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You will find, as a general rule, that 
the constitutions and the habits of a 

people follow the nature of the land 

where they live.

Hippocrates- 460-377BC



Summary

The investigation of associations between places, people and mental health is compli­
cated and there are serious limitations in the current methodology. Using data from the 
Caerphilly Health and Social Needs Study (CHSNS), as well as the British Household 
Panel Survey, this thesis investigated some of these methodological issues.

Firstly, motivated by the skewed distribution of the Mental Health Inventory (MHI- 
5), methods for analysing the mental health score were examined. Five methods for 
deriving a cutpoint on the MHI-5 based on linking with the General Health Question­
naire, were investigated and cutpoints derived for each. These cutpoints and methods 
were compared and contrasted.

When investigating associations between place and health, hierarchical modelling 
is an extremely useful tool. Sparse levels of information are a potential problem when 
using this method. In the CHSNS, households represent a sparse level of context. A 
simulation study was conducted to explore the effect of sparse levels on the results of 
hierarchical analyses. It was found that, in general, the underestimation of fixed effect 
standard errors is smaller when a sparse level is included than when it is excluded.

Another methodological consideration for hierarchical modelling concerns the choice 
of geographical hierarchy to use. Administrative hierarchies have been criticised for be­
ing heterogeneous and arbitrary. An algorithm was developed to partition regions into 
areas tha t are homogenous with respect to a given set of variables, and was applied to 
Caerphilly county borough. The resulting sets of boundaries were compared with the 
2001 census administrative boundaries. These new boundaries performed favourably in 
comparison with the administrative boundaries, indicating tha t administrative bound­
aries may not represent the most suitable hierarchy to employ in hierarchical analyses.

The thesis has led to a greater understanding of the effects of context on multilevel 
analysis and contributed to the area-effects on health literature.
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Chapter 1 

Introduction

1.1 Place and health

Epidemiologists and public health scientists have long been concerned with assessing 
the effect of various exposures on people’s health. This is a long tradition stretching 
all the way back to Hippocrates (460-377 B.C) who first recognized the association of 
disease with place, water conditions, climate, eating habits and housing. The theories 
may have changed considerably from the four humours postulated by Hippocrates, but 
the spirit of questioning and investigation remain the same. It is fitting then that 
this thesis is concerned with one of the most basic exposures experienced by everyone: 
where one lives. Early efforts to investigate the relationship between area and health 
focussed on ascertaining why given diseases were more prevalent in certain areas. Of­
ten these investigations provided profound insights into the aetiology of the disease 
itself. An oft quoted example relates to the study performed by John Snow, where he 
mapped the cases of cholera in Soho, London during an epidemic, revealing that the 
cases centred around a public water pump (Snow, 1849). The water from this pump 
was found to be infected with cholera and the water borne nature of the disease was 
discovered.

Nowadays the link between place and health is more subtle, with far less chance 
of discovering a “smoking gun” cause such as the one described above. Nevertheless, 
health disparities between places abound to this day, with a recent book quoting a 
twenty-year age gap in life expectancy of men between areas separated by just twelve 
miles in Washington D.C. (Marmot, 2004). This is neither an isolated nor extreme 
example. Indeed, according to Subramanian et al (2003) “The question, therefore, 
is not whether variations exist between various settings (they always do), but what is 
their source, that is, are the variations across settings compositional or contextual?”. 
So to rephrase, are these differences due to the various attributes of the residents or
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to some intrinsic property of the areas themselves? In this thesis this question and 
the methodology surrounding it will be investigated for the outcome of the common 
mental disorders of anxiety and depression.

There is already a large literature base concerned with the effect of area on health. 
In the past however, the focus was not on the areas themselves, but rather on the 
various physical properties of the areas which were treated as exposure variables (Mac- 
intyre et al., 1993). Researchers were concerned with identifying the aetiology of disease 
and areas were their unit of analysis. The attitude toward area effects was that they 
represented variability associated with some unmeasured individual-level variable. The 
approach was to  measure the right exposure or individual risk factors in order to explain 
away the area effect (Pickett & Pearl, 2000). Macintyre et al (2002) discuss the reasons 
for this giving four separate explanations for why this was the case. Firstly, they claim 
that researchers were (and still are) determined to avoid the ecological fallacy, where 
relationships observed at an area (or group) level are found to be different from the 
equivalent individual-level relationship. They cite a seminal sociological paper which 
found tha t the individual and group relationships between foreign birth and illiteracy 
had opposite signs (Robinson, 1950). Macintyre et al’s second reason is that statistical 
and computing advances allowed researchers unprecedented capability to analyse in­
formation on individuals. This, coupled with the availability of large datasets, meant 
that researchers were inclined to focus on individual-level analyses. Thirdly, Macintyre 
et al claim that “from the 1950s onwards methodological, conceptual and political in­
dividualism was dominant in many industrialised countries”. This manifested itself in 
an emphasis on the role of individual attributes on health (notably smoking, drinking, 
diet and exercise), thus drawing attention away from area-level effects. This concept 
is summed up by Margaret Thatcher’s infamous quote “there is no such thing as so­
ciety, there are only individuals”. The final reason concerns a lack of interest in using 
the geography of the study area to explicitly inform and conceptualise the hypotheses. 
More recently however, the focus has shifted away from treating the area as a nuisance 
factor that needs to  be controlled for, into treating the area as a variable of interest in 
its own right. Indeed, the whole field has undergone something of a revival in recent 
years with the advent of new statistical tools to investigate such effects.

A book published in 2003, succinctly entitled “Neighbourhoods and Health” (Kawachi 
Sz Berkman, 2003), summarised the progress to date as well as indicating emerging is­
sues in neighbourhood research. The authors categorise these issues under the following 
headings: Social Selection versus Social Causation; Contextual versus Compositional 
Effects; Psychosocial versus Material Explanations; Subjective versus Objective As­
sessments; Quantitative versus Qualitative Approaches and Neighbourhoods versus 
Communities.

The first of these, social selection versus social causation, refers to the debate be­

2



tween whether places affect their residents, or whether people shape where they live. 
An example might be “do people with poorer mental health choose to (or at least are 
complicit in the decision to) move to and stay in deprived areas, or do deprived areas 
have a detrimental effect on the psychological well-being of their residents?” . Perhaps 
a more plausible causal pathway is that healthy people are better equipped to find the 
means to move away from deprived areas, thus decreasing the average health of an area. 
Essentially, this refers to  the issue of causation. This issue could possibly be resolved 
using a longitudinal study design, which could tease out the causal pathway. While 
common sense might suggest that both processes are probably at work, it would still 
be an important step forward for the field if better evidence were available to address 
the issue of causation.

The contextual versus compositional debate, the second area of emerging interest 
cited, concerns a related question about the distinction between individual characteris­
tics and area characteristics. As mentioned earlier, much of the previous literature has 
focused on individual-level characteristics, with the area-level being a nuisance factor 
which needs to be explained away. Macintyre and Ellaway (Macintyre et al., 2002) 
discuss this, saying

“Within both epidemiology and geography there has been a tendency to 
ascribe much within-country geographical variation to compositional differ­
ences, and until recently there has been apparent resistance to any role for 
contextual explanations. It has almost been an article o f faith that differ­
ences between places are reducible to differences between the types of people 
living there”.

Clearly both compositional and contextual effects could possibly influence an individ­
ual’s mental health. If for example the association between income and mental health 
is of interest, it would certainly be neccessary to include the individual-level income 
variable as an explanatory variable in the model. However, it would be prudent to also 
include a measure of area-level income (the aggregated income of all residents of an 
area) also, since the effect of earning minimum wage in an area rife with unemploy­
ment may be different to earning minimum wage in an affluent neighbourhood. In other 
words, it may not be just the magnitude of one’s income that influences one’s mental 
health, but the relative magnitude of one’s income compared with one’s neighbours. 
So, the question of whether the levels of mental health reported in an area depend on 
the type of people who live there (compositional effect), or whether they are due to 
area characteristics (contextual effect), may be an incorrectly framed question, since 
it may be the joint impact of both of these characteristics that is really of interest. 
Certainly the clear distinction between the two types of effect seen in the literature 
is not reflected in reality. Even what may be classified as a true contextual variable,
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that is a variable tha t is not merely the aggregation of individual characteristics, (e.g. 
number of grocery shops in an area), could also be seen as dependent on the type of 
resident of tha t area (e.g. shops will open where there is demand for them). The prob­
lem occurs when variables considered to be compositional in nature, such as smoking, 
diet and exercise, are controlled for in an analysis. The idea is that if there remains 
a significant area-level effect after these individual characteristics have been controlled 
for, then this can be considered evidence for a contextual effect. The problem is, of 
course, tha t area characteristics may influence these variables, again discussed by Mac­
intyre et al (2002). For instance living in an area with a high prevalence of smoking 
may make a person more likely to smoke. Living in an area where there are lots of 
fast food outlets may impact negatively on a person’s diet. Similarly, living in an area 
where there are not many leisure facilities may result in a person exercising less. In 
this situation, the practice of controlling for confounding variables becomes a type of 
statistical overadjustment. The way to deal with this problem is far from obvious.

Another debate th a t continues in this field is the psychosocial versus material expla­
nations debate (this is Kawachi and Berkman’s (2003) third area of emerging interest). 
The psychosocial explanation theory seeks to explain poor health behaviours and out­
comes in terms of the psychology of the residents. An example of this, given by the 
authors, is the contagion effect of high smoking prevalence on smoking initiation in ado­
lescents. Here it is the complex interplay of social norms and peer pressure that results 
in poor health behaviour. The opposing theory, material explanations, seeks to explain 
such outcomes and behaviour in terms of more concrete and visible characteristics of 
an area. An example would be increased levels of obesity in a neighbourhood where 
there are no leisure facilities. Common sense would dictate that both mechanisms op­
erate together, and indeed affect one another. Psychosocial characteristics may affect 
material ones and vice versa. An area with a high proportion of short term residents 
may result in residents not knowing each other (i.e. poor social networks). This in turn 
may decrease the demand or usage of community centres, resulting in their closure. 
Conversely, a lack of amenities in an area may result in fewer opportunities for social 
interaction, which could feasibly impact negatively on the mental health of its resi­
dents. W hat is needed is the development of new theories to describe the mechanisms 
by which these characteristics can explain health. Kawachi and Berkman (2003) call 
for researchers to eschew routinely collected data, and instead to gather information 
specific to the research question, through more bespoke primary data collection. They 
also call for more studies that measure mental health. This call has been echoed by 
a recent review of social capital (i.e. in the words of the authors “a way of describing 
social relationships within societies or groups of people”) (De Silva et al., 2005). They 
contend tha t the evidence from the literature neither justifies specific social capital 
interventions in order to improve mental illness nor is it sufficient to inform how such
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interventions might be designed
The fourth area of emerging interest highlighted surrounds the use of subjective 

versus objective assessments. In this context, subjective refers to information collected 
from residents themselves, for example, their ratings of their own area of residence. 
Objective corresponds to measurements of an area that are (relatively) indisputable 
and highly repeatable, e.g. number of shops in an area. The solution proposed by 
Kawachi and Berkman (2003) is that there is unique information to be gained from 
both approaches and tha t greater insight will be afforded to researchers willing to seek 
a happy medium between the two methods. A subset of this issue is the problem of 
same source bias. People with poor mental health may have a more pessimistic or neg­
ative outlook on life, and thus may rate their environment and local amenities more 
harshly than they perhaps deserve (Duncan &; Raudenbush, 1999; O ’Campo, 2003). 
This could bias the relationship between poor mental health and deprived neighbour­
hoods resulting in an observed positive relationship that exaggerates the true situation. 
The problem can be circumvented if data from different sources are combined, so that 
the people who provide the measurements of an area’s characteristics are different to 
the ones whose mental health measurements are used in an analysis.

The fifth emerging area of interest the authors cite is the conflict between quantita­
tive and qualitative research. It seems slightly out of place to categorise this debate as 
emerging, since it would appear that this conflict has been around as long as the two 
approaches themselves have. The stance the authors advocate is the same as for all the 
other issues, namely tha t the approaches offer different yet mutually complementary 
information. Qualitative studies can tease out relationships that even the most de­
tailed and complicated quantitative studies could never hope to replicate. Conversely, 
qualitative studies have been criticised for being too subjective and non-generalisable, 
and as such will usually require additional support from a quantitative approach to 
implement policy change. Quantitative analysis proponents on the other hand claim 
that their approach is objective, generalisable and most importantly can provide in­
formation regarding the confidence a researcher can place in a given estimate. The 
detractors of quantitative analysis suggest that in many cases statistical methodology 
is misused and is open to  abuse. The supposed objectivity of the quantitative approach 
can be questioned also, since there is often no consensus from the statistical community 
over the best way to model a given situation. Moreover, qualitative researchers point 
out that without their research, quantitative researchers would not be able to generate 
hypotheses of interest. It seems obvious then that the best way to proceed is to utilise 
the symbiotic nature of both approaches in order to best harness their different, but 
complementary strengths.

The last emerging issue for area based health research is the conflict between neigh­
bourhoods and communities. This concerns the choice of context to adopt when per­
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forming area based research. The authors urge the collection of information from 
various contexts apart from the traditional neighbourhood context. They list work­
places, schools and virtual communities as contexts worthy of further investigation and 
indeed hedge their bets slightly by saying “some years hence it may indeed turn out to 
be the case that neighbourhoods explain rather less of the variations in health than do 
other contexts”. The final advice the authors have for prospective researchers in this 
field is to simultaneously model multiple levels of context. They point out that neigh­
bourhood characteristics may be merely reflections of larger macroeconomic forces and 
more widescale political decisions. The methodology exists now to handle, and indeed 
unravel, the complex interplay between the small scale influences and the more global 
ones, even if datasets rich enough to encapsulate such information are few and far 
between.

This thesis will directly address two of the six areas highlighted by this book, 
namely the question of context versus composition, as well as the issue of neighbour­
hoods versus communities. The first of these will be examined using hierarchical (or 
multilevel) modelling which will be introduced in chapter 5. The second issue concerns 
the choice of what to use to define area of residence or neighbourhood. There is no 
practical or usable definition of the term neighbourhood. Galster (2001) summarizes 
the situation neatly by saying:

“Urban social scientists have treated ‘neighbourhood’ in much the same 
way as courts of law have treated pornography: as a term that is hard to 
define precisely, but everyone knows it when they see it. ”

He then goes on to define it as "... the bundle o f spatially based attributes associated 
with clusters o f residences, sometimes in conjunction with other land uses”. For the 
purposes of statistical modelling however, this definition is far from workable. Part of 
this thesis will be concerned with deriving a method to delineate areas.

1.2 M ental Health

Independently of the aforementioned revolution in modelling area effects, the public 
health importance of mental health is also being increasingly recognised. The mental 
health status of an individual is complicated and difficult to quantify accurately. In­
deed, what might constitute good mental health is difficult to determine. The medical 
literature tends to focus on identifying poor mental health, as opposed to explicitly 
defining good mental health. The World Health Organisation (WHO) (World Health 
Organisation, 1992) defines a mental health “disorder” as a term  used to:
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*imply the existence o f a clinically recognizable set o f symptoms or be­
haviour associated in most cases with distress and with interference with 
personal functions. Social deviance or conflict alone, without personal dys­
function, should not be included in mental disorder as defined here. ”

Along the same lines, but more expansive, is the definition given by the American 
Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (DSM 
IV, 2000). They say tha t a mental disorder is:

“conceptualized as a clinically significant behavioural or psychological 
syndrome or pattern that occurs in an individual and that is associated with 
present distress (e.g., a painful symptom) or disability (i.e., impairment in 
one or more important areas o f functioning) or with significantly increased 
risk o f suffering death, pain, disability, or an important loss o f freedom. In  
addition, this syndrome or pattern must not be merely an expectable and 
culturally sanctioned response to a particular event, for example, the death 
of a loved one. Whatever its original cause, it must currently be considered 
a manifestation o f a behavioural, psychological, or biological dysfunction in 
the individual. Neither deviant behaviour (e.g., political, religious, or sex­
ual) nor conflicts that are primarily between the individual and society are 
mental disorders unless the deviance or conflict is a symptom of a dysfunc­
tion in the individual as described above. ”

These disorders represent a significant public health issue, and are leading causes of 
morbidity and disability. A WHO publication examined the global burden of all dis­
eases, using Disability-Adjusted Life Years (DALYs) and Years lived with Disability 
(YLDs) (Murray & Lopez, 1996). Of the top ten causes of YLDs for the world, five 
belong to the neuro-psychiatric category (unipolar major depression, alcohol use, bipo­
lar disorder, schizophrenia and obsessive-compulsive disorder) and account for almost 
22%. All neuro-psychiatric conditions are estimated to account for just under 30% per 
cent of all YLDs, making them the single most important contributors. The authors 
also state tha t “neuro-psychiatric conditions account for 10.5% of the global burden of 
disease and injury and that uni-polar major depression is the fourth most important 
cause o f D A LYs”. It seems then, that an absence of such disorders could be deemed 
as good mental health. Such a definition, however, is unworkable if one wishes to ex­
amine large numbers of people. Instead a continuous measure, capable of assessing the 
whole spectrum of mental health, is needed. Quantifying something as complicated as 
mental health would be a considerable undertaking, even if it were static through time. 
However, a person’s mental health today may not be the same as their mental health 
tomorrow. This is a problem not easily overcome, and indeed no solution is addressed 
in this thesis either.
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Instead, this thesis focuses on the minor anxiety and depressive disorders, termed 
the common mental disorders (CMD) (Goldberg & Huxley, 1992) in the general popu­
lation. The prevalence of CMD in Wales has been estimated at 31.0% of the population 
(Weich et al., 2001). The burden of common mental disorders is considerable. In eco­
nomic terms alone they constitute a large problem with one-third of days lost from 
work due to ill health being attributable to common mental disorders (Jenkins, 1985). 
Nearly twenty years ago they were estimated to cost up to £6 billion in the UK (Croft- 
Jefferys & Wilkinson, 1989). Moreover, in terms of health care service provision, they 
place a sizeable burden on the system, with common mental disorders accounting for 
one-fifth of general practice consultations (Williams et al., 1986). Aside from the ob­
vious economic cost however, the common mental disorders have serious consequences 
for those tha t suffer from them. Previously, lists of the most important public health 
issues considered just the mortality effects of disease, but more recently, both mor­
tality and disability effects of disease were examined simultaneously. Since depressive 
disorders have a high prevalence, a high impact on functioning, and an early age of 
onset, this change has pushed mental disorders into the W HO’s top 10 of public health 
priorities (Ustiin et al., 2004).

This thesis combines both of these areas of interest (area effects on health and 
mental health) by investigating the contextual determinants of mental health. The 
message from the literature surrounding area effects on mental health is quite discor­
dant, with no clear consensus emerging about whether they even exist, let alone what 
magnitude of influence they could be expected to  exert. In the past five years various 
studies have come to quite different conclusions regarding the existence of area effects 
on mental health. Some studies have found no evidence of an area effect (Reijneveld 
& Schene, 1998; Reijneveld et al., 2000; Drukker Sz van Os, 2003; Ross, 2000; Propper 
et al., 2005; Weich et al., 2003a), while others have found significant area effects (Fone 
Sz Dunstan, 2006; McCulloch, 2001; Skapinakis et al., 2005; Weich et al., 2003b; Wain- 
wright Sz Surtees, 2003; Fone et al., 2007a,b,c). One review claimed that the evidence 
for area effects on mental health is “reasonably sound” (Ellen et al., 2001). The authors 
investigated five health outcomes, of which one was mental health (the others being 
health-related behaviours, low birth weight and infant mortality, adult physical health, 
overall mortality). The review was restricted to multilevel analyses incorporating both 
individual and area-level information. For the outcome of mental health, they assert 
that associations have been found to exist between the quality of social networks and 
social cohesion and various non-psychotic psychiatric disorders, right across the life 
cycle. They also note tha t there is evidence to support the theory that neighbourhood 
violence has negative psychological effects for children. No evidence for the same ef­
fect has been identified among adults; however there is evidence for the relationship 
between living in a high poverty area and poor mental health. The authors conclude
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by saying:

“...the relationship between neighbourhoods and mental health is underex­
plored, but the current evidence does suggest a provisional story. In brief, we 
find the strongest evidence for independent neighbourhood effects on overall 
mortality as well as on health outcomes that can be expected to develop and 
be discernible fairly quickly, such as health-related behaviours and mental 
health.”

A systematic review of neighbourhood socioeconomic context and health outcomes 
published in 2000 found that ((the evidence for modest neighbourhood effects on health 
is fairly consistent” (Pickett k  Pearl, 2000). The health outcomes reviewed were mor­
tality, morbidity and health behaviours. Only one paper had mental health as the 
outcome of interest (Reijneveld k  Schene, 1998) and found no evidence for an area 
effect of socioeconomic deprivation after individual socioeconomic status had been in­
cluded. Two studies investigating the effect of area deprivation on mental health in 
Wales found that area-level deprivation explains some of the geographical variability 
in mental health (Skapinakis et al., 2005; Fone et al., 2006b).

The waters are further muddied by the fact that there is no standard methodology 
adopted by researchers in the field, with different area sizes being used as proxies for 
neighbourhoods, different sample sizes, different ways of measuring mental health and 
different compositional factors controlled for. If there is a general consensus however, 
it is that the effect on mental health of neighbourhoods is dwarfed by the effect of 
individual characteristics. This is to be expected, but enough studies have uncovered 
significant area effects after adjusting for compositional variables to indicate that the 
mental health of individuals is not solely determined by their individual characteristics.

The suggestions for the direction of future research are more consistent. One re­
curring theme is tha t there is a need for better theories regarding the causal pathway 
between neighbourhood characteristics and mental health (Drukker k  van Os, 2003; 
Weich et al., 2003b; Blakely k  Woodward, 2000; Diez Roux, 2001). Once these theo­
ries are formulated they can be examined and tested to see if they are consistent with 
the data. This would elucidate the mechanisms by which area characteristics such 
as deprivation and unemployment levels may adversely affect mental health. This, in 
turn, would inform researchers about the salient information necessary to conduct such 
studies as well as providing policy makers with a complete map of the causal pathway, 
indicating the most efficacious point of intervention.

Another area requiring further research involves investigating the statistical method­
ology of hierarchical modelling. Hierarchical modelling allows for the correct analysis 
of hierarchically structured data. An implicit assumption in hierarchical modelling is 
that the data  at each level of the analysis represent a random sample from the popula­
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tion at that level. Moreover, the sample size for each unit at each level should be large 
enough so that the variation can be partitioned between each contextual level. Recent 
literature has suggested that the household level is an important context to include 
in multilevel analyses of mental health. Advocates of the explicit modelling of this 
level are Weich et al, who have published three papers in the past four years calling 
attention to the importance of including household as an important level to include in 
analyses of this type (Chandola et al., 2003, 2005; Propper et al., 2005; Weich et al., 
2003b, 2006, 2005). There is a potential problem, however, with obtaining sufficient 
responses from each household unit so that the household contextual effect can be 
separated from the other levels. A related problem involves the effect on the results 
of a multilevel analysis of either ignoring or including household as a level under low 
response conditions.

There is also benefit to be gained from utilising a Bayesian approach. W ith a 
Bayesian approach, information from other studies can be incorporated into the anal­
ysis. This is appropriate if a given parameter is particularly well understood or stud­
ied. The knowledge about this parameter can be explicitly modelled in a Bayesian 
framework, a distinctly different approach to classical analysis. In classical analysis, 
accumulated knowledge from previous studies is ignored (except perhaps to inform 
the choice of model to fit) and the estimates produced depend solely on the current 
data. Proponents of Bayesian analysis would say that this is akin to reinventing the 
wheel with each study. Opponents of Bayesian analysis would accuse the selection of 
prior information of being too subjective and non-scientific. Both approaches, used 
responsibly, have their uses in different settings. Aside from this, recent advances in 
the implementation of Monte Carlo Markov Chain (MCMC) methods, have led to the 
development of software that can tackle complex Bayesian analyses. The flexibility of 
this method, and the ease of its implementation, make it a very attractive solution. 
Bayesian models incorporating minimal prior information will be used in this thesis to 
examine the spatial distribution of mental health in Caerphilly.

1.3 M otivation for thesis

In 2001 the Caerphilly Health and Social Needs Study (CHSNS) survey (Fone, 2005) 
was carried out (described in chapter 2). Information on a random sample of the 
residents of Caerphilly county borough was collected providing a large dataset. This 
dataset was used to investigate various hypotheses and a number of publications ensued 
(Fone & Dunstan, 2006; Fone et al., 2006b, 2007b,a,c). The CHSNS was also used as 
the basis for an MD thesis (Fone, 2005). During the analysis of the CHSNS dataset 
a number of methodological issues became apparent. The inconclusive literature on 
area effects on health provided further motivation for the thesis. These issues will be
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described in the next section.

1.4 Overall Objectives

The objectives of this thesis axe as follows:

1. To investigate properties surrounding the distribution of the mental health score 
used in the study, as well as evaluating a cutpoint to identify cases of common 
mental disorder.

2. To investigate the spatial variation of common mental disorders in Caerphilly 
county borough in a Bayesian framework.

3. To investigate the robustness of multilevel modelling techniques to sparse levels 
of data.

4. To develop an algorithm that can partition an area into internally homogenous 
areas, using data  from the Caerphilly Health and Social Needs Study as an ex­
ample.

5. To compare (quantitatively) the operationalisations of area for both administra­
tive and synthetic boundaries

The first objective is to examine the properties of the measure of mental health em­
ployed in the study in order to investigate the most appropriate way to model it. 
Various approaches including Normal modelling, transforming the scale, ordinal mod­
elling and dichotomising the scale will be considered. Attention will also be given to 
the problem of identifying a cutpoint on the scale to identify common mental disor­
ders.

The second objective involves using Bayesian modelling in order to examine the 
spatial variation of mental health in Caerphilly county borough. The Bayesian mod­
elling framework is very flexible and it will be used to implement the Besag, York and 
Mollie model (introduced in chapter 4). This allows spatial dependence to be incorpo­
rated into the model. Bayesian smoothing will be used to provide a clearer picture of 
the spatial distribution of mental health status in Caerphilly county borough.

The third objective concerns hierarchical modelling itself. Undoubtedly a useful 
tool, there remain concerns about how it is used in practical situations. Motivated by 
the problem of low response households, this objective concerns assessing the impact 
of including or excluding a sparse level of data on the results of a multilevel analysis.

The fourth objective is to construct an algorithm which, using information about 
the composition and geography of Caerphilly, can create new area boundaries which
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partition the borough into internally homogenous, distinct, contiguous regions. Hence­
forth, these new areas will be referred to as “synthetic” areas. The algorithm will be 
developed using the CHSNS dataset, but will also be generalisable so that potentially, 
it could be applied to any area and any outcome.

The fifth objective is to compare the operationalisations of area for both adminis­
trative and synthetic boundaries. The data will be analysed firstly using the adminis­
trative boundaries, and then with the synthetic boundaries. The models fitted will be 
exactly the same except for the hierarchies employed.

1.5 Structure of thesis

Chapter 2 will focus on the data  itself. The dataset was collected as part of the Caer­
philly Health and Social Needs Study in 2001 (Fone, 2005). A brief summary of the 
background of this study will be presented. The dataset will be described in terms of 
the response rate, variables collected and scores calculated. Finally a critique of the 
study will be undertaken, indicating both the strengths and weaknesses of the dataset.

Chapter 3 will be concerned with the measure of mental health used in the study. 
Clearly mental health is a highly complicated variable to measure and model. There 
is no universally accepted measure to quantify the quality of a person’s mental health. 
The measure used in the CHSNS was the Short Form 36 (SF-36). This instrument can 
be used to assess the general health status of a person. It includes a mental health 
specific scale (the Mental Health Inventory (MHI-5)) which focuses on measuring men­
tal health. The MHI-5 is a useful and suitable tool for quantifying the mental health 
of a population. Unfortunately, as shall be seen, the resulting variable is negatively 
skewed which causes a problem for statistical analysis. Other studies which use this 
mental health score ignore this problem (Wainwright Sz Surtees, 2003; Drukker Sz van 
Os, 2003; Skapinakis et al., 2005) and even the developers of the scale recommend using 
a z-transformation (subtracting the mean and dividing by the standard deviation) and 
treating it as being Normally distributed (Ware et al., 2000a). Various approaches to 
dealing with this issue will be presented in chapter 3. These include transforming the 
scale, dichotomising the scale and utilising ordinal regression.

Bayesian analysis will be introduced in chapter 4. This chapter will then use 
Bayesian analysis to investigate the issue of spatial dependence of mental health sta­
tus in Caerphilly county borough. Areas that are close to each other geographically 
are likely to be similar in other respects, such as access to  green areas, availability 
of services, and infrastructure. This is likely to induce spatial correlation. A model 
developed by Besag, York and Mollie (1991) includes terms to separate such spatial 
variation from unstructured variation. Their model uses information about which ar­
eas are adjacent, and can therefore distinguish between patterns of variation that are
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spatially linked and ones tha t are not. The adjacency information is also used to 
“borrow strength” from neighbouring areas to provide more reliable estimates. This 
is particularly useful if an area has a low number of respondents. In such a situation, 
information from the surrounding areas can be incorporated into the crude estimates, 
with the effect of drawing extreme values toward the mean.

In Chapter 5 the main statistical method of the thesis, hierarchical modelling (also 
called multi-level modelling), will be introduced. Features, parameters and diagnostic 
tests associated with standard hierarchical models will be described. The benefits of 
hierarchical modelling will also be explained. All of this will then be illustrated using 
an example from the CHSNS dataset.

Recent studies advocate (either implicitly or explicitly) the inclusion of the household- 
level in multilevel studies of mental health (Chandola et al., 2003, 2005; Propper et al., 
2005; Weich et al., 2003b, 2006, 2005). However, very few studies have information 
regarding household-level. Failure to  account for this extra level of clustering can lead 
to variation being attributed to higher or lower levels, thus inflating their significance 
(Moerbeek, 2004). The CHSNS dataset does include such information, and so the 
effect of including the household-level can be assessed. There are, however, other is­
sues of a methodological nature surrounding the use of the household-level. The most 
frequent number of responses from a household is just one (over 90% of the house­
holds in the dataset are single response households). This limits the power available 
to attribute variation to the household-level since in over 90% of the households, the 
household effect cannot be separated from the individual effect. This problem is not 
unique to the Caerphilly dataset. The papers by Weich et al (2003a; 2003b; 2005) are 
based on datasets where at least 37% of the households must be single response (under 
the extremely conservative assumption that no household submitted more than two 
responses). Simulated datasets will be used in chapter 6 to investigate how much of a 
problem this might prove to be.

An individual’s health is clearly related to their own individual characteristics, e.g. 
age, gender, employment status and social class. There is a belief that an individual’s 
health (in particular mental health) is also associated with some exposure related to 
where they live. This poses the question: how do you define where people live? Is it 
their postcode, their enumeration district, their electoral ward? W hat constitutes a 
neighbourhood? The majority of published studies of mental health and context have 
used administratively defined areas to act as proxies for neighbourhoods. There are a 
number of reasons to use administrative areas in studies of this type. Firstly, the use of 
administrative boundaries is very straightforward. They are already delineated and no 
effort needs to be made to define them. Also, the use of administrative boundaries al­
lows for comparisons between studies to be made more easily. Finally, there is often no 
choice but to use them, as datasets are routinely aggregated up from individual-level to
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administrative area-level for confidentiality purposes. There are problems with this ap­
proach however. There is no reason to believe that administrative areas are adequate 
proxies for neighbourhoods, other than the fact that people who are geographically 
close are grouped together. There is no guarantee that people from widely different 
socio-economic backgrounds will not end up in the same grouping. This becomes an 
issue when aggregate statistics are used as summary measures for areas. In chapter 
7 neighbourhoods will be defined using the concept of spatially distributed attributes 
(e.g. social class) so tha t “synthetic” boundaries can be created which attem pt to 
group similar people together. There is still no guarantee tha t the residents of these 
areas would identify with their new boundaries. However, the composition of these 
new areas will be more homogenous than the administrative areas. It is hoped that 
these homogenous “synthetic” boundaries will be able to elucidate the link between 
area of residence and mental health better than the administrative boundaries. The 
operationalisations of neighbourhood produced by both administrative and synthetic 
boundaries will be compared. Both types of boundary will be compared using sum­
mary statistics relating to internal homogeneity in order to compare the two types of 
boundaries. Moreover, hierarchical models will be fitted using both sets of boundaries 
in order to assess the relationship between the internal homogeneity of the boundaries 
used and the results of fitting a hierarchical model.

Chapter 8 incorporates all of the results from the previous chapters and uses them 
to investigate whether individual mental health is associated with area of residence. 
This investigation will be compared with a previous analysis of the data.

Chapter 9 will summarise the results of the thesis in relation to the objectives set 
out in this chapter, outline the practical implications tha t this research might have in 
a research setting and indicate some areas that would benefit from further research.
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Chapter 2

The Caerphilly Health and Social 
Needs Study

2.1 Geography of Caerphilly county borough

Located in South Wales (figure 2.1 reproduced from Ordnance Survey map data by per­
mission of the Ordnance Survey ©  Crown copyright 2001) Caerphilly county borough 
has a 2001 census population of 169,519. The borough contains about fifty towns and 
villages, the largest being Caerphilly town itself (population ~  28,000). Other signif­
icant settlements include Bargoed, Blackwood, Newbridge, Risca and Ystrad Mynach 
(figure 2.2). In the 1950’s it was a thriving industrial borough with 29 operational 
coal pits providing employment for 24,000 people. The last pit was closed in 1990. 
The decline of the coal industry had a dramatic effect on the area. Today, a genera­
tion on, the people who live there still suffer from raised rates of unemployment and 
poverty. Indeed two census wards in the Upper Rhymney Valley in the north of the 
borough are in the most deprived 5% of wards in England and Wales (Moriah and 
Twyn Carno) (Glennerster et al., 1999). The borough itself encompasses a large va­
riety of socio-economic backgrounds. The southern parts of the borough are generally 
the most affluent, housing many commuters who work in Cardiff. The northern parts 
of the borough are generally more deprived than the southern parts as they were more 
dependent on the mining industry and thus more affected by its collapse. Since devo­
lution in Wales, government policy has focussed on identifying areas for improvement. 
An example of this is the “Communities First” programme which targeted the 100 most 
deprived wards in Wales (of the 865 wards in the 1998 boundary revision) (National 
Assembly for Wales, 2001). These were identified by ranking the Welsh Index of Mul­
tiple Deprivation (National Assembly for Wales, 2000). Thirteen of Caerphilly county 
borough’s 36 wards were included in these 100 most deprived (New Tredegar, Tir Phil, 
Darran Valley, Aberbargoed, Bargoed, Hengoed, Gilfach, Twyn Carno, Pontlottyn,
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Figure 2.1: Map of the UK showing Wales, Gwent and Caerphilly county borough

Figure 2.2: Map of Caerphilly county borough showing geographical features
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Moriah, Abertysswg, Argoed and Aber Valley). In 1998 Caerphilly county borough 
council and the former Gwent Health Authority collaborated to develop a strategic 
programme to improve health in the borough. One part of this was the Caerphilly 
Health and Social Needs Study (Fone et al., 2002; Fone, 2005).
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2.1.1 1991 C ensus geography

The census geography of the borough has changed over the past decade, in line with 
the rest of the UK. In the 1991 there were 9,930 electoral wards in England and Wales 
(Office for National Statistics, 1999)). Wales comprised 901 wards and of these, 36 
belonged to Caerphilly county borough. Electoral wards are a key building block of 
administrative boundaries in the UK. They are used to elect local government coun­
cillors, as well as being the base unit of other geographies, such as parliamentary 
constituencies, unitary authorities and NUTS (Nomenclature of Units for Territorial 
Statistics) areas (a hierarchical classification of spatial units used for statistical produc­
tion across the EU). The population of wards can vary substantially, but the average 
for England and Wales is 5,500 individuals (in Caerphilly county borough it is 4,700). 
These wards were subdivided into enumeration districts (EDs) in the 1991 census. 
There were 325 EDs nested within the 36 wards in Caerphilly county borough. The 
average population of an ED in the study area is about 520 individuals. Boundaries 
for both electoral wards and enumeration districts are shown in figure 2.3.

2.1.2  2001 C ensus geography

The 2001 Census introduced new administrative boundaries, in particular output areas. 
Output areas were generated for the 2001 census (in England and Wales) by combining 
adjacent postcodes (University of Southampton, 2000). They were designed to have 
similar population size (on average 300 residents). They are also designed to take 
into account “measures of population size, mutual proximity and social homogeneity” 
(Office for National Statistics, 2006b; Vickers & Rees, 2007). Homogeneity is based on 
the nature of tenure of household and type of dwelling. Wherever possible, OAs do 
not straddle urban/rural boundaries and their boundaries frequently take account of 
obvious geographical features, such as main roads. The minimum number of households 
permitted in an OA is 40 (with 100 resident individuals); however, the recommended 
size is 125 households. There are 9,769 OAs in Wales and 559 in Caerphilly county 
borough. Super O utput Areas (SOAs) are built up from OAs and were designed 
to replace electoral wards for the purposes of presenting statistical information. As 
mentioned above the population of electoral wards can vary substantially. This makes 
them unsuitable for nationwide comparisons as well as causing confidentiality problems, 
when data from smaller wards cannot be released (Office for National Statistics, 2006a). 
The SOAs are defined by population size and so avoid this problem. There are three 
SOA layers. The Lower Super Output Layer (LSOA)has a minimum population of 
1,000 and mean of 1,500. Typically they consist of 4 to 6 merged OAs. The middle 
layer is slightly bigger containing at least 5,000 individuals with an average of 7,200 
individuals. These are built up from lower layer SOAs. A comparison between the old
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Figure 2.3: Map of Caerphilly county borough, showing Ward and Enumeration District Boundaries



and new output areas is made in table 2.1. The upper layer has yet to be determined.

Table 2.1: Comparison of 1991 and 2001 Census Geographies in Caerphilly county
borough

1991 C ensus 2001 Census
N um ber M ean Pop. N um ber M ean Pop.

Wards 36 4,700 SOAs-Middle Layer 24 7,000
EDs 325 520 SOAs-Lower Layer 110 1,500

OAs 559 300

2.2 The aims of the Caerphilly Health and Social 
Needs Study

In order to gather information on the health and social needs of the borough popula­
tion and to inform a new public health agenda on health inequalities, Gwent Health 
Authority and Caerphilly county borough council made commitments to partnership 
working in the autum n of 1998. This initiated the Caerphilly Health and Social Needs 
Study (CHSNS). The aims of the study as proposed in October 1998 are presented 
here in the form reported by Fone (2005).

Aims:

•  To establish a robust methodology for sharing and joint analysis of information 
between Gwent Health Authority and Caerphilly county borough council, and to 
achieve a greater understanding of the relations between health status and social, 
economic and environmental deprivation in Caerphilly county borough;

•  To inform the development of the health needs assessment information required 
by the Local Health Group and Local Health Alliance for developing the Health 
Improvement Programme and to inform the development of local community 
regeneration strategies for health improvement and better targeting of resources.

2.2.1 R esearch  q uestions for th e  C aerphilly  H ea lth  and Social 

N eed s S tu d y

In addition to the service aims stated above, the academic component of the study was 
developed to investigate two specific research questions on the associations between 
mental health status and compositional and contextual factors in Caerphilly county
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borough, and gain a greater understanding of the relations between mental health, 
people and places (Fone, 2005). The specific research questions to be addressed were 
listed as follows.

1. Is individual mental health status associated with factors that measure socioe­
conomic deprivation, urban/rural status and social capital at contextual level 
(place) after adjusting for the composition (people) of these places?

2. Do any associations between mental health and contextual factors vary (a) be­
tween population groups, and (b) with the size of geographical areas?

2.3 Caerphilly Health and Social Needs Survey dataset

In order to address these research questions a population-based survey was carried out 
in 2001. This thesis will make use of the data resulting from this survey. It was a 
population-based questionnaire survey of residents of Caerphilly county borough, aged 
18 and over. The sampling frame was a stratified (by electoral ward) random sample 
of the 132,613 adult residents as identified by the GP administrative age-sex register.
A commercial company called Beaufort Research, Cardiff carried out the survey. A 
sample size calculation was performed (Fone, 2005) giving a target of 12,600 responses. 
Assuming a 60% response rate, this translated to a total sample size of 22,290. At the 
start of the study 22,236 questionnaires were posted out to residents of the borough. Of 
these 2,267 were reported to have moved away, 84 had died or were too ill to complete 
the survey and 98 were living in nursing homes and were excluded. This reduces the 
number of people sampled to 19,787. From these, 12,408 completed questionnaires 
were received giving a response rate of 62.7%. Figure 2.4 below summarizes the survey 
response. Excluding the over 75s, those with incomplete mental health information, 
and 316 individuals who had defaced the identifying barcode on the questionnaire and 
so had missing geographical information, the final sample size was reduced to 10,653.

The Caerphilly Health and Social Needs Survey produced a number of publications, 
disseminating the results of the study (Fone et al., 2006b, 2007c,b,a; Fone, 2005).

Mental health was assessed using the MHI-5 of the SF-36 Version 2 (Ware et al., 
2000a), which will be examined in detail in chapter 3. A large amount of information 
was collected from each respondent including age, gender, social class, employment sta­
tus, housing tenure and gross household income. This information was augmented with 
area-level (or contextual) information from other data sources (Fone et al., 2002). The 
main sources of information were the Department of Work and Pensions (DWP), the 
Office for National Statistics (ONS), and the Paycheck dataset (a commercially avail­
able dataset used to estimate gross household income at area levels) (CACI, 1999).
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Sample 
22,290

Valid responses 
12,092(62.7%)

Final Sample Size 
10,653

316 (1.6%) 
wave not 

known

First wave response 
8,578(43.4%)

Third wave response 
875(4.4%)

Questionnaires posted 
22,236

Second wave response 
2,639(13.3%)

Adjusted denominator 
19,787

Sampling frame 
132,613 

aged 18 years and over

Total Population of 
Caerphilly county borough 

169,519

Other Exclusions i.e. age 75 and over, 
missing mental health information, 
missing geographical information 

1,439

Exclusions from the denominator 
2,449 

Moved Away:2,267 
Deceased/too ill:84 
Nursing Home:98

Figure 2.4: Flowchart of the Caerphilly Health and Social Needs Study

21



The DWP provided information on both means-tested and non-means-tested benefits 
(Fone et al., 2007c). The ONS census data from 2001 was used to calculate an in­
dex of deprivation called the Townsend Index (described in the next section). The 
Council Tax and Benefits division of the Caerphilly county borough council supplied 
the 2002 (collected in February) council tax register, containing information on the 
council tax valuation band of each property in the borough (Fone, 2005; Fone et al., 
2006b). Caerphilly county borough also provided information regarding the proportion 
of unemployed in the borough.

The next section will focus attention on the variables of interest for this thesis. 
These will be categorised according to whether they are measured at individual, house­
hold or area level. The outcome measure is the mental health score which will be 
described in detail in chapter 3.

2.3.1 D escrip tion  o f  Variables 

Individual-level variables

The gender of the respondents is tabulated in table 2.2. More women than men re­
sponded, with over 55% of the dataset being female.

Table 2.2: Survey response by gender and five year age group

Age category Female % M ale % Total (%>
18-24 503 (4.7) 368 (3.5) 871 (8.2)
25-29 458 (4.3) 284 (2.7) 742 (7.0)
30-34 574 (5.4) 395 (3.7) 969 (9.1)
35-39 618 (5.8) 447 (4.2) 1,065 (10.0)
40-44 587 (5.5) 447 (4.2) 1,034 (9.7)
45-49 612 (5.7) 456 (4.3) 1,068 (10.0)
50-54 627 (5.9) 602 (5.7) 1,229 (11.5)
55-59 580 (5.4) 476 (4.5) 1,056 (9.9)
60-64 480 (4.5) 464 (4.4) 944 (8.9)
65-69 455 (4.3) 482 (4.5) 937 (8.8)
70-74 389 (3.7) 349 (3.3) 738 (6.9)
Total 5,883 (55.2) 4,770 (44.8) 10,653 (100.0)

An important variable is social class. This was based on the 1991 Standard Occupa­
tional Classification (ONS, 1991). It was derived from the following survey questions:

•  Which best describes your situation? Employed (full time or part tim e)/ Un­
employed and seeking work/ Looking after home or children full tim e/ Retired 
from paid work/ Long term carer/ Permanently unable to work due to illness or 
disability/ On a government training scheme
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Table 2.3: Social Class Frequencies

Social Class Frequency (%>
I&II (Professional ^Intermediate) 2,407 (22.6)
IIINM (Skilled Non-manual) 2,103 (19.7)
HIM (Skilled Manual) 2,171 (20.4)
IV&V (Semi-skilled &: Unskilled) 2,647 (24.8)
Other 635 (6.0)
Missing 690 (6.5)
Total 10,653 (100.0)

•  In your present or most recent job, are (were) you: A m anager/ A foreman or 
supervisor/ Self employed (with employees)/ Self employed (without employees)/ 
I have never been in paid employment

•  W hat is your job title (if you are not in work state what your previous title was)? 
(Please answer this question even if you are not working now)

•  Industry sector/ field of employment

•  Main things done in job

The last three questions were open response questions. The final social class variable 
used in the study was split into six categories (chosen to divide those respondents in 
social classes I to V into approximately equal numbers). The divisions were class I & 
II, III non-manual, III manual, IV & V, Missing and Other (this category contained the 
armed forces, full time education, youth training scheme, housewife or carer at home, 
not working due to disability and unemployed-never worked). In all models social class 
I & II will be the reference category. Table 2.3 shows the numbers of respondents in 
each category.

Employment status was recorded as one of the categories listed in table 2.4. Note 
the high proportion of people who classify themselves as “Permanently unable to work 
due to illness or disability” . This compares with a UK average of 5.5% (based on the 
age group 16-74) (Office for National Statistics, 2003). In all models the employed 
category will be the reference category. Official Caerphilly county borough council 
records showed the unemployment rate to be 2.9% (95% Cl: 2.4% to 3.6%), which is 
not significantly different to the reported rate of 2.7% (Fone, 2005).

The level of education of respondents was also investigated in the questionnaire. 
The multiple choice question “W hat is your highest educational qualification?” was 
used for this purpose. A summary of the survey responses is provided in table 2.5.
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Table 2.4: Employment Status Frequencies

Em ploym ent S ta tus Frequency (%)
Employed (full or part time) 5,507 (51.7)
Unemployed and seeking work 286 (2.7)
Full time student/school/government training scheme 190 (1.8)
Looking after home or children fulltime/Long term carer 804 (7.5)
Permanently unable to work due to illness or disability 1,274 (12.0)
Retired from paid work 2,111 (19.8)
Missing 481 (4.5)
Total 10,653 (100.0)

There is a large percentage of individuals with no educational achievement in the 
dataset.

Table 2.5: Educational Achievement of Respondents

E ducational Level Frequency %
Degree/Professional/NVQ Levels 4 or 5 1,385 (13.0)
HNC/HND 421 (4.0)
A Level/Advanced GNVQ/NVQ Level 3 946 (8.9)
School certificate/City & Guilds 947 (8.9)
O Level/GCSE A*- C/GNVQ/NVQ Level 2 1,785 (16.8)
O Level D-E/GCSE D-G/GNVQ/NVQ Level 1 481 (4.5)
No educational qualifications 3,708 (34.8)
Missing 980 (9.2)
Total 10,653 (100.0)

H ousehold-level variables

As will be described in chapter 6, the household-level has been identified as being an 
important context to include in mental health studies (Chandola et al., 2003, 2005; 
Propper et al., 2005; Weich et al., 2003b, 2005). The household variables used in this 
thesis will now be described.

In the interests of minimising non-response the question “W hat is your total current 
gross weekly or yearly household income?” , was framed as a multiple response question. 
This avoids the problem of individuals having to divulge too much specific information 
about their income. The three possible choices are listed in table 2.6. Those with 
a gross income lower than £215 per week after housing costs (i.e. less than 60% of 
the UK median gross income) are classified as living in “poverty” according to the
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UK definition (Office for National Statistics, 2004). It is worth noting that under 
this classification at least 45% of the respondents are living in poverty. This income 
information was aggregated to both ward and ED level and compared to arearlevel 
income data from Paycheck (CACI, 1999) which provided evidence for the validity of 
the income information (Fone, 2005). In all models the £95-£215 per week/£5,000- 
£11,250 per year category is the reference category.

