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Abstract

Background Acetylcholine (ACh) and the calcium ionophore A23187 are both known 
to trigger EDHF-type responses in the rabbit iliac artery via endothelial cell 
hyperpolarization mediated by the opening of calcium-dependent potassium channels 
(Kca). In addition, ACh and A23187 also stimulate the release of hydrogen peroxide 
(H2O2) from the endothelium.

Aims of study 1) To determine the relative contribution of different Kca channel 
subtypes to ACh- and A23187-evoked responses. 2) To determine whether there is a 
connection between the activation of endothelial Kca channels and the release of H2O2. 
3) To identify the source of endothelium-derived H2O2 in the rabbit iliac artery.

Major findings 1) hrummohistochemical investigations demonstrated expression of 
SKca, IKca and BKca channels in the endothelium of rabbit iliac arteries. 2) Mechanical 
studies with the SKca inhibitor apamin, the IKca inhibitor l-[(2 - 
chlorophenyl)diphenylmethyl]-lH-pyrazole (TRAM-34) and the BKca inhibitor 
iberiotoxin demonstrated that all three Kca channel subtypes participate in ACh- and 
A23187-evoked EDHF-type relaxations. 3) Mechanical investigations with catalase and 
the catalase/SOD-mimetic manganese porphyrin (MnTMPyP) demonstrated that 
responses to ACh and A23187 both included a significant H2C>2-dependent component, 
that could be inhibited by combined Kca channel blockade. 4) Investigations with the 
NADPH oxidase inhibitor apocynin, the xanthine oxidase inhibitor oxypurinol and the 
inhibitors of the mitochondrial electron transport chain rotenone and myxothiazol 
indicated that mitochondria are likely to be the main source of H2O2 in the endothelium 
of the rabbit iliac artery.

Conclusions The study has highlighted the concerted role of different Kca channel 
subtypes in ACh- and A23187-evoked EDHF-type relaxations in rabbit iliac arteries. It 
has also demonstrated that both responses consist of an H2 0 2 -dependent component 
which is attenuated when Kca channels are inhibited. However, the evidence provided is 
not sufficient to prove that H2O2 release in the endothelium is coupled to Kca activation 
Additional studies aimed to identify the intracellular compartment that produces H2O2 

upon stimulation with ACh and A23187. It has been demonstrated that under the current 
experimental conditions the most likely source of H2O2 is the mitochondrial electron 
transport chain.
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Chapter One

1.1 Function of the endothelium

The blood vessels are a closed system of conduits that transfer blood from the heart to 

the tissues and vice versa from the tissues to the heart. Blood flow takes place primarily 

due to the forward motion imparted to it by the pumping of the heart, although other 

factors such as diastolic recoil of the arterial walls and compression of the veins play a 

major role. Indeed, vascular contractility is responsible for resistance to blood flow and 

is regulated by chemical, neuronal and humoral mechanisms. As the size of the vessels 

decreases their contribution to the overall resistance to blood flow increases, which 

could be partially attributed to differences in the structure of these vessels. The walls of 

all arteries consist of an outer layer of connective tissues, known as adventitia, a middle 

layer of variable thickness which consists of smooth muscle cells, known as media and 

the innermost layer which is the endothelium or else intima (Fig. 1.1).

Endothelium

Internal Elastic 
Lamina

Smooth Muscle

gap junctions

nuclei

Fig. 1.1 The endothelial monolayer and the smooth muscle layer, including the 
internal elastic lamina and gap junctions. The left side of the panel is a schematic 
representation of the three structural components of the vascular wall. The right side 
of the panel shows an image of these layers from a segment of a rabbit iliac artery 
obtained using confocal microscopy.

The vascular endothelium is a monolayer of cells, which is in direct contact with the 

blood and an approximately 80 nm thick basal layer, also known as the internal elastic 

lamina (Fig. 1.1). In response to various stimuli endothelial cells synthesize and release 

factors, which determine vascular contractility, blood coagulability, angiogenesis and 

vascular permeability. The contribution of the endothelium in vascular contractility is 

largely dependent on the communication of this layer with the underlying smooth
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Chapter One

muscle, a process which can take place via the diffusion of molecules through the 

intracellular space or directly though myoendothelial gap junctions (Fig. 1.1).

Vascular relaxation

The modulation of the tone of the underlying smooth muscle is the most significant 

function of the endothelium. In many vessels, agonists such as acetylcholine (ACh) and 

calcium ionophore A23187 induce an endothelium-dependent relaxation which is 

known to depend on 1] nitric oxide (NO) synthesized by the endothelial nitric oxide 

synthase (eNOS), 2] prostanoids and 3] the ‘EDHF phenomenon’, a mechanism 

controversially associated with the propagation of hyperpolarizations from the 

endothelium to smooth muscle via myoendothelial gap junctions and the production of 

freely transferable factors that may directly hyperpolarize vascular smooth muscle 

(Griffith, 2004). Although the nature and the role of NO and prostanoids in vascular 

relaxation are now undisputed, there is still controversy about the nature of the EDHF 

phenomenon. As it will be described in a following section of this chapter, several 

candidates have been proposed to have EDHF-type properties, but thus far none of them 

fulfils all the criteria to be considered the universal factor. By contrast, the propagation 

of endothelial hyperpolarizations to smooth muscle via gap junctions is an alternative 

mechanism which has gained much recognition in recent years, and it is responsible for 

the mediation of EDHF-type responses in many vessels and species. This electrotonic 

mechanism comprises the basis for the investigations presented in this thesis, and its 

physiological role will be emphasized extensively throughout the entire manuscript.

Furthermore, it is noteworthy that the endothelium is one of the primary sites of oxygen 

metabolism in the vasculature and it is now known to generate reactive oxygen species 

(ROS), which play a major role in the regulation of endothelial function, vasodilatation 

and inflammation (Schiffrin, 2008). Indeed, arterial dilatation is largely dependent on 

the balance between mediators of vasodilatation such as NO, and ROS that could 

potentially scavenge the former when produced in excess (Tschudi et al., 1996). The 

role of ROS as modulators of vascular contractility has also been demonstrated in the 

context of the EDHF phenomenon and there are reports which have suggested that in 

some species ROS such as hydrogen peroxide (H2O2) might be an EDHF (Matoba et al, 

2000). Nevertheless, in the majority of investigations ROS fail to trigger
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Chapter One

hyperpolarizations of the magnitude that leads to EDHF-type relaxations, and their role 

as an EDHF is disputed (Griffith, 2004).

Blood coagulability

The endothelium of arteries, capillaries and veins is normally anti-thrombotic and forms 

a protective barrier, which prevents adherence of platelets and leukocytes to the surface 

of the vessel. Blood coagulation is controlled by several anti-coagulant factors, which 

under normal conditions prevail over pro-coagulant forces. For instance, it has been 

accepted that an enhanced production of endothelium-derived NO reduces the 

expression of tissue factor (TF), the primary activator of the blood coagulation cascade, 

and has direct effects on plasma coagulation factors such as Xa (Dusse et al, 2007, 

Papapetropoulos et al, 1998). Also, by regulating the function of anti-coagulant 

pathways such as the protein C / protein S pathway, the endothelium can maintain blood 

fluidity and thereby prevent thrombosis (Dahlback & Villoutreix, 2005). The interaction 

of thrombin with thrombomodulin in the endothelium activates protein C, a process 

which is facilitated by the subsequent formation of a complex with protein S. The 

activated complex of protein C and protein S in turn inactivates factors Villa and Va, 

which are essential for the coagulation of the blood. Because this pathway is entirely 

restricted to the endothelium of the vessels, immunohistochemical detection of factor 

VIII (also known as von Willebrand factor) has been widely used for the localization of 

the intimal layer.

Amiosenesis

The formation of new blood vessels from pre-existing is a pre-requisite for normal 

development and repair of the vasculature. The endothelial cells play a significant role 

in angiogenesis, a process which involves their rapid proliferation and the concomitant 

degradation of the underlying lamina by metalloproteinases, a group of matrix- 

degrading enzymes (Egeblad & Werb, 2002). Endothelial cells migrate and interact with 

cells, such as other endothelial cells, smooth muscle cells and fibroblasts, and establish 

tubular structures, which gradually evolve into the new vessel (Egeblad & Werb, 2002; 

Keane et al, 2006).
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Vascular permeability

The control of solute and macromolecule transfer across the blood vessel wall is another 

major function of the endothelium, especially in capillaries. Indeed, in most blood 

vessels the endothelium is continuous, while in others such as those of glands the 

monolayer possesses fenestrations, which facilitate the diffusion of solutes and 

molecules. Damage to the endothelium leads to abnormal extravasation of fluid which is 

particularly augmented in inflammation, atherosclerosis and diabetes (Knotkova & 

Pappagallo, 2007; Moreno et al, 2006; Wright et al, 1999). Increases in plasma 

extravasation have also been linked to the effects of growth factors such as the vascular 

endothelial growth factor (VEGF), which has been shown to increase vascular 

permeability by increasing NO release (Feletou et al, 2001). Finally, the endothelium is 

also known to facilitate the diffusion of H2O2 to adjacent smooth muscle cells, where it 

interacts with signalling molecules and channels which regulate vascular contractility.

This chapter is mainly concerned with the electrotonic mechanism that underpins the 

EDHF phenomenon and aims to review the major findings of the available literature 

concerning the contribution of potassium channels in the development of endothelial 

hyperpolarizations. The second part of this chapter will focus on reactive oxygen 

species and their role as modulators of vascular contractility. Due to the importance of 

nitric oxide and prostanoids in vascular relaxation a brief description of their 

mechanism of action is also given in the following paragraphs.

1.1.1 Nitric Oxide

Following the princeps paper by Furchgott & Zawadzki (1980), it has been established 

that the endothelium generates a diffusible factor that influences vascular contractility, 

and which in some vessels is associated with decreases in intracellular calcium 

concentrations ([Ca2+]i)(Bolz et al, 1999; Hashitani et al, 2002; Soloviev et a l, 2004). 

Further investigations demonstrated that this endothelium-derived relaxing factor 

(EDRF) is NO, a gaseous transmitter, which activates soluble guanylyl cyclase (sGC) 

and increases cGMP levels (Ignarro et a l , 1987; Palmer et a l , 1987; Furchgott et a l , 

1991). Increases in cGMP lead to phosphorylation of protein kinase G (PKG), and 

subsequently inhibition of actin-myosin filament sliding (Pelligrino & Wang, 1998). 

NO is synthesized in endothelial cells by the type III isoform of eNOS, and in addition 

to the maintainance of vascular tone, it also regulates blood coagulability and the anti
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Chapter One

adhesive properties of the endothelium (Rees et a l, 1989; Radomski et al., 1993)(Fig. 

1.2). Endothelial-derived NO is synthesized and released continuously under basal 

conditions (Griffith et al., 1984), and provides a constant vasodilator influence that 

opposes sympathetic vasoconstriction through its direct action on subjacent smooth 

muscle cells, and through a direct effect on sympathetic innervation (Tesfamariam & 

Cohen, 1995). Indeed, stimulation of the endothelial layer with ACh, bradykinin (BK) 

or substance P is known to cause vasodilation through a mechanism that involves the
9+ 9+acceleration of Ca uptake by the sarco/endoplasmic reticulum Ca -ATPase (SERCA)

9_l_ j  i
in smooth muscle, and the extrusion of Ca via the plasma membrane Ca -ATPase and 

the Na+-Ca2+ exchanger (Cohen et al, 1999; Popescu et a l, 1985; Seip et al, 2001).

Furthermore, it has been established that NO affects vascular contractility through a 

direct action on potassium channels. For instance, patch-clamp techniques have 

demonstrated that NO activates BKca channels (for channel classification see section 

1.2.5) in isolated smooth muscle cells of cerebral and carotid arteries and aorta of the 

rabbit (Taniguchi et al, 1993; Li et al, 1998; Tanaka et al, 2004; Waldron & Cole, 

1999; Waldron et al, 1999). In most blood vessels, the activation of BKca is mediated 

by the cGMP-dependent protein kinase phosphorylation of the channel, although studies 

carried out in rat mesenteric arteries have also suggested that it is possible for a direct 

cGMP-independent activation to take place (Mistry & Garland, 1998). This activation 

may possibly involve the binding of NO to thiol groups of the channel with the 

concomitant formation of S-nitrosothiols (Lang et al, 2003). Indeed, NO can act as a 

weak thiol oxidant, which affects cell function by interacting with cysteine thiol groups 

of proteins through oxidation reactions, such as S-glutathiolation. Notably, in addition 

to the binding of NO to thiol groups of BKca, SERCA is S-glutathiolated by NO, 

leading to an increase in Ca2+ uptake, and finally to the development of cGMP- 

independent arterial relaxation (Adachi et al, 2004). The effects of NO on potassium 

channels have also been demonstrated on SKca, Ky and K At p  channels (Waldron & 

Cole, 1999). For instance, in rat pulmonary arteries, NO promotes the opening of Kv 

channels by a mechanism that is independent of sGC (Yuan et al, 1996), while in the 

canine femoral vein, the relaxation to NO involves both K a t p  and BKca channels, with 

the former depending on a cGMP-independent pathway, and the latter on a cGMP- 

dependent mechanism (Bracamonte et al, 1999).
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Endothelial Cell Qg2+

agonist

t  Ca2+
depletion

CaM Ca-CaM

ER
L-Arg eN5s» NO

NO

Fig. 1.2 Schematic representation of the basic steps of agonist-evoked generation of 
nitric oxide (NO) in the endothelium of arteries. The production of NO is a calcium- 
dependent process that relies on the activation of the endothelial subtype of the 
enzyme nitric oxide synthase (eNOS). eNOS catalyses the conversion of L-arginine 
(L-Arg) into NO and L-citrulline. R: receptor, ER: endoplasmic reticulum, IP3: 
inositol (l,4,5)-trisphosphate, CaM: calcium calmodulin.

It has been suggested that an NO-induced hyperpolarizing effect might take place in 

some vessels. Indeed, in guinea-pig uterine and coronary arteries, and in rat mesenteric 

resistant arteries, stimulation of endogenous NO or application of NO-donors led to a 

variable decrease in membrane potential from -60mV to approximately-80mV (Tare et 

a l, 1990; Parkington et al., 1993; Garland & McPherson, 1992). The stimulation of 

smooth muscle hyperpolarizations by NO was primarily attributed to the direct cGMP- 

dependent or the indirect cGMP-independent activation of BKca channels (Archer et al., 

1994; Bolotina et al., 1994; Peng et al., 1996; Li et al, 1998; Mistry & Garland, 1998; 

Plane et al, 2001; Yu et al., 2002). Nevertheless, in carotid and femoral arteries of the 

rabbit, NO failed to evoke hyperpolarizations in resting tissues, but instead repolarized 

them if they had been previously depolarised by agonists, such as noradrenaline (Cohen 

et a l, 1997; Plane et al., 1995). In other vessels, such as porcine coronary and rat
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Chapter One

hepatic arteries, NO did not affect the membrane potential at all, therefore excluding the 

possibility of being a ‘universal’ inducer of hyperpolarizations (Ito et al., 1980; 

Zygmunt et al., 1998).

1.1.2 Prostanoids

Prostacyclin (PGI2) is a principal metabolite of arachidonic acid synthesized by cyclo- 

oxygenase (COX) in the endothelium of arteries and veins (Moncada et al., 1976; 1977; 

Moncada & Vane, 1978). Other endothelium-derived prostaglandins such as PGE2 can 

also show vasodilatory properties albeit to a lesser extent. Endogenous PGI2 selectively 

activates IP receptors (a rhodopsin type G-protein coupled cell surface receptor; Ruan et 

al., 2005) in smooth muscle cells and dilates vessels through the intracellular 

accumulation of cAMP. In some arteries, PGI2 has also been shown to hyperpolarize the 

media by a mechanism involving the protein kinase A (PKA)-dependent activation of 

Kca channels (Schubert et al., 1997). However, other reports, failed to demonstrate 

smooth muscle hyperpolarizations to PGI2 or its analogue iloprost (Parkington et al., 

1993), therefore suggesting that PGI2 is not always a hyperpolarizing factor. In addition 

to this finding, there is adequate evidence, which supports that transient hyperpolarizing 

responses are still detectable in many blood vessels preincubated with COX inhibitors, 

such as indomethacin (Hutcheson et al., 1994; Dong et al., 2000; Bychkov et al., 2002; 

Ungvari et al., 2002; Hinton & Langton, 2003;Weston et al., 2005). Thence, it was 

speculated that smooth muscle hyperpolarizations were stimulated by another factor, 

which was generated in the endothelium and could diffuse freely to the media.

1.1.3 Endothelium-Derived Hyperpolarizing Factor

The term Endothelium-Derived Hyperpolarizing Factor (EDHF) was used to describe 

the hypothetical factor, which modulates smooth muscle cell potential, followed by a 

decrease in vascular contractility (De Mey et al., 1982; Bolton et al., 1984; Beny & 

Brunet, 1988; Chen et al., 1988; Feletou & Vanhoutte, 1988; Griffith, 2004). EDHF- 

type responses have been demonstrated in variety of vessels including guinea-pig 

carotid and basilar arteries, rabbit mesenteric and iliofemoral arteries, porcine coronary 

arteries and rat hepatic arteries (Corriu et al., 1996; Petersson et al., 1997; Fujimoto et 

al., 1999; Murphy & Brayden, 1994; Chaytor et al., 2000; 2001; 2002; 2003; Ge et al.,
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Chapter One

2000; Zygmunt et al., 1997). EDHF-type relaxations have been defined as a distinct 

dilatation mechanism on the basis that they are insensitive to eNOS and/or COX 

inhibitors. Several lines of evidence implied that EDHF is the main vasorelaxant 

mechanism in small size arteries where NO bioavailability is limited (Shimokawa et al., 

1996; Busse et al., 2002; Inokuchi et al., 2003). An inverse relation between NO and 

EDHF has been demonstrated in rabbit carotid and mesenteric arteries and the 

mesenteric arterial bed of the rat (Bauersachs et al., 1996; McCulloch et al., 1997). For 

instance, in rat mesenteric arteries the magnitude of the NO-independent component 

was significantly suppressed in the presence of 8 -Br-cGMP, a cell permeable analogue 

of cGMP, which indicated that in these vessels basal release of NO might inversely 

modulate EDHF-type responses (McCulloch et al., 1997). The inverse relation between 

NO release and the EDHF component has also been demonstrated with bioassays using 

the NO-donor C87-3786 (Bauersachs et al, 1996).

1.2 Putative transferable EDHF candidates

In previous years, several studies have attributed the EDHF-type responses to factors 

such as potassium cations (K+), epoxyeicosatrienoic acids (EETs), C-natriuretic peptide 

(CNP), hydrogen peroxide (H2O2), adenosine, carbon monoxide and endocannabinoids 

(Edwards et al., 1998; Fleming et al., 2001; Honing et al., 2001; Matoba et al., 2000; 

Prior et al., 1999; Kemp & Cocks, 1999; Wang et al., 1997; Nishikawa et al., 2004; 

Randall et al., 1997). Indeed, all these investigations provided evidence to support the 

proposal that each o f the aforementioned agents might be an EDHF. Nevertheless, a 

number of conflicting reports in the literature suggested that it is more likely for them to 

be ‘EDHFs’ in certain species and tissues, rather than the ‘universal’ factor. For 

instance, in rat mesenteric and hepatic arteries, K+ was considered to be an EDHF on 

the basis that extracellular accumulation of the ion (Fig. 1.3) leads to smooth muscle 

hyperpolarizations whereas other studies contradicted this hypothesis (Edwards et al., 

1998; Andersson et al., 2000; Doughty et al., 2000; 2001; Lacy et al., 2000).

In recent years, a much simpler theory suggested that the EDHF phenomenon might 

involve the electrotonic spread of hyperpolarizations from the endothelium to smooth 

muscle cells via myoendothelial gap junctions (Chaytor et al., 2003; Griffith et al., 

2005). There is growing evidence showing that agonist stimulated endothelium-derived

. . . 9



Chapter One

hyperpolarizations may be conducted electrotonically to subjacent smooth muscle cells 

with the resulting hyperpolarization causing reductions in [Ca ]i and vasorelaxation.

K+ cloud theory
agonist

^Ca

3Na

hyperpolarization 2K

[Ca2i  \  K*

L-type

Fig. 1.3 The potassium cloud hypothesis. According to this theory, increases in 
intracellular Ca2+ in the endothelium lead to efflux of K+ through Kca channels, which 
accumulates in the intercellular space forming a ‘cloud’ of ions. This ‘cloud’ 
subsequently activates inward rectifying potassium channels ( K ir )  and Na+/K+- 
ATPases in smooth muscle causing hyperpolarization.

1.2.1 Gap junctional communication

Gap junctions are formed at points of cell-cell contact and they consist of two 

connexons or hemichannels, each formed from six connexin subunits (Griffith, 2004; de 

Wit, 2004; Takano et al, 2005)(Fig. 1.4). Three main connexin protein subtypes are 

known to exist in the vascular wall, namely Cx37, 40 and 43, although in some vessels 

Cx45 may also be present (Ujie et al., 2003; Lang et al, 2007; Ceroni et al, 2007). It 

should be noted that in the same connexon different connexin subtypes often co-localize 

forming heterotypic gap junctions, while in some tissues homotypic gap junctions, 

containing only one connexin subtype may be present (Griffith, 2004). These 

differences in structure have been extensively investigated electrophysiologically by 

patch-clamp techniques, which revealed more complex conductances in gap junctions 

with more than one connexin subtype (Wang et al, 2001; Yamazaki & Kitamura,

10
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2003). Furthermore, individual gap junctions aggregate in plaques that consist of focal 

clusters of many hundreds of units forming a characteristic pentalaminar structure 

(Griffith, 2004). These gap junction plaques form heterocellular contacts between 

endothelial and smooth muscle cells or homocellular contacts between adjacent 

endothelial or smooth muscle cells (Sandow & Hill, 2000; Bukauskas et a l, 2000; de 

Wit, 2004).

To investigate the role of gap junctions in cell-cell coupling, a number of experimental 

methods have been employed, such as fluorescent dye transfer and electrophysiological 

techniques. The use of fluorescent probes such as biocytin and calcein AM, which is 

cleaved intracellularly thereby facilitating its diffusion, was employed to give insight 

into the passage of molecules from the endothelium to the smooth muscle (Little et al, 

1995). However, this method failed to demonstrate dye coupling between adjacent cells, 

and therefore conventional electrophysiology was used as an alternative approach. 

Indeed, failure to demonstrate dye coupling, did not exclude the possible presence of 

electrical continuity between adjacent cells (Little et al, 1995). In segments of guinea- 

pig submucosal arterioles, electrophysiological studies confirmed that ACh-evoked 

endothelial hyperpolarizations, propagate to the smooth muscle through an electrotonic 

mechanism, and conversely, hyperpolarizations originating in the smooth muscle could 

also be detected in the endothelium (Coleman et a l, 2001; Yamamoto et al, 2001). 

Similar results were demonstrated in porcine coronary arteries, in rat aortas and rabbit 

iliac arteries (von der Weid & Beny, 1993; Marchenko & Sage, 1994; Griffith et al, 

2002).

More conclusive data about the role of gap junctions in cell-cell coupling were obtained 

by means of pharmacological agents, and more specifically the connexin-mimetic 

peptides. The connexin-mimetic peptides are short synthetic peptides that are 

homologous to the conserved Gap 26 and 27 domains of gap junctions and correspond 

to amino acid sequences in the extracellular loops of Cxs 37, 40 and 43. These peptides 

have been developed by minor variations in the amino acid sequences of the first and 

second extracellular loops of Cxs 37,40 and 43 (Griffith, 2004; Evans et al, 2006). In 

experiments carried out on vascular tissues, the peptides 37,40Gap26, 37,43Gap27, 40Gap27 

and 43Gap26 have been extensively used either on their own or more commonly in 

combination so as to determine the role of gap junctions in EDHF-type responses

11
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(Chaytor et a l, 1997; 1998; 1999; 2000; 2001; 2002; 2003; 2005; Griffith et a l , 2002, 

2004; Berman et al., 2002; Dora et al., 1999). Notably, these peptides modulate the 

gating of the channels with no concomitant changes in the structure of the plaques 

(Martin et al., 2005). This property is also in agreement with findings showing that the 

effects of gap peptides on EDHF-type responses are reversible, and that the responses 

are restored following consecutive washing of the tissues of interest (Chaytor et al., 

2001).

1.2.2 Receptor-dependent and receptor-independent stimulation of EDHF

EDHF-type relaxations are evoked by agonists, which cause a global increase in 

endothelial Ca2+ levels linked to depletion of the endoplasmic reticulum Ca2+ store 

(ER)(Sedova et al., 2000; Nilius & Droogmans, 2001)(Fig. 1.5). In most cell types, 

depletion of ER signals the activation of capacitative calcium entry (CCE), occurring 

through store-operated calcium channels (SOCs) in the plasmalemma (Fleming et al.,
9 +1996; Barritt, 1999). Activation of these channels leads to increases in [Ca ]i, which 

provides the physiological stimulus for the EDHF phenomenon and also NO release 

(see section 1.1.1). It is established that agonists that evoke EDHF-type relaxations 

promote the receptor-dependent stimulation of CCE. ACh, BK and substance P elevate
9 -1-endothelial Ca levels in a receptor-dependent fashion. These agonists induce depletion 

of the ER through the activation of phospholipase C (PLC), followed by the formation
9 _l

of IP3, which binds to IP3 receptor Ca channels (IP3R) on the store (Fleming et al., 

1996; Barritt, 1999). By contrast, agents such as cyclopiazonic acid and thapsigargin
9 Hpromote direct ER depletion by inhibiting Ca uptake by SERCA (Pasyk et al., 1995; 

Fukao et al., 1995; 1997; Davis & Sharma, 1997), thereby stimulating store-operated
9  .

Ca entry. Similarly, agents such as calcium ionophore A23187 can also be employed 

to evoke receptor-independent activation of EDHF-type responses (Plane et al., 1997; 

Zygmunt et al., 1997; Hutcheson et al., 1999; Kagota et al., 2001; Chaytor et al., 2003). 

Although the exact mechanism of action of A23187 is not entirely understood, it has 

been postulated that depletion of ER and changes in the function of mitochondrial
9  1

electron transport chain due to changes in mitochondrial Ca loading, might underpin 

endothelial Ca2+ influx (Pfeiffer et al., 1974; Reed & Lardy, 1972; Kauffman et al., 

1980; Gill et a l, 1986).
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h 2n

Fig. 1.4 Representation showing the structure of one connexin protein, and how six 
connexins form a connexon. Docking of connexons from apposing cells results in the 
formation of the aqueous pore of the gap junction.

1.2.3 Membrane potential: Endothelial hyperpolarizations in the EDHF 

phenomenon

A membrane potential arises when there is a difference in the electrical charge on two 

sides of a membrane, due to a slight excess of positive ions over negative ones on one 

side and a slight deficit on the other. Such differences in charge can be the result of both 

active electrogenic pumping and diffusion of ions. Potassium, sodium, calcium and 

chloride are the ionic species that establish the membrane potential. The equilibrium 

condition, in which there is no net flow of ions across the plasma membrane, is known 

as the resting membrane potential of the cell. This equilibration is mainly performed by 

K+ ions, which are pumped into the cells by the Na+/K+-ATPase (an electrogenic pump) 

in exchange for Na+ ions. Efflux of K+ ions is performed by potassium channels which

HOOC
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are located in the plasma membrane of the cell. As K+ begins to move out, an 

unbalanced negative charge is left behind which creates a membrane potential that tends 

to oppose the further efflux of the ion. Efflux of K+ ceases when the electrical driving 

force on K+ balances the effect of its concentration gradient. However, the resting 

membrane potential describes an ideal condition since flow of ions always takes place 

even in unstimulated cells. Depending on the ions that flow through the plasma 

membrane, the membrane potential can either increase or decrease.

Depolarization is the term that is used to describe the decreases in the absolute value of 

a cell’s membrane potential. Depolarization is often caused by influx of cations e.g. 

influx of Ca2+ through calcium channels. Indeed, vasoconstrictors such as 

phenylephrine, cause increases in vascular tension by facilitating influx of Ca in
ry i

smooth muscle cells through voltage-dependent L-type Ca channels. The inward 

movement of the ion is accompanied by a change of the membrane potential towards the
9 -4-reversal potential for Ca ions, and will thus depolarize the cell. By contrast, 

increasing the permeability to K+ will have the opposite effect.

Hyperpolarization is the term that is used to describe the increases in the absolute value 

of a cell’s membrane potential. It has become evident that agonists that evoke EDHF- 

type relaxations cause a shift in the membrane potential towards the reversal potential 

for K+ ions (—80mV; hyperpolarization)(Mehrke & Daut, 1990; Marchenko & Sage, 

1993). This endothelial hyperpolarizing response is determined by the efflux of K+, 

which is a consequence of the increases in [Ca ]* in this cell. Indeed, it has been
9 -4-demonstrated that suppression of the extracellular [Ca ] with EGTA, or inhibition of 

CCE with agents such as 2-aminoethoxydiphenyl borate (2-APB), attenuates endothelial 

hyperpolarization (Chen & Suzuki, 1990; Iwasaki et al., 2001). Accordingly, there is 

accumulating evidence, which shows that the opening of endothelial Ca2+-dependent K+ 

channels (Kca) contributes to this phenomenon on the basis that EDHF-type relaxations 

can be abolished by application of Kca inhibitors (Doughty et al., 1999; Quignard et al., 

1999; Dora et al., 2001; Walker et al., 2001; Crane et al., 2003; Petersson et al., 1997; 

Plane et al., 1997; Edwards et al., 1998; Ungvari et al., 2002; Brakemeier et al.,

2003)(Fig. 1.5).
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1.2.4 Relation between endothelial hyperpolarization and smooth muscle 

relaxation

As previously discussed, a smooth muscle hyperpolarizing response occurs in parallel to 

that in the endothelium. Based on the fact that both hyperpolarizations have the same 

magnitude, it was speculated that the EDHF phenomenon might be associated with the 

electrotonic coupling between the two vascular layers (Fig. 1.5). In addition, the number 

of myoendothelial gap junctions increases with the diminution of the size of the artery, 

which parallels the role of EDHF as a vasorelaxant mechanism in small size vessels 

(Shimokawa et al., 1996; Hill et al., 2002). Indeed, inhibition of myoendothelial gap 

junctions with connexin-mimetic peptides possessing homology with the conserved 

domains of these proteins, attenuated the propagation of hyperpolarizations to smooth 

muscle (Chaytor et al., 1997; 1998; 2001; 2005; Griffith et al., 2002). The connexin- 

mimetic peptides also uncouple vascular smooth muscle cells reflecting an ability to 

inhibit the spread of endothelial hyperpolarizations through successive layers of the 

media (Chaytor et al., 1997, 2005; Edwards et al., 2000). In support of this concept, 

suppression of gap junctional communication attenuates EDHF-type relaxations in 

several blood vessels, such as the rat hepatic and rabbit iliac arteries (Chaytor et a l , 

2001; 2003).

