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Abstract

Vanadium phosphate catalysts prepared by the reduction o f VOPO4 .2 H2O with 1- 

butanol are described and discussed. In particular, the effect o f the addition o f an 

alkane during the reflux stage o f  the preparation has been investigated. The materials 

were characterised using a combination o f powder XRD, BET surface area 

measurement, laser Raman spectroscopy, scanning electron microscopy and 

transmission electron microscopy. The addition o f  C6 -  Ci6 «-alkanes was studied and 

has been observed to significantly affect both the morphology and the structure o f the 

vanadium phosphates. In the absence o f an alkane VOPO4 .2 H2O is reduced to 

VOHPO4 .O.5 H2O with rosette morphology. Addition o f  low amounts o f  alkanes leads 

to a change in the crystallite morphology and platelet crystallites are preferentially 

formed. Decreasing the alcohol concentration further leads to the formation o f  

VO(H2P 0 4)2, with its characteristic block-shaped crystallites. The amount o f  alkane 

required to induce these changes decreased with increasing carbon number o f  the n- 

alkane. Furthermore, the different concentration o f  the alcohol results in a different 

reduction rate o f V5+ to V4+ which changes the V: P ratio o f  the prepared materials. 

Therefore, different materials were obtained with respect to V: P ratio. Evaluation o f  

the materials as catalysts for the oxidation o f butane to maleic anhydride shows that 

the materials exhibit their characteristic activities and selectivities for this reaction.

A new synthesis route has been developed to prepare (VO)2P2 0 7  directly from 

VOPO4 .2 H2O using a reducing environment., Hydrogen (5% H2/Argon 50 ml // min) 

was used for this transformation for 72 hours at temperature 550°C. The specific 

activity o f these materials is higher than the conventional catalysts due to the low  

surface area.



Chapter 1

i

1.1 Introduction

Bergmann and Frish1 disclosed in 1966 that selective oxidation o f «-butane was catalysed by 

the VPO catalysts, and since 1974 «-butane has been increasingly used instead o f  benzene as 

the raw material for maleic anhydride production due to lower cost and high abundance in 

many places and low environmental effect (Scheme 1.1).

+ 7/2 0 2 -► / \ + 4 H20

Scheme 1.1 The selective oxidation o f  /?-butane to maleic anhydride

It is currently the only commercial catalytic oxidation process which uses an alkane as 

feedstock. The usage for maleic anhydride comes mainly from the manufacture o f unsaturated 

polyester resins, agricultural chemicals, food additives, lubricating oil additives and 

pharmaceutical . Production details and principal uses are presented in Table 1.1
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-j
Table 1.1 Annual production and principal uses o f  maleic anhydride

Location
Production / ktonne 

yr
Type o f  product %

America 315
Unsaturated

polyesters
63

Europe 1 0 0 Oil additives 1 2

Pacific 96 other 2 1

Total 500

Different vanadium phosphate materials have been identified during the last four decades 

whose crystal structure and catalytic properties have been well published by many scientists. 

Some o f the well known phases are the V5+ vanadyl orthophosphates (a-, p-, y-, 5-, and co- 

VOPO4 and VOPO4 .2 H2O), and the V+4 vanadyl hydrogen phosphates [VOHPO4 .4 H2O, 

VOHPO4 .O.5 H2O, V 0(H 2P 0 4)2)] ,vanadyl pyrophosphate (VO)2P207 and vanadyl

metaphosphate V0 (P0 3 )2.

The main phase in the bulk o f active and selective catalysts is (V0)2P207, which is prepared by 

in situ activation o f the precursor VOHPO4 .O.5 H2O. The catalyst is mostly used as an 

unsupported vanadium phosphorus oxide with a platelet type particle shape with small amount 

ofV *5 phases such as OC1-VOPO4 and (Xu-VOPC^,4,5 which can be used in a variety o f fixed and
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mobile bed reactors. The reaction network involves the formation o f butene, 1,3-butadiene and 

furan as intermediates. The active site for n- butane oxidation to maleic anhydride has been

f\ 8
proposed as being the (200) plane o f vanadyl pyrophosphate ‘ and the yield o f maleic

o

anhydride improves when the active site o f the (200) plane o f (VO^PiCb is maximized.

For these reasons, the preparation o f highly selective catalysts has been the focus o f most VPO 

studies. Many properties o f the final catalyst, such as crystalline behaviour and particle size, 

are established when precursor forms.9 Hence, the preparation methods and reaction conditions 

during the preparation affect the morphology o f VOHPO4 .O.5 H2O and ultimately the catalyst 

performance.10 Therefore, careful preparation o f the precursor VOHPO4 .O.5 H2O is the key to 

obtaining an effective catalyst.11

1.2 Proposed Active Sites and Mechanisms of n-Butane Oxidation

To date, many researchers have developed different models for /2-butane oxidation on the VPO 

catalyst, which are based on the hypothetical sites present on the surface (200) plane12. 

Bronsted acid sites (-POH group), Lewis acid sites (VIY and Vv), bridging oxygen (V-O-V, V- 

O-P or VO(P)V) and terminal oxygen (Vv= 0 , VIY= 0) are proposed active sites on the surface 

(200) plane.

13Pepera et al. reported that every two surface vanadium atoms are capable o f activating one 

molecule o f oxygen, while the bulk o f the catalyst did not participate in /2-butane oxidation.
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^-Butane does not reversibly chemisorb onto the surface while maleic anhydride does. 

Although Pepera et a l  did not report the mechanism o f oxidation, but they proposed that VIY 

on the surface o f (VO)2P2 0 7  may assist homolytic cleavage o f the methylene C-H bond o f n- 

butane. It is shown in Eq. 1.1

V lv + 2RH ------------ ► 2R + VnI + 2H20  Eq. 1.1

Centi et al. have calculated the rate constant for the theoretical dehydrogenation o f light 

alkanes on a (VO)2P2C>7 catalyst with removal o f two hydrogen atoms. They showed that the 

rate-determining step is the contemporaneous removal o f two methylene hydrogen atoms from 

the carbon in the 2- and 3- positions in «-butane.

Centi et al.6 also proposed that the Lewis acid site and the bridging oxygen abstract two 

hydrogen atoms from the two methylene groups o f  «-butane via a concerted mechanism shown 

in Scheme 1.2
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Scheme 1.2 Mechanism of 77-butane activation on (VO)2 P2 0 7  proposed by Centi et a l 6

Although Centi et a l 6 did not provide a complete mechanism o f 77-butane oxidation to maleic 

anhydride, they indicated that the Bronsted acid sites may be involved in the initial activation 

o f 77-butane. P-OH group involved for different functions such as to facilitate the removal of  

water formed during the partial oxidation, to stabilize the reaction intermediates, avoiding the 

desorption o f these intermediates and to facilitate the desorption o f maleic anhydride and 

preventing its over oxidation.

Bordes et al ,14 suggested that the active sites in 77-butane oxidation to maleic anhydride are 

associated with coherent interfaces between slabs o f the (100) planes o f various VOPO4 phases 

and the (200) planes o f (V 0 )2 P2 0 7  along the (001) and (201) planes, respectively. However, 

the best (VO)2 P2 C>7 catalysts display the lack o f other impurity VOPO4 phases. Finally, Bordes 

explained the mechanism o f 77-butane to maleic anhydride based on the catalytic behavior o f
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non-equilibrated or over-oxidised VPO catalyst that contains different microcrystalline VOPO4 

phases.

Volta and co-workers,15 on the contrary, believed that the active sites are not associated with 

interfaces between these crystalline phases. On the basis o f comparison between XRD and 

radical electron distribution data they suggested that the active phase for selective oxidation of 

«-butane consists o f a mixture o f well- crystallized (VO)2P2 0 7  and an amorphous VOPO4 

phase. This amorphous phase was identified as a precursor o f P-VOPO4, which formed at 

higher reaction temperatures. After four years, Volta et a l.15 suggested on the basis o f kinetic 

data as well as XRD and 31P MAS NMR results that domains o f y- VOPO4 supported on a 

(VO^P2O7 mixture are necessary for selective «-butane oxidation. It is a better mechanism 

because it was based on the experimental data when compared with other theoretical 

mechanisms. Hutchings et al.16 and Volta and co-workers.17 suggested that the actives sites for 

«-butane oxidation to maleic anhydride comprise a V+4AA+5 couple, well dispersed on the 

surface o f a range o f VPO phases.

IQ
Schiott and Jorgennson applied the frontier orbital theory with Huckel calculation to explain 

the formation o f  2,5-dihydrofuran from the butadiene intermediates and its vanadyl dimer 

present in the (200) plane o f (VO)2P2 0 7 . Their calculations showed that V4+ = O is involved in 

the (2 + 4) like cyclo addition o f butadiene, which then rearranges to 2, 5- dihydrofuran. 

Molecular oxygen absorbed on the adjacent vanadium atom in the dimmer then activates the C- 

H bond in the 2-position o f 2,5-dihydrofuran, leading to a hydrogen atom transfer to the 

peroxospecies to give a surface-bound hydroperoxide group. The O- H group in O- O -  H then
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transfers to the neighboring 2,5-dihydrofuran derivative yielding the 2- hydroxyl derivative. 

The asymmetric lactone (y-butyrolactone) may be obtained by the hydrogen atom transfer to 

the adjacent radical oxovanadium site. The oxidation o f the 5- position o f y-butyrolactone to 

maleic anhydride may take place in a similar fashion following the desorption o f water and 

activation o f another molecule o f oxygen on the adjacent reduced vanadium site. There is no 

experimental evidence for this mechanism.

Guliants et al.19 showed that the cis-dimeric site shown in Scheme 1.3, rather than the trans- 

oxovanadium (IV) dimer, may be involved in the C-H bond cleavage in n-butane and other C4 

molecules to maleic anhydride based on such dimeric peroxo site and Viv-Vv redox couple. 

Some o f the important observations made during oxidation o f the probe molecules and 

proposed mechanism were explained based on the dimeric site. Further, the oxidation of a 

branched C4 alkane, isobutane, was carried out to probe the mechanism o f the C-H bond 

activation o f alkanes on the VPO catalysts. Maleic anhydride was among the products o f 

oxidation o f this branched alkane. In the case o f isobutane, the surface- bound peroxo radical 

would show discrimination in activating first the weaker tertiary C-H bond. The hydroxylation 

of the /-butyl radical would lead to /-butanol, it was an unselective path for maleic anhydride. 

On the other hand, he explained the selective path for maleic anhydride which involved the 

abstraction o f the two hydrogen atoms in positions 1 and 3. Activation o f the two methyl C-H 

bond may occur resulting in the formation o f 1,3-diradical. Simple radical undergo skeletal 

rearrangement, leading to linear 1,2-diradical and butene. Finally formation o f maleic 

anhydride during isobutane oxidation on the VPO catalyst suggests that such skeletal 

rearrangement does occur. On the other hand, it also indicates that the activation o f w-butane on



the VPO catalysts may proceed via contemporaneous homolytic C-H bond cleavage and 

formation o f a radical intermediate.

'O* ^o*
O' o '

V r  > / IV 2 -O O-
. o r

O O o  {J

Reduced V "  -  V lv Site Oxidised Vv -  Vv Site

Scheme 1.3 Proposed cis-peroxo oxovanadium (V) dimeric active for w-butane oxidation to 

maleic anhydride on the surface (200) plane o f  (VO)2P2 0 7  19

Shimizu et al. investigated the mechanism of «-butane to maleic anhydride using density 

functional theory (DFT) method. They assumed that the monomeric complex is a fundamental 

structure and its two vanadium units were selected as two layer models o f the catalyst. For 

these studies, the oxidation states o f the inner vanadium atom and the influence o f the presence 

or absence o f lattice oxygen were analysed for this complex. The introduction o f a phosphoric 

moiety on one o f the hydroxy groups strongly stabilizes the lower oxidation states o f the 

complexes. This result suggests that the surface vanadium species having the higher 5+ 

oxidation state should possess stronger oxidation ability. The presence o f the vanadium (4+) 

atom at the lower layer relatively destabilizes the V3+ state o f the upper vanadium complexes,
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and stabilizes the peroxo-vanadium (4+) complexes, which suggests that the lattice oxo-oxygen 

in vanadyl pyrophosphate may be involved in the activation o f molecular oxygen. There is no 

experimental data used for analyzing this mechanism.

1.3 Influence of P: V ratio on catalyst performance

The commercial catalysts are prepared with a slight excess o f phosphorus, typically with P: V 

close to 1.1:l .8 Many studies reported that part o f the phosphorus sublimes during normal

operation and there are several reports that describe methods o f replenishing the catalyst with

21
phosphorus without significantly interfering with plant operation. It is clear from a large 

number o f studies that phosphorus in excess o f the 1:1 stoichiometric ratio is important for the

production o f selective VPO catalysts prepared in aqueous media. Selectivity to maleic

22
anhydride improves as the P:V ratio increases for catalysts prepared in aqueous media, and 

this has been related to the role o f excess phosphorous in these catalysts in stabilizing the 4+ 

oxidation state o f vanadium.

There is no clear evidence in the literature that catalysts prepared in organic media require a 

P:V ratio greatly in excess o f the stoichiometric for optimum performance. Centi et a l 6 

reported that yield-conversion plots for a number o f VPO catalysts with different P:V ratios 

prepared in organic media. Clearly catalysts with P:V ratios less than 1:1 do not perform well, 

especially at high conversions, but neither is optimum performance achieved with catalysts 

with P: V ratios in excess o f 1:1.
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1.4 Preparation of vanadium phosphorus oxide (VPO) catalyst precursors

VOHPO4 .O.5 H2O is the most important catalyst precursor for «-butane oxidation to maleic 

anhydride because thermal treatment o f this VOHPO4 .O.5 H2O precursor transforms it into 

vanadyl pyrophosphate catalyst which is highly active and selective for «-butane oxidation. 

Therefore, preparation o f the catalyst precursor is a key factor in this research.

The structure o f the precursor and catalyst were not discovered until 1980s, and then the 

precursor was called phase A, whereas the catalyst was referred as phase B. Now, the 

structure o f both is well documented. To date, many material scientists have reported different 

preparation methods for making catalyst precursors with or without mechanism o f crystal 

growth. Commonly, three major preparation methods are used to make VOHPO4 .O.5 H2O 

precursor and these are called VP A, VPO and VPD.23,8

Acid is used as the reducing agent in VPA method. In this method, V2O5 is refluxed with HC1, 

(Eq. 1.2) and then H3PO4 is added to this mixture (Eq. 1.3). Finally, the resulting solution is

refluxed and filtered. This material has plate shaped morphology and its surface area was

2 103m /g. However, the obtained solid has more VO(H2P0 4 ) 2  impurity as compared with other 

precursors obtained from VPO and VPD. Some vanadium phosphate phases and their unit cells 

are listed in Table 1.2.

V20 5 + 6HC1 2V0C12 + 3H20  + Cl2 (Eq. 1.2)

VOCI2 + H3PO4 + 0.5H2O VOHPO4 .0.5H2O + 2HC1 (Eq. 1.3)
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Table 1.2 Vanadium phosphate phases and their unit cells14

Phase Unit cell Cell parameters/nm

V 0(P 03)2 Tetragonal a= 1.096, c= 0.425

VOHPO4.0.5H2O Orthorhombic
a= 0.742, b= 0.960, 

c= 0.569

(V 0)2P20 7 Orthorhombic
a= 0.773, b= 1.658, 

c= 0.957

V 0 P 0 4.2H20 Tetragonal a= 0.620, c= 0.741

p- v o p o 4 Orthorhombic
a= 0.777, b= 0.614, 

c= 0.697

a r  V 0 P 0 4 Tetragonal a= 0.620, c= 0.411

ciii" v o p o 4 Tetragonal a= 0.601, c= 0.443

6- V 0 P 0 4 Orthorhombic
a= 0.642, b= 0.626, 

c= 0.909

y- V 0 P 0 4 Monoclinic
a= 0.964, b= 1.533, 

c= 1.662 and p= 93.04°

V 0(H 2P 04)2 Tetragonal a= 0.895, c= 0.797
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The VPO and VPD preparation methods are carried out in organic solvent In the VPO route, 

V2O5, phosphoric acid are refluxed (Eq.1.4), with an alcohol as solvent and reducing agent. 

The recovered solid has a platelet morphology and its surface area was between 10-18 m /g. 

VOPO4 .2 H2O (Eq.1.5) is directly reduced by alcohols in VPD route (Eq.1.6). The morphology 

o f these materials is varied depending on the alcohol used to reduce VOPO4 .2 H2O. Primary 

alcohols give a rosette structure while secondary alcohols give platelet morphology. Rosette 

structure materials exhibited higher surface area than other materials, which was 32 m2/g.24 

XRD and SEM o f platelet and rosette structure materials are shown in Figure 1.1 and 1.2 

respectively.

VPO

V20 5 + R-CH2-OH + 2 H3PO4 ->  2 VOHPO4 .0.5H2O + R-CH=0 + 2H20  (Eq. 1.4)

VPD

V20 5 + 2 H3PO4 + 2H20  2 V 0 P 0 4.2H20  (Eq. 1.5)

2 V 0 P 0 4.2H20  + R-CH2-OH -> 2 VOHPO4 .0.5H2O + R -C H O  + 3H20  (Eq. 1.6)
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Fig. 1.1 X-ray diffraction patterns o f standard VOHPO4 .O.5 H2O
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Fig. 1.2 SEM o f standard VOHPO4.0.5H2O
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Griesel et a l?5 studied the VPA and VPO route using higher pressure autoclave technique. 

They found that VPA route did not give VOHPO4 .O.5 H2O whereas VPO route gave VOHPO4 

.O.5 H2O. Although, these materials exhibited lower surface area because o f V5+ phase. Finally, 

they concluded that reflux methods are better than autoclave methods.

Bartley et al.26 prepared the VOHPO4 .O.5H2O using V2O4 as a vanadium source instead of 

V2O5 and either H3PO4 or H4P2O7 as a phosphorous source in the VPO preparation method 

using autoclave method with or without water. However, that materials prepared using water as 

a solvent gave higher surface area than in the absence o f water.

