transmitter noradrenaline activates a -  and p- 

adrenoceptors (A ) in the m em brane o f  post-synaptic effector ce lls . Noradrenaline  

also enters into post-synaptic effector ce lls  (U ptake2) (B ). A important m echanism  

for the termination o f  action o f  noradrenaline in the junctional space is active re

uptake into the nerve (Uptake 1) (C ) (Iversen, 1975) and storage vesic les. 

Noradrenaline can also activate pre-synaptic a 2-adrenoceptors (D ). Adapted from 

Goodman et al., (1990).
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1.2 Trace Amines (TAs)

Another class of endogenous amine compounds, called trace amines (TAs), includes 

p-phenylethylamine (p-PEA), tyramine and octopamine (see Chapter 5). Their 

actions significantly overlap with the classical biogenic amines (Borowsky et al., 

2001; Bunzow et al., 2001; Lindemann et al., 2005; Lewin, 2006). These 

endogenous amines are found in many different organisms, such as mammals, plants 

and bacteria. They are present in trace levels (nanomolar) in the mammalian nervous 

system (neuronal synapses) (Usidin and Sandler, 1984; Zucchi et al., 2006) and in 

peripheral tissues (0.1-100ng/g tissue) (Burchett and Hicks, 2006) and are also found 

in substances such as chocolate, cheese and wine (Skerritt et al., 2000). 

Hypertension, hyperactivity disorder, coronary heart disease and migraine headache 

have been suggested to be caused by a dysfunction of TAs (Premont et a l, 2001; 

Branchek and Blackburn, 2003; Lindemann et al., 2005). TAs are structurally and 

functionally related to amphetamines and biogenic amine neurotransmitters (Bunzow 

et a l, 2001; Lindemann et al., 2005) (Table 1.1). The chemical properties and 

biosynthesis of the TAs overlap with the classical amines (Lindemann et al., 2005).

5
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Drag Name Systematic Name Structure

(J-Phenylethylamine 2-Phenylethylamine

Tyramine
4-Hydroxy-

phenyiethylamine

Octopamine
(4-(2-Amino-1 -hydroxy- 

ethyi) phenol)

OH
/ ' W ' k / NH2

j[ T

Tryptamine 3- (2-Aminoethyl) indole

CM

Amphetamine
a-Methyl-

phenylethylamine QnrNH!
Table 1,1; Various trace amines (TAs) and their systematic names and chemical 
structures. TAs are structurally and functionally related to amphetamines and 
biogenic amines neurotransmitters, including adrenaline and noradrenaline.

1.2.1 Synthesis, metabolism and endogenous levels of trace 
amines

TAs are all primary amines (Lindemann and Hoener, 2005) generated directly by 

decarboxylation of their respective precursor amino acids by aromatic L-amino acid 

decarboxylase (L-AADC). p-PEA, para and- meta tyramine are synthesised from L- 

phenylalanine and L-tyrosine, respectively (Berry, 2004). Octopamine is the 

exception as it is metabolised from dopamine-p-hydroxylase (DBH) to para- and 

meta-octopamine (Durden et al., 1973; Boulton and Dyck, 1974; Boulton et al., 

1974; Dyck and Boulton, 1975; Boulton, 1976; Bowsher and Henry, 1983; Berry,

2004).

6
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OH

C0 2H

HO NH. HO NH.
AADC, DBH

HO HO

Tyrosine 
Hydroxylase I

L-Dopa Dopamine Noradrenaline

OH

HO'
L-Tyrosine

NH,

C0 2H

NH. NH,
AADC, DBH

> >
HO HO

p-Tyramine p-Octopamine

Tyrosine
Hydroxylase t

NH, ^NHo
2 AADC. 2

C0 2H
■>

L-Phenylalanine p-Phenylethylamine

Figure 1.4: Synthetic routes of trace amines and monoamine neurotransmitters 
L-AADC = aromatic L-amino acid decarboxylase, DBH = Dopamine (3-hydroxylase 
(Berry, 2004)

TAs are found throughout the central nervous system. As a result of the rapid 

turnover rate of TAs (Wu and Boulton, 1973; Wu and Boulton, 1974; Wu and 

Boulton, 1975), the endogenous extracellular levels of TAs in brain tissues are in the 

low nanomolar range (Boulton, 1976) (Table 1.2). Therefore, the level of TAs in the 

brain is several hundred-fold below those of the classical biogenic amine 

neurotransmitters, such as dopamine, noradrenaline and 5-hydroxytryptamine (5-HT) 

(Durden et a l , 1973; Durden and Philips, 1980; Henry et a l , 1988; Durden and 

Davis, 1993). In addition, their rate of synthesis is equivalent to that of dopamine and 

noradrenaline (Durden and Philips, 1980; Paterson et a l, 1990). TAs show a 

heterogeneous distribution within the mammalian CNS, both regionally and at the 

sub-cellular level (Boulton and Baker, 1974; Boulton and Baker, 1975; Boulton, 

1976; Boulton et a l, 1977; Juorio and Sloley, 1988; Juorio, 1988b). Further, 

variations are present in the distribution of individual TAs (Berry, 2004).
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Tissue P-PEA Tyramine Dopamine Noradrenaline

Rat (whole brain) 
(ng/g) 1.8 1.1 600 490

Table 1.2: CNS levels in rats of p-phenylethylamine (P-PEA), tyramine, dopamine 
and noradrenaline. Values taken from Boulton and Juorio (1982) and Juorio (1988) 
are in ng/g fresh tissue.

1.2.2 Release of trace amines by neural stimulation

TAs are potential neuromodulators rather than neurotransmitters essentially because 

most of them, such as p-PEA and tryptamine are not released in an activity- 

dependent manner (Berry, 2004). However, the para- and meta-isomers of tyramine, 

which are highly concentrated in the rat striatum, show some activity-dependent 

release (Berry, 2004). Both isomers are released from the striatum by a veratridine- 

induced depolarization (Dyck, 1989) and their levels are moderately decreased by 

pre-treatment with reserpine (Boulton et al., 1977). Therefore, both isomers appear to 

be stored in a reserpine-sensitive mechanism (Boulton et al, 1977). Reserpine is a 

drug that interferes with biogenic amine packaging in synaptic vesicles and depletes 

dopamine, noradrenaline and serotonin from the nerve terminals. It caused 

depressive states in some patients who took in the past the substance as an anti

hypertensive agent (Carlsson et al., 1963). Reserpine administration reduces the 

ability of intra-neuronal granules to store catecholamines (Bertler, 1961). Whilst 

treatment with reserpine reduced rat striatal tyramine and dopamine levels, reserpine 

had no effect on the concentration of p-PEA in the rat striatum (Boulton et al., 1977; 

Juorio and Sloley, 1988). P-PEA appears to be released by diffusion from a 

“reserpine-insensetive pool” and is not stored in specific granules like the tyramine 

isomers (Juorio, 1988a; Berry, 2004).

p-Phenylethylamine

p-phenylethylamine (p-PEA) is the simplest phenylalkylamine endogenously present 

in the body (Boulton et al, 1990). The existence of p-PEA in the CNS is well 

established (Ishida et al., 2005). The monoamine has been found in low 

concentrations in the nervous tissue of all vertebrate and invertebrate species 

investigated so far (Durden et al., 1973; Juorio, 1976; Philips et al., 1978; Juorio,

8
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1988a). The highest brain levels of p-PEA have been found in the mesolimbic area, 

caudate-putamen structures and hypothalamus (Durden et al., 1973; Philips et al., 

1978). p-PEA is present in tyrosine hydroxylase-containing neurons and co-exists 

with dopamine in the nigrostriatal pathways (Juorio et al., 1991). p-PEA has effects 

in different areas of the brain. Post-synaptically, the TA potentiated cortical neuronal 

responses to iontophoretically applied noradrenaline (Jones and Boulton, 1980; 

Jones, 1982; Paterson and Boulton, 1988). Furthermore, caudate nucleus neuronal 

responses to iontophoretically applied dopamine were increased by P-PEA (Jones, 

1981; Paterson et al., 1990). Moreover, systemic administration of p-PEA inhibited 

dopamine neurons in the rat substantia nigra pars compacta (Rodriguez and Barroso,

1995). However, the release of dopamine in the striatum (Dyck et al., 1983; Philips, 

1986; Bailey et al., 1987) and postsynaptic dopamine receptors were stimulated by 

systemic P-PEA (Antelman et al, 1977). It is well known that p-PEA can produce 

both psychostimulant-like and dopamine-releasing effects (Boulton, 1982; Dourish, 

1982; Janssen et al., 1999; Bergman et al., 2001). An intact and functional dopamine 

transporter is required for these effects of p-PEA (Sotnikova et al., 2004). p-PEA 

regulates catecholaminergic neurotransmitter release and this regulation is especially 

predominant in dopaminergic neurons (Kato et al, 2001). Therefore, dopaminergic 

neurons could be involved in p-PEA-induced behaviours (Barroso and Rodriguez,

1996). However, the activity of dopaminergic neurons in the substantia nigra and 

ventral tegmental area (VTA) is inhibited by p-PEA (Geracitano et al., 2004). The 

VTA (Oades and Halliday, 1987) is a group of neurons which activates the 

mesolimbic and mesocortical areas of the brain, which are important regions in 

schizophrenia (Shimazu and Miklya, 2004; Sotnikova et al., 2004; Ishida et al.,

2005). p-PEA has been implicated in the neuropathology of schizophrenia (Sandler 

and Reynolds, 1976; O'Reilly and Davis, 1994). Altered levels of endogenous p-PEA 

have been found in the plasma of schizophrenic patients (Szymanski et a l , 1987; 

Shirkande et al., 1995). Furthermore, patients suffering from schizophrenia showed 

increased urinary p-PEA levels (Yoshimoto et al., 1987; Myojin et a l, 1989). p-PEA 

has been shown to be present in relatively small quantities in human urine (Oates et 

al., 1963; Fischer et al., 1968; Boulton and Milward, 1971). Patients suffering with 

phenylketonuria exhibited an increased excretion (Oates et al, 1963) whereas 

patients with depression have impaired excretion (Fischer et a l, 1968; Boulton and

9
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Milward, 1971). Stress also increased the urinary excretion rate of (3-PEA in man 

(Paulos and Tessel, 1982) and also the plasma level of p-PEA (Paulos and Tessel, 

1982). P-PEA and its metabolites have also been postulated to be modulators of 

affective behaviours, such as wakefulness, arousal and excitement (Sabelli and 

Mosnaim, 1974; Sabelli and Borison, 1976). As it was unclear whether the 

behavioral effects of P-PEA resulted from direct or indirect interactions in the brain, 

the binding of [ H]-P-PEA to brain membranes was examined and high affinity and 

saturable binding sites for [3H]-P-PEA in rat brain were found (Hauger et al., 1982). 

Therefore, the effects of p-PEA in the CNS could be via direct stimulation of 

receptors.

Tyramine

Tyramine is an endogenous constituent naturally found in peripheral tissues as well 

as in the CNS of vertebrates (Spector et al., 1963; Boulton and Majer, 1970; Tallman 

et al., 1976; Paterson et al., 1990) In the past, interest in tyramine was focused on its 

adverse hypertensive effects (Bieck and Antonin, 1988; Bieck, 1989; Brown et al., 

1989) when tyrosine- or tyramine- rich foods, such as certain aged cheeses, aged 

meat, some fruits and vegetables or wines (Hoffmann, 2001) were ingested by 

patients undergoing antidepressant therapy with MAO inhibitors (“Cheese Effect” 

and “Chianti Effect”) (Bieck and Antonin, 1988; Bieck, 1989; Brown et al., 1989; 

Zimmer, 1990; Anderson et al., 1993; Tipton, 1997). However, using sensitive 

analytical methods, tiny amounts of tyramine were measured in the brain (Boulton, 

1984) and it has been suggested that it may be involved in the pathogenesis of 

affective disorders (Murphy et al., 1984; Sandler et al., 1984). A possible correlation 

between the levels in urine and certain diseases states, such as Parkinson’s disease 

and schizophrenia has been reported (Boulton et al., 1967; Marjerrison et al., 1972). 

Furthermore, tyramine acts as a neuromodulator (Kopin, 1968; Juorio, 1979) by 

regulating dopamine and phenylethylamine availability in selected brain areas or 

modulating their actions at receptor sites (Silkaitis and Mosnaim, 1976; Mosnaim 

and Wolf, 1977). The peripheral effects of tyramine are usually attributed to its 

action on promoting efflux of catecholamines from sympathetic neurons and the 

adrenal medulla (Schonfeld and Trendelenburg, 1989; Mundorf et al., 1999). This 

results in the indirect stimulation of adrenergic receptors (Black et al., 1980).
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In the past it was reported that some of the neuronal effects of TAs might be related 

to actions on a specific receptor and, as such, they might possess a transmitter role 

(Jones, 1934). Further studies were also undertaken to investigate the possible 

existence of specific receptors for tyramine in the brain (Stoof et al, 1976). In 

addition, binding of [3H]-p-tyramine to membranes isolated from the rat brain was 

investigated (Vaccari, 1986; Vaccari, 1993). The first study reported high affinity of 

p-tyramine for a dopaminergic site, most probably involved in the vesicular transport 

mechanism of dopamine (Vaccari, 1985). Further work could not confirm the 

existence of a central tyramine receptor. Instead it was suggested that [3H]-p- 

tyramine associates with a dopamine receptor (Vaccari, 1986). The cardiovascular 

profile of tyramine has been little studied (Khwanchuea et al., 2008). In clinical 

studies, tyramine has been shown to increase blood pressure but not heart rate, while 

decreasing total peripheral resistance (Meek et al., 2003). The vasodilatory action of 

tyramine has, however, been disputed (Jacob et al., 2003).

1.2.3 Trace amines -  effect as indirectly acting sympathomimetic 
amines

In the periphery, the TAs p-PEA and tyramine are usually regarded as indirectly 

acting sympathomimetic amines (ISA) (Aviado and Micozzi, 1981). The main action 

of both amines is to promote the efflux of catecholamines, such as noradrenaline, 

from sympathetic neurons (Figure 1.5). Thus, noradrenaline is able to interact with 

receptors to produce sympathomimetic effects (Bum and Rand, 1958; Bum, 1960; 

Hawthorn et al., 1985; Broadley, 1996). One of the pharmacological responses of the 

ISAs is to exert coronary vasoconstriction through release of noradrenaline from 

sympathetic neurons onto a-adrenoceptors after entering the sympathetic neuron via 

cocaine-sensitive pathways (Figure 1.5). Therefore, the TAs stimulate adrenoceptors 

indirectly (Hawthorn et al., 1985; Broadley, 1996). The actions of TAs are analogous 

to those of amphetamine to which p-PEA is structurally related. The release of 

noradrenaline may also cause vasodilatation via p-adrenoceptors (Table 1.1).
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TyrosinePre-synaptic
Vesicle

NA Synthesis 
*

NA ----- ■> Metabolite

CNA^) <— Trace amii

NA Uptake 1

NA Trace am ines  ISAs
Post-synaptic

Cell
Uptake 2

NA
Vasodilatation Vasoconstriction

Figure 1.5: The effect o f  trace am ines (T A s) as indirectly acting sym pathom im etic  
amines (ISA). TA s enter the sym pathetic neuron via  coca in e-sen sitive  uptake 
pathways (Uptake 1) and exert vasoconstriction through the release o f  noradrenaline 
(N A ) from sympathetic neurones onto a-adrenoceptors. The release o f  N A  m ay also  
cause vasodilatation via p-adrenoceptors.

1.3 G Protein-Coupled Receptors

G protein-coupled receptors (G PC R s) form a large and diverse fam ily o f  proteins in 

the mammalian genom e (Fredriksson et al., 2 0 0 3 ) w h o se  major function is to transfer 

extracellular stimuli into intracellular signals through interaction o f  their intracellular 

domains with heterotrimeric G proteins (K roeze et al., 200 3 ) (Figure 1.6). The 

crystal structure o f  one m em ber o f  this group, bovine rhodopsin, has recently been  

solved (Palczew ski et al.. 2000). Therefore, synonym s for the G PC R s are rhodopsin- 

like seven transmembrane (7TM ) spanning receptors, heptahelical receptors or 

metabotropic receptors (Premont et al., 2001; D avenport, 2003).

12



Chapter 1
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spanning a 
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Figure 1.6: Schem atic representation o f  a G protein-coupled receptor. Adapted from 
Alzheimer’s disease Science (2005)
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GPCRs can be grouped into 6  classes based on sequence homology and functional 

similarity (Attwook and Findlay, 1994; Kolakowski, 1994; Foord et al., 2005). This 

classification has been developed to cover all GPCRs, in both vertebrates and 

invertebrates (Fredriksson et a l , 2003) (Table 1.3).

Class A Class B Class C Class D Class E Class F

Rhodopsin-
like

Secretin
like Metabotropic Fungal cAMP

Receptors
Frizzled / 

Smoothened

Table 13: The six classes of GPCRs. The groupings of GPCRs are based on 
sequence homology and functional similarity (Fredriksson et al., 2003)

GPCRs are only present in the genomes of eukaryotes, including plants, yeast and 

other invertebrate groups (Kroeze et al., 2003). GPCRs are integral membrane 

proteins with seven putative transmembrane domains of hydrophobic amino acids. 

Each is believed to consist of an a-helix of approximately 21 to 28 amino acids, 

which are connected by three extracellular and three intracellular hydrophilic loops 

(Ralevic and Bumstock, 1998). The N-terminal of the protein lies on the extracellular 

side and the C-terminal on the cytoplasmic side of the membrane (Ralevic and 

Bumstock, 1998; Kroeze et al., 2003). The ligand binding site is exposed outside the 

surface of the cell and the effector site extends into the cytosol (Figure 1.5). The 

binding site for some agonists can be in the extracellular loop of the receptors, while 

others can penetrate into the transmembrane regions. Agonists, such as 

neurotransmitters and hormones, which activate GPCRs are called first messengers. 

Second messengers are signalling molecules produced by the stimulation of cell- 

surface receptors, such as cyclic 3’,5’-adenosine monophosphate (cAMP), 

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (Kroeze et al, 2003).

1.3.1 G proteins

Many receptors in the plasma membrane regulate distinct effector proteins through 

signalling via a group of proteins, known as guanosine triphosphate (GTP) binding 

proteins (Ross, 1992; Biology, 2006). These proteins are so-called because the G 

protein binds GTP in its active state and GDP in its inactive state (Figure 1.7) (Rang 

et al., 1999; Biology, 2006; Strosberg and Nahmias, 2007). G proteins are divided
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into two types, heterotrimeric and monomeric G proteins. The heterotrimeric G 

proteins are the proteins to which GPCRs are coupled. G proteins are bound to the 

inner face of the plasma membrane. The heterotrimeric G protein consists of three 

subunits, a , p and y (Hurowitz et a l, 2000). At least 18 different human Ga subunits 

have been found (Hermans, 2003; Wong, 2003; Strosberg and Nahmias, 2007). The 

known mammalian p and y subunits are encoded by 5 different p subunit genes 

(Watson et al., 1994; Strosberg and Nahmias, 2007) and up to 11 different y subunit 

genes (Morishita et al., 1995; Ray et al., 1995; Strosberg and Nahmias, 2007). The 

subunits differ in their molecular weight, a  subunit: 39 - 46 kDa, p subunit: 35 - 39 

kDa and y subunit: ~ 8  kDa (Goodman et al., 1990; Rang et al., 1999). Their 

classification is based on the identity of their distinct a  subunit. These polypeptides 

have highly homologous guanine nucleotide binding domains and have distinct 

domains for interactions with receptors and effectors (Goodman et a l, 1996; 

Hurowitz et al., 2000). The p subunits showed very high sequence identity and 

exhibit a more or less ubiquitous expression pattern (Watson et al., 1994). The 

functional specificity of the py subunit is therefore thought to rest with the y subunits 

since they display much greater variation in sequence and tissue expression (Kleuss 

e ta l, 1992).

1.3.2 G protein-mediated signal transduction

When the system is inactive, GDP is bound to the a-subunit (Figure 1.7 a). Agonist 

binding to the receptor leads to a conformational change in the a  subunit allowing 

GTP to bind (Figure 1.7 b) (Biology, 2006; Strosberg and Nahmias, 2007). The a- 

subunit is then activated and dissociates from the Py-subunits as the affinity of a- 

GTP for the py-subunit is lower compared to a-GDP (Figure 1.7 c) (Strosberg and 

Nahmias, 2007). The activated a-subunit then interacts with a membrane-bound 

effector (Mixons/ al., 1995; Wall et al., 1995; Lambright et al., 1996; Strosberg and 

Nahmias, 2007) and the P- and y-subunits are free to interact with their effectors 

(Clapham and Neer, 1993; Strosberg and Nahmias, 2007). Signal transmission is 

terminated by the hydrolysis of GTP to GDP by the intrinsic GTPase activity of the 

a-subunit (Figure 1.7 d) and the a- and py subunits re-associate (Doupnik et al., 

1997; Strosberg and Nahmias, 2007).
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a) Inactive G Protein

GTP
hydrolysis

Active G Protein

Figure 1.7: C ycling o f  a G protein betw een  the active and inactive states
(a) In the inactive state, G u binds to G D P (guanosine diphosphate). The G a and Gpy 

subunits associate together.
(b) Interaction betw een G a and the agonist-stim ulated  receptor causes the release o f  

GDP. GTP (guanosine triphosphate) then binds to the em pty site because its 
concentration in the cell is higher than G D P

(c) The GTP-bound G„ subunit has low  affin ity for the Gpy subunits, resulting in their 
dissociation. The separated G u and Gpy subunits can then interact w ith their 
effectors.

(d) GTP is hydrolyzed to G D P because G a has intrinsic G T Pase activity
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The a  subunit genes have been grouped into four classes Gs, Gi, Gq G 11/12, based on 

sequence homology, gene structure, and regulation of specific effectors. Each Ga- 

subunit is associated with receptors for a variety of transmitters (Table 1.4) 

(Hurowitz et al., 2000; Pierce et a l, 2002).

Ga-Subunits Second Messengers Receptors/T ransmitters Responses

G s
(+) AC => cAMP t  
(+) C a 2+ Channel 
(-) Na* C hannel

p-A drenoceptors 
G lucagon 
H istam ine (H2) 
5-H Ti-receptor 
5-HT7-recep to r

Heart:
Ca2* Influx t  
Sm ooth M uscle: 
V asorelaxation

Gi
(-) AC => cAMP 4, 
(-) Ca 2+ C hannel 
(+) K* Channel

M2 recep to rs  
a 2-A drenocep tors 
5-H T,-receptor 
O pioids

Sm ooth M uscle: 
V asoconstric tion

G q
(+) PLCp => IP3, DAG t  
=> cy toplasm ic C a 2+

M3 recep to rs  
a i-A d ren o cep to rs  
5-HT2-recep to r 
H istam ine (Hd

Sm ooth M uscle: 
V asoconstric tion

@11/12
(+) cGMP PDE => 
c G M P i

P h o to n s  (R hodopsin 
and  C olor O psins) D etection of light

Table 1.4: Examples of receptors and transmitters and associated responses coupled 
to different G protein a  subunits. Four classes of G a proteins have been identified.
(+) = activation and (-) = inhibition, PDE = Phosphodiesterase, AC = Adenylate 
cyclase, PLCp = Phospholipase Cp.

1.4 Trace Amine-Associated Receptors

TAs and their possible receptors have been of interest for many years (Usidin and 

Sandler, 1976; Boulton, 1985; Boulton, 1988) particularly because substantial 

alterations in the amount of TAs present in neural tissue are associated with 

pathological conditions (O'Reilly and Davis, 1994). Following a dormant period, this 

research area regained prominence in 2001 with the discovery of a TA receptor 

family related to mammalian GPCRs . The detection of the first trace amine receptor 

(TAR) was made independently by two groups of investigators (Borowsky et al., 

2001; Bunzow et al., 2001), each using similar methods. Complex mixtures of 

oligonucleotides, whose sequences were based on GPCRs for serotonin (Borowsky et 

al., 2001) or dopamine (Bunzow et al., 2001), were used to amplify novel DNA
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sequences by PCR using rat cDNA and genomic DNA as templates (Zucchi et al,

2006). Borowsky et al., (2001) performed reduced stringency screening and 

phylogenetic analysis. In this study numerous degenerate oligonucleotide-primed 

PCRs were performed by using rat and human genomic DNAs as templates and 15 

sequences with homology to each other were identified (Zucchi et al, 2006). It was 

found that the TAR1 represents one member of three related subfamilies of 

mammalian GPCRs. Therefore, large subtype diversity may exist in this class of 

GPCRs. Bunzow et al., (2001) performed extensive pharmacological studies on 

TAR1 by cloning both rat and human TAR sequences and stably expressing them in 

human embryonic kidney (HEK) cells. Expression of the putative orphan receptor in 

either Xenopus oocytes or HEK cells showed that upon exposure to p-PEA or 

tyramine a stimulation of adenylate cyclase through G as, led to the accumulation of 

cAMP (Zucchi et al, 2006). In contrast, neither classical biogenic amines like 

dopamine, noradrenaline and adrenaline nor serotonin and histamine were shown to 

be effective agonists for this receptor (Kim and von Zastrow, 2001; Zucchi et a l ,

2006). As a result of their pharmacological profile and their functional coupling to 

cAMP, both investigators assumed their orphan GPCR was a 'bone fide' receptor for 

TAs (Zucchi et al, 2006). This discovery of the TA-sensitive novel receptor family 

has led to speculations on the physiological and pathological role of these receptors 

(Lewin, 2006) and has provided a new perspective on the effects and mechanism of 

action of TAs. This interest has also led to both academic and pharmaceutical 

industry research into putative endogenous receptors for TAs and metabolic 

derivatives of classical biogenic amines (Scanlan et al., 2004; Lindemann and 

Hoener, 2005; Hart et a l , 2006).

TARs belong to the superfamily of rhodopsin-like seven transmembrane GPCRs 

(Table 1.3). The receptor family has been identified in human, chimpanzee, rat and 

mouse (Lindemann et a l, 2005; Lewin, 2006). In all species analyzed so far, three 

receptor subfamilies have been identified (Lindemann et al, 2005). In contrast to 

subfamily 1, all other TARs failed to respond to TAs (Borowsky et a l, 2001). 

According to this insensitivity of many of the receptors to TAs, a novel receptor 

nomenclature was devised. The GPCR family of TAs are now called trace amine- 

associated receptors (TAARs).
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Due to the new nomenclature, TAR1 is now called TAAR1 and TAR2 is called 

TAAR4 (Lindemann et a l, 2005; Lewin, 2006) (Table 1.5).

Subfamily Receptor Sensitive to  TAs
TAAR subfamily 1 TAAR1 - TAAR4 TAAR1 and TAAR4
TAAR subfamily 2 TAAR5 No
TAAR subfamily 3 TAAR6 -  TAAR9 No

Table 1.5: Classification of trace amine-associated receptors (TAARs) into 
subfamilies. Three subfamilies for TAARs have been identified. Only TAAR1 and 
TAAR4 in subfamily 1 are considered to be sensitive to trace amines (TAs). All 
other TAARs failed to respond to TAs (Lindemann et al., 2005; Lewin, 2006).

The human and rat genomes appear to have a different complement of TA-like 

GPCRs. In man there are fewer functional members. So far, 19 individual TAARs 

for rat, 9 TAARs each for human and chimpanzee, and 16 for mouse have been 

identified (Lewin, 2006). A considerable homology had been reported between the 

human (hTAARs) and rat (rTAARs) TAARs (Lewin, 2006). Based on sequence 

homology, the hTAARl has been called the human ortholog of rTAARl (Branchek 

and Blackburn, 2003; Lewin, 2006) (Table 1.6).

Receptor Species Homology (%)
TAAR1 Human, Rat 79
TAAR6 Human, Rat 88
TAAR9 Human, Rat 87

Table 1.6: Sequence homology between human and rat trace amine-associated 
receptors (TAARs) (Lewin, 2006)
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At present, putative, potential endogenous ligands for both TA-sensitive TAARs, 

TAAR1 and TAAR4 have been identified in transfected cell lines (Borowsky et al., 

2001; Bunzow et al., 2001). In general, the potency of TAs, in particularly p-PEA 

and tyramine, to activate TAAR4 was lower compared to their potency at TAAR1 

(Borowsky et al., 2001; Davenport, 2003) (Table 1.7).

Receptor P-PEA Tyramine Tryptamine Octopamine
h/rTAAR1 + + + + + + + +
HTAAR4 + + + + + + ? ?
rTAAR4 + + + ? ? ?

Table 1.7: Comparison of the potency of potential endogenous ligands for trace 
amine-associated receptor 1 (TAAR1) and TAAR4 in human and rat. p-PEA 
activates TAAR1 and TAAR4 in human (h) and rat (r) with equal potency (+ + +). 
Tyramine is a potential ligand for human TAAR1 and TAAR4 and rat (r) TAAR1 (+ 
+ +). Octopamine and tryptamine activate TAAR1 in both species with lower 
potency (+) compared to P-PEA and tyramine. ? = unknown (Borowsky et al., 2001; 
Davenport, 2003; Lewin, 2006).

1.5 Signal Transduction Mechanisms of Trace Amines

In transfected cell lines, the most commonly recognized signal transduction pathway 

for TAARs is to stimulate the formation of cyclic AMP (Borowsky et al., 2001; 

Bunzow et a l, 2001). TAAR1 stimulates adenylate cyclase through the a  subunit 

and mediates an increase in cAMP (Figure 1.8) (Borowsky et a l, 2001; Bunzow et 

al, 2001; Lewin, 2006). In intact tissue, tyramine can also produce vasorelaxation by 

reduction of inositol 1,4,5-trisphosphate (IP3) formation (Varma and Chemtob, 1993) 

(Figure 1.8). But whether this response was mediated via TAAR was not determined.
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Trace Amines

GPCR

IP3

Plasm a
m em brane

DAG
>  PLCb G a

Adenylate cyclase

ATP cAMP ------ ^  5 '-AMP
PDE

Figure 1.8: Known signal transduction pathways for trace amines (TAs).
Primarily, TAARs stimulate the formation of cyclic AMP (cAMP) through the Ga- 
subunit when exposed to TAs. cAMP is inactivated by hydrolysis into 5'AMP by 
phosphodiesesterases (PDE). Also TAARs can mediate inhibition (-) of 
phospholipase Cp (PLCp) and therefore a reduction of inositol 1,4,5-trisphosphate

Cyclic adenosine 3', 5'- monophosphate (cAMP)

cAMP serves as a second messenger in many varied physiological events and is used 

for intracellular signal transduction by effectors which cannot cross the cell 

membrane, such as transferring the effects of hormones like glucagon and adrenaline. 

The main purpose of cAMP is the activation of various kinases, such as cAMP- 

dependent protein kinase (PKA) and myosin light chain kinase (MLCK). Kinases 

catalyse the phosphorylation of different amino acids, including serine and threonine. 

PKA is normally inactive as a tetrameric holoenzyme, consisting of two catalytic and 

two regulatory units (C2R2), with the regulatory units blocking the catalytic centers 

of the catalytic units. cAMP binds to specific locations on the regulatory units of the 

protein kinase, and causes dissociation between the regulatory and catalytic subunits, 

thus activating the catalytic units and enabling them to phosphorylate substrate 

proteins (Broadley, 1996). Adenylate cyclase, located at the cell membrane, catalyses

(IPs).
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the conversion of ATP to 3',5'-cyclic AMP (cAMP) and pyrophosphate. The 

hydrolysis of cAMP is catalyzed by several phosphodiesterases (PDE) (Strada and 

Hidaka, 1992; Broadley, 1996). Adenylate cyclase is activated by effectors, such as 

p-adrenoceptors, H2-receptors and 5-HTi and 7-receptors (Table 1.4) through the 

activation of adenylate cyclase stimulatory Gs-subunit and inhibited by agonists of 

adenylate cyclase inhibitory Gi-subunit. cAMP accumulation from p2-adrenoceptor 

stimulation is associated with smooth muscle relaxation, such as vasodilatation and 

bronchodilatation (see Section 1.6) (Goodman et al., 1990; Broadley, 1996). PDEs 

convert cAMP to the inactive non-cyclic adenosine monophosphate (Strada and 

Hidaka, 1992; Broadley, 1996) (see Section 1.7.3).

Inositol 1,4,5-trisphosphate (IP3)

Stimulation of muscarinic Mi- and M3 receptors and ai-adrenoceptors causes the G 

protein-mediated hydrolysis of the membrane phospholipid, phosphatidylinositol 

bisphosphate 4,5-bisphosphate (PIP2) to IP3 and 1,2-diacylglycerol (DAG) catalysed 

by phospholipase C (PLC). PLC is coupled to the receptor by G proteins of the Gq 

family (Table 1.4) (Broadley, 1996). IP3 has been clearly identified as the second 

messenger for receptor-mediated release of intracellular Ca from the sarcoplasmic 

reticulum (SR). The target is an IP3 receptor which forms the Ca2+ channel spanning 

the membrane of the intracellular SR Ca2+ storage site. The release of intracellular 

Ca2+then initiates contractile responses of smooth muscle resulting from ai- or M3 

receptor stimulation (Broadley, 1996) (see Section 1.7.3).

1.6 Adrenoceptor Pharmacology

In view of the close structural similarity between TAs and noradrenaline (Lindemann 

and Hoener, 2005) the possibility must be considered that they could interact with 

both adrenoceptors and TAARs. Also, the indirect sympathomimetic activity of these 

TAs suggests that part of their pharmacological activity could be due to indirect 

stimulation of adrenoceptors (Hansen et al., 1980). TAs have been assumed to 

operate as potential neuromodulators rather than neurotransmitters (see Section 1.2) 

(Berry, 2004) or as vasoconstrictors (Branchek and Blackburn, 2003; Shimazu and 

Miklya, 2004). In order to understand the mechanism of action of TAs, the receptor 

pharmacology of a- and p-adrenoceptors must be considered. Adrenergic receptors
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specifically bind and are activated by their endogenous ligands, the catecholamines 

adrenaline and noradrenaline (Figure 1.9). They were originally divided into two 

major types, a- and p-adrenoceptors. However, based on pharmacological and 

molecular evidence, they are now divided into three major types, oil, 012, and p and 

further subdivided into three subtypes each (Bylund et al., 1988; Bylund, 2005) 

(Figure 1.9).
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Adrenaline,
Noradrenaline
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PIP2 >  DAG

I  i
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PKC
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i
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Figure 1.9: The m echanism  o f  action o f  adrenergic receptors.
Adrenaline and noradrenaline are receptor ligands for a i ,  ot2 or p-adrenoccptors. a i -  
adrenoceptors couple to Gq, w hich results in increased intracellular C a“~ and 
activation o f  PKC and therefore sm ooth m uscle  contraction. a 2-adrenoceptors couple  
to Gi and cause a decrease in cA M P and therefore sm ooth m u scle  contraction. The p- 
adrenoceptors couple cither through G i or G s to adenylate cy c la se  in an inhibitory (-)  
or stimulatory (+ ) w ay, respectively  resulting in either increased or decreased  
formation o f  cA M P. An increase o f  cA M P  cau ses an inhibiton o f  the M LC K  and 
therefore smooth m uscle relaxation. PKC =  Protein kinase C , PLCp =  Phospholipase  
Cp, MLCK =  M yosin light chain kinase, A C  =  A denylate cyclase , PIP2 =  
Phosphatidyl inositol bisphosphate, DAG  = D iacy lg lycero l, (-) =  decrease/inhibition , 
(+) = activation. Adapted from Answers.com (2007) (see Section 1.7.3).
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1.6.1 a-Adrenoceptors

a-adrenoceptors subtypes are classified by their anatomical location (Langer, 1974; 

Langer, 1980; Timmermans and van Zwieten, 1981). Furthermore, the receptors are 

classified by the relative affinities of agonists and antagonists (Wikberg, 1978; 

Wikberg, 1979). ai-Adrenoceptors are mostly found post-synaptically, whilst olz- 

adrenoceptors are sited primarily pre-synaptically. However, a-adrenoceptors can 

also occur post-synaptically (Timmermans and van Zwieten, 1981) and can mediate 

vasoconstriction in certain blood vessels (Holtz et al., 1982; Hicks et al., 1983; 

Ruffolo et al., 1991). There are pharmacological differences between the post- 

synaptic a-adrenoceptors that mediate the response of the effector organ and the pre- 

synaptic inhibitory a-adrenoceptors that modulate the release of noradrenaline 

during nerve stimulation (Langer, 1980). All a-adrenoceptors use G proteins as their 

transduction mechanism. Differences occur in the type of G protein to which the 

receptors are coupled (Figure 1.9, Table 1.9) (Langer, 1974; Starke, 1981; Goodman 

Gilman et al., 1990; Wilson et al., 1991).

ai-Adrenoceptors

Three genes encoding unique ai-adrenoceptor subtypes have been discovered 

(Cotecchia et al., 1988; Schwinn et al., 1990; Ruffolo et a l, 1991; Perez et al, 1993) 

and nomenclature consisting of aiA, am  and am  was proposed (Hieble et al., 1995; 

Broadley, 1996; Hague et al., 2003). The three ai-adrenoceptor subtypes with high 

affinity for prazosin (Martin et al., 1997) have been cloned and the pharmacology of 

the cloned receptors has been characterised against that of their native forms (Michel 

and Insel, 1994; Blue et al., 1995). The coupling of ai-adrenoceptors to second 

messenger systems has been examined in detail (Hague et a l, 2003). These receptors 

are coupled to the activation of phospholipase C (Schwinn et al., 1991; Perez et al.,

1993) via pertussis toxin-insensitive G proteins of the Gqn family (Wu et al., 1992; 

Hague et a l, 2003). In addition it was reported that ai-adrenoceptors utilize Gq to 

activate phosphoinositide hydrolysis and Gu to induce the release of calcium from 

intracellular stores (Macrez-Lepretre et al., 1997) (Figure 1.9, Table 1.9). In 

addition, to mobilize intracellular calcium, the ai-adrenoceptors have also been 

shown to activate calcium influx via both voltage-dependent and- independent
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calcium channels (Ljung and Kjellstedt, 1987; Han et a l , 1992; Lazou et a l, 1994; 

Minneman and Esbenshade, 1994). ai-Adrenoceptors are found in both the central 

(CNS) and peripheral nervous system (PNS).

In the CNS they are found mostly post-synaptically and have an excitatory function. 

Although the density of ai-adrenoceptors in the CNS is among the highest of any 

tissue in the body (Wilson and Minneman, 1989), it has been difficult to identify 

their functional role (Hague et a l , 2003). ai-Adrenoceptors influence neuronal 

signalling throughout the brain (Marek and Aghajanian, 1999). However, their 

specific functional roles remain uncertain as many of ai-adrenoceptor agonists and 

antagonists are unable to cross the blood-brain barrier (Pupo and Minneman, 2001). 

Peripherally they are responsible for smooth muscle contraction and are situated on 

vascular and non-vascular smooth muscle, ai-Adrenoceptors on vascular smooth 

muscle are located intra-synaptically and function in response to neurotransmitter 

release (Langer, 1974; Starke, 1981). Previous publications suggested that all three 

aj-adrenoceptor subtypes are expressed in the majority of blood vessels and mediate 

contractile responses (Table 1.8) (Han et a l, 1990; Broadley, 1996). Furthermore, all 

three ai-adrenoceptor subtypes play an important role in the regulation of blood 

pressure. In knockout animals significant decreases in pressor responses to 

phenylephrine were found in cxia- (Rokosh and Simpson, 2002) am- (Cavalli et a l,

1997) and am- adrenoceptor (Tanoue et a l , 2002). Furthermore, previous 

publications suggest that aiA- and am- adrenoceptors primarily control 

vasoconstriction (Table 1.8) with a minor contribution from am- adrenoceptors 

(Broadley, 1996; Daly et a l, 2002).

Organ / Location Response a-Adrenoceptor
Blood vessel -  rat m esentery Vasoconstriction a u
Blood vessel -  rat aorta Vasoconstriction am
Blood vessel -  rat portal vein Contraction aiA

Table 1.8: Locations of and responses mediated by ai-adrenoceptor in rat blood 
vessels. Adaptedfrom Broadley (1996)
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a 2-Adrenoceptors

(X2-Adrenoceptors are found in both the central and peripheral nervous system. They 

are found both pre- and post-synaptically and are generally inhibitory. Pre-synaptic 

a,2-adrenoceptors inhibit the release of noradrenaline and thus serve as an important 

receptor in the negative feedback control of noradrenaline release. Post-synaptic 0 ,2- 

adrenoceptors are located on liver cells, platelets, and the smooth muscle of blood 

vessels (Civantos Calzada and Aleixandre de Artinano, 2001). Activation of these 

receptors causes platelet aggregation, and blood vessel constriction. The evidence for 

three 012-adrenoceptor subtypes was investigated by radioligands binding and 

functional studies in mammalian systems and their existence was confirmed by 

cloning in several species (Bylund et al., 1994; Alexander et al., 2004). The three 

subtypes are well characterised in mammalian species and identified as a 2A, ct2B and 

a 2c-adrenoceptors (Bylund et al., 1994). The a 2A-adrenoceptor subtype is the main 

subtype in most brain regions in mammalian species. The a 2c-adrenoceptor subtype 

is found in high concentrations in the caudate nucleus, whilst the a 2B -adrenoceptor 

subtype has a more limited distribution (Bylund, 2005). The pharmacological 

characteristics of the three a 2-adrenoceptor subtypes are consistent in different 

species. However, the <X2A-adrenoceptor subtype has one pharmacological profile in 

man, dog, rabbit, pig and chicken and a different profile in rat, mouse and cow. 

Therefore, often investigators retain the a.2D nomenclature which was originally 

assigned to these ct2A-adrenoceptors (Bylund, 2005). The 012-adrenoceptor has been 

shown to be negatively coupled to adenylate cyclase via G protein Gi/G0. The 

activation of these receptors causes a reduction of cAMP which leads to a decreased 

influx of calcium during the action potential which is the ion responsible for 

transmitter release. Therefore, lowered levels of calcium will correspondingly lead to 

a decrease in transmitter release and smooth muscle contraction (Goodman et al., 

1990; Goodman Gilman et al., 1990; Bylund et al., 1994; Broadley, 1996; Roberts et 

a l, 1998) (Figure 1.9, Table 1.9).
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Receptor Agonists Second Messenger Antagonist
a i A=NA»ISO (+) PLCp via Gq=> Vasoconstriction Prazosin

Doxazosin

(X2 A£NA»ISO (-) cAMP via G j/G o  = >  

Vasoconstriction
Yohimbine
Idazoxan

Table 1.9: Characterisation of a-adrenoceptors.
Both a-adrenoceptor subtypes use G proteins as their transduction mechanism. 
Differences occur in the type of G protein the receptors are coupled to. Both 
adrenoceptor subtypes cause vasoconstriction. Representative agonists include 
adrenaline (A), noradrenaline (NA) and isoprenaline (ISO). PLCp = phospholipase, 
(+) = increase and (-) = decrease (Broadley, 1996; Civantos Calzada and Aleixandre 
de Artinano, 2001)

1.6.2 P-Adrenoceptors

For many years, classical pharmacology suggested that there were two subtypes of p- 

adrenoceptor, pi- and P2-adrenoceptors (Lands et al., 1967). p-Adrenoceptor 

classification was based initially on differing rank order potencies of p-adrenoceptor 

agonists (Alquist, 1948; Lands et a l , 1967) and, subsequently, on the discovery of 

appropriate specific antagonists (Black and Stephenson, 1962). The discovery of 

these receptor subtypes led to the development of selective agonists and antagonists 

for each subtype. Then, the discovery of agonists with a novel tissue selectivity 

backed up earlier evidence for a third subtype, an “atypical p-adrenoceptor” resistant 

to blockade by most pi-adrenoceptor and p2-adrenoceptor antagonists which was 

classified as p3-adrenoceptor (Arch, 2002). The existence of a fourth type of p- 

adrenoceptor has also been suggested (Kaumann, 1997; Kaumann et a l , 1998; 

Cohen et a l , 2000). However, it seems that the pharmacology of the p4-adrenoceptor 

is dependent upon the presence of pi-adrenoceptors. Therefore, the putative p4- 

adrenoceptor is now described as a low affinity state of the pi-adrenoceptor (Konkar 

et al., 2000; Kaumann et al., 2001).

Stimulation of adenylate cyclase

All p-adrenoceptors were formerly considered to be associated with Gs. All p- 

adrenoceptors can positively couple to adenylate cyclase via activation of Gs protein 

(Figure 1.9, Table 1.4). The resulting increase in intracellular cAMP level activates 

protein kinase A (PKA) (see Section 1.5). An increase of cAMP is usually associated
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with smooth muscle relaxation (p2-adrenoceptors) (Table 1.10) (Broadley, 1996; 

Magocsi et al., 2007; Strosberg and Nahmias, 2007).

Px-Adrenoceptors

pi-adrenoceptors are largely post-synaptic and are located primarily in the heart but 

are also found in platelets, the salivary glands and the non-sphincter part of the 

gastro-intestinal tract (GIT). However, they are also found pre-synaptically (Chang et 

al., 1986; Heimburger et al., 1989). Activation of pi-adrenoceptors causes an 

increase in the rate (positive chronotropy) and contractile force (positive inotropy) of 

the heart due to the activation of cAMP-dependent protein kinase (see Section 1.5) 

(Broadley, 1996). Furthermore, the activation of pi-adrenoceptors causes relaxation 

of the non-sphincter part of the GIT, aggregation of platelets and amylase secretion 

from the salivary glands. (Goodman Gilman et al., 1990; Broadley, 1996; Rang et 

al., 2003) (Figure 1.9, Tables 1.10). Pre-synaptically, their activation causes an 

increase in noradrenaline release (Heimburger et al., 1989).

p2-Adrenoceptors

p2-adrenoceptors are mainly post-synaptic and are located on a number of tissues 

including vascular smooth muscle (Lands et a l, 1967), airway smooth muscle, GIT, 

skeletal muscle, liver and mast cell. cAMP accumulation from p2-adrenoceptors 

stimulation is associated with smooth muscle relaxation, such as vasodilatation and 

bronchodilatation. Furthermore, the activation of p2-adrenoceptors causes relaxation 

of the GIT, glycogenolysis in the liver, tremor of skeletal muscle and inhibition of 

histamine release from mast cells (Goodman Gilman et a l, 1990; Broadley, 1996; 

Rang et al., 2003) (Figure 1.9, Tables 1.10).

p3-Adrenoceptors

p3-adrenoceptors are present in adipose tissue (Arch et al., 1984; Wilson et al., 1984) 

rat colon (Bianchetti and Manara, 1990) and guinea-pig ileum (Bond and Clarke, 

1988). These adrenoceptors have a role in the regulation of lipolysis (Lafontan,

1994) and thermogenesis (Mizuno et al., 2002). Moreover, p3-adrenoceptors 

activation is associated with the relaxation of gastrointestinal (Manara et al., 1995) 

and airway (Martin and Advenier, 1995) smooth muscle. In addition, p3-
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adrenoceptors have been characterised in human heart, activation of which induces a 

negative inotropic effect (Gauthier et a l , 1996). Furthermore, the existence of p3- 

adrenoceptors in vascular smooth muscle has been reported where they cause 

vasorelaxation (Berlan et al., 1994; Shen et al., 1994). Previous workers suggest the 

presence of p3-adrenoceptors in rat thoracic aorta mainly on endothelial cells. p3- 

adrenoceptors act in conjunction with pi- and p2-adrenoceptors to mediate 

vasorelaxation through activation of the NO synthase pathway and a subsequent 

increase in cGMP levels (Trochu et a l , 1999; Arch, 2002).