Table 2.6: Self-reported gross household income frequencies

Self-reported Incom e Frequency (%)
Less than £95 per week/Less than £5,000 per year 960 (9.0)
£95-£215 per week/£5,000-£l 1,250 per year 3,810 (35.8)
More than £215 per week/More than £11,250 per year 5,158 (48.4)
Missing 725 (6.8)
Total 10,653 (100.0)

Council tax  valuation band (CTVB) information on each residential property in the 
borough was obtained from the council tax  register and matched to the sampling frame 
(Fone, 2005; Fone et al., 2006b). There axe eight different CTVBs, which are labelled 
A to H. These provide a measure of residential property value. Since the numbers of 
houses in the higher bands are relatively small, this variable was dichotomised for many 
of the analyses. The first two categories (A and B) were combined and compared to the 
last six (C-H). Table 2.7 summarises the council tax band information for individuals 
(not properties) in the CHSNS dataset. In all models category C-H is the reference 
category.

Housing tenure was recorded as one of four categories: “I own it or live with the

Table 2.7: Council Tax Valuation Bands

CTVB P roperty  Value Frequency (%)
A < £30,000 2,326 (24.3)
B £30,001-£39,000 3,988 (37.4)
C £39,001-£51,000 1,677 (15.7)
D £51,001-£66,000 862 (8.4)
E £66,001-£90,000 487 (4.6)
F £90,001-£120,000 193 (1.8)
G £120,001-£240,000 41 (0.4)
H > £240,001 2 (0.0)
Missing 1,077 (10.1)
Total 10,653 (100.0)
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Table 2.8: Housing Tenure

Tenure Frequency (%)
Owner Occupied 8,562 (80.4)
Not Owner Occupied 1,943 (18.2)
Missing 148 (1.4)
Total 10,653 (100.0)

person who owns it” , “Rented from local council or housing association/trust” , “Rented 
from a private landlord” and “Other (e.g. live rent free or home comes with job” . For 
the analysis however, this was simplified by merging the last three categories, as in 
table 2.8. In all models the owner occupied category is the reference category.

A rea-level variables

To investigate possible associations between area of residence and mental health, con­
textual measures need to be recorded. These variables can then be included at the 
correct level of analysis and their influence assessed. In order to investigate the con­
textual impact of deprivation, two area-level deprivation measures were included in the 
analysis. The Townsend social and material deprivation score (Townsend et al., 1988) 
was calculated from Census small area statistics using unemployment, car ownership, 
owner occupation and overcrowding information. It was calculated for both ward and 
enumeration district levels. The 2001 census was used to calculate the ward-level score, 
but since the enumeration district level was not used in the 2001 census, the 1991 cen­
sus was used for the ED level score. Table 2.9 shows the Townsend scores for wards 
in Caerphilly county borough split into quintiles. The four constituent Townsend vari­
ables are each standardised to have zero mean and standard deviation of 1. These 
four variables are then summed, producing a score with a mean of 0, and a standard 
deviation of 4 (Townsend et al., 1988). Higher scores indicate more deprivation. The 
most deprived ward is Aberbargoed, with a Townsend index of 6.75, (followed closely 
by Twyn Carno with 6.58), while the least deprived is St. Martins with a score of 
-2.99.

The Department of Work and Pensions (DWP) provided information on benefits 
data for the adult working age population of Caerphilly county borough. This com­
prised the number of claimants of long term Incapacity Benefit and Severe Disablement 
Allowance residing in the borough in August 2001. Individuals aged between 16 and 
state pension age, who had been on statutory sick pay for 28 weeks or more, and who 
had made sufficient National Insurance contributions were eligible for Incapacity Bene­
fit. Severe Disablement Allowance was paid to individuals who had never been able to
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Table 2.9: Townsend Scores by Ward

W ard N am e Townsend Score W ard Nam e Townsend Score
Aber Valley 4.26 Moriah 5.61

Aberbargoed 6.75 Nelson -1.14
Abercarn 0.37 New Tredegar 5.65

Abertysswg 3.6 Newbridge 1.14
Argoed 4.46 Pengam 1.54

Bargoed 3.89 Penmaen -1.47
Bedwas and Trethomas 1.37 Penyrheol 1.5

Blackwood 0.32 Pontllanfraith 1.98
Cefn Fforest 2.92 Pontlottyn 5.56

Crosskeys -0.12 Risca East 0.68
Crumlin 1.28 Risca West 0.27

Darran Valley 4.6 St. Cattwg 2.32
Gilfach 1.26 St. James 4.66

Hengoed 3.65 St. Martins -2.99
Llanbradach 0.66 Tir-Phil 2.37

Machen 2.94 Twyn Carno 6.58
Maesycwmmer -0.26 Ynysddu 0.76
Morgan Jones 0.95 Ystrad Mynach -2.18

work, or who did not meet the eligibility criteria for Incapacity Benefit. These benefits, 
taken together, provide an estimate of the total working age population classified as 
incapable of work. In August 2001, 17,493 (15%) of the 116,990 working age residents 
of Caerphilly were claiming these benefits. This information was supplied for persons 
anonymised in five-year age ranges and was aggregated to ward level. No gender in­
formation was supplied. Indirect age-standardised ward ratios were calculated and are 
referred to as the Incapacity Claimant Ratio (ICR). These were multiplied by 100, so 
tha t 100 indicates the overall borough average incapacity for work. This information 
is summarised in table 2.10 and illustrated in figure 2.6. Again, there is considerable 
variation throughout the borough, ranging from areas with less than half the expected 
number of claimants (St. Martins), to areas with 60% more claimants than average 
(Aberbargoed). There is a clear gradient of increasing proportions of claimants from 
the southern part of the borough to the northern part. This matches the pattern of 
deprivation seen in figure 2.5.
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Figure 2.5: Townsend Scores, split into quintiles, by Ward

Townsend Scores 
| | -2.99- -1.14

□  -1 .15-0 .95  
—  0.96 - 2.37
■ I  2 38 ~ 4 66
H  4.67 - 6.75

2.4 A n a lysis  o f  S urvey  R esp on se

The response to the Caerphilly Health and Social Needs Survey was extensively in­
vestigated for evidence of differential response (Fone, 2005). The age of respondents 
was cross-validated with information on the sampling frame to determine whether the

Table 2.10: Incapacity claimant ratios by ward

Ward Nam e ICR Ward N am e ICR
Aber Valley 109.54 Moriah 144.88

Aberbargoed 162.94 Nelson 94.04
Abercarn 89.46 New Tredegar 147.48

Abertysswg 115.25 Newbridge 91.90
Argoed 124.29 Pengam 117.07

Bargoed 147.89 Penmaen 68.98
Bedwas and Trethomas 96.32 Penyrheol 79.21

Blackwood 90.29 Pontllanfraith 86.84
Cefn Fforest 116.57 Pontlottyn 143.25

Crosskeys 85.94 Risca East 73.08
Crumlin 89.69 Risca West 88.18

Darran Valley 148.77 St. Cattwg 120.44
Gilfach 126.03 St. James 102.50

Hengoed 143.50 St. Martins 49.32
Llanbradach 82.97 Tir-Phil 147.21

Machen 80.20 Twyn Carno 152.28
Maesycwmmer 89.70 Y nysddu 86.11
Morgan Jones 73.95 Ystrad Mynach 86.47
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Figure 2.6: Incapacity Claimant Ratio by Ward

Incapacity Claimant Ratio

sample was representative of the borough. Work was done to investigate the response 
rate by council tax  band and deprivation also (Fone, 2005).

2 .4 .1  E x c lu s io n s  from  th e  d en o m in a to r

As illustrated in the flowchart in figure 2.4, 2,449 (11%) of the original sample were 
excluded from the denominator for various reasons. Of these, 1,570 were male and 879 
female. At every age group except for the over 80s there was a greater percentage of 
males excluded than  females.

2 .4 .2  R e sp o n se  R a te

The response rate for women was better than for men with 6,887 females responses 
(constituting a response rate of 66.8% for females). There were 5,519 male response, 
representing a response rate of 58.3%. This was also broken down by five year age 
groups and it was found that women had higher response rates than men up to (and 
including) the age group 60-64, but after that men had higher response rates.

It was also found th a t there was an under-representation of those under 45 years 
old and an over representation of those over 45 years old. This was reflected in the 
fact that the mean age of responders was 50.5 while the mean age of non-responders 
was 43.8.

The relationship between response rate and age group (split by gender) was not 
found to vary substantially between the three waves of data  collection, with males 
reporting response rates of 39.9%, 13.2% and 4.5% for the first, second, and third waves. 
Females had response rates of 46.5%, 13.5% and 4.4% for the first, second, and third
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waves. The differences between waves were not found to vary substantially between the 
deprivation of the ward, as measured by the Townsend Index of Deprivation (Townsend 
et al., 1988).

2.5 Critique of the Caerphilly Health and Social 
Needs Survey dataset

2.5.1 S tren gth s

The most striking strength of this dataset is its size. W ith complete mental health 
information on 10,653 individuals, it has considerable statistical power to detect even 
small differences between areas. The response rate for the study was consistent with 
(if not slightly better than) other postal questionnaires. The study achieved a response 
rate of 62.7%. This is typical of the response rates from postal questionnaire surveys, 
and is in fact better than the response rate of 57.7% achieved by the Welsh Health 
Survey in Caerphilly county borough (The National Assembly for Wales, 1999).

Secondly, Caerphilly county borough is a meaningful study area, in that it is a well 
defined contiguous region. Conclusions drawn from the study have a practical and 
useful interpretation. This is in contrast with other studies which sample people at 
random from the entire UK, with small numbers of people from each area sampled. 
Cummins et al (2005) discuss this issue, concluding:

“Our approach has shown that ‘tru e ’ area data on social and material 
context is complex and difficult to collect at national level and produced 
caveats in terms o f data comparability, generation and interpretation . ”

Thirdly, the multi-agency nature of the Caerphilly Health and Social Needs study facil­
itated data linkage between diverse datasets. Of particular importance was the linkage 
of the Caerphilly questionnaire data with data from the Office for National Statistics. 
This provided census based deprivation indices. Information from the Department of 
Work and Pensions (DWP) provided information on incapacity claimants in the bor­
ough. Income data  was provided by Paycheck (a commercial available dataset) (CACI, 
1999). Add to this the fact that the Caerphilly Health and Social Needs question­
naire recorded a large amount of information about each respondent and the resultant 
dataset has a richness and depth unusual for a study of this type. In particular the level 
to which individuals can be geographically pinpointed is quite good, with information 
down to postcode and household for each individual, which facilitated the linkage of 
the questionnaire data with other datasets.

A further benefit of the dataset being an amalgamation of information from differ­
ent sources is that it helps avoid same source bias. This is useful for the DWP benefits
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information. Area based variables derived simply by aggregating individual-level sur­
vey responses are not objective measures of an area (e.g. percentage unemployment). 
It could be the case tha t people with poor mental health, tend to exaggerate (or under­
state) their incapacity to work. This could result in a stronger (or weaker, respectively) 
association between being incapable of work due to disability and mental health being 
reported. This same source bias problem is avoided because the incapacity benefits 
data was obtained from a different dataset.

The quality of the dataset is reflected in the number of original publications it has 
produced. These include an analysis investigating the utility of local authority data 
for investigating health inequalities (Fone et al., 2002), the association between council 
tax valuation bands and socio-economic status and a number of health outcomes (Fone 
et al., 2006b), the association between neighbourhood cohesion and individual mental 
health status (Fone et al., 2006c), the effect of perceived and geographical access to 
accident and emergency departments (Fone et al., 2006a), the effect of community and 
individual level deprivation and social cohesion on mental health (Fone et al., 2007b), 
an investigation of the relationship between the Mental Health Needs Index (MINI) 
(Glover et al., 1998), the common mental disorders (Fone et al., 2007a), and a multi­
level analysis of economic inactivity (Fone et al., 2007c) as well as providing the data 
for an MD thesis (Fone, 2005).

2.5 .2  W eaknesses

Firstly, weaknesses of the study which are not addressed in this thesis are presented. 
The biggest weakness of the study is that it is cross-sectional in nature. One of the 
suggestions for future research recommended by Kawachi and Berkman (2003) is to 
disentangle the effects of social selection versus social causation. Both social selection 
and social causation are theories that attem pt to explain why certain attributes differ 
between areas. Basically, this can be summarised with the question “do poor peo­
ple choose to live in poor areas or do poor areas contribute to making their residents 
poorer?” . It might seem reasonable to suggest tha t both mechanisms operate simulta­
neously in most areas, or to quote Macintyre (1993) “People create places and places 
create people” . To study such mechanisms (and quantify their relative importance) a 
longitudinal study is needed. Such a study would be able to make causal inferences, 
and provide insight into which of these two mechanisms is most potent. The answers 
to such questions are central to obtaining a deeper understanding of the relationship 
between mental health and place. Unfortunately, since these data are cross-sectional in 
nature, there is no possibility of any such kind of inference being made. At best, such 
data can provide evidence for an association between any two variables, say deprivation 
and mental health. It can not provide any information as to which came first however.
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Another potential limitation of this dataset is that despite there being a wealth of 
area-level geographical information there is no information on the geographical posi­
tion of individuals within a postcode. For the purposes of using GIS techniques people 
are mapped as residing at the centroid of their postcode. It would have been prefer­
able had it been possible to assign individuals from the same postcode into different 
synthetic boundaries. This is not possible in the CHSNS dataset.

The dataset provides a number of contextual variables for the purposes of multi­
level modelling. Most of these variables however are not “true” contextual variables. 
W hat is meant by this is that they are calculated from aggregated individual variables, 
such as percentage unemployment. A “true” contextual variable is one that is only 
measurable at the higher levels. Examples would be the number of shops in an area, 
or the number of burnt out cars, or the percentage of available surfaces covered in 
graffiti. It has been suggested that more use should be made of such “true” contextual 
variables (Macintyre et al., 1993). While it is a pity tha t more of these contextual 
variables are not available, the same authors note tha t aggregated contextual variables 
contain different and important information about area characteristics.

There is an issue with regard to differential response rates from the survey. This 
is a problem endemic to postal questionnaire surveys, with low response rates known 
to be associated with younger age groups, male gender, individuals from lower social 
classes and less educated people (Etter k  Perneger, 1997). Young males (aged under 
45 years) in this study were the worst responders with a response rate of only 58%. 
However, similar studies which used the SF-36 achieved comparable rates from men: 
51% (Avery et al., 1998), 64% (Department of Public Health Medicine, 1993), 72% 
(Bowling et al., 1999) and 58% (The National Assembly for Wales, 1999). The surveys 
with response rates of 64% and 72% were conducted in much more affluent areas than 
Caerphilly county borough (Oxford and Hertfordshire respectively). This would be a 
far greater problem if the goal of the study was to make population inferences about 
Caerphilly county borough (e.g. if the objective was to make population inference 
regarding the mental health of residents of Caerphilly county borough in order to as­
certain the level of service provision were required for the area). Serious bias could be 
introduced by differential response rates if this were the case. However, since the work 
is focussed on identifying relationships between various exposure variables and mental 
health, the non-representative nature of the survey is not an impediment. Similarly, if 
the relationships between the explanatory variables and mental health differed between 
responders and non-responders this would be a potential problem. Depending on the 
nature of these differences they could bias the associations between mental health and 
the explanatory variables in either direction. It is not possible to investigate this in the 
CHSNS dataset as no mental health information is available on the non-respondents.

Next, weaknesses of the study which are addressed in this thesis are presented.
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The outcome of interest for this thesis is mental health. This was measured using a 
component of the SF-36 questionnaire. This component is known as the Mental Health 
Inventory (MHI-5) and consists of just five questions. While this is a valid and reliable 
score (as shall be reviewed in chapter 3) it unfortunately does not have a clinically val­
idated or meaningful cutpoint, indicating whether people are “cases” of CMD or not. 
Other mental health scales such as the General Health Questionnaire(GHQ) (Goldberg 
& Williams, 1988) do have such a cutpoint. Various approaches to dealing with this 
issue will be presented in chapter 3.

Another potential problem with the CHSNS dataset is the household level. None 
of the published analyses from the CHSNS used households as a level in a multilevel 
analysis. This has been highlighted as an important context to model. However, since 
the dataset contains a high proportion of single response households (84.8% of the 
responses are from individuals belonging to single response households), the household 
effect is practically inseparable from the individual level. The effect of including such 
a level is under-investigated as will be discussed in chapter 6. Here a simulation study 
investigates the possible impact of such identifiability problems.

Finally, a criticism of the study is that the only area boundaries available to locate 
respondents geographically are administrative census boundaries. These boundaries 
are not created for the purpose of modelling mental health, and so may not be suited 
to the task. From a statistical point of view boundaries which group similar peo­
ple together are preferable to those which group heterogenous people together, since 
aggregate measures of heterogenous groups are rather less meaningful than those of 
homogenous groups. A separate issue is that the effect of changing the hierarchy on the 
results of a multilevel analysis is not known. Since administrative boundaries change 
regularly (different census geographies were used in the 1991 and 2001 censuses) this 
is potentially a large problem. This will addressed in chapter 7.

2.6 Conclusion
This chapter described and critiqued the CHSNS dataset. Many of the criticisms of the 
CHSNS dataset are common to many datasets which investigate area-effects on health. 
For instance, confidentiality considerations preclude recording individual’s geographic 
location at any level lower than postcode. Similarly, questionnaire non-response for 
males and young people are widespread problems for postal questionnaire surveys. 
It was concluded tha t the Caerphilly Health and Social Needs Survey dataset is an 
excellent resource for studying area-level effects on mental health. The original pub­
lications from the study suffer from a number of methodological limitations however, 
and this thesis will address those limitations as well as augmenting the wider multilevel 
modelling methodology literature.
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Chapter 3 

Measurement of mental health  
status

In the first chapter of this thesis, background was provided on the public health im­
portance of studying mental health in general, as well as the more specific problem 
of the common mental disorders, on which this thesis focusses. Before this can begin 
however, it is important to investigate the method by which common mental disorders 
will be measured. This chapter will address the second main objective outlined in 
the introduction, to investigate properties surrounding the distribution of the mental 
health score used in the study, as well as evaluating a cutpoint to identify cases of 
common mental disorder.

This will be done in the following sections.

1. The mental health scale used in the CHSNS, the mental health inventory (MHI-5) 
of the SF-36 version 2, will be described.

2. The concepts of validity and reliability will be introduced. Standard techniques 
to assess these concepts will be described.

3. Literature surrounding previous attem pts to demonstrate the validity and relia­
bility of the MHI-5 will be described and summarised.

4. Various approaches to modelling the mental health score produced by the MHI-5 
will be described and illustrated. Emphasis will be placed on deriving a cutpoint 
to define a case of common mental disorder.

5. The results and conclusions of the chapter will be summarised.
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3.1 Description of the SF-36

Understanding the epidemiology of population mental health relies heavily upon ques­
tionnaire measures to quantify the state of a person’s mental health. The gold stan­
dard, of course, would be a clinically administered interview; however in most cases 
this is either too time-consuming, expensive or impractical. Even if it were feasible, 
a large number of clinicians would be required in order to assess sufficiently many 
subjects, which introduces concerns over inter-rater reliability. A properly designed 
self-administered questionnaire can overcome some of these concerns.

There are many questionnaires that measure mental health status, but only the 
General Health Questionnaire (GHQ-12) (Goldberg & Williams, 1988), the Mental 
Health Inventory (MHI-5) (which is embedded in the SF-36) (Ware et al., 2000a) and 
the mental health component score (MCS) (Ware et al., 2000a) of the SF-36 will be 
considered in this thesis. The mental health measure in the CHSNS dataset was the 
MHI-5, since this is included in the SF-36 scale. On the construction of the SF-36 the 
authors have said (Ware & Gandek, 1998):

“Much remains to be discovered about population health in terms of func­
tional health and well-being, the relative burden of disease, and the relative 
benefits o f alternative treatments. One reason for this has been the lack 
of practical measurement tools appropriate for widespread use across di­
verse populations. The SF-36 was constructed to provide a basis for such 
comparisons. The SF-36 was constructed to satisfy minimum psychomet­
ric standards necessary for group comparisons. The eight health concepts 
measured in the SF-36 were selected from dozens included in the Medical 
Outcomes Study (MOS) and represent the most frequently measured con­
cepts in widely-used health surveys that have been shown to be affected by 
disease and treatment. ”

It is designed then, as a tool for general population surveys and can be employed 
via self-administration, telephone administration, or administration during a personal 
interview. It has been used in Denmark, France, Germany, Italy, the Netherlands, Nor­
way, Spain, Sweden, United Kingdom, United States, Singapore, China and Australia 
(Keller et al., 1998; Li et al., 2003; Thumboo et al., 2001; McCallum, 1995) and work 
has been done to validate the scale in each of them. The validation of the SF-36 will 
be investigated in section 3.2.

The SF-36 is divided into eight subscales. These are Physical Functioning, Role- 
Physical, Bodily Pain, General Health, Vitality, Social Functioning, Role-Emotional 
and Mental Health. The MHI-5 included in the SF-36 version 2 (the version of the 
SF-36 in the CHSNS dataset) consists of five questions summarised in table 3.1.
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Table 3.1: The MHI-5 included in the SF-36 version 2

H ow m uch o f the tim e  
during th e  past four weeks

R esponses Score

1. have you been a very nervous person? all of the time 1
2. have you felt so down in the dumps most of the time 2

that nothing could cheer you up? some of the time 3
3. have you felt downhearted and low? a little of the time 4

none of the time 5
4. have you felt calm and cheerful? all of the time 5
5. have you been a happy person? most of the time 4

some of the time 3
a little of the time 2
none of the time 1

The five possible Likert scale responses which axe “All of the time” , “Most of the 
time” , “Some of the time” , “A little of the time” , and “None of the time” . These 
responses are coded as numbers from 1 to 5. Two of the questions are reverse coded 
(the fourth and fifth questions). The sum of the responses is calculated. This sum 
is transformed to a scale ranging from 0-100 by subtracting the lowest possible score 
from it and dividing the result by the range of possible scores as in equation 3.1.

__ _ , _ . I Actual raw score — 5 \   ̂^  . .
Transformed Scale =  I ------------ —------------  1 * 100 (3.1)

Data imputation for the mental health scale was performed according to the SF-36 
manual guidelines (Ware et al., 2000a). For the mental health scale, this entailed 
imputing values for individuals who failed to provide answers for one or two of the 
five items on the mental health scale. Imputed values were calculated by taking the 
average score for the items the individual answered.

Another way of using the SF-36 is to calculate two summary scores; a Physical 
Component Summary (PCS) score and a Mental Component Summary (MCS) score. 
These summary scores sum the eight component scales with varying weights (derived 
using principal components analysis) in order to produce fine grained scales measuring 
physical and mental health. The are calculated as follows. All eight component scales 
are calculated (in the same fashion as the mental health score described above). Then 
each scale is standardised by subtracting the population mean score and dividing by 
the scale standard deviation (this procedure is called a z-transformation), both of 
which are estimated from previous studies. The developers of the SF-36 provide US 
population norms for this purpose (Ware et al., 2000a), but UK norms have been
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published (Jenkinson et al., 1997). These z-transformed scales are then summed with 
different weights, or factor loadings, again derived from population studies. There 
are a set of factor loadings for both the Physical Component Summary score and the 
Mental Component Summary score. Both resulting scores are then transformed by 
multiplying by 10 and adding 50. Since the PCS and MCS require information from 
all eight component scales, missing values represent a larger problem for them than for 
each of the component scales. The MCS was not used in the CHSNS as 13.4% of the 
respondents had missing information precluding the calculation of their MCS scores 
(Fone, 2005). It is presented here because it will be used in section 3.4.3.

It should be noted tha t the terms “mental health scale of the SF-36” and “MHI-5” 
will be used interchangeably in this thesis.

3.2 Validity and Reliability

Since the main outcome measure of the study is mental health it is important to give 
some consideration to the method of measuring it. The development of a scale to 
measure mental health is a complicated procedure and it must pass many tests before 
it can be deemed a success. Chief among these concerns are reliability and validity. 
Reliability and validity are not the same, but they are highly related. Reliability 
refers to how consistently a scale measures some construct. It incorporates notions of 
internal consistency as well as temporal consistency. Validity on the other hand, refers 
to whether the scale is actually measuring what it is supposed to measure. The two are 
related, since a scale which is not reliable is unlikely to display high validity. Indeed, 
the reliability of a scale provides an upper bound for the validity of the scale (Streiner 
k, Norman, 2003). Both properties will be described in more detail now.

3.2.1 V alid ity

Verifying the validity of a measure is perhaps a more complicated and subjective proce­
dure than verifying the reliability of a scale. There are many different types of validity 
and ideally all should be addressed. Streiner separates validity into three different 
types: content, criterion and construct (Streiner k  Norman, 2003).

Content validity refers to whether the scale comprehensively covers whatever con­
struct it is attem pting to quantify. For instance, a scale which purported to measure 
bodily pain, but only asked questions regarding back pain, would not demonstrate con­
tent validity. This is essentially the same as face validity, so called because it looks at 
whether “on the face of it, the instrument appears to be assessing the desired qualities” 
(Streiner k  Norman, 2003).

Criterion validity refers to the performance of the scale when compared with an
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already existing scale which measures the same or similar construct. Ideally, this pre­
existing scale is a gold standard for the construct. This makes intuitive sense, in that 
if a scale is known to measure a given construct well, then a new scale should perform 
similarly. Of course, if the new scale performs better than the “gold standard” , it 
may not perform similarly at all; however for most practical situations, such leaps in 
performance would not be expected.

Construct validity is the most general type of validity and as such can (and should) 
be demonstrated in a number of different ways. If a scale is designed to measure 
a certain construct (say mental health) then it should be possible to present some 
hypotheses tha t would demonstrate whether or not the scale really does measure men­
tal health. Successfully testing such hypotheses demonstrates construct validity. For 
instance, the effect of being permanently unable to work due to disability has been 
shown to be associated with poor mental health in the CHSNS dataset (Fone, 2005), 
therefore, a new mental health scale would be expected to score individuals who are on 
incapacity benefit as having worse mental health than the general population. Such a 
hypothesis is testable, and could form part of the validation process for a new mental 
health scale. Construct validity depends on a clear and explicit model of how and why 
the scale measures whatever it purports to measure. Streiner lists four different ways 
to demonstrate construct validity (Streiner k  Norman, 2003).

1. Firstly there is extreme groups construct validity. This essentially involves setting 
up a case control study. To continue the mental health scale analogy, this would 
involve administering the scale to individuals with poor mental health as well as 
to individuals with good mental health. For instance, psychiatric patients could 
be compared with non-psychiatric patients. If the scale in development actually 
does measure mental health it would be expected tha t there would be a difference 
in scores between these two groups. This is sometimes referred to as discriminant 
validity.

2. Secondly, there is convergent validity. Convergent validity appears to be exactly 
the same as criterion validity, in that it refers to comparing the scale with other 
measures of the same construct.

3. Divergent validity ensures that the scale is unrelated to constructs with which 
it should not be related. So, for instance, if a scale attem pts to measure how 
intelligent an individual is, but does so by asking them to translate a paragraph of 
Spanish, then individuals from Spain or South America may score highly on this 
test regardless of intelligence, while highly intelligent people with no knowledge 
of Spanish will score poorly. Here the scale would be highly related to Hispanic 
ancestry which would not be expected. Confusingly, Streiner (2003) refers to
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divergent validity as discriminant validity, however here it will be referred to as 
divergent validity.

4. The fourth method of investigating construct validity is called the multitrait- 
multimethod matrix. This simply involves combining the previous three methods 
into one study, by applying multiple measures (including the measure in devel­
opment) to multiple different types of groups displaying traits both related and 
unrelated to the construct in question. This design allows the calculation of a 
correlation matrix, with the individual measure’s reliabilities on the diagonal, 
and correlations between different measures off the diagonal. These correlations 
comprise three types: homotrait-heteromethod (the same construct assessed by 
different measures), heterotrait-homomethod (different constructs assessed by 
the same method) and heterotrait-heteromethod (different constructs assessed by 
different measures). If the new measure is good, the highest correlations should 
be the reliability of the measure itself, the lowest correlation should be for the 
heterotrait-heteromethod, and the remaining correlations should be somewhere 
in between.

More recent trends have moved away from this trichotomy of content, criterion and 
construct validity. Instead, construct validity has been identified as the most important 
category and its remit widened so that it permits any testable hypothesis resulting from 
the theoretical model of the construct. Moreover, the focus has shifted from assessing 
the test itself, to identifying the strength and reliability of the inferences that can be 
made from the test. So for instance, if a scale is designed to measure propensity for 
violence then a validation study could include assessing how well the scale predicts 
which individuals will go on to commit violent crimes. Essentially, any hypothesis 
tha t makes statements about individuals who score high or low on a scale (i.e. “high- 
scorers on this scale are more likely to go to university” or “low scorers on scale A can 
be expected to score low on scale B”) can be thought of a validation test.

3.2 .2  R eliab ility

When a measurement is made, there will almost always be an error associated with 
that measurement. This error can be a result of rounding, a limitation of the precision 
of the instrument (or observer) or due to the variability of what is being measured. 
Hopefully this measurement error is small enough to be unimportant. For example, 
when human height is measured it is usually reported with a certain degree of rounding. 
For most situations the height measurement needs only to be accurate to within an 
inch and indeed most methods of measuring height are only accurate to within a half 
inch or so. It is generally understood therefore that a height measurement of six feet
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refers to a height less than half an inch from six feet. The error of a half inch is small 
in relation to the possible range of people’s heights, and so it is deemed unimportant. 
The reliability of a scale provides an estimate of how large this measurement error is 
likely to be. Two types of reliability that are frequently investigated in the validation 
literature surrounding the SF-36 will be presented: temporal and internal. Temporal 
reliability is assessed by test-retest, while internal reliability by Cronbach’s Alpha.

Test-retest

Test-retest is a method for measuring how consistently an instrument performs when 
different observers observe the same individual, or when the same observer observes 
the same individual more than once. The former investigates the extent of observer 
bias and precision while the latter investigates how stable the measure is likely to be 
over time. Both types of reliability can be assessed using test-restest; however since the 
mental health score in the CHSNS dataset was a self-administered questionnaire only 
temporal stability is of importance. Temporal stability is an important property for a 
measure to display. A measure may have poor temporal stability if its measurement 
error is large or if the construct it is measuring varies rapidly over time. For an example 
of the latter problem, consider a measure of height that uses the length of shadow cast 
by an individual. This measure would have poor consistency if measurements were 
taken at different times of the day, year, or even at different latitudes. This kind 
of situation is controlled for by administering the measure twice in quick succession 
to negate the chance of real differences being introduced. In situations where scores 
would not be expected to vary much over time (such as adult height) then the period 
between successive tests is not important. In situations where scores may well vary 
over time (such as mental health) it is important tha t the period between successive 
tests is short enough that actual changes are unlikely, but far enough apart that the 
respondent does not remember the test.

In essence the method involves examining the differences between baseline and 
follow-up readings of a measure (Bland & Altman, 1986). The difference between 
scores is plotted against the average of those scores. The average difference, d is 
calculated, along with the standard deviation of differences, s. If the differences are 
distributed normally 95% of these differences would be expected to fall within the 
interval [d — 1.96s, d +  1.96s]. This reference interval gives an indication of how large 
measurement error is likely to be. Bias can be assessed by constructing a confidence 
interval around the mean difference. Even if the mean difference is significantly different 
from zero, the authors urge the use of expert knowledge to determine whether the 
magnitude of the bias is sufficient to represent an important difference for a given 
field.
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Cronbach’s alpha

Next there is internal consistency. This is relevant to multi-item scales and measures 
how interrelated those items are. The classic test for internal reliability of multiple item 
instruments is Cronbach’s Alpha. It works under the assumption that measurement 
errors for the underlying construct (or latent variable, in this case mental health) are 
random, uncorrelated between the items and uncorrelated with the latent variable. 
Other assumptions are that each item is affected equally by the latent variable, and 
that each item has equal measurement error (Dukes, 1999). It is derived as follows. 
Say there are k items on a given instrument to measure some latent variable L, with 
n subjects answering each of them. A variance-covariance matrix can be calculated 
where the term at position (z, j )  denotes the covariance between the zth item and the 
j th item, as in equation 3.2.

Covariance Matrix =

(  a\x <Ji2 . . .  alk \  
0 2 1  0 2 2  •  • • a 2k

\  0fcl 0fc2 • • • 0fcfc )

(3.2)

The diagonal elements are simply the within item variances. Then a comparison can 
be made between the diagonal elements of the matrix (termed the unique variation, 
erf), and the sum of all of the elements (the total variation Ylj=i Y2i=i aij = var(E)). 
This ratio of the unique variation to the total variation, is subtracted from one, and 
scaled to reduce the dependency on k, the number of items. This gives Cronbach’s 
alpha as in equation 3.3.
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(3.3)

If the inter-item correlations are large (indicating that the items are all measuring the 
same underlying variable) the ratio of unique variation to total variation will be small. 
This will result in a large Cronbach’s alpha. Similarly, small inter-item correlations 
(indicating a lack of internal consistency) will result in a small Cronbach’s alpha. Since 
Cronbach’s alpha is defined as the proportion of the total variation attributable to the 
latent variable (Dukes, 1999) (i.e. excluding all measurement error) Cronbach’s alpha 
can only assume values between zero and one. An instrument with no internal reli­
ability would score zero (here the questions would need to be completely unrelated), 
while an instrument with maximum internal reliability (i.e. if the answer to any of 
the questions was sufficient to exactly predict the answers to all the other questions), 
would score one.
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Guidelines for interpreting values of Cronbach’s alpha vary, with one author sug­
gesting that less than 0.6 is unacceptable, greater than 0.8 is very good and over 0.9 
implies that shortening the questionnaire should be considered (De Vellis, 1991). The 
correct guideline to use depends on the research question of interest however, with 
another author (Bland & Altman, 1997) suggesting that values between 0.7 and 0.8 
would be sufficient for research tools, while 0.9 would be the minimum needed for a 
clinical application.

Cronbach’s alpha, while widely used, should be interpreted carefully. Schmitt 
(1996) warns that the alpha coefficient measures internal consistency and not internal 
homogeneity. The distinction between the two is described by Schmitt as follows

“Internal consistency refers to the interrelatedness of a set of items, whereas 
homogeneity refers to the unidimensionality of the set of items. Internal 
consistency is certainly necessary for homogeneity, but it is not sufficient”

In other words a questionnaire’s items can be highly interrelated, without being highly 
homogenous. This can happen if the questionnaire is measuring two or more different 
factors or constructs, which are related but not the same. In this case alpha could be 
high, without the questionnaire being unidimensional or homogenous. For example, 
a questionnaire designed to assess customer perceptions of a group of products may 
comprise questions relating to how cheap the products are, as well asking whether those 
products represent good value for money. There may be a correlation between the price 
of the products, and how likely they are to be considered good value (with cheaper 
products being more likely to represent better value) but the two are nevertheless 
separate issues. Thus the items of the questionnaire may have high reliability, while the 
questionnaire is not unidimensional. Schmitt recommends reporting alpha coefficients 
with the associated item correlations and corrected item correlations. This feature of 
Cronbach’s alpha may not represent a problem for this study, since it can be argued 
that the common mental disorders, are not unidimensional, comprising both anxiety 
and depression.

Another important feature of Cronbach’s alpha is that it is positively correlated 
with the length of the questionnaire (i.e. number of items on the questionnaire). 
Cortina (1993) reported that if a scale has more than 20 items, then an alpha coefficient 
of greater than 0.7 is achievable, even if the inter-item correlations are small. This is 
not an issue for the MHI-5 however, since it is such a short scale.
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3.3 Validity and reliability of the MHI-5 and the  
SF-36

Literature searches were performed in the Web of Knowledge and Medline search en­
gines, seeking papers which assessed the validity and reliability of the SF-36. Papers 
which included a keyword from each of the following groups: (SF- 36, MHI-5, Short 
form), (assess*, validity, validating, psychometric) ,(mental, psychol*, depress*, anxi*). 
Other papers investigating the validity of the SF-36 were obtained from the SF-36 man­
uals (Ware et al., 2000a,b).

This resulted in 15 papers which discuss the validation of the SF-36. These will be 
examined under the following headings: Validity, Reliability, Elderly Populations, Ver­
sion 1 vs Version 2. The older respondents section will investigate how appropriate the 
scale is for use in older populations, while the final section will describe the differences 
(and consequent improvements) of the SF-36 version 2 over version 1.

3.3.1 V alid ity

These papers are split into two groups, those that compare the SF-36 with another 
scale, and those tha t do not.

Com parison w ith  other scales

Two papers compared the SF-36 with a Diagnostic Interview Schedule (DIS), while an­
other compared it with the GHQ-12. The first of these compared four scales with DIS, 
namely the mental health component of the SF-36, the MHI-18, the General Health 
Questionnaire 30 (GHQ-30), and the Somatic Symptom Inventory (SSI-28) (Berwick 
et al., 1991). There is a consensus that interview administration produces more reliable 
responses than self administration, since the interviewer can ensure that the respondent 
understands each question and provide further clarification if required. An interviewer 
can also screen out contradictory answers. There are a number of drawbacks to inter­
view administration however. One worry is that interviewers (if not trained properly) 
can lead subjects toward certain answers. This may even happen through no fault of 
the interviewer, since the act of observing may change the outcome (e.g. an interviewer 
asking respondents very personal or embarrassing questions may be answered less tru th ­
fully than if they received an anonymous self-administered questionnaire). Inter-rater 
reliability must also be assessed and monitored if an interview-administered question­
naire is to be employed. The DIS, used in this paper, is an interview-administered 
questionnaire, while the others are self-administered. The subjects were 5,291 people 
aged 20-64, selected from a health register in Eastern Massachusetts. Using the scores 
from the DIS these people were classified into one of five categories: those with a current
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DIS disorder, the GHQ cluster (consisting of DIS disorders such as major depression, 
dysthymic disorder, panic disorder), affective disorders (e.g. bipolar disorder), anxiety 
disorders (e.g. generalised anxiety disorder, obsessive compulsive disorder) and major 
depression. Each method was assessed for each outcome. Their method of comparing 
the various measures was to use the area under the Receiver Operating Characteristic 
(ROC) curve. Basically the ROC curve is plotted with sensitivity on the y-axis and 
one minus specificity on the x-axis. A perfect ROC curve would describe a right angle, 
travelling straight up the y-axis at the origin and horizontal at y =  1. A totally un­
informative measure would describe a diagonal at 45 degrees. An example of a ROC 
curve is given in figure 3.1. The area under the curve can be used as a way to quantify

Figure 3.1: An example of a ROC curve
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measures tha t lie in between these two extremes. Using this measure the MHI-5 per­
forms as well as the MHI-18 and the GHQ-30 in the detection of any DIS disorder, the 
“GHQ cluster” , anxiety disorders and major depression (it performs worse for the full 
range of affective disorders). It is consistently as good as the GHQ-30, and is worse 
than the MHI-18 only for detecting the affective disorders group. The authors note 
the MHI-5 has “excellent detection capabilities” . By comparing the MHI-5 with these 
other measures they are demonstrating convergent validity.

The second paper involving the DIS compared three mental health scales with it,
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namely the GHQ-30, the Mental Health Inventory (MHI-5) and the Somatic Symptom 
Inventory (SSI) (Weinstein et al., 1989). The DIS was used to separate the sample 
into different clinical groupings. There were four such groupings: presence of any cur­
rent DIS disorder (denoted Any DIS Disorder), presence of DIS diagnoses specifically 
related to the face content of the GHQ-30 (the GHQ cluster), the presence of any DIS 
affective disorder (Affective Disorders) and the presence of any anxiety disorders (Anx­
iety Disorders). For each of these four groups receiver operating characteristic curves 
were plotted for each of the three health scales. The MHI-5 outperformed the other 
two scales for all but one of the four clinical groupings (as measured by the area under 
the curve (AUC)). For the anxiety grouping the MHI-5 was not the best (and in fact 
was the worst) at detecting cases, whereas the SF-36 had an AUC of 0.745, while the 
GHQ-30 and the SSI had AUCs of 0.753 and 0.760 respectively. The authors conclude 
by saying “our results suggest that the MHI may be an especially promising screening 
instrument in a primary care setting” . The main criticism that could be levelled at this 
study surrounds the small sample size of 364. Considering that information on four 
different scales including a DIS were included, this sample size is large. The clinical 
groupings chosen make sense in that they refer to psychiatric conditions. This paper 
provides convincing evidence that the MHI-5 has good convergent validity.

A paper by McCabe et al (1996) compared the GHQ-12 with the MHI-5. Both 
surveys were sent to 3,000 people randomly selected from two GP registers in Don­
caster. One of the registers covered a more socially and economically advantaged area 
than the other. The construct validity of the scale, was assessed in a fairly ad hoc, 
qualitative fashion. The results of the study showed tha t for both the MHI-5 and the 
GHQ-12, women, the unemployed, those that left full time education earlier, carers of 
long-term mentally or physically disabled adult dependents, people who reported not 
having anyone to confide in about personal or emotional problems reported worse men­
tal health, while homeowners and those living in the more socially and economically 
advantaged areas all reported better mental health. These relationships are currently 
known and undisputed in the literature, and were taken by the authors as evidence 
of the convergent validity of the mental health scale (they refer to this as construct 
validity however). The MHI-5 also correlated highly with the GHQ-12 providing fur­
ther evidence for convergent validity. The one exception to this was the relationship 
with age, with the GHQ-12 being positively related with age and the MHI-5 being 
unrelated to age (x2 =  24.94, p-value < 0.01 for the GHQ-12, x 2 =  4.42, p-value 
=  0.45 for the MHI-5). The authors postulate that the GHQ-12 may have items that 
are related to both age and mental health, citing item 1 about the respondents “ability 
to concentrate” as a possible example. While perhaps less rigorous than the previous 
two papers, this paper provides evidence that the MHI-5 is equally related to mental 
health as the GHQ-12.

45



Com parison across different subject groups

A number of papers did not compare the MHI-5 with another mental health scale, 
instead choosing to assess the performance of the MHI-5 by comparing scores for indi­
viduals from different populations.

The first of these used 1317 (75.5% response rate) patients from the north east of 
Scotland (Grampian) who presented to their GP with one of the following ailments: low 
back pain, menorrhagia, suspected peptic ulcer, varicose veins (Garratt et al., 1993). 
W ithin this group there were referred and non-referred patients, resulting in eight dis­
tinct subgroups of patients. The GP was asked to categorise their patient’s symptom 
severity as one of the following: none, mild, moderate, severe. These were compared 
with 542 (response rate 60.2%) people selected randomly from the electoral register 
for Aberdeen. The mental health scale identified statistically significant differences 
(p-value < 0.01) between all but one of the eight groups and the general population. 
The only group there was not a significant difference for was the non-referred patients 
suffering from varicose veins. This is not surprising giving that the symptoms from 
varicose veins can be quite mild, and also that this particular subgroup had by far 
the smallest sample size of 58. The mental health scale also distinguished between the 
doctor-assessed ratings for patient’s symptoms. W hether this demonstrates convergent 
validity is questionable. No hypotheses are presented to explain why the mental health 
of people with suspected peptic ulcers or menorrhagia sufferers would be expected to 
be different to tha t in the general population. The fact th a t the scale does show signif­
icant differences could merely be a result of the large sample size. The authors argue 
that by displaying that the mental health scale is correlated with general health, they 
have demonstrated convergent validity. This argument, however, seems much more 
applicable to the physical functioning, role-physical, bodily pain, general health and 
vitality scales, than it is to the social functioning, role-emotional or mental health 
scales. Had there been a psychiatric ailment included in the patient groups, then the 
utility of the MHI-5 could have been much more successfully demonstrated.

Another paper which used different patient groups to  demonstrate the convergent 
validity of the MHI-5 comes from a paper from 1993 (McHorney et al., 1993). This 
study was carried out in the cities of Boston, Chicago and Los Angeles. The final 
sample size was 1,014. These participants were divided into four patient groups in this 
study, defined by the symptoms they exhibit: minor chronic medical conditions, seri­
ous chronic medical conditions, psychiatric conditions only and both serious medical 
and psychiatric conditions. The National Institute of Mental Health’s DIS was used 
to identify depression and measure its severity; however the MHI-5 was not directly 
compared with this DIS. The MHI-5 displayed divergent validity by distinguishing 
between the serious medical and the minor medical poorly, compared with the other
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seven SF-36 scales. Convergent validity was demonstrated by showing that the mental 
health scale distinguished between the psychiatric and minor medical groups better 
than any other scale and was the third best scale at distinguishing between the both 
serious medical and psychiatric group and the minor medical group. This paper pro­
vides good evidence that the MHI-5 is indeed measuring an underlying mental health 
construct. W ithout comparing to another mental health score, however, it is difficult 
to determine how well it does so.

Another paper by Ware et al (1995) examined the convergent validity of the SF- 
36. The specific focus of their work was to compare the individual scales of the SF-36 
with the physical component summary (PCS) and mental component summary (MCS). 
They examined aspects of the discriminatory ability of the scale in both longitudinal 
and cross-sectional studies. Here the focus is on the clinical validity for cross-sectional 
studies. The authors used multivariate analysis of variance (MANOVA) with all eight 
scales of the SF-36 (including the mental health scale) as the outcomes and patient 
groups as the independent variables. The patient groups used were four types of 
chronic medical conditions, two types of hypertension (based on severity), four types 
of diabetes, two types of congestive heart failure (based on severity), the presence of 
16 comorbid conditions (and a count of 10 others) and frequency of acute symptoms in 
four symptom clusters (ear, nose and throat; central nervous system; musculoskeletal; 
and gastrointestinal tra c t/  genitourinary tract), age effects, longitudinal comparisons 
of physical, mental and general health (one year follow-up), and finally cross-sectional 
and longitudinal comparisons of patients with clinical depression. The mental health 
scale was successful in distinguishing patients in all but the hypertension, diabetes and 
musculoskeletal categories, in a linear model. Again, the ability of the mental health 
scale to discriminate between these conditions does not necessarily provide evidence 
for convergent validity (in the absence of literature demonstrating that these groups 
have distinct mental health distributions). The mental health scale was much less 
successful at identifying physical change than the physical scale, it was the best at 
identifying mental change, and it was fifth best (out of the eight scales) at identifying 
general health change. Moreover, the mental health scale was the best at detecting 
significant differences in three of the four mental health tests (being second best at the 
fourth). Again, this merely demonstrates that, of the SF-36 scales, the mental health 
scale measures mental health constructs the best.

The next paper explicitly assessed both the divergent and convergent validity of 
the SF-36 (Roberts et al., 1997). It did this in three steps. Firstly, it tested whether 
items from the SF-36 have equivalent variances, then whether items within a scale were 
substantially related to the total score computed from other items in the scale (con­
vergent validity) and finally it assessed whether an item correlated more highly with 
other items from within its own scale than with items from other scales (divergent
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validity). The authors reported no results for the convergent validity of the mental 
health scale but indicated that items within the mental health scale were substantially 
correlated with the total score computed from the other items in the scale. There 
was a small amount of evidence for a lack of divergent validity with an item from the 
mental health scale being equally correlated with the vitality scale and its own scale. 
The paper went on to assess the clinical validity of the scale using a cohort of 10,308 
civil servants. The mental health scale distinguished significantly between those with 
angina and those without, those with a zero CAGE (an instrument measuring severity 
of alcohol use) score and those with a maximum score, people who reported absence 
from work greater than one week in the past year and those who reported no absence 
due to sickness, medical group and psychiatric group, medical group and medical and 
psychiatric group, diabetes group and angina plus GHQ caseness group, and finally 
angina group and diabetes plus GHQ caseness group. In fact the only groups the 
mental health score failed to differentiate between were the angina only group and the 
diabetes only group. In fact, no scale differentiated between these two. The authors 
concluded tha t this was supporting evidence for the validity of the mental health scale 
in discriminating between medical and psychological conditions as well as psychiatric 
morbidity. This paper also failed to supply any hypothesis as to why a mental health 
scale should discriminate between those with angina and without. Instead they seem 
to have taken the same approach as many researchers in the field and investigated the 
validity of each of the eight scales in each patient group, even when a given scale would 
not be expected to be related to the condition present in th a t patient group.