Connor et a l } 1 investigated the organic route using mixture o f iso-butanol and benzyl alcohol. 

Here, V2O5 is refluxed in the alcohol for an hour before H3PO4 is added, and the mixture 

refluxed for a further hour.

Griesel et al.2S also reported that method o f preparation o f VOPO4 .2 H2O and its morphology 

are very important factors in the preparation o f VOHPO4 .O.5 H2O precursor. For these 

investigations, VOPO4 .2 H2O was prepared using different techniques such as using different 

phosphoric acids and ageing time. Finally, these materials were converted to VOHPO4 .O.5 H2O 

precursor and they found that evaluation o f these precursors for /2-butane oxidation depends on 

the morphology o f VOPO4 .2 H2O. The catalyst with rosette morphology were exhibited to have 

a considerably higher activity than the platelets because o f higher surface area and all the 

VOHPO4 .O.5 H2O catalysts are reported to have similar specific activities.
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Mahony et a l} 9 investigated the crystallization o f VOHPO4 .O.5 H2O using VPO route. For this 

study, initially, V2O5 and alcohol were refluxed then phosphoric acid was added. They found 

that VOPO4 .2 H2O was rapidly formed. After 15 minutes, d-spacing shifted from 7.5 to 6.7 A , 

by this time, (001) phase o f VOHPO4 .O.5 H2O precursor forms at 5.7 A with a maximum 

intensity at 60 minutes.

These observations lead to the first key point with respect to vanadium phosphate catalysts, 

namely that the surface area is the factor that controls the activity o f catalysts prepared using 

VOHPO4 .O.5 H2O as the precursor.

1.5 Preparation of other VPO phases for /i-butane oxidation

It is very important to understand how other phases can be synthesised or enhance their 

formation in VOHPO4 .O.5 H2O preparation.

VOPO4 phases

(X1-VOPO4, CX11-VOPO4, Y-VOPO4, 6 -VOPO4 and P-VOPO4 can be prepared by calcination of 

VOPO4 .2 H2O and VOHPO4 .O.5 H2O in air30. It has shown in scheme 1.4
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VOHPO4.0.5H2O

400 to 650°C

5-VOPO,

740 to 780°C

V 0 P 0 42H20  (NH4)2[(V 0)2C20 4(HP04)].5H20

400 to 600°C 550°C

0Ci-VOPO4 P-V0 P04

750°C 600°C

780°C
y-V 0P 04 «___________________ a n-V 0 P 0 4 (NH4)2(V 0)2P 0 4

Scheme 1.4 preparation routes for VOP04 phases in static air environment30

Bordes et al.14,31 reported that VOP04 phases can be prepared via dehydration o f V 0 P 0 4.2H20  

in air, which is shown in Eq. 1.7

400°C 720°C 750°C
V0P04.2H20 -------->  a r VOP04  >  an-VOP04  >  P-VOP04 Eq.1.7

VO(H2P 0 4) 2

V 0(H 2P 0 4)2 can be synthesized from reduction o f V 0 P 0 4.2H20  with 3-octanol.22 Bartley et 

al.32,33 also reported that VO(H2P 0 4)2 can be synthesised by the reaction o f V2Os, H3P04 with 

aldehyde or ketone.
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V 0H P0 3.1.5H20

Guliants et a l,36 showed that VOHPO3.I.5H2O can be synthesized by the reaction o f V2O5, 

alcohol (isopropyl or isobutyl) and H3PO3 using reflux stage method. Hutchings and co­

workers34 prepared the vanadyl hydrogen phosphite, VOHPO3.I.5H2O hydrate by the reaction 

of V2O5, H3PO4 and 1 -proponal in the absence o f water at 1 5 0 °C using autoclave method. 

Whereas, VOHPO3.H2O can be obtained in the presence o f water.

Different vanadium phosphate phases can be synthesized using various experimental 

techniques. Some o f these phases are active for butane oxidation.

1.6 Intercalation, exfoliation and reduction of V 0 P 0 4*2H20  with different 

solvents

Intercalation o f organic molecules is widely used for modifying the chemical and physical 

properties o f inorganic layered materials.35 The intercalation compounds o f layered vanadium 

phosphate dihydrates (VOPO4 .2 H2O) are o f tremendous interest not only as fundamental 

examples o f V-O-P nano-composites but also as intermediates for constructing novel V-P-O

‘Xfxnanostructures o f catalytic performance. Due to the weak interlayer binding in VOPO4 .2 H2O, 

these materials can act as host to different guest molecules. Further, VOPO4 .2 H2O can be 

intercalated by alcohols, aliphatic amines, acetone, pyridine, organometallic compounds, 

glycols and amides. ’
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Melanova et al. 39 reported that mixed intercalates can be prepared by reaction of 

polycrystalline vanadyl phosphate dihydrate with liquid mixtures o f the primary alcohols in a 

microwave field. They found the same mixed layer- type complexes can be obtained as 

intermediary products o f exchange reactions consisting o f substitution o f one alcohol bound in 

the solid intercalate by another alcohol introduced in the form of vapor.

Melanova et al.40 also reported that aliphatic aldehydes can not be used for the preparation of 

intercalation compounds because the guests undergo aldol condensation and oxidation so these 

intercalates are unstable. Benes et a l 41 investigated some intercalates o f vanadyl phosphate 

with branched alcohols. They found that these alcohols were directly intercalated into vanadyl 

phosphate dihydrate and formed intercalates compounds. However, in neither o f these studies 

did report any data for /7-butane oxidation.

Yamamoto et a l 42 showed that VOPO4 2 H2O can be intercalated using acrylamide then it was 

exfoliated by primary or secondary butanol and these compounds were reconstructed by 

removal o f solvent. These materials consisted o f aggregated small flakes which were 

morphologically very different from relatively large square platelets observed for both the 

starting VOPO4 2 H2O and the initial intercalation compound.

Yamamoto et a l 43 reported that thin -  layered sheets o f VOHPO4 O.5 H2O can be prepared 

from V0PC>4'2H20 by intercalation, exfoliation and reduction in alcohol. Further, Kamiya et 

al.44 reported that catalyst precursors (VOHPO4 O.5 H2O) can be prepared using exfoliation and 

reduction o f V 0 P 0 4*2H20  in primary alcohol. VOHPO4 0.5H2O prepared with different
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morphologies using exfoliation and reduction process is shown in Scheme 1 .5 . Furthermore, the 

obtained (VO)2P2C>7 through the exfoliation -  reduction was well crystallized and consisted of 

thin flaky crystallites. Finally, Okuhara and co-workers44,45 found that (VO)2P2C>7 prepared 

through the exfoliation -  reduction was highly active and selective for oxidation o f w-butane.

V 0P04 2H20

20 pm 

large platelets

delaminated
sheets

in alcohol

direct 
reduction 

' '  - .  with 2-BuOH 
' \k

4 pm 

platelets

reflux 
in 2-BuOH.

reflux
Jn 1-BuOH

fragments rose-petals

Scheme 1 . 5  VOHPO4 O.5H2O prepared using exfoliation and reduction process43

Benes et a l.46 analysed the intercalation o f VOPO42FI2O with branched alcohols. They found 

that with increasing length o f the main chain the basal spacing o f the intercalates o f the C3, C4 

and C5 isoalcohols changes linearly, increasing by one carbon atom ( 1 . 5 1  A) at a time.
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Trchova et al.47 investigated the mechanism of intercalation for vanadium phosphate materials 

using infrared and Raman spectroscopy techniques. They proposed the mechanism based on 

these measurements that the vanadyl stretching band appears to be especially sensitive to atoms 

coordinated to the vanadium within an octahedral arrangement in the host lattice structure, 

during the intercalation its position at 1035 cm'1 in the anhydrous form changes to 995 cm'1, 

typical for mono and dihydrates and they found that no formation o f vanadyl phosphate 

monohydrate was observed during hydration of the anhydrous form under ambient conditions.

Benes et a l 4s explained the possible mechanisms o f intercalation reactions for vanadium 

phosphates materials on the basis o f  intercalation reactions of water and ethanol into anhydrous 

vanadyl phosphate and redox intercalation of alkali metal cations into vanadyl phosphate 

dihydrate. They found three possible mechanisms o f intercalation for vanadium phosphate 

materials, which are based on (1) a concept of exfoliation o f layers (2) the formation o f stages 

and randomly stacked layers (3) co-existence o f intercalated parts o f crystals of the host 

separated by an advancing phase boundary. Further, it was reported that in the crystal o f the 

cost, intercalated and non-intercalated parts o f the crystal coexist. A two phase system is 

formed which is a transition area which has been designed as an advancing phase boundary.

The catalytic activity and selectivity of (V0)2P2 0 7  are greatly dependent on the microstructure 

of the crystallites, control of the microstructure is critical for improvement o f the catalytic 

performance. So, intercalation is the one of the key method for obtaining the different 

crystallites.
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1.7 Effect of promoters on n -  butane oxidation over VPO catalysts

The activity o f vanadium phosphates is often enhanced by the addition o f low concentrations 

o f metal cations known as promoters. For this reason, many industries have been using 

promoted VPO catalysts for n-butane oxidation to maleic anhydride since last two decades.49 

Bi, Co, U, Fe, Nb, Zn, Ce, La, Cu, Ti, Mo, Ca, Si, and Zr have been tried as promoters for the 

preparation o f VOHPO4 .O.5 H2O precursors.50

Zazhigalov et al.51 modified the redox properties o f the VPO catalysts by incorporating 

metallic Co in the catalyst precursors, which improved the desorption o f maleic anhydride and 

increased the selectivity to maleic anhydride.

Comaglia et al. 5 2 ,53 analysed the effect o f  Co cations on the activity and selectivity o f n-butane 

oxidation to maleic anhydride over VPO catalysts prepared impregnation o f VOHPO4 .O.5 H2O 

with cobalt acetate and acetyl acetonate. They found that Co added at 1-6 weight % 

significantly improved the catalytic activity while slightly decreasing the maleic anhydride 

selectivity. The best catalyst can be obtained using Co acetyl acetonate for impregnation o f the 

VOHPO4 .O.5 H2O precursor. This catalyst exhibited an optimum concentration of very strong 

Lewis acid sites, very low concentration o f isolated V(V) centers, and no V(V) phases.

Sajip et al.54 investigated the effect o f Co and Fe ions added during the VOHPO4 .O.5 H2O 

precursor preparation using VPO route on «-butane oxidation to maleic anhydride. At low 

levels, both Co and Fe significantly enhanced the intrinsic activity and selectivity to maleic
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anhydride. They suggested that Co was insoluble in the (VO)2P2C>7 phase, which transformed 

to a disordered V4+-V5+ phosphate phase during the activation of VOHPO4 .O.5 H2O. Whereas, 

Fe may be soluble in the (VO)2P2 0 7  structure and, therefore, function as an electronic promoter 

for this phase.

Shen et al.55 investigated Ce-Fe promoted VPO catalysts for zz-butane oxidation to maleic 

anhydride in the absence o f gas-phase oxygen. They found that promoted catalysts exhibited 

higher conversion and selectivity to maleic anhydride than the conventional catalyst. Finally, 

they defined that the introduction o f Ce-Fe complex oxides improved the redox performance of 

VPO catalysts by increasing the lattice oxygen activity.

Hutchings and co-workers56 analysed the zz-butane oxidation to maleic anhydride over 

vanadium phosphate catalysts using group 13 elements as promoters. For this investigation, 

two different types o f VOHPO4 .O.5 H2O were used, one is platelet morphology, and other one 

is rosette structure. They also showed that these promoters can be switched from platelet-like 

to rosette morphology. Although, all o f these promoters functioned as modifiers o f the VPO 

crystal morphology, the In and Ga-promoted materials exhibited improved catalyst 

performance in zz-butane oxidation to maleic anhydride.

VPO catalysts promoted with a mixture o f Mo, Zr and Zn ions were investigated by Xu et al.51 

The combination o f these three cations created a synergistic effect that increased the 

performance o f the promoted VPO catalysts. They found that these promoted VPO catalysts 

exhibited high selectivity and conversion for zz-butane oxidation to maleic anhydride. However,
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they did not report any comparison between promoted and un-promoted VPO catalysts for their 

investigations. Xu et a l  suggested that these three cations were incorporated in the vacant 

surface sites as well as the bulk VPO structure.

Bismuth is the one o f the important promoters for H-butane oxidation. These promoted VPO 

catalyst increased the selectivity to maleic anhydride in «-butane oxidation.58,59 Recently, 

promoted VPO catalyst prepared using Pt and La-Bi as the promoters.60,61 Pt was incorporated 

as H2PtCl6 into the layered VOHPO4 .O.5 H2O precursor during its synthesis using VPO route. 

However, Pt-VPO catalysts did not apply for H-butane oxidation to maleic anhydride, but 

catalytic performance o f these promoted catalysts was reported only for the hydrogenation o f  

nitrobenzene and the oxidation o f tetrahydrofuran.

1.8 Crystal structures of vanadium phosphate phases 

V 0 P 0 4.2H20

VOPO4 .2 H2O consists of layered VO6 octahedra o f which the equatorial oxygen atoms are 

linked to PO4 groups. Above and below the equatorial plane is a short V = 0  and long V -0  bond 

respectively, forming chains o f VC>6 octahedra. A specific layer consists o f two sheets, an 

upper and lower floor. In VOPO4 .2 H2O the V =0 bonds in the same floor are cis orientated 

towards each other, and trans oriented towards the V = 0  bonds in the other floor within the 

same layer. Two water molecules are coordinated to vanadium in trans position to V = 0  and the 

remaining two are isolated in the channels formed by the hydrogen bonding network1. It is 

shown in Figure 1.3
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Fig 1.3 Schematic representation o f layered VOPO4 .2 H2O structure14 

Water molecules remove from the between the layers to form VOPO4 phases. ®  = H2O

molecules, o = oxygen atoms

VOPO4 phases

ocr, an- and P-VOPO4 are made up o f PO4 tetrahedra and distorted VC>6 octahedra. Both a r  

VOPO4 and an-VOP0 4  have similar structure where oxygen atoms from every tetrahedron are 

shared with octahedral belonging to four different chains. These structures are shown in Figure 

1.4 and 1.5.
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(a) (b)

171 P 0 4 tetrahedra

V06 octahedran with V=0 facing upwards

V06 octahedran with V=0 facing downwards

Fig 1.4 (a) A layer in the OC1-VOPO4 structure. Dashed lines represent the short vanadyl bond 

facing downwards. Bold lines represent the upper layer30 (b) Stacked octahedral in (X1-VOPO4 

linked with PO4 tetrahedra. Open circles represent oxygen atoms.
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Figure 1.5 (a) Schematic layer in an-VOPCU 30 (b) stacked VC>6 octahedra, with PO4 tetrahedra 

orientated differently than in OC1-VOPO4 . Same legend as in Figure 1.4

The main difference between these two structures is the different positions o f vanadium and 

phosphorus atoms relative to the equatorial plane of the octahedra. In OC1-VOPO4, vanadium 

and phosphorous atoms are on the same side o f the equatorial oxygen atom plane whereas in 

the CX11-VOPO4 structure they are on opposite sides.

Benabdelouahab et al. proposed the structure o f 8 - VOPO4 (Figure 1.6). The VC>6 octahedra are 

linked by the oxygens of PO4 tetrahedra as in a r  VOPO4 and an- VOPO4, but the V=0 bonds 

of the linked octahedral sharing a floor are trans orientated towards each other.
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Fig 1.6 Proposed presentation o f a layer in 8-VOPO4.30 Same legend as in Figure 1.4

The structure o f Y-VOPO4 is similar to that of &-VOPO4, but whereas the V=0 bonds in o f  5- 

VOPO4 are trans oriented in the same floor, the V=0 bonds in Y-VOPO4 point in the same 

direction (Figure 1.7). The direction is the same for the upper and lower layers.
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1.9 Transformation of VOHPO4.O.5 H2O precursor to (VO^PiOv

(VO)2P2C>7 is obtained when vanadium phosphate hemihydrate,VOHPO4.0.5H2O precursor is 

heated to about 400°C in 1.5% butane/air. The trapped solvent molecules are removed, when 

VOHPO4 .O.5 H2O precursor is heated, which makes structural defects, microcracks and 

increase the surface area, here the precursor first transforms into an amorphous phase, then 

dehydrates to crystalline (VO)2P2 0 7  and partially oxidized to V+5 orthophosphates when the 

reactant mixture is introduced.62 The transformation o f VOHPO4 .O.5 H2O to (V0 )2P2 0 7  is 

topotactic.23 Hence, morphology of the final catalyst depends on the morphology o f  the 

precursor.

Different crystalline final catalysts were obtained during the transformation of 

VOHPO4 .O.5 H2O to (VO)2P2 0 7  depending on the morphology of the precursor, the presence of  

defects in the structure, the activation temperature and time and the P/V ratio in the precursor. 

This transformation has been investigated widely.

Hutchings and co-workers63 studied the transformation o f the VOHPO4.O.5 H2O into 

(V0 )2P2 0 7  by in situ laser Raman spectroscopy and showed the morphology o f  the final 

catalyst remains unchanged. For these studies, three different VOHPO4 .O.5 H2O precursors 

were converted to (VO)2P2 0 7  under the same reaction conditions. The three final catalysts gave 

different Raman spectrum due to the P-O-P stretching. They also reported that the reactivity of 

all these catalysts with oxygen was different because the variation in reactivity could be related
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to differences in the nature o f the anion defects associated with the PO4 units in these materials 

which would be reflected in the differences o f the P-O-P stretching region o f the spectrum.

Guliants et al.64 also investigated the transformation o f the VOHPO4 .O.5 H2O into (VO)2P2 0 7  

by in situ laser Raman spectroscopy and X-ray diffraction techniques. They found that the 

VOHPO4 .O.5 H2O is firstly transformed into disordered nanocrystalline (VO)2P2 0 7  with Y +5 

phase , then it was converted to well-crystallised (VO)2P2C>7 in the equilibrated catalysts. 