Receptor Agonists Tissue Response Antagonists

& ISO>NA>A Heart
(+) Heart rate 
(+) Myocardial 
contractility

Atenonol
Metoprolol

Pa ISO >A »N A
Smooth
m uscle

Vasodilatation
Bronchodilatation

ICI-118,551 
Butoxamine

P3 ISO=NA>A
Adipose

tissue
Lipoiysis
Therm ogenesis

SR59230A

Table 1.10: Characterisation of P-adrenoceptors.
All p-adrenoceptor subtypes use Gs protein as their main transduction mechanism. 
Representative agonists include adrenaline (A), noradrenaline (NA) and isoprenaline 
(ISO). (+) = increase (Broadley, 1996; Goodman Gilman et a l , 1996).

1.7 Blood Vessels

1.7.1 Structure

Blood vessels are divided into four broad categories, arteries, such as aorta (Figure 

1.11), arterioles, capillaries and veins. The walls of the larger blood vessels consist of 

three layers including the tunica intima, the tunica media and the tunica adventia, 

whose thickness varies according to the type of vessel. The inner lining of all blood 

vessels is a thin layer of endothelium (Figure 1.10).
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Tunica adventia

Tunica media (smooth muscle)

Endothelium

Tunica intima

Basement membrane

Smooth muscle 
cells

Figure 1.10: B lood v esse l structure.
The arrangement o f  the principal layers o f  an artery. The w alls  o f  the larger b lood  
vessels consist o f  three layers including the tunica intima, the tunica media and the 
tunica adventia, w h ose  th ickness varies accord ing to the type o f  v esse l. The inner 
lining o f  all blood v e sse ls  is a thin layer o f  endothelium . The sm ooth m u scle  o f  the 
tunica media is arranged in a circular manner. A daptedfrom  Lafleur et a i ,  (2003)

The tunica intima con sists o f  a layer o f  flat endothelia l ce lls  overly in g  a thin layer o f  

connective tissue and is separated from  the tunica media by  the internal elastic  

lamina. The endothelial ce lls  o f  the tunica intim a arc in direct contact w ith  the blood. 

The tunica media consists o f  circular layer o f  sm ooth  m u scle  contain ing elastin and 

collagen. The sm ooth m uscle o f  the tunica media  is innervated by sym pathetic nerve  

fibres. The tunica media provides the m echanical strength o f  the b lood  v esse l. The 

tunica adventitia consists o f  a lo o se ly  form ed layer o f  elastic  and co llagen ou s fibres 

orientated along the length o f  the vesse l. It serves to anchor the b lood  v esse l in place. 

The tunica adventitia is separated from the tunica m edia by the external elastic  

lamina (Pocock and Richards, 2004).
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1.7.2 Aorta

The aorta is the main artery o f  the m am m alian circulatory system  that supplies  

oxygenated blood to the other arteries o f  the body (Figure 1.11). In hum ans, the aorta 

is about one inch in diam eter and extends upward from  the left ventricle, before 

arching downward through the chest. An op en in g  in the m uscular diaphragm  termed 

the aortic hiatus a llo w s the aorta to enter the abdom en, w h en ce it d iv ides into the 

paired com m on iliac arteries that extend into the legs. The elasticity  o f  the tunica 

media (Figure 1.10) enables the aorta to distend enough to accom m odate the blood  

that surges through it as the heart contracts (S ilverth om , 2001; W ikipedia, 2008c). 

The aorta is usually d ivided  into four section s, including the ascending aorta, aortic 

arch, descending thoracic aorta and abdom inal aorta (Tortora, 1994; D e Graaff,

1998).

Arch

Ascending Aorta - 

Aortic Root Descending Thoracic 
Aorta

Diaphragm Diaphragm

Abdominal Aorta

Common iliac artery

Figure 1.11: Picture o f  the aorta w ith the four m ain sections. A dapted from 
Cleveland Clinic (2008)
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Extensive studies with rats and other animals have been performed to investigate the 

effects of various diseases on the aorta and to test the efficacy of potential treatments 

and preventive measures. Aortic tissues have been used to characterise a - and p- 

adrenoceptors (Digges and Summers, 1983b; Decker et al., 1984; O’Donnell and 

Wanstall, 1984a). Furthermore, aortic tissues have been used to examine the 

influence of nitric oxide production on vascular smooth muscle contraction (Bang et 

al, 1999) and vasodilatation (Chitaley and Webb, 2002) (see Section for  

Endothelium).

1.7.3 Vascular smooth muscle

Vascular smooth muscle (VSM) refers to the particular type of smooth muscle found 

within, and composing the majority of the wall of blood vessels (Somlyo and 

Somlyo, 1968). It is the muscular component of blood vessels (Clark and Pyne- 

Geithman, 2005). Smooth muscle in most blood vessels is either arranged in circular 

or spiral layers. Primarily vascular smooth muscle contain a state of partial 

contractions with relatively low ATP consumption at all times using a mechanism 

called Latch (Dillon et al., 1981) to create the muscle tone. Neurotransmitters and 

hormones influence vascular smooth muscle tone (Silverthom, 2001). 

Vasoconstriction narrows the diameter of the vessel lumen and vasodilatation widens 

it (Silverthom, 2001). The control of contraction and relaxation is dependent upon 

intracellular and extracellular signals. Hypertension, ischemia and infarction can be 

due to abnormal contractions (Clark and Pyne-Geithman, 2005).

Mechanisms for contraction and relaxation in vascular smooth muscle

Vascular smooth muscle contraction can be initiated by mechanical, electrical 

(depolarization) and chemical stimuli. Noradrenaline, adrenaline, angiotensin II, 

vasopressin, endothelin-1 and thromboxane A2 can cause contraction (Klabunde, 

2007). Each vasoconstrictor binds to a specific receptor on the vascular smooth 

muscle cell or to receptors on the endothelium adjacent to the VSM which then leads 

to vascular smooth muscle contraction. The mechanism of contraction and relaxation 

involves different signal transduction pathways including Gs protein coupled 

pathway, phosphatidylinositol bisphosphate pathway (Gq protein coupled signal 

transduction) and nitric oxide-cGMP pathway.
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>  G s p ro te in  co u p led  p ath w ay

The G s protein coupled  pathway in sm ooth stim ulates adenylate cy c la se  w hich  

catalyzes the form ation o f  cA M P . U nlike the heart, h ow ever, an increase in cA M P  in 

vascular sm ooth m uscle causes relaxation. In the heart m yosin  light chain kinase  

(M LC K ) phosphorylates m yosin  and causes contraction. H ow ever, in vascular  

sm ooth m uscle M LCK is inhibited by cA M P  and therefore cau ses relaxation (see 

Section 1.5). Previous w orkers reported that a decrease in M LC K  activ ity  after 

phosphorylation by c A M P-dependent protein k inase and the subsequent 

dephosphorylation o f  m yosin  by phosphatases m ight be part o f  the m echanism  o f  

cA M P-m cdiated relaxation in sm ooth m uscle  (D e  L anerolle et al., 1984; Rang et al.,

1999). Furthermore, an increase in cA M P  activates protein k inase A  (P K A ). PK A  is 

a holoenzym  (see Section 1.5).

Noradrenaline
Adrenaline

Gs A C

ATP cAMP

P K - A  1
M L C K Ca

C o n t r a c t i o n Ca

Figure 1.12: G s protein coupled  pathway in vascular sm ooth m uscle.
R = receptor, G s =  stim ulatory G s protein, A C  =  adenylate cyc lase , PK A  =  protein  
kinase, M LCK  =  m yosin  light chain kinase, SR  = sarcoplasm ic reticulum , p 2 =  p- 
adrenoceptor, (+ ) =  activation, (-) =  inhibition. A dapted from Klabunde (2008)

>  G q p rote in  cou p led  p ath w ay

The phosphatidylinositol bisphosphate pathway in vascular sm ooth m uscle  is sim ilar  

to that found in the heart. Adrenaline and noradrenaline acting via a \-adrenoceptors 

activate phospholipase C (PLC) causing the form ation o f  inosito l 1,4,5-trisphosphate  

(IP3) from phosphatidylinositol bisphosphate (PIP2). The IP3 then stim ulates the 

sarcoplasm ic reticulum (SR ) by binding to a sp ecific  IP3 receptor, a Ca2̂ channel

34



Chapter 1

protein com posed  o f  four identical subunits, each containing an IP3-binding site.to  

release calcium . The IP3 binding induces opening o f  the channel and a llow in g  Ca2" to 

exit from the SR into the cytoso l. An increase o f  intracellular calcium  activates 

vascular sm ooth m uscle. An increase in free intracellular calcium  can result from  

either increased flux o f  calcium  into the cell through calcium  channels or by release  

o f  calcium  from internal stores, such as from  the sarcoplasm ic reticulum . The free 

calcium  binds to calm odulin, a sp ecific  calcium  binding protein. The calcium - 

calm odulin com plex then activates M LCK w hich phosphorylates m yosin  light chain  

(M LC). MLC phosphorylation leads to cross-bridge form ation betw een  the m yosin  

heads and the actin filam ents, and hence, sm ooth m u scle  contraction (R uegg and 

Paul, 1982; Rasm ussen et al. , 1987; Clark and Pyne-G eithm an, 2005; K labunde, 

2007).

The formation o f  d iacylglycerol (D A G ) rem ains associated  with the m em brane and 

activates protein kinase C (PK C ). A rise in the cy to so lic  Ca2+level causes PKC to 

bind to the cytoplasm ic leaflet o f  the plasm a m em brane, w here it can be activated by 

the membrane associated D A G . H ow ever, for D A G  to activate PKC there needs to 

be an increase o f  Ca2* w hich is accom plished  by IP3. PKC can contribute to vascular  

sm ooth m uscle contraction via protein phosphorylation (see Section 1.5,Figure 1.9).

Noradrenaline
Adrenaline

PL-C

DAG

PK-C

Contraction

F igure 1.13: Gq protein coupled pathway in vascular sm ooth m uscle.
R =  receptor, Gq =  phospholipase C -coupled Gq protein, AC =  adenylate cyclase, 
P L C - Phospholipase C, PKC = protein kinase C, IP3 = inositol 1,4,5-trisphosphate, 
DA G  = diacylglycerol, PIP2 = Phosphatidylinositol b isphosphate, SR  =  sarcoplasm ic  
reticulum, p: =  p-adrenoceptor, (+ ) =  activation, (-) =  inhibition. Adapted from 
Klabunde (2008)
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Myosin light chain kinase

Myosin light chain kinase (MLCK) is a serine/threonine-specific protein kinase 

which phosphorylates myosin (Sweeney et al., 1993; Kamm and Stull, 2001). In 

vertebrates there are two genes for MLCK (Stull et al, 1998). The smooth muscle 

MLCK gene expresses three transcripts in a cell-specific manner to alternate 

promoters (Birukov et al., 1998; Smith et al., 1998; Watterson et al., 1999). In 

skeletal and smooth muscle MLCK is activated by Ca2+-calmodulin (Knighton et al., 

1992; Kamm and Stull, 2001) and the enzyme transfers the terminal phosphate group 

of ATP to serine or threonine-hydroxyl groups of phosphorylatable light chains. 

Myosin phosphorylation is important for the mechanism of contraction in smooth 

muscle (De Lanerolle et al., 1984; Kamm and Stull, 1985; Woodrum and Brophy, 

2001). Firstly, Ca2+ binds to the four Ca2+- binding sites of calmodulin which then 

interacts with and activate Ca2+/calmodulin-dependent MLCK and phosphorylate the 

regulatory light chain primarily on serine 19 and to lesser extent on threonine 18 

(Poperechnaya et al., 2000; Van Lierop et al., 2002). This phosphorylation enables 

the myosin crossbridge to bind to the actin filament and allows contraction to begin 

(Gallagher et al., 1997; Poperechnaya et al., 2000). Since smooth muscle does not 

contain a troponin complex, unlike striated muscle, this mechanism is the main 

pathway for regulating smooth muscle contraction..

> cGMP-coupled signal transduction

The nitric oxide (NO)-cGMP system is a very important mechanism in regulating 

vascular smooth muscle tone. Vascular endothelial cells normally produce NO, 

which diffuses from the endothelial cell to adjacent smooth muscle cells where it 

activates guanylyl cyclase leading to increased formation of cGMP and vasodilation 

(see Section below for Endothelium).

1.7.4 Endothelium

The endothelium is the inner lining of all blood vessels (see Section 1.7). The 

endothelium mediates contractile and relaxant responses of isolated arteries and 

veins from animals and humans (Figure 1.14). The endothelium-dependent 

relaxation results from the release by the endothelial cells of potent non-prostanoid
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vasodilator substances. Among these, the best characterized is endothelium-derived 

relaxing factor (EDRF), which most probably is nitric oxide. Nitric oxide is formed 

by the metabolism of L-arginine by the constitutive nitric oxide synthase of 

endothelial cells (Furchgott et a l, 1981; Collins et a l, 1986; Palmer et al., 1988; 

Olesen et a l, 1998). In arterial smooth muscle, the relaxation evoked by nitric oxide 

is best explained by the stimulation by nitric oxide of soluble guanylate cyclase, 

which leads to the accumulation of cyclic guanosine monophosphate. The endothelial 

cells also release prostacyclin and a substance that causes hyperpolarization of the 

cell membrane (endothelium-derived hyperpolarizing factor, EDHF) (Waldron et a l, 

1999; Chilian and Koshida, 2001). The release of relaxing factors can be initiated by 

circulating hormones, such as catecholamines, vasopressin, oxytocin, and estrogens. 

The release of EDRF from the endothelium can be mediated by either pertussis 

toxin-sensitive pathways, such as adrenergic activation, serotonin, aggregating 

platelets, leukotrienes or pertussis toxin-insensitive pathways, such as adenosine 

diphosphate, bradykinin G proteins (Vanhoutte, 2004).

The short-lived diffusible factor that underlies endothelium-dependent relaxation in 

response to acetylcholine (Furchgott and Zawadzki, 1980) has been identified as 

nitric oxide. Endothelial nitric oxide is formed from the guanidine-nitrogen terminal 

of L-arginine by the action of endothelial constitutive nitric oxide synthase (eNOS). 

The activation of eNOS depends on the intracellular concentration of calcium ions in 

the endothelial cells, and is Ca2+-calmodulin-dependent (Figure 1.14).

Nitric oxide diffuses to the underlying smooth muscle cells and, in them, stimulates 

cytosolic soluble guanylate cyclase, which accelerates the formation of cyclic 

guanosine monophosphate (cGMP). The cyclic nucleotide in turn inhibits the 

contractile process. Relaxation of vascular smooth msucle resutls from a decrease in 

cytosolic Ca2+ concentration or reduced Ca2+ sensitivity of the contractile apparatus 

(Sauzeau et al., 2000). The cGMP-induced relaxation involves activation of the 

cGMP-dependent protein kinase (cGK) (Lohmann et a l, 1997; Pfeifer et al., 1998). 

The cGMP/cGK pathway involves a decrease in cytosolic Ca2+ through activation of 

multiple Ca2+ lowering mechanisms (Lincoln and Cornwell, 1993) and Ca2+ 

desensitisation by stimulation of myosin light chain phosphatase (MLCP) activity 

through unknown mechansims (Wu et a l, 1996; Lee et a l, 1997).
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Nitric oxide is the major contributor to endothelium-dependent relaxation in large 

arteries (Furchgott and Zawadzki, 1980; Moncada et al., 1991). In the intact 

organism, both animal and human, the inhibitors of nitric oxide synthase cause 

vasoconstriction in most vascular beds and an increase in systemic arterial pressure, 

not only because they prevent the direct inhibitory action of nitric oxide on the 

vascular smooth muscle, but also because nitric oxide inhibits the production of renin 

and of endothelinl (Vanhoutte, 2000) (Figure 1.14).

Nitric oxide is also released in the lumen of the blood vessel. Because it is scavenged 

by the oxyhaemoglobin of the blood, it does not fulfil a hormonal role. However, at 

the interface between the blood and the blood vessel wall, it inhibits the adhesion of 

platelets and white cells to the endothelium. Furthermore, it acts in strong synergy 

with prostacyclin to inhibit platelet aggregation (Vanhoutte, 1988; Vanhoutte, 1989; 

Moncada et al., 1991). It also inhibits the growth of the vascular smooth muscle cells 

and prevents the production of adhesion molecules (Scott-Burden and Vanhoutte, 

1993)
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Figure 1.14: Role o f  the increase in cytoso lic  calcium  concentration in the release o f  
endothelium -derived relaxing factor (E D R F). Endothelial receptor activation induces 
an influx o f  calcium  into the cytoplasm  o f  the endothelial cell; after interaction with  
calmodulin, this activates nitric ox ide synthase (N O S ) and cyc looxygen ase , and leads 
to the release o f  endothelium -derived hyperpolarizing factor (ED H F). Nitric ox ide  
(NO ) causes relaxation by activating the form ation o f  cy c lic  guanosine  
monophosphate (cG M P) from guanosine triphosphate (G TP). ED H F causes  
hyperpolarization and relaxation by opening potassium  (K f) channels. Prostacyclin  
(PGI2) causes relaxation by activating adenylate cyclase , w hich leads to the 
formation o f  cyclic  adenosine m onophosphate (cA M P ). A ny increase in cy toso lic  
calcium  causes the release o f  relaxing factors. W hen agonists activate the endothelial 
cells, an increase in inositol phosphate may contribute to the increase in cytoplasm ic  
Ca2" by releasing it from the sarcoplasm ic reticulum  (SR ). A A  = arachidonic acid, L- 
Arg = L-arginine, P-450 = cytochrom e P -450, R =  m embrane receptor. Taken from  
Vanhoutte (2004)
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TAs and their various roles in the brain have been investigated (Philips et al., 1978; 

Boulton et al., 1990; Paterson et al., 1990). In the periphery, the TAs p-PEA and 

tyramine are usually regarded as indirectly acting sympathomimetic amines (ISA) 

(Aviado and Micozzi, 1981) which is usually regarded as the explanation for their 

hypertensive properties. Nevertheless, TAs may also have other peripheral functions. 

Previous publications reported some vasoconstrictor properties of TAs, including 

cathinone and MDMA ('ecstasy') in blood vessels, which do not appear to be due to 

an indirect action by releasing of noradrenaline from sympathetic nerve endings nor 

a direct action on a-adrenoceptors (Al-Motarreb and Broadley, 2003; Baker et a l,

2007). However, the mechanism underlying the vasoactive effects of TAs have not 

been investigated in detail. In this thesis the contractile responses to various TAs

have been characterized in the rat aorta, which is a well characterised and easily

accessible blood vessel, with the aim of learning more about the effects of these 

amines.

1.8 Aims

a) Determine the adrenoceptor mechanisms (a- and p-adrenoceptors, uptake 

pathways) of TAs in rat aorta. p-PEA is used as a standard TA.

b) Investigate the effect of other TAs, including tyramine, octopamine, D-

amphetamine and its derivatives in rat aorta.

c) Determine the contractile effect of various TAs in smother species, such as

guinea-pig aorta

d) Investigate the expression of TAARs in aortic tissues

1.9 Hypothesis

TAs exert vasoconstrictor effects via non-adrenergic mechanisms such as trace 

amine-associated receptors (TAARs).
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Chapter 2 

Effects of P-phenylethylamine in rat aorta examined 
using cumulative concentration-response curves

2.1 Introduction

The catecholamine sympathomimetic amines include the classical biogenic amine 

neurotransmitters, adrenaline, noradrenaline and dopamine. They have important 

roles as neurotransmitters in the central and peripheral nervous system and their 

effects are mediated through interaction with G protein-coupled receptors (GPCRs) 

of the a- and (3-adrenoceptor subtypes (Premont et al., 2001).

A second class of endogenous amine compound, called trace amines (TAs), includes 

p-phenylethylamine (P-PEA), tyramine and octopamine, which also behave as 

sympathomimetic amines (Borowsky et al., 2001; Bunzow et al., 2001; Lindemann 

et al., 2005; Lewin, 2006). The TAs are unique, as they are present in very small 

(trace) concentrations in the mammalian brain (Borowsky et al., 2001; Burchett and 

Hicks, 2006; Zucchi et al., 2006). They are structurally and functionally related to 

the catecholamines and there are a large number of synthetic analogues, such as the 

amphetamines (Bunzow et al., 2001; Branchek and Blackburn, 2003; Lindemann et 

al., 2005). TAs are primary amines generated directly by enzymatic decarboxylation 

of their respective precursor amino acid (Boulton and Dyck, 1974; Tallman et al., 

1976; Borowsky et al., 2001; Bunzow et al., 2001; Lindemann et al., 2005). They are 

produced by many organisms; invertebrates, mammals, plants, bacteria and insects. 

TAs are also found in dietary substances such as chocolate (p-PEA), cheese and wine 

(tyramine) (Branchek and Blackburn, 2003; Lindemann et al., 2005).

In the periphery they cause an increase in blood pressure (BP) and tachycardia. The 

increase in BP is due to vasoconstriction usually regarded as arising from their 

indirectly acting sympathomimetic activity (ISA). Through indirect stimulation, TAs 

cause an increase of noradrenaline release from sympathetic neurons and therefore 

exert vasoconstriction via ai-adrenoreceptors (Burchett and Hicks, 2006). TAs 

promote the efflux of noradrenaline from the synaptic vesicles of sympathetic
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neurons following their uptake into the adrenergic nerve terminal. Noradrenaline 

interacts with adrenoceptors to produce sympathomimetic effects (Schonfeld and 

Trendelenburg, 1989; Broadley, 1996). However, there is some evidence to suggest 

that this is an oversimplification. For example, tachyphylaxis is a characteristic 

feature of ISAs in that repeated dosage results in a gradual decline of the response 

(Day, 1967). This is probably due to progressive exhaustion of stored noradrenaline, 

which is replaced in the vesicle by the less active TAs. ISAs show different degrees 

of tachyphylaxis and responses are generally not completely abolished. Also there is 

a notable lack of cross-tachyphylaxis between certain TAs (Day, 1967). No 

satisfactory explanation for these discrepancies has been put forward (Broadley, 

1996). Therefore, the possibility exists that another mechanism may also be involved 

in these responses. For example, previous work from these laboratories has shown 

that the amphetamines, cathinone, the active constituent of khat leaves, and 3,4- 

methylenedioxymethamphetamine (MDMA) cause coronary vasoconstriction 

through a mechanism not involving a  i-adrenoceptors or cocaine-sensitive neuronal 

uptake (Al-Motarreb et al., 2002b; Al-Motarreb and Broadley, 2003; Baker et al.,

2007). Furthermore, these responses are not prevented by antagonists of angiotensin, 

endothelin, 5-hydroxytryptamine, prostaglandin or leukotriene (Baker and Broadley, 

2003). Thus, none of these vasoconstrictor autacoids or their receptors can explain 

the vasoconstriction. Therefore the possibility arises that the vasoconstriction is due 

to an as yet unidentified receptor. In this Chapter, these studies with MDMA and 

cathinone have been extended to a more classical TA, P-PEA, to investigate the 

mechanisms of its vasoconstrictor actions on rat aortic rings.
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2.2 Aims

To study the effect of trace amines (TAs) employing cumulative concentration-

response curves (CRCs) to investigate the contractile responses of rat isolated aortic

rings to p-PEA in the presence of a range of different inhibitors.

a.) Determine whether p-PEA produces vasoconstriction in the rat isolated aortic 

tissue

b.) To investigate the involvement of endothelium to the contractile response to 

TAs in rat aortic rings

c.) Determine whether any vasoconstriction seen to p-PEA is mediated by 

sympathomimetic actions

d.) To investigate the possible receptor type mediating this response in rat aortic 

rings
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2.3 Methods and Material

This Chapter details the materials and methods used for all the experimental work 

described in the thesis. Subsequent Chapters will provide a brief outline of the 

methods used together with any specific details of the protocols.

2.3.1 Animals

Male Sprague-Dawley rats (250-300g) were obtained through the Joint Animal 

Services department of Cardiff University from Harlan (Blackthorn, Bicester, 

Oxfordshire, U.K.). Rats were maintained under conventional animal housing 

conditions following a 12-hour light-dark cycle (8 a.m.-8 p.m.) and at an ambient 

room temperature of 21 ± 2°C and humidity of 55 ± 10%. Animals received food and 

drinking water ad libitum. The welfare of the animals was carried out by experienced 

technicians and all experiments described in this thesis observed strict compliance to 

the Animals (Scientific Procedures) Act 1986.

2.3.2 Main Methods
The male rats were killed by cervical dislocation and exsanguination. The thoracic 

and abdominal aorta was removed (Figure 2.1) and cut into ring sections, through 

which were passed a fixed hook and a mobile hook. The fixed hook was secured in a 

50ml organ bath. The bath was filled with pre-warmed (37°C) Krebs-bicarbonate 

buffer gassed with CO2/O2 (5%/95%) (Figure 2.2 a, b, c).
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Thoracic Aorta

Abdominal Aorta

F igure 2.1: Rat circulatory system s.
The thoracic and abdom inal parts o f  the aorta w ere used for the study. Adapted from  
Biology com er (2005).

Tissue Bath Set Up

A suture attached to the upper m obile hook w as connected  to an isom etric transducer 

(Dynam om eter U F1, 57g  sensitiv ity  range, Pioden Controls Ltd. Canterbury) and a 

resting tension o f  1.5g w as applied. Isom etric tension  w as m easured and d isp layed  

on a com puter (Pow er Lab, Chart 5, A D  Instrum ents) (C halgrove, O xfordshire, U K ) 

(Fig. 2.2 c). The Krebs bicarbonate buffer w as m ade up in d istilled  water and had the 

follow ing com position  (m M ): N aC l (100 ), N aH C 0 3  (20 ), g lu cose  (10 ). M gS 0 4 .7 H 20  

(1), KH 2PO4 (1), KC1 (5) and C aC l2 .2H 20  (3 ). Organ baths w ere m aintained at 

37±0.5°C  by a Grant Circulator (Grant Instruments, Cam bridge, U K ). To prepare 

60m M  isotonic Krebs solution  the amount o f  N aC l w as decreased to 43m M  and the 

amount o f  KC1 w as increased to 60m M . The organ bath and reservoir were 

continuously aerated with a CO 2/O 2 (5% /95% ) m ixture (B O C  G ases, G uildford, UK ).
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c)
Transducer

b)

Mechanical Signal

«

Power Lab hardware

Analog electrical 
signal

. . .101101...

Digital signal

Computer

Figure 2.2: T issue bath set up
A ) Rat aorta ring on holder, before placing in organ bath. B) Organ bath with rat 
aorta ring in place, held on a fixed  holder and the suspended on e.C ) M easurem ent 
and analysis o f  the isom etric tension via an isom etric transducer. A  suture attached to 
the upper m obile hook w as connected  to an isom etric transducer. The results were  
shown on a computer. Adapted from  Power Lab, Chart 5, AD Instruments.

2.3.3 Experimental Protocol

After approxim ately 60 m inutes equilibration tim e, Krebs solution containing KCl 

(60m M , isotonic solution) (Section 2.3.2) w as added to contract the tissue and test 

for viability. After w ash out and equilibration, cum ulative concentration-response  

curves (C R C s) for p-PEA were obtained in the absence or presence o f  different 

inhibitors, w hich were incubated with the tissue for 15 m inutes before com m encing  

the CRC unless otherw ise stated. At the end o f  each experim ent, KCl (60m M , 

isotonic solution) w as routinely added after w ashout o f  the final drug concentration.
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In some of the experiments the endothelium was removed by inserting a wooden 

cocktail stick and rolling the aortic ring round it. The absence or presence of the 

endothelium was confirmed initially by adding acetylcholine (Ach, lOOpM) to aorta 

pre-contracted with U46619 (lpM), a selective thromboxane A2 agonist (TxA2) 

selective for thromboxane A2 (TP) receptors and prostaglandin H2 (PGH2) receptors 

(Trachte, 1986; Smith et a l, 1988; Alexander et al., 2008). Acetylcholine produces 

vasodilatation in smooth muscle via muscarinic-receptors on the endothelium and 

release of nitric oxide (Waldron et al, 1999) (Figure 2.5 a, b).

Cumulative concentration-response curves (CRCs)

To construct cumulative CRCs, successive concentrations of agonist were added to 

the 50ml tissue bath in half logarithmic increments after the peak effect was reached 

for the preceding concentration.

Single dose experiments

To obtain single dose responses, a single sub-maximum concentration of agonist, 

was added to the bath, which was washed out after the peak effect had been reached.

In the present Chapter, each tissue was incubated only once with a single dose of p- 

PEA (30pM) in the absence, or presence of various antagonists (cocaine (lOpM), 

prazosin (lpM ) and propranolol (lpM)).

2.3.4 Analysis of Results
Contractions at the plateau response to each concentration of agonist were measured 

from the baseline before the CRC. These were then expressed as a percentage of the 

contraction to KCl in each experiment and the mean responses (± SEM) plotted. N 

values represent the number of rat aortas.

-log EC50 values of individual CRCs were calculated in GraphPad Prism 4 and the 

mean (-) log molar EC50 value calculated together with the SEM. The EC50 value is 

the molar concentration of an agonist which produces 50% of the maximum possible 

response for that agonist. Mean (-) log molar EC50 values were compared by paired 

or unpaired Student’s t-test or by Analysis of Variance (ANOVA) followed by a 

post-hoc test, such as Bonferoni and Dunnett, using GraphPad Instat 3.
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2.3.5 Drugs Used

All chemicals were dissolved in distilled water, unless otherwise stated. Prazosin 

hydrochloride and U46619 were dissolved in DMSO.

> Reagents obtained from Sigma Aldrich (Poole, Dorset, UK)

Acetylcholine chloride, cocaine hydrochloride, prazosin hydrochloride, (±)- 

propranolol hydrochloride, (±) noradrenaline hydrochloride, p-phenylethylamine (p- 

PEA) and U46619 (9,11 dideoxy-lla, 9a epoxymethano-prostaglandine F2a) and 

indomethacin (prepared in water)

> Reagents obtained from Fisher Scientific (Leicestershire, UK)

All chemicals for the Krebs-bicarbonate buffer (analytical grade)

> Reagents obtained from TOCRIS Biosciences (Northpoint, Avonmouth,

UK)

L- N°- nitro-arginine methyl ester hydrochloride (L-NAME)
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2.4 Results

2.4.1 Vasoconstriction in rat aortic rings to P-PEA (cumulative
CRCs)

The addition of low concentrations of p-PEA in cumulative CRCs caused 

concentration-related contractions (Figure 2.3).

Wash
Wash

KCi (60mM) lO m in10 m in10 min 10 m in

P-PEA (1mM)

P-PEA (1pM)

Figure 2.3: Representative chart recording showing a cumulative concentration- 
response curve (CRC) for the contractile response of rat aorta to P-phenylethylamine 
(p-PEA). At the beginning KCl (60mM, isotonic solution) was added to contract the 
tissue and test for viability. “Wash” = washout of tissue bath.

2.4.2 Contractile response to p-PEA - effect of different parts of 
the rat aorta and endothelium

P-PEA caused concentration-related contractions of the rat aorta (Figure 2.3). 

Tissues taken from the abdominal or thoracic part of the aorta were shown to 

produce similar contraction to p-PEA. The contractile response at the maximum 

concentration of P-PEA of the abdominal part of the aorta (300pM, 58.7±13.1%, 

n=5) was not significantly different (P>0.05) from the corresponding response to p- 

PEA of the thoracic part of the aorta (300pM, 45.7±14.1%, n=4) (Figure 2.4). All 

further experiments were therefore conducted using either abdominal or thoracic 

aorta. The contractile response of rat aorta to P-PEA was independent of the presence 

of endothelium (Figure 2.5).The response at the maximum concentration of p-PEA 

(3mM, 197.9±21.1%, n=4) after endothelium removal was not significantly different
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(P>0.05) from that in aorta with the intact endothelium (3mM, 145±44.8%, n=5). 

The -log EC50 values for the p-PEA of 4.17±0.27 in denuded and 3.94±0.27 in intact 

tissues were not significantly different (P>0.05) (Figure 2.5). To test for the presence 

or absence of endothelium, responses to acetylcholine were examined in aorta pre

contracted with U46619 (lpM) (Figure 2.6 a, b).

2.4.3 Contractile response to P-PEA - effect of L-NAME

The contractile response to p-PEA in the presence or absence of the endothelium was 

not affected by the presence of the nitric oxide synthase inhibitor, L-NAME 

(lOOpM). In endothelium-denuded tissues, the response to the maximum 

concentration of p-PEA in the presence of L-NAME (3mM, 224.7+97.4%, n=6) was 

not significantly different (P>0.05) from the response to p-PEA in endothelium- 

intact tissues (3mM, 161.1 ±49.1%, n=6) (Figure 2.7). Furthermore, in the absence of 

the endothelium, the response at the maximum concentration of P-PEA in presence 

of L-NAME (3mM, 224.7±97.4%, n=6) was not significantly different (P>0.05) from 

the contractile response to P-PEA without L-NAME (3mM, 197.9+21.1%, n=4) 

(Figure 2.8). Finally, in endothelium-intact tissues, the response at the maximum 

concentration of p-PEA in the presence of L-NAME (3mM, 161.1 ±49.1%, n=6) was 

also not significantly different (P>0.05) from the corresponding response to p-PEA 

without L-NAME (3mM, 145±44.8%, n=5) (Figure 2.9).

2.4.4 Possible relaxation responses to p-PEA in the absence or 
presence of endothelium

Next, p-PEA was examined to determine if it could cause a relaxation in aortic rings 

pre-contracted with U46619 (lpM). p-PEA in the presence of U46619 (ljiM) 

showed no relaxation in the presence or absence of endothelium. However, pre

contracted aortic rings showed a further contractile response to p-PEA (Figure 2.10). 

The additional contractile response of endothelium-intact aortic rings to the 

maximum concentration of P-PEA (3mM, 120.7±21.9%, n=5) was significantly 

greater (P<0.05) than the response to p-PEA in the absence of the endothelium 

(3mM, 53.3±3.3%, n=5).
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However, the -log EC50 values for p-PEA in endothelium-intact tissues (4.46±0.19) 

and in endothelium-denuded tissues (5.4±0.20) were not significantly different 

(P>0.05) (Figure 2.10).

Pre-contracted and endothelium-denuded aortic rings showed a significantly 

(P<0.05) reduced contractile response to the maximum concentration of p-PEA 

(3mM, 53.3±3.3%, n-5) compared to the contractile response at the corresponding 

concentration in non pre-contracted, endothelium-denuded tissues (3mM, 

197±21.1%, n=4) (Figure 2.11). In endothelium-intact tissues, no significantly 

difference (P>0.05) of the contractile response to p-PEA was found between pre

contracted (3mM, 121±22%, n=4) and non pre-contracted tissues (3mM, 168.8±49%, 

n=4) (Figure 2.12). In U46619 pre-contracted tissues to measure the reduced 

contraction (vasodilatation) the baseline was taken after U46619 contractions.

The contraction to U46619 (lpM , 164.6±43.6%, n=4) in endothelium-intact tissues 

was not significantly (P>0.05) different from the corresponding response to U46619 

(lpM, 108.3±8.3%, n=4) in endothelium-denuded tissues (Figure 2.13).

2.4.5 Contractile response to p-PEA - effect of indomethacin

The contractile response of rat aorta to p-PEA in the presence of indomethacin 

(lOpM) was tested. p-PEA caused concentration-related contractions of the rat aortic 

rings which were not significantly (P>0.05) displaced by indomethacin (lOpM). The 

contractile response at lOOpM of p-PEA (64.2+9.4% n=3) was not significantly 

different (P>0.05) from the corresponding response to P-PEA with indomethacin 

(lOOpM, 52.7115.1%, n=6 ). The -log EC50 values for p-PEA in the absence 

(4.6210.13) and in the presence of indomethacin (4.8810.15) were not significantly 

different (P>0.05) (Figure 2.14).
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Figure 2.4; Mean cumulative CRCs for the contractile response of thoracic (□ , n=4) 
and abdominal (♦ , n=5) regions of rat aorta to p-PEA. Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KCl (60mM, 
isotonic solution). Mean responses (±SEM) were compared by Student’s paired t- 
test. No significant (P>0.05) differences were seen at their maximum concentration 
(3mM).
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Figure 2.5: Contractile effects in rat aortic rings to p-PEA Cumulative CRCs for p- 
PEA in rat aorta were constructed in the presence (♦ , n=4) or absence (□ , n=4) of 
endothelium. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KCl (60mM, isotonic solution). Endothelium was 
removed by inserting a cocktail stick and rolling the aortic ring round it. Mean 
responses (±SEM) were compared by Student’s paired t-test. No significant (P>0.05) 
differences were seen at their maximum concentration (3mM).
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(a)
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(b)
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Figure 2.6: Typical traces showing the effect of acetylcholine (Ach, lOOpM) added 
to rat aortic rings pre-contracted with U46619 (lpM), in the presence (a), or absence 
(b) of endothelium. The mechanical removal of endothelium was successfully shown 
by the absence of relaxation to Ach (lOOpM) in U46619-precontrated (lpM) aortic 
rings (b).
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Figure 2.7; Effects of L-NAME (IOOjiM) and endothelium removal on the mean 
CRCs for the contractile responses in rat aorta to p-PEA. Cumulative CRCs were 
constructed in the presence of L-NAME (lOOpM) and in endothelium-intact tissues 
(♦ , n=6) or in the presence of L-NAME (IOOjjM) and in endothelium-denuded 
tissues (□ , n=6). Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KCl (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s paired t-test. No significant (P>0.05) 
differences were seen.
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Figure 2.8: Mean CRCs for the contractile response in rat aorta to p-PEA in the 
absence of endothelium and in the presence or absence of L-NAME (lOOjaM). 
Cumulative CRCs were constructed in the presence of L-NAME (lOOpM) and in the 
absence of endothelium (□ , n=6) or in the absence of L-NAME and endothelium (♦ , 
n=4). Responses are the mean (±S.E.M.) contractions expressed as a percentage of 
the contraction to KCl (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s unpaired t-test. No significant (P>0.05) differences were 
seen.
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Figure 2.9: Effects of L-NAME (lOOpM) on the mean CRCs for the contractile 
response in rat aorta to p-PEA. Cumulative CRCs were constructed in the presence 
of L-NAME (lOOpM) and endothelium (♦ , n=6) or in the absence of L-NAME and 
the presence of endothelium (□ , n=5). Responses are the mean (±S.E.M.) 
contractions expressed as a percentage of the contraction to KCl (60mM, isotonic 
solution). Mean responses (±SEM) were compared by Student’s unpaired t-test. No 
significant (P>0.05) differences were seen at their maximum concentration (3mM).
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Figure 2.10: Contractile effect on P-PEA on pre-contracted (U46619, lpM) rat 
aortic rings. Cumulative CRCs were constructed in the presence (□ , n=5), or absence 
of endothelium (♦ , n=5). Responses are the mean (±S.E.M.) contractions expressed 
as a percentage of the contraction to KCl (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s paired t-test. A significant difference was seen 
at the maximum concentration (3mM).
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Figure 2.11: Contractile effect of P-PEA on pre-contracted (U46619, lpM) and none 
pre-contracted rat aortic rings. Cumulative CRCs were constructed in pre-contracted 
and endothelium-denuded tissues (♦ , n=5) or in non pre-contracted endothelium- 
denuded tissues (□ , n=4). Responses are the mean (±S.E.M.) contractions expressed 
as a percentage of the contraction to KCl (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s unpaired t-test. A significant difference was 
seen at the maximum concentration (3mM).
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Figure 2.12: Contractile effect of (3-PEA on pre-contracted (U46619, lpM) and non
pre-contracted rat aortic rings. Cumulative CRCs were constructed in pre-contracted 
and endothelium-intact tissues (♦ , n=5) or in non pre-contracted, endothelium-intact 
tissues (□ , n=4). Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s unpaired t-test. No significant differences were 
seen at their maximum concentration (3mM).
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Figure 2.13: Contractile effect of U46619 (lpM) in rat aortic rings. U46619 (lfiM) 
was tested in endothelium-denuded (-Endothelium, n=4) or endothelium-intact 
(+Endothelium, n=4) tissues. Responses are the mean (±S.E.M.) contractions 
expressed as a percentage of the contraction to KC1 (60mM, isotonic solution). Mean 
responses (±SEM) were compared by Student’s unpaired t-test. No significant 
(P>0.05) difference was seen.
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Figure 2.14: Effect of indomethacin on the contractile response to (3-PEA on rat 
aortic rings. Cumulative CRCs were constructed in endothelium-denuded tissues in 
absence (□ , n=3), or presence (♦ , n=6) of indomethacin (lOpM). Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by Student’s 
paired t-test. No significant (P>0.05) differences were seen at the maximum 
contraction (lOOpM).
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2.4.6 Contractile response to noradrenaline - effect of adrenergic 
inhibitors

To establish suitable concentrations of cocaine (lOpM), an Uptake 1 inhibitor, 

prazosin (lpM), a selective ai-adrenoceptor antagonist and propranolol (lpM), a 

non-selective p-adrenoceptor antagonist, they were examined against contractions to 

noradrenaline prior to evaluation against p-PEA.

Noradrenaline caused concentration-related contractions of rat aortic rings (30pM, 

212.9±16.8%, n=14) (Figure 2.15). The response at the maximum concentration of 

noradrenaline in the absence of blockers was significantly (PcO.Ol) reduced by 

prazosin (30pM, 33.3±33.3%, n=3). Propranolol (30pM, 235.4+52.9%, n=4) did not 

modify the corresponding response of noradrenaline significantly (P>0.05) (Figure

2.15). Cocaine also failed to enhance the contractile response at the maximum 

concentration (30pM) of noradrenaline. The maximum contraction to noradrenaline 

was not significantly (P>0.05) inhibited by cocaine to 107.5±31% (n=4) (Figure

2.15).

2.4.7 Contractile response to p-PEA - effect of adrenergic 
inhibitors

The contractile response of rat aorta to p-PEA was not altered in the presence of 

prazosin (lpM) or propranolol (lpM). p-PEA caused concentration-related 

contractions of the aortic rings (3mM, 175±61.9% n=4). The response at the 

maximum concentration of p-PEA in the absence of various inhibitors was not 

significantly different (P>0.05) from the response to p-PEA with prazosin (lpM) 

(3mM, 151.5±20.1%, n=5), or propranolol (lpM) (3mM, 138.6+34.4%, n=6) (Figure

2.16). The experiments were then repeated in the presence of cocaine (lOpM). 

Neither propranolol (lpM) alone, nor propranolol (lpM) with prazosin (lpM) 

altered the CRC compared with that in the presence of cocaine alone (Figure 2.17). 

The contractile response in the presence of cocaine (300pM, 44.4±14.8%, n=6), 

cocaine and prazosin (300pM, 17.4±4.6%, n=4), cocaine and propranolol (300pM, 

44.2±16.4%, n=5), and cocaine, propranolol and prazosin (300pM, 25.3+10.5%, 

n=7) were not significantly different (P>0.05) (Figure 2.17).
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It was possible that with a prolonged exposure to p-PEA during a cumulative CRC, 

there may have been tachyphylaxis or desensitization which could have led to 

underestimation of the maximum effect. To avoid this possibility, the contractile 

response to P-PEA (30pM) in the presence of various inhibitors was examined by 

using a single dose of P-PEA (30pM) in each tissue in the presence of various 

inhibitors. Neither cocaine (lOpM) (30pM, 58.9±10.7%, n=4), propranolol (lpM) 

(30pM, 41.5±11.8%, n=7), propranolol (lpM ) and prazosin (lpM) (30pM, 

21.6±12.9%, n=4) nor propranolol (lpM ) with cocaine (10pM) (30pM, 46.7±15.3%, 

n=7) significantly (P>0.05) altered the contractile response to p-PEA (30pM, 

55.7±11.9%, n=10) (Figure 2.18). However, the contractile response to p-PEA 

(30pM) was significantly inhibited (P<0.05) by prazosin (lpM) (30pM, 3.4+1.9%, 

n=5), and also in the presence of prazosin (lpM), propranolol (lpM) and cocaine 

(lOpM) (30pM, 13.7±2.5%, n=6) (Figure 2.18).
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Figure 2.15: Contractile effect of noradrenaline (NA) in rat aortic rings in the 
presence of various inhibitors. Cumulative CRCs were constructed in absence of 
antagonists (□ , n=14) or in the presence of prazosin (lpM ,A , n=3) or in the 
presence of cocaine (lOpM, n=4) or in the presence of propranolol (lpM ,A, 
n=4). Responses are the mean (±S.E.M.) contractions expressed as a percentage of 
the contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Dunnett test. A significant 
difference was seen between the contractile response to noradrenaline in the absence, 
or presence of prazosin (lpM) (P<0.01,^-fc).
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Figure 2.16: Contractile effect of P-PEA in rat aortic rings in the presence of 
prazosin (lpM ) and propranolol (lpM). Cumulative CRCs were constructed in the 
absence of antagonists (□ , n=4) or in the presence of prazosin (lpM ,V , n=5) or in 
the presence of propranolol (lpM, ♦ ,  n=6). Responses are the mean (±S.E.M.) 
contractions expressed as a percentage of the contraction to KC1 (60mM, isotonic 
solution). Mean responses (±SEM) were compared by ANOVA followed by the 
“post hoc” Bonferroni test. No significant (P>0.05) differences were seen.
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Figure 2.17: Contractile effect of p-PEA in rat aortic rings in the presence of various 
inhibitors. Cumulative CRCs were constructed in the presence of cocaine (10pM,-&, 
n=6) or in the presence of cocaine (lOpM) and propranolol (lpM) (□ , n=5) or in the 
presence of cocaine (10pM) and prazosin (lOpM) (♦ , n=4) or in the presence of 
cocaine (10pM), propranolol (10pM) and prazosin (lOpM) (A, n=7). Responses are 
the mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by ANOVA 
followed by the “post hoc” Bonferroni and Dunnett test. No significant differences 
(P>0.05) were seen.
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Figure 2.18: Single dose experiments for the contractile response in rat aortic rings 
to p-PEA (30pM) were constructed in the absence (n=10), or presence of various 
inhibitors. p-PEA (30pM) in the presence of prazosin (lpM, n=4), p-PEA (30pM) in 
the presence of propranolol (lpM, n=7), P-PEA (30pM) in the presence of cocaine 
(lOpM, n=4), P-PEA (30pM) in the presence of cocaine (lOpM) and propranolol 
(lpM , n=6). p-PEA (30pM) in the presence of propranolol (lpM) and prazosin 
(lpM , n=4) and p-PEA (30pM) in the presence of cocaine (lOpM), prazosin (lpM) 
and propranolol (lpM , n=6). Responses are the mean (±S.E.M.) contractions 
expressed as a percentage of the contraction to KC1 (60mM, isotonic solution). Mean 
responses (+SEM) were compared by ANOVA followed by the “post hoc” Dunnett 
test. A significant difference (P<0.05,-£) to the contractile response to p-PEA 
(30pM) was shown in the presence of prazosin (lpM) (n=5), and prazosin (lpM), 
cocaine (IOjiM) and propranolol (lpM) (n=6). Prop = Propranolol, Prazo = Prazosin, 
Coc = Cocaine
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2.5 Discussion

2.5.1 Vasoconstriction in rat aortic rings to P-PEA

p-PEA caused concentration-related contractions of the rat aortic rings regardless of 

which part of the aorta was used (thoracic or abdominal aorta) (Figure 2.3). 

Therefore, the mechanisms and receptor population upon which p-PEA acts in the rat 

aorta seems to be evenly distributed. So for future experiments either part of the rat 

aorta could be used.