A follow-up paper to one of the aforementioned papers (McHorney et al., 1993), in 
the same setting of Boston, Chicago and Los Angeles, assessed the SF-36 in a sample of 
3,445 against 24 different socio-economic subgroups, consisting of three age categories, 
sex, race (three categories), education (four categories), a poverty indicator (binary), 
six clinical conditions (hypertension, diabetes, congestive heart failure, myocardial in­
farction, clinical depression and symptomatic depression) and four disease severities 
(uncomplicated medical, complicated medical, psychiatric and uncomplicated medical, 
psychiatric and complicated medical) (McHorney et al., 1994). The percentages scor­
ing the maximum and minimum for each scale in each category were reported in order 
to identify the presence of floor or ceiling effects. There was no evidence for a floor 
effect (the maximum percentage scoring zero in any category is 0.8 (those in poverty), 
and little evidence for a ceiling effect (the maximum percentage scoring 100 is 11.7 
in the 75 and over age group). Item-discriminant validity was assessed in the same 
paper (1994). The correlations between each item (all 36) and each scale (all 8) were 
calculated. As evidence of divergent validity the authors noted that the correlation 
between each item and its own scale was greater than all correlations with the other 
scales by more than two standard deviations.
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There is a considerable body of evidence now showing that the MHI-5 has a high 
degree of validity. It has been compared favourably with many other mental health 
scales as well as against DIS. Many different approaches have been used to demonstrate 
the validity of the SF-36, some more successfully than others. The consensus from the 
literature is that the SF-36 comprises an excellent blend of validity, discriminatory 
power and brevity, and can be used on diverse social and demographic groups.

3.3 .2  R eliab ility  

C ronbach’s A lpha

A number of studies have examined the SF-36 using Cronbach’s alpha and the general 
consensus is that the SF-36 has high internal reliability. One study reported Cronbach’s 
alphas ranging between 0.75 and 0.85 for the eight subscales (mental health =  0.79) 
(Roberts et al., 1997). Three studies report alphas greater than 0.8 (except for the 
social functioning scale in one of the studies which scored 0.76)(Garratt et al., 1993; 
Jenkinson et al., 1993; McCabe et al., 1996). The most recent of these studies is based 
on Version 2 of the SF-36 and reports an alpha of 0.84 for the mental health scale 
(Jenkinson et al., 1999). Another study quoted an alpha greater than 0.85 (Brazier 
et al., 1992), while a final study reported a Cronbach’s alpha of between 0.82 and 
0.90 in 24 socioeconomic and clinical subcategories (McHorney et al., 1994). This last 
paper also quoted item-scale correlations (correlations between each item and the scale 
it belongs to) ranging between 0.65 and 0.81 (mean: 0.758). They also suggested that 
only the physical functioning scale “consistently met minimum standards of reliability 
for use on an individual patient lever . That scale reported minimum Cronbach’s alpha 
coefficients of 0.90, up to a maximum of 0.94.

T est-retest

A paper by Brazier et al (1992) examined the test-retest reliability using two meth­
ods. Firstly, they used simple correlations between scores from the same people taken 
two weeks apart. Correlations for all scales were high, with the mental health scale 
achieving a correlation of 0.75. The authors correctly point out however, that scores 
can be correlated without being anywhere near equal in magnitude. So for instance 
if the scores after two weeks were consistently lower than the baseline, the two scores 
could be highly correlated. To overcome this shortcoming the authors also examined 
the difference between the scores. For the mental health scale there was a statistically 
significant difference between the two scores, with the scores a fortnight later being on 
average 0.71 higher than baseline (the highest difference of all the scales). However, 
since the scale was measured on a 100 point range, this difference was not deemed
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clinically significant. A 95% reference interval (calculated using the differences on for 
a given scale and assuming a normal distribution) was calculated for each scale. This 
reference range was not reported, however the authors do state that the percentage 
of differences tha t lay within this reference interval was between 91% and 98% for all 
dimensions. The mental health scale reference range contained the lowest percentage 
of differences, indicating that the mental health scale is the least Normally distributed 
scale in the SF-36. While it appears that the mental health scale has the worst test- 
retest reliability of the eight SF-36 scales, it still demonstrates high levels of reliability. 
It is also worth noting that it is possible that mental health is genuinely more tempo­
rally variant than the other dimensions.

Another paper, by Roberts et al (1997), examined the test-restest reliability in a 
similar fashion. A sample of 289 people were given the SF-36 (version 1) twice, once 
at baseline and a second time a month later. The correlation for the mental health 
scale was 0.83 (95% conf. int : 0.76-0.89). The average difference between these time 
points was 0.79 (with the baseline being smaller). While this difference was statis­
tically significant, it is small compared to the 100 point range of the score. Again, 
differences were calculated for all eight scales, standard deviations calculated for these 
differences and 95% reference ranges calculated. For the mental health scale, 93.1% of 
the differences lay within the 95% reference range.

Finally the SF-36 Manual and Interpretation Guide (Ware et al., 2000b) references 
a paper by Nerenz et al (1992), which also examines test-restest reliability. This paper 
was excluded from the original search because the population it dealt with was too 
specific (patients with diabetes mellitus). They found a slightly smaller correlation 
between the two time points of 0.795. The follow-up interval was six months here, 
much longer than either of the other two studies. This correlation is almost certainly 
an underestimate of the true reliability of the scale however since such a long follow- 
up means tha t there will be changes in scores due to both random error and genuine 
changes in mental health states.

All in all, the evidence for the reliability of the mental health scale of the SF-36 
is remarkably consistent. Cronbach’s alpha coefficents for the MHI-5 are repeatedly 
reported around 0.85, indicating high levels of internal consistency. Test-retest investi­
gations also produce similar results with correlations being reported about 0.75. Taken 
together this evidence indicates that the reliability of the SF-36 is, if not extremely 
high, at the very least acceptable.

3.3 .3  S u itab ility  for E lderly P op ulation s

The collection of data from older people has long been a problem in the field of health 
sciences research. Older age groups consistently have a lower response rate than the
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population in general, and when they do respond, they tend to have more missing 
values than the average. Response to the SF-36 is no exception to this general trend. 
A number of papers have examined the issue of how reliable the SF-36 is for older 
populations.

The Brazier et al paper (1992) restricted its sample to those in the age range 16- 
74. They reported that “the extent of missing data was significantly associated with 
increasing age in three of the eight scales ”, however mental health was not one of these. 
They noted that the 65-74 year olds had a higher level of missing data than the other 
age categories (twice as many missing items as the 55-64 category) and that further 
studies would be required to ascertain the validity of the SF-36 for use in that popu­
lation.

A paper by Hayes et al (1995) specifically set out to examine whether the SF-36 was 
suitable for use with older adults. They used 90 patients aged 65 and over from two 
general practices and 100 from two outpatient sites. Some were given the SF-36 to self- 
administer and some were interview-administered. The results for the self-administered 
group were poor with 42 (43%) of the respondents unable to self-complete the question­
naire. This was due to visual problems, writing difficulties or a general unfamiliarity 
with completing questionnaires. This figure of 43% comprises 37% aged 75 and over, 
and 7% aged under 75. There were also problems with missing data for those that 
could complete the questionnaire, with 34 (61%) of the self-administered respondents 
omitting one or more of the 36 questions. The majority of these 34 were from the 
75 and over category. The main reasons for the missing data  was due to confusion 
over questions relating to work, e.g. “During the past 4 weeks have you had any of 
the following problems with your work or other regular daily activities as a result of 
your physical health” . Many respondents thought this question inapplicable to them 
since they were either retired or didn’t work. The authors noted however that the 
difficulties in self-completion here are likely to be an artefact of the study population 
instead of being specific to the SF-36, and would probably be observed in most mea­
sures completed by older people. Despite this high level of missing respondents and 
data, 177 (91%) of the respondents regarded all or most of the questions as clear and 
easy to understand. Also, the SF-36 was able to distinguish between the outpatients 
and the general practice respondents (with the outpatients having poorer health as 
expected). The authors suggested some minor word changes (particularly focussed on 
downplaying the work aspect of some of the questions) would make the SF-36 more 
suitable for use with older respondents.

A paper by McHorney et al (1994) reports that item completion is significantly 
lower for older populations. For the mental health scale however, the decline is quite 
mild, with under 65s having 91.7% completion, 65-74 having 88% completion and over 
75s having 84.3% completion. They give some suggestions to improve item completion
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among the elderly. They suggest a larger type size for the questionnaire to facilitate 
those who are visually impaired as well as telephone interview administration.

Another study (Parker et al., 1998) investigated response rates and completion 
rates for the SF-36 version 1 in elderly people (at least 65 years of age) who were 
medical or surgical inpatients (1,016 individuals). A small number of outpatients and 
visitors to general practice were also examined for the purposes of comparison with 
the inpatient group (80 outpatients and 40 GP patients). They found that response 
rates were related to age, disability, and cognitive impairment. They concluded that 
the self-completed version of the form was not suitable for routine use in hospital in­
patients due to low response rates (533 individuals, 53%). Also, the response rate was 
related to physical and cognitive co-morbidity (measured independently) meaning that 
non-response bias is a serious problem for elderly patients.

Another paper (Hill et al., 1996) found that the SF-36 was unlikely to be suitable 
for older populations. A sample of forty-seven older patients who had been referred 
to mental health or continence services were given the SF-36 within a week of their 
referral and then again three months later. The authors found no statistically signifi­
cant changes for any of the scales (except the pain scale). Qualitative reports of how 
their referral affected them found that most people had positive feelings of support, 
confidence, changed outlook and reduced sense of burden. These changes were not 
detected by the SF-36. This was taken as evidence that the SF-36 is not suitable for 
older populations. Since qualitative reports of change are by definition not numerical 
in nature, it is difficult to determine whether the change reported by the individuals 
was of sufficient magnitude tha t the SF-36 should have detected a change. The au­
thors note that the patients themselves tended to talk about how they felt and their 
general mood and outlook, while the SF-36 focusses on individual’s ability to perform 
tasks. The authors concluded that the SF-36 was not a suitable measure for older 
individuals because the high level of comorbidity in these groups masks change and 
the SF-36 focusses on functional tasks which are often inappropriate or inapplicable to 
older patients.

A paper from 1996 (Andresen et al., 1996) set out to examine the test-retest re­
liability of the postal version SF-36 in older adults. Four hundred and twenty two 
adults aged 65 and over and living in the community were sent SF-36 forms. Of these 
253 (60%) returned questionnaires. Missing values further reduced this figure to 223 
(53%). A month later, the process was repeated. Completed questionnaires for both 
mailings were received for 186 (45%) individuals. Internal consistency for the scales 
ranged between 0.802 and 0.924 with the mental health scale scoring 0.876. Test-retest 
reliability was also performed for each scale producing correlations ranging between 
0.648 and 0.868. The mental health score had a correlation of 0.845 between time 
points. This study concluded that the SF-36 had good internal consistency and test-
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retest reliability. The response rate for these older adults was not sufficiently high, 
with the authors recommending that further work be done to increase the response 
rate. The authors also found that healthier individuals were more likely to respond.

There is a final justification of the exclusion of the over 75s age group which is 
unrelated to the psychometric properties of the MHI-5. Older people are more likely 
to have cerebrovascular pathology, including cognitive decline and dementia, as a cause 
of lower mental health status (Brayne et al., 1995). The effect of the presence of these 
conditions on self-reported mental health is undetermined. For this reason, those re­
spondents over 75 years of age were excluded.

The message from the literature is that it is unclear whether the SF-36 is a reli­
able tool for assessing elderly populations. A number of studies have reported worse 
response rates and more missing item information for the over 75 age group (a trend 
that is mirrored for the CHSNS dataset, as described in chapter 2). There is some 
debate over whether the tool can be modified for use in the older age groups, but in 
the original version 2 format, it seems that the SF-36 may not be as reliable as it is 
for the younger age groups. This message was supported by the CHSNS dataset. The 
proportion of missing mental health and socio-demographic response data increased 
with the age of respondents (Fone, 2005; Fone & Dunstan, 2006). This relationship 
was particularly evident over the age of 75 years.

3.3 .4  V ersion 1 versus Version 2

There are a number of differences between version 1 and version 2 of the SF-36. Gen­
erally, these changes were to improve the layout and simplify the wording of the scale. 
The most important difference for the mental health scale is that version one had six 
possible answers to each question, while version 2 has only five. The version 1 order 
went as follows: “all of the time” , “most of the time” , “a good bit of the time” , “some 
of the time” , “a little of the time” and “none of the time” , as in table 3.2. In version 
2 the “a good bit of the time” category was dropped (as described previously in table 
3.1) because it was found that this category was not consistently ordered in relation to 
the other possible responses. The removal of this category resulted in little or no loss 
of information, compared with version 1 (Ware et al., 2000a).
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Table 3.2: Mental Health Inventory (MHI-5) items Version 1

H ow m uch o f th e tim e  
during th e  past four weeks

R esponses Score

1. have you been a very nervous person? all of the time 1
2. have you felt so down in the dumps most of the time 2

that nothing could cheer you up? a good bit of the time 3
3. have you felt downhearted and low? some of the time 4

a little of the time 5
none of the time 6

4. have you felt calm and cheerful? all of the time 6
5. have you been a happy person? most of the time 5

a good bit of the time 3
some of the time 3
a little of the time 2
none of the time 1

A study by Jenkinson et al (1999) examined the SF-36 version II in a UK setting. 
Data on 8,889 individuals, collected via a postal questionnaire, was used to assess 
how the changes to version II affected its performance. The authors were particularly 
focussed on the PCS and MCS, however they do note that all eight dimensions of the 
SF-36 display good internal reliability as measured by Cronbach’s alpha. The PCS 
and MCS show increased reliability over the equivalent domains scored by the SF-36 
version 1.

3.3 .5  C onclusions

The SF-36 mental health scale has been demonstrated to quantify mental health at 
least as well as any other well-known scale, and in some cases even appears to be 
a better measure of mental health. It is a remarkably short questionnaire, but its 
brevity does not appear to be costly in terms of accuracy. Reliability and validity 
have been investigated for the SF-36, and appear to be sufficiently high to justify 
its use. Evidence suggests that its application to assess elderly patients, particularly 
in postal questionnaire format, is not to be recommended due to decreased response 
rates, inapplicable questions and problems with comorbidity masking change. Version 
2 represents an improvement over version 1 in terms of internal consistency, however 
both versions perform similarly.
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Table 3.3: Summary of mental health scores

MHI-5 Frequency MHI-5 Frequency
0.0 42 55.0 527
5.0 45 56.25 18
6.25 2 58.33 6
8.33 2 60.0 632

10.0 72 62.50 16
12.50 5 65.0 672
15.0 98 66.67 6
16.67 4 68.75 31
18.75 6 70.0 738
20.0 135 75.0 911
25.0 160 80.0 1049
30.0 187 81.25 29
31.25 9 83.33 6
33.33 6 85.0 1142
35.0 218 87.50 36
37.50 14 90.0 1527
40.0 342 91.67 4
41.67 3 93.75 13
43.75 24 95.0 599
45.0 438 100.0 379
50.0 500

3.4 M ethods of Analysis

In this section various ways to model the mental health scale from the SF-36 are 
considered. The mental health score (as formulated in equation 3.1) is frequently 
treated essentially as a continuously distributed normal variable, however, there are 
a number of other ways to model it. Firstly, some transformation of the data can be 
performed in order to make it follow a normal distribution more closely. Secondly, the 
mental health score can be treated as an ordinal variable and modelled using ordinal 
regression. Finally, the mental health scale can be dichotomised in some meaningful 
way, and the resulting variable treated as a binary one. Unlike the General Health 
Questionnaire (GHQ-12), the SF-36 mental health scale does not have a validated 
cutpoint to define a case of common mental disorder.

Because of the short number of questions and the multiple choice nature of the 
responses there are a relatively small number of scores tha t the MHI-5 can possibly 
produce. Excluding imputed scores there are 21 possible values. All values were 
transformed into a scale that ranged from 0 to 100 using equation 3.1. See table 3.3 
for a summary of the possible values of the mental health score. There were a few 
values with quite low frequencies (e.g. 11.282, 31.234, 59.394 etc). These values were
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imputed scores for those individuals who neglected to answer one or two of the MHI-5 
questions. Any questions with missing answers were replaced with the average score 
for those questions with answers (provided that at least three of the five questions 
were answered). This is the standard imputation method (Ware et al., 2000b). Figure 
3.2 shows the distribution of this score. Clearly, this variable was highly negatively

Figure 3.2: Distribution of MHI-5

c0)

?ul
o  o  in

o  — — — — — — — — — — — — — — — — — — — —

I---------------- I---------------- 1---------------- 1----------------- 1---------------- 1
0 20 40 60 80 100

MHI-5

skewed. Other studies which use the MHI-5 to measure mental health have simply 
ignored the problem of skewness. It is possible that this is a valid way to proceed 
as some statistical methods are quite robust to normality assumption violations (e.g. 
ANOVA, t-test, linear regression) (Lumley et al., 2002). However, the effect of such 
violations on hierarchical modelling is less well understood. It is prudent therefore to 
consider other approaches to dealing with this problem
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3.4.1 B ox-cox  transform ation

A natural starting point for this was to try using a simple Box-Cox (1964) transfor­
mation. The Box-Cox transformation is of the form

T (Y )  =  ( yA~  1} (3.4)

where Y is the response variable and A is a constant known as the transformation pa­
rameter. In this method, A is chosen so that the transformed variable is distributed as 
normally as possible, typically by plotting the log-likelihood as a function of A. There 
are various measures of normality that can be used. Two methods will be investigated, 
firstly the correlation between the quantiles of the standard normal and the quantiles of 
the transformed response and secondly the log-likelihood of the transformed response. 
The higher the correlation or log-likelihood, the better the transformation. Figure 3.3 
shows the relationship between A and this correlation with quantiles of the standard 
normal. The dotted vertical line indicates the value of A which provided the maximum 
correlation. Negative powers have a disastrous effect on the correlation with the stan­
dard normal, providing correlations much lower than no transformation at all (A =  1). 
The A which produces the best correlation is 2.088, but as figure 3.3 shows, there are 
a wide range of values about 2 which produce similar correlations.

A histogram of the transformed response shows the effect of the Box-Cox transfor­
mation (see figure 3.4). While this new variable was clearly still not normal, it was 
an improvement over the original in many respects. The transformation particularly 
reduced the skewness of the data (from -0.857 to -0.163). The large trough on the 
right hand side of the plot is a result of small numbers of imputed values and the 
transformation. Another way to measure normality is to use the log-likelihood. This 
was performed using a standard package in S-Plus (MASS library). This function takes 
a linear model and computes profile log-likelihoods for simple power transformations 
of the response, e.g. yx. Figure 3.5 illustrates the effect of A on the log-likelihood. 
The A that gives the largest likelihood is 1.763. Again, negative powers do not help 
in normalising the response, and the optimal A provides only minimal improvement 
over the original untransformed response. The corresponding histogram of the trans­
formed score is shown in figure 3.6. The skewness under this transformation is -0.322. 
There are two troughs present in this histogram, again attributable to small numbers 
of imputed values.

Sum m ary

The application of the Box-Cox transformation to the MHI-5 scores collected in the 
CHSNS dataset indicate that the square transformation is approximately optimal for
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Figure 3.3: Relationship between lambda and correlation coefficient
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reducing the skewness of the scores. Figure 3.4 shows however that the resulting 
transformed distribution still does not appear to be Normally distributed. The square 
transform did not produce different conclusions to treating the MHI-5 scores as coming 
from a Normal distribution (Fone, 2005). Once a transformation is applied to the 
response variable in any analysis the interpretation of the parameters from that model 
become more complicated and so the square transform is not justified.

3.4.2  O rdinal R egression  

M otivation

One of the ways to overcome the problem of a skewed response is to use ordinal 
regression. An ordinal variable, as the name suggests, is a discrete variable with an 
inherent ordering. However, it differs from an interval variable, in that the difference 
between categories is unknown or unknowable. An example of an ordinal variable is 
the educational achievement of an individual (on a very simple level). People might 
be categorized into three categories: those who left school at 15, those who left school 
at 18, and those who went on to further education. It is clear that there is a trend
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Figure 3.4: Distribution of the transformed MHI-5, A =  2.088
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of increasing education in these categories, with those who left school at 15 having 
the lowest level and those who went on to further education having the highest level. 
However, quantifying the difference in educational level between any of the categories 
is not possible. So ordinal variables carry more information than nominal variables 
(where there is no ordering), but less information than interval variables (where there 
is a calculable and meaningful distance between the values of the variable). Here 
the MHI-5 mental health score will be treated as an ordinal variable. The MHI-5 is 
used here merely to rank individuals, without placing any meaning on the numerical 
distance between individual scores, e.g. it is not assumed that the difference between 
a mental health score of 20 and 40 is the same as the difference between scores of 40 
and 60. There are a number of ways to model such a variable. In general, however, 
ordinal regression works by modelling logits of probabilities of the response belonging
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Figure 3.5: Relationship between A and log-likelihood
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to certain categories, given covariate information. More detail is given below. Instead, 
if the ordinal variable has n  categories, then n  logistic regressions are applied, with the 
covariate coefficients constrained to be constant across all these logistic regressions.

M ethod

There are several choices when the response has a number of levels including; Cumu­
lative (or accumulated) logit, Continuation-ratio logit and Adjacent-categories logit. 
Each of these reduces the problem to a binary one in different ways. Imagine a re­
sponse variable with c categories and let 7r< denote the population probability that a 
given subject belongs to response category i. The cumulative logit for a category j  in 
the response compares the probability of being above this category with being in or 
below that category as shown in equation 3.5.

Li =  los  A + ' ’ +V C {3-5)7Ti +  . . • +  7Tj_i

The continuation-ratio logit for each category j  compares the probability of being in 
the category just above the cut point with being anywhere below it, as described by
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Figure 3.6: Distribution of the transformed MHI-5, A =  1.763
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equation 3.6.
L, = log *j+1 (3.6)

7TJ +  . . . +  7Tj

The adjacent-categories logit compares the probability of being in category j  +  1 with 
being in category j  as shown in equation 3.7.

_  i—Lj = log (3.7)

The first of these will be focussed on, the cumulative logit (equation 3.5). The logit 
of belonging to a higher category will be modelled as described in equation 3.8, where 
Y  is the response, [3 is a vector of covariate coefficients and X  is the covariate matrix. 
W ithout loss of generalisability only one covariate is modelled.

Lj =  logit (P r (Y  i ) )  =  aj  + (3.8)

This approach shares a disadvantage with logistic regression in that the covariate co­
efficients can no longer be interpreted in terms of the original units of measurement, 
but instead, must be thought of in terms of probabilities and odds. Equation 3.8 leads
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directly to equation 3.9, which allows the probabilities of lying in each category to be 
calculated for each individual with given covariates.

pC»j+/3 X

P r (Y  *  »  =  l  +  e^ x  (3-9)

The interpretation of /3 is more complicated than for the OLS case. Consider a very 
simple hierarchical model, with people nested within enumeration districts, which are 
nested within electoral wards, where mental health is modelled using the incapacity 
claimant ratio (ICR) as an explanatory variable as reported in table 2.10.

M ental H ealthy  = / /  +  /?* Incapacity Claimant Ratio^ +  /ij +  eij (3.10)

When this model is fitted (with mental health treated as a continuous variable) the 
coefficient for the ICR is estimated to be -0.09. This has the familiar ordinary least 
squares regression interpretation, namely, for a unit increase in the ICR, the mental 
health score is expected to decrease by 0.09 on average. When the equivalent ordinal 
model is fitted, splitting the scale into ten equally sized intervals (i.e. 1-10,11-20,...,91- 
100), the coefficient is estimated to be -0.007. To interpret this coefficient, we examine 
the odds of belonging to higher category for two subjects differing by one in their ICR 
scores. Here the numerator is the odds for a subject with X  =  x, while the denominator 
is the odds for a subject with X  = x  + 1.

P r(Y  > j \X  = x) / P r ( Y  > j \ X  = x + 1) _  expit (aj + fix) / expit (otj +  fi(x  +  1)) 
P r(Y  < j \X  = x) /  P r(Y  < j \X  =  x  +  1) 1 — expit (aj +  fix) /  1 — expit (aj +  fi(x  +  1))

(3.11)
The right hand side of equation 3.11 reduces to e^. This implies that for a unit increase 
in the ICR, the odds ratio of belonging to a higher category is e&. In this situation 
we have e-0 007 =  0.993. This means that for a unit increase in the ICR, the odds 
ratio given in equation 3.11 that an individual lies in a higher category decreases by
0.7%, for all categories. Essentially, this means that when the incapacity claimant ratio 
increases, the odds ratio of belonging to a higher category increases (for all categories).
For example, when the ICR is at 10 the odds of belonging to category 8 or higher 
is 2.18. When the ICR increases to 11, this odds decreases by 0.7% to 2.17. The 
probability of a person with given covariates belonging to each ordinal category can be 
calculated, and these can be used in various ways to provide predictions. Two of these 
methods will be illustrated with reference to the wards with the highest (Aberbargoed) 
and lowest (St. Martins) incapacity claimant ratios in Caerphilly, as illustrated in table 
3.4. The first method is to calculate the expected value for a given individual. This 
is especially useful if the categories from which the response are derived are based on 
a continuous scale, as the value of this expectation can range between all values of
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Table 3.4: Ordinal predictions for the most and least deprived wards

Ordinal model
Observed Observed Predicted Predicted

Mean Mode Mean Mode
Ward Mental Mental Linear Mental Mental
Name Health Health Prediction Health Health
Aberbargoed 63.24 80.01-90 64.28 61.95 80.01-90
St. Martins 76.12 80.01-90 74.24 71.08 80.01-90

the original response. The second method is to simply choose the category associated 
with the largest probability. These are referred to as the predicted mean and predicted 
mode respectively in table 3.4.

Since the ordinal model approach gives information on the probability of an individ­
ual lying in each category we can compare the probability distributions for these two 
wards. As figure 3.7 shows, the ordinal prediction does not fit the observed data per­
fectly. This is to be expected since the ordinal model does not have all of the observed 
information, only information on each individual’s category. The fit is reasonably close 
however. A similar situation is observed for the ward with the lowest ICR, St Martins, 
in figure 3.8. Here the prediction is perhaps even closer to the observed probability 
density. It is clear from table 3.4 however that ordinal regression of the MHI-5 with 
10 categories produces less accurate results than ordinary least squares regression in 
this case. This can be interpreted as implying that the skewness of the mental health 
scale is not sufficient to seriously bias the OLS estimates, making the use of ordinal 
regression unnecessary in this situation.

3.4 .3  B inom ial M odelling

Dichotomising a skewed continuous response is one way to sidestep the problem of 
non-normality, however, it can be criticised for being an inefficient method since it 
does not use all of the information that the original scale provides. In this respect 
the ordinal regression approach is certainly more methodologically sound. However, 
there is another reason to dichotomise the response, namely that cutpoints for scales 
such as the SF-36 are extremely useful in public health settings. They often facilitate 
the interpretation of the results of a scale. For instance, the SF-36 transformed scale 
ranges from 0-100, but it is unclear what the practical implications of a unit difference 
on this scale might be, let alone what size difference is clinically important. A well 
validated cutpoint, however, can divide scores into two meaningful categories. Also, 
while continuous scales undoubtedly convey more information, clinical management 
decisions are often based on simple yes/no categorisations. For practical purposes then,
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Figure 3.7: Comparison of predicted and observed probability densities for Aberbar­
goed
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Figure 3.8: Comparison of predicted and observed probability densities for St. Martin’s
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outpoints can be invaluable. In order to identify a cutpoint on the SF-36 which can 
identify a case of common mental disorder, it needs to be compared with a scale which 
has such a cutpoint. The General Health Questionnaire is such a scale. Unfortunately, 
the CHSNS did not incorporate the GHQ-12 into the postal questionnaire survey. The 
British Household Panel Survey (BHPS) wave 9 (Taylor et al., 2005) did include both 
the SF-36 and the GHQ-12, and data from this wave will be used to identify a cutpoint 
for the MHI-5.

Derivation of a cutpoint for the MHI-5 to identify a case of common mental 
disorder

The first wave of the BHPS was carried out in 1991 with a nationally representative 
sample of 5,500 households. The BHPS follows households through time, with an 
annual interview of every member of the household aged 16 and over. Individuals 
interviewed in the first sample who subsequently set up their own household continued 
to participate in the survey, as well as every individual in the new household. All 
waves of the BHPS include the GHQ-12, but wave 9 of the study (2000) also included 
the SF-36 version 1. There is complete information on both of these instruments for 
all 14,669 individuals in the dataset. The GHQ-12 comprises twelve questions, each 
with a set of Likert scale responses which score the question as 0, 1, 2 or 3. These 
are summarised in table 3.5. There are two ways of scoring the GHQ-12. Either 
the sum of these responses is used to provide a score ranging between 0 and 36 or 
alternatively, the response to each question is deemed positive if it is greater than one 
and the number of positives provides the score. This results in a score between 0 and 
12 for each individual. This latter method is used in this study. Different studies 
use different cutpoints between 2 and 4 to define a case of common mental disorder. 
The most widely accepted convention is that a score of three or more is defined as a 
case (Goldberg et al., 1997). In that paper, the authors also state that the GHQ-12 is 
suitable for use as a case detector. The SF-36 version 1 was the version of the SF-36 
used in this sample, as given in table 3.2. The MHI-5 questions were extracted from 
the SF-36 and used to construct the MHI-5 score.
The mental health component summary (MCS), introduced earlier in section 3.1, was 
also constructed. It was calculated in the standard way (Ware et al., 2000a), using UK 
norms (Jenkinson et al., 1997) and factor loadings (Jenkinson et al., 1999).

It should be noted that the MHI-5 is designed for use in investigating population 
mental health and not as a diagnostic tool. As mentioned previously, the GHQ-12 
however does have a validated cutpoint to identify a case of common mental disorder 
(Goldberg et al., 1997). It has been demonstrated that the use of depression/anxiety 
or case finding instruments has no impact on the recognition, management or outcome
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Table 3.5: General Health Questionnaire (GHQ-12) Items
H ave you  recently R esponses Score

1. been able to concentrate better than usual 0
on what you’re doing? same as usual 1

less than usual 2
much less than usual 3

2. lost much sleep over worry? not at all 0
3. felt constantly under strain? no more than usual 1
4. felt you couldn’t overcome rather more than usual 2

your difficulties? much more than usual 3
5. been feeling unhappy or depressed?
6. been losing confidence in yourself?
7. been thinking of yourself as a

worthless person?
8. felt that you are playing a useful more so than usual 0

part in things? same as usual 1
9. felt capable of making decisions less so than usual 2

about things? much less than usual 3
10. been able to enjoy your normal

day to day activities?
11. been able to face up to your

problems?
12. been feeling reasonably happy,

all things considered?

of depression/anxiety in primary care (Gilbody et al., 2001, 2006). As such, a cutpoint 
on either scale is only appropriate for use in research on populations and would not be 
suitable to clinically diagnose individuals.

S ta tistica l M ethods

S en sitiv ity  and Sp ecificity  In order to identify a cutpoint for any new measure, it 
needs to be compared to another scale which can classify people as a case or a non-case. 
Ideally, this scale would be a gold standard and would produce no misclassifications. 
In the field of mental health however, no such scale exists. A well validated scale, such 
as the GHQ-12, with an associated cutpoint to distinguish cases from non-cases (albeit 
with error) is a good alternative. The GHQ-12 classifies each individual in the dataset 
as a case or a non-case. Our aim is to find the cutpoints on the MHI-5 and MCS that 
imitate the gold standard as closely as possible. Individuals with mental health scores 
less than or equal to the cutpoint on the MHI-5 or MCS will be defined as cases. The 
evaluation of a cutpoint involves the twin concepts of sensitivity and specificity. The 
sensitivity of a test is the probability of a case testing positive (i.e. a true positive).
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The specificity of a test is the probability of a non-case testing negative (i.e. a true 
negative). Clearly a good test has a large sensitivity, but a test which automatically 
classifies everyone as a case has a sensitivity of one (the maximum possible), even 
though it is completely uninformative. There is a trade-off to be made, then, between 
sensitivity and specificity. As the cutpoint is decreased, the sensitivity decreases, while 
the specificity increases.

R eceiver O perating C haracteristic C urves As described in section 3.3.1 for each 
possible cutpoint on the SF-36 there is an associated sensitivity and specificity. These 
can be summarised using a receiver operating characteristic (ROC) curve. A ROC 
curve plots the sensitivity (i.e. true positive) against one minus the specificity (i.e. 
false positive). Each point on the curve represents a different cutpoint on the SF-36. 
A diagonal line at 45 degrees represents a completely uninformative test, or the line of 
chance.

O ptim isation C riteria  There are several approaches to choosing a cutpoint on a 
ROC curve. Five of these will be investigated in this study. Each method focuses 
on optimising a different criterion and so may produce a different cutpoint. The five 
methods are: 1. the Youden Index (1950), 2. the point closest to the upper left 
comer, coordinates (0,1), as used by Holmes (1998) 3. the misclassification rate, 4: 
the minimax method (Hand, 1987) and 5. prevalence matching, as used by (Hoeymans 
et al., 2004). Only the first two have a graphical interpretation on the ROC curve.

Y ouden Index In general, a good cutpoint is one which produces both a large 
sensitivity and a large specificity. An intuitive method therefore, is to maximise S, the 
sum of the sensitivity and specificity.

S =  max (Sensitivity +  Specificity) (3.12)

This approach assumes that sensitivity and specificity are equally important. This is 
exactly equivalent to the Youden index, J, shown in equation 3.13, since subtracting a 
constant does not affect the optimal cutpoint. This can be interpreted as the point on 
the ROC curve with the largest vertical distance from the line of chance.

J  =  max (Sensitivity -I- Specificity — 1) (3.13)

Shortest d istan ce to  upper left corner The second optimisation method inves­
tigated in this paper is to choose the cutpoint associated with the point on the ROC
curve closest to the upper left comer. This entails finding the cutpoint which min-
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Figure 3.9: Graphical illustration of the Youden Index (J) and the (0,1) criterion
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1. (0,1) refers to the minimum distance between the point (0,1) and the ROC curve
2. J refers to the Youden Index in equation 3.13

imises d in equation 3.14. This method also places equal weight on the sensitivity and 
specificity.

d =  y j (l — Sensitivity) 2 +  ( l  — Specificity) 2 (3.14)

The rationale behind this is that a perfect ROC curve would pass through the point 
(0,1) (i.e. Sensitivity =  1 & Specificity =  1 for some cutpoint). Selecting the point 
on the curve which is closest to this point of perfection is one way to choose a cutpoint. 
The Youden index and the (0,1) criterion are illustrated in Figure 3.9.

M isclassification  rate Alternatively, the misclassification rate, or error rate, could 
be minimised. For this we define the false positive rate (FPR) to be

FPR =  (Non-case Prevalence)x( 1-Specificity) (3.15)

and the false negative rate (FNR) to be

FNR =  (Case Prevalence)x( 1-Sensitivity) (3.16)

and it is the sum of these two terms that is minimised. This essentially gives weights
to the sensitivity and specificity based on the prevalence of cases. If the population
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has a very low prevalence of cases, then more weight would be given to specificity. If 
the prevalence is high, then sensitivity takes precedence. This presupposes that the 
penalty incurred for a false positive is equal to that incurred for a false negative. If 
this does not hold, the sum can be weighted according to the penalties incurred for 
false positives and negatives, i.e. minimise

0x( 1-Sensitivity) +  (1 — 9)x( 1-Specificity) (3.17)

where 9 is the weight attached to the sensitivity. Choosing this weight may not be 
straightforward. Fbr instance, in this study it is difficult to compare the consequences 
of both types of misclassification. Expression 3.17 is equivalent to equations 3.12 and 
3.13 with 9 set to 0.5, and equivalent to prevalence matching (defined later) with 9 set 
to the population prevalence.

Minimax Criterion The minimax criterion involves minimising the frequency of 
the most common error. In a two by two classification table, this is equivalent to 
minimising the maximum of the off-diagonal elements. This involves minimising M  in 
equation 3.18.

M  =  max  ̂ FPR,FNR^ (3.18)

This is similar to minimising the misclassification rate, except instead of the sum of 
FPR and FNR being minimised, the maximum of the two terms is minimised.

P revalence M atching The final optimisation criterion we consider is to choose 
a cutpoint which results in the proportion of the screened population classified as 
positives (or screened prevalence) being closest to the gold standard case prevalence 
(i.e. the true prevalence). Those classed as positives comprise both true and false 
positives and so expression 3.19 is minimised, where the True Positive Rate (TPR) is 
the sensitivity multiplied by the case prevalence and P(Case) is the true prevalence.

|TPR +  FPR — P(Case)| (3.19)

It is important to clarify at this point that, unlike in other studies which employ ROC 
curves, the area under the curve is not a meaningful criterion to use when attempting 
to identify a cutpoint on a scale. The area under the curve summarises the performance 
of an entire measure across all cutpoints. It is appropriate when two new measures 
are being compared against a gold standard in order to determine which of the new 
measures performs most similarly to the gold standard. It cannot, however, be used 
to determine an optimum cutpoint on a scale.

Since the method uses the same dataset both to define cutpoints and assess the
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performance of those cutpoints, there is the possibility of overestimating the sensitivity 
and specificity. This potential source of bias is investigated by repeating the analysis 
using 75% of the dataset (randomly selected), and then assessing the performance of 
the cutpoints produced on the remaining 25% of the dataset.

Results of previous studies investigating a cutpoint for the MHI-5

One study of 7,359 adults representative of the Dutch general population used the 
GHQ-12 to derive a MHI-5 cutpoint using the prevalence matching method (Hoey- 
mans et al., 2004). They used a less severe CMD case criterion of two or more on 
the GHQ-12, giving a screened case prevalence of 22.8%. The MHI-5 cutpoint which 
matched this prevalence most closely was 72, resulting in a case prevalence of 20.6%. 
To illustrate how this approach can lead to different results in different populations, we 
carried out the equivalent procedure in the BHPS dataset. Using a GHQ-12 caseness 
criterion of two or more classifies 32.9% of the dataset as cases. The MHI-5 cutpoint 
which best matches this prevalence is 76 (providing a case prevalence of 36.2%).

One small study compared four psychiatric case-finding instruments in 69 patients 
presenting to general practice in Wales and chose cutpoints which provided an unde­
fined “similar sensitivity and specificity values for each instrument” (Winston & Smith, 
2000). The Revised Clinical Interview Schedule was used to define a case of CMD. This 
study identified an MHI-5 cutpoint quoted as 71/72.

A report published in Dutch compared the MHI-5 with the GHQ-12 in order to 
ascertain a cutpoint (Perenboom et al., 2000). They sampled 7,065 independently liv­
ing individuals aged 18 to 64 from the general population. A score of two or more on 
the GHQ-12 was used to define caseness, which classified 24.4% of the population as 
a case. They used the Youden Index and prevalence matching methods. The Youden 
Index indicated an MHI-5 cutpoint of 72, leading to a case prevalence of 22.8%. The 
Composite International Diagnostic Interview (CIDI) was used to determine whether 
individuals suffered from any of the following disorders: depression, bipolar disorder, 
dysthymia, panic disorder, agoraphobia, specific phobia, social phobia, generalised anx­
iety disorder, obsessive compulsive disorder, schizophrenia, anorexia and bulimia. The 
percentage of the population diagnosed with at least one of these disorders was found 
to be 12.2%. The MHI-5 cutpoint which matched this prevalence most closely was 60, 
producing a case prevalence of 11.2%.

Four other studies have defined a cutpoint by comparing MHI-5 scores with a range 
of different validated clinical interview schedules. These are summarised in turn be­
low. The wide range of cutpoints found reflects the wide variety in sample sizes, study 
settings and outcomes of interest.

A study of 95 non-psychiatric patients who were HIV seropositive used the Struc-
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Table 3.6: Summary of Previous SF-36 cutpoint Studies
Author Cutpoint Slse Population Gold Standard
Hoeymans et al 72 *,539 Dutch general population <3fiQ-i2
Winston & Smith 71 or 72 69 Adult Welsh GP presenters CIS-R
Perenboom et al 72 7,065 Dutch general population GHQ-12
Holmes 52 95 American HIV+ outpatients SCI
Rumpf et al 65 4,036 German general population M-CIDI
Strand et al 52 or 56 6,875 Norwegian general population MHI-5
Fried num. et al 59 or 60 1,444 American functionally impaired 

community dwelling elderly
MINI-MDE

tured Clinical Interview for DSM-III-R (SCID-NP-HIV) psychiatric disorders (Holmes, 
1998) and found a cutpoint of 52 using the (0,1) method. This study investigated more 
severe disorders than the CMD and so produced a very low cutpoint. Applying this 
cutpoint to the BHPS dataset would identify only 8.3% of the individuals as cases.

A study of 4,036 German nationals resident in an area of approximately 50 km 
in diameter surrounding Liibeck used the Munich Composite International Diagnostic 
Interview (M-CIDI) and found a cutpoint of 65 (Rumpf et al., 2001). This study used 
the (0,1) method. This low cutpoint can be attributed to the fact that the M-CIDI is 
used to screen for DSM-IV Axis 1 psychiatric disorders.

A Norwegian study used the MHI-5 as the gold standard to define cutpoints for 
other measures (three different versions of the Hopkins Symptom Checklist: SCL-25, 
SCL-10, SCL-5) (Strand et al., 2003). Postal questionnaire surveys with MHI-5 infor­
mation were returned by 6,865 (70.5% response rate) individuals and cutpoints of 52 
and 56 were used successively. The reason why two different cutpoints were used is that 
the authors cite the Holmes paper (Holmes, 1998) as well as a Dutch paper supporting 
the use of 52, and a poster session abstract and another unpublished study supporting 
the use of 56. This paper is included since they use a cutpoint on the MHI-5.

Another study (Friedman et al., 2005) investigated the validity of the MHI-5 for 
assessing major depression using 1,444 functionally impaired, community dwelling el­
derly Americans. The gold standard against which the MHI-5 was compared was 
the MINI-Internationa! Neuro-Psychiatric Interview Major Depressive Episode (MINI- 
MDE) module. The Youden index optimisation criterion produced a cutpoint quoted 
as 59/60. Again, the study focussed on major depression and so produced quite a low 
cutpoint.

To our knowledge no study has attempted to identify a cutpoint of the MCS. 

R esu lts

First consider the MHI-5. Figure 3.10 compares the MHI-5 score probability distribu­
tions for cases and non-cases (as defined by the GHQ-12) within this dataset. There 
is considerable overlap in MHI-5 scores for these two populations. The non-cases have
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Figure 3.10: Probability distribution of cases and non-cases for the MHI-5, with optimal
cutpoints
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higher MHI-5 scores in general, but the cases have MHI-5 scores spread right through­
out the range of possible scores, resulting in a relatively flat distribution. Consequently, 
no cutpoint on the MHI-5 will lead to complete separation of the two underlying pop­
ulations, as is typically the case in ROC curve analyses. Maximising the Youden index 
leads to a cutpoint of 76 (a case of common mental disorder is defined by a score of less 
than or equal to 76) for the MHI-5. This results in a sensitivity of 0.756, a specificity 
of 0.771 and a misclassification rate of 23.3%. Figure 3.11 shows the distribution of 
MHI-5 scores in the two underlying populations (cases and non-cases as assessed by 
the GHQ-12). This graph is similar to Figure 3.10, but is weighted by the observed 
prevalence (note that the y-axis is population frequency and not population density). 
Again there is considerable overlap in MHI-5 scores for these two populations.

Using the shortest distance from (0,1) criterion the optimal cutpoint is also 76. In
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Figure 3.11: Population distribution of cases and non-cases for the MHI-5, with optimal
cutpoints
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Table 3.7: MHI-5 and MCS cutpoints and associated test characteristics for five opti­
misation criteria

Scale Optimisation
Criterion

Cutpoint Sensitivity Specificity Positivity®
Rate

Error Rate0 
%

Youden Index 76 0.756 0.771 0.362 23.3

(0,1) c 76 0.756 0.771 0.362 23.3

MHI-5 Miacleariflcation
Rate 60 0.473 0.943 0.163 17.6

Minimax method 68 0.615 0.882 0.244 18.5

Prevalence
Matching 68 0.615 0.882 0.244 18.5

Youden Index 51.7 0.745 0.787 0.348 22.4

(0,1) 52.1 0.759 0.772 0.362 23.1

MCS Misclassification
Rate 44.8 0.476 0.941 0.164 17.6

Minimax method 48.9 0.630 0.874 0.253 18.8

Prevalence
Matching 48.9 0.630 0.874 0.253 18.8

“Positivity rate refers to the proportion of the sample defined to be a case using each cutpoint 
*Errar rate refers to the proportion of the sample classified differently to the GHQ-12. This 

comprises both false negatives and false positives
°(0,1) refers to the criterion which minimises the distance between the point (0,1) and the ROC 

curve

general, these two optimisation methods will not always give the same cutpoint though 
the discrete nature of both scales means that in practice they often will.

Using the sample prevalence of 25.3% (according to the GHQ-12) to weight the sum 
of the sensitivity and specificity (thereby minimising the error rate) the corresponding 
cutpoint is 60. This results in a low sensitivity of 0.473, and a high specificity of 0.943. 
The misclassification rate is 17.6%.

Using the prevalence matching method of choosing a cutpoint the optimal cutpoint 
is 68. This produces a case prevalence of 24.4%, which is the closest to the GHQ-12 
case prevalence of 25.3%. The minimax method yields the same cutpoint as prevalence 
estimation. The sensitivity and specificity at this cutpoint are 0.615 and 0.882 respec­
tively.

These cutpoints are plotted on the ROC curve in figure 3.12, and summarised in ta­
ble 3.7. Two by two crosstabulations between the GHQ-12 and the MHI-5 are provided 
for all of the cutpoints in tables 3.8 - 3.10.

Next, we examine the MCS, where the situation is similar, with the distribution 
of cases and non-cases overlapping. MCS probability distributions for cases and non­
cases are shown in figure 3.13. This figure should be compared with 3.14 which shows
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Figure 3.12: MHI-5 ROC curve using a GHQ caseness criterion of 3 or more
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1. HOC curve based on a GHQ-12 caseness criterion of 3 or more. Vertical lines indicate the 
optimum cutpoints using the five different optimisation criteria.
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the population distribution of the MCS for cases and non-cases. The Youden index 
and the (0,1) methods produce very similar cutpoints of 51.7 and 52.1, respectively. 
Minimising the error rate produces a cutpoint of 44.8 while both prevalence matching 
and the minimax method indicate a cutpoint of 48.9. Table 3.7 summarises the results 
and illustrates the trade off that must be made between sensitivity and specificity, 
while figure 3.15 illustrates the ROC curve. Two by two crosstabulations between the 
GHQ-12 and the MCS are provided for all of the cutpoints in tables 3.11 - 3.14.

Assessment of bias
Using three-quarters of the data to derive cutpoints resulted in no change of optimum 
cutpoints for the MHI-5. When these were applied to the unused 25% of the data in 
order to assess their performance the sensitivities all decreased, while the specificities 
increased, as shown in table 3.15. In this table, numbers bounded by transparent boxes 
indicate an decrease over the equivalent value reported in table 3.7, numbers bounded 
by shaded boxes indicate a increase, and numbers surrounded by no box indicate no 
change. The differences for the sensitivity range between 0.01 and 0.029, while the 
differences for the specificity range between 0.002 and 0.004. A similar split analysis 
was performed for the MCS. Only one method (the missclassification rate) produced 
a different cutpoint to the when the full dataset was used. Applying these cutpoints 
to the remaining 25% of the data produced sensitivities and specificities close to those 
achieved when the entire dataset is used. This procedure was repeated using one half 
and one quarter of the dataset to derive cutpoints (the training set) and the remaining 
data to assess the sensitivities and specificities. None of the MHI-5 cutpoints changed, 
while some of the MCS cutpoints changed. The sensitivities and specificities were 
as likely to increase as decrease. This provides evidence that the sensitivities and 
specificities for the optimum cutpoints are not overestimated.