Finally, they concluded that the (200) planes o f (V0 )2P2 0 7  is a key factor for high activity and 

selectivity for «-butane oxidation.

Torardi et al.65 studied the transformation o f the VOHPO4 .O.5 H2O into y-(VO)2P2 0 7  using 

electron microscopy and X-ray diffraction. For these investigations, single crystal and powder 

form o f the vanadyl hydrogen phosphate precursors were converted to pseudomorphs. They 

found that size and shape of the catalyst are unchanged with respect to the starting materials.

Mahony et al.66 reported the morphology changes o f the VOHPO4 .O.5 H2O to (VO)2P207 

during the two type o f transformations. They showed that first way is heated with air and 

second one is heated with butane diluted with air. In the case o f air, firstly, amorphous solid 

formed when precursor is heated at above 270°C whereas, crystalline V+5 formed when 

VOHPO4 .O.5 H2O is heated at above 350°C. They also showed that second way is completely 

different results from the first one, where crystalline (VO)2P2 0 7 was obtained without any 

intermediate amorphous phase.
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Sajip et al.61 analysed the structural transformation o f  a cobalt-doped vanadium phosphate 

hemihydrate to final catalyst using characterisation techniques. They prepared the cobalt-doped 

catalyst precursor via organic route and it has a rhomboidal plate-like morphology. They also 

applied the different activation times for the preparation of final catalyst. Finally, they found 

that the morphology of the activated materials is unchanged with respect to original precursor.

Koyano et al.6* investigated the surface structure o f vanadyl pyrophosphate (VO)2P2 0 7 using 

different characterisation techniques. They found that the Xi phase was obtained as a thin 

surface layer on (VO)2P2C>7 when crystalline (VO)2P2 0 7  is reacted with oxygen molecule at 

460°C. They also reported that (VO)2P2C>7 can be obtained when Xi phase (6 -VOPO4) is 

reacted with «-butane. Based on these observations, they defined that the reversible redox 

reactions between Xi phase and (VO)2P2C>7 occur by the reactions with butane and oxygen.

Ryumon et a l 69 investigated the transformation o f VOHPO4 .O.5 H2O to (V0 )2P2 0 7  using water 

vapour. For these investigations, they used small and large crystallites with presence and 

absence of water vapour. They found that a single- phase o f well crystallised (V0 )2P2 0 7  can be 

obtained within a short reaction time under a reactant gas (0.9% «-butane, 10% O2) containing 

40% water vapour using small crystallities. Whereas, the transformation took a longer period 

(lOOh) without water vapour. In the large crystallites, (VO)2P2 0 7  was the main phase with 

water vapour, whereas (X11-VOPO4 was obtained without water vapour. Therefore, water vapour 

can accelerate the transformation o f VOHPO4.O.5 H2O to (VO)2P2 0 7 .
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1.10 Conclusions

Selective oxidation o f «-butane to maleic anhydride is a commercial process which depends for 

its operation on the structure o f active sites located on the basal plane o f (VO)2P2C>7. (200) 

plane o f crystalline (VO)2P2 0 7  is considered as the most active and selective for /z-butane 

oxidation. Different crystalline vanadium phosphorous oxide phases were obtained during the 

transformation o f the VOHPO4 .O.5 H2O precursors to the final catalyst, (VO)2P2 0 7  depending 

on

• the temperature, time and atmosphere o f activation

• the morphology o f the precursors

• P/V ratio in the precursors and

• the presence defects in the structure

Therefore, numbers o f new preparation routes have been concentrated for obtaining the good 

materials. However, most o f  these methods have focused on the preparation of 

VOHPO4 .O.5 H2O with differing morphologies and surface area.



33

1.11 Aim of this work

The catalytic performance of the VPO catalysts depends on (i) the method o f VOHPO4 .O.5 H2O 

preparation (ii) the procedures of activation and conditioning o f the precursor at high 

temperature and (iii) the nature o f metal promoters.

The preparation o f VOHPO4.O.5 H2O depends on several factors such as types and 

concentration o f reagents, reducing agents and solvents, the reduction temperature and 

synthesis duration. Here, types o f alcohols (C4 and >Cg) and various reduction temperatures 

were used for this investigation in VPD route.

Firstly, the addition of alkane in VPD method was studied. Different morphology materials 

were obtained when different amount o f alkane solvent used and this led to a study into the 

different factors that influence the morphology o f vanadium phosphate phase formed under 

different conditions.

The second aim of this project was to synthesis new materials as catalysts for butane oxidation. 

The first synthetic route studied was gas phase reduction o f VOPO4 .2 H2O. Traditionally the 

reduction is carried out with either an aqueous reducing agent or an alcohol as the reducing 

agent. In this study we investigated using gas phase reductions at higher temperatures.
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Chapter 2 

Experimental Details

2.1 V-P-O materials Preparation

Pure vanadium phosphate materials were prepared via new preparation routes. Firstly, 

VOPO4 2 H2O was prepared using different vanadium sources and phosphoric acids based 

on the standard preparation method and some o f  these VOPO4 2 H2O were transformed to 

final catalyst under the reducing environment (chapter 4).Secondly, different morphology 

VPO materials were synthesised using alkane solvent via standard VPD route (chapter 3). 

These materials were characterized by combination o f  XRD, laser Raman spectroscopy, 

SEM, TEM and BET surface area measurements. These characterized materials were 

compared with previous results and materials were evaluated for the selective oxidation o f  

«-butane to maleic anhydride.
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2.1.1 Materials

Details o f  materials used are shown in Table 2.1

Table 2.1 Materials used

Material name Source and Purity

V 2O5 Aldrich - 98% , Riedel-de Haen - 99%

Ortho-phosphoric acid Aldrich - 85%

pyro-phosphoric acid Aldrich - 99%

isobutanol Aldrich - 99%

1 -butanol Aldrich - 99%

1 -octanol Aldrich - 99%

octane Aldrich - 99%

heptane Aldrich - 99%

dodecane Aldrich - 99%

hexadecane Aldrich - 99%

2.1.1.1 Standard V 0 P 0 4*2H20  preparation

Vanadium phosphate dihydrate (VOPO4 2 H2O) was prepared by VPO method. This method 

was described by Jonhson et a l}

V2O5 (10.00 g, Aldrich) and H3PO4 (60 ml, Aldrich) were refluxed in water (120 ml) under 

reflux conditions for 24 hours using a hot plate as heating source. The yellow solid was 

recovered immediately by vacuum filtration, washed with cold water ( 1 0 0  ml) and acetone 

(100 ml) and dried in air for 24 hours.
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2.1.1.2 Using/jyw-phosphoric acid

This method was very similar to that described above except for the use o f  pyre-phosphoric 

acid instead o f  ort/zo-phosphoric acid (chapter 4)

V2O5 (10.00 g, Aldrich or Riedel-de H aen) and H4P2O7 (40.00 g, Aldrich) were refluxed in 

water (120 ml) under reflux conditions for 24 hours using a hot plate as heating source. The 

yellow solids was recovered immediately by vacuum filtration, washed with cold water 

(100 ml) and acetone (100 ml) and dried in air at 110°C for 24 hours.

2.1.1.3 Using organic solvent

V2O5 (5.90g, Aldrich) and isobutanol (125 ml, Aldrich) were heated at temperature between 

55-60° C for 24 hours using a hot plate as heating source. Above mixture was cooled for 24 

hours, then H3PO4 (4.88 ml, Aldrich) was added to the above mixture and refluxed for 24 

hours. The yellow solids was recovered immediately by vacuum filtration, washed with 

cold water (100 ml) and acetone (100 ml) and dried in air at 110°C for 24 hours.

2.1.2 Preparation of VOHPO4*0.5H2O 

VPO (organic route)

V2O5 (2.00 g, Aldrich) and H3PO4 (1.66 ml, Aldrich) were refluxed with 1-butanol (50 ml, 

Aldrich) for 24 hours. The recovered blue solid was then heated under reflux in water for 2 

hours (90ml H2C)/g solid) to remove the impurity VO(H2PC>4)2. The suspension was then 

filtered at hot, washed with acetone (50 ml) and dried in air at room temperature for 24 

hours.
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VPD (dihydrate route)

VPD is the reduction o f vanadium phosphate VOPO4 .2 H2O with alcohol as reducing agent 

and solvent.

The VOPO4 2 H2O (1.00 g) was refluxed in isobutanol (25 ml, Aldrich) for 24 hours. The 

pale blue solid was recovered by vacuum filtration and washed with alcohol (50 ml) and 

acetone (50ml). The recovered solid was then heated under reflux in water for 2 hours 

(90ml H2 0 /g solid) to remove the impurity VO(H2PC>4)2 . The suspension was then filtered 

hot, washed with warm water (100 ml) and dried in air at 110°C, 24 hours.

2.1.3 New VPD preparation routes

The influence o f  the alkane solvent was investigated in the VPD preparation method 

(Chapter 3). Different variables were used for this investigation (V:alcohol mole ratio, total 

volume, alcohol:alkane volume ratio (concentration o f  alcohol) and different alcohol 

structure).

2.1.3.1 Using different concentrations of 1-butanol and different total 

volumes

VOPO4 2 H2O (l.OOg) was refluxed in 1-butanol (25 ml) and different quantities (10, 25, 50, 

75 100, 150 and 400 ml) o f the alkane solvent (Heptane, octane, dodecane or hexadecane) 

for 24 hours. The resulting material recovered by vacuum filtration and washed with 

alcohol (50 ml) and acetone (50 ml) and dried in air at 110°C for 24 hours.
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2.1.3.2 Using different concentrations of primary alcohol and same total 

volume (175 ml)

VOPO4 2 H2O (l.OOg) was refluxed in different quantities o f  the 1-butanol or 1 -octanol and 

octane (0, 5, 15, 25, 50, 100, 125, 150, 160, 170 and 175 ml) total volume up to 175 ml for 

24 hours. The resulting material was recovered by vacuum filtration and washed with 

alcohol (50 ml) and acetone (50 ml) and dried in air at 110°C for 24 hours.

2.1.3.3 Using same V: OH ratio (1:50) and same total volume (175 ml)

VOPO4 2 H2O (V: alcohol = 1: 50) was refluxed in different quantities o f  the 1-butanol or 1- 

octanol and octane solvent (0, 5, 15, 25, 50, 100, 125, 150 and 160 ml) total volume up to 

175 ml for 24 hours. The resulting material was recovered by vacuum filtration and washed 

with alcohol (50 ml) and acetone (50 ml) and dried in air at 110°C for 24 hours.

2.1.4 Preparation of (VO)2P207 by using direct route

VOPO4 2 H2O was reduced to the final catalyst in the gas phase. Catalyst transformation 

was carried out using the procedure outlined below. (Chapter 4)

Reaction conditions were

(1) different time (6 , 24, 72 hours)

(2) temperature (450°C to 550°C)

(3) different gas mixture (5% ItyAr, He and isobutanol)

VOPO4 2 H2O (0.70 g) was loaded into the reactor and the desired gas flow established 

through the bypass using a bubble meter. The gas was passed over the VOPO4 2 H2O and
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the temperature ramped at 3°C / min to the desired reaction temperature and VOPO4 2 H2O 

for different times. Outline o f the reactor has shown in Figure 2.1

Thermocouple

5% H2/Ar

M ass Flow Controller

Tem perature
controller

Furnace

Stainless steel 
tubeMaterial

Waste gas

Fig. 2.1 Schematic o f the apparatus for the preparation o f  final catalyst using new route

2.2 Catalyst Testing

Butane oxidation was performed over a fixed catalyst bed in a stainless steel microreactor 

(1/4” inner diameter). Butane and air were mixed from separate cylinders in a ratio o f 1.5% 

butane in air. The GHSV was maintained in the order o f  3000 h'1, and catalyst precursors 

were activated for 72 hours at 400°C with 1.5% butane in air. The stationary values 

(selectivity and conversion) were obtained after about 72 hours o f  the reaction. Thus, 

conversion and selectivity were determined from the data collected between 80 to 1 0 0  

hours (average value was calculated).
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From the literature,3 evolution o f  the conversion and selectivity to MA with time in the 

oxidation o f  butane over various VPO catalysts are shown in Figure 2.2

co
Kfil_<D>cc

_ 0 — O O -

>

<L>

120
Reaction tim e/ h

Fig. 2.2 Changes o f  conversion and selectivity to MA for butane oxidation over different

VOHPO4.0.5H2O (A: O, B: A)

A: Material prepared using intercalation, exfoliation and reduction method.

B: Material prepared using standard VPD method.

The product stream was analysed with an online Varian 3400 Gas Chromatograph (GC) 

fitted with a TCD detector and two columns, a 50 cm porapak Q and 2m 5X molecular 

sieve. At injection, the porapak Q and molecular sieve column were in series, permitting
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CO, N 2, and O2 to move onto the molecular sieve. The molecular sieve was then switched 

out o f  series to prevent CO2 , butane and oxygenate products from contaminating it. CO2 

then eluted from the porapak Q column. The molecular sieve column was switched back 

into series to elute CO, N 2 and O2, and switched out again to allow maleic anhydride, 

butane to elute from the porapak Q. Outline o f  the reactor for butane oxidation has shown 

in Figure 2.3

Mass Flow Controller

Thermocouple

Mass Flow Controller

Mass Flow Controller

Stainless steel 
tubecatalyst

GC

Temperature
controller

Fig. 2.3 Outline o f  the butane oxidation reactor

Only CO2, CO and maleic anhydride (MA) were detected as products and the selectivity 

and conversions were calculated based on the following equations

Selectivity to MA (%) = mMA / (mC02+mC0+mM A)x 100 Eq. 2.1

m is mass o f  each product
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Conversion (%) = mMA+mCO mC02 /m(MA+CO+C02+butane)xlOO Eq. 2.2

Specific activity (mol MAh^m'2) = butane flow (m olh1) x MA conversion (%) x MA

9 i
selectivity (%) / mass catalyst (g) / surface area (m g ' ) Eq. 2.3

2.3 Experimental Techniques

2.3.1 Powder X-ray Diffraction (XRD)

Powder X-ray diffraction is a versatile and non-destructive analytical technique for 

identification and quantitative determination o f  the various crystalline forms, known as 

phases o f compounds present in powdered and solid samples. Identification is achieved by 

comparing the X-ray diffraction pattern or diffractogram obtained from an unknown sample 

with an internationally recognised database containing reference patterns for more than 

70,000 phases and reported in the literature. Modem computer-controlled diffractometer 

systems use automatic routines to measure, record and interpret the unique diffractogram 

produced by individual constituents in even highly complex mixture.

A crystal lattice is a regular three dimensional distribution (cubic, rhombic, etc) o f  atoms in 

space. These are arranged so that they form a series o f  parallel planes separated from one 

another by a distance d, which varies according to the nature o f the material. For any 

crystals or phases exist in a number o f  different orientations, each with its own specific d- 

spacing.
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Investigations o f the internal structure o f the crystal depend on a penetrating radiation that 

will enter the material and will show interference effects as a result o f  scattering from the 

ordered array o f  scattering centers. X-rays have the necessary penetrating power and show 

interference effects since they have wavelengths o f the same order o f  magnitude as the 

spacing o f  crystal planes.

In the Bragg method, the phenomenon is observed when nearly monochromatic x-rays are 

reflected from a crystal. A beam o f  X-rays is passed into a crystal, which is represented in 

Fig 2.4 by layers o f  particles.

Interplanar
spacing

X-rays

Incident angle

Fig. 2.4 Reflection o f X-rays from the reflecting layers o f  crystal

The X-rays are scattered by interaction with the electrons o f the atoms or ions o f the crystal. 

Since X-rays are quite penetrating, each layer o f  atoms can be expected to scatter only a 

small part o f the X-ray beam. If the crystal particles did not have a spacing o f  the same 

order o f magnitude as the wavelength o f  the X-rays, simple reflections and scattering o f  the 

X-rays would occur.4,5
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For some special angles, assuming a particular plane spacing d and a particular X-ray 

wavelength X, as in figure 2.4, the waves we draw from successive planes will be in phase. 

The waves then will add to give a net resultant wave. Constructive interference occurs at 

these special angles. Constructive interference occurs when ever the phase o f  beams 

scattered from successive layers is shifted by an integral multiple o f wavelengths. This 

happens when relation holds. This important equation is known as Bragg’s diffraction law.

n^ = 2dsin0 n = l , 2 , 3. . . .  Eq. 2.4

This basic equation shows that for a given value o f the X-ray wave length X, measurement 

o f the angle 0  or o f  the sin 0  term gives the information on the spacing between planes 

through the scattering centres that make up the crystal.

The width o f  the peaks in a particular phase pattern provide an indication o f the average 

crystallite size, large crystallites give rise to sharp peaks, while the peak width increases as 

crystallite size reduces. Peak broadening also occurs as a result o f variations in J-spacing 

caused by micro-strain. However, the relationship between broadening at diffraction angle 

2 0  is different from that o f  crystallite size affects, making it possible to differentiate 

between the two phases

XRD patterns in this study were obtained by an Enraf Nonius FR590 X-ray generator with 

a Cu Ka Source fitted with an Inel 120 hemisperical detector.
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2.3.2 Raman spectroscopy

When light is scattered from a molecule most photons are elastically scattered. The 

scattered photons have the same energy (frequency) and, therefore, wavelength, as the 

incident photons. However, a small fraction o f  light is scattered at optical frequencies 

different from, and usually lower than, the frequency o f  the incident photons. The process 

leading to this inelastic scatter is the termed the Raman effect. Raman scattering can occur 

with a change in vibrational, rotational or electronic energy o f a molecule. Chemists are 

concerned primarily with the vibrational Raman effect. We will use the term Raman effect 

to refer to the vibrational Raman effect only.

The difference in energy between the incident photon and the Raman scattered photon is 

equal to the energy o f a vibration o f the scattering molecule. A  plot o f  intensity o f scattered 

light versus energy difference is a Raman spectrum.