2.5.2 Contractile response to P-PEA in rat aorta - effect of
endothelium

The contractile response of rat aorta to p-PEA was shown to be independent of the 

presence of endothelium. The endothelium was not therefore responsible for the 

contractile response in rat aortic rings to p-PEA. There was also no opposing 

vasodilatator response to p-PEA mediated via the endothelium. If this had been the 

case endothelium removal would have potentiated the contractile response. The 

presence of an intact endothelium was demonstrated by the relaxation response to 

acetylcholine in the pre-contracted aorta, which is known to induce relaxation via 

endothelium-derived release of nitric oxide (Van de Voorde and Leusen, 1983; 

Furchgott, 1984; Waldron et a l, 1999).

Various experiments were then performed to verify this conclusion. Vascular tone is 

regulated by different factors which are produced by blood vessel endothelium. 

Amongst others, endothelium-derived relaxing factor (EDRF) is responsible for the 

vasodilator activity of acetylcholine (Pfister and Campbell, 1992; Das et al., 1999), 

which has subsequently been identified to be nitric oxide (NO), synthesised from the 

terminal guanidino nitrogen atom of L-arginine, in the endothelial cell (Furchgott et 

al., 1981; Gordon and Martin, 1983; Collins et al., 1986; Palmer et a l, 1988; Olesen 

et al., 1998). Also, it has been shown that endothelium-dependent hyperpolarizing 

factor (EDHF) causes endothelium-dependent relaxation (Waldron et al, 1999). The 

results in the present study show conclusively, that P-PEA is not releasing these 

factors in rat aorta as the contractile response of rat aorta to P-PEA was unaffected by 

the presence of a nitric oxide synthase (NOS) inhibitor, L-NAME (lOOpM) (Cannell 

and Sage, 1989; Scheller et a l, 1998) in the absence, or presence of the endothelium.
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The failure of endothelium removal to enhance the vasoconstriction indicates that p- 

PEA is not causing the release of endothelium-derived NO which would cause an 

opposing vasodilatation (Tschudi et al., 1996). This was confirmed by the lack of 

effect of L-NAME in both endothelium-intact and denuded preparations. The latter 

result indicates that there was no endothelium-independent NO release by P-PEA.

2.5.3 Vasodilatator response to p-PEA

In previous publications, it was reported that TAs, such as tyramine and P-PEA 

showed reduced contractions (vasodilatation) at higher concentrations (Varma and 

Chemtob, 1993; Varma et al., 1995). This observation was also seen in some of the 

results in this study (e.g. Figure 2.13). Therefore, the effect of p-PEA in U46619 pre

contracted aortic tissues was examined. U46619 is a synthetic 

thromboxane/prostaglandin-H2 (PGH2) agonist and a selective thromboxane A2 

(TXA2) mimetic that evokes vasoconstriction in smooth muscle (Coleman et al., 

1981; Trachte, 1986; Smith et al., 1988). However, the effect of reduced 

vasoconstriction (vasodilatation) to p-PEA in rat aortic rings, at higher 

concentrations, cannot be confirmed with these experiments, as p-PEA showed 

further contractions in U46619-precontracted tissues rather than expected 

vasorelaxant effects in endothelium-intact and endothelium-denuded tissues. 

Furthermore, the presence of endothelium potentiated the contractile responses in 

pre-contracted tissues. Therefore the vasorelaxant factors of the endothelium, as 

previously discussed, were not affecting the contractile response to p-PEA in pre

contracted tissues. The possible vasodilator response to p-PEA will be examined in 

more detail in Chapter 4.

2.5.4 Contractile response to P-PEA - effect of indomethacin

Indomethacin also failed to affect the vasoconstrictor response to P-PEA. The failure 

of this cyclooxygenase (COX) inhibitor (Schachter and Sang, 1997; Fischer et al., 

2 0 0 0 ) to attenuate the vasoconstriction confirms that the mechanism of action of p- 

PEA is not mediated through products of COX, such as prostaglandins and 

thromboxane. Thromboxane and its receptors ( TBXR2R) cause constrictions of 

vascular and respiratory smooth muscles (Lefer et al., 1980; Leung et al., 2002).
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2.5.5 Contractile responses to noradrenaline and p-PEA - effect 
of adrenergic inhibitors

In the periphery, p-PEA is regarded as an indirectly acting sympathomimetic amine 

(ISA) inducing pharmacological effects through the release of noradrenaline from 

sympathetic neurons (Burchett and Hicks, 2006). In rat isolated blood vessels this 

would be expected to induce vasoconstriction through stimulation of a- 

adrenoceptors with the possibility of some opposing vasodilatation via p~ 

adrenoceptors. Therefore, the roles of neuronal uptake and a- and p adrenoceptors in 

p-PEA-induced vasoconstriction were examined. Cocaine was used as an inhibitor of 

noradrenaline neuronal uptake which should also interfere with the activity of 

indirectly acting sympathomimetic amines by inhibiting the carrier of the amine into 

the neuron and the outward transport of noradrenaline (Broadley, 1996). Propranolol 

was used to inhibit the smooth muscle relaxation of the rat aortic rings via p- 

adrenoceptors (Brawley et al., 2000) and prazosin was used as a selective ai- 

adrenoceptor antagonist (Stanaszek et al., 1983; Smit et al., 1991). In a previous 

publication the concentrations of propranolol, cocaine and prazosin used here were 

shown to be effective in blocking p-adrenoceptors, the noradrenaline transporter and 

ai-adrenoceptors, respectively (Baker et al., 2007). In the present study there was no 

significant potentiation of the contractile response to noradrenaline by propranolol. 

Therefore, there is no P-adrenoceptor-mediated vasorelaxant role of noradrenaline in 

rat aortic rings. This confirms previous reports from this laboratory (Broadley and 

Penson, 2006) and by others (O'Donnell and Wanstall, 1984a; O'Donnell and 

Wanstall, 1984b) that noradrenaline does not stimulate P-adrenoceptors in this tissue. 

However, this does not exclude the possibility that p-PEA and other TAs do not have 

effects via p-adrenoceptors. The potency of prazosin as a selective ai-adrenoceptor 

antagonist was confirmed by the effective suppression of the contractions over the 

noradrenaline concentration range used. The vasoconstriction by P-PEA was reduced 

by prazosin, but not significantly, suggesting that the response was only partially 

mediated via a-adrenoceptors. Propranolol failed to potentiate the contractile 

response to p-PEA. Therefore, a P-adrenoceptor-mediated vasorelaxation (Brawley 

et al., 2000) does not contribute to the vascular response to P-PEA and does not 

oppose the vasoconstriction observed. A p-adrenoceptor mediated vasorelaxation
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also does not explain the reduced contractions occasionally seen at high 

concentrations of p-PEA (Figure 2.13). Therefore, the occasionally seen 

concentration-dependent vasorelaxant activity of p-PEA must be based on 

mechanisms other than P2-adrenoceptors. It was suggested that various 

phenylethylamines produce endothelium- and p-adrenoceptor-independent relaxation 

of rat aorta which may involve novel vasorelaxant tyramine receptors (Varma and 

Chemtob, 1993; Varma et al., 1995). A previous publication has shown that cocaine 

causes vasoconstriction in cardiovascular tissues (Egashira et al., 1991) and others 

have shown that myocardial infarctions and various other ischemic heart diseases are 

often associated with cocaine use (Schachne et al., 1984; Simpson and Edwards, 

1986; Smith et al., 1987).

In the present study, cocaine failed to enhance the contractions to noradrenaline in rat 

aortic rings compared to the effect of cocaine in other isolated tissues. This confirms 

others observations for cocaine in rat aorta (Maling et a l, 1971; Kuchii et a l, 1973; 

Al-Sahli et al., 2001). This has been related to the sparse sympathetic interaction of 

the rat aorta and the fact that the neuronal endings are not located close to the a- 

adrenoceptors that mediated the vasoconstriction (Maling et al., 1971; Kuchii et al., 

1973; Al-Sahli et a l, 2001). Cocaine also failed to potentiate the contractile response 

to p-PEA. Therefore, a cocaine-sensitive vasorelaxation (Li et al., 2004) does not 

contribute to the vascular response to p-PEA and does not oppose the 

vasoconstriction observed. The failure to inhibit the vasoconstriction by cocaine 

suggests that P-PEA is not mediating its response via a cocaine-sensitive uptake 

pathway. This would suggest that it is not behaving as an ISA. Regarding other 

publications, the mechanism of action of cocaine in vascular tissues is complex and 

is not fully understood (Egashira et a l, 1991). Nevertheless, further experiments with 

p-PEA were conducted in the presence of cocaine to prevent any transport of p-PEA 

into sympathetic neurons and possible displacement of noradrenaline. The presence 

of cocaine, prazosin or prazosin in the additional presence of propranolol failed to 

inhibit the CRCs for vasoconstriction by P-PEA. This confirms that a-adrenoceptors 

play only a minor role in the response. Tachyphylaxis is a characteristic feature of 

ISAs, such as p-PEA and tyramine, in that repeated dosage results in a gradual 

decline of the response (Day and Rand, 1963; Day, 1967). The level of tachyphylaxis
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between ISAs is inconsistent and the contractile responses are generally not 

completely abolished. Furthermore, the repeated exposure to a number of agonists at 

GPCRs is often associated with desensitisation of the receptor (Thomas et al., 1992; 

Booker, 2002). Therefore, to avoid any possible tachyphylaxis or desensitisation, the 

contractile response to p-PEA was investigated in different tissues with a single dose 

(30pM) in the absence or presence of various inhibitors.

The effects of propranolol and cocaine indicate that the results from the single dose 

experiment are comparable to the previously discussed results from the CRCs 

experiment. Both inhibitors failed to potentiate the contractile response to p-PEA in 

rat aortic rings. Therefore, the results confirmed, that the cocaine and also the p- 

adrenoceptor-mediated vasorelaxation do not contribute to the vascular response to 

P-PEA and does not oppose the vasoconstriction observed (Brawley et al., 2000; Li 

et al., 2004). However, in contrast to the previous discussed results from the CRCs 

experiment (Figure 2.15) the contractile response to p-PEA in single dose 

experiment (Figure 2.17) was significantly reduced by prazosin. Moreover, in the 

presence of prazosin, cocaine and propranolol, the contractile response to P-PEA was 

also significantly inhibited. Therefore, in this case, the blocking effect of prazosin 

was stronger than expected and the contractile response was mainly mediated via a- 

adrenoceptors.

2.6 Conclusion

The mechanism by which P-PEA causes vasoconstriction cannot be determined from 

this study but the possibility must be considered that p-PEA is releasing other 

endogenous vasoconstrictors such as angiotensin or activating a novel receptor 

system. However, the endothelium cannot be a source of such vasoconstrictors, as 

the absence of the endothelium did not reduce the contractions to p-PEA. The results 

with prazosin were equivocal and in that with the CRCs there was no antagonism yet 

with single doses there appeared to be antagonism. Thus, to clarify the role of a- 

adrenoceptors and ISA in the vasoconstrictor action of p-PEA, further experiments 

were performed in the following Chapters using non-cumulative CRCs.
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Chapter 3 

Effects of adrenergic inhibitors on non-cumulative 
concentration-response curves for p-PEA

3.1 Introduction
TAs are endogenous amine compounds closely related to classical monoamine 

neurotransmitters (Berry, 2004; Lindemann and Hoener, 2005; Zucchi et al., 2006). 

Although the pathological and physiological importance (Kim and von Zastrow, 

2001; Premont et al., 2001; Berry, 2004) of TAs has been studied for a number of 

years, it was not until the discovery of the trace amine-associated receptor (TAAR) 

that interest was regenerated (Borowsky et al., 2001; Bunzow et al., 2001). The TA 

p-PEA is found in several mammalian tissues (Nakajima et al., 1964) amongst them, 

the brain (Henry et al., 1988; Paterson et al., 1990). Moreover, p-PEA is involved in 

neuronal transmission (Panoutsopoulos et al., 2004a). TAs have been found in 

certain foodstuffs, like chocolate, cheese and wine (Panoutsopoulos et al., 2004a) 

and are thought to cause migraine attacks in susceptible individuals (Martin and 

Behbehani, 2001; Millichap and Yee, 2003). Although tyramine-containing foods are 

frequently implicated as headache precipitants, chocolate, the most common dietary 

trigger, does not contain tyramine, but does have large amounts of P-PEA (Martin 

and Behbehani, 2001; Millichap and Yee, 2003).

p-PEA is created by the decarboxylation of the amino acid L- phenylalanine (Dyck et 

al., 1983). Monoamine oxidase (MAO), a flavin-containing enzyme, is widely 

distributed in the central and peripheral nervous systems (Waldmeier, 1987; Muller 

et al., 1993) and has been found in the smooth muscle of guinea pig ileum (Banchelli 

et al., 1985). MAOs are enzymes that catalyze the oxidative deamination of 

exogenous and endogenous monoamines including dietary amines and 

neurotransmitters, such as p-PEA, 5-HT, dopamine and noradrenaline (O'Brien et a l, 

1993; Shih et al., 1999). MAO-A and MAO-B are the two subtypes of the enzyme 

and both have been shown to be tightly bound to the outer mitochondrial membrane 

(Johnston, 1968; Shih et al., 1999). p-PEA is mostly metabolised by MAO-B to form 

phenylacetalaldehyde initially (Yang and Neff, 1973; Banchelli et al., 1985;
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Wouters, 1998; Shih et a l, 1999), which is then transformed to phenylacetic acid by 

either aldehyde dehydrogenase or aldehyde oxidase (Klyosov, 1996; Panoutsopoulos 

et a l, 2004a; Panoutsopoulos et a l, 2004b).

Semicarbazide-sensitive amine oxidase (SSAO) is a copper-containing enzyme 

which deaminates (oxygen oxidoreductase) aromatic and aliphatic amines (Lyles, 

1994; Lizcano et al., 1998; El Hadri et al., 2002). The enzyme is distinguished from 

MAO-A and MAO-B by substrate and inhibitor specificities (all SSAO are sensitive 

to inhibition by semicarbazide (Lyles, 1994; Lizcano et al., 1998)), cofactors and 

cellular distribution (Lizcano et al., 1998; El Hadri et a l, 2002). SSAO has been 

found in most mammalian tissues as either tissue-bound or soluble (plasma) isoforms 

(Lyles, 1994; Magyar et a l, 2001). Furthermore, SSAO has been detected in large 

amounts in the smooth muscle of rat aorta (Lyles and Singh, 1985; Yu, 1990; Yu et 

a l, 1992; Yu et al., 1994).

In view of the close structural similarity between TAs and the noradrenergic 

transmitter, noradrenaline, the possibility exists that TAs could interact with 

adrenoceptors. Evidence suggests that the indirect sympathomimetic activity of TAs 

could be due to the indirect stimulation of adrenoceptors (Hansen et al., 1980). The 

results contained in Chapter 2 provide some evidence to suggest that another 

mechanism of action may also be involved in the contractile response to p-PEA. The 

work described in this Chapter was carried out to examine the receptor types 

mediating the contractile response to p-PEA by use of non-cumulative concentration- 

response curves
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3.2 Aims

To study the effect of trace amines (TAs) employing non-cumulative concentration- 

response curves (CRCs) and single dose experiments to investigate the contractile 

responses of rat isolated aortic rings to P-PEA in the presence of a range of different 

inhibitors.

a.) Compare cumulative and non-cumulative CRCs for p-PEA to determine

which are the more reproducible.

b.) Examine the contractile response to p-PEA in rat aortic rings in the absence, 

or presence of various inhibitors with non-cumulative CRCs.

c.) Compare the effects of propranolol and ICI-118,551 on the contractile

response to p-PEA in rat aortic rings.

c.) Determine whether the presence of a MAO inhibitor (pargyline) or an SSAO

inhibitor (semicarbazide) has any effect on the contractile response to P-PEA

in rat aortic rings to determine whether its response might be limited by 

degradation by these enzymes.
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3.3 Material and Methods
The main methods and experimental protocol described in Chapter 2 were retained 

throughout the study unless otherwise stated.

3.3.1 Experimental Protocol

After equilibration, non-cumulative CRCs for P-PEA or single dose responses for p- 

PEA (30pM) were obtained, in the absence, or presence of different inhibitors, which 

were incubated with the tissue for 15 minutes before commencing the CRC or single 

dose administration unless otherwise stated. Endothelium removal was carried out in 

all experiments, its removal being confirmed as descried in Chapter 2.

Non-cumulative concentration-response curves (CRCs)

To obtain non-cumulative CRCs, successive concentrations of the agonist were 

added to the 50ml tissue bath after equilibration. The tissue bath was washed out (2 

min, 2  min, and 6  min) after the peak effect had been reached for the preceding 

concentration.

3.3.2 Drugs Used
All chemicals were dissolved in distilled water, unless otherwise stated. Prazosin 

hydrochloride, ICI-118,551 hydrochloride and U46619 were dissolved in DMSO.

> Reagents obtained from Sigma Aldrich

Cocaine hydrochloride, pargyline hydrochloride (PG), prazosin hydrochloride, (±)- 

propranolol hydrochloride, p-phenylethylamine (p-PEA) and semicarbazide 

hydrochloride

> Reagents obtained from TOCRIS Bioscience

ICI-118,551 hydrochloride ((±)-l-[2,3-(Dihydro-7-methyl-lH-inden-4-yl)oxy]-3-[(l- 

methylethyl) amino]-2 -butanol hydrochloride)

> Reagents obtained from Fisher Scientific

All chemicals for the Krebs-bicarbonate buffer (analytical grade)
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3.4 Results

3 .4 .1  Vasoconstriction in rat Aortic rings to p-PEA (non-
cumulative CRCs)

The addition o f  low  concentrations o f  P-PEA  in non-cum ulative concentration- 

response curves (C R C s) caused concentration-related contractions (Figure 3. I).

Wash Wash Wash Wash

PEA (300(j M) KCI (60mM)

10 min 15 min 20 min

Fig ure  3.1: Chart recording sh ow in g a representative non-cum ulative concentration- 
response curve (C R C ) for the contractile response o f  rat aorta to p-phenylethylam ine  
(p -P E A ). T o construct non-cum ulative C R C s for p-PE A , su ccessive  concentrations 
o f  the drug w ere added. The 50m l tissue bath w as w ashed  out (2 m in, 2 min, and 6 
m in) after the peak effect had been reached for the preceding concentration. At the 
end o f  each experim ent, KCI (60m M , isoton ic solution) w as routinely added after 
w ashout o f  the final drug concentration. “W ash” =  w ashout o f  tissue bath.

3 .4 .2  Comparison between cumulative and non-cumulative 
CRCs

N on-cum ulative CR C s show ed greater contractions than cum ulative CRCs. The 

m axim um  response to p-PEA w as sign ificantly  greater (P < 0 .05) (110±14.8% , n=6) 

com pared to the m axim um  response to P-PEA achieved  in cum ulative CRCs 

(58.6% ±13.3% , n=5) (Figure 3.2). Furthermore, the - lo g  EC 50 values for cum ulative  

(4 .1 6 ± 0 .13, n=5) and non-cum ulative C R C s (4 .8 2 ± 0 .1 0 , n=6) to p-PEA  w ere  

significantly different (P <0.01). Thus, for the rem aining thesis studies with p-PEA  

conccntration-responsc curves w ere non-cum ulative.
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3.4.3 Contractile response to p-PEA — effect of the solvent
DMSO and prazosin

Prazosin and ICI-118,551 are not soluble in deionised water, only in dimethyl 

sulfoxide (DMSO). DMSO is a versatile polar solvent which dissolves a wide range 

of organic compounds (Dishart and McKim, 2003). To determine the effect of 

DMSO on the contractile response to P-PEA, a control experiment in the presence of 

DMSO was carried out. The maximum contractile response of rat aorta to p-PEA 

(ImM, 99.2±25.2%, n=4) was not significantly (P>0.05) altered in the presence of 

the solvent DMSO (ImM, 180±41.6%, n=3) (Figure 3.3) or by prazosin (lpM) 

dissolved in DMSO (300pM, 125.8±24.2%, n=8 ). As DMSO did not affect the 

contractile response to p-PEA, the DMSO was used as a solvent for prazosin and 

ICI-118,551 in further experiments (Figure 3.3).

3.4.4 Contractile response to P-PEA -  effect of cocaine and
pargyline

p-PEA caused concentration-related contractions of the rat aortic rings (ImM, 

99.2±25.2% n=4). Cocaine (lOpM) failed to alter the maximum contractile response 

to P-PEA (93.3±21.7%, n=6 ) significantly (P>0.05). Furthermore, the maximum 

contractile response to P-PEA in the presence of pargyline (PG, lOpM), a 

monoamine oxidase (MAO) inhibitor (187.5±34.3%, n=4) was not significantly 

greater (P>0.05) (Figure3.4).

3.4.5 Contractile response to P-PEA - effect of propranolol
and ICI-118,551

The contractile response to p-PEA was then examined in the presence of propranolol 

(lpM), a non-selective P-adrenoreceptor antagonist and ICI-118,551 (lpM), a 

selective p2-adrenoceptor antagonist (Figure 3.5). The maximum contractile 

responses to P-PEA in the absence of antagonists (ImM, 99.2±25.2&, n=4), p-PEA 

in the presence of propranolol (100pM, 147.7±29.7%, n=5) and P-PEA in the 

presence of ICI-118,551 (lOOpM, 130.5±29.3%, n=7) were not significantly different 

(P>0.05) (Figure 3.5). Furthermore, the maximum contractile responses p-PEA in 

the absence of antagonists (ImM, 99.2±25.2&, n=4), P-PEA in the presence of
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propranolol (lOOpM, 147.7±29.7%, n=5) and P-PEA in the presence of ICI-118,551 

(IOOjiM, 130.5±29.3%, n=7) were not significantly different (P>0.05) to P-PEA in 

the presence of DMSO only (ImM, 180±41.6%, n=3). A reduced contraction 

(vasodilatation) was revealed at the highest concentration of P-PEA by propranolol 

(lpM) and ICI-118,551 (lpM ) (Figure 3.5). The -log EC50 values of P-PEA in the 

absence of antagonist (4.37±15.2, n=3), in the presence of propranolol (3.89±34.9, 

n=5) and in the presence of ICI-118,551 (5.05±0.68, n=6 ) were not significantly 

different (P>0.05) (Figure 3.5). The contractile response of the rat aorta to P-PEA 

was then investigated in the presence of prazosin (l^iM) with either of the two p- 

adrenoceptor antagonists (Figure 3.6). Neither propranolol (lpM), nor ICI-118,551 

(lpM) in combination with prazosin, decreased the contractile response to p-PEA. 

The maximum contractile responses to p-PEA in the presence of prazosin (300pM, 

125.8±24.2%, n=8 ), in the presence of prazosin and propranolol (IOOjiM , 

126.5±36.9%, n=5), and in the presence of prazosin and ICI-118,551 (300pM, 

170.3±15.7%, n=8 ) were not significantly different (Figure 3.6). Moreover, the -log 

EC 50 values for p-PEA in the presence of prazosin (4.07±0.10, n=8 ), P-PEA in the 

presence of prazosin and ICI-118,551 (3.94±0.15, n=6 ) and p-PEA in the presence of 

prazosin and propranolol (4.23±0.13, n=4) were not significantly different (P>0.05) 

(Figure 3.6). In the next set of experiments, the contractile response of rat aorta to p- 

PEA in the presence of ICI-118,551 (lpM ) and cocaine (lOpM) was examined 

(Figure 3.7). The CRC to P-PEA in the presence of ICI-118,551 and cocaine 

(4.34±0.5, n=4) was not significantly (P>0.05) shifted to the right compared to the 

CRCs to p-PEA in the presence of either cocaine (4.06±0.36, n=4) or ICI-118,551 

(5.05±0.68, n=6 ) (Figure 3.7). The maximum contractile responses to P-PEA in the 

presence of cocaine (104.4±24.2%, n=6 ), ICI 118,551 (130±29.3%, n=7) and cocaine 

and ICI-118,551 (152±52.1%, n=5) were not significantly different (P>0.05) (Figure 

3.7).
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3.4.6 Contractile response to P-PEA - effects of different 
combinations of prazosin, ICI-118,551, cocaine and 
pargyline

Finally, responses to P-PEA were studied in the presence of different combinations 

of the inhibitors. The biggest maximum contractile response to P-PEA was shown in 

the presence of prazosin (lpM), ICI-118,551 (lpM), cocaine (lOpM) and PG 

(lOpM) (Figure 3.8) of 138.2±23.1% at 300pM. p-PEA, in the presence of prazosin 

(lpM ), ICI-118,551 (lpM ) and cocaine (10pM), showed the smallest response, 

83.3± 11.2% at 300pM. However, none of the responses were significantly different 

(P>0.05). Since the combination of prazosin, pargyline, cocaine and ICI-118,551 

(“inhibitors”) gave the largest and most consistent responses to P-PEA this 

combination was used for all future studies (Figure 3.8).

3.4.7 Contractile response to P-PEA - effect of semicarbazide

In smooth muscle, P-PEA is metabolised by MAO-B (Panoutsopoulos et al., 2004b) 

and also by semicarbazide-sensitive amine oxidase (SSAO) (Yu et al., 1992; Yu et 

al., 1994). Therefore, the contractile response to p-PEA in rat aortic rings in the 

presence of semicarbazide, a selective SSAO inhibitor, (ImM) was examined. 

Semicarbazide (ImM) did not alter the contractile response to a single dose of p- 

PEA (30pM). The contractile response to P-PEA (30pM, 20±15.3%, n=3) in the 

absence of semicarbazide (ImM) was not significantly different (P>0.05) in 

comparison to p-PEA in the presence of semicarbazide (ImM) (30pM, 19.4±10%, 

n=3) (Figure 3.9).
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Figure 3.2: Mean CRCs for the contractile response of rat aorta to p-PEA. 
Cumulative CRCs (□ , n=5) and non-cumulative CRCs (♦ , n=6 ) to P-PEA were 
constructed. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KCI (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s unpaired t-test. No significant (P>0.05) 
differences were seen.
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Figure 3.3: Effect of dimethyl sulfoxide (DMSO) on the mean non-cumulative 
CRCs for the contractile response of rat aorta to P-PEA. Non-cumulative CRCs were 
constructed in the absence of antagonist and DMSO (□ , n=4) or in the presence of 
DMSO (A , n= 3) or in the presence of prazosin (lp M ,^ , n=8). Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KCI 
(60mM, isotonic solution). Mean responses (±SEM) were compared by ANOVA 
followed by the “post hoc” Bonferroni test. No significant (P>0.05) differences were 
seen at their maximum responses.
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Figure 3.4: Effects of pargyline (10pM) and cocaine (lOpM), on the mean non- 
cumulative CRCs for the contractile response of rat aorta to p-PEA. Non-cumulative 
CRCs to p-PEA were constructed in the absence of antagonists (# ,  n=4) or in the 
presence of PG (10pM,A, n=4) or in the presence of cocaine (lOpM, □ , n=6). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Bonferroni test. No significant 
(P>0.05) differences were seen.
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Figure 3.5: Effects of ICI-118,551 (lpM ) and propranolol (lpM) on the mean non- 
cumulative CRCs for the contractile response of rat aorta to p-PEA. Non-cumulative 
CRCs were constructed in the absence of antagonists (□ , n=4) or in the presence of 
solvent DMSO (0 , n=3) or in the presence of ICI-118,551 (lpM,-&, n=7) or in the 
presence of propranolol (lpM, ♦ ,  n=5). Responses are the mean (±S.E.M.) 
contractions expressed as a percentage of the contraction to KC1 (60mM, isotonic 
solution). Mean responses (±SEM) were compared by ANOVA followed by the 
“post hoc” Bonferroni test. No significant (P>0.05) differences were seen.
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Figure 3.6: Effects of ICI-118,551 (lpM ) and propranolol (l^M ) and prazosin 
(lpM ) on the mean non-cumulative CRCs for the contractile response of rat aorta to 
p-PEA. Non-cumulative CRCs were constructed in the presence of prazosin (□ , 
n=8), ICI-118,551 and prazosin (♦ , n=8) or in the presence of propranolol and 
prazosin (■*, n=5). Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by ANOVA followed by the “post hoc” Bonferroni test. No 
significant (P>0.05) differences were seen.
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Figure 3.7; Effects of ICI-118,551 (lpM ) and cocaine (lpM) on the mean non- 
cumulative CRCs for the contractile response of rat aorta to p-PEA. Non-cumulative 
CRCs were constructed in the presence of ICI-118,551 (♦ , n=7), or in the presence 
of cocaine (□ , n=6), or in the presence of ICI-118,551 and cocaine (* ,  n=5). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Bonferroni test. No significant 
(P>0.05) differences were seen.
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Figure 3.8: Effects of ICI-118,551 (lpM), prazosin (lpM), cocaine (lOpM) and PG 
(1 pM) on the mean non-cumulative CRCs for the contractile response of rat aorta to 
p-PEA. Non-cumulative CRCs were constructed in the presence of ICI-118,551, 
prazosin and PG (■£, n=10), ICI-118,551, prazosin and cocaine (□ , n=5) or in the 
presence of ICI-118,551, prazosin, PG and cocaine (“inhibitors”, ♦ ,  n=6). Responses 
are the mean (±S.E.M.) contractions expressed as a percentage of the contraction to 
KC1 (60mM, isotonic solution). Mean responses (±SEM) were compared by 
ANOVA followed by the “post hoc” Bonferroni test. No significant (P>0.05) 
differences were seen at their maximum contractile responses.
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Figure 3.9: Effect of semicarbazide (ImM) on P-PEA contractions in rat aortic 
rings. A single dose of p-PEA (30pM) was tested in the absence, or presence of 
semicarbazide (ImM, n=3). Responses are the mean (±S.E.M.) contractions 
expressed as a percentage of the contraction to KC1 (60mM, isotonic solution). Mean 
responses (+SEM) were compared by Student’s paired t-test. No significant 
differences (P>0.05) were seen.
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3.5 Discussion

3.5.1 Vasoconstriction in rat aortic rings to p-PEA (non- 
cumulative CRCs)

Comparable to the results in Chapter 2, p-PEA caused concentration-related 

contractions of the rat aortic rings when given non-cumulatively. Previously, the 

minimum effective concentration for contraction to P- PEA upon isolated aortic 

strips was found to be 1 pM and a maximum response was seen at a concentration of 

10 pM (Hansen et al., 1980). In the present study, concentrations between 3pM- 

1 mM of P-PEA caused contractions in isolated aortic rings in cumulative as well as 

in non-cumulative CRCs. Non-cumulative CRCs always showed a stronger 

contraction by p-PEA than cumulative CRCs. The fact that the cumulative CRC 

(Figure 3.2) was shifted to the right also suggests desensitisation or tachyphylaxis. 

ISAs are notorious for giving tachyphylaxis (Day, 1967). So this might suggest an 

ISA mechanism. However, lack of effect of prazosin indicates that this is not the 

case. This question will be examined in more detail in Chapter 4.

3.5.2 Contractile response to P-PEA - effect of prazosin, 
cocaine and pargyline

This study examined whether the constrictions of rat isolated aortic rings by P-PEA 

were mediated via an indirect sympathomimetic action through a-adrenoceptors. In 

support of the previous results with cumulative CRCs (Chapter 2) prazosin did not 

significantly reduce the vasoconstriction to p- PEA. Therefore, these results confirm 

the earlier observations, suggesting that the contractile response was not mediated 

via a-adrenoceptors. Furthermore, cocaine failed to potentiate or reduce the 

contractile response to p-PEA. It should be noted that the mechanism of action of 

cocaine in vascular tissues is not fully understood (Egashira et al.t 1991; Li et al., 

2004). However, the lack of block of P-PEA by cocaine suggests no transport of the 

p-PEA into the neurone, including no ISA mechanism. In spite of the lack of effect 

of cocaine, future experiments with P-PEA were performed in the presence of 

cocaine to prevent any transport of p-PEA into the sympathetic neurons and possible 

displacement of noradrenaline. In a previous publication the concentrations of
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cocaine and prazosin were shown to be effective in blocking the noradrenaline 

transporter and a  i-adrenoceptors, respectively (Al-Motarreb and Broadley, 2003; 

Baker et al., 2007). In Chapter 2 prazosin was shown to block the vasoconstrictor 

effect of noradrenaline.

In the present study , although pargyline (PG), a MAO-inhibitor (MAO-B>MAO-A) 

(Murphy et al., 1998) increased the contraction to P-PEA, this was not significant. 

Only a small amount of p-PEA may be metabolised via MAO, as MAO is localized 

intracellulary and the extracellular concentration of the substrate is high. 

Accordingly, further experiments with p-PEA were performed in the presence of PG 

to eliminate metabolism and to maximise the contractions seen. The contractile 

response in rat aortic rings to p-PEA was not altered by semicarbazide, a SSAO 

inhibitor (Lizcano et al., 1998). Therefore, unlike MAO, this enzyme does not appear 

to be important for p-PEA degradation.

3.5.4 Contractile response to P-PEA -  role of p-adrenoceptors

Previous workers have reported the presence of pi- and p2 -adrenoceptor subtypes in 

rat aorta (Kobayashi et al., 1992). p-adrenoceptor-mediated vasorelaxation (Varma 

and Chemtob, 1993; Varma et al., 1995) plays an important function in the 

regulation of vascular tone (Brawley et al, 2000). Originally, in the vasculature of 

the rat, vasodilator p-adrenoceptors have been reported to be mainly of the p2- 

adrenoceptor subtypes (Lands et al., 1967; Wilffert et al., 1982; Kazanietz et al., 

1989). Nevertheless, pi-adrenoceptors can also contribute to vasodilatation 

(O'Donnell and Wanstall, 1984a; O'Donnell and Wanstall, 1985). Furthermore, the 

presence of atypical p-adrenoceptors (p3-adrenoceptors) has been reported in rat 

aorta (Shafiei and Mahmoudian, 1999; Brawley et al., 2000). In the present study, 

the effects of two different p-adrenoceptor antagonists propranolol, a non-selective 

p-adrenoceptor antagonist, and ICI-118,551, on the contractile response to P-PEA in 

isolated rat aortic rings, were examined. ICI-118,551 is the only P2-adrenoceptor 

antagonist with high selectivity and specificity for p2-subtypes (Bilski et al., 1980; 

Bilski et al., 1983). In contrast, various antagonists for pi-adrenoceptors have 

already been well investigated, such as atenolol and betaxolol (Bilski et al., 1983). 

The affinity of ICI-118,551 for P2-adrenoceptors is much higher compared to
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propranolol. In contrast, propranolol has a higher affinity for pi-adrenoceptors 

compared to ICI-118,551 (Table 3.1). Propranolol and ICI-118,551 both failed to 

potentiate significantly the contractile response to p-PEA. Therefore, the contraction 

in rat aortic rings to p-PEA is not affected by an opposing vascular p-adrenoceptor 

mechanism. In previous publications the concentrations of propranolol (Baker et al., 

2007)and ICI-118,551 (Molenaar et al., 2006) were shown to be effective in blocking 

pi- and p2-adrenoceptors, respectively.

Accordingly, this result suggests that p-PEA does not stimulate P-adrenoceptors and 

cause a p-adrenoceptor-mediated vasorelaxation that occurs with other agonists, such 

as isoprenaline (Brawley et al., 2000) (see also Chapter 2.5.5).

p-Adrenoceptor
Antagonist

pi-Adrenoceptor Affinity 
(mean pA2 values ±SEM)

P2-Adrenoceptor Affinity 
(mean pA2 values ±SEM)

ICI-118,551 7.17±0.11 9.26±0.99
Propranolol 8.30±0.05 8.64±0.11

Table 3.1: Affinity of propranolol and ICI-118,551 for pi-and P2-adrenoceptors 
(Bilski et al., 1983)

Previous workers reported an endothelium- and P2-adrenoceptor-independent 

vasodilatation effect of various phenylethylamines at higher concentrations in rat 

aorta in the presence of the unselective P-adrenoceptor antagonist propranolol 

(Varma and Chemtob, 1993; Varma et al., 1995). Indeed, in the present study a 

relaxation response was revealed by propranolol and ICI-118,551 at the highest 

concentration of p-PEA. This was less with ICI-118,551. Therefore, the reduced 

contraction (vasodilatation) at the highest dose is probably not p-adrenoceptor 

mediated. Further investigations of the possible roles of pi- and p2 adrenoceptors will 

be made in Chapter 4.

In summary, the selective p2-adrenoceptor antagonist ICI-118,551 did not inhibit or 

potentiate the contractile response to p-PEA in rat aortic rings. A benefit of using 

ICI-118,551 instead of propranolol was that other effects of the unselective P- 

adrenoceptor antagonist, such as membrane stabilization were avoided (local 

anaesthetic effects) (Anderson et al., 1996). Therefore, future experiments were 

constructed in the presence of ICI-118,551. Further investigation showed that
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prazosin in the presence of propranolol, or ICI-118,551 failed to eliminate the 

contractile response to P-PEA. Therefore, the remaining contractile response to P- 

PEA, in the presence of these inhibitors, is not caused by an a i, or P-adrenoceptor 

effect. Moreover, the contractile response to the maximum concentration of P-PEA 

was also not affected by ICI-118,551 in the presence of cocaine. Although ICI- 

118,551, pargyline and cocaine had little effect on the contractile response to p-PEA 

all future experiments will be conducted in their presence along with prazosin. The 

rationale for this is that the influences of uptake in the neurone, MAO and p2- 

adrenoceptors may be marginal but need to be eliminated if the mechanism for the 

vasoconstrictor effect of p-PEA is to be identified without their influence. Secondly, 

although these effects may be marginal, it cannot be excluded that when other 

conditions are applied to the tissues, such as introduction of other antagonists, then 

they may become more important. Thus, it was decided to avoid any complications 

from these mechanisms by abolishing them with appropriate antagonists.

To eliminate sympathomimetic responses involved in the contractile response of p- 

PEA, combinations of the inhibitors mentioned above were investigated. The largest 

response was found in the presence of prazosin, ICI-118,551, cocaine, and PG. This 

combination will be referred to as “inhibitors” in remainder of this thesis. This result 

suggests that the contraction to p-PEA in the presence of “inhibitors” is not caused 

by an uptake of p-PEA and subsequent release of noradrenaline onto aj- 

adrenoceptors. The remaining contraction to p-PEA in the presence of “inhibitors” 

suggests that a mechanism other than ISA and a - and p-adrenoceptor stimulation is 

responsible for the contraction. The response to p-PEA is a direct effect and not the 

result of its uptake into noradrenergic neurones, because it is not affected by cocaine. 

The mechanism underlying the remaining contractile response to p-PEA in rat aortic 

rings will be investigated further in subsequent chapters.

3.6 Conclusion
As in Chapter 2 the mechanism by which TAs cause vasoconstriction in rat aorta 

cannot be established from this study. In Chapter 2 cumulative CRCs were used to 

show that various factors, such as the presence, or absence of endothelium or aj- and 

p-adrenoceptors, do not affect the contractile response to TAs in rat aorti
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However, upon changing the experimental protocol to non-cumulative CRCs in the 

present Chapter and closer investigations of the effect of P-adrenoceptor antagonists 

on the contractile response to p-PEA, a better understanding of the mechanism of 

action of TAs has been gained. Within Chapter 3, findings from Chapter 2 have been 

confirmed and developed. Therefore, as neither a- and p-adrenoceptors, nor ISA 

stimulation affect the vasoconstriction in rat aorta, it is likely that P-PEA and other 

TAs exert vasoconstriction by activation of a novel receptor system. This will be 

investigated in subsequent Chapters.
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Chapter 4

INVESTIGATION OF THE 
CONTRACTILE RESPONSES TO 

P-PHENYLETHYLAMINE AND 

TRYPTAMINE IN RAT AORTA IN 
THE PRESENCE OF VARIOUS 

INHIBITORS
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Chapter 4 

Investigation of the contractile responses to P-PEA 
and tryptamine in the presence of various inhibitors

4.1 Introduction
In the past, the technique of cumulative addition of doses of agonists in isolated 

tissues has been well investigated (Ariens, 1954; Van Rossum and Ariens, 1959; Van 

Rossum, 1963). Both cumulative and non-cumulative addition of doses of inhibitors 

to isolated tissues have been used frequently to investigate drug-receptor 

relationships (Pennefather, 1973; Garcia-Sevilla and Erill, 1974; Abdelmawla et al., 

1996). Concentration-response curves (CRCs) with agonists and antagonists are the 

accepted standard for the characterization of receptor function and subtypes 

(Przyborski et al., 1991). A previous publication compared cumulative and non- 

cumulative dose-response curves to noradrenaline in isolated tissues (Pennefather, 

1973). The major effect observed in this study found that by increasing the 

concentration of an agonist cumulatively rather than non-cumulatively a reduction in 

the magnitude of the resultant response maximum resulted. These findings contrast 

with the observations of other studies in which cumulative addition of agonists 

showed identical results compared with non-cumulative CRCs of agonists (Garcia- 

Sevilla and Erill, 1974; Przyborski et al., 1991; Kahonen etal., 1993).

For a number of decades, TA-specific receptors had only been assumed to be located 

as anatomically distinct, high affinity TA binding sites in the CNS of humans and 

other mammals (Hauger et al., 1982; McCormack et al., 1986; Mousseau and 

Butterworth, 1995). For that reason, it was assumed that TAs can exert pronounced 

pharmacological effects in many species, such as affect the uptake or release of 

catecholamines (Black et al., 1980; Parker and Cubeddu, 1988; Dyck, 1989; Premont 

et al., 2001). Also, it was thought that TAs might affect the 5-HT activity at nerve 

endings (Baker et al., 1977; Raiteri et al., 1977), or act as neuromodulators through 

direct actions on receptors for catecholamines, or 5-HT (Jones and Boulton, 1980; 

Paterson and Boulton, 1988). These assumptions have to be reconsidered following 

the discovery of members of a novel family of related mammalian G protein-coupled 

receptors (GPCRs) called the TA-associate receptors (TAAR) (Borowsky et a l,
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2001; Bunzow et al., 2001; Lindemann et al., 2005; Lindemann and Hoener, 2005) 

(Chapter 1). Most work on TAs and TAARs has been done on the brain (Philips et 

al., 1978; Vaccari, 1986; Boulton et al., 1990; Paterson et al., 1990) and cloned 

receptors expressed in transfected cells (Borowsky et al., 2001; Bunzow et al., 2001). 

However, TAs are present throughout the body (Premont et al., 2001; Zucchi et al., 

2006). Indeed, the effects of TAs, such as MDMA (Gowing et al., 2002; Bexis and 

Docherty, 2006) and cathinone (Al-Motarreb et al., 2002b; Al-Motarreb and 

Broadley, 2003; Al-Motarreb, 2004; Al-Motarreb et al., 2005) on the heart are 

known to be deleterious. However, very little is known about the distribution and 

function of these receptors and their endogenous ligands in the cardiovascular system 

(Davenport, 2003; Gloriam et al., 2005a). TAs are related to classical biogenic 

amines (serotonin, noradrenaline, dopamine and histamine) (Lindemann and Hoener, 

2005; Burchett and Hicks, 2006). The TAARs belong to a subfamily of rhodopsin- 

like seven transmembrane-spanning GPCRs and are related to the classical biogenic 

amine receptors such as muscarinic, adrenergic and serotonin receptors (Kim and 

von Zastrow, 2001; Davenport, 2003; Fredriksson et al., 2003). In cell lines, the most 

commonly recognized signal transduction mechanism for TAARs is to activate the 

formation of cAMP when exposed to TAs. TAAR1 stimulates the Gs protein and 

mediates an increase in cAMP (Borowsky et al., 2001; Bunzow et a l, 2001). 

However, the coupling with different G proteins by different TAAR subtypes is 

likely. It has been suggested that TAAR 1 might be able to couple with different G 

proteins in different cell lines (Lewin, 2006; Zucchi et al., 2006).

The structural similarity between TAs and classical biogenic amines has led to the 

suggestion that the vasoconstriction in rat aortic tissues observed upon addition of 

TAs could be caused by an indirect sympathomimetic action releasing noradrenaline 

for adrenoceptors. The work described in this Chapter extends that in the previous 

two Chapters by examining whether P-PEA and tryptamine exert vasoconstriction of 

rat aorta through serotonin receptors.
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4.2 Aims

To study the contractile response of rat isolated aortic rings to TAs

a.) Determine whether vasoconstriction to p-PEA is mediated via other

mechanisms beside sympathomimetic actions.

b.) Determine whether tryptamine produces vasoconstriction in the isolated rat

aortic tissues

c.) Determine whether any vasoconstriction to tryptamine is mediated via 5-HT

serotonergic receptors.

4.3 Material and Methods
The main methods and experimental protocol described in Chapter 2 were retained 

throughout the study unless otherwise stated.

4.3.1 Experimental Protocol

After equilibration cumulative and non-cumulative CRCs for P-PEA, clonidine, 

serotonin, tryptamine and dopamine were obtained in the absence, or presence of 

different inhibitors, which were incubated with the tissue for 15 minutes before 

commencing the CRC. In all experiments, the endothelium was removed by inserting 

a wooden cocktail stick and rolling the aortic ring round it.

4.3.2 Analysis of Results 

ECkci 25 values

Contractions at the plateau response to each concentration of agonist were measured 

from the baseline before the CRC. These were then expressed as a percentage of the 

contraction to KC1 in each experiment and the mean responses (± SEM) plotted, -log 

E C kci 25 values of individual CRCs were calculated together with the SEM. The 

E C kci 25 value is the molar concentration of an agonist which produces 25% of the 

contraction to KC1. Mean -log molar E C kci 25 values were compared by paired or 

unpaired Student’s t-test using GraphPadInstat 3.
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Dose-ratio

In the present Chapter dose-ratios were calculated for some of the agonist, including 

P-PEA and tryptamine in the presence of different antagonists. Dose-ratios were 

calculated for individual tissues and mean ± SEM values are presented in the text. 

The presence of an antagonist increases the E C 5 0  value by a factor equal to 1+ [B ] /K b  

which is called the dose-ratio. The graph below illustrates the dose-ratio (Figure 4.1).
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Figure 4.1: The dose-ratio
If concentration A gives a certain response in the absence of antagonist, but 
concentration A' is needed to achieve the same response in the presence of a certain 
concentration of antagonist, then the dose-ratio equals A7A. The dose-ratio varies 
with different concentration of antagonist. Taken from GraphPad Software (1999)
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4,3.3 Drugs Used

All chemicals were dissolved in distilled water, unless otherwise stated. Prazosin 

hydrochloride, ICI-118,551 hydrochloride and U46619 were dissolved in DMSO 

(dimethyl sulfoxide).