D iscussion

M ain F indings For the MHI-5 the five methods produce three distinct cutpoints. 
Both the Youden Index and the point closest to the upper left corner methods produce

Table 3.8: Crosstabulation of MHI-5 (cutpoint 76 for Youden Index and (0,1)) and 
GHQ-12 (cutpoint 3)_____________________________________________________

G HQ -12
M H I-5

N on-case % C ase % R ow T otal %
N on-case 8,450 57.6 2,510 17.1 10,960 74.7
Case 904 6.2 2,805 19.1 3,709 25.3
C olum n T otal 9,354 63.8 5,315 36.2 14,669 100.0
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Table 3.9: Crosstabulation of MHI-5 (cutpoint 60 for Min(Error Rate)) and GHQ-12 
(cutpoint 3)_____________________________________________________________

G H Q -12
M H I-5

N on-case % C ase % R ow  T otal %
N on-case 10,331 70.4 629 4.3 10,960 74.7
C ase 1,953 13.3 1,756 12.0 3,709 25.3
C olum n T otal 12,284 83.7 2,385 16.3 14,669 100.0

Table 3.10: Crosstabulation of MHI-5 (cutpoint 68 for prevalence matching and mini- 
max)) and GHQ-12 (cutpoint 3)___________________________________________

G H Q -12
M H I-5

N on-case % C ase % Row T otal %
N on-case 9,669 65.9 2,281 15.5 10,960 74.7
C ase 1,428 9.7 1,291 8.8 3,709 25.3
C olum n T otal 11,097 75.6 3,572 24.4 14,669 100.0

Table 3.11: Crosstabulation of MCS (cutpoint 51.7 for Youden Index) and GHQ-12 
(cutpoint 3)_____________________________________________________________

G HQ -12
M CS

N on-case % C ase % R ow  T otal %
N on-case 8,622 58.8 2,338 15.9 10,960 74.7
C ase 946 6.4 2,763 18.8 3,709 25.3
C olum n T otal 9,568 65.2 5,101 34.8 14,669 100.0

Table 3.12: Crosstabulation of MCS (cutpoint 52.1 for (0,1) method) and GHQ-12 
(cutpoint 3)_____________________________________________________________

G H Q -12
M C S

N on-case % C ase % Row Total %
N on-case 8,465 57.7 2,495 17.0 10,960 74.7
Case 893 6.1 2,816 19.2 3,709 25.3
C olum n T otal 9,358 63.8 5,311 36.2 14,669 100.0

Table 3.13: Crosstabulation of MCS (cutpoint 44.8 for Min(error)) and GHQ-12 (cut- 
point 3)_________________________________________________________________

G HQ -12
M CS

N on-case % C ase % Row T otal %
N on-case 10,317 70.3 643 4.4 10,960 74.7
C ase 1,943 13.2 1,766 12.0 3,709 25.3
C olum n T otal 12,260 83.6 2,409 16.4 14,669 100.0
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Figure 3.13: Probability distribution of cases and non-cases for the MCS, with optim al
cutpoints
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Table 3.14: Crosstabulation of MCS (cutpoint 48.9 for prevalence matching and mini­
max methods) and GHQ-12  (cutpoint 3)___________________________________

G HQ -12
M CS

N on-case % Case % Row T otal %
N on-case 9,581 65.3 1,379 9.4 10,960 74.7
Case 1,374 9.4 2,335 15.9 3,709 25.3
Colum n T otal 10,955 74.7 3,714 25.3 14,669 100.0
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Figure 3.14: Population distribution of cases and non-cases for the MCS with optimal
cutpoints
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Figure 3.15: MCS ROC curve using a GHQ caseness criterion of 3 or more
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1. ROC curve based on a GHQ-12 caseness criterion of 3 or more. Vertical lines indicate the 
optimum cutpoints using the five different optimisation criteria.
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Table 3.15: Sensitivity and specificity for split analyses

M ental H ealth 
Scale M ethod

75% training dataset 50% training dataset 25% training dataset
C utpoints Sens Spec C utpoints Sens Spec C utpoints Sens Spec

00to

M H I-5

Youden Index 

(0 ,1)

Misclassification Rate 

M inimax M ethod 

Prevalence M atching

76

76

60

68

68

0.727 0.775

0.727 0.775

0.463 0.946

0.588 0.884

0.588 0.884

0.738 0.787

0.754 0.772

0.492 0.942

0.633 0.872

0.633 0.872

76

76

60

68

68

0.749 0.773

0.749 0.773

0.475 0.940

0.614 0.879

0.614 0.879

76

76

60

68

68

0.753 0.775

0.753 0.775

0.480 0.943

U. 01 u 0.885

0.616 0.885

0.748 0.786

0.748 p -j 00 o

0.466 0.944

0.622 0.883

0.622 0.883

M C S

Youden Index 

(0 , 1)

Misclassification R ate 

M inimax M ethod 

Prevalence M atching

51.7

52.1

52.1

52.1

0.754 0.773 51.8

0.754 0.773 51.8

45.1 45.1 0.481 0.937 44.5

48.9

48.9

48.8 0.624 0.878 48.6

48.8 0.624 0.878 48.6
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a cutpoint of 76. Prevalence matching and the minimax method both indicate that 68 

is the optimal cutpoint, while minimising the misclassification rate provides an optimal 
cutpoint of 60. For the MCS, the Youden Index and the point closest to the upper 
left corner produced cutpoints of 51.7 and 52.1 respectively. Both prevalence matching 
and the minimax method gave an MCS cutpoint of 48.9 and minimising the missclas- 
sification rate produced an MCS cutpoint of 44.8. It is important to point out that 
the reason the prevalence matching, minimax, and minimising the misclassification 
methods give lower cutpoints than the Youden or (0,1) criteria is due to the fact that 
the case prevalence is less than 50% (25.3%). If the case prevalence were greater than 
50% this situation would be reversed and the three aforementioned methods would 
give cutpoints greater than the Youden or (0,1) criteria. It is also worth noting that 
the shorter MHI-5 performs remarkably similarly to the longer MCS. Table 3.7 shows 
that the error rates produced by the five optimisation methods are very similar, for the 
two scales. The correlation between the GHQ-12 and the MHI-5 is high (-0.65). The 
correlation between the MCS and GHQ-12  is also (-0.65). The correlation between the 
MHI-5 and the MCS is 0 .8 8 . Table 3.7 shows that the MCS is only marginally more 
efficient at discriminating cases of CMD than is the MHI-5, despite employing over 
seven times as many questions.

Figure 3.16 compares the relationship between the optimum cutpoint and the pop­
ulation case prevalence for four of the five methods (the minimax method was excluded 
since it was largely coincidental with prevalence matching), and for both the MHI-5 
and the MCS. For the minimising the error rate and prevalence matching methods 
the optimal cutpoint varies greatly with population prevalence, while the Youden in­
dex and (0,1) methods are relatively independent of population prevalence. This is 
the case for both scales. This invariance under different population prevalences is a 
property that is extremely useful for studies that span large and heterogenous areas, 
such as international comparisons. Both methods also have intuitive interpretations as 
described earlier, and so there is very little to choose between them.

When the misclassification rate was minimised there was still a error rate of 17.6% 
for both the MHI-5 and MCS, which may imply that they measure slightly different 
constructs to the GHQ-12. This finding is echoed by Hoeymans et al (2004) who noted 
that the MHI-5 was uncorrelated with age, whereas older age groups scored higher on 
the GHQ-12 (indicating worse mental health). Weinstein et al (1989) drew attention to 
the fact tha t the comparative nature of the GHQ-12 response choices is not conducive 
to detecting chronic disorders. A subject suffering from chronic anxiety disorder may 
well answer the question “Have you recently lost much sleep over worry?” , with the 
response choice “no more than usual” if their condition is a long-standing one. The 
MHI-5 and MCS avoid this problem by employing less comparative response choices. 
Another explanation for the lack of complete agreement between the GHQ-12 and the
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Figure 3.16: Relationship between prevalence and MHI-5 cutpoint for five optimisation 
methods
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3. Dashed line denotes the (0,1) method
4. Dotted line denotes the minimising the error rate method
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6. The minimax method is excluded since it is predominantly coincidental with the prevalence 
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two SF-36 mental health measures is that they were designed differently. The MHI- 
5 includes one or more questions on each of the following mental health dimensions: 
anxiety, depression, loss of behavioural/emotional control and psychological well-being 
(Ware et al., 2000b), while the MCS is a weighted sum of all eight health dimensions 
of the SF-36. The GHQ-12  on the other hand includes items on depression, anxiety, 
social performance and somatic complaints (Goldberg k  Williams, 1988). However, 
the high correlations between the GHQ-12  and both the MHI-5 and the MCS indicate 
that, despite these differences, the three scales perform very similarly, as shown by 
table 3*7.

More generally, this study has found tha t the minimax method and prevalence 
matching methods give very similar results. Indeed, in this study they produce identical 
cutpoints. This is not a coincidence, as the two criteria become equivalent if the scale 
in question is continuous (and the probability of caseness is calculated from the same 
dataset).

Investigators should give careful consideration to which of these cutpoints is most 
appropriate for their study, since selecting which criterion should be optimised depends 
primarily on the intended application of the resulting cutpoint. For instance, a study 
whose primary goal is to identify cases in a given locality might do well to minimise the 
misclassification rate. However, a study interested in comparing CMD internationally 
should consider utilising the Youden Index or the (0,1) method, as these methods 
are most appropriate when the study area encompasses regions with different case 
prevalences. Prevalence matching has the advantage of simplicity but will inevitably 
lead to different cutpoints in different populations. The minimax method approximates 
to prevalence matching when the scale in question is continuous.

Summary

The User’s Guide for the GHQ recommends tha t investigators who want to optimise 
the trdde-off between sensitivity and specificity should carry out a validity study to 
determine the optimum GHQ for their population. This is clearly excellent advice, 
and is borne out by this study. Of the five optimisation methods used in this study, 
the Youden Index and the (0,1) method are the most suitable for the determination 
of a generaiisable cutpoint, since they are least dependent on the population case 
prevalence. Both approaches indicate that the best cutpoint to define a case of CMD 
using the MHI-5 is less than or equal to  76, while for the MCS the Youden Index 
indicates a cutpoint of less than or equal to 51.7 and the (0,1) method a cutpoint of 
less than or equal to 52.1. The MHI-5 has the advantage over the GHQ-12 of brevity, 
consisting of only five multiple choice questions and performs very similarly to the 
longer MCS. Further validation studies, ideally using a clinical interview schedule and
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a large population, spanning different countries, are required to confirm these findings.

3.5 Conclusion

This chapter has investigated the validity and reliability of the MHI-5 as well as exam­
ining various different approaches to modelling it. Firstly the background of the SF-36 
was summarized. Next, some standard techniques for assessing validity and reliability 
were assessed. The literature surrounding the validation of the SF-36 was appraised 
critically under the following sub-headings: Comparison with other scales, Comparison 
across different subject groups, Cronbach’s Alpha, Test-retest, Suitability for Elderly 
Populations, and Version 1 versus Version 2. The validity and reliability of the MHI-5 
were shown to be of a high standard. The MHI-5 compared favourably with many 
other mental health scales. It was not deemed suitable for use with the over 75’s due 
to missing values. A comparison between versions 1 and 2 of the SF-36 show that 
they perform similarly (Ware et al., 2000a). In summary, the MHI-5 appears to be a 
well-validated and reliable tool to measure mental health status.

Transforming the data reduced the skewness of the mental health score, but compli­
cated the interpretation of the results of any regression performed on the transformed 
data. The transform most effective at reducing the skewness was a square transform. 
The reduction in skewness did not justify the increased difficulty of interpreting the 
results.

Ordinal modelling suffered from a similar problems of interpretation of results. The 
mental health scale would have to be split into a relatively small number of categories 
in order to be ease the interpretation of the results. This means a reduction in the 
response information. The method also involves strict assumptions and it is difficult 
to assess if these assumptions are satisfied.

The final method investigated regards deriving a cutpoint to define a case of com­
mon mental disorder on both the MHI-5 and MCS from the GHQ-12  using information 
from the ninth wave of the BHPS. ROC curve analysis was employed for this purpose. 
Five different optimisation methods were applied to the data and the results compared 
and contrasted. The best cutpoint for the MHI-5 was less than or equal to 76. While 
this cutpoint had a high error rate, it was the least dependent on population prevalence. 
For the MCS, the best cutpoint to define a case of CMD was less than or equal to 51.7. 
Moreover the best optimisation criterion appears to be either the Youden Index or the 
point closest to the upperleft corner. These methods depend least on the underlying 
population prevalence. Further work needs to be done to validate these cutpoints, 
ideally incorporating comparison with a clinical interview schedule. Normal modelling 
is used in the rest of the thesis, since the increased complication of the interpretation 
of the results from the other methods is not deemed justified.
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Chapter 4 

Introduction to Bayesian Modelling

4.1 Background

Classical inference begins with the assumption that the parameters to be estimated 
in a statistical method are fixed (but unknown) quantities. Hypothesis testing is per­
formed by assuming a null hypothesis, then assessing the probability that the data 
could have been observed under this null hypothesis. In many situations this is an 
entirely reasonable and practical approach.

Bayesian inference treats the problem in a slightly different way. Here, both the 
parameters to be estimated and the data itself are treated as random quantities. In 
Bayesian modelling, the data are used to make inference about the distribution of the 
underlying parameter of interest. A way of contrasting the two methods is that, in 
classical inference, statements are made about the probability of observing the data 
given a parameter (and a model), while in Bayesian inference, probability statements 
are made about the parameter given the data.

There is another fundamental difference between the two methods. In classical 
inference, the parameters are estimated solely from the data. Bayesian inference, on 
the other hand, incorporates so-called “prior information” into the analysis. Prior 
information is any information that is known (or believed to be known) about the pa­
rameters before the data are collected. This could be as simple as the knowledge that 
a proportion must be positive, or as detailed as specifying a range of possible values 
that a parameter can assume. Prior information is usually based on expert opinion, 
previous analyses, or sometimes chosen for convenience of computation. It is typically 
incorporated into the analysis by specifying a probability density function (PDF) for 
a parameter of interest. For instance, if a given parameter is expected to be Normally 
distributed and much is known about the true value of that parameter, then the prior 
PDF might be a Normal distribution, centred around the value the parameter is sus­
pected to be, with a small variance. Conversely, if little is known about a parameter,
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then the prior PDF might have a large variance. The former is called an informative 
prior, while the latter is an example of a non-informative prior.

The legitimacy of including such information and the form such information should 
take are frequently disputed. Bayesian methods are seen as more subjective than fre- 
quentist techniques (Efron, 1986). Bayesian proponents can counter this criticism in a 
number of ways. Firstly, non-informative priors are used in many analyses, negating 
much of the need to justify their use. Secondly, if the prior chosen is informative, 
then appropriate sensitivity analyses should be performed to give an indication of how 
dependent the results are on the prior. Finally, there are many situations where it 
could be considered unethical to disregard information from previous studies, and so 
incorporating them as prior information could be viewed as an advantage.

Another crucial difference between the frequentist and Bayesian methods involves 
how each method expresses uncertainty about the parameter of interest. Confidence 
intervals are used in frequentist analysis while credible intervals are used in Bayesian 
analysis. A 90% confidence interval around a parameter, indicates that if the study 
were repeated a large number of times, with different data being collected each time, 
then 90% of the confidence intervals estimated would contain the true parameter. It 
should not be interpreted to mean that we are 90% sure that the true value lies within 
the interval, since the true parameter is considered to be a fixed quantity. A 90% credi­
ble interval on the other hand means that the posterior probability that the parameter 
lies within the interval is 0.9. The 90% here can be interpreted as the percentage 
probability that the parameter lies in the interval.

To summarise, in certain situations Bayesian methods can provide a much more 
natural way of approaching hypothesis testing and inference. By allowing the parame­
ters of interest to belong to probability distributions (instead of being fixed constants) 
probability statements can be made about where those parameters might lie. This 
is in contrast with the frequentist approach which treats parameters of interest as 
fixed quantities, and makes statements about the probability of observing the data 
under various null hypotheses. The next section will provide more detail on Bayesian 
methods.

4.2 The Bayesian M ethod

As discussed in the previous section, Bayesian analysis utilises two types of information: 
observed data and prior information. These two sources of information are combined 
via Bayes’ Theorem (giving the method its name), to provide a posterior probability 
for the parameter being estimated, as described in equation 4.1, where A and B are
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two events.
™  m  -  , 4 , ,

Here, Pr(A\B)  is the posterior probability, Pr(A) is the prior information, Pr(B)  
is the probability of event B from the data itself. This formula therefore, allows the 
probability for event A to be updated, given some additional information on the related 
event B. In other words we have refined our knowledge about event A using additional 
information about event B. For continuous distributions the theorem can be restated so 
that the PDF of a parameter 0 is updated given observed information a; as in equation

m x )  = (4.2)

Invoking the law of total probability in the denominator gives equation 4.3.

flOM -  U 04
( 1 } J f ( x \ 6 ) m d 6  ( -3)

Here, f(x\6)  is the usual probability model of x  given some parameter (or parameters) 
0 , f(6)  represents the prior information for 0, and f(0\x)  is the posterior distribution 
for 9 revised in light of the data x. Once the posterior distribution has been estimated, 
it is often summarised for ease of use. Typically, the mean of the distribution is used 
as a summary statistic. It should be noted here that equations 4.2 and 4.3 abuse 
conventional notation, since the /  does not represent a single function, but is instead 
used to denote the density function of whatever parameter it references. The posterior 
distribution can be evaluated, provided that this integral has an analytical solution, 
which is not guaranteed. In the past, the prior information was often chosen so that 
the resulting posterior distribution could be easily calculated. Choosing a prior with a 
functional form such that the resulting posterior distribution has the same functional 
form is known as choosing a conjugate prior. If the data are Gaussian, the choice of a 
Gaussian prior results in a Gaussian posterior distribution. If the data are binomial, 
the choice of a beta distribution results in a beta posterior distribution.

It is worth examining a simple analytical case in order to illustrate the role of 
the prior. Suppose a sample of size n is taken from a normal distribution, X , with 
known standard deviations, but unknown mean. The conjugate prior is a normal 
distribution. Suppose a normal prior is assumed with mean fi and standard deviation 
a. Using equation 4.3, the prior information and the data are combined, producing a 
normal posterior distribution, with mean and standard deviation as given in expression
4.4. _

HTCT  -4- IJT  CTT
Mean = ----- ------ — Standard Deviation =  .  (4.4)

n a 2 +  r 2 y/na2 +  r 2
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To further clarify the way information from both the prior and the data are combined 
to form the posterior distribution, the mean can be rewritten as in equation 4.5.

7X0^ T 2
Xx +  (1 — X)a where A =  —  -------  =  1 -----------     —> 1 as n —► oo (4.5)

ncr2 +  r 2 ncr2 +  r 2

This reformulation shows that as the sample size of the data increases, the posterior 
mean is dominated by the sample mean. The posterior mean is a weighted average 
of the prior mean and the mean of the data, with the latter given increasing weight 
as the sample size increases. Increasing a (the prior distribution standard deviation) 
also leads to more weight being given to the data, which is sensible since increasing 
the prior standard deviation means that there is greater uncertainty about the prior 
mean. In summary, the data will dominate the posterior distribution if there is a large 
sample size, or if the prior information is uncertain.

The posterior distribution variance can be similarly reformulated to illustrate the 
effect of both the prior and the data. The standard deviation given in equation 4.4 is 
rewritten in equation 4.6.

T  T 2
 .......... where m  = —  (4.6)

y/n +  m  a 2

This is the expression for the standard deviation of a sample of size n + m  from the 
distribution of X .  Essentially, the extra information from the prior has augmented the 
sample size of the data by m. As shown in equation 4.6, m  is the ratio of the variance 
of the data and the prior. If the variance of the prior is large (indicating that the 
prior information is not very informative), then m  will be small, and will provide only 
a small increase in the effective sample size. If the information on the prior is more 
exact, the variance will be small, and so the extra effective sample size will be large. 
This relationship is illustrated in figure 4.1, for the case where the standard deviation 
of X  is 10.

If either the sample size of the data or the standard deviation of the prior distri­
bution are large then the contribution of the prior is weakened. In such situations the 
resulting posterior distribution will predominantly be a result of the data itself, and 
the results of the Bayesian analysis should mirror classical frequentist methods.

Until recently the choice of prior distribution was a trade-off between choosing a 
distribution that was a reasonable representation of reality (or, more precisely, beliefs 
about reality) and choosing a distribution that would simplify the calculation of the 
posterior distribution.

Recent advances in computing power and software have produced a method called 
Markov Chain Monte Carlo (MCMC) estimation which uses a simulation method to 
estimate the posterior distribution. This means that the prior information no longer
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Figure 4.1: Relationship between the standard deviation of the prior and the resulting 
increase in the effective sample size
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needs to belong to a conjugate distribution since the evaluation of complex integrals 
is no longer necessary. This method is a considerable improvement over the analytical 
approach in many situations, since the choice of prior information distribution is no 
longer restricted by the distribution of the data. The next section, 4.3, will summarise 
the MCMC method.

Once a large enough sample from the posterior distribution for a given parameter 
has been taken it can be used to make inferences about that parameter. Having the 
distribution of a random variable provides all of the information about that variable 
and so the posterior distribution can be used to make inference about that parameter, 
e.g. credible intervals can be calculated, hypothesis tests can be performed and sum­
mary statistics can be extracted.
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So, the Bayesian method can be summarised as follows. Observed data are com­
bined with prior information via Bayes’ theorem, to produce a posterior distribution 
for an unknown parameter (or parameters) which summarises both prior beliefs and 
current information. Often, the analytical procedure for combining the two types of 
information is complicated or intractable and so other methods have been developed 
to avoid this problem, as will be described in the next section.

4.3 Estimation of Bayesian M odels

4.3.1 M onte Carlo M arkov Chains

It is instructive to begin with a description of Markov chains and their properties. A 
Markov chain “describes an idealised pattern of movement or transitions through a set 
of states”(Congdon, 2001). In other words, a Markov chain comprises a set of possible 
states and a set of probabilities of transitions between these sets (transition matrix). 
The probability of any transition depends solely on the current state occupied, and 
not on any historic transitions (known as the no memory or Markov property). Sup­
pose the Markov chain undergoes a number of transitions. The probability a given 
state is occupied after these transitions depends on the initial probabilities and the 
transition matrix. It can be shown that under certain conditions (Gamerman, 1997), 
these state probabilities tend to a limiting distribution, which coincides with the sta­
tionary distribution. The key step in MCMC methods is to construct a Markov chain 
whose stationary distribution is the posterior distribution of interest. Instead of ana­
lytically deriving the posterior distribution from the data and the prior information, a 
sample from the posterior distribution can be obtained by simulating a Markov chain 
with the required stationary distribution. In summary, since limiting distributions of 
Markov chains are well understood, this method provides easy access to the posterior 
distribution of analytically intractable problems. The key issues therefore are how to 
construct the transition matrix that leads to the desired stationary distribution, and 
how many transitions are sufficient so that the resulting limiting distribution is close 
enough to the stationary distribution. These will be described in the next two sections: 
Metropolis-Hastings and Gibbs Sampling, and Convergence, respectively.

4.3.2 M etropolis-H astings and G ibbs sam pling

The Metropolis-Hastings algorithm (?) is one way to generate a Markov chain. The 
basic premise is quite simple. Given that state i is occupied, a next possible state 
(called a candidate) is selected from a distribution of possible states called the pro­
posal distribution. The candidate state is accepted with a probability which depends
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on both the current state and the candidate state. Careful construction of this accep­
tance probability ensures that the resulting Markov chain has the desired stationary 
distribution.

The choice of proposal distribution has an impact on how quickly the limiting dis­
tribution is attained. Proposal distributions which favour candidate states close to the 
current state have high acceptance probabilities but also move slowly. A slow moving 
chain will take a long time to attain the limiting distribution. On the other hand a 
proposal distribution that allows large jumps between successive states will permit the 
chain to move quickly but such large jumps will have a low acceptance probability.

A special case of the Metropolis-Hastings algorithm is called the Single Compo­
nent Metropolis-Hastings algorithm. This is used when the situation calls for multiple 
parameters to be estimated simultaneously, as is the case in most models. So in a sit­
uation with k parameters of interest each state represents a /c-dimensional point. The 
single component Metropolis-Hastings algorithm provides an efficient way to generate 
suitable Markov chains in these situations.

Specialising even further, Gibbs sampling (which is the method employed in this 
chapter), is a special case of the single component Metropolis-Hastings algorithm. 
Again this is used when there are multiple parameters to be estimated. Under Gibbs 
sampling the proposal distribution for each parameter is the full conditional distribu­
tion given the current values of all of the other variables and the candidate state is 
accepted with probability 1. In other words the candidate state is always accepted. 
Each component is adjusted in turn at each iteration, and the proposal distribution 
updated for the next parameter.

4.3 .3  C onvergence

Once the Markov chain has been constructed, there remains the practical considera­
tion of assessing when the chain has reached convergence thereby allowing the limiting 
distribution to be estimated. This is not straightforward since determining when the 
process is sampling from a distribution is difficult. The time until the chain has con­
verged is referred to as the burn-in period. The end of this period must be chosen 
so that values after this time are being drawn from the limiting distribution. Values 
produced by the chain prior to this are discarded.

There is no definitive test to determine when convergence has occurred, but there 
are a number of diagnostics which can be performed to assess various other proxies. 
The simplest of these involves the autocorrelation function. Essentially, this involves 
calculating correlations for simulated values that lie set numbers of iterations apart 
(also known as lags). If these correlations are large for large lags, this indicates suc­
cessive iterations of parameters are very similar, meaning that the chain is converging
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(or mixing) slowly.
More formal techniques to measure convergence have been developed. These typi­

cally involve comparing variances between different chains with different initial starting 
values, or between different time intervals for the same chain. The starting value of a 
chain will influence the results in the short term, but not in the long term provided 
the chain mixes well. If different starting values produce chains which converge to the 
same stationary distribution, this provides evidence that the process is not dependent 
on the initial starting values. The Brooks-Gelman-Rubin (1998) statistic relies on the 
former. The method involves simulating multiple Markov chains with overdispersed 
initial values (i.e. providing initial values both larger and smaller than might be ex­
pected from the posterior distribution), discarding the burn-in period, then comparing 
the within chain variance with the pooled variance from all of the chains. When the 
ratio of within chain variance and pooled variance is close to one, the chain is said to 
have converged. WinBUGS (Lunn et al., 2000) provides a graphical representation of 
this test, by plotting the within variance, the pooled variance and then the ratio of the 
two. The first two should coincide and the ratio should approach one.

The next section will illustrate some of these concepts with reference to a simple 
example from the CHSNS dataset.

4.4 Illustration of Bayesian M ethods

The example will involve modelling the mental health scores of males and females in 
the ward with the lowest average mental health score (Twyn Carno) and the ward with 
the highest average mental health score (St. Martins) in order to demonstrate Bayesian 
methods. This trimmed down dataset will be used in order to better demonstrate the 
effect of the prior information (if the entire dataset were employed, the large sample size 
would swamp out the impact of all but the most extreme forms of prior information). 
MCMC methods will also be illustrated.

We assume the following:

X *~N (/i*,470)

/ii =  a  +  (3 x Gender* +  7  x Ward* (4.7)

The Xi  are the mental health scores. The variance of X* is 470 since that is observed
variance of the mental health scores. Gender is zero if male, and 1 if female so that
/3 is the effect of being female compared to being male. Ward is zero for those in St
Martins and 1 for those in Twyn Carno.

Functional forms for the distributions of the parameters of interest can be speci­
fied. Uninformative priors will be illustrated first. The prior distribution chosen for a
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is what is known as an improper prior. It is essentially a uniform distribution without 
boundaries, meaning that any value is equally likely as any other. It is called improper 
since the integral of this distribution is infinite. This will not prevent the posterior 
distribution from integrating to one. Both the (3 and 7  parameters (indicating the gen­
der and area effects respectively) are assumed to be Normally distributed with mean 
zero and large variance (1 , 0 0 0 ). All of these priors are vague, representing very little 
information about their respective parameters. Starting values for all of these param­
eters must be specified. For this example, the starting values for a , (3 and 7  were 
all zero. Sensitivity analyses were performed with different starting values (ranging 
between - 1 0 0  and 1 0 0 ) and indicated tha t the results were not dependent on the choice 
of initial values.

WinBUGS offers a few tools for graphical exploration, and these will now be pre­
sented. Each iteration produces a new parameter value (for each param eter), and these 
can be plotted to show how they behave across different iterations (called the history 
of the parameter). These history plots can provide evidence for whether the chain is 
sampling from the stationary distribution. If the history shows a trend, then it sug­
gests that the chain has not converged to the stationary distribution. Even if there 
is no trend then it is possible that the chain is mixing slowly and is caught in one 
particular part of the posterior distribution. In this situation convergence would not 
have occurred but may appear to have from the history plot. There are other ways to 
test whether the chain has converged, such as the Brooks-Gelman-Rubin test statis­
tic (1998) which will be described presently. Since MCMC estimation in WinBUGS

Figure 4.2: History of the first 50 estimated values for the intercept in equation 4.7
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is computationally efficient, and this is a simple example, it is trivial to have large 
numbers of iterations and assess the stability of the estimates more thoroughly. Figure 
4.3 displays the history of the intercept estimates for the first 1,000 iterates and again 
shows no upward or downward trend, suggesting the stationary distribution has been 
attained. The equivalent plots for the (3 and 7  parameters are given in figures 4.4 and
4.5, and show the same pattern. Again, the process is not expected to converge to a 
single point, but to a distribution.

Autocorrelation plots for each of these parameters are very similar and indicate
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Figure 4.3: History of the first 1,000 estimated values for the intercept in equation 4.7
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Figure 4.4: History of the first 1,000 estimated values for (3 in equation 4.7
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Figure 4.5: History of the first 1,000 estimated values for 7  in equation 4.7
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that the chain is mixing well, with the correlation between successive iterates dropping 
off rapidly with increasing lags, as shown in figure 4.6.

Figure 4.6: Autocorrelation plots for a , (3 and 7
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In order to employ the Brooks-Gelman-Rubin test statistic (1998), at least two 
chains need to be run and then compared. If this is done, using overdispersed initial 
parameters ( 0  and 1 0 0 ), the between chain and within chain variability can be graph-
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ically compared, as shown in figures 4.7-4.9. For these plots “the width of the central 
80% interval of the pooled runs is green, the average width of the 80% intervals within 
the individual runs is blue, and their ratio R (= pooled /  within) is red - for plotting 
purposes the pooled and within interval widths are normalised to have an overall max­
imum of one” (Lunn et al., 2000). Under convergence, the red line should be a straight 
horizontal line at 1 , while the green and blue lines should be stable and coincidental.

Figure 4.7: Gelman-Rubin-Brooks test statistic for a in equation 4.7
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Figure 4.8: Gelman-Rubin-Brooks test statistic for /3 in equation 4.7
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Figure 4.9: Gelman-Rubin-Brooks test statistic for 7  in equation 4.7 
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Since the chain appears to converge extremely quickly, there may be less need for 
a burn-in period. Since this example is so small however, the chain runs very quickly

gamma chains 1:2

iteration

beta chains 1:2

10005001
iteration

alphaO chains 1 2

500 10001
iteration
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and so a burn-in period of 250 iterates is chosen. A further 250 are simulated so that 
the sample size for the posterior distributions of all parameters is 1,000. Figure 4.10 
shows the kernel density plot of the posterior distribution for the intercept term (a) 
from equation 4.7. This figure shows that the distribution of the intercept term is 
centred just below 70. Being based on only 1,000 samples, the density is not very 
smooth. If the chain is increased to say, 100,000 in length the resulting kernel density 
plot is much smoother, as depicted in figure 4.11. Using the posterior distribution, 
it is straightforward to answer questions such as “what is the probability that the 
intercept is greater than 70?” (probability= 0.24). Under a frequentist paradigm, such 
a question is meaningless. Similarly, it is trivial to estimate credible intervals for the 
intercept parameter using the posterior distribution. Here the 95% credible interval 
for the intercept parameter is [62.4,73.5].

alphaO sample: 1000 alphaO sample: 100000

n---
60.0

Figure 4.10: Kernel density plot for the Figure 4.11: Kernel density plot for the
intercept term a  in equation 4.7 after intercept term a  in equation 4.7 after
1 ,0 0 0  iterations 1 0 0 ,0 0 0  iterations

Similar plots for the posterior distribution of the (3 parameter from equation 4.7, 
are presented in figures 4.12 and 4.13. Here the distribution of the (3 parameter is 
centred just below 5. Again, the kernel density plot in figure 4.12 is not particularly 
smooth, being a product of only 1,000 iterations. Figure 4.13 is much smoother being 
based on 100 times as many points. This indicates that men in these two areas score 
five points higher than women on average on the MHI-5. Higher scores mean better 
mental health. Again, having access to the posterior distribution allows for probability 
statements to be made about where given parameters are likely to lie. Here the 95% 
credible interval for the (3 parameter is [2.1,9.0].

beta sample: 1000

-1 1 1 1---
-5.0 0.0 5.0 10.0

Figure 4.12: Kernel density plot for the 
regression coefficient (3 in equation 4.7 
after 1 ,0 0 0  iterations

beta sample. 100000

-5.0 0.0 5.0 10.0

Figure 4.13: Kernel density plot for the 
regression coefficient (3 in equation 4.7 
after 1 0 0 ,0 0 0  iterations

Finally, kernel density plots for the 7  parameter are given in figures 4.14 and 4.15.
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The area-level indicator associated with the 7  parameter represents the observed effect 
of living in Twyn Carno relative to St M artin’s. This explains why the 7  param eter’s 
posterior distribution is located around —15, as the mental health scores in Tywn 
Carno are lower than in St M artin’s. Again, the kernel density in figure 4.15 is much 
smoother than 4.14 due to the much larger sample size.

gamma sample: 1000

0.3
0.2
0.1
0.0

-25.0 -20.0 -15.0 -10.0

Figure 4.14: Kernel density plot for the 
regression coefficient 7  in equation 4.7 
after 1 ,0 0 0  iterations

gamma sample: 100000

-25.0
1-------------1------------ r

-20.0 -15.0 -10.0

Figure 4.15: Kernel density plot for the 
regression coefficient 7  in equation 4.7 
after 1 0 0 ,0 0 0  iterations

More informative priors are now incorporated into the model to assess what impact 
they might have. As mentioned earlier, it is well documented that men report better 
levels of mental health than women (Weich et al., 1998; Bebbington et al., 1998; Emslie 
et al., 2002). This information could be included in the model, by building into the 
prior information tha t the (3 parameter will be positive. The approach illustrated here 
is to assume that (3 belongs to a uniform distribution ranging between 0 and 20. The 
model is now given in equation 4.8. Adjusting the model to include this information, 
similar plots to figures 4.12 and 4.13 can be obtained.

Hi = a + (3 x  Male* +  7  x Twyn Carno* 

Mental Health* ~  N(/x*,470) 

(3 ~  U(0, 20) 

7  ~  N (0 ,1 0 0 0 )

(4.8)

beta sample: 1000

0.3
0.2
0.1
0.0

-5.0 0.0 5.0 10.0

Figure 4.16: Kernel Density plot for 
the regression coefficient (3 in equation 
4.8 after 1,000 iterations

beta sample: 100000

0.3
0.2
0.1
0.0

0.0 5.0 10.0

Figure 4.17: Kernel Density plot for 
the regression coefficient (3 in equation 
4.8 after 100,000 iterations

Figure 4.16 shows the kernel density plot for (3 after 1,000 iterations, while figure 
4.17 shows the same plot after 100,000. Notice that the assumption that this parameter 
is positive has truncated the distribution at zero. Again, the increased sample size
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beta sample: 1000 beta sample: 100000

0.3 0.3
0.2 0.2
0.1 0.1
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Figure 4.18: Kernel Density plot for Figure 4.19: Kernel Density plot for
the regression coefficient (3 in equation the regression coefficient (3 in equation
4.9 after 1,000 iterations 4.9 after 100,000 iterations

smooths the posterior distribution. Including this more informative information has 
not changed the posterior distribution for this parameter a great deal, since the prior 
was still quite vague. The mean of (3 is 5.5, with a standard deviation of 1.8 (95% 
credible interval [2.1,9.0]). This is exactly the same confidence interval was estimated 
for the (3 parameter previously. Having specified more information did not alter this 
confidence interval. The extra information specified will prevent this parameter and 
confidence limits from being negative.

In order to illustrate the effect poorly chosen priors can have on the results of a 
Bayesian analysis, it is now assumed that prior information has led to a choice of 
N(20,5) for the prior distribution of (3. This information is precise and incorrect. So 
now the model is as in equation 4.9

Hi — a  +  (3 x Female* +  7  x Twyn Carnof (4.9)

Mental Health* ~  N(^*,470)

/3 ~  N(20,5)

7  ~  N (0 ,1000)

The posterior distributions for (3 from this model after 1,000 and 100,000 iterations 
are plotted in figures 4.18 and 4.19 respectively. The data indicates that the difference 
should be 5, but the prior indicates that it should be 20. The posterior distribution has 
incorporated both of these sources of information and has a mean of 10.7 and a standard 
deviation of 1.4 (95% credible interval for the mean [8.0,13.5]). Including informative 
priors therefore should be treated with caution since including the wrong information 
can have disastrous consequences. Informative priors should only be included if there 
is good reason to do so. These techniques are now applied to the full CHSNS dataset.
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4.5 Spatial variation in cases of common mental 
disorder in Caerphilly county borough

This section will provide some motivation for the use of hierarchical modelling by 
examining the geographical variation in cases of common mental disorder throughout 
the study area. Table 4.1 gives some summary statistics for the underlying mental 
health score.

Table 4.1: Basic Summary of Mental Health Score

Males Females Overall
Mean 71.9 67.4 69.4

Variance 20.8 22.2 21.7
N 4770 5883 10653

Males scored higher on average than females (indicating better mental health) and 
this result was significant (Mann-Whitney test, p-value< 0.001). Table 4.2 shows 
average mental health, grouped by 1991 census electoral wards.

Table 4.2: Summary of Mental Health Score by Ward

Ward name Mean N Std. Dev Ward name Mean N Std. Dev
Aber Valley 68.05 304 22.96 Moriah 67.44 263 22.14

Aberbargoed 63.24 238 23.92 Nelson 72.42 324 19.43
Abercarn 68.16 327 21.37 New Tredegar 67.65 272 20.86

Abertysswg 68.69 237 21.39 Newbridge 70.29 328 21.49
Argoed 66.20 225 22.34 Pengam 67.41 286 23.19

Bargoed 67.39 287 22.31 Penmaen 70.88 325 21.07
Bedwas and Trethomas 69.90 302 22.52 Penyrheol 71.16 368 21.32

Blackwood 72.21 345 21.12 Pontllanfraith 70.30 299 20.24
Cefn Fforest 69.37 319 20.13 Pontlottyn 63.55 312 23.88

Crosskeys 71.08 309 20.31 Risca East 69.58 337 20.98
Crumlin 71.45 292 22.18 Risca West 70.44 349 21.17

Darran Valley 67.65 281 21.80 St. Cattwg 66.41 299 21.91
Gilfach 69.73 231 22.00 St. James 73.15 328 19.83

Hengoed 65.92 277 23.11 St. Martins 76.12 348 18.66
Llanbradach 72.40 307 21.19 Tir-Phil 64.08 210 23.85

Machen 72.34 297 20.15 Twyn Carno 61.39 225 24.21
Maes Y Cwmmer 72.32 252 19.89 Ynysddu 69.70 317 21.95

Morgan Jones 70.90 330 20.44 Ystrad Mynach 70.95 303 21.41

Even from the table it is clear that there is considerable spatial variation in mental 
health scores within the borough. The ward with lowest average mental health score is
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Figure 4.20: Map showing the spatial variation in mental health at Ward level
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Twyn Carno at 61.39, while St. Martins has the highest average mental health score 
with 76.12. Twyn Carno is the northernmost ward, while St. Martins is one of the most 
southerly wards in the borough. A Kruskal-Wallis test confirms that (before control­
ling for compositional variables) there is significant variation in mental health between 
wards (p-value < 0.001). The differences between wards can be quite dramatic. Aber- 
bargoed and Blackwood are adjacent wards which have an average difference in mental 
health scores of nearly nine points. Figure 4.20 maps the information in table 4.2 (fig­
ure 2.3 illustrates the location of the wards). The north/south difference is clear from 
this map, with average mental health scores being lower in the north of the borough. 
Particularly noticeable is the elongated ward at the north of the borough with mental 
health scores in the range 61-64. This picks out the settlements along the floor of 
the Upper Rhymney Valley. Clearly, this ecological analysis proves nothing about the 
effect of place of residence on mental health, as it is possible that the differences seen 
here are entirely attributable to the composition of these wards.

In order to examine the spatial variation at a smaller level than wards, which may 
be too large and heterogenous to adequately represent area of residence, 2001 census 
Output Areas (OAs) can be employed. Since cases of common mental disorders are of 
interest the original mental health scale is dichotomised to produce a binary variable 
indicating whether individuals are a case of CMD or not. The cutpoint is chosen is 
the cutpoint of 60 that minimises the misclassification rate from chapter , 3. This is 
the same cutpoint used in a previous analysis of the data (Fone, 2005). There 60 was
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chosen to give a proportion of cases of common mental disorder closest to 32% (a cut­
point of 60).This was chosen since the 1996 Health in Wales survey (Kingdon et al., 
1998) indicated th a t 32.4% of the Caerphilly county borough population satisfied the 
General Health Questionnaire (GHQ-1 2 ) (Goldberg & Williams, 1988) case definition 
for common mental disorder. Then each individual’s mental health score is modelled 
as a Bernoulli distribution, with mean depending on individual covariates such as gen­
der and age. Figure 4.21 plots the spatial distribution of cases of CMD using O utput 
Areas (559 in Caerphilly). The proportion of cases in each OA is placed in one of 
seven categories. The middle category contains the overall borough proportion of 32% 
and is coloured white. Each category contains the same number of OAs. Areas with a 
lower proportion of cases than  average are shaded in red, with darker hues indicating 
smaller proportions. Areas with higher than  average proportions are shaded blue, with 
darker hues denoting higher proportions. In this figure there appears to be a trend 
of increasing proportions of cases (and so, decreasing mental heath scores) toward the 
north of the borough, but the picture is more complicated, with some areas in the 
north having low proportions of cases.

There is lots of variation in the observed proportions of cases of CMD in figure 
4.21. Some of this variation is undoubtedly due to small sample sizes per OA (sample 
sizes for some of the OAs are as low as 2 ). In order to remove this random variation, 
while leaving true spatial patterns, smoothing can be performed.

One m ethod of smoothing employs a model developed by Besag, York and Mollie 
(1991). This model incorporates information from adjacent areas in order to provide 
better estim ates of the true proportion of cases when the sample size for an OA is 
small. These proportions based on small sample sizes will be smoothed toward the 
global average proportion of 0.32. Equation 4.10 shows the model assumed for the 
data, with O* representing the observed number of cases for the ith OA. A nice fea­
ture of the Besag, York and Molliee model is th a t other explanatory variables can be 
included in the model in equation 4.10. This can be extremely useful in the field of 
epidemiology where basic socioeconomic variables need to  be controlled for, making 
this model frequently suitable for public health research (Lawson et al., 1999). The 
H and the S components can be thought of as surrogates for unknown or unobserved 
variables. The S component represents variation th a t is due to structured variables, i.e. 
variables tha t, if observed, would display substantial spatial structure. These would 
be variables th a t would have similar values in adjacent OAs. The S component is 
distributed as a conditional autoregressive normal, where random effects for an area 
are influenced by the areas adjacent to it. Weights are attached to each pair of areas 
in the dataset, and while any weights can be used, here the weight is 1 if the two areas 
in question share a boundary and 0 otherwise. The conditional distribution of each Si 
is Normal with mean equal to the mean of all the adjacent 5*’s, and variance inversely
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Figure 4.21: Map showing the unsmoothed proportions of 
cases at OA level
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Figure 4.22: Map showing the smoothed proportions of cases 
at OA level



proportional to the number of observations in the adjacent areas. An adjacency m atrix 
informs the model about which areas are adjacent.

The H component is the heterogeneity component and represents unstructured vari­
ables, i.e. variables th a t if observed would be unrelated with spatial position.

logit(fii) =  u  +  Hi +  Si (4.10)

O i  ~  Binomial(/ij, n*) 

lj ~  N (0 ,1000)

H  ~  N(0, a\)

S  ~  CAR.N(0, a2s)

Priors must be specified for u, a l and a\. Since we have no information about u> 
a N(0,1000) distribution was chosen. Another possible alternative would be to use a 
uniform distribution with a wide range. It is often difficult to rigorously justify the 
specific form of an uninformative prior for a param ter, since often the reason for using 
an uninformative prior is tha t there is little information available about the parameter 
tha t could be used to justify any choice. We know a little more about the a ^  and a s 2 

parameters. Being variances they are strictly non-negative. Uninformative priors for 
such parameters are typically Gamma or log-normal distributions. Here we choose the 
former and model both as Gamma distributions with mean 1 and variance 1,000. Again 
the justification of this specific choice of distribution is not strong, however, since they 
have large variances the impact of which distribution is chosen should not be large 
(in fact sensitivity analyses were performed to confirm th a t the choice of the Gamma 
distribution here does not radically alter the results compared with choosing a log­
normal). The specification of the priors used in this analysis are shown in equation.4.1 1 .

l0  ~  N orm al(0,1000) (4.11)

a\ ~  Gamma(0 .0 0 1 , 0 .0 0 1 ) 

al ~  Gamma(0 .0 0 1 , 0 .0 0 1 )

The model was run for 11,000 iterations, with the first thousand discarded as a burn-in 
period. A full history for each parameter (including the 1,000 long burn-in period) is 
provided in figures 4.23-4.27. These history plots indicate th a t the chains converge 
quickly.

Densities for these param eters are provided in figures 4.28-4.32.
Initial values for all of these parameters were set to 1, however sensitivity analyses 

were performed with different initial values between 0 and 100. The results of the 
model did not change.
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Figure 4.23: History plot of the H \ for the BYM model
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Figure 4.24: History plot of the Si for the BYM model
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Figure 4.25: History plot of l j  (the intercept term) for the BYM model
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Figure 4.26: History plot of for the BYM model
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Figure 4.27: History plot of a 2 for the BYM model
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Figure 4.28: Density plot of H\ for the BYM model

H[1] sample: 10000

Figure 4.29: Density plot of Si for the BYM model

S[1] sample: 10000
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Figure 4.30: Density lj (the intercept term) for the BYM model
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Figure 4.31: Density <j \  for the BYM model
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Figure 4.32: Density a\ for the BYM model
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Figure 4.33: Ranked raw proportions and their corresponding smoothed values from 
the Besag, York and Mollie model
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The results of the model are illustrated in figure 4.33. This figure shows the raw 
proportions ranked in increasing order and plotted in red. It is clear that some of the 
OAs have case proportions of zero and some proportions of one, as discussed earlier. 
The middle 90% of the proportions range between 0.12 and 0.57. The corresponding 
smoothed proportions are plotted in green, and show that the extreme proportions have 
been smoothed toward the global average. The smoothed proportions range between
0.18 and 0.53, with the middle 90% only ranging between 0.24 and 0.41. These are 
much more believable estimates for the prevalence of common mental disorders. The 
proportions have not merely been scaled toward the global average however, with 
some of the smoothed proportions being farther from the global average than their 
unsmoothed counterparts. This is indicated in figure 4.33 by the fact that the green
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line is not merely a scaled down version of the red line, but instead displays random 
variation. This is due to the smoothing being calculated based on the sample size of 
the OA in question as well as information from adjacent OAs.

Figures 4.21 and 4.22 map the raw and smoothed proportions, respectively. They 
are mapped using the same colour scheme for ease of comparison. The first striking 
difference is the absence of extreme proportions in the smoothed plot, as previously 
discussed. Secondly, the trend of higher proportions of cases in the north is much 
clearer now. There is still much spatial variation present, but the majority of the red 
OAs are in the southern half of the borough and the majority of blue OAs in the 
northern half. In summary, the smoothing has reduced the variation due to small 
sample sizes leaving the true spatial variation.

While these maps are merely used to illustrate the spatial variation in mental health 
in Caerphilly and so motivate much of the work of the thesis, it is important at this 
point to issue a few caveats. The interpretation of maps such as those plotted in figures 
4.21 and 4.22 is fraught with problems. Firstly, not all of the OAs in Caerphilly county 
borough are visible at this scale. There are 559 OAs in the borough of Caerphilly. 
Many of these OAs are contained in the town of Caerphilly itself, indicated by the 
small OAs in the south western section of the map. Indeed most of the population of 
Caerphilly is located in this small area. However, since the OAs that contain them are 
small, they are not prominent on the map. In fact, the eye is drawn to the large OAs 
since they take up more of the map. These areas are large because they encompass 
sparsely populated areas. As with any map, its appearance can be altered by the 
choice of scale and colour (Lawson et al., 1999) and so caution should be used in their 
interpretation.