Nevertheless, it has been reported that, in some cases, smooth muscle relaxations may 

be independent of endothelial hyperpolarization. First, Plane et al. (1995), suggested 

that A23187-evoked NO-independent smooth muscle relaxations are triggered by a 

diffusible factor that is generated in endothelial cells. In support to this notion, studies 

in rabbit superior mesenteric arteries, showed that A23187-dependent responses are 

attributable to an agent that diffuses to smooth muscle via the extracellular space, 

whereas similar responses by ACh were attributable to an agent that crosses to the 

muscle through myoendothelial gap junctions (Hutcheson et al., 1999). Chaytor et al. 

(2003) subsequently demonstrated that in rabbit iliac arteries this discrepancy was due 

to the ability of A23187 to generate H2O2 in the endothelium, which in these vessels 

may be regarded as a relaxing factor, but not as a hyperpolarizing factor. Notably, in 

these vessels, inhibition of gap junctions with connexin-mimetic peptides failed to 

inhibit the concomitant relaxations to A23187, therefore effectively dissociating the 

hyperpolarizing from the relaxant mechanism (Chaytor et al., 2003).
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Ca2+
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SMC
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Fig. 1.5 Endothelial interactions that participate in the EDHF phenomenon. The image 
shows that depletion of the store upon stimulation with an agonist leads to an increase 
in Ca2+ influx through store-operated channels (SOCs) in the endothelium. This 
increase opens endothelial Kca channels and causes efflux of K+ which ultimately 
leads to endothelial hyperpolarization. This hyperpolarization propagates to adjacent 
smooth muscle cells via myoendothelial gap junctions, and subsequently to other 
smooth muscle cells.

In addition to the ability of some agonists to stimulate smooth muscle relaxation via the 

propagation of endothelium-dependent hyperpolarizations, there are reports that suggest 

that both hyperpolarization and depolarization may also be conducted electrotonically 

from smooth muscle to the endothelium (Yamamoto et al, 1999; Allen et al., 2002). 

Although this ‘reverse’ mechanism is not considered to be a hallmark of the EDHF 

phenomenon, it comprises a complementary pathway that depends on myoendothelial 

communication and may influence vascular contractility through secondary effects on 

endothelial function. Indeed, experiments carried out in hamster arteries with the Ca2+
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fluorescent probe Fluo-3, demonstrated that changes in [Ca2+]i were similar in smooth 

muscle and endothelial cells following stimulation with a vasoconstrictor such as PE

(Dora et al, 1997). It was thereby suggested that the diffusional transfer of some low
2+molecular mass agent from the smooth muscle to the endothelium, such as IP3 or Ca , 

might be responsible for the similar time courses observed in both layers (Dora et al, 

1997). Indeed, investigations carried out on a vascular cell coculture system that forms 

myoendothelial gap junctions, demonstrated that stimulation of smooth muscle cells is 

accompanied by an IP3- and Ca2+-mediated response in the endothelium, whereas 

secondary responses in smooth muscle following endothelial stimulation required 

diffusion of Ca2+ only (Isakson et al, 2007).

1.2.5 Calcium-Activated Potassium Channels -  general properties

The calcium-activated potassium channel family consists of six or seven 

transmembrane-helix domains and one pore domain (Fig. 1.7). There are two main 

subfamilies of Kca channels categorized according to their single channel conductance. 

The first one consists of the small and intermediate conductance channels (SKca: 2- 

25pS and IKca: 25-lOOpS), while the second one consists of the large conductance 

channels (BKca: 100-300pS). In the vascular wall, Kca channels are located in the 

endothelium and the smooth muscle, and their localization underpins their variable
94-physiological role, such as endothelial hyperpolarization, Ca entry and smooth muscle 

excitability (Ledoux et al., 2006).

SKca channels were the first members to be identified on the basis of their 

pharmacology. These channels are sensitive to apamin (a toxin extracted from the 

venom of the European bee Apis mellifera) and the plant alkaloid <7-tubocurarine (Ishii 

et a l , 1997; Shah & Haylett, 2000). Three highly homologous subtypes of SKca have 

been cloned, and classified as Kca2.1 (SKI), Kca2.2 (SK2) and Kca2.3 (SK3) (Kohler et 

a l , 1996; Wei et al, 2005). The cloned SKca pore results from the coassembly of four 

subunits (also termed a-subunits) which share a conserved transmembrane region (80- 

90% identical), but vary in their amino and carboxy terminals (Kohler et a l , 1996).
94-Nevertheless, all three variants are sensitive to changes in [Ca ]j, and their function is 

independent of the membrane potential of the cell. It is noteworthy that SKca channels 

do not contain a Ca2+-binding domain, but respond to changes in [Ca2+]j indirectly by
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interacting with calcium calmodulin (Xia et al., 1998). In the vascular wall, SKca are 

expressed in endothelial cells (Marchenko & Sage, 1996; Edwards et al., 1998; 

Burnham et al., 2002; Eichler et al., 2003; Taylor et al., 2003), while SK3 has also been 

identified in smooth muscle of human colonic arterioles (Chen et al., 2004).

Similarly, IKca channels are voltage-independent and sensitive to changes in 

intracellular [Ca2+]. The a subunits of the channel are 50% homologous to those of 

SKca, and therefore IKca are considered to be an SKca channel subtype (Kca3.1, SK4 or 

IK1). Like SKca, IKca do not bind to Ca2+ directly, but Ca2+ sensing depends on the 

binding of the carboxy terminal region with calmodulin (Fanger et al., 1999). Despite 

these common traits, the pharmacological properties of IKca differ considerably from 

those of SKca. IKca are inhibited by clotrimazole (a cytochrome P450 mono-oxygenase 

inhibitor) and its more selective analogues l-[(2 -chlorophenyl)diphenylmethyl]-lH- 

pyrazole (TRAM-34) and (2-(-chlorophenyl)-2,2-diphenylacetonitrile (TRAM-39) 

(these analogues lack P450 mono-oxygenase inhibitory properties), while the SKca 

inhibitors apamin and tubocurarine have no effect on this channel (Wulff et al., 2000; 

Eichler et al., 2003; Chandy et al., 2004; Weston et al., 2005; Burnham et al., 2006a). 

IKca are also inhibited by charybdotoxin (ChTX), a peptide found in the venom of the 

scorpion Leiurus quinquestriatus (Ishii et al., 1997; Joiner et al., 1997). IKca are 

constitutively expressed in vascular endothelium (Edwards et al., 1998; Eichler et al., 

2003; Weston et al., 2005).

94-BKca channels (also known as Kcal.l, Maxi-K or Slol) are both Ca and voltage-
94-regulated. In contrast to SKca and IKca, BKca sensitivity to Ca relies on the direct 

binding of the cation to a region of negatively charged aspartate residues in the C-
• 94* **terminus of the a-subunit of the channel, which is known as the “Ca bowl (Bao et al.,

2004). Additionally, BKca consists of two subunits, namely a and p (Tanaka et al., 

1997). The a subunits are the pore-forming portion of the channel, while the p subunits 

modulate their Ca2+ sensitivity (Toro et al., 1998)(Fig. 1.6). So far, up to eight P-subunit 

proteins have been identified, each providing different modulatory effects on the 

pharmacology and gating of the channel (Knaus et al, 1994; Xia et al., 2000). Although 

activation of the channel is facilitated by increases in [Ca2+]i above the threshold of 100 

nM, it has been inferred that it can also be activated directly by depolarizing voltages in 

the absence of Ca2+ (Kaczorowski et al., 1996). BKca are selectively inhibited by

18



Chapter One

iberiotoxin (IbTX), a toxin derived from the scorpion Buthus famulus, that seems to 

interact selectively with the p subunits of the channel (Brenner et al., 2000; Lohn et al.,

2001). ChTX can also be used to inhibit these channels, in addition to its effects on 

IKca. BKca are mainly located in vascular smooth muscle cells (Ledoux et al., 2005; 

Wei et al., 2005), although some reports suggest that the channel is also located in the 

endothelium of rat gracilis muscle arterioles and the rabbit ductus arteriosus (Ungvari et 

al, 2002; Thebaud et al., 2002).

Fig. 1.6 Representation of the spatial distribution of the a and p subunits that form the 
BKca channel pore. The channel consists of four a-subunits, which are the main 
structural components, and four accessory P-subunits that modulate the Ca2+- 
sensitivity of the former.

1.2.6 Identification of Kca channels involved in the EDHF phenomenon

The identity of the Kca channels involved in EDHF-type relaxations is controversial 

(Griffith, 2004; Feletou & Vanhoutte, 2006). It has been established that differences in 

expression of Kca channels among species and vascular beds, reflect: 1] the differential 

involvement of the three subtypes in endothelium-dependent hyperpolarizations (Busse 

et a l, 2002; Griffith, 2004), and 2] the different role of these channels under resting or 

depolarizing conditions (Crane et al., 2003). The involvement of Kca channels in the 

EDHF phenomenon has been demonstrated by mechanical and electrophysiological 

studies using a combination of pharmacological probes.

In rat and rabbit mesenteric arteries, EDHF-type responses were virtually abolished by 

apamin, suggesting that in these vessels SKca channels might be the prevailing Kca 

subtype (Chen & Cheung, 1997; Murphy & Brayden, 1995). Similar effects were also
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observed in bovine and porcine coronary arteries, and bovine oviductal arteries (Hecker 

et al., 1994; Garcia-Pascual et al., 1995). Nevertheless, apamin failed to modulate 

EDHF-type responses in other blood vessels, such as rabbit carotid arteries (Lischke et 

al., 1995), suggesting that other Kca channels might be involved. Indeed, in rabbit 

carotid arteries, in guinea pig basilar and canine coronary arteries, EDHF-type 

relaxations were completely or partially inhibited by the BKca/IKca inhibitor ChTX 

(Lischke et al., 1995; Petersson et al., 1996; Nakashima et al., 1997).

Due to the inevitable selectivity problems that arise with this toxin, definitive 

identification of BKcaand IKca was subsequently made with more selective agents, such 

as IbTX and TRAM-34. Although IbTX cannot substitute for ChTX in most cases, it 

can attenuate EDHF-type relaxations in some vessels, including first order rat 

mesenteric arteries and bovine coronary arteries, therefore illustrating the participation 

of BKca (Hilgers et al., 2006; Weston et al., 2005). Similarly, in rat carotid arteries, 

TRAM-34 significantly attenuated ACh-evoked hyperpolarizations, providing evidence 

for the involvement of IKca (Eichler et al., 2003). It has been established that in many 

EDHF-type responses each toxin on its own has a minor or no effect, while their 

combination abolishes the residual effects. The effects of such combinations on EDHF- 

type relaxations will be discussed in more detail in Chapter 2.

1.2.7 Other potassium channels in the EDHF phenomenon

Although it is now widely accepted that Kca is the main potassium channel family 

involved in the EDHF phenomenon, there are also reports suggesting that in some 

species and vessels inward-rectifying, voltage-dependent and ATP-dependent potassium 

channels might be involved (Zygmunt & Hogestatt, 1996; Edwards et al., 1998; 

Doughty et al., 2000; Corriu et al., 1996)(Fig. 1.7).

Inward-rectifying K* channels (K ir )  -  The involvement of Kir channels in EDHF-type 

responses has been described in the context of the ‘potassium cloud’ theory (Edwards et 

al., 1998; Edwards & Weston, 2004; Jiang et al., 2005). According to this model, K+ 

efflux from the endothelium generates local elevations in extracellular K+ surrounding 

the smooth muscle cells, thus stimulating the activation of Kir channels in smooth 

muscle, and subsequently allowing the outward movement of K+ with resultant
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Fig. 1.7 The potassium channel family. The four panels (above) show the structure of 
the subunits of SKca, IKca, BKca, Kv and Kir. For BKca only the a-subunit is shown. 
The structure of the BKca (3-subunit is similar to that of K ir .
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hyperpolarization (Edwards et al., 1998; Jiang et al., 2005). Although in some reports 

inhibition of endothelial Kir channels with Ba2+, an inhibitor of these channels, led to a 

significant leftward shift in both the hyperpolarizing and relaxant responses (Goto et al, 

2004), many studies have failed to demonstrate a role for Kir in the EDHF 

phenomenon. For instance, Ba2+ did not affect EDHF-type responses in both porcine 

coronary arteries and guinea-pig arterioles (Beny & Schaad, 2000; Quignard et al., 

1999; Coleman et al., 2001). However, there are reports suggesting that the involvement 

of Kir in the EDHF phenomenon depends on the level of depolarization of the tissue. 

Indeed, in rat mesenteric arteries, KCl-induced hyperpolarizations were significantly 

inhibited by PE, therefore emphasizing that differences in experimental conditions 

might underpin the differential role of these channels in the hyperpolarizing mechanism 

(Richards et al., 2001).

Voltage-dependent iC  channels (Kv) - In rabbit femoral, rat hepatic and guinea-pig 

basilar arteries, 4-aminopyridine (4-AP), an inhibitor of Kv channels, significantly 

attenuated EDHF-type relaxations, suggesting that Kv channels play a pivotal role in 

endothelial hyperpolarizations in these vessels (Nilius & Droogmans, 2001; Zygmunt & 

Hogestatt, 1996; Kwon et al., 1999; Zygmunt et a l,  1997). However, it should be noted 

that the interpretation of these data could be complicated by the fact that 4-AP is also 

known to inhibit SKca (SK3) channels in a concentration-dependent manner (Grunnet et 

al., 2001). For instance, 4-AP inhibits SK3 channels at 100 pM, while at higher 

concentrations it inhibits both Kir and SK3 (Grunnet et al., 2001; Hinton & Langton,

2003). By contrast, EDHF-type responses in rabbit mesenteric, rat cerebral and human 

resistance arteries were virtually unaffected by the inhibitor (Murphy & Brayden, 1995; 

Petersson et al., 1997; Ohlmann et al., 1997). In some studies, the combination of 4-AP 

with inhibitors of Kca, such as apamin, has been more effective than each inhibitor on 

its own (Hinton & Langton, 2003). Although the double combination fails to abolish 

ACh-evoked EDHF-type relaxations, it suggests that a synergy between Kv and SKca 

channels might partially contribute to endothelial hyperpolarizations in these arteries 

(Hinton & Langton, 2003).

ATP-dependent t C  channels (K a tp ) ~  Inhibition of EDHF-type responses by the 

sulphonylurea glibenclamide, a selective inhibitor of K At p  channels, has been 

demonstrated only in few vessels, including rabbit mesenteric and piglet pial arteries
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(Murphy & Brayden, 1995; Lacza et a l , 2002). In rabbit iliac arteries, glibenclamide 

had no effect on ACh- and A23187-evoked EDHF-type relaxations and 

hyperpolarizations, therefore excluding the proposed role of K a t p  i n  mesenteric arteries 

from the same species (Chaytor et a l , 2002). Similarly, glibenclamide failed to inhibit 

EDHF-type relaxations in bovine and porcine coronary arteries, and guinea-pig carotid 

artery (Hecker et al., 1994; Corriu et al., 1996).

1.3 Reactive oxygen species (ROS)

ROS such as superoxide (0 2 *’), hydrogen peroxide (H2O2) and hydroxyl radicals (• OH) 

are by-products of oxygen metabolism and play a major role in determining the cellular 

redox status. Although the production of ROS was initially linked to various 

pathological conditions, it has now been established that the basal release of ROS also 

takes place under physiological conditions. Both endothelial and smooth muscle cells 

generate ROS either spontaneously or in response to receptor-dependent and -  

independent stimuli (Heinzel et al, 1992; Zafari et a l, 1998). From a physiological 

standpoint, H2O2 is an important determinant of vascular tone, and possesses both 

vasodilator and vasoconstrictor properties, depending on the tissue and the experimental 

conditions. H2O2 induces relaxation in porcine and human coronary arteries, in rabbit 

and rat mesenteric arteries, in rabbit iliofemoral arteries and guinea-pig aorta (Fujimoto 

et a l , 2001; 2003; Chaytor et a l, 2003; Gao et a l, 2003; Hattori et a l, 2003; Matoba et 

a l,  2003; Miura et a l,  2003; Sato et a l, 2003). In some blood vessels, H2O2 has been 

considered to be an EDHF, on the basis that in these arteries NO/prostanoid- 

independent relaxations and hyperpolarizations are catalase sensitive (Matoba et a l, 

2000). In addition, application of exogenous H2O2 mimics EDHF-type responses 

through a mechanism that involves the activation of Kca channels in the smooth muscle 

(Hayabuchi et a l,  1998). By contrast, in pathological conditions such as hypertension, 

diabetes and hypercholesterolemia, the release of H2O2 and other ROS is augmented, 

leading to endothelial dysfunction, increased contractility, inflammation and apoptosis.

1.3.1 Production of H2O2

ROS are formed as intermediates in the redox process that leads to the production of 

H2O from molecular oxygen. The initial step for the production of ROS is the reduction
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of molecular oxygen to O2 ' (Fig. 1.8). O r' is a negatively charged radical, which is 

highly unstable in aqueous solution, and depending on the conditions, it can act as an 

oxidizing or as a reducing agent. As an oxidizing agent O2 " is reduced to H2O2, while as 

a reducing agent it donates electrons to NO, generating peroxynitrite (ONOO). O2 ' has 

a half-life of a few seconds, and it is rapidly dismutated to H2O2. Although the 

dismutation reaction can occur spontaneously between two O2 ’ molecules, it can be 

significantly accelerated in the presence of the enzyme superoxide dismutase (SOD).

GSSG
NADPH oxidase 

Mitochondria 
Xanthine oxidase 
Endothelial NOS 
Cyclooxygenase 

Lipoxygenase 
C Y P 4 5 0  enzymes

2GSH GSHP
SO D

catalase2H

.2+

•OH

Fig. 1.8 Schematic representation summarizing the steps that lead to the generation 
and degradation of H2O2 in the cell.

1.3.1.1 Superoxide dismutases

There are three major SODs: the Cu,ZnSOD (SOD1), the MnSOD (SOD2) and the 

extracellular SOD (EC-SOD; SOD3). SOD1 is mainly found in the cytosolic and 

lysosomal regions of the cell, although some reports have suggested that the enzyme 

might also be located in the intermembrane space of mitochondria (Okado-Matsumoto 

& Fridovich, 2001). SOD2 is the main mitochondrial isoform and is located in the 

mitochondrial matrix. By contrast, SOD3 localizes to the extracellular space by binding 

to heparan sulphate proteoglycans (Fattman et al., 2003). Due to this extracellular 

localization, the enzyme plays a central role in scavenging 0 2 *' especially that generated 

from membrane-bound NADPH oxidase and inflammatory cells (Oury et al., 1992; 

Laude et al., 2005). In the vasculature, SOD3 is mainly expressed by smooth muscle 

cells and macrophages, and is distributed at high concentrations in the interstitium of 

the arterial wall (Stralin et al., 1995). Because of their distinct subcellular localization,
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the catalytic action of the three SOD isoenzymes therefore takes place in distinct 

compartments since O2 ’ crosses cell membranes very poorly (Mendez et al., 2005).

Among the three isoforms, SOD1 is the most abundant (accounting for 80% of the total 

SOD) and seems to be the most essential for the regulation of redox homeostasis in 

cells, SOD2 is much less preponderant (accounting for only the 2% of the total SOD), 

while the SOD3 content varies among mammalian species (Stralin et al., 1995). Studies 

with SOD2 knockout mice have demonstrated that animals with the homozygous 

phenotype SOD2'7’ die soon after birth, while those with the heterozygous SOD2+/’ can 

survive despite the development of oxidative stress, which is attributed to mitochondrial 

dyfunction (Andresen et al., 2004). Similarly, lucigenin-enhanced chemiluminescence 

experiments, which are used for the detection of 0 2 '', demonstrated that in aortas and 

carotid arteries from SOD 1-deficient mice the complete absence of the dismutase 

(SOD I'7' phenotype) is associated with 0 2 *’ levels that are 2-fold higher in 

corresponding vessels from wild type animals (Didion et al., 2002). By contrast, the 

absence of SOD3 was found to have no effect on the lifespan of mice (Sentman et al, 

2006). The reason for these differences remains to be elucidated.

1.3.2 Degradation of H2O2

In conjunction to the enzymatic dismutation of O2 " radicals into H2O2, the cells have 

also evolved homeostatic mechanisms for the limitation of H2O2 levels in the 

vasculature. It has been established that the elimination of H2O2 is critical, as it forms a 

major protective mechanism that protects the cells against oxidative stress (Warner et 

al., 2004). So far, three main mechanisms that reduce intracellular H2O2 levels have 

been identified. In the presence of (i) catalase or (ii) glutathione peroxidase, H2O2 is 

dismutated into H2O and molecular oxygen, whereas in the presence of (iii) transition 

metals, such as iron, H2O2 generates highly reactive hydroxyl radicals through the 

Haber-Weiss reaction (Fig. 1.8).

1.3.2.1 Degradation by catalase

Catalases are haem-containing enzymes that are responsible for the degradation of 

H2O2, thereby maintaining a stable redox status in the cells and preventing the damage 

of cellular components such as proteins (Ellis & Triggle, 2003). The catalase reaction is
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a two-step process that depends on the oxidation/reduction of haem. In the first reaction, 

one H2O2 molecule oxidizes haem to an oxyferryl species, and subsequently the 

generation of a porphyrin cation radical known as Compound I (Cpd I)(2). In the second 

reaction, an H2O2 molecule reduces Cpd I to the resting state enzyme with a 

concomitant release of water and molecular oxygen (3).

The catalase activity of animal and plant tissues is largely located in subcellular 

organelles, known as peroxisomes (Chance et al, 1979). However, in some tissues such 

as in guinea-pig liver and rat heart, non-peroxisomal catalase is also located in 

mitochondria (Bulita et a l, 1996; Radi et al, 1991). Other organelles such as the ER 

contain little, if  any, catalase, while a small amount of the enzyme has been identified in 

the cytosol (Subramani, 1992).

Catalase extracts and synthetic catalase have been widely used as experimental tools to 

determine the role of drug-induced H2 0 2 -dependent responses in the vasculature. In 

rabbit iliac arteries, for instance, application of bovine liver catalase has been used to 

investigate the putative role of endogenous H2O2 in EDHF-type responses induced by 

calcium ionophore A23187 and ACh (Chaytor et a l , 2003; Iesaki et al, 1994; Mian & 

Martin, 1997). In these investigations the potential role of catalase in preventing H2O2- 

evoked responses was further elucidated by the application of 3-amino-l,2,4-triazol 

(ATZ), an inhibitor of the active site of the enzyme. The inhibitory action of ATZ is 

exerted on compound I, which means that it can only inhibit the enzyme in the presence 

of H2O2, and acts by modifying a histidine ligand to the haem (Margoliash & 

Novogrodsky, 1958). ATZ significantly impaired the catalase activity in rat aortas and 

restored the ability of H2O2 to depress the ACh-induced responses (Mian & Martin,

2H20 2 -> 2H20  + 0 2

Enz(Por -  Fem) + H20 2 ->• Cpd I(Por+ • - FeIV = O) + H20  

Cpd I(Por+" - FeIV= O) + H2Q2 -<■ Enz(Por -  Fe1") + H2Q + 0 2

(1)

(2)

(3)

1997).
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1.3.2.2 Degradation by glutathione peroxidase

An alternative mechanism of enzymatic H2O2 degradation is one that involves the 

oxidation of glutathione by the enzyme glutathione peroxidase (GSHpx)(Fig. 1.8). 

Although GSHpx and catalase serve the same purpose, it has been established that the 

ability of GSHpx to cope with H2O2 is 7-fold greater than that of catalase (Marklund et 

al., 1982). Also, in tissues such as skeletal muscle, spermatozoa and certain regions of 

the brain it has been demonstrated that the amount of GSHpx present is significantly 

higher than that of catalase (Chance et al, 1979). Nevertheless, it is now known that in 

vivo both enzymes co-operate in the removal of H2O2. In fact, studies carried out on 

mammalian red blood cells have shown that GSHpx regulates the normal low rate of 

H2O2 production, while as the concentration of H2O2 increases catalase becomes more 

important (Gaetani et a l, 1994).

At least four isoforms of GSHpx have been identified, with the GSHpx-1 being the most 

prevalent. The importance of the antioxidant properties of GSHpx-1 has been 

demonstrated in human T47D transfectants overexpressing the enzyme. In this 

mammary adrenocarcinoma cell line, overexpression of GSHpx-1 decreases H2O2 levels 

and increases resistance to cell damage (KretzRemy et a l , 1996). The crucial role of 

GSHpx in the determination of the redox status of the cells has also been demonstrated 

by studies carried out on GSHpx-1'7' knockout animals. These animals were shown to be 

highly susceptible to various forms of oxidative injury, and were predisposed to 

endothelial dysfunction, especially when fed with a hyperhomocysteinemic diet (Arthur, 

2000; Dayal et a l , 2002).

The substrate for GSHpx is the tripeptide glutathione (y-L-glutamyl-L-cysteinylglycine; 

GSH), which depending on the redox status of the cells can be found either as a dimer 

or a monomer. The dimerization requires the oxidation of the cysteine sulfhydryl groups 

of two GSH molecules, followed by the subsequent formation of a disulphide bridge to 

form glutathione disulphide (GSSG). In this reaction, GSH serves as an electron donor 

for the reduction of H2O2 to H2O (Dringen et a l, 2005).

H20 2 + 2GSH -  GSSG + 2H20
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1.3.2.3 The Haber-Weiss / Fenton reaction - Metal induced oxidative stress

The iron-dependent decomposition of H2O2 is known as the Haber-Weiss reaction and 

generates • OH, which can react at diffusion-limited rates with proteins, lipids and other 

biomolecules (Sawyer et al., 1993; Lloyd et al., 1997). It has been demonstrated that, 

although cells have evolved mechanisms to protect themselves from damage by H2O2 

overproduction (see section 1.3.2.2), they are particularly vulnerable to iron-mediated 

oxidation of proline, histidine, arginine, lysine and in particular cysteine residues 

(Stadtman, 1990; Saurin et al., 2004). Several lines of evidence have confirmed that the 

production of • OH requires the reduction / oxidation of iron, which has been previously 

released from iron-binding proteins, such as haemoglobin and cytochromes (Lloyd et 

a l, 1997; Valko et a l,  2004).

The two main reactions of iron-dependent H2O2 decomposition are:

Fem + 0 2 ‘ «-► Fe“ + 0 2 (1)

Fe11 + H2O2 —> Fe111 + • OH + OH’ (Fenton reaction) (2)

The overall reaction is called Haber-Weiss reaction:

0 2 ‘ + H20 2 <-> 0 2 + • OH + OH' (3)

In situ, generation of highly reactive -OH is associated with the iron-mediated oxidative 

damage that is implicated in cardiovascular disease, including cerebral ischaemia and 

reperfusion (Liu et a l, 2004; Valko et a l, 2005). Studies with the iron chelators 

deferoxamine and deferiprone have been used to probe these reactions in both vascular 

and brain tissues (Nelson et a l,  1992; Chaytor et al., 2003; Shi et al, 2007). For 

instance, in an experimental model of cerebral ischaemia in cats, treatment with 

deferoxamine has been associated with both reduced lipid peroxidation and improved 

post-ischaemic vasoreactivity (Nelson et a l, 1992).

1.3.3 Sources of H2O2

As described in a previous section, 0 2 *' serves as a precursor for other ROS, such as 

H2O2, and modulates several signalling processes in the cellular compartments where it 

is released. Therefore, the sources of H2O2 are mainly the intracellular sources of O2 '',
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which include NADPH oxidases, mitochondria, eNOS, xanthine oxidase, cytochrome 

P450 monoxygenase enzymes, COX and lipoxygenase.

1.3.3.1 NADPH oxidase

NADPH oxidase is widely considered to be the primary source of O2 ’ in the vascular 

wall, and it is known to be active in the endothelial, smooth muscle and adventitial 

layers (Touyz et al., 2002; Rey & Pagano, 2002; Sorescu et al., 2002; Muzaffar et al., 

2003; Yamawaki etal., 2003).

The best characterized NADPH oxidase is found in phagocytes such as neutrophils and 

macrophages. The phagocytic NADPH oxidase consists of five major components, 

namely p47phox, p67phox, p40phox, p22phox and gp91phox. Additional components 

include the small size G-proteins Rac and RaplA. In resting cells, these subunits form 

two complexes, one cytosolic and one bound to the plasma membrane (Fig. 1.9). The 

cytosolic complex comprises of p47phox, p67phox and p40phox, while p22phox and 

gp91phox form the integral membrane complex known as cytochrome bssg. The 

catalytic subunit of NADPH oxidase is gp91phox, and is mainly bound to FAD and two 

haem molecules. Conversely, the role of p40phox is unclear, although there is 

accumulating evidence which suggests that this subunit might be a negative regulator of 

the enzyme (Lopes et al., 2004).

Two main events are required for the activation of NADPH oxidase. The first one is the 

exchange of GTP for GDP by Rac, and the second one is the phosphorylation of 

p47phox by protein kinase C (PKC) (Heywoith et al., 1993; Xu et al., 1994; Ungvari et 

al., 2003; Bey et al., 2004). Notably, the phosphorylation of p47phox triggers a 

conformational change, which leads to the release of p40phox and the subsequent 

association of the cytosolic complex with bssg (Fig. 1.9). Following this interaction, the 

resulting functional enzyme reduces NADPH in the cytoplasm with a concomitant 

release of two electrons. These two electron pass from the cytoplasmic side to the 

extracellular space, through FAD and the two haem groups, and they are finally 

accepted by molecular oxygen.
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Fig. 1.9 Regulation of NADPH oxidase by protein interactions. The figure shows the 
enzymatic components prior to cell activation and the active enzyme following the 
assembly of the regulatory cytosolic subunits with those that reside on the cell 
membrane.

Similarly to the phagocytic oxidase, the vascular homologues transfer electrons from 

the reduced substrate to molecular oxygen, producing O2 Nevertheless there are still 

major differences between the vascular and the phagocytic NADPH oxidases. For 

instance, vascular NADPH oxidases are constitutively active and produce 0 2 *' in a slow 

and sustained fashion, while the phagocytic one is inducible by cytokines and pathogens 

(Babior et al., 2002; Li & Shah, 2002). Furthermore, in vascular tissues a family of 

gp91phox-like proteins called non-phagocytic NADPH oxidase (Nox) proteins has been 

identified (Suh et al, 1999; Cheng et al, 2001). According to their structure these 

proteins are classified as Noxl, Nox2 (also known as gp91phox), Nox3, Nox4 and 

Nox5 (Suh et al, 1999). In the vasculature, Noxl, Nox4, Nox5 and Nox2 are located in
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the endothelium of the vessels, while smooth muscle contains all homologues except for 

Nox2 (Banfi et al, 2001; Lambeth et al, 2002; Sorescu et al, 2002). Notably, proteins 

homologous to p47phox and p67phox have also been identified. These proteins are 

known as ‘NOX organizer 1 ’ and ‘NOX activator 1 ’, and it has been suggested that they 

regulate NADPH oxidase function through the modulation of Noxl activity (Takeya et 

al, 2003).