> Reagents obtained from Sigma Aldrich (Poole, Dorset, UK)

Atenolol hydrochloride, clonidine hydrochloride, cocaine hydrochloride, (3,4- 

dihydroxyphenethylamine), haloperidol, indomethacin, pargyline hydrochloride 

(PG), P-phenylethylamine (p-PEA), prazosin hydrochloride, (±)-propranolol 

hydrochloride, yohimbine hydrochloride, serotonin (5-hydroxytryptamine (5-HT)) 

hydrochloride, SR 59230A oxalate salt, tryptamine hydrochloride, and U46619 (9,11 

dideoxy-1 la , 9a  epoxymethano-prostaglandine F2a)

> Reagents obtained from TOCRIS Bioscience (Northpoint, Avonmouth, 

UK)

ICI-118,551 hydrochloride ((±)-l-[2,3-(Dihydro-7-methyl-lH-inden-4-yl) oxy]-3- 

[(l-methylethyl)amino]-2-butanol hydrochloride), ketanserin tartrate and 

methiothepin maleate

> Reagents obtained from Fisher Scientific (Leicestershire, UK)

All chemicals for the Krebs-bicarbonate buffer (analytical grade)
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4.4 Results

4.4.1 Contractile response to P-PEA -  effect of endothelium and 
U46619

The contractile response of rat aorta to P-PEA in the presence of “inhibitors” was 

independent of the presence of the endothelium (Figure 4.2). The response at the 

maximum concentration of p-PEA (3mM, 113.3±8.2%, n=4) after endothelium 

removal was not significantly different (P>0.05) from that in aorta with intact 

endothelium (3mM, 90±36.7%, n=4). The -log EC50 values for p-PEA in 

endothelium-denuded (3.21±0.11, n=4) and in endothelium-intact tissues (2.93±0.15, 

n=4) were not significantly different (P>0.05). In tissues pre-contracted with 

U46619, P-PEA in the presence of “inhibitors” showed no relaxation in the presence, 

or the absence of endothelium. Indeed, pre-contracted aortic rings showed a further 

contractile response to P-PEA with “inhibitors”. At the maximum concentration, the 

contractile response in aortic rings to p-PEA in endothelium-intact tissues (3mM,

141.2 ±30%, n=3) was not significantly different (P>0.05) compared to the response 

in endothelium-denuded tissues (3mM, 88.9±11.1%, n=3) (Figure 4.3). Furthermore, 

the -log EC50 values for P-PEA in endothelium-intact (4.62±0.24, n=4) and in 

endothelium-denuded tissues (5.2210.34, n=4) were not significantly different 

(P>0.05). In pre-contracted and endothelium-intact tissues no significant differences 

(P>0.05) in the contractile response to p-PEA were found between pre-contracted, 

endothelium-intact tissues in the presence of “inhibitors” (3mM, 141.2130%, n=3) 

and pre-contracted, endothelium-intact tissues in the absence of “inhibitors” 

(120.7121.9%, n=5) (Figure 4.4). Endothelium-denuded, pre-contracted aortic rings 

showed, in the presence of “inhibitors”, a significantly (P<0.01) greater contractile 

response at the maximum concentration of P-PEA (3mM, 88.8111.1%, n=3) 

compared to endothelium-denuded, pre-contracted tissues without “inhibitors” 

(3mM, 53.313.3%, n=5) (Figure 4.5). However the -log EC50 values of endothelium- 

denuded, pre-contracted tissues in the presence of “inhibitors” (5.2210.34, n=3) and 

pre-contracted tissues in the absence of endothelium and “inhibitors” (5.4410.20, 

n=4) were not significantly different (P>0.05) (Figure 4.5).
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Figure 4.2: Effect of endothelium removal and “inhibitors” on the mean CRCs for 
the contractile response of rat aorta to P-PEA. Cumulative CRCs for P-PEA in rat 
aorta were constructed in the absence of endothelium and in the presence of 
“inhibitors” (□ , n=4) or in the presence of endothelium and “inhibitors” (♦ , n=4). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. No significant differences (P>0.05) were seen at 
the maximum concentration (3mM).
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Figure 4.3; Contractile effects of P-PEA on rat aortic rings pre-contracted with 
U46619 (l|iM ) -  Effect of endothelium. Cumulative CRCs for P-PEA in rat aorta 
were constructed in the presence of “inhibitors” and in the presence (□ , n=3), or in 
the absence ( ♦ ,  n=3) of endothelium above the U46619-induced contraction. 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. No significant differences (P>0.05) were seen at 
the maximum concentration (3mM).
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Figure 4.4: Contractile effects of p-PEA on rat aortic rings pre-contracted with 
U46619 (lpM ). Cumulative CRCs for p-PEA in rat aorta were constructed in the 
presence of endothelium and in the presence (□ , n=3) or in the absence (♦ , n=5) of 
“inhibitors” above the U46619-induced contraction. Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KC1 (60mM, 
isotonic solution). Mean responses (±SEM) were compared by Student’s paired t- 
test. No significant differences (P>0.05) were seen at the maximum concentration 
(3mM).
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Figure 4.5: Contractile effects of p-PEA on rat aortic rings pre-contracted with 
U46619 (lpM ) -  Effect of endothelium removal. Cumulative CRCs for p-PEA in rat 
aorta were constructed in the absence of endothelium and in the presence (□ , n=3), 
or above the U46619-induced contraction in the absence (♦ , n=5) of “inhibitors”. 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. A significant difference (P<0.05) was shown at 
the concentration of 3mM between both CRCs (* ).
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4.4.2 Contractile response to p-PEA and tryptamine — effect of 
indomethacin

The contractile response of rat aorta to P-PEA was not significantly (P>0.05) altered 

in the presence of indomethacin (10pM). The -log EC50 value for p-PEA in the 

presence of indomethacin (10pM) (4.6910.42, n=4) was not significantly different 

from that in the absence of indomethacin (lOpM) (4.3710.15, n=4). Furthermore, the 

contractile response at the maximum concentration to P-PEA in the absence (ImM, 

99.2125.2%, n=4), or in the presence (ImM, 126.25144%, n=4) of indomethacin 

were not significantly different (P>0.05) (Figure 4.6). In addition, the contractile 

response of rat aorta to p-PEA in the presence of “inhibitors” was not significantly 

altered (P>0.05) in the presence of indomethacin (10pM) (Figure 4.7). The 

maximum contractile response of p-PEA in the presence of “inhibitors” (300pM, 

138.2123.1%, n=6) was not significantly different (P>0.05) from that of p-PEA with 

“inhibitors” and indomethacin (10pM) (300pM, 123132%, n=6) (Figure 4.7). It is 

worth noting that more typical sigmoidal CRCs were obtained in the presence of 

“inhibitors”.

After the effect of indomethacin (lOpM) on the contractile response to p-PEA in rat 

aortic rings was investigated, the response to tryptamine in the presence of 

“inhibitors” and indomethacin (10pM) was examined. Tryptamine caused 

concentration-related contraction of the rat aorta. The -log EC50 value (5.510.29, 

n=4) was not altered by the presence of “inhibitors” (5.0710.31, n=7). There was not 

further shift of the CRC and in the presence of “inhibitors” and indomethacin 

(lOpM) (-log EC50 5.310.62, n=4). Neither the maximum contractile response to 

tryptamine (lOpM, 163.9128.1%, n=4) nor to tryptamine with “inhibitors” (3pM, 

144.4 134.9%, n=8) were significantly (P>0.05) altered by indomethacin (lOpM) 

(3pM, 277.8127.8%, n=3) (Figure 4.8).

108



Chapter 4

U

i

u
ru1_
4-*
c
o
u 50

0

PEA (oonGentratiovvM)

Figure 4.6: Mean non-cumulative CRCs for the contractile responses of rat aorta to 
P-PEA in the absence (□ , n=4) and presence of indomethacin (lOpM) (♦ , n=5). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. No significant differences were seen (P>0.05) at 
the concentration lOOpM and ImM.
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Figure 4.7; Mean non-cumulative CRCs for the contractile responses of rat aortic 
rings to p-PEA in the absence (□ , n=6) and presence of indomethacin (10pM) and 
“inhibitors” ( ♦ ,  n=6). Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s paired t-test. No significant differences 
(P>0.05) were seen at the maximum concentration (300pM).
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Figure 4.8: Effects of “inhibitors’* and indomethacin (10pM) on the contractile 
response of rat aortic rings to tryptamine. Non-cumulative CRCs for tryptamine were 
constructed in the absence of antagonists ( ♦ ,  n=5) or in the presence of “inhibitors” 
(□ , n=8) or in the presence of “inhibitors” and indomethacin (lOpM) (0 , n=3). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Bonferroni test. No significant 
differences (P>0.05) were seen at their maximum contractions.
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4.43 Contractile response to P-PEA - effect of a 2, p2 and p3- 
adrenoceptor antagonists

In Chapter 2, the effect of the “inhibitors” prazosin (lpM), cocaine (lOpM), ICI- 

118,551 (lpM ), and pargyline (PG, lOpM) against (3-PEA were examined. In this 

Chapter, the effects of antagonists of other adrenoceptor subtypes were examined.

Yohimbine, a selective, competitive a2-adrenoceptor antagonist, was tested against 

p-PEA at two different concentrations (5pM and 50pM). The lower concentration of 

yohimbine (5pM) was used in a previous publication to examine its effect on 

contractions of rat aortic rings to different cl\- and a 2- adrenoceptor agonists, 

including noradrenaline, phenylephrine and guanfacine (Digges and Summers, 

1983a). The maximum contractile response of P-PEA in the presence of “inhibitors” 

(300pM, 138±23.1%, n=6) was not significantly (P>0.05) inhibited by yohimbine 

(5jiM) (300pM, 132±34.4%, n=4) (Figure 4.9). Furthermore, yohimbine (50pM) in 

the presence of “inhibitors” did not potentiate the contractile response to p-PEA 

significantly (P>0.05) (300pM, 169±43.7% n=3) (Figure 4.9). To confirm that 

yohimbine was used at a suitable concentration, the antagonist (50pM) was tested 

against clonidine, an a 2- adrenoceptor agonist. Clonidine caused concentration- 

related contractions of rat aortic rings with a maximum response at 0.3fiM 

(130.4±28.3% n=3). The maximum contractile response of clonidine was greatly 

inhibited by yohimbine (50pM). Furthermore, the -log E C kci 25 values of clonidine in 

the absence (7.42±0.17, n=4) and presence of yohimbine (50pM) (5.60±0.19, n=4) 

were significantly different (P<0.01) (Figure 4.10). However, the -log E C kci 25 

values of p-PEA in the presence of “inhibitors” (4.92±0.17, n=6) and p-PEA plus 

“inhibitors” and yohimbine (50pM) (5.02±0.41, n=6) were not significantly (P>0.05) 

different (Figure 4.9).

Previous results in Chapter 3 showed the effects of propranolol and ICI-118,551 in 

isolated aortic rings against p-PEA (non-cumulative CRCs). To complete the Pi- and 

p2-adrenoceptor data, the effect of atenolol, a selective pi-adrenoceptor antagonist, 

was examined. The maximum contractile response to p-PEA (ImM, 99.2±25.2%, 

n=4) was not significantly (P>0.05) potentiated by atenolol (300pM, 163.1±23.8%,
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n=5) (Figure 4.11). Furthermore, the contractile response to P-PEA in the presence 

of atenolol (l|iM ) alone, atenolol (lpM ) with prazosin (lpM ) and atenolol (IpM) 

with cocaine (lOpM) was examined (Figure 4.12). The maximum contractile 

responses of P-PEA in the presence of atenolol (300pM, 163.1 ±23.8, n=5), atenolol 

and prazosin (300pM, 263.6±0.50%, n=4) and atenolol and cocaine (300pM, 

173±31.8%, n=4) were not significantly different (P>0.05) (Figure 4.12).

Previous publications have studied atypical p-adrenoceptors in rat aorta, including 

the p3-adrenoceptor (Shafiei and Mahmoudian, 1999; Matsushita et al.t 2003). The 

contractile response in rat aorta to p-PEA in the presence of SR59230A (lOpM), a 

selective P3-adrenoceptor antagonist, was examined on cumulative CRCs in 

endothelium-denuded tissues (Figure 4.13). The maximum contractile response to p- 

PEA (IOOjiM, 55.3±17.9%, n=4) was not inhibited by SR59230A (lOpM) (300pM, 

51.5±9.6%, n=4) (Figure 4.13).
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Figure 4.9: Effects of “inhibitors” and yohimbine (5pM and 50pM) on the 
contractile response of rat aortic rings to p-PEA. Non-cumulative concentration- 
response curves (CRCs) for p-PEA in rat aorta were constructed in the presence of 
“inhibitors” (□ , n=5) or in the presence of “inhibitors” and yohimbine (5pM) (-fc, 
n=4) or in presence of “inhibitors” and yohimbine (50pM) (T , n=3). Responses are 
the mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by ANOVA 
followed by the “post hoc” Bonferroni test. No significant differences (P>0.05) were 
seen at their maximum contractile responses (300pM).
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Figure 4.10: Effect of yohimbine (50jiM) on the contractile response of rat aortic 
rings to clonidine. Non-cumulative CRCs for clonidine in rat aorta were constructed 
in the absence of antagonists (□ , n=4), or presence of yohimbine (50pM) (♦ ,  n=5). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) and -log 
EC50 values (±SEM) were compared by Student’s paired t-test. The maximum 
contractile response of clonidine (0.3pM) was greatly inhibited (#, P<0.05) by 
yohimbine (50pM). The -log E C k c i 25 values in the absence (7.42±0.0.17, n=4) and 
presence of yohimbine (50fiM) (5.60±0.19, n=3) were significantly different 
(P<0.01).
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Figure 4.11: Effects atenolol (lpM ) on the contractile response of rat aortic rings to 
p-PEA. Non-cumulative CRCs for P-PEA in rat aorta were constructed in the 
absence of antagonists (T , n=4) or in the presence of atenolol (l|iM ) (□ , n=5). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. No significant differences (P>0.05) were seen 
between their maximum contractile responses.
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Figure 4.12: Effect of atenolol (l|iM ), prazosin (lpM ) and cocaine (IOjiM) on the 
contractile response of rat aortic rings to p-PEA. Non-cumulative CRCs for p-PEA 
in rat aorta were constructed in the presence of atenolol alone (lpM ) (□ , n=5), 
atenolol (lpM ) and prazosin (lpM) (■£, n=4) or atenolol (lpM ) and cocaine (10pM) 
(♦ ,  n=4). Responses are the mean (±S.E.M.) contractions expressed as a percentage 
of the contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Bonferroni test. No significant 
differences (P>0.05) were seen between their maximum contractile responses 
(300pM).
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Figure 4.13: Effect of SR59230A (lOpM) on the contractile response of rat aortic 
rings to P-PEA. Cumulative CRCs for p-PEA in rat aorta were constructed in the 
absence (□ , n=4) or in the presence of SR 59230A (10pM) (♦ , n=4). Responses are 
the mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (+SEM) were compared by Student’s 
paired t-test. No significant differences (P>0.05) were seen at the maximum 
concentration (300pM).
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4.4.4 Contractile responses to serotonin and tryptamine 
effect of various inhibitors

The contractile response of rat aortic rings to the TA tryptamine in the presence of 

the “inhibitors**, ketanserin, a 5-HT2A-serotonin receptor antagonist, and 

methiothepin, a non-selective 5-HTj, 2 ,7  serotonin receptor antagonist, was examined. 

To establish suitable conditions for the tryptamine experiment, the contractile 

responses in rat aorta to serotonin in the presence of “inhibitors”, methiothepin 

(50nM), ketanserin (3nM and 30nM), and methiothepin (50nM) with ketanserin 

(3nM) were first investigated.

CRCs to serotonin in the presence, or absence of different inhibitors had different 

shapes compared with the CRCs for P-PEA. The CRC for the contractile responses 

in rat aorta to serotonin can be described as biphasic. The first peak of the contractile 

response to serotonin occurred at a concentration of 0.03 pM (100±0%, n=6) and the 

second peak appeared at the maximum concentration of 3pM (186.1±24.8%, n=6) 

(Figure 4.14). In the presence of “inhibitors”, the biphasic CRC for the contractile 

response to serotonin was retained, but shifted upwards and to the left. The first peak 

of the CRC to serotonin now appeared at a concentration of 0.0 lpM (182.7±50.7%, 

n=4), the second peak was then reached at a concentration of 0.1 pM (170.2±41.9%, 

n=4) (Figure 4.14). The -log EC50 values of serotonin calculated for the first phase of 

the CRC in the absence (8.22±0.27, n=3), or presence of “inhibitors’* (8.54±0.09, 

n=3) were not significant different (P>0.05) (Figure 4.14).

These experiments were next repeated in the presence of methiothepin (50nM) and 

ketanserin (3nM). The contractile response to serotonin in the presence of 

“inhibitors”, methiothepin (50nM) and ketanserin (3nM) also showed a biphasic 

CRC (Figure 4.15). The first peak of the CRC to serotonin in the presence of 

“inhibitors’* (-log E C 50  8.54±0.09, n=3) was significantly shifted to the right in the 

presence of methiothepin (50nM) alone (-log E C 5 0  7.99±0.01, n=3) (P<0.01), 

ketanserin (3nM) alone (-log E C 50  8.09±0.17, n=3) (P<0.05) and with the 

combination of both antagonists (-log E C 50  7.98±0.02, n=4) (P<0.01) (Figure 4.15). 

Moreover, the contractile responses at 0.01 pM in the presence of “inhibitors” 

(0.0 lpM, 182.7±50.7%, n=4), in the presence of “inhibitors” and methiothepin
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(0.0 lpM, 21.9±12.9%, n=4), in the presence of “inhibitors” and ketanserin (0.01 pM, 

36.2±24.5%, n=4) and in the presence “inhibitors” plus both antagonists (0.01 pM, 

15.4±8.11%, n=4) were significantly different (P<0.01) (Figure 4.15). Furthermore, 

the second peak of the CRC to serotonin (0.1 pM, 170.2±41.9%, n=4) was 

significantly (P<0.01) reduced in the presence of methiothepin (0.1 pM, 24.4±11.7%, 

n=4), and methiothepin (50nM) with ketanserin (3nM) (0.1 pM, 9.8±4.44%, n=4) 

(Figure 4.15). The contractile response in rat aorta to serotonin was next examined in 

the presence of a higher concentration of ketanserin (30nM) and “inhibitors” (Figure 

4.16). The biphasic CRC to serotonin in the presence of “inhibitors” was no longer 

obvious in the presence of ketanserin (30nM). However, the CRC of serotonin in the 

presence of “inhibitors” measured at the first peak of the CRC (-log EC50 8.54±0.09, 

n=3) was significantly (P<0.001) shifted to the right by ketanserin (30nM) with 

“inhibitors” (-log EC50 6.64±0.12, n=4) (Figure 4.16).

After investigating the effect of serotonin antagonists in rat aortic rings, their effects 

on the contractile response to tryptamine were examined. Firstly, the effects of 

“inhibitors” on tryptamine were examined. Neither ICI-118,551 (lpM), prazosin 

(lpM ), cocaine (lOpM), pargyline (lOpM) in different combinations, nor 

“inhibitors” significantly altered (P>0.05) the maximum response to tryptamine 

(lOpM, 163.9±28.1%, n=4) (Figure 4.17). The tryptamine CRC (-log EC50 5.5±0.29, 

n=4) was not significantly (P>0.05) shifted by ICI-118,551 with prazosin (-log EC50 

5.34±0.21, n=5). The maximum contraction of tryptamine (lOpM, 163.9±28.1%, 

n=4) was not significantly different from that in the presence of ICI-118,551 and 

prazosin (30pm, 203±47.2%, n=5), which was not significantly different (P>0.05) 

from that in the presence of ICI-118,551 prazosin and cocaine (30pM, 130±21%, 

n=6) (Figure 4.17). In the presence of all four “inhibitors” neither the -log EC50 (-log 

EC50 5.1±0.31, n=7) nor the maximum response (3pM, 144.4±34.9%, n=8) to 

tryptamine was significantly (P>0.05) altered (-log EC50 4.97±0.59, n=5, 30pM, 

210.1 ±57.1%, n=5) (Figure 4.17). Ketanserin at the lower concentration (3nM) and 

methiothepin (50nM) produced a small inhibition of the response to tryptamine in the 

presence of “inhibitors” (Figure 4.18). The maximum contraction to tryptamine in 

the presence of “inhibitors” (3pM, 144.4+34.9%, n=8) was not significantly altered 

by the combination of both serotonin antagonists (lOpM, 138.9±65.4%, n=6).
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Furthermore, the -log E C 50  values for tryptamine in the presence of “inhibitors” 

(6.23±0.08, n=5) and in the presence of “inhibitors” plus both serotonin antagonists 

(5.93±0.18, n=4) were not significantly different (P>0.05) (Figure 4.18).

The effect of ketanserin alone at a higher concentration (30nM) was next examined 

against tryptamine. The contractile response to tryptamine in the presence of 

“inhibitors” and ketanserin (30nM) showed a biphasic CRC (Figure 4.19). The -log 

E C 50  values measured for the first peak of tryptamine in the presence of “inhibitors” 

(6.23±0.08, n=5) and in the presence of “inhibitors” plus ketanserin (30nM) 

(5.51±0.12, n=3) were significantly (PcO.OOl) different. However, at the first 

contractile response peak, the maximum contractile responses to tryptamine (lOpM, 

163.9±28.1%, n=4), to tryptamine in the presence of “inhibitors” (3pM, 

144.4±34.9%, n=8) and to tryptamine in the presence of “inhibitors” and ketanserin 

(30nM) (lOpM, 164.8±36.1%, n=3) were not significantly different (P>0.05) (Figure 

4.19).

The dose-ratio (see Figure 4.1) was calculated for ketanserin (30nM) at the E C 50  

values between tryptamine and “inhibitors” and tryptamine plus “inhibitors” and 

ketanserin (30nM) (dose-ratio of 5.7±1.7, n=3) and statistically compared with the 

dose-ratio for ketanserin (30nM) against serotonin. The dose-ratio for ketanserin 

(30nM) at the E C 50  values between serotonin and “inhibitors” and serotonin plus 

“inhibitors” and ketanserin (30nM) (dose-ratio of 90.9±23.3, n=4) was significantly 

higher (PcO.Ol) compared to the dose-ratio for ketanserin against tryptamine (dose- 

ratio of 5.7±1.7, n=3).
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Figure 4.14: Effect of “inhibitors” on the contractile response of rat aortic rings to 
serotonin. Non-cumulative CRCs for serotonin in rat aortic rings were constructed in 
the absence (□ , n=6) or in the presence of “inhibitors” (♦ , n=4). Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean -log EC50 values (±SEM) were compared by 
Student’s paired t-test. No significant differences (P>0.05) were seen.
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Figure 4.15: Effects of “inhibitors”, methiothepin (50nM) and ketanserin (3nM) on 
the contractile response of rat aortic rings to serotonin. Non-cumulative CRCs for 
serotonin in rat aortic rings were constructed in the presence of “inhibitors” (♦ ,  
n=4), in the presence of “inhibitors” with methiothepin (50nM) (□ , n=4), in the 
presence of “inhibitors” with ketanserin (3nM) (A, n=5) or in the presence of 
“inhibitors” with methiothepin (50nM) and ketanserin (3nM) (■£, n=6). Responses 
are the mean (±S.E.M.) contractions expressed as a percentage of the contraction to 
KC1 (60mM, isotonic solution). Mean responses (+SEM) were compared by 
ANOVA followed by the “post hoc” Bonferroni test. Mean -log EC50 values (+SEM) 
were compared by ANOVA followed by the “post hoc” Dunnett test. The first peak 
of the CRC to serotonin in the presence of “inhibitors” was significantly shifted to 
the right in the presence of methiothepin (PcO.Ol), ketanserin (P<0.05) and 
methiothepin in the combination with ketanserin (PcO.Ol). The first peak of the 
contractile response to serotonin at the concentration of 0.0lpM was significantly 
inhibited (PcO.Ol,#) by methiothepin (50pM), ketanserin (3nM) and methiothepin in 
combination with ketanserin. The second peak of the contractile response to 
serotonin in the presence of “inhibitors” at the concentration of 0.1 pM was also 
significantly inhibited ( P c O . O l , b y  methiothepin (50nM) and methiothepin in 
the combination with ketanserin (3nM).
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Figure 4.16: Effects of “inhibitors” and ketanserin (30nM) on the contractile 
response of rat aortic rings to serotonin. Non-cumulative CRCs for serotonin in rat 
aortic rings were constructed in the presence of “inhibitors” (■*, n=4), or in presence 
of “inhibitors” and ketanserin (30nM) (♦ , n=4). Responses are the mean (±S.E.M.) 
contractions expressed as a percentage of the contraction to KC1 (60mM, isotonic 
solution). Mean responses (±SEM) and mean -log EC50 values were compared by 
ANOVA followed by the “post hoc” Bonferroni test. The -log EC50 values of the 
first peak of the CRC to serotonin in the presence of “inhibitors” and of the CRC to 
serotonin in the presence of “inhibitors” and ketanserin (30nM) were significantly 
different (PcO.OOl,■#•*). No significant differences (P>0.05) were seen regarding the 
maximum contractile responses.
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Figure 4.17: Effects of prazosin (lpM), ICI-118,551 (lpM), cocaine (lOpM) and 
pargyline (lpM ) on the contractile response of rat aortic rings to tryptamine. Non- 
cumulative CRCs for tryptamine were constructed in the absence (-fc, n=4), in the 
presence of ICI-118,551 (lpM) and prazosin (lpM ) (0 , n=5), ICI-118,551 (lpM), 
prazosin (lpM ) and cocaine (lOpM) (▼, n=6) or ICI-118,551 (lpM), prazosin 
(lpM ) and cocaine (lOpM) and pargyline (lOpM) ( “inhibitors”, □ , n=8). Responses 
are the mean (±S.E.M.) contractions expressed as a percentage of the contraction to 
KCl (60mM, isotonic solution). Mean responses (±SEM) were compared by 
ANOVA followed by the “post hoc” Dunnett test. No significant differences 
(P>0.05) were seen.
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Figure 4.18: Effects of “inhibitors”, methiothepin (50nM) and ketanserin (3nM) on 
the contractile response of rat aortic rings to tryptamine. Non-cumulative CRCs for 
tryptamine were constructed in the presence of “inhibitors” (♦ , n=8) or in the 
presence of “inhibitors”, methiothepin and ketanserin (3nM) (□ , n=6). Responses are 
the mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by Student’s 
unpaired t-test. No significant differences (P>0.05) were seen.
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Figure 4.19: Effects of “inhibitors”, ketanserin (30nM) on the contractile response of 
rat aortic rings to tryptamine. Non-cumulative CRCs for tryptamine were constructed 
in the absence of antagonists (▼, n=5) in the presence of “inhibitors” (0 , n=8) or in 
the presence of “inhibitors”, with ketanserin (30nM) (□ , n=4). Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by ANOVA 
followed by the “post hoc” Bonferroni test. Mean -log EC50 values (±SEM) were 
compared by unpaired student’s t-test. The -log EC50 values of the first peak of the 
CRC to tryptamine in the presence of “inhibitors” and of the CRC to tryptamine in 
the presence of “inhibitors” and ketanserin (30nM) were significantly different 
(P<0.001). No significant differences (P>0.05) were seen at their maximum 
contractions.
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4.5 Discussion
All studies in this Chapter were generally conducted in the presence of “inhibitors”.

4.5.1 Contractile response to P-PEA - effect of endothelium 
and U46619

The contractile response in rat aorta to P-PEA in the presence of “inhibitors” was 

independent of the presence of endothelium, which is comparable with the results in 

Chapter 2. Therefore, the endothelium is not responsible for the contractile response 

in rat aorta to p-PEA. The presence of an intact endothelium was demonstrated by 

the relaxation response to acetylcholine in the pre-contracted aorta, which is known 

to induce relaxation via endothelium-derived release of nitric oxide (Van de Voorde 

and Leusen, 1983; Furchgott, 1984; Waldron et al., 1999) (data not shown, see 

Chapter 2). This also means there is no opposing vasodilator effect from release of 

NO. This also eliminates an endothelium component for the relaxation at high doses.

Analogous to Chapter 2, the effect of p-PEA on tissue pre-contracted with U46619 

in the presence or absence of endothelium was investigated. However, in contrast to 

previous experiments, the contractile response was also measured in the presence of 

“inhibitors”. As with the results in Chapter 2 the reduced vasoconstriction 

(vasodilatation) to p-PEA in rat aortic rings at higher concentrations (Varma and 

Chemtob, 1993; Varma et a l , 1995) could not be confirmed with these experiments. 

P-PEA showed further contractions in U46619-precontracted tissues rather than 

vasorelaxant effects in endothelium-intact and endothelium-denuded tissues in the 

presence of “inhibitors”. Furthermore, the presence of endothelium enhanced the 

contractile responses in pre-contracted tissues in the presence of “inhibitors”. 

Therefore, the vasorelaxant factors released by the endothelium (NO, EDHF), as 

discussed in Chapter 2 do not affect the contractile response to p-PEA in pre

contracted tissues in the presence of “inhibitors”. If they were released, the 

contraction would be increased by the removal of endothelium. In fact, the 

contraction was reduced by endothelium removal, suggesting some release of an 

endothelium derived vasoconstrictor under these conditions. As the contractile 

response in U46619 pre-contracted tissues was not affected by “inhibitors”, it cannot
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be caused through an a- or p-adrenoceptor-mediated mechanism.

4.5.2 Contractile response to p-PEA and tryptamine -  effect of 
indomethacin

As with the results for cumulative CRCs in Chapter 2 indomethacin, a non-selective 

inhibitor of COX 1 and COX 2 (Schachter and Sang, 1997; Fischer et al., 2000; 

Stanke-Labesque et al., 2004) did not affect the vasoconstrictor response to p-PEA in 

the absence, or presence of “inhibitors” in non-cumulative CRCs. As indomethacin 

did not have any effect on the contractile response to p-PEA, the vasoconstriction is 

not mediated via prostaglandins or thromboxane (Schachter and Sang, 1997; Fischer 

et al., 2000). Furthermore, indomethacin potentiated not significantly (P>0.05) the 

contractile response to tryptamine in the presence of “inhibitors” at lower 

concentrations.Therefore, the contractile response to tryptamine in rat aortic rings is 

also not mediated via prostaglandins and thromboxane (Schachter and Sang, 1997; 

Fischer et al., 2000). The reason for the potentiation of the contractile response to 

tryptamine in the presence of indomethacin is unclear. However, previous 

publications reported that indomethacin caused an enhanced vasoconstriction to 

different vasoconstrictors (Gordon et al., 1986; Tiritilli, 2000). The potentiation by 

indomethacin may result from inhibition of the vasodilator effect of prostaglandins 

(Kochar and Itskovitz, 1978; Abate et al., 1979).

4.5.3 Contractile response to P-PEA -  effect of ct2, P2 and p3- 
adrenoceptor antagonists

In Chapters 2 and 3, the roles of a- and P2-adrenoceptors in the contractile responses 

of rat aortic rings to p-PEA were investigated by constructing cumulative and non- 

cumulative CRCs in the presence of various inhibitors. Therefore in this Chapter, the 

roles of adrenoceptor subtypes on the remaining contractile response to p-PEA in rat 

aortic rings was further investigated. a-Adrenoceptors can be classified into two 

different subtypes, a*- and ct2-adrenoceptors (Starke, 1981; Digges and Summers, 

1983b). Furthermore, a-adrenoceptors are separated in two distinct anatomical 

locations, post- and pre-junctional (Langer, 1974; Langer, 1980; Timmermans and 

van Zwieten, 1981) (see Chapter 1). Post-junctional a-adrenoceptors are either a i or 

a 2 (Berthelsen and Pettinger, 1977). However, there seems to be some discrepancy
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regarding a-adrenoceptors in vitro, between different species (Ruffolo and Waddell, 

1982a; Ruffolo et al., 1982c), as well as between the organs of the same species 

(Ruffolo et al., 1980; Ruffolo et al., 1981). Rat isolated aortic strips have been 

commonly used to investigate the existence of vascular a-adrenoceptors (Digges and 

Summers, 1983a). The presence of aj-adrenoceptors in rat aortic tissues is general 

agreed as the selective aj-adrenoceptor antagonist prazosin inhibits the responses to 

aj-adrenoceptor agonists with high affinity (Randriantsoa et al., 1981; Ruffolo et al., 

1982c). ar-adrenoceptors were first identified on noradrenergic terminals where 

their activation leads to inhibition of transmitter release (Langer, 1974; Starke and 

Langer, 1979). They were subsequently demonstrated in vascular smooth muscle in 

which they subserve vasoconstriction, resulting in a pressor response in intact 

animals (Docherty et al., 1979; Timmermans et al., 1979; Timmermans and van 

Zwieten, 1980), and contraction in isolated preparations of certain blood vessels 

(Holtz et al., 1982; Hicks et al., 1983). However, in the past, the presence of post- 

synaptic ar-adrenoceptors in isolated blood vessels, especially in rat aortic rings, has 

been difficult to prove (Digges and Summers, 1983a; Decker et al., 1984). It has 

been suggested that either two types of adrenoceptor, one a classical a  i-adrenoceptor 

and the other not simply classifiable as either a i or a 2 are present (Randriantsoa et 

al., 1981). As another possibility it was reported that the receptor is a variety of the 

a-adrenoceptor which has the properties of both the a  i or a 2 subtypes (Ruffolo et al., 

1982; Ruffolo and Waddell, 1982b). However, a later publication has reported the 

presence of a 2-adrenoceptors in rat aorta smooth muscle cells (Fauaz et al., 2000).

In Chapter 2 and 3, prazosin (lpM), a selective aj-adrenoceptor antagonist, (Wood 

et al., 1975; Cavero et al., 1977) was shown to have little or no effect on the 

contractile response to P-PEA. It was therefore assumed that P-PEA did not cause 

contraction via ai-adrenoceptors. In further experiments here, yohimbine, a 

selective, competitive a 2-adrenoceptor antagonist (5pM and 50pM) was used in 

combination with “inhibitors” to eliminate possible a 2-adrenoceptor effects in 

isolated rat aorta tissues. In previous publications, clonidine, a selective a 2-  

adrenoceptor agonist, was used to differentiate post-synaptic a-adrenoceptors 

(Ruffolo et al., 1980). In rat aorta, clonidine has been shown to have a high affinity 

for a-adrenoceptors compared to that in vas deferens (Ruffolo et al., 1980; Ruffolo
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et a l, 1981). Based on the known selectivity of clonidine for ar-adrenoceptors 

(Berthelsen and Pettinger, 1977) and high affinity of the a —adrenoceptor for 

clonidine in the rat tissue, it was suggested that there are post-synaptic ar~ 

adrenoceptors in the rat aorta (Ruffolo et al., 1980). Thus, post-synaptic ar-  

adrenoceptors can mediate vasoconstrictor responses in the vasculature (Ruffolo et 
a l, 1981).

In the present study, clonidine in the presence, or absence of yohimbine (50pM) was 

used as a positive control to confirm the blocking effect of yohimbine. Yohimbine 

(50pM) greatly reduced the contractile response to clonidine in rat aortic tissues 

which confirms the selectivity of yohimbine as an ar-adrenoceptor antagonist in rat 

aortic tissues (Digges and Summers, 1983a). In contrast, yohimbine at a 

concentration of 5pM used in a previous publication (Digges and Summers, 1983a) 

failed to inhibit the contractile response to p-PEA in the presence of “inhibitors”. 

Moreover, with an increased concentration (50pM) of the a 2-adrenoceptor 

antagonist, the contractile response to p-PEA was not significantly potentiated in the 

presence of “inhibitors”. Therefore, the remaining contractile response in rat aorta to 

P-PEA is not based on an ar-adrenoreceptor effect.

In Chapter 5, the effects of ICI-118,551, a selective Pr-adrenoceptor antagonist 

(Bilski et al., 1980; Bilski et al., 1983) and propranolol, an non-selective p- 

adrenoceptor antagonist, were discussed. Neither propranolol nor ICI-118,551 altered 

the contractile response to P-PEA in rat aortic rings. Previous workers reported the 

presence of both Pi- and p2- adrenoceptors in rat aortic tissues (O'Donnell and 

Wanstall, 1984a). Therefore, the use of atenolol, a selective pi-adrenoceptor 

antagonist, should eliminate even more clearly the possibility that the contractile 

response in rat aorta to P-PEA could be affected by P-adrenoceptor effects. The 

effect of atenolol on p-PEA contraction in rat aortic rings was very similar to that of 

propranolol as both antagonists failed to modify the contractile response of P-PEA. 

Furthermore, the P-adrenoceptor antagonists failed to block the vasorelaxant 

component seen at higher concentrations of P-PEA. Therefore, the vasoconstriction 

and the vasorelaxation responses to P-PEA in rat aortic rings are not due to vascular 

P-adrenoceptor mechanisms. Moreover, previous publications (Varma and Chemtob,
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1993; Varma et al., 1995) have reported that tyramine, another TA agonist, caused a 

vasorelaxant effect in rat aortic tissues which was not blocked by pi- and p2- 

adrenoceptor antagonists. These findings in the present study suggest that this is also 

the case for the contractile response in rat aortic rings to P-PEA. Also, an opposing 

vasodilator action of p-PEA is eliminated as the p-adrenoceptor antagonists would 

cause potentiation of the contractile response. The cloning of a third p-adrenoceptor 

subtype (p3-adrenoceptor) (Emorine et al., 1989) has allowed an explanation of some 

of the effects of catecholamines which are not related to activation of Pi-and p2- 

adrenoceptors. p3-adrenoceptors (Manara et al., 1996; Brawley et al., 2000; Harada 

et al., 2003) were found to mediate lipolysis in adipose tissues (Hollenga and 

Zaagsma, 1989; Lafontan, 1994), the relaxation of gastrointestinal (Manara et al., 

1995; Roberts et al., 1999) and airway (Martin and Advenier, 1995) smooth muscle. 

Furthermore, P3-adrenoceptors have been characterized in human heart, causing a 

negative inotropic effect (Gauthier et al., 1996). In addition, p3-adrenoceptors were 

found in rat colon (Bianchetti and Manara, 1990) and guinea pig ileum (Bond and 

Clarke, 1988). After the pindolol-elicited relaxation of canine mesenteric vessel 

(Clark and Bertholet, 1983) and rat aorta (Doggrell, 1990) was not antagonised by 

propranolol, the presence of p3-adrenoceptors in vascular smooth muscles has been 

suggested (Matsushita et al., 2003). Propranolol-resistant relaxations in response to 

the stimulation of putative P3-adrenoceptors in vascular smooth muscle were found 

in rat carotid artery (Oriowo, 1994; MacDonald et al., 1999) and rat thoracic aorta 

(Oriowo, 1995; Brawley et al., 2000). All these findings have accumulated evidence 

for the presence of P3-adrenoceptors in the vascular system. In the present study, the 

contractile response in rat aortic rings to P-PEA was therefore examined in the 

presence of the selective P3-adrenoceptor antagonist SR59230A (Manara et al., 

1996; Nisoli et al., 1996). The concentration-dependent vasorelaxant effect to P-PEA 

is construed as an effect of reduced contraction at the highest concentrations of P- 

PEA, rather than a vasodilatation effect. p-PEA caused inconsistent reduced 

contractions at high concentrations in rat aortic tissues. However, when comparing 

cumulative and non-cumulative CRCs to P-PEA, the reduced contraction effect 

occurred more frequently in cumulative rather than in non-cumulative CRCs. 

Therefore, to examine the effect of SR59230A (lOpM) (Manara et al., 1996) on the
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contractile response to p-PEA, cumulative CRCs were constructed. It was difficult to 

conclude whether SR59230A (lOpM) inhibited the reduced contraction to P-PEA. At 

the maximum concentration (300pM) the reduced contraction was absent but to 

confirm this, a higher concentration of P-PEA should have been added. The 

concentration-dependent vasodilatation effect to p-PEA did not always occur and 

when examined in rat aorta pre-contracted with U46619, there was no relaxation. 

Thus, it is questionable whether there was a significant vasorelaxant component to 

the response to p-PEA.

4.5.4 Contractile response to serotonin and tryptamine - effect of 
various inhibitors

To examine the possible role of serotonin (5-HT) receptors in the contractile 

response to TAs, experiments were performed with another TA, tryptamine. It was 

selected because of its close structural similarity to serotonin. Serotonin is the most 

well-known tryptamine derivative and previous work on serotonin as a 

vasoconstrictor (Vanhoutte, 1987; Mawatari et ah, 1997) was used to provide a basis 

to investigate the contractile response in rat aortic rings to tryptamine. There are 

seven main serotonin receptor types and several subtypes of serotonin receptors 

(Hoyer et ah, 1994; Hoyer et ah, 2002) (Table 4.1, 4.2). Serotonin has both 

vasoconstrictor and vasodilator capabilities (Vanhoutte, 1987; Hoyer et ah, 2002). In 

smooth muscle, vasoconstriction can be caused through activation of 5-HTi and 5- 

HT2 receptors (Peroutka et ah, 1983; Vanhoutte, 1987; Hoyer et ah, 2002) (Table 

4.1, 4.2). Therefore, the contractile effects of serotonin and tryptamine were 

investigated in the presence of methiothepin, a non-selective 5-HTja, ib, id antagonist 

and ketanserin, a selective 5-HT2A receptor antagonist (Van Nueten et al., 1985; Van 

Ncuten et ah, 1986; Hoyer et ah, 2002) (Table 4.2). Previous publications reported 

that serotonin might be an important mediator of coronary vasospasm in the variant 

form of ischaemic heart disease (Vanhoutte and Shimokawa, 1989) and augmented 

vasoconstrictor responses to serotonin have been reported in atherosclerotic blood 

vessels of animals and humans (Henry and Yokoyama, 1980; Ginsburg et ah, 1984). 

serotonin also possesses vasodilator properties.
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The vasodilatator effects can be due to activation of endothelial cells which release 

endothelium-derived relaxing factors. The receptors mediating the release of 

endothelium-derived relaxing factors can be subtyped as 5-HTi receptors 

(Vanhoutte, 1987).

Receptor Distribution Function
5-HTi CNS

Blood Vessels
Neuronal inhibition 
Vasoconstriction

5-HT2
CNS
Periphery 
(VSM, platelets)

Vasoconstriction
Vasodilatation
Smooth muscle contraction

5-HT3 CNS, PNS Neuronal Excitation

5 -HT4
CNS, PNS 
Atria
Smooth muscle

Neuronal Excitation 
(+) Gastric motility 
altered cardiac rhythmus

5-HTe CNS
Immune cells

Modulation of CNS 
Release of Ach and DA

5 -HT7
CNS
Periphery 
(GIT, VSM)

Vasodilatation
Smooth muscle relaxation (GIT)

Table 4.1: Serotonin (5-HT) receptor distribution and function 
CNS = central nervous system, PNS = peripheral nervous system, DA = dopamine, 
GIT = gastrointestinal tract, Ach = acetylcholine, VSM = vascular smooth muscle, 
(+) = activation (Hoyer et al., 2002)

Receptor Transduction Mechanism Antagonist
5-HTia G|/G0 => (-) cAMP Methiothepin
5-HTib G|/G0 => (-) cAMP Methiothepin
5-HTio G j/G o => (-) cAMP Methiothepin
5-HT2A Go/Gn => (+ ) IP3  and DAG Ketanserin
5-HT2b Gq/Gh => (+) IP3  and DAG SB204741
5-HT2C Gq/Gh => (+ ) IP3 and DAG RS102221

5 -HT3
Ligand-gated ion channel 
(+) [Ca2*]i

Odansetron

5-HT4 Gs=> (+) cAMP GR113808
5-HTe G* => (+) cAMP RO046790

5-HTt G# => (+) cAMP
Methiothepin
SB238719

Table 4.2: Serotonin (5-HT) receptor transduction mechanism and antagonists 
(+) = Increase, (-) = Decrease, IP3 = inositol 1,4,5-trisphosphate, DAG = 
diacylglycerol (see also Chapter 1, Table 1.4) (Hoyer et al., 2002)
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In the present study, the mechanism of action for vasoconstriction by serotonin in rat 

aortic rings seems to be complex and not fully understood. The first peak of the 

contractile response to serotonin seems to be distinguishing. The first peak of the 

CRC to serotonin seems to be potentiated by “inhibitors” suggesting the possibility 

of some opposing vasodilatation via P-adrenoceptors and no stimulation of a- 

adrenoceptors. The potentiation could also be due to the pargyline as serotonin is a 

substrate for monoamine oxidase (MAO) (Campbell et al., 1979; Campbell et a!., 

1985). Furthermore, the first peak of the contraction was progressively shifted to the 

right by ketanserin (3nM and 30nM) indicating that it was mediated via 5-HT2A 

receptors. This finding confirms results in various isolated smooth muscle tissues of 

a previous publication (Van Neuten et al., 1986) which showed that ketanserin is a 

potent antagonists of contractions of isolated blood vessels caused by serotonin due 

to 5 -HT2 receptors (Van Nueten et al.f 1981; Van Nueten et al., 1982; Van Nueten et 

al., 1984; Van Nueten et al., 1985). The second peak of contraction to serotonin was 

largely blocked by methiothepin (50nM) and is therefore likely to be due to 

activation of a serotonin receptor, other than 5 -HT2A such as 5-HTi receptor. In the 

present study, tryptamine induced vasoconstriction in rat aortic rings in the absence 

and presence of various inhibitors. However, the shape of the CRC for tryptamine is 

unlike the CRCs for serotonin and p-PEA in the presence of “inhibitors”. The large 

contractile response to tryptamine at lower concentrations, in the presence of 

“inhibitors”, is not caused by stimulation of a - adrenoceptors, nor is it an indirect 

sympathomimetic action. Tryptamine is a partial 5 -HT3 receptor agonist (Van Hooft 

and Vijverberg, 1996) and also interacts on different sites of the allosteric 5 -HT2 

receptor system (Frenken and Kaumann, 1988). In the present study, the combination 

of “inhibitors”, methiothepin and ketanserin at the lower concentration (3nM) had no 

effect on the contractile response to tryptamine. However, ketanserin at a higher 

concentration (30nM) in the presence of “inhibitors” changed the shape of the CRC 

to tryptamine to a curve similar to the biphasic serotonin CRC. In addition, this 

concentration of ketanserin (30nM) acted as a competitive antagonist for tryptamine, 

as in the presence of the serotonin antagonist, the CRC was significantly shifted to 

the right. However, the dose-ratio for ketanserin (30nM) against tryptamine was 

significantly lower than against serotonin. Furthermore, peak contraction was not 

inhibited in the presence of “inhibitors” and ketanserin (30nM).
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In conclusion, the remaining contractile response to tryptamine is not due to an 

interaction with 5-HTj or 5 -HT2A receptors, indirect sympathomimetic activity or 

direct stimulation of a - adrenoceptors or ISA stimulation. The failure of pargyline to 

potentiate suggests that tryptamine was also not being metabolised by MAO.

Previous workers investigating the effect of tryptamine vasoconstriction in human 

coronary arteries (Nilsson et al., 1999) found that the contractile response to 

tryptamine was mainly mediated by 5-HT ib and 5-HT2A receptors. Furthermore, 

vasoconstriction to tryptamine in endothelium-denuded rabbit coronary arteries was 

inhibited by ketanserin (Ellwood and Curtis, 1997). Therefore the contractile 

response to tryptamine seems to be due to different mechanisms of action dependent 

on the species. Activation of 5 -HT3 receptors does not cause vasoconstriction in 

blood vessels (Table 4.2) (Peroutka et al., 1983; Vanhoutte, 1987). Therefore, in the 

present study, the contractile response to tryptamine in the presence of a 5 -HT3 

receptor antagonist was not investigated.

4.6 Conclusion
The conclusion from this Chapter is that the vasoconstriction by p-PEA is not 

mediated or influenced by a 2-and P-adrenoceptors, and also the vasoconstriction by 

tryptamine is not mediated via serotonin receptors. Antagonists for these receptors 

did not reduce the vasoconstriction to these TAs. In Chapter 2 and 3 various factors, 

such as the presence, or absence of endothelium, ai-and p2-adrenoceptors have been 

already examined and had been shown not to affect the contractile response to TAs 

in rat aortic rings. As in Chapters 2 and 3, the mechanism by which TAs, such as P- 

PEA, causes vasoconstriction in rat aorta cannot be established from this study. 