4.6 Conclusion

This chapter has introduced and explained Bayesian inference. Using Bayesian tech­
niques the spatial variation of mental health present in Caerphilly was investigated. 
Bayesian smoothing was used to demonstrate tha t this spatial pattern is not an arte­
fact of low sample sizes, and represents a genuine question of interest. The rest of 
this thesis will investigate methodological issues surrounding the investigation of this 
spatial variation. A crucial tool in any such investigation is hierarchical modelling, 
which will be introduced in chapter 5.
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Chapter 5 

Hierarchical Modelling

5.1 Hierarchical models

This section will introduce and explain one of the statistical tools employed in analysing 
the Caerphilly Health and Social Needs dataset, namely hierarchical modelling. Hier­
archical modelling in its simplest form is an extension of the simple linear regression 
model. The simple linear model can be expressed in the form given in equation 5.1

yi = a  + /3xi + €i (5.1)

Here yi is the response for the zth individual, while a  represents the overall average 
response for the entire dataset. The Xi term represents the covariate for the zth indi­
vidual, 0  represents the effect of a unit increase in the x  covariate on the response. 
The 6i term is the random component of the model. It is called the error term, and 
it has mean zero and variance o\. There are a number of assumptions implicit in this 
simple model, one of which is that the responses are independent of one another. This 
means that the response given by the zth individual is not affected by, or correlated 
with, the response given by any other individual in the dataset. When this assumption 
is violated, the standard errors for the 0s under ordinary least squares or maximum 
likelihood regression are underestimated (Goldstein, 2003). This results in an increased 
chance of type I error, where a true null hypothesis is incorrectly rejected. This means 
significant associations may be reported, when in fact these associations are ascribable 
to chance.

There are many practical situations where the assumption of independence is vio­
lated. The classic example is in the field of educational research. Here a typical hy­
pothesis might be that schools which teach reading using the “look-say” (also known as 
the “whole word” or “sight method”) produce children with higher reading levels than 
schools which use the “phonetic method” method. Here reading level would be the 
outcome of interest with teaching type as an explanatory covariate. In this scenario an
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ordinary least squares (OLS) linear model would not account for the fact that children 
from the same class in the same school are likely to be more similar to one another 
than they are to children in different classes, or different schools. Hence, observations 
from children in a given school will be correlated. This becomes even more obvious if 
each student’s reading score is considered to provide a measure of the same thing (i.e. 
the efficacy of the reading method to which they are exposed). Using linear regression 
this might be modelled as in equation 5.2

Vij =  Pox0 + 0iXi ij + €ij (5.2)

Here y^  refers to the response from the ith student in the j th school. In this model there 
is a single intercept denoted by 0O. The Xq term is present to keep the notation con­
sistent and takes the value 1 for all individuals. The 0\ term represents the coefficient 
of the x  covariate (this model has only one covariate). Hierarchical modelling treats 
each school as coming from a population of possible schools and allows each school 
to deviate from the overall average by a random amount. So, instead of investigating 
hypotheses related to these specific schools, a hierarchical model allows inference to 
be made about the population of schools from which were sampled. This is analogous 
to the case where individuals are sampled from a population, not to examine the in­
dividuals themselves, but to make statements about the population from which they 
were drawn. To do this a random error term r0j is included, denoting the deviation 
of school j  from the overall average, 0q. It has expected value zero and variance crj. 
Including this term in equation 5.2 gives equation 5.3

Vij = PoX0 +  0\X\ij +  Toj +  €ij (5.3)

This explicit acknowledgement of the hierarchical clustering in the data allows the 
correct standard errors to be calculated for the effects using ordinary least squares 
regression. Equation 5.3 is called a variance components model, since it partitions 
the variation in the data into either the individual or school level. The assumptions 
neccessary for the estimation of parameters in this model are that the yijS are normally 
distributed, and that the TojS and e^s are normally distributed about zero and inde­
pendent of each other. This model can be extended again if the 0i terms are treated 
as random variables. This would be done if it were expected that the slope of the re­
lationship between reading ability and time spent exposed to a given teaching method
varied from school to school. Any covariate can be allowed to vary randomly at any 
level.

Pij = P i+  vij (5.4)
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Again the expected value of v\j is zero and its variance is denoted by <rv2 .. When this
is substituted into equation 5.3 it results in equation 5.5.

Vij = fojX o +  PiXuj +  VijXuj +  T0j  +  €ij (5.5)

One of the main reasons to model random slopes is to improve model fit. If the un­
derlying cause of the slopes being different between areas is not known, fitting random 
slopes can account for this variation. In general, when there is the possibility that 
relationships between variables vary in different areas but there is no specific hypoth­
esis (or information) regarding the mechanism by which this might happen, random 
slopes are employed. If there a specific mechanism of interest, say for instance, that 
the relationship between area deprivation and mental health depends on whether the 
area is rural or urban, then a cross-level interaction (described below) is used.

The advantages of hierarchical modelling do not end there however. To extend 
the earlier example of investigating the effect of “look-see” and “phonetic” methods 
of teaching reading on student reading levels, it would be important to control for 
individual and school level variables. Perhaps one school has an attached Montessori 
school, which most children attend before enrolling in the primary school. This may 
mean that these students have a head start on students who do not attend a pre-school. 
In this scenario it may be neccessary to measure children’s reading level before they are 
exposed to either teaching method, to get a baseline reading level. This would be an 
individual-level variable. School level variables may also be available, such as average 
teacher:pupil ratio for a school. If this information were to be included in a standard 
linear model they would both be treated the same way. In hierarchical modelling how­
ever, each variable can be assigned to the correct level and treated accordingly. So 
pupil’s reading level would be modelled at individual level, while the teacherrpupil ra­
tio could be included at school level. The contribution each level makes in explaining 
the variation in the data can then be determined.

Cross-level interactions can also be included in the model. As the name suggests 
cross-level interactions are ones which combine variables from different levels. If for 
instance, there was reason to believe that there might be a gender effect in the above 
example a cross-level interaction could be included to assess that. The hypothesis 
could be that boys learn reading faster if they are taught using the “look-say” method, 
while girls learn faster using the “phonetic” method, with the gender of students being 
the individual-level variable and the teaching method being a class- or teacher-level 
variable.

Another interesting parameter to examine in hierarchical modelling is the Intra­
class Correlation Coefficient (ICC). The ICC gives an estimate of the proportion of 
variation attributable to each level. This allows the relative importance of each level
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to be assessed. For instance, if the question of interest were voting preference in a 
general election an important context to consider might be household, since residents 
of the same household are likely to share similar political views. In this situation, the 
surrounding constituency may also be an important context, since it is possible that in 
a given area there is a proven, trusted and popular politician who takes the majority 
of the votes. However, if this study were a national one, then the influence of country 
(England, Scotland, Wales or Northern Ireland) may not be important at all. The 
ICC gives a quantitative assessment of the relative importance of each context, and 
the formula for a two-level model (i.e. equation 5.3) is shown in equation 5.6

?  =  ( 5 ' 6 )an0 t  cr€

Here is the higher level variance, while of is the lower, or individual-level variance. 
It has been demonstrated that what may be seen as a modest ICC can be consistent 
with large area effect sizes. This sentiment is echoed by Merlo (2003) who says “ We 
need to understand that large odds ratios and a low intraclass correlation are not coun­
terintuitive facts, but they give different and complementary information” . Small ICCs 
can also dramatically affect the design effect for a hierarchical study. When there is a 
small ICC this means that level-one units nested in the same level-two unit are only 
slightly more similar than level-one units in different level-two units, i.e. there is only 
a small amount of clustering. This clustering reduces the amount of information that 
the sample carries. So, if say 50 students are sampled from 10 schools, the sample size 
is 500 individuals. Since they are clustered however, the effective sample size is less 
than that. The design effect is the number by which the number of lower level units 
must be multiplied by, in order to achieve the same statistical power of a study with 
500 independent individuals. It is given in equation 5.7.

D = 1 + (fi — l)p  (5.7)

Here D  is the design effect and n is the average number of individuals per higher 
level unit. So if the data has a relatively modest ICC of 0.005, and 40 individuals are 
sampled from 10 higher units, it produces a design effect of 1.195. This means that 
the number of lower level units sampled would need to be increased by nearly 20% in 
order to have the same effective sample size as the independent case. So to achieve
the statistical power provided by 40 independently distributed individuals, it would be
neccessary to sample 50 individuals.

Raw residuals are calculated in the usual OLS fashion by using the model to predict 
the outcome and then subtracting that prediction from the observed outcome. So for 
a two-level model, raw residuals could be calculated as in equation 5.8, where yij is the
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observed value and ylj is the fitted value from the model.

n j = y,j + va (5.8)

For hierarchical modelling however, such residuals are unsatisfactory since ideally it 
would be possible to decompose these raw residuals into the contributions from the 
levels modelled. In other words, it would be useful to be able to think of the raw 
residual for an individual from class A in school B, as being the sum of that individual’s 
departures from the class A average, class A’s departure from the school B average, 
and school B’s departure from the overall average. This is intuitively appealing, since 
with multiple error terms multiple residuals would be expected. In order to calculate 
residuals for the second level, the following procedure is followed. All of the raw 
residuals for the j th grouping are averaged (denoted by r +J). Then the residual for the 
j th group is calculated as in equation 5.9, where rij is the number of lower level units 
in level-two unit j .

T0j =  ~ v f - ^ T + i  (5 -9 )

Residuals calculated in this way are sometimes called shrunken residuals, since the 
multiplier of r+j is always less than one (since all of of, of and nj are strictly non­
negative). When the individual-level variance (of) dominates, this multiplier is much 
smaller than one meaning that the higher level residuals calculated will be shrunken 
towards zero. This makes sense, since when the individual level dominates, information 
on the higher level units will be relatively scarce. The shrinkage could also be large if rij, 
the j th group sample size is, small. Again, in such a situation the higher level residual 
should be small, since there is little information for that group. The individual-level 
residual is whatever is left after the higher level residuals have been subtracted from 
the raw residual. So for the two-level model, the individual-level residual is calculated 
in equation 5.10. These ideas can be extended to include three or more levels.

=  ra ~  Toj (5-10)

Binary response variables can also be modelled using hierarchical methods. The 
response is assumed to be distributed binomially as in equation 5.11, where ^  is the 
response for the ith individual in the j th group, and 7ry denotes the probability that 
the ith individual in the j th group is a success.

yij Binomial (1 , 7r*) (5.11)
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Similar to the non-hierarchical case, some link function is used to transform the prob­
abilities of success from the range [0 , 1] to the range (—0 0 , + 0 0 ) and the result is 
modelled, as opposed to modelling the response indicator variable itself. The situation 
is modelled with random intercepts as in equation 5.12 using the logit link.

logit (7Tij) =  (30 jX  0 +  P i j X i i j  +  T0j  +  6 i j  (5.12)

In the binomial modelling situation individual-level residuals cannot be calculated since 
it is group proportions (or probabilities) that are modelled. This makes the calculation 
of a meaningful ICC coefficient more difficult. It would appear that this problem is 
intractable, however if certain assumptions are made, then an estimate for the level- 
one variance can be found. The following example is paraphrased from Multilevel 
Modelling by Snijders and Bosker (1999). If Y is a binary variable, say passing or 
failing an exam, then the distribution of Y could be expressed as in equation 5.13, 
where Y ' is the underlying continuous score for the individual.

„  f 1 i fY'  > 4 0  . .
Y  = I ~  (5.13

\  0 if Y ' < 40

If a multilevel model is fitted to this underlying variable Y ', then the individual- 
level residual can be examined to see if it comes from a logistic distribution. If the 
underlying variable is unknown then this assumption cannot be tested, however if 
a logistic model is to be fitted for Y  then it must be assumed that the individual- 
level residual has a logistic distribution. This implies that the cumulative distribution 
function of individual-level residuals is the logistic function, as in equation 5.14.

exp[~(x ~a^]
f ( X )  = --------  ‘ (5.14)V ’ [̂1 +  e x p [ - ( X - a ) 2̂ v ’

2 /o2
This distribution has mean a  and variance —f - . W ith a  — 0 and (3= 1, the variance 
is This estimator for the individual-level variance “may be reasonable where the 
(0,1) response is, say, derived from truncation of an underlying continuum such as 
a pass/fail response based upon a continuous mark scale” (Goldstein et al., 2002). If 
the individual-level residual from the underlying continuous score is distributed as a 
standard normal distribution, a probit model should be used instead of a logistic one.

5.2 Application of Hierarchical Modelling

The Caerphilly Health and Social Needs Study dataset is hierarchical since each indi­
vidual is nested within a household, which is nested within a postcode, which is nested
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within an enumeration district, which is nested within an electoral ward. People in 
the same household are likely to have more in common with one another than they 
would with people from other households, e.g. the financial situations of residents of 
the same household are undoubtedly quite similar, as are their social classes. This 
non-independence of individual characteristics within households (and to a lesser ex­
tent postcodes, enumeration districts and electoral wards) is one of the justifications 
for the use of hierarchical modelling.

It is useful to investigate some simple hierarchical models. If the relationship be­
tween mental health and area deprivation is to be investigated there are a number 
of models that could be used. A basic approach would be a three-level model with 
individuals nested enumeration districts, nested within wards. Suppose it is of interest 
to predict the mental health of individuals using their area deprivation as a predictor. 
The area deprivation score used is the Townsend index, described earlier in section 
2.2. Here the Townsend index is calculated at enumeration district level. Enumeration 
districts are smaller than wards (typically each ward contains about 10 enumeration 
districts). A simple model to investigate the relationship between the Townsend index 
and mental health is described in equation 5.15.

M entalH ealthijk = PqXq + PiTownsendscoreijk +  (5.15)

Here M entalH ealthijk is the mental health score for the 2th individual in the j th enu­
meration district, in the kth ward. Notice the /30 term has no j  or Jc subscripts indicating 
it is a constant for all enumeration districts and all wards, and the same is true for the 
/3\ term. So, this is a constant intercept, constant slope model. The relationship fitted 
is displayed in figure 5.1. This shows that as the Townsend score increases (more depri­
vation), the mental health score decreases (worse mental health). Next, the intercept 
is allowed to vary between wards. Equation 5.15 becomes equation 5.16.

M entalH ealthijk = PokXo +  Pi Townsendscoreijk +  eijk (5.16)

Notice that the intercept term now has a k subscript, indicating it varies from ward 
to ward. Figure 5.2 now shows 36 parallel lines, indicating the relationship between 
mental health and enumeration district deprivation for each ward. In this model the 
relationship between ED measured deprivation and individual mental health is allowed 
to have different intercepts in different wards but is constrained to have a fixed slope 
(whether this particular example is a sensible approach to take is a different matter). 
This model can be further complicated by allowing the slopes to vary from ward to 
ward, as in equation 5.17.

M entalH ealthijk = PokXo + PikTownsendscoreijk + e^k (5-1?)
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Figure 5.1: Relationship between Mental Health and Enumeration District
Deprivation- constant intercept, constant slope
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Figure 5.2: Relationship between Mental Health and Enumeration District
Deprivation- random intercepts, constant slope
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Here the slope coefficient acquires a k subscript. In this model the slope of the re­
lationship between ED measured deprivation and individual mental health is allowed 
to vary between wards. This produces figure 5.3 This fanning out pattern indicates 
that the intercept terms in the model are positively correlated with the slope terms, 
so larger intercepts mean larger slope terms. This produces the figure 5.3 where the 
ward with the largest intercept term has the largest slope (i.e. the smallest negative 
slope). A similar style plot could, of course be produced using an OLS model, with 
thirty five intercept terms and thirty five slope terms. Hierarchical modelling however 
is fundamentally different from this approach in that the distributional assumptions
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Figure 5.3: Relationship between Mental Health and Enumeration District
Deprivation- random intercepts, random slopes
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are placed on both the intercept and slope terms. The intercept terms are assumed 
to be drawn from a normal distribution with a certain mean and variance. The same 
is true for the slope terms. No such constraint is implicit in the OLS formulation, in 
which the model for a given ward would be based on the information from that ward 
only.

Now a cross-level interaction will be illustrated. Both the slope and intercept of 
the relationship between mental health and area deprivation are allowed to differ for 
males and females as in equation 5.18.

MentalHealthijk =  /?oj£o+Tow nsend score* j +  /^Townsend score^  : Female*^-t-e*^
(5.18)

Figure 5.4 shows two almost parallel lines representing the relationship for males and 
females separately. The fact that they only differ in their intercepts, (i.e. they share 
a slope) indicates tha t the interaction term is not needed here. Essentially, this is a 
graphical illustration tha t the interaction term coefficient must be close to zero (since 
this coefficient indicates the difference between the male and female slope coefficients). 
The coefficient for the interaction term is -0.135, with a standard error nearly as big as 
that (0.124), thus reinforcing the conclusion that there is no evidence for a cross-level 
interaction here.

Since this is a three-level model there are three sets of residuals to examine. Figure 
5.5 displays histograms of the three levels of residuals. Each level’s residuals should be 
centred around zero and be normally distributed in order to satisfy the assumptions 
of hierarchical modelling. Essentially, any diagnostic that should be performed on the 
residuals from an OLS regression should be performed for every level of residuals in
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Figure 5.4: Cross-level interaction between mental health, Townsend score and gender
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Figure 5.5: Distribution of the three levels of residuals
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a multilevel model. For the individual-level residual, boxplots of fitted values against 
residuals are given in figure 5.6. If the model fits well, these boxplots should be 
symmetrically distributed about zero and should have constant variance. The sloping 
upper and lower bounds of the whiskers on these boxplots is a result of the mental 
health score being bounded between zero and 100. The range of fitted values (from
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Figure 5.6: Individual-level residuals: fitted values against residuals
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56 to 80), is much narrower than range of observed mental health scores, indicating 
that those with scores at either end of the possible mental health score range will be 
estimated poorly. The variables in the model at not good predictors of either very 
low or very high scores. This is unsurprising since the model is very simple and is 
unlikely to provide a very good fit for mental health. The skewed nature of the mental 
health score is apparent from the skewed nature of the boxplot whiskers, with the lower 
whiskers being larger than the upper ones. Since mental health is a very complicated to 
measure and predict and this model is extremely simple (with just gender, Townsend 
score and an interaction between the two fitted), this is unsurprisingly. The model fit 
is not sufficiently poor to be a worry.

The same diagnostic can be performed for the enumeration district level residu­
als, as in figure 5.7. Each point represents one of the 325 EDs in Caerphilly county
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borough. This figure appears to show random scatter about the horizontal zero line, 
which indicates that this model satisfies the assumption of normally distributed errors, 
unrelated to the explanatory variables at this level.

Figure 5.7: Enumeration district level residuals: fitted values against residuals

4
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Finally, the fitted values against the ward-level residuals are examined in figure 5.8. 
Since both the intercept and slope of the relationship between deprivation and mental 
health are allowed to vary randomly at this level, there are two types of residual to 
plot at this level. In both of the plots in figure 5.8 each point represents a ward in 
Caerphilly county borough. Both plots show random scatter about the horizontal line 
at zero and constant variance, providing no evidence for assumption violation.
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Figure 5.8: Ward-level residuals: fitted values against residuals
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Model fit can be assessed using the Akaike Information Criterion (AIC). The AIC is 
a penalised likelihood, which provides a measure of goodness-of-fit for statistical models 
(not only hierarchical ones). It is typically used as a criterion to choose between a set 
of models. Its form is given in equation 5.19, where p is the number of parameters in 
the model.

A IC  = —2logLik +  2p (5.19)

Another oft quoted measure of model fit is the Bayesian Information Criterion (BIC), 
also known as the Schwartz Information Criterion, given in equation 5.20. Here n is
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the number of observations.

B IC  =  —2logLik +  log(n)p (5.20)

As previous commentators have pointed out the BIC favours models with fewer pa­
rameters (Sawa, 1978). In this situation however it is unnecessary to penalise the 
likelihood by the number of parameters since comparisons will only be made between 
models with the same number of parameters. Consequently, the AIC is the measure 
of model fit used here. It is also important to note that comparisons of AICs will 
only be made between models with identical fixed effect structures, with smaller AICs 
indicating better model fit.

This section has demonstrated the many advantages that hierarchical modelling 
has over ordinary least squares regression. It has been shown to be a versatile method, 
capable of modelling complex relationships. Not only this, but hierarchical modelling 
handles such models in an efficient and parsimonious fashion. Arguably the most 
important advantage hierarchical modelling has over OLS is that OLS tends to under­
estimate standard errors when observations are not independent, whereas hierarchical 
modelling does not. This is a crucial point, since underestimated standard errors can 
lead to Type 1 errors. Finally, hierarchical models are better approximations of the 
real-life situation in many different scenarios. They provide an appropriate and ger­
mane way to model datasets which are inherently hierarchical.
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Chapter 6 

Investigating the household level

6.1 Introduction

The choice of hierarchy is an extremely important consideration in any attempt to 
examine the contextual determinants of mental health (or any other outcome for that 
matter). There are many possible hierarchies that could be included in the multilevel 
model, however not all of them will be useful for modelling mental health. The main 
reason to include a level is if the measurements at that level are not expected to be 
independent, or to have some influence on one another. This is the situation that mo­
tivated the development of hierarchical analysis. Excluding such a level results in the 
variance structure of the model being incorrect, and can lead to underestimates of co­
efficient standard errors (Goldstein, 2003). One justification for including a given level 
is if there are variables that relate to risk factors for, or determinants of, the response 
variable at that level. In such a situation, excluding the level means that these variables 
will be assigned to the incorrect level. Another obvious reason to include a level is if 
it explicitly relates to the research question. This could be the case if the hypothesis 
of interest concerns the relative contributions of different contexts to the outcome of 
interest. Perhaps a less valid reason to include a level is if the information is freely 
available. Whatever the reasoning behind the inclusion of contextual levels, there is a 
separate methodological question regarding how statistically valid or advisable it is to 
include a given level. This chapter will investigate this question with specific reference 
to the problem of what will henceforth be called sparseness.

Sparseness refers to the situation where a given level, for whatever reason, has low 
numbers of sub-units in the hierarchy. An example might be an observational study 
which is interested in examining the differences in General Practitioner (GP) prescrib­
ing patterns across different areas within the same country. In such a situation, primary 
care organisation might be the highest level and GP the lowest level. Another level 
that could be considered is general practice, since GPs prescribing patterns within the
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same practice might not be independent. If it were the case however, that a large 
number of general practices have only one GP in them (or perhaps if only one GP 
per practice agreed to be included in the study), this raises an interesting problem. 
For a large proportion of practices, the general practice-level is completely conflated 
with the individual-level. This is a potential problem for hierarchical modelling since 
it is impossible to ascertain the relative contributions of each of these levels to the 
variability in the response.

Perhaps it is decided therefore to exclude the general practice from the hierarchy. 
This too could be a potential problem, since there may be excellent methodological 
reasons for including the general practice-level. It is unclear which course of action is 
better; to exclude a level that may be considered an important context on the causal 
pathway to the outcome of interest, or to include a level with worrying identifiability 
issues. This is quite a general problem and can occur in many different situations. 
Consider a study which takes repeated measurements of some outcome which is ex­
pected to vary over time (such as blood pressure) from a cohort of volunteers. Such 
studies may have the problem that some individuals volunteer for many measurements, 
but others volunteer for very few.

W hat seems obvious is that if there is only one observation in each unit (i.e. if 
a lower level is completely confounded with a higher level), then both of those levels 
should not be included. However, if at the other extreme each higher level contains 
many individual-level observations, then that level should be included. What should 
be done in situations that lie between the aforementioned scenarios is the main ques­
tion. How many repeat observations should one have from each individual before it is 
worthwhile including individuals as a level (with measurements as the lowest level)? 
If there were two measurements from half of the cohort and only one from the rest, 
are the variance component estimates for the individual level reliable? What is the 
effect of including sparse levels on model fit, or coefficient estimation, or the precision 
of variance components? W hat level of sparseness should be tolerated before a given 
level is excluded from an analysis? The answers to these questions are not clear and 
will be investigated in this chapter.

As has already been mentioned, the problem is a general methodological one for 
hierarchical modelling; however the question is motivated by the CHSNS dataset. The 
household level is an option for inclusion in the hierarchy. There are a number of 
reasons why this might be a useful thing to do. Firstly, there are a number of im­
portant socioeconomic variables that are undeniably measured not at the individual 
level, but at the household level, e.g. gross household income, tenure and council tax 
band. Furthermore, it seems reasonable to suggest that individuals living under the 
same roof would, in general, be similar in terms of diet, affluence, social class as well 
as (by definition) living conditions. Such commonality of exposure is exactly what hi­
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erarchical modelling is designed to deal with, as described in chapter 5. Finally, there 
is a growing body of literature which indicates that the household level is a useful 
level to include in multilevel analyses of the contextual determinants of mental health 
(Chandola et al., 2003, 2005; Propper et al., 2005; Weich et al., 2003b, 2006, 2005), 
which will be examined and critiqued in section 6 .2 .

It seems that the household context is an important one to consider. However, 
some datasets may not be well equipped to model the household level due to suffer­
ing from sparseness. The CHSNS dataset is one such dataset. The 10,653 complete 
questionnaires that comprise the CHSNS dataset represent 9,827 different households. 
This translates to just 15.2% of the individual’s responses providing any information 
on the household level. Clearly, the CHSNS dataset has very few multiple response 
households; however the question remains, does it have enough?

The British Household Panel Survey (Taylor et al., 2005) is better equipped to 
investigate the impact of household as here the sampling unit was households. In 
the BHPS every member of a household containing a participant in the study is in­
terviewed. Even adopting this approach does not completely avoid the problem of 
household sparseness, since a considerable proportion of the population reside alone. 
In fact 40% of the households in the BHPS are single response households, representing 
22.2% of the individuals in the dataset. This means that 11,194 (73.8%) of the 14,669 
individuals can be used to obtain information about the household level in the BHPS 
study wave 9. It seems more reasonable to include the household level when using 
this dataset, but the impact of one fifth of the dataset belonging to single response 
households is unknown. Table 6.1 compares the two datasets.

As in any such situation, an obvious alternative is to exclude the sparse level from 
the analysis. Some work has been done on the consequences of ignoring an intermediate 
level in a hierarchical model (Moerbeek, 2004). It was discovered that the exclusion of 
such a level resulted in the variation that would have been attributable to that level 
being split between the higher and lower levels. This paper did not investigate the 
consequences of including or excluding a sparse level in a multilevel analysis.

This chapter will address the third stated objective of investigating the robustness 
of multilevel modelling techniques to sparse levels of data. This will be addressed under 
the following headings.

1. Evidence regarding the importance of including households in multilevel analyses 
of mental health from the literature will be reviewed.

2 . A simulation study will be described, comprising four sections, each addressing 
a different situation.

3. The results from each simulation study section will be presented and interpreted.

127



Table 6.1: Breakdown of numbers of household responses
Study N o. o f responses 1 2 3 4 5 or more

Frequency 9,035 761 28 3 0

CHSNS
%

(of households) 91.9 7.7 0.3 0.0 0.0

%
(of individuals) 84.8 14.3 0.8 0.1 0.0

Frequency 3,475 4,194 806 270 50

BH PS
%

(of households) 39.5 47.7 9.2 3.1 0.6

%
(of individuals) 22.2 53.7 15.5 6.9 1.7

4. The discussion section will present the strengths and limitations of the study 
as well as highlighting the implications of the chapter for previously published 
studies

5. The findings of the chapter will be summarised and discussed and conclusions 
drawn.

6.2 M odelling the household level in studies of peo­
ple, places and mental health

6.2.1 C om m entary

Relevant papers were defined to be those that had a mental health outcome as the vari­
able of interest, whose sample was from the general population, which employed hier­
archical methods and included household in the hierarchy. A combination of database 
searching and expert knowledge was used to identify such papers.

Six papers were found which advocated the inclusion of households in the hierarchy 
for multilevel analyses of mental health, either explicitly or implicitly. Interestingly all 
six papers identified analysed the same dataset, that is the British Household Panel 
Survey (BHPS).
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The first of these that will be examined is by Weich et al (2003b). The authors 
note that:

“Most previous studies have failed to take into account variability between 
households, resulting in overestimates of variance at higher levels.”

This paper compared the prevalence of common mental disorders (CMD) in urban and 
rural areas, as well as the association between socioeconomic deprivation and CMD. 
Data from the first wave of the British Household Panel Survey were used to inves­
tigate this association. Mental health was measured using the GHQ-12  (Goldberg 
h  Williams, 1988) introduced in section 3.1. The GHQ-12  score was used to assess 
whether individuals were classified as a case or not and this dichotomous variable was 
used as the response in logistic hierarchical models. Socioeconomic deprivation was 
measured using three different proxies: the Carstairs index of socioeconomic depriva­
tion (Morris h  Carstairs, 1991), the Office of National Statistics classification of wards 
into 14 groups, (Wallace &; Denham, 1996), and finally a measure of population density. 
The hierarchy employed comprised 8,978 individuals nested within 4,904 households, 
nested within 642 wards. Firstly a null model was fitted to the data. The variance 
attributable to the household level was assessed for significance using the Wald test, 
and found to be significant (variance 0.565, SE 0.077) (Wald statistic 53.84, p-value < 
0.001), but the ward-level variance was not (variance 0.035, SE 0.026) (Wald statistic
2.53, p-value 0.11). The standard estimate of the individual-level variance component 

2
of was used, indicating that the ICCs for the household- and ward-level variance 
components were 0.145 and 0.009 respectively. These tests were supplemented using 
MCMC methods. Using MCMC produced a household-level variance component of 
0.794 (credible interval of 0.54-1.057), and a ward-level variance component of 0.032 
(credible interval of 0.001-0.098). Controlling for individual, household and area-level 
covariates had little effect on the household-level variance, while the ward-level variance 
was further reduced. The authors conclude by saying:

“ Our results are consistent with previous research suggesting that features 
of households (or areas) may be most salient for those who are not in work, 
and who spend the most time at home”

This paper explicitly advocates the modelling of the household level.
The next paper of interest examined the association between self-rated health and 

four measures of social position, namely, occupational class, household social advan­
tage, personal income and household income (Chandola et al., 2003). This study used 
the first and eighth waves of the BHPS. Only individuals with “excellent” or “good” 
self-rated health at wave one were included, in order to select out a healthy cohort. 
This resulted in a dataset of 10,264 individuals nested within 5,511 households.The
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outcome variable was self-rated health measured at wave 8 using the GHQ-12  and di­
chotomised into those that rated their health between good and excellent, and those 
that rated their health fair to poor. Logistic models were fitted to this binomial re­
sponse. The hierarchy employed was a two-level one with individuals nested within 
households. Age, sex and employment status were also included in the analysis. Five 
models were fitted: the first four included one of the four measures of social position 
while the last model included all four. For all five models the variance at the house­
hold level was deemed significantly different from zero since the variance estimate was 
over twice its standard error (the variance ranged between 0.76 and 0.85, while the 
standard error ranged between 0.17 and 0.18). These same five models were fitted 
using longitudinal weights at both individual and household levels (again in order to 
make the sample more representative of the general population). None of the five 
models produced “significant” household-level variance in these models. The authors 
acknowledge the problem of sparseness in their explanation of this non-significance of 
the household-level variance component by commenting:

“ This may he attributable to the comparatively greater proportion of sin­
gle person economically inactive households, which reduces the likelihood of 
distinct household-level effects separate from individual-level effects ”

The authors conclude by recommending further investigation of the similarities in 
health between household members, clearly indicating that they believe there is a con­
textual effect of household on individual mental health.

A paper published in 2005 (Weich et al., 2005) was explicitly concerned with es­
timating the variance contributions of the individual-, household- and electoral ward- 
levels in hierarchical models investigating the onset and maintenance of the common 
mental disorders as measured by the GHQ-12. This was done using data from the 
first two waves of the BHPS. The onset cohort was defined to be those individuals 
classified as a non-case of CMD at wave one but classified as a case at wave two, while 
the maintenance cohort were those who met the case criteria for CMD at both waves. 
The onset cohort comprised 5,809 individuals nested within 3,679 households, nested 
within 615 wards, while the maintenance cohort comprised 1,850 individuals nested 
within 1,566 households, nested within 511 wards. The outcome variable was a bino­
mial one (indicating whether the individual was an onset or maintenance case) and

2
so logistic models were employed. The standard estimate of level-one variance of 2j- 
was used, as described in section 5.1. Three models were fitted for both cohorts: a 
three-level null model, a three-level model with individual- and household-level vari­
ables, and a three-level model with individual- and household-level variables and an 
area-level deprivation variable (Carstairs index). The ICC coefficients for the house­
hold level for the onset group ranged between 0.14 and 0.17, while for the maintenance
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group it ranged between 0.12 and 0.33. The GHQ-12  was also modelled as a continuous 
variable, providing more reliable ICCs. These models consistently assigned about 12% 
of the variation in the response to the household-level.

Another paper published in 2005 (Propper et al., 2005) investigated the associa­
tion between neighbourhood and common mental disorders (both levels of CMD and 
changes in CMD). Since the BHPS was again used, the GHQ-12  was the measure of 
mental health. This study used information from ten waves of the BHPS (1991-2000) 
providing information on 8,184 individuals nested within 4,341 households. Three- 
level hierarchies were fitted with individuals nested within households nested within 
“bespoke neighbourhoods” . These bespoke neighbourhoods were created for each indi­
vidual and can be thought of as containing the nearest 500 people to each individual’s 
home address. Principal component analysis was used to create five components de­
rived from 18 socio-economic and demographic variables extracted from 1991 census 
data. These components were calculated for the bespoke neighbourhoods and were 
called Disadvantage, Mobility, Age, Ethnicity and Urbanness. Tests of significance of 
variance components were carried out using the log- likelihood ratio test. Firstly, levels 
of CMD were investigated using a sample size of 8,184 individuals nested within 4,341 
households. The response variable was GHQ-12 score. Five null models, each with 
one of the components included, were fitted. The household-level variance was deemed 
significant for all of these five models (p-value < 0.01 for all five models). When 
individual and household variables were included (age, gender, ethnicity, education, 
net household income, number of adults, number of children, house tenure type, and 
employment status of the head of the household) the significance remained (p-value 
< 0.01 for all five models). Household-level ICCs for all ten of these models ranged 
between 0.13 and 0.14. This procedure was followed again, but this time the response 
was 5-year change in GHQ-12 score. The sample size for this analysis was 7,047 indi­
viduals nested within 4,377 households. Here, three of the five models containing only 
one of the components produce significant household-level variances (for the Mobility, 
Age and Ethnicity components) (p-values < 0.01 for all three). This situation remains 
unchanged when individual and household-level variables are included. Household- 
level ICCs for these models remained at 0.15. The authors conclude by saying that the 
work:

“suggests that people and their households should be the focus of policy effort
to alleviate the common mental disorders examined here”

A paper published in 2005 (Chandola et al., 2005) used wave 9 of the BHPS dataset 
to investigate both physical and mental heath. One of the study’s goals was to in­
vestigate whether longitudinal analyses of area effects on health need to take account 
of clustering at the household level. As discussed in section 3.4.3, wave nine of the
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BHPS included the SF-36 and this was used to assess both physical and mental health, 
using the PCS and MCS. The dataset used comprised 10,264 individuals nested within 
5,511 households who had complete information at the first nine waves of the BHPS. 
Fourteen different models were fitted. Firstly, a single level null model was fitted us­
ing individuals. The second model was a two-level null model with individuals nested 
within households as recorded at the first wave of the BHPS. The third model was 
a cross classified two-level null model with individuals nested within the households 
they resided in over the course of the study. The above two models were repeated with 
households replaced by electoral wards. The sixth model was a three-level null model 
with individuals nested within wave one households nested within electoral wards. The 
seventh model was the same as the above, was allowed for multiple household member­
ship. All seven of the above variance component models were repeated controlling for 
age, gender, marital status, employment and smoking status. ICCs along with credible 
intervals were calculated for the variance components. The household-level ICCs were 
very consistent for the four null models which included household, ranging only between 
0.2 and 0.25. None of the credible intervals include zero (minimum lower 95% credible 
interval limit: 0.17, maximum upper 95% credible interval limit: 0.27). The authors 
take this as evidence that the “household-level variance is statistically significant and 
different from zero” . Ward-level ICCs were also calculated and ranged between 0.02 

and 0.06. For the four full models including household the ICC coefficients ranged be­
tween 0.09 and 0.15. The authors conclude that the household level has a contextual 
effect on people’s mental health, indicating the importance of including households as 
a level. Moreover, they state that “wherever sample designs select clusters as sampling 
units, such units should be taken account of in any subsequent analyses” .

The final paper discussed here used data from the first two waves of the BHPS to 
investigate rural/non-rural differences in the onset and maintenance episodes of com­
mon mental disorders. The hierarchy was composed of 7,659 individuals living in 4,338 
households nested within 626 electoral wards. Variance components for the household 
level were not reported, however the authors support their inclusion of the household 
level by saying:

“Our estimates of standard errors for associations between area-level ex­
posures were less prone to bias than those arising from studies in which 
individual- and household-level exposures were conflated”

Table 6.2 summarises the household-level information included in each study. The 
consensus that these papers reach is that it is necessary to recognize that households 
are a useful and important level to model in studies of this type. The variance at­
tributable to the household level is the largest in the two papers (Chandola et al., 
2003, 2005) which model household level as the highest level. This is to be expected as
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Table 6.2: Summary of papers which advocate modelling household as a level

Year Study
No. o f 

levels
A vg. per 

Household
Household

ICC

2003 Weich et al 3 1.83 0.145
2003 Chandola et al 2 1.86 0.19-0.21
2005 Weich et al 3 1.77 0.12
2005 Chandola et al 2 1.86 0.09-0.29
2005 Propper et al

CMD prevalence 3 1.89 0.13-0.14
5 year change in CMD 3 1.61 0.15

2006 Weich et al 3 1.77 Not reported

any contextual variation at excluded higher levels will be assigned to the highest level. 
The remaining papers consistently assign proportions of between 0 .12  and 0.15 to the 
household level.

6.2.2 C ritique

The results presented in the previous section indicate that the variance attributable 
to households in hierarchical models investigating mental health is likely to lead to 
ICC estimates of at least 0 .1 . This finding is fairly consistent across studies, which 
is perhaps unsurprising since they all use the same dataset (albeit different waves). 
The absence of other studies recommending the inclusion of households as a level is 
worrisome but this may be a result of the difficulty and expense involved in interviewing 
entire households. Apart from this worry however, there is a general problem shared 
by all of these papers regarding the methods used to assess the statistical significance 
of the household variance components. More pertinently, is it sensible or meaningful 
to discuss the statistical significance of variance components at all? Variances are, 
by definition, non-negative, meaning that the absolute minimum they can attain is 
zero. If the true value of a given level’s variance component is zero, it would certainly 
be important to identify that. However, if the true value of a given level’s variance 
component represents a tiny fraction of the total variance, it may be similarly important 
to reject that variance component as unimportant. The question therefore, is less 
about the probability tha t a given level’s variance component is equal to zero, but 
more about how large a given level is likely to be. These methods varied from paper to 
paper and all have their weaknesses. This section will examine and critique the three 
main approaches to significance testing of variance components: standard significance 
testing, Wald statistics, and MCMC credible intervals.
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Standard significance testin g

Standard significance testing was used in the first paper by Chandola et al (2003)and in­
volves constructing a 95% confidence interval around the variance component estimate 
using its standard error. If this interval includes zero, then the variance component is 
not deemed to be significantly different from zero. This is a crude way to test signifi­
cance since standard 95% confidence intervals are not constrained to be positive, while 
variances are. This method also assumes that the variance component is distributed 
Normally which is impossible since it is strictly non-negative.

Wald Statistics

Wald statistics (Birkes, 1998) were used in two of the papers by Weich et al (2003b; 
2005) and are a relatively crude way of calculating a p-value. It is described in equation 
6.1, where 9 is the maximum likelihood estimate of 9 (the variance component) and 
the null hypothesis is that 9 =  0O. Under the null hypothesis, W  is distributed as a 
chi-square with one degree of freedom.

w  = 0  -  e0f  ^
var9

The Wald statistic has been criticised for having poor power in certain situations in­
cluding binary logit models when the alternative is far from the null (Fears et al., 
1996) and when the likelihood function is not well approximated by a quadratic (Pawi- 
tan, 2001). Another drawback is that Wald confidence intervals are always symmetric, 
which may not reflect reality, in particular if the confidence interval includes negative 
values for a strictly non-negative parameter (e.g. variance components). In situations 
with large samples however, it is less prone to such problems and is computationally 
very simple.

M CM C credible intervals

MCMC credible intervals were reported in three of the six papers summarised (Weich 
et al., 2003b, 2005; Chandola et al., 2005). This is a sophisticated way of assessing the 
variability of variance components and approaches the problem in a sensible way by 
providing a range of values where the variance component is likely to lie. It involves 
using MCMC methods to sample from the posterior distribution of the household- 
level variance component. The interpretation of a 95% credible interval in such a 
situation is not straightforward however, due to the fact that the absolute minimum 
value belonging to this distribution is zero. Even if there is no contextual effect of 
household the variance attributable to the household level is very likely to be slightly 
greater than zero due to chance. This is illustrated in the first paper by Weich et
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al (2003b), where the p-value for the ward-level variance component was 0.11, yet 
the MCMC credible interval surrounding the variance component was 0.001-0.098, 
excluding zero. Similarly, the second paper by Weich et al (2005) reports an MCMC 
credible interval for a household variance component ranging from 0.03-0.97 (point 
estimate of 0.55). While this Cl does not contain zero, it does range sufficiently low 
enough to call into question whether this variance component could not be due to 
chance.

Summary

In summary, none of the significance testing methods are completely satisfactory. This 
is due to the nature of high-level variances being non-negative and typically small. The 
absence of other studies advocating the household level, while perhaps a consequence 
of the difficulty of collecting datasets with enough multiple response households to 
model household, is still a concern. It would be useful to provide some guidelines to 
researchers about when it is appropriate to include the household level. In order to do 
this it is neccessary to investigate the effects of either including or excluding informative 
sparse levels, and including uninformative sparse levels. A simulation approach was 
undertaken as, described in section 6.3, to investigate these problems.

6.3 Simulation study investigating the effect of sparse 
levels on the results of multilevel modelling

6.3.1 T he sim ulation  hierarchies

Simulation studies are invaluable tools to assess the impact of assumption violation, 
particularly in fields where the “true” situation can never be ascertained. In this in­
stance hierarchical datasets can be simulated with known variance structures and the 
average number of responses per household can be varied. Hierarchical models can be 
fitted to these datasets, and since the true values of coefficients and variance compo­
nents are known, an objective assessment of the effect of single response households 
can be made. These datasets were constructed to satisfy all of the assumptions of 
hierarchical models. These basic assumptions are that the errors at each level are un­
correlated with other levels, and are distributed with mean zero (assuming that all the 
values of the explanatory variables are known). The level-one errors should follow a 
normal distribution with constant variance. Higher level errors should follow a multi­
variate normal distribution with constant covariance matrix.

There were two steps to this simulation process. Firstly, the hierarchy was spec­
ified. This provided information about which group each individual belonged to at
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Table 6.3: Breakdown of numbers of household responses
N o. o f responses 1 2 3 4 5 or more

CH SNS Frequency 9,035 761 28 3 0

P oisson+1
(A =  0.084054)

E xpected Frequency 9,035 759 32 1 0

each level. To imitate the CHSNS study, a three-level hierarchy was chosen, with sim­
ulated ward-sized groups at the highest level, then simulated households, and finally 
individuals.

This was constructed as follows. The number of individuals per household was 
simulated using a Poisson distribution. This distribution was chosen for three reasons. 
Firstly, the Poisson distribution, being a non-negative discrete distribution, is a reason­
able choice to model the number of individuals per household. Secondly, the numbers 
of responses per household in the CHSNS dataset closely followed a Poisson distribu­
tion shifted by 1, as demonstrated in table 6.3. If the number of household responses 
follows a distribution called X , then X  — 1 is distributed as a Poisson variable with 
mean 0.084054. The value 0.084054 comes from the average number of respondents 
per household being 1.084054. Thirdly, the Poisson distribution parameter, A, has an 
intuitive interpretation in this context, since A +  1 can be thought of as the average 
number of respondents per household, fi. This was varied between 1.05 and 6 . The 
number of households simulated was varied with ji so that the expected value of the to­
tal number of individuals was 10,000. Finally, each household was randomly allocated 
to one of 30 wards (chosen as a convenient number to imitate the 36 1991 electoral 
wards). This resulted in a hierarchy with 30 wards at the highest level, variable num­
bers of households at the middle level and approximately 10,000  individuals at the 
lowest level. Low values of /i correspond with low numbers of responses per household, 
which correspond to large numbers of single response households. Conversely, high 
values of n  correspond to low numbers of single response households.

The second step involves specifying the variance structure of the hierarchy. Area, 
household, and individual random effects were drawn from normal distributions. Four 
different approaches were taken, called A, B, C and D and are summarised in table 
6.4. For all four approaches 30 observations were drawn from A (0 ,0.5) (to repre­
sent ward random effects). In scenario A, the household-level variance was set to 
be equivalent in size to the individual level. While such a situation is not the norm 
in area-effects literature, this scenario investigates the effect of sparseness when the 
sparse level has a large variance component. In this scenario, household random ef-
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Table 6.4: Summary of simulation scenarios

Scenario
Variance com ponents 

Area H ousehold Individual Sam ple size
A 10 10 0.5 10,000
B 20 1.5 0.5 10,000
C 20 0 0.5 10,000
D 20 1.5 0.5 1,000

fects were drawn from AT(0,10), and individual random effects were also drawn from 
N (0,10). Secondly, the household-level variance component was set to be much smaller 
than the individual-level variance component. This is much more similar to the ob­
served variance component sizes for the household level from the literature. Here the 
household-level random effects were drawn from iV(0,1.5), while the individual-level 
random effects were drawn from N (0,20). This is scenario matches the CHSNS dataset 
in terms of sample size and variance component magnitudes. This will be referred to 
as scenario B. The third simulation was the. same as the second except the household 
variance component was set to zero. This simulation will be referred to as scenario 
C. This simulation investigates the effect of including a level that is unrelated to the 
outcome. Since variance components are constrained to be non-negative, the minimum 
value they can attain  is zero. However, even an uninformative level in a hierarchy is 
likely to have some proportion of the total variance (inappropriately) attributed to it, 
merely by chance. To date, no one has investigated how large this proportion is likely 
to be. The results of this work can provide an alternative method of assessing variance 
component magnitudes. Estimating the variance component for an uninformative level 
provides a baseline against which other variance components can be compared. Finally, 
another simulation will employ the same variance structure as scenario B (imitating 
the CHSNS dataset), but with a smaller average sample size of 1,000. This scenario 
investigates the effect of a sparse level combined with a small sample size. This will 
be called scenario D.

6.3.2 T he sim u lation  m odels fitted

Once the dataset itself was simulated, six models were fitted to it. Firstly, a three-level 
null model was fitted to the data, as in equation 6 .2 .

MHijk =  olq +  Vk +  Tj +  £j (b-2)

The null model is the simplest of models. The outcome variable is referenced as M H
indicating that this outcome could be a mental health measure. Here Vk references
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the kth area error, Tj references the j th household error, and £* references the ith indi­
vidual error. The only parameters estimated from this were the mean of the response 
and the variance components. This model was used to assess the precision of variance 
component estimation as it relates to different sparseness conditions. Here the estima­
tion of the variance components under various sparseness conditions was investigated. 
Secondly, a null model with the household level excluded was fitted to investigate the 
effect of excluding an intermediate level, as in equation 6.3.

MHik =  ocq +  v k +  £i (6*3)

There are no j  subscripts in this model since the household level is excluded. Thirdly, a 
three-level model with an area-level explanatory variable was fitted, so that the impact 
on coefficient estimation could be examined, as in equation 6.4.

MHijk =  OiQ +  fa  x Xk +  Vk +  Tj +  £i (6.4)

Here Xk references the value of the fixed effect for area k , while fa references the 
coefficient of the fixed effect. In this simulation, the fa coefficient is set to be five. 
Area level effects (XkS) were drawn from a N(0,1) distribution. The fourth model was 
the same as the third model but with the area-level variable replaced with a household- 
level variable, as in equation 6.5.

MHijk = Ol0 ~\~ fa X X j  +  Vk +  Tj +  £i (6.5)

Here fa  references the coefficient for a household level variable (the different subscript 
is used to distinguish it from fa above). Again, the XjS  are drawn from a N(0,1) 
distribution.

The fifth model again includes the area-level fixed effect, but with the household 
level excluded. This investigates the effect of excluding an intermediate level on higher- 
level fixed effect estimation. The model is the same as equation 6.3 but with the 
area-level fixed effect included, as given in equation 6 .6 .