The vascular NADPH oxidases are activated by a variety of hormones and factors, such 

as platelet-derived growth factor (PDGF), tumor necrosis factor (TNFa), oxidized LDL 

and angiotensin II (Griendling et al, 2000). Endogenous NO derived from the vascular 

endothelium has also been proposed to affect the function of this enzyme. Indeed, in 

human cultured endothelial cells it has been demonstrated that NO has anti

inflammatory properties, and it can suppress O2 ’ production by NADPH oxidase 

(Selemidis et al, 2007). Further investigations by the same group showed that in human 

microvascular endothelial cells (HMEC-1) addition of NO donors, namely DETA- 

NONOate, can significantly reduce O2 '" production by ~50%, an effect which was 

attributed to the S-nitrosylation of the p47phox subunit (Selemidis et al, 2007). Similar 

effects have also been demonstrated by other studies with other NO donors and related 

S-nitrosothiols, which suggested that these agents might interfere with the assembly of 

the functional enzyme (Park, 1996; Fujii et al, 1997). However, in this thesis all 

experiments were carried out in the presence of the NOS inhibitor L-NAME and 

therefore the aforementioned interaction is irrelevant in this context.

1.3.3.2 Mitochondrial electron transport chain

Production of ROS by mitochondria takes place predominantly in the electron transport 

chain (ETC) in the inner mitochondrial membrane. ETC comprises of more than 80 

proteins, grouped into five redox centres (complexes), which may leak electrons to 

molecular oxygen during respiration. The monovalent reduction of oxygen is favoured 

by the fact that most ETC steps involve single-electron reactions.

1.3.3.2.1 The mechanism of electron transport and ATP production

In general terms, reducing equivalents are transferred from NADH and FADH2, during 

the metabolism of carbohydrates and fatty acids, to molecular oxygen with a
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concomitant extrusion of protons across the mitochondrial membrane, which is known 

as ‘respiration’. The transport of protons generates a proton motive force -  an 

electrochemical gradient -  that is dissipated when ATP levels are low. It has been 

established that this gradient has two components: 1] a pH-related component, which is 

the result of the pH difference (ApH) across the inner membrane of the organelle, and 2] 

a difference in membrane potential (ATm), due to charge separation (Lee et al., 2001; 

Hunte et al., 2003). The rate of ATP synthesis is determined by these components, as 

well as the cellular concentration of ADP, which is approximately 10-fold lower than 

that of ATP. The process of ATP synthesis, known as oxidative phosphorylation, takes 

place in the inner mitochondrial membrane at the five complexes of ETC. Each complex 

exerts a different degree of control over respiration, and thereby the generation of ATP.

OUT

(Fe-S)

x H *(Fe-S;■ ■
FMN

Succinate
NADH

ADP ATP

I III II IV V

Fig. 1.10 Schematic representation of the mitochondrial electron transport chain 
(ETC), showing the five complexes (I, II, III, IV and V), and how consumption of the 
substrates NADH and succinate leads to the development of the proton motive force 
needed for the production of ATP from ADP in complex V. Q: ubiquinone, Fe-S: iron- 
sulphur centre, ci: cytochrome ci, c: cytochrome c, b: cytochrome b, FAD: flavin 
adenine dinucleotide, FMN: flavin mononucleotide. OUT: outer mitochondrial 
membrane. IN: inner mitochondrial membrane.
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NADH:ubiquinone oxidoreductase is the first and largest enzyme in ETC (Complex 

I)(Fig. 1.10), and its main function is the catalysis of electron transport from NADH to 

ubiquinone (Q). This translocation is coupled to the efflux of protons from the 

mitochondrial matrix to the intermembrane space.

The flavoprotein succinate:ubiquinone oxidoreductase (Complex II) oxidizes succinate 

to fumarate, transferring electrons to ubiquinone (Fig. 1.10). The second complex is the 

only part of the respiratory chain that forms a link with the citric acid cycle. In terms of 

its structure, complex II consists of a hydrophilic domain located in the matrix and a 

hydrophobic one bound on the mitochondrial membrane. The hydrophilic domain 

comprises of a flavoprotein folded in four domains, bound to an iron-sulfur subunit. The 

flavoprotein contains a flavin adenine dinucleotide (FAD) domain, which is the primary 

electron acceptor in this complex. The iron-sulfur subunit has a C- and an N- terminus. 

The N-terminal domain contains the [2Fe-2S] centre, whereas the C-terminal domain 

contains the [3Fe-4S] and the [4Fe-4S] centres. During respiration, electrons flow 

through the [3Fe-4S] centre to ubiquinone, forming ubisemiquinone, before becoming 

fully reduced.

Complex III, also known as ubiquinol:cytochrome c reductase, is the component of 

ETC that is responsible for the transfer of electrons from ubiquinone to cytochrome c 

(Fig. 1.10). Like all the reactions in ETC, this one is coupled to the pumping of protons 

from the matrix to mitochondrial inner membrane, thereby contributing to the proton 

gradient required for the ATP synthesis. Complex III is a multi-subunit entity, which 

consists of two cytochromes, b and c, a low (bL or b-566) and high (bn or b-560) 

potential b-type haem, and the Rieske protein, which is bound to the [2Fe-2S] centre. 

The mechanism of electron transport by complex III is known as the Q cycle (Fig. 

1.11), and relies on the transfer of electrons between two ubiquinone sites, Qo and Qi, 

which face the intermembrane space and the matrix, respectively (Fig. 1.11). During a 

complete cycle, two molecules of ubiquinol are oxidized to ubiquinones, and one 

molecule of ubiquinol is regenerated from the re-reduction of one of the two 

ubiquinones (Trumpower, 1990). In the first step, ubiquinol is oxidized at the Qo site, 

forming an ubisemiquinone anion. This electron transfer from ubiquinol is bifurcated 

(Fig. 1.11). The first electron is transferred to cytochrome ci and then cytochrome c,
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Fig. 1.11 The protonmotive Q cycle. The diagram shows the branched cyclic pathway 
of electron transfer from ubiquinol (QH2) to cytochrome c through the four redox 
centres of the cytochrome b and cl complex. In the first step QH2 is oxidized and one 
electron is transferred to the iron-sulfur protein (Fe-S) with the concomitant generation 
of low potential ubisemiquinone (Qp ). Qp ’ subsequently reduces the b-566 heam 
group with the concomitant production of ubiqionone (Q). In the second step the 
electron that was transferred to Fe-S is transferred to cytochrome Ci and then 
cytochrome c, while simultaneously one electron is transferred from b-566 to b-560 
heam. In the third step b-560 heam reduces Q to the relatively stable ubisemiquinone 
anion (Qn ")• When b-560 is re-reduced by repeat of the described cycle, it reduces Qn ’ 
to QH2. The diagram also shows the sites of action of three agents, which inhibit the Q 
cycle; antimycin, myxothiazol and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole 
(UHDBT)(adopted from Trumpower, 1990). Q0: intermembrane space ubiquinone 
site, Qi: matrix ubiquinone site.

through the Fe-S proteins, whereas the second one propagates from haem t>L to haem 

bn- At this point, bn reduces ubiquinone to ubisemiquinone anion. Then, a second 

molecule of ubiquinol is oxidised by the Fe-S proteins by the same pathway, and 

electrons are transferred to the haem molecules. Haem bn finally reduces the previously 

formed ubisemiquinone anion to ubiquinol, thereby completing the cycle. Subsequently, 

cytochrome c carries the electrons from complex III to cytochrome c oxidase, also 

known as complex IV. This enzyme couples the reduction of molecular oxygen to 

water, to the pumping of protons from the mitochondrial matrix to the intermembrane 

space, contributing to the proton motive force generated across the membrane. These 

protons, in conjunction to those originating from complexes I and III are used by F1-F0- 

ATP synthase (complex V) to drive ATP synthesis (Fig. 1.10).
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1.3.3.2.2 Topological sites of CV" release in mitochondria

It has been established that mitochondria are one of the major sources of ROS in various 

experimental models. There is accumulating evidence that supports that complexes I 

and III of the ETC are important sites of O2 ’ generation (Lenaz et al, 1998; Tompkins 

et al., 2006; Grivenikova & Vinogradov, 2006; Guzy et al, 2006). Indeed, several 

respiratory components, such as flavoproteins, Fe-S clusters and ubisemiquinone are 

capable of promoting the monovalent reduction of oxygen. Nevertheless, the relative 

contribution of each component varies among organs, and also depends on the 

respiration state, that is if  the mitochondria are actively respiring or if the respiratory 

chain is highly reduced (Baija, 1999). It has been demonstrated that the rate of O2 ' 

production depends on the law of mass action, therefore increasing when the 

concentration of oxygen increases, or the degree of reduction of the autoxidizable 

electron carriers of the ETC (Baija, 1999). In complex I, the primary source of O2 ’ 

seems to be one of the iron-sulfur clusters, whereas in complex III, the radical is formed 

during the autoxidation of ubisemiquinone in the mitochondrial membrane (Herrero et 

al, 2000; Genova et al, 2001; Lambert & Brand, 2004).

Studies carried out with the complex I inhibitor rotenone and the complex III inhibitor 

myxothiazol, demonstrated that occupation of the Q-binding site triggers O2 " 

production by promoting the reaction with molecular oxygen (Lambert & Brand, 2004). 

Similarly, in vivo experiments showed that O2 ' production by mitochondria is 

particularly prominent in situations of metabolic perturbations, hypoxia-reoxygenation 

and ischaemia-reperfusion (Du et al, 2001; Pearlstein et al, 2002). Nevertheless, there 

is a large number of reports that suggest that interruption of electron transport by the 

aforementioned agents, and other ETC inhibitors does not always increase ROS 

production. For instance, in isolated rat pulmonary arteries, rotenone attenuates 

production of ROS, whereas in renal arteries from the same species, it has the opposite 

effect (Michelakis et a l , 2002). Other reports in human coronary resistance arteries and 

hypoxic pulmonary myocytes also confirm the fact that ETC inhibitors can either inhibit 

or stimulate ROS production (Liu et a l , 2003; Waypa et a l , 2002).
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1.3.3.3 Endothelial Nitric Oxide Synthase (eNOS)

eNOS is a complex homodimeric oxidoreductase that requires the cofactors flavin 

adenine dinucleotide (FAD), flavin mononucleotide (FMN), NAD(P)H and 6R- 

tetrahydrobiopterin (BH4). The production of NO from L-arginine involves two 

independent steps (Gao et al, 2007). The first one is associated with the NADPH- 

dependent oxidation of the substrate into NG-hydroxy-arginine, while the second one 

involves the haem-dependent reduction of molecular oxygen. One essential feature of 

eNOS is that the activity of the enzyme requires the formation of an active dimer, and it 

is thought that NO is synthesized when electrons are transferred from the reductase 

domain (a C-terminal-bound NAD(P)H) of one subunit to the oxidase domain (an N- 

terminal haem centre) of the other (Nishino et al., 2007). It has been suggested that BH4 

is perhaps the most essential cofactor in NO generation, as it plays a key role for the 

structural stability of the dimer (Landmesser et al.f 2003).

Moreover, there is increasing evidence that suggests that BH4 availability determines 

the balance between NO and 0 2 *' production by eNOS (Bendall et al, 2005). Decreases 

in BH4 levels, due to catabolism or oxidative degradation, are associated with eNOS 

uncoupling and concomitant increases of NOS-dependent O2 ’ production (Landmesser 

et al, 2003). Taken that BH4 is a reducing agent, it has been suggested that the cofactor 

is highly susceptible to oxidant stress, which ultimately leads to eNOS malfunction 

(Milstien & Katusic, 1999).

The generation of O2 " from eNOS has been demonstrated in stroke-prone 

spontaneously hypertensive rats (SPSHR), in animal models of angiotensin Il-induced 

hypertension and in patients with diabetes mellitus (Kerr et a l , 1999; Mollnau et a l , 

2002; Heitzer et a l , 2000). It has also been observed that eNOS function is impaired in 

ischemic hearts (Dumitrescu et al., 2007). Indeed, in the ischaemic and reperfused heart 

there is a significant increase in O2 ’ levels in the endothelium of coronary vessels, 

which was increased 10-fold 1 in a 30 min time-point following the induction of 

ischaemia in hearts from Sprague-Dawley rats. This increase was significantly inhibited 

by the eNOS inhibitor L-NAME, therefore confirming that the uncoupled enzyme is the 

major source of O2 " release in these vessels (Dumitrescu et al, 2007).
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1.3.3.4 Xanthine oxidase

Xanthine oxidase (XO) is one of the two inter-convertible forms of the molybdenum 

hydroxylase flavoprotein xanthine oxidoreductase (XOR), the other form being 

xanthine dehydrogenase (XD). The distribution of XOR in the vascular wall has been a 

controversial topic mainly due to the inconsistent results obtained by different methods 

of enzymatic detection. It has been demonstrated that XOR is present in the cytoplasm 

of the cells and on cell membranes bound to glycosaminoglycans, such as heparin 

(Rouquette et al, 1998; Radi et al, 1997). In addition, immunohistochemical studies 

have located XOR in bovine capillary endothelial cells and human endothelial cells 

(Jarasch et al, 1981; Bruder et al, 1984). However, other reports suggested that the 

enzyme might be located in peroxisomes, lysosomes and the rough endoplasmic 

reticulum (Fredericks & Vreeling-Sindelarova, 2002).

XO and XD catalyse the oxidation of hypoxanthine to xanthine and xanthine to uric 

acid respectively, with a concomitant reduction of NAD+ or molecular oxygen (Pritsos, 

2000; Meneshian & Bulkley, 2002; Nishimoto et a l , 2005). It has been demonstrated 

that the NAD+-dependent XD is more preponderant than the oxidase isoform in 

mammalian tissues (Stripe & Della Corte, 1969). Nevertheless, XD can be reversibly 

converted into XO through the thiol oxidation of sulfhydryl residues, or irreversibly by 

proteolytic cleavage of the active site loop Gly-423-Lys-433 (Nishino & Nishino, 1997; 

Nishino et al., 2005; Kuwabara et al., 2003).

Whereas XD requires NAD+ as an electron acceptor, XO requires the reduction of 

molecular oxygen. It has been proposed that the utilization of molecular oxygen by XO 

potentially leads to the formation of O2 '’, which has been involved in endothelial 

dysfunction, as demonstrated in experimental models of ischaemia-reperfusion, 

hypercholesterolemia, and double transgenic rats harbouring the human renin and 

angiotensin genes (Angelos et a l , 2006; White et al., 1996; Mervaala et al., 2001). 

Additionally, XO can function in a molybdenum-independent manner, which generates 

O2’' at the expense of NADH (Zhang et al, 1998). However, it has also been 

demonstrated that the XD-dependent generation of O2*’ was increased 4-fold in the 

presence of O2 and NADH than that generated when hypoxanthine was the substrate 

(Zhang et a l , 1998). This effect is particularly significant for the interpretation of the 

effects of XOR inhibition, since O2 generated by this mechanism is not blocked by
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oxypurinol, but by the flavoprotein inhibitor diphenyliodonium (DPI)(Zhang et al.,

1998).

1.3.3.5 Cytochrome P450 enzymes

As described in section 1.2, cytochrome P450 enzymes (CYP) are potential modulators 

of vascular function, through the catalytic generation of vasoactive metabolites. 

Although CYP activity has been linked to the development of EDHF-type responses, 

there is accumulating evidence to suggest that these enzymes also modulate vascular 

contractility through the generation of ROS.

CYP enzymes are haem-containing terminal oxidases that catalyse the mixed-function 

oxidase reaction ie. the oxidation of highly lipid-soluble substrates including drugs and 

chemicals. The catalytic cycle of cytochrome P450 is a six step process that depends on 

the reduction/oxidation of iron, as well as the binding of molecular oxygen to the CYP- 

substrate complex. It has been suggested that, during this redox cascade, the generation 

of ROS takes place when electrons escape from the P450 cycle, and subsequently bind 

to free oxygen molecules. These electrons are mainly derived from the consumption of 

NADPH by mono-oxygenases, and they are transferred to the substrate-bound ferric
i  I

(Fe ) CYP by the flavoprotein NADPH-CYP reductase. Moreover, it has been 

demonstrated that different CYP enzymes generate varying amounts of free radicals 

(Puntarulo & Cererbaum, 1998). Although, it is still unclear why these differences 

might take place, there is consensus on the fact that it might reflect putative differences 

in electron leakage from each enzymatic complex.

1.3.3.6 Cyclooxygenases and Lipoxygenases

Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin biosynthesis, a two- 

step enzymatic process in which ROS can potentially be generated. COX catalyze both 

the reaction that converts arachidonate to prostaglandin G2 (PGG2) and a peroxidase 

reaction in which PGG2 is converted into prostaglandin H2 (PGH2)(Smith et al, 2000). 

Once arachidonic acid is available, the constitutive enzyme COX-1 uses molecular 

oxygen to generate the endoperoxides PGG2 and PGH2 . The cyclooxygenase reaction 

initiates with the abstraction of a hydrogen atom from arachidonate to yield an
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arachidonyl radical, while oxygen is sequentially added to the molecule to yield PGG2. 

One requirement for this reaction to take place is the presence of a hydroperoxide, either 

an alkyl peroxide or peroxynitrite derived from the condensation of nitric oxide with 

superoxide, to oxidize the haem group at the active site of the peroxidase (Smith et al., 

2000; Liu et al., 2007). The oxidized haem group then oxidizes the COX active site 

(Landino et al, 1997; Smith et al., 2000). Efficient peroxide removal or prevention of 

peroxide formation by antioxidants reduces the rate of prostaglandin synthesis, at least 

until sufficient PGG2 is formed to activate COX-1 to its full potential. It should be noted 

that the peroxidase activity of the enzyme can function independent of the cyclo

oxygenase, while the cyclooxygenase reaction is peroxide-dependent (Smith & Lands, 

1972a).

The role of COX in the generation of 0 2 *’ has been demonstrated by gas 

chromatography and mass spectrometry, carried out in microsomes from ram seminal 

vesicles (Kukreja et al., 1986). It has been suggested that O2 " is not produced directly 

by the enzyme, but it is a product of a side-chain reaction, which takes place only when 

suitable co-substrates, such as NADH and NADPH are available. Notably, O2 " 

generation depended on the peroxidase activity of the enzyme, since the radical was 

generated when PGG2 was used as substrate, but not with PGH2 (Kukreja et al, 1986). 

O2•’ is generated when molecular oxygen interacts with -NAD and NADP radicals that 

are respectively derived from NADH and NADPH with the following reactions:

with NADH co-substrate: peroxidase + ROOH compound I+ROH 

compound I + NADH -> compound II + -NAD 

compound II + NADH peroxidase + -NAD

with NADPH co-substrate: peroxidase + ROOH compound I+ROH 

compound I + NADPH compound II + -NADP 

compound II + NADPH peroxidase + -NADP

reaction with oxygen: •NAD + 0 2 -> NAD+ + 0 2 ‘ 

•NADP + 0 2 NADP+ + 0 2*
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where ROOH is the hydroperoxide substrate, ROH is the hydroxide product, compound 

I and compound II are intermediate products (enzyme-centered radicals). These 

aforementioned reactions can be generalized to explain the generation of O2 '" from both 

COX and lipoxygenase.

Lipoxygenases (LOX) are iron-containing dioxygenases that catalyse the direct reaction 

of polyunsaturated fatty acids (PUFAs) with oxygen to hydroperoxides and other 

metabolites using a non-haem iron active site (Smith & Lands, 1972b). LOXs are also 

involved in the biosynthesis of lipid hormones such as leukotrienes, lipoxins and 

hydroxy fatty acids. It has been reported that certain LOX subtypes generate O2 ’ during 

their action on linoleic acid or arachidonate in the presence of NADH and NADPH. The 

mechanism that has been proposed to generate ROS is similar to that of COX and 

requires the generation of enzyme-centered radical intermediates (Kukreja et al, 1986). 

Nevertheless, the time course of CV’ production by this enzyme declines much more 

rapidly than COX, and it reaches zero in less than ten minutes (Kukreja et al, 1986).

1.3.4 Vascular effects of H2O2

Endogenously produced H2O2 has been demonstrated to directly relax vascular smooth 

muscle and to contribute to endothelium-dependent responses, through the modulation 

of potassium channel function, alterations in calcium homeostasis, and by activating 

pathways that subsequently mediate relaxation (Barlow et al., 2000; Fujimoto et al., 

2003; Miura et al., 2003).

Potassium channels -  The ability of H2O2 to modulate the opening of potassium 

channels has been attributed to the oxidative modification of suphydryl groups located 

in cysteine residues (Ruppersberg et al., 1991). The FLCb-evoked effects on potassium 

channels vary among tissues and species, and depend on the potassium channel subtype 

involved. However, there are reports, which indicate that the oxidative modification of 

thiol groups might not have the same outcome on the same channel in all the tissues 

studied (Cai & Sauve, 1997; Tang et al., 2001). For instance, H2O2 has been shown to 

decrease the open probability of BKca channels in synthetic lipid bilayers (Soto et al., 

2002), whereas in isolated porcine coronary myocytes it had the opposite effect (Barlow 

& White, 1998). Similarly, in rat cerebral arteries, exogenous H2O2 or endogenous H2O2
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evoked by bradykinin increased arteriolar diameter in a concentration-dependent 

manner (Sobey et al., 1997). Dilator responses to H2O2 were inhibited by 

tetraethylammonium (TEA), a non-selective Kca blocker, and IbTX (Sobey et al., 

1997). Studies in intact canine cerebral and mouse mesenteric arteries and human 

umbilical vein endothelial cells (HUVECs) have also supported these findings (Iida et 

al, 2000; Matoba et al., 2000; Bychkov et al., 1999). By contrast, investigations carried 

out on endothelial cells from bovine aorta demonstrated that the activity of IKca 

channels is reduced, possibly due to the oxidation of sulfhydryl groups that regulate 

channel gating by H2O2 (Cai & Sauve, 1997). However, no similar studies appear to 

have been performed for SKca channels in the vasculature.

In addition to Kca, the opening of K a t p  channels is subject to oxidative modification, as 

demonstrated by studies carried out on feline cerebral vessels and rat mesenteric arteries 

(Wei et al., 1996; Nakazaki et al., 1995). In these studies, H2C>2-induced relaxations 

were significantly attenuated by glibenclamide, but not TEA. An appraisal of the 

available literature, suggests that the effects of H2O2 on K a t p  channels can be direct or 

indirect. Notably, in ventricular myocytes from guinea-pig hearts, H2O2 can directly 

modulate the opening of these channels by interacting with the ATP-binding 

sulfonylurea subunit, and subsequently reducing its affinity for ATP (Ichinary et al., 

1996). Other reports in neuronal tissue, however, have suggested an indirect inhibitory 

effect of H2O2 on K a t p  opening, mainly resulting from a reduction of oxidative 

phosphorylation, and consequently intracellular ATP levels (Hyslop et al., 1988; 

Teepker et al., 2007). Finally, a small number of reports have suggested that H2O2 

might also interact with Kv and Kir channels (Bychkov et al., 1999; Muller & Bittner,

2002). However, the available evidence on vascular tissue is limited.

Calcium homeostasis -  The role of H2O2 in the modulation of Ca2+ mobilization has 

been previously demonstrated in various species and disease models, which are 

associated with ROS release. In an experimental model of ischaemia-reperfusion, 

accumulating ROS inactivate SERCA of smooth muscle cells in porcine coronary 

arteries (Grover & Samson, 1997). Further studies on the same vessels showed that 

H2O2 has a direct effect on SERCA on smooth muscle cells, with no similar effects 

taking place in the endothelium. This discrepancy was attributed to the presence of 

different SERCA variants in the two vascular layers, with the endothelial SERCA3
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variant being more resistant to H2O2 than the smooth muscle SERCA2b variant (Grover 

et al., 1997). It has been suggested that the mechanism through which H2O2 inhibits 

SERCA is probably through the oxidation of sulfhydryl groups or by direct attack on 

the ATP binding site (Grover et al., 2003; Scherer & Deamer, 1986).

Moreover, it has been accepted that H2O2 impairs vascular contractility through a direct 

effect on L-type Ca2+ channels (Gill et al., 1995; Tabet et al., 2004). The differential 

activation of L-type Ca2+ channels has been demonstrated in the WKY rat and was
ry » • • •

attributed to H2O2, on the basis that it time-dependently increased [Ca ]j, primarily via 

extracellular Ca2+ influx (Tabet et al., 2004). However, in these investigations, neither 

verapamil or diltiazem, two L-type channel inhibitors, completely blocked the H2O2- 

mediated [Ca2+]i effects in the smooth muscle, which suggested that mechanisms 

independent of the activation of these channels might also be involved. Enhanced 

activation of L-type channels by H2O2 has also been observed in spontaneously 

hypertensive rats (SHR) (Tabet et al., 2004). Notably, in cells from these species, the 

magnitude of the inhibition by verapamil and diltiazem was greater relative to that of 

the normotensive WKY, which suggested that H2C>2-induced effects on L-type channels 

are enhanced in hypertension (Tabet et al, 2004). Indeed, this finding was consistent 

with an increase in expression of L-type channels in SHR, as well as a significant 

increase in the whole-cell and single-channel currents relative to those of WKY (Ohya 

etal., 1993; 1998).

Several studies have suggested that alterations in Ca2+ sensitivity and the ability of 

smooth muscle cells to contract to agonists might be associated with the ability of H2O2 

to increase tissue concentrations of cGMP and phosphorylation of myosin light chain 

(MLC) (Lorenz et al., 1999; Fujimoto et al., 2001; 2003). Indeed, it has been shown that 

H2O2 indirectly reduces noradrenaline- and ACh-evoked increases in MLC 

phosphorylation in canine airway smooth muscle and guinea-pig aortae (Lorenz et al., 

1999; Fujimoto et al., 2003). However, there are contradictory reports suggesting that in 

arteries depolarized with K+, H2O2 produces a transient increase in intracellular Ca2+ 

concentration without a concomitant activation of the contractile machinery (Krippeit- 

Drews et al., 1995; Iesaki et al., 1996). One possible explanation for this effect is that 

the relaxation induced by H2O2 might be associated with a cGMP-mediated inhibition
2 “Fof Ca sensitivity following agonist stimulation (Fujimoto et al., 2003). However, in
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this study, Fujimoto et al. (2003), demonstrated that the F^C^-induced relaxations were 

only partially blocked by guanylate cyclase inhibitors, such as 1H- 

[l,2,4]oxadiazolo[4,3,a]quinoxalin-l-one (ODQ). Hence, it is more likely that other 

mechanisms might participate in the H2C>2-dependent effects on Ca homeostasis. 

Indeed, it has been demonstrated that H2O2 induces relaxation by forming interprotein 

disulfide bonds between two cysteine residues on adjacent chains in the PKG 

homodimer complex, independently of cGMP. Such effect seems to occur specifically 

at cysteine residues since it was not evident in A10 cells, overexpressed with the redox- 

insensitive Cys42Ser mutant (Burgoyne et al, 2007). H2O2 has also been reported to 

directly inhibit actomyosin ATPase, thereby reducing Ca2+ sensitivity directly and 

producing relaxation (Perkins et al., 1997; 2003).

1.3.4.1 H2O2 as a vasoconstrictor

Taken that in some vessels H2O2 increases [Ca2+]i, it had been suggested that it might 

also act as a vasoconstrictor depending on the tissue and the conditions involved 

(Katusic et al., 1993; Yang et al., 1998; 1999). Although most of the studies have failed
2_j_

to demonstrate a direct relation between H2C>2-evoked contractions and [Ca ]i 

increases, it has been accepted that the stimulation of enzymes such as phospholipase 

A2 (PLA2), COX, phospholipase C (PLC), and tyrosine kinases, might underpin these 

responses in quiescent vessels (Chakraborti et al., 1989; Rodriguez-Martinez et al., 

1998; Yang et al., 1998; Jin & Rhoades, 1997). For instance, it has been suggested that
I

in endothelial cells U73122, a specific PLC inhibitor, abolished H2 0 2 -induced Ca 

mobilization, and that H2O2 caused hydrolysis of inositol phospholipids (Shasby et al, 

1988; Volk et al, 1997). Also, these results together with the fact that PKC inhibition 

with staurosporin attenuates H2 0 2 -induced contractions in rat aorta support further the 

fact that a PLC-PKC signalling cascade might be involved (Yang et al, 1998).

Furthermore, exogenous H2O2 has been reported to cause transient contractions in 

vessels such as the rat aorta and mesenteric arteries (Malmsjo et al, 2000; Gao & Lee, 

2001; Yang et al., 2003). It is likely that these responses might be associated with 

pathways involving arachidonate metabolism, since inhibitors of COX and 

thromboxane synthase attenuated contractions (Gao & Lee, 2001; Yang et al., 2003). 

Other studies, however, attributed the H2 0 2 -induced contractions to products of lipid
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peroxidation, such as isoprostanes, which have been suggested to activate a tyrosine 

kinase pathway following the stimulation of thromboxane receptors on smooth muscle 

(Hoffman et al., 1997; Janssen, 2002). However, the role of these metabolites in H2O2- 

induced vasoconstriction needs to be investigated further, as some reports in the 

available literature have proposed isoprostanes as a stimulus of the EDHF phenomenon 

(Janssen, 2002).

Finally, recent studies have suggested that in rat mesenteric arteries, the aforementioned 

contractile and relaxant properties of H2O2 might be concentration-dependent (Gao et 

al., 2003). Indeed, incubation of PE preconstricted arteries with micromolar 

concentrations of H2O2 led to an additional increase in tone, while addition of 

concentrations in the milimolar range relaxed the muscle by ~95% (Gao et al., 2003). 

Notably, the transient contractile response was significantly depressed by inhibitors of 

PLA2 and COX, therefore being in agreement with previous studies by Gao & Lee 

(2001), which inferred that this pathway contributes to H2 0 2 -induced contraction (Gao 

et al., 2003). Biphasic responses to H2O2 have also demonstrated in porcine cerebral 

arteries and in rat gracilis skeletal muscle arterioles (Leffler et al., 1990; Cseko et al.,

2004).

1.3.4.2 H20 2 as an EDHF

It has been suggested that H2O2 might be an EDHF, on the basis that in certain blood 

vessels ACh-evoked EDHF-type relaxations are catalase sensitive. Indeed, a critical 

appraisal of the available literature, suggests that H2O2 has EDHF-like effects in porcine 

pial, rat, mouse and human mesenteric arteries, and in canine, porcine and human 

coronary arteries (Lacza et al., 2002; Kimura et al., 2002; Liu et al., 2006; Matoba et 

al., 2000; 2002; 2003; Miura et al., 2003; Yada et al., 2003). The first available 

evidence which showed that H2O2 might be an EDHF was provided by studies carried 

out in eNOS-knockout and C57BL/6 mice (Matoba et al, 2000). In small mesenteric 

arteries from these animals, mechanical and electrophysiological investigations showed 

that catalase inhibited both ACh-evoked relaxations and hyperpolarizations, the effects 

of which were abolished in the presence of ATZ. Also, the gap junction inhibitor 180- 

GA had no significant effect on EDHF-type relaxations, which suggested that gap 

junctional communication does not play a role in these responses (Yamamoto et al.,
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1998; Matoba et al, 2000). The role of H20 2 as a putative EDHF was also proposed by 

in vivo studies carried out on canine coronary arteries, which showed that ACh-induced 

vasodilations could be significantly attenuated by catalase, an effect which was more 

profound in arterioles than small size arteries (Yada et al, 2003). It was also suggested 

that the differences in catalase sensitivity might concur with the notion that EDHF-type 

responses play a more important role as the size of the vessels decreases (Yada et al,

2003).