The Raman effect arises when a photon interacts with the electric dipole o f  the molecule. It 

is a form o f  electronic spectroscopy, although the spectrum contains vibrational frequencies. 

In classical terms, the interaction can be viewed as a perturbation o f  the molecule’s electric 

field. In quantum mechanics the scattering is described as an excitation to a virtual state 

lower in energy than a real electronic transition with nearly coincident de-excitation and a 

change in vibrational energy. The scattering event occurs in Kf4 seconds or less. The 

virtual state description o f scattering is shown in figure 2.5
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Fig. 2.5 Energy level diagram for Raman scattering; (a) Stokes Raman scattering (b) anti-

Stokes Raman scattering.4 ,5

The energy difference between the incident and scattered photons is represented by the 

arrows o f different lengths in figure 2.2. Numerically, the energy difference between the 

initial and final vibrational levels, v  or Raman shift in wave numbers (cm'1), is calculated 

using following equation

1 1
V  = ------------------------------

2 2 Eq.2.5
incident scattered

in which incident and Scattered are the wavelengths (in cm) o f the incident and Raman 

scattered photons, respectively. The vibrational energy is ultimately dissipated as heat. 

Because o f  the low intensity o f  Raman scattering, the heat dissipation does not cause a 

measurable temperature rise in a material. It is known that material such as VOPO4 .2 H2O 

can dehydrate. Therefore, a low power (10%) beam was used for characterizing VPO 

materials. Raman spectrums o f  VOPO4 .2 H2O obtained using different power (10% and 

80%) are shown in figure 2.6 and 2.7 respectively.
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3 5 0 0 0 0
9 4 0

3 0 0 0 0 0  -
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R a m a n  s  h ift  ( c  m 1)

Fig. 2.6 Raman spectrum o f VOPO4 .2 H2O using low power beam (10%)
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Fig. 2.7 Raman spectrum o f  VOPO4 .2 H2O using high power beam (80%)
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The Raman spectrum o f  VOPO4 .2 H2O (Figure 2.6) is in agreement with published data6 

while spectrum (Figure 2.7) is VOPO4 .

At room temperature the thermal population o f vibrational excited states is low, although 

not zero. Therefore, the initial state is the ground state, and the scattered photon will have 

lower energy (longer wavelength) than the exciting photon. This Stokes shifted scatter is 

what is usually observed in Raman spectroscopy, figure 2.5a depicts a Raman Stokes 

scattering.

A small fraction o f  the molecules are in vibrationally excited states. Raman scattering from 

vibrationally excited molecules leaves the molecule in the ground state. The scattered 

photon appears at higher energy, as shown in figure 2.5b. This anti-Stokes-shifted Raman 

spectrum is always weaker than the Stokes-shifted spectrum, but at room temperature it is 

strong enough to be useful for vibrational frequencies less than about 1500 cm'1. The 

Stokes and anti-Stokes spectra contain the same frequency information. The ratio o f anti- 

Stokes to Stokes intensity at any vibrational frequency is a measure o f temperature. Anti- 

Stokes Raman scattering is used for contactless thermometry. The anti-Stokes spectrum is 

also used when the Stokes spectrum is not directly observable, for example because o f poor 

detector response or spectrograph efficiency.

Raman spectra were determined using a Renishaw Ramascope spectrograph fitted with a 

green Ar+ laser (k = 514.532 cm'1)
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2.3.3 Electron microscope (SEM and TEM)

The SEM is a type o f electron microscope capable o f  producing high-resolution images o f  a 

sample surface. Due to the manner in which the image is created, SEM images have a 

characteristic three-dimensional appearance and useful for judging the surface structure o f  

the sample.

In a typical SEM, electrons are emitted from a tungsten or lanthanum hexaboride (LaB6) 

cathode and are accelerated towards an anode; alternatively, electrons can be emitted via 

field emission (FE). Tungsten is used because it has the highest melting point and lowest 

vapor pressure o f  all metals, thereby allowing it to be heated for electron emission. The 

electron beam, which typically has an energy ranging from a few hundred eV to 100 keV, is 

focused by one or two condenser lenses into a beam with a very fine focal spot sized 1 nm 

to 5 nm. When the primary electron beam interacts with the sample, the electrons lose 

energy by repeated scattering and absorption within a teardrop shaped volume o f the 

specimen known as the interaction volume, which extends from less than 1 0 0  nm to around 

5 |im into the surface. The size o f the interaction volume depends on the beam accelerating 

voltage, the atomic number o f the specimen and the specimen’s density.

The energy exchange between the electron beam and the sample results in the emission o f  

electrons and electromagnetic radiation which can be detected to produce an image, the 

most common imaging mode monitors low energy (<50 eV) secondary electrons. Due to 

their low energy, these electrons originate within a few nanometers from the surface. The 

electrons are detected by a scintillator-photomultiplier device and the resulting signal is 

rendered into a two-dimensional intensity distribution that can be viewed and saved as a 

digital image. The brightness o f  the signal depends on the number o f  secondary electrons
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reaching the detector. If the beam enters the sample perpendicular to the surface, then the 

activated region is uniform about the axis o f the beam and a certain number o f  electrons 

escape from within sample. As the angle o f incidence increases, the escape distance o f one 

side o f the beam will decrease, and more secondary electrons will be emitted. Thus steep 

surfaces and edges tend to be brighter than flat surfaces, which results in images with a 

well-defined, three-dimensional appearance. Using this technique, resolutions o f less than 1 

nm are possible.

Images can be obtained due to the backscattered electrons (BSE) which consist o f high- 

energy electrons originating in the electron beam, that are reflected or back-scattered out o f  

the specimen interaction volume. Backscattered electrons may be used to detect contrast 

between areas with different chemical compositions, especially when the average atomic 

number o f the various regions is different, since the brightness o f the BSE image tends to

n

increase with the atomic number.

Backscattered electrons can also be used to form electron backscatter diffraction (EBSD) 

image. This image can be used to determine the crystallographic structure o f  the specimen.

SEM images were obtained using FEI XL 30 E.S.E.M instrument, at Earth Science 

Department, Cardiff University

TEM images were obtained by Prof. Chris Kiely and Dr. Andy Burrows in the materials 

science department at the Lehigh University, USA. Samples for transmission electron 

microscopy (TEM) examination were prepared by dispersing the catalyst powder in high 

purity ethanol, then allowing a drop o f  the suspension to evaporate on a holey carbon film 

supported on a 300 mesh copper TEM grid. TEM analyses were carried out in a 200kV  

JEOL 2000FX electron microscope equipped with a thermionic LaB6 source.
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2.3.4 Surface area measurement

Surface area is an attribute that is used by catalyst manufacturers and users to monitor the 

activity and stability o f  catalysts. There are different methods used to measure surface area 

and each method can yield different results. Most methods are based on the isothermal 

adsorption o f nitrogen. Either a single point or multipoint method is used to calculate the 

surface area. The multipoint Brunauer, Emmett and Teller method is used to measure total 

surface area o f catalyst, and is described in the following equation:

Where V is the volume, reduced to standard conditions (STP) o f gas adsorbed per unit mass 

o f adsorbent at a given pressure P and constant temperature, Vm is the volume o f  gas 

adsorbed at STP per unit mass o f  adsorbent necessary to form a complete monolayer on the 

surface, PQ is the saturation pressure at the measurement temperature, and C is a constant.

A linear relationship is obtained when P/[V(Po- P)] is plotted against P/ Po, and the values 

o f Vm and C can be obtained from the slope and intercept.

The surface area (SA) can be calculated based on the following equation

Eq. 2.6
V (P o -P ) VmC VmC P0

SA = (Vm * L * Am) / Vmol Eq. 2.7

Where L is the Avogadro constant, Am is the average area occupied by the adsorbate in the 

filled monolayer (0.162 nm2 for N 2) and Vmoi is the molar volume o f  adsorbed gas at STP .8
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Surface area measurements were carried out using a Micromeritics ASAP 2010 instrument, 

and N2 was used as the adsorptive.
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Chapter 3 

Control the Morphology of Vanadium Phosphate 

Catalyst Precursors by Adding Alkane Solvents

3.1 Introduction

The selective oxidation of of «-butane to maleic anhydride using vanadium phosphate catalysts 

has been well studied in recent years.1'5 The reaction and catalysts continue to attract attention 

as it represents one o f the few examples o f the selective activation o f an alkane at elevated 

temperatures. In particular, the structure and activity o f vanadium phosphates has been 

extensively studied and continues to attract attention. The catalytic performance o f vanadium 

phosphates depends on the method o f preparation o f the catalyst precursor, VOHPO4.O.5H2O6' 

, and the reaction conditions utilised for the in situ activation in /2-butane/air to form the final 

catalyst.6,7 The active catalyst comprises (V0)2P207 in combination with some V5+ phosphates, 

typically oti- and 8-VOPO4, and the transformation o f the precursor to the final catalyst is 

topotactic. Hence, the morphology o f the precursor is o f crucial importance in determining the 

eventual catalyst morphology and the performance following activation. In view o f the 

importance o f the morphology o f the catalyst precursor, there have been numerous studies 

concerned with catalyst preparation. However, most studies use a standard preparation method 

in which V2O5 is used as a source o f vanadium and H3PO4 is used as a source o f phosphorus, 

and an alcohol is used as the reducing agent that is required to synthesise the V4+ precursor
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phase. Notably, the addition o f a solvent to this preparation procedure has not been considered 

in detail in any scientific publications and patents.

Recently, Okuhara and co-workers reported that intercalation and exfoliation o f VOPO4 .2 H2O 

crystallites proceeded with a stepwise heating below refluxing temperature in primary and 

secondary alcohols and the subsequent reduction o f the exfoliated VOPO4.2 H2O brought about 

VOHPO4 .O.5 H2O crystallites with different morphologies. Furthermore, (VO)2P2C>7 obtained 

from the precursor was highly active and selective for the selective oxidation o f n-butane.21'25

Vanadium phosphate catalysts prepared by the reduction o f VOPO4 .2 H2O with 1-butanol are 

described and discussed in this chapter. In particular, the effect o f the addition o f an alkane 

during the reflux stage o f the preparation has been investigated and these changes are 

demonstrated that the presence o f a solvent can induce significant effects on both the structure 

and morphology o f the vanadium phosphate.

3.2 Experimental

VOPO4 .2 H2O (1.0 g) was refluxed with 1-butanol (25 ml) and different quantities o f alkane 

solvents for 24 hours, and the resulting material was recovered by filtration, (more details in 

Chapter 2)
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VOPO4 2 H2O (V: alcohol = 1: 50) was refluxed in different quantities o f the alcohols (1- 

butanol and 1-octanol) and octane solvent total volume up to 175 ml for 24 hours. The 

resulting material was recovered by vacuum filtration and washed with alcohol (50 ml) and 

acetone (50 ml) and dried in air at 110°C for 24 hours.

VOPO4 2 H2O (lg ) was refluxed o f in different quantities o f the alcohols ( 1-butanol and 1- 

octanol ) and octane solvent total volume up to 175 ml for 24 h. The resulting material was 

recovered by vacuum filtration and washed with alcohol (50 ml) and acetone (50 ml) and dried 

in air at 110°C for 24 hours.

The new materials were activated in situ to give final catalysts and these materials were tested 

for the oxidation o f n-butane to maleic anhydride. The precursors, catalysts were characterised 

using a combination of powder X-ray diffraction, laser Raman spectroscopy, BET surface area 

measurements, scanning electron microscopy and transmission electron microscopy.

3.3 Results

Characterisation of new materials prepared by reacting of V0 P0 4 ,2 H20  

with 1- butanol and differing amount of octane solvent

The XRD, laser Raman spectrum and SEM of new materials prepared using different amount 

of (10, 25, 50, 100, 400 ml) octane solvents are shown in Figure 3.1, 3.2 and 3.3 respectively.
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Fig. 3.1 Powder XRD patterns o f the materials prepared by reacting o f VOP0 4 -2 H20  with 1- 

butanol and differing amounts o f octane. Key I  = VOHPO4 O.5 H2O; □  = VO(H2PC>4)2 .
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Table 3.1 Experimental details o f material prepared using different amount o f octane solvent 

with VOPO4 .2 H2O (l.OOg) and 1-butanol (25 ml)

Material name Amount o f octane (ml)

B-0 0

B-25 25

B-50 50

B-100 100

B- 400 400

The XRD of B-0 material show only (Figure 3.1) VOHPO4 .O.5 H2O as the main phase with the 

[220] reflection virtually the only feature present, with no evidence for any crystalline second 

phase. In addition, the high level o f background noise and the broad peak widths o f the 

reflections suggest that the material is not fully crystalline when compared with other materials 

(B-25, B-50, B-100 and B-400). The BET surface area o f this material was 34 m2/g.

The XRD patterns o f B-25 materials have the (220) reflection (Figure 3.1) as the most 

dominant feature, with (001) the next most intense reflection with relative intensity o f 30% 

when compared to (220). It indicated that the (001)/(220) intensities ratio increased when 

amount o f octane is increased. Therefore, two types o f morphology were present in this 

material which is VOHPO4 .O.5 H2O, rosette and VOHPO4 .O.5 H2O, platelet type. The BET 

surface area o f this material was 26 m2/g.

VOHPO4 .O.5 H2O phase was observed in the XRD pattern o f B-50 sample (Figure 3.1) with the

[001] reflection as the major feature. Many other reflections are also present in the XRD
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pattern, which can all be assigned to the VOHPO4 .O.5 H2O phase. There are some differences in 

the relative intensities o f the diffraction peaks in this material when compared with B-25 of 

same diffraction pattern (same planes) that indicated that the platelets become thicker as more 

octane is added (B-50), leading to an increase in intensity o f the side planes in the XRD 

pattern. Further, X-ray line broadening decreases with increasing amount of octane solvent 

which indicates that large crystallites were obtained and also the crystallinity of these materials 

was better than B-0 and B-25 samples. Furthermore, VOHPO4 .O.5 H2O, platelet type 

morphology was present in this material. The BET surface area o f this material was 6 m2/g.

The XRD patterns o f B-100 sample (Figure 3.1) have the (001) and (220) a reflection as the 

major features, therefore VOHPO4 .O.5 H2O was the dominant phase in this material. There are 

number o f other reflections also present, which is assigned to the VO(H2PC>4)2 phase that 

indicated, as more octane is added to the preparation (100 ml), VOHPO4 .O.5 H2O phase 

partially switched to V0 (H2P0 4 )2. So, two types o f materials are present in this material which 

are VOHPO4 .O.5 H2O and V0 (H2P0 4 )2. The BET surface area o f this material was 5 m2/g.

The XRD patterns (Figure 3.1) o f B- 400 material, most o f the reflections can be indexed to 

V0(H 2P 0 4)2. However, trace amount o f VOHPO4 .O.5 H2O was present in these materials. The 

BET surface area o f this material was 3 m2/g.
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Fig. 3.2 Raman spectrum of the materials formed by reacting o f V0 P0 4 -2 H20  with 1-butanol

and differing amounts of octane solvent.
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The Raman spectra o f B-0 sample (Figure 3.2), the P-O peak at 986 cm"1, agreed with the well 

with published data2 as being characteristic of VOHPO4 .O.5 H2O. Furthermore, Bordes et al. 

reported many spectra for VPD materials, these are bonding frequency o f V = 0  at 1113 cm'1 

and V-O-P bands at a high frequency, 1156 cm'1. But, the rest o f these peaks are not visible in 

VOHPO4 O.5 H2O because the scattered photon appears at higher energy due to the background 

fluorescence, so the peak at V =0 at 1113 cm'1 and V-O-P bands, 1156 cm'1 are weak Raman 

signal compared to that o f 986, therefore this spectrum is not observed because o f poor 

detector response or spectrograph efficiency.

Raman spectroscopy o f B-25 and B-50 materials (Figure 3.2) shows the P -0  peak at 986 cm'1 

which is characteristic o f VOHPO4 .O.5 H2O. The corresponding Raman spectrum o f (Figure 

3.2) B-100 sample showed a broad feature in 930 - 970 cm'1 region, consisting o f  two phases at 

986 and 937 cm'1, corresponding to VOHPO4 .O.5 H2O and VO(H2P0 4 ) 2  respectively.

The Raman spectra o f B- 400 material agreed with the published spectra for V0 (H2P0 4 ) 2  with 

peak2 (figure 3.2) at 937 cm'1 which is due to the P -0  stretch o f V0 (H2P0 4 )2 . There were no 

Raman peaks for minor VOHPO4.O.5 H2O phase.
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Fig. 3.3 The SEM of the materials formed by reacting of VOPO4 2 H2O with 1-butanol and

differing amounts of octane solvent.
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Figure 3.3 shows SEM micrographs o f the materials. The B-0 sample material has largely 

amorphous irregular plates. Material, B-25 has platelet morphology. The platelets are 

considerably smaller than other materials (B-50). But, SEM did not give any evidence for 

rosette (VPD type) morphology.

The material (B-50) is made up o f platelets. The material (B-100) consist o f plate like crystal, 

which related to VOHPO4.O.5 H2O phase but morphology o f VCXFbPO^ can not be seen in 

SEM. The SEM examination o f the material (B- 400) showed a combination o f chunky blocks 

as major phase and isolated platelets as minor phase as shown in Figure 3.3.