M H i k  =  olq f a  x  X k  +  Vk +  £i (6 .6 )

The sixth and final model, replaces the area-level fixed effect with the household-level
fixed effect. Since household is not included in this model, the household-level fixed 
effect is included as an individual level fixed effect, as in equation 6.7.

MHik =  +  fa  x X i +  Vk +  Si (6.7)

138



Only results regarding fixed effect estimation will be presented for the last four models, 
whereas results for the first two will be more comprehensive. These simulations will 
provide evidence regarding the effect of both including and excluding a sparse level of 
information on the results of a multilevel analysis.

6.3 .3  T he technica l details o f th e  sim ulation  procedure

As mentioned earlier, the average number of individuals per household was varied 
between 1.05 and 6 in increments of 0.05. For each average number of individuals per 
household 200 hierarchies were simulated. This resulted in 20,000 hierarchies being 
simulated for each of the four simulations (A, B ,C and D). Creating, storing, managing 
and analysing such a large number of hierarchies was no trivial task and obviously 
required heavily automated procedures. Simulating such a large number of hierarchies 
was only possible through the use of Condor (Litzkow et al., 1988) a Cardiff University 
wide parallel computing network. The basic principle of the Condor system is that at 
any one time there are a large number of computers across Cardiff university that are 
not being used to their full potential. Condor can send tasks to these computers which 
run in the background without noticeably slowing down the computer for the owner. 
A number of schools have signed up to this system as well as many of the open access 
computer laboratories. The Cardiff Condor computer pool is the second largest pool 
of its kind in Europe.

Before any tasks could be sent through Condor, the R computing environment 
needed to be distributed to the computers in the pool. The open-access, non-licensed 
nature of R facilitated this process greatly. Since Condor harnesses the power of 
ordinary desktop computers University wide, and not a supercomputer, then each task 
(or job) sent through it has to be small enough to run in a small amount of time 
(approximately one hour). If the owner of the computer being used by the Condor 
pool logs out or turns off the computer in the middle of a job, that job is resubmitted 
and needs to begin again from the start. Therefore large jobs that would take days to 
run are very inefficient, and need to be split up into a large number of smaller jobs. 
Small, self-contained tasks, incorporating various functions and programs necessary 
for model fitting were written in text files. Thousands of such text files were written 
(automated in R), and submitted to Condor. At any one time, up to 500 computers 
were running programs for this study. The text files specified the hierarchy for a given 
simulation, and then fitted a hierarchical model to it. Instructions were provided on 
which parameters of interest needed to be recorded and returned to the submission 
computer. For each hierarchy simulated, the hierarchy itself was returned as well as 
various model parameters in the form of an R workspace. Each of these workspaces 
was collated into one large file for analysis. For this simulation, the time taken to
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create a simulated hierarchy, apply the six models of interest to that hierarchy, and 
extract the required information from that model took, on average, six minutes for 
simulations A to C. Simulation D was quicker being based on a smaller total sample 
size, but still took on average 2-3 minutes for each. This equates to over nine months 
of computing time if this were to be performed on a single machine. Utilising Condor 
split this computing time between many machines reducing the total time to less than 
two weeks (jobs were fed into the system manually, meaning that if Condor finished 
a set of simulations overnight, it would lie idle until more were added). A benefit of 
this drastically reduced computing time was that if a mistake was made in any part of 
the algorithm, or even if extra information was required in order to further investigate 
the results produced by preliminary analysis, it was much easier to fix the mistake, or 
extract the extra information.

The information was returned to the submit machine in batches. These batches 
contained the results from a number of different hierarchies, typically ten. Information 
on both the selected model information and the simulated hierarchy itself (for the 
purposes of manually checking that the results were correct) were returned. For each 
scenario then, the information of interest was contained in 10,000 folders. Obviously, it 
would have been too time consuming to manually collate all of this information. This 
process was automated in Ft. An extraction algorithm was created which checked each 
of the 10,000 folders for information (some jobs were rejected by Condor resulting in no 
information in a given folder). If a given folder contained information, that information 
was extracted and collated into a large dataset, which was output. Without this 
automated information extraction algorithm, Condor would have been of little benefit. 
The next section examines the results of this process.

6.4 Results

6.4.1 Scenario A  

Three-Level N ull M odel

Firstly the three-level null model is examined for the case where the household and 
individual levels contribute equal amounts of variation to the outcome. The variance 
contributions from the individual, household and area levels are 10, 10 and 0.5, respec­
tively. The relationship between the variance components produced and sparseness 
is displayed in figure 6.1. Each sparseness level (from 1.05 to 6 in steps of 0.05) is 
represented by a boxplot. The true values for the variation attributable to each level 
are depicted by solid horizontal lines in each plot. The x-axis represents the average 
number of individuals per household. As this value is increased the number of single 
response households decreases. Figure 6.1 shows how the estimates of the variance
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components (for each of the three levels) change as the average number of responses 
per household changes. The ward-level variance component is unbiasedly estimated 
with constant variance for all levels of sparseness. The household and individual- 
level variance components (plotted on the same scale for comparison) are unbiasedly 
estimated for all levels of sparseness. There is evidence that the household-level vari­
ance component is more variable than the individual-level variance component. The 
individual-level component is estimated less precisely when the number of individuals 
per household is small.

This increased variance component variability at high sparseness levels has conse­
quences for the ICC coefficients. Figure 6.2  shows the ICC coefficients for each of the 
three levels in the hierarchy. Horizontal lines indicate the true ICC coefficients for each 
level. The ward-level ICC appears to be estimated without bias, and with constant 
variance for all sparseness levels. For both the household and individual levels the ICCs 
are unbiased, however they are more variable when the average number of individuals 
per household is small. This is confirmed by the summary information in table 6 .6 , 
with reported variances three times greater when the average number of individuals 
per household is between 1.05 and 2 , than when the average is greater than 2 .

Model fit is examined using the AIC (introduced in section 5.2). The relationship 
between the average number of individuals per household and the resultant three-level 
null model AIC is displayed in figure 6.3. This figure shows that when the average 
number of individuals per household is low, the model fit is worse.

Since the total number of individuals was not set to be 10,000, but varied around
10 ,0 0 0 , it is useful to examine the impact of these different sample sizes on the estimated 
variance components. This is plotted in figure 6.4. The total number of individuals 
is centred around 10,000, but extends as low as 9,687 and as high as 10,346. Such 
relatively small differences in sample size would not be expected to have a large impact 
on the variance component estimation, and indeed that is the case with the variance 
components for all three levels exhibiting nothing more than random variation. The 
individual-level variance component is much less variable than the household level (note 
that the household and individual-level variance components are plotted on the same 
axes).

Two-level N ull M odel

The model which excludes the household level is examined in figure 6.5. The ward- 
level variance component is not hugely affected by the exclusion of the household 
level, except when the average number of individuals per household is large (when the 
average is between 5-05 and 6 this variance component is 0.66 on average. There is 
evidence that the ward-level variance component is estimated more accurately with
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Figure 6.1: Relationship between the variance components and the average number of
individuals per household for three-level null model in scenario A
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Table 6.5: Summary information for figure 6 .1

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.50 0.50 0.50 0.50 0.50
Area variance 0 .0 2 0.03 0.03 0.03 0.03
Household mean 9.99 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0

Household variance 0.17 0 .1 1 0.13 0.14 0.16
Individual mean 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0

Indivdual variance 0 .1 1 0.03 0.03 0.03 0 .0 2
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Figure 6.2: Relationship between the ICC coefficients and the average number of indi­
viduals per household for three-level null model in scenario A
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Average number of Average number of Average number of

respondents per household respondents per household respondents per household

Table 6 .6 : Summary information for figure 6.2

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.0244 0.0245 0.0244 0.0245 0.0242
Area variance 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1

Household mean 0.4874 0.4876 0.4878 0.4876 0.4877
Household variance 0.0003 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1

Individual mean 0.4882 0.4879 0.4878 0.4878 0.4881
Individual variance 0.0003 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1
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Figure 6.3: Relationship between the average number of individuals per household and
the model fit for the three-level null model in scenario A
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Table 6.7: Summary information for figure 6.3

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
AIC mean 57,511 56,197 55,543 55,086 54,714
AIC variance 116,745 191,990 220,983 233, 724 249,972
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Figure 6.4: Relationship between the variance components and the total number of
individuals for three-level null model in scenario A

Area Household Individual
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Table 6 .8 : Summary information for figure 6.4

Rounded number of individuals 9700 9800 9900 1 0 0 0 0 1 0 1 0 0 1 0 2 0 0 10300
Area mean 0.46 0.52 0.50 0.50 0.50 0.50 0.49
Area variance 0.04 0.03 0.03 0.03 0.03 0.03 0 .0 2
Household mean 1 0 .0 1 1 0 .0 2 9.99 1 0 .0 0 1 0 .0 1 9.99 10.07
Household variance 0.15 0.15 0.14 0.15 0.13 0.15 0.17
Individual mean 1 0 .0 2 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 9.99 9.93
Individual variance 0 .0 2 0.03 0.03 0.06 0.03 0.03 0 .0 2
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high levels of sparseness. The variability attributed to the missing level is attributed 
to the individual level in this situation. This corresponds only partially with a different 
study which investigated the consequences of ignoring a level in a multilevel analysis 
(Moerbeek, 2004). Here the authors used a simulation study to assess the impact of 
ignoring a level of nesting in the unbalanced design case. They concluded that the 
variability attributable to the missing intermediate level is distributed between the 
upper and lower levels. The result was proved analytically for the balanced case. As 
demonstrated by figure 6.5 however, the area-level variance component has largely 
remained unaffected by the exclusion of the household level.

To examine the relationship between the levels of sparseness and the model fit, 
the average number of individuals per household was plotted against the AIC for the 
two-level null model as in figure 6 .6 . There does not appear to be any relationship 
between the two. This is in stark contrast with the relationship observed for the three- 
level null model in figure 6.3, where there was a strong negative relationship between 
the average number of individuals per household and the AIC. This constitutes strong 
evidence that sparseness of the middle level reduces the model fit.

The effect of the differing sample sizes on variance component estimation is inves­
tigated for the two-level null model excluding household in figure 6.7. The true values 
of the variance components are indicated by the red horizontal lines. There does not 
appear to be any relationship between the two, with both variance components being 
consistently estimated for all sample sizes.

Three-Level F ixed  Effect M odels

This section investigates the effect of sparseness on area- and household-level fixed 
effect estimation for a three-level model. For all fixed effects the true coefficient is five, 
as indicated by the red horizontal lines. True standard errors are plotted in red also, 
on the standard error plots. Firstly, the area-level fixed effect is examined in figure 6 .8 . 
The fixed effect itself is estimated without bias for all levels of sparseness as can be 
seen here (and in table 6.12). When the average number of individuals per household 
is low there appears to  be a slight underestimate of the standard error of this fixed 
effect, and when the average number per household is large, an overestimate. Neither 
is a large effect however.

Next, the household-level fixed effect is examined. Figure 6.9 shows the effect of 
sparsity on household-level fixed estimation for scenario A. Figure 6.9.(a) shows that 
the household-level fixed effect is unbiasedly estimated, although there is evidence that 
larger numbers of individuals increases the standard error of those estimates. This is 
confirmed in figure 6.9. (b) and table 6.13. When the sparseness is quite extreme (less 
than 1.5 respondents per household) the standard errors for the household-level fixed
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Figure 6.5: Relationship between the variance components and the average number of 
individuals per household for the two-level null model, excluding household in scenario 
A
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Table 6.9: Summary information for figure 6.5

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.52 0.57 0.60 0.64 0 .6 6

Area variance 0 .0 2 0.03 0.03 0.03 0.04
Individual mean 19.97 19.93 19.90 19.87 19.84
Individual variance 0 .1 1 0.03 0.03 0.03 0 .0 2
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Figure 6.6: Relationship between the average number of individuals per household and
model fit for the two-level null model, excluding household in scenario A
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Table 6.10: Summary information for figure 6.6

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
AIC mean 58391 58356 58342 58333 58300
AIC variance 120075 231543 276095 299278 324429
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Figure 6.7: Relationship between the variance components and total number of indi­
viduals for the two-level model, excluding household in scenario A

Area Individual
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Table 6.11: Summary information for figure 6.7

Rounded num ber of individuals 9700 9800 9900 10000 10100 10200 10300
Area mean 0.61 0.64 0.60 0.59 0.60 0.62 0.64
Area variance 0.05 0.04 0.03 0.03 0.03 0.03 0.02
Individual mean 19.89 19.90 19.89 19.91 19.90 19.87 19.88
Individual variance 0.15 0.17 0.15 0.14 0.14 0.17 0.18
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Figure 6.8: Relationship between the sparseness and area-level fixed effect estimation
for the three-level model in scenario A
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Table 6 .1 2 : Summary information for figure 6 .8

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area fixed effect mean 4.99 5.00 5.00 5.00 5.00
Area fixed effect var. 0 .0 2 0 .0 2 0 .0 2 0.03 0 .0 2

Area fixed effect std. error mean 0.143 0.147 0.151 0.156 0.157
Area fixed effect std. error variance 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1
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effect are underestimated.

Two-Level F ixed Effect M odels

Fixed effect models excluding the household level are examined now. Figure 6.10 
shows the relationship between sparseness and area-level fixed effect estimation for the 
two-level model. This figure shows tha t neither the fixed effect itself nor its standard 
error are influenced greatly by sparseness. There is some evidence that at high sparse­
ness levels the standard errors are underestimated, and at low sparseness levels it is 
overestimated. Table 6.14 shows tha t neither effect is large.

The relationship between sparseness and household fixed effect estimation in a 
model excluding household as a level is shown in figure 6 .11 . As before, the fixed effect 
itself is estimated without bias for all levels of sparseness (as shown in table 6.15). 
Figure 6.11.(b) shows tha t the standard error of the fixed effect is underestimated for 
all levels of sparseness. This becomes more pronounced when the average number of 
individuals per household is large, since for these situations the importance of including 
household as a level is large.

Sum m ary o f Scenario A  results

Scenario A investigated the effect of sparse data  on a three-level model where the 
middle and lowest level each made equal variance contributions to the outcome of 
interest. In this scenario the variance components for the two lowest levels in the three- 
level null model were estimated unbiasedly for all levels of sparseness. The variability 
of those estimates rose sharply however when the average number of individuals per 
household was less than 1.5. The relationship between sparseness and the AIC was 
a strong one, with sparse levels of data (less than 1.5) resulting in AICs about 3,000 
(~5%) greater than  for non-sparse data (5-6 individuals per household on average). 
Excluding the household level from the analysis results in virtually all of the variability 
at that level being attributed to the lower level. The higher level is estimated without 
bias when the number of individuals per household is low. This makes sense since in 
this situation it is impossible to distinguish household effects from individual effects 
and so the household variability is erroneously attributed to the individual level. As 
the number of individuals per household increases, so does the ward-level variance 
component. The magnitude of this overestimation is not large however. Excluding the 
household level results in the relationship between the average number of individuals 
per household and the AIC disappearing. Sparseness does not introduce bias into 
area- or household-level fixed effect estimates for either three-level models including 
household, or two-level models excluding household. Area-level fixed effect standard 
errors were underestimated when the sparseness was extreme (less than 1.5 individuals
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Figure 6.9: Relationship between the sparseness and household-level fixed effect esti­
mation for the three-level model in scenario A
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Table 6.13: Summary information for figure 6.9

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Household fixed effect mean 5.002 5.000 5.001 5.001 5.003
Household fixed effect var. 0.003 0.004 0.005 0.006 0.007
Household fixed effect std. error mean 0.053 0.061 0.069 0.076 0.082
Household fixed effect std. error variance 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

152

02232389532353232353532348



Es
tim

at
ed

 
ar

ea
-le

ve
l 

fix
ed

 
ef

fe
ct

Figure 6.10: Relationship between the sparseness and area-level fixed effect estimation
for a two-level model excluding household in scenario A
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Table 6.14: Summary information for figure 6.10

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area fixed effect mean 4.994 5.001 4.999 4.999 5.003
Area fixed effect var. 0 .0 2 2 0 .0 2 2 0.025 0.026 0.025
Area fixed effect std. err. mean 0.144 0.148 0.153 0.158 0.159
Area fixed effect std. err. var. 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1
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Figure 6.11: Relationship between the sparseness and household fixed effect estimation
for a two-level model excluding household in scenario A
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Table 6.15: Summary information for figure 6 .1 1

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Household fixed effect mean 5.0020 5.0010 5.0010 5.0010 5.003
Household fixed effect var. 0.0030 0.0040 0.0050 0.0060 0.007
Household fixed effect std. error mean 0.0448 0.0449 0.0449 0.0449 0.045
Household fixed effect std. error var. 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0
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per household) for both three and two level models. Household-level fixed effects 
were underestimated at extreme sparseness levels in the three level model, and always 
underestimated in the two level model.

6.4.2 Scenario B

The next simulation scenario investigated is scenario B. Here the variance contribution 
from the area-level are small, set at 0.5, the household-level contribution is larger, set 
at 1.5, and the individual-level contribution is large, set at 20.

Three-Level N ull M odel

The estimated variance components for the three-level null model in scenario B are 
displayed in figure 6.12. The variance structure employed here is similar to that ob­
served in the area effects literature, with the area level contributing 0.5, the household 
level 1.5, and the individual 20. These true variance components are depicted by a 
solid horizontal line in each plot. The x-axis represents the average number of individ­
uals per household. Figure 6.12 shows how the estimates of the variance components 
(for each of the three levels) change as the average number of responses per household 
changes. As expected, when the average number of responses per household is low the 
estimates of the household-level variance component are more variable than when the 
average number of individuals per household is large. Even when the average num­
ber of individuals per household is small however, the estimation procedure produces 
unbiased estimates. The ward-level variance component appears to be unaffected by 
the sparsity conditions at the household level. Both the household and individual-level 
variance components, while unbiased for all levels of sparseness, display increasing 
variability with increasing sparseness.

It is also worthwhile examining the ICC coefficients that result from these variance 
components. Figure 6.13 summarises the ICC coefficients for each of the three levels 
of data. The household level ICC varies much more when the sparseness is high. The 
true ICC is 6 .8% as indicated by the horizontal line. When the average number of 
individuals per household is less than 1.5, a quarter of the household-level ICCs are 
overestimated by at least 2 0% (and a quarter are underestimated by at least 20%).

To investigate the impact of sparse data on model fit the average number of in­
dividuals per household is plotted against the resultant three-level null model AIC in 
figure 6.14. Higher values of the AIC indicate poor model fit. Figure 6.14 shows that 
sparseness has only a small effect on model fit. This is quite different from the previous 
simulation where there was a strong relationship between these two (figure 6.3). This 
indicates that the effect of sparseness on model fit depends on the relative variance 
contribution of the sparse level. In this situation, where the household contribution is
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Figure 6.12: Relationship between the variance components and the average number 
of individuals per household for three-level null model in scenario B
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Table 6.16: Summary information for figure 6 .1 2

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.50 0.50 0.50 0.50 0.50
Area variance 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2

Household mean 1.51 1.50 1.50 1.50 1.50
Household variance 0 .2 0 0.06 0.04 0.04 0.03
Individual mean 19.99 19.99 2 0 .0 0 2 0 .0 0 2 0 .0 0

Individual variance 0.26 0 .1 2 0 .1 1 0 .1 0 0 .1 0
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Figure 6.13: Relationship between the ICC coefficients and the average number of
individuals per household for three-level null model in scenario B
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Table 6.17: Summary information for figure 6.13

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.0227 0.0227 0.0226 0.0226 0.0227
Area var. 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Household mean 0.0685 0.0683 0.0681 0.0681 0.0683
Household var. 0.0004 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1

Individual mean 0.9088 0.9090 0.9093 0.9092 0.9090
Individual var. 0.0004 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1
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small (6 .8%), the effect of sparseness on model fit is also small.
The relationship between variance component estimation and the total number of 

individuals is plotted in figure 6.15. The total number of individuals is centred about
10,000, but ranges between 9,632 and 10,363. Similar to the previous simulation, this 
variation about 10,000  has little effect on variance component estimation.

Two-level N ull M odel

The model which excludes the household level is examined in figure 6.16. The ward- 
level variance is estimated accurately, with constant variance, regardless of the average 
number of respondents per household. The individual-level variance component, how­
ever is consistently overestimated by the amount of variance attributable to the missing 
level. Again this only corresponds partially with a previous investigation on the re­
sults of excluding a level from an analysis (Moerbeek, 2004). As demonstrated by figure 
6.16 however, the ward-level variance component has largely remained unaffected by 
the exclusion of the household level with all of the household-level variability being 
attributed to the individual level. Again, it seems that reducing the relative variance 
contribution of the sparse level results in an attenuation of the effect of the sparseness 
itself.

To examine the relationship between the levels of sparseness and the model fit, 
the average number of individuals per household was plotted against the AIC for the 
two-level null model as in figure 6.17. There is a shallow negative slope in evidence 
here.

The effect of the differing sample sizes on variance component estimation is inves­
tigated for the two-level null model excluding household in figure 6.18. There does not 
appear to be any relationship between the two.

Three-level F ixed  Effect M odels

As described earlier, simulated fixed effects were created at both the area and house­
hold levels. These were included in separate three-level models. The true coefficient 
for both models was five. Firstly, the area-level fixed effect estimation is examined. 
Figure 6.19 shows the relationship between sparseness and the estimates of both the 
fixed effect and its standard error. Increasing sparseness does not appear to have any 
effect on the estimation of an area-level fixed effect, either in terms of bias (figure 
6.19.(a)) or in terms of precision (figure 6.19.(b)). This is confirmed in table 6.23.

Next the household-level fixed effect is examined. Figure 6.20 shows the effect of 
sparseness on household-level (or more generally, an intermediate-level) variable esti­
mation. Again, the fixed effect coefficient itself is unbiasedly estimated for all levels of 
sparseness. The standard error associated with the household-level fixed effect however

158



Figure 6.14: Relationship between the average number of individuals per household
and the model fit for the three-level null model in scenario B
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Table 6.18: Summary information for figure 6.14

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
AIC mean 59107 59071 59039 59019 58986
AIC variance 131472 233323 273426 290335 301396
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Figure 6.15: Relationship between the variance components and the total number of
individuals for three-level null model in scenario B
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Table 6.19: Summary information for figure 6.15

Rounded number 
of individuals 9600 9700 9800 9900 1 0 0 0 0 1 0 1 0 0 1 0 2 0 0 10300 10400
Area mean 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51
Area variance 0 .0 0 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0.03 0.04
Household mean 1.73 1.47 1.50 1.50 1.51 1.50 1.50 1.51 1.55
Household variance 0 .0 0 0.04 0.04 0.05 0.09 0.05 0.04 0.04 0 .0 1
Individual mean 19.75 20.03 19.99 2 0 .0 0 19.99 2 0 .0 0 19.99 19.96 19.99
Individual variance 0 .0 0 0 .1 1 0 .1 1 0 .1 2 0.15 0 .1 1 0 .1 2 0.14 0 .0 0
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Figure 6.16: Relationship between the variance components and the average number 
of individuals per household for the two-level model, excluding household in scenario 
B
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Table 6.20: Summary information for figure 6.16

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.50 0.51 0.51 0.52 0.53
Area variance 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2

Individual mean 21.50 21.48 21.49 21.48 21.48
Individual variance 0.26 0 .1 2 0 .1 1 0 .1 0 0 .1 0
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Figure 6.17: Relationship between the average number of individuals per household
and model fit for the two-level null model, excluding household in scenario B
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Table 6 .2 1 : Summary information for figure 6.17

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
AIC mean 59125 59118 59106 59105 59091
AIC variance 130086 233486 275059 292414 304360
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Figure 6.18: Relationship between the variance components and total number of indi­
viduals for the two-level model, excluding household in scenario B
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Table 6.22: Summary information for figure 6.18

Rounded number 
of individuals 9600 9700 9800 9900 1 0 0 0 0 1 0 1 0 0 1 0 2 0 0 10300 10400
Area mean 0.53 0.52 0.51 0.51 0.51 0.52 0.52 0.51 0.53
Area variance 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0.04
Individual mean 21.47 21.48 21.47 21.49 21.48 21.48 21.47 21.45 21.52
Individual variance 0.09 0.09 0.09 0.09 0.09 0 .1 0 0.13 0 .0 2
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Figure 6.19: Relationship between the area-level fixed effect estimation and average
number of individuals for the three-level model, in scenario B

Estimation of area-level 
fixed effect

Estimation of area-level 
fixed effect std. error

CD
LO

id

CM

in

p
in

oo

cq

i ! i111111 . | 11" 111111 •11 
. ifl i ■ • • i. •. 111.1111. ■. • §11

\ | .... . I,■ ,     .
'    ....
■». :■!' "'l'",,!,'  ......  I,
1 I I I  I I I .  V i........... I ' 1 . .

I U i|i| i HI ..1,
1 '"11",,1,1   I,I1, " ' l , .......   ll

1 j  111  l |  l ‘  I I I 1! " 1 1
<» °«°- (P m  11 11

(D
TD■*—>CO
o
CDH— 
0)
"D
CDX
<D
>

JD
I

CO0)
co
■O
CD
"co
E
CO
LU

in
CM

o
CM

in
o

o
o

ino

T i l l " " 1 0 ' '  I  I ,
I,.1'" '1''1.,.,
-l."""'".,., 
 .......

 I , I ,

.'I...

iyi, i,i,uii
l.l'Ul 

  .

 ..
 .
■iiiii'ii n
......

1.2 2.4 3.6 4.8 6
Average number of 

respondents per household
(a)

1.2 2.4 3.6 4.8 6
Average number of 

respondents per household 
(b)

Table 6.23: Summary information for figure 6.19

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area fixed effect mean 5.00 5.01 5.00 5.01 5.01
Area fixed effect var. 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2

Area fixed effect std. err. mean 0.1421 0.1428 0.1448 0.1454 0.1450
Area fixed effect std. err. var. 0.0007 0.0008 0.0008 0.0007 0.0008
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is affected by sparseness. When the average number of individuals per household is 
between 1.05 and 2, the average standard error is 0.048. When the average number of 
respondents per household is high (between 5.05 and 6 ), the average standard error is 
over 10% larger at 0.054. This indicates that when the household level is sparse, fixed 
effect standard errors at tha t level are underestimated.

Two-level F ixed Effect M odels

Two-level fixed effect models excluding the household level were also fitted and the fixed 
effect coefficients and standard errors extracted. Firstly, the area-level fixed effect is 
investigated. Similarly to the three level model, area-level fixed effect estimation is 
unassociated with sparseness, as can be seen in figure 6.21 and table 6.25. This is 
unsurprising, since sparseness is not an issue when the household level is excluded. 
The standard error on the area-level fixed effect is perhaps slightly underestimated 
albeit by a very small amount.

The impact on the household fixed effect in a two-level model excluding household 
as a level is investigated in figure 6.22. This figure shows tha t as before the estimation 
of the fixed effect itself is unbiased. There is evidence that as the average number of 
respondents per households increases, the standard error of the fixed effect increases 
very slightly. This makes sense, since as the number of individuals per household 
increases, the more important it is to include the household level.

Sum m ary o f Scenario B  results

Scenario B attem pted to  simulate the CHSNS dataset and so it was decided that the 
area level would have a modest variance component of 0.5, while the household level 
would have a slightly larger variance component of 1.5. Both of these variance compo­
nents were dwarfed by the individual level which was set at 20. For the three-level null 
model the ward-level variance component was very slightly underestimated, but with 
constant variability for all sparseness levels. Both the household and individual levels 
were unbiasedly estimated, however both demonstrated increasing variability with de­
creasing number of individuals per household. When the household level was excluded 
all of the variability attributable to tha t level was instead assigned to the individual 
level. Both the area- and household-level fixed effects are unbiasedly estimated for all 
sparseness levels. Similarly to scenario A however, the standard errors around those 
estimates are not so robust. For the area-level fixed effect the standard error is very 
slightly underestimated in both the three- and two-level models. The underestimation 
is quite small however and is unlikely to be a large problem. Household-level fixed effect 
standard errors for the three-level model however are underestimated even when the 
average number of individuals is relatively large (less than three per household). The
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Figure 6.20: Relationship between the household-level fixed effect estimation and av­
erage number of individuals for the three-level model, in scenario B

Estimation of household- 
level fixed effect

C\J
in

m

o
in

OD

co

• •» 'i i1"' 'n'i"n'i" iii»' •• •« V 
«!• '1'! .

  .
I'1"1"1" " 'n".
.i'"1"'" H«,"

1 •• ii i . H . ' i . i  . i ' i i ' i  n .1,,(‘.‘ •Vi i11. \  1 x' ■.w'l.' W
? 11 s . » :

1.2 2.4 3.6 4.8 6
Average number of 

respondents per household 
(a)

CD

TO
CO

0
CD5=
CD

"O
CD
X

a3>0)
1

T O

Ox:
CD
C/D

o-£=
T O
CD

CO

E
CO

LU

Estimation of household- 
level fixed effect std. error

00mO
O
COmo

-'frmo
o
C\Jino

omo

co
o
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Table 6.24: Summary information for figure 6.20

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Household fixed effect mean 5.00 5.00 5.00 5.00 5.00
Household fixed effect var. 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

Household fixed effect std. err. mean 0.048 0.050 0.051 0.053 0.054
Household fixed effect std. err. var. 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0
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Figure 6.21. Relationship between the area-level fixed effect estimation and average
number of individuals for the two-level model excluding household, in scenario B
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Table 6.25: Summary information for figure 6 .2 1

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area fixed effect mean 5.00 5.01 5.00 5.01 5.01
Area fixed effect var. 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2

Area fixed effect std. err. mean 0.142 0.143 0.145 0.145 0.145
Area fixed effect std. err. var. 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1 0 .0 0 1
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Figure 6.22: Relationship between the household-level fixed effect estimation and av­
erage number of individuals for the two-level model excluding household, in scenario 
B
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Table 6.26: Summary information for figure 6.22

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Household fixed effect mean 5.001 5.001 4.999 4.999 5.000
Household fixed effect var. 0 .0 0 2 0.003 0.003 0.003 0.003
Household fixed effect std. err. mean 0.047 0.047 0.047 0.047 0.047
Household fixed effect std. err. var. 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0
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two-level model performs even worse however producing underestimated household- 
level standard errors for all levels of sparseness, getting progressively worse for larger 
numbers of individuals per household.

6.4.3 Scenario C

Scenario C investigates a sparse level which is uninformative. Here the area-level 
variance contribution is set at 0.5, the household-level variance contribution is 0, and 
the individual-level contribution is 2 0 .

T hree-level N u ll M odel

Figure 6.23 shows how the variance components estimates change as the sparsity in­
creases in this situation. It shows tha t the ward-level estimation is unaffected, with the 
estimates being unbiased and having constant variance. The household and individual- 
level variance components display increased variability with increased sparse data, par­
ticularly when the average number of individuals per household is less than 1.5. At this 
level of sparseness the household level tends to be overestimated (since it cannot be 
underestimated), while the individual level is underestimated. High levels of sparseness 
also increase the variability of these estimates. At all levels of sparseness the individual 
level appears to be slightly underestimated.

In figure 6.24 the ICC coefficients resulting from these variance components are 
plotted. Both the area and individual-level ICCs are slightly understimated, but most 
striking of all is the increasing variability of the ICC coefficients as the average number 
of individuals per household decreases. Individual houshold-level ICCs can be quite 
large (almost 0.15 in one instance) when the sparseness is extreme (1.05). Most of the 
ICC coefficients a t the household level are small however, and even when the average 
number of individuals per household is at its lowest (1.05) the average ICC coefficient 
for this level is 0.017.

There is no indication of any relationship between the model fit and average number 
of respondents per household as shown in figure 6.25. This is to be expected, because 
if the household effect is non-existent then the average number of individuals per 
household would not be expected to have an effect.

Figure 6.26 confirms tha t the small deviations in the total number of individuals 
from 10,000 have no appreciable effect on the variance components estimation. The 
small underestimation of the area and individual-level variance components is not 
associated with the to tal sample size.

Fixed effects are not investigated for this scenario because when the household-level 
has a variance contribution of zero, the household-level fixed effect and the area-level 
fixed effect would not be expected to be affected by sparseness.

169



Va
ria

nc
e

Figure 6.23: Relationship between the variance components and the average number
of individuals per household for three-level null model in scenario C
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Table 6.27: Summary information for figure 6.23

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.50 0.50 0.50 0.50 0.50
Area variance 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2

Household mean 0.17 0.08 0.06 0.06 0.05
Household variance 0.08 0 .0 1 0 .0 1 0 .0 1 0 .0 1

Individual mean 19.83 19.92 19.94 19.94 19.95
Individual variance 0.16 0.09 0.08 0.09 0.08
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Figure 6.24: Relationship between the ICC coefficients and the average number of
individuals per household for three-level null model in scenario C

Area Household Individual
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Table 6.28: Summary information for figure 6.24

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.0242 0.0243 0.0242 0.0243 0.0242
Area variance 0 .0 0 0 1 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Household mean 0.0082 0.0037 0.0029 0.0028 0.0024
Household variance 0 .0 0 0 2 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Individual mean 0.9676 0.9720 0.9729 0.9729 0.9734
Individual variance 0.0003 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1

171



Figure 6.25: Relationship between the average number of individuals per household
and the model fit for the three-level null model in scenario C
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Table 6.29: Summary information for figure 6.25

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
AIC mean 58399 58389 58401 58409 58398
AIC variance 127431 218898 262144 280199 308395
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Figure 6.26: Relationship between the variance components and the total number of
individuals for three-level null model in scenario C
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Table 6.30: Summary information for figure 6.26

Rounded number 
of individuals 9600 9700 9800 9900 1 0 0 0 0 1 0 1 0 0 1 0 2 0 0 10300 10400
Area mean 0.45 0.45 0.50 0.50 0.50 0.50 0.50 0.51 0.56
Area variance 0 .0 1 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0 .0 2 0.03 0.03
Household mean 0 .0 0 0.09 0.06 0.07 0.09 0.07 0.06 0.04 0 .1 0

Household variance 0 .0 1 0 .0 1 0 .0 1 0.04 0 .0 1 0 .0 1 0 .0 0 0 .0 1

Individual mean 20.07 19.80 19.93 19.93 19.91 19.92 19.93 19.94 19.99
Individual variance 0.08 0.09 0.09 0 .1 1 0.09 0.08 0.09 0 .0 0
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S u m m ary  o f S cenario  C re s u lts

Scenario C investigated the effect of including an uninformative level in the analysis. 
The area and individual-level variance components were simulated from normal distri­
butions centred about zero with variances 0.5 and 20 respectively. The three-level null 
model consistently underestimated both the area and individual levels when an unin­
formative intermediate level was included. When the data was less sparse (i.e. more 
than 1.5 individuals per household on average) the household-level variance component 
was close to zero. When the average number of individuals per household fell below 1.5 
however, the household-level variance component was overestimated. The variability 
of those estimates also increased.

6.4.4  Scenario  D

The variance structure for scenario D is identical to tha t in scenario B, except that 
here the sample size is 1,000. This investigates the impact of a sparse level in a study 
with a smaller sample size.

Three-level N u ll M odel

Figure 6.27 shows how the variance component estimates from the null model change 
with sparseness. The effect of this sample size reduction is to increase the variability 
in the variance component estimates. This is most evident for the household and indi­
vidual levels. Comparing figure 6.27 with figure 6.12 shows tha t while the maximum 
household-level variance attained for scenario B was a little over four, here the maxi­
mum attained is over 10. Similarly, for scenario B the range of observed individual-level 
variances was from 17 to  22. Here this increases to 12 to 24. The variance components 
at all levels are unbiasedly estimated.

The relationship between the ICC coefficients for the each level and the sparseness 
is plotted in figure 6.28. This plot illustrates the large effect tha t sparseness can have 
on the ICC coefficient when the sample size is small. When the average number of 
individuals per household is 1.05 the lower and higher quartiles of the household ICC 
are 0 and 0.17. The true ICC for this level (as indicated by the horizontal line in figure 
6.28 is 0.07.

The relationship between the sparseness of the household level and the model fit is a 
horizontal line as it is for scenario B (figure 6.14) and is not presented here. Similarly, 
the relationship between the sparseness and the total sample size is similar to that 
for scenario B (6.15), except tha t the total sample size is centred about 1,000 instead 
of 10,000  and the increased variability of the variance component estimates is also 
evident.
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Figure 6.27. Relationship between the variance components and the average number
of individuals per household for three-level null model in scenario D
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Table 6.31: Summary information for figure 6.27

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.50 0.50 0.51 0.51 0.51
Area variance 0.09 0 .1 1 0 .1 1 0.13 0.13
Household mean 1.61 1.50 1.50 1.48 1.49
Household variance 1.46 0.59 0.46 0.39 0.38
Individual mean 19.88 19.99 2 0 .0 1 2 0 .0 1 2 0 .0 0

Individual variance 2.13 1.19 1.09 1 .0 1 0.98
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Figure 6.28: Relationship between the ICC coefficients and the average number of
individuals per household for three-level null model in scenario D
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Table 6.32: Summary information for figure 6.28

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.0227 0.0228 0.0230 0.0232 0.0230
Area variance 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0.0003 0.0003
Household mean 0.0733 0.0680 0.0679 0.0673 0.0676
Household variance 0.0030 0 .0 0 1 2 0.0009 0.0008 0.0007
Individual mean 0.9040 0.9092 0.9091 0.9095 0.9094
Individual variance 0.0030 0 .0 0 1 2 0 .0 0 1 0 0.0008 0.0008
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Two-level N ull M odel

Excluding the household level has a slightly different impact on the variance compo­
nents when the total sample size is small. When the total sample size was large (as 
in scenario B) the individual level absorbed the household-level variation and the area 
variance component was completely unaffected, as shown in figure 6.16. In this sit­
uation, most of the household variability again goes to the individual level. As the 
average number of respondents per household increases however, the ward-level vari­
ance is overestimated. This is in contrast to the equivalent plot in scenario B (figure 
6.29), where the overestimation of the ward-level variance component was less evident. 
This indicates that a reduction in sample size can lead to poor estimation of both 
higher and lower levels.

There is no relationship between model fit and sparseness as can be seen in figure 
6.30.

Figure 6.31 confirms tha t the variation of the sample size about 1,000 has no ap­
preciable impact on variance component estimation.

Three-level F ixed  Effect M odels

Three level models were fitted including area- and household-level fixed effects (in sepa­
rate models). Firstly, the relationship between the area-level fixed effect and sparseness 
is investigated in figure 6.32, with summary information provided in table 6.36. Figure 
6.32. (a ) shows tha t the area-level fixed effect is estimated without bias for all levels 
of sparseness (confirmed by table 6.36). The standard error of the fixed effect however 
increased slightly with larger numbers of individuals per household (from a mean of 
0.207 to 0.226). As shown in figure 6.32 when the sparseness is extreme, the standard 
errors axe underestimated. When the average numbers of individuals per household 
is increased, the standard errors are overestimated. This is different to the pattern 
observed in scenario B (which used the same variance structure but a larger sample 
size), indicating th a t this may just be a result of increased variability due to a small 
sample size.

Figure 6.33 shows the relationship between the household-level fixed effect estima­
tion and sparseness for the three-level model. Again, the fixed effect itself is unbiasedly 
estimated for all levels of sparseness, and again the standard error of those fixed effects 
are positively related with increasing numbers of respondents per household. The aver­
age standard errors range from 0.153 (for average number of individuals per household 
between 1.05 and 2) and 0.176 (for average numbers of respondents 5.05 to 6 ) as shown 
in table 6 .3 7  and are underestimated when the average per household is small.
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Figure 6.29: Relationship between the variance components and the average number 
of individuals per household for the two-level model, excluding household in scenario 
D
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Table 6.33: Summary information for figure 6.29

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area mean 0.54 0.60 0.65 0.70 0.74
Area std. dev. 0.09 0.11 0 .12 0.13 0.14
Individual mean 21.46 21.40 21.37 21.31 21.27
Individual variance 2.13 1.19 1.09 1.01 0.98
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Figure 6.30: Relationship between the average number of individuals per household
and model fit for the two-level null model, excluding household in scenario D
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Two-level F ixed Effect M odels

Here the effect of excluding the household level on fixed effect estimation is investigated. 
First the area-level fixed effect is examined. Figure 6.34 shows the relationship between 
area-level fixed effect estimation and sparseness for scenario D. As before, the fixed

Table 6.34: Summary information for figure 6.30

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
AIC mean 5921 5911 5911 5913 5906
AIC variance 13217 23330 27573 28949 31311
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Figure 6.31: Relationship between the variance components and total number of indi­
viduals for the two-level model, excluding household in scenario D
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Table 6.35: Summary information for figure 6.31

Rounded number of individuals 900 1 0 0 0 1 1 0 0

Area mean 0 .6 8 0.64 0.70
Area variance 0.13 0.13 0 .1 2

Individual mean 21.32 21.36 21.30
Individual variance 1.03 0.96 0.95
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Figure 6.32: Relationship between the area-level fixed effect estimation and the average
number of individuals per household, for the three-level model in scenario D
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Table 6.36: Summary information for figure 6.32

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area fixed effect mean 5.01 5.00 4.99 5.00 5.00
Area fixed effect var. 0.04 0.05 0.05 0.05 0.05
Area fixed effect std. error mean 0.2074 0.2149 0.2192 0.2226 0.2261
Area fixed effect std. error var. 0.0016 0.0018 0.0018 0.0019 0 .0 0 2 0
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Figure 6.33: Relationship between the household-level fixed effect estimation and the
average number of individuals per household, for the three-level model in scenario D
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Table 6.37: Summary information for figure 6.33

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Household fixed effect mean 5.00 5.00 5.01 5.00 5.00
Household fixed effect var. 0 .0 2 0.03 0.03 0.03 0.03
Household fixed effect std. error mean 0.1532 0.1593 0.1659 0.1715 0.1764
Household fixed effect std. error var. 0 .0 0 0 0 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 2 0 .0 0 0 2
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effect is unbiasedly estimated for all levels of sparseness. There is a small positive 
relationship between the area-level fixed effect standard error and the average number 
of individuals per household. This is perhaps surprising, since the exclusion of the 
household level would not be expected to have any impact on a higher level fixed 
effect. This effect was not observed in the equivalent situation in scenario B (see figure 
6 .21), with the larger sample size, where all of the standard errors appeared marginally 
underestimated. The magnitude of this effect is not large however, ranging from an 
average of 0.207 to 0.227, as shown in table 6.38 while the true standard error was 
0.208.

Next the household-level fixed effect is examined for the two-level model. Figure 
6.35 shows the relationship between the household fixed effect estimation and sparse­
ness in a two-level model excluding household as a level. This figure is similar to the 
equivalent figure in scenario B (6.22) in that household fixed effect itself is estimated 
without bias for all levels of sparseness, but the standard error of that fixed effect 
increases with increasing average number of individuals per household. It is still con­
sistently underestimated for all levels of sparseness. The smaller sample size means 
that this relationship is weaker than that observed in scenario B, where it is even more 
crucial to include the household level.

S um m ary  o f Scenario  D resu lts

Scenario D employed the same variance structure as scenario B, but used only one 
tenth of the sample size. The results for this section were in line with the results for 
scenario B, but were more exaggerated due to the smaller sample size. Variance com­
ponent estimation was unbiased for all levels of sparseness, but the variability of those 
estimates was highly related to level of sparseness. The ICC coefficients resulting from 
the variance component estimates were similarly affected by sparseness. Notably, when 
the sparseness is less than 1.5 individuals per household, a quarter of the household 
ICC coefficients produced overestimate the true ICC (0.068) by at least 70% (and a 
quarter underestimate the true ICC by at least 66%). This level of precision calls into 
question studies reporting ICC coefficients for households from datasets with house­
hold sparseness. When the middle level was excluded the variability from that level 
was split between the higher and lower levels. This is in contrast to scenario B which 
had sufficient sample size to estimate the ward-level variability robustly. Fixed effect 
estimation for the area-level was unbiased and did not suffer greatly from underesti­
mated standard errors for either the three- or two-level models. The household-level 
fixed effects standard errors however were underestimated at extreme sparseness for 
the three-level model and underestimated for all levels of sparseness in the two-level 
model.
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Figure 6.34: Relationship between the area-level fixed effect estimation and the average
number of individuals per household, for the two-level model in scenario D
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Table 6.38: Summary information for figure 6.34

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Area fixed effect mean 5.01 5.00 5.00 5.00 5.00
Area fixed effect var. 0.04 0.05 0.05 0.05 0.05
Area fixed effect std. error mean 0.207 0.215 0.219 0.223 0.227
Area fixed effect std. error var. 0 .0 0 2 0 .0 0 2 0 .0 0 2 0 .0 0 2 0 .0 0 2
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Figure 6.35: Relationship between the household-level fixed effect estimation and the
average number of individuals per household, for the two-level model in scenario D
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Table 6.39: Summary information for figure 6.35

Average per household 1.05-2 2.05-3 3.05-4 4.05-5 5.05-6
Household fixed effect mean 5.00 5.00 5.01 5.01 5.00
Household fixed effect var. 0 .0 2 0.03 0.03 0.03 0.03
Household fixed effect std. error mean 0.1486 0.1498 0.1513 0.1528 0.1541
Household fixed effect std. error var. 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1
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6.5 Discussion

6.5.1 Strengths and lim itations o f th e  sim ulation study

The simulation approach taken in this chapter has both strengths and weaknesses. 
Clearly, the main weakness of the simulation approach is that the results are never 
as definitive as the results of an analytical study can be. The work provides a snap­
shot of how the R programming language and environment deals with the problem 
of sparseness, for the sample size, effect sizes and variances structures investigated in 
scenarios A to D. It is difficult and inadvisable to extrapolate these results if any of 
these parameters are substantially altered. Furthermore, caution must be used when 
interpreting with reference to other studies, as they may also have different features 
(i.e. sample sizes, variance structures, distribution of variables) that make those stud­
ies quite different from the simulations performed here. These are problems endemic 
to simulation studies.

The main strength of simulation studies is that they allow for quick and easy in­
vestigation of intractable analytical questions. Analytic studies need to make many 
assumptions in order to make statements about the results of modelling procedures. 
Often these assumptions are unrealistic for real-life studies. For instance, the previous 
published work on the effect of excluding an intermediate level of analysis needed to 
make an assumption of balanced datasets. Very few real-life datasets satisfy this as­
sumption.

Another strength of the simulation approach is that it can be considered to be a con­
servative way of assessing the effect of model assumption violations. In the simulation 
approach, all assumptions apart from the one being investigated, are satisfied per­
fectly. For instance in the these scenarios, all random effects are normally distributed 
and independent, the response variable is normally distributed, all fixed effects are ad­
ditive, there are no missing data and all the models are correct (except for the models 
which exclude the household level, since this is the assumption violation being investi­
gated). If the model fitting procedure in R performs poorly in such a situation, there 
is no reason to expect it to perform better in real-life datasets which may have skewed 
distributions or non-independent random effects or mis-specified models.

6.5.2 Im plications for th e results o f previously published stud­
ies

In order to make statements about the implications this work has for previously pub­
lished work it is important to recognise the limitations of the study listed in section 
6.5.1. Assuming however, that the true variance structures and true variable distribu­
tions in the BHPS are similar to those modelled in this simulation study, there are a
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number of points to make. Table 6.2 summarises the literature. The smallest sample 
size for any of these studies is 7,047 while the largest is 10,264. The household-level 
ICCs from the literature range between 0.09-0.29. The simulation scenario that most 
closely matches these parameters is scenario B. Here the sample size is around 10,000 
and the household level ICC is 0.068. The average number of individuals per household 
from the literature ranges between 1.61 and 1.89. Those simulations from scenario B 
with an average number of individuals between (and including) 1.6 and 1.9 were ex­
tracted. ICC estimates at this level of sparseness were centred close to the true ICC 
values for all three levels, as shown in figure 6.36. Single hierarchy ICC estimates have 
a relatively large range however with the maximum household ICC reported being
0.113 and the minimum 0.015. For instance, the household-level ICCs range between
0.015 (underestimating the true ICC by almost 80%) and 0.113 (overestimating the 
true ICC by 66%). While these are extreme ICCs, it is still important to note that 
25% of the simulated hierarchies underestimate the true household ICC by at least 
13% while another 25% overestimate it by at least 13%.