However, it is likely that p-PEA and tryptamine exert vasoconstriction by activation 

of a novel receptor system. This will be investigated further in Chapters 5 and 6.
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Chapter 5 

Investigation of the contractile responses to a range 
of trace amines agonists in the presence of various 
inhibitors

5.1 Introduction
In this Chapter a range of trace amines (TAs) in addition to P-PEA will be 

investigated. These will include octopamine and amphetamines. For most 

invertebrate species, certain TAs are the primary amines especially in insects 

(octopamine and tyramine) (Lewin, 2006). In invertebrates, the role of TAs acting as 

neurotransmitters via stimulation of a GPCR is well known. The GPCR was 

characterised as the octopamine receptor (Axelrod and Saavedra, 1977; David and 

Coulon, 1985; Evans and Robb, 1993; Roeder, 1999). Four classes of octopamine 

receptors have been studied. The signal transduction of these four GPCRs is caused 

through either activation or inhibition of adenylate cyclase or activation of 

phospholipase C (David and Coulon, 1985; Lewin, 2006). In vertebrates, the 

existence of functional receptors for TAs had not been closely investigated until the 

gene for TAAR, a mammalian receptor for TAs (GPCR), was discovered by 

amplification of novel DNA sequences by PCR using cDNA and genomic DNA as 

templates (Borowsky et al., 2001; Bunzow et a l, 2001; Lewin, 2006). In cell lines, in 

comparison to p-PEA and p-tyramine, octopamine activates TAAR1 with minor 

affinity (Borowsky et a l, 2001).

Octopamine (see Chapter 1) was first discovered in the posterior salivary gland of 

Octopus vulgaris (Erspamer and Boretti, 1951). Later, it was also found to be present 

in the urine of man and other mammals (Armstrong et al, 1956). Octopamine is now 

known to be present in mammals and in invertebrates (David and Coulon, 1985; 

Roeder, 1999). It is highly concentrated in neurones of several invertebrate species 

and appears to serve as a major neurotransmitter and a neuromodulator (Axelrod and 

Saavedra, 1977; Roeder, 1999). Octopamine is a biogenic monoamine and is 

structurally related to noradrenaline. It is synthesised in nerves from tyrosine and 

tyramine via dopamine-p-hydroxylase (Chapter 1) and is metabolised primarily by 

monoamine oxidase (Axelrod and Saavedra, 1977; Roeder, 1999).

138



Chapter 5

In mammals, it is found in generally low levels in nerves of peripheral tissues and the 

brain, where it exists in parallel with noradrenaline (Axelrod and Saavedra, 1977).

As amphetamine (Table 5.1) is structurally similar to p-PEA, amphetamine and also 

substituted derivates, such as MDMA ('ecstasy') (Table 5.1) can also directly 

activate TAAR (Kim and von Zastrow, 2001). Initially, amphetamine and its 

derivatives were sold as stimulants and appetite suppressants (Bunzow et al., 2001). 

However, in modem times amphetamines are mostly used as a treatment of attention 

deficit hyperactivity disorders (ADHD) (Bradley, 1937; Seiden et al., 1993; Seeman 

and Madras, 1998). Nevertheless, amphetamines are also listed as controlled drugs 

due to their ability to produce wakefulness and intense euphoria (Prinzmetal and 

Bloomberg, 1935). Amphetamine and the synthetic trace amine methamphetamine 

(METH) (Table 5.1) (Anglin et al., 2000) are potent psychostimulants that can lead 

to abuse and often addiction (Reese et al., 2007). METH is the most widely used 

illegal drug in the world according to the United Nations (Anglin et al., 2000; 

Iversen, 2006). In North America, South-east Asia, Australia and Japan, 

methamphetamine abuse causes major public health problems (Iversen, 2006). 

Furthermore, substituted amphetamine-derivatives, such as MDMA and DOI (2,5- 

Dimethoxy-4-iodoamphetamine) are used for their hallucinogenic and 

'empathogenic' effects (Shulgin and Shulgin, 1991; Eisner, 1994). Hyperthermia 

(Henry et al., 1992; Coore, 1996; Byard et al., 1998), neurotoxicity (Ricaurte and 

McCann, 1992), psychosis (Seiden et al., 1993) and psychological dependence 

(Murray, 1998) are some of the consequences associated with use of these 

amphetamines (McCormack, 2006).

MDMA is a synthetic amphetamine derivative with strong effects on serotonergic 

neurotransmission (Mas et al., 1999). MDMA is one of the most commonly used 

drugs of abuse in the U.K (Ramsay et al., 2001). There is a marked worldwide 

increase in the popularity of 'ecstasy' use (Landry, 2002), which is attributed to its 

positive effects on mood, euphoria, friendliness, empathy after use and perceived 

safety (Peroutka et al., 1988; Mas et al., 1999). These symptoms are sometimes 

called “entactogen” (Cami and Farre, 1996). Undesirable effects associated with the 

recreational use of MDMA include loss of appetite, jaw clenching, trismus, 

headache, muscle aches and insomnia (Mas et al., 1999).
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Acute medical complications include malignant hyperthermia (Sprague et al, 2004), 

hepatitis, intracerebral haemorrhage (Harries and De Silva, 1992) and acute renal 

failure (McCann et al., 1994). Tachycardia (Gordon et al., 1991), hypertension 

(Hayner and McKinney, 1986) and cardiovascular mortality (Dowling et al., 1987) 

have been reported in man (McDaid and Docherty, 2001). The use of MDMA 

together with other serotonergic compounds may enhance the appearance of 

serotonin syndrome, including diarrhoea, diaphoresis and ataxia (Demirkiran et al, 

1996)

Within this Chapter, the effects of other amphetamine-related reagents, 

methylphenidate (MPH, Ritalin®) and cathinone (Table 5.1) will also be considered. 

Ritalin® (Maxwell et al., 1957; Maxwell et al., 1958) is the most common drug for 

the treatment of ADHD (Swanson et al., 1991; Greenhill et a l, 2002; Wilens et al.,

2002). ADHD is the most common behavioral disorder of childhood (Volkow et al,

2003). It is a condition which includes deficits in executive functions (working 

memory and attention) (Hunt et al., 1984; Hunt, 1987). Moreover, Ritalin® is 

effective for the treatment of narcolepsy (Littner et al., 2001) and as an 

antidepressant elderly patients (Kaufmann et a l, 1984; Rozans et al., 2002). 

Unfortunately, Ritalin® also has reinforcing effects particularly when taken 

intravenously or when snorted, which can lead to abuse and addiction (Parran and 

Jasinski, 1991). As an analogue of D-amphetamine, Ritalin® enhances the release of 

noradrenaline and blocks the re-uptake of noradrenaline and dopamine in 

mammalian brain (Carlsson et al., 1966; Axelrod, 1970; Hendley et al., 1972; Raiteri 

et al., 1974). However, D-amphetamine releases newly synthesised dopamine, while 

Ritalin® releases stored dopamine (Moore et al., 1977).

In the last few years, the use of the khat leaf (Catha edulis Forsk.) has gained in 

importance in East Africa and parts of the Middle East, such as The Yemen 

(Brenneisen et a l, 1986; Brenneisen et a l, 1990; Al-Motarreb et a l, 2002b). The 

social and cultural function of chewing the khat leaf for its euphoric actions, has now 

spread to ethnic communities in Britain (Griffiths, 1998). Leaves of the khat bush are 

widely used as an amphetamine-like stimulant (Al-Motarreb et al., 2002b). For many 

years the stimulant effects of khat were attributed to cathine a phenylethylamine 

derived compound in the plant (Alles et al., 1961). However in a range of studies
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cathinone has been shown to be more potent in its action than cathine (W.H.O. 

Advisory Group, 1980; Kalix, 1983b). S (-)-cathinone is the major active compound 

of khat leaves (Table 5.1) (Brenneisen et al'., 1984; Kalix, 1984a; Brenneisen and 

Geisshusler, 1985; Goudie, 1985). Chewing of the fresh khat leaves provides 

amphetamine-like CNS-stimulating effects. Like MDMA and amphetamine (Table 

5.1), cathinone causes euphoric effects, hyperactivity and restlessness with 

hyperthermia (Schomo, 1982; Kalix, 1984b). It has been reported that amphetamine 

and cathinone have similar actions, such as operant behaviours (Johanson and 

Schuster, 1981) and anorectic properties and also show anorectic cross-tolerance 

(Foltin and Schuster, 1982; Foltin and Schuster, 1983; Foltin et al., 1983).
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D ru g  N a m e S y s t e m a t i c
N a m e S t r u c tu r e

0-Phenylethylam ine 2-Phenylethylamine

CM

X2

Am phetamine

a-Methyl-
phenylethylamine,

1-Phenyl propane-2- 
amine

p-Hydroxy-amphetamine
(4-Hydroxyamphetamine)

(1R,2S)-2-
(Methylamino)-I-

phenylpropan-1-ol,
a-M ethyltyramine

jcrr
(+) M ethylamphetamine 

(M ethamphetamine) 
(-) M ethylamphetamine 

(Desoxyephedrine)

N-Methyl-1-phenyl-
propan-2-amine Crr1'

Cathinone
(P-Ketoamphetamine)

(Sy 2-Amino-1- 
phenyl-1-propanone qV"

M ethylphenidate 
(MPH, Ritalin®)

Methyl 2-phenyl-2- 
(2-piperidyl)acetate

O.
ro

Methylene- 
dioxym ethylam phetam ine, 

(MDMA, 'E cstasy ')

1-
(benzo[d][1,3]dioxol- 

5-yl )-/V- 
methyipropan-2- 

amine

Table 5.1: Structure, drug and systematic names of P-PEA, amphetamine and their 
derivatives. p-PEA and other TAs including tyramine and octopamine (Chapter 1) 
are structurally and functionally related to amphetamines.
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In Chapters 2, 3 and 4 the effects of p-PEA and tryptamine were investigated. In the 

present Chapter other TAs, including tyramine, octopamine, amphetamine and 

various amphetamine-derivatives (Table 5.1) are investigated to see if they have 

similar effects. Moreover, the effect of TAs in guinea-pig aorta was studied to see if 

there were species differences as pig arteries are already know to be different (Baker 

et a l, 2007).

5.2 Aims
To study the contractile response of rat isolated aortic rings to a range of trace amine 

(TA) agonists employing cumulative and non-cumulative CRCs and single dose 

experiments

a.) Determine whether p-PEA produces vasoconstriction in isolated guinea-pig

aortic tissues

b.) Determine whether the other TAs, tyramine, octopamine and D

amphetamine, produce vasoconstriction in isolated guinea-pig and rat aortic 

tissues.

c.) Determine whether the contractile responses to various TAs differ between

isolated guinea-pig and rat aortic tissues.

d.) Determine whether MDMA, Ritalin®, S-(-)-cathinone, (+)- and (-)-4-OH-

amphetamine and (+)- and (-)-methamphetamine produce vasoconstriction in 

isolated rat aortic tissue.
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5.3 Material and Methods

The main methods and experimental protocol described in Chapter 2 were retained 

throughout the study unless otherwise stated.

5.3.1 Experimental Protocol

After equilibration cumulative CRCs for cathinone, MDMA and Ritalin®, non- 

cumulative CRCs for p-PEA, tyramine, octopamine, D-amphetamine, (+)- and (-)- 

methamphetamine and also single dose experiments for (+)- and (-)-4-OH- 

amphetamine (300pM), were obtained, in the absence, or presence of different 

inhibitors, which were incubated with the tissue for 15 minutes before commencing 

the CRC or single dose experiment unless otherwise stated. In all experiments, the 

endothelium was removed by inserting a cocktail stick and rolling the aortic ring 

round it.

5.3.2 Drugs Used

All chemicals were dissolved in distilled water, unless otherwise stated. Prazosin 

hydrochloride and U46619 were dissolved in DMSO. (+)-and (-)-4-OH-amphetamine 

hydrobromide were kindly donated by the National Institute of Drug Abuse (NIDA), 

Division of Neuroscience and Behavioural Research, Bethesda, MD,USA.

> Reagents obtained from Sigma Aldrich

D-amphetamine sulfate, S (-)-cathinone (p-ketoamphetamine), cocaine 

hydrochloride, (-)-deoxyephedrine hydrochloride ((-)-Methamphetamine 

hydrochloride), pargyline hydrochloride (PG), p-phenylethylamine (P-PEA), 

prazosin hydrochloride, (±)-propranolol hydrochloride, MDMA (3,4- 

methylenedioxy-N-methylamphetamine, 'Ecstasy'), methylphenidate (MPH, 

Ritalin®), (+)-Methamphetamine hydrochloride, octopamine

> Reagents obtained from Fisher

All chemicals for the Krebs-bicarbonate buffer (analytical grade)
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> Reagents obtained from TOCRIS

ICI-118,551 hydrochloride ((±)-1 -[2,3-(Dihydro-7-methyl-1 H-inden-4-yl)oxy]-3-[( 1 - 

methylethyl) amino]-2-butanol hydrochloride), ketanserin tartrate and methiothepin 

maleate

5.4 Results

5.4.1 Contractile response to P-PEA in rat and guinea-pig aorta
- effect of “inhibitors”

A comparison was made between guinea-pig and rat regarding the contractile 

response of TAs in aortic rings. As the contractile response in rat aorta to P-PEA was 

investigated in Chapters 2 and 5, the contractile response in guinea-pig aorta to P- 

PEA was examined here. The maximum contractile responses of guinea-pig aorta to 

P-PEA in the absence of any antagonist (lOOpM, 125.8±32.5%, n=5), in the presence 

of prazosin (lpM ) and ICI-118,551 (lpM ) (lOOpM, 77.9±17.1%, n=4), and in the 

presence of prazosin (lpM ), ICI-118,551 (lpM ) and cocaine (lOpM) (300pM, 

162.1±65%, n=4) were not significantly different (P>0.05) (Figure 5.1). 

Furthermore, the CRC to p-PEA in the absence (-log EC50 4.13±0.28, n=3) or 

presence (-log EC50 3.1±1.4, n=6) of “inhibitors” were not significantly different 

(P>0.05). Furthermore, the maximum contractile response to p-PEA (lOOpM, 

125.8±32.5%, n=5) was not significantly (P>0.05) altered by “inhibitors” (300pM, 

158.2±39.7%, n=5) (Figure 5.1). Isolated aortic tissues from rat and guinea-pig 

showed similar maximum contractile responses to P-PEA in the presence of 

“inhibitors”. The maximum responses to p-PEA in rat (300pM, 138.2±23.1%, n=6) 

and guinea-pig aortic tissues (300pM, 158.7±39.7%, n=5) and the -log EC50 values 

in rat (4.92±0.17, n=6) and guinea-pig (4.22±0.21, n=5) were not significantly 

different (P>0.05) (Figure 5.2).
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Figure 5.1: Effects of prazosin (lpM), ICI-118,551 (lpM), cocaine (10pM) and 
pargyline (lpM ) on the contractile response of guinea-pig aortic rings to P-PEA. 
Non-cumulative CRCs for p-PEA were constructed in the absence of antagonists (□ , 
n=5) or in the presence of ICI-118,551 and prazosin (■*, n=4) or in the presence of 
ICI-118,551, prazosin and cocaine (0 , n=3) or in the presence of ICI-118,551, 
prazosin, cocaine and pargyline (“inhibitors”, ♦ ,  n=5). Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KC1 (60mM, 
isotonic solution). Mean responses (±SEM) were compared by ANOVA followed by 
the “post hoc” Bonferroni test. No significant differences (P>0.05) were seen at their 
maximum contractions.
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Figure 5.2: The contractile response of guinea-pig and rat aortic rings to p-PEA in 
the presence of “inhibitors”. Non-cumulative CRCs for p-PEA in guinea-pig (♦ , 
n=5) and in rat aortic rings were constructed in the presence of “inhibitors” (□ , n=6). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) at the 
maximum contractile responses (300pM) were compared by Student’s unpaired t- 
test. No significant differences (P>0.05) were seen.
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5.4.2 Contractile response to tyramine in rat and guinea-pig 
aorta - effect of “inhibitors”

The contractile response to tyramine in guinea-pig aorta was examined. The presence 

of “inhibitors” (ImM, 95.1±23.6%, n=5) did not alter the contractile response to 

tyramine (ImM, 52.3±22.5%, n=5) significantly (P>0.05) (Figure 5.3).

The contractile response in rat aortic rings to tyramine in the absence of “inhibitors” 

showed very inconsistent and variable results. In some experiments tyramine in the 

absence of “inhibitors” did not show any contractile responses whereas in others a 

contraction was visible but often only in high concentrations (data not shown). In 

general the contractile responses to tyramine in the absence and presence of 

“inhibitors” in rat aortic rings were least active compared to the contractile response 

to tyramine in guinea-pig aorta. When comparing the contractile response to 

tyramine in the presence of “inhibitors” in rat and in guinea-pig aortic rings, the 

contractile responses at the maximum concentration (ImM) in guinea-pig (ImM, 

95.1 ±23.6%, n=5) was significantly greater (PcO.Ol) compared to that in rat aortic 

rings (ImM, 0.7±14%, n=5) (Figure 5.4).
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Figure S3: Effect of “inhibitors” on the contractile response of guinea-pig aortic 
rings to tyramine. Non-cumulative CRCs for tyramine in guinea-pig aortic rings were 
constructed in the absence (□ , n=5), or in the presence of “inhibitors” (♦ ,  n=5). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. A significant difference (P<0.05,3fr) was seen at 
the maximum concentration (ImM).
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Figure 5.4: The contractile response of guinea-pig and rat aortic rings to tyramine in 
the presence of “inhibitors”. Non-cumulative CRCs for tyramine in guinea-pig (♦ , 
n=5) and in rat (□ , n=5) aortic rings were constructed in the presence of “inhibitors”. 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s unpaired t-test. At the maximum concentration (ImM) a 
significant difference between the two CRCs was shown (PcO.Ol,■&■*).
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5.4.3 Contractile response to octopamine in rat and guinea-pig 
aorta - effect of “inhibitors”

In the next set of experiments, the contractile responses in rat and in guinea-pig aorta 

to octopamine were examined.

In isolated rat aortic rings, the C R C  for octopamine (-log E C 50 6.01 ±0.99, n=4) w a s  

displaced to the right but not significantly (P>0.05) by “inhibitors” (-log E C 5 0  4.22±0.13, 

n=4). However, the contractile response to octopamine at the concentration of 3pM 

(93.8±20.8%, n=4) and 10pM (79.2±7.2%, n=4) were significantly decreased in the 

presence of “inhibitors” (3pM, 6.3±6.3%, n=4) (P<0.05) and (lOpM, 0±0%, n=4) 

(P<0.01) (Figure 5.5). The contractile response to octopamine at the maximum 

concentration (300pM, 140.5±23.4%, n=4) was significantly (P<0.05) inhibited by 

“inhibitors” (300pM, 49.9±6.9%, n=4) (Figure 5.6). In addition, the contractile 

responses to octopamine in the two different species in the presence of the 

“inhibitors” were compared. Neither the maximum contractile responses in rat 

(lOOpM, 73.6±35.3%, n=4), and in guinea-pig aorta (IOOjjM, 55.9±10.7%, n=4) nor 

the contractile responses at the maximum concentration in rat (300pM, 72.6±19.4%, 

n=4) and in guinea-pig aorta (300pM, 49.9±6.9%, n=4) to octopamine were 

significantly different (P>0.05). Moreover, the -log E C 50  values in rat (4.36±0.17, 

n=5) and in guinea-pig aorta (4.97±0.23, n=5) were not significantly different 

(P>0.05) (Figure 5.7).
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Figure 5.5: Effect of “inhibitors” on the contractile response of rat aortic rings to 
octopamine. Non-cumulative CRCs for octopamine in rat aortic rings were 
constructed in the absence (□ , n=4), or in the presence of “inhibitors” (♦ , n=4). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (+SEM) were 
compared by Student’s paired t-test. Significant differences were seen at the 
concentrations 3pM (P<0.05,-£) and lOpM (P<0.01,-fc-fc).
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Figure 5.6: Effect of “inhibitors” on the contractile response of guinea-pig aortic 
rings to octopamine. Non-cumulative CRCs for octopamine in guinea-pig aortic rings 
were constructed in the absence (□ , n=4), or in the presence of “inhibitors” (♦ , 
n=4). Responses are the mean (±S.E.M.) contractions expressed as a percentage of 
the contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. A significant difference was seen at the 
maximum concentration in the absence or presence of “inhibitors” (P<0.05,-fc).
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Figure 5.7: The contractile response of guinea-pig and rat aortic rings to octopamine 
in the presence of “inhibitors”. Non-cumulative CRCs for octopamine in guinea-pig 
(♦ ,  n=4) and in rat (□ , n=4) aortic rings were constructed in the presence of 
“inhibitors” Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s unpaired t-test. No significant differences 
(P>0.05) were seen.
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5.4.4 Contractile response to D-amphetamine in rat and guinea- 
pig aorta - effect of “inhibitors”

The contractile response in rat aorta to D-amphetamine was modified by “inhibitors”. 

The CRC to D-amphetamine (-log EC50 6.15±0.78, n=4) was shifted to the right by 

“inhibitors” (-log EC50 3.76±0.34, n=4), but not significantly (P>0.05). The 

maximum contractile response to D-amphetamine (lOpM, 108.3153.4%, n=4) was 

not significantly decreased by “inhibitors” (lOpM, 25±25%, n=4) (Figure 5.8).

The contractile response in guinea-pig aorta to D-amphetamine was then examined. 

The contractile response to D-amphetamine at the concentration of lOpM 

(98.9±14.5%, n=4) was significantly inhibited (P<0.05) by “inhibitors” (50±10.6%, 

n=4). However, the maximum contractions in the absence (30pM, 140.6±29.4%, 

n=4), and presence (30pM, 86.3+24.3%, n=4) of “inhibitors” were not significantly 

different (P>0.05) (Figure 5.9).

In addition, the contractile responses in rat and guinea-pig aorta to D-amphetamine, 

in the presence of the “inhibitors” were compared. The -log EC50 values to D- 

amphetamine in rat (3.76±0.34, n=4) and guinea-pig (4.85±0.32, n=4) aortic tissues 

were not significantly (P>0.05) different. The maximum contractions to D- 

amphetamine in rat (lOOpM, 75.8±30.3%, n=4), and guinea-pig (30jliM, 121+39.5%, 

n=4) to D-amphetamine were not significantly different (P>0.05) (Figure 5.10).
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Figure 5.8: Effect of “inhibitors” on the contractile response of rat aortic rings to D- 
amphetamine. Non-cumulative CRCs for D-amphetamine in rat aortic rings were 
constructed in the absence (♦ , n=4) or in the presence of “inhibitors” (□ , n=4). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by Student’s paired t-test. No significant differences (P>0.05) were seen.
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Figure 5.9: Effect of “inhibitors” on the contractile response of guinea-pig aortic 
rings to D-amphetamine. Non-cumulative CRCs for D-amphetamine in guinea-pig 
aortic rings were constructed in the absence (♦ ,  n=4), or in the presence of 
“inhibitors” (□ , n=4). Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(+SEM) were compared by Student’s paired t-test. A significant difference was seen 
at the concentration of 10pM (P>0.05,-*fc).
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Figure 5.10: The contractile response of guinea-pig and rat aortic rings to D- 
amphetamine in the presence of “inhibitors”. Non-cumulative CRCs for D- 
amphetamine in guinea-pig (♦ ,  n=4) and in rat aortic rings were constructed in the 
presence of “inhibitors” (□ , n=4). Responses are the mean (±S.E.M.) contractions 
expressed as a percentage of the contraction to KC1 (60mM, isotonic solution). Mean 
responses (±SEM) were compared by Student’s unpaired t-test. No significant 
differences (P>0.05) were seen.
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5.4.5 Summary of contractile responses to different trace amines 
in rat aorta — effect of “inhibitors”

The contractile responses to P-PEA in rat, and guinea-pig aortic rings were used as a 

basis for the investigation of contractile responses to different TAs. The contractile 

responses of a range of TAs were therefore compared between the two species.

In rat aorta, tyramine in the presence of the “inhibitors” turned out to be the weakest 

TA agonist. There was virtually no contractile response in the presence of 

“inhibitors” up to ImM (7.1±14%, n=5). P-PEA gave the largest response of the 

agonists (300pM, 138.2±23.1%, n=6 ) (Figure 5.11, Table 5.1). In the presence of 

“inhibitors” both the contractile response to P-PEA at the maximum concentration 

(ImM, 114.6±29.3%, n=6 ) and the maximum contractile response (300pM, 

138.2±23.1%, n=6 ) were significantly greater (P<0.01) than the contractile response 

to tyramine (ImM, 7.1±14%, n=5) (Figure 5.11). Moreover, the maximum 

contractions of D-amphetamine (lOOpM, 75.8±30.3%, n=4) and octopamine 

(lOOpM, 73.6±35.3%, n=4) occurred at lower concentrations compared to p-PEA 

(300pM, 138.2±23.1%, n=6 ). Furthermore, the CRCs for D-amphetamine (-log EC50 

3.76±0.34, n=4), octopamine (-log EC50 4.45±0.39, n=4) and p-PEA (-log EC50 

4.46±0.15, n=6 ) were not significantly different (P>0.05) (Figure 5.11).

Trace amine Mean Max. Response (%) Concentration (pM)
3-PEA 138.2±23.1 300

D-amphetamine 75.8±30.3 100
Octopamine 73.6±35.3 100

Tyramine 7.1±14.0 1000

Table 5.1: Comparison of the maximum contractile response in rat isolated aortic 
rings of different trace amines (TAs). In the presence of “inhibitors” p-PEA is the 
most active and tyramine the least active agonist.
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Figure 5.11: Comparison of the contractile responses of rat aortic to various trace 
amine agonists. Non-cumulative CRCs for P-PEA (■&, n=6), D-amphetamine (0, 
n=4), octopamine (♦ , n=4) and tyramine (□ , n=5) in rat aortic rings were 
constructed in the presence of “inhibitors”. Responses are the mean (±S.E.M.) 
contractions expressed as a percentage of the contraction to KC1 (60mM, isotonic 
solution). Mean responses (±SEM) were compared by Analysis of ANOVA followed 
by the “post hoc” Bonferroni test. A significant difference was seen between the 
responses to the maximum concentration of p-PEA and tyramine (P<0.01,■£■£).
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5.4.6 Contractile response to tryptamine in guinea-pig- effect of 
adrenergic inhibitors

Analogous to previous experiments in rat aortic rings (Chapter 4), the contractile 

responses to tryptamine in guinea-pig aortic rings in the absence, or presence of 

various inhibitors was examined. The contractile response in guinea-pig aorta to 

tryptamine was first tested in the presence of “inhibitors”. The maximum contractile 

response to tryptamine (lOOpM, 138.5±31.1%, n=3) was not significantly altered 

(P>0.05) by “inhibitors” (lOOpM, 114.1±52.1%, n=3) (Figure 5.12). In addition, 

these experiments were analogous to previous experiments in rat aortic rings 

(Chapter 4) repeated in the presence of methiothepin (50nM) and ketanserin (3nM). 

The maximum contractile response of tryptamine in the presence of “inhibitors” 

(lOOpM, 114.1±51.1%, n=3) was not significantly altered (P>0.05) by methiothepin 

and ketanserin (lOOpM, 99.6+35.1%, n=4) (Figure 5.12).

In Chapter 4 ketanserin (3nM) alone and in combination with methiothepin (50nM) 

caused a significantly right shift of the CRCs to serotonin (Figure 4.15). However, 

the CRC to tryptamine was not shifted by the combination of both serotonin 

antagonists in rat isolated aorta (Figure 4.18). Referring to the experiments in 

Chapter 4 both serotonin antagonists did not shift the CRC to tryptamine to the right. 

The -log EC50 values of both CRCs to tryptamine in the presence of “inhibitors” 

alone (5.18±0.55, n=3) and in the presence of “inhibitors” plus methiothepin (50nM) 

and ketanserin (3nM) (4.42±0.07, n=4) were not significantly different (P>0.05) 

(Figure 5.12).
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Figure 5.12: Effects of “inhibitors”, methiothepin (50nM) and ketanserin (3nM) on 
the contractile response of guinea pig aortic rings to tryptamine. Non-cumulative 
CRCs for tryptamine in guinea pig aortic rings were constructed in the absence (♦ , 
n=3), in the presence of “inhibitors” (□ , n=3) or in the presence of “inhibitors”, 
methiothepin (50nM) and ketanserin (3nM) (♦ , n=4). Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KC1 (60mM, 
isotonic solution). Mean responses (+SEM) were compared by ANOVA followed by 
“post hoc” test Bonferroni. No significant differences (P>0.05) at their maximum 
contractile responses were seen.
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5.4.7 Summary of contractile responses to different trace 
amines in guinea-pig aorta — effect of “inhibitors”

Similar to previous results in rat aortic tissues (Chapter 5.4.5), in the presence of 

“inhibitors” p-PEA also turned out to be the most active TA in guinea-pig aortic 

rings. However, in contrast to the results in rat aorta octopamine gave the smallest 

maximum response in the presence of “inhibitors” (Figure 5.12, Table 5.2).

In the presence of “inhibitors”, the maximum contractile responses in guinea-pig 

aorta to P-PEA (300pM, 158.7+39.7%, n=5), tyramine (ImM, 95.1+23.4%, n=5), D- 

amphetamine (30pM, 86.3±24.3%, n=4), octopamine (lOOpM, 55.9±10.7%, n=4) 

and tryptamine (lOOpM, 114.1 ±52.1%, n=3) were not significantly different 

(P>0.05). Moreover, the CRCs to D-amphetamine (-log EC50 4.86+0.31, n=4), p- 

PEA (-log EC5o4.26±0.41, n=4), octopamine (-log EC50 4.98+0.23, n=5), tyramine (- 

log EC50 4.37±0.36, n=5) and tryptamine (-log EC50 5.18±0.55, n=3) were not 

significantly different (P>0.05) (Figure 5.12).

Trace amines Mean Max. Response (%) Concentration (pM)
3-PEA 158.2±39.7 300

Tryptamine 114.1±51.1 100
Tyramine 95.1±23.4 300

D-amphetamine 86.3±24.3 30
Octopamine 55.9±10.7 100

Table 5.2: Comparison of the maximum contractile response in guinea-pig isolated 
aortic rings of different TAs. In the presence of “inhibitors”, P-PEA is the most 
active and octopamine the least active agonist.
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Figure 5.13: Comparison of the contractile responses of guinea-pig aortic to various 
trace amine agonists to various trace amine agonists. Non-cumulative CRCs for P- 
PEA (♦ ,  n=5), D-amphetamine (0 , n=4), octopamine (▼, n=4), tyramine (□ , n=5) 
and tryptamine (■#, n=3) in guinea pig aortic rings were constructed in the presence 
of “inhibitors”. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by ANOVA followed by the “post hoc” Bonferroni test. No 
significant differences were seen at their maximum contractile responses (P>0.05).
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5.4.8 Contractile response to amphetamine-derivatives - effect of 
“inhibitors”

In the following experiments, the contractile response in rat aortic rings to further TA 

agonists, Ritalin®, MDMA ('ecstasy') and cathinone were investigated. Due to the 

high costs of these reagents only cumulative CRCs were constructed.

Ritalin® and MDMA alone both showed a small effect compared to other previously 

discussed agonists. The contractile response to Ritalin® at the maximum 

concentration (lmM, 44.4±5.6%, n=3) was not significantly modified (P>0.05) by 

“inhibitors” (lmM, 35±6.1%, n=5) (Figure 5.14). The maximum contractile response 

in rat aortic rings to MDMA (300pM, 80+25.5%, n=5) was also not significantly 

(P>0.05) modified by “inhibitors” (300jnM, 54.2±15.8%, n=4). Furthermore, at the 

maximum concentration (lmM), the presence of “inhibitors” (lmM, 37.5± 14.2%, 

n=4) did not significantly (P>0.05) modify the reduced contraction (vasodilatation) 

(lmM, 70±20%, n=5) (Figure 5.15). In addition, the contractile response in rat aortic 

rings to cathinone was investigated. For financial reasons, the experiment with 

cathinone in the absence of “inhibitors” was carried out only once to see the 

tendency of the contractile effect of cathinone in rat aortic rings. Cathinone seems to 

be very weakly active alone and compared to Ritalin® and MDMA, it was the 

weakest agonist. At the maximum concentration (3mM) the contractile response to 

cathinone seems to be potentiated by “inhibitors” (3mM, 45.2±12.9%, n=4) (Figure

5.16). The most active of these three TA agonists, in the presence of “inhibitors” was 

MDMA (300pM, 54.2±15.8%, n=4), followed by Ritalin® (lmM, 35±6.1%, n=4) 

then cathinone (3mM, 45.2±12.9%, n=4) (Figure 5.17). The maximum contractile 

responses were not significantly different (P>0.05) but significantly different 

(P<0.01) from p-PEA (300pM, 138.2±23.1, n=6). However, the CRC of Ritalin® was 

shifted to the left of the CRC of cathinone. The -log E C 5 0  values of Ritalin® 

(4.53±0.27, n=4) and cathinone (3.23±0.05, n=4) were significantly different (Figure

5.17). Neither the CRC to cathinone (-log EC50 3.23+0.05, n=4) nor the CRC to 

Ritalin® (-log EC50 4.53±0.27, n=4) was significantly different from the CRC to 

MDMA (-log EC5o3.96±0.38, n=4) (Figure 5.17).
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At the maximum concentration of MDMA (lmM, 70±20%, n=5), a reduced 

contraction (vasodilatation) was observed. However, the contractile responses to 

MDMA (lmM, 70±20%, n=5), Ritalin® (lmM, 35±6.1%, n=4) and cathinone (3mM, 

45.2+12.9%, n=4) at their maximum concentrations were not significantly different 

(P>0.05) (Figure 5.17, Table 5.3).

Trace amines Mean Max. Response (%) Concentration (pM)
3-PEA 138.2±23.1 300
MDMA 54.2±6.4 300

Cathinone 45.2±12.9 3000
Ritalin® 35.0±61.2 1000

Table 5.3: Comparison of activity of different TAs in rat isolated aorta in the 
presence of “inhibitors”. MDMA, Ritalin® and cathinone are less active agonists 
compared to the maximum contractile response to p-PEA in the presence of 
“inhibitors”.

5.4.9 Contractile response to various amphetamine enantiomers 
-  effect of “inhibitors”

The final set of experiments compared stereoisomers of the different amphetamine 

derivates, D-amphetamine, (+)- and (-)-4-OH-amphetamine and (+)- and (-)- 

methamphetamine in rat isolated aortic rings. For their effects as trace amine (TA) 

agonists, the contractile responses to (+)- and (-)-methamphetamine in the presence 

of “inhibitors” were examined. Again, due to the high cost or limited amounts of 

these reagents, cumulative CRCs for (+)- and (-)-methamphetamine were constructed 

in the presence of “inhibitors” only. The maximum contractile response to (-)- 

methamphetamine in rat aortic rings (lOOpM, 83.3±16.7%, n=3) was significantly 

greater (P<0.05) compared to (+)-methamphetamine (300pM, 23.3±11.3%, n=4) 

(Figure 5.18). However, compared to the maximum contractile response to D- 

amphetamine (lOOpM, 75.8±30.3%, n=4) neither the contractile response to the (+) 

(300pM, 23.3±11.3%, n=4) nor to the (-) stereoisomer (lOOpM, 83.3±16.7%, n=3) of 

methamphetamine was significantly different (P>0.05) (Figure 5.18). In addition, 

the contractile responses in rat aorta to (+)- and (-)-4-OH-amphetamine in the 

presence of “inhibitors” were examined. Due to limited drug supply, only single dose 

experiments were performed.
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In the presence of “inhibitors”, the contractile response in rat aortic rings to (+)-4- 

OH-amphetamine (300pM, 22.2±6.4%, n=3) was not significantly different (P>0.05) 

compared to (-)-4-OH-amphetamine (300pM, 7.4±3.7%, n=3) (Figure 5.19).

Previous work (Bunzow et al., 2001) reported 4-OH-amphetamine to be the most 

potent TA agonist in cloned TAAR1 transfected cell lines. Therefore, the contractile 

responses to single doses of (+)-4-OH - and (-)-4-OH-amphetamine (300pM), were 

compared in separate experiments with a single dose of D-amphetamine at the same 

concentration (300pM). The contractile response to D-amphetamine (300pM, 

46.7±16.2%, n=5) in rat aortic rings was not significantly different (P>0.05) 

compared to (-)-4-OH-amphetamine (300pM, 7.4±3.7%, n=3) and (+)-4-OH- 

amphetamine (300pM, 22.2+16.4%, n=3). However, they were all significantly less 

than the response to the single maximum dose of p-PEA (300pM, 138.2±23.1, n=6) 

(Figure 5.20).
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Figure 5.14: Effects of “inhibitors” on the contractile response of rat aortic rings to 
Ritalin®. Cumulative CRCs for Ritalin® in rat aortic rings were constructed in the 
absence (□ , n=3) or in the presence of “inhibitors” (♦ ,  n=4). Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by student’s 
paired t-test. No significant differences (P>0.05) were seen.
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Figure 5.15: Effects of “inhibitors” on the contractile response of rat aortic rings to 
MDMA. Cumulative CRCs for MDMA in rat aortic rings were constructed in the 
absence of antagonists (□ , n=5) or in the presence of “inhibitors” (♦ ,  n=4). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by student’s paired t-test. No significant differences (P>0.05) were seen.
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Figure 5.16: Effects of “inhibitors” on the contractile response of rat aortic rings to 
cathinone. Cumulative CRCs for cathinone in rat aortic rings were constructed in the 
absence of antagonists (□ , n=l) or in the presence of “inhibitors” (♦ , n=4). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution).
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Figure 5.17: The contractile response of rat aortic rings to cathinone, MDMA and
/Rv

Ritalin compared to P-PEA in the presence of “inhibitors”. Cumulative CRCs for 
cathinone (□ , n=4), MDMA (0 , n=4) and Ritalin® (A, n=4) and non-cumulative 
CRC for p-PEA (♦ , n=6) in rat aortic rings were constructed in the presence of 
“inhibitors”. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by ANOVA followed by the “post hoc” Bonferroni test. The 
maximum contractile responses to Ritalin®, cathinone (P<0.01,^-fc) and MDMA 
(P<0.05,-&) were significantly different compared to the maximum contractile 
response to P-PEA.
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Figure 5.18: Comparison of the contractile response of rat aortic rings to (+)- and (-) 
methamphetamine and D-amphetamine. Cumulative CRCs for (+)-methamphetamine 
(□ , n=4) and for (-)-methamphetamine (♦ ,  n=3) and non-cumulative CRC to D- 
amphetamine (★, n=4) in rat aortic rings were constructed in the presence of 
“inhibitors”. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by ANOVA followed by the “post hoc” Bonferroni test. No 
significant differences (P>0.05) were seen at their maximum contractile respons
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Figure 5.19: A comparison between (+)- and (-)-4-OH amphetamine (300j_iM), D- 
amphetamine (300pM) and p-PEA (300pM) in the presence of “inhibitors”. Single 
dose experiments for (+)-4-OH (n=3) and (-)-4-OH amphetamine (n=3), for D- 
amphetamine (n=5), and for p-PEA in rat aortic rings were constructed in the 
presence of “inhibitors”. Responses are the mean (±S.E.M.) contractions expressed 
as a percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by ANOVA followed by the “post hoc” Bonferroni test. The 
contractile response to P-PEA (300pM) was significantly greater compared to (-)-4- 
OH amphetamine ((300pM, P<0.01,-fc-fc), (-)-4-OH-amphetamine (300pM, 
P<0.05,-fc) and D-amphetamine (300pM, P<0.05,-fc).
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5.5 Discussion
Very little is known about the relationship between vasoconstriction, TAs and 

smooth muscle in isolated tissues. Most information on TAs refers to studies which 

have been done on the brain (Philips et al., 1978; Vaccari, 1986; Boulton et al., 

1990; Paterson et al., 1990) or cloned receptors expressed in transfected cells 

(Borowsky et al., 2001; Bunzow et al., 2001). I am not aware of any studies where 

the effects of TAs on isolated aortic tissue have been investigated other than these 

from these laboratories. In previous Chapters the possible effect of a- and p- 

adrenoceptors and a possible ISA stimulation on the contractile response in rat aortic 

rings to p-PEA and tryptamine was investigated. The effects of other TAs on isolated 

aortic tissues and a comparison of their actions were examined in this Chapter. In 

addition, a comparison was made between the effects of several TAs at the aorta of 

rats and guinea-pigs. In previous Chapters, the contractile responses in isolated rat 

aortic rings to P-PEA and tryptamine were investigated.

5.5.1 Contractile response to P-PEA in rat and guinea-pig aorta - 
effect of “inhibitors”

In the presence of “inhibitors”, aortic tissues from rat and guinea-pig aorta showed 

similar contractile responses to p-PEA. Therefore, the comparable remaining 

contractile responses to p-PEA in rat and guinea-pig aorta suggest that the 

mechanism of action in both tissues is via a similar mechanism. Moreover, based on 

earlier results (Chapters 2 and 3) a mechanism other than ISA and a- and p- 

adrenoceptor stimulation is responsible for the vasoconstriction in these two different 

aortic tissues.

5.5.2 Contractile response to tyramine in rat and guinea-pig 
aorta - effect of “inhibitors”

Tyramine has been characterised as a sympathomimetic amine (Barger and Walpole, 

1909; Dale and Dixon, 1909; Barger and Dale, 1910). The sympathomimetic activity 

is mainly indirect and caused by a release of endogenous noradrenaline (Bum and 

Rand, 1958). The indirect action of tyramine has been confirmed by previous 

workers (Trendelenburg, 1961; Furchgott et al., 1963; Trendelenburg et al., 1963;
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Varma et al., 1964). Furthermore, a recent publication reported that tyramine caused 

vasoconstriction in endothelium-denuded thoracic aortic tissue (Khwanchuea et al., 

2008). However, since the discovery of a novel GPCR, called the TAAR, which is 

activated by TAs, such as tyramine and p-PEA (Chapter 4) (Borowsky et al., 2001; 

Bunzow et al., 2001), in rats, the mechanism of action of tyramine has evoked new 

interest. In contrast to the results from previous study (Khwanchuea et a l, 2008) in 

the present study, tyramine in the absence of “inhibitors” has shown very 

inconsistent and variable contractile responses in endothelium-denuded aortic tissues. 

This inconsistent contractile response might be due to low tyramine sensitivity in rat 

aortic tissue, or may reflect the tissue distribution of TAARs. In the presence of 

“inhibitors” there was virtually no contractile response to tyramine in rat aortic 

tissues.

In Chapters 2 and 2, the best conditions to measure contractile responses to TAs in 

isolated aortic tissues were established and it was found, generally, that the responses 

to TAs improved in the presence of “inhibitors”. In guinea-pig aorta, tyramine turned 

out to be an active agonist and its contractile response was not altered by 

“inhibitors”. Furthermore, the contractile responses to tyramine were significantly 

different between the two species. These findings suggest that the small responses to 

tyramine in rat aortic rings were mainly mediated via a-adrenoceptors, or due to ISA 

stimulation. However, in the presence of “inhibitors”, the vasoconstriction to 

tyramine in guinea-pig aorta is mediated via a mechanism other than ISA, or a- and 

p-adrenoceptor stimulation. Moreover, referring to previous publications regarding 

the TAARs (Borowsky et a l, 2001; Bunzow et a l, 2001), it might be possible that 

tyramine in guinea-pig activates a TAAR which does not exist in rat aorta tissue.

5.5.3 Contractile response to octopamine in rat and guinea - pig 
aorta - effect of “inhibitors”

The effect of octopamine in invertebrates has been studied intensively (David and 

Coulon, 1985; Roeder, 1999). The mechanism of action, via a GPCR, called the 

octopamine receptor, is well understood (Axelrod and Saavedra, 1977; Roeder, 

1999). However, since the recent discovery of TAARs (Borowsky et a l, 2001; 

Bunzow et a l, 2001), it is clear that very little is known about the effect of 

octopamine in isolated aortic tissues of vertebrates.
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In the present study the contractile responses to octopamine in rat and guinea-pig 

isolated aortic tissues were blocked by “inhibitors”. Therefore, it looks like 

octopamine exerts vasoconstriction mainly via a-adrenoceptors stimulation. 

However, in the presence of “inhibitors” the remaining response could be a weak 

TAAR response which would fit with its activity at cloned TAARs (Borowsky et a l , 
2001; Bunzow et al., 2001).

5.5.4 Contractile response to D-amphetamine in rat and guinea- 
pig aorta - effect of “inhibitors”

The TAs, p-PEA and tyramine, are structurally (Tables 1.1 and 5.1) and functionally 

related to the amphetamines (Sabelli and Mosnaim, 1974; Hauger et al., 1982; 

Bunzow et al., 2001). Recent reviews have investigated the pharmacological, 

amphetamine-like actions of TAs (Kim and von Zastrow, 2001; Branchek and 

Blackburn, 2003; Davenport, 2003). Given the close relationship between TAs and 

the amphetamines, the mechanism of action of D-amphetamine in isolated aortic 

tissues was investigated. Previous workers had reported a contractile response to D- 

amphetamine in rabbit aorta (Silvestrini et al., 1991; Silvestrini et al., 1994). In the 

present study, it was shown that D-amphetamine also causes contraction in rat and 

guinea-pig aorta in the absence and presence of “inhibitors”. The remaining 

contractile response in the presence of “inhibitors” is not based on a- and P- 

adrenoceptor stimulation or as a result of an ISA effect. Therefore, D-amphetamine 

might activate the same TAAR in both tissues. The relationship between D- 

amphetamine and different amphetamine-derivatives (Section 5.4.7) on the 

contractile response in rat aortic rings will be discussed in Sections 5.5.7 and 5.5.8.

5.5.5 Contractile response to tryptamine in guinea-pig - effect of 
adrenergic inhibitors

Analogous to the experiments in rat aortic rings (Chapter 4) the contractile responses 

in guinea-pig aorta to tryptamine were examined. As with the responses in rat aortic 

rings, tryptamine induced vasoconstriction in guinea-pig aortic rings in the absence 

or presence of various inhibitors. Even though the shape of the CRCs to tryptamine 

was different in rat compared to guinea-pig aortic tissues, the remaining contractile 

response to tryptamine in both tissues in the presence of “inhibitors” is neither
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caused through the stimulation of a- adrenoceptors, nor via ISA stimulation (Chapter 

4). The remaining contractile response in guinea-pig aortic rings to tryptamine was 

not altered in the presence of “inhibitors”, ketanserin and methiothepin. Therefore, 

the remaining contractile response to tryptamine in guinea-pig aortic rings is also not 

evoked via 5-HTi or 5 -HT2 receptors. Adequacy of the concentration of methiothepin 

(50nM) and ketanserin (3nM) to block 5-HTj- and 5-HT2 receptors can be inferred 

from the experiments in rat aorta with 5-HT in Chapter 4. Previous workers reported 

that the TA tryptamine activates the recently discovered TAARs. Tryptamine is a 

weak agonist for TAAR1 and also a slightly more potent agonist for TAAR4 

(Borowsky et al., 2001; Lindemann et al., 2005). Therefore the contraction to 

tryptamine in guinea-pig and rat aortic (Chapter 4) tissue might be due to an 

activation of TAARs.

5.5.6 Summary of contractile responses to different trace amines 
in rat and guinea-pig aorta - effect of “inhibitors”

The contractile responses to different TAs in rat (section 5.4.5) and guinea-pig 

(section 5.4.6) aortic tissues were examined. Overall, in both species p-PEA, 

octopamine and D-amphetamine proved to be potent agonists in the presence of 

“inhibitors” (Table 5.4) even in a slightly different potency order. However, tyramine 

in the presence of “inhibitors” behaved differently in rat and guinea-pig aortic tissue. 