The TEM of materials prepared using different amount o f (0, 25, 50, 100 and 400 ml) octane 

solvents are shown in Figure 3.4 to 3.8 respectively.
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Fig. 3.4 The TEM of B-0 material

TEM examination of the B-0 sample revealed that irregular amorphous platelets as shown in 

Figure 3.4a. But, there were no [hkl] planes were observed from the diffuse amorphous 

diffraction pattern (figure 3.4b) of irregular amorphous platelet. Further, this material also has 

irregular disordered platelet as shown in figure 3.4c. Finally, diffraction pattern (figure 3.4 d) 

of the disordered platelet shows some evidence of limited crystallinity in this material.
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Fig. 3.5 The TEM of B-25 material

TEM examination of the B-25 material showed a combination of rosette shaped (VPD 

morphology) agglomerates and isolated platelets (VPO morphology) as shown in figure 3.5a 

and 3.5b respectively. Selected area diffraction patterns (figure 3.5c) obtained at normal 

incidence to the isolated platelets always gave a characteristic geometry pattern which could be 

indexed to the [001] VOHPO4.0.5H2O direction. An isolated platelet of residual disordered 

material shows some evidence of surface pitting or internal porosity as shown in figure 3.5d.
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0.5 jm0.2

Fig. 3.6 The TEM of B-50 material

TEM micrographs obtained from the B-50 material is shown in figure 3.6a. It displays that 

isolated platelet of VOHPO4 .O.5 H2O shows the characteristic tombstone morphology. Lattice 

image, such as shown in figure 3.6b, was obtained from the individual edge-on platelets. Image 

of a single crystal platelet of VOHPO4.O.5 H2O is shown in figure 3.6c. Selected area 

diffraction patterns (figure 3.6d) obtained at normal incidence to the platelets always gave a
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characteristic geometry pattern which could be indexed to the [001] VOHPO4 .O.5 H2O 

direction.

0.2

Fig. 3.7 The TEM of B -100 material

Two distinct morphologies are clearly observed in this micrograph (figure 3.7a) which are 

tombstone-like VOHPO4.0.5H2O platelets and blocky V 0 (H2P0 4 ) 2  phase crystallites. Lattice 

image, such as shown in figure 3.7b, was obtained from the individual edge-on platelets. A 

second trace amount o f blocky crystal o f VO(H2PC>4)2 seen in the material is shown in figure
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3.7c. Further, some rare platelets of residual disordered material were also observed as shown 

in figure 3.7d.

05tim

Fig. 3.8 The TEM of B- 400material

TEM examination of the B- 400 material showed a combination of blocky V0 (H2P0 4 )2, (X) 

crystals and some crystalline VOHPO4.0.5H2O platelets (Y) as shown figure 3.8a. Selected 

area diffraction patterns (figure 3.8b) obtained at normal incidence to the cube face o f crystal X 

always gave a characteristic geometry pattern which could be indexed to the [110] direction of
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VO(H2P 04)2. Based on the selected area diffraction pattern in the platelet at normal direction 

of crystal Y (in figure 3.8a) which corresponds to the [001] direction o f VOHPC>4.0.5H2C). 

Micrograph of figure 3.8d shows that B- 400 material has a mixture o f residual platelet of 

disordered material and blocky crystallites. Therefore, three distinct morphologies are clearly 

observed in this material which is platelet, disordered platelet and blocky crystal.

Finally, heptane, dodecane and hexadecane were used for this investigation. The relationship 

between morphology changes and the amount of alkane used are shown in Table 3.2. These 

changes are shown in XRD, Raman and SEM, corresponding to the following Appendix.

(1) Appendix 3.1 - The XRD patterns o f new materials prepared using different amount of 

(0, 25, 50 and 100 ml) heptane solvent

(2) Appendix 3.2 - The Raman spectrum of new materials prepared using different amount 

of (0, 25, 50 and 100 ml) heptane solvent

(3) Appendix 3.3 - The SEM of new materials prepared using different amount o f (0, 25, 

50 and 100 ml) heptane solvent

(4) Appendix 3.4 -  The XRD patterns o f new materials prepared using different amount of 

(10, 25, 50 and 100 ml) dodecane solvent
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(5) Appendix 3.5 -  The Raman spectrum of new materials prepared using different amount 

of (10, 25, 50 and 100 ml) dodecane solvent

(6) Appendix 3.6 -  The SEM of new materials prepared using different amount of (10, 25, 

50 and 100 ml) dodecane solvent

(7) Appendix 3.7 -  The XRD patterns o f new materials prepared using different amount of 

(10, 25, 50, 75 and 100 ml) hexadecane solvent

(8) Appendix 3.8 -  The Raman spectrum of new materials prepared using different amount 

of (10, 25, 50, 75 and 100 ml) hexadecane solvent

(9) Appendix 3.9 -  The SEM of new materials prepared using different amount of (10, 25, 

50, 75 and 100 ml) hexadecane solvent
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Table 3.2 The relationship between morphology changes and amount of alkane used

Solvent type Amount of 
solvent (ml)

XRD

(phases)

Raman 

(main frequency)
SEM

(morphologies)

Heptane 25 VOHPO4.0.5H2O 
(platelet, rosette)

VOHPO4.0.5H2O platelet, rosette

Heptane 50
VOHPO4.0.5H2O 

(platelet, rosette)
VOHPO4.0.5H2O platelet, rosette

Heptane 75 VOHPO4.0.5H2O VOHPO4.0.5H2O platelet

Heptane 100 VOHPO4.0.5H2O VOHPO4.0.5H2O platelet

Dodecane 10
VOHPO4.0.5H2O 

(platelet, rosette)
VOHPO4.0.5H2O platelet

Dodecane 25
VOHPO4.0.5H2O 

(platelet, rosette)
VOHPO4.0.5H2O platelet

Dodecane 50 V 0(H 2P 0 4)2 VOHPO4.0.5H2O platelet

Dodecane 100 VOHPO4.0.5H2O,
V 0(H 2P 0 4)2 VO(H2P 0 4)2 blocky

Hexadecane 10
VOHPO4.0.5H2O 

(platelet, rosette)
VOHPO4.0.5H2O platelet

Hexadecane 25
VOHPO4.0.5H2O 

(platelet, rosette)
VOHPO4.0.5H2O platelet

Hexadecane 50 VOHPO4.0.5H2O,
V 0(H 2P 0 4)2 VOHPO4.0.5H2O blocky

Hexadecane 75 V 0(H 2P 0 4)2 VO(H2P 0 4)2 blocky

Hexadecane 100 V 0(H 2P 0 4)2 VO(H2P 0 4)2 blocky
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When alonger chain alkane (dodecane, hexadecane) were used, the same changes were 

observed but these changes were observed using smaller amounts o f higher boiling temperature 

alkane. A mixture o f VPD and VPO type materials were obtained when 10 ml o f hexadecane 

or dodecane solvent was used. These changes have shown in XRD patterns with (220) and 

(001) as the main peaks of the materials (Appendix 3.7 and Appendix 3.4), the peaks are 

assigned to mixture o f rosette and platelet morphology o f the materials, but SEM (Appendix 

3.9 and Appendix 3.6) only indicated that materials have platelet morphology. Further, mixture 

o f rosette and platelet morphology o f the material were obtained by using 25 ml of octane 

solvent that indicating, longer chain alkanes (dodecane, hexadecane) switch the morphology of 

these materials with smaller amounts o f alkane solvent as compared with short chain alkane 

solvent (octane, heptane). Additionally, in the case o f heptane solvent, these changes were 

observed with using high amount o f heptane solvent and SEM (Appendix 3.3) o f the material 

clearly indicated that mixture o f rosette and platelet morphology was observed when 25 and 50 

ml of heptane was introduced. Surface area o f these materials gave same results that platelet 

morphology materials were between 8-16 m2/g and blocky or chunky morphology materials 

were between 1-3 m2/g. However, the surface area o f the mixture o f platelet and rosette 

morphology materials was higher than o f other materials; 18-32 m2/g.



77

In the absence o f an alkane VOPO4.2 H2O is reduced to VOHPO4 .O.5 H2O in VPD preparation 

method. Furthermore, different morphology materials can be obtained when adding o f different 

amount o f alkane solvent. Addition o f larger amounts o f alkane switches to V0 (H2P0 4 ) 2  

whereas, low amounts of alkane leads to VOHPO4 .O.5 H2O.

Morphology changes were obtained when changing the amount o f alkane solvents while 

keeping the same amount of VOPO4.2 H2O (1 g) and 1-butanol (25 ml), therefore four variables 

were involved in these preparations. These are reaction temperature, V: alcohol mole ratio, 

total volume and alcohol: alkane volume ratios.

To try and determine the key influences on the changes, two sets o f experiments were carried 

out to investigate the effect of adding alkane into the reaction. Firstly, the V: alcohol mole ratio 

and alcohol: alkane volume ratios were changed with keeping the same total volume. Second 

one is keeping the same V: alcohol (1:50 mole) mole ratio and total volume while changing the 

alcohol: alkane volume ratio.

First set o f experiments details are shown in table 3.3. The XRD and SEM of new materials 

prepared using different amount o f 1-butanol (175, 170, 160. 150, 125, 75, 50, 25, 5 and 0 ml) 

and octane solvent are shown in figure 3.9 and 3.10 respectively.
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Table 3.3 - Experimental details o f material prepared using different amount o f 1-butanol and

octane solvent with VOPO4 .2 H2O (1 g)

Material
name

Mass of 
VOPO4.2 H2O 

(g)

V:OH mole 
ratio

1 -Butanol 
(ml)

Octane
(ml)

Bl-175 1 1:350 175 0

Bl-170 1 1:340 170 5

Bl-160 1 1:320 160 15

Bl-150 1 1:300 150 25

Bl-125 1 1:250 125 50

Bl-75 1 1:150 75 1 0 0

Bl-50 1 1 : 1 0 0 50 125

Bl-25 1 1:50 25 150

Bl-5 1 1 : 2 0 5 170

B l-0 1 0 175
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Fig. 3.9 The XRD of new materials prepared using different amount o f 1-butanol and octane 

solvent. Key ■  = VOHP04 0.5H2O; □  = Y 0 P 0 4.2H20
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The XRD patterns of materials (figure 3.9) prepared using different amount of V: alcohol mole 

ratio and octane solvent and the same total volume (175 ml), illustrate that the material 

obtained without the addition of alkane (B 1-175) shows the XRD pattern VOHPO4.O.5 H2O 

with (220) as the main reflection. But, SEM shows that material did not give rosette 

morphology (figure 3.10). When small amounts of octane are added into the preparation there 

is a decrease in the intensity of the (220) reflection and an increase in the intensity of the (001) 

reflection (5, 25, 50, 100, 125 and 150 ml), indicating that there is a switch from mixture of 

VOHPO40.5H2O (rosette) and VOHPO4 O.5 H2O (platelet) type to VPO (platelet) type 

morphology.

Fig. 3.10 The XRD of new materials prepared using different amount o f 1-butanol and octane

solvent
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Bl-25

Fig. 3.10 The XRD of new materials prepared using different amount of 1-butanol and octane

solvent
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This is shown in the SEM (figure 3.10) of these materials, with the B1-170 and B 1-160 sample 

showing both rosettes and platelets, whereas Bl-150, B 1-125, Bl-75 and B l-50 consist only of 

thin platelets. The SEM shows that the platelets become thicker as more octane is added (B l- 

25). Therefore, morphology changes were obtained by changing the amount o f octane and 

alcohol. The reaction temperature was measured for all these experiments and it was « 1 1 8°C. 

Furthermore, when higher boiling temperature alcohols were used or when VOHPO4 O.5 H2O 

samples were heated in the alkane without an alcohol these changes were not observed. This 

implies that the reaction temperature does not influence the reaction mechanism. Therefore, 

V:alcohol mole ratio or alcohol: octane volume ratio may be an influence in these morphology 

changes. So, the the next experiment was carried out with constant V:alcohol mole ratio (1:50) 

and a constant total volume with changing the alcohol:octane volume ratio.

Second set o f experiments details are shown in table 3.4. The XRD and SEM of new materials 

prepared using different amount o f 1-butanol (175, 170, 160. 150, 125, 75, 50, 25, 15, 5 and 0 

ml) and octane solvent are shown in figure 3.11 and 3.12 respectively.
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Table 3.4 Experimental details o f material prepared using different amounts o f 1-butanol and 

octane solvent with VOPO4 .2 H2O (V: alcohol = 1:50)

Material
name

Mass of  
V 0 P 0 4.2H20  

(g)

V:OH mole 
ratio

1 -Butanol 
(ml)

Octane
(ml)

Bl-175 7 1:50 175 0

B2-170 6.75 1:50 170 5

B2-160 6.5 1:50 160 15

B2-150 6 1:50 150 25

B2-125 5 1:50 125 50

B2-75 3 1:50 75 1 0 0

B2-50 2 1:50 50 125

B2-25 1 1:50 25 150

B2-15 0 .6 1:50 15 160



84

o

wr
(110) J  <101)(002S2(^fet)l21j20lS3%1X102)

■ □ ■ ■ f  riD

n nm (121) ( 1 (102>(200) -(201W 131)
■  ■  ■  I

(0( 1)

(101)

<200). a  ■ rf2” ) * ,  ■
— *— ^—̂ 2̂ )——̂ —

(220)

20 40

B2-15

B2-25

B2-50

B2-75

B2 - 125
----JV w

_ _ J C _
B 2 - 150

O
x _ .

B2-160

O ■
— A B2-170

O
- ____A . . . B 2 - 175

' I ' l ■
60

2 theta(degree)

Fig. 3.11 The XRD o f new materials prepared using different amount o f 1-butanol and octane 

solvent. Key ■  = VOHPO4.0.5H2O; □  = V 0(H 2P 0 4)2; VOP04 intercalates = O
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Fig. 3.12 The XRD of new materials prepared using different amount of 1-butanol and octane

solvent
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Fig. 3.12 The XRD of new materials prepared using different amount of 1 -butanol and octane

solvent

The XRD patterns of materials (figure 3.11) prepared using different amount o f 1-butanol and 

octane solvent with the same V:alcohol mole ratio (1:50) and the same total volume, show 

those materials (B2-175 to B2-75) have [220] reflection is the most dominant feature in the 

sample and additionally higher d-space ( 16.612 A) peak also was present in these materials at 

two theta five , this indicates that VOPO4 2 H2O may be intercalated by 1-butanol. The 

observed result differs when compared with previous results. 14 Where the standard 

VOHPO4 O.5 H2O has only one main peak in the XRD pattern. It may be mixture of
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VOHPO4 O.5 H2O and VOPO4 intercalates. Furthermore, SEM (figure 3.12) o f these materials 

did not show any well defined morphology which is platelet or rosette. The XRD and SEM of 

B2-50 and B2-25 indicate that materials have platelet morphology but the size of these 

platelets is different; where platelets o f B2-25 are bigger than B2-50 plates. The XRD of B2-15 

shows that material has V0 (H2P0 4 ) 2  as the major phase. Therefore, VOHPO4 O.5 H2O phase 

switching to VO(H2PC>4)2 phase were obtained by changing the alcohol:octane volume ratio. 

The reaction temperature was also measured for all these experiments and it was =118°C. 

Therefore, the alcohol:alkane volume ratio is a key factor for these effects.

The above experiments were repeated using 1-octanol as the alcohol instead o f 1-butanol. 

Experiments details are shown in Table 3.5. The XRD and SEM of these are shown in figure 

3.13 and 3.14 respectively.



88

Table 3.5 Experimental details o f material prepared using different amount of 1-octanol and

octane solvent with VOPO4 .2 H2O (1 g)

Material
name

Mass of 
VOPO4 .2 H2O 

(g)

V:OH 
mole ratio

1 -Octanol
(ml) Octane (ml)

01-175 1 1:175 175 0

01-160 1 1:160 160 15

01-150 1 1:150 150 25

01-135 1 1:135 135 40

01-125 1 1:125 125 50

0 1 - 1 0 0 1 1 : 1 0 0 1 0 0 75

01-75 1 1:75 75 1 0 0

01-50 1 1:50 50 125

01-40 1 1:40 40 135

01-15 1 1:15 15 160

0 1 - 0 1 - 0 175
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Fig. 3.14 SEM of new materials prepared using different amount of 1-octanol and octane

solvent
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Fig.3.14 SEMof new materials prepared using different amount of 1-octanol and octane solvent

When 1-octanol was replaced with 1-butanol morphology changes were observed. The XRD 

patterns obtained for 01-175, 01-160 and 01-150 showed that VOHPO4 O.5 H2O was the only
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phase (figure 3.13). SEM of these materials in figure 3.14 show that all preparations led to a 

mixture o f platelet and rosette morphology. The XRD patterns of the materials, 01-135 and 

01-125 in figure 3.13, show a mixture o f VOHPO4 O.5 H2O and V0 (H2P0 4 )2 . Materials 01 -  

100 to 01-40 have characteristic o f V O ^ P O ^ , by XRD. For all these experiments, the 

V:alcohol mole ratio and alcohol: alkane volume ratios were different.

Therefore, the next experiments were carried out with keeping the same V: alcohol mole ratio 

while changing alcohol: alkane volume ratio. Experiments details are shown in Table 3.6. The 

XRD and SEM of new materials prepared using different amount o f 1-octanol (175, 160. 150, 

135, 125, 115, 100, 75, 50, 40, 15 and 0 ml) and octane solvent are shown in figure 3.15 and 

3.16 respectively.
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Table 3.6 Experimental details o f material prepared using different amount o f 1-octanol and 

octane solvent with VOPO4 .2 H2O (V:alcohol = 1:50)

Material
name

Mass of 
V 0 P 0 4 .2H20  

(g)

V:OH 
mole ratio

1-Octanol
(ml) Octane (ml)

02-175 3.5 1:50 175 0

02-160 3.2 1:50 160 15

02-135 2.75 1:50 135 40

02-125 2.5 1:50 125 50

02-115 2.3 1:50 115 60

0 2 - 1 0 0 2 1:50 1 0 0 75

02-75 1.5 1:50 75 1 0 0

02-50 1 .0 1:50 50 125

02-40 0 .8 1:50 40 135

02-15 0.3 1:50 15 160
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Fig. 3.12 SEM of new materials prepared using different amount of 1-octanol and octane

solvent
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Fig. 3.16 SEM of new materials prepared using different amount of 1-octanol and octane

solvent

The XRD pattern of (02-175) in (figure 3.15) shows the (220) as the main reflection and SEM 

shows that materials have rosette morphology. Materials, 02-160 to 02-75 have characteristic 

o f VOHPO4 O.5 H2O as major phase. Therefore, different morphology changes were obtained 

by changing the alcohol:alkane volume ratio.