Using the same subset of scenario B (those with average number of respondents per 
household between 1.6 and 1.9), fixed effect estimation is now examined. Firstly, the 
area-level fixed effect is investigated in figure 6.37. As can be seen, both the area-level 
fixed effect and its standard error are centred about the true mean.

The household-level fixed effect is now examined. The fixed effect is unbiasedly 
estimated, but its standard error is consistently underestimated. This implies that 
some of the significant relationships found by the literature may in fact be due to the 
effect of household-level sparseness.

6.6 Conclusion
This chapter has investigated the impact of sparseness at an intermediate level in 
a multilevel analysis in four different settings: firstly where the intermediate level 
contributes an equal variance component to the lowest level, the second where both 
the area and household levels are dominated by a large individual level, thirdly where 
the intermediate level is completely uninformative, and finally the second scenario 
was modelled with a smaller sample size. The results of each of these simulations 
is summarised in tables 6.43 and 6.44. Table 6.43 summarises the results when the 
sparseness is high (less than 1.5 per household on average), while table 6.44 summarises 
the results when the sparseness is low (more than 5.5 per household on average). These 
tables summarise the estimates from each simulation in terms of mean squared errors. 
These are calculated as in equation 6 .8 , where 9 is the parameter to be estimated.

MSE(0) =  E ( ( 0 - 0 ) 2) (6 .8 )
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Figure 6.36: ICC estimation for simulations with an average number of individuals
between 1.6 and 1.9, for comparison with literature
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Table 6.40: Summary information for figure 6.36

Area-level Household-level Individual-level
Lower quart ile 0.018 0.059 0.899
Upper quart ile 0.027 0.077 0.919
Mean 0.02249 0.06849 0.90902
Variance 0.00004 0.00019 0 .0 0 0 2 2
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Figure 6.37: Area-level fixed effect estimation for simulations with an average number
of individuals between 1.6 and 1.9, for comparison with literature
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Table 6.41: Summary information for figure 6.37

Area-level fixed effect Area-level fixed effect
Lower quart ile 4.910 0.125
Upper quartile 5.111 0.159
Mean 5.009 0.143
Variance 0 .0 2 2 0 .0 0 1
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Figure 6.38: Household-level fixed effect estimation for simulations with an average 
number of individuals between 1.6 and 1.9, for comparison with literature
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Table 6.42: Summary information for figure 6.38

Household-level fixed effect Household-level fixed effect
Lower quart ile 4.968 0.048
Upper quartile 5.035 0.049
Mean 5.002 0.048
Variance 0.003 0.000
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Since these tables are best examined relative to one another, the difference between the 
two tables is provided in table 6.45. These differences are calculated by subtracting ta­
ble 6.43 from table 6.44, so that positive entries indicate that the estimates calculated 
under sparse conditions are less accurate than their non-sparse equivalents. This table 
shows relatively large positive differences for both the household and individual vari­
ance components in the three-level null model, indicating that sparseness does decrease 
the accuracy of the estimation of these parameters. The household and individual-level 
variance components are consistently less accurate under sparseness.

In the first scenario sparseness is associated with increased variability in the house­
hold and individual-level variance components. Sparseness also leads to worse model fit. 
Area- and household-level fixed effects were estimated without bias for all sparseness 
levels, but the standard errors for those fixed effects were affected. Sparseness leads to 
fixed effect underestimation for the area-level fixed effect in both the three- and two- 
level models. The household-level fixed effect standard error was also underestimated 
in the three-level model when the sparseness was high, and always underestimated in 
the two-level model. Excluding the intermediate level resulted in all of the household- 
level variance being attributed to the individual level. These findings imply that if a 
given context (or level) is expected to exert a large amount of influence over a given 
outcome (relative to the other contexts modelled), then sparseness at that level can 
have a detrimental impact on variance component estimation precision, model fit and 
fixed effect estimation precision.

Scenario B imitated the CHSNS dataset. Here the intermediate level variance com­
ponent is small compared to the individual variance component, but large compared 
to the ward-level component. Again, sparseness was associated with greater variability 
of variance component estimation. There was no association with model fit however 
indicating that this is affected only if the relative size of the sparse level variance com­
ponent is large. Fixed effect precision for the area-level fixed effect is unaffected by 
sparseness, but is perhaps slightly underestimated. Household-level fixed effects how­
ever are underestimated in the three-level model when the average per household is 
less than three, and underestimated for all levels of sparseness in the two-level model. 
Excluding the sparse level results in the variance attributable to that level being trans­
ferred to the individual level. So, even when the sparse level is expected to have a small 
influence, then including it can lead to inflated individual-level variance components

Scenario C demonstrated that including an uninformative level is not a large con­
cern for variance component estimation if sparseness at that level is not extreme. Since 
the true ICC is zero the household-level ICC cannot be underestimated. The majority 
of the household-level ICCs are close to zero, however when the sparseness is extreme 
the household-level ICC may be seriously overestimated and results in spurious im­
portance being placed on that level. For example, the largest household-level ICC
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Table 6.43: Comparison of mean squared error for selected estimates across all four 
simulation scenarios, when the the sparseness is high (average number of respondents 
per household is less than or equal to 1.5)

I 3-level null model 2-level null model Fixed effect model
Scenario Area Household Individual Area Individual Coefficient Std. Err.

V.C.a V.C. V.C. V.C. V.C.
A 0.150 0.462 0.400 0.152 9.981 0.144 0.002
B 0.146 0.548 0.599 0.147 1.531 0.146 0.003
C 0.150 0.416 0.498 0.150 0.279 0.134 0.017
D 0.297 1.453 1.669 0.298 1.762 0.204 0.092

°V.C. stands for variance component

Table 6.44: Comparison of mean squared error for selected estimates across all four 
simulation scenarios, when the the sparseness is low (average number of respondents 
per household is greater than 1.5)

3-level null model 2-level null model Fixed effect model
Scenario Area Household Individual Area Individual Coefficient Std. Err.

V.C.a V.C. V.C. V.C. V.C.
A 0.186 0.409 0.153 0.254 9.849 0.158 0
B 0.155 0.177 0.311 0.158 1.513 0.146 0
C 0.144 0.085 0.289 0.144 0.277 0.139 0
D 0.374 0.612 0.984 0.463 1.609 0.234 0

°V.C. stands for variance component

Table 6.45: Difference between table 6.43 and table 6.44

3-level null model 2-level null model Fixed effect model
Scenario Area Household Individual Area Individual Coefficient Std. Err.

V.C.a V.C. V.C. V.C. V.C.
A -0.036 0.053 0.247 - 0.102 0.132 -0.014 0.002
B -0.009 0.371 0.288 - 0.011 0.018 0.000 0.003
C 0.006 0.331 0.209 0.006 0.002 -0.005 0.017
D -0.077 0.841 0.685 -0.165 0.153 -0.030 0.092

°V.C. stands for variance component
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reported for this scenario is as high as 0.15. Caution should be exercised therefore 
when choosing contexts to model.

Scenario D revisited scenario B, but used a much smaller sample size. The main 
finding from this simulation is that variance component estimation is much more vari­
able with a smaller sample size. In the situation where the middle level is excluded 
the variability from that level is distributed between the adjacent levels. Fixed ef­
fect precision for this scenario was similar to that observed in scenario B, except the 
relationships between fixed effect standard errors were more pronounced due to the 
small sample size. The area-level fixed effect standard errors were largely unaffected 
by sparseness. The household-level fixed effects however were underestimated when 
the average per household was less than 3, and always underestimated in the two-level 
model.

All of this implies that variance component estimation in models where sparseness 
is an issue is dependent on the relative variance contribution of the sparse level, the 
degree of sparseness present and the total sample size.
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Chapter 7

Derivation of synthetic boundaries 
and comparison with administrative 
boundaries

7.1 Introduction
This chapter will introduce, describe and demonstrate the synthetic boundary algo­
rithm, before using the algorithm in a large simulation study to compare the opera­
tionalisation of administrative and synthetic boundaries.

When investigating the effects of area-level exposures of any kind on some individ­
ual outcome, the natural method of analysis is a hierarchical model. As explained in 
chapter 5, this is due to the fact that individuals who live in close proximity to one an­
other are likely to be more similar that individuals who live far away from each other, 
violating the independence assumption implicit in ordinary least squares regression. 
To employ hierarchical methods, one must decide on the contexts (or levels) to include 
in the hierarchy. Ideally, this choice will be based upon some underlying theory or 
hypothesis. However, the impact of the choice of contexts to include as levels in a hier­
archical analysis has not been fully addressed. A comprehensive approach would be to 
include all possible contexts which may impact upon the outcome of interest as levels. 
Ideally these levels would group people together based on homogeneity of exposure, 
perhaps using the concept of commonality of living space. A perfect hierarchy would 
ensure that everyone in a given group would be exposed to exactly the same neigh­
bourhood influences. As well as this the hierarchy would also group people together 
based upon homogeneity of area-level confounding variables. These confounders could 
then be satisfactorily controlled for in an analysis. It is difficult to envisage any con­
tiguous boundaries capable of achieving these ideals. The problem is compounded by 
the fact that “commonality of living space” is ill-defined. Does living space comprise
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the building where one lives, or should it include the street outside or even incorpo­
rate where one works, shops or goes to relax? Complex, non-nested hierarchies could 
perhaps capture all of these contexts, however the amount of information required is 
not available in this study, nor any study to date.

In practice, however, these ideals can never be achieved. As mentioned previously 
the majority of published studies of mental health and context have used administra­
tively defined areas to act as proxies for neighbourhoods. The reasons to use admin­
istrative boundaries are numerous. Firstly, there is often no choice but to use them. 
This is usually the case if the data are obtained from a governmental body (such as 
the ONS) that routinely aggregate small area statistics up to larger administrative 
areas for the purposes of confidentiality. Under such circumstances the researcher is 
left with little choice but to use administrative boundaries for their analysis. Also, 
in many situations administrative areas are the easiest boundaries to use. They are 
well-defined, contiguous areas that provide a partition for any area of interest. An­
other advantage of administrative boundaries is the fact that much of the information 
necessary for area-level modelling (e.g. shape files for GIS analyses, census information 
etc...) are freely available to everyone, facilitating comparisons between studies. Fi­
nally, administrative boundaries may be linked to the research question itself, resulting 
in them being the only correct hierarchy to model. Research questions concerning the 
effect of regional laws, or the impact of local councillors or elected officials, may find 
administrative boundaries to be the natural context to model.

However, administrative areas are often not intrinsic to the study question and in 
such situations they may not be the most apposite hierarchy to employ. Many ad­
ministrative areas cover regions which contain extremes of affluence and poverty. In 
Caerphilly, the electoral ward St. James in the south of Caerphilly county borough 
(see figure 2.3) is one such region. Its boundaries encompass areas of great affluence 
as well as areas of high deprivation. In this situation an area-level aggregate variable 
based on this administrative boundary may not convey any meaningful information. 
More generally, there is evidence to indicate that the most deprived people do not nec­
essarily live in the most deprived areas (Joshi et al., 2001; McLoone, 2001). This poses 
a problem for area based targeting of resources. Other authors have theorised that 
administrative boundaries do not operationalise “neighbourhoods” and so are coun­
terproductive to the investigation of neighbourhoods and health (Rice et al., 1998; 
Macintyre et al., 2002 ; Diez-Roux, 2003). This chapter will propose creating new areas 
for hierarchical modelling.

The way to proceed is not straightforward. The theory behind the proposed solution 
to this problem is that the boundaries employed in a hierarchical analysis should be 
delineated with the goal of grouping similar people together. Grouping similar people 
together serves a two-fold purpose. Firstly, it increases the validity of using aggregate
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area statistics, since they are more likely to be representative of the area’s residents. 
Secondly, if the residents of an area are homogenous for various socioeconomic and 
demographic variables (such as social class, household income, council tax bands and 
educational achievement) it seems more likely that they will be homogenous for other, 
perhaps unmeasured, variables.

The need for homogenous areas in environment and health studies is also addressed 
in a paper by Cockings and Martin (Cockings & Martin, 2005), who cite internal ho­
mogeneity as a desirable quality for areas to have in studies concerned with hypothesis 
testing or visualisation of spatial patterns of disease. There have been a number of 
attempts to create or define “neighbourhood”-sized homogenous areas for similar pur­
poses (Sampson et al., 2002; Propper et al., 2005; Galster, 2001; Assungao et al., 2006; 
Vickers & Rees, 2007). There are two basic approaches possible. Firstly, large areas 
can be built up from small areas (or individuals) by combining similar people or ar­
eas together. These are usually combined so that they are homogenous, contiguous 
and possibly of a certain size. The second method takes the opposite approach and 
is known as “wombling” (Womble, 1951). Wombling involves finding areas that are 
close together but are substantially different in composition and ensures that they are 
assigned to different groups. The method presented in this chapter takes the former 
approach, building large homogenous areas from 2001 census output areas.

So, to summarise, the basic theory of the work is that the best way to automate 
the production of meaningful area boundaries is to use area homogeneity to delineate 
areas. If areas are internally homogenous then the ecological fallacy is rendered power­
less. Higher level covariates will then provide more meaningful information about the 
areas to which they correspond. This enables a more objective analysis of the relative 
importance each context holds in determining the mental health status of an individual 
to be made.

7.2 Method

Under ideal circumstances individual-level geographical information would be used to 
create small unit postcode sized areas. As discussed in chapter 5 many hierarchical 
studies have attributed modest area effect sizes to the fact that the contexts mod­
elled were too large and heterogenous. The geographical position of each individual 
household would be required for such an undertaking, however, confidentiality issues 
preclude such information being recorded in the questionnaire survey, and even if it 
were possible, linking such individual-level information to other datasets may not be 
possible. Moreover, without complete enumeration of areas (such as in the census) this 
approach still suffers from the problem that those surveyed may not be representative 
of those not included in the survey. A different approach is used in this thesis. This
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approach involves taking small administrative boundaries (2001 census output areas) 
and merging these into larger areas, based on the goal of making these large areas 
as homogenous as possible. These new areas will be referred to as “synthetic areas” 
henceforth. It should also be noted that the description of the algorithm refers to these 
areas as OAs, but the algorithm is generalisable and can be applied to any set of areas.

This method relies heavily on being able to compare the residents of one output area 
with another output area (or set of output areas) and determining how similar they 
are. The two areas in question may have widely different numbers of residents and the 
variables to be homogenised may be ratio (e.g. age), ordinal (e.g. social class) or nom­
inal (e.g. gender). Some of the interval variables are highly discretised. For instance, 
to increase survey response the household income question was phrased as a multiple 
choice question, with respondents asked to indicate whether their annual household 
income is less then £5,000, between £5,000 and £11,250 or more than £11,250. This 
avoided participants having to divulge detailed information on their finances, however 
it also resulted in a variable with only three possible answers. With such a wide range 
of variable types it was decided to employ a non-parametric method. The measure cho­
sen was the Mann-Whitney (or Wilcoxon) U statistic. The formulation of this statistic 
is very intuitive and it provides a dimensionless measure of similarity for two groups 
based on the ranks of the data. It is also very quick to calculate making it a very useful 
measure. It is constructed as follows. Consider two areas, A B. Let A and B contain 
n and m measurements respectively. Compare each measurement from A with each 
measurement from B. If measurement Ai is less than Bj then let Uij equal 1. If A* is 
equal to Bj let £4, equal 0.5 and if Ai is greater than Bj let Uij equal zero. Sum all 
the UijS and divide by the maximum possible score, m  x n as in equation 7.1.

Ai < Bj =>- Uij =  1 

Ai =  Bj => =  —

Ai > Bj =>• Û  =  0

v - ^ m  t t

U =  2- fal ^ ' - 1 ij (7.1)
m  x n

This results in a score ranging between 0 and 1. If area A is compared with itself (or 
any other identical area) the U statistic is 0.5. If every measurement in A is greater 
than every measurement in B the U statistic will equal 0, while if the reverse is true the 
U statistic will equal 1. Obviously, for the U statistic to be applicable it is necessary 
that the measurements be at least ordinal. Dichotomous nominal variables can also be 
examined, using an arbitrary ordering. This U statistic gives a measure of how close 
any two areas are in terms of any given variable. Figure 7.1 provides an illustration of
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how the U statistic varies as the populations being compared change. Here two popu-

Figure 7.1: Illustration of the Mann-Whitney U statistic
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lations are compared using the U statistic. Population A is normally distributed with 
mean of 5 and standard deviation 1 and is depicted as a solid line, while population B 
is normally distributed with mean ranging from 1 to 9, as indicated in the title of each 
individual plot, and a standard deviation of 1. In each case a sample of 1,000 was taken 
from both populations and compared using the U statistic. The U statistic effect size 
is recorded underneath each plot. The U statistic lies far away from 0.5 when the two 
populations are distinct, but is exactly 0.5 when the two populations are identically 
distributed. Each population is based on 1000 observations. A shift in the mean of the 
population of one standard deviation (in this case 1) results in a U statistic that lies 
approximately 0.25 away from 0.5.

The decision to use the Mann-Whitney U statistic was pragmatic, being based on 
simplicity, applicability and expediency. There are other measures that could have 
been used however. To the authors knowledge this measure has not been used to de­
rive area boundaries previously.

The variables chosen to homogenise on for this study were educational achieve-
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ment, social class, council tax valuation band, tenure, gross household income and 
employment category. These variables represent both individual and household-level 
attributes and are all socioeconomic or demographic variables, except for council tax 
band, which has been shown to be a useful measure of individual socioeconomic sta­
tus (Beale et al., 2000; Fone et al., 2006b). These variables will be referred to as the 
“homogenising variables” henceforth. The algorithm requires four different types of 
information to output a set of synthetic boundaries, and these shall be addressed in 
turn.

Spatial inform ation

Firstly, the algorithm requires information about the spatial distribution of areas, so 
that it can ensure that the boundaries produced represent contiguous areas. All that 
is needed to ensure contiguity is an adjacency matrix detailing which output areas 
are adjacent. A 2001 census shape file for the UK was obtained from the Office for 
National Statistics. From this, the boundaries for OAs in Caerphilly county borough 
were extracted using Arcview. This information was saved in table form, and R (R 
Development Core Team, 2006) was used to obtain the adjacency matrix.

C om positional inform ation

The algorithm uses information about the composition of small administrative areas 
(OAs) in order to determine which OAs should belong together in a larger synthetic 
area. Information regarding the six homogenising variables was used in order to do 
this.

Initial m erging threshold

In order to begin the algorithm needs information on how similar areas must be before 
they are included in the same synthetic area (or merged). This is called the initial 
merging threshold and specifies how close to 0.5 the Wilcoxon effect size between two 
adjacent OAs must be, before they are merged. This is specified at the beginning of 
the algorithm and then this threshold is relaxed until all of the OAs are assigned.

Initial seed pairs

The final type of information required by the algorithm can be thought of as initial 
values for the synthetic areas. The algorithm begins with a user-specified number of 
pairings of OAs. These are called “seed” pairs since the synthetic areas “grow” from 
them. These can be chosen in any way (provided that the pairings are adjacent).
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The seed pairs were chosen so that the largest Wilcoxon effect size (for all six merging 
thresholds) was below a certain threshold. This was done by constructing a large matrix 
with 559 columns and 559 rows (559 being the number of output areas) for each of the 
six homogenising variables. Calling these matrices M1,...,M6, the M ly  entry, equals 
the Wilcoxon effect size between the ith OA and the j th OA for the first homogenising 
variable, if the two OAs are adjacent, and is equal to zero otherwise. Entries in these 
six matrices were used to determine which pairs of OAs had Wilcoxon effect sizes below 
a given threshold for the homogenising variables. These pairs of OAs were then used 
as initial seed pairs. The rationale for using this approach is to ensure that the initial 
seed pairs represent the most similar pairings possible. Since the primary interest is in 
comparing the administrative boundaries with the synthetic boundaries, it is desirable 
that both types of boundaries share equal numbers of highest-level areas. In the 2001 
census, there are 110 lower super output areas (as described in chapter 2 and so 130 
initial seed pairs were chosen. The algorithm will now be presented.

7.2.1 A lgorithm

A description of the algorithm will now be presented. Figure 7.2 illustrates these steps.

1. U statistics are calculated for all pairs of adjacent output areas for all six ho­
mogenising variables (Uuj, U2ij, . . . ,  U&j). This provides a measure of distance 
between each pair of adjacent OAs in terms of the homogenising variables. The 
pairs of OAs resulting in U statistics that all lie within a user-specified distance 
from 0.5 (i.e. the most similar adjacent OAs) are selected. Each of these pairs 
represent a “seed” from which the synthetic areas are created. These can be 
thought of as initial values that need to be input into the algorithm. The user 
decides how many seeds to input to the algorithm. Since the algorithm has the 
capacity to remove synthetic areas completely, but not to create them, the re­
sultant number of synthetic areas is likely to be less than the original number of 
seeds.

2 . The second step of the algorithm is the “inclusion” step. Each seed is examined 
in turn. The order in which the seeds are examined is random, and this means 
that different runs of the algorithm will produce different sets of boundaries. All 
OAs adjacent to the seed are identified (using an adjacency matrix). U statistics 
comparing each of these OAs and the seed (which may comprise many OAs) are 
calculated for each of the homogenising variables. A merging threshold, denoted 
by 6, is used to determine whether these U statistics are sufficiently close to 0.5 to 
warrant merging. If five of the six U statistics lie within the range [0.5 — 0,0.5+0], 
the adjacent OA is merged with the seed (i.e. the U statistics satisfy the merging
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criterion). Merging occurs if at least five of the six U statistics lies within the 
user-specified radius of 0.5. If more than one of the six U statistics lies outside 
the merging threshold then the OA in question remains unassigned to the seed 
pair. This OA is thus eligible to be “recruited” by any other seed to which it 
is adjacent. OAs that belong to a seed axe not eligible to be recruited by a 
different seed. The algorithm continues in this fashion until it has examined each 
unrecruited OA that was adjacent to the initial seed.

3. The third step is the exclusion step. This step is a further precaution to ensure 
the internal homogeneity of the new areas as they grow larger and larger. At 
this step the “fledgling” synthetic areas are examined in turn. Each constituent 
OA in a synthetic area is compared with the entire synthetic area less itself. 
For example, if at this stage a synthetic area consisted of ten OAs, then each of 
these OAs would be compared to the synthetic area created by the other nine 
OAs. Again, all six U statistics are computed, and if more than one of them 
lies outside the user-specified range the OA is removed from the synthetic area. 
This OA is now eligible to be recruited by any other synthetic area (or indeed 
the same synthetic area, should its composition change sufficiently in subsequent 
iterations to re-allow its inclusion). This step is in place to allow for the fact 
that the criterion inclusion into a synthetic area is not transitive, i.e. using the 
approximate equivalence sign («) to denote U-statistics which are sufficiently 
similar to allow merging, if we have three areas A, B  and C, then A  «  B  and 
B  «  C  does not imply that A  «  C.

4. Next the algorithm makes a check on the contiguity of the synthetic areas. The 
exclusion step of the algorithm permits the creation of “islands” consisting of 
single OAs belonging to a synthetic area, but not lying adjacent to any of its 
constituent OAs. If the exclusion of an OA at the third step isolates another 
OA from the synthetic area, this second OA should also be removed, preserving 
contiguity. This “island removing” step is also invoked if a synthetic area consists 
of only one OA. This removes the possibility of single OA synthetic areas being 
produced by the algorithm.

5. At this point the algorithm switches back to step two and examines all of the OAs 
that are now adjacent to each synthetic area. Steps two and three are cycled be­
tween until equilibrium is attained. It is difficult to determine conclusively when 
equilibrium has been achieved, hence an equivalent proxy is monitored. This 
proxy is the number of OAs left unassigned after the ith U statistic comparison 
(Ni). Equilibrium is deemed to have been achieved if either the variability of 
the last twenty NiS is zero, or if the last 200 comparisons merely cycle between
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10 or less distinct values of TV*. The first criterion is satisfied if and only if 
Ni- 19 =  Ni- is =  . . .  =  Nit indicating that the last 20 cycles of steps two and 
three have failed to yield any mergings. The second criterion is satisfied if the 
number of OAs unassigned after the last 200 cycles of step one and two have 
belonged to an infinite loop of length 10 or less. If the merging criterion is strict, 
equilibrium may be obtained before the majority of OAs are recruited. If the 
merging criterion is lenient the algorithm may run until all of the OAs are as­
signed to a synthetic area. Typically the merging criterion is set to be strict at 
the start. It cannot be set too tight however, since an extremely tight criterion 
may be too strict for even the initial seed pairs to satisfy. In this scenario, the 
inclusion step may result in no OAs being recruited and the exclusion step may 
remove all of the seed pairs. With no seed pairs left, the algorithm cannot assign 
any OAs to any synthetic area and it will terminate with all the OAs unassigned. 
On the other hand, if the merging criterion is set to be too lenient, then any OA 
adjacent to a seed pair will satisfy the inclusion criterion. In the extreme case 
where the merging criterion is set to the maximum (0.5), so that all U statistics 
result in merging, the only criterion necessary for merging is adjacency. As a con­
sequence the synthetic areas produced will not be based on internal homogeneity 
but rather spatial proximity. There is a tradeoff to be made then between se­
lecting a merging criterion strict enough to result in meaningful synthetic areas, 
while being permissive enough to allow the synthetic areas to grow.

6 . Once equilibrium has been attained a check is made on TV* to determine how many 
OAs are left unassigned. If there are any OAs unassigned (i.e. if iVj > 0), then 
the merging criterion is relaxed by a user-specified increment and the algorithm 
recommences with step two. This process continues until all of the OAs are 
recruited.

7.3 Result of the synthetic boundary algorithm
This section illustrates the type of output the algorithm can produce. Figure 7.3 shows 
the progression of the algorithm as it attempts to partition Caerphilly county borough 
into contiguous and internally homogenous areas. To illustrate that the algorithm 
works with any areas, it will be demonstrated using 1991 census EDs. These are 
also larger than OAs and so are better suited for visual inspection. Here enumeration 
districts are used as the building block instead of OAs. For the purposes of illustration, 
the number of initial seeds was four. These are shown by the coloured EDs in the first 
map of Caerphilly, with all other EDs remaining white. As the algorithm progresses 
these seed pairs grow, until all of the EDs in the borough are assigned to a synthetic
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Figure 7.2: Flowchart of the synthetic boundaries algorithm
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area. As can be seen in the final map of Caerphilly, the synthetic areas produced are 
contiguous. It is also obvious that the synthetic area sizes vary considerably, with 
the synthetic area number 1 taking up most of the borough, and the synthetic area 
number 4 taking up a very small number of EDs. In order to demonstrate how the 
algorithm works in practice a larger number of initial seed pairs can be chosen. Figure
7.4 compares 1991 electoral wards with a set of synthetic boundaries produced from 
50 initial seed pairs. There are 36 1991 census electoral wards, and 36 synthetic areas 
produced. This set of synthetic boundaries was produced essentially by trial and error. 
Fifty seed pairs were input to the algorithm and many boundaries produced. One of 
the boundaries that comprised 36 areas was selected. This is one way the algorithm 
could be used to create a single set of boundaries. There is no guarantee, however, 
that any set of boundaries produced by the algorithm is in any sense optimal. Instead, 
many sets of boundaries can be created and compared, and the “best” (whatever that 
may mean in a given setting) chosen.

7.4 Critique
The major drawback of this method is a consequence of the data itself. Since individual 
geographical positioning is not available the synthetic areas are created using output 
areas as building blocks. Output areas contain 300 individuals on average. As such, 
they may be large enough to be internally heterogenous. This hampers the homogenis­
ing process and provides a limiting factor for how homogenous the synthetic areas can 
be. From a homogenisation point of view, a smaller unit such as unit postcode would 
be preferable. As described earlier however, this approach would have its own difficul­
ties. One drawback to using unit postcodes is that information at such a small level is 
difficult to obtain due to confidentiality issues. Moreover, if it is obtainable, such data 
are often randomly perturbed to prevent the identification of individuals. Conversely, 
information at OA-level is more freely available and is not usually subjected to such 
data protection techniques.

Secondly, the algorithm takes some time to run. For each set of synthetic bound­
aries created, many thousands of comparisons are made between OAs and synthetic 
areas. As mentioned earlier it takes approximately eight minutes to create a single 
set of synthetic boundaries. Since each set of boundaries is a product of the merg­
ing threshold as well as the initial seeds, many different sets of boundaries need to 
be created in order to assess the influence of each of these criteria. The computing 
time required for such an exercise is considerable. Once again the Condor parallel 
computing system (Litzkow et al., 1988) was used in order to facilitate the creation 
of many thousands of boundaries. Fitting models including these new boundaries was 
also time-consuming, and this was also done using Condor.
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Figure 7.3: Illustration of the algorithm in progress
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Figure 7.4: Comparison of administrative wards and a set of synthetic boundaries
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Thirdly, how to choose the homogenising variables is not straightforward. Here 
variables known to be related with mental health were chosen. Six were chosen as a 
compromise between having enough variables to be able to homogenise on a large range 
of variables and having few enough so that computation was not too time-consuming. 
For any given research question there will be many different variables that could be 
chosen. The selection of which of these will be included is quite subjective and is a 
drawback to using synthetic boundaries.

7.5 Criteria for comparing administrative and syn­
thetic boundaries

In this section the synthetic and administrative boundaries will be compared. Since 
there is no gold standard or “correct” boundaries, these boundaries can only be com­
pared relatively. Comparisons will be made in a number of different ways, namely: 
internal homogeneity, variance components, model fit and coefficient estimation.

7.5.1 Internal H om ogeneity

The goal of the synthetic area algorithm is to produce LSOA sized areas with better 
internal homogeneity than the administrative wards. Before the effect of this homogeni­
sation is investigated it is prudent to ensure that homogenisation has indeed occurred. 
In order to do this, internal homogeneity will be assessed with reference to Wilcoxon 
effect sizes, standard deviations and the Index of Qualitative Variation.

W ilcoxon Effect Size

The synthetic area algorithm works by merging output areas based on the “distance” 
between these OAs as measured by the Wilcoxon effect size. A simple way to ensure 
that the algorithm has succeeded in this endeavour is to compare the synthetic areas 
and the administrative Lower Super Output Areas (LSOAs) in terms of these Wilcoxon 
effect sizes. An assessment of internal homogeneity is made by comparing each OA with 
the synthetic area it belongs to with respect to a given covariate. So, for a synthetic 
area containing ten OAs, ten Wilcoxon effect sizes are calculated (by comparing each 
constituent OA with the remainder of the area). A summary of these Wilcoxon effect 
sizes is calculated for each synthetic area by taking the absolute difference of each 
effect size from 0.5, and averaging these absolute differences. It should be noted at 
this point that all Wilcoxon effect sizes reported, actually refer to the magnitude of the 
difference between Wilcoxon effect and 0.5 (since 0.5 represents no difference between 
areas). Wilcoxon thresholds therefore, refer to range of Wilcoxon effect sizes that lie
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within a certain range of values either side of 0.5

Index of Qualitative Variation

However, it is not enough to demonstrate that the resultant synthetic boundaries are 
more homogenous with respect to Wilcoxon effect sizes. After all, Wilcoxon effect 
size is the measure used to determine whether two adjacent areas should be assigned 
to the same synthetic area or not. It is important therefore to utilise some other 
measure of homogeneity to compare the synthetic and administrative boundaries to 
demonstrate that the algorithm has had a homogenising influence that is not limited 
to the Wilcoxon effect size. A measure called the Index of Qualitative Variation (IQV) 
(Lieberson, 1969) was used for this purpose. As the name suggests the IQV provides 
a measure of the variability of qualitative or categorical variables. The IQV is shown 
in equation 7.2, where K is the number of categories in the variable, and Pi is the 
proportion of the dataset belonging to category i.

The summation term gives the probability that a randomly chosen pair of observa­
tions belong to the same category. Subtracting from one gives the probability of a 
non-matching pair. The probability that a randomly chosen pair of observations will 
differ on any characteristic is highly dependent on the number of categories that char­
acteristic represents. If comparisons were to be made between different characteristics 
it would be important to correct for this dependency, however in this situation the 
synthetic and administrative areas will be compared on the same characteristics and 
so no correction is necessary. In fact, it is distinctly undesirable to correct for the 
number of categories in a characteristic since this would mean that the index no longer 
represents the probability of a non-matching pair. Since the IQV is a probability it 
ranges between 0 and 1, with 0 indicating no variation (i.e. every individual belongs 
to the same category) and 1 indicating maximum variation (i.e. no two individuals 
belong to the same category).

Equation 7.2 defines the IQV for a single variable with K  categories. It can be ex­
tended to assess the homogeneity of a sample based on two or more variables according 
to equation 7.3, denoted by GIQV (generalised index of qualitative variation). Here N 
is the number of possible combinations (i.e. for j  variables with 7ii, rij categories, 
N  =  n i= ini)> Q  refers to the proportion of the sample belonging to combination z, 
Cij denotes C* x Cj and Wij refers to the proportion of shared characteristics between 
combinations i and j .  The GIQV can be interpreted as the proportion of character­
istics two randomly selected individuals can be expected to differ upon. The GIQV

K

(7.2)
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is a useful method to assess the homogeneity of the synthetic areas, for three reasons:
1. it is not the method by which the synthetic areas are created (avoiding a circular 
argument), 2. it is designed for use with categorical variables and 3. it provides a 
measure of the homogeneity of all six merging merging criteria simultaneously. Since 
all comparisons using this measure are made on multiple variables the GIQV will be 
referred to simply as the IQV.

N  N  N

GIQV =  1 -  E c ? + 2 E E c « w « <7-3)
i= l i = l  j> i

The first summation calculates the probability that two randomly chosen individuals 
match on all of the characteristics in question. The second summation allows for the 
fact that individuals who share some characteristics, but not all, also contribute to 
homogeneity. The probability of this partial matching is weighted by the proportion 
of shared characteristics.

7.5.2 Variance Com ponents

As introduced in chapter 5, the relative importance of each level is calculated by ex­
pressing the variance component at that level as a fraction of the sum of all of the 
variance components. This fraction is called the Intra Class Correlation (ICC) coeffi­
cient. The ICC can be used to assess the effectiveness of the homogenisation, since if 
homogenisation does indeed produce areas that axe more meaningful, or at least more 
amenable to hierarchical modelling, then this should be reflected in the variance com­
ponents. Essentially, the higher level variance components (in this scenario OAs and 
synthetic areas) should be larger for the synthetic hierarchy than for the equivalent ad­
ministrative hierarchy in the null model. This is because the synthetic hierarchy should 
convey more information than the administrative hierarchy when no other variables are 
included. This in turn implies that the ICC coefficients for the synthetic boundaries 
will be larger than for the administrative boundaries. This is a direct consequence 
of homogenisation and implies that knowing an individual’s position in the synthetic 
hierarchy conveys more information than knowing their position in the administrative 
hierarchy. Variance components for four different models were fitted. Firstly, a three- 
level null model was fitted, as described in equation 7.4, with individuals nested within 
OAs, nested within synthetic areas. This is called Model 1.

Mental H ealthy =  /30 +  vk +  +  eijk (7.4)

The next model, Model 2, uses the same hierarchical structure, but included individual- 
level socioeconomic variables (age (modelled as a cubic), gender, social class, employ­
ment status, gross income, tenure, and council tax band) and an area-level explanatory
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variable. This was the percentage of people claiming disability benefits at area level. 
Model 2 is given in equation 7.5. Here, the /3s either reference scalar quantities (for 
the continuous variables like age and percent disability) or vectors (for the categorical 
variables like gender, social class, employment status, gross income, tenure and coun­
cil tax band). Once individual-level variables are included, the ICC attributable to 
the synthetic area-level should be reduced. This reduction should be greater than the 
equivalent reduction using administrative boundaries, if the synthetic boundaries are 
more homogenous.

Vijk =  Po + Pi Age* +  #2 Age? +  p3 Agef +  /^Gender* +  p5Social Class* (7.5)

+ Pq Employment Status* -1- Pi Gross Income* +  /^Tenure*

+ PqCouncil Tax Band* +  /^Percent Disability +  i/* +  (ij +

In order to investigate the impact of including area-level fixed effects with different 
synthetic areas, an area-level variable that can be calculated for any area needs to 
be chosen. It was decided to choose the variable with the largest effect size from the 
CHSNS (Fone, 2005), namely being permanently unable to work due to disability. This 
can be aggregated for any area to give a percent disability in the area, representing 
the proportion of the sample from a given area that are claiming incapacity benefits. 
Since it is an area-level variable it has the subscript k. This model uses the synthetic 
hierarchy specified to calculate the percentage of individuals residing in each synthetic 
area who are disabled. This model can be used to investigate the impact of changing 
the hierarchy on a higher level area variable.

Since this percent disability variable is an aggregation of individual-level responses it 
is important to ascertain how accurately it represents an area. Using information from 
the Department of Work and Pensions (DWP) on the percentage of disability claimants 
in each ward, we can assess how good a proxy for area-level disability, our aggregated 
disability variable is. Figure 7.5 compares the two sources of information. The line 
through the origin indicates where the data should lie if the two variables were identical. 
Instead it seems that the observed percent disability consistently underestimates the 
percentage of disability claimants in wards. The relationship is approximately linear 
however (R 2 =  0.79) and the correlation between the two variables is high at 0.89, 
which provide some justification for the use of an aggregated disability variable as a 
proxy for area-level disability.

The next two models replicate models 1 and 2, but instead of modelling just one 
hierarchy, these models include both the administrative hierarchy and the synthetic 
hierarchy in a cross-classified approach. This allows a further comparison to be made 
between the hierarchies. With both sets of hierarchies being fitted simultaneously, 
it allows the relative importance of each to be measured and compared. To avoid
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unnecessary repetition, only variance components will be investigated for these two 
models.

7.5.3 M odel Fit

Model fit will be assessed using the Akaike Information Criterion (AIC) as introduced 
in section 5.19. Lower AIC values indicate better model fit.

7.5.4 Coefficient E stim ation

The effect of changing the hierarchy on the coefficient estimates, as well as their associ­
ated standard errors, is unclear. In this section coefficient estimation is only examined 
for a synthetic area-level covariate and so the percent disability variable from Model 
2 is used. As described earlier, this model controls for the same basic socioeconomic 
variables (age (modelled as a cubic), gender, social class, employment status, tenure 
and council tax band), but also includes the proportion of people unemployed due to 
disability. Coefficients for this variable along with its associated standard error are cal­
culated for the administrative LSOAs and for the synthetic areas. The initial merging 
thresholds investigated range between 0.060 and 0.500 in steps of 0.005. Initial thresh­
olds higher than 0.300 can be thought of as producing randomly delineated synthetic 
areas, since most pairwise comparisons of OAs produce Wilcoxon effect sizes smaller 
than this. Hence, the main condition necessary for two OAs to be merged when the 
initial merging threshold is higher than 0.3, is that they be adjacent.

7.6 Technical details of the comparison process
As described earlier, the algorithm requires four sets of information in order to produce 
a set of synthetic boundaries: adjacency information for the areas, composition infor­
mation for the areas (in this case the six homogenising variables), an initial merging 
threshold indicating how similar areas need to be for them to be merged and a set of 
seed pairs representing initial values for the algorithm. The adjacency information is a 
constant for the CHSNS dataset, as is the composition information (given the six ho­
mogenising variables). The initial merging threshold was varied between 0.06 and 0.5. 
A number of different choices of seed pairs were investigated. For this thesis however, 
results are presented for when 130 initial seed pairs are used.

In order to compare the results produced by the synthetic area algorithm with ad­
ministrative boundaries, it was necessary to create a large number of synthetic bound­
aries. As described earlier, the initial merging threshold is varied between 0.060 and 
0.500 in steps of 0.005. At each merging threshold approximately 300 synthetic hier­
archies were created, resulting in a total of over 25,000 simulated hierarchies. To these
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hierarchies four multilevel models were fitted and parameters of interest extracted. To 
create a single set of synthetic boundaries and fit the necessary models to it, took 
approximately eight minutes. The total CPU time required for this work was approxi­
mately 20 weeks. Again, the Condor parallel computing facility (Litzkow et al., 1988) 
was utilised in order to expedite this process.

7.7 Results using 130 initial seed pairs
Firstly the initial seed pairs which act as initial values for the algorithm are mapped 
in figure 7.6.

7.7.1 Internal H om ogeneity  

W ilcoxon Effect Size

Average Wilcoxon effect sizes for each of the six homogenising variables (for each OA 
compared with the synthetic area to which it is assigned) are plotted against the initial 
merging threshold in figure 7.7.

The y-axes are the same for five of the six homogenising variables. The council 
tax band y-axis however, is plotted on a different scale, since the smallest average 
Wilcoxon effect size reported for the council tax band variable is nearly twice the size 
of the largest average effect sizes reported for the other variables. The grey shaded area 
on the council tax band plot indicates the y-axis range of the other five homogenis­
ing variables. Such large mean Wilcoxon effect sizes indicate that the distribution of 
council tax bands is not particularly homogenous. As a result, even when the merging 
threshold is at its strictest there is still considerable variability in this variable.

All six variables have a similar shaped relationship with the initial merging thresh­
old. Since lower average Wilcoxon effect sizes imply greater internal homogeneity, it is 
clear that the optimum merging threshold is close to 0.11 (the optimum is attained at 
an initial merging threshold of 0.11 for four of the six variables). Decreasing the initial 
merging threshold below this value results in a sharp increase in average Wilcoxon ef­
fect size. Above this value there is a less steep increase in average Wilcoxon effect sizes, 
which levels off as the initial merging threshold reaches 0.5 (the maximum possible). 
This V-shaped relationship is a consequence of smaller thresholds resulting in fewer 
synthetic areas being produced. A low merging threshold means that adjacent areas 
must be quite similar before they will be merged. If the merging threshold is too low 
however, few adjacent areas will be merged and in extreme cases entire seeds may be 
removed by the algorithm, reducing the number of synthetic areas produced. Fewer 
synthetic areas mean larger synthetic areas, which in turn mean more heterogenous 
synthetic areas. There is a tradeoff to be made therefore between a merging threshold
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Figure 7.6: 130 initial seed pairs
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Figure 7.7: Relationship between the initial merging threshold and the resulting mean Wilcoxon effect size for each of the six homogenising 
variables when there are 130 seed pairs
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strict enough to ensure good internal homogeneity, but relaxed enough to ensure that 
sufficient numbers of synthetic areas are output.

The horizontal lines on each plot indicate the average Wilcoxon effect size for the 
2001 LSOA census boundaries. For most of the variables, the synthetic areas produce 
lower average Wilcoxon effect sizes than for the administrative boundaries. This indi­
cates that practically all of the synthetic boundaries produce greater homogeneity for 
most of the variables than for the administrative boundaries. The tenure variable is 
the only exception, with initial merging thresholds greater than 0.275 producing more 
heterogenous areas than for the administrative boundaries. This in turn implies that 
the 2001 administrative boundaries do not group similar people together any better 
than randomly chosen boundaries.

In order to properly interpret the v-shaped relationship between the initial merg­
ing threshold and the mean Wilcoxon effect size, the relationship between the initial 
merging threshold and the resulting number of synthetic areas needs to be considered. 
Figure 7.8 displays this relationship and indeed shows that smaller thresholds consis­
tently produce smaller numbers of synthetic areas. As the threshold is increased so 
does the number of synthetic areas produced.

To provide a frame of reference for the initial merging criterion, all Wilcoxon effect 
sizes resulting from all pairwise comparisons of adjacent OAs in the borough for all six 
homogenising variables are plotted in figure 7.9. The vertical line indicates 0.3 (this 
will be relevant for interpreting the graphs in section 7.7.2).

Index of Q ualitative Variation

The IQV is calculated for each synthetic area for a given set of synthetic boundaries. 
These IQ Vs are then averaged and plotted against both the initial merging threshold 
and the number of synthetic areas, as shown in figures 7.10 and 7.11. IQ Vs are in­
terpreted as the proportion of characteristics two randomly selected individuals from 
the same area will differ on. We can see that the strictest merging threshold gives 
higher proportions (indicating higher heterogeneity) than the more relaxed merging 
thresholds. This seems counterintuitive until we recognise that strict merging thresh­
olds are associated with fewer synthetic areas. The more synthetic areas there are the 
more chance there is of those areas being small enough to be relatively homogenous. 
It is important to note however that the administrative area IQV, indicated by the 
horizontal line, is 0.980, lower than most of the IQVs produced by the synthetic area 
algorithm. The range of IQVs produced is from 0.979 to 0.995.
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Figure 7.9: Wilcoxon effect sizes for all pairwise comparisons of adjacent OAs, for all 
six homogenising variables
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7.7.2 Variance com ponents

This section will summarise the four models outlined in section 7.5.2, in terms of their 
variance components. Variance components will be illustrated via ICC coefficients. As 
mentioned previously, models 3-4 (the cross-classified models) will only appear in this 
section.

Variance Components

The relationship between the synthetic area-level ICC coefficient for the null model (as 
given in equation 7.4) and both the initial merging threshold and the resulting number 
of synthetic areas is displayed in figure 7.12. The horizontal line indicates the 2001 
LSOA census boundaries null model ICC coefficient (0.026). This can be interpreted 
as being the proportion of the variability attributable to the LSOA of residence of an 
individual when only area of residence and household and individual identifiers are 
available. The synthetic area algorithm produces larger ICCs than the administrative 
boundaries for only one initial merging threshold; 0.11. Even then, the increase in ICC 
is not large. This indicates that the 2001 LSOAs produce ICC coefficients as large as 
any of the boundaries produced by the synthetic area algorithm. It is interesting to 
note however that figure 7.12.(b) shows that the synthetic area ICCs larger than 0.026 
were produced by hierarchies containing between 83 and 92 synthetic areas. This is 
fewer areas than the administrative boundaries which have 110 LSOAs. This indicates 
that the same amount of highest-level variation present in the administrative areas was 
captured in fewer areas using the synthetic area algorithm.

The relationship between the synthetic area-level ICC coefficient for the percent 
disability model (equation 7.5) and both the initial merging threshold and the resulting 
number of synthetic areas is displayed in figure 7.13. The synthetic level ICC coefficient 
does not appear to be strongly related to either the merging threshold or the number of 
synthetic areas produced. The administrative boundaries produce an ICC coefficient 
of 0 .0022 . Almost 90% of the synthetic boundaries produce lower ICCs than this. 
Note the difference in y-axis scales between figures 7.12 and 7.13, indicating that the 
individual-level information explains more of the synthetic area-level variation than 
the administrative area variation.

Next, cross-classified models are examined. Again, two models are fitted: a null 
model, and a model with individual-level covariates and an area-level covariate. These 
models include both the synthetic and administrative hierarchies in the same model and 
so can be used to compare how important each context is. Figure 7.14 illustrates the 
variance contribution from each hierarchy as the initial merging threshold is varied in 
the null model. The synthetic area-level ICC is close to zero when the merging thresh­
old exceeds 0.3 (on average 0.003). Synthetic levels produced at such high merging
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Figure 7.12: Relationship between the synthetic area-level ICC coefficient (for the null 
model) and both the initial merging threshold and the resulting number of synthetic 
areas
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Figure 7.13: Relationship between the synthetic area-level ICC coefficient (for the 
percent disability model) and both the initial merging threshold and the resulting 
number of synthetic areas
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Figure 7.14: Comparison of synthetic and administrative hierarchies ICCs in a cross­
classified null model
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thresholds are not very homogenous and so the administrative level is more informa­
tive. The average synthetic area ICC exceeds the administrative level ICCs when the 
initial merging threshold is between 0.09 and 0.145, reaching a maximum at 0.11. At 
this value, the average synthetic ICC is 0.020, while the average administrative level 
ICC is at its lowest (0.010). This provides evidence that the synthetic area algorithm 
is capable of producing boundaries that capture more variation than administrative 
boundaries.