Further investigations carried out on homozygous SOD I '7' and heterozygous SODl+/' 

mice suggested that the endothelial SOD1 might probably be the main source of H2O2- 

associated EDHF, at least in mice, as in this model endothelium derived H2O2 is mainly 

generated in the membrane (Morikawa et al, 2003). Indeed, in SOD I'7' animals, EDHF- 

type relaxations were significantly depressed relative to the control in both mesenteric 

arteries and coronary microvessels (Morikawa et al, 2003). Investigations with heparin, 

an inhibitor of SOD3, excluded the involvement of this enzyme in H2 0 2 -associated 

EDHF, while the role of SOD2 was ruled out because this enzyme is located in 

mitochondria, an orgenelle that is not the source of H2O2 in these animals (McIntyre et 

al, 1999; Morikawa et al., 2003).

Other studies carried out on arterial preparations showed that H2O2 can potentially 

produce endothelium-dependent hyperpolarizations and relaxations through the 

differential activation of potassium channels and Na+/K+-ATPase (Pomposiello et a l , 

1999; Barlow et a l , 2000; Kimura et al., 2002; Gao et al., 2003; Miura et a l, 2003). 

For instance, in eNOS knockout mice, the combination of ChTX and apamin 

significantly inhibits ^(V ED H F-type relaxations, whereas tetrabutyl-ammonium 

(TBA), a non-selective Kca inhibitor, abolishes similar responses in wild-type animals 

(Matoba et a l, 2000). In porcine pial arteries, catalase-sensitive BK-evoked responses 

were significantly reduced by glibenclamide, suggesting that, in these vessels, the 

opening of K a t p  prevails in NO/prostanoid-independent relaxations (Lacza et a l, 2002).

By contrast, in the rabbit, A23187-evoked H2O2 triggers relaxations that are 

independent of the concomitant hyperpolarizing effects (Chaytor et a l, 2003). As 

previously discussed, although catalase attenuates vasorelaxation in these vessels in a 

concentration-dependent manner, it fails to inhibit smooth muscle hyperpolarizations,
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and in essence H20 2 is more likely to be a relaxing factor, rather than an EDHF. In 

conjunction to A23187, ACh-evoked relaxations comprise of a catalase-sensitive 

component, but it is smaller in magnitude than that of A23187 (Chaytor et al., 2003). 

Similarly, in canine coronary arteries, generation of H20 2 by A23187 was significantly 

attenuated by the eNOS inhibitor L-NAME, therefore suggesting that in these vessels 

eNOS-generated H20 2 might compensate for the loss of NO (Cosentino & Katusic, 

1995).

Interestingly, electrochemical measurements in the rat demonstrated that application of 

exogenous H20 2 to aortas fails to mimic the effects of authentic H20 2 produced 

following stimulation of the endothelium with A23187 (Cosentino et al., 1998). In 

piglet coronary micro vessels, electron spin resonance revealed that BK-evoked EDHF- 

type responses are accompanied by a nanomolar production of H20 2 (Matoba et al., 

2003). Nevertheless, mechanical studies in rabbit iliac arteries showed that exogenous 

H20 2 fails to show any significant effects at concentrations lower than 100 pM (Chaytor 

et al., 2003). One possible explanation for this discrepancy is that authentic H20 2 is 

generated in close proximity to its site of action (Miura et al., 2003), and therefore its 

exposure to enzymatic degradation might be limited. The autocrine effects of H20 2 and 

its contribution to the EDHF phenomenon need to be elucidated further.

1.3.4.3 Other ROS and myogenic response

In addition to H20 2, ROS such as 0 2 " and -OH are also involved in the regulation of the 

vascular tone. 0 2 " is the primary product of oxygen metabolism, but it is highly 

unstable and it is directly converted into H20 2 by SODs (see section 1.3.1). 

Nevertheless, a small amount of 0 2 " is still able to escape dismutation and have a 

significant effect on the myogenic response (Table 1.1). 0 2 " is known to interact with 

NO to generate ONOO', which can potentially interact with regulatory systems that are 

of biological significance (Liu et al., 1998). One potent effect of ONOO" seems to be 

thiol modification, which affects the function of signalling systems that possess 

regulatory function or when produced at high concentrations it forms NO donors 

through the modification of alcohols and sugars to nitrated species, which release NO in 

the presence of thiols (Moro et al., 1995; Wolin et al, 1998)(Table 1.1). However, in 

the presence of eNOS inhibitors, such as L-NAME, it is unlikely that ONOO" is
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Species Site o f  Reaction Signaling Action

o2- NO

Fe-S complexes 

Catecholamines

Inactivation of NO prevents sGC stimulation;
ONOO' generation
Inhibition of aconitase and mitochondrial respiration 
by releasing Fe, which forms -OH

Inactivation of adrenaline or noradrenaline inhibitors 
interactions with adrenergic receptors

H2o2 Catalase

GSH peroxidase 
COX
PGI2 synthase
IP3R
RyR

Stimulates sGC 

GSSG formation
Activation at low levels of peroxide 
Inactivation at high levels of ROS and RNS 
Activation of receptor 
Activation of receptor

•OH Thiols
Lipids

Oxidation
Generation of vasoactive isoprostanes and lipid 
oxidation products

Table 1.1 Summary of signalling actions of O2 ’, H2O2 and -OH on the vascular wall 
of arteries (modified from Wolin, 2000).

produced, and therefore interactions of O2*" with other vascular components should be 

taken into account (Table 1.1). Furthermore, H2O2 can react with iron to produce the 

highly toxic -OH radical, which promotes oxidative stress-associated tissue injury (see 

section 1.3.1). However, previous investigations carried out in rabbit iliac arteries with 

SOD and the cell-permeant iron chelator deferiprone failed to affect relaxations evoked 

by X/XO (Chaytor et al., 2003), thereby suggesting that neither 0 2 *’ nor -OH generated 

intracellularly from H2O2 via Fenton reaction contributes to the EDHF-type responses in 

this species.

1.4 General aims of thesis

The aim of this thesis has been to provide a clearer understanding of the EDHF 

phenomenon and the putative role of oxidative stress in the dilatory responses induced
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by agents which are known to trigger hyperpolarizations in the endothelium of rabbit 

iliac arteries. More specifically, investigations were carried out to assess the importance 

of different isoforms of the Kca subfamily in EDHF-type relaxations evoked by both 

ACh and calcium ionophore A23187, and to demonstrate the localization of these 

channels in the endothelium and smooth muscle of rabbit iliac arteries. In a separate 

series of experiments, the role of H2O2 in A23187-evoked EDHF-type relaxations was 

investigated in conjunction with its putative effects on smooth muscle Kca channels. 

Finally, mechanical investigations were performed to determine the putative sources of 

H2O2 in the endothelium of these vessels upon stimulation with A23187 and ACh.
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2.1 Introduction

2.1.1 Activation of Kca channels in EDHF-type responses

Agonists such as ACh and calcium ionophore A23187, evoke EDHF-type relaxations 

through a NO/prostanoid-independent pathway that involves the activation of 

endothelial Kca channels (Chaytor et al., 2002; Weston et al., 2005; Gluais et al., 2005; 

Sandow et al., 2006; Sainsbury et al., 2007). It has been established that sustained
2 " b  •opening of these channels depends on the elevation of intracellular Ca via the 

mechanism of capacitative Ca2+ entry, which is secondary to the depletion of the 

endoplasmic reticulum Ca2+ store (ER)(Sedova et al., 2000; Nilius & Droogmans, 

2001). Increases in [Ca2+]i lead to activation of the channels, which allow the efflux of 

K+ into the extracellular space. This outward current is accompanied by a concomitant 

change in the membrane potential, which moves towards the equilibrium potential for 

K+ at —90mV, thereby causing membrane hyperpolarization. In the rabbit iliac artery, 

the endothelial hyperpolarization then propagates to the adjacent smooth muscle cells 

via myoendothelial gap junctions and ultimately leads to relaxation of the vessel 

(Chaytor et al., 2005).

2.1.2 The role of different Kca isoforms in EDHF-type responses

Kca channels are separated into three different classes, namely the small conductance 

Kca (Kca2 .1 , SKca), the intermediate conductance Kca (Kca3.1, IKca) and the large 

conductance Kca (Kcal .l ,  BKca)(see section 1.2.5). Because of the differences in the 

biophysical properties of the three Kca subtypes, each channel can be distinguished by 

the application of selective pharmacological agents. For instance, apamin is a potent 

inhibitor of both native and cloned SKca channels, while ChTX and IbTX has been 

extensively used to inhibit BKca (see section 1.2.5). Interestingly, IKca comprises a 

distinct category of channels, which has been characterized on the basis that it is 

structurally related to the SKca subfamily, but still has a distinct pharmacological 

profile. Indeed, the SKca subfamily of channels comprises of three main members, 

namely SKI, SK2 and SK3, which are all sensitive to apamin, and a forth apamin- 

insensitive member, namely SK4 which is now known to be the IKca channel (Kohler et 

al., 1996). Selective inhibition of IKca has been achieved recently with two analogues of 

clotrimazole, TRAM-34 and TRAM-39, which are devoid of P450 mono-oxygenase
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inhibitory properties (Wulff et al, 2000), while less selective inhibitors, such as ChTX 

have also been widely used.

In most blood vessels both SKo, and IKca are expressed in the endothelium (Sakai, 

1990; Marchenko & Sage, 1996; Doughty et al., 1999; Kohler et al., 2000; Walker et 

al., 2001). Indeed, investigations in the guinea-pig and the rat, demonstrated that the 

combination of apamin and TRAM-34 significantly attenuates ACh-evoked EDHF-type 

responses in most endothelium-intact vessels (Edwards et al., 1998; Gluais et al., 2005). 

One possible explanation for this combined effect was that SKca and IKca form a 

heteromultimer, which requires the presence of two toxins in order to be inhibited, as 

demonstrated by radioligand-binding studies conducted with homogenates of rat brain 

cortex (Zygmunt et al., 1997). However, immunohistochemical investigations carried 

out on rat mesenteric arteries, suggested that differences in the spatial distribution of 

these channels in the endothelium are more likely to underpin the inhibitory effects of 

apamin and TRAM-34 when administered (Sandow et al., 2006). Indeed, these studies 

showed that SKca channels are localized in proximity to gap junctions between adjacent 

endothelial cells, while IKca are localized in proximity to myoendothelial gap junctions. 

This difference in localization could potentially explain why the incubation of arteries 

with TRAM-34 has a different physiological effect on EDHF-type responses than 

apamin, and why the co-administration of the two agents is necessary to abolish the 

responses (Corriu et al., 1996; Chataigneau et al., 1998). Differences in the role of 

these channels have also been demonstrated with studies carried out on both quiescent 

and depolarized rat mesenteric arteries, which demonstrated that in resting vessels ACh- 

evoked EDHF-type responses are mainly triggered by endothelial SKca channels, while 

in depolarized vessels the co-activation of SKca and IKca is required (Crane et al., 

2003).

Similarly, in most arteries apamin and ChTX are individually each only partially 

effective, while their co-administration is necessary to attenuate EDHF-type responses 

completely (Edwards et al., 1998; Doughty et al., 1999; Corriu et al., 1996; Plane & 

Garland, 1996). The dual combination of apamin and ChTX abolishes EDHF-type 

responses in guinea pig carotid and basilar arteries, in rat mesenteric and hepatic 

arteries, and rabbit mesenteric and femoral arteries (Corriu et al., 1996; Plane & 

Garland, 1996; Petersson et al., 1997; Chen & Cheung, 1997; Fujimoto et al, 1999;
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Kwon et al, 1999). In fact, it has been established that, each inhibitor on its own has a 

minor or no effect on the EDHF phenomenon, while their combination abolishes the 

residual effects. In most species studied so far, co-administration of apamin and ChTX 

attenuated both relaxations and hyperpolarizations evoked by ACh, A23187 and BK, 

suggesting that Kca channels have a complementary role in the EDHF phenomenon 

(Chataigneau et al., 1998; Fujimoto et al., 1999; Ge et al., 2000; Hinton & Langton, 

2003; Eichler et al., 2003; Gluais et a l , 2005; Weston et al., 2005). Although according 

to those findings it would be reasonable to attribute the endothelial hyperpolarizing 

component to the activation of all three Kca subtypes, investigations with the more 

selective BKca inhibitor IbTX failed to mimic the effects of ChTX in porcine coronary 

endothelial cells, and thereby disputed the fact that BKca might be functionally active in 

the endothelium (Bychkov et al., 2002). Furthermore, some electrophysiological studies 

carried out on non-depolarized rabbit mesenteric arteries suggested that there is a 

possibility that a functional BKca channel might not be present on the endothelium of 

these vessels, on the basis that addition of IbTX had no effect on ACh-evoked 

hyperpolarizations, which opposed the findings of electrophysiological studies carried 

out on porcine renal arteries that identified a channel on the endothelium (Murphy & 

Brayden, 1995; Brakemeier et al, 2003). However, it should be noted that in these 

investigations lack of inhibition of endothelial hyperpolarizations by IbTX does not 

exclude the fact that these responses might be triggered by more than one Kca subtype 

e.g. BKca and IKca, and therefore the combination of more than one inhibitor might be 

required to unmask the contribution of different channels to EDHF-type responses.

Further evidence about the effects of IbTX in the rabbit was obtained in renal arteries, in 

which application of the toxin almost completely inhibited EDHF-type relaxations 

(Kagota et al, 1999). Notably, addition of apamin on its own had no effect on ACh- 

induced responses, while the effects of apamin plus IbTX did not differ from those 

obtained in the presence of IbTX only (Kagota et al, 1999). It was therefore suggested 

that inhibition of BKca channels might be sufficient to attenuate the EDHF phenomenon 

in these arteries (Kwon et al, 1999; Kagota et al, 1999). By contrast, dual 

administration of apamin and IbTX is in most blood vessels ineffective or partially 

effective, thus reflecting the differences in putative interactions between the three 

channel subtypes (Zygmunt et al., 1997; Chataigneau et al., 1998; Yamanaka et al., 

1998; Fujimoto et al., 1999). It should be noted that a functional BKca channel is also
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expressed in cultured endothelial cells from rabbit aorta, in intact porcine renal and rat 

gracilis muscle arterioles (Rusko et a l,  1992; Baron et al., 1996; Ungvari et al., 2002). 

In intact rat gracilis muscle arterioles, the presence of BKca in the endothelium has been 

demonstrated by immunohistochemical techniques, and could potentially support the 

role of these channels in the signal transduction of EDHF-type dilatation, which was 

also demonstrated as a reduction in arteriolar diameter following the intraluminal 

administration of ChTX in the same vessels (Ungvari et al, 2002). Similarly, in the 

rabbit aorta, whole cell voltage-clamp recordings revealed the presence of spontaneous 

transient outward currents (STOCs) in the endothelium, which represent the 

simultaneous activation of several Kca channels and are inhibited by ChTX and TEA 

(Rusko et al., 1992). Nevertheless, in endothelial cells from rat aorta and porcine 

coronary arteries, BKca channels are poorly expressed and no single IbTX-sensitive 

currents can be detected (Marchenko et al, 1996; Bychkov et al, 2002). This can be 

attributed possibly to the absence in these cells of regulatory BKca P subunits that
9+enhance Ca sensitivity or in changes in the distribution of these channels during 

culture maintenance and passage (Bao & Cox, 2005; Frieden et al, 1999). Indeed, 

substance P and BK cause hyperpolarization in the native endothelium of porcine 

coronary arteries by opening SKca and IKca channels only, while in cultured cells from 

the same arteries an IbTX-sensitive BKca is also known to be activated by BK (Frieden 

et al., 1999). BKca channels are also expressed in vascular myocytes in which their 

activation may function as a negative feedback mechanism that limits increases in 

[Ca2+]i in response to various stimuli (Weston et al., 2005; Burnham et a l, 2006; Dong 

e ta l,  1997).

2.1.3 Studies with Kca channel activators

More conclusive data about the localization of Kca channels have been obtained with 

the derivatives of the muscle relaxant chlorzoxazone l,3-dihydro-l-[2-hydroxy-5- 

(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619) and 1 - 

ethyl-2-benzimidazolinone (1-EBIO), both of which can induce responses that are 

independent of ER depletion (Xia et a l, 1998; Fanger et a l, 1999; Cao et a l, 2001; 

Marrelli et al, 2003). Despite their structural similarities, each compound shows a 

distinct level of selectivity for different Kca isoforms. For instance, NS1619 triggers 

relaxations by opening BKca channels, as demonstrated by studies in which both ChTX 

and IbTX significantly attenuated the responses induced by this agent (Holland et a l,

53



Chapter Two

1996; Edwards et al., 2001). Notably, it is now known that these properties depend on a 

direct intracellular interaction of NS1619 with BKca (Holland et al, 1996), and an 

indirect action through Ca2+ release from the stores (Yamamura et al, 2001). By 

contrast, 1-EBIO is the most commonly used positive modulator of SKca channels, 

including SK4 (IKca)(Pedarzani et al., 2001; Hougaard et al, 2007). Although 1-EBIO 

is a relatively weak and non-specific activator, it has nevertheless been a useful 

experimental tool for the localization of the SKca isoforms in vascular and non-vascular 

tissues. Notably, 1-EBIO causes a leftward shift in the Ca2+-activation curves for
I

SKca/DCca and reduces the rate of deactivation of the channels upon intracellular Ca 

removal in human embryonic kidney cells (HEK293) and rat pulmonary cortical 

neurones (Pedersen et al, 1996; Pedarzani et al, 2001). Application of 1-EBIO to the 

endothelium of intact arteries evokes EDHF-type responses without increasing the
9+intracellular concentration of Ca , an advantageous property for studies which require a 

stable [Ca2+]i (Marrelli et a l , 2003).

2.1.4 Aims of study

The involvement of Kca channels in ACh- and A23187-evoked EDHF-type responses 

has been previously demonstrated in the rabbit iliae artery (Chaytor et al, 2002). 

However, the evidence provided by the study of Chaytor et al. (2002) was not sufficient 

to demonstrate which Kca subtypes contribute to the EDHF phenomenon in this vessel. 

For this reason the main focus of the current chapter was to provide greater insights into 

the role of Kca channels in EDHF-type responses in rabbit iliac arteries. More 

specifically the aims were:

■ to identify the Kca channels that participate in the development of relaxations 

following the stimulation of endothelium intact rings with ACh and A23187.

■ to identify the Kca subtypes which are located on the endothelium and smooth 

muscle of rabbit iliac arteries.
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2.2 Methods

2.2.1 Isolated ring preparations

Male New Zealand White rabbits (2-2.5 kg) were killed with sodium pentobarbitone 

(120 mg/kg; i.v.; according to Home Office and Cardiff University guidelines). Iliac 

arteries were dissected out, cleaned of the adherent adipose and connective tissue, and 

cut into segments 2 mm long. The segments were mounted on a four channel multi

myograph (610M Danish Myo Technology (DMT), Denmark) containing oxygenated 

(95% O2, 5% CO2) Holmans buffer (composition: 120 mM NaCl, 5 mM KC1, 2.5 mM 

CaCU, 1.3 mM NaH2P0 4 , 25 mM NaHCOs, 11 mM glucose and 10 mM sucrose) at 37 

°C. The rings were equilibrated for 30 min at a resting tension of approximately 2 mN, 

during which the tissues were washed with fresh Holman’s buffer and the tension 

readjusted following stress relaxation to ensure that the experiments were conducted 

from the same basal tension. Data was acquired with the Myodaq 2.01 program (DMT) 

stored on a PC and analysed with Myodata 2.02 (DMT) Depending on the protocol 

employed, endothelium-denuded arteries were prepared by gentle abrasion of the 

intimal layer with a roughened probe. Prior to any investigation, all arteries were treated 

with the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 300 pM) and the 

COX inhibitor indomethacin (Indo; 10 pM) for 40 min. To verify the presence or 

absence of endothelium, all vessels were constricted with phenylephrine (PE; 1 pM), 

and the endothelium function was assessed with ACh. If ACh failed to induce 

relaxation, the vessel was considered to have been successfully denuded of its 

endothelium.

2.2.2 Protocols

Following the initial standarization and equilibration protocol, endothelium-intact 

arteries were incubated with IbTX (100 nM; Holland et al, 1996), the IKca inhibitor 1- 

[(2-chlorophenyl)diphenylmethyl]-lH-pyrazole (TRAM-34; 10 pM; Gluais et al., 2005) 

or the SKca inhibitor apamin (1 pM) for 30 min. Apamin and TRAM-34 were added 

either individually or in combination. In some vessels, the triple combination of apamin, 

TRAM-34 and IbTX was used to assess the contribution of all three Kca subtypes to 

EDHF-type responses. Following incubation with these inhibitors, cumulative 

concentration-response curves were constructed for either ACh or the calcium 

ionophore A23187, and compared with control responses from vessels that had not been
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treated with the Kca channel inhibitors. Because some of the Kca inhibitors used in the 

current study have been previously shown to affect the basal tone of endothelium-intact 

rat arteries (Dora et al., 2000), the tension of endothelium-intact segments was 

measured before and after stimulation with PE (1 pM) so as to investigate their effects 

in the rabbit iliac artery. Endothelium-denuded vessels were also incubated with IbTX 

(100 nM) or the combination of apamin (1 pM), TRAM-34 (10 pM) plus IbTX (100 

nM) and then constricted with PE (1 pM).

In a separate group of experiments, cumulative concentration-response curves were 

constructed for the BKca channel opener 1-EBIO over the concentration range 1 pM to 

100 pM. This range was determined by investigations carried out on iliac artery 

segments and it was limited to 100 pM maximum due to the solubility of both agents, as 

previously described in the available literature (Holland et al., 1996; Kohler et al,

2005). Experiments with NS1619 were performed on arterial segments in the presence 

or absence of IbTX (100 nM), whereas investigations with 1-EBIO were carried out in 

the presence or absence of apamin (1 pM) plus TRAM-34 (10 pM). Endothelium- 

denuded rings were used to elucidate the direct effects of the two agents on smooth 

muscle.

2.2.3 Immunohistochemistry and confocal microscopy

Iliac arteries were cryopreserved in OCT compound and frozen by liquid N2. 

Cryosections 10pm thick were mounted onto polylysine-coated slides, air-dried, and 

stored at -20 °C. Prior to immunostaining the sections were fixed in -20 °C methanol 

for lOmin and rehydrated in phosphate buffered saline (PBS; 120 mM NaCl, 2.7 mM 

Na2P0 4 '2 H2 0 , pH 7.4) for lOmin.The sections were permeabilized in PBS containing 

0.1% w ' 1 Triton X-100 for 30min, and then blocked with PBS containing 1% wv' 1 

bovine serum albumin (BSA) for 30min at room temperature. Sections were labelled 

with the following primary antibodies: for BKca, an affinity purified goat polyclonal 

antibody raised against a peptide mapping near the C-terminus of MaxiK« of human 

origin (200 pg/ml; code: sc-14747) was used; for IKca, an affinity purified goat 

polyclonal antibody raised against a peptide mapping within an internal region of IK1 of 

human origin (200 pg/ml; code: sc-27081) was used; and for SKca, an affinity purified 

goat polyclonal antibody raised against a peptide mapping within an internal region of
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SK3 of human origin (200 |ig/ml; code: sc-16027) was used. Primary antibodies were 

incubated for 2 hrs at 37 °C, followed by washes in PBS for 30 min. The secondary 

antibody of Cy5-conjugated donkey anti-goat IgG as incubated for 45 min at 37 °C, 

followed by consecutive washes (2 hrs) to remove excess antibody. Sections were 

mounted on Fluorsave and imaged using a Leica TCS-SP2 RS confocal laser scanning 

microscope. The autofluorescence of the internal elastic lamina (IEL) was used as a 

marker to separate the endothelial and smooth muscle layers. Images of IEL were 

overlaid with the images obtained for the protein of interest using Adobe Photoshop 7.0. 

The resultant image showed the distribution of the protein on the endothelium and 

smooth muscle relative to IEL. The presence of the intimal layer was demonstrated with 

an endothelium specific FITC-conjugated anti-von Willebrand factor (anti-vWF) 

antibody. Separate iliac artery transverse sections were incubated with the secondary 

Cy5-conjugated antibody only and were used as the control. All images were acquired 

at a magnification of x40 using Leica Confocal Software. Cy5 fluorescence was 

visualized with excitation wavelength of 635 nm and peak emission at 670 nm. FITC 

fluorescence was visualized with excitation wavelength of 488 nm and peak emission at 

520 nm.

2.2.4 Data analysis

Responses to added drugs were plotted into sigmoidal concentration-response curves 

and expressed as percentages of relaxation. The curves were compared by one-way 

analysis of variance (ANOVA) followed by the Bonferroni multiple comparison test. 

For all experiments pECso values (negative logarithm of the molar concentration of an 

agonist that produces 50% of the maximum possible response for that agonist) were 

calculated, with the exception of NS1619 and 1-EBIO for both of which the pICso 

values (negative logarithm of the molar concentration of these agents that reduces the 

response to a fixed concentration of PE to 50% of its original value) were given instead. 

pECso values were obtained from concentration response curves by fitting the data to 

the following logistic equation: Y= A + (B -  A) / (1+10A ((LogEC5o -  X))) where Y is 

the response, X is the logarithm of concentration, A is the response observed with zero 

drug, and B is the response observed with maximal concentration of drug. pICso values 

were obtained by fitting the data to the following logistic equation: Y= 100 -  (A + (B -  

A) / (1+10A ((LoglCso -  X)))) where Y is the response, X is the logarithm of
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concentration, A is the response observed with zero drug, and B is the response 

observed with maximal concentration of drug. Rmax (maximal % relaxation) was 

calculated for all vasorelaxant responses except for those of NS1619 and 1-EBIO, 

where the % relaxation produced by the highest concentration of NS 1619 and 1-EBIO 

employed (100 pM) was calculated instead. Tensions before and after the addition of PE 

were measured and compared by two-way analysis of variance (ANOVA) followed by 

the Bonferroni multiple comparison test. All data were expressed as mean ± SEM. 

PO .05 was considered statistically significant, n denotes the number of animals 

studied. Data analysis was carried out with GraphPad Prism 4.0 (San Diego, USA).

2.2.5 Drugs and reagents

All drugs were supplied by Sigma Aldrich (Gillingham, UK), except for 1-EBIO which 

was purchased from Tocris Cookson (Avonmouth, UK). All drugs were dissolved in 

water, apart from indomethacin which was dissolved in 5% NaHCOs and A23187, 

TRAM-34 and NS1619 which were dissolved in dimethylsulfoxide (DMSO). ACh and 

PE stock solutions were freshly prepared on a daily basis prior to any investigations. For 

immunohistochemistry, the OCT compound was purchased from Agar Scientific 

(Stansted, UK), the polylysine-coated slides from Surgipath Europe (Bretton, UK), 

Triton-X 100 and BSA from Sigma Aldrich (Gillingham, UK), and the Fluorsave 

reagent from Calbiochem (Nottingham, UK). All primary antibodies were purchased 

from Santa Cruz Biotechnology (Heidelberg, Germany). The Cy5-conjugated donkey 

anti-goat antibody (code: 705-175-003) was from Jackson Immunoresearch

Laboratories (Suffolk, UK). The FITC-conjugated anti-vWF antibody was purchased 

from Serotec Laboratories (Kindlington, UK).
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2.3 Results

2.3.1 Effects of IbTX on ACh- and A23187-induced relaxations

EDHF-type relaxations to ACh were maximal at a concentration of ~3 pM and 

equivalent to 69.3 ± 10.1% of PE preconstriction, with a pECso value of 6 .8  ±0.1 (Fig. 

2.1, 2.2; Table 2.1). Preincubation with IbTX (100 nM) inhibited the relaxation evoked 

by ACh to 35.1 ± 4.7% with a pECso value of 7.2 ± 0.2 (Fig. 2.1, 2.2; Table 2.1). 

EDHF-type relaxations to calcium ionophore A23187 were maximal at a concentration 

of ~3 pM and equivalent to 83.2 ± 12.6% of PE preconstriction with a pECso value of

6.4 ±0.1 (Fig. 2.3, 2.4; Table 2.1). Preincubation with IbTX (100 nM) inhibited the 

relaxation evoked A23187 to 56.9 ± 7.8% with a pECso of 6.3 ±0.1 (Fig. 2.3, 2.4; Table 

2 .1).

2.3.2 Effects of TRAM-34 and apamin on ACh- and A23187-induced relaxations -  

combination with IbTX

EDHF-type relaxations to ACh were maximal at a concentration of ~3 pM and 

equivalent to 74.4 ± 11.1% of PE preconstriction with a pECso value of 6.9 ±0.1 (Fig. 

2.5, 2.7; Table 2.1). Preincubation with apamin (1 pM) had no effect, whereas TRAM- 

34 (10 pM) significantly reduced the relaxation evoked by ACh (Fig. 2.5, 2.7; Table

2.1), whereas (Fig. 2.5, 2.7; Table 2.1). Preincubation with the combination of apamin 

(1 pM) plus TRAM-34 (10 pM) inhibited the relaxation evoked by ACh even further 

(Fig. 2.6, 2.7; Table 2.1), while the triple combination of apamin (1 pM) plus TRAM-34 

(10 pM) plus IbTX (100 nM) abolished the responses (Fig. 2.6, 2.7). EDHF-type 

relaxations to A23187 were maximal at a concentration of ~3 pM and equivalent to 90.7 

± 13.9 % of PE preconstruction with a pECso value of 6 .6  ± 0.1 (Fig. 2.8, 2.9; Table

2.1). Preincubation with apamin (1 pM) had no significant effect on relaxations evoked 

by A23187, while TRAM-34 (10 pM) caused a small, but significant rightward shift in 

pECso value (Fig. 2.8, 2.9; Table 2.1). Preincubation with apamin (1 pM) plus TRAM- 

34 (10 pM), inhibited the relaxation evoked by A23187 to 33.7 ± 4.7% and a pECso 

value of 6.2 ± 0.2 (Fig. 2.9, 2.10; Table 2.1). Preincubation of iliac arteries with apamin 

(1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM) abolished the responses (Fig. 2.9, 

2.10; Table 2.1).
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2.3.3 Tension changes to Kca inhibitors in quiescent iliac arteries

In quiescent endothelium-intact vessels a small increase in tension was observed in the 

presence of L-NAME (300 pM) and indomethacin (10 pM), the magnitude of this 

increment being on average 3.1 ± 0.6 mN. Addition of PE led to a further increase in 

tension to 32.7 ± 2.0 mN (P<0.05; Fig. 2.11; Table 2.2). Preincubation with apamin (1 

pM) and TRAM-34 (10 pM) had no significant effect on the basal tone of quiescent 

vessels or the maximal contractions induced by PE (P>0.05; Fig. 2.11; Table 2.2).