Different types of materials can be synthesized when changing the amount o f alkane solvent in 

VPD preparation method. Low amount o f alkane solvent gave rosette morphology meanwhile 

platelet or blocky morphology obtained when increasing the amount of alkane solvent.
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3.4 Catalyst testing and characterization

3.4.1 Characterization of catalyst

Characterisation o f catalysts after catalyst testing were carried out, precursor was prepared by 

reacting o f VOPO4.2 H2O with 1-butanol and differing amount o f octane solvent

(2 0 0 ) (0 4 2 ) B-400

(2 0 0 ) (0 4 2 ) (0 2 0 ) B-100

(0 4 2 )
iu l * f H i V   ...

(200)

(021) (002)

(020)

(232) (0 6 3 )

(0 4 2 )

(200)

(021) (002)

(020)

(232) (0 6 3 )

—r~
20

B-25 

B-0

~r~
40

2 theta (degrees)
60

Fig. 3.17 The XRD patterns o f final catalysts
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The XRD patterns o f the catalysts derived from the new preparation route using octane as a co­

solvent are shown in figure 3.17. Catalysts obtained from the B-0 and B-25 material gave 

similar patterns, with all the peaks indexed to (VO)2P2 0 7 . But, crystallinity o f these final 

catalysts and intensities o f these peaks are different. According to the literature, (200) plane is 

more active for «-butane oxidation in the final catalyst and (200) reflection is considerably 

broadened due to a combination o f several overlapping peaks (200, 102, 040) with very similar 

plane spacing (0.386, 0.406 and 0.414 nm respectively). The fact that no characteristic lines 

from any VOPO4 phases are present in figure 3.17 suggests that such phases are either 

completely absent or are present at levels below the detection level of the XRD technique. 

XRD patterns o f the final catalyst prepared from the B-100 material suggest that it is poorly 

crystallized and small number o f peaks can be assigned to (V0 )2P2 0 7 . Catalyst obtained from 

the B- 400 sample gave different patterns than B-0 and B-25 material, but intensity o f (200) 

plane is very small in the B-400 catalyst.
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Fig. 3.18 The Raman spectrum of final catalysts

The Raman spectra o f catalyst obtained from the B-0 and B-25 sample have a very strong peak 

at 916 and 921 cm'1 respectively as their main feature. This has been assigned to the P-O 

stretch o f (VO)2P2(>7. Raman band o f catalyst obtained from the B- 400 material was observed 

at 722 cm'1 due to the V0 (P0 3 ) 2  phase which could result from the transformation o f  

V0(H 2P 0 4)2.
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Fig.3.19 The SEM of final catalysts

Figure 3.19 shows an SEM micrograph of the final catalyst. A topotactic transformation has 

obviously occurred, since the activated material has retained the characteristic platelet 

morphology (B-100 and B-25) of the precursor material.

3.4.2 Catalyst testing

The oxidation of /2-butane was carried out in a microreactor with a standard mass o f catalyst 

(0.5 g). «-Butane and air were fed to the reactor via calibrated mass flow controllers to give a
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feedstock composition o f 1.5% n-butane in air. The products were then fed via heated lines to 

an on-line gas chromatograph for analysis. The reactor comprised a stainless steel tube with the 

catalyst held in place by plugs o f quartz wool. A thermocouple was located in the centre o f the 

catalyst bed and temperature control was typically ±1°C. Carbon mass balances o f  > 97% were 

typically observed. Catalyst samples were heated in situ (1.5% «-butane in air) at 400°C by 

heating the sample from room temperature at a rate o f 3°C/min.

3.4.2.1 Evaluation of VPO materials as catalysts for butane oxidation

The importance of vanadium phosphates as catalysts for alkane activation, four materials (B-0, 

B-25, B-100 and B-400) were tested for the selective oxidation o f butane and the results are 

summarized in Table 3.7.

The catalyst, B-0 and B-25 prepared by in situ activation exhibit the best performance among 

the tested catalysts that the butane oxidation o f the B-0 and B-25 materials produced a maleic 

anhydride selectivity o f 50% at a butane conversion of 60 and 70% respectively, whereas the 

B-100 material showed the same selectivity (50%) o f B-0 and B-25 material but low 

conversion. Therefore, VOHPO4.O.5 H2O is the best preferred catalyst precursor for butane 

oxidation. Furthermore, VOHPO4.O.5 H2O is the preferred catalyst precursor for commercial 

catalyst.1,5,26 The catalyst, B-400 exhibits low selectivity to maleic anhydride.
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Table 3.7 Catalyst performance of vanadium phosphorous catalysts for the oxidation o f butane

to maleic anhydride.3

Material
name

Surface area ( m2/g) Conversion Selectivity (%) Specific activity 
(10‘5 mol m'2 h’1)Precursor Catalyst (%) MA CO co2

B-0 34 32 61 51 22 27 1.25

B-25 26 25 70 52 23 25 1.95

B-100 5 7 27 53 19 28 2.62

B- 400 3 2 6 - 27 73 0

a Reaction conditions: 1.5% butane in air, 400° C, 3000 h'1

The catalyst materials were cooled to room temperature following the reaction and were 

characterized by XRD and laser Raman spectroscopy (figure 3.17 and 3.18). Catalyst (B-0, B- 

25 and B-100) contains mainly (VO)2P2 0 7  (figure 3.17).This is known to be a very active 

phase for butane oxidation.26

The catalytic data for butane oxidation at 385°C o f VPO and VPD catalysts prepared using 

isobutanol and a VP A catalyst has been reported by Hutchings et al.27 (Table 3.8).
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Table 3.8 Catalyst performance o f VP A, VPO and VPD for the oxidation o f  butane to maleic

anhydride.27

Catalyst

Surface area ( m /g) Conversion Selectivity (%)

Specific activity

Precursor Catalyst (%) MA CO co2 (10'5 mol m‘2 h 1)

VPA 3 4 11 52 41 7 1.24

VPO 11 14 27 52 34 14 1.35

VPD 32 43 62 64 21 14 1.19

Previously, Sananes et al. reported the difference in catalytic behavior at 367°C o f VPD and 

VPO catalyst prepared with 1-octanol and 2-octanol (Table 3.9).

Table 3.9 Catalyst performance o f VPD and VPO for the oxidation o f butane to maleic

98anhydride.

Catalyst

Surface area ( 
m2/g) Conversion

(0/\
Selectivity (%) Specific activity 

(10’5 mol m'2 h'1)
Catalyst

\'V
MA CO C 02

VPD 31.2 31 51 31 16 0.50

VPO 7.4 5 59 40 0 0.27

The selectivity o f the B-0, B-25 and B-100 materials for butane to maleic anhydride oxidation 

is close to that reported by Hutchings et al?1 and Sananes et al 28. However, the specific 

activity o f B-25 and B-100 materials is higher than previous studies27. Therefore, these 

catalysts exhibit a marked increase in specific activity compared to the previous studies.
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3.5 Discussion

The alcohol:alkane volume ratio is a key factor for these morphology changes. Firstly, two 

scenarios were investigated. The first one is that VOPO4.2 H2O may react with alkane, and then 

reduced with the alcohol to platelet, rosette or blocky morphology (figure 3.20). The second 

possibility is VOPO4.2 H2O may be initially reduced by the alcohol (1-butanol or 1-octanol) to 

form VOHPO4 O.5 H2O with a rosette structure then the alkane may switch the morphology of 

VOHPO4.O.5 H2O to platelet or blocky (figure 3.21).

(001)

(200)
( 101) (002)

20 40 60

2 theta (degrees)

Fig. 3.20 VOPO4.2 H2O was reacted with octane and alcohol. Key D  = 0 C1-VOPO4
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To investigate the first scenario, VOPO4.2 H2O (lg, A) was reacted with octane (50 ml) to form 

material (B) (figure 3.20). This was then reacted with 1-butanol (25 ml) to form material (C). B 

was assigned to 0ti-VOPO4 (marked - D). But the XRD o f (C) was different from (B) that peak 

positions of (C) shifted from corresponding peak positions of (B) [marked in numbers] because 

the alcohol may be intercalated between the VOPO4 layers. This indicates that refluxing in 

alkane dehydrates VOPO4 2 H2O to tti-V 0P04 which can not react further.

For the investigation of the second possibility, VOHPO4 O.5 H2O (lg) was reacted with octane 

(50 ml) as shown in figure 3.21 because VOHPO4 O.5 H2O with a rosette morphology forms if 

VOPO4.2 H2O reacts with 1-butanol.

220

001

20 40 60

2 theta degrees

Fig. 3.21 VPD (lg) was reacted with octane (50 ml)
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According to XRD (figure 3.21), the morphology o f VOHPO4 .O.5 H2O did not change by 

reacting with octane. Therefore, the second possibility was not true. Therefore, another idea 

was introduced that different concentration of alcohols obtained by changing the alcohol: 

alkane volume ratios were the key factor. Based on the XRD results (figure 3.11 and 3.15), the 

concentration o f alcohol in each material was calculated and correlated to the different 

morphology materials obtained by changing the concentration o f alcohol (Table 3.10).

Table 3.10 -Concentration of alcohol and morphology

Material name Concentration of alcohol 
(mol / 1)

Morphology

B2-15 9.88 X  10' 1 VO(H2P 0 4) 2

02-50 18 x 1 0 1 V 0(H 2P 0 4) 2

B2-25 15 x 10' 1 VOHPO4 .0.5H2O - platelet

02-75 27 x 10‘‘ VOHPO4 .0.5H2O - platelet

B2-50 31 x 10' 1 VOHPO4 .0.5H2O - platelet

02-175 63 x 10' 1 VOHPO4 .0.5H2O - rosette

Concentration o f alcohol was changed by changing the alcohol:alkane volume ratio. Based on 

the above calculation, different concentrations of 1-butanol gave different materials. Therefore, 

the concentration of alcohol is playing a key role in the reaction mechanism.

According to reaction kinetics, different concentrations o f 1 -butanol have a different oxidizing 

rate and the concentration of alcohol has a linear relationship with oxidizing rate o f alcohol.
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Furthermore, the reaction rate between 1-butanol and VOPO4 .2 H2O will be changed with 

respect to the different oxidizing rate o f 1-butanol.

It was reported in the literature14,29 that V0 (H2P0 4 ) 2  can be formed from VOPO4 .2 H2O whilst 

the ratio of V to P is changing from 1:1 to 1:>2. This suggests that VOPO4 .2 H2O dissociates in 

the alcohol to give “V5+” and “P” species in the solution as it dissolves. To form 

VOHPO4 .O.5 H2O and V 0(H 2P 04) from V 0 P 0 4 .2H20  the V5+ must be reduced to to V4+ by the 

alcohol. In the literature it has been shown that in order for VOHPO4 .O.5 H2O to be formed the 

V2O5 + H3PO4 the initial step is reduction of V5+ to V4+ shows it goes via V4O9 and a V4+ 

alkoxide.27,30,31

The literature suggests that VOHPO4 .O.5 H2O and V0 (H2P0 4 ) 2  can be obtained whilst the V: P 

ratios kept at 1:1 and 1 :» 1  respectively.8,29 It was found during this study that 

VOHPO4 .O.5 H2O was obtained (B2-50 and B2-25) by using a high concentration o f alcohol. 

The high concentration o f the alcohol results in a fast reaction rate (between 1-butanol and 

VOPO4.2 H2O) and a faster reduction rate (V5+ to V4+). Therefore it can be suggested that 

VOHPO4 .O.5 H2O is obtained whilst V4+: P ratio kept at approximately 1:1 due to the fast 

reduction o f V5+

It was also found that material VO(H2P0 4 ) 2  was obtained (B2-15 and 02-50) by using a low 

concentration of alcohol. The low concentration o f alcohol results in a decreased reaction rate 

(between 1-butanol and VOPO4.2 H2O) and a slower reduction rate (V5+ to V4+). The slower
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reduction rate means that the V4+:P ratio is 1 :» 1  and the excess phosphorous favours the 

formation of VO(H2P 0 4) 2 which has a V:P ratio o f 1:2.

It can be concluded that rate o f reduction governs whether “V4+”:P is close to 1:1 or 1 :» 1  

which is the key factor in determining which phase is formed. A scheme o f the proposed 

mechanism o f material formation is shown in figure 3.22.

Alcohol, heat

V 0 P 0 4 .2H20 -► “v 5+” +  “p

Alcohol (low / Alcohol (high
concentration), heat / concentration), heat

Slow Reduction /  \ Fast Reduction

V:P = 1 :» 1

“p”

V:P —1:1

VO(H2P04)2 VOHPO4 .0.5H2O

Fig. 3.22 Scheme of material formation

When V 0 P 0 4 .2H20  is reduced using an alcohol as the solvent and reducing agent 

VOHPO4 .0.5H2O is formed. However, previous studies have shown that when an aldehyde is 

used V0(H 2P 0 4) 2 is formed. Further, in organic chemistry, alcohol will be oxidised to
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aldehyde when it participates in reduction reaction while aldehyde will be oxidised to 

carboxylic acid when aldehyde participates in the reduction reaction. Furthermore, in organic 

chemistry, the rate of the reduction will be faster when alcohol is used when compared to 

aldehyde at same reaction conditions because in the case o f alcohol, reactive group o f —O-H 

attached directly to the C atom but in the case o f aldehyde, = 0  attached with C atom and the 

reactivity o f -O-H is higher than the reactivity of = 0 . Therefore, the aldehyde is not as good a 

reducing agent as the corresponding alcohol and so there will be a V4+: P ratio o f 1 :» 1  

favouring the formation of V O ^ P O ^ .

Further, a mixture of V O ^ P O ^  and VOHPO4 .O.5 H2O was formed when 15 ml o f 1-butanol 

and 160 ml of octane were reacted but there was no reaction when 15 ml o f 1 -octanol and 160 

ml o f octane were reacted. With octanol, the concentration was not enough to reduce the 

VOPO4 .2 H2O but, in the case of 1-butanol, 15 ml o f 1-butanol and 160 ml o f  octane switched 

the morphology from VOPO4 .2 H2O to V0 (H2P0 4 ) 2  and VOHPO4 .O.5 H2O, so, this 

concentration was enough to reduce the VOPO4 .2 H2O. In organic chemistry, 1-butanol can be 

easily oxidized to aldehyde when compared with 1 -octanol at same reaction conditions because 

of less (+) inductive effect that alkyl group o f CH3 -  (CH2V  has higher electron releasing 

power than CH3 -  ( ( ^ 2)2-, therefore more negative charge will be formed on C atom which is 

directly connected with O-H group, so (+) inductive effect o f 1-octanol is higher than 1- 

butanol therefore less (+) inductive effect is more favour for oxidation o f alcohol. Therefore, 

reducing power o f 1-butanol is higher than the 1-octanol and the rate will be higher than the 1 - 

octanol.
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Therefore, concentration of alcohol can be changed by adding the alkane solvent which is 

changing the oxidizing rate o f alcohol and the reaction rate between alcohol and VOPO4 .2 H2O. 

Furthermore, high concentration of alcohol gave VOHPO4.O.5 H2O while low concentration of 

alcohol gave VO(H2PC>4)2 because o f different rate o f the material formation. Therefore, 

different concentration o f alcohols gave different materials.

Although the results show that VOHPO4 .O.5 H2O is formed at high concentrations o f alcohol it 

was observed that different morphologies o f VOHPO4 .O.5 H2O were obtained at different 

alcohol:alkane ratios (Table 3.10). At higher concentrations o f alcohol an XRD pattern with the 

(220) crystal plane as the dominant feature; this is characteristic of VOHPO4 .O.5 H2O, with a 

rosette morphology. Whilst at lower concentrations the (001) is the dominant feature in the 

XRD pattern indicating VOHPO4.O.5 H2O is formed with a platelet morphology. Therefore, the 

concentration o f the alcohol can also affect the morphology o f the precipitated crystals.

Solution-phase synthesis is one of the most important methods to control the morphology of 

the materials. Further, the precipitation process is a key method to synthesis materials of 

different morphology materials in solution phase. It can be said that the concentration of ions 

in solution is a deciding factor for obtaining material o f different morphology in the 

precipitation method.

VOPO4. 2H2O is soluble in alcohol but not in alkane, and, V5+ reduction to V4+ takes place in 

the alcohol medium only. Because of these two above mentioned factors the amount o f alcohol 

in the medium plays a very important role in deciding the concentration o f V4+ ions in the



I l l

solution and hence it affects the supersaturation ratio. Due to the varying degree of  

supersaturation ratio from the varied alcohol content in the mixture, we get different 

morphologies of VOPO4 .O.5 H2O.

Li et al.32 observed a similar result, but for BaSCL crystals from Ba2+ ions and SC>42‘ ions They 

also reported that initial Ba2+ ion and SO42' concentration affects the morphology o f the 

resultant BaSCL crystals. For example, a rod-like morphology was obtained for BaSCL when 

the initial concentration of the constituent ions were low (0.001 mol/1). When the concentration 

was increased (0.005 mol/1) a snow like morphology was obtained whereas at higher 

concentration o f the constituent ions a leaf-like morphology (0.02 mol/1) or spherical 

morphology were obtained (0.1 mol/1).

In this study the initial amount of VOPO4.2 H2O (1 g) used in the reaction if  fully dissolved in 

the solvent gives rise to a solution of 0.028 mol/1. From our previous reaction scheme for the 

mechanism (figure 3.22) we postulate that the VOPO4.2 H2O dissolves to give a V5+ species 

and a phosphorous species and the V5+ is then reduced to V4+ quickly. We can therefore expect 

to have a solution with 0.028 mol/1 and a V4+ concentration < 0.028 mol/1, depending on the 

rate which is governed by the concentration of alcohol. The values are very similar to the 

concentrations investigated by Li et al.32 which show that this is a plausible explanation for the 

different morphologies observed. This could also explain the differences observed for primary 

and secondary alcohols. Both will have a similar reduction rate so both give VOHPO4 .O.5 H2O, 

but the secondary alcohol will react slightly slower due to the inductive effect explaining the
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differences observed with a rosette for the fastest rate and a platelet morphology for the slightly 

slower rate.