Figure 7.15 shows the variance components for the cross classified percent disabil­
ity model. Once individual-level covariates and the percent disability covariate are 
included both the synthetic level ICC and the administrative level ICC are on average 
reduced (when compared with the null models). It is clear that the variance contribu­
tion of the synthetic area is much more variable than for the administrative areas, since
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Figure 7.15: Comparison of synthetic and administrative hierarchies fixed effect esti­
mation in a cross-classified percent disability model
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the synthetic areas change while the administrative areas do not. The average admin­
istrative area ICC is 0 .0 2 , which is greater than the vast majority of synthetic area 
ICCs (a little over 1.5% of the synthetic boundaries produce ICCs higher than 0 .0 2 ). 
There is indication that stricter merging thresholds produce more variable synthetic 
ICCs. It is important to note however, that in the previous graph (figure 7.14) average 
synthetic level ICCs were greater than the administrative level ICCs when the initial 
merging threshold lay between 0.09-0.145. Here however, the average administrative 
ICC is greater than the average synthetic ICC for all merging thresholds. This implies 
a greater amount of the variation attributed to the synthetic level ICC is explained by 
the addition of compositional explanatory covariates, than for the administrative level 
ICC.
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7.7.3 Model Fit

The relationship between the AICs for the null model (equation 7.4) and both the ini­
tial merging threshold and the number of synthetic areas is shown in figure 7.16. The 
horizontal line denotes the AIC for the model with administrative boundaries (95637). 
Lower AIC values indicate better model fit. When the initial merging threshold is 
set between 0.08 and 0.145, the resulting mean AICs are lower than the equivalent 
administrative model AIC. The lowest of these was for initial merging threshold 0.11. 
While the difference between the model fit is not large (note the y-axis scale), this 
adds weight to the possibility that boundaries produced with “optimum” initial merg­
ing thresholds represent an improvement over administrative boundaries, in terms of 
multilevel modelling.

We also compare the AICs produced for the percent disability model, plotted 
against the initial merging threshold and the number of synthetic areas, in figure 7.17. 
The administrative boundary model AIC is equal to 85,096. Few of the AICs (just 
over 1%) produced by models with synthetic hierarchies reach as high as that. This 
implies that the vast majority of the synthetic boundaries have consistently improved 
the model fit. Again, the average AIC reaches an optimum (85,063.53) when the initial 
merging threshold is equal to 0 .12.

7.7.4 Coefficient Estim ation

Coefficient estimation is examined using the percent disability area-level variable in 
the model described in equation 7.5. The horizontal lines indicate the value of the per­
cent disability coefficient when it is calculated using the 2001 census LSOA hierarchy 
(-23.94). The coefficient ranges between -10.93 and -35.22, providing an illustration 
of the large effect a different partitioning of the borough can have on area-level co- 
variates. In this instance, all of these coefficients are large enough to attain statistical 
significance (the largest standard error overall is 2.41), however it is possible that in 
another situation this range of values could attain statistical significance at one ex­
treme and not at the other. There also appears to be an upward trend for both 7.18.a 
and 7.18.b. Since synthetic boundaries created with high initial merging thresholds 
can be thought of as randomly created contiguous areas, this implies that the coeffi­
cient of the percent disability variable is attenuated when the boundaries do not group 
similar people together. The average value of the percent disability coefficient when 
the merging threshold is 0.11 is -25.66.
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Figure 7.16: Relationship between AIC for the null model and both initial merging
threshold and number of synthetic areas

oo
LOCT>

O
CO
CO
LOO)

O
CM
CO
LOGi

O
00
LO
LO

JM H ® !

Co
0

6
co
CO
E
o
0
'0
<

0.06 0.19 0.32 0.45 9 29 58 82 109

Initial Merging Threshold 
(a)

Number of Synthetic Areas 
(b)

226



Ak
ai

ke
 

In
fo

rm
at

io
n 

C
rit

er
io

n

Figure 7.17: Relationship between AIC for the percent disability model and both initial
merging threshold and number of synthetic areas
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Figure 7.18: Relationship between percent disability coefficient and both initial merg­
ing threshold and number of synthetic areas
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7.8 Discussion
The previous results demonstrate a number of points. Firstly, the synthetic area algo­
rithm has been demonstrated to be a robust process capable of producing meaningful 
areas from smaller areas. The synthetic area algorithm was applied 25,000 times and 
produced a partition of Caerphilly county borough each time.

The algorithm was also shown to produce areas with lower internal average Wilcoxon 
effect sizes for all of the homogenising variables. This is a good indication that the syn­
thetic areas produced are more homogenous than administrative boundaries. In terms 
of the index of qualitative variation however, the administrative areas were shown to 
be more homogenous. This is a surprising result, but is possibly explained by the 
construction of the algorithm. To allow for the fact that council tax band Wilcoxon 
effect sizes were larger (on average) than the Wilcoxon effect sizes for the other five 
homogenising variables, the algorithm was constructed to allow merging between two 
adjacent OAs if five of the six Wilcoxon effect sizes for the six homogenising vari­
ables were close enough to 0.5. The IQV however examines all six together, which 
may explain why the IQVs are so large for the synthetic boundaries. An alternative 
explanation is that the 2001 census boundaries do indeed group homogenous people 
together.

In terms of ICC coefficients, the synthetic area algorithm can produce areas with 
higher ICCs in the null model (indicating that those areas capture more of the spatial 
variation) than LSOAs, and lower ICCs in the model including a fixed effect (indi­
cating that the fixed effect explained more of the synthetic area-level variability than 
the administrative area-level variability). This pattern was also observed for the cross­
classified models. This is an important result as it implies that there is a possibility 
that the area-level ICCs reported in the literature could actually be explained by fixed 
effects, if those areas were more homogenous.

Investigation of AIC values for synthetic and administrative hierarchies revealed 
that the synthetic hierarchies produced smaller AICs (indicating better model fit). 
This provides further evidence that the synthetic boundaries have an advantage over 
administrative boundaries in multilevel modelling terms.

The percent disability coefficient investigation illustrates the wide range of values 
an aggregated fixed effect can assume when the hierarchy is altered (from -35 to -11). 
This provides a stark reminder to researchers about the consequences and impact of 
choosing a given hierarchy for a multilevel analysis.

Finally, it should be emphasised that the algorithm is a general one and can be 
altered for different situations. Different building blocks can be used to create syn­
thetic areas (so long as adjacency information is available for those areas). Different 
homogenising variables can be included depending on the focus of the analysis. It
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would even be possible to include different (or multiple) measures for comparing areas. 
This allows an assessment to be made of how suitable administrative boundaries are 
for a given analysis.
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Chapter 8

Synthesis of thesis findings applied 
to the Caerphilly Health and Social 
Needs Study

8.1 Introduction
The previous chapters introduced the literature researching area effects on mental 
health, described the CHSNS dataset and investigated various methodological issues 
surrounding its analysis. These comprised the following sections.

• Firstly, the measure of mental health status, the MHI-5, was presented and cri­
tiqued. Various methods of analysis were investigated and cutpoints defining a 
case of common mental disorder were produced.

• Secondly, the issue of whether to include a sparse household level in multilevel 
analyses of this type was examined using a simulation study.

• Thirdly, the modifiable areal unit problem Openshaw (1984) was explored using 
an algorithm that partitions an area into smaller contiguous areas in chapter 7. 
This algorithm will be used to produce a partition of Caerphilly county borough 
that will be used as an alternative to administrative boundaries in this chapter.

This chapter will draw on the results of these sections of the thesis and combine them 
to investigate the research question: does where you live affect your mental health, as 
formulated in the CHSNS (Fone, 2005). Chapter 6 found that including a sparse level 
of context results in less bias of fixed effect standard errors than excluding a sparse 
level of context. The household level in the CHSNS is just such a level. It was excluded 
from the original analyses (Fone, 2005; Fone et al., 2007c), but in this chapter the effect 
of including it will be examined. Similarly, the CHSNS used administrative bound­
aries to delineate area of residence. Chapter 7 found that synthetic boundaries can
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provide more internal homogeneity than administrative boundaries as well as showing 
the extent of the impact changing the hierarchy can have on the results of a multi­
level analysis. This chapter, guided by the findings of this thesis, will provide a more 
evidence-based approach to analysing the CHSNS dataset than has previously been 
attempted in order to better elucidate the link between area of residence and mental 
health.

8.2 Objective
This chapter applies the findings from the previous chapters regarding MHI-5 cut- 
points, the household level, and synthetic boundaries to investigate the contextual de­
terminants of mental health and compares the results with the original CHSNS model 
(Fone, 2005; Fone et al., 2007c) (called the CHSNS model here). The models chosen 
for comparison purposes (called models 1 to 4) are now described and justified.

CHSNS m odel

Previous work based on the CHSNS (Fone, 2005; Fone et al., 2007c) modelled the 
mental health score as a binomial response using a cutpoint. This was done to avoid 
the problem of the skewness of the mental health score (discussed in chapter 3). This 
previous work by Fone et al (referred to all the CHSNS model) will now be summarised. 
The cutpoint used was 60, chosen because it produces a case prevalence closest to that 
reported by Caerphilly county borough in the Health in Wales 1996 survey (Kingdon 
et al., 1998) (32.0%).

The cutpoints for the MHI-5 found in chapter 3 were 76 (from the Youden Index and 
(0 ,1) methods), 60 (from the misclassification rate method) and 68 (from the minimax 
criterion and prevalence matching methods). As discussed in section 3.4.3, since the 
data is from a relatively small area and comparisons are not being made across areas 
with widely different case prevalences, minimising the misclassification rate is the most 
sensible criterion to employ. By chance, this provides the same cutpoint as the CHSNS 
of 60. This coincidence is not particularly remarkable since the MHI-5 has only a small 
number of possible values (20). All the models that are compared in this chapter use 
the same cutpoint.

The response variable is binomial indicating whether a given individual’s MHI-5 
score was less than or equal to 60, or not. The explanatory variables will now be 
described. Age was modelled as a cubic polynomial. The following variables were 
included as individual-level indicators: gender, social class (I or II, IIINM, HIM, IV 
and V, Other, Missing), employment status (employed, seeking work, home or carer, 
student/training, permanently sick/disabled, retired, missing), gross household income
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(low, medium, high), tenure (owner-occupier, non-owner occupier, missing), council tax 
band (A-B, C-H, missing). This approach could be criticised since the last three of 
those variables axe actually measured at the household level, yet the household level 
is excluded from the analysis. Interactions between age and each of the following 
were investigated: female gender, being permanently sick/disabled and low income. 
An interaction between age squared and low income was also investigated. Ward- 
level variables were also incorporated, comprising the incapacity claimant ratio and an 
interaction between the incapacity claimant ratio and individual disability. The latter 
is a cross-level interaction, as introduced in section 5.2.

Each of the next four models changes this first model in a different way based 
on the findings of the thesis. These changes are cumulative, so that the final model 
incorporates all of the thesis findings.

M odel 1

Model 1 modifies the CHSNS model by replacing the Incapacity Claimant Ratio with 
the reported percent disability coefficient introduced in section 7.5.2. The reason for 
this is that the ICR was calculated using ward-level information supplied by the DWP 
making it unsuitable for inclusion in a model which employs synthetic (and not ad­
ministrative ward) boundaries. The percent disability variable on the other hand can 
be calculated for any area based on postcodes. This is because it is based on aggre­
gated individual-level data which is geo-coded to postcodes. This makes it a more 
suitable variable to include when comparing models with different hierarchies. Since 
the ICR was calculated using a z-transformation (subtracting the mean and divid­
ing by the standard deviation), the percent disability coefficient is also z-transformed. 
The original percent disability variable ranged between 1% and 28%, while under the 
z-transformation it ranges between -2.085 and 3.026. The percent disability variable 
was compared with the ICR in section 7.5.2, and showed that the two variables were 
highly related.

M odel 2

Model 2 modifies model 1 by changing the way age is modelled. It is perhaps instructive 
to illustrate the raw data here, in order to inform the choice of how best to model this 
relationship. Figure 8 .1 shows the relationship between age in years and the proportion 
of each subset of the data that is a case. The pink lines (indicating females) tend to be 
higher than their blue counterparts (indicating males). There is no strong relationship 
between the two variables for any of the subsets. There is some indication that the 
probability of being a case increases between 40 and 60; however there are a number 
of inexplicable peaks and troughs throughout the age range. This plot shows that
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whatever relationship exists between these variables, it is not a strong one, and is 
quite complicated.

Figure 8.1: Proportion of caseness for each age, with overlayed smoothed line
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The relationship between the response variable and age in the CHSNS model is 
questionable, since polynomials are notoriously unreliable in the tails. Moreover, the 
age variable features in no less than four interaction terms (the age variable is interacted 
with female gender, being on permanently sick/disabled and having a low income, and 
there is a fourth interaction between the square of age and having a low income) 
making its effect difficult to interpret. The relationship between age and mental health 
found in the CHSNS model is plotted in figure 8 .2 , and shows the effect of each of 
the interaction terms on the probability of being defined as a case of common mental 
disorder.
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Figure 8 .2 : Observed relationship between age and probability of being defined to be 
a case of common mental disorder in the Caerphilly Health and Social Needs Study

Females who are both permanently unable to work due to disability and who have 
a low income have the highest probabilities of being identified as a case of common 
mental disorder, while males who do not belong to either the disability or low income 
categories, have the lowest probability. As can be seen, the fitted lines are reasonably 
close to what is observed in the raw data plotted in figure 8 .1 , however there is still 
room for improvement. The approach taken in Model 2  is to split the age variable 
into 5-year age groups and model it as a categorical variable. This approach makes no 
assumptions about the nature of the relationship between age and mental health.

M odel 3

Model 3 is the same as model 2 except that the top level in the hierarchy is changed from 
electoral ward to synthetic boundary. Chapter 7 produced many sets of boundaries in 
order to assess how robust the results of multilevel models are when the top-level is 
partitioned in different ways. Here these boundaries are used in a different way. As
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discussed in section 7.3, the boundaries produced by the synthetic ward algorithm are 
not optimal solutions. If a single set of boundaries is required by a user, a large number 
of boundaries can be produced and then the “best” set of boundaries chosen, which 
is the approach taken in this section. Chapter 7 showed that boundaries produced 
when the merging criterion was set to 0.11 were the most homogenous as defined by 
Wilcoxon effect size. This is what we take to mean by “best” . One of these sets of 
boundaries is mapped in figure 8.3. It comprises 89 synthetic areas spanning Caerphilly 
county borough. The numbers of cases of common mental disorder in each of these 
synthetic areas is provided in table 8.1. This table shows that the 89 synthetic areas 
have numbers of respondents varying between 22 and 363, while the proportions of 
cases in each area vary between 0.13 and 0.53 (1st Quartile: 0.27, Median: 0.32, 3rd 
Quartile: 0.40). This is the set of synthetic boundaries that will be compared with the 
administrative boundaries used in the CHSNS. This information is plotted in figure 8.4, 
alongside the equivalent histogram for the administrative boundaries. As can be seen, 
the administrative boundaries are more consistently sized, with none of the electoral 
wards containing fewer than 200 respondents. There are also fewer wards (36) than 
synthetic boundaries.

M odel 4

This is the final integrated model and includes household as a level. Household is 
included since chapter 6 found that even when the sparseness is as extreme as in the 
CHSNS dataset (where there is an average of 1.08 responses per household) including 
the sparse level results in less biased fixed effect standard errors.

Sum mary

Table 8.2 summarises the various models that will be compared in this chapter.

8.3 Comparison of results
Instead of attempting to compare every term in each model, just a few crucial param­
eters are compared: the AIC (assess model fit) , the variance components (to compare 
the variance components attributable to the synthetic boundaries with the administra­
tive ones, as well as the variance component associated with the household level), the 
percent disability coefficient (the area-level covariate), the interaction between percent 
disability and individual disability (a cross-level interaction) and belonging to council 
tax bands A or B (in order to assess the effect of including the household level on a 
household-level variable). These parts of the model are most likely to be sensitive to
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Figure 8.3: Set of synthetic boundaries produced with the initial merging criterion set 
to 0 .1 1
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Table 8.1: Number of cases in each synthetic area

Synthetic
area

number

No. of 
respondents

No. of
cases

%

Synthetic
area

number

No. of 
respondents

No. of
cases

%
1 106 49 46 46 110 40 36
2 60 22 37 47 143 46 32
3 225 87 39 48 72 19 26
4 47 8 17 49 363 126 35
5 84 22 26 50 86 24 28
6 87 24 28 51 26 9 35
7 110 43 39 52 44 7 16
8 75 31 41 53 101 32 32
9 71 23 32 54 185 68 37

10 167 65 39 55 313 126 40
11 43 17 40 56 143 65 45
12 55 22 40 57 43 17 40
13 173 54 31 58 254 72 28
14 155 74 48 59 72 30 42
15 62 20 32 60 40 8 20
16 136 35 26 61 125 36 29
17 153 34 22 62 146 30 21
18 41 6 15 63 62 26 42
19 53 22 42 64 257 104 40
20 115 34 30 65 96 51 53
21 65 30 46 66 40 8 20
22 25 4 16 67 100 29 29
23 239 51 21 68 47 21 45
24 78 29 37 69 48 15 31
25 120 46 38 70 94 27 29
26 65 25 38 71 125 42 34
27 297 77 26 72 49 13 27
28 212 61 29 73 66 17 26
29 211 74 35 74 26 9 35
30 48 11 23 75 78 29 37
31 283 80 28 76 90 25 28
32 208 80 38 77 101 42 42
33 161 64 40 78 22 10 45
34 97 42 43 79 64 18 28
35 56 17 30 80 77 20 26
36 62 23 37 81 96 38 40
37 348 101 29 82 110 21 19
38 271 59 22 83 110 14 13
39 69 18 26 84 199 51 26
40 75 24 32 85 122 24 20
41 261 80 31 86 224 112 50
42 42 16 38 87 212 75 35
43 112 46 41 88 230 63 27
44 97 36 37 89 49 16 33
45 73 34 47
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Table 8.2: Model summaries

M o d e l nam e M od el d escrip tion
CHSNS Original CHSNS study model
Model 1 Replaces ICR with Reported Percent Disability
Model 2 Replaces cubic age with categorical age
Model 3 Replaces ward level with synthetic area level
Model 4 Includes household level
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the changes made. The results for these variables are summarised in table 8.3. The 
relationship between age and mental health between model 4 and the CHSNS model 
will also be examined.

8.3.1 AIC

The first column of table 8.3 compares the models using the AIC. This table shows 
that the original CHSNS model had the lowest AIC and so the best model fit. It is 
interesting to note however that modelling age as a categorical variable greatly increases 
the AIC. While the log-likelihood increases using the categorical approach, the AIC 
also increases due to the large number of extra parameters (33) associated with a 
categorical age variable (split into 5-year age categories), which is clearly a drawback 
of this approach. The pros and cons of each method of modelling age will be discussed 
later. The introduction of the synthetic boundaries in model 3 results in an increase 
in AIC, while introducing the household level in model 4 results in a reduction in AIC.

8.3.2 Top-level ICC

The second column of table 8.3 compares the top level ICC for each of the five models. 
For the first three models, this top level is electoral ward, while for the bottom two it 
is the set of synthetic boundaries mapped in figure 8.3. All five models indicate that 
the variability attributable to this level is less than one percent of the total variability. 
The inclusion of synthetic boundaries instead of administrative wards resulted in the 
top level ICC being reduced by half to 0.14%. The inclusion of the household level 
further reduced this ICC to 0.06%.

8.3.3 H ousehold-level ICC

In model 4 the household level ICC is 6.78%. This is a much larger ICC than for the top 
level, and indicates that households are a more important context to model than areas. 
Studies which exclude household from the hierarchy will produced overestimated area 
level ICCs, since some of the variation that should be attributed to households will 
be erroneously attributed to areas. This finding should be interpreted with caution 
however, since figure 6.13 showed that when the sparseness is as high as it is in the 
CHSNS (1.08 respondents per household on average), the household level variance 
component is estimated with large variability.

The household-level variance component found in model 4 is also in line with the 
literature recommending that household is an important context to include in multilevel 
modelling (Chandola et al., 2003, 2005; Propper et al., 2005; Weich et al., 2003b, 2006, 
2005). The aforementioned literature however indicates that the size of the household-
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Table 8.3: Comparison of CHSNS study with the new analysis

AIC Top level Household 
ICC level ICC
(%) (%)

% disability 
O R

Est. La U6

% disability*Indiv. 
disability 

O R
Est. L U

Council 
Tax Band 

A & B
Est. L U

CHSNS 
Model 1 
Model 2 
Model 3 
Model 4

11,952
11,955
12,000
12,006
12,002

0.27
0.27
0.31
0.14
0.06 6.78

1.06 1.00 1.12
1.04 0.99 1.11
1.05 0.99 1.11
1.05 1.00 1.11
1.05 0.99 1.11

1.18
1.17

1.04 1.35
1.02 1.34
1.02 1.34
1.00 1.32
1.01 1.33

1.29
1.30

1.15 1.44
1.16 1.46
1.16 1.45
1.15 1.44
1.16 1.47

1.17 1.29
1.15 1.28
1.16 1.30

Estimates in bounded boxes indicate statistical significance at the 5% level 
aL indicates the lower 95% confidence limit 
bU indicates the upper 95% confidence limit



level variance component is between9% and 29%, whereas this work estimates it to be 
about 7%. This is not a large discrepancy however, especially considering the caveat, 
mentioned above, that this level’s variance component is estimated imprecisely due to 
the sparseness.

8.3.4 Percent disability coefficient

The estimate of the percent disability coefficient varies little across all five models, 
with its odds ratio being consistently estimated to be about 1.05, and never attains 
significance at the 5% level. The confidence intervals around this odds ratio vary only 
at the second decimal place. This is not to say however that changing the hierarchy 
will never affect fixed effect estimation, since figure 7.18 illustrated the large range 
of coefficients that can be produced by changing the hierarchy. The fact that this 
coefficient changes only slightly in Model 3, compared with the CHSNS model, despite 
the fact that the ICR is calculated for 36 electoral wards in the latter, while the 
percentage disability variable is calculated for 89 synthetic areas in the former provides 
further evidence that these two variables are measuring the same thing .

8.3.5 Cross-level interaction betw een percent disability and 
individual disability

The interaction between percent disability and individual disability is similarly unaf­
fected by the changing models, and consistently attains significance at the 5% level. 
This interaction was only of borderline significance in the CHSNS model and remains 
so as the model is adjusted according to the thesis findings.

8.3.6 Council Tax Band

This household-level variable is also consistently estimated across the models. This is 
perhaps surprising, since including the household as a level (model 4) should increase 
the standard errors on all the parameters. This is not observed, with the confidence 
intervals around this parameter being no wider in Model 4 than in any of the other 
models. This is most likely due to fact that there are very few multiple response 
households in the dataset (792 out of 9,827), and so the difference between treating 
this variable as an individual- or household-level variable is not substantial.

8.3.7 Age

The relationship between age and mental health was modelled differently between 
models 1 and 2 . The difference in predicted values between the original CHSNS model
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and model 4 is illustrated in figures 8.5 (this is the same as figure 8.2, but reproduced 
here for comparison purposes) and 8 .6 . The original CHSNS model fitted a cubic 
polynomial to the age variable, as well as fitting four interaction terms involving age. 
Model 2 on the other hand split the age variable into 5-year age groups and treated 
it as a categorical variable. Interactions between this categorical age variable and 
female gender, individual disability and low household income were retained. Both 
approaches have their strengths and weaknesses. The cubic polynomial approach can 
be criticised for being too restrictive, in that it forces a certain form on the relationship. 
Polynomials are also unreliable in the tails. The categorical approach however involves 
the loss of age information. Moreover, as can be seen from figure 8 .6 , this approach 
treats each age category completely independently of the age categories adjacent to it. 
This can lead to jumps between age categories which may be due to small sample sizes. 
The polynomial approach avoids this by fitting a prediction line across the entire age 
range simultaneously. This may have more biological plausibility than the categorical 
approach. For instance the low income subgroups prediction lines for model 4 have 
three local maxima. There is no obvious explanation for why mental health caseness 
probabilities might dip around the ages of 25, 35 and 50. It would appear however that 
broadly speaking the polynomial approach is a reasonable approximation for what is 
observed in the data.

8.4 Strengths and Limitations
The strengths and limitations of each model compared in this chapter will be discussed 
in this section.

8.4.1 CHSNS model

The original CHSNS dataset was generally well-suited to the analysis of the contextual 
determinants of mental health. It is based on a large sample size of 10,653, set in a 
well-defined and contiguous study area, has a good response rate of 62.7%, collected 
a wide range of demographic information on the respondents and strengthened this 
information by linking with other data sources such as the DWP. The model itself 
acknowledges the presence of clustering the data by fitting a two-level hierarchy to the 
data.

Having said that, the model still suffers from a number of methodological limi­
tations which motivated this thesis. These limitations included a skewed response 
variable which was dichotomised using a cutpoint based on prevalence matching, a 
sparse contextual level that was excluded from the analysis and a reliance on adminis­
trative areas to serve as proxies for area of residence. Another criticism that could be
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levelled at this model is that the relationship between age and mental health is fitted 
as a polynomial (with all of the problems that entails as discussed in section 8.3.7) 
and that there axe a large number of interaction terms, complicating the interpretation 
of this relationship. It could be argued however that since the relationship between 
age and mental health was not the primary research question for this study, and was 
merely being controlled for along with many other covariates, then the interpretability 
of this relationship was not a major concern.

8.4.2 M odel 1

This model replaces the ICR variable with a percent disability variable. The ICR 
variable was calculated using data from an external source, while the percent disability 
variable is calculated from the CHSNS dataset, raising the problem of same source 
bias (as discussed in section 2.5). This is a weakness of the model, however, the work 
illustrated in section 7.5.2 shows that these two variables are highly related (correlation 
of 0.89). The issue of same source bias is unlikely to be such a problem as to invalidate 
the use of the percent disability variable.

Data are often released aggregated to administrative ward level precluding them 
being used with synthetic hierarchies. This is a general drawback associated with using 
bespoke boundaries rather than administrative ones.

8.4.3 M odel 2

In this model the polynomial approach to modelling age is replaced in favour of a cat­
egorical approach. As described earlier each method has pros and cons. Polynomial 
modelling does not suffer from the problem of having large jumps between adjacent 
age categories, increasing its biological plausibility. It uses all of the data, unlike the 
categorical approach which throws away information by categorising age into 5-year 
age groups. On the other hand, if polynomial modelling is to be used then there is the 
problem of choosing what order it should be. Secondly, interactions with a polynomial 
variable are complicated by the fact that there are multiple terms that need to be in­
vestigated. The CHSNS model (Fone, 2005; Fone et al., 2007c) fitted interaction terms 
with the linear component of the cubic polynomial for female gender, incapacity and 
low income, but also fitted an interaction term with the quadratic component of age 
and low income. Why the stationary point (determined by the linear component of 
the polynomial) should vary according to gender, but the curvature of the relationship 
should be the same for both males and females is not clear. Similarly, why there should 
be interactions between linear and quadratic components of age and low income, but 
not the cubic term is not explained. No justification was provided for this other than 
being based on the significance of the interaction terms.
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This model avoids these problems by treating the age variable as categorical. Of 
course, the drawback to this approach is the large number of extra parameters that 
need to be estimated, especially when interaction terms are included. With a large 
sample size however this is less of a problem, as there is enough information there 
to properly estimate these extra parameters. The two approaches produce reasonably 
similar results, however the categorical approach is more easily defended than a polyno­
mial approach, since it does not assume anything about the nature of the relationship 
between age and mental health.

8.4.4 M odel 3

This model replaces the administrative ward level, with the synthetic ward level. There 
are a number of weaknesses associated with using synthetic wards. As discussed ear­
lier, using bespoke boundaries often necessitates the use of other bespoke measures 
to describe them. Moreover if a researcher decides to create synthetic boundaries for 
use in a specific analysis, then other researchers may have difficulty repeating their 
analysis, due to not having access to the synthetic boundaries. This makes it harder to 
compare between studies. Researchers using administrative boundaries have no such 
problems, due to the fact that synthetic boundaries are freely available.

Another problem with the synthetic boundary approach is that it is not obvious 
how to choose which set to use. The approach used here is that a large number of 
boundaries were created and the “best” chosen. A criterion to measure how good a set 
of boundaries must then be selected, which is a subjective process. In this chapter it 
was decided that boundaries created when the merging criterion was set to 0.11 pro­
duced the most homogenous boundaries. This in turn was based on another subjective 
process; choice of homogenising variables. As discussed in section 7.4 the choice of 
which variables to use to create the synthetic boundaries is crucial, but there is little 
to guide researchers about how this should be done. In this study homogenising vari­
ables were chosen based on whether they were known to be useful predictors of mental 
health. The number of homogenising variables (6 ) was chosen to provide a compro­
mise between having a comprehensive set of mental health predictors and having an 
algorithm that ran quickly.

Furthermore, the computation time for creating a large number of boundaries from 
which the best is chosen is not trivial. The CPU time taken to create the 25,000 sets of 
boundaries used in chapter 7 was 20 weeks as described in section 7.6. This approach 
may be ruled out in many situation therefore due to time constraints.

The final weakness of the synthetic boundary approach used in this model is that 
the number of top-level areas are not the same across the models. There are 36 ad­
ministrative wards in Caerphilly, but there are 89 synthetic areas used in this model.
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The synthetic boundaries are therefore smaller and so more likely to be homogenous. 
The synthetic boundaries are not constrained by size either, meaning that some con­
tain large numbers of respondents and some small numbers. This is in contrast with 
the administrative boundaries which are much more consistent in size (see 8.4). What 
effect this might have on the precision of the results of the models is uncertain. If these 
synthetic boundaries meaningful contextual levels that affect mental health, then the 
differential sample sizes are not a problem as they reflect reality. If they do not rep­
resent meaningful groupings however, the unbalanced sample sizes are likely to reduce 
precision.

There are strengths associated with Model 3 also. Firstly, there have been calls 
from the literature for hierarchies based on homogeneity instead of hierarchies based 
on administrative boundaries (Rice et al., 1998; Macintyre et al., 2002; Diez-Roux, 
2003). The synthetic boundary approach is more theoretically based than using ad­
ministrative boundaries which are unrelated to the question of interest.

More generally, Model 3 has answered this call from the literature, created syn­
thetic boundaries and applied them to a real-life dataset in order to assess how large 
an impact the use of bespoke boundaries has. Models like this can be used to provide 
sensitivity analyses when a parameter estimate is based on an arbitrary hierarchy, and 
researchers want to be sure that the results they are uncovering are not specific to the 
hierarchy they are using, but instead say something more general about area effects on 
health.

8.4.5 M odel 4

Model four includes the sparse household level in the multilevel hierarchy. The strengths 
of this model are that it uses more of the information collected by the CHSNS, ac­
knowledges a level of context that is present in the data so that standard errors are 
not underestimated at that level, and is furthermore acknowledging a call from the 
literature (Chandola et al., 2003, 2005; Propper et al., 2005; Weich et al., 2003b, 2006, 
2005) that the household level be included in studies of area effects on mental health.

A practical drawback to the modelling of the sparse household level is that the time 
taken for the models to run is greatly increased. The computing time in R was tripled 
compared with the two level hierarchies, and in MLwiN (Rasbash et al., 2003), the 
models fail to converge.

Another weakness of this model is that while chapter 6 showed that including a 
sparse level resulted in better estimates of fixed effect standard errors than excluding 
a sparse level, it also demonstrated that when the sparseness of the included level is 
very high (as it is here) that the precision of the variance component for that level is 
very low. Hence the ICC quoted in table 8.3 must be treated with caution.
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Nonetheless, Model 4 is the culmination of the work of the thesis and provides the 
most methodologically sound and comprehensive analysis of the CHSNS data that is 
available.

8.5 Conclusion
This chapter incorporated the various findings of this thesis in a single analysis of the 
CHSNS and essentially found that they did not make a large difference to elucidating 
the association between area of residence and mental health. The recommendation 
with the largest impact was including the household level, which reduced the top-level 
ICC, and resulted in 7% of the variation in the response being attributed to that level. 
In order to properly interpret this finding it is important to view it in conjunction with 
the findings of the individual chapters. While this particular analysis found that the 
effect of including the sparse household level was not observed to affect the household- 
level covariate standard error (expressed here through a confidence interval around the 
odds ratio) chapter 6 found that it can do.

This chapter also adds to the literature regarding the suitability of administrative 
areas for use in the hierarchy of analyses investigating associations between mental 
health and area of residence (Rice et al., 1998; Macintyre et al., 2002; Diez-Roux, 
2003). This chapter investigated the use of synthetic boundaries for the CHSNS data 
and found that using them produced very similar results to those produced when ad­
ministrative hierarchies were used, indicating that administrative areas may perform 
better than has previously been assumed. However the simulation in chapter 7 found 
that it can potentially produce large differences. The message remains that stud­
ies which employ “convenience” hierarchies (i.e. hierarchies unrelated to the research 
question) would do well to consider performing sensitivity analyses with alternate hi­
erarchies to assess the robustness of their results.
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Chapter 9 

Conclusion

This chapter will summarise the results of the thesis, with specific reference to the 
stated objectives from chapter 1, presented below:

1. To investigate the spatial variation of common mental disorders in Caerphilly 
county borough in a Bayesian framework.

2 . To investigate properties surrounding the distribution of the mental health score 
used in the study, as well as evaluating a cutpoint to identify cases of common 
mental disorder.

3. To investigate the robustness of multilevel modelling techniques to sparse levels 
of data.

4. To develop an algorithm that can partition an area into internally homogenous 
areas, using data from the Caerphilly Health and Social Needs Study as an ex­
ample.

5. To compare (quantitatively) the operationalisations of area for both administra­
tive and synthetic boundaries

Furthermore, the work will be placed in context for researchers who are interested in 
the practical implications of the work. Finally, areas requiring further work will be 
highlighted and suggestions for how those further investigations might proceed will be 
provided.
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9.1 Sum m ary o f resu lts

9.1.1 Investigating the spatial variation o f com m on m ental 
disorders in Caerphilly county borough

The CHSNS dataset provided excellent motivation for this thesis. With a large sample 
size, and a large amount of information, it was generally well-suited to the analysis 
of the contextual determinants of mental health. The CHSNS analysis (Fone, 2005) 
was repeated using the R programming language and the results were found to agree 
closely with the results produced by MLwiN.

Plotting the raw data showed that there was spatial variation in mental health in 
Caerphilly county borough. Bayesian methods were introduced and used to smooth 
this raw data, to provide a more reliable picture of the spatial variation in mental 
health. The smoothed information was mapped and provided evidence that the spatial 
variation in mental health was not an artefact of small sample sizes. The existence of 
spatial variation in Caerphilly county borough provided crucial motivation for the rest 
of the thesis.

9.1.2 M odelling m ental health

The stated objective for this section was to investigate the distributional properties 
of the MHI-5 mental health scale as well as evaluating a cutpoint to identify a case 
of common mental disorder. Chapter 3 began with a description of the main mental 
health measure used in the study, the MHI-5. The next section explored the validity 
and reliability of the MHI-5, firstly introducing some important concepts and methods, 
and then summarising some of the validation literature. The MHI-5 was shown to be 
a valid and reliable scale, and a useful measure of mental health.

Having introduced the mental health scale, different methods of modelling it were 
investigated. A Box-Cox transformation was performed indicating that a square trans­
form is the best way to normalise the response. The reduction in skewness however was 
not deemed sufficient to justify the increased complication of parameter interpretation 
and so this approach was not used. Ordinal modelling was introduced as an alterna­
tive. Various ordinal modelling approaches were described and the cumulative logit 
method was illustrated with reference to the CHSNS dataset. Ordinal modelling was 
not used because of the strict assumptions and difficulty in interpreting the results. Fi­
nally, different methods for dichotomising the MHI-5 scale as well as the SF-36 Mental 
Component Summary score were compared and contrasted. The dichotomisation was 
performed using ROC curve analysis. This procedure was introduced and explained 
along with various criteria for determining a cutpoint. These comprised the most com­
mon methods used in ROC curve analysis, namely, the Youden Index, the shortest
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distance to the upper left corner, the misclassification rate, the minimax criterion, and 
prevalence matching. This indicated that cutpoints of less than or equal to 76 and less 
than or equal to 51.7 for the MHI-5 and MCS axe the most generalisable cutpoints. For 
UK populations , cutpoints of less than or equal to 60 and less than or equal to 44.8 
for the MHI-5 and MCS minimise the missclassification rate. Furthermore, the Youden 
Index and the point closest to the upper left corner were identified as the methods least 
dependent on population prevalence. These were recommended as the most suitable 
methods to provide cutpoints on scales intended for use across large geographical areas 
where the prevalence of cases (whatever a case may mean in the given context) is likely 
to vary widely.

This chapter investigated alternative approaches to modelling the scores from the 
MHI-5 measure as a Normal variable. Each had advantages and disadvantages. It was 
decided that for the investigations into multilevel modelling in the following chapters 
it was most appropriate to model the variable as a Normal one.

9.1.3 Im pact o f sparse levels on hierarchical m odelling

An investigation of sparse levels in multilevel analysis was presented in chapter 6 . The 
objective was to investigate the robustness of multilevel modelling to sparse levels of 
data. Essentially, this comprised both questions regarding the effect on the results of 
a multilevel analysis of including a sparse level, and excluding a sparse level. This 
was investigated using four simulation studies: where both household and individual 
contributed equal variance components (scenario A), where the household variance 
component was small (scenario B), where the household variance component was zero 
(scenario C), and where the household variance was small and the total sample size 
was small (scenario D). The results of each of these scenarios are summarised in detail 
at the ends of sections 6.4.1, 6.4.2, 6.4.3, and 6.4.4. Here an overview of the results of 
all of these scenarios is provided. The overall findings of this simulation study are now 
summarised briefly under the following headings: effect of relative size of the sparse 
level’s variance component, effect of total sample size, effect of including or excluding a 
sparse level on fixed effect estimation, effect of including an uninformative sparse level.

Effect o f relative size of the sparse level’s variance component

Scenarios A and B modelled similar situations, but the important difference between 
them was the relative contribution of the sparse level (large in A, and small in B). 
With respect to ICC estimation, the smaller ICC in scenario B was estimated less 
precisely under sparseness than the larger ICC in scenario A. When the sparse level 
was excluded the area-level was overestimated in scenario A, but not in scenario B. 
Household-level fixed effects were more seriously underestimated when the contribution
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from the household-level was large.

Effect of total sample size

Scenarios B and D utilised the same variance structure (with the area, household and 
individual variance components being 0.5, 1.5 and 20 respectively), except scenario B 
had a sample size of 10,000, while scenario D had a sample size of 1,000. As expected, 
the smaller sample size accentuated the problems observed when the sample size was 
larger. Household-level ICCs were more variable at sparse levels. The underestimation 
of the household-level standard errors was also of a larger magnitude.

Effect o f including or excluding a sparse level on fixed effect estimation

In general, the simulation study suggests that it is better to include sparse levels 
(even with small variance contributions and high sparseness) into a multilevel analysis, 
since the underestimation of household-level fixed effect standard errors is larger in the 
models which exclude a sparse contextual level. Area-level fixed effect standard errors 
were much less affected by sparse household levels.

Effect of including an uninformative sparse level

ICC coefficients and model fit were investigated for scenario C, where the household 
level was uninformative. While most of the simulations attributed only a tiny pro­
portion of the variability to the household-level, some of the ICC coefficients for an 
extremely sparse yet uninformative level were almost as high as 0.15. The results of 
this scenario investigation indicate that including an uninformative level does not lead 
to hugely overestimated ICCs at that level (they must always be somewhat overesti­
mated since the true value is zero), except for when the average number of respondents 
per household is less than 1.5.

9.1.4 Synthetic area algorithm

An algorithm for partitioning areas into contiguous sub-areas was developed and in­
troduced in chapter 7. The algorithm uses information on the spatial geography and 
composition of areas to create homogenous areas. It is a generalisable algorithm and 
can be applied to any geographical area with adjacency information. An illustration 
of how the algorithm operates was provided in figure 7.3. A set of boundaries was 
produced for comparison with the 1991 census electoral wards and plotted in figure 
7.4, providing an example of how the algorithm could be used to produce a single set 
of boundaries. This algorithm was then used in a simulation study to compare the
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synthetic boundaries with the administrative boundaries, both in terms of homogene­
ity and their implementations in hierarchical models. The results of this chapter have 
already been summarised in section 7.8. Here a brief summary will be provided un­
der the following headings: internal homogenity, variance components, model fit and 
coefficient estimation.

Internal homogenity

The synthetic boundaries demonstrated better internal homogeneity than the admin­
istrative ones as measured by Wilcoxon effect sizes of the homogenising variables. In 
terms of IQVs however, the administrative boundaries performed remarkably well, hav­
ing a smaller LSOA IQV (calculated based on the six homogenising variables) than 
the majority of synthetic boundaries. There are two possible explanations for this, 
as discussed in section 7.8: firstly, the administrative areas could indeed be more ho­
mogenous in terms of IQVs than the synthetic boundaries produced. Alternatively, 
the inclusion of council tax band as a homogenising variable may have restricted the 
homogeneity of the synthetic areas due to the fact that the average Wilcoxon effect 
sizes for the council tax band were larger than for the other five homogenising variables 
(as shown in figure 7.9).

Variance components

The variance components are expressed through ICC coefficients in this section. Four 
sets of variance components, resulting from the two models described in equations 7.4 
and 7.5, as well as the two cross-classified models (which are the same as the aforemen­
tioned models except they contain both synthetic and administrative hierarchies) were 
investigated. The single hierarchy models illustrated that the synthetic boundaries 
created larger area-level ICC coefficients in the null model than the administrative 
boundaries, when the initial merging threshold was set below 0.3. This indicates that 
the synthetic boundaries are indeed capturing more area homogeneity than the admin­
istrative areas. When individual- and area-level covariates are included the synthetic 
ICC was reduced more than the administrative ICC. The fact that in the null model 
the synthetic ICC was larger and in a fuller model it was smaller, indicates that it is 
possible that the large size of the administrative ICC is a result of heterogeneity at 
that level meaning that the area-level explanatory variable is less meaningful than it 
could be, and so explains rather less variation than it should.

Cross-classified models display a similar pattern and again imply that the large 
administrative ICC may be a product of the area-level covariate being less meaningful 
for the administrative areas than for the synthetic areas.
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Model fit

Model fit, as assessed by the AIC was examined for the models described in equations 
7.4 and 7.5. The AICs for the null model with synthetic hierarchies were lower (indicat­
ing better model fit) when the initial merging threshold for the algorithm was set close 
to 0.11. These low AICs were achieved even with fewer synthetic areas than the 110 
LSOAs against which they are compared. For the model with individual- and area-level 
covariates the AICs from the models using synthetic hierarchies were almost always 
smaller than the administrative boundaries. This represents evidence that the syn­
thetic areas improve the operationalisation of area of residence in multilevel modelling 
analyses.

Coefficient estimation

The percent disability coefficient was investigated for the model in equation 7.5. The 
relationship between the sparseness and the magnitude of this fixed effect was striking 
in figure 7.18. Lower merging thresholds tended to produce lower coefficients. There is 
no true coefficient to be compared against here, but there is still an important message 
contained in this figure. By essentially shuffling the middle-level units into different 
higher-level units, the percent disability coefficient ranged between -35 and -11. This 
is a huge range and provides graphic evidence that the choice of hierarchy is crucial in 
multilevel modelling.

9.1.5 Area effects on health

Chapter 8 addressed the fundamental research question that motivated the work of the 
thesis; what are the contextual determinants of mental health.

9.2 Im plications for researchers

There are implications for researchers from the three methodological objectives of the 
thesis. These implications are now described under the following headings: modelling 
mental health using the MHI-5, recommendations for sparse levels of context in mul­
tilevel analyses, and homogenous synthetic boundaries.

M odelling m ental health using the MHI-5

Chapter 3 investigated a number of different ways to deal with a skewed response vari­
able. None of these methods were a perfect solution and all approaches complicated the 
interpretation of parameters, however researchers should investigate these approaches 
when dealing with a skewed response. Binomial modelling was investigated with the
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goal of deriving cutpoints to define a case of common mental disorder on the MHI-5 
and MCS. Moreover, the methods of deriving cutpoints on ROC curves were compared 
and the Youden Index and (0,1) methods were recommended as methods that were less 
prevalence dependent than the other methods examined. If researchers are attempting 
to identify a cutpoint on a scale for use in areas where the case prevalence may vary 
widely (international studies for instance), then the aforementioned methods are most 
suitable. The work of chapter 8 showed that the evidence for contextual determinants 
of mental health above the level of household is not strong.

R ecom m endations for sparse levels o f context in m ultilevel 
analyses

The overall message from the household simulation chapter is that in most cases, even 
if the variance contribution of the sparse level is small and the degree of sparseness 
high, it is better to include that level in a multilevel analysis. This results in less 
underestimation of household-level fixed effect standard errors. This comes at the 
expense of greater variance component estimation variability.

H om ogenous synthetic boundaries

The synthetic boundaries derived for this thesis demonstrate that it is possible to de­
rive synthetic areas with the goal of creating homogenous areas for multilevel research. 
Moreover, it has been demonstrated that these synthetic boundaries represent an im­
provement over administrative boundaries in many ways. The work of chapter 7 also 
serves as a reminder to researchers of the large impact the choice of hierarchy can have 
on the results of a multilevel modelling analysis. In particular, variance components 
and fixed effect parameters were shown to vary substantially between models with dif­
ferent hierarchies. This should encourage researchers to spend more time deciding on 
the hierarchy they will employ.

The overall theme of the results of this thesis are that the potential impact of the 
choice of hierarchy on the results of a multilevel modelling analysis is large. Including 
or excluding contextual levels in an analysis can have important implications depending 
on the characteristics of the level itself. On a practical note, the simulation in chapter 
6 indicated that sparse levels with more than 1.5 sub-units per unit on average should 
be included in analyses.
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9.3 Further research

There are three main themes to the study that need investigating further. Firstly, 
there is the work on modelling the MHI-5. Secondly, there is the work on sparse levels 
in multilevel analysis. Finally, there is the synthetic boundaries investigation.

9.3.1 M ental health

Various approaches to dealing with the problem of a skewed response variable were 
taken in chapter 3. None of these were approaches were used in the simulation studies, 
with Normal modelling being used for ease of interpretation. It would be useful to 
conduct a simulation study investigating the effect of modelling a skewed response as 
a normal variable on the results of a multilevel analysis.

This chapter also made use of existing information from the British Household 
Panel Survey to compare the MHI-5 with the GHQ-12. In order to identify a definitive 
cutpoint to identify CMD for the MHI-5, it would need to be compared with a diag­
nostic/clinical interview schedule. This could provide a clinically valid cutpoint for the 
MHI-5. A difficulty in doing this would be achieving a large enough sample size with 
a resource-intensive interview schedule.

9.3.2 Sparse levels

The investigation of sparseness in chapter 6 could be extended in many ways. One of 
the more important considerations would be to model the household responses using 
different distributions, to see how the results change. Currently, they are modelled 
using a Poisson distribution since that fits well with the CHSNS dataset. It would not 
fit as well to the household responses in the BHPS.

The situation modelled in scenario C, where an uninformative level was included 
in a multilevel analysis could be further investigated. Assessing the magnitude of the 
variance component likely to be attributed to an uninformative level could be used 
to augment the current methods of assessing “significance” of variance components. 
This could be approached using a simulation study, but may be better investigated 
analytically.

9.3.3 Synthetic boundaries

Again, there are many possible suggestions for extending the work of the synthetic 
boundaries algorithm. One of the more useful features that should be incorporated 
into the algorithm is to include a component which restricts the growth of synthetic
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areas in terms of population size, once they attain a certain size. This could be used to 
produce areas with similar populations. The exact method of restricting the growth, 
and the size at which this restriction should occur are both difficult questions.

Secondly, the effect of the choice of homogenising variables could be further investi­
gated. Ideally, a different outcome would be investigated, for which the homogenising 
variables would be different to those investigated here. Thirdly, the structure of the 
algorithm could be altered so that a different measure for determining merging is used.

The algorithm uses seed pairs as initial values to begin the analysis. In the analyses 
presented in section 7.2 these seed pairs were chosen to be those OAs which were most 
similar. Another approach would be to generate random seed pairs for each iteration. 
Alternatively, seed pairs could be chosen in a stratified way so that different sections 
of the area to be partitioned are equally represented. Yet another way would be to 
chose seed pairs so that different types of area based on some criterion are equally rep­
resented. The effect of such changes on the results of the work presented here would 
be of interest.

Another area for further research involves the Wilcoxon effect sizes for the six ho­
mogenising variables. As was shown in section 7.7.2 the effect sizes for the council 
tax band were larger than for the other variables. To counteract this, only 5 of the 
6 homogenising variables were required to be below the merging threshold, in order 
for two areas to be merged. An alternative approach would be to standardise these 
Wilcoxon effect sizes so that each contributed equally. This may lead to even more 
homogenous boundaries.

9.4 F in a l su m m ary

The objectives stated in section 1.4 were achieved in this thesis. The overall theme of 
the results of this thesis are that the impact of the choice of hierarchy on the results 
of a multilevel modelling analysis is large. Researchers should spend time considering 
the different levels of context that should be included in a model. These levels should 
be determined based on theory and not purely convenience.
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