In a separate series of experiments in endothelium intact vessels addition of L-NAME 

(300 pM) and indomethacin (10 pM) led to a small increase in basal tone of 3.1 ± 0.5 

mN (not shown). Basal tone was further increased by preincubation with IbTX (100 

nM) although there was considerable variability in the contractile response evoked by 

this toxin in individual preparations (Fig. 2.12, 2.13; Table 2.2). In the absence of 

endothelium, the contractions to PE in the presence or absence of IbTX (100 nM) were

24.2 ±1 .3  mN and 28.9 ± 4.8 mN, respectively, and were not statistically different 

(Table 2.2). By contrast no significant difference was observed between IbTX-treated 

and IbTX-untreated vessels following the addition of PE in both endothelium-intact and 

endothelium-denuded vessels (Fig. 2.12, 2.13, 2.14, 2.15; Table 2.2).

Incubation of iliac arteries with the triple combination of Kca inhibitors led to an 

increase in basal tone, that was not significantly different from that of arteries pre

treated with IbTX only. Preincubation with apamin (1 pM) plus TRAM-34 (10 pM) 

plus IbTX (100 nM) led to a significant increase of the basal tension to 18.5 ± 2.8 mN 

and a PE-evoked contraction equal to 30.9 ± 3.1 mN (Fig. 2.12, 2.13; Table 2.2). 

Similarly, in endothelium-denuded vessels preincubation with the three inhibitors led to 

a significant increase in tension before and after addition of the constrictor (Fig. 2.14, 

2.15; Table 2.2). The effects of the three inhibitors on the tension of endothelium-intact 

iliac arteries were statistically similar to those of endothelium-denuded preparations.

2.3.4 NS1619-evoked EDHF-type responses

Cumulative addition of NS 1619 to rabbit iliac arteries resulted in a decrease in tone 

equivalent to 98.6 ± 15.2% of PE preconstriction with a pICso value of 5.1 ± 0.1 when 

100 pM of the agent was added (Fig. 2.16, 2.17; Table 2.3). Removal of the 

endothelium led to an increase in pIC5o to 4.4 ± 0 .1  without significantly affecting the
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relaxation obtained at an NS 1619 concentration of 100 pM. Similarly, preincubation 

with IbTX (100 nM) led to a significant increase in pICso value to 4.4 ± 0.3, without 

affecting the relaxation obtained at an NS1619 concentration of 100 pM (Fig. 2.16, 

2.17; Table 2.3).

2.3.5 1-EBIO-evoked EDHF-type responses

Cumulative addition of 1-EBIO to rabbit iliac arteries resulted in a decrease in tone 

equivalent to 90.5 ± 13.2% of PE preconstriction and with a pICso value of 4.6 ± 0.2 

(Fig. 2.18, 2.19; Table 2.3). Removal of the endothelium led to an increase in pICso 

value to 4.3 ± 0.6 without significantly affecting the relaxation obtained at an 1-EBIO 

concentration of 100 pM. Similarly, preincubation with apamin (1 pM) plus TRAM-34 

(10 pM) led to an increase in pICso value to 3.5 ±1.6  with no significant effect on the 

relaxation obtained at an 1-EBIO concentration of 100 pM (Fig. 2.18, 2.19; Table 2.3).

2.3.6 Immunohistochemical localization of Kca channels

Immunostaining revealed heterogeneity in the distribution of Kca channels in the 

endothelium and smooth muscle of rabbit iliac arteries. The absence of Cy5 stain in the 

control samples excludes the presence of non-selective binding (Fig. 2.20), while 

immunolabelling directed against the endothelium-specific cell marker von Willebrand 

factor (vWF) illustrated the presence of the intimal layer (Fig. 2.21). Incubation of 

transverse sections with an antibody directed against the BKca a-subunit showed that 

this channel is highly expressed in both the endothelial and smooth muscle layers (Fig. 

2.22). By contrast, IKca was mainly detectable in the endothelium of the vessels, and 

only weakly expressed in the smooth muscle (Fig. 2.23). Finally, investigations carried 

out for SKca revealed distinct punctate staining in the endothelium of rabbit iliac 

arteries, while an increase in the fluorescence of the smooth muscle relative to the 

control was also detected (Fig. 2.24).
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Fig. 2.1 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to ACh and associated changes in the presence 
of (B) IbTX (100 nM). Experiments were carried out in the presence of L-NAME 
(300 pM) and Indo (10 pM).
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Fig. 2.2 Concentration-response curves for ACh-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of IbTX (100 nM). 
Experiments were carried out with IbTX to assess the involvement of BKca channels in 
relaxations evoked by ACh. It is demonstrated that the toxin significantly inhibits the 
responses. Experiments were carried out in the presence of L-NAME (300 pM) and 
Indo (10 pM). Data are expressed as mean ± SEM. ***, ^<0.001 for whole curves 
compared with the control.
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Fig. 2.3 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) IbTX (100 nM). Experiments were carried out in the presence of L- 
NAME (300 pM) and Indo (10 pM).
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Fig. 2.4 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of IbTX (100 nM). 
Experiments were carried out with IbTX to assess the involvement of BKca channels in 
relaxations evoked by A23187. It is demonstrated that the toxin significantly inhibits the 
responses. Experiments were carried out in the presence of L-NAME (300 pM) and 
Indo (10 pM). Data are expressed as mean ± SEM. *, P<0.05 for whole curves 
compared with the control.
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Fig. 2.5 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to ACh and associated changes in the presence 
of (B) apamin (1 pM) and (C) TRAM-34 (10 pM). Experiments were carried out in 
the presence of L-NAME (300 pM) and Indo (10 pM).

66



Chapter Two

D
40-i

^  3°Hz
E

§ 20
'55
c
<D

h 1(H

oJ

[ACh] M

A
PE

E
apam in (1pM) + TRAM-34 (10pM)

40 “i

30-

Z
E
§ 20-
wc
0)h

10-

0 J

[ACh] M

▲

PE

5min

apamin (1pM) +TRAM-34 (10pM) +lbTX(100nM)

Fig. 2.6 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing relaxations to ACh in the presence of (D) the double 
combination of apamin (1 pM) plus TRAM-34 (10 pM) and (E) the triple 
combination of apamin (1 pM) plus TRAM-34 (lOpM) plus IbTX (100 nM). The 
elevation in basal tone observed in the lower panel is attributable to IbTX (see below). 
Experiments were carried out in the presence of L-NAME (300 pM) and Indo (10 
pM).
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Fig. 2.7 Concentration-response curves for ACh-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of apamin (1 pM), TRAM-34 
(10 pM) and IbTX (100 nM). Experiments were carried out with each inhibitor on its 
own or in combination to assess the involvement of SKca and IKca channels. Although 
apamin did not affect ACh-evoked EDHF-type relaxations, the combination of apamin 
plus TRAM-34 caused significant inhibition. The triple combination of apamin plus 
TRAM-34 plus IbTX demonstrated that the residual relaxation was BKca-dependent. 
Experiments were carried out in the presence of L-NAME (300 pM) and Indo (10 pM). 
Data are expressed as mean ± SEM. *, ^<0.05 and ***, F><0.001 for whole curves 
compared with the control.
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Fig. 2.8 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) apamin (1 pM) and (C) TRAM-34 (10 pM). Experiments were carried 
out in the presence of L-NAME (300 pM) and Indo (10 pM).
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Fig. 2.9 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing relaxations to A23187 in the presence of (D) the double 
combination of apamin (1 pM) plus TRAM-34 (10 pM) and (E) the triple 
combination of apamin (1 pM) plus TRAM-34 (lOpM) plus IbTX (100 nM). The 
elevation in basal tone observed in the lower panel is attributable to IbTX (see below). 
Experiments were carried out in the presence of L-NAME (300 pM) and Indo (10 
HM).
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Fig. 2.10 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of apamin (1 pM), TRAM-34 
(10 pM) and IbTX (100 nM). Experiments were carried out with each inhibitor on its 
own or in combination to assess the involvement of SKca and IKca channels. TRAM-34 
on its own caused a small but significant rightward shift of the curve relative to the 
control. Although apamin did not affect A23187-evoked EDHF-type relaxations, the 
combination of apamin plus TRAM-34 caused significant inhibition. The triple 
combination of apamin plus TRAM-34 plus IbTX demonstrated that the residual 
relaxation was BKca-dependent. Experiments were carried out in the presence of L- 
NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM. f, P<0.05 for 
specific A23187 concentration compared with the control. ***, 7><0.001 for whole 
curves compared with the control.
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ACh control 69.2±10.1 6 .8±0 .1 7
IbTX (100 nM) 35.1±4.7*** 7.2±0.2 7

A23187 control 83.2±12.6 6.4±0.1 9
IbTX (100 nM) 56.9±7.8*** 6.3±0.1 9

ACh control 74.4±11.1 6.9±0.1 5
apamin (1 pM) 69.9±10.4 6 .8 ±0 .1 5
TRAM-34 (10 pM) 52.1±5.9 6.7±0.2* 5
apamin (lpM) + TRAM-34 (10 pM) 18.6±2.4*** n/a 5
apamin (1 pM) + TRAM-34 (10 pM) + IbTX 
(100 nM)

n/a n/a 5

A23187 control 90.7±13.9 6 .6 ±0 .1 5
apamin (1 pM) 88.7±13.4 6 .8 ±0 .1 5
TRAM-34 (10 pM) 79.4±13.4 6 .2 ±0 .1* 5
apamin (1 pM) + TRAM-34 (10 pM) 33.7±4.7*** 6 .2 ±0 .2 * 5
apamin (1 pM) + TRAM-34 (10 pM) + IbTX 
(100 nM)

n/a n/a 5

Table 2.1 Summary of effects of Kca channel inhibitors on EDHF-type relaxations 
evoked by ACh and the calcium ionophore A23187 in the rabbit iliac artery. Potency 
(negative log EC50) and maximal percentage relaxation (Rmax) are expressed as a 
function of the constrictor response to PE and given as mean ± SEM. *P<0.05; 
***P<0.001 compared with the corresponding intra-group control, n denotes the 
number of animals studied, n/a denotes non-applicable data.
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CO 20 -

Fig. 2.11 Bar graphs summarizing the changes in the tone of endothelium-intact rabbit 
iliac arteries following the addition of apamin (lp  M) and TRAM-34 (10 pM). Data are 
presented for both quiescent and PE preconstricted arteries. Apamin and TRAM-34 did 
not affect the tensions of any vessels. Tensions were obtained in the presence of L- 
NAME (300 pM) and Indo (10 pM).
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Fig. 2.12 Representative traces showing the variable changes in tension of endothelium- 
intact rabbit iliac arteries following the addition of (A) IbTX (100 nM) and (B) the triple 
combination of apamin (1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM). L-NAME 
(300 pM) and Indo (10 pM) were present in all experiments. +E denotes the presence of 
an intact endothelium.
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Fig. 2.13 Bar graphs summarizing the changes in the tone of endothelium-intact rabbit 
iliac arteries following addition of IbTX (100 nM) and the triple combination of apamin 
(1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM). Data are presented for both 
quiescent and PE-preconstricted vessels. No statistically significant changes were 
observed between rings treated with IbTX alone or the triple combination. Tensions 
were obtained in the presence of L-NAME (300 pM) and Indo (10 pM). Data are 
expressed as mean ± SEM. **P<0.01 compared with the control.
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Fig. 2.14 Representative traces showing changes in tension of endothelium-denuded 
rabbit iliac arteries following the addition of (A) IbTX (100 nM) and (B) the triple 
combination of apamin (1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM). L- 
NAME (300 pM) and Indo (10 pM) were present in all experiments. -E  denotes the 
absence of endothelium.
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Fig. 2.15 Bar graps summarizing the changes in the tone of endothelium-denuded rabbit 
iliac arteries following addition of IbTX (100 nM) and the triple combination of apamin 
(1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM). A significant increase in the 
resting tension was observed directly after the addition of the drugs, although PE- 
induced contraction was not significantly affected by IbTX or the triple inhibitor 
combination. Tensions were obtained in the presence of L-NAME (300 pM) and Indo 
(10 pM). Data are expressed as mean ± SEM. **P<0.01 compared with the control.
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control 3.1±0.6 32.7±2.0 9
apamin (1 pM) 3.6±0.7 34.4±1.6 9
TRAM-34 (10 pM) 3.5±0.5 38.7±2.1 9

endothelium intact

control 5.3±1.4 28.2±2.4 11

IbTX (100 nM) 20.5±2.7** 35.1±2.8 5
apamin (1 pM) + TRAM-34 (10 pM) + IbTX 
(100 nM)

18.5±2.8** 30.9±3.1 6

endothelium denuded

control 3.1±0.5 24.2±1.3 1 0

IbTX (100 nM) 6.7±1.8** 28.9±4.8 4
apamin (1 pM) + TRAM-34 (10 pM) + IbTX 
(100 nM)

13.5±3.1** 30.3±2.1 6

Table 2.2 Summary of effects of Kca inhibitors on the basal tension and the tension of 
rabbit iliac arteries following stimulation with PE. Tensions are given as means ± SEM. 
**P<0.01 compared with the corresponding intra-group control, n denotes the number 
of animals studied.
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Fig. 2.16 Representative traces from ring preparations of rabbit iliac arteries showing 
(A) relaxations to NS1619 and associated changes in the presence of (B) IbTX (100 
nM) and (C) relaxations to NS1619 in endothelium-denuded rings. Experiments were 
carried out in the presence of L-NAME (300 pM) and Indo (10 pM). ±E denotes the 
presence or absence of an intact endothelium.
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Fig. 2.17 Concentration-response curves for NS1619-evoked relaxations of rabbit iliac 
arteries and associated changes in the presence of IbTX (100 nM). Experiments were 
carried out with NS1619 to confirm the presence of BKca channels in the endothelium 
of these vessels. The endothelium of some arteries was removed to dissociate direct 
effects of NS1619 on BKca channels in this layer from the channels in the smooth 
muscle. IbTX and ablation of the endothelium caused a small but significant rightward 
shift of the curve relative to the control. Experiments were carried out in the presence of 
L-NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM. f, ^<0.05 
for specific NS1619 concentration in the presence of IbTX compared with the control. 
*, P<0.05 for specific NS1619 concentration in endothelium-denuded vessels compared 
with the control.
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Fig. 2.18 Representative traces from ring preparations of rabbit iliac arteries showing 
(A) relaxations to 1-EBIO and associated changes in the presence of (B) apamin (1 
pM) plus TRAM-34 (10 pM) and (C) relaxations to 1-EBIO in endothelium-denuded 
rings. Experiments were carried out in the presence of L-NAME (300 pM) and Indo 
(10 pM). ±E denotes the presence or absence of an intact endothelium.
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Fig. 2.19 Concentration-response curves for 1-EBIO-evoked relaxations of rabbit iliac 
arteries and associated changes in the presence of apamin (1 pM) plus TRAM-34 (10 
pM). Experiments were carried out with 1 -EBIO to confirm the presence of SKca/IKca 
channels in the endothelium of these vessels. The endothelium of some arteries was 
removed to dissociate direct effects of 1 -EBIO on SKca/IKca channels in this layer 
from any effects of this agent in the smooth muscle. The combination of apamin plus 
TRAM-34 or ablation of the endothelium caused a small but significant rightward 
shift of the curve relative to the control. Experiments were carried out in the presence 
of L-NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM. f, 
P<0.05 for specific 1-EBIO concentration in the presence of apamin plus TRAM-34 
compared with the control. *, P<0.05 for specific 1-EBIO concentration in 
endothelium-denuded vessels compared with the control.
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NS1619 control 98.6±15.2 5.1±0.1 15
IbTX (100 nM) 95.2±13.5 4.4±0.3* 1 0

denuded 86.6±13.3 4.7±0.1* 15

1-EBIO control 90.5±13.2 4.6±0.2 15
apamin (1 pM) + TRAM-34 (10 pM) 84.7±11.8 3.5±1.6* 11

denuded 78.7±11.4 4.3±0.6* 15

Table 2.3 Summary of effects of Kca inhibitors and endothelial ablation on 
relaxations induced by NS1619 and 1-EBIO. Potency (negative log IC50) and 
relaxations at 100 pM of agent are expressed as a function of the constrictor response 
to PE and given as mean ± SEM. *P<0.05 compared with the corresponding intra
group control, n denotes the number of animals studied.
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Fig. 2.20 Transverse section of rabbit iliac arteries stained with a secondary Cy5- 
conjugated donkey anti-goat IgG in the absence of primary antibodies. The image 
shows lack of staining of the section excluding the possibility of non-selective binding 
of the secondary Cy5 with the tissue. The autofluorescence of the internal elastic 
lamina was used for the distinction of the endothelium from the rest of the vessel. Cy5 
fluorescence was visualized with an excitation wavelength of 635 nm and peak 
emission at 670 nm, while the autofluorescence of the internal elastic lamina was 
visualized using the FITC filter at an excitation wavelength of 488 nm and peak 
emission at 520 nm. The two images were obtained at a magnification of x40 and they 
were superimposed to demonstrate lack of staining in both the endothelium and the 
smooth muscle. E = endothelium, SM = smooth muscle, IEL = internal elastic lamina, 
L = lumen
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Fig. 2.21 Transverse section of rabbit iliac artery stained for von Willebrand factor 
with an FITC-conjugated anti-vWF antibody. Immunohistochemical detection of the 
von Willebrand fcactor indicated the presence of intact endothelium on these vessels. 
The image was obtained at a magnification of x40 and was visualized using the FITC 
filter at an excitation wavelength of 488 nm and peak emission at 520 nm. Although 
visualization of the internal elastic lamina was not required in this instance, 
autofluorescence was obtained at the same wavelength. E = endothelium, SM = 
smooth muscle, IEL = internal elastic lamina, L = lumen
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Fig. 2.22 Transverse section of the rabbit iliac artery stained with a primary goat 
polyclonal antibody to BKca and a secondary Cy5-conjugated donkey anti-goat IgG. 
Punctate fluorescence in the endothelium and the smooth muscle (arrows) indicates 
the presence of BKca channels in these layers. The autofluorescence of the internal 
elastic lamina was used for the distinction of the endothelium from the rest of the 
vessel. Cy5 fluorescence was visualized with an excitation wavelength of 635 nm and 
peak emission at 670 nm, while the autofluorescence of the internal elastic lamina was 
visualized using the FITC filter at an excitation wavelength of 488 nm and peak 
emission at 520 nm. The two images were obtained at a magnification of x40 and they 
were superimposed to demonstrate BKca localization relative to the internal elastic 
lamina. E = endothelium, SM = smooth muscle, IEL = internal elastic lamina, L = 
lumen



Fig 2.23 Transverse section of the rabbit iliac artery stained with a primary goat 
polyclonal antibody to IKca and a secondary Cy5-conjugated donkey anti-goat IgG. 
Punctate fluorescence in the endothelium and the smooth muscle (arrows) indicates 
the presence of IKca channels in these layers. The autofluorescence of the internal 
elastic lamina was used for the distinction of the endothelium from the rest of the 
vessel. Cy5 fluorescence was visualized with an excitation wavelength of 635 nm and 
peak emission at 670 nm, while the autofluorescence of the internal elastic lamina was 
visualized using the FITC filter at an excitation wavelength of 488 nm and peak 
emission at 520 nm. The two images were obtained at a magnification of x40 and they 
were superimposed to demonstrate IKca localization relative to the internal elastic 
lamina. E = endothelium, SM = smooth muscle, IEL = internal elastic lamina, L = 
lumen
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Fig 2.24 Transverse section of the rabbit iliac artery stained with a primary goat 
polyclonal antibody to SKca and a secondary Cy5-conjugated donkey anti-goat IgG. 
Punctate fluorescence in the endothelium (arrows) indicates the presence of SKca 
channels in this layer. An increase in fluorescence is also detected in the smooth 
muscle of this section, thereby indicating that SKca is also located in the media of 
rabbit iliac arteries. The autofluorescence of the internal elastic lamina was used for 
the distinction of the endothelium from the rest of the vessel. Cy5 fluorescence was 
visualized with an excitation wavelength of 635 nm and peak emission at 670 nm, 
while the autofluorescence of the internal elastic lamina was visualized using the 
FITC filter at an excitation wavelength of 488 nm and peak emission at 520 nm. The 
two images were obtained at a magnification of x40 and they were superimposed to 
demonstrate SKca localization relative to the internal elastic lamina. E = endothelium, 
SM = smooth muscle, IEL = internal elastic lamina, L = lumen
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2.4 Discussion 

2.4.1 ACh and A23187 promote activation of all Kca subtypes

The present study has highlighted the role of Kca channels in EDHF-type relaxations 

induced by ACh and A23187 in rabbit iliac arteries. Although the involvement of Kca 

channels in this species has been previously demonstrated by Chaytor et a l (2002), the 

relative contribution of each channel to the development of NO/prostanoid-independent 

relaxations was not defined. Therefore, it was necessary to identify which Kca channels 

participate in the induction of EDHF-type responses by each agent, and more 

importantly the degree to which each subtype contributes to each response. 

Accordingly, the current study focused on identifying the Kca channel subtypes present 

in the endothelium of these vessels. It was demonstrated that SKca, IKca and BKca 

channels may contribute to EDHF-type responses evoked by ACh and A23187, but that 

the relative contribution of each channel depends on the mode of stimulation. 

Supporting immunohistochemical data demonstrated that in rabbit iliac arteries all Kca 

channels are expressed in both the endothelium and the smooth muscle.

2.4.2 Kca channels in EDHF-type responses

In intact rings pre-incubated with L-NAME and indomethacin, ACh and A23187 

generated maximal relaxations respectively equivalent to -70% and -80% of PE- 

induced tone at a concentration of -3  pM. The selective BKca inhibitor IbTX attenuated 

these responses, thus confirming that a functional BKca channel is present in rabbit iliac 

arteries. Although IbTX does not affect EDHF-type responses in all artery types and 

species, there is substantial evidence that this toxin is devoid of non-specific effects 

(Galvez et al., 1990; Waldron & Cole, 1999; Gao & Garcia, 2003). Indeed, the major 

advantage of IbTX is therefore that it does not inhibit Ky or IKca channels, two effects 

which have been reported for ChTX, which is another widely used, but consequently 

less specific BKca inhibitor (Giangiacomo et al, 1992; Kaczorowski et al, 1996).

Apart from its effects on EDHF-type relaxations in rabbit iliac arteries, IbTX 

significantly attenuates ACh-evoked EDHF-type hyperpolarizations in rabbit renal 

arteries, whereas in branches of rabbit superior mesenteric artery such responses were 

unaffected, thereby suggesting the existence of differences in expression of BKca across 

vessels (Kagota et al., 1999; Kwon et al., 2001; Brayden & Murphy, 1995; Fujimoto et 

al., 1999). Indeed, the toxin elicits only a partial inhibitory effect in rabbit iliac arteries,
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thus suggesting that BKca is not the sole channel mediating hyperpolarization in this 

species. Inhibitory effects of IbTX against EDHF-type responses have also been 

reported in the guinea-pig cerebral, mesenteric and spiral modiolar arteries (Dong et ah, 

1997; Jiang et ah, 2007). Nevertheless, other studies carried out in human 

gastroepiploic arteries and guinea-pig carotid artery have excluded the involvement of 

BKca channels on the basis that in these tissues ACh-evoked EDHF-type responses were 

unaffected by IbTX (Urakami-Harasawa et ah, 1997; Chataigneau et ah, 1998; 

Fujimoto et ah, 1999; Murphy & Brayden, 1995). Also, investigations in guinea pig 

basilar and rabbit iliac arteries with ChTX demonstrated that this toxin did not attenuate 

A23187-induced responses, thereby emphasizing that BKca might not be involved in the 

EDHF phenomenon in different vessels from the same species (Petersson et ah, 1997).

Notably, in reports that demonstrate that BKca channels participates in the EDHF 

phenomenon, activation of the channel coincides with the activation of other Kca 

subtypes. For instance, in isolated rat gracilis muscle arterioles, ChTX blocks EDHF- 

type responses more effectively when co-administered with apamin, rather than on its 

own (Ungvari et ah, 2002). Similar effects have also been shown in guinea pig carotid, 

submucosal, basilar and coronary arteries, porcine coronary and renal arteries, human 

pial and renal arteries, and rabbit mesenteric arteries (Gonzales-Nunez et ah, 2001; 

Petersson et ah, 1997; Yamanaka et ah, 1998; Ge et ah, 2000; Biissemaker et ah, 2002, 

2003; Fujimoto et ah, 1999).

It has been suggested that in EDHF-type responses, SKca and IKca channels might be 

activated simultaneously (Bychkov et ah, 2002; Crane et ah, 2003; Gluais et ah, 2004). 

To confirm this hypothesis, functional experiments were carried out with apamin and 

TRAM-34 in the rabbit iliac artery. It was demonstrated that apamin alone had no effect 

on ACh- and A23187-induced relaxations, thus indicating that the sole activation of 

apamin-sensitive SKca channels might not be sufficient to trigger a response in these 

vessels. Conversely, TRAM-34 suppressed EDHF-type relaxations by significantly 

increasing the pECso of both ACh and A23187, thereby reflecting a pivotal role for 

IKca. To elucidate further the implication of both channels on EDHF-type responses, 

investigations were carried out with the double combination of apamin plus TRAM-34. 

It was demonstrated that in rabbit iliac arteries, the two inhibitors combined are more 

effective than either apamin or TRAM-34 on their own, by decreasing vascular tone by
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-60%. Indeed, in most studies carried out so far, addition of each inhibitor separately 

has little or no effect on the EDHF phenomenon, while their co-administration 

suppresses the response. Although the absence of apamin-induced inhibition in rabbit 

iliac arteries is consistent with studies in hepatic arteries from female Sprague-Dawley 

rats (Zygmunt et al., 1997), it contrasts with other studies demonstrating an apamin- 

sensitive component, therefore suggesting that SKca expression is different among 

species (Murphy & Brayden, 1995; Chen & Cheung, 1997; Hinton & Langton, 2003; 

Crane et al., 2003). On the other hand, the identification of IKca concurs with the fact 

that this channel is partially responsible for the development of the EDHF phenomenon 

in some species, such as the rat, and it is known to occur in conjunction with SKca 

opening (Crane et al., 2003; Gluais et al., 2004). Although it is not well understood how 

apamin potentiates the inhibitory effect of TRAM-34, insight was given by recent 

studies carried out on rat superior mesenteric arteries (Crane et al., 2003; Sandow et al., 

2006). According to these investigations SKca and IKca are activated simultaneously but 

separately which was speculated to occur due to the spatial separation of the two 

channels. Indeed, immunohistochemical observations showed that IKca is present at the 

IEL close to myoendothelial gap junctions, while SKca is localized at adjacent 

endothelial gap junction plaques (Sandow et al., 2006). However, whether this proposed 

spatial separation reflects the putative differences in the contribution of each channel in 

the development of endothelial hyperpolarizations or the modulation of cell-cell 

coupling requires further investigation.

In rabbit iliac arteries, the residual relaxations obtained in the presence of apamin and 

TRAM-34 were abolished when iberiotoxin (lOOnM) was co-administered in the organ 

chamber, thereby suggesting that the effects of SKca, IKca and BKca might be 

synergistic. Complementary effects of these three Kca inhibitors have also been 

demonstrated in guinea pig carotid and pig anterior descending coronary arteries 

(Quignard et al., 2000; Gluais et al., 2005; Bychkov et al., 2002; Weston et al., 2005). 

Nevertheless, it has been suggested that differences in cell type underpin the different 

role of these channels in signalling processes. For instance, endothelial SKca and IKca 

channels have been thought to be the main channels responsible for endothelial 

hyperpolarizations, whereas BKca channels have been thought to mediate smooth 

muscle hyperpolarization evoked by freely diffusible EDHFs (Kohler et al., 2000; 

Bychkov et al., 2002; Sollini et al., 2002; Ding et al., 2003; Eichler et al., 2003;
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McNeish et al, 2006; Plane et al, 1996; Zhao et al, 1997). For this reason 

immunostaining was carried out in a separate section of this study, in order to identify 

the location of the three Kca channels in the rabbit iliac artery.

2.4.3 Identification of endothelial Kca subtypes

Experiments were carried out so as to determine the localization of BKca and SKca/IKca 

channels on the endothelium and/or smooth muscle of rabbit iliac arteries. It has been 

demonstrated that in many blood vessels, BKca channels are mainly expressed in the 

vascular smooth muscle (Mistry & Garland, 1998; Barlow et al, 2000; Weston et al, 

2005; Wu et al, 2005; Zhu et al, 2006). Nevertheless, some reports involving 

immunohistochemical and patch-clamp studies suggested that BKca might also be 

located on the intimal layer (Rusko et al, 1992; Yousif et al, 2002; Ungvari et al, 

2002; Papassotiriou et al, 2000; Brakemeier et al, 2003). To elucidate the role of 

endothelial BKca channels on EDHF-type relaxations in the rabbit, functional 

experiments were carried out with the BKca channel opener NS1619. In intact rings, 

NS1619 generated relaxations equal to -85% at a concentration of 100 pM with a 

threshold of 1-3 pM. Denudation of the endothelium caused a small but significant 

rightward shift of the response, thus indicating that in these vessels NS1619 has both an 

endothelial and smooth muscle site of action. Similar results to those carried out with 

endothelium-denuded vessels were also obtained with IbTX, which suggested that one 

of the components of the NS1619-associated response is BKca-dependent. However, the 

available evidence is not sufficient to demonstrate that ablation of the endothelium 

consequently removes the IbTX-sensitive component. In fact, the findings of this study 

concur with those of investigations carried out in rat basilar arteries, which 

demonstrated that apart from the BKca-dependent component NS1619-induced 

relaxations comprise of a residual response, which was attributed to the concurrent 

closure of voltage operated L-type Ca2+ channels (Holland et al, 1996). Hence, it is still 

unclear whether NS1619 activates BKca channels in the endothelium or in the smooth 

muscle.

To elucidate the role of endothelial SKca and IKca channels on EDHF-type relaxations 

in the rabbit, mechanical investigations were carried out with the benzimidazolone 1 - 

EBIO. It was demonstrated that 1-EBIO generates relaxations equivalent to -80% of the
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PE preconstriction. Denudation of the endothelium caused a small but significant 

increase in the pICso value of the agonist, thus confirming that both SKca and IKca 

might be located on the endothelium. Similar results were also observed in vessels 

preincubated with apamin and TRAM-34, therefore confirming that both channels are 

present in the endothelium of iliac arteries. However, 1-EBIO does have other actions 

apart from activating SKca and IKca. Although it is now established that it triggers 

EDHF-type hypepolarizations in a variety of tissues, including rat mesenteric and 

middle cerebral arteries, there is evidence that this agent also stimulates smooth muscle 

relaxation (Walker et al, 2001; Crane et al, 2002; Marelli et al, 2003). Indeed, it has 

been previously demonstrated that the mechanism of action of 1-EBIO is strongly 

dependent on intracellular Ca and its interaction with calmodulin (Pedarzani et al, 

2001). For instance, in human embryonic kidney cells (HEK 293) stably expressing hIK 

channels, patch clamp studies showed that in the presence of 1-EBIO, the Ca2+-  

activation curve was shifted to the left, and maximal currents were attained at 100 nM
^  I

(Pedersen et al, 2002). This observation suggests that changes in the underlying [Ca ] 

not only affect the functionality of SKca and IKca, but also other cellular components 

that depend on Ca2+, such as the ER and mitochondria.