Previous publications investigated the effect of TAs in cells transfected with human 

and rat cloned receptors (Borowsky et al., 2001; Bunzow et al., 2001). The 

mechanism of action for tyramine in rat and guinea-pig aortic tissues is unclear, so 

must be investigated in further studies for both species. Tryptamine also proved to be 

a potent agonist in both rat (-log E C 5 0  5.07±0.13, n=7) and guinea-pig (-log E C 5 0  

5.17±0.55, n=3) aortic tissues in the presence of “inhibitors”. The present study 

mainly focused on the investigation of the contractile response to p-PEA, D- 

amphetamine, octopamine and tyramine, therefore the possible effect of tryptamine 

on TAARs in aortic tissue was not investigated in further details.
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Trace amines RAT Mean 
-log ECso values

GP Mean 
-log ECso values

P-PEA 4.46±0.15 4.22±0.21
Octopamine 4.36±0.17 4.98±0.23

D-amphetamine 3.76±0.34 4.86±0.32
Tyramine 3.71 ±0.29 4.37±0.36

Table 5.4: Comparison of the potency (mean -log E C 5 0  values) of TAs in rat and 
guinea-pig isolated aortic rings in the presence of “inhibitors”

Species Vasoconstrictor activity 
(max. contraction)

Potency order 
(-log ECso values)

Rat Aorta p-PEA > D-amphetamine > 
octopamine > tyramine

p-PEA > octopamine > 
D-amphetamine > tyramine

Guinea-pig Aorta p-PEA > tyramine > D- 
amphetamine > octopamine

Octopamine > 
D-amphetamine > tyramine 

> 3-PEA

Table 5.5: Comparison of vasoconstriction activity (max. contraction) and potency 
orders (-log EC50 values) for TAs rat and guinea-pig isolated aortic rings in the 
presence of “inhibitors”.

In summary, the investigated TAs all work via a similar mechanism therefore 

activating probably the same receptor. However, there must be more than one 

receptor present as tyramine is inactive in the rat aortic tissue and the 

vasoconstriction activity and potency orders to TAs in rat and in guinea-pig are not 

coincident (Table 5.5).

5.5.7 Contractile response to different amphetamine-derivatives 
- effect of “inhibitors”

Ritalin® is a psychomotor stimulant with some sympathomimetic actions (Carlsson et 

al., 1966; Brichard and Johnstone, 1970; Hendley et al., 1972). Ritalin® is 

structurally related to amphetamine (Patrick and Markowitz, 1997). Previous studies 

showed that Ritalin® reduces pain by decreasing vasoconstriction as a result of 

blocking the a-adrenoceptors (Johnstone, 1974). Moreover, it was reported that 

Ritalin® eliminates tyramine activity and increases noradrenaline action in isolated 

rabbit aortic rings (Maxwell et al, 1961). Among the side effects of Ritalin® are its 

cardiovascular effects. It increases heart rate and blood pressure (Ballard et al., 1976; 

Brown et al., 1984). Though these cardiovascular effects are considered clinically
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insignificant at typical therapeutic doses (Findling et al, 2001). However, a recent 

publication reported a significant increase of blood pressure with therapeutic doses of 

Ritalin® in children with ADHD (Stowe et al, 2002). Furthermore, because of 

unintentional overdoses, medication errors and overdose caused by abuse or by 

suicide attempts, symptoms like hypertension and tachycardia were reported (Klein- 

Schwartz, 2002). It blocks the noradrenaline transporter and therefore increases the 

release of the neurotransmitter because of reduced reuptake after release (Kuczenski 

and Segal, 1997) (Section 5.1). It is suggested that the cardiovascular effects of 

Ritalin are caused through noradrenaline stimulation, but the mechanism of action 

has not been fully investigated as previous work suggested that dopamine effects also 

may be involved (Volkow et al., 2003).

In the present study, it was shown that Ritalin® caused contractions in isolated rat 

aortic tissues. The contractile response in rat aortic rings to Ritalin® was not altered 

in the presence of “inhibitors”. Therefore, the remaining contractile response is not 

through stimulation of a-adrenoceptors with the possibility of some opposing 

vasodilatation via p-adrenoceptors, nor due to ISA stimulation. Furthermore, as 

Ritalin® is structurally related to amphetamine (Patrick and Markowitz, 1997), it is 

likely Ritalin® activates TAARs in rat aortic tissues with the same mechanism of 

action as D-amphetamine (Chapter 5.5.4). However, compared to D-amphetamine, 

Ritalin® is much less active as the maximum contractile effect in rat aortic rings was 

much smaller.

MDMA is a psychostimulant with structural similarities to amphetamine (see 

Chapter 1 and Table 5.1). and also has some pharmacological properties of the 

hallucinogenic phenethylamine mescaline (Lester et al., 2000; Kalant, 2001). 

MDMA is reported to be widely abused resulting in fatalities, but MDMA has been 

much less studied than cocaine and classical amphetamines (Lavelle et al.t 1999; Al- 

Sahli et a l, 2001). MDMA is known to release monoamine transmitters in the CNS 

(Fitzgerald and Reid, 1990; Fitzgerald and Reid, 1993). However, there are also 

effects of MDMA in the peripheral nervous system (Fitzgerald and Reid, 1994). 

Given the major involvement of serotonergic nerves in the central actions of MDMA 

(Green et a l, 1995), possible effects of MDMA involving the noradrenergic system 

have been less investigated. In the peripheral autonomic nervous system, indirectly
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acting sympathomimetic amines such as amphetamine, cause the release of 

noradrenaline (Bum and Rand, 1958; Trendelenburg et al., 1962; Muscholl, 1966), 

inhibit the neuronal uptake carrier (Burgen and Iversen, 1965) and facilitate 

responses to neuronally released and exogenous noradrenaline (Furchgott et al., 

1963). The major metabolite of MDMA, methylenedioxyamphetamine (MDA) has 

sympathomimetic effects. MDA increases the heart rate, blood pressure and causes 

the release of [3H] noradrenaline from rabbit isolated atria (Fitzgerald and Reid, 

1994). In the past it was reported that MDMA has only relatively mild 

sympathomimetic effects (Shulgin, 1986). However, in 1994 the first evidence was 

provided that MDMA, like amphetamine, has sympathomimetic actions (Fitzgerald 

and Reid, 1994). MDMA induces vasoconstriction and facilitates vasoconstrictor 

responses to noradrenaline. MDMA acts to displace noradrenaline from adrenergic 

nerve terminals (Fitzgerald and Reid, 1994; Lavelle et al., 1999). Therefore, MDMA 

might increase the level of noradrenaline (Paton, 1975) but due to another 

mechanism of action, such as displacement of noradrenaline rather than block of re

uptake (Al-Sahli et al., 2001). These results might give a basis for understanding 

some of the cardiovascular complications associated with the use of MDMA. A few 

studies have evaluated the effects of MDMA on the cardiovascular system in either 

human or animal systems (Lester et al., 2000; Al-Sahli et al., 2001; McDaid and 

Docherty, 2001; Lai et al., 2003; Baker et al., 2007). It was reported that MDMA 

increases heart rate (Gordon et al., 1991) and blood pressure in rats due to ai and ci2 

-adrenoceptor stimulation (McDaid and Docherty, 2001). It is suggested that 

MDMA use in crowded conditions, high ambient temperature, and physical activity 

may be connected with a potential life-threatening increase in the cardiovascular 

toxicity of the drug (Mas et al., 1999). One of the most life-threatening consequences 

of the abuse of MDMA is hyperthermia (Logan et al., 1993) with maximum body 

temperature correlating with mortality (Gowing et al., 2002). In the present study, 

the effect of MDMA was examined in rat aortic rings to determine whether MDMA 

causes vasoconstriction and whether this was an indirect sympathomimetic action. 

The contractile response to MDMA in isolated rat aortic tissues was not altered by 

“inhibitors”. Therefore, MDMA-induced vasoconstriction in rat aortic tissues is via 

mechanisms other than indirect sympathomimetic activity or a- and P- adrenoceptor 

activation. The present results confirm earlier findings that MDMA caused
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vasoconstriction in isolated guinea-pig aorta via a direct mechanism of action (Baker 

and Broadley, 2003). Moreover, MDMA is a synthetic amphetamine-derivatives with 

structural similarity to amphetamine (Mas et a l, 1999; Lester et a l, 2000; Kalant, 

2001). Therefore it is likely that MDMA act with a similar mechanism of action like 

amphetamine, by activating the same TAARs in rat aortic tissues (Section 5.5.4).

Cathinone is the major, active central nervous system stimulant constituent of khat 

and the increase in blood pressure following the chewing of khat leaves occur 

simultaneously with raised plasma levels of cathinone (Gugelmann et a l, 1985; Al- 

Motarreb and Broadley, 2003; Baker et a l, 2007). In the cardiovascular system, 

cathinone increases blood pressure and heart rate in anaesthetized rats (Kalix and 

Braenden, 1985) and dogs (Kohli and Goldberg, 1982) and has a positive inotropic 

and chronotropic action in isolated atria (Gugelmann et al., 1985). Referring to a 

study in The Yemen, cathinone is a risk-factor for acute myocardial infarction and a 

suggested risk-factor for ischaemic heart disease (Al-Motarreb et al., 2002b). In vitro 

studies have confirmed that cathinone causes vasoconstriction in guinea-pig aortic 

rings and coronary vasoconstriction in isolated Langendorff hearts. This 

vasoconstriction is unlike that of amphetamines as it does not appear to be due to an 

indirect action by release of noradrenaline from sympathetic nerve endings neither 

due to a direct action on aj-adrenoceptors (Al-Motarreb and Broadley, 2003; Baker 

et a l, 2007).

In the present study, the contractile response to cathinone in the presence of 

“inhibitors” in rat aortic tissues was not inhibited. Therefore, the vasoconstriction in 

isolated rat aortic rings is caused via mechanisms other than indirect 

sympathomimetic activity or a- and p- adrenoceptor activation. The observation that 

cathinone is not behaving as an indirectly acting sympathomimetic amine in an 

isolated vasculature preparation contrasts with pharmacology at other sites where 

cathinone is reported to have indirect amphetamine-like actions by releasing 

noradrenaline (Kalix, 1983a; Kalix, 1983b). Nevertheless, the results confirm 

previous findings that cathinone caused vasoconstriction in isolated guinea-pig aorta 

via direct stimulation (Al-Motarreb et a l, 2000; Al-Motarreb et a l, 2002b; Al- 

Motarreb and Broadley, 2003; Baker and Broadley, 2003). Earlier studies in other 

laboratories had only shown that cathinone could enhance the electrically induced
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constrictions of rabbit isolated ear and pulmonary arteries (Knoll, 1979) rather than 

vasoconstriction alone.

My study shows that there is also vasoconstriction by cathinone without any 

electrical pre-stimulation. Thus, the vasoconstrictor effects seen in the present study 

can explain the pressor effects after khat chewing. It remains to be established by 

what mechanism cathinone causes this vasoconstriction. Compared to the previous 

discussed amphetamine-derivatives, MDMA and Ritalin®, cathinone was the least 

potent agonist of all three with the lowest -log EC50 value. Therefore, it is likely that 

the mechanism of action of cathinone is similar to amphetamine, MDMA and 

Ritalin® by activating TAARs in isolated aortic rings but with lower potency (Table 

5.5).

Drag Mean -log ECso Values
Cathinone 3.23±0.05

MDMA 4.34±0.08
Ritalin® 4.53±0.27

Table 5.5: Comparison of the potency (mean -log EC50 values) of amphetamine- 
derivatives. Ritalin® is the most potent and cathinone the least potent agonist in 
between the amphetamine-derivatives in the presence of “inhibitors”.

In summary, the contractile responses in the presence of “inhibitors” in rat aortic 

rings to MDMA, and cathinone were not significantly different. However, compared 

to the maximum contractile response to the TA p-PEA, all the amphetamine- 

derivates are less active TAs agonists. In isolated aortic rings, the order of 

vasoconstrictor activity was p-PEA > MDMA > Ritalin® > Cathinone (Section 

5.4.3). The mechanism of action cannot be identified within this study. However, it is 

likely that P-PEA and the amphetamine-derivatives all act via a direct stimulation of 

TAARs. It is possible that p-PEA and the amphetamine-derivatives activate different 

TAARs or the same receptor with different affinity. This could explain the different 

amount of vasoconstriction seen.
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5.5.8 Contractile response to different amphetamine 
enantiomers - effect of “inhibitors”

A chemical and structural relationship exists between the catecholamine 

neurotransmitters, TAs (tyramine and p-PEA) and the synthetic amines, 

methamphetamine, amphetamine and their metabolite 4-OH-amphetamine (Reese et 

al, 2007). Given the structural similarity of amphetamine to TAs, the amphetamine 

analogues methamphetamine, amphetamine and 4-OH-amphetamine (Bunzow et a l, 

2001; Reese et a l, 2007) have been tested as agonists for the TAAR1 in transfected 

cell lines. It was found that amphetamine, methamphetamine and 4-OH- 

amphetamine are able to act as potent and efficacious agonist of TAARls 

heterologously expressed in vitro. Furthermore, these agonists display concentration- 

dependent and species-dependent stereospecific pharmacological profiles (Reese et 

a l, 2007). In addition, it was reported that 4-OH-amphetamine, the major 

amphetamine metabolite (Cho and Kumagai, 1994) was found to be the most potent 

(lowest EC50 value) TAAR1 agonist in transfected cells lines (Bunzow et al, 2001). 

However, as far as I know the effects of TAs and related amphetamine-derivatives on 

isolated aortic tissue have not been investigated.

In the present study I have examined the effect of both stereoisomers (+) and (-) of 

methamphetamine and 4-OH-amphetamine in isolated rat aortic rings in the presence 

of “inhibitors”. Stereoselectivity was not found to be a crucial factor for the 

contractile response. For methamphetamine, the (-) stereoisomer caused a 

significantly greater maximum contractile response compared to the (+) 

stereoisomer. In contrast the (+) stereoisomer of 4-OH-amphetamine caused the 

bigger, but not significantly different, contractile response compared to its (-) 

stereoisomer. Nevertheless, in the presence of “inhibitors” both stereoisomers of 

methamphetamine and 4-OH-amphetamine caused vasoconstriction in rat aortic 

tissue. Therefore, amphetamine-derivatives induced vasoconstriction in rat aortic 

tissues via mechanisms other than indirect sympathomimetic activity or a- and p- 

adrenoceptor activation. In the past it was shown that the physiological and 

behavioral responses of an animal to (+) isomers of both amphetamine and 

methamphetamine are more potent end efficacious than their optical antipodes at 

inducing motor hyperactivity (Angrist et a l, 1971; Segal, 1975). Although both 

isomers were full agonists at mouse and human TAAR1 the potencies of the (+)
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isomers of methamphetamine and amphetamine were significantly greater than the 

potencies of the (-) isomers. In cells expressing rat TAAR1 both enantiomers of 

methamphetamine were approximately equipotent but only partial agonists. 

Regarding the isomers of 4-OH-amphetamine, the (+) isomer was the more potent of 

the two isomers (Reese et a l, 2007).

The fact that the activities of isomers in the present study were not very different 

suggests that the configuration of the molecule does not matter for receptor 

activation. This suggests that the methyl group is not a point of receptor attachment. 

It also suggests that the methyl group does not exert any steric inference with 

receptor binding. However, other studies reported that the stereoselectivity of the 

drug, such as thiopentone, has an important influence on the activation of the 

receptor, such as GAB A receptor and the distribution in the CNS tissue (Cordato et 

a l, 1999). Primarily, D-amphetamine is the active isomer for CNS effects such as in 

for the treatment for attention-deficit/hyperactivity disorder (ADHD). D- 

Amphetamine was more potent than L-amphetamine at inhibiting accumulation of 

DA or NA in synaptosomes and vesicles (Easton et al., 2007).

Previous work (Bunzow et al, 2001) reported a direct activation of TAAR by 

amphetamines in cloned receptor transfected cell lines. In the present study, even 

though vasoconstriction was examined in isolated aortic rings rather than in cloned 

TAAR1 expressed transfected cells, the direct stimulation of a receptor can be 

confirmed with the present study. However, the finding that 4-OH-amphetamine is 

the most potent TAAR1 agonist with the lowest EC50 value in transfected cell lines 

cannot be confirmed in the present study.

In isolated aortic rings, 4-OH-amphetamine proved to be the least active TA 

vasoconstrictor (maximum contractile response) amongst the group of amphetamine- 

derivatives. The contractile responses in rat aortic rings to (-) methamphetamine and 

D-amphetamine were comparable. However, in isolated rat aortic rings, all 

amphetamine-derivatives proved to be less active, compared to the contractile 

response to p-PEA. In summary, the investigated amphetamine enantiomers and all 

previous discussed TAs, including p-PEA, all work via a similar mechanism 

therefore, probably the same receptor.
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However, there must be more than one receptor present as both amphetamine 

enantiomers are less active in the rat aortic tissue compared to P-PEA.

5.6 Conclusion
In the present Chapter it was established that the contractile responses to TAs in rat 

and guinea-pig aorta were similar except for tyramine. Therefore, referring to the 

variable contractile responses to TAs in aortic tissues, perhaps there are more than 

one TAAR present, or there are some species variations in the distribution of 

receptors. Furthermore, the similar contractile responses to amphetamine-derivatives 

and analogues all suggest the presence of TAARs in aortic tissues. The clear 

differences in contractile response to TAs in isolated aortic tissues suggest either 

more TAARs, or more than one receptor for which TAs have efferent affinities. Most 

information about TAs relates to studies which has been done on the brain (Philips et 

al., 1978; Boulton et al., 1990; Paterson et al., 1990) or cloned TAAR1 expressed in 

transfected cells (Borowsky et al., 2001; Bunzow et al., 2001). My investigations of 

different TAs and structurally related derivatives in rat and guinea-pig aortic tissues 

have expanded the knowledge of the vasoconstriction effects of TAs in isolated 

tissues. The vasoconstrictor effect of all these TAs in aortic tissues might explain 

their hypertensive effects.
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Chapter 6 

Effect of tachyphylaxis and cross tachyphylaxis to 
trace amines on concentration-responses curves and 
single dose experiments for a range of trace amines

6.1 Introduction

Tachyphylaxis is a characteristic feature of IS As in that repeated dosage results in a 

gradual decline of the response (Day, 1967). This is probably due to progressive 

exhaustion of stored noradrenaline, which is replaced in the vesicle by less active 

TAs. ISAs show different degrees of tachyphylaxis and responses are generally not 

completely abolished. A previous publication reported that the pressor effects of p- 

PEA and tyramine displayed a slow and easily reversible tachyphylaxis on repeated 

dosages (Day and Rand, 1963). Also, there is a notable lack of cross-tachyphylaxis 

between certain TAs (Day, 1967). For example, the development of tachyphylaxis to 

the pressor effect of (+)-amphetamine is crossed to phenylephrine but not to 

tyramine. This effect could be explained by the conversion of tyramine to the more 

potent directly acting agonist, octopamine, by dopamine-P-hydroxylase (DBH) 

(Chapter 1) (Broadley, 1996). Tyramine is a precursor of noradrenaline (Chidsey et 

al, 1964) and it has been suggested that it releases noradrenaline from a different 

storage site than other ISAs, such as dexamphetamine and phenylethylamine. 

However, it is possible that the two stores may be functionally connected (Zaimis, 

1964). This could explain the persistence of tyramine pressor responses after other 

ISA tachyphylaxis and the lack of cross tachyphylaxis (Day, 1967).

Various hypotheses have been proposed to explain the lack of cross-tachyphylaxis 

between different ISAs. A previous publication suggested that tyramine might 

release noradrenaline from other storage sites than mephentermine (Fawaz and 

Simaan, 1965). In contrast, Bhagat et al., (1965) proposed that tyramine may 

accelerate noradrenaline synthesis possibly by acting as a noradrenaline precursor 

itself.

In previous Chapters, cumulative (Chapter 2) and non-cumulative CRCs (Chapters
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3, 4, and 5) were discussed. In Chapter 3, the possible effect of desensitisation or 

tachyphylaxis of the TAs was discussed by comparing cumulative and non- 

cumulative CRCs. In this Chapter, repeated cumulative and non-cumulative CRCs 

and single doses experiments for the TAs, were used to determine whether 

tachyphylaxis or desensitisation was occurring and whether the dosing regimen 

makes a difference. These studies might throw some light on TA receptor 

mechanisms and explain the lack of tachyphylaxis observed for some ISAs.
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6.2 Aims

To study the effect of TAs employing single dose experiments, cumulative and non- 

cumulative CRCs to investigate the contractile responses of rat isolated aortic rings 

to a range of agonists and inhibitors

a) To investigate further the effect of tachyphylaxis on the contractile response 

to p-PEA in rat aortic rings via repeated cumulative and non-cumulative 

CRCs and single dose experiments in the absence or presence of various 

inhibitors.

b) Comparison of the contractile responses in rat aortic tissues to p-PEA, D- 

amphetamine and octopamine in the presence of “inhibitors” via single dose 

experiments.

c) Determine whether p-PEA, D-amphetamine and octopamine activate the 

same receptor system in rat aortic rings.

d) Determine whether Ritalin®, D-amphetamine and tyramine react as partial 

agonists on the contractile response in rat aortic tissues and as antagonists of 

other TAs in the presence of “inhibitors”

6.3 Material and Methods

The main methods and experimental protocol described in Chapter 2.3 were retained 

throughout the study unless otherwise stated.

6.3.1 Experimental protocol

After equilibration in the absence, or presence of different inhibitors, which were 

incubated with the tissue for 15 minutes before commencing the experiments, unless 

otherwise stated cumulative or non-cumulative CRCs for P-PEA were obtained. 

Further, single dose experiments to p-PEA, tyramine, D-amphetamine, octopamine 

and Ritalin® were performed. In all experiments, the endothelium was removed by 

inserting a cocktail stick and rolling the aortic ring round it.
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Cumulative and non-cumulative CRCs

In the absence and presence of “inhibitors”, repeated cumulative CRCs for p-PEA 

were obtained. After obtaining the first cumulative CRC, the tissue was left after 

washout (2 min, 2 min and 6 min) for approximately 45 minutes to equilibrate before 

the second cumulative CRC was constructed. After each CRC, KC1 (60mM, isotonic 

solution) was added after washout of the final drug concentration.

Non-cumulative CRCs

In the absence and presence of “inhibitors” repeated non-cumulative CRCs for p- 

PEA were obtained. After obtaining the first non-cumulative CRC the tissue was left 

after washout (2 min, 2 min and 6 min) for approximately 45 minutes to equilibrate 

before the second non-cumulative CRC was performed. After each CRC, KC1 

(60mM, isotonic solution) was added after washout of the final drug concentration.

Single dose experiments

Four different kinds of single dose experiments were performed. At the end of the 

experiments, KC1 (60mM, isotonic solution) was always added after washout of the 

final drug concentration.

Protocol 1: Tachyphylaxis

After equilibration (see Chapter 2) the tissue was incubated for 15 minutes with 

“inhibitors” before the first single dose of P-PEA (30pM or lOOpM), D- 

amphetamine (lOOpM) or octopamine (lOOpM) was added to the bath. The tissue 

bath was washed out (2 min, 2 min, and 6 min) after the peak effect was reached. 

The tissue was left for approximately 20 minutes to equilibrate. Afterwards, the 

tissue was incubated for a further 15 minutes with “inhibitors” before the second 

single dose of the same TA was added. The tissue bath was washed out after the peak 

effect was reached. As a control experiment, single doses of p-PEA (30pM, lOOpM) 

were repeated in the absence of “inhibitors”.
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Protocol 2: Cross-tachyphylaxis

Single doses of p-PEA (lOOpM), D-amphetamine (lOOpM) and octopamine 

(lOOpM) were tested against each other. After equilibration, the tissue was incubated 

for 15 minutes with “inhibitors” before the first single dose of any TA was added to 

the bath. The tissue bath was always washed out (2 min, 2 min, and 6 min) after the 

peak effect of the first single dose of any TA was reached. The tissue was left for 

approximately 20 minutes to equilibrate before it was incubated with 

“inhibitors” for a further 15 minutes and the second single dose of one of the other 

TAs was added to the tissue bath.

Protocol 3: Multiple dosing

For this set of experiments the incubation time with “inhibitors” (15 minutes), the 

wash out period (2 min, 2 min, and 6 min) and the equilibration time for 

approximately 20 minutes were kept as above. However, a single dose of either p- 

PEA (lOOpM) or octopamine (lOOpM) was added three times to the bath, instead of 

two single doses. Moreover, the second single dose of p-PEA (lOOpM) was left in 

the tissue bath for 60 minutes before washout. In the control experiment, the second 

single dose of p-PEA (lOOpM) was left out. However, the tissue was still incubated 

with “inhibitors” during the 60 minutes.

Protocol 4: Antagonism by a partial agonist

The first single dose of the first TA, either p-PEA (lOOpM), octopamine (lOOpM) or 

D-amphetamine (100pM) was added to the tissue bath after the tissue was incubated 

with “inhibitors” for 15 minutes. The tissue bath was washed out (2 min, 2 min, and 

6 min) after the peak effect was reached and the tissue was then left to equilibrate for 

approximately 20 minutes. The “inhibitors” were then returned to the bath and 

approximately 5 minutes later a single dose of a second TA, either Ritalin® (ImM) or 

tyramine (ImM) was added to the bath and left for approximately 25 minutes. The 

second single dose of the first TA was then added to the bath without washout. In 

the control experiment the protocol was identical except that the single prolonged 

exposure to Ritalin® (ImM) or tyramine (ImM) was left out (Figure 6.1).
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Test - Experiment 1st Baseline

i

2nd Baseline 

1
15 min 20  min 5 min 25 min

Inhibitors 1st dose of Wash out after Inhibitors Tyramine or 2nd dose of Wash out after 
testTA  peak effect Ritalin® testTA peak effect

(1mM)

Control- Experiment 1st Baseline

1
2nd Baseline

I

|  15 min 20  min

I
Inhibitors 1st dose of Wash out after Inhibitors 

test TA peak effect

30 min

2nd dose of Wash out after 
test TA peak effect

Test trace am ines (TA): 
>p-PEA (100jiM)
> Amphetamine (100|iM) 
>Octopamine (100jiM)

Inhibitors: 
>Prazosin (1|iM) 
>ICI-118,551 (1 jaM) 
>Cocaine (10jaM) 
>Pargyline (10jiM)

F igu re  6.1: Experim ental protocol for single  dose studies to exam ine the effect o f  
tyram ine (Im M ) or Ritalin® (Im M ) on the contractile response to other T A s, p-PEA  
(lO O pM ) D -am phetam ine (lOOpM ) and octopam ine (lOOpM) in the presence o f  
“ inhibitors”. T est- and control experim ents w ere constructed. In the control 
experim ent the protocol w as identical to the test experim ent except that the single  
prolonged exposure to tyram ine (Im M ) or Ritalin* (Im M ) w as left out (Protocol 4).
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6,3.2 Drugs Used

All chemicals were dissolved in distilled water, unless otherwise stated. Prazosin 

hydrochloride and ICI-118,551 hydrochloride was dissolved in DMSO.

> Reagents obtained from Sigma Aldrich

D-amphetamine sulfate, cocaine hydrochloride, (3,4-dihydroxyphenethylamine), 

methylphenidate (MPH, Ritalin®), octopamine, pargyline hydrochloride (PG), 

prazosin hydrochloride, tyramine hydrochloride, P-phenylethylamine (p-PEA)

> Reagents obtained from TOCRIS Bioscience

ICI-118,551 hydrochloride ((±)-l-[2,3-(dihydro-7-methyl-lH-inden-4-yl)oxy]-3-[(l- 

methylethyl) amino]-2-butanol hydrochloride)

> Reagents obtained from Fisher Scientific

All chemicals for the Krebs-bicarbonate buffer (analytical grade)
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6.4 Results

6.4.1 Development of tachyphylaxis or cross
tachyphylaxis by repeated administration of 
trace amines (TAs)

6.4.1.1 Repeated cumulative and non-cumulative CRCs to P-PEA 
in the absence or presence of “inhibitors”

The contractile response in rat aortic rings to p-PEA was examined in repeated 

cumulative and non-cumulative CRCs.

The second contractile response to p-PEA in cumulative CRCs at the maximum 

concentration (3mM, 186.1±86.1%, n=3) was not significantly different (P>0.05) 

from the first contractile response to P-PEA in the same tissue (3mM, 169.4±65.3%, 

n=3) (Figure 6.2). These experiments were then repeated in the presence of 

“inhibitors”. At the maximum concentration (3mM) the contractile response of the 

second cumulative CRC to p-PEA (3mM, 183.3±16.7%, n=3) was not significantly 

different (P>0.05) compared to the first CRC (3mM, 240± 130.1%, n=3) in the same 

aortic tissue (Figure 6.3). Furthermore, in the presence of “inhibitors” the -log E C 5 0  

values of the first (3.22±0.10, n=3) and second (2.96±0.09, n=3) cumulative CRCs 

were not significantly different (P>0.05). In addition to cumulative CRCs, the 

possible effect of tachyphylaxis in rat aortic rings to p-PEA in repeated non- 

cumulative CRCs was examined. The contractile response to p-PEA of the first CRC 

(300pM, 61.1±4.84%, n=3), was abolished when repeated for a second CRC (Figure 

6.4).
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Figure 6.2: Effect of repeated cumulative CRCs to p-PEA on contractile responses 
generated in the absence of “inhibitors”. Mean cumulative CRCs for the contractile 
response in rat aortic rings to P-PEA. Two cumulative CRCs for p-PEA in the same 
aortic tissue were constructed. The first CRC (□ , n=3) was followed by the second 
CRC (♦ ,  n=4) after approximately 45 minutes equilibration time. Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by Student’s 
paired t-test. No significant differences (P>0.05) were seen at their maximum 
contractile responses.
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Figure 6.3: Effect of repeated cumulative CRCs to p-PEA on contractile responses 
generated in the presence of “inhibitors”. Mean cumulative CRCs for the contractile 
response in rat aortic rings to p-PEA. Two cumulative CRCs for P-PEA in the same 
aortic tissue were constructed in the presence of “inhibitors”. The first CRC (□ , n=3) 
was followed by the second CRC (♦ , n=3) after approximately 45 minutes 
equilibration time. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s paired t-test. No significant differences 
(P>0.05) were seen at their maximum contractile responses.
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Figure 6.4: Effect of repeated non-cumulative CRCs to p-PEA on contractile 
responses generated in the absence of “inhibitors”. Mean non-cumulative CRCs for 
the contractile response in rat aortic rings to p-PEA. Two non-cumulative CRCs to 
p-PEA in the same aortic tissue were constructed in the absence of “inhibitors”. The 
first CRC (□ , n=3) was followed by the second CRC (♦ , n=3) after approximately 
45 minutes equilibration time. The contractile response to p-PEA of the first CRC 
was abolished when repeated for a second CRC. Responses are the mean (±S.E.M.) 
contractions expressed as a percentage of the contraction to KC1 (60mM, isotonic 
solution).
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6.4.1.2 Tachyphylaxis P-PEA in the absence and presence of 
“inhibitors” (Protocol 1)

The possible effect of tachyphylaxis in rat aortic rings in repeated exposures to p- 

PEA (30 pM and lOOpM) in the absence, or presence of “inhibitors” was examined. 

In the absence of “inhibitors”, the contractile response of the second single dose of P- 

PEA (lOOpM, 145.8±20.8%, n=4) was significantly less (P<0.05) compared to the 

first single dose (100pM, 233.3±11.8%, n=4) (Figure 6.5). However, the 

contractions for the first (lOOpM, 140±25.7%, n=5) and second (lOOpM, 

89.3±16.6%, n=5) single doses of p-PEA in the presence of “inhibitors” were not 

significantly different (P>0.05). Furthermore, no significant difference (P>0.05) was 

shown between the lower first (30pM, 44±22.5%, n=3) and second (30pM, 

16.2+25.8%, n=3) dose of p-PEA in the absence of “inhibitors” (3 0 jliM )  (Figure 6.5).

6.4.1.3 Cross-Tachyphylaxis between pairs of different TAs 
(Protocol 2)

The possible effect of cross-tachyphylaxis in rat aortic rings was investigated 

between pairs of different TAs, including P-PEA (100pM), D-amphetamine 

(lOOpM) and octopamine (lOOpM).

> Effect of cross-tachyphylaxis between D-amphetamine and p-PEA

In tissue 1 in the presence of “inhibitors” a single dose of D-amphetamine (IOOjliM ) 

was added to the bath followed by a single dose of p-PEA (lOOpM). The contractile 

responses to D-amphetamine (lOOpM, 93.3±17.2%, n=5) and p-PEA (lOOpM, 

137.3±30.5%, n=5) were not significantly different (P>0.05) (Figure 6.6). In tissue 2 

in the presence of “inhibitors a single dose of P-PEA (lOOpM) was added to the bath 

followed by a single dose of D-amphetamine (lOOpM). Furthermore, neither the 

contractile responses to D-amphetamine in tissue 1 (lOOpM, 93.3±17.2%, n=5) and 

tissue 2 (lOOpM, 91.5+21.2%, n=5) nor the contractile response to p-PEA in tissue 1 

(lOOpM, 137.3±30.5%, n=5) and tissue 2 (IOOjliM , 152.3±14.6%, n=5) were 

significantly different (P>0.05) (Figure 6.6).
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> Effect of cross-tachyphylaxis between D-amphetamine and octopamine

In tissue 1 in the presence of “inhibitors” a single dose of D-amphetamine (lOOpM) 

was added to the bath followed by a single dose of octopamine (lOOpM). The 

contractile responses to D-amphetamine (lOOpM, 54.2+20.8%, n=4) and octopamine 

(lOOpM, 91.7±31.6%, n=4) were not significantly different (P>0.05) (Figure 6.7). In 

tissue 2 in the presence of “inhibitors a single dose of octopamine (lOOpM) was 

added to the bath followed by a single dose of D-amphetamine (lOOpM). The 

contractile responses between octopamine (100pM, 100±50%, n=3) and D- 

amphetamine (lOOpM, 83.3±33.3%, n=3) were not significantly different (P>0.05) 

(Figure 6.7). Furthermore, neither the contractile responses to D-amphetamine in 

tissue 1 (lOOpM, 54.2+20.8%, n=4) and tissue 2 (lOOpM, 83.3+33.3%, n=3) nor the 

contractile response to octopamine in tissue 1 (100pM, 91.7±31.6%, n=4) and tissue 

2 (lOOpM, 100±50%, n=3) were significantly different (P>0.05) (Figure 6.7).

> Effect of cross-tachyphylaxis between D-amphetamine and octopamine

D-amphetamine and octopamine cause equal effects. In tissue 1 in the presence of 

“inhibitors” a single dose of octopamine (lOOpM) was added to the bath followed by 

a single dose of P-PEA (lOOpM). The contractile responses to octopamine (lOOpM, 

133.3±16.7%, n=3) and P-PEA (IOOjjM, 222.2±40.1%, n=3) were not significantly 

different (P>0.05) (Figure 6.8). In tissue 2 in the presence of “inhibitors a single dose 

of P-PEA (lOOpM) was added to the bath followed by a single dose of octopamine 

(lOOpM). The contractile responses between p-PEA (lOOpM, 75.0±6.5%, n=5) and 

octopamine (lOOpM, 55.0±13.8%, n=5) were not significantly different (P>0.05) 

(Figure 6.8). Furthermore, the contractile responses to octopamine in tissue 1 (first 

exposure, lOOpM, 133.3±16.7%, n=3) and tissue 2 (second exposure, lOOpM, 

35±13.8%, n=5) might be not significant (P>0.05) but quite a large difference was 

shown. However, the contractile responses to p-PEA in tissue 1 (second exposure, 

lOOpM, 222.2±40.1%, n=3) was significant larger (P<0.01) in tissue 2 (first 

exposure, lOOpM, 75.0±6.5%, n=5) (Figure 6.8).
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6.4.1.4 Tachyphylaxis of P-PEA, D-amphetamine and 
octopamine in the presence of “inhibitors” (Protocol 1)

The possible effect of tachyphylaxis in rat aortic rings was investigated between 

pairs of the same TA, either D-amphetamine (lOOpM), octopamine ( I O O j l iM )  or p -  

PEA (lOOpM).

No significant difference (P>0.05) was shown between the first (lOOpM, 

120.1±31.5%, n=4) and second (lOOpM, 112.5+42.7%, n=4) single dose of D- 

amphetamine (lOOpM), the first (lOOpM, 140±25.7%, n=5) and second (lOOpM, 

89.3±16.6%, n=5) single dose of p-PEA (lOOpM) (see Figure 6.5) or between the 

first (lOOpM, 77.8±27.8%, n=5) and second (lOOpM, 91.7+8.3%, n=5) single dose 

of octopamine (lOOjaM) (Figure 6.9).

6.4.1.5 Multiple dosing (Protocol 3)

In the following experiments, in the presence of “inhibitors” the relationship between 

the contractile responses and the incubation times in rat aortic rings to TAs were 

investigated. Also, the contractile responses of TAs were compared in relation to the 

order the agonists were added to the tissue bath.

A single dose of p-PEA (lOOpM) in the presence of “inhibitors”, was added to the 

bath three times (Figure 6.10). The maximum contractile responses for the first 

(lOOpM, 86.7±8.2%, n=4) and third dose (lOOpM, 92.9±12.7%, n=4) were both 

significantly different (P<0.05) to the second dose of P-PEA (lOOpM, 163.8±28.5%, 

n=4) (Figure 6.10). The first and the third single doses were not significantly 

different (P>0.05) from each other. In the control experiment which received only 

two doses but separated by a lhour incubation, the maximum contractile responses of 

the first (lOOpM, 89.6±34.9%, n=4) and second single doses (lOOpM, 145.8±20.8%, 

n=4) were not significantly different (P>0.05) (Figure 6.10).
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Figure 6.5: Single dose experiments for the contractile response in rat aortic rings to 
P-PEA (30pM and lOOpM) were constructed in the absence, or presence of 
“inhibitors”. Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by Student’s paired t-tests. A significant difference 
(P<0.05,-*K) was shown between the first (n=4) and second dose (n=4) of p-PEA 
(lOOpM) in the absence of “inhibitors”.
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Figure 6.6: Single dose experiments for the contractile response in rat aortic rings to 
D-amphetamine (lOOpM) and p-PEA (lOOpM) were constructed in paired 
experiments (tissue 1 and tissue 2) in the presence of “inhibitors”. The 1st and 2nd 
doses each of D-amphetamine (lOOpM, n=5) and P-PEA (lOOpM, n=5) were left in 
the bath until the maximum contractile response was reached. Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by ANOVA 
followed by the “post hoc” Bonferroni test. No significant differences were seen 
(P>0.05).
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Figure 6.7: Single dose experiments for the contractile response in rat aortic rings to 
D-amphetamine (lOOpM) and octopamine (lOOpM) were constructed in paired 
experiments (tissue 1 and tissue 2) in the presence of “inhibitors”. The 1st (n=3) and 
2nd doses (n=4) each of octopamine (lOOpM, n=3) and the 1st (n=4) and 2nd doses 
(n=3) of D-amphetamine (lOOpM) were left in the bath until the maximum 
contractile response was reached. Responses are the mean (±S.E.M.) contractions 
expressed as a percentage of the contraction to KC1 (60mM, isotonic solution). Mean 
responses (±SEM) were compared by ANOVA followed by the “post hoc” 
Bonferroni test. No significant differences were seen (P>0.05).
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Figure 6.8: Single dose experiments for the contractile response in rat aortic rings to 
p-PEA (lOOpM) and octopamine (100pM) were constructed in paired experiments 
(tissue 1 and tissue 2) in the presence of “inhibitors”. The 1st (n=3) and 2nd (n=5) 
doses of octopamine (lOOpM) and the 1st (n=5) and 2nd (n=3) doses of P-PEA 
(lOOpM) were left in the bath until the maximum contractile response was reached. 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Bonferroni test. The contractile 
responses to P-PEA in tow e 1 and t o e  2 were significantly different (P<0.01, 
* * ) .
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Figure 6.9: Single dose experiments for the contractile response in rat aortic rings to 
P-PEA (lOOpM) and octopamine (lOOpM) and D-amphetamine (lOOpM) were 
constructed in paired experiments (7$/ and 2nd dose) in the presence of “inhibitors”. 
The 1st and 2nd doses each of octopamine (lOOpM, n=3), D-amphetamine (lOOpM, 
n=4) or P-PEA (lOOpM, n=5) (p-PEA data was taken from Figure 6.5) were left in 
the bath until the maximum contractile response was reached. Responses are the 
mean (±S.E.M.) contractions expressed as a percentage of the contraction to KC1 
(60mM, isotonic solution). Mean responses (±SEM) were compared by Student’s 
paired t-tests. No significant differences were seen (P>0.05).
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Figure 6.10: Single dose experiments for the contractile response in rat aortic rings 
to P-PEA (lOOpM) were constructed in the presence of “inhibitors”. The first and 
third doses of P-PEA (lOOpM, n=5) was left in the bath until the maximum response 
was reached. The second dose of P-PEA (lOOpM, n=5) was kept in the bath for one 
hour. In the control experiment (n=4) the second dose of p-PEA was left out, but the 
tissue was still incubated with “inhibitors” during this time. Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KC1 (60mM, 
isotonic solution). Mean responses (±SEM) were compared by ANOVA followed by 
the “post hoc” Dunnett test. The first and the third doses of p-PEA (lOOpM) were 
significantly different (P<0.05,-&) compared to the second dose of p-PEA (lOOpM).
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6.4.2 Effect of partial agonism of trace amines 
(Protocol 4)

The contractile responses in rat aortic rings to single doses of p-PEA (lOOpM), D- 

amphetamine (lOOpM) and octopamine (lOOpM) were examined in the presence of 

“inhibitors” and also in the presence of a second TA, either Ritalin® (ImM) or 

tyramine (ImM). These were selected because of their weak partial agonist activities 

(Chapter 5).

The contractile responses of TAs were measured as a percentage of KC1 (isotonic 

solution, 60mM) The responses to TAs were measured approximately 30 minutes 

after the tissue was incubated with “inhibitors” plus tyramine (ImM) or Ritalin® 

(ImM) (Figures 6.1, 6.11). There are two different ways of interpreting the 

contractile response for the TA added in the presence of tyramine (ImM) or Ritalin® 

(ImM). Either from the first or second baseline (1st and 2nd baseline) (Figures 6.1 

and 6.11).

> First Baseline

Taken just before the single dose of the second TA (tyramine or Ritalin®) was added 

to the bath (see arrow in Figures 6.1 and 6.11)

> Second Baseline

Taken just before the second dose of the first TA was added to the bath (see arrow in 

Figures 6.1 and 6.11)
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< - Wash

1st Baseline

20min 
1st dose - First TA 
(P-PEA, 10OjaM)

5min 20min25minInhibitors
2nd dose - First TA 

(3-PEA, 100uM)
Inhibitors

F ig u re  6 .11 : Chart recording show ing a representative sin g le  dose experim ent for 
the contractile response in rat aorta to P-PEA (lOOpM ) and tyram ine (Im M ) in the 
presen ce o f  “inhibitors” . To construct the sin g le  d ose experim ent, tw o single  d oses o f  
P-PE A  (lO O pM ) w ere added to the bath, the 1st d ose on ly  in the presence o f  
“inhib itors”, the 2 nd d ose in the presence o f  “ inhibitors” and tyram ine (Im M ), the 
secon d  trace am ine (T A ). The 1st sin g le  d ose o f  p-PE A  (lOOpM ) w as added to the 
tissu e  bath after the tissue w as incubated w ith “ inhibitors” for 15 m inutes. The tissue  
bath w as w ashed  out (2 m in. 2 m in, and 6 m in) after the peak effect w as reached. 
T he tissue w as then left to equilibrate for approxim ately 20  m inutes. The “inhibitors” 
w ere then returned to the bath and approxim ately 5 m inutes later, a single  dose o f  
tyram ine (Im M ), w as added and left for approxim ately 25 m inutes. The second  
sin g le  d ose  o f  the first TA  (P -PE A , lOOpM) w as then added to the bath. The tissue  
bath w as w ashed  out after the peak effect w as reached. In the control experim ent the 
protocol w as identical to the test experim ent except that the sin gle  prolonged  
exposure o f  tyram ine (Im M ) w as left out. A t the end o f  each experim ent, KC1 
(60m M , isoton ic solution) w as routinely added after w ashout o f  the final drug 
concentration (not show n). “W ash” =  w ashout o f  50m l tissue bath (see Figure 6.1).

In the fo llo w in g  set o f  experim ents the effect o f  tyram ine (Im M ) w as investigated on  

the contractile responses to p-PEA  (lO O pM ), D -am phetam ine (lOOpM ) and 

octopam ine (lO O pM ) in the presence o f  “inhibitors” .

Effect of tyram ine (Im M ) on the contractile  response to P-PEA 

>  F rom  th e  seco n d  b a se lin e

A  sign ificant d ifference (P < 0 .0 1 ) in the contractile response to p-PE A  w as show n  

b etw een  the first (lOOpM , 169.2±10.8% , n = 4) and the second dose (100p M , 

2 5 .8 ± 1 0 .5 % , n=4) (Figure 6.12). M oreover, the response to the first dose o f  P-PEA
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(lOOpM, 169.2±10.8%, n=4) and tyramine (ImM, 55+26.3%, n=4) were 

significantly different (P<0.05). In the control experiment the first (lOOpM, 

61.1+14.7%, n=4) and second responses (lOOpM, 127.8±30.9%, n=4) of P-PEA 

(lOOpM) were not significantly different (P>0.05) (Figure 6.12).

> From the First Baseline

A reduction in contraction (P>0.05) was shown between the first (lOOpM, 

169.2±10.8%, n=4) and second dose (lOOpM, 80.0±36.2%, n=4) of P-PEA but this 

was not significant (P>0.05).

Effect of tyramine (ImM) on the contractile response to D- 
amphetamine

> From the second baseline

A significant reduction in contraction (P<0.01) was shown between the first (lOOpM, 

99.3±9.5%, n=4) and the second dose (lOOpM, -32±16.9%, n=4) of D-amphetamine 

(lOOpM). However, the contractile response to tyramine (ImM, 43.9+26.2%, n=4) 

was not significantly different (P>0.05) compared to the first dose of D-amphetamine 

(lOOpM, 99.3±9.5%, n=4) (Figure 6.13). In the control experiment the first (lOOpM, 

109.9±24.4%, n=4) and second doses (lOOpM, 112.4±26.5%, n=4) of D- 

amphetamine in the presence of “inhibitors” were not significantly different (P>0.05) 

(Figure 6.13).

> From the first baseline

A significant reduction in contraction (P<0.05) was shown between the first (lOOpM, 

99.3±9.5%, n=4) and second dose (lOOpM, 11.9±13.9%, n=4) of D-amphetamine.
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Effect of tyramine (ImM) on the contractile response to octopamine

> From the second baseline

A significant reduction (P<0.001) in contraction was seen between the first (lOOpM, 

148.7±26.8%, n=5) and the second dose of octopamine (IOOjlxM , -20±20%, n=5) 

(Figure 6.14). Furthermore, the single dose of tyramine (ImM, 45.3±23.7, n=5) was 

significantly less (P<0.05) than the first dose of octopamine (lOOpM, 148.7+26.8%, 

n=5) (Figure 6.14). In the control experiment, the contractile response to the first 

(lOOpM, 96.4±14.1%, n=4) and second single doses (lOOpM, 55.9±7.9%, n=4) of 

octopamine were not significantly different (P>0.05) (Figure 6.14).