In another study, Cano et a lP  obtained different morphologies o f 2-(4-isobutylphenyl) 

propionic acid when it was crystallized from different solvents, he proposed a chemical 

interaction between the solvent and the carboxyl group stops crystal growth in a particular 

plane. This is not the case for this study as the solvent mixtures both contain the same 

components, however this could explain the differences observed with different solvents such 

as primary and secondary alcohols.

From the above discussion, it is clearly evident that the alcohol concentration in the reaction 

medium affects the V4+ concentration, and in turn affects the degree of supersaturation. From 

literature it is known that varying degree of supersaturation affects the morphology o f the 

resultant crystal and hence the alcohol concentration affects the degree of supersaturation and 

in turn affects the morphology o f the resultant VOHPO4 .O.5  H2O.

3.6 Conclusions

We have shown that adding an alkane co-solvent to the reaction can change the product 

formed. We suggest that this is due to the change in reaction rate o f the V5+ to V4+ reduction 

which is the key step in our proposed mechanism to determine the product formed.

A fast reduction led to a V4+:P ratio of approximately 1:1 with VOHPO4 .O.5  H2O as the major 

product. A slow rate led to a V4+:P ratio of 1 : » 1  with V 0 (H2P0 4 ) 2  as the major product.
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Small changes in the rate were shown to have an effect on the VOHPO4.O.5  H2O morphology. 

This is thought to be due to a slight change in the supersaturation o f the reactants in solution 

which has been show previously to have a large influence on the morphology o f the crystals 

formed.

Evaluation of the materials as catalysts for the oxidation o f 72-butane to maleic anhydride 

shows that the materials exhibit higher specific activities for 72-butane oxidation than previous 

studies.
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Chapter 4 

Catalyst Preparation Using New Preparation Route

4.1 Introduction

It is generally accepted that the (200) surface in (VO)2P2 0 7  is a key factor for butane 

oxidation. 1'3 Many researchers are agreed that (VO)2P2 0 7  plays an important role in the 

oxidation o f butane to maleic anhydride.4 These arguments are mainly based on the 

observation that only crystalline (VO)2P2 0 7  is obtained after long catalytic reactions. 

Bordes et a l 5 also has demonstrated that the (200) plane is selective for the formation o f  

MA, while side planes (001), (021) etc. are active for non selective oxidation such as to 

CO2 and CO etc.

Previous studies reported that the active catalyst, (VO)2P2 0 7  can be obtained from 

VOHPO4 .O.5 H2O precursors, therefore, many researchers have developed new preparation 

routes for making catalyst precursors and these precursors when reacted with 1.5% 

butane/air at 400°C to obtain selective catalyst.6'9

In this chapter, a new preparation route was developed to synthesize the final catalyst 

directly from VOPO4 2 H2O (figure 4.1) and these catalysts were tested for 72-butane 

oxidation. This route involves reducing VOPO4 .2 H2O at high temperature to obtain the 

final catalyst. Different reducing agents and conditions were analyzed (isobutanol and He 

or H2/Ar with different flow rates), among these conditions 50 ml/min, H2/AJ was found to



be a better agent and condition for this transformation. The advantage o f this transformation 

is that the final catalyst can be prepared without making catalyst precursors.

VPD orVPO route
V0P04.2H20  ------------------------------------- ► VOHPO4.0.5H2O

1.5% Bu/Air, 400°C, >72hr
50 ml/min, 5% H2/Ar, 
550°C,72 h

Fig. 4.1 Phase transformations in the VPO system

Furthermore, VOPO4 2 H2O was also prepared using pyro  phosphoric acid and the organic 

solvent based on the standard preparation method and the results can be directly compared 

with those published in the literature.10 Finally, the prepared VOPO4 2 FI2O were 

transformed into the final catalyst via new route for w-butane oxidation.

4.2 Experimental

Pyro-phosphoric acid was used to make V0 P0 4 *2 H2 0  via the standard preparation 

method.10 VOPO4 2 H2O was also prepared using organic preparation route (more details in 

Chapter 2).

VOHPO4 O.5H2O was prepared via the standard VPO route. Firstly V2O5, H3P0 4 and 1- 

butanol were refluxed for 24 hours. The pale blue product was filtered by using vacuum 

pump, washed with alcohol and acetone. The recovered product was refluxed with water for
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5 hours to remove the impurity V 0 (H2P0 4 )2. The final product was filtered at hot stage 

then washed with warm water, and dried in air at 110°C for 24 hours. The different 

V0 P0 4 -2 H20  were then reduced under different conditions to give the final catalyst. The 

sample was placed in a quartz reactor tube (internal diameter 11 mm) and heated in a 

furnace at temperature, 550°C for 72 hours. A stream o f  5 % H2/Ar mixture was passed 

over the sample at flow rate, 50 ml/min. These catalysts were tested for /2-butane oxidation 

to maleic anhydride. The catalyst data for butane oxidation were compared with catalyst 

data obtained from standard VPD and VPO materials. The V0 P0 4 -2 H20  and the final 

catalyst were characterized using a combination o f powder X-ray diffraction, laser Raman 

spectroscopy, BET surface area measurements and scanning electron microscopy.

Table 4.1 Details o f material preparations and their labels

Entry v 2o 5
Source

Phosphoric
Acid

Solvent Label Reduction
Conditions

Label

50 ml, 5%

1 Aldrich ortho H20
DHOA

(standard)
H2/Ar, 

550° C, 72 
h

50 ml, 5%

POA

2 Aldrich pyro h 2o DHPA H2/Ar, 
550° C, 72 

h
50 ml, 5%

PPA

3 Aldrich ortho isobutanol DN H2/Ar, 
550° C, 72 

h

PN

4 Aldrich ortho 1 -butanol VPO
standard

1.5% 
butane in 
air, 400° 
C, 72 h

(VO)2P2Ov 
Standard 
(VPO -py)

5 DHOA isobutanol
VPD

standard

1.5% 
butane in 
air, 400° 
C, 72 h

(V 0 )2P20 7 
Standard 
(VPD -py)



119

4.3 Results

4.3.1 Standard V 0 P 0 4-2H20  (DHOA) preparation

The XRD pattern, the laser Raman spectrum and SEM o f VOPO4 2 H2O prepared using the 

standard route have shown in figure 4.1, 4.2 and 4.3 respectively.

2500

(001)

(002)

(101 ) < 7  t I "i 7 "A
25 35

! theta degrees

Fig. 4.1 The XRD pattern of VOPO4 2 H2O (DHOA) prepared using the standard route

The powder X-ray diffraction pattern (figure 4.1) corresponds to VOPO4 2 H2O, with the 

dominant reflection at 11.9° (d-spacing = 7.3 A) indexed to the (001) plane (Table 4.2).
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Table 4.2 The XRD reflections o f  V 0 P 0 4-2H20  prepared using standard route

V 0 P 0 4-2H20 5,11 V O P04-2H20  (observed)

hkl d- calc d- obs I /Io

001 7.410 7.369 100

101 4.756 4.754 14

002 3.705 3.690 24

102 3.181 3.173 5

200 3.101 3.103 19

201 2.861 2.860 8

202 2.378 2.375 5

[d-calc = calculated d-spacing, d-obs = observed d-spacing, I /Io = relative intensity]

956

1040
c
3O
O

554

(580)
282 (450;

200 400 600 800 1000 1200 1400

Raman shift (cm'1)

Fig. 4.2 The laser Raman spectrum o f  V 0 P 0 4-2H20  (DHOA) prepared using the standard

route
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Table 4.3 The Raman peaks o f  V 0 P0 4 -2 H20  prepared via standard route

< 0 ►a O ■2H20 5,11 V 0 P 0 4 -2H20  (observed)

Peaks (cm 1) I/Io Peaks (c m 1) I/Io

1039 strong 1040 strong

988 medium 990 medium

952 very strong 948 very strong

658 weak 660 Very weak

542 strong 540 medium

451 weak 450 very weak

281 medium 281 weak

DHOA

Fig. 4.3 The SEM o f  V 0 P 0 4-2H20  prepared using the standard route
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The Raman spectrum (figure 4.2) agrees with published spectra o f VOPO4 2 H2O (Table 

4.3). The main band at 956 cm' 1 is due to the symmetric stretch o f P-O in the PO43' 

tetrahedra and the bands at 990 cm' 1 and 1040 cm' 1 are due to the V -0  and V-O-P 

stretching modes, respectively. The SEM (figure 4.3) micrograph o f the VOPO4 2 H2O 

prepared using standard route illustrates that the sample has a plate morphology. The 

surface area of DHOA was between 1-3 m2/g.

4.3.2 Characterization of V 0 P 0 4-2H20  (DHPA) using /?yro-phosphoric 

acid

The XRD, Raman and SEM of VOPO4 2 H2O prepared using pyro-phosphoric are shown in 

figure 4.4, 4.5 and 4.6 respectively.

12000
(001)

10000

8000

are
f  6000

4000

(002)2000

5 15 25 35 45 55
2 theta degrees

Fig. 4.4 The XRD pattern o f VOPO4 2 H2O (DHPA) prepared using pyro -  phosphoric acid
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Table 4.4 The XRD reflections o f  VOPO4 2 H2O prepared using /Tyro-phosphoric acid

V 0P 04 •2H20 5 , 11
VOPO4 2 H2O using pyro- 

phosphoric acid

hkl d-calc d-obs I/Io

0 0 1 7.410 7.369 1 0 0

1 0 1 4.756 4.754 1

0 0 2 3.705 3.690 17

1 0 2 3.181 3.173 1

2 0 0 3.101 3.103 1

2 0 1 2.861 - -

2 0 2 2.378 2.460 1

[d-calc = calculated d- spacing, d-obs = observed d- spacing, I/Io = relative intensity]

VOPO4 2 H2O prepared using /?yro-phosphoric acid (figure 4.4) and ortho-phosphoric acid 

(figure 4.1) displayed some differences in their XRD pattern. That is, the intensity o f  some 

o f the smaller peaks was less in DHPA as compared with DHOA. This indicates that DHPA  

has thinner plates when compared with DHOA. Furthermore, the crystallinity o f  the 

VOPO4 .2 H2O prepared using /Tyro-phosphoric acid is higher than those prepared using 

ortho-phosphoric acid.
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Fig. 4.5 The laser Raman spectrums o f different VOPO4 2 H2O (DHPA)

The Raman spectrum o f DHPA (figure 4.5) were very close and in agreement with the 

published spectra o f VOPO4 2 H2O11 (Table 4.3) and are similar when compared to the 

spectrum o f DHOA. This is expected as Raman spectroscopy reveals stretching frequencies 

and bending modes between the atoms and as such is a fingerprint technique. Therefore, 

any differences observed in the morphology or crystallinity o f the samples would not be 

seen using Raman spectroscopy.
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DHPA

Fig. 4.6 The SEM o fV 0 P 0 4*2H20  

The SEM micrograph (figure 4.6) of the VOPO4 2 H2O prepared using the /?yro-phosphoric

  9
acid has a platelet morphology. The surface area o f DHPA was between 1-3 m /g.

4.3.3 Characterization of V 0 P 0 4*2H20  prepared in organic solvent

The XRD pattern and SEM of VOPO4 2 H2O prepared using organic solvent designated as 

DN are shown in Figure 4.7 and 4.8.

VOPO4 2 H2O prepared using organic solvent route has a very different XRD pattern 

compared to the standard materials (Table 4.1). It is interesting to note that the [001] and 

[200] reflections in figure 4.7 are considerably broadened as compared with standard 

VOP04-2H20 .



In
te

ns
ity

 
(a

.u
)

126

(001)

(200)

( 101) (002) 

A vJ

” 1
6020

i
40

2 theta (degrees)

Fig. 4.7 The XRD pattern of VOP0 4 -2 H20  prepared using new method (DN).

Fig. 4.8 The SEM o f DN.
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The SEM (figure 4.8) indicated that the morphology o f this material is different from the 

standard materials in that they do not have regular plates. The surface area o f this 

V 0 P 0 4-2H20  was 3 m2/g.

4.3.4 Standard VOHPCVO.Si^O preparation using VPO method

The XRD, Raman spectrum and SEM of VOHPO4 O.5 H2O prepared using VPO route are 

shown in figure 4.9, 4.10 and 4.11 respectively.

4000-

(001)

3000-

D
CO

&
COc
a>
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1000-
(121)

(101)

(200)
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(131)

0 -

20 40 60

2 theta (degrees)

Fig. 4.9 The XRD pattern o f  VOHPO4 O.5H2O prepared via VPO route
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Fig. 4.10 The Raman spectrum of VOHPO4 O.5 H2O prepared via VPO route

Fig. 4.11 The SEM of VOHPO4 O.5 H2O prepared via VPO route
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VOHPO4 O.5 H2O materials prepared via VPO route using 1-butanol as an alcohol have a 

characteristic XRD pattern, with the [001] main reflection present (figure 4.9). The Raman 

spectrum o f VOHPO4 O.5 H2O (figure 4.10) has a P-O stretching frequency with a Raman 

shift o f around 986 cm'1, which is characteristic o f VOHPO4 O.5 H2O, which was reported 

by Guliants et al.u However, he was also reported that many spectra for VPO materials the 

bonding frequency o f V = 0  at 1113 cm'1 and V-O-P bands at a high frequency, 1156 cm'1. 

But, the rest o f these peaks are not visible in VOHPO4 O.5 H2O because o f  background 

fluorescence. SEM (figure 4.11) shows, the morphology o f  the VOHPO4 O.5 H2O precursor 

have a platelet morphology.

4.3.5 Characterisation of (V 0)2P207

Standard VOHPO4 O.5 H2O (VPO) were activated in situ under a flow o f 1.5% butane in air, 

to give the active catalyst, (VO)2P207. The XRD, Raman and SEM of final catalyst ((VPO- 

p y ) are shown in Figure 4.12,4.13 and 4.14 respectively.

All XRD peaks indexed to (V0 )2P2 0 7 .5,11 The (200) plane o f the final catalyst has been 

reported to be a key factor for selective w-butane oxidation.
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Fig. 4.12 The XRD patterns o f the o f  the (VO)2P2 0 7  (VPO-py).
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Fig. 4.13 Raman spectrum o f the o f  the final catalyst (VPO-/?y)
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Fig. 4.14 SEM of the final catalyst (VPO-py)

Table 4.6 The Raman spectrum of (VO^PzCb reported by Guliants et al.5' 11

Peaks (cm 1) I/Io

1191 weak

1135 weak

1006 very weak

930 strong

920 very strong

797 very weak

457 very weak

391 very weak

274 weak

258 weak

193 very weak

112 very weak
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Raman spectrum o f the final catalyst (Figure 4.13) have a very strong peak at 928 cm ' 1 as 

their main feature. This has been assigned to P-O-P asymmetric stretch. 11 The only other 

(VO)2P2C>7 peak detected is the high frequency band at 1187 cm'1, due to the strong 

bonding o f the pyrophosphate ion. The morphology o f the final catalyst remains 

unchanged.

4.3.6 Characterization of materials prepared using direct route 

1(V0)2P20 7]

VOPO4 2 H2O o f DHOA was reduced with 5% H2/Ar at a flow rate 50 ml/min and 

temperature o f  550°C for 72 hours. It is designated as POA. The XRD patterns are shown 

in Figure 4.15. These materials were compared with the standard materials. 11

D
CD

£
CO
c
CD■4—>
c

20 40 60

20 (degrees)

Fig. 4.15 The XRD pattern o f  POA.
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Table 4.5 The XRD reflections o f  POA.

Entry Angle Counts d-space Rel I Standard 
d-space Rel I

1 16.455 517 5.387 36 4.79 10

2 20.486 1442 4.335 1 0 0 3.87 100

3 22.255 579 3.995 40 3.14 60

4 23.966 661 3.713 46 2.98 28

5 24.662 839 3.61 58 2.65 8

6 28.345 650 3.149 45 2.44 10

7 29.621 964 3.016 67

8 34.522 878 2.598 61

9 45.542 632 1.992 44

1 0 50.878 661 1.795 46

11 57.693 704 1.598 49

The XRD o f  the material (POA) was not comparable with standard [(V0)2P207] in that the 

main intense peak was observed at 20.48° with d-space at 4.3. It can be assigned to oci- 

VOPO4, it is an intermediate before forming the final catalyst5,11 and some other new peaks 

were also present with d-space 5.3, 3.6, 1.9 and 1.7. These are not related to (VO)2P2 0 7  or 

VOPO4 2 H2O. Furthermore, peaks with small intensity are related to (VO)2P2 0 7  with d- 

space at 3.9, 3.1, 3.0 and 2.59. According to the literature, (V0 )2P2 0 7  has more dominant 

peak at two theta 23 or 28 with d-space 3.87 or 3.1 respectively. It revealed that the DHOA  

was partially transformed to (VO)2P2 0 7 consisting mainly o f  (X1-VOPO4.5,11
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The laser Raman spectrum o f POA is shown in figure 4.16. SEM o f POA is shown in figure 

4.17.

1 3 4 2
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ai,
w
c3OO
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Fig. 4.16 The laser Raman spectrum of (POA)

The laser Raman peaks o f POA (figure 4.16) cannot be assigned to (VO)2P2 0 7 . But two 

peaks (271 and 473 cm'1) were related to VOPO4 2 H2O. It confirmed that DHOA was

partially transformed to (VO)2P2 0 7 .

Fig. 4.17 The SEM of the materials prepared using direct route.
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The SEM o f POA (figure 4.17) was different from the starting materials (figure 4.3). The 

SEM of POA revealed that the plates were small when compared with the starting 

materials. These results suggested that the materials prepared by this direct route have a 

different morphology from their starting materials but final catalyst prepared from 

VOHPO4 .O.5 H2O precursors have the same morphology and surface area o f their starting 

catalyst precursors. The surface areas o f these materials were the same as the starting 

materials (1-3 m2/g)

The VOP0 4 -2 H2 0  o f  DHPA was reduced with 5% H2 /Ar at a flow rate o f  50 ml/min and a 

temperature o f  550°C for 72 hours. It is designated as PPA. The XRD pattern o f PPA is 

shown in figure 4.18. It was compared with standard materials.11

2 5 00-
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Fig. 4.18 The XRD pattern PPA.
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Table 4.7 - The XRD reflections o f  PPA.