More conclusive data about the localization of Kca channels were obtained by 

immunohistochemical investigations carried out on transverse sections of rabbit iliac 

arteries. It was demonstrated that BKca is expressed in both endothelial and smooth 

muscle layers, which was consistent with the hypothesis that the channel might trigger 

endothelium-derived hyperpolarizations and the development of tonic contractions in 

the presence of IbTX. These findings were also in agreement with the involvement of a 

BKca-dependent component in NS1619-evoked EDHF-type relaxations, and concurred 

with the fact that in rabbit iliac arteries IbTX inhibits both ACh- and A23187-induced 

EDHF-type responses. Endothelial localization of BKca has also been demonstrated 

immunohistochemically in other blood vessels such as the rabbit ductus arteriosus and 

the rat gracilis muscle arterioles (Thebaud et al, 2002; Ungvari et al, 2002). By 

contrast, IKca expression was restricted in the endothelium and to a lesser extent the 

smooth muscle of rabbit iliac arteries, a finding which was consistent with data from 

studies carried out in porcine coronary arteries and in rat mesenteric and middle cerebral 

arteries (Marrelli et al, 2003; Bychkov et al, 2002; Walker et al, 2001). It should be 

noted that although IKca seems to be one of the two main Kca channels that induce
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endothelial hyperpolarizations in the rat, the other being SKca, in the rabbit the 

contribution of this channel in EDHF-type relaxations seems to occur in conjunction 

with endothelial BKca (Edwards et al, 1998; McNeish et al., 2006).

Finally, immunohistochemical studies carried out on rabbit iliac arteries demonstrated 

the presence of SKca in both the endothelium and the smooth muscle of this vessel. 

Although there are three different SKca subtypes, namely SKI, SK2 and SK3, in the 

current study emphasis was given only to SK3, as this is the subtype known to be more 

preponderant on endothelial cells and therefore is more relevant to the development of 

EDHF-type hyperpolarizations (Burnham et al, 2002; Bychkov et al., 2002; Ceroni et 

al, 2007; Chaytor et al, 2003). The presence of SK3 channels in the endothelium 

concurs with the aforementioned mechanical investigations (section 2.4.2), which 

illustrated that addition of apamin potentiates the inhibitory effects of TRAM-34 against 

both ACh- and A23187-evoked EDHF-type relaxations. The presence of SK3 in the 

endothelium has also been demonstrated with molecular techniques in 1st, 2nd, 3rd and 4th 

order mesenteric arteries from rats and eNOS-knockout mice, in which the expression 

of the channel increases as the size of the vessels decreases (Doughty et al, 1999; 

Shandow et al, 2006; Ceroni et al, 2007). Notably, SK3 channels were detected in the 

smooth muscle of rabbit iliac arteries, a finding that was surprising knowing that this 

SKca subtype is mainly located in the intimal layer. Such finding is also contradictory to 

the mechanical data presented in this thesis, which demonstrate that in rabbit iliac 

arteries SKca has no tonic role in apamin pretreated vessels. Therefore, based on the 

current evidence is difficult to understand how smooth muscle SKca channels might 

contribute to ACh- and A23187-evoked EDHF-type relaxations.

2.4.4 Effects of Kca inhibitors on smooth muscle

It was demonstrated that addition of IbTX to the organ chamber, has a significant effect 

on the tension of resting arteries, thus implying that the toxin might interact with BKca 

located on smooth muscle. Indeed, the tonic contraction was observed in all 

experiments with IbTX, with the average magnitude of the tension being the same in 

both endothelium-intact and endothelium-denuded vessels. This suggested that in these 

vessels the endothelium might not play a significant role in the determination of the 

IbTX-induced tonic contraction, and therefore these effects are only restricted in smooth
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muscle. It was also demonstrated that addition of apamin or TRAM-34 on their own 

failed to increase the basal tone of endothelium intact and endothelium-denuded vessels. 

These results are consistent with studies carried out in rat mesenteric arteries, where 

both SKca and IKca are localized in the endothelium (Edwards et al, 1998; Crane et al, 

2003). Notably, it has been demonstrated that in resting rat mesenteric arteries, 

hyperpolarizations can be explained solely by the activation of SKca channels, while 

during PE-induced depolarization and contraction, the activation of IKca is also 

necessary (Crane et al, 2003). However, in the current study the available evidence 

suggests that SKca and IKca do not play a significant role in smooth muscle 

depolarization and contraction, but they might both be necessary for the development of 

EDHF-type relaxations as demonstrated in section 2.4.2. This finding was also 

supported by the absence of any significant changes in the magnitude of tonic 

contractions in the presence of the triple combination of apamin plus TRAM-34 plus 

IbTX in both endothelium-intact and endothelium-denuded vessels. If smooth muscle 

Kca channels, other than BKca, contributed to the development of the tonic contraction, 

then a further increase in the magnitude of the tonic contractions would have been 

observed in the presence of apamin and TRAM-34. Hence, it is reasonable to speculate 

that the only Kca subtype that might be responsible for the tonic contractions observed 

in rabbit iliac arteries is BKca.

BKca channels are expressed in almost all vascular smooth muscle cells, and their 

physiological role could more appropriately be seen as a feedback inhibitor of 

contraction or a physiological break against increases in intravascular pressure. Indeed, 

in the resting state, the activation of clusters of smooth muscle BKca channels leads to 

the development of spontaneous transient outward currents (STOCs) in response to 

localized Ca2+ microelevations, known as Ca2+ sparks (Nelson et al, 1995; Bychkov et
94-al, 1997). Due to BKca activation, Ca sparks may therefore lead to a paradoxical 

decrease in the overall intracellular Ca2+ concentration, which could be responsible for a 

decrease in vascular tone (Jaggar et al, 1998). However, some studies have suggested 

that even at membrane potentials close to the resting state in isolated arteries (-40mV to 

-50mV), BKca channels may be tonically active (Quignard et al., 2000). Hence, there is

a possibility that the inhibition of BKca with IbTX might lead to a significant increase in
2 +

[Ca ]i and subsequently contraction.
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Furthermore, other studies have suggested that in the muscle activation of these 

channels might depend on both Ca2+ sparks and Ca2+ entry through L-type Ca2+ 

channels (Herrera & Nelson, 2 0 0 2 ) .  Although the exact mechanism underlying the 

association between BKca and L-type channels is yet unkown, it is possible that 

inhibition of smooth muscle BKca could have a major effect on the opening of L-type 

channels through the development of a depolarizing response. Indeed, the physiological 

functions of BKca arise from their allosteric activation by two factors: 1 ] membrane
ey j

depolarisation and 2 ]  changes in [Ca ] i  (Cui et al, 1 9 9 7 ) .  A connection between B K c a  

and L-type channels has been previously demonstrated in the rat, in which the sustained 

phase of the myogenic response was sensitive to both IbTX and D 6 0 0 ,  an L-type 

channel inhibitor (Chlopicki et al, 2 0 0 1 ) .  Other studies carried out on femoral arteries 

from both SHR and WKY rats have also demonstrated that in the resting state increases 

in Ca2+ efflux are coupled to the appearance of myogenic tone and changes in K+ fluxes 

through B K c a  channels (Asano et al, 1 9 9 5 ) .

Nevertheless, the identification of B K c a  channels in the smooth muscle of rabbit iliac 

arteries and the development of variable increases in tension during incubation with 

IbTX raised the possibility that the effects of the toxin on EDHF-type relaxations might 

be indirect. Speculatively, the IbTX-induced constriction of the vessel could inhibit 

relaxations to ACh and A23187 through the propagation of depolarizations from the 

smooth muscle to the endothelium. Furthermore, it was demonstrated that removal of 

the endothelium of rabbit iliac arteries did not affect the tonic contractions evoked by 

IbTX, thereby suggesting that the augmentation of the tone occurs due to inhibition of 

smooth muscle B K c a  channels only. However, it was observed that the magnitude o f the 

inhibition of EDHF-type relaxations by IbTX was the same in all experiments, while the 

magnitude of the tonic contractions was variable. Although it cannot be excluded that 

inhibition of smooth muscle B K c a  channels might have an indirect effect on EDHF-type 

relaxations, such discrepancy indicates that IbTX is more likely to inhibit these 

responses directly. Therefore, the role of an indirect effect of IbTX on EDHF-type 

relaxations cannot be fully supported by the data of this study, and in this regard it 

needs to be investigated further.

The immunohistochemical detection of I K c a  in the smooth muscle of rabbit iliac arteries 

indicated that this channel could also be implicated in the development of vascular tone.
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A functional smooth muscle IKca is known to be essential to negatively modulate the 

rhythmical activity of vessels, that is the changes in contractility which are associated
9+with underlying oscillations in Ca and rhythmical changes in membrane potential (Hill 

et al, 2001; Peng et al, 2001; Haddock & Hill, 2002). However, in rabbit iliac arteries 

IKca has no tonic role in TRAM-34 pretreated vessels as previously demonstrated, and 

therefore it is difficult to establish the role of this channel in the smooth muscle. 

Notably, studies carried out on mature and immature cultured smooth muscle cells from 

aortae of WKY rats demonstrated that the expression of IKca channels is more profound 

at early stages of cell development while BKca is the main Kca subtype in mature cells 

(Neylon et al, 1999). Although the current study cannot provide any insights on these 

developmental changes, it does concur with the fact that both BKca and IKca channels 

can be found on the smooth muscle and that the distribution of the former is 

significantly higher than the latter.

Following the constriction of iliac arteries with PE, the maximum tension of IbTX pre

treated vessels did not differ significantly from that of the control. This indicated that 

PE stimulation might be sufficient to mask the tonic contraction induced by BKca 

closure. Similar results were observed for both endothelium-intact and endothelium- 

denuded vessels, which once again emphasized the fact that the IbTX-evoked tonic 

contractions are independent of the endothelium. However, a functional BKca channel is 

present in the endothelium of rabbit iliac arteries, and therefore pharmacological 

blockade of the channel would not be sufficient to distinguish its contribution from that 

of the corresponding channels in the muscle. Furthermore, it was demonstrated that 

IbTX significantly inhibits both ACh- and A23187-evoked EDHF-type relaxations of 

the rabbit iliac artery, suggesting that endothelial hyperpolarizations might be associated 

with a functional BKca channel in this layer. It is therefore possible that smooth muscle 

depolarization might have a counteractive effect on the development of 

hyperpolarizations in the endothelium. In fact, there are reports which suggest that 

smooth muscle depolarization induced by PE might be conducted to adjacent 

endothelial cells via myoendothelial gap junctions (Little et al, 1995; Dora et a l, 1997, 

2000; Griffith et al, 2004). However, the evidence provided in this study is not 

sufficient to demonstrate how the localization of BKca channels or smooth muscle 

depolarization might affect the development of EDHF-type responses, and therefore no 

direct conclusion can be drawn.
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2.4.5 Concluding remarks

In conclusion, the present Chapter has confirmed that Kca channels participate in the 

induction of EDHF-type responses by ACh and calcium ionophore A23187 in the rabbit 

iliac artery. It was demonstrated that the relative contribution of each channel subtype 

varies depending on the stimulus, and that BKca channels in the endothelium might play 

a significant role in both ACh- and A23187-evoked responses. It was also demonstrated 

that simultaneous inhibition of BKca, IKca and SKca channels attenuates ACh- and 

A23187-evoked EDHF-type relaxations. Immunohistochemical studies showed that all 

Kca subtypes are present on both the endothelium and the smooth muscle of rabbit iliac 

arteries. More conclusive data about the localization and the putative role of BKca and 

SKca/IKca were obtained in NS1619- and 1-EBIO-treated vessels.
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Chapter Three

3.1 Introduction

Endothelial cells and smooth muscle cells may both generate large amounts of reactive 

oxygen species depending on the conditions and the physiological stimulus involved. It 

is now known that H2O2 produced in endothelial cells in response to agents such as 

ionophore A23187, and to a lesser extent ACh, has vasoactive properties that are 

associated with effects on cellular components such as actin-myosin and Kca channels 

(Ellis & Triggle, 2000; Chaytor et al, 2003). H2O2 induces relaxations in porcine, 

canine and human coronary arteries, and rabbit, rat and human mesenteric arteries 

(Matoba et al, 2003; Pomposiello et a l, 1999; Rubanyi & Vanhoutte, 1986; Beny & 

von der Weid, 1991; Consentino & Katusic, 1995; Barlow & White, 1998; Hayabuchi et 

al, 1998; Miura et al, 2003; Sato et al, 2003; Thengchaisri & Kuo, 2003), whereas in 

other vessels such as the bovine coronary artery and the canine cerebral artery it causes 

contraction (Oeckler et al, 2003; Katusic et al, 1993).

In human submucosal microvessels application of exogenous H2O2 triggered two 

different effects depending on the presence or absence of the endothelium (Hatoum et 

al, 2005). H2O2 induced a dose-dependent relaxation in endothelium intact sections, 

while application of H2O2 on endothelium-denuded arterioles caused a significant 

increase in tension (Hatoum et al, 2005). The ability of H2O2 to cause either relaxation 

or contraction on the same vessel has also been demonstrated in rat skeletal muscle 

arterioles, with H2O2 causing vasoconstriction at low concentrations and vasodilatation 

at concentrations higher than 60 pM (Cseko et al, 2004). Notably, in the rat removal of 

the endothelium did not change the pattern of the H2C>2-induced response, as observed 

in human submucosal microvessels, but it significantly reduced the magnitude of both 

contractions and relaxations (Hatoum et al, 2005; Cseko et al, 2004). It has been 

suggested that in porcine coronary arteries H2O2 reduces vascular tone through two 

different mechanisms; one endothelium-dependent and one endothelium-independent 

(Thengchaisri & Kuo, 2003). In these vessels, endothelial denudation in combination 

with indomethacin led to the conclusion that the COX-PGE2 pathway accounts for the 

endothelium-dependent component, while the endothelium independent was associated 

with the activation of Kca channels in the smooth muscle (Thengchaisri & Kuo, 2003). 

Such differences in the effects of H2O2 on the endothelium and the smooth muscle 

raised the possibility that apart from its properties as an EDRF, H2O2 could be a factor 

that triggers endothelial and subsequently smooth muscle hyperpolarizations. Indeed,
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some reports have suggested that H2O2 might be an EDHF on the basis that in the rat, 

catalase significantly inhibited the underlying hyperpolarizations (Matoba et a l, 2000). 

However, studies carried out in rabbit iliac arteries demonstrated that upon stimulation 

with A23187, an H202-dependent component of relaxation was concomitant with but 

distinct from an associated hyperpolarizing response (Chaytor et al, 2003). This finding 

suggests that either A23187 stimulates simultaneously two separate pathways, or the 

release of H2O2 is a consequence of the endothelial hyperpolarization.

3.1.1 Effects of H2O2 on Kca channels

Numerous investigations have been carried out to elucidate the possible effects of H2O2 

on Kca channels in the endothelium and smooth muscle. Although it has been suggested
9-1-that H2O2 affects the opening of Kca by targeting cysteine residues near the Ca bowl 

of the a subunit (Tang et al., 2004), there is consensus on the fact that this mechanism 

affects Kca channels differently among vessels and species, and is dependent on the 

stimulus employed, the localization of the channels and the Kca subtype (Wei et al., 

1996; Sobey et al, 1997; Hattori et al, 2003). For instance, in isolated porcine coronary 

arteries patch clamp techniques have demonstrated that exposure to H2O2 opens smooth 

muscle BKca channels via the PLA2 -  arachidonate cascade (Barlow et al, 2000), while 

in the renal artery endothelium from the same species application of H2O2 inactivates 

these channels (Brakemeier et al, 2003). Activation of BKca channels by H2O2 has also 

been demonstrated in the smooth muscle of rat cerebral arteries, in small mesenteric 

arteries from eNOS-knockout mice, and the smooth muscle of porcine coronary arteries 

(Sobey et al, 1997; Matoba et al, 2000; Thengchasri & Kuo, 2003). In human coronary 

microvessels, it has been reported that smooth muscle Kca channels sensitive to ChTX 

and apamin are activated by H2O2 (Miura et al, 2003).

However, studies carried out so far have not explored the possibility of coupling 

between Kca activation and the release of H2O2 from the endothelium. Indeed, in 

Chapter 2, it was demonstrated that the combined application of apamin, TRAM-34 and 

IbTX, significantly attenuates EDHF-type relaxations to A23187. Hence, considering 

that A23187-evoked relaxations exhibit a major catalase-sensitive component, it is 

possible that the release of this species is a consequence of endothelial Kca activation 

(Chaytor et al, 2003). It is also evident that in order to understand the mechanisms that 

underpin A23187-evoked EDHF-type relaxations, it is necessary to identify the sources
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of H2O2 in these tissues. Because all studies questioning the role of the EDHF 

mechanism in the regulation of vascular tone were carried out in the presence of NOS 

and prostanoid inhibitors in the present thesis, it was considered necessary to focus on 

three sources of ROS only, namely, NADPH oxidase, xanthine oxidase and the 

mitochondrial electron transport chain (ETC).

3.1.2 Putative sources of ROS in the vasculature

3.1.2.1 The NADPH oxidase system

The NADPH oxidase system is an assembly of membrane-associated heterodimer of 

gp91phox and p22phox (also known as cytochrome bssg) and the cytosolic components 

p67phox, p47phox and p40phox. In the novel Nox terminology, gp91phox is called 

Nox2, and can be regarded as a redox transmembrane chain that connects the cytosolic 

electron donor NADPH with oxygen, which plays the role of the electron acceptor on 

the outer membrane (see section 1.3.3.1). Although Nox2 was initially identified in 

macrophages, it may also be located in non-phagocytic cells such as endothelial cells 

and cardiac and skeletal myocytes (Zhang et a l, 2006; Wang et al, 2007). In non- 

phagocytic cells production of H2O2 occurs by dismutation of O2 ’, which occurs when 

electrons move from the reduced substrate to molecular oxygen. It should be noted that 

the movement of electrons takes place only once the cytosolic components have 

translocated to the plasmalemma. The plant phenol 4-hydroxy-3-methoxyacetophenone 

(apocynin) has been extensively used for the elucidation of the interactions between the 

various subunits of the oxidase, and their role in ROS production. In fact, it has been 

established that its inhibitory properties are associated with the blockade of the 

translocation of the cytosolic components and their interaction with Nox2 (Stolk et al, 

1994). Apocynin has been previously used to demonstrate the role of NADPH oxidase 

in ROS production in a number of vascular tissues, including rabbit carotid arteries, 

porcine pulmonary arteries and rat cerebral arteries (Chen et al, 2007; Cai et al, 2003; 

Paravicini et al, 2002; Miller et a l, 2005).

3.1.2.2 Xanthine oxidase and ROS production

The xanthine oxidoreductase (XOR) system is also relevant as a putative source of H2O2 

in the vasculature (White et a l, 1994; Kelley et al, 2006). One of the primary roles of 

this system is the conversion of hypoxanthine to xanthine and xanthine to uric acid.
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XOR exists in two interconvertible forms, the xanthine dehydrogenase (XDH), which 

reduces nicotinamide adenine dinucleotide, and xanthine oxidase (XO), which oxidizes 

molecular oxygen to 02*' (Berry & Hare, 2004). The enzyme is a 270 kDa protein which 

incorporates two FAD molecules, two molybdenum atoms forming a molybdopterin 

unit which is the active site of the enzyme, and eight iron atoms which participate in 

electron transport reactions (Fridovich & Handler, 1958). Allopurinol was the first 

inhibitor of this enzyme to be developed, and was found to reduce uric acid levels in 

both serum and urine (Springer et al, 1996; Perez-Ruiz & Liote, 2007). Allopurinol 

reacts with XOR at the molybdopterin unit to yield alloxanthine (or oxypurinol), which 

binds to XOR via direct coordination to molybdenum atoms, thereby inhibiting the 

interaction of the enzyme with its substrate (Berry & Hare, 2004; Truglio et al, 2002; 

also see Chapter 1). Oxypurinol inhibits XO in a non-competitive manner and together 

with its long persistence in tissues, is responsible for much of the pharmacological 

activity of allopurinol.

3.1.2.3 The mitochondrial electron transport chain (ETC)

ROS are produced in mitochondria, and more specifically by the ETC, the site of 

respiration (see section 1.3.3.2). Although molecular oxygen is reduced to water by the 

ETC, a small fraction is incompletely reduced to O2*', which is subsequently dismutated 

into H2O2 by mitochondrial SODs. Generation of O2*' takes place in complexes I and 

III, but it still remains unclear which complex is the primary source. Indeed, it has 

become evident that each of these sites might play a distinct role depending on different 

stimuli. For instance, complex I preferentially produces O2*' in response to shear stress 

in human coronary resistance arteries, while in human umbilical vein endothelial cells 

complex III preferentially produces the anion in response to hypoxia-reoxygenation (Liu 

et al, 2003; Therade-Matharan et a l, 2005; see section 1.3.3.2). Accordingly, the use of 

mitochondrial antagonists and uncouplers has been instrumental in evaluating the 

contribution of mitochondria to ROS generation. Two widely used inhibitors of ETC are 

rotenone, a blocker of complex I, and myxothiazol, a blocker of complex III. These 

agents have been demonstrated to either enhance or diminish H2O2 production 

consistent with functional differences between the two ETC sites (Grivennikova & 

Vinogradov, 2006; Guidarelli et a l, 2007). Notably, in investigations carried out on 

HEK293, U87 and HeLa cells rotenone significantly increased the production of H2O2 

which ultimately led to irreversible cell damage (Chen et al, 2007), while other studies
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have shown that application of rotenone in human coronary resistance arterioles and rat 

coronary arteries inhibits the production of this species (Liu et al., 2003; Saitoh et al, 

2006). Such differences implied that in contrast to myxothiazol, the mitochondrial 

effects of rotenone are not always inhibitory and might be strongly influenced by the 

experimental conditions employed.

3.1.3 Aims of study

The aims of the current study were two-fold. Firstly, a series of mechanical 

investigations was carried out to elucidate the putative connection between endothelial 

Kca activation and subsequent H2O2 release. These investigations included experiments 

designed to show how H2O2 produced in the endothelium might affect the Kca channels 

located in smooth muscle. Given the potential role of the different ROS sources in 

A23187-evoked H2O2 release in the endothelium, the second objective of the current 

study was to identify the extent to which NADPH oxidase, xanthine oxidase or 

mitochondria might contribute to ROS production in rabbit iliac arteries.

104



Chapter Three

3.2 Methods 

3.2.1 Isolated ring preparations

Iliac artery rings were isolated and prepared for mechanical investigations as described 

in section 2.2.1

3.2.2 Protocols

Cumulative concentration-response curves were constructed for the calcium ionophore 

A23187 following the constriction of the vessels with 1 pM PE. To confirm that the 

previously described inhibitory effects of catalase are due to the interaction of the 

enzyme with H2O2, some rings were incubated with catalase (2000 U.ml'1) or the 

combination of catalase (2000 U.ml'1) plus the catalase inhibitor ATZ (50 mM) for 30 

min. In conjunction, some catalase-treated arteries were stimulated with ACh. To 

provide further evidence about the role of H2O2 release on A23187-treated iliac arteries, 

endothelium-intact rings were also incubated with manganese porphyrin (MnTMPyP; 

500 pM), an SOD/catalase-mimetic in a separate series of investigations.

To investigate the relationship between H2O2 production and Kca activation in A23187- 

treated vessels, iliac arteries were incubated with IbTX (100 nM) or apamin (1 pM) plus 

TRAM-34 (10 pM) in the presence or absence of catalase (2000 U.ml'1). Control 

concentration response curves were derived from responses to A23187 with rings that 

had not been incubated with the Kca inhibitors. Endothelium-denuded rings were also 

used to test the effects of H2O2 on Kca channels on smooth muscle, and therefore 

elucidate the putative role of these channels in A23187-generated lUC^-induced 

relaxations. The vessels were incubated with IbTX (100 nM) or apamin (1 pM) plus 

TRAM-34 (10 pM) for 30 min, and then cumulative concentration response curves were 

constructed for exogenous H2O2.

To identify putative sources of endogenous H2O2 production in the endothelium of 

rabbit iliac arteries, the effects of A23187 were investigated under control conditions 

and in the presence of apocynin (1 mM; Chan et al, 2007), oxypurinol (100 pM; 

McNally et al., 2003), rotenone (300 nM) and myxothiazol (300 nM). Following a 40 

min incubation period with these agents, constriction was induced by phenylephrine 

(PE; 1 pM), and cumulative concentration response curves constructed for A23187. In 

further experiments, arteries were incubated with rotenone (300 nM) and myxothiazol
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(300 nM), and cumulative concentration response curves to ACh constructed to 

investigate whether these inhibitors also affected ACh-evoked relaxations.

3.2.3 Data analysis

Responses to added drugs were plotted into sigmoidal concentration response curves 

and expressed as percentages of relaxation. The curves were compared by one-way 

analysis of variance (ANOVA) followed by the Bonferroni multiple comparison test. 

pECso values were obtained from concentration response curves by fitting the data to 

the following logistic equation: Y= A + (B -  A) / (1+10A ((LogECso -  X))) where Y is 

the response, X is the logarithm of concentration, A is the response observed with zero 

drug, and B is the response observed with maximal concentration of drug. pECso values 

are expressed as mean ± SEM. R ^  (maximal % relaxation) was calculated for all 

vasorelaxant responses. When Rmax was not reached, the % relaxation obtained with 10 

pM of agonist was calculated instead. To assess the effects of apocynin, oxypurinol, 

rotenone and myxothiazol on vascular tone, tensions before and after the addition of PE 

were measured and compared by two-way analysis of variance (ANOVA) following by 

the Bonferroni multiple comparison test. In experiments with IbTX data were analysed 

relative to the basal tension in the presence of L-NAME and indomethacin. All results 

were expressed as mean ± SEM. P<0.05 was considered statistically significant, n 

represents the number of animals. Analysis was carried out with GraphPad Prism 4.0 

(San Diego, USA).

3.2.4 Drugs and reagents

All drugs were supplied by Sigma Aldrich (Gillingham, UK). Similarly to the 

procedures described in Chapter 2, indomethacin was dissolved in 5% NaHC0 3 . Stock 

solutions for A23187 and TRAM-34, rotenone and myxothiazole were prepared in 

DMSO; thereafter serial dilutions were carried out in water. All other drugs were water 

soluble. ACh and PE stock solutions were made daily prior to any investigations.
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3.3 Results

3.3.1 Effects of catalase and MnTMPyP on EDHF-type relaxations

EDHF-type relaxations to A23187 were maximal at a concentration of ~3 pM and 

equivalent to 73.9 ± 11.8% o f PE preconstriction with a pECso value of 7.0 ±0.1 (Fig. 

3.1, 3.2; Table 3.1). Preincubation with catalase (2000 U.ml"1) inhibited the relaxation 

evoked by A23187 and caused a significant rightward shift of the threshold of the 

relaxation from a concentration of ~0.1 pM to ~1 pM (Fig. 3.1, 3.2; Table 3.1). 

Preincubation with catalase (2000 U.ml'1) plus ATZ (50 mM) partially restored the 

relaxation to A23187 towards its control value (Fig. 3.1, 3.2; Table 3.1). EDHF-type 

relaxations to ACh were maximal at a concentration of ~3 pM and equivalent to 65.8 ± 

1.6% PE preconstriction with a pECso value of 6.5 ± 0.1 (Fig. 3.3, 3.4; Table 3.1). 

Preincubation with catalase (2000 U.ml'1) inhibited the relaxation evoked by ACh to

41.4 ± 7.6% with a pECso value o f 6.9 ± 0.3 (Fig. 3.3, 3.4; Table 3.1). In a separate 

series of investigations, EDHF-type relaxations to A23187 were maximal a 

concentration of ~3 pM and equivalent to 57.9 ± 9.5% of PE preconstriction with a 

pECso of 6.9 ±0.1 (Fig. 3.5, 3.6; Table 3.1). Preincubation with MnTMPyP (500 pM) 

led to a significant rightward shift of the curve relative to the control relaxation (Fig. 

3.5, 3.6; Table 3.1).

3.3.2 Effects of Kca inhibitors and catalase on A23187-induced relaxations

EDHF-type relaxations to A23187 were maximal at a concentration of ~3 pM and 

equivalent to 73.7 ± 11.3% of PE preconstriction with a pECso value of 6.4 ± 0.8 (Fig. 

3.7, 3.8; Table 3.2). Preincubation with IbTX (100 nM) inhibited the response by 

approximately 23% (Fig. 3.7, 3.8; Table 3.2), while the combination of IbTX (100 nM) 

plus catalase (2000 U.ml'1) inhibited relaxations to A23187 even further leaving a 

residual response equal to -14%  (Fig. 3.7, 3.8; Table 3.2). Similar investigations were 

carried out with apamin (1 pM) plus TRAM-34 (10 pM). In these experiments, EDHF- 

type relaxations to A23187 were maximal at a concentration of ~3 pM and equivalent to

79.6 ± 11.5% of PE preconstriction with a pECso value of 6.4 ± 0.1 (Fig. 3.9, 3.10; 

Table 3.2). Preincubation with apamin (1 pM) plus TRAM-34 (10 pM) inhibited the 

relaxation evoked by A23187 to 40.9 ± 5.7% with a pECso value of 6.2 ±0.1 (Fig. 3.9, 

3.10; Table 3.2). Preincubation with apamin (1 pM) plus TRAM-34 (10 pM) plus 

catalase (2000 U.ml'1) further inhibited the relaxation evoked by A23187 and caused a 

significant rightward shift of the curve, but it failed to abolish it.
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3.3.3 Effects of Kca inhibitors on relaxations induced by exogenous H2O2

In endothelium-denuded arteries, relaxations to H2O2 were maximal at ~ 300 pM and 

equivalent to 70.2 ± 13.1% of PE preconstriction with a pECso value of 4.0 ± 6.6 (Fig. 

3.11, 3.12; Table 3.2). Preincubation with IbTX (100 nM) on its own did not affect 

either the relaxations evoked by H2O2 or the corresponding pECso value (Fig. 3.11, 

3.12; Table 3.2). In a separate series of experiments in endothelium-denuded vessels, 

relaxations to H2O2 were maximal at ~ 300 pM and equivalent to 78.1 ± 12.7% of PE 

preconstriction with a pECso value of 4.5 ± 0.3 (Fig. 3.13, 3.14; Table 3.2). 

Preincubation with apamin (1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM) had no 

effect on F^C^-evoked relaxations (Fig. 3.13, 3.14; Table 3.2).

3.3.4 Effects of apocynin and oxypurinol on A23187-induced relaxations

EDHF-type relaxations to A23187 were maximal at ~1 pM and equivalent to 80.5 ± 

13.3% of PE preconstriction with a pECso value of 6.6 ±0.1 (Fig. 3.15, 3.16; Table 3.3). 

Preincubation with apocynin (1 mM) did not significantly affect either the relaxations 

evoke by A23187 or the corresponding pECso values. In a separate series of 

experiments, EDHF-type relaxations to A23187 were maximal at ~1 pM and equivalent 

to 73.1 ± 11.3% of PE preconstriction with a pECso value of 6.9 ± 0.1 (Fig. 3.17, 3.18; 

Table 3.3). Preincubation with oxypurinol (100 pM) did not affect the relaxations.