> From the first baseline

The contractile response to the first dose of octopamine (lOOpM, 148.7±26.8%, n=5) 

was significantly greater (PcO.Ol) compared to the second dose of octopamine 

(lOOpM, 25.3±8.9%, n=5) and to tyramine (ImM, 45.3±23.7%, n=5) (P<0.05).

Effect of Ritalin® (ImM) on the contractile response to P-PEA

> From the second baseline

In the presence of “inhibitors” and Ritalin® (ImM) the contractile response of the 

second dose of P-PEA (lOOpM, 31.1 ±9.2%, n=5) was significantly lower (P<0.05) 

compared to the response of the first dose (lOOpM, 107.9±23.4%, n=5) in the 

presence of “inhibitors” (Figure 6.15). In the control experiment a significant 

increase (P<0.05) in the contractile response was shown between the first (lOOpM, 

74±10.8%, n=5) and the second single dose of p-PEA (lOOpM, 170.1±25.5%, n=5) 

in the presence of “inhibitors” (Figure 6.15).

> From the first baseline

The contractile response to the first (lOOpM, 107.9+23.4%, n=5) and second

(lOOpM, 94.6±14.9%, n=5) dose of p-PEA (lOOpM) were not significantly different 

(P>0.05).
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Figure 6.12: Single dose experiments for the contractile response in rat aortic rings 
to p-PEA (IOOjjM, n=4) and tyramine (lmM, n=4) were constructed in the presence 
of “inhibitors”. The second single dose of P-PEA (lOOpM) was in the presence of 
“inhibitors” and tyramine (lmM). To calculate the contractile response to P-PEA 
(lOOpM) (2nd dose) two different baselines were used. The 1st baseline was taken just 
before the tyramine was added, the 2nd baseline was taken just before the 2nd dose of 
P-PEA (lOOpM) was added to the bath (see Figure 6.11). Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KC1 (60mM, 
isotonic solution). Mean responses (±SEM) were compared by ANOVA followed by 
the “post hoc” Bonferroni test and Student’s t-test (control experiment). A significant 
difference was shown between the 1st and 2nd dose (2nd Baseline) of p-PEA (lOOpM, 
P<0.01,^-^) (2nd Baseline) and between the first dose of p-PEA (IOOjiM) and 
tyramine (lmM, P<0.05,^).
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Figure 6.13: Single dose experiments for the contractile response in rat aortic rings 
to D-amphetamine (lOOpM, n=4) and tyramine (lmM, n=4) were constructed in the 
presence of “inhibitors”. The second single dose of D-amphetamine (lOOpM) was in 
the presence of “inhibitors” and tyramine (lmM). To calculate the contractile 
response to D-amphetamine (lOOpM) (2nd dose) two different baselines were used. 
The 1st baseline was taken just before the tyramine was added, the 2nd baseline was 
taken just before the 2nd dose of D-amphetamine (lOOpM) was added to the bath (see 
Figure 6.11). Responses are the mean (±S.E.M.) contractions expressed as a 
percentage of the contraction to KC1 (60mM, isotonic solution). Mean responses 
(±SEM) were compared by ANOVA followed by the “post hoc” Bonferroni test and 
by Student’s paired t-test (control experiment). A significant difference was shown 
between the first and second dose of D-amphetamine (lOOpM, P<0.05,*) (1st 
Baseline) and between the first and second dose of D-amphetamine (lOOpM, 
PcO .O l,**) (2nd Baseline).
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Figure 6.14: Single dose experiments for the contractile response in rat aortic rings 
to octopamine (lOOpM, n=5) and tyramine (lmM, n=5) were constructed in the 
presence of “inhibitors”. The second single dose of octopamine (lOOpM) was in the 
presence of “inhibitors” and tyramine (lmM). To calculate the contractile response 
to octopamine (lOOpM) (2nd dose) two different baselines were used. The 1st baseline 
was taken just before the tyramine was added, the 2nd baseline was taken just before 
the 2nd dose of octopamine (lOOpM) was added to the bath (see Figure 6.11). 
Responses are the mean (±S.E.M.) contractions expressed as a percentage of the 
contraction to KC1 (60mM, isotonic solution). Mean responses (±SEM) were 
compared by ANOVA followed by the “post hoc” Bonferroni test and by Student’s 
paired t-test (control experiment). A significant difference was shown between the 
first and second dose of octopamine (lOOpM, P<0.01,^^K) (1st Baseline), between 
the first and second dose of octopamine (lOOpM, PcO .O O l,^^^) (2nd Baseline) and 
between the first dose of octopamine (lOOpM) and tyramine (lmM, P<0.05,^).
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Figure 6.15: Single dose experiments for the contractile response in rat aortic rings 
to p-PEA (lOOpM, n=5) and Ritalin®(lmM, n=5) were constructed in the presence of 
“inhibitors”. The second single dose of p-PEA (lOOpM) was in the presence of 
“inhibitors” and Ritalin® (lmM). To calculate the contractile response to p-PEA 
(lOOpM) (2nd dose) two different baselines were used. The 1st baseline was taken just 
before the Ritalin® was added, the 2nd baseline was taken just before the 2nd dose of 
P-PEA (100pM) was added to the bath (see Figure 6.11). Responses are the mean 
(±S.E.M.) contractions expressed as a percentage of the contraction to KC1 (60mM, 
isotonic solution). Mean responses (±SEM) were compared by ANOVA followed by 
the “post hoc” Bonferroni test and by paired Student’s t-test (control experiment). A 
significant difference was shown between the first and second single dose of p-PEA 
(lOOpM, P<0.05,^) (2nd Baseline). The control experiment to P-PEA (lOOpM) also 
showed a significant difference between the first and second dose of p-PEA (lOOpM, 
P<0.01,-3fc$fc).
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6.5 Discussion

6.5.1 Development of tachyphylaxis or cross
tachyphylaxis by repeated administration of TAs

6.5.1.1 Repeated cumulative and non-cumulative CRCs to P-PEA 
in the absence or presence of “inhibitors”

In Chapter 5, a comparison was made between cumulative and non-cumulative 

CRCs to the TA p-PEA. Only one CRC experiment per rat aortic tissue was 

obtained. The observation that the cumulative CRC was shifted to the right compared 

to that for the non-cumulative CRC suggested desensitisation or tachyphylaxis when 

the p-PEA was administered cumulatively. It has been suggested that ISAs are 

notorious for giving tachyphylaxis (Day, 1967), so this might suggest an ISA 

mechanism. However, the lack of effect of prazosin on the contractile response to p- 

PEA in rat aorta (see Chapters 2 and 3) indicates that the response does not involve 

ISAs. However, if the contractile response is due to activation of TAARs, then the 

possibility of desensitisation at these receptors must be considered. The possible 

effect o f desensitisation in rat aortic rings to TAs, including P-PEA, was therefore 

further investigated by obtaining repeated cumulative and non-cumulative CRCs to 

p-PEA. Cumulative additions of p-PEA gave almost identical CRCs when repeated 

both in the absence, or presence of “inhibitors”. In contrast, non-cumulative CRCs 

showed an obvious and significant decrease of the contractile responses in the 

repeated CRC in the absence of “inhibitors” (Figure 6.4). My results are in 

agreement with those of Przyborski et al. (1991) even though the author worked with 

different isolated preparations (rat jejunum) and agonist (bethanechol). Thus, one 

obvious question is why in the present study, repeated non-cumulative CRCs to p- 

PEA gave such striking tachyphylaxis, while cumulative additions of P-PEA did not 

show the phenomenon. There are differences, however, between the cumulative and 

non-cumulative CRC experiments (Przyborski et al., 1991). In the latter experiment, 

each single dose of p-PEA was allowed to act until the peak effect was achieved then 

the tissue bath was washed out and the tissue got the chance to equilibrate before the 

next single dose was added. In the former experiment, p-PEA was added repeatedly 

immediately after the peak effect of each response was acquired. Thus, by prolonged
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exposure (cumulative), the impulse is constantly increasing, is never allowed to go to 

completion, and is generally of short duration. These may be the critical factors 

preventing tachyphylaxis (Przyborski et al., 1991). The results in the present study 

indicate that p-PEA responses in the absence of “inhibitors” undergo desensitisation. 

Since these responses are not blocked by prazosin (Chapters 2 and 3), they are not 

due to ISA. Therefore, the results suggest that the receptor under study is 

desensitised with repeated non-cumulative exposure, rather than prolonged exposure 

(cumulative). Nevertheless, throughout my whole study, only one non-cumulative 

CRC experiment at a time in each tissue was performed to investigate the effects of 

TAs in rat aortic rings. Therefore, the possible effect of tachyphylaxis with non- 

cumulative CRCs did not affect the results throughout the present study.

6.5.1.2 Effect of tachyphylaxis of P-PEA doses in the absence and 
presence of “inhibitors”

The results of repeated single dose experiments to p-PEA supported to some extent, 

these findings regarding the effect of tachyphylaxis to the contractile response to p- 

PEA in repeated non-cumulative CRCs. However, only p-PEA (lOOpM) in the 

absence of “inhibitors” showed a significant decrease of the contractile response 

between the first and the second dose. This effect did not occur with the lower dose 

of p-PEA (30pM) in the absence of “inhibitors”, or with P-PEA (lOOpM) in the 

presence of “inhibitors”. Therefore, the possible effect of tachyphylaxis to p-PEA in 

single dose experiments seems to be concentration-dependent. Also, the presence of 

“inhibitors” seems to avoid the possible effect of tachyphylaxis in repeated single 

dosage experiments.

6.5.1.3 Effect of tachyphylaxis and cross-tachyphylaxis of doses of 
different TAs

Previous studies have reported that amphetamine and other TAs might display the 

phenomenon of tachyphylaxis or tolerance (Zelger and Carlini, 1980; Foltin and 

Schuster, 1982). Tachyphylaxis to the peripheral effects of indirectly acting 

sympathomimetic amines has been demonstrated widely, the pressor effects become 

progressively diminished with repeated exposure (Day, 1967). In addition, there is 

cross-tachyphylaxis, whereby tachyphylaxis to one amine, such as amphetamine, is 

associated with the reduction in response to a second amine such as p-PEA.
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In the present study, the results of repeated single dosage paired experiments with 

various TAs, including p-PEA, D-amphetamine and octopamine did not show any 

tachyphylaxis or cross-tachyphylaxis between these TAs. The contractile responses 

to p-PEA, D-amphetamine and octopamine were repeatable over two single dosage 

exposures and also the contractile response of each TA was consistently independent 

of which other TA agonist was incubated with the tissue before or after (first or 

second dose). This supports the contention that the vasoconstriction by these TAs is 

not the result of indirect sympathomimetic activity as such a mechanism would be 

expected to lead to tachyphylaxis. In Figure 6.8 a surprising significant increase 

difference in the contractile response of p-PEA was seen on the second single 

dosage. However, this observation is unlikely to be based on any interactions 

between TAs. Since each response was obtained in a different tissues it is more likely 

to be based on a variable distribution of the receptor under study in rat aortic tissues 

(see Chapter 5) than to a sensitizing effect. Since no such evidence was obtained 

elsewhere in this thesis.

6.5.1.4 Multiple dosing

The contractile response to p-PEA in the presence of “inhibitors” was dependent on 

how long the tissue was incubated with the TA. The contraction of rat aortic rings to 

P-PEA in the presence of “inhibitors” was larger at the peak response with longer 

incubation times. In short exposure experiments it was often considered that the 

plateau of the response had been achieved and the bath washed out. However, longer 

exposure time allows the tissue to equilibrate more fully and therefore produce the 

“true” peak effect. There was no evidence of desensitisation by a one hour exposure 

to the TA.

6.4.2 Effect of partial agonism of trace amines

Currently, little is known about how TAs affect vascular tone in isolated rat aortic 

tissues. So far, no antagonist has been identified for TAs. Therefore, to investigate 

the contractile response to various TAs in isolated rat aortic tissue, the responses 

were examined in the presence of “inhibitors” to remove other mechanisms of action 

(Chapters 2 and 3). In cloned receptors expressed in transfected cell lines, tyramine 

was identified as a potent TAAR1 agonist (Borowsky et a/., 2001; Bunzow et al,

217



Chapter 6

2001; Lindemann et al., 2005). However, tyramine was a very weak vasoconstrictor 

in rat aortic tissues, as in the absence or presence of “inhibitors” the TA showed only 

very small contractions (Chapter 5). Therefore, the possibility was considered that 

tyramine was a partial agonist for a TAAR and may therefore behave as an 

antagonist. With single dose studies of TAs (Figures 6.1, 6.11) it was determined 

whether tyramine could act as an antagonist of other TAs, including p-PEA, 

octopamine and D-amphetamine. The contractile responses of the TAs were 

measured as a percentage of KC1 (isotonic solution, 60mM) and the effect of 

tyramine on responses to other TAs were interpreted in two different ways (first and 

second baseline) (Figures 6.1 and 6.11). In the presence of “inhibitors”, P-PEA, D- 

amphetamine and octopamine caused strong contractile responses in rat aortic rings 

(Chapter 5). However, in the presence of “inhibitors” and tyramine, the contractile 

responses to p-PEA, D-amphetamine and octopamine were significantly inhibited 

irrespective of the plotting method. This finding suggested that tyramine acted at the 

same receptor as p-PEA, D-amphetamine and octopamine and was behaving as an 

antagonist. The inhibitory effects of tyramine on the contractile responses of p-PEA, 

D-amphetamine and octopamine were different. The contractile response to p-PEA 

was inhibited the least and the response to D-amphetamine was inhibited the most by 

tyramine (reduced vasoconstriction). That might be simply explained by the different 

size responses to start with. The contractile responses to D-amphetamine and 

octopamine in the presence of “inhibitors” and tyramine calculated from the second 

baseline (Figures 6.1 and 6.11) even fall below baseline. This observation could be 

explained by tyramine completely blocking the contractile response to both D- 

amphetamine and octopamine. The fall below the tyramine response may have been 

fade of the tyramine-induced contraction. Furthermore, only in the case of p-PEA did 

the contractile responses in the presence of “inhibitors” and tyramine not show a 

significant inhibition calculated from the first baseline. In experiments for D- 

amphetamine and octopamine both responses, calculated from the first and second 

baseline, were significantly inhibited. These results might be explained because of 

the inconsistent contractile response to tyramine. Tyramine might have caused a 

stronger contractile response with p-PEA compared to experiments with D- 

amphetamine and octopamine. The effect of tyramine on the contractile response to 

octopamine is similar to the effect of tyramine on D-amphetamine. These findings
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confirmed previous results that p-PEA activates the same TAAR as D-amphetamine 

and octopamine, but with a higher activity (Chapter 5). Another explanation for the 

smaller inhibition of P-PEA could be that p-PEA activates two different TAARs in 

rat aorta while D-amphetamine, octopamine and tyramine act at only one of these 

TAAR (Chapter 5). Therefore, the contractions to p-PEA would be inhibited less. 

Furthermore, throughout the present study p-PEA always showed the largest 

contractions in comparison to the responses to octopamine and D-amphetamine. 

Therefore, the contractile responses to P-PEA is obviously more difficult to block 

than the response of other TAs.

It was interesting that compared to previous results (Chapter 5), in the presence of 

“inhibitors”, tyramine caused stronger contractile responses. This was attributed to 

the longer exposure time that allows the tissue to equilibrate more fully and produce 

stronger responses to the TA. However, the contractions to tyramine were still not 

very consistent and the responses were still significantly lower compared to the 

contractile responses to P-PEA, D-amphetamine and octopamine i.e. it sill behaved 

as a partial agonist. To investigate the contractile response to tyramine with longer 

exposure times in isolated aortic tissues, it might be of interest in further studies to 

analyse the time to peak effect (time courses) and also to look into the kinetics of 

drug-receptor interactions. The weak contractile activity of tyramine in the rat aorta 

and antagonism of the contractile response to different TAs suggests that it is a weak 

partial agonist of TAARs in this tissue. A previous publication showed in human, rat 

and mouse TAAR1 transfected cell lines that p-PEA act as a full agonist for all 

TAARls whilst tyramine was a full agonist for rat and mouse TAAR1 but not for 

human TAAR1. The human receptor was cloned in rat cell line and this receptor and 

cell combination showed tyramine to be a partial agonist (Reese et al., 2007). 

However, I am not aware of any other studies in isolated tissues where the effect of 

tyramine or any other TAs as an antagonist of the other TAs has been investigated. 

These findings in the present study identified tyramine as the first potential 

antagonist of the other TAs, including p-PEA, D-amphetamine and octopamine in 

isolated rat aortic rings. In contrast to the low efficacy of tyramine in isolated rat 

aortic tissues, in guinea-pig aortic rings, tyramine was identified as a good 

vasoconstrictor in the absence and presence of “inhibitors” and therefore a full
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agonist (Chapter 5). Therefore, the effect of tyramine as an antagonist for TAs seems 

to be rat-specific.

The contractile response to Ritalin® in the presence of “inhibitors” in rat aortic rings 

was significantly smaller compared to P-PEA and other TAs and could also be 

regarded as a partial agonist (Chapter 5). Therefore, as with tyramine above, the 

effect of Ritalin® on p-PEA responses was examined. Comparable to the effect of 

tyramine on p-PEA in the presence of “inhibitors”, the contraction to p-PEA was 

significantly reduced by Ritalin® (second baseline). These results suggest that 

Ritalin® acts on the same receptor as P-PEA.

6.6 Conclusion

In order to continue the investigations on the potential mechanism of the contractile 

response of TAs in rat aorta, initial studies were carried out in rat aortic tissues. The 

effect of tachyphylaxis was seen for some TA agonists but not others. It appears to 

be concentration-dependent and also “inhibitors”-dependent. p-PEA, D- 

amphetamine and octopamine activate either one TAAR or two different ones with 

different affinities. Tyramine was identified as the first partial agonist in tissue and 

therefore antagonist of the other TAs in isolated rat aortic tissues. Ritalin was also 

identified as a weak partial agonist compared to tyramine, capable of antagonising p- 

PEA. This observation might be of interest for further studies, as no antagonist for 

TAs has been described in the literature.

220



Chapter 7

Chapter 7

DETERMINATION OF TRACE 

AMINE-ASSOCIATED 

RECEPTOR 1 EXPRESSION BY 

MOLECULAR BIOLOGY

221



Chapter 7

Chapter 7 

Determination of trace amine-associated receptor 1 
expression by molecular biology 

7.1 Introduction

The TAARs have been shown to be phylogenetically related to other biogenic amine 

binding receptors, such as serotonin, dopamine, adrenergic, histamine and muscarinic 

receptors. These together make up the larger part of the a-group of rhodopsin-like 

GPCRs (Borowsky et al., 2001; Fredriksson et al., 2003). From a number of 

invertebrates, such as the fruit fly (Saudou et al., 1990), honey bee (Blenau et al., 

2000) and molluscs (Gerhardt et al., 1997) GPCRs that bind TAs have been cloned 

and characterized pharmacologically. However, their relationship to mammalian TA 

receptors is unclear (Borowsky et al., 2001). The superfamily of GPCRs constitutes 

one of the largest families of proteins in the mammalian genome (Lander et al., 

2001; Venter et al., 2001; Kroeze et al., 2003). It has been estimated that more than 

half of all modem drugs are targeted at these receptors (Flower, 1999). The cloning 

and sequencing of many unanticipated subtypes of receptors or “orphan receptors”, 

as well as the identification of altogether unknown receptors, has greatly altered the 

landscape of the pharmacology of GPCRs (Horn et al., 1998). Mostly, receptors are 

differentiated by the effect of selective drugs. Nevertheless, receptors can be also 

defined by their cDNA and amino acid sequences (Shi and Javitch, 2002).

Molecular biology describes the interactions between the various systems of a cell, 

including the inter-relationship of DNA, RNA and protein biosynthesis (Alberts et 

al., 1994). Furthermore, molecular biology detects how these interactions are 

regulated (Astbury, 1961). Expression cloning, polymerase chain reaction (PCR), gel 

electrophoresis, Southern-, Northern- and Western blotting are commonly used 

techniques in molecular biology. PCR allows isolation of DNA fragments from 

genomic DNA by selective amplification of a specific region of DNA (Mullis and 

Faloona, 1987; Sambrook and Russel, 2001). This use of PCR enhances methods 

such as Southern and Northern blotting and DNA cloning. These techniques need 

relatively large amounts of DNA to represent a specific DNA region. PCR provides
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these techniques with high amounts of pure DNA, enabling analysis of DNA samples 

even from very small amounts of starting material (Alberts et al., 1994). PCR has 

many variations, such as reverse transcriptase PCR (RT-PCR) and quantitative PCR 

(Q-PCR). RT-PCR is a method used to amplify, isolate or identify a known sequence 

from a cellular or tissue RNA. The PCR is preceded by a reaction using reverse 

transcriptase (RT) to convert RNA to cDNA (Alberts et al., 1994; Wilson and 

Walker, 2000). RT-PCR is widely used to determine the expression of a gene or to 

identify the sequence of an RNA transcript, including transcription start and 

termination sites and, if the genomic DNA sequence of a gene is known, to map the 

location of exons and introns in the gene . Gel electrophoresis is a technique used for 

the separation of DNA, RNA or protein molecules using an electric current applied 

to a gel matrix (Bier, 1959; Berg et a l , 2002; Lodish et al., 2004). Separation of 

proteins may be by isoelectric point, molecular weight, electric charge, or a 

combination of these factors. The gel greatly retards the mobility of all molecules 

present. It is usually performed for analytical purposes. By far the most common type 

of gel electrophoresis employs polyacrylamide gels and buffers loaded with sodium 

dodecyl sulfate (SDS), such as for Western blotting. Electrophoresis is the motion of 

dispersed particles relative to a fluid under the influence of an electric field that is 

space uniform (Reuss, 1809). Electrophoresis occurs because particles dispersed in a 

fluid almost always carry an electric surface charge. An electric field exerts 

electrostatic Coulomb force on the particles through these charges. In general, after 

separation of the molecules they can then be detected using a variety of methods. In 

the case of proteins, the separated molecules are incubated with antibodies. In 

Section 7.3.J.2 more details are discussed.

Previous Chapters looked at the pharmacology of TAs in aortic tissues. The results 

suggested the presence of at least one TAAR. Since no specific antagonist for TAs is 

available, molecular biological methods were used to investigate the presence of a 

TAAR in rat aorta.

223



Chapter 7

Aims

To determine the presence of TAAR1 in isolated aortic tissues from male rats

a) The presence of TAAR1 in rat aortic rings was determined via molecular 

biological methods, including RT-PCR and Western blotting.

7.3 Material and Methods
7.3.1 Western Blotting

7.3.1.1 Methods

Western blotting is a method to detect one protein in a mixture of any number of 

proteins and provides information about the size of the protein of interest. 

Furthermore, the method can also give semi-quantitative information as to how much 

of the protein is present in cells. The method is dependent on the use of a specific 

antibody that is directed against a desired protein (Laurell, 1965; Towbin et al., 

1979; Burnette, 1981).

SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Sodium dodecyl (lauryl) sulfate (SDS) is an anionic detergent which denatures 

secondary and non-disulfide-linked tertiary structures and therefore linearises the 

protein (Rybicki and Maud Purves). SDS applies a negative charge to each protein in 

proportion to its length. In this way they can be separated by their molecular weight. 

The samples were separated by SDS-PAGE on a 10% polyacrylamide gel. SDS- 

PAGE is a method for the evaluation of molecular weights and analytical separation 

of proteins/peptides (Weber and Osborn, 1969; Laemmli, 1970; Aubertin et al., 

1983; Okajima et a l , 1993). In electrophoresis the protein molecules are moved 

across the polyacrylamide gel via an electric current (Figure 7.1 a, b). The 

polyacrylamide gel is a three-dimensional cross-linked matrix. Due to the electric 

current, negatively charged protein molecules are transferred to the positive 

electrode. However, smaller molecules are transferred quicker to the positive 

electrode compared to bigger molecules. Therefore, a separation of protein molecules 

according to their size takes place. One way of making conditions suitable for
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peptide analysis is by decreasing the pore size of the gel (Takagi and Kubo, 1979; 

Anderson et al., 1983). In order to decrease the pore size of the gel the concentration 

o f acrylamide is important. A very high concentration of acrylamide means the gel 

has smaller holes and therefore separates smaller molecules better. If the 

concentration of acrylamide is lower, there will be bigger holes in the gel and 

therefore larger proteins can be separated (Swank and Munkres, 1971).

Two different gels (Appendix) were used for the separation. In the lower part of the 

cassette, a separating gel (10%) was poured and, once it was set, the stacking gel 

(5%) was added on top of it.. The stacking gel is not like the separating gel which 

separates proteins according to their sizes but is used to ensure an even distribution 

of the protein mixture. Therefore all proteins start at the same point in the gel which 

is very important, because the recognisable end result is a band corresponding to a 

particular protein which can be identified by how far it has moved through the 

separating gel. If the proteins are not loaded evenly at the start it will affect how far 

they move relative to each other.

Electroblotting

Once the separation of protein molecules via SDS-PAGE electrophoresis is 

completed the separated protein molecules were transferred from the polyacrylamide 

gel onto a nitrocellulose membrane as a solid support (Figure 7.1 c, d, Figure 7.2). A 

semi-dry blotting transfer system was set up. This technique is based upon an 

electronic current and a semi-dry blotting buffer (Appendix) to transfer the proteins 

on the nitrocellulose membrane. The membrane needs to be located between the gel 

and the anode (“sandwich”) as the current and protein molecules will be moving in 

that direction. Moreover, before the transfer could take place it was important that all 

bubbles in the system were carefully removed to ensure even transfer and that the 

filter papers were cut to the same size as the membrane (Figure 7.2).
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Blocking

Once the transfer was completed steps had to be taken to avoid non-specific 

interactions between the membrane and the antibodies used for detection of the target 

protein. Blocking was achieved by placing the membrane in a dilute solution of non

fat dried milk and the detergent Tween 20. The protein in the dilute solution binds to 

the membrane in all places where the target protein molecules have not attached. 

Therefore the antibody (AB) cannot attach other than, to the binding sites of the 

specific target protein. Thus, clearer results can be achieved and false positive results 

are avoided.
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Rat Aorta 
Sample

Marker

Stacking Gel

Separating Gel

Electrophoresis

Gel Cassette

(b)

Separated
Proteins

Membrane

Gel

Blotting

X
Add Primary AB Membrane

(e)

Add HRP-conjugated 
secondary  AB

Primary AB

Primary AB-Protein Complex

(f)

Visualised Protein

Hyperfilm

Figure 7.1: Summary o f  Western Blotting Process. Adapted from The BSE Inquiry? (2000)
(a) Preparation o f  gel for protein separation
(b) Proteins separated on the basis o f  size and charge in the electrical field
(c) Preparation for Blotting
(d) Blotting: Separated proteins transferred from gel to membrane
(e) Incubation o f  separated proteins with primary and conjugated secondary ABs => 

protein-primary A B-secondary A B -enzym e com plex (HRP=horse radish peroxidase)
( 0  Membrane exposure. The protein o f  interest can be visualised
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Polyacrylamide Gel

Nitrocellulose Membrane

Negative
Electrode

Transfer
direction

Positive
Electrode

Figure 7.2: Summary o f  the Blotting process
A semi-dry blotting transfer system was set up. On the pre-wetted positive electrode 
10 filter papers were placed. The pre-wetted nitro-cellulose membrane was placed on 
the filter papers follow ed by the polyacrylamide gel. 10 filter paper layers went on 
top to com plete the “sandwich”. The system was run at a constant current (39m A ) for 
60m in towards the anode (positive electrode). Adapted from Fermentas Life Sciences 
(2007).

Detection

The detection o f  the target protein was a two-step process. The nitrocellulose 

membrane was incubated with a primary AB and afterwards with a conjugated 

secondary AB. The primary AB binds to the target protein via a protein-primary AB  

com plex. The secondary AB binds to Fc region (Figure 7.3) o f  the primary AB in the 

primary AB-protein com plexes. The enzym e conjugated to the secondary AB, 

horseradish peroxidase (HRP), allow s visualisation o f  the antibodies, as it is used in 

conjunction with a chemiluminescent agent. The visualised bands are protein- 

primary AB-secondary A B-enzym e com plexes. These com plexes indicate the size o f
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the target protein, and produce lum inescence in proportion to the amount o f  protein

(Figure 7.1 e.j).

Antigen
binding site

Variable

> N ^ ^ C o n s t a n t *

F i g u r e  7 . 3 :  Antibody structure.
Each antibody binds to a specific antigen at the antigen-binding fragment. Adapted 
from The Biolog}' Project (2000) ( 1 )  Fragment antigen-binding ( F a b )  region. It is 
com posed o f  one constant and one variable domain from each heavy and light chain 
o f  the antibody ( 2 )  Fragment crystallisable ( F c )  region. It is com posed o f  two heavy 
chains that contribute two or three constant domains depending on the class o f  the 
antibody ( 3 )  L i g h t  C h a i n :  consists o f  one constant and one variable domain. The 
variable region is important for binding antigen ( 4 )  H e a v y  C h a i n :  consists o f  the 
constant and the variable region

Cheniiluniinescence

After incubation with both antibodies, the Western blot is ready for detection o f  the 

protein o f  interest. The membrane is incubated with "enhanced chemiluminescent" 

(ECL) reagents which are metabolised in the presence o f  HRP to release light which 

is then detected by X-ray film s (Figures 7.4 and 7.1 f).
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HRP ECL-MIX

Primary AB

Non-specific protein

Antigen - Target Protein

Nitrocellulose Membrane

Figure 7.4: Western Blotting: Detection and C hem ilum inescence process 
The primary antibody (A B ) detects the target protein. The secondary AB detects the 
Fc region o f  the primary AB and built up a protein-primary AB-secondary AB- 
enzym e com plex. The secondary AB is conjugated to horse radish peroxidase (HRP) 
which converts a luminol substrate (ECL) to a light-releasing substance. The light 
was detected by specialised X-ray film. Adapted from Molecular Station (2006)
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7.3.1.2 Experimental Protocol 

Preparation of the polyacrylamide Gel

Two different polyacrylamide gels were used, the separating (10%) and stacking 

(5%) gel. The same reagents were used (acrylamide, Tris-HCl, SDS, APS, TEMED) 

for both polyacrylamide gels, but at different concentrations (Appendix). Both gels 

were prepared in gel cassettes of the Novex gel system (Invitrogen, UK). A 10% 

polyacrylamide gel was chosen because of the size of the protein of interest, the 

TAAR protein. The TAAR1 belongs to the GPCR family and the average molecular 

weight o f GPCRs is around 45-55kDa.

Rat aortic membrane preparation

Rat aortic membrane samples were prepared. Fresh rat aortic tissues were taken from 

male Sprague-Dawley rats (250-300g) (Chapter 2). The aortic tissues were 

homogenised for 3x 10 seconds (Polytron, Ultra-Turrax, Fisher UK). Afterwards the 

homogenate was span at 500g for 10 minutes at 4°C. The supernatant was removed 

and kept on ice. The pellet was resuspended in Tris buffer (NaCl 150mM, Tris (pH 

7.4) 50mM, EDTA lmM) plus two different peptidase inhibitors, 4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF lmM), an irreversible serine protease inhibitor 

and bacitracin (0.1 mg/ml) (10ml) a mixture of related cyclic polypeptides produced 

by organisms of the licheniformis group of Bacillus subtilis var Tracy (Johnson et 

al., 1945). After repeated homogenising (Polytron, 3x 10 seconds) the homogenate 

was spinned as above at 500g for 10 minutes at 4°C. The supernatant was removed 

and combined with the earlier one and span at 48000g for 15 minutes at 4°C. The 

supernatant was discarded and the pellet was resuspended in Tris buffer by 

vortexing. The homogenate was span as above at 48000g for 15 minutes at 4°C, 

before the pellet was resuspended in Tris buffer without peptidase inhibitors and 

homogenised with a syringe and a fine gauge needle.
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BCA protein assay

The amount of protein in the sample was analysed using the BCA Protein Assay. The 

BCA Protein Assay is a detergent-compatible formulation based on bicinchoninic 

acid (BCA) for the colorimetric detection and quantitation of total protein (Smith et 

al., 1985).

a.) Preparation of diluted Bovine Serum Albumin (BSA) standards (Bovine 

Albumin fraction V)

Final BSA concentration 
(protein mg/ml)

Distilled 
Water (pi)

BSA stock 
(2mg/ml) (pi)

Dilution
factor

1 500 500 1:2
0.5 500 500 1:2

0.25 500 500 1:2
0.2 175 750 1:1.25
0.1 500 500 1:2

0.05 500 500 1:2
0.025 500 500 1:2
0.01 750 500 1:2.5

BLANK 1000 0 -

b.) Preparation of BCA™ Working Reagent (WR):

To prepare the BCA™ WR 50 parts of BCA™ Reagent A with 1 part BCA™ 

Reagent B (50:1 Reagent A:B) were combined. Then 25pi of each standard and 0.5pl 

- 1 pi of samples were added in duplicate to the 96 well plate. Afterwards 200pl of 

the WR was added to each well and the plate was mixed on a plate shaker for 30 

seconds and then incubated at 37°C for 30 minutes. Afterwards the plate was cooled 

for 5 min at room temperature before the absorbance at 540nm was read by using a 

spectrophotometer. The optimal wavelength is 562nm, however, wavelengths from 

540-590nm have been successfully with this method. The concentration of the 

protein was determined based on a standard curve with the GraphPad Prism 4 

program.
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Preparation of samples for Western blotting

The rat aorta membrane sample was prepared in 3X Sample Buffer (Appendix) 

(Laemmli, 1970) plus 50mM Tris (pH 7.4). 50pg of rat aorta membrane sample was 

loaded into the cassette. A molecular weight marker (Precision Plus Protein marker) 

(5pl) was used to estimate the molecular weights of proteins (Figure 7.1 a, b).

Proteins are generally folded into 2° and 3° structures. Unfolded proteins will not 

move well through the gel, therefore the protein structure has to be disrupted. This 

process is called protein denaturation. Therefore, 3X sample buffer (Laemmli, 1970) 

was used to prepare the samples. The buffer changes proteins from 2° and 3° 

structures into a linear 1° structure. It contains p-mercaptoethanol which binds to 

cysteine residues and breaks down S-S bonds, SDS detergent which solubilises the 

protein, and a blue colour indicator which allows visualisation of the bands in the 

gel. The samples are kept in SDS all the time to prevent proteins from reverting back 

to their 2° and 3° structures. To support the denaturation, the samples were boiled at 

95°C before each use.

SDS-PAGE electrophoresis

Once the loading of the gel was completed, the separation of the protein samples was 

started (Figure 7.1 b). The system was run at 50V for 30 minutes for ensure that all 

samples were equally distributed in the wells and then for approximately 2.5 hours at 

110V (until the blue dye indicator reached the cassette slot).

Electroblotting

After separation, the protein molecules were electro-transferred to a nitrocellulose 

membrane (Hybond™-ECL™, pore size 0.2pm) using a vertical semi-dry blotting 

system (Multiphor II electrophoresis system) plus electrode paper 200x250mm 

(Novablot, GE Healthcare, UK) for lhour at 39mA (0.8mA/cm2 of gel) in blotting 

buffer (Appendix, Figure 7.2).
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Blocking

After transfer, membranes were washed briefly in Tris-bufFered saline Tween-20 

(TBST) (Appendix) to remove the blotting buffer. The nitrocellulose membrane was 

blocked for 1 hour at room temperature (22°C) in a solution of 5% non-fat dried milk 

in TBST (Blotto 5%) (Appendix).

Detection

The membrane was incubated with the primary antibody (AB), a rabbit anti-human 

TAAR1 polyclonal antibody, LS-A2042 (stock 1 mg/ml; 1:750 dilution) in 1% Blotto 

at 4°C overnight on a rocker to detect the proteins of interest. The next day, the 

membrane was washed with TBST for 2 x 5 minutes and 1 x 15 minutes and 

incubated with the secondary AB, an anti-rabbit IgG conjugated to horseradish 

peroxidase (HRP) (1:10000 dilution) in 1% Blotto for 1 hour at room temperature 

(RT, 22°C) under constant agitation. After three washes with TBST as above, the 

membrane was incubated with the ECL reagents according to the manufacturers' 

instructions for 5 minutes at room temperature (22°C) and was afterwards removed. 

The ECL metabolised in the presence of HRP to release light which is then detected 

by X-ray films (Hyperfilm) (Figure 7.4, Figure 7.1 J). Wiping all surfaces with 100% 

ethanol reduced contamination of the ECL reaction.

7.3.1.3 Analysis of Results

Values for the molecular weight (kDa) of protein bands were approximated by 

measuring retardation factor (Rf)-values for the bands using the protein standard 

markers as a reference. The Rf-value is calculated as the ratio of the distance 

migrated by the molecule to that migrated by a marker dye-front (Coyne et al., 1996) 

(Figure 7.5). The molecular weight of the proteins were then estimated using the Rf- 

values (GraphPad, PRISM 4) as there is a linear relationship between the logarithm 

of the molecular weight of an SDS-denatured polypeptide and its log Rf-value.
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Protein Marker «

Solvent Front

Protein Sample

Baseline

Rf =
Migration distance of sample 

Migration distance of solvent front

Figure 7.5: Calculation of retardation (Rf)-values of the sample using the protein 
standard markers as a reference. Adapted from University o f Wisconsin (2000)

7.3.1.4 Drugs Used

All other chemicals, unless otherwise speci ~ ;d, were obtained either from Sigma 

Chemicals, UK or Fisher Scientific, UK.

>  Reagents obtained from Sigma Aldrich, UK

Beta-mercaptoethanol, Bromophenol Blue (Tetrabromophenolsulphonephthalein, 

BPB), Glycerol, Tetramethylethylenediamine (TEMED)

> Reagents obtained from Fisher Scientific UK Ltd

Tris (hydroxymethyl)-aminomethane (Tris Base), Tris (hydroxymethyl) 

aminomethane Hydrochloride

> Reagents obtained from Bio-Rad Laboratories Headquarters (Hercules,

CA, USA)

Sodium dodecyl (lauryl) sulphate (SDS), Ammonium persulphate (APS), 

Polyacrylamide (Acrylamide/Bis 37, 5:1), Precision Plus Protein marker
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> Reagents obtained from Caltaq-Med System Ltd. (Buckingham, Botolph 
Claydon, UK)

Primary anti-human TAAR1 antibody LS-A2042 (Rabbit/Polyclonal)

> Reagents obtained from Vector Laboratories, Ltd. (Peterborough, UK)

Horse-radish peroxidase (HRP) conjugated anti-rabbit IgG

> Reagents obtained from GE-Healthcare (Uppsala, Sweden)

T \ i  T k 4

Hybond -ECL nitrocellulose membrane, Multiphor II (two graphite electrode

system, semi-dry transfer system), Electrode paper (Novablot), Amersham Hyperfilm

> Reagents obtained from Perbio Science UK Ltd. (Cramlington, 

Northumberland, UK)

Enhanced Chemiluminescence-mix (ECL Super Signal®, West Dura Extended 

Duration Substrate), BCA Protein Assay Kit

7.3.2 Reverse Transcriptase-Poly merase Chain
Reaction (RT- PCR)

7.3.2.1 Methods

In molecular biology, RT-PCR is a technique for amplifying a defined section of an 

RNA molecule (Alberts et al., 1994; Wilson and Walker, 2000). The RNA strand is 

first reverse-transcribed into its complementary DNA, followed by amplification of 

the resulting DNA using PCR. The exponential amplification via RT-PCR provides 

for a highly sensitive technique, where a very low copy number of RNA molecules 

can be detected. In the first step of RT-PCR (the first strand reaction) complementary 

DNA is made from a messenger RNA template using dNTPs and an RNA-dependent 

DNA polymerase (reverse transcriptase) through the process of reverse transcription 

(RT). After the RT-reaction is complete, and complementary DNA has been 

generated from the original single-stranded mRNA, standard PCR (second strand 

reaction) is initiated (Davidson College, 2000). PCR is a technique which is 

commonly used in molecular biology (Saiki et al., 1988; Erlich and Amheim, 1992) 

and is an in vitro enzymatic replication of DNA (target) by DNA polymerase. DNA
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is a nucleic acid which contains genetic instructions (Mullis and Faloona, 1987). It is 

a long polymer made from repeating nucleotides and it is shaped as a double

stranded helix, as two strands of DNA wrap around each other (Watson and Crick, 

1953). Both strands of DNA are copied during PCR. Therefore, PCR is used for an 

exponential amplification of specific regions of DNA strands (target DNA) (Figure 

7.6).
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3rd C ycle

41 Cycles

Tem plate  D N A

4 copies

8 copies
16 copies

Figure 7.6: Exponential amplification
PCR requires a template DNA m olecule (target gene). DNA generated in this 
replication is itse lf used as a template as the PCR progresses. There is one copy o f  
the target gene before the chain reaction starts. After the first cycle there will be 4 
copies and after the second cycle there w ill be 8 copies and so on.

PCR is based on the D NA polymerisation reaction. The chain reaction requires a 

heat-stable enzym e (TAQ polymerase) which synthesizes a new DNA strand, using a 

single-stranded DNA template, DNA oligonucleotides and DNA primers (Figure 

7.7) (Sambrook and Russel, 2001). TAQ polymerase is a thermostable DNA  

polymerase named after the thermophilic bacterium Thermus aquaticus from which it 

was originally isolated (Chien et al., 1976; Lawyer et al., 1993). Polymerases are 

enzym es which catalyze the polymerization o f  deoxyribonucleotides alongside a 

DNA strand. The newly-polym erized m olecule is complementary to the template 

DNA strand and identical to the template's partner strand (Burgers et al., 2001; 

Hubscher et a/., 2002). Primers are single-stranded and consist o f  a string o f  

nucleotides (oligonucleotides) in a specific order which bind to a specific 

complementary sequence o f  nucleotides o f  the single-stranded DNA. Primers are 

used to assign the D N A  fragment to be amplified by the PCR process. The selectivity 

o f  PCR is primarily due to selecting primers that are complementary to the DNA  

region targeted for amplification. Primers must be duplicates o f  nucleotide sequences
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on either side o f  the target D N A . A primer is required because most DNA  

polymerases cannot begin synthesizing a new D NA strand from scratch, but can add 

to an existing strand o f  nucleotides. The primers add here to the DNA template at 

these starting points (five (5') prime) where D NA polymerase binds and begins the 

synthesis o f  the new D NA strand (Figure 7.7). It is important to have the naming 

convention (5') prime and (3') prime as nucleic acids can only be synthesized in a 5' 

to 3' direction, as the polymerase used to assem ble new strands must attach a new  

nucleotide to the 3' hydroxyl (-OH) group via a phosphodiester bond (Eguchi et al., 

1991). By convention, single strands o f  DNA and RNA sequences are written in 5' to 

3' direction.

Primer sequences need to be uniquely designed (Primer3, 2007) for a region o f  DNA, 

avoiding the possibility o f  mishybridization to a similar sequence nearby for an other 

section o f  DNA.

Figure 7.7: Directionality
End-to-end chem ical orientation o f  a single strand o f  nucleic acid. Primers add here 
to the DNA template at these starting points (5') prime where D N A  polymerase binds 
and begins the synthesis o f  the new D NA strand. Nucleic acids can only be 
synthesized in a 5' to 3' direction. Primers interact with complementary strands o f  
nucleic acids. The sense DNA strand is also the coding strand.

A n tisen se  P rim er

3 ' Sense DN A strand

5 ' A n tisense DN A strand

Sense P rim er
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PCR-Set Up

PCR is commonly carried out in a reaction volume of 15-100pl in small reaction 

tubes (0.2-0.5 ml volumes) in a thermal cycler (PCR machine). The thermal cycler 

allows heating and cooling of the reaction tubes to control the temperature required 

at each reaction step. Thin-walled reaction tubes allow suitable thermal conductivity 

to allow for rapid thermal equilibration. Thermal cyclers with heated lids prevent 

condensation at the top of the reaction tube (Sambrook and Russel, 2001).

> PCR requires several components and reagents

a) Components

• DNA template (contains the DNA region to be amplified)
• Primers (single nucleic acid strands)
• Thermostable DNA polymerase with an optimum temperature around 70°C

b) Reagents

• Deoxyribonucleotides triphosphate bases (dNTPs) (a generic term referring to 
the four deoxyribonucleotides: dATP, dCTP, dGTP and dTTP)

• Buffer solution, providing a suitable chemical environment for optimum 
activity and stability of the DNA polymerase

• Divalent cations (generally, magnesium (Mg2+) is used. The effect of the 
DNA polymerase is dependent on the Mg2+concentration).

• Monovalent cations e.g. potassium ions

PCR Cycles

The PCR usually consists of a series of cycles (25-40 cycles). Most commonly, PCR 

is carried out in three steps (denaturation, annealing and elongation). However, the 

PCR procedure is often preceded by one temperature hold at the start (initialisation 

step) and followed by one hold at the end (final hold).

> Initialization step

This step consists of heating the reaction to a temperature of 94-98°C, which is held 

for 1-9 minutes. It is only required for DNA polymerases that require heat activation 

by hot-start PCR (Sharkey et al, 1994).
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> Denaturation

This step is the first regular cycling event and consists of heating the reaction to 94- 

98°C for 20-30 seconds. During denaturation, the DNA double strand melts open to 

single stranded DNA by disruption of the hydrogen bonds between complementary 

bases of the DNA strands.

> Annealing (hybridisation)

The reaction temperature is lowered to 50-65°C for 20-40 seconds allowing 

annealing of the primers to the single-stranded DNA template. Ionic bonds are 

constantly formed and broken between the single-stranded primer and the single

stranded DNA template. Stable DNA-DNA hydrogen bonds are only formed when 

the primer sequence very closely matches the template sequence. The polymerase 

binds to the primer-DNA template hybrid and begins DNA synthesis.

> Elongation

a) Extension/Elongation step

The temperature at this step depends on the DNA polymerase which is used. Taq 

polymerase has its optimum activity temperature at 75-80°C (Chien et al., 1976; 

Lawyer et al., 1993). Therefore, commonly a temperature of 72°C is used with this 

enzyme. During this step the DNA polymerase synthesizes a new DNA strand 

complementary to the DNA template strand by adding dNTPs that are 

complementary to the template in the 5' to 3' direction (Figure 7.7). The extension 

time depends both on the DNA polymerase used and on the length of the DNA 

fragment to be amplified.

b) Final elongation step

This single step is occasionally performed at a temperature of 70-74°C for 5-15 

minutes after the last PCR cycle to ensure that any remaining single-stranded DNA is 

fully extended.

241



Chapter 7

> Final Hold

This step at 4-15°C for an indefinite time may be employed for short-term storage of 
the reaction.

PCR Detection

> Agarose gel electrophoresis

Agarose gel electrophoresis is a method used in biochemistry and molecular biology 

to separate DNA, RNA, or protein molecules according to their sizes. This is 

achieved by moving negatively charged nucleic acid molecules through an agarose 

matrix with an electric field (electrophoresis). Shorter molecules move faster and 

migrate further than longer ones (Sambrook and Russel, 2001) (see also 7.3.U S D S  

electrophoresis).

To check whether the PCR generated the anticipated DNA fragments agarose gel 

electrophoresis is employed for size separation of the PCR products. The PCR 

product size is determined by comparison with a DNA ladder, which contains DNA 

fragments of known size. The marker is run on the gel alongside the PCR products. 

Ethidium bromide (EtBr) is used as a nucleic acid stain for techniques such as 

agarose gel electrophoresis as it binds to nucleic acids. When exposed to ultraviolet 

light, it will fluoresce with a red-orange colour, intensifying almost 20-fold after 

binding to DNA. Ethidium bromide may be a very strong mutagen, and may possibly 

be a carcinogen or teratogen (Huang and Fu, 2005) therefore must be handled with 

great care.