Standard

Entry Angle Counts d-space Rel I d-space Rel I

1 20.428 530 4.347 27 4.79 10

2 22.98 1953 3.87 1 0 0 3.87 100

3 27.04 503 3.298 26 3.14 60

4 28.548 892 3.127 46 2.98 28

5 2.65 8

6 2.44 10

The XRD o f  PPA was not the same as with standard material [(VO)2P2C>7] (Table 4.7). 

However, most o f these peaks were assigned to (VO)2P2 0 7, with an intense peak observed 

at 22.98° with d-spacing o f  3.87. Some other peaks were also present with d-space 4.3 and 

3.2. These are not related to (VO)2P2 0 7  or VOPO4 2 H2O. It can be assigned to OC1-VOPO4 . 

This indicated that materials were partially transformed to (VO)2P2C>7 phase.

The laser Raman spectrum and SEM o f PPA are shown in figure 4.19 and 4.20 

respectively. The laser Raman peak o f PPA (figure 4.19) was observed at 918 cm ' 1 with a 

medium band. It was related to (VO)2P2 0 7 . The rest o f  these peaks were not related to 

(VO)2P2 0 7 . Some o f these peaks are related to ai-V 0 P0 4  (435 and 970 cm'1) with a strong 

band. These results indicated that VOPO4 2 H2O was not fully transformed to (VO)2P2 0 7 .
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Fig. 4.19 The laser Raman spectrum of PPA.

Fig. 4.20 The SEM o f PPA.

The SEM of PPA (figure 4.20) indicated that materials were arranged with irregular 

fractured plates comparable to DHPA.
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Furthermore, based on these above results, VOPO4 2 H2O prepared using pyro -phosphoric 

or or/Zzo-phosphoric acid was fully or partially transformed to (VO)2P2C>7. However, 

intermediate phases were present in these final catalysts [(VO)2P2 0 7 ].

The VOPO4 2 H2O of DN was reduced with 5% H2/Ar at a flow rate 50 ml/min and a 

temperature o f 550°C for 72 hrs. It is designated as PN. The XRD pattern o f  PN is shown in 

figure 4.21. It was compared with standard materials. 11
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Fig. 4.21 The XRD pattern o f  PN
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Table 4.8 - The XRD reflections o f  PN.

Entry Angle Counts Dspace Rel I

1 28.432 941 3.139 100

The XRD o f PN has only one peak with d-space at 3.1, it can be assigned to (VO)2P2C>7 . 

The crystallinity o f these materials was lower as compared with POA and PPA. The surface 

areas o f these materials were the same as the surface area o f DN (3 m /g)

tik
AccV Spot Magn Det WD I 
10.0 kV 4 0 25000X SE 10 7

Fig. 4.22 The SEM of PN.

The morphology of PN was different from DN. PN was arranged with fractured irregular 

plates.



140

4.4 Catalyst testing

The difference in the catalytic performance at 400°C o f POA, PPA and PN catalysts 

prepared using new route is shown Table 4.9

Table 4.9 Catalyst performance o f POA, PPA and PN for the oxidation o f  butane to maleic

anhydride.3

Catalyst

Surface area 

(m2/g) Conversion
(%)

Selectivity (%) Specific activity 

(10'5 mol m'2 h'1)
Catalyst MA CO C 0 2

POA 3 56 13 9 78 3.10

PPA 3 23 24 27 49 2.36

PN 2
a •

49 23 14 64 7.25
1-1

The catalytic data for butane oxidation at 385°C o f VPO and VPD catalysts prepared using

1 0
isobutanol and a VPA catalyst has been reported by Hutchings et al. The catalytic 

performance o f  standard VPA, VPO and VPD for butane oxidation is shown in Table 4.10

Table 4.10 Catalyst performance o f VPA, VPO and VPD for the oxidation o f  butane to

maleic anhydride.12

Surface area (m2/g) Conversion Selectivity (%) Specific activity
Catalyst . ,m-5 i -2i_-k

Precursor Catalyst  ̂ MA CO CO2 m°  m

VPA 3 4 11 52 41 7 1.24

VPO 11 14 27 52 34 14 1.35

VPD 32 43 62 64 21 14 1.19
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1 9
Based on the previous studies, catalyst precursors with rosette structure (VPD) have much 

higher surface area than VOHPO4 .O.5 H2O precursors prepared by the VPO or VPA route. 

The different catalysts have similar specific activities, so the surface area o f  the catalyst is 

the crucial factor in determining the final activity.

According to the present study (Table 4.9), the catalyst prepared via the direct route did not 

yield a higher activity for w-butane oxidation than the catalyst prepared from 

VOHPO4 .O.5 H2O precursors.12 Among these present results, catalysts POA, PPA and PN 

are less selective for maleic anhydride. However, specific activity o f  these catalysts is 

higher when compared to the conventional VPO and VPD catalyst.

4.5 Discussion

VOPO4 2 H2O prepared using different phosphoric acids gave different XRD patterns. 

During the reaction the V2O5 dissolves in pyro-phosphoric acid very fast upon heating. In 

ort/iophosphoric acid, V 2O5 only dissolves after the reaction has reached reflux conditions. 

As the V2O5 is not completely dissolved immediately in the or/Zzophosphoric acid 

preparation, it is likely that there is a small amount o f  V2O5 impurity in the VOPO4 2 H2O 

crystals. These impurities can cause defects in the structure, leading to a loss in 

crystallinity.10

Commonly, V2O5 dissolves in concentrated acid or alkali solution. In the standard 

preparation methods, initially V2O5 is not fully dissolved. Therefore, isobutanol was used as 

solvent to increase the solubility o f  V2O5 in the organic preparation route while water was
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used as solvent in the standard preparation method. In the organic preparation route, the

(0 0 1 ) and (2 0 0 ) reflections were considerably broadened when compared with standard 

VOPO4 2 H2O, it indicated that VOPO4 2 H2O prepared using organic solvent method gave 

smaller crystallites as compared with standard methods.

The prepared catalyst materials via the new route were found to have <i-spacing 3.8 as with 

the standard (VO^PzOz but these materials are less selective for w-butane oxidation because 

(X1-VOPO4 was formed with these catalyst materials. It has been reported that OC1-VOPO4 is

19not selective for «-butane oxidation. Therefore, the active site o f  (VO)2P2 0 7  could be 

obstructed by other unselective sites. Hence, these materials exhibited less selectivity for 

butane to maleic anhydride oxidation. According to the previous results, the final catalyst 

prepared from VOHPO4 .O.5 H2O has the same surface area and morphology as the 

VOHPO4 .O.5 H2O precursors. The surface area o f  these precursors was high (Table 4.10). 

Therefore, these materials are more selective for butane oxidation (50% selectivity and 60% 

conversion). The final catalyst prepared from VOPO4 2 H2O via the new route has a lower 

surface area, comparable to VOPO4 2 H2O. Therefore, these materials are less selective for 

butane oxidation. However, specific activity o f the final catalyst prepared via direct route is 

better than the conventional catalyst due to the low surface area.

4.6 Conclusions

Same morphology o f  VOPO4 2 H2O was obtained using different phosphoric acid while 

differing the size o f  the plate. The VOPO4 2 H2O prepared using organic solvent gave 

smaller crystallite when compared with standard methods. VOPO4 2 H2O was partially or 

fully transformed to (VO)2P2 0 7  using this direct route. The selectivity o f  these final
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catalysts for butane oxidation is less than the conventional catalysts (VPD and VPO). 

However, these materials exhibit a marked increases in specific activity compared to both 

the VPD and VPO.
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Chapter 5 

Summary and Conclusions

5.1 Control the Morphology of Vanadium Phosphate Catalyst Precursors by 

Adding Alkane Solvents

Almost four decades have passed since Bergman and Frisch reported that VPO catalysts 

selectively oxidised «-butane to maleic anhydride. During this period, a number o f synthesis 

approaches have been reported to control the morphology o f vanadium phosphate catalyst 

precursors1,2 because the catalytic properties o f (VO)2P2 0 7  are very dependent on its method o f

3  7preparation and the best catalysts are prepared topotactically via VOHPO4 .O.5 H2O. '

(1) V2O5, phosphoric acid and alcohol were refluxed.

(2) VOPO4 .2 H2O was reduced by various alcohols.

(3) VOPO4 .2 H2O was intercalated, exfoliated and reduced by various alcohols and 

solvents.

However, addition o f alkane solvents to this preparation has not been investigated in previous 

studies. Therefore, in this study the morphology o f VPO catalyst precursors was controlled by 

adding alkane solvents into the VPD preparation method. VOPO4 .2 H2O was reacted with 

alcohol and different amount o f alkane solvents. Different morphology materials were obtained 

when adding o f different amount o f alkane solvent that B-0 materials shows the XRD pattern 

expected for a VPD sample with (220) as the main reflection. When small amounts o f octane
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are added into the preparation there is a decrease in the intensity o f the (220) reflection and an 

increase in the intensity o f  the (001) reflection (B-25, B-50), indicating that there is a switch 

from a mixture o f rosette and platelet type to platelet type morphology. This is shown in the 

SEM and TEM o f the materials, with the B-25 sample showing both rosettes and platelets, 

whereas the sample B-50 consists only o f thin platelets. The SEM shows that the platelets 

become thicker as more octane is added (B-100), leading to an increase in intensity o f the side 

planes in the XRD pattern. As more octane is added to the preparation V0 (H2P0 4 ) 2  is formed 

instead o f VOHPO4 .O.5 H2O (B-400), which becomes more crystalline with increasing octane 

and the SEM and TEM show the characteristic o f  chunky morphology. When longer chain 

alkane solvents (hexadecane and dodecane) were used the same trend was observed. These 

changes occurred with smaller amounts o f the longer chain alkane.

These phenomena can be explained in terms o f the rate o f reduction o f V 5+ to V4+. The high 

concentration o f the alcohol results in a fast reaction rate (between 1-butanol and 

VOPO4 .2 H2O) and a faster reduction rate (V5+ to V4+). Therefore it can be suggested that 

VOHPO4 .O.5 H2O is obtained whilst V4+:P ratio kept at approximately 1:1 due to the fast 

reduction o f V5+

V 0(H 2P 0 4)2 was obtained by using a low concentration o f alcohol. The low concentration o f  

alcohol results in a decreased reaction rate (between 1-butanol and VOPO4 .2 H2O) and a slower 

reduction rate (V5+ to V4*). The slower reduction rate means that the V4+:P ratio is 1 :» 1  and 

the excess phosphorous favours the formation o f V 0 (H2P0 4 ) 2  which has a V:P ratio of 1:2.
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Therefore, different materials will be obtained with respect to the different rate o f material 

formation.

At high concentrations, VOHPO4 .O.5 H2O with different morphology could be formed. It is 

thought that this is due to the rate changing the degree o f supersaturation of the reaction 

product which has been shown previously to influence the morphology o f precipitated 

materials.

Catalyst prepared from this route had comparable selectivity and conversion for n-butane 

oxidation. However, specific activity o f these materials (B-100, 2.62 x 10‘5 mol m -2 h 1) is 

better than the conventional catalysts (VPO, 1.35 x 10'5 mol m'2 IT1).

5.2 Catalyst Preparation Using New Preparation Route

To date researchers have been interested on the preparation o f vanadyl pyrophosphate, 

(VO)2P2 0 7  using VOHPO4 O.5 H2O as the catalyst precursor. This has been activated in 1.5% 

butane in air at 400°C for 72 hours, therefore the preparation method o f the hemihydrate, 

(VOHPO4 O.5 H2O) is a crucial step to produce active catalyst. Here, the synthesis route is 

developed to prepare (V0 ^ 2 0 7  using reducing environment. 50 ml/min, H2/Ar was used for 

this transformation with different times (6, 24, 72 hours) at temperature 550°C. However, the 

results o f the present work that material prepared using direct route is less selective for n- 

butane oxidation because 0C1-VOPO4 was formed with these catalyst materials. It has been

o
reported that (X1-VOPO4 is not selective for w-butane oxidation. However, specific activity of  

these materials is higher than the conventional catalysts.
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5.3 Future work

Different materials were obtained based on the relative reaction rates. Therefore, it is 

recommended that future work should involve detailed studies on the rates of the different 

material formation with mass balances for V and P. So, this information will be useful to 

design how to form high area rosettes which may lead to more active catalysts as activity 

directly correlates to conversion.

Furthermore, as it was shown that final catalyst obtained from VOPO4 .2 H2O via direct route 

has less selective for w-butane oxidation because o f its low surface area and morphology; it is 

recommended that the final catalyst should be prepared using different reducing agents and 

conditions.

Furthermore, a few unknown phases were obtained in this project. Additional characterisation 

techniques such as 31P NMR and XPS should be carried out to assist with identification of 

these phases.

5.4 References

(1) H. S. Horowitz, C. M. Blackstone, A. W. Sleight, G. Teufer, Appl. Catal, 1998, 38, 193

(2) J. W. Johnson, D. C. Johnston, A. J. Jacobson and J. F. Brody, J. Am. Chem. Soc, 1984,

106,8123

(3) F. Javier Cabello Sanchez, R P. K. Wells, Colin Rhodes, J. K. Bartley, C. J. Kiely and 

G. J. Hutchings, Phys. Chem. Chem. Phys., 2001, 3, 4122



(4) V. V. Guliants, S. A. Holmes, J. B. Benziger, P. Heaney, D. Yates and I. E. Wachs, J. 

Mol. Catal, (2001), 172, 265

(5) C. C. Torardi, Z. G. Li and H. S. Horowitz, J. of. Solid State Chemistry, 1995,119,349

(6) L. O. Mahony, T. Curtin, J. Henry, D. Zemlyanov, M. Mihov and B. K. Hodnet, 

Applied Catalysis A: General, 2005, 285, 36

(7) S. Sajip, J. K. Bartley, A. Burrows, C. Rhodes, J. C. Volta, C. J. Kiely and G. J. 

Hutchings, Phys. Chem. Chem. Phys., 2001, 3, 2143

(8) C. J. Kiely, A. Burrows, G.J. Hutchings, K.E. Bere, J.C. Volta, A. Tuel and M. Abon, J. 

Chem. Soc., Faraday Disc., 1996,105, 103.



149

6 Appendix

Characterisation of new materials prepared by reacting of 

V0P 04*2H 20  with 1-butanol and differing amount of heptane solvent

The XRD patterns o f new materials prepared using different amount o f (0, 25, 50, 100 

ml) heptane solvents are shown in Appendix 3.1.
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Appendix 3.1 Powder XRD patterns o f  the materials formed by reacting VOPO4 2 H2O

with 1-butanol and differing amounts o f  heptane. K ey ■  = VOHPO4.O.5H2O
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The laser Raman spectrum o f new materials prepared using different amount o f (0, 25, 

50, 100 ml) heptane solvents are shown in Appendix 3.2.
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Appendix 3.2 Raman spectroscopy o f the materials formed by reacting VOPO4 2 H2O 

with 1-butanol and differing amounts o f  heptane.
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The SEM o f  new materials prepared using different amount o f (0, 25, 50, 100 ml)

heptane solvents are shown in Appendix 3.3.

lAccV SpotMagn Det WD 
[10 0 kV 4.0 35000X SE 10.2

Appendix 3.3 - SEM o f  the materials formed by reacting VOPO4 2 H2O with 1-butanol

and differing amounts o f  heptane
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Characterisation of new materials prepared by reacting of 

V0P04*2H20  with 1-butanol and differing amount of dodecane solvent

The XRD patterns o f  new materials prepared using different amount o f (10, 25, 50, 100 

ml) dodecane solvents are shown in Appendix 3.4.
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Appendix 3.4 Powder XRD patterns o f  the materials formed by reacting VOPO4 2 H2O

with 1-butanol and differing amounts o f  dodecane. K ey H  = VOHPO4 O.5H2O; □  =

V 0(H 2P 0 4)
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The laser Raman spectrum o f  new materials prepared using different amount o f  (10, 25,

50, 100 ml) dodecane solvents are shown in Appendix 3.5.
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Appendix 3.5 Raman spectroscopy o f the materials formed by reacting VOPO4 2 H2O 

with 1-butanol and differing amounts o f  dodecane.
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The SEM o f  new materials prepared using different amount o f (10, 25, 50, 100 ml)

dodecane solvents are shown in Appendix 3.6.

Appendix 3.6 SEM of the materials formed by reacting V 0 P0 4 *2 H20  with 1-butanol and 

differing amounts o f dodecane
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Characterisation of new materials prepared by reacting of 

V 0 P 04 *2H 20  with 1- butanol and differing amount of hexadecane 

solvent

The XRD patterns o f  new materials prepared using different amount o f (10, 25, 50, 75, 

100 ml) hexadecane solvents are shown in Appendix 3.7.
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Appendix 3.7 Powder XRD patterns o f the materials formed by reacting VOPO4 2 H2O 

with 1-butanol and differing amounts o f hexadecane. Key H  = VOHPO4 O.5 H2O; □  = 

V 0(H 2P 0 4)2.
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The laser Raman spectrum o f  new materials prepared using different amount of (10, 25, 

50, 75, 100 ml) hexadecane solvents are shown in Appendix 3.8.
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Appendix 3.8 Raman spectroscopy o f  the materials formed by reacting VOPO4 2 H2O 

with 1 -butanol and differing amounts o f  hexadecane.
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The SEM o f  new materials prepared using different amount o f  (10, 25, 50, 75, 100 ml)

hexadecane solvents are shown in Appendix 3.9.

Appendix 3.9 SEM o f  the materials formed by reacting VOPO4 2 H2O with 1-butanol and

differing amounts o f  hexadecane.