3.3.5 Effects of ETC inhibitors on A23187- and ACh-evoked relaxations

In a separate series of experiments, the ETC complex I inhibitor rotenone (300 nM) 

significantly inhibited the maximum relaxation to A23187 from 80.7 ± 12.9% to 1.1 ± 

3.7% (Fig. 3.19, 3.20; Table 3.3), and those induced by ACh from 67.6 ± 9.4% to 20.3 ± 

3.7% (Fig. 3.21, 3.22; Table 3.3). Similarly, the ETC complex III inhibitor 

myxothiazole (300 nM) significantly inhibited EDHF-type responses to both A23187 

and ACh, and reduced the maximal relaxations to 20.7 ± 2.6% and 15.9 ± 2.2%, 

respectively (Fig. 3.23, 3.24, 3.25, 3.26; Table 3.3).

3.3.6 Effects of inhibitors on the tension on PE-preconstricted arteries

Under control conditions, addition of PE (1 pM) led to a significant increase in tension, 

which was equal to ~38 mN (Table 3.4). Application of rotenone (300 nM) significantly 

decreased the magnitude of the control tension to 9.7 ± 0.7 mN from 45.3 ± 2.3mN, but 

other inhibitors did not significantly affect PE-evoked contraction (Table 3.4).
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Fig. 3.1 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) catalase (2000 U.ml'1) and (C) catalase (2000 U.ml'1) plus ATZ (50 
mM). Experiments were carried out in the presence of L-NAME (300 pM) and Indo 
(10 pM).
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Fig. 3.2 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of catalase (2000 U.ml"1) and 
the dual combination of catalase (2000 U.ml"1) plus ATZ (50 mM). Experiments were 
carried out with catalase to assess the role of endogenous H2O2 in relaxations evoked by 
A23187. Addition of ATZ, an inhibitor of the active site of catalase, was used to 
demonstrate the selectivity of the enzyme for H2O2. Catalase significantly inhibited the 
relaxation evoked by A23187 and caused a significant rightward shift of the threshold 
of the relaxation. ATZ partially restored the response to A23187 relative to the control. 
Experiments were carried out in the presence of L-NAME (300 pM) and Indo (10 pM). 
Data are expressed as mean ± SEM. *, P<0.05; ***, P<0.001 for maximal 
concentration compared with the control.
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Fig. 3.3 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to ACh and associated changes in the 
presence of (B) catalase (2000 U.ml'1). Experiments were carried out in the presence 
of L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.4 Concentration-response curves for ACh-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of catalase (2000 U .m f1). 
Experiments were carried out with catalase to assess the role of endogenous H2O2 in 
relaxations evoked by ACh. Catalase inhibited the relaxation evoked by this agonist to
41.4 ± 7.6%. Experiments were carried out in the presence of L-NAME (300 pM) and 
Indo (10 pM). Data are expressed as mean ± SEM. **, F><0.01 for maximal 
concentration compared with the control.
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Fig. 3.5 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) MnTMPyP (500 pM). Experiments were carried out in the presence 
of L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.6 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of the SOD/catalase-mimetic 
agent manganese porphyrin (MnMTPyP; 500 pM). Experiments were carried out with 
MnMTPyP to assess the involvement of an H2C>2-dependent component in relaxations 
induced by A23187. Preincubation with MnTMPyP led to a significant rightward shift 
of the curve relative to the control, with no statistically significant effect on the response 
obtained with 10 pM of A23187. Experiments were carried out in the presence of L- 
NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM. **, P O .O l 
for specific A23187 concentration compared with the control.
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A23187 control 73.9±11.8 7.0±0.1 9
catalase (2000 U.ml'1) 29.4±3.5*** n/a 9
catalase (2000 U.ml'1) + ATZ (50 mM) 54.0±6.5* n/a 9

ACh control 65.8±1.6 6.5±0.1 4
catalase (2000 U.ml'1) 41.4±7.6** 6.9±0.3 4

A23187 control 57.9±9.5 6.9±0.1 4
MnTMPyP (500 pM) 51.2±6.7 6.1±0.2* 4

Table 3.1 Summary of effects of catalase and MnTMPyP on A23187-evoked EDHF- 
type responses in rabbit iliac arteries. Potency (negative log EC50) and % relaxation at 
10 pM of agonist are expressed as a function of the constrictor response to PE and given 
as means ± SEM. *, P<0.05; **, P<0.01; ***, PO.OOl compared with the 
corresponding intra-group control, n denotes the number of animals studied, n/a denotes 
non-applicable data.
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Fig. 3.7 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) IbTX (lOOnM) and (C) IbTX (100 nM) plus catalase (2000 U.ml’1) In 
the presence of IbTX (lOOnM), the resting tension of some vessels was significantly 
increased as illustrated in the lower panel. Experiments were carried out in the 
presence of L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.8 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of IbTX (100 nM) and the 
combination of IbTX (100 nM) plus catalase (2000 U.ml'1). Experiments were carried 
out with IbTX and catalase to assess whether the residual relaxation in IbTX-pretreated 
vessels is lUCh-dependent. IbTX significantly inhibited the relaxation evoked by 
A23187, while the double combination of IbTX plus catalase abolished the response. 
Experiments were carried out in the presence of L-NAME (300 pM) and Indo (10 pM). 
Data are expressed as mean ± SEM. *, .PO.OS; ***, P 0 .0 0 1  for whole curves 
compared with the control.
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Fig. 3.9 Representative traces from ring preparations of rabbit iliac arteries with intact 
endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) apamin (1 pM) plus TRAM-34 (10 pM) and (C) apamin (1 pM) plus 
TRAM-34 (10 pM) plus catalase (2000 U.ml'1). Experiments were carried out in the 
presence of L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.10 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of apamin (1 pM) plus 
TRAM-34 (10 pM) and the combination of apamin (1 pM) plus TRAM-34 (10 pM) 
plus catalase (2000 U.ml'1). Experiments were carried out with apamin, TRAM-34 and 
catalase to assess whether the residual relaxation in vessels pretreated with apamin plus 
TRAM-34 is H2C>2-dependent. The double combination of apamin (1 pM) plus TRAM- 
34 (10 pM) significantly depressed the relaxation evoked by A23187, with the residual 
response being inhibited further by catalase. Experiments were carried out in the 
presence of L-NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM. 
***, P<0.001 for whole curves compared with the control.
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Fig. 3.11 Representative traces from endothelium-denuded ring preparations of rabbit 
iliac arteries showing (A) relaxations to H2O2 and associated changes in the presence 
of (B) IbTX (100 nM). Experiments were carried out in the presence of L-NAME 
(300 pM) and Indo (10 pM).
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Fig. 3.12 Concentration-response curves for authentic H202-induced relaxations in 
endothelium-denuded rabbit iliac arteries and associated changes in the presence of 
IbTX (100 nM). Experiments were carried out to assess the effects of authentic H2O2 on 
BKca channels in the smooth muscle of these vessels. It is demonstrated that IbTX has 
no effect on H202-induced relaxations. Experiments were carried out in the presence of 
L-NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM.
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Fig. 3.13 Representative traces from endothelium-denuded ring preparations of rabbit 
iliac arteries showing (A) relaxations to H2O2 and associated changes in the presence 
of (B) the triple combination of apamin (1 pM) plus TRAM-34 (10 pM) plus IbTX 
(100 nM). Experiments were carried out in the presence of L-NAME (300 pM) and 
Indo (10 pM).
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Fig. 3.14 Concentration-response curves for authentic H202-induced relaxations in 
endothelium-denuded rabbit iliac arteries and associated changes in the presence of the 
triple combination of apamin (1 pM) plus TRAM-34 (10 pM) plus IbTX (100 nM). 
Experiments were carried out to assess the effects of authentic H2O2 on all Kca channels 
in the smooth muscle of these vessels. It is demonstrated that the combination of the 
three inhibitors has no effect on H202-induced relaxations. Experiments were carried 
out in the presence of L-NAME (300 pM) and Indo (10 pM). Data are expressed as 
mean ± SEM.
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A23187 control 73.7±11.3 6.4±0.8 9
IbTX (100 nM) 50.8±7.1** 6.5±0.0 9
IbTX (100 nM) + catalase (2000 U .m l') n/a n/a 9

A23187 control 79.6±11.5 6.4±0.1 11
apamin (1 pM) + TRAM-34 (10 pM) 40.9±5.7*** 6.2±0.1 11
apamin (1 pM) + TRAM-34 (10 pM) + catalase 
(2000 U.ml'1)

n/a n/a 11

h 2o 2 70.2±13.1 4.0±6.6 5
IbTX (100 nM) 80.5±15.3 3.9±5.6 5

h 2o 2 78.1±12.7 4.5±0.3 6
apamin (1 pM) + TRAM-34 (10 pM) + IbTX 
(lOOnM)

84.8±13.5 4.5±0.03 6

Table 3.2 Summary of effects of Kca inhibitors plus catalase on A23187-evoked EDHF- 
type responses, and Kca inhibitors on their own on relaxations evoked by authentic 
H2O2 . Potency (negative log EC50) and maximal percentage relaxation (Rmax) are 
expressed as a function of the constrictor response to PE and given as means ± SEM. 
**P<0.01; ***P<0.001 compared with the corresponding intra-group control, n denotes 
the number of animals studied, n/a denotes non-applicable data.
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Fig. 3.15 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) apocynin (1 mM). Experiments were carried out in the presence of L- 
NAME (300 pM) and Indo (10 pM).
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Fig. 3.16 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of apocynin (1 mM). 
Experiments were carried out with apocynin to assess the role of NADPH oxidase as a 
source of H2O2 in responses evoked by A23187. It is demonstrated that relaxations to 
A23187 are unaffected by apocynin. Experiments were carried out in the presence of L- 
NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM.
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Fig. 3.17 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) oxypurinol (100 pM). Experiments were carried out in the presence of 
L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.18 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of oxypurinol (100 pM). 
Experiments were carried out with oxypurinol to assess the role of xanthine oxidase as a 
source of H2O2 in responses evoked by A23187. It is demonstrated that relaxations to 
A23187 are unaffected by oxypurinol. Experiments were carried out in the presence of 
L-NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± SEM.
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Fig. 3.19 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) rotenone (300 nM). Experiments were carried out in the presence of 
L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.20 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of rotenone (300 nM). 
Experiments were carried out with rotenone to assess the role of complex I of the 
mitochondrial ETC as a source of H2O2 in responses evoked by A23187. It is 
demonstrated that rotenone abolishes the relaxations evoked by A23187. Experiments 
were carried out in the presence of L-NAME (300 pM) and Indo (10 pM). Data are 
expressed as mean ± SEM. ***, P <0.001 for whole curve compared with the control.
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Fig. 3.21 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to ACh and associated changes in the 
presence of (B) rotenone (300 nM). Experiments were carried out in the presence of 
L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.22 Concentration-response curves for ACh-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of rotenone (300 nM). 
Experiments were carried out with rotenone to assess the role of complex I of the 
mitochondrial ETC as a source of H2O2 in responses evoked by ACh. It is demonstrated 
that rotenone abolishes the relaxations evoked by ACh. Experiments were carried out in 
the presence of L-NAME (300 pM) and Indo (10 pM). Data are expressed as mean ± 
SEM. ***, T><0.001 for whole curve compared with the control.
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Fig. 3.23 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) myxothiazol (300 nM). Experiments were carried out in the presence 
of L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.24 Concentration-response curves for A23187-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of myxothiazol (300 nM). 
Experiments were carried out with myxothiazol to assess the role of complex III of the 
mitochondrial ETC as a source of H2O2 in responses evoked by A23187. Myxothiazol 
significantly inhibited the responses evoked by A23187 with a residual relaxation equal 
to 20.7 ± 2.6%. Experiments were carried out in the presence of L-NAME (300 pM) 
and Indo (10 pM). Data are expressed as mean ± SEM. ***, P<0.001 for whole curve 
compared with the control.
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Fig. 3.25 Representative traces from ring preparations of rabbit iliac arteries with 
intact endothelium showing (A) relaxations to A23187 and associated changes in the 
presence of (B) myxothiazol (300 nM). Experiments were carried out in the presence 
of L-NAME (300 pM) and Indo (10 pM).
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Fig. 3.26 Concentration-response curves for ACh-evoked EDHF-type relaxations of 
rabbit iliac arteries and associated changes in the presence of myxothiazol (300 nM). 
Experiments were carried out with rotenone to assess the role of complex I of the 
mitochondrial ETC as a source of H2O2 in responses evoked by ACh. Myxothiazol 
significantly inhibited the responses evoked by ACh with a residual relaxation equal to 
15.9 ± 2.2%. Experiments were carried out in the presence of L-NAME (300 pM) and 
Indo (10 pM). Data are expressed as mean ± SEM. ***, P<0.001 for whole curve 
compared with the control.
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A23187 83.5±3.3 6 .6 ±0 .1 6

A23187 + apocynin (1 mM) 68.83±3.8 6.9±0.1 6

A23187 78.4±6.3 6.9±0.1 4
A23187 + oxypurinol (100 pM) 73.1±10.7 6.9±0.1 4

A23187 80.2±4.5 6 .8 ±0 .1 4
A23187 + rotenone (300 nM) n/a n/a 4

ACh 62.8±6.3 6.5±0.2 4
ACh + rotenone (300 nM) 3.1±15.7*** n/a 4

A23187 66.5±4.1 6 .6 ±0 .1 3
A23187 + myxothiazol (300 nM) 16.6±0.1*** n/a 3

ACh 66.7±3.1 6.7±0.1 5
ACh + myxothiazol (300 nM) 15.9±7.2*** n/a 5

Table 3.3 Summary of effects of apocynin, oxypurinol, rotenone and myxothiazol on 
EDHF-type relaxations in rabbit iliac arteries. Potency (negative log EC50) and % 
relaxation at 10 pM of agonist are expressed as a function of the constrictor response to 
PE and given as means ± SEM. ***P<0.001 compared with the corresponding intra
group control, n denotes the number of animals studied, n/a denotes non-applicable 
data.
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control 41.9±3.9 6
apocynin (ImM) 37.3±6.1 6

control 26.1±1.8 4
oxypurinol (lOOpM) 24.8±1.2 4

control 45.3±2.3 16
myxothiazol (300nM) 43.2±3.3 8
rotenone (300nM) g 7±0 7*** 8

Table 3.4 Summary of effects of apocynin, oxypurinol, rotenone and myxothiazol on 
contractions induced by PE in rabbit iliac arteries. All data are given as means ± SEM. 
***P<0.001 compared with the corresponding intra-group control, n denotes the 
number of animals studied.
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3.4 Discussion

3.4.1 The Kca-dependent H2O2 release from mitochondria might account for the 

A23187 and ACh-evoked EDHF-type relaxations in rabbit iliac arteries.

In the second part of this study, a series of mechanical investigations were carried out so 

as to elucidate the role of reactive oxygen species on A23187- and ACh-evoked EDHF- 

type relaxations. It has been previously demonstrated that the mechanism of action of 

A23187 differs from that of ACh in that the relaxant response 1) does not require 

functional endothelial gap junctions and 2) depends on a ‘factor’ which diffuses from 

the endothelium to smooth muscle (Plane et a l, 1995; Hutcheson et al, 1999). Further 

investigations performed on rabbit iliac arteries, including ‘sandwich’ preparations and 

en face imaging with the H2C>2-sensitive probe dihydrochlorofluorescein (DCF), 

suggested that this diffusible factor is H2O2 (Chaytor et a l, 2003). It was also 

demonstrated that H2O2 is the only ROS responsible for A23187-evoked EDHF-type 

relaxations, as neither SOD inhibition or deferiprone affected the responses (Chaytor et 

al, 2003; see section 1.3.2.3). Notably, an H202-dependent component was observed in 

both A23187- and ACh-evoked responses, but it is only in the former that this 

component is distinct from the concomitant hyperpolarizing response. In ACh-evoked 

EDHF-type relaxations inhibition of gap junctional communication with connexin- 

mimetic peptides abolished the entire response (Chaytor et al, 2003).

Because EDHF-type responses depend on the opening of endothelial Kca channels and 

subsequently the development of endothelial hyperpolarizations (see Chapter 1), the 

idea of a functional relationship between Kca opening and the release of H2O2 from 

endothelial cells requires further elucidation. Although in rabbit iliac arteries the 

propagation of hyperpolarizations from the endothelium to smooth muscle does not 

seem to be the dominant relaxation mechanism as previously suggested by Chaytor et 

a l (2003), it is possible that the underlying hyperpolarization and changes in 

intracellular Ca2+ levels might be a prerequisite for H2O2 release. Based on this 

hypothesis, the investigations undertaken in this study focused primarily on the 

acquisition of evidence regarding Kca-H2 0 2  coupling, and secondarily, on the 

identification of the endothelial source of H20 2. The results obtained suggest that 

changes in [Ca2+]j might stimulate independently but simultaneously Kca channel 

opening and H2O2 release from the endothelium of rabbit iliac arteries. Further
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investigations supported the hypothesis that the endothelial source of H2O2 might be the 

ETC of mitochondria.

3.4.2 Both A23187- and ACh-evoked EDHF-type relaxations are B^Ch-dependent

It was demonstrated that catalase significantly impairs relaxations to calcium ionophore 

A23187, with a residual response equal to -30%  of the PE-preconstriction. Similar 

investigations carried out with ACh revealed a significantly smaller catalase-sensitive 

component which accounted for 40% of the maximal response. These findings, which 

concur with those o f studies carried out by Chaytor et al. (2003), suggested that the 

endothelial release o f H2O2 is more significant in A23187-evoked EDHF-type responses 

than the corresponding ACh-induced relaxation. The generation of O2 " by A23187 and 

its subsequent dismutation to H2O2 have also been demonstrated in other experimental 

models, such as the rat aorta, rat thymocytes and bovine aortic endothelial cells 

(BAECs) (Cosentino et al., 1998; Azmi et al., 1994; McNally et al., 2005). For 

instance, in Wistar (WKY) and spontaneously hypertensive rat (SHRs) aortae, 

chemiluminescence methods showed a significant increase in the corresponding H2O2 

levels upon stimulation with A23187, an effect that was further potentiated after 

incubation with SOD (Consentino et al., 1998). Nevertheless, in rabbit iliac arteries 

catalase failed to abolish the responses to both agents, thereby indicating that a residual 

H202-independent response is also involved. Indeed, it has been previously 

demonstrated that incubation of rabbit iliac arteries with catalase plus inhibitors of 

myoendothelial gap junctions abolishes both A23187- and ACh-evoked EDHF-type 

relaxations (Chaytor et al., 2003). These findings confirmed that the residual H2O2- 

independent component occurs due to the propagation of hyperpolarizations from the 

endothelium to smooth muscle, but the magnitude of the hyperpolarization-dependent 

component is greater in ACh-evoked responses that the A23187 equivalent.

In rabbit iliac arteries, production of H2O2 by A23187 has also been suggested by 

studies using the H202-sensitive probe DCF (Chaytor et al., 2003). In these 

investigations, acute application of A23187 caused a significant increase in endothelial 

fluorescence, which confirmed that a peroxide is released in this layer. Indeed, there is 

accumulating evidence which suggests that DCF is not selective for H2O2, but it could 

potentially interact with any peroxide that is present (Hempel et al., 1999). It is 

therefore reasonable to say that the use of DCF cannot give conclusive data about H2O2

140



Chapter Three

generation in rabbit iliac arteries. However, the current study and the study of Chaytor 

et al. (2003) both demonstrated that catalase significantly inhibits responses to A23187, 

thereby indicating that the peroxide detected by DCF might be H2O2 . Notably, the form 

of catalase used for the purpose of the current study does not penetrate cell membranes 

and therefore the enzyme can only degrade H2O2 that has diffused into the extracellular 

space. However, in small mesenteric arteries of eNOS-knockout mice application of 

catalase abolishes DCF fluorescence which suggested that the enzyme does affect 

endogenous H2O2 production (Matoba et al, 2000).

To ensure that the inhibitory effects of catalase are entirely associated with H2O2 

scavenging, experiments were carried out with ATZ, an inhibitor of the active site of the 

enzyme (Margoliash & Novogrodsky, 1958). It was demonstrated that preincubation of 

iliac arteries with ATZ partially restores relaxations to A23187 in the presence of 

catalase, therefore suggesting that an interaction between the enzyme and H2O2 is likely 

to take place. These findings are also consistent with studies carried out in isolated rat 

aortae, which aimed to emphasize the role of endogenous catalase as a protective 

cellular component and as the site of conversion of nitrovasodilators into NO (Mian & 

Martin, 1997; Waldman & Murad, 1987). In these vessels, application of ATZ 

potentiated the inhibitory effects of exogenous H2O2 on relaxations induced by glyceryl 

nitrate (Mian & Martin, 1997), while inhibition of the enzyme blocked the relaxations 

induced by sodium azide and hydroxylamine (Waldman & Murad, 1987). Nevertheless, 

the inability of ATZ to completely restore relaxations to A23187 in rabbit iliac arteries 

indicated that either the concentration of ATZ might have been submaximal or catalase 

might have triggered effects other than H2O2 scavenging. If indeed catalase has other 

effects in rabbit iliac arteries, future investigations should aim to identify them and 

explain how these effects might alter A23187-evoked EDHF-type responses.

More conclusive data about the release o f H2O2 in A23187-evoked relaxations were 

obtained with the superoxide-quenching agent manganese prophyrin (MnTMPyP). The 

scavenging effects of MnTMPyP have been previously demonstrated in rat cerebral and 

mesenteric arteries, in rabbit aorta and the retractor penis muscle (Xi et al., 2005; 

MacKenzie & Wadsworth, 2003; MacKenzie & Martin, 1998; Mok et al., 1998). In 

rabbit iliac arteries it was demonstrated that MnTMPyP causes a significant rightward 

shift of the A23187 curve with a 10-fold increase in the pECso value, but with no
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apparent effect on the maximal relaxation. This change provided further support to the 

aforementioned findings with catalase, and concurred with the fact that H2O2 plays a 

major role in A23187-induced EDHF-type relaxations. However, there are reports in the 

literature that demonstrate that MnTMPyP also possesses SOD-like properties (Faulkner 

et al, 1994). Indeed, assays carried out on samples of Escherichia coli mutants lacking 

SOD, showed that MnTMPyP can substitute for the enzyme and catalyse the 

dismutation of 02*’ to H2O2 (Faulkner et a l, 1994). Paradoxically, in PE-preconstricted 

rat aortic rings, cumulative concentration response curves to MnTMPyP unravelled a 

double concentration-dependent effect. More specifically, concentrations between 10 

nM and 30 pM MnTMPyP augmented the aortic tone due to destruction of basal NO, 

while at higher concentrations it caused an endothelium-independent vasodilatation 

through a direct smooth muscle action (MacKenzie et al, 1999). By contrast, in carotid 

arteries from spontaneously hypertensive stroke prone rats (SHRSP) MnTMPyP 

triggered a contractile response that was significantly potentiated by the removal of the 

endothelium and inhibited in the presence of the L-type channel inhibitor verapamil 

(Sekiguchi et al, 2003). In the current study, no apparent changes were detected in the 

basal tensions or the tension of PE-preconstricted rabbit iliac arteries following 

incubation with this agent. Such finding excluded the possibility that MnTMPyP might 

have a direct effect on the smooth muscle of the vessels, and that 0 2 '" radicals do not 

directly contribute to A23187-evoked EDHF-type relaxations. Hence, it is reasonable to 

speculate that the effects of MnTMPyP in A23187-induced relaxations might be a result 

of its catalase-like properties only.

3.4.3 Relation between Kca activation and H2O2 release

Experiments were carried out with the Kca inhibitors apamin, TRAM-34 and IbTX in 

combination with catalase. Similarly to Chapter 2 it was demonstrated that inhibition of 

Kca causes a significant suppression of A23187-induced EDHF-type relaxations, with a 

residual response being evident in all investigations. Interestingly addition of catalase 

almost abolished the remaining relaxation when combined with apamin and TRAM-34 

or singly with IbTX. Such findings indicate that the release of H2O2 in the endothelium 

of iliac arteries might occur simultaneously with the activation of Kca channels. Indeed, 

previous investigations have demonstrated that H2O2 released following the application 

of a stimulus, can either increase or decrease the opening of BKca and IKca channels
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according to the tissue and the experimental conditions employed (Barlow et al, 2000; 

Gao et al., 2003; Brakemeier et al, 2003). However, in the current study the available 

evidence is not sufficient to prove such an interaction and therefore it is not possible to 

propose that H2O2 release affects endothelial Kca channels. By contrast, it is more likely 

that activation of endothelial Kca channels might be a prerequisite for the release of 

H2O2, since the residual relaxation could also be inhibited if other inhibitors of these 

channels are added. For instance in Chapter 2, it was demonstrated that addition of the 

triple combination of apamin plus TRAM-34 plus IbTX abolishes A23187-evoked 

EDHF-type relaxations, which suggests that the residual catalase-sensitive component is 

also Kca-dependent. Nevertheless, it could be possible that changes in intracellular Ca2+ 

levels upon stimulation with A23187 might initiate two different pathways, one which 

involves the activation of endothelial Kca channels and one which involves the Ca2+- 

dependent release of H2O2 leading ultimately to relaxation.

Indeed, it has been suggested that apart from the effects that changes in [Ca2+]j have in 

the opening of Kca channels, the release o f H2O2 in the endothelium is also Ca2+- 

dependent (Guidarelli et a l, 2007). Hence, it would be reasonable to speculate that 

A23187-induced depletion of the store causes a significant increase in [Ca ]i, which 

both stimulates Kca opening and triggers the independent release of H2O2. Interestingly, 

in cultured endothelial cells from human umbilical veins (HUVECs), fluorescent 

measurements and patch-clamp techniques demonstrated that inhibition of Kca channels 

with apamin, TRAM-34 and ChTX significantly reduces the elevations in cytosolic free 

Ca2+ with a modest Ca2+ transient still being evident (Sheng & Braun, 2007). It was 

thereby suggested that this transient might reflect the combination of Ca released from 

the stores and the residual entry of external Ca2+ (Sheng & Braun, 2007). In accordance 

to these findings, it is possible that in the current study, inhibition of Kca channels might 

reduce intracellular Ca2+ levels, which could potentially affect the release of H2O2 . 

Besides, in the presence of apamin plus TRAM-34 or IbTX on their own, a residual 

catalase-sensitive relaxation was still evident, which was consistent with the presence of 

a remaining Ca2+ transient as proposed by Sheng & Braun (2007). However, it should 

be noted that in intact arterial preparations, agonist-evoked elevations in endothelial 

cytosolic Ca2+ are reported to be unaltered in the presence of Kca inhibitors (Ghisdal & 

Morel, 2001; McSherry et a l, 2005; Stankevicius et al, 2006). Hence, the available
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evidence is not sufficient to exclude the involvement of another putative mechanism 

that couples Kca channel opening to H2O2 release.

To investigate whether H2O2 release in the endothelium has an effect on the opening of 

smooth muscle Kca channels, endothelium-denuded vessels were treated with 

exogenous H2O2 in the presence and absence of Kca inhibitors. In a previous study, it 

was demonstrated that the combination of apamin plus ChTX does not affect relaxations 

evoked by X/XO or authentic H2O2 in these vessels (Chaytor et al, 2003). However, 

differences in the pharmacological profile of ChTX and the more selective BKca 

inhibitor IbTX made the latter a more specific pharmacological probe. For this reason 

experiments were carried out with IbTX on its own or the triple combination of apamin 

plus TRAM-34 plus IbTX so as to elucidate the putative involvement of all Kca 

subtypes. It was demonstrated that incubation of rabbit iliac arteries with IbTX or the 

triple combination has no significant effect on any of the responses induced by H2O2. 

Interestingly, these findings differ from those of other studies which showed that 

inhibition of Kca channels either potentiates or inhibits the effects of H2O2 depending on 

the tissues and the experimental conditions employed. Also, patch-clamp investigations 

in porcine coronary smooth muscle cells and human embryonic kidney cells 

demonstrated a significant change in K+ currents respectively upon stimulation with 

H2O2 (Barlow & White, 1998; Hayabuchi et al., 1998; Barlow et al., 2000; Tang et al,

2004). By excluding the products of arachidonate metabolism due to the inevitable use 

of COX inhibitors in EDHF-related studies, in these tissues the endothelium- 

independent effects of H2O2 on arterial myocytes could be attributed to three main 

factors: 1) a direct interaction of H2O2 with Kca channels, 2) a direct interaction of H2O2 

with PKG and 3) an indirect effect through the action of cGMP (Sato et al, 2003; Iesaki 

et al, 1999; Burgoyne et al., 2007; Fujimoto et a l, 2001, 2003). However, the current 

investigations demonstrated the absence of any effects of Kca inhibitors on relaxations 

evoked by authentic H2O2 thereby indicating that smooth muscle Kca channels are 

unaffected by the peroxide in rabbit iliac arteries. Notably, such effects cannot be 

directly compared to those of endogenous H2O2 produced by A23187, neither do they 

indicate that endogenous H2O2 has no effect on smooth muscle Kca channels. In fact, it 

has been established that authentic H2O2 induces significant direct smooth muscle 

relaxation at ‘ supraphysiological ’ concentrations between 100 pM — 1 mM, while the 

concentration of endogenous H2O2 produced by A23187 does not exceed 100 nM
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(Matoba et a l, 2000; Gao et al., 2003; Chaytor et al., 2003; Cosentino et al., 1998). 

Although it is not clear why such differences exist, it is possible that the higher 

biological activity of endogenous H2O2 might be due to its enzymatic generation in 

close proximity to its site of action. In accordance to these findings and based on the 

data of the current study, it could be speculated that since H20 2 has no effect on Kca 

channels at a concentration range of 100 pM -  ImM, it is highly unlikely that it will 

have any effects on these channels at much lower concentrations. However, the effects 

of A23187 on the vessels are not entirely H202-dependent, which means that other 

parameters need to be taken into account when comparing the two responses.

3.4.4 Potential sources of H2O2 in the endothelium of rabbit iliac arteries

3.4.4.1 Role of NADPH oxidase and xanthine oxidase in A23187-evoked relaxations

Previous investigations have indicated that NADPH oxidase is a major source of H2O2 

in the vascular system (Griendling et a l, 1994; Mohazzab et al, 1994), and it is now 

known that it can either play a physiological role in vasodilatory responses or contribute 

to endothelial dysfunction depending on the underlying conditions (Cai et al, 2000). To 

investigate the role of NADPH oxidase in A23187-evoked H2O2 release, rabbit iliac 

arteries were incubated with the naturally occurring methoxy-substituted catechol 

apocynin. Apocynin has been shown to be a powerful antioxidant and anti

inflammatory agent and is capable o f blocking the activity of NADPH oxidase by 

interfering with the assembly of the cytosolic components with the membrane subunits 

(Stolk et al, 1994). In rabbit iliac arteries it was demonstrated that apocynin has no 

significant effect on A23187-induced EDHF-type relaxations, which suggested that 

NADPH oxidase is not the main source of 02 '’ in the endothelium of these vessels.