1 3 .2.2 Experimental Protocol 

RNA Isolation

Fresh rat aortic tissues were taken from male Sprague-Dawley rats (250-300g) 

(Chapter 2) and frozen in liquid N2 and stored at -80°C until use. The rat aortic 

tissues were homogenized (Polytron) in TRI®-Reagent™ (1ml per 5-100mg of 

tissue). TRI®-Reagent™ is an RNA/DNA and protein isolation reagent and is a 

mixture of guanidine thiocyanate and phenol in a mono-phase solution 

(Chomczynski and Sacchi, 1987). The sample was left for 5min at room temperature
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(22°C). 0.2ml 1 Bromo-3-chloropropane per ml of TRI®-Reagent™ were added to 

the mixture for separation of the RNA from the DNA and protein and left for 15min 

at room temperature (22°C) after shaking for 15 seconds. After centrifugation 

(12000g, 15 minutes, 4°C) the mixture was separated into 3 phases. A red organic 

phase (contains protein), an interphase (contains DNA) and a colourless upper 

aqueous phase which contains RNA. The aqueous phase was transferred to a fresh 

tube and 0.5ml isopropanol per ml of TRI®-ReagentTM was added. The mixture 

was left for 5 minutes at room temperature (22°C). After centrifugation (12000g, 10 

minutes, 4°C), the pellet was washed in 1ml of ethanol (75%) per 1ml TRI®- 

ReagentTM. After centrifugation (7500g, 4 minutes, 4°C) the pellet was left to diy 

air for approximately lOmin. The pellet was resuspended in lOOpl sterile water (see 

Sigma TRI®-ReagentTMproduct information sheet). The absorbance of the rat aortic 

RNA sample was measured at A260 and A2so using a spectrophotometer.

A260 and A280 measurements

A260 = RNA Total A260 -  OD x dilution factor
A280 = DNA / Protein Cone (pg/ml) = Total A260 x 40

 4 __  x____ nination with small amounts of DNA possible)

OD = optical density (absorbance)
40 = Standard factor (OD for 1 mg/ml of a single stranded RNA)

DNase treatment of RNA samples

Prior to the RT-PCR, the rat aortic messenger RNA (mRNA) sample (0.63pl=lpg 

mRNA) was DNase-treated (RNase-Free DNase Kit) to remove any genomic DNA. 

For DNase treatment of the rat aortic RNA sample, RNA-Qualified (RQ) 1 RNase- 

Free DNase was used according to the manufacturers' instructions. RNase-Free 

DNase is a DNase 1 (endonuclease) that degrades both double-stranded and single

stranded DNA (see Promega RQ1 Rnase-Free DNase Kit product information). To 

avoid any RNAse contamination during PCR sample preparation, laboratory gloves 

were worn and DNA/RNA-free water, sterile PCR tubes and pipette tips were used.

Yield = Cone x Final Volume
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Reverse Transcriptase (RT)-Reaction

After DNase treatment of the rat aortic mRNA sample (0.63pl=lpg mRNA), 

complementary DNA was immediately made from the whole mRNA template using 

dNTPs (lOmM each), 5x reaction buffer, recombinant RNase inhibitor (40units/pl), 

an oligo (dT)i8 primer (20pM) and an RNA-dependent DNA polymerase (Moloney 

murine leukaemia virus (MMLV) reverse transcriptase) (200units/pl) via reverse 

transcription (RT) according to the manufacturers' instructions. The Advantage RT- 

for-PCR Kit with the MMLV reverse transcriptase was used (see BD Biosciences 

Advantage™ RT-for-PCR Kit user manual).

Polymerase Chain Reaction (PCR)

cDNA was produced as detailed above from DNase-treated mRNA from isolated rat 

aortic tissues. PCR reactions were carried out using a Uno-Thermoblock™ in 

accordance with the manufacturer’s instructions (Biometra biomedizinishe Analytic 

GmbH, Germany) using sense and antisense primers for Rattus norvegicus TAAR1, 

Thermus aquaticus (TAQ)- polymerase, dNTPs, lOxNFU buffer and MgCh.

Reagents Concentrations per sample (In 24pl)
dNTPs 0.25uM
10x Buffer NH4 Buffer 
(NH4)2 S 0 4 
Tris-HCI

16mM
70mM

MqCI2 (50mM/ml) 1.5mM
TAAR1 s e n s e  and  an tisen se  
p rim er (50nM/pl of sam ple) 2nM

TA Q -polym erase (5U/pi) 3U
Sterile  W ater m ake up to  volum e

p-actin was used as a control to normalize for differences in the amount of mRNA 

present in each sample. P-actin is ubiquitously expressed in all cells and serves as a 

positive control for mRNA (cDNA) quantitative expression studies (Gene Link, 

2008). Furthermore, control reactions where the MMLV enzyme was left out of in 

the RT reaction or where sterile water was used in the PCR reaction instead of the 

RT reaction were performed.
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PCR procedure

Rat aortic cDNA (lpl) obtained from DNAse pre-treated RT reactions as explained 

above was amplified for 40 cycles using the following cycling parameters.

}
Initialization: 94°C for 120 sec
Denaturation: 94°C for 60 sec
Annealing: 61°Cfor30sec 40 Cycles
Elongation: 72°C for 60 sec

Elongation: 72°C for 600 sec >  1 Cycle

Final Hold: 4°C (for an indefinite time)

> Prim er Design

Specific sense and antisense primer pairs for rat P-actin and rat TAAR1 were

designed using two different databases, Primer3 and BLAST. The primers did not

recognize any other sequences in the database (data not shown).

Prim er S equences (5'- 3')
Rat TAAR1 sense primer A i t  GGA AGG GGA AAG CAG AG
Rat TAAR1 antisense primer GGT TAG AGG CAG AGT TCA GG
Rat p-actin sense primer GAG AGG CAT CCT GAC CCT GA
Rat P-actin antisense primer ATC ACA ATG CCA GTG GTA CG

PCR Detection

After completing the PCR procedure, the samples were studied to determine whether 

the PCR had generated the anticipated DNA fragment. The PCR products were 

separated according to their sizes via agarose gel (2%) electrophoresis. To each PCR 

sample an appropriate volume of Blue/Orange 6X Loading Dye was added before 

20pl of each sample was loaded on the gel. To determine the size of the anticipated 

DNA fragment, a DNA ladder (4pl), which contains DNA fragments of known sizes 

was run on the gel parallel to the PCR products.

The gel, containing lOOnM ethidium bromide, was placed in TAE-buffer (see 

Appendix) in a tank and an electrical current was applied. The electrophoresis 

process was completed after approximately 45 minutes. Afterwards, the gel was
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analysed on a UV transilluminator, photographed and scanned (TyphoonTM 9410 

Phosphoimager, GE Healthcare, Amersham, UK).

7.3.2.3 Analysis of Results

Sequencing

DNA sequencing is the process of determining the nucleotide order of a given DNA 

fragment. To find out the exact nucleotide sequence of the DNA fragments obtained 

the band were excised from the agarose gel kept in 30pl distilled water overnight and 

then sequenced. The sequencing progress was done by the service at the Heath 

Hospital (Cardiff, UK) (Figure 7.10).

7.3.2.4 Drugs Used

> Reagents obtained from Bioline GmbH (Luckenwalde, Germany) 

BIOTAQ Core Kit (500U)

> Reagents obtained from Sigma Aldrich

TRI^Reagent™, 2-Propanol (Isopropanol), sterile RNA/DNAse free water, sterile 

mineral oil, ethidium bromide (lOmg/tablette), l-Bromo-3-Chlorpropane

> Reagents obtained from Clontech-Takara Bio Europe (Saint-Germain- 

en-Laye, France)

Advantage™ RT-for-PCR Kit

> Reagents obtained from Promega Corporation (Southampton Science 

Park Southampton, UK)

RQ1 RNase-Free DNase, Blue/Orange 6X Loading Dye, Bench Top lkb DNA 

Ladder, Ethylenediaminetetraacetic acid (EDTA) solution (0.5M, pH to 8.0)

> Reagents obtained from Invitrogen Ltd. (Paisley, UK)

TAAR1 sense and antisense primers, P-actin sense and antisense primers
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>  R e a g e n ts  o b ta in e d  fro m  F ish er  S c ien t if ic  U K  Ltd

A g arose  (for routine electrophoresis), G lacial acetic  acid

>  R e a g e n ts  o b ta in e d  from  E lk a y  L a b o r a to r y  P ro d u cts  (B a s in g s to k e ,  

H a m p s h ir e ,  U K )

PCR tubes (0 .2 m l, thin w all, D O M E D  C A P )

7.4 Results

7.4.1 W estern Blotting

T A A R 1 w a s identified  in rat aortic tissu es via W estern B lotting. The m ean m olecular  

w eig h t o f  the band w as 4 0 .3 ± l . lk D a  (n = 3) (Figure 7.8). In som e o f  the experim ents  

w eak  bands in the rat aorta w ere seen  but w ith  low er m olecular w eigh ts (not all 

sh o w n  in F igure 7 .8 )

MW kDa Rat Aorta

F ig u r e  7.8: W estern B lot
R epresentative exam p le  o f  a W estern blot for T A A R 1 in rat aorta. 5 0 p g  o f  rat aorta 
m em branes w as separated on a 10% polyacrylam ide gel and T A A R 1 w as detected  
usin g  a rabbit p o ly c lo n a l anti-hum an antibody, L S -A 2 0 4 1 . The band w as visualised  
usin g  EC L. In the rat aorta sam ple a band appeared w ith a m olecular w eight o f  
4 0 k D a  (n = 3).
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7.4.2 R T -P C R

A garose gel electrophoresis

T he PC R  products w ere separated according to their s ize s  via agarose gel 

electrop h oresis  (Figure 7.9). PCR o f  rat aortic sam ples w ith  T A A R 1 prim ers 

produced a band o f  the expected  size  (200b p ) (Figure 7.9, Lane 2). T he integrity o f  

the sam p les w as confirm ed using p actin prim ers w hich  a lso  produced a band o f  the 

ex p ected  s iz e  (2 5 0 b p ) (Figure 7.9, Lane I). Furthermore, control reactions w here the 

M M L V en zy m e w as left out o f  the RT reaction (Figure 7.9, Lane 3) or w here sterile  

w ater w a s u sed  in the PCR reaction instead o f  the RT reaction (Figure 7.9, Lane 4) 

did  not produce any bands w ith the T A A R 1 prim ers.

1 0 0 0 b p

7 5 0 b p -i ■
. I

5 0 0 b p

2 5 0 b p -WflBH (3 )

ialNBiir (b )

Marker Lane 1 Lane 2 Lane 3 Lane 4

F ig u r e  7 .10:  R epresentative exam ple o f  agarose gel electrophoresis for R T-PC R  for 
T A A R 1 in rat aorta R N A . Rat aorta R N A  w as isolated  and lp g  treated w ith  D N A se . 
RT reaction s w ere perform ed w ith M M L V  according to the m anufacturers' 
instructions and 1 p i o f  the reaction w as used for PCR with rat P actin (Lane 1) or rat 
T A A R 1 (Lane 2). In addition R T-PC R  w as perform ed with D N A se-treated  rat aorta 
R N A  and T A A R 1 prim ers but w ithout M M L V  (Lane3) or sterile w ater w as used in 
the PC R  reaction  w ith  the T A A R 1 prim ers instead o f  the RT reaction (Lane 4). 
B ands o f  the exp ected  s iz e s  for p actin (250b p ) (a) and T A A R 1 (200b p ) (b) w ere  
seen  (n = 3).
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The sequence obtained w as compared using BLAST to the database. The sequence 

obtained for TAARI were compared using BLAST to the database and found to be 

identical to the expected sequence for Rattus norvegicus. Below  the sequence for rat 

TA A R I obtained from the PCR band (Figure 7.10, Lane 2) is shown from base 693- 

892 (Figure 7.8). The m issing and non-identical bases are probably due to the low  

level o f  cD N A  for the TAARI and sequencing errors.

6? 3 Rat TAAR1 se n se  primer

ATTGGAAGGGGAAAGCAGAG CGCCACAAAGCAAGGAAACA 
.......................................................GGTCTTTCGTTCGTTAGTAC

AAAGCCGCGAAAACCTTAGGATCATGGTGGGCGTTTTCCTCCTG
AAAGCCGCGTAACCTTAGGGATCATGGTGGGCGTTTTCCTCCTG

TGCTGGTGCCCGTTCTTTTTCTGCATGGTCCTGGACCCTTTCCTGG
TGCTGGTGCCCGTTCTTTTTCTGCATGGTCCTGGACCCTTTCCTGG

GCTATGTTATCCCACCCACTCTGAATGACACACTGAATTGGTTTG
GCTATGTTATCCCACCCACTCTGAATGACACACTGAATTGGTTCG

GGTACCTGAACTCGTCCTTCAACCCGAT
GGTACCTGAACTCTGCCTTCAACCACCT

V V 't
Rat TAAR1 an tisen se  orimer 892

Figure 7.10: Sequencing data
Part o f  the cD N A  sequence o f  Rattus norvegicus TA A R I is shown. The sequence o f  
the band excised  from the gel (B lue) (Figure 7.9, Lane 2) matched with the majority 
o f  the sequence o f  the region from bases 693 to 892 (Red, Primer3 output, BLAST  
database). Green = non-identical b a ses; no sequencing data available, n =  1.
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7.5 Discussion

Currently, little is known about the existence of TAARs in smooth muscle tissues. 

The pharmacological effect of TAs on TAARs has mostly been investigated on 

cloned receptors in transfected cell lines (Borowsky et al., 2001; Bunzow et al.9 

2001). I am not aware of any studies where the presence of TAARs in rat aortic 

tissues has been determined.

In the present study, the presence of TAARI in rat aortic tissues was investigated. 

Using Western blotting, the TAARI was detected using a selective TAARI 

polyclonal antibody (LS-A2041) with a molecular weight of 40.3±l.lkDa. The 

molecular weight of GPCRs is between 35-45kDa and therefore this band is in the 

correct molecular weight range and therefore likely to be the receptor protein. The 

specificity of the antibody with the blocking peptide for TAARI (LS-P2042) has not 

been investigated in the present study because the peptide (LS-P2042) was no 

available by the time. I have not been able to confirm my findings in the literature as 

no other studies on TAARI in isolated rat aorta have been reported. Previous 

workers investigated the tissue distribution of TAAR mRNA by RT-PCR 

successfully in rat (Sprague Dawley) brain (Borowsky et a l, 2001; Bunzow et al., 

2001). In the present study, RT-PCR analysis of rat aortic tissues showed the 

presence of TAARI m-RNA (200bp). The sequence of the excised band matched 

with the sequence of TAARI in the database. However, it is necessary to repeat the 

sequencing to confirm the data as sequence errors seen. Thus, the receptor mRNA is 

clearly present in the tissue.

To discount the possibility of experimental error, different control experiments were 

performed to validate the results. A p-actin band (250bp) was detected and its 

relative position to TAARI used to prove that the product with smaller size the 

(2 0 0 bp) was isolated, p-actin, a housekeeping gene, is widely accepted in the 

literature as a loading control in molecular biology techniques including PCR and 

Western blotting and also shows the integrity of RNA sample (Gilliland et a l, 1990). 

Two control experiments showed that the RT-PCR process was performed correctly 

and validated the results. Firstly, the exclusion of the MMLV enzyme from the RT 

reaction showed that no contaminating DNA was present after the DNAse treatment.
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Therefore, the band seen can only have been amplified from cDNA from the RT 

reaction. Secondly the use of sterile water in the PCR reaction demonstrated that no 

DNA contamination was present in any of the components used.

7.6 Conclusion
In the present Chapter, the presence of TAARI was successfully demonstrated for 

the first time in rat aorta by two methods, Western blotting (receptor protein) and 

RT-PCR (mRNA). These results show that at least one TAAR is found in rat aorta 

and therefore may explain vasoconstriction seen to TAs in aortic tissues. The 

molecular biology confirmation of the presence of TAARI and the pharmacological 

findings regarding the effect of TAs in rat aortic rings can be used in further studies 

to investigate the mechanism of action of TAs in rat smooth muscle.
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GENERAL DISCUSSION
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8.1 General Discussion
The aim of my thesis was to provide a wider understanding of the mechanisms and 

roles of TAs in the cardiovascular system. This research is particularly relevant 

because of the increasing exposure to TAs from the consumption of recreational 

drugs, such as MDMA and cathinone, biosynthesis from endogenous sources, such 

as octopamine and dietary sources, like tyramine from cheese and p-PEA in 

chocolate.

Very little is known about the relationship between TAs and vasoconstriction in 

isolated tissues. Therefore, work in Chapters 2 and 3 used P-PEA as a standard TA 

to clarify the mechanism of vasoconstriction of TAs in aortic tissues. In Chapter 2 it 

was shown that various factors, such as the presence, or absence of endothelium, 

blocking a i- and p-adrenoceptors or blocking Uptakel did not affect the contractile 

response to P-PEA in rat aortic rings. The endothelium therefore cannot be a source 

of vasoconstrictors responsible for the response to p-PEA as the absence of the 

endothelium did not reduce the contractions to p-PEA. Thus, to clarify the role of a- 

and p- adrenoceptors and ISA in the vasoconstrictor action of p-PEA, the findings in 

Chapter 2 were then developed in Chapters 3 and 4. To eliminate possible the 

sympathomimetic responses involved in the contractile response to p-PEA, a 

combination of “inhibitors” (prazosin, ICI-118,551, pargyline and cocaine) was 

employed (Figure 8.1, Chapter 4). These did not inhibit the vasoconstriction by p- 

PEA. Therefore, neither a - and P-adrenoceptors, nor ISA stimulation were 

responsible for the vasoconstriction in rat aorta and therefore TAs might cause 

vasoconstriction via direct stimulation. These “inhibitors” were also used to 

investigate the contractile responses of other TAs, including tyramine, octopamine, 

amphetamine and its derivatives, such as MDMA and cathinone (Chapters). As 

neither a - and p-adrenoceptors, nor ISA stimulation could explain the 

vasoconstriction seen with TAs in rat aorta, it is likely that p-PEA and other TAs 

exert this effect directly by activation of a novel receptor system, probably the 

TAARs (Figure 8.1).
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The identity o f  the T A A R s involved, TAARI or other subtypes, remains to be 

established. In the present work in rat aortic tissue, TAARI was successfully  

identified via Western blotting and polymerase chain reaction (PCR) (Chapter 7). So 

this receptor could be involved in the vasoconstrictor response to TAs.

Pre-synaptic
Vesicle Tyrosine

NA Synthesis
Pargyline

^  » Metabolite

( N A ) « — Trace ami

Uptake 1

Cocaine
Trace amines—  ISAs

ICI-118,551
Post-synaptic

Cell
tazosin>r

Q T) Uptake 2

TAAR

VasoconstrictionVasodilatation Vasoconstriction
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Trace amines -  Effect as indirectly acting sympathomimetic amines

It is thought that TAs, including p-PEA and tyramine, stimulate adrenergic receptors 

indirectly (Black et al., 1980). Thus, TAs promote the efflux of catecholamines from 

sympathetic neurons and adrenal glands. p-PEA and tyramine are able to deplete 

neurotransmitters from their storage vesicles and therefore compete with 

neurotransmitters for uptake (Black et al., 1980). Furthermore, these TAs stimulate 

outward neurotransmitter flux through plasma membrane carriers in a manner similar 

to amphetamines (Seiden et al., 1993; Amara and Sonders, 1998). A wide range of 

psychopharmaceuticals alter “indirect” neural function by targeting specific steps 

either in the metabolism, transport, or receptor binding of biogenic amines (Nester et 

al., 2001). For example, various antidepressant drugs cause an increase in the 

concentration of these amines in the extracellular space by inhibiting plasma 

membrane transporters for serotonin or noradrenaline. Furthermore, inhibiting the 

enzymatic metabolism of biogenic amines by monoamine oxidase with 

antidepressant drugs may cause similar effects (Kim and von Zastrow, 2001).

Indirectly acting sympathomimetic amines (ISAs) cause widespread vasoconstriction 

and elevate blood pressure predominately by releasing noradrenaline from 

sympathetic neurones (Woodman, 1987). However, amphetamine may behave 

differently from other ISAs, as for example there is no cross-tachyphylaxis (Day, 

1967) between amphetamine and tyramine (Broadley, 1996). Thus, one component 

of the vasoconstriction and hypertensive effects of ISAs, including p-PEA, tyramine, 

octopamine, amphetamine, MDMA and cathinone is likely to be due to noradrenaline 

release onto a-adrenoceptors via cocaine-sensitive uptake pathways. However, 

referring to previous studies (Baker et al., 2007) TAs including p-PEA and tyramine, 

amphetamine and other psychostimulant drugs, such as MDMA and cathinone might 

also act as direct agonists on TAARs and therefore cause vasoconstriction in 

coronary and peripheral blood vessels (Figure 8.1) .
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Trace amines -  effect on TAARs

MDMA and cathinone are recreational psychotropic agents for which cardiovascular 

actions may pose serious health problems for individuals using them on a regular 

basis or who abuse them. The use of MDMA has increased over the past decade 

(Ramsay et al., 2001; Landry, 2002) and the chewing of the cathinone-containing 

leaf, khat, has spread from East Africa to the UK (Brenneisen et al., 1986; 

Brenneisen et al., 1990; Al-Motarreb et al., 2002b). Until recently, there has been no 

information on the coronary vascular actions of MDMA and cathinone, but studies 

have now demonstrated coronary and peripheral vasoconstrictor effects in guinea-pig 

hearts and aorta and pig coronary vessels (Al-Motarreb et al., 2000; Al-Motarreb et 

al., 2002b; Baker and Broadley, 2003). These contractile responses are not mediated 

via any known receptor. In view of the literature on putative receptors for TAs and 

the structural similarity between tyramine, p-PEA, MDMA, cathinone and 

amphetamine, these TAARs may be their site of action.

In the present work, different TAs produced varying contractile responses in isolated 

aortic tissues in the presence of “inhibitors” (Chapter 5, Table 8.1). In rat aortic 

tissues p-PEA produced much larger responses than tyramine while the responses to 

D-amphetamine and octopamine were intermediate (Table 8.1). In guinea-pig aorta 

the contractile responses in general seemed to be stronger to TAs compared to rat 

aorta. p-PEA produced the largest response followed by tyramine and D- 

amphetamine. Octopamine produced the lowest contractile response (Table 8.1). 

These findings suggest that in isolated aortic tissues there may be more than one 

TAAR present and that the distribution of different TAARs in rat and guinea-pig 

aorta differs. Alternatively there may be one receptor for which various TAs have 

different affinities and efficacies and the efficacy of tyramine in the rat is particularly 

weak (Tables 8.1 and 8.2). These findings suggest species variations in the 

distribution o f receptors or efficacy (Chapter 5). Furthermore, in rat aortic tissues the 

activity and potency orders for D-amphetamine and octopamine were not analogous 

(Tables 8.1 and 8.2). D-amphetamine is more active than octopamine (Table 8.1) but 

octopamine was more potent than D-amphetamine (Table 8.2). In guinea-pig aortic 

tissues, the activity and potency orders for D-amphetamine and p-PEA were also not 

analogous. D-amphetamine was the most potent and P-PEA the least potent agonist
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but p-PEA was the most active agonist In addition, tyramine was significantly more 

active in guinea-pig compared to the rat tissue but not significantly more potent.

Agonist Rat Aorta -  Mean maximum 
contraction (M)

GP Aorta -  Mean maximum 
contraction (M)

P-PEA 138.2±23.1 158.2±39.7
D-Amphetamine 75.8±30.3 86.3±24.3

Octopamine 73.6±35.3 55.9±10.7
Tyramine 0.7±14.0 95.1±23.6

Table 8.1: The contractile effects (mean maximum contraction (±SEM) %-KCl) of 
various TAs in rat and guinea-pig aortic tissues. In rat aorta, p-PEA produced the 
largest response and tyramine the smallest In GP aorta, p-PEA produced the largest 
response followed by tyramine and D-amphetamine. Octopamine produced the 
smallest contractile response but this was not significantly different, tyramine was 
significantly more active in GP compared to the rat tissue (P<0.01). Mean responses 
(±SEM) were compared unpaired Student’s t-test.

Agonist
Rat A orta-M ean 

vasoconstriction -log EC50 
values (M)

GP Aorta -  Mean 
vasoconstriction -log EC50 

values (M)
P-PEA 4.46±0.15 4.22±0.21

Octopamine 4.36±0.17 4.98±0.23
D-amphetamine 3.76±0.34 4.86±0.32

Tyramine 3.71±0.29 4.37±0.36

Table 8.2: The potency order (mean -log EC50 values (±SEM)) of various TAs in rat 
and guinea-pig (GP) aortic tissue. In rat aorta, p-PEA was the most potent agonist 
and tyramine the least potent. In GP aorta, D-amphetamine was the most potent 
agonist, tyramine was not significantly (P>0.05) more potent in GP aorta compared 
to the rat tissue. Mean responses (±SEM) were compared by the unpaired Student’s 
t-test.

Comparison of the effect of TAs in aortic tissue and cloned TAARI 
transfected cell lines

The information available in the literature about TAARs is predominately based on 

their discovery and functional expression in transfected cell lines. The stimulation of 

cloned rat TAARI by TAs resulted in the generation of cAMP via activation of Gets 

(Borowsky et al., 2001; Bunzow et al., 2001). The cloned rat TAARI is potently 

activated by tyramine and p-PEA and displays low affinity for tryptamine,
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octopamine and dopamine (Table 8.3) (Borowsky et al., 2001).

In contrast, the TAAR subtypes by which TAs cause vasoconstriction in aortic 

tissues cannot be determined from the present study. Although the presence of 

TAARI was identified by molecular biological techniques in rat aorta (Chapter 7), 

the possibility must be considered that other TAAR subtypes are also present in the 

aortic tissue. Furthermore, apart from the possible activation of TAARs in aortic 

tissues, it must be considered that other factors could be involved in the 

vasoconstriction as TAs also release other endogenous vasoconstrictors, such as 

angiotensin or endothelin. In TAARI-transfected cell lines, only rat TAARI was 

cloned and the cAMP level was measured. Therefore, a direct comparison between 

the studies in cloned receptor-transfected cell lines and the present work in isolated 

aortic tissue is not possible. However, the results from the previous study (Bunzow et 

al., 2001) can be used to suggest a potency order for different TAs to activate the 

novel transfected receptor system (Table 8.3).

Agonist

Cloned rat TAARI transfected cell 
lines - cAMP accumulation 

-log ECso values (M) 
(Bunzow etal., 2001)

Rat Aorta -  Mean 
vasoconstriction 

-log ECso values (M)

Tyramine 7.16 3.71±0.29
3-PEA 6.62 4.46±0.15

D-amphetamine 6.36 3.76±0.34
Octopamine 5.89 4.36±0.17

Table 8 3 : The potency order (mean -log ECso values) of various trace amines (TAs) 
in cloned TAARI transfected cell lines and in isolated rat aorta. In the TAARI 
transfected cell lines the accumulation of cAMP upon exposure to TAs was 
measured and in isolated rat aorta the contractile responses to various TAs were 
determined. In rat aorta, in the presence of “inhibitors” p-PEA was the most potent 
agonist and tyramine the least potent. In the TAARI transfected cell lines, tyramine 
was the most potent agonist while octopamine was the least potent (Bunzow et al., 
2001; Lewin, 2006).

The potency orders for TAs, including p-PEA, tyramine, D-amphetamine and 

octopamine in rat aorta and TAARI transfected cell lines are different. The (-) log 

ECso values show at least 2 log difference between cloned TAARI and rat 

vasoconstriction. Therefore, there must be a weak amplification of signal or reduced 

receptor numbers in rat (Table 8.3). In rat aorta P-PEA was the most potent agonist
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and tyramine the least potent. In TAARI transfected cell lines, tyramine was the 

most potent agonist (Bunzow et al., 2001) (Table 8.3). When comparing the potent 

order within cloned TAARI transfected cell lines and rat aorta (Table 8.3), the data 

suggest that octopamine is a less potent agonist in the TAARI transfected cell lines 

than in rat aorta. In rat aorta more than one TAAR subtype might be present, so 

octopamine could be activating several receptors. As a consequence, the potency 

order for octopamine in rat aorta is higher than in the cloned TAARI transfected cell 

lines (Table 8.3). The cloned TAARI in transfected cell lines was strongly 

stimulated by tyramine, which suggests a high sensitivity for tyramine for this 

receptor. In contrast, in rat aortic tissues, tyramine in the presence of “inhibitors” 

showed a minor contractile response (Table 8.3). This result suggests a low tyramine 

sensitivity in rat aortic tissues. Until now, no antagonists for TAs were reported and 

also the effects of tyramine or any other TAs as an antagonist of the other TAs have 

not been investigated. In the present study tyramine was identified as the first 

potential partial agonist of TAs in isolated rat aortic tissues as tyramine antagonizes 

the contractile effects of other TAs, including D-amphetamine and octopamine, at 

TAARs (Chapter 6).

Amphetamine and its derivatives

Amphetamine and its derivatives were found to be potent agonists of cloned TAARI 

in transfected cell lines. The amphetamine-derivative MDMA was only slightly less 

potent than amphetamine (Bunzow et al., 2001; Zucchi et a l, 2006). In TAARI 

transfected cell lines (-) 4-OH-amphetamine was tested and found to be the most 

potent TAARI agonist (Table 8.4) (Bunzow et al., 2001).

In the present study the contractile response to both stereoisomers of 4-OH- 

amphetamine were tested but EC50 values were not obtained for (-) or (+) 4-OH 

amphetamine as both stereoisomers were only used in a single dose due to very 

limited supply (Table 8.4). Compared to the studies in receptor-transfected cell lines 

in the present study a different potency order was seen with MDMA being more 

potent than D-amphetamine (Table 8.4). As the contractile responses to (+) and (-) 4- 

OH-amphetamine (300pM) were not significantly different (P>0.05) from the same 

dose of D-amphetamine (300pM) (Figure 5.20) this suggests an equivalent potency 

for both stereoisomers of 4-OH-amphetamine and D-amphetamine (Table 8.4).
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Agonist

Cloned rat TAAR1 transfected 
cell lines - cAMP accumulation 

-log EC50 values (M) 
(Bunzow et al., 2001)

Rat A orta - Mean 
vasoconstriction -log EC50 

values (M)

4-OH-amphetamine 7.29 -3.8
3-PEA 6.61 4.46±0.15

D-amphetamine 6.36 3.76±0.34
(±)-MDMA 5.77 4.34±0.08

Table 8.4: The potency order (mean -log EC50 values) of amphetamine and its 
derivatives including (-) 4-OH-amphetamine and MDMA, compared to P-PEA in 
cloned rat TAARI-transfected cell lines (Bunzow et al, 2001) and in isolated rat 
aorta. In TAARI-transfected cell lines the accumulation of cAMP upon exposure to 
TAs was measured and in rat aorta the contractile responses to various TAs were 
calculated. In TAARI-transfected cell lines (-) 4-OH-amphetamine was the most 
potent amphetamine derivative agonist and (±) MDMA was the least potent 
(Bunzow et a l , 2001). In rat aorta amphetamine and MDMA were not significantly 
(P>0.05) less potent compared to p-PEA. Mean responses (+SEM) were compared 
by Analysis of ANOVA followed by the “post hoc” Dunnett test. EC50 values for (+) 
and (-) 4-OH-amphetamine were not obtained as a single dose experiment was 
performed to investigate the vasoconstriction in the tissue. However, as the 
contractile responses of both stereoisomers of 4-OH-amphetamine were not 
significantly different (P>0.05) from the contractile response of D-amphetamine an 
equivalent potency is suggested.

Agonist Rat Aorta - Vasoconstriction (%-KCI) for 300pM
3-PEA 138.3±23.1
MDMA 54.2±15.8

D-amphetamine 45.8±20.8
(-) Methamphetamine 33.3±145.3

(+) 4-OH-amphetamine 22.2±6.4

Table 8.5: Comparison of the contractile effects (mean maximum contraction 
(±SEM)) of amphetamine and its derivatives, including MDMA, (-) 
methamphetamine and (+) 4-OH-amphetamine at 300pM compared to p-PEA. (+) 4- 
OH-amphetamine (300pM) was not significantly (P<0.05) less active as a 
vasoconstrictor than the other amphetamine-derivatives. Mean responses (±SEM) 
were compared by Analysis of ANOVA followed by the “post hoc” Bonferroni test.
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The effect of vasoconstriction in aortic tissue of two further amphetamine- 

derivatives, cathinone and Ritalin®, were studied alongside the (+) and (-) 

stereoisomers of methamphetamine (Chapter 5). Ritalin® is the most common drug 

for the treatment of ADHD (Wilson et a l, 1984; Greenhill et al., 2002). However, 

among the side-effects of Ritalin® are its cardiovascular effects, such as increased 

heart rate and blood pressure. These side-effects become more serious because of 

unintentional overdoses, medication errors and overdose caused by abuse or suicide 

(Ballard et al., 1976; Brown et a l, 1984). Cathinone, which is the major active 

compound of khat leaves (Brenneisen and Geisshusler, 1985; Kalix and Braenden, 

1985), has been found to cause cardiovascular effects such as increasing heart rate 

and blood pressure (Gugelmann et al., 1985; Kalix and Braenden, 1985). It was also 

reported that cathinone causes vasoconstriction in isolated guinea-pig aortic tissues 

and coronary artery (Al-Motarreb et a l, 2000; Al-Motarreb and Broadley, 2003; Al- 

Motarreb, 2004).

The binding affinities of Ritalin®and cathinone in cloned TAAR1 transfected cell 

lines were not investigated by Borowsky et al., (2001) and Bunzow et al., (2001). In 

isolated aortic tissues, both amphetamine-derivatives caused vasoconstriction in the 

presence of “inhibitors”. Therefore, the contractile responses in aortic tissues are 

likely to be based on activation of TAARs (Figure 8.1). Methamphetamine is the 

most widely used illegal drug in the world according to the United Nations (Anglin 

et al., 2000; Iversen, 2006). Given the structural similarity of amphetamine to TAs, 

this amphetamine analogue was tested and found to be a potent agonist for TAAR1 

in transfected cell lines (Zucchi et al., 2006; Reese et al., 2007). In isolated aortic 

tissues, both the (+) and (-) enantiomers of methamphetamine were tested in the 

presence of “inhibitors”. The contractile responses to (-)-methamphetamine was 

comparable with the contractile response to D-amphetamine. Therefore, the 

contractile response to (-)-methamphetamine in aortic tissues is likely to be based on 

activation of TAARs (Figure 8.1).

In summary, compared to P-PEA in the presence of “inhibitors”, amphetamine, (-)- 

methamphetamine, MDMA, cathinone and Ritalin® showed a weak contractile 

response in isolated aortic tissues (Table 8.6). Ritalin® produced the lowest response 

followed by cathinone and MDMA. Furthermore, the synthetic amphetamine, (-)-
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methamphetamine and D-amphetamine were the most active vasoconstrictors of the 

group of amphetamine-derivatives (Table 8.6). The varying contractile responses in 

rat aortic tissues to amphetamine-derivatives confirm my earlier theory that aortic 

tissues may either contain more then one TAAR or more than one receptor for which 

various TAs have different affinities.

Agonist Rat Aorta -  Mean Maximum Contraction (M)
P-PEA 138.2±23.1

(-)-Methamphetamine 83.3±16.6
D-amphetamine 75.8±30.3

(±) MDMA 54.2±15.8
Cathinone 45.2±12.9

Ritalin® 35.0±61.2

Table 7.6: The contractile effects (mean maximum contraction (+SEM)) of 
amphetamine and its derivatives compared to p-PEA and in isolated rat aorta. 
Amphetamine and its derivatives were all less active compared to P-PEA. Ritalin® is 
the least active vasoconstrictor followed by cathinone and MDMA. (-)- 
Methamphetamine and D-amphetamine are the most active vasoconstrictors of the 
group of amphetamine-derivatives compared to p-PEA.

Trace amines - signal transduction mechanism

In TAAR1 transfected cell lines, the most commonly recognized signal transduction 

pathway for TAARs is to stimulate the formation of cAMP (Chapter 1). TAAR1 

stimulates adenylate cyclase through the a  subunit and mediates an increase in 

cAMP (Borowsky et al., 2001; Bunzow et al., 2001; Lewin, 2006). In the present 

study, the responses to TAs in isolated rat aorta do neither support the definition of 

TAAR1 and TAAR4 (Borowsky et al., 2001; Bunzow et al., 2001) or the signal 

transduction pathway via activation of Gas. The Gs protein coupled pathway in 

vascular smooth muscle stimulates adenylyl cyclase which catalyzes the formation of 

cAMP. However, an increase in cAMP in vascular smooth muscle causes relaxation 

as the myosin light chain kinase (MLCK) is inhibited by cAMP and therefore causes 

relaxation (Chapter 1)

TAs caused vasoconstriction in aortic tissues with different activities, especially 

tyramine which acted as a very weak vasoconstrictor. The contractile response of rat
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and guinea-pig aorta is not consistent with an increase in cAMP. Contractile 

responses are usually associated with activation of G aq to stimulate phospholipase 

Cp and therefore cause an increase in IP3 and DAG (Chapter 1). Thus, the coupling 

of the TAAR in rat aorta differs from the cloned receptor.

Trace amines -  cardiovascular effects

Hyperactivity disorder, malignant hyperthermia and migraine headache have been 

suggested to be caused by a dysfunction of TAs (Premont et al., 2001; Branchek and 

Blackburn, 2003; Lindemann et al., 2005). Furthermore, among the side-effects of 

amphetamine and its derivatives, including methamphetamine, MDMA, cathinone 

and Ritalin® are their cardiovascular effects, such as tachycardia, hypertension and 

cardiovascular mortality (Chapters 1 and 5 /These effects become more serious 

because of unintentional overdoses, medication errors and overdose caused by abuse 

or suicide (Cleary et al., 2002; Klein-Schwartz, 2002).

The present study has demonstrated that TAs such as p-PEA, tyramine, octopamine, 

amphetamine and its derivatives, including cathinone, MDMA methamphetamine 

and Ritalin® have direct vasoconstrictor properties in a major conduction vessel, the 

aorta. Although the mechanism of vasoconstriction cannot be definitively determined 

from this study, activation of TAARs in rat aortic tissues are likely to be an 

explanation for the effect. Historically, the cardiovascular actions of TAs have been 

attributed to an indirectly-acting sympathomimetic effect. Therefore, the results in 

the present study are highly relevant regarding the cardiovascular effects of TAs. The 

vasoconstrictor effect of TAs in aortic tissues might explain their cardiovascular 

effects, including hypertension and tachycardia. Furthermore, the direct contractile 

responses of amphetamine-derivatives, cathinone and MDMA could explain the 

increased incidence of myocardial infarction in khat chewers (Al-Motarreb et a l, 

2002a; Al-Motarreb et a l, 2005) and the occurrence of cardiovascular collapse and 

sudden death associated with ecstasy use (Dowling et a l, 1987; Bedford Russell et 

a l, 1992; Milroy et a l, 1996). In the present study Ritalin® produced weaker 

vasoconstriction in aortic tissues compared to other TAs. However recent reports 

linking cardiac arrest, tachycardia and cardiac arrhythmia with Ritalin® use might be 

explained due to the vasoconstrictor properties of Ritalin® in aortic tissues (Lucas et 

a l, 1986; Gracious, 1999; Scientist, 2006).
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8.2 Future Work

The mechanism by which trace amines (TAs) cause vasoconstriction in aortic tissue 

cannot be fully established from the present study. However, it is likely that TAs 

cause direct vasoconstriction due to activation of TAARs were excluded. Therefore, 

to determine if the functional responses are via TAARs in blood vessels, further 

studies are needed to evaluate the presence of additional members of the TAAR 

family in different blood vessels in the rat.

In the present study, tyramine was found to be the first partial agonist of TAs in 

isolated rat aortic tissues. Tyramine antagonizes the contractile effects of TAs, 

including p-PEA, D-amphetamine and octopamine, probably at TAARs. It is likely 

that TAs with a weak contractile response act as partial agonists of the other TAs. 

Therefore, further studies could focus on the investigation of other partial agonists, 

as antagonists of the contractile effects of TAs.

In the present study, the presence of TAAR1 in rat aortic tissues was detected. 

Therefore it is of interest in further studies to detect possible further TAARs in aorta 

and also other blood vessels.

In the present study, the responses in isolated rat aorta do not support the definitions 

of the cloned TAAR1 and TAAR4 (Bunzow et al., 2001) because tyramine is a very 

weak vasoconstrictor in the tissue. Therefore, it is of interest to investigate in further 

studies, the signal transduction mechanism of TAs that causes vasoconstriction in 

isolated aortic tissues. Furthermore, it is of interest why various TAs cause different 

amounts of vasoconstriction in aortic tissues.

The P-PEA skeleton is an essential molecular feature that all TAAR1 agonists share 

and is present in the decarboxylated skeleton of thyroid hormone molecular 

derivatives known as thyronamines (Scanlan et al., 2004; Hart et al., 2006). Given 

the structural similarity between iodothyronamines and other biogenic amines, it 

follows that iodothyronamines could be agonists of TAARs (Scanlan et al., 2004). In 

this study nine different thyronamines were synthesized and evaluated in transfected 

HEK cells stably expressing either the rat or mouse TAAR1. It was found that 

thyronamine derivatives, including 3-iodothyronamine, thyroxine and
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triiodothyronine, induced a concentration-dependent increase in cAMP levels 

(Scanlan et al., 2004; Hart et al., 2006). Therefore, it would be of interest to evaluate 

the role of iodothyronamines in the control of vascular tone in different blood 
vessels.

In vitro studies have shown that hypertension, hyperactivity disorder, coronary heart 

disease and migraine headache could be caused by a dysfunction of TAs including p- 

PEA and tyramine. Therefore, it is of interest to compare my findings with the 

effects of TAs in in vivo studies in the rat.

8.3 General Conclusion

TAs, including p-PEA, tyramine, octopamine, amphetamine and its derivatives, 

cause vasoconstriction in rat aorta. The contractile responses to TAs in isolated aortic 

tissues are not mediated by a- and P-adrenoceptors, or ISA stimulation. Therefore, 

the contractile responses to TAs are probably based on activation of TAARs.

In the present work in rat aortic tissue, TAAR1 was successfully identified via 

Western blotting and polymerase chain reaction (PCR). However, it might be 

possible that more than one receptor for which TAs have different affinities are 

present in rat aortic tissues. In the present study the functional responses were 

different to the cloned TAAR1 in transfected cell lines. Tyramine produced weak 

vasoconstriction in rat aortic tissues and acted as a partial agonist of the other TAs. 

Therefore, the responses in aortic tissues do not support the definitions of TAAR1 

and TAAR4. The signal transduction mechanism for cloned TAAR1 in transfected 

cell lines is likely to be different to the one coupled to functional receptors in isolated 

aortic tissues. The vasoconstriction in rat aortic tissues cannot be caused via 

activation of G as. It is possible that the contractile responses to TAs are due to 

activation of G aq.

My investigations on different TAs and structurally related derivatives in rat and 

guinea-pig aortic tissues have expanded the knowledge of the vasoconstrictor effects 

of TAs in isolated tissues. Increasing knowledge about the underlying mechanisms 

and receptors for the functional responses to TAs in the vasculature will provide 

insights into their roles in the cardiovascular system in health and disease.
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Solutions for Western Blotting

Sample Buffer

R eagents Sam ple Buffer (1X) Sam ple Buffer (3X)
T ris b a s e 0.063M 0.19M

SD S 4%  (w/v) 12%  (w/v)
G lycero l 10%  (v/v) 30%  (v/v)

3 -M e rcap to e th an o l 5%  (v/v) 15%  (v/v)
B ro m o p h e n o l b lu e 0 .33m g/m l 1 m g/m l

D istilled  W ate r m ak e  u p  to  v o lu m e m a k e  u p  to  v o lu m e

Tank Buffer

R eagents 1X Tank Buffer 10X Tank Buffer
T ris B a s e 2.5m M 25mM
G ly cerin e 19mM 190mM

SD S 0.005% 0.05%
D istilled  W a te r  (pH 8.3) m ak e  u p  to  v o lu m e m ak e  up  to  v o lu m e

Semi-dry Blotting Buffer

R eagents Semi-dry Blotting Buffer
T ris  B a s e 42.9m M
G ly c e rin e 38.9m M

S D S 0.028%
M eth an o l (MeOH) 20%  (v/v)

D istilled  W ate r m ak e  u p  to  v o lu m e

Methanol is important to avoid gel swelling and to keep proteins adsorbed to the 
membrane.
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Tris-buffered saline (TBS)

R eagents 1X TBS (pH 7.5) 10X TBS (pH 7.5)
T ris  B a s e 20mM 200m M

NaCI 0.15M 15M
D istilled  W ate r m a k e  u p  to  v o lu m e m ak e  u p  to  v o lu m e

Tris-buffered saline Tween-20 (TBST)

R eagents 1X TBST (pH 7.4)
T ris B a se 20mM

NaCI 0.15M
D istilled  W ate r m ak e  u p  to  v o lu m e

T w een-20 0.1%  (v/v)

Blotto (5%)

R eagents Blotto (5%)
TBS 1X

N on-fa t d rie d  milk 5%
T w een-20 0.1%

D istilled  w a te r m ak e  u p  to  v o lu m e

Western Blotting-Polyacrylamide Gels

R eagents C oncentrations

A cry lam id e 30%  ac ry lam id e  m o n o m e r / 0.8%  
b isac ry la m id e

T ris 3M Tris-HCI (pH to  8.8)
SD S 10%  (w/v) SD S

SD S /T ris 0.4%  (w/v) SDS/0.5M  Tris-HCI (pH to  6.8)
A PS 10%  (w/v) A PS
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Separating Gel (10%) and Stacking Gel (5%)

R eagen ts Separating Gel (10%) Stacking Gel (5%)
A cry lam id e 10% 5%

Tris-H CI 2.5m M n/a
SD S 0.1% n/a

Tris-H C I/ SD S n /a 125uM /0.1%
A PS 0.005% 0.005%

TEMED 0.05% 0.08%

Solution for PCR

Tris Acetate EDTA (TAE) -  Buffer

R eagents S tock  Solution (50X)
T ris  b a s e 2M

G lacia l A c e tic  A cid 5.7%
EDTA (0.5M , pH to  8.0) 0.05M

D E P C -trea ted  w a te r m ak e  u p  to  v o lu m e

R eagents Working Solution (1X)
T ris -a c e ta te 0.04M

G lacia l A c e tic  A cid 0.114%
EDTA 0.001 M

DEPC-treated water

R eagents C oncentrations
D EPC 0.1%

D istilled  w a te r m ak e  u p  to  v o lu m e

Leave lid on loosely and stir for at least 30 minutes until DEPC has dissolved. 

Decant into 500ml glass bottles, shake to treat the lid and autoclave for 90 minutes to 

ensure smell has gone (wear protective clothing as DEPC is a carcinogen).
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Tris EDTA (TE)-Buffer

R eagents C oncentrations
Tris-HCI (pH to  7.5) 10mM

EDTA 1mM
D E P C -trea ted  w a te r m a k e  u p  to  v o lu m e  (pH to  8.0)

dNTPs

C oncentrations
S to c k  so lu tio n 40mM

4mM (1:10 D ilution)
W ork ing  so lu tio n 1mM (1:4 D ilution)

PCR Agarose Gel

R eagents C oncentrations
A g a ro s e 2%

T A E -B uffer m ak e  up  to  v o lu m e
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