Because NADPH oxidase was excluded as a possible source of H2O2 in rabbit iliac 

arteries, further investigations were carried out to identify other putative sources of this 

species. Experiments were therefore performed to investigate the role of xanthine 

oxidase as a putative source of H2O2 (Zhang et a l, 1998). Assessment of XO activity 

was carried out with the non-competitive inhibitor oxypurinol, a XO-inhibitory 

metabolite of allopurinol. It was demonstrated that incubation of rabbit iliac arteries 

with the inhibitor had no significant effect on A23187-evoked EDHF-type relaxations,
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thereby excluding the involvement of XO in responses induced by this agent in this 

vessel. Due to the known specificity of oxypurinol, no further investigations were 

deemed necessary for this enzyme. Hence, the remaining part of this study focused on 

the putative role of complexes I and III of the mitochondrial ETC.

3.4.4.2 Mitochondrial electron transport chain and H2O2 release

In the final part of this study experiments were carried out to elucidate the role of the 

mitochondrial ETC on A23187- and ACh-evoked EDHF-type relaxations in rabbit iliac 

arteries. Production of ROS in mitochondria is associated with the leakage of electrons 

from membrane-associated enzyme complexes, with ubisemiquinone serving as an 

electron donor and molecular oxygen as the acceptor, thereby generating O2 ’ (see 

Chapter 1; Trumpower, 1981; Chakraborti et a l, 1999; Lenaz et al, 2002). There are 

two main ETC sites where ROS are produced, namely complex I and complex III 

(Lenaz et al, 1998, 2002). Since, mitochondrial-derived H2O2 originates from 02'" that 

is formed at these two complexes, mechanical investigations were carried out to 

determine the relative contribution of each complex to the total release of ROS upon 

stimulation with A23187 and ACh. In accordance to the available literature, rotenone 

was used for the inhibition of complex I and myxothiazol for the inhibition of complex 

III (see Chapter 1). The properties of both inhibitors have been extensively studied in 

both tissue preparations and isolated mitochondria, and they were chosen for the current 

study because of their known selectivity.

It was demonstrated that rotenone and myxothiazol significantly inhibit both A23187- 

and ACh-evoked EDHF-type relaxations, which suggested that the first and third 

complexes of ETC might play a major role in H2O2 production. It was also 

demonstrated that although rotenone abolishes both A23187- and ACh-evoked EDHF- 

type responses, a residual relaxation was still observed in the presence of myxothiazol. 

As described in the general introduction, complex I is the primary site of electron 

transport in ETC, and complex III accepts electrons from both complex I and complex 

II. Therefore, if  both complexes produced O2 ", rotenone and myxothiazol would have 

had a partial effect in these relaxations. Indeed, inhibition of complex I with rotenone 

only prevents electron transport from this complex to complex III, but transport of 

electrons from complex II to complex III remains intact, and therefore complex III is
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still able to generate O2 ". Accordingly, inhibition of complex III with myxothiazol has 

no effect on 02*" production from complex I. However, based on the evidence provided 

in this study, it is difficult to understand whether the residual relaxation observed in the 

presence of myxothiazol is a rotenone-sensitive component or a catalase-insensitive 

hyperpolarization-dependent component as previously suggested by Chaytor et al. 

(2003). Furthermore, it should be noted that the effects of rotenone and myxothiazol on 

A23187- and ACh-evoked EDHF-type relaxations are not proportional to the effects of 

catalase on these responses (see section 3.4.2). Such discrepancy suggests that both 

inhibitors might not only attenuate the H202-dependent component of A23187- and 

ACh-evoked EDHF-type relaxations, but they might also have other effects.

Indeed, the current study revealed that the most significant difference between the two 

agents was their effect on the PE-induced contraction. Paradoxically, it was 

demonstrated that addition of rotenone irreversibly suppresses the contraction to PE by 

approximately 25mN relative to the control, while equimolar amounts of myxothiazol 

had no effect at all. Although inhibition of complex I has a significant effect on ATP 

synthesis, inhibition of complex III with myxothiazol would inhibit ETC in its entirety, 

and therefore myxothiazol would attenuate the contraction to phenylephrine. This 

difference indicates that the effects of rotenone on the smooth muscle might not be 

entirely the result of suppression of ATP synthesis, but also due to the known toxicity of 

the agent (Pei et al., 2003). Consequently, inhibition of PE-induced contraction by 

rotenone is very likely to have a direct impact on the magnitude of relaxations to both 

A23187 and ACh. Hence, more investigations with tone-matched controls are required 

to discriminate between the effects of rotenone on O2 " production, the concomitant 

ATP synthesis and its toxic effects.

Finally, it is worth mentioning that previous investigations have suggested that it is 

possible for ER and mitochondria to be directly attached with each other and 

communicate through a link between the IP3 receptor of the former and the PTP of the 

latter (Verrier et al., 2004). It was subsequently inferred that such a connection between 

the two organelles would make it possible for Ca2+ released from ER to be rapidly taken 

up into mitochondria. Indeed, in guinea-pig single colonic myocytes mitochondria 

effectively reduce the Ca2+ concentration in a restricted space near the store, as it would 

be high enough to inhibit further release (McCarron et al., 1999). Ca2+ uptake has been
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involved in H2O2 release in some experimental models, which contrary to the notion 

that H2O2 diffuses to the cytosol through the mitochondrial membrane, showed that its 

release is controlled by the Ca2+-dependent opening of PTP (Verrier et al, 2004). It has 

also been suggested that inhibition of Ca2+ uptake by mitochondria may decrease store- 

operated Ca2+ entry or Ca2+ pump activity by localized ATP depletion or alteration of 

the ATP/ADP ratio (Innocenti et a l, 1996; Landolfi et al, 1998). The physiological 

connection between the two organelles has also been demonstrated by studies which 

showed that mitochondrial inhibition reduces the amount of Ca2+ released by IP3 

(Gumey et a l, 2000). Hence, the findings of the current study may partially reflect this 

connection, and therefore the inhibitory effects of rotenone or myxothiazol might be due
O 1

to the inhibition of Ca uptake by mitochondria.

3.4.5 Concluding rem arks

In conclusion, investigations were carried out so as to elucidate the role of H2O2 on 

A23187- and ACh-evoked EDHF-type relaxations. It was demonstrated that H2O2 plays 

a major role in both responses, although the H2 0 2 -dependent component was more 

profound on A23187-induced relaxations rather than the ACh equivalent. It was also 

proposed that although A23187-evoked hyperpolarizations and relaxations are distinct,

H2O2 release from the endothelium of iliac arteries and the opening of endothelial Kca
2_|_

channels might be equally dependent o f increases in intracellular Ca levels upon 

stimulation with the agent. This finding was supported by investigations carried out 

with the combination of catalase and the Kca blockers apamin, TRAM-34 and IbTX. 

Additional studies on endothelium-denuded vessels excluded the involvement of 

smooth muscle Kca channels. Finally, experiments were carried out so as to determine 

the putative sources of H2O2 and it was proposed that the mitochondrial ETC might 

possibly be the source of this species.
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4.1 Overview

It is widely recognized that in vascular beds from many species, an NO/prostanoid- 

independent mechanism accounts for a residual endothelium-dependent relaxation, 

which is known as the ‘EDHF phenomenon’. There is growing evidence that the ‘EDHF 

phenomenon’ is an electrotonic mechanism that is more preponderant in small size 

vessels and it is also believed that its manipulation could be used for the treatment of 

disorders in which there is a significant impairment of other vasodilatory mechanisms 

(Csanyi et al., 2006). Nevertheless, it does appear that in some cardiovascular diseases, 

such as diabetes and hyperhomocysteinemia, the changes that underpin their main 

pathological manifestation are accompanied by the excessive generation of ROS, which 

outstrip the endogenous defence mechanisms and contribute further to the pathogenesis 

of these disorders (De Vriese et al., 2000; 2004). Indeed, EDHF-type responses are 

exposed to the same oxidative stress that inactivates NO-evoked responses, and thereby 

its ability to compensate for loss of NO might be potentially suppressed. The effects of 

ROS, such as H2O2, on electrotonically mediated endothelium-dependent vascular 

relaxations have been previously attributed to the ability of intracellular redox 

mechanisms to modulate the function of gap junctions by regulating the 

phosphorylation status of connexins, which can be normalized by addition of 

antioxidants such as 5-methyltetrahydrofolate and tetrahydrobiopterin (Griffith et al.,

2005). Furthermore, it has been suggested that endogenous production of H2O2, might 

compensate for the loss of NO- and EDHF-dependent responses in disease (Triggle et 

al., 2003). Nevertheless, the available evidence is still limited and there is only one 

study carried out in tetrahydrobiopterin-deficient mice showing that H2O2 plays such a 

role (Consentino et al., 2001). Although endothelium-derived H2O2 is more likely to be 

an EDRF (Gluais et al., 2005; Griffith, 2004), there are reports which have suggested 

that under certain experimental conditions, such as those described by Matoba et al. 

(2000), it may have EDHF-type properties. In the rabbit iliac artery H2O2 is not an 

EDHF (Chaytor et a l, 2003), but this finding did not exclude its importance as a 

modulator of vascular tone. For this reason the aims of the current project were two

fold.

The first aim was to elucidate further the mechanism of EDHF-type relaxations in rabbit 

iliac arteries by identifying the Kca channels that participate in responses induced by 

ACh and calcium ionophore A23187. The effects of ACh and A23187 on the

150



Chapter Four

endoplasmic reticulum differ in that the former requires an interaction with cholinergic 

receptors on plasmalemma and an increase in IP3 levels, while the latter has been 

proposed to interact directly with the stores. Such a difference suggested that it is 

possible for these agents to trigger the EDHF phenomenon at a different extent, which 

meant that the contribution of each Kca channel could potentially vary depending on the 

stimulus employed. The protocol for this part of the thesis was adopted on the basis that 

previous studies have shown that blockade of Kca channels with inhibitors, such as 

apamin, TRAM-34 and IbTX attenuates EDHF-type relaxations. The use of these 

inhibitors either on their own or in combination aimed to determine the relative 

contribution of each channel individually to the phenomenon and to assess the overall 

contribution of Kca channels opening to ACh- and A23187-evoked responses.

The second aim of this thesis was to analyse the role of H2O2 in EDHF-type relaxations 

induced by ACh and A23187. It has been previously demonstrated that both agents 

stimulate the release of H2O2, although the amount of this species generated by A23187 

is significantly greater than that generated by ACh (Chaytor et al, 2003). Also, the 

release of H2O2 in the endothelium following stimulation with both agents is sufficient 

to mask the functional consequences of an associated hyperpolarization, a response 

which in A23187-evoked responses was still evident in the presence of inhibitors of 

myoendothelial gap junctions (Chaytor et al., 2003). However, the fact that the 

endothelium-dependent hyperpolarizations and the concomitant endothelium-dependent 

relaxations were distinct did not necessarily exclude the possibility that the two 

mechanisms could be potentially linked together. For this reason investigations were 

carried out so as to identify the connection between the activation of Kca and the release 

of H2O2. To obtain a more conclusive idea about the mechanism of ACh- and A23187- 

evoked H2O2 release experiments were also performed so as to identify the sources of 

this species.

The results of the investigations carried out in this thesis demonstrated that:

• In rabbit iliac arteries BKca channels are localized in both the endothelium and 

the smooth muscle of the vessels (Fig. 4.1). These findings were supported by 

data obtained by 1] mechanical investigations carried out with the selective 

BKca channel inhibitor IbTX and the BKca channel opener NS1619. 2]
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Immunohistochemical investigations carried out with an antibody selective for 

the a-subunit of the channel confirmed these findings.

• SKca and IKca channels were also identified on the endothelium of rabbit iliac 

arteries (Fig. 4.1). It was demonstrated that inhibition of these channels with 

apamin and TRAM-34 has a significant effect on EDHF-type relaxations 

induced by both ACh and A23187. These findings were supported further by 

investigations with the SKca / IKca channel opener 1-EBIO and 

immunohistochemistry.

• ACh- and A23187-evoked EDHF-type relaxations are sensitive to catalase, 

thereby suggesting that both responses consist of a significant H2 0 2 -dependent 

component (Fig. 4.1). The role of H2O2 in A23187-evoked EDHF-type 

relaxations was confirmed with MnTMPyP. It was also revealed that a residual 

catalase-insensitive component plays a major role in both responses, although 

the magnitude of this component was significantly greater in ACh-evoked 

EDHF-type relaxations.

• Investigations were carried out to determine the role of Kca activation in 

A23187-evoked H2 0 2 -dependent relaxation. Inhibition of the responses with 

IbTX plus catalase or apamin plus TRAM-34 plus catalase indicated that it is 

possible for the activation of the three Kca channels to be a prerequisite for the 

endothelial generation of H2O2 . The involvement of smooth muscle Kca channel 

was excluded by investigations carried out with exogenous H2O2 on 

endothelium-denuded iliac arteries.

■ According to mechanical investigations the mitochondrial ETC is likely to be 

the main source of reactive oxygen species in both ACh- and A23187-treated 

arteries (Fig. 4.1). Experiments were carried out with inhibitors of the three main 

sources of ROS, i.e. apocynin for NADPH oxidase, oxypurinol for xanthine 

oxidase and rotenone and myxothiazol for mitochondria. Because the vessels 

were treated with L-NAME and indomethacin, it was not necessary to 

investigate other putative sources, namely eNOS and COX.

152



Chapter Four

In summary, the findings of this study lead to the conclusion that the contribution of 

endothelial Kca channels, including BKca, is equally important in responses induced by 

both ACh and A23187. The presence of a functional BKca channel in the endothelium 

of iliac arteries is perhaps one of the major findings of this thesis, since it emphasizes 

the fact that some physiological characteristics of the rabbit are different from those of 

other species, such as the rat which mainly possesses SKca and IKca in the intimal layer 

of arteries. By focusing further on the mechanisms of EDHF-type relaxation when ACh 

or A23187 are used as stimuli, it can also be proposed that the role of Kca opening is 

similar in ACh- and A23187-evoked relaxations, on the basis that complete inhibition of 

these channels abolishes both responses. In accordance to these findings separate 

investigations aimed to determine the role of Kca activation on H2O2 release from its 

endothelial source, which in rabbit iliac arteries seems to be the mitochondrial ETC. It 

should be noted that the available evidence is not sufficient to draw a definite 

conclusion, but it is possible that changes in [Ca24]i might underpin the distinct 

activation of Kca and H2O2 release.

Ca2+
ACh

SOC
depletion

ER

A23187

IK C;

H20;

BKCiGJ

Relaxation

SM

L-type

Fig. 4.1 Schematic summary of the major findings of the current study. The image 
demonstrates the presence of Kca channels in the endothelium and the smooth muscle 
of rabbit iliac arteries, and the pathways that might lead to generation of endothelial 
H2O2 from mitochondria. E: endothelial cell, SM: smooth muscle cell, GJ: gap 
junction, ER: endoplasmic reticulum, M: mitochondrion, SOC: store-operated Ca 
channel, L-type: L-type Ca2+ channel.
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4.2 EDHF in disease

In order to appreciate the importance of the observations of this study it is necessary to 

understand how the ‘EDHF phenomenon’ is affected by various disease states and how 

pharmacological manipulation of this pathway could be used for the treatment of these 

diseases. Indeed, there is a substantial amount of evidence to suggest that the ‘EDHF 

phenomenon’ can play the role of a compensatory mechanism when the production of 

NO or prostacyclin is significantly attenuated (Kilpatrick & Cocks, 1994; Corriu et al., 

1998; McCulloch et al, 1997), as previously demonstrated in some experimental 

models of atherosclerosis, hypertension and heart failure (Ayajiki et al., 2000; Fujii et 

al., 1992; Malmsjo et al, 1999).

However, EDHF-type responses are not always enhanced when NO production is 

reduced. For instance, in spontaneously hypertensive rats (SHR) it has been 

demonstrated that the role of these responses is limited, which appeared to be age- 

dependent and was also associated with concomitant changes in the expression of Cx37 

and Cx40 (Rummery & Hill, 2004; Biissemaker et al, 2003). Similarly, in isolated 

gastroepiploic arteries from atherosclerotic patients, endothelium-dependent 

hyperpolarizations are inhibited (Urakami-Harasawa et al, 1997), while the ‘EDHF 

phenomenon’ is also attenuated in insulin-dependent and non-insulin-dependent 

diabetes, as demonstrated by various experimental models of the disease in mice and 

rats (Table 4.1).

Therefore, the use of drugs that enhance EDHF-type responses could be a putative 

solution for these disorders. Currently, there are agents such as angiotensin converting 

enzyme inhibitors (ACEI), diuretics and anti-diabetic drugs, which are known to 

potentiate electrotonically mediated endothelium-dependent vascular relaxations 

(Mombouli et al, 1995; Onaka et al, 1998)). For instance, in SHR chronic treatment 

with hydrochlorothiazide, in combination with hydralazine, normalizes the blood 

pressure by potentiating the EDHF-type responses (Onaka et al, 1998). However, in 

many cases the concomitant development of oxidative stress forms an additional 

obstacle in the treatment of these disorders. For this reason it is crucial to understand 

how ROS release might affect the ‘EDHF phenomenon’.
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Streptozocin 4 4 Kamata et al., 2000; De Vriese et a l, 2000
Zucker rat 4 — Burnham et al., 2006; Wu et al., 1996
OLETF 4 — Kagota et al., 2000; Matsumoto et al., 2006
Db/db'7' mouse — 4 Pannirselvam et al., 2002

Table 4.1 A summary of the changes in EDHF-type and NO-mediated responses in five 
different models of diabetes. 4 = decreased contribution, — = no change.

4.3 EDHF-type responses and ROS

Under physiological conditions, ROS are known to affect vascular contractility through 

a direct interaction on channels and signalling molecules which contribute to the 

regulation of vascular tone (see section 1.3.4). The relaxation response caused by 

endothelium-generated H2O2 may have both endothelium-dependent and endothelium- 

independent components. The endothelium-dependent relaxation is mainly mediated
9+

through the direct activation of IP3R in the endothelium and an increase in [Ca ] j ,  

which ultimately leads to: 1) NO synthesis and 2) the development of EDHF-type 

hyperpolarizations (Zheng & Shen, 2005; Thengchaisri & Kuo, 2003). The 

endothelium-independent component is associated with sGC activation and cGMP 

formation (Theresa et al, 1991), and in some vessels the direct effect of H2O2 on 

potassium channels, such as K c a, K v and K a t p  (Gao et al., 2003; Wei et a l, 1996).

In the presence of eNOS inhibitors, such as L-NAME, the increase in [Ca ]i in the 

endothelium triggers an EDHF-type hyperpolarization followed by relaxation, which 

also forms the basis for the development of distinct hyperpolarizing and relaxant 

responses upon stimulation with ACh and A23187. It has already been established that 

inhibition of gap junctional communication has a different effect on responses induced 

by both agents. However, these effects did not seem to affect the H2 0 2 -dependent 

component, and therefore, what remained unclear was the putative link between the 

hyperpolarizing response as a result of Kca activation and the generation of the 

endothelial H2O2 . By demonstrating the link between Kca activation and H2O2 release it 

would be possible to understand:
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• whether increases in H2O2 production could be a consequence of the 

augmentation of the ‘EDHF phenomenon’ in certain diseases, or

• whether changes in intracellular H2O2 levels due to these diseases could have an 

effect on the development of the ‘EDHF phenomenon’, and subsequently 

vascular tone.

In vivo the release of ROS is a complex process that involves the convergence of several 

redox-sensitive signalling pathways and the balance between pro-oxidant and anti

oxidant mechanisms (Griendling et al, 2000). In some disorders, it has been suggested 

that Kca opening and the concomitant hyperpolarization could potentially lead to an 

increase in ROS production. Indeed, in an experimental model of monocrotaline- 

induced pulmonary hypertension upregulation of Kca expression led to the 

augmentation of tonic EDHF activity, which in a separate study was shown to be 

accompanied by the production of oxygen radicals (Morio et al, 2007; Chen et al, 

2001). However, at the moment there is a limited amount of evidence which shows how 

potassium channel opening could potentially lead to the production of ROS. In fact, the 

majority of investigations have focused on the effects of ROS on the opening of these 

channels as one of the consequences of excessive release of this species in diseases, 

such as coronary atherosclerosis (Gutterman et al, 2005). ROS affect Kca opening 

either directly by targeting the cysteine residues of the channel or indirectly through
94-changes in intracellular Ca levels (Tang et al, 2004; Lin et al, 2007). Indeed, in rat 

intralobar pulmonary arterial smooth muscle cells H2O2 has been suggested to mobilize
r\,

intracellular Ca through multiple pathways, including the IP3 and ryanodine receptor-
9-4-gated Ca stores, which could potentially affect Kca opening (Tang et a l, 2004; Lin et 

al, 2007). However, it remains unclear whether this coupling is a direct one since 1] the 

relaxant and hyperpolarizing responses are distinct (Chaytor et a l, 2003), 2]
• 2 " bmitochondria on their own participate in intracellular Ca homeostasis via several Ca 

uptake and release pathways (Benardi, 1999) and 3] inhibition of endothelial Kca 

channels decreases [Ca2+]i (Sheng & Braun, 2007).

Increases in cytosolic [Ca2+] in the endothelium are known to induce Ca2+ entry across 

the mitochondrial inner membrane and result in an elevation in the mitochondrial matrix 

Ca2+ concentration ([Ca2+]m). According to the available literature, the effects of
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* 2+  •increased [Ca ]m on mitochondrial ROS production are complex, but there is consensus 

that release of H2O2 from these organelles depends on Ca2+ influx through the 

mitochondrial Ca2+ uniporter (Guidarelli et al, 2006; 2007). Paradoxically, in ACh- 

evoked EDHF-type relaxations, the underlying changes in the endothelial [Ca2+]j may 

only weakly stimulate H2O2 release, which suggested that in contrast to A23187, ACh 

might cause smaller transient changes in [Ca2+]i. However, it should be noted that the

evidence provided by this study is not sufficient to demonstrate how the two agents
* *21might affect [Ca ]j. Besides, inhibition of Kca channels with the same toxins had the 

same effect on EDHF-type relaxations evoked by both agents, therefore suggesting that 

the mechanism that leads to H2O2 generation might involve more complex changes than 

simply the spread of Ca2+ signals.

4.4 Limitations of study

There are several limitations of the current study that should be considered:

IbTX-dependent tonic contractions might affect the development o f  EDHF-type 

responses indirectly.

It was demonstrated that IbTX causes a significant increase in tension of rabbit iliac 

arteries. As mentioned in chapter 2 this increase could affect the magnitude of EDHF- 

type relaxations, and therefore the results of the mechanical investigations might not 

reflect the direct inhibition of the EDHF phenomenon per se. It was also demonstrated 

that the magnitude of the tonic contractions was variable, while the magnitude of the 

relaxations in the presence of IbTX was consistent in all experiments. Although such 

discrepancy indicates that the effect of IbTX on the EDHF phenomenon might be a 

consequence of inhibition of endothelial BKca channels, the evidence provided in this 

thesis cannot exclude the possibility that inhibition of BKca channels in the smooth 

muscle might still affect the development of the endothelium-dependent response.

+ Catalase might have other effects that are independent o f  H2O2 scavenging.

The second part of this thesis aimed to identify the role of H2O2 in ACh- and A23187- 

evoked EDHF type relaxations. It was demonstrated that both catalase and MnTMPyP
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significantly attenuate both responses, thereby suggesting that one of the components of 

these relaxations is H2 0 2 -dependent. However, ATZ, an inhibitor of the active site of 

catalase did not fully restore the relaxations to A23187. It is therefore possible that the 

residual ATZ-insensitive component might be due to secondary effects of the enzyme, 

e.g. catalase might interact with Kca channels directly. Hence, future studies should aim 

to clarify the effects of catalase, and elucidate further the role of H20 2 on both ACh- 

and A23187-evoked EDHF-type relaxations.

The inhibitors o f  mitochondrial ETC, rotenone and myxothiazol, might affect ATP 

synthesis instead o f  H2O2 production. Toxicity o f  rotenone should also be taken into 

account.

It was demonstrated that both rotenone and myxothiazol inhibit responses to ACh and 

A23187. This finding indicated that it is possible that complexes I and III of the 

mitochondrial ETC might generate O2 '', and subsequently H2O2 through dismutation. 

Notably, a small but significant relaxation was still evident in the presence of 

myxothiazol, which could potentially be a rotenone-sensitive component or a 

hyperpolarization-dependent component. It was also demonstrated that rotenone 

significantly attenuates the contractions to phenylephrine, an effect which was 

disproportionate to that obtained with equimolar amounts of myxothiazol (see section 

3.4.4.2). Therefore, the available evidence is not sufficient to demonstrate whether the 

effects of rotenone and myxothiazol are indeed due to direct inhibition of O2 ' release by 

ETC or due to other effects such as a reduction in ATP levels and toxicity.

*  Changes in endothelial [Ca2+Jt might have a distinct but concomitant effect on Kca 

opening and H2O2 release.

Investigations were carried out to demonstrate whether H2O2 release is coupled to Kca 

opening in the endothelium. Although the H2C>2-dependent component was abolished in 

the presence of the triple combination of apamin, TRAM-34 and IbTX, the evidence 

provided in this study is not sufficient to demonstrate that inhibition of Kca channels 

directly affects the release of H2O2 from the endothelium. Furthermore, it has been 

speculated that changes in [Ca2+]i might have a concomitant but distinct effect on Kca 

activation and the release of H2O2 from mitochondria. This notion is mainly supported
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by two studies which demonstrated that: 1) in HUVECs inhibition of Kca channels with 

TRAM-34 and ChTX significantly reduces the elevation in cytosolic free calcium 

(Sheng & Braun, 2007), and 2) in intact U937 cells the release of H2O2 from 

mitochondria is Ca2+-dependent (Guidarelli et al., 2006; 2007). It is therefore reasonable

to consider that inhibition of Kca channels in rabbit iliac arteries, could potentially affect
2_|_

[Ca ]i and subsequently the release of H2O2 from mitochondria. Future investigations 

should demonstrate the changes in [Ca2+]iin rabbit iliac arteries.

4.5 Future directions

In the light of the aforementioned limitations, several experiments could be carried out 

to provide greater insights into the role Kca channels and H2O2 in the EDHF 

phenomenon. First o f all, the involvement of endothelial BKca channels in EDHF-type 

responses needs to be clarified further. One approach that could be used is to investigate 

the effects of IbTX on the development of endothelial hyperpolarizations. 

Microelectrode studies in endothelium-intact and endothelium-denuded iliac artery 

strips could demonstrate how inhibition of BKca channels might affect the development 

of endothelial hyperpolarizations or how removal of the endothelium would affect the 

membrane potential of the smooth muscle cells in the presence or absence of IbTX. 

Furthermore, studies carried out with IbTX in the presence of connexin-mimetic 

peptides (see section 1 .2 .1) could aim to demonstrate how changes in endothelial 

membrane potential might affect the membrane potential of the subjacent smooth 

muscle cells. Inhibition o f gap junctions with connexin-mimetic peptides would prevent 

the propagation of depolarizations from the smooth muscle to the endothelium and 

therefore the development of endothelial hyperpolarizations would be unaffected by any 

changes in the membrane potential of the smooth muscle.

Secondly, studies should clarify further the role of H2O2 in both ACh- and A23187- 

evoked EDHF-type responses. For instance, mechanical investigations could be carried 

out to demonstrate whether higher concentrations of ATZ would completely restore the 

relaxation to A23187 in the presence of catalase. These experiments would exclude the 

possibility that the concentration of ATZ used in the current study might have been 

submaximal. Also, patch clamp investigations could be carried out in the presence of 

catalase and inhibitors of Kca channels to demonstrate any direct effects of the enzyme
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on the opening of Kca in the rabbit iliac artery. If catalase directly affected these 

channels, changes in K+ current would be detected and reversed in the presence of the 

Kca inhibitors. However, if  catalase had no effect, then the activity of the enzyme could 

be attributed entirely to the scavenging of endothelial H2O2 .

Thirdly, a series of separate experiments could aim to elucidate the role of mitochondria 

as a source of H2O2 by demonstrating the effects of rotenone and myxothiazol in 

A23187-evoked responses in greater detail. For instance, mechanical investigations 

could be carried out with: 1) tone-matched controls in the presence or absence of 

rotenone and myxothiazol, and 2) the combination of connexin-mimetic peptides plus 

myxothiazol or the double combination of rotenone plus myxothiazol. These 

experiments would demonstrate whether the residual A23187-evoked relaxation in the 

presence of myxothiazol is a complex I-dependent component. In support of these 

investigations, confocal microscopy and flow cytometry with the novel fluoroprobe 

MitoSox Red could be carried out. MitoSox Red was introduced for the selective 

detection of O2 ’ in mitochondria (Mukhopadhyay et al., 2007), and therefore it could be 

used to clarify the role of mitochondria in H2O2 release in rabbit iliac arteries. These 

investigations should be repeated with ACh so as to confirm the role of mitochondria in 

these responses.

sy 1

Finally, imaging of cytosolic and mitochondrial [Ca ] using fluo-4 and rhod-2 

fluorescence could be used to determine how these concentrations change in the 

presence of A23187 and ACh. For instance, it has been shown that exposure of HepG2 

cells to A23187 raises both concentrations simultaneously (Abramov & Duchen, 2003). 

Such changes need to be demonstrated in the rabbit in the presence or absence of Kca 

inhibitors and connexin-mimetic peptides for both A23187- and ACh-evoked EDHF- 

type responses. Inhibition of gap junctions would ensure that: 1) no calcium diffuses

from the intimal layer to the smooth muscle and vice versa, and 2) no electrotonic
2+signalling occurs between the two layers. Therefore, any changes in [Ca ]i induced by 

A23187 and ACh in the presence of apamin, TRAM-34 and IbTX would be restricted to 

the endothelium only. Additionally, studies could be performed in rabbit iliac arteries to
24“demonstrate that release o f H2O2 from mitochondria is indeed Ca -dependent. To 

achieve this, two separate mechanical investigations could be carried out to demonstrate 

how inhibition of the mitochondrial Ca2+ uniporter and the permeability transition pore
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(PTP) might affect A23187- and ACh-evoked EDHF-type relaxations, and specifically

the H2C>2-dependent component of these responses. Agents such as CGP37157 (an 
• • • ^ |
inhibitor of Ca uniporter) and CsA (an inhbitor of PTP) could be used in combination 

with Kca inhibitors so as to demonstrate how changes in mitochondrial Ca2+ loading 

might affect the function of Kca channels. Imaging of cytosolic and mitochondrial
2 " F  *[Ca ] using fluo-4 and rhod-2 fluorescence could also be used to determine how these 

concentrations change in the presence of A23187, ACh, and the aforementioned 

inhibitors.

4.6 Concluding rem arks

In conclusion, this thesis emphasized the role of Kca activation on EDHF-type responses 

induced by both ACh and A23187. Furthermore, this study elucidated the putative role 

of Kca opening on H2O2 release in the endothelium of rabbit iliac arteries and its role on 

the hyperpolarization-dependent component of EDHF-type relaxations upon stimulation 

with both agents. Although the findings of these investigations are not sufficient to 

totally support the fact that the H2C>2-dependent relaxations might be a consequence of a 

hyperpolarizing response in the endothelium, they do provide further insights on the 

events that might take place. In accordance to the evidence collected in the previous 

chapters, the changes in [Ca2+]i and their distinct effects on Kca and H2O2 release by 

mitochondria might be a necessary step to be investigated next.